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Summary

Haematopoiesis, the process by which blood cells are formed, is extensively
studied because of its relevance for animal life. Uncovering the mechanisms
of blood formation and its regulation is fundamental to cope with anomalies
or illnesses such as anaemia and leukaemia, or massive blood loss.

Haematopoiesis is driven by the haematopoietic stem cells, HSCs. HSCs
are able to reconstitute, upon transplantation, all blood lineages of an ani-
mal deprived of its haematopoietic cells (multipotency), and to generate one
or two HSCs upon division (self-renewal). However, it is unclear how often
they self-renew or differentiate into more mature compartments, according
to which differentiation pathways, and how physiological and stressed con-
ditions differ. Similarly, the kinetic properties of the progenies of the stem
cells are mostly unknown.

Here we present an approach to quantify the kinetics of the haematopoi-
etic system via a deterministic mathematical model. The model is driven
by two different sets of in vivo measurements: fate mapping of HSCs and
BrdU accumulation data.

In the first experiment we consider, an inducible, inheritable label is switched
on in the stem cells without altering the physiological conditions. The frac-
tion of labelled cells in the stem and in the downstream populations is mea-
sured over time. We build a model of population dynamics, which describes
the time course increase of the labelled cells fraction in the progenies. The
model has only one parameter, the time a cell resides in a population. Fit-
ting reveals that the immediate progenies of stem cells have a long residence
time, which suggest a small role of stem cells in normal haematopoiesis, sus-
tained rather by early progenitors. We then infer the differentiation rate of
a cell into its progeny by incorporating in the model the ratio of population
sizes, and again confirm an infrequent contribution of stem cells.

In the second experiment we consider, the thymidine analogue BrdU is fed
to mice over time. BrdU labels the cells that undergo DNA replication.
The fraction of labelled cells in the stem cells and in the downstream pop-
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ulations is measured over time. We adapt the population dynamics model
of the previous part, incorporating the simplified assumption that cells are
BrdU positive if and only if they have divided at least once. We fit the
adapted model to BrdU and fate mapping data simultaneously and infer
the rate at which cells divide, as well as the frequency at which division
of different types (symmetric or asymmetric) happen. This analysis reveals
infrequent and mainly symmetric divisions of the stem cells.

Moreover, we investigate whether a subdivision of the stem cells and their
immediate progeny into several heterogeneous sub-populations is compati-
ble with the parameters inferred as described above. We adapt the model to
again fit data that consider this subdivision. We find coherent estimates for
quantities that are model-invariant, which supports the robustness of our
approach.

Finally, we adapt our model to describe fate mapping and cell-cycle-related
data in non-stationary conditions, namely after irradiation. Contrary to
normal conditions, stem cell proliferation and differentiation are significantly
activated, demonstrating their importance in reconstituting a severely com-
promised system.

In conclusion, we suggest via data-driven deterministic modelling that HSCs
fuel but do not majorly sustain normal haematopoiesis, role played by their
immediate progenies. On the contrary, they are very responsive in stressed
conditions, rapidly replenishing the depleted cells via enhanced proliferation
and differentiation.
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Zusammenfassung

Hämatopoese, der Bildungssprozess von Blutzellen, wird aufgrund seiner
Relevanz für das Leben von Organismen intensiv erforscht. Das Verständnis
der Mechanismen der Blutentwicklung und ihrer Regulation ist essentiell
um Anomalien und Krankheiten, wie Anämie und Leukämie, oder massiven
Blutverlust entsprechend behandeln zu können.

Die Hämatopoese wird von blutbildenden Stammzellen, sogenannten HSCs,
bewerkstelligt. Im Falle einer Transplanation sind HSCs dazu befähigt, alle
Blutzelltypen im depletierten Knochenmark des Empfängertieres zu regener-
ieren (Multipotenz), sowie sich selbst zu erhalten, indem sie bei der Zell-
teilung ein bis zwei identische Tochterzellen generieren (Selbsterneuerung).
Allerdings ist das genaue Verhältnis zwischen selbsterneuernden und dif-
ferenzierenden Teilungen, sowie die möglichen Entwicklungswege und beste-
hende Unterschiede zwischen physiologischen und pathogenen Bedingungen
weitgehend unklar.

Im Folgenden wird dargestellt, wie durch den Einsatz eines determinis-
tischen mathematischen Modells die dynamischen Prozesse während der
Hämatopoese quantifiziert werden können. Das Modell wird hierbei durch
die Ergebnisse zweier unterschiedlicher in vivo Experimente motiviert: ein-
erseits durch Messung der Zellschicksale fluoreszenzmarkierter HSCs (Fate-
Mapping), andererseits durch BrDU Akkumulationsmessungen.

Im ersten Experiment untersuchen wir einen induzierbaren, vererbbaren
Marker, der in Stammzellen angeschaltet wird, ohne physiologische Be-
dingungen zu verändern. Der Anteil an markierten Stammzellen und den
nachfolgenden Populationen wird über die Zeit gemessen. Wir erstellen
ein mathematisches Modell der Populationsdynamiken, welches den zeitlich
steigenden Anteil markierter Zellen in den Nachkommen der Stammzellen
beschreibt. Das Modell beruht auf nur einem Parameter Parameter; die
zeitliche Dauer, die eine Zelle in einer Population verbleibt (i.e. Resi-
denzzeit). Parameterschätzungen zeigen, dass die direkten Nachkommen
der Stammzellen lange Residenzzeiten haben. Dies suggeriert eine unterge-
ordnete Rolle der Stammzellen bei normaler Hämatopoese, die stattdessen
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aufrechterhalten wird von ersten Nachkommen. Wir sagen dann Differen-
zierungsraten von Zellen zu deren Nachkommen vorher, indem wir die Ver-
hältnisse der Populationsgrößen einbeziehen, was wiederum die seltene Be-
teiligung der Stammzellen bestätigt.

Im zweiten Experiment werden Mäuse mit dem Thymidin-Analogon BrdU
gefüttert, das proliferierende Zellen markiert. Der Anteil der markierten
Zellen innerhalb der Stammzellpopulation und der Nachfolgepopulationen
wird über die Zeit hinweg gemessen. Wir verändern das zuvor generierte
Modell der Populationsdynamik, indem wir die vereinfachte Annahme ein-
bauen, dass Zellen nur dann BrdU-positiv sind, wenn sie sich mindestens
einmal geteilt haben. Um die Häufigkeit der (symmentrischen oder as-
symetrischen) Zellteilungen zu bestimmen, passen wir das Modell an die
BrdU- und Fate-Mapping-Daten an. Die Analyse zeigt seltene und haupt-
sächlich symmetrische Teilungen der Stammzellen.

Des Weiteren untersuchen wir, ob eine Unterteilung der Stammzellen und
ihrer unmittelbaren Nachkommen in verschiedene heterogene Subpopulatio-
nen mit den gelernten Paramtern vereinbar ist. Daraufhin adaptieren wir
das Modell erneut, um es den Daten anzupassen, die diese Unterteilung be-
treffen. Wir finden dabei kohärente Schätzungen für modell-unabhängige
Mengen, was wiederum die Robustheit unseres Ansatzes bestätigt.

Schließlich passen wir unser Modell so an, dass wir Fate-Mapping und Daten
des Zellzyklus unter nicht natürlichen Bedingungen (besonders nach Be-
strahlung) beschreiben können. Im Vergleich zu natürlichen Bedingun-
gen werden Proliferation und Differenzierung signifikant erhöht. Damit
wird ihre Bedeutung für die Wiederherstellung eines schwer beeinträchtigten
hämatopoetischen Systems untermauert.

Zusammenfassend: Durch datengetriebene, deterministische Modellbildung
gelangen wir zu dem Schluss, dass HSCs die normale Hämatopoese versor-
gen, aber nicht hautsächlich aufrechterhalten; diese Rolle fällt ihren unmit-
telbaren Nachfolgerpopulationen zu. Dennoch reagieren HSCs empfindlich
auf Stressbedingungen, indem sie verlorene Zellen durch erhöhte Prolifera-
tion und Differenzierung schnell ersetzen.
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Chapter 1

Introduction

Haematopoiesis

The formation of blood cells is named ”haematopoiesis” after the greek ema
(blood) and poiesis (formation). Blood cells are formed throughout all the
life time of an animal. In mice, the first haematopoietic cells appear in the
yolk sac at day 7 of gestation. The site of haematopoiesis then migrates
to the aorta-gonad mesonephros, the placenta, and from embryonic day 10
to the foetal liver. After birth haematopoietic stem cells colonise the bone
marrow and drive adult haematopoiesis [Golub and Cumano, 2013]. In adult
vertebrates, thereafter, the system maintains the cellularity of blood and im-
mune cells over the life span of the animal. The cells that are most rapidly
replenished are neutrophils, platelets and erythrocytes, whereas lympho-
cytes have longer lifetimes. Cell replenishment adapts to heightened demand
caused, e.g., by infection or blood loss.

Haematopoietic stem cells

A central role in haematopoiesis is played by haematopoietic stem cells
(HSCs). The definition of HSCs dates back to the 1950s, and it has been
developed on the basis of experiments performed on animals exposed to ra-
dioactive irradiations. Since irradiation kills stem and progenitor cells (that
is, dividing cells), animals would not survive the exposure to high doses. On
the other hand, animals receiving haematopoietic progenitors via transplan-
tation did survive, and the composition of their blood was fully restored,
meaning that mature blood cells were produced by the transplanted cells de
novo ([Ford et al., 1956], [Nowell et al., 1956]).

Over the years, the phenotype of the pool of cells that must be transplanted
to guarantee the recovery of the animals was more and more specifically
determined. Such cells were named stem cells and it was shown that even
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a single stem cell can repopulate the whole system [Ema et al., 2005]. Fur-
thermore, it was checked whether such reconstitution was stable over time.
Transplantation of some progenitor did not guarantee a durable survival,
while upon transplanting stem cells the number of blood cells did not de-
cline over time.

Also, it was noticed that the daughter cells generated by a symmetric di-
vision of a transplanted stem cells could reconstitute an irradiated animal
upon secondary transplantation, meaning that the stem cells can produce
cells that have the same multipotent reconstituting potential. In literature,
such capability is referred to as self-renewal. Evidence for self-renewal of
HSCs has been provided by retroviral marking studies in which HSC clones
tagged with retroviral integration sites were transplanted into secondary
recipients ([Dick et al., 1985], [Keller et al., 1985], [Keller and Snodgrass,
1990], [Lemischka et al., 1986]).

In conclusion, it has been known for decades that there are some special
cells that are able to self-renew and differentiate to produce all the mature
blood cells, but many open questions about the characterisation of such cells
and their progeny, and the architecture and regulation of the haematopoietic
tree, still persist.

Current knowledge and open questions

Characterisation of the stem cells

A major point of debate is the phenotypical characterisation of haematopoi-
etic stem cells. The current standard is to isolate HSCs based on the surface
markers Lin− Kit+ Sca+ CD150+ CD48− [Kiel et al., 1995], but within this
basic characterisation the existence of distinct sub-compartments has been
proposed by different groups.

For example, in [Oguro et al., 2013], HSCs are further subdivided according
to the additional surface marker CD229, with the CD229− population being
the immature HSC-1, which give rise to the less immature CD229+population,
HSC-2. This hierarchy was defined based on reconstitution and proliferative
potential.

In a more recent publication , the HSCs are purified based only on the
expression of the homeobox B5 (Hoxb5) gene, and Hoxb5+ cells only are
able to provide long term reconstitution [Chen et al., 2016]. On the other
end, [Ito and Ito, 2016] suggest that Tie2 expression discriminates among
HSCs, with positive cells being the most immature stem cells.
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Other studies indirectly identify a most primitive population within the
HSCs, although they provide neither a phenotypical nor a molecular char-
acterisation. In [Sawai et al., 2016] authors performed a fate mapping of
HSCs and found that they must be heterogeneous since, if labelled with a
bacterial artificial chromosome (BAC) clones driving transgene expression
from the Pdzk1ip1 locus, their labelling frequency increases over time. In
[Wilson et al., 2008] cell cycle label retention suggests HSCs to be heteroge-
neous with respect to their proliferative potential.

[Benz et al., 2012] and [Luchsinger et al., 2016] suggest that HSCs are
heterogeneous based on clonal analysis post-transplantation, which yielded
that cells are biased towards the production of different progenies. However,
transplantation assays are a potentially different situation from physiological
haematopoiesis.

Topology

Much work has been dedicated to assessing the differentiation hierarchy, or
topology, from stem cells to mature populations.

In the classical view of haematopoiesis, HSCs are long term reconstitut-
ing and progressively lose capability of self-renewal upon differentiating into
short term reconstituting haematopoietic stem cells (ST-HSCs) and then fur-
ther into multipotent progenitors (MPPs) [Morrison and Weissman, 1994].
MPPs then commit to be either myeloid cells upon differentiating into com-
mon myeloid progenitors, CMPs [Akashi et al., 2000], or to be lymphoid
cells turning into common lymphoid progenitors CLPs [Kondo et al., 1997].
CMPs and CLPs subsequently lose multipotency in a stepwise manner to
form all mature cell types. This model has been based on transplantation
studies and colony assays. However, a recent paper using barcodes and
fate mapping of endogenous HSCs supports a principal dichotomy between
myelo-erythroid and lymphoid developments [Pei et al., 2017].

Several works, however, question this model and postulate the existence of
alternative or supplemental routes [Perié et al., 2014]. To form erythrocytes,
for example, direct pathways might emerge from CMPs [Nutt et al., 2005],
MPPs [Lai and Kondo, 2006] or earlier from stem cells [Guo et al., 2013]
[Notta et al., 2016] [Rodriguez-Fraticelli et al., 2018], although in [Boyer
et al., 2010] authors proved the necessity of an intermediate FLK2+ pro-
genitor between HSCs and all mature cells. [Hoppe et al., 2016] question the
early myeloid choice, and [Yamamoto et al., 2013] and [Perié et al., 2015]
that the MPP population is required in the developmental pathway at all.

Note that topology is strictly connected with the pre-discussed heterogene-
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ity issue. In fact, once there is evidence that a population at any point of
the differentiation chain is heterogeneous, then the question about the ex-
istence of multiple differentiation pathways also arises. Particularly, several
publications claim that population ST-HSC and/or MPP are heterogeneous
[Oguro et al., 2013], and propose that each subpopulations is biased toward
the fate of a specific mature blood cell via a lineage tracking experiment
[Pietras et al., 2015].

Quantitation of haematopoiesis

Moreover, the scientific community has been interested in estimating kinetic
parameters such as the frequency at which HSCs differentiate, proliferate or
die in normal conditions1.

Estimating the proliferation rate is easier because one only needs to col-
lect cell-cycle-related data on HSCs. In several works, for example, the
thymidine analogue BrdU is administrated to the animals via drinking wa-
ter. BrdU is incorporated in the DNA during the S phase of the cell cycle
and thus labels cycling cells. The fraction of stem cells becoming BrdU
positive is measured over time as in [Oguro et al., 2013], and the fraction of
recruitment into cell cycle estimated via modelling (for example, once in 12
days as estimated in [Cheshier et al., 1999]).

[Mackey, 2001] proposed a model that describes the dynamics of BrdU ac-
cumulation over time. This model assumes a fixed duration of the cell cycle,
but a stochastic exit from the G0 phase, either by commitment into cycle
or by cellular differentiation. Calibrating the model on BrdU continuous la-
belling data measured by [Bradford, 1997] and [Cheshier et al., 1999] yields
that proliferation occurs once in 20 to 50 days. Another consequence of this
model is that the number of proliferations a HSC undergoes before fully
maturing is on average 20. Interestingly, the same model provides also an
upper bound for differentiation and death rate (once in 50 or 2 days respec-
tively). As we will show in this thesis, it is only possible to obtain also a
lower bound on the estimated differentiation and death rates of a population
if information on the kinetics of its direct progeny is also available.

It has been suggested that BrdU can have a toxic effect, and thus the po-
tential to activate stem cells. To circumvent this problem, measurement of
the fraction of BrdU can be performed in the delabelling phase following
BrdU removal as in [Wilson et al., 2008], [van der Wath RC, 2009]. Note
that this strategy assumes that shortly after BrdU removal the physiological
conditions are restored. Chase experiments were also performed by [Foudi

1Here we exclusively report results obtained with mouse models. Kinetics were proven
to be different depending on the animal size [Abkowitz et al., 2000]
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et al., 2008] regaridng the dilution of the histone 2B-GFP protein. Alto-
gether, these works found, via deterministic or stochastic modelling, that
stem cells divide on average once in 100 days.

In [Abkowitz et al., 2000], authors performed stochastic modelling of the
clonal dynamics of terminally differentiated populations during repopula-
tion after transplantation. They concluded that, in the stem cell popula-
tion, a proliferation and a differentiation event take place on average once
every 20 days, and that a death event occurs way less frequently. An infre-
quent activity by stem cells and a major role of their progeny in sustaining
haematopoiesis is also the conclusion of [Schoedel et al., 2016], who ablated
HSCs and saw no major effect on their progeny for at least one year. On the
other hand, in [Sawai et al., 2016] authors have estimated a more frequent
commitment (ones in 10 days) for the stem cells based on mathematical
modelling of HSCs fate mapping data.

Finally, few data exist on the kinetic parameters of populations other than
stem cells, apart for the commitment rate of progenitors of T and B cells
[Tough and Sprent, 1994] [Rauch et al., 2009] and the death rate of a few ter-
minally differentiated populations [Vácha et al., 1980] [van Furth R, 1989].
Some of these gaps have been filled by theoretical inference upon simulat-
ing the behaviour of the haematopoietic system in stationary situations and
after challenge [Manesso et al., 2013] [Marciniak-Czochra et al., 2008].

Mechanisms of proliferation

Another point of interest is the mechanism of proliferation and differen-
tiation of stem cells. Experimental evidence exists that cells can divide
symmetrically or asymmetrically [Wu et al., 2007], but the estimation of the
relative probability of such events is contradictory [Yamamoto et al., 2013],
[Ito and Ito, 2016], [Lai and Kondo, 2006] [Shin et al., 2014], [Morrison and
Kimble, 2006], [Marciniak-Czochra et al., 2008].

Number of stem cells contributing to haematopoiesis

Finally, many studies have addressed the quantification of the number of
HSCs that contribute to haematopoiesis via clonal analysis of individually
marked HSCs transplanted in irradiated mice. These experiments yielded
that only a small fraction of HSCs contribute to haematopoiesis, in the order
of tenths of percents [Naik et al., 2013] [Gerrits et al., 2010] [Lu et al., 2011]
[Jordan and Lemischka, 1990]. On the other hand, it has been shown that,
in normal conditions, many clones differentiate into committed progenitors
[Sun et al., 2014], and that nearly all HSCs proliferate within the life span
of a mouse, as shown by label retaining assays in [Bernitz et al., 2016] or
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[Cheshier et al., 1999].

In this thesis

A simple model for normal haematopoiesis

In this chapter we build a mathematical model to quantify the differentiation
kinetics and the time a cell spends in a population (residence time) based
on fate mapping data. The fate mapping experiment was performed by Dr.
Katrin Busch [Busch et al., 2015]. Dr Busch developed a knock-in mouse
that allows to induce a label in the solely HSCs in a permanent, genetically
transmissible fashion (Figure 1.1). When the mice are around 6 weeks old,
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mouse	lifespan	(d)

birth	

label
induction	in																																	

HSCs							

Figure 1.1: Experimental scheme of HSCs’ fate mapping [Busch et al., 2015].
Mutant mice expressing MCM (an improved Cre fused with modified oestro-
gen receptor) from the Tie2 locus are crossed with reporter mice with a YFP
protein in the Rosa locus. Left panel: in the absence of tamoxifen, MCM
is inactive and the YFP is not expressed. Middle panel: when the mice are
6 weeks old, tamoxifen is administrated, and MCM activated as a conse-
quence. MCM then migrates to the nucleus and recombines the Rosa locus,
removing the Stop codon. From this moment on, the YFP is expressed
(right panel).

a genetic yellow fluorescent label is permanently switched on in the HSCs
exclusively. Around five week afterwards the first labelled progenies appear,
and their number increases over time. In this first part, the standard defi-
nition of populations and their homogeneity are not questioned. From this
approach we learn differentiation, net proliferation rates and residence times
of several haematopoietic populations. We additionally estimate the min-
imum number of HSCs that actively contribute to haematopoiesis during
the experimental time span and we gain some knowledge about the devel-
opmental topology.
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Refining the model: heterogeneity, proliferation

In this chapter we aim at disentangling the proliferation and death rates by
means of additional data and an appropriate mathematical modelling ap-
proach. The data are derived from a BrdU assay performed by [Oguro et al.,
2013]. When the mice are around 8 weeks old, BrdU is administrated and all

-56																																		0																1																																																																					7

BrdU fed	via	drinking	water
data	collection

mouse	lifespan	(d)

birth	

BrdU
injection

G1

early	S

late	S

G2

S

M
G1

early	S

late	S

G2

M
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late	S

G2

M

S S

Figure 1.2: Experimental scheme of BrdU labelling of murine cells [Oguro
et al., 2013]. Segments in a circle represent the fraction of cells in the
corresponding cycle phase. Gray=non labelled, green=labelled.

the cells that are replicating DNA (S phase) become labelled. Since BrdU is
continuously fed to the mice, progressively all cells that go through S phase
become labelled, without label dilution. The model describes the kinetics
of BrdU accumulation over time. In this chapter we also investigate the
heterogeneity of stem cells populations and the mechanisms of proliferation
that are inferable from the very same label propagation data.

Comparing estimated parameters among different models

In this chapter we present a theoretical framework to compare different
models that consider the same cellular populations homogeneous and het-
erogeneous respectively. We show that the values of parameters such as
differentiation or proliferation depend on the model, but there exist quan-
tities that do not, such as resident time, number of proliferations before
leaving a compartment, flux into a compartment.

Non-stationary haematopoiesis after irradiation

Finally, we build a model to describe non steady state haematopoiesis, par-
ticularly after sub-lethal irradiation. Ann-Katrin Schuon measured the to-
tal number of cells and the labelling frequency over time up to 16 weeks
after irradiation for the HSC compartments and its progeny (unpublished
data), plus the EdU accumulation and dilution at different time points. We
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mouse	lifespan	(d)

birth	

label
induction	in																																	

HSCs							

EdU administration,
uptake	and	dilution
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late	S

G2

M

&	

Figure 1.3: Experimental scheme of fate mapping combined with EdU la-
belling of murine cells. Experiment performed by Ann-Kathrin Schuon (un-
published). Segments in a circle represent the fraction of cells in the corre-
sponding cycle phase. Gray=non labelled, green=labelled

compute the cell cycle length, differentiation and death rates for stem and
progenitor cells and we compare it to stationary case.
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Chapter 2

A simple model for normal
haematopoiesis

2.1 HSC activity

The first point we addressed was the quantification of the contribution of the
HSCs and immediate progenitors to normal haematopoiesis. More precisely,
we posed the following questions:

1. In case of HSCs failure, would we see visible effects on the progeny in
the near term?

2. How often does an HSC produce a direct progeny?

3. How many HSCs contribute to haematopoiesis?

These questions require a quantitative approach, that is, a mathematical
model, to be tailored to suitable data.

2.1.1 The experimental framework

We use the data generated by our experimental partners [Busch et al., 2015]
via fate mapping of the HSCs. The idea was to generate a mouse model
where a genetic and hence permanent label is exclusively induced in the
HSCs and to measure, over time, the fraction of labelled cells in all pop-
ulations (also called compartments in this work). The requirement of a
genetic (and thus inheritable) label is fundamental for the questions we ad-
dress, since they all involve characterisation of HSCs via output on their
progeny. A permanent label is important to observe the system over long
times without having to introduce a model for the dilution of the label. Fi-
nally, exclusively labelling HSCs was fundamental to address point 3, as will
be explained in Section 2.1.5.
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The labelling was performed in a knock-in mutant expressing, from the Tie2
locus, a gene encoding codon-improved Cre (iCre) fused to two modified oe-
strogen receptor binding domains (designated as MCM). The Tie2MCM al-
lele was crossed to RosaYFP mice, expressing the yellow fluorescent protein
(YFP) reporter in a Cre-dependent manner. After tamoxifen treatment,
MCM becomes active and deletes the stop cassette of the YFP marker gene,
thus rendering Cre-expressing cells and their non-Cre-expressing progeny
YFP-positive. See Figure 2.1.1 for the scheme of the experiment. Due to
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Figure 2.1: Switching on a heritable label in the HSCs. Left: In the absence
of tamoxifen there is no YFP expression. Middle: If tamoxifen is added, the
MCM is activated, and recombines the Rosa locus, removing the stopping
codon and allowing the expression of the YFP. Right: Even long after ta-
moxifen administration and though MCM is returned to the inactive state,
YFP remains expressed [Busch et al., 2015].

the specificity of Tie2 expression, the described procedure exclusively tags
HSCs. There is a very small proportion (less than 0.01%) of labelled cells
in the myeloid compartments, but their life time is so short that this tiny
fraction is lost rapidly. In the following weeks, the labelled HSCs undergoing
differentiation start invading the downstream compartments, thus increas-
ing the labelling frequency in the progeny (Figure 2.2). The frequency of
labelled cells over time for all the populations of interest is the observable
we are interested in modelling.

2.1.2 Model basis

In order to be able to specifically address the above-mentioned quantita-
tive questions we now define the cell-fate-related parameters and the basic
ideas behind modelling population kinetics. In Figure 2.3 we present all the
possible fates a cell can undergo. A is a general progenitor compartment
and B is its direct progeny. Rates below each scheme denote the number of
events of that kind between t and t + dt per dt per cell of type A. Given
such definitions, the time evolution of the number of cells TA(t) and TB(t)
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Figure 2.2: Label propagation as measured by [Busch et al., 2015]. The
average percentage of YFP+ cells in each measured compartment is plotted
over time (see Session Abbreviation). Blue dots represent individual mice
(n=114).
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Figure 2.3: If A is a generic cell population upstream of B, then there are 5
possible fates A can undergo with rates σA(t), γA(t), ρA(t), µA(t) and δA(t)
respectively.
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in populations A and B, respectively, is [Flossdorf, 2013]:

ṪA(t) = (σA(t)− ρA(t)− µA(t)− δA(t)) TA(t) (2.1)

ṪB(t) = (2 ρA(t) + γA(t) + µA(t)) TA(t)+ (2.2)

+ (σB(t)− ρB(t)− µB(t)− δB(t)) TB(t) (2.3)

We assume that, under the steady state assumption, all rates are constant.
It is straightforward to see that for this kind of problem the parameters used
are redundant. Upon substituting:

λA = σA + ρA + γA (2.4)

αA = 2 ρA + γA + µA (2.5)

we obtain the equivalent system:

ṪA(t) = (λA − αA − δA) TA(t) (2.6)

ṪB(t) = αA TA + (λB − αB − δB) TB(t) (2.7)

We can summarise the meaning of these substitutions in the following defi-
nitions:

• λA(t) is the proliferation rate of population A. This is the number of
proliferation events among the cells of type A between t and t+dt per
cell of type A per dt:

λA(t) =
#cells of type A that proliferate between t and t+ dt

dt TA
(2.8)

• αA(t) is the differentiation rate of population B. This is the number
of cells of type B that are formed by A between t and t + dt per cell
of type A per dt:

αA(t) =
#cells of type B that are formed by A between t and t+ dt

dt TA
(2.9)

• δA(t) is the death rate of population A. This is the number of cells of
type A that die between t and t+ dt per cell of type A per dt:

δA(t) =
#cells of type A that die between t and t+ dt

dt TA
(2.10)

Note that the two parameterisations are equivalent only when it comes to
describe the time evolution (and thus the steady-state ratio) of the number
of cells in different populations. We will see in Section 3 that this is not true
in general.

We are now ready to describe the modelling approach for each of the posed
questions.
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2.1.3 Effects of HSCs failure

The first question we posed is:

“In case of HSCs failure, would we see visible effects on the progeny in
the near term?”

In order to achieve a quantitative answer, we can think of the following
experiment: Let us imagine that we are able to suddenly ablate all HSCs.
Furthermore, we assume that this process does not change the kinetic rates
of ST-HSCs, that is, no feedback mechanism would be triggered by the abla-
tion. ST-HSCs would start declining immediately after the input is cut out,
and so will all downstream populations. We aim at quantifying the speed
of the decline. This is equivalent to pose the question:

“How long does it take, on average, to a cell of type ST-HSC to exit the
compartment because of either differentiation or death?”

Thus, we are aiming at estimating a quantity, say τST, called from now
on the residence time, which represents the average time spent by a cell and
its progeny in the ST-HSC compartment. A short residence time means that
the effect of HSCs ablation would be seen immediately in the haematopoi-
etic output, thus implying a major relevance of HSC contribution to normal
haematopoiesis.

Note that for the question to be correctly posed the rate at which cells
are lost from the ST-HSC compartment must exceed the rate at which cells
are produced, otherwise we would be dealing with an expanding population,
for which the residence time would be infinite.

The rate of variation over time of the number TST(t) of cells of type ST-HSC
at time t is defined, as in equation 2.7, as:

ṪST(t) = αHSC THSC(t) + (λST − αST − δST) TST(t) (2.11)

Now, if the input is ablated, we obtain:

ṪST(t) = (λST − αST − δST) TST(t) = −κST TST(t) (2.12)

where κST = αST + δST − λST is the net efflux from ST and thus

TST(t) = e−κST t (2.13)

The average time τST for a cell to be lost is by definition:

τST = norm

∫ ∞
0

t (αST + δST) TST(t) dt (2.14)
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where (αST + δST) TST(t) dt is the probability of having either a differentia-
tion or death event between t and t+ dt and the normalisation factor norm
is:

norm =

∫ ∞
0

(αST + δST) TST(t) dt (2.15)

Equations 2.13, 2.14 and 2.15 yield τST =
1

κST
and thus we need to esti-

mate κST. As we anticipated, κST > 0 because cell loss has to exceed cell
production.

The observables of the fate mapping experiment described in Section 2.1
are, for each mouse and each cell type of interest, the total number of cells
in a certain aliquot and the number of labelled cells in the same aliquot. The
total number of cells in a population is assumed to be constant at steady
state (Figure 8.1 of the Supplementary Material). while the number of la-
belled cells grows over time (Figure 2.2). labelled cells and unlabelled cells
are not treated differently from the point of view of the rates. For the HSC
compartment, we assume perfect self-renewal, that is, the proliferation rate
perfectly balances the death and the differentiation rates and this means
that not only the total number of HSCs is constant over time but also that
of labelled HSCs. The perfect self-renewal assumption holds because the
HSCs are at the top of the differentiation hierarchy, so they do not have any
input and need to sustain the flux into haematopoiesis. They could in princi-
ple grow over time, as considered in the Supplementary Material (Figure 8.2)

Upon denoting Lcompartment(t) the time function of the number of labelled
cells in a compartment, we can write:

L̇ST(t) = α0 LHSC − κST LST(t) (2.16)

Due to experimental design, the only quantity we can compare among dif-
ferent animals is the fraction of labelled cells in an aliquot, rcompartment(t).
From

ṙST(t) =
L̇ST(t)

TST
=
αHSC LHSC(t)

TST
− κST rST(t) (2.17)

Now, for the total numbers of cells it is true that:

ṪST = αHSC THSC − κST TST = 0 (2.18)

Upon combining 2.17 and 2.18 we find:

ṙST(t) = κST (rHSC − rST(t)) (2.19)

In other words, the time course of the fraction of labelled cells permits to
directly estimate the residence time. Note that the last equation also states
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that the labelling frequency in ST-HSC tends to equilibrate with the one in
HSC, and thus, since the initial condition is 0, it asymptotically grows.
Equation 2.19 can be further simplified upon dividing left and right hand
sides by the constant rHSC

1. This allows to elegantly write the time evolution
of the fraction of labelled cell in population ST normalised by the labelling
frequency in HSC as:

ḟST(t) = κST (1− fST(t)) (2.21)

This simplification is not necessary for modelling purposes, but it allows to
reduce the parameter numbers (no need to estimate the labelling frequency
of HSC) and thus to focus on modelling ST-HSC only. We indeed reached
similar conclusions upon modelling the normalised labelling frequency of
ST-HSCs or the labelling frequency of HSC and ST-HSC. Further on we
will question the homogeneity of the HSC compartment and will need to fit
their initial labelling frequency as well (see Section 3.1).

The model as described above successfully fits the data (details in Meth-
ods):
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Figure 2.4: Model reproduces the time increase of the labelling frequency in
population ST-HSC. Grey shade: 95% confidence bounds as calculated via
bootstrap simulations (see Methods).

We found that:
κST = 0.003 [0.002− 0.004]d−1

1We saw that, in steady state, perfect self-renewal of the HSC compartment implies
that both LHSC and THSC are constant over time, and thus so is their ratio. But a constant
labelling frequency is actually true for a population X without any input (like the case of
the most immature stem cells) even in non-stationary conditions and whatever the time
dependance of the rates is:

˙rX(t) =
1

TX
(λX(t) − αX(t) − δX(t)) LX − LX

T 2
X

(λX(t) − αX(t) − δX(t)) TX = 0 (2.20)
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or, analogously,
τST = 330 [250− 500]d

where the values in brackets represents the 95% confidence intervals on the
best fit estimation as calculated with the profile likelihood method (see
Methods and Figure 8.3 of the Supplementary Material).

We have now an answer for our initial question: a direct progeny of an
HSC, a cell of type ST-HSC, resides in its compartment for around one
year. This means that, for around one year, the effects of a sudden loss
of HSCs are not measurable on the mature haematopoietic compartments,
which all come from the ST-HSCs, and thus the contribution of the HSCs to
normal haematopoiesis is not detectable for time scales of around one year
(note: this conclusion only holds if the HSCs exclusively feed the ST-HSC
compartment; more details about alternative lineage topologies are given in
2.3).

A simulated effect of HSC ablation is plotted in Figure 2.5.

2.1.4 Frequency of differentiation

We assessed in the previous Section the key role of the ST-HSCs in sustain-
ing haematopoiesis. It could still be, though, that the ST-HSCs themselves
needed a massive input from HSCs to guarantee their compartment size.

From Equation 2.18, we have:

αHSC = κST
TST
THSC

(2.22)

Since we have already estimated the efflux rate, we only need to measure

the ratio of compartment sizes
TST
THSC

to estimate αHSC
2.

We found that:
αHSC = 0.01 [0.007− 0.013]d−1

Note: again, this result for HSC differentiation is only true if the HSCs
exclusively feed the ST-HSC compartment. In fact, it might in principle
be that HSC differentiate into a certain compartment X. The frequency of
this hypothetical differentiation event is, with the data described so far, not
distinguishable from the death rate, for which we do not have so far a di-
rect estimate. In fact, having estimated the flux into one progeny yields

2In reality, the adopted procedure is to fit all the data together, label propagation and
ratio of compartment sizes. This is more rigorous, since the parameters are estimated in
such a way that they reproduce all data simultaneously.
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Figure 2.5: Effects of HSCs ablation. Before time 0 days both populations
HSC and ST-HSC are at steady state (normalised value 1). After HSCs
ablation (t > 0), the number of ST-HSCs declines slowly, but for around
one year its size is still circa 40% of the stationary value, implying that
HSCs ablation does not massively affect haematopoiesis for a long time
span. This simulation assumes that HSCs ablation leaves the residence time
of ST-HSCs unaffected.
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an estimate for the difference between proliferation rates and all loss terms
(death rate and other differentiation rates). We will later disentangle these
two latter rates in order to refine our idea of the idea HSC activity (Section
3.2).

2.1.5 Number of active HSCs

So far we have determined how often an HSC proliferates or differentiates
on average, but average rates are not informative on the actual number of
HSCs that actively take part into haematopoiesis during the observation
time. We define as active a cell that produces at least one differentiated
progeny, but it is clear that the differentiation activity is, at least at the
level of the cellular population, connected to the proliferation activity, in
order to balance the number of cells.

To address this question, our experimental partners administrated low doses
of tamoxifen to a cohort of mice and checked for the label in the mature
blood cells. The idea was that, if the number of initially labelled stem cells
is very low, the probability of having labelled an active stem cells should
be lower too, and thus it might be likely to detect no labelled progeny in
the analysed mice. However, this was not the case. Out of 61 mice with
labelling frequency lower than 1%, and independently of the time between
labelling and measuring, all mice had labelled mature cells. Nevertheless,
we can use the information on the number of measured mice compared to
the initial labelling frequency to estimate a lower bound of active cells as
described below.

Let us define:

• fa as the fraction of active HSCs (considered the same for all mice but
unknown)

• N as the total number of HSCs (considered the same for all mice and
known)

• L as the total number of labelled HSCs (variable among different mice)

We can now write the probability of labelling na active cells out of the total
as:

P (na, fa, L) =

(
L
na

)(
N−Nfa
L−na

)(
N
L

) (2.23)

and thus the probability of labelling no active cells:

P (0, fa, L) =

(
N−Nfa
L

)(
N
L

) (2.24)
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The observed quantity is the HSC labelling frequency in each mouse, from
which we can compute L if we know N, the number of HSCs in a mouse.
We fix N=16800 after [Boggs, 1984].

In Figure 2.6 A, we see the measured labelling frequencies in an increas-
ing order. The final estimation for the probability of labelling no active
cells depends on which frequency we use to calculate L, and the higher the
frequency, the higher the estimated fa. Since we want to estimate the lower
bound for the fraction of active cells, we should in principle use the lowest
labelling frequency (mouse 1), but this would be not reliable due to the fact
that only a small aliquot of HSCs was analysed, thus yielding a noisy esti-
mate for L (which, for the lowest frequency, is of the order of a few cells).
Therefore we pool the data. In Figure 2.6 B, we show the relative error on
the average labelling frequency of as many mice as indicated on the x axis3

(following the increasing order as in left panel).
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Figure 2.6: Limited dilution data. A: Labelling frequency for each mouse,
plotted in increasing order. B: Relative error on the average of the labelling
frequency taken on an increasing number of mice.

We see that after around 15 mice the error of the average value stabilises. We
use this value for our calculation, namely an average labelling frequency of
around 0.05%, which yields L ∼ 8. We now have the probability of labelling
no active cell only as a function of the fraction of active cells, P0,L(fa). We

3The error corresponding to the first point from the left is 0 because it refers to just
on mouse. It is 0 also on the following point because, by chance, the two lowest labelling
frequencies happened to be equal.
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use the binomial distribution:

B(m, k) =

(
m

k

)
(1− P0,L(fa))

m−k P0,L(fa)
k (2.25)

which gives the probability of finding k empty mice (i.e., no labelled progeny)
out of m analysed. We use the information that all 15 mice we measured
had labelled progeny, thus m = 15 and k = 0. We computed that the lowest
fa for which B(15, 0) is still significative(> 67%) is 0.3. In other words , if
fa were lower, it would have been very unlikely to not find any empty mouse
out of the 15 measured. We can now state that at least around 5000 HSCs
are active during the lifespan of a mouse.

Analogously, we were also able to determine the stem cell contribution to
specific lineages of haematopoiesis:

• granulocytes (GR): 3.8% for granulocytes

• double positive lymphocytes (DP):0.4%

• precursors of bone marrow B cells (preB):0.7%

However, false negatives may occur which would enormously lower the esti-
mated HSC contribution. False negatives may be due do under-sampling of
differentiated cells appearing later than the time of measurement. There-
fore, it os likely that the actual HSC contributions are greater than the
estimated ones.

2.2 Activity of progeny

Analogously to what we have discussed so far for modelling the HSC and
the ST-HSC compartments, we could in principle model all haematopoietic
populations as defined by phenotypic markers.

Two caveats should, however, be taken into account. First, as we have
pointed out earlier, the assumed lineage topology affects the estimation of
efflux rates (see also Section 2.3 ). Second, if cells reside in different loca-
tions in the body, it is difficult to quantify the cell number ratio between the
populations in question and their progenitors. In fact, we nevertheless at-
tempted this quantification by analysing data from the major reasons (bone
marrow, spleen, thymus) and estimating which fraction the aliquot analysed
by FACS represented of the total organ. Specifically for the bone marrow,
we relied on the estimation of HSCs as in [Boggs, 1984], and consider this
to be a constant among the mice.

We modelled the kinetics of 16 populations according to the classical model
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of haematopoiesis (Figure 2.7). Some populations (spleen populations other
than granulocytes, megakaryocytes, macrophages) were not considered due
to difficulties in isolation, lack of knowledge about their position in the tree
or lack of nucleus and thus impossibility in distinguishing labelled from un-
labelled cells (final stages of erythropoiesis). All cells were taken from the
bone marrow, apart from the spleen granulocytes and the thymic T cells
and precursors.

In the classical model, the most immature stem cell population, the HSCs,
reside at the top of the developmental cascade and constantly supply cells
to the direct progeny, the short term haematopoietic stem cells, ST-HSCs.
ST-HSCs feed cells into the multipotent progenitors, MPPs. MPPs give rise
to the common myeloid progenitors, CMPs [Akashi et al., 2000], and the
common lymphoid progenitors, CLPs [Kondo et al., 1997]. On the one hand
CMPs feed into MEPs, the megakaryocyte-erythroid progenitors, and into
GMPs, the precursors of monocytes and granulocytes. On the other hand
CLPs feed into the B cells and T cell development in the thymus (Figure 2.7).

To describe the equations used for modelling, we think of each popula-
tion in turn as the reference, ref , compartment. Its direct progenitor is the
upstream, up, compartment and its progenies are the downstream, down,
compartments:

• stem cells

up HSC ST

ref ST MPP

down MPP CMP,CLP

• myeloid cells

up MPP CMP CMP GMP MEP pro Ery

ref CMP GMP MEP GR s pro Ery baso

down GMP,MEP GR pro Ery — baso —

• lymphoid cells

up MPP CLP pro B CLP DN DP DP

ref CLP pro B B DN DP CD4 CD8

down pro B, DN B — DP CD4, CD8 — —
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Figure 2.7: The classical scheme of haematopoiesis. In the figure we include
with the circle (symbolising a cell) and the respective abbreviation all the
populations for which data was collected. Other populations are included
with the extended name. Background colour code refers to the different
organs from which the cells were taken (bone marrow, spleen, thymus).
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Reasoning as in the previous section, we model the relative increase in la-
belling frequency as:

ḟref (t) = κref (fup(t)− fref (t)) (2.26)

and the compartment size ratios as:

Nref

Nup
=
αup→ref
κref

(2.27)

where αup→ref is now the differentiation rate from the upstream to a down-
stream compartment. Also, we define the net efflux as before:

κref =
∑
down

αref→down + δref − λref (2.28)

and introduce the concept of net proliferation, that is, the difference between
the loss rate (differentiation plus death) and the proliferation rate:

βref = λref − δref (2.29)

This latter definition is useful to have an idea on the minimum value of the
proliferation rate. The information contained in the label propagation and
in the ratio of compartment size can be modelled upon using any combina-
tions of parameters: net proliferation rate, differentiation rate and net efflux
rate. We performed the modelling twice upon changing parametrisation in
order to have direct estimate of all parameters and their profile likelihood
confidence intervals. The model reproduces the data, as shown in Figure
2.8.

In Figures 2.10-2.12 we present all estimated parameters, best fit and profile
likelihood confidence bounds.

The estimated parameters have several implications. First of all, we notice a
decreasing residence time with increasing commitment along a lineage. This
means that cells spend less time in a compartment as they mature, which
implies that more immature cells act as a reservoir for haematopoietic cells
while the more committed populations are transient compartments. Since
their net proliferation is higher with respect to stem cells, we conclude that
mature populations are rather amplifying compartments.

Along the myeloid linage, the upper bounds of all compartments net effluxes
upper bounds were estimated to be 4 days, the maximum value allowed for
running the optimisation. This is most likely a computational limitation:
in the myeloid lineage the flux is so fast that equilibration is achieved in-
stantaneously. More reliable is thus the lower bound on the net efflux which
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Figure 2.8: Fit of the classical model of haematopoiesis to the progression of
fate mapping label introduced into HSCs. Grey areas: bootstrap confidence
bounds on the model.
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Figure 2.11: Best fit and profile likelihood 95% confidence intervals of the
differentiation rates for all lineages.
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is one order of magnitude greater than MPP’s. The only exception could
be the basophils, precursors of the erythrocytes. This could be a biological
relevant feature (long lived reservoir for the essential red blood cells), or an
artefact due to the wrong assumed topology (several studies have suggested
an earlier erythroid commitment, see Section 2.3).

In the lymphoid lineage the common progenitors and the progenitors of
B cells are long lived, and so are, potentially, cells in the thymus, in agree-
ment with the suggested self-renewal of the thymus [Martins et al., 2012].
Once again, however, parameters often lack an upper bound other than the
prescribed upper bound of 4 per day. To summarise our finding, we plot the
time courses of label increase in Figure 2.13. We see that all lymphoid cells
lag behind the myeloid cells, which are indistinguishable from MPPs. ST-
HSCs are significantly distinct from the others because their slow kinetics
generate a delay until labelled cells reach downstream cells populations.

0 500 1000 1500 2000

time after tamoxifen (d)

0

0.2

0.4

0.6

0.8

1

re
la

ti
v
e

 l
a

b
e

l 
fr

e
q

u
e

n
c
y

ST
MPP
myeloids
lymphoids

Figure 2.13: Best fit and 95% bootstrap confidence intervals of the time-
dependant equilibration of the fraction of labelled cells in all compartments
to HSC.

Differentiation rates also tend to increase along lineages, with few excep-
tions, and the total flux of cells also increases (Figure 2.15). Finally, net
proliferation rates also tend to increase, although in some cases they are not
identifiable.

We then compared our prediction for the time evolution of the labelling
frequency with data measured up to two years after tamoxifen induction
(data measured by Dr. Katrin Busch, unpublished). For myeloid compart-
ments the model prediction is largely corroborated. However, the label ac-
cumulation in the lymphoid lineages is generally overestimated. This could
indicate that lymphoid output from HSCs declines with ageing. Moreover,
the steady state assumption made in the model might no longer be valid for
older mice. In particular, the decrease (or slower increase) of the label fre-
quency in a reference compartment could be due to a smaller differentiation
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Figure 2.14: Best fit and profile likelihood 95% confidence intervals of the
prediction for the label frequency in old mice.

rate from the upstream compartment or of the reference compartment itself,
which would imply a decrease, at least temporarily, of haematopoietic out-
put. To investigate this further, we will consider a model for non-stationary
haematopoiesis in Chapter 5.

Finally, upon reparametrising the model one can also obtain confidence in-
tervals on the population size ratios relative to HSCs and consequently,
knowing the number of HSCs in a mouse, infer the size of a population:
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27



HSC	ablation

ST	ablation

MPP	ablation

Figure 2.16: Simulation of the instantaneous ablation of HSCs, ST-HSCs or
MPPs. The number of cells in the downstream compartments drops with
different time scales.

As we did in the previous section, we again investigate the effects of the
ablation of stem cells on the progeny, assuming that no feedback mechanism
is triggered by the ablation. In Figure 2.16 we show how the number of
cells drops from the steady state value (normalised to 1 for each population)
when either HSCs, ST-HSCs or MPPs are instantaneously ablated. We had
already noticed that it takes around one year to have a significant drop in
cell numbers after HSC ablation due to the long residence time of ST-HSCs.
On the other hand, if ST-HSCs themselves were ablated, we would see effects
already after 70 days due to the shorter residence time of MPPs. Finally,
MPPs ablation would cause an immediate effect on the myeloid lineage, but
still a retarded effect on the lymphoid lineage, due to CLPs’ high residence
time, and an even more delayed effect on the thymus due to the the residence
time in the double negative cells compartment, DN.
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2.2.1 Branching points

The study of the full scheme for haematopoiesis also poses new questions
regarding lineage topology. This concerns, for example, the position of a
branching point. In the classical scheme we are been examining so far, we
considered four branching points:

• MPPs splitting into CMPs and CLPs

• CMPs into MEPs and GMPs

• CLPs into pro Bs and DNs

• DPs into CD4 and CD8 T cells

For these branching points we now quantify the ratio of cell fluxes towards
the different fates.

In order to estimate the flux ratio, we reparametrise our model in such a way
that it contains flux ratio at each branching point as an explicit parameter.
Fitting this model to the data yields the flux ratio with confidence bounds
(Figure 2.2.1). While the fluxes from CMPs and DPs cannot be identified,
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Figure 2.17: Best fit and profile likelihood confidence bounds (95%) flux
ratios at branching points.

this analysis shows that the vast majority of MPPs become myeloid cells
and at least 20% of CLPs become thymocytes.

Finally, we compare the position of the myeloid versus lymphoid branching
point in the classical scheme to an hypothetical earlier branching, after the
ST-HSC compartment, with MPPs being now the progenitor of the solely
myeloid cells, and CLPs arising directly from ST-HSCs, as suggested by
[Oguro et al., 2013] (Figure 2.18). The classical scheme suggests a flux into
myeloid cells being at least 2 orders of magnitude greater than the flux into
lymphoid cells. In the alternative scheme, the ratio of fluxes can go down
to 3 fold, without changing the estimation for the total number of cells that
become common myeloid progenitors per unit time. This is possible via
selective proliferation in the MPP compartment.
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Figure 2.18: Possible schemes for the position of the myeloid versus lymphoid
branching point. Best fit and profile likelihood estimation for the fraction
of flux into the myeloid cells are shown.

This type of analysis is an example of the different interpretation of the
results obtained considering different topologies: in the classical view, the
large flux flowing into myeloid cells is achieved at the level of MPP through
a differentiation bias. In the alternative view, most of the myeloid flux is
due to selective proliferation of myeloid-biased precursors.

2.3 Lineage topology

In order to determine the kinetic properties of haematopoietic stem and
progenitors cells we have relied in the previous section of the classical model
of haematopoietic differentiation pathways. Several studies suggested al-
ternative routes, based on transplantation and inference from single-cell
transcriptome data [Nutt et al., 2005] [Lai and Kondo, 2006] [Guo et al.,
2013][Yamamoto et al., 2013] [Perié et al., 2014].

Here, we study the following question: Do population fate mapping data
contain information on lineage topology? And in turn: How do parameter
estimates change when one considers different developmental pathways?

2.3.1 The progenitor-progeny relationship

In the fate mapping data described in Section 2.1 a genetic label is switched
on in stem cells and progressively propagated to the progeny. Hence progeny
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should always have a lower labelling frequency than its progenitor cells. Is
the classical differentiation scheme compatible with the data in this respect?

To address this point we compare the labelling frequencies of all pairs of
putative progenitor and progeny over time. We recall that the data consists
in labelling frequencies measured in sometimes small aliquots, which poses
the problem of sampling noise, especially at early time points when progeny
labelling frequencies are small. To smoothen outliers effects we computed
the moving average of the ratio of labelling frequency of the progeny with
respect to the putative progenitor over time. For example, ST-HSCs are
thought to be the direct progeny of HSCs. All other cell types might emerge
from ST-HSCs without the need of a direct flux from HSCs. If this is true,
then the ratio of label frequency in any compartment with respect to the
labelling ratio in ST-HSCs should never exceed one. This is indeed the case
(Figure 2.19).
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Figure 2.19: Moving average with 95% confidence intervals of the ratio of
labelled cells in progeny compartments compared to ST-HSCs. Since no ra-
tio significantly exceeds 1 over the observed time, there is no need to assume
direct contributions from HSC to the more differentiated compartments.

Of note, the ratio being lower than one is only a necessary, not a suffi-
cient condition for HSC not being a/the direct progenitor of committed
cells. Other quantitative approaches could shed light on this issue (see next
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section).

We repeat the analysis computing the moving average this time for the
ratios with respect to MPP (Figure 2.20).

time after tamoxifen(d)

re
la

tiv
e 

la
be

llin
g

fre
qu

en
cy

Figure 2.20: Moving average with 95% confidence intervals of the ratio of
labelled cells in progeny compartments compared to MPPs. The ratios for
CMPs and GRs significantly exceed 1, suggesting the existence of additional
pathways into these populations that bypass MPPs or heterogeneity in the
MPP compartment with respect to myeloid fate.

In this case, there is a time dependant increase in the ratios of labelling
frequencies in the myeloid cells respect to that of MPPs. This might hint
at a bypass from ST-HSCs directly into the myeloid populations, or at least
into CMPs and GRs, for which the ratio significantly exceeds 1.

Finally, another kind of information can be contained in the labelling pro-
gression data. HSC is the only initially tagged population and we observe
the label emerging in all other populations along time. Thus HSCs must
be the founders of haematopoiesis. But if HSCs were heterogeneous, with
different sub-populations feeding the downstream compartments, one could
observe the labelling frequency in the progeny overshooting that of HSCs at
later time points (see Figure 8.5 in the Supplementary Material). This was
not the case as shown in Figure 2.21.
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Figure 2.21: Moving average with 95% confidence intervals of the ratio of
labelled cells in progeny compartments compared to HSC. The trajectories
are entirely below one, as expected for a homogeneous progenitor population.

2.3.2 Inferring topology

From the analysis developed in the previous section, it emerged that myeloid
cells might be fed directly from ST-HCSs, and possibly additional pathways
from MPPs and myeloid progenitors might exist.

To examine this further we fit a model that has all possible differentia-
tion pathways from all compartments to all progenies. For simplicity we
only consider myeloid lineages and keep the order of the populations, so
that MPPs are still upstream of GMPs and can differentiate directly into it,
but not the other way round. Backward differentiation is also excluded has
it has not been observed in transplant experiments. We then compared this
model to classical model, and to three further models in which all myeloid
cells directly come from HSCs, ST-HSCs or MPPs respectively. We then
ranked the models according to the corrected Akaike information criterion
AICc (see Methods), as shown in Table 2.1:

Model # data # parameters χ2 AICc

differentiation from HSCs 60 14 67 104

differentiation from ST-HSCs 60 14 70 107

classical 60 14 81 118

differentiation from MPPs 60 14 85 122

full scheme 60 29 60 176

Table 2.1: Ranking of models that differ in their topology.
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We thus see that the most informative models that still produce a good fit
are those in which progeny is produced from the very top of the hierarchy, by
either HSCs or ST-HSCs. Since the difference of their AICc is less than ten
they are indistinguishable, and with similar reasoning the other models are
significantly less informative. In Figure 2.22 we show that, upon assuming
different lineage topologies, estimated parameters, for example the residence
times, change. We see that for CMPs, GMPs and GRs the estimated efflux
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Figure 2.22: Comparison of the estimated residence time for the classical
model and an alternative model where all populations downstream of ST-
HSCs are generated from ST-HSCs directly.

rates are different by an order of magnitude. Changing topology leads to
different conclusions on the kinetic parameters that are to be estimated.
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Chapter 3

Consideration of
compartment heterogeneity
and cell proliferation

In the previous chapter we saw how the fate mapping data, combined with
the measurements of compartment sizes, allow to estimate the residence
times and the differentiation rates of the populations of interest. The data
also provides information on the net proliferation rate, (the proliferation
rate minus the death rate). In order to disentangle these latter rates, we
need additional data and related to cell cycle or apoptosis measurements.
We used previously published data on BrdU accumulation in haematopoietic
stem and compartment cells[Oguro et al., 2013] whose features we describe
in the following before introducing the modelling approach.

3.1 Haematopoietic populations revisited

[Oguro et al., 2013] found new SLAM markers that stratify the most im-
mature haematopoietic cell populations. Figure 3.1 shows such populations
and also compares them to our definitions as published in [Busch et al.,
2015].

The differentiation hierarchy proposed by [Oguro et al., 2013] is established
based on reconstitution potential after primary and secondary transplan-
tation, self-renewal, multipotency, fraction of active cells and frequency of
proliferation, that is, on accepted definitions on “stemness”. This does not
necessarily imply that a cell with more ‘stemness” gives rise to a cell with
less ‘stemness”, although this is compatible with intuition, since it is clear
that the most mature, functional cells have no reconstitution potential, can-
not self-renew and so on.

35



Oguro

HSC-1

HSC-2

MPP-1,2

MPP-3

HPC-1 MPP

HSC

ST

Busch

Figure 3.1: A proposed more detailed definition of haematopoietic stem and
progenitor cells

Since for modelling purposes it is fundamental to know the correct order of
differentiation (see Section 2.3), we first checked whether the suggested or-
der is compatible with the label propagation experiment, or, in other words,
whether a putative progeny compartment has a lower fraction of labelled
cells with respect to its putative progenitor1. Figure 3.2 shows that, at dif-
ferent time points the frequency of YFP+ cells is compatible with Oguro’s
proposed hierarchy, which will be therefore consider correct from now on.

Note that MPP-1,2 corresponds to the MPP-1 and MPP-2 populations taken
together, since MPP-1 is a very small population that gives rise to noisy data.
Such data is nevertheless not contradicting the differentiation hierarchy.

3.2 Cell cycle models

[Oguro et al., 2013] confirmed the haematopoietic hierarchy by means of the
measurement of the fraction of BrdU+ cells over time. BrdU is a thymidine
analogue that is incorporated in the genome upon DNA replication, thus
during the S phase of the cell cycle. In the presence of BrdU the label per
cell keeps increasing.

In our case BrdU is administrated continuously via drinking water, thus
we assume that the label is not diluted. Moreover, as more and more cells
go through cell cycle, and thus through S phase, the fraction of BrdU+ cells

1Unlike the case of Section 2.3, we do not have enough data here to repeat the moving
average analysis. Plus, that was necessary to show whether an excess in the labelling ratio
in a progeny with respect to a progenitor is significative, while here we see that there is
no excess at any time point
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Figure 3.2: Label propagation in the refined populations. Since no labelling
frequency in a progeny exceeds that of its putative progenitor, there is no
need to question the suggested hierarchy.

over time increases and approaches the fraction of proliferatively active cells
within a population for a long enough time.

Here the concept of an active cell is even more subtle than what we men-
tioned in Section 2.1.5. There, we estimated the fraction of cells that are
active over the period of observation. Here, a suitable model can estimate
the fraction of cycling cells even for short observation times, when not all
cycling cells have completed a cycle. This will become clearer later in the
section.

Since one of the cell cycle phases, namely S, is special due to the mech-
anism of accumulation of BrdU label, one should in principle build a model
that describes the progression through the cell cycle (instead of just assum-
ing a cell proliferation rate). Figure 3.3 shows the classical view of the cell
cycle, where a cell progresses from G1 to S, then G2, M and then again G1

phase. The cells may also spend time in a quiescent state, G0, derived from
G1.

The minimal model to account for the accumulation of BrdU label would
be a model in which the S phase has a special role, since during the S phase
the cells becomes BrdU positive. This could be achieved upon merging the
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G1 S MG0 G2

Figure 3.3: Scheme of the cell cycle. Arrows represent phase progression.

G0 and G1 phases, the G2 and M phases, and assuming that BrdU− cells in
S phase become BrdU+ cells in G2/M phase (Figure 3.4).

Figure 3.4: Simple model for BrdU accumulation. A cell becomes BrdU+ in
the S phase and keeps on cycling, or becomes quiescent, remaining positive.
Straight arrows represent phase progression, curved arrows proliferation.
Cell death is not shown.

This model can be further improves upon splitting the S phase into n sub-

phases,
1

2 n
being the fraction of DNA that a cell must synthesise in order

to become BrdU+ for the detector (the 2 comes from the fact that only one
strand is newly synthesised). Cells exiting any of these sub-phases directly
go to the next sub-phase or to the G2/M phase if they were in Sn and be-
come, or remain, positive (Figure 3.5).

Now, we aim at replacing this model with an even simpler model in which
a cell is seen as a black box and the phases are not resolved, as we have
been doing for the previous analysis. If this were possible, it would have two
advantages: removing the arbitrariness in the choice of n and reducing the
number of parameters, and equations, thus speeding up computation.

The idea is that, if the number of cells in either S, G2 or M phases is
small compared to the number of cells in either G0 or G1, then we can say
that the near majority of cells that are BrdU positive have gone through at
least one division (positive cells in either G0 or G1). In this way, one would
interpret BrdU positive cells as the cells that have gone through at least one
division.
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Figure 3.5: More detailed model for BrdU accumulation. A cell becomes
BrdU positive if it has synthesised enough DNA, which is represented as a
cell exiting an S sub-phase, and then keeps on cycling, or becomes quiescent,
remaining positive. Straight arrows represent phase progression, curved
arrows proliferation. Cell death is not shown.

In Section 2.1 we defined all the parameters that correspond to the possible
cell fates. Based on that we now write equations that describe the BrdU ac-

cumulation in the cells. In the following, N
+/−
A (t) are the numbers of BrdU

positive/negative cells at time t in a stem-cell-like population A. After one
division, negative cells become positive and stay positive, but a symmetric
division creates two positive cells of type A, an asymmetric division creates
two positive cells, one of type A and one of type B, one symmetric differen-
tiation creates two positive cells of type B. One-to-one differentiation of a
negative/positive cell of type A gives rise to a negative/positive cell of type
B, and death just removes the cell. Figure 3.6 shows all the possibilities and
compares them to the outcomes of label propagation in fate mapping.

The equations for the number of BrdU negative and positive cells are:

Ṅ−A (t) =− (σA + ρA + µA + γA + δA) N−A (t) = (3.1)

− (2 σA + γA) N−A (t) (3.2)

Ṅ+
A (t) =(2 σA + γA) N−A (t) + (σA − ρA − µA − δA) N+

A (t) = (3.3)

(2 σA + γA) N−A (t) (3.4)

where the RHS of the equations has been obtained via the steady state
assumption: σA− ρA− µA− δA = 0. Also, in steady state the total number
of cells is constant, thus the equations are not independent and we pick just
one of them for modelling purposes. Since the observable is the fraction of
BrdU positive cells, B+

A (t), we finally write:

Ḃ+
A (t) = (2 σA + γA) (1−B+

A (t)) (3.5)
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Figure 3.6: Possible fates for BrdU+/− and YFP+/− cells.

where we have used B−A (t) + B+
A (t) = 1. In other words, the equations we

just obtained should only work if all cells of type A were active. In reality,
though, they still hold for slow kinetics and if the percentage of active cells
is at least 30%, which is the case for our stem cells, as we showed in Section
2.1.5 (see Figure 8.6 in the Supplementary Material for more details).

We can reason analogously for the direct progeny of A, P:

Ḃ+
P (t) = (2 ρA + γA + µA B+

A (t))
NA

NP
+ (2 σP + γP) (1−B+

P (t))− κP B+
P (t)

(3.6)
In our biological system, P represents any progeny of the stem cells, which
are believed to be all active, thus again we assume B−P (t) +B+

P (t) = 1.

We used this simplified model for BrdU accumulation to compare its per-
formance versus the model in Figure 3.5. We simulated the phases and the
black box model to reproduce the BrdU accumulation data taking into ac-
count the phases distribution as measured in [Oguro et al., 2013]. While
for the most immature compartments there is hardly any difference in the
estimated proliferation rates, for HPC-1,2 the black-box model yields a 2-
fold higher proliferation rate than the more detailed model (Figure 8.7 in
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the Supplementary Material). So we have to keep in mind that for those
compartments we rather estimate an upper bound for the proliferation rate.

We now address the point of parameter identifiability. We use the method
of Taylor series approach for linear systems [Pohjanpalo, 1978]. If yi(t,p) is
the i-th observable as a function of the time and of the vector of parame-

ters, then all its Taylor coefficients, y
(k)
i (0,p), are unique for the measured

output. We thus have as many linear combinations of identifiable parame-
ters as independent linear combinations of Taylor coefficients. If our only
observables were the BrdU data, we would have, for the system stem cell S
and direct progeny, P, the following independent Taylor coefficients:

• a) B+
S (0) = 0

• b) B
+(1)
S (0) = 2 σA + γA = S1

• c) B+
P (0) = 0

• d) B
+(1)
P (0) = (2 ρA+γA) κP

2 ρA+γA+µS
+ 2 σP + γP = P1

• e) B
+(2)
P (0) = µS κP S1

2 ρA+γA+µS
+ (2 σP + γP − κP)P1 = P2

from which hardly any interesting combination of parameters can be identi-
fied. Let us see what happens if we use the information coming from the fate
mapping (κ identifiable) and the steady state ratio of compartments’ size
(2ρ+ γ+µ identifiable). Note that items a) and c) do not give information.
Upon considering all observables, we finally find that the following combi-
nations of parameters can be in principle identified for each population:

• µ

• 2 σ + γ

• 2 ρ+ γ

Note that already this would prove quite informative on the mechanism of
differentiation (direct or upon proliferation). In addition, this identifiability
analysis is not informative on practical identifiability, (i.e. the existence of
lower or upper bound of the parameters). It might well be that we can
practically estimate at least one bound for some parameters, as we will see
in the following Section.

3.3 Estimation of proliferation rate

We thus modelled proliferation, fate mapping (for both the new data on re-
fined populations and the previous data for more homogeneous populations,
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this time accounting for underlying heterogeneity, see Figure 3.2) and com-
partment size ratios simultaneously with the models discussed above. One
last simplification is to consider that only the most immature stem cells
(HSC-1,2) divide other than symmetrically. All data could be modelled
(Figure 3.7), and most parameters identified (Figure 3.8). Identifiability
improved, as expected since we increased the number of data.

Figure 3.7: Model performance for the simultaneous fit of all sets of data.

Again, we confirm the trends we had already found in the case of the ho-
mogeneous model: increasing differentiation potential, decreasing residence
time along the differentiation path. Moreover, we saw a clear trend for the
proliferative potential, while for the death rate we had identifiability prob-
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Figure 3.8: Best fit and profile likeliwood 95% confidence bounds for all
model parameters.

lems, which only allows to state that the trend could be increasing.

Interestingly, we found an upper bound on ρ+γ and a lower bound for σ+γ
for both HSC1 and HSC2, which resulted in a lower bound for the fraction of
symmetric divisions (Figure 3.9 a). Estimates for the fraction of total sym-
metric divisions for the HSCs without considering the sub-compartments
turn out to be even more strictly bounded, which implies that symmetric
divisions must happen more frequently than the others and might also be
the only mechanism of division (Figure 3.9 b).
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Figure 3.9: Best fit and profile likelihood for the ratio of symmetric divisions
out of total divisions for a) HSC-1,2 and b) HSC.

Regarding differentiation, the data are not informative enough to deter-
mine the exact mechanism of commitment, but it is useful to notice several
features. Asymmetric division cannot be the only mechanism to provide
differentiated progeny and could also not be present. Symmetric or direct
differentiation could each supply all the progeny. Nevertheless, we reckon
that more data (thus smaller uncertainty in the measurements) could help
distinguishing the two mechanisms.
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3.4 Counting proliferations

It has been suggested [Bernitz et al., 2016] that stem cells divide symmet-
rically a fixed number of times before differentiating, instead of being able
to stochastically differentiate or proliferate at any time point (with different
probabilities). We want to test whether the data we dispose of contain the
information on such a proliferation-counting mechanism. One can model a
population B by writing equations for the number of cells of type Bi(t) that
have proliferated i times, assuming:

B0(t) = αAA(t)− σBB0(t) (3.7)

Bi(t) = σB(2 Bi−1(t)−Bi(t)) 1 ≤ i ≤ n (3.8)

Bn+1(t) = 2 σB Bn(t)− (δB + µB)Bn+1(t) (3.9)

Note that:

• Population B has an influx from A, otherwise is not possible with this
model to describe a steady-state scenario. Thus, we will not apply the
model to the HSC-1 population.

• We assume that cells do not die in the proliferative phase.

The equations above can be applied to the label propagation data of popu-
lation HSC-2 and in principle allow for identification of all parameters plus
the number of generations. Since the practical identifiability was missing,
we included also the BrdU data and wrote analogous equation for the in-
corporation of BrdU label generation-wise. Such a model can only describe
the data if the number of proliferation is high (n > 11), in which case the
number of parameters also increases, having as a consequence the loss of
information (Table 3.1). We conclude that the most simple explanation for
the data is that proliferation is stochastic and cells do not remember how
many generations they have gone through.
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n # data # parameters χ2 AICc

stochastic events 51 18 45 103

1 51 19 113 176

2 51 20 95 163

3 51 21 78 151

4 51 22 68 148

5 51 23 60 147

6 51 24 54 148

7 51 25 51 153

8 51 26 50 160

9 51 27 49 170

10 51 28 46 176

11 51 29 46 190

12 51 30 42 195

Table 3.1: Ranking of models that differ in their topology.
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Chapter 4

Comparing estimated
parameters among different
models

In Chapter 3 we modelled haematopoietic kinetics upon considering a re-
fined definition for HSC and progenitor populations, according to which the
populations we had introduced in Chapter 2 are heterogeneous. We never-
theless included the data for the homogeneous populations in the model of
chapter 3 upon treating it as if the populations were heterogeneous. It is
thus interesting to look in more detail into the interpretation of the results
of different models when it comes to their performances with heterogeneous
populations.

Let us consider, for example, a simple cascade where the stem cells A pro-
gressively differentiate into B, C and D. We compare such scheme with an
hypothetical one where, for example, there is no experimental way to dis-
tinguish B and C, which are treated as an homogeneous population, BC,
(Figure4.1). Next, we generate data with the heterogenous model. The
type of data we want to fit together is the same as in Section 3.1, that is:

• BrdU data

• label propagation data

• size of compartments

For both models we compute the best fit and the confidence intervals on the
parameters. Since the best fit with the homogeneous model reproduces the
data, we do not need to suspect that this latter model is incorrect. Now, if
we compared parameters, we would expect that parameters for population
A are similar in both models, since it is the same population and we use
exactly the same data. But this is not necessarily, the case, as shown in the
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Figure 4.1: Toy model to compare heterogeneous populations. BC encom-
passes B and C together.

profiles obtained for the two models in Figure4.5:
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Figure 4.2: Comparing parameters profile for the heterogeneous (green) and
the homogeneous (red) models. Data were simulated using the heteroge-
neous model

In figure 4.5 the differentiation rate estimated with the homogeneous model
is higher than the actual differentiation rate, whereas the death rate esti-
mated with the homogeneous is lower. This result is not surprising, as the
differentiation rate of A is the rate at which cells of type B are produced
from A. However, in the homogeneous model, B is lumped with a kinetically
different compartment, giving the (wrong) impression that A feeds a larger
compartment directly than it actually does.

Let us now ask the opposite question. What would happen if we mod-
elled a homogeneous population as heterogeneous? For example, if BC were
a homogeneous population, one could model BC as a cascade from B to C
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having, for example, B very small compared to C, the flux from B to C very
high compared to the influx in B, and C similar to BC in its kinetic rates.
Thus if a model yields a very small population with fast efflux one can sus-
pect it to be not sufficiently distinct kinetically from its progeny. Problems
may arise when one measures data for the B and C populations and tries to
model them as distinct and consecutive compartments.

In the following example, we generated data with the A→ BC → D model
and fit it with the A→ B → C → D model, additionally fixing the ratio
of C to B. The fit is very good, but parameter estimation depends on the
assumed model (Figure 4.3):
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Figure 4.3: Comparing parameters profile for the heterogeneous (green) and
the homogeneous (red) models. Data were simulated using the homogeneous
model.

The differentiation rates from B and C are both overestimated, and in the
case of B, the estimated rate is incompatible with the homogeneous model.
Proliferation in C is also overestimated. In conclusion, the values of the
parameters depend on the assumed compartment structure. However, we
argue that combinations of parameters that represent physical quantities
should show this dependance not.

We present in the following examples of quantities that we expect to be
model-invariant. Having in mind what are the model invariant quantities
turns out to be very useful when it comes to comparing the estimates of the
same parameters performed with different experimental and/or theoretical
setups.

4.1 Residence time

We introduced the concept of residence time earlier in Section 2.1.3, with
respect to a single compartment. The residence time is the average time
that a cell spends in a compartment before being lost by either death or
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differentiation. We could analogously define the residence time of a cascade
as the average time to exit the cascade for a progeny of a cell injected at
the beginning of the cascade. Since this is the type of experiment we per-
form (injecting a labelled cell at the beginning of a differentiation cascade)
and our model contains the information on the single residence times, it is
intuitive to think that, if a model fits the data satisfactorily, then it should
contain information on the residence time of the cascade regardless of the
compartment chosen.

Let us consider a cascade of populations whose cell numbers are Ni(t) and
define as qi(t− t′) the flux generated by a cell entering compartment i at t′

and exiting compartment i at time t. Then the total flux out of compartment
i would be:

ji(t) =

∫ t

0
qi(t− t′)ji−1(t′)dt′ (4.1)

j1(t) = α1N1(t) (4.2)

We then Laplace transform ji(t) as:

ji(s) =

∫ ∞
0

ji(t)e
−st dt = qi(s) ∗ ji−1(s) (4.3)

j1(s) =
α1

λ1 − α1 − s
(4.4)

thus ji(s) =
∏i
j=1 qj(s). The residence time in a cascade starting with

population 1 and ending with population M is:

τM |1 =

∫∞
0 t jM (t) dt∫∞
0 ji(t) dt

=
˙jM (s)|s=0

jM (s = 0)
= (4.5)

=

M∑
i=1

q̇i(s = 0)
∏
j 6=i

qi(s = 0)

M∏
i=1

qi(s = 0)

=
M∑
i=1

q̇i(s = 0)

qi(s = 0)
= (4.6)

=
M∑
i=1

τi (4.7)

In other words, the residence time of a cascade is the sum of the residence
times of each population. We now compare the residence time out of ST-HSC
for the homogeneous and heterogeneous models. The fact that hey match
very well (Figure 4.4), suggest that our homogeneous and heterogeneous
models are both good descriptions of the system.
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Figure 4.4: Comparing estimates and confidence bounds on the residence
time in the ST-HSC population for the heterogeneous and the homogeneous
models.

4.2 Number of proliferations and generations

Another interesting quantity is the number of generations a cell goes through
before exiting the cascade. As for the residence time, this quantity is finite
only if the residence time in each compartment of the cascade is finite.

We start calculating the number of divisions of a cell and its progeny in a
compartment. It is clear that, if we knew how many cells exit the compart-
ment for each injected cells, say Nexit, then we would also know the number
of divisions, Nprol = N exit

1|1 − 1. For a population with kinetics parameters
α1, λ1, δ1 we have:

˙N1(t) = −κ1N1(t) (4.8)

N1(0) = 1 (4.9)

Nexit =

∫ ∞
0

(α1 + δ1) N1(t) dt =
α1 + δ1
κ1

(4.10)

where
α1

κ1
are the cells lost by differentiation and

δ1
κ1

those lost by death.

If we now inject a cell in population 1 and look at the transition 1 to 2,
we find:

N exit
1|2 =

δ1
κ1

+
α1

κ1

α2 + δ2
κ2

(4.11)

The first addend is the number of cells lost by death in compartment 1, while
the second is the loss from population 2 amplified by the flux amplification
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from 1. In general, we have:

N exit
1|M =

δ1
κ1

+

M∑
i=2

i−1∏
j=1

αj
κj

δi
κi

+

M∏
j=1

αj
κj

(4.12)

We then compare the estimated number of divisions for the ST-HSC pop-
ulation, (Figure 4.5), which yields good agreement between homogeneous
and heterogeneous models. Moreover, the estimated total flux of cells into
ST-HSC, unlike the differentiation rate, is also expected to be invariant:

Figure 4.5: Comparing estimates and confidence bounds on the residence
time, number of proliferations, differentiating flux of the ST-HSC population
for the heterogeneous and the homogeneous models.

Again, lumping compartments is still a good description.

Finally, one could also raise the question: how many generations can a
cell divide for before being depleted? The answer is not inferable directly
from the above estimated number of divisions [Kay, 1965]. Let us consider
for example a cell that undergoes 7 divisions, as in Figure 4.6. The num-
ber of generations can vary between a minimum of 3 (right panel) and a
maximum of 7 (left panel). In order to compute the number of generations,
we thus used a Gillespie algorithm that simulates the fate of a cell with the
kinetic properties of ST-HSC. We found that the average maximum number
of generations is 4 as calculated with the heterogeneous model and 5 cal-
culated with the heterogeneous model. In conclusion, our data also contain
the model-invariant information on the generations a cell undergoes in the
ST-HSC population.
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Model b): 7 proliferations
3 generations

Model a): 7 proliferations
7 generations

Figure 4.6: Different number of generations can be achieved with the same
number of proliferations
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Chapter 5

Non-stationary
haematopoiesis after
irradiation

In the previous chapters we built a model for stationary haematopoiesis and
showed how the time course data on label progression and the ratio of popu-
lations sizes allow to estimate residence times and differentiation rates. We
now wonder whether non-stationary data could be described by a similar
approach, that is, a model with constant kinetic parameters and no explicit
feedback mechanism. The only difference with the stationary model would
be that the compartment sizes are allowed to vary over time The calcula-
tions performed in this chapter were in collaboration with master student
Laura Obenauer.

For most perturbations this assumption might be too simple: for example,
a sudden myeloablation would cause a feedback response on the interme-
diate progenitors of myeloid cells (hypothesis verified by data measured by
PhD student Ann-Kathrin Schuon, personal communication). However, a
strong perturbation that nearly depletes the mouse’s blood system might be
followed by a long period where stem cells reconstitute the blood at high
activity, and it is not unlikely that such activity can be considered constant
over extended time periods.

Ann-Kathrin Schuon measured time course data of population dynamics
and label propagation in the Tie2 -Cre mice [Busch et al., 2015] for up 16
weeks after sublethal irradiation. No deceleration in the growth of HSCs
(a possible sign fir lack of feedback), while other progenitors did not re-
cover their stationary size (as in [Li and Slayton, 2013]), see Figure 5.1.
Our population dynamics model leads to an ODE system for the ratios of
progeny-progenitor sizes Ri(t) and the frequencies of labelled cells fi(t), as
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Figure 5.1: Population growth after irradiation. Data measured by Ann-
Kathrin Schuon.

follows from Equations 2.11 and 2.16:

Ṙi(t) = αi−1 − κi Ri(t)− αi−2
Ri(t)

Ri−1(t)
+ κi−1 Ri(t) (5.1)

ḟi(t) =
αi−1
Ri(t)

(fi−1(t)− fi(t)) (5.2)

It is worth noting that for non-steady state we obtain a closed ODE system
for the derived variables Ri(t) and fi(t), with the primary variables being
cell numbers. This system reduces to the steady state model for Ṙi(t) = 0 ∀i.
The identifiable parameters are, once again, the residence times and the dif-
ferentiation rates.

In Figure 5.2 we show the normalised labelling frequency in ST-HSC as
compared to the model prediction in the case of steady state kinetics. Since
this latter underestimates the actual data, one might conclude that the flux
from stem cells is increased.

Let us compare the differential equation for f1(t), the first progeny of a stem
cells population labelled with 0, and its steady state counterpart, f ss1 (t):

ḟ1(t) =
α0

α0

κ1 − κ0
+

(
R1(0)− α0

κ1 − κ0

)
e(κ1−κ0) t

(1− f1(t)) (5.3)

ḟ ss1 (t) =
αss
0

αss
0

κss1
+

(
R1(0)− αss

0

κss1

)
ek

ss
1 t

(1− f ss1 (t)) (5.4)

where we have plugged into Equation 5.2 the analytical solution of Equation
5.1. We see that α0 R αss

0 is a sufficient condition for f1(0) R f ss1 (0), but the
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Figure 5.2: Labelling propagation in the ST-HSC population. Comparison
between steady state prediction and measured data.

inequality can change over time1. Moreover, the condition is not necessary,
as a change in the kinetics of the stem cells’ progeny could also determine
whether the labelling frequency is higher or lower than the steady state la-
belling frequency. We expect that fitting the model to the data will uncover
which parameters actually change after challenge.

As we did for the steady state case, we implemented also cell-cycle-related
data in order to estimate the proliferation rate. The data available in this
case was measured by Ann-Kathrin Schuon and consists of the time course
accumulation and depletion of EdU, a thymidine analogue similar to BrdU.
EdU was administrated in one intraperitonal injection to tamoxifen-treated
Tie2 -Cre mice, and the EdU+, Tie2+/− cells were measured over time for
up to one week and for each phase of the cell cycle (Figure 5.3).

Unlike in Chapter 3, we are now facing a scenario where:

• The available data for the accumulation of EdU were measured over a
time span of one day. In this period the fraction of EdU-positive cells
increases fast due to the fast incorporation of the molecules into the

1In Section 2 we saw the simpler case of labelling frequencies kinetics in ageing mice.

In that case Ri(0) =
αss

κss
0

, thus the equations simplify and show that the decrease of either

HSC or ST-HSC output is a necessary and sufficient condition to explain the data.
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Tie2	label irradiation

Figure 5.3: Scheme of experiment combining the Tie2 -Cre induction, irra-
diation and EdU administration.

DNA of cells in S phase. We cannot thus, as we did before, assume
that cells get positive if and only if they go through one division, and
thus we need to get back to a cell cycle phase-resolved model.

• From day one to seven days EdU is clearly used up and eliminated, so
that the fraction of positive cells decreases due to division. This must
be incorporated in the model, too.

For the uptake part we used the scheme explained in Chapter 3 for the
HSCs. As discussed in Section 3.2, we write the equations:

Ṅ+
G0/G1

(t) = −(a+ d1 +m1) N+
G0/G1

(t) + 2 c N+
G2/M

(t) (5.5)

Ṅ+
S1

(t) = a N+
G0/G1

(t)− b N+
S1

(t) (5.6)

Ṅ+
Si

(t) = b (NS+i−1
(t) +NS−i−1

(t)−NS+i
(t)) (5.7)

Ṅ+
G2/M

(t) = −(c+ d2 +m2) N+
G2/M

(t) + b (S+
n (t) + S−n (t)) (5.8)

where a is the rate of progression from G1/G0 to S, b is the rate at which a
cell synthesises enough DNA to became EdU positive, c is the rate at which
a cell exit mitosis to form two daughter cells in G2/M phase, d1,2 and m1,2

are the rates at which a differentiation or a death event take place in the
G1/G0 or G2/M phases respectively. In order to compare these rates with
the way we have previously defined the proliferation rate we need to consider
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the phases distribution according to:

λHSC = c
NG2/M(t)

NG0/G1
(t) +NS(t) +NG2/M(t)

= const (5.9)

αHSC =
d1 NG0/G1

(t) + d2 NG2/M(t)

NG0/G1
(t) +NS(t) +NG2/M(t)

= const (5.10)

δHSC =
m1 NG0/G1

(t) +m2 NG2/M (t)

NG0/G1
(t) +NS(t) +NG2/M(t)

= const (5.11)

The rates have been set to be constant as assumed earlier. This implies that
the fractions of cells in each phase are constant over time, or, in other words,
that HSC is growing at constant rate (specifically, we set the time zero for
modelling at 14 days after irradiation, corresponding to the first data point,
so we can assume that the transient phase is already over).

For the dilution part we reasoned as follows: each time a cell divides its
labelled DNA decreases by one half. So a cell becomes EdU negative when

the fraction of labelled DNA gets below
1

n
, the minimal fraction to be con-

sidered as positive. We estimated the quantity Q(t) of accumulated positive
DNA during the uptake as follows:

Q̇(t) = b S(t)
1−Q(t)

2
(5.12)

and then calculated the minimum number of divisions to become negative as
m ≥ log2(n Qdil), where Qdil is the quantity of positive DNA when dilution
starts. n is a parameter of the model. The dilution equations read:

Ṅ+
G0/G1,j

(t) = −(a+ d1 +m1) N+
G0/G1,j

(t) + 2 c N+
G2/M,j−1(t) (5.13)

Ṅ+
S1,j

(t) = a N+
G0/G1,j

(t)− b N+
S1,j

(t) (5.14)

Ṅ+
Si,j

(t) = b (NS+i−1,j
(t) +NS−i−1,j

(t)−NS+i ,j
(t)) (5.15)

Ṅ+
G2/M,j

(t) = −(c+ d2 +m2) N+
G2/M,j

(t) + b (S+
n,j(t) + S−n,j(t)) (5.16)

where j ∈ 0− n is the number of divisions a cell has gone through after
exhaustion of EdU (exhaustion time to be estimated in the model). All
mentioned parameters are structurally identifiable with our data set, which
includes: fraction of EdU positive cells over time, fraction of cells that are
in S phase and that are EdU positive in S phase during uptake. The model
fit to the data is shown in Figure 5.4, and the parameters value in Table 5.

From this parameter analysis, we conclude that irradiation speeds up the
kinetic parameters in the HSC: proliferation is accelerated by an order of
magnitude and differentiation by a factor 2. Confidence bounds on the death
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steady-state post-irradiation

λHSC 0.036 [0.028 0.045] d−1 0.24 [0.19 0.28]d−1

αHSC 0.008 [0.006 0.013] d−1 0.05 [0.02 0.10]d−1

δHSC 0.03 [0.02 0.04] d−1 0.14 [0.02 0.19]d−1

κST 0.003 [0.002 0.004] d−1 0.07 [0.05 0.14]d−1

Table 5.1: Comparison between steady state and post-irradiation kinetics.

rate do not allow to state whether there is a change in comparison to steady
state. Residence time in ST-HSC drops by an order of magnitude, suggest-
ing that this compartment is now rather transient. In conclusion, after a
strong perturbation such as irradiation, the most immature stem cells are
massively recruited to reconstitute the blood system upon accelerating their
kinetics.

5.1 Refining the dilution model

In the previous section we modelled the EdU dilution upon assuming that
at each round of division the quantity of labelled DNA is reduced by a factor
one half, and thus after a certain number of divisions a cell will be negative
for EdU in the FACS. This is not rigorous, if one considers that DNA is
organised in chromosomes and that chromosomes are randomly segregated.

To illustrate the problem let us consider the hypothetical case of cells with
two chromosomes only, labelled with A and B (Figure 5.6). Let us assume
that at the beginning DNA is maximally (100%) labelled, (Figure 5.6a),
and that we need 25% of the maximum to consider a cell labelled. For the
moment we will ignore differentiation and death. After one division there
is only one possibility: the two daughter cells have each 50% of labelled
DNA and thus appear both EdU positive (Figure 5.6a). Now consider one
such cell in generation 1, and refer to the two strands in each chromosome
as 1 and 2. Upon replicating its DNA, (Figure 5.6c), the total content of
DNA will drop to 25%, but the number of positive cells can be either one or
two depending on how the chromosomes are segregated, (Figure 5.6d). So,
after two cycles we already have negative cells, and after three or more divi-
sions we still have positive cells. If one does not consider the chromosomal
organisation, as we did in the previous section, there would be still 100%
of positive cells after 2 divisions and no positive cells after three divisions,
which a very different outcome. However, this discrepancy gets smaller if
the fraction of labelled DNA needed to be detected as positive is higher and
so is the number of chromosomes.
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Figure 5.6: Label dilution upon cell cycle.

In the real case of a mouse, there are 40 chromosomes and one can es-
timate upon modelling, as in the previous section, that the threshold for
positivity is 12.5%, corresponding to 10 labelled strands. We compared the
chromosome-resolved and coarse-grained models for the dilution of EdU in
HSCs, and found little discrepancy in the estimated cell cycle time. We thus
keep the coarse-grained model since it has fewer equations (4 instead of 42).
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Chapter 6

Discussion

In this thesis we presented an application of a deterministic mathemati-
cal framework to infer quantitative information on normal and challenged
haematopoiesis from stem cells in vivo from fate mapping and cell cycle time
course data.

The steady state role of HSCs. We addressed this point in three parts.
First we asked whether HSCs are the major sustainers of haematopoiesis.
We fit a population-based model to data representing the flow of a perma-
nent genetic label induced in the HSC population and propagated in time
into the HSC’s direct progeny, ST-HSC [Busch et al., 2015]. The informa-
tion extrapolated from this data is the residence time of a cell in population
ST-HSC, that is, the time it takes for a cell of type ST-HSC to be lost by
either death or differentiation. Since we found this residence time to be high
compared to the lifespan of a mouse (∼ 1y), we concluded that ST-HSCs
are the major source of normal haematopoiesis. One can better grasp this
property by imagining that a certain population is all at once depleted and
no feedback mechanism is triggered. The residence time is the expected
time before the number of cells downstream of the ablated population no-
ticeably drops. This would be, for example, around one year if HSCs were
depleted or two months if ST-HSCs were. This finding is coherent with
[Schoedel et al., 2016], who measured no significant changes in stationary
haematopoiesis if HSCs are depleted to non-measurable exstent. However,
our results contradict the faster equilibration kinetics of both ST-HSC and
MPP inferred by [Sawai et al., 2016] with a theoretical and experimental
framework similar to ours, which would rather suggest the prominent role of
HSCs in the maintenance of haematopoiesis. However, [Sawai et al., 2016]
performed bone marrow biopsy, which could activate stem cells and progen-
itots.

We then quantified the contribution in terms of frequency of differentia-
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tion of the HSCs to normal haematopoiesis. We relied again on the fate
mapping data, using as additional information the stationary ratios of total
cell numbers in each population, easily included in the steady state model.
We found a very infrequent recruitment of HSCs into differentiation (of
the order of one differentiation per one hundred days per cell). Neverthe-
less, this contribution is significantly non zero, implying that HSCs still fuel
haematopoiesis with a steady although rare contribution. Similar estimates
were obtained by [Mackey, 2001] with a deterministic model of BrdU label
propagation data measured by [Bradford, 1997] and [Cheshier et al., 1999].
Also [Sun et al., 2014] qualitatively concluded that stem cells only rarely
contribute to haematopoiesis, using barcoding and fate mapping of HSCs
and progeny.

Finally, we investigated the number of HSCs that are active in the ob-
servation period, meaning the number of cells that differentiated at least
once, and thus actively contributed to haematopoiesis, in the time span of
the experiment. To this end, we statistically analysed the results of a lim-
ited dilution experiment, where few HSCs are labelled and the frequency of
mice with no labelled progeny is recovered over time. As no such mouse
was found, no matter the time point and the dilution, we concluded that
potentially all cells are active, but at least 30% must be.

This result is clearly antithetic to the outcome of several studies based on re-
population of transplanted stem cells after lethal irradiation [Gerrits et al.,
2010] [Lu et al., 2011], according to which less than one hundred HSCs
contribute to haematopoiesis (less than 0.1% of the steady state number
of HSCs), suggesting that the steady state scenario is very different. One
obvious difference is the number of engrafted cells (statistically 1/3), but
still the majority of cells seems to be inactive post-transplantation, which
would hint at a competition for resources and access to environmental cues.
Our finding is again coherent with [Sun et al., 2014], according to whom
physiological haematopoiesis is a polyclonal process.

We additionally computed via mathematical modelling of BrdU accumu-
lation that at least 20% of HSCs must be actively cycling. In order to
compare this result with publications which estimated the fraction of cells
going through the cell cycle over long enough observation periods, we first
need to clarify our concept of quiescence. Our idea is that an active cell can
both differentiate and proliferate, while a quiescent cell is not recruited into
haematopoiesis at all. In the literature, quiescent cells are usually defined
as cells that are in the G0 phase of the cell cycle. In our understanding, a
cell in G0 can be stochastically recruited into the cell cycle also in normal
conditions, although this eventuality can be so unlikely that it does not take
place along the duration of an experiment. Thus there is no contradiction
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between our outcome on many (potentially all) HSCs being active over one
year and the measured fraction of cells being in G0, estimated to be over
90% [Oguro et alii, 2013]. Being in G0 is also not in contradiction with
models that assume differentiation taking place in G0 as in [Mackey, 2001].
Comparing our result with literature, [Cheshier et al., 1999] administrated
BrdU 6 months and eventually all cells were labelled. Similarly, in [Bernitz
et al., 2016] a 2 years long doxocyclin chase was performed with a H2B-GFP
mouse model, together with comparison of peak fluorescence of the GFP,
and only a small fraction of HSCs was estimated to have not proliferated at
all, and around 3% of HSCs have divided up to a maximum of four times.
On the other hand, [Takizawa et al., 2011] determined with both BrdU and
CFSE a small fraction (1%) of HSCs that do not divide at all, although they
transplanted cells in a non irradiated mouse and did not monitor it for longer
than 20 weeks. From these data, it is likely that over long time periods nearly
all HSC will go through the cell cycle. IN addition, we have found that many
HSCs differentiation oves long time periods. Taken together, these data in-
dicate that the HSCs are both dividing and differentiating but do so with
low rates per cell. It is unclear whether an individual HSC divides and pro-
liferates, but the observation that the fate mapping label is maintained in
HSCs and propagated eventually to all mature cells proliferation suggests so.

Activity of progeny With a similar framework we inferred residence times
and differentiation frequency for several compartments downstream to HSC
and ST-HSC. Residence time turned out to be smaller in the myeloid popu-
lations, who thus work rather as transient amplifiers of flux exception than
as reservoirs for generation of haematopoietic output. On the other end,
lymphoid progenitors are rather long lived, which is in contrast to previ-
ously reported results, that state that the thymus can only self-renew in the
absence of input [Martins et al., 2012]. The production of a great numbers
of mature blood cells, especially monocytes and erythrocytes, is achieved
thanks to large amplification via proliferation and differentiation, whose
rates increase with lineage specification, particularly in the myeloid branch.
Very few parameters have been previously estimated for the differentiation
frequency of downstream population. Our results on T and B cells are com-
patible with such results (reported in [Manesso et al., 2013]).

Compartmental model, topology and branching. In order to infer
parameters from fate mapping we developed a model based on the idea of
haematopoiesis as a flow of cells through separate compartments charac-
terised by different kinetic parameters, and connected according to the clas-
sical view of haematopoiesis [Morrison and Weissman, 1994] [Akashi et al.,
2000] [Kondo et al., 1997] [Pei et al., 2017]. This approach proved to be
able to describe the data and thus we found no strong contradiction to it.
however, this assumption strongly influences the conclusions we drew.
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On the one end, the definitions of compartments is based on surface marker
expression and not on molecular regulation, which is more likely to corre-
late to proliferation and differentiation potential. In [Laurenti and Dick,
2012], for example, bioinformatic analysis of transcriptional dynamics sug-
gests that there is no such rigid distinction among haematopoietic com-
partments. This scenario would be rather modelled by a continuum of mi-
crostates [Karamitros et al., 2018], groupable in macrostates to resemble the
more familiar idea of compartment, as in [Stumpf et al., 2017] .

The most influential assumption is, though, the lineage topology. After
having explored the implications of the classical model we tried to infer
information on what should be the most likely topology. This should in
principle be hard with population average data, but the fate mapping data
contains information on at least the progenitor-progeny relationship, mean-
ing that one can say whether a population is likely to be downstream to
another upon considering that a downstream population should not have
a higher labelling frequency than any of its progenitors. Of course, all es-
timated rates are representative of an average behaviour and they do not
account for what a single cell actually does. We compared different possible
topologies, keeping the usual assumption that no back differentiation takes
place and limiting ourselves to the myeloid lineage. Based on statistics and
information theory, we found that additional differentiation pathways from
the stem cells, and at least from ST-HSCs, to all myeloid progenitors and
differentiated cells describe the data better than the classical linear model,
with its progressive loss of multipotency. This refined lineage topology is
consistent with the conclusions of several papers postulating the existence of
alternative pathways originating from either stem cells or their immediate
progenitors [Perié et al., 2014] [Yamamoto et al., 2013] and [Perié et al.,
2015], and particularly the existence of an erythroid bias [Nutt et al., 2005]
[Lai and Kondo, 2006] [Guo et al., 2013] [Notta et al., 2016] [Hoppe et al.,
2016]. On the other hand, these conclusions rely always on perturbed con-
ditions (apart from megakaryocyte-biased stem cells, that has been recently
described for native conditions [Rodriguez-Fraticelli et al., 2018]). One could
speculate that the existence of the alternative pathways is more evident in
non-stationary challenged situations, where blood production is urgently
needed and additional differentiation pathways may be enhanced, though
they are likely to exist also in steady state, as we were able to confirm with
our framework. Note that a different topology implies a different estimation
for the residence times, yielding longer residence times for myeloid progen-
itors, which in this view would rather serve as reservoirs than as amplifiers
for blood production.

Another type of topology we considered was to take the linear model as
true but anticipating the branching at the level of ST-HSC, instead of MPP,
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as suggested by [Oguro et al., 2013]. Here we found the interesting result
that the differentiation rate towards CMP is no longer enormous compared
to CLP, although the total number of cells differentiating to become CMP
per unit time is the same. So, the bias towards the myeloid production is no
longer a matter of cells being primed towards one lineage or the other, but
rather the strong amplifications is guaranteed by the transient amplifying
compartments (i.e., selective proliferation of myeloid progenitors).

Mathematical model of BrdU uptake. Several mathematical mod-
els have been implemented to model a stem cell population taking up a
cell-cycle-related label. When the steady state for the number of cells can
be assumed and BrdU is continually fed to the mice, one can simply as-
sume that, as a cell divides, it becomes BrdU positive [Mohri et al., 1998]
[Ganusov and Boer, 2012], and stays positive because BrdU is never diluted.
This simple model has three potential problems:

• The model assumes that having divided at least once is a necessary
and sufficient condition for a cell to become BrdU positive. In reality
a necessary condition should be going through the S phase of the cell
cycle, where the DNA replication and thus the label incorporation
takes place. The discrepancy to the usual model is only relevant if
the measurement time is short compared to the length of S, G2 and
M phases, in which case one would measure a non zero percentage of
positive cells (corresponding to the fraction of cells in S phase) before
any division takes place, and cells that are in G2 or M phases divide
without having become positive. In a setup where most of the cell
cycle time is spent in G1 any cell replicating its DNA is also dividing
before the first time point is measured and the number of cells in G2

or M phases is negligible. This is the case for almost all populations
of interest for us, with the exception of HPC-1, as we have shown
via a priori and a posteriori simulations. Finally, is one replication
round a sufficient condition for being detected as positive? With one
division, at most 50% of the DNA is labelled, though there is some
evidence for BrdU incorporation being stochastic in haematopoietic
cells including stem cells [Takizawa et al., 2011]. This problem has
been deeply analysed in [Schittler et al., 2013]. Although stochasticity
would make a difference at the level of the single cell, one could reason
that it does not at the population level, provided that on average
the uptake of label after the first division is above the threshold of
detectability. We do not have an estimate for such threshold, but
we can estimate what this should be at least. According to several
studies ([Foudi et al., 2008] and [Wilson et al., 2008] for example),
it takes about 5 divisions to dilute the label below the threshold of
detectability. A positive cell has, of course, maximum 100% of labelled
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DNA. After 4 divisions this would reduce to maximum 6% (cell is still
positive) [van der Wath RC, 2009]. Thus a cell should only label 6%
out of a maximum of 50% in order to become positive, which supports
the idea that a single round of replication renders a cell BrdU positive.

• Another possible problem would arise if not all HSCs were be active.
We discussed in the previous section why we believe that many HSCs
are active. Also, upon introducing a quiescent population within HSCs
in our model, we could determine a high lower bound for the number
of contributing stem cells (95% for HSC-1 and 40% for HSC-2). In
other words, having too many quiescent cells is not compatible with
the data.

• It has been pointed out that BrdU can have a mitogenic effect on HSCs,
that is BrdU accelerates the rate at which cells proliferate ([Wilson
et al., 2008] and [Takizawa et al., 2011]). This does not seem to be the
case for the data we worked on. In [Oguro et al., 2013], the authors use
a similar experimental procedure and find similar proliferative kinetics
as in [Kiel et al., 2007], where the authors checked whether the label
incorporation due to the BrdU induced damage affects the fluorescence
due to normal replication and found a negative result. This is stated
more generally in [Spalding et al., 2005], where the authors proved
that DNA repair does not add a detectable amount of incorporated
fluorescent nucleotides.

Note also that we are only interested in the cells being ether positive or neg-
ative, and not in the intensity of the label (quantity of incorporated BrdU).
This latter information is only useful if one either has measured the aver-
age intensity of the label over time [Bernitz et al., 2016] or is interested in
modelling the dilution of the label over the chase period ([van der Wath RC,
2009]), in which case knowing the initial condition is crucial. So, we were
able to infer proliferation frequency for the most immature haematopoietic
populations. The trend we observed earlier with the net proliferation rates
was confirmed, that is, proliferation increases with maturation. Our esti-
mate for the stem cells is in the order of magnitude previously estimated
[Mackey, 2001] [Wilson et al., 2008] [van der Wath RC, 2009] [Foudi et al.,
2008].

Another interesting point is that previous cell cycle models have not simul-
taneously considered all possible fates a cell can undergo [van der Wath RC,
2009], [Wilson et al., 2008]: symmetric self-renewing division, asymmetric
division, symmetric differentiating division, differentiation without division,
death. It is easy to see that for population dynamics with constant rates
such a detailed parametrisation is redundant, since every combination of
fates can be reduced to a combination of a net rate of division term and a
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term at which progeny is produced (although it does make a difference to
have different time dependence in the rates in non stationary situation like in
[Marciniak-Czochra et al., 2008] or when it comes to stochastic approaches
[van der Wath RC, 2009], which we are not considering). Our result that
symmetric self-renewing division must be the main mechanism of stem cell
proliferation in the stem cells is in agreement with [Ito and Ito, 2016]. Hav-
ing many symmetric divisions is an efficient way of expanding a cell pool in
case of emergency, but could also lead to the expansion of a mutant clone
as suggested in [Dingli et al., 2007a]. Also, it implies that the homeostasis
is regulated rather at the population level than at the level of the single cell
[MacArthur and Lemischka, 2013], and that proliferation is uncoupled from
differentiation.

Invariants. We stressed in this work that fate mapping data contains in-
formation about the residence time of a cell in a population. On the other
hand we presented two frameworks that describe the same set of data, and
that consider the stem cells as homogeneous or heterogeneous populations
respectively. We also explained how different assumed topologies can lead to
estimation of different parameters. So the question naturally arises: if both
models are good description of the physical system, should they predict the
same residence time in a differentiating cascade?

In order to provide an answer I developed, together with Dr. Nils Becker
(personal communication), a theory to calculate the residence time of a cell
in a proliferating cascade. The result is the additivity of residence times
of the single populations, and thus the independence of the total residence
time from their order. I then compared the estimations performed on the
data and found no contradiction in the result of the heterogeneous and ho-
mogeneous models.

Furthermore, I also developed a simple model to compute the number of
proliferations of a cell and its progeny while flowing through a cascade, and
again found no contradictions between the models’ prediction for this quan-
tity. This was also expected, since the number of proliferations is connected
to the residence time and the proliferation rate, so to two informations con-
tained in the data independently of the model.

Finally I simulated with a Gillespie algorithm that the average maximum
number of generations reached by a cell in the cascade up to HPC-2 is about
25, in a similar range as in [Mackey, 2001] and [Dingli et al., 2007b].

Non steady state The model we developed for steady state is easily ad-
justable to describe perturbed scenarios, provided that the total number
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of cells in each compartment of interest is also measured over time. Also,
we integrated cell cycle information in the form of accumulation of EdU in
each phase of the cell cycle, which were modelled considering in detailed the
cell cycle progression. We applied this model to label progression and pop-
ulation dynamics in the most immature haematopoietic populations after
sub-lethal irradiation and inferred a strong recruitment of HSCs for several
weeks post irradiation, both as an acceleration of differentiation and as an
increase in proliferative activity. Additionally, HSCs recovered completely
but their progeny did not, even 16 weeks after irradiation as in [Li and Slay-
ton, 2013], suggesting a major role for HSC in fueling haematopoiesis after
irradiation. Finally, time spent in ST-HSC drops considerably, which sug-
gests that ST-HSC is rather a transient compartment after irradiation, in
contrast to their major reconstituting role in transplantation ([Yang et al.,
2005]).

Parameter estimation. In this thesis we stressed tquantitative inference
from experimental data. This means building models whose parameters
can at least in principle (structurally) be identified from the available data
[Buchholz et al., 2013] [Raue et al., 2009]. Others, for example [Mackey,
2001], have developed models with a redundancy of parameters, or have
not estimated bounds on parameters [Sawai et al., 2016], or have inferred
parameters based on an assumed behaviour the system should have in hypo-
thetical conditions (mathematical stability [Marciniak-Czochra et al., 2008],
efficient recovery after stress [Manesso et al., 2013]).
In our case, these are the learnable parameters (structural identifiability was
checked with the Taylor expansion method [Pohjanpalo, 1978]):

• residence time, from steady state fate mapping time course data

• residence time, differentiation rate and net proliferation rate, from
steady state fate mapping time course and compartment size ratios
data

• residence time and proliferation rate , from steady state cell cycle time
course and compartment size ratios data

• proliferation, differentiation and death rate from steady state fate
mapping time course, compartment size ratios and cell cycle time
course data

Using the data in the last point we were also able to practically identify
almost all parameters, up to finding at least a meaningful lower bound.
We could also draw conclusions on the mechanism of proliferation of the
haematopoietic stem cells. In addition, we were able to simultaneously fit all
the types of data, showing that they are compatible, although measurements
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have been performed by different groups on different mice models ([Busch
et al., 2015], [Oguro et al., 2013]).
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Chapter 7

Methods

All fits were performed via the lsqnonlin inbuilt function of the MATLAB
software, which uses the trust region reflective algorithm to find a local
minimum of the cost function:

χ2(p) =
n∑
i

(
oi −mi(p)

si

)2

(7.1)

from a given initial point in the space sample of the parameters p. n is the
number of data. oi is the set of observables at the i-th time points, si the
set of uncertainty at the i-th time points, si the set of the model predictions
evaluated at the i-th time points and at the parameter vector p.

The uncertainty is either the standard error on the mean if there are enough
measurements per time point, the squared root of the pulled variance if data
had to be pooled from different time points, or a gaussian noise on simulated
data as in chapter 4.

If not differently stated, all confidence bounds on parameters were com-
puted with the method of profile likelihood [Raue et al., 2009]. The profile
of parameter i is the set of values of pi for which the corresponding mini-
mum minus the best fit minimum of the cost function is lower than 3.8 (5%
quantile of the distribution of the reduced chi-squared). Each minimum is
computed upon fixing the values of pi and optimise on the remaining com-
ponents of the parameter vector.

Confidence bounds on some quantities, for example the ratio of a popula-
tion size with respect to HSC, were computed via bootstrap [B and (1993).,
ages] since it was too complex to reparametrise the model to have them as
an independent parameters.

Confidence bounds on models were also computed via non parametric boot-
strap. Several thousands of iterations are performed extracting each time
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a new data set from the measured one, and computing the correspondent
vector of parameters that minimises the new cost function. Model curves are
generated from each estimated parameters vector, and the 2.5% quantiles
discarded per each time points.

The correct Akaike information criterion AICc [Burnham and Anderson.,
2002] is used in Section 2.3 to compare different models for the same dataset,
particularly to check whether complex models with more parameters add in-
formation or rather overfit the data. The formula for the AICc is:

AICc(χ2, n, k) = 2 k + χ2 + 2 k
k + 1

n− k − 1
(7.2)

where k is the number of parameters. Models with the lowest index are more
informative. Models with similar AICc are considered indistinguishable.

Gillespie algorithm [Gillespie, 1976] was used in Section 4 to compute the
average number of generations a cells can reach at most given the prolifer-
ation and net efflux rates, and thus the number of proliferations of the cell
and all its progeny before exiting the compartment. Since the number of
combinatorial trees given the number of proliferations is a difficult quantity
to compute, we just simulate thousands of different events starting from a
cell and stored, and then averaged, the generation numbers.

We used simple running averages to smoothen noisy time course data and
uncover their trend. Given a set of data {xi} corresponding to the set of
time points {ti} and an arbitrary number n of, for every n consecutive time
points the average mi of the corresponding data is computed:

mi =
1

n

n+m∑
j=1+m

xj (7.3)

The moving averages is the set {mi}. n is chosen arbitrarily to have smooth
curves. In our case it was picked n = 40.

Identifiability analysis is based on the Taylor series approach for linear sys-
tems. Details are discussed in paragraph 3.2.
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Chapter 8

Supplementary Material

2.1.3

We do not have time course data of the number of cells over time, since
the data we have refer to different aliquots and enriching processes. We
can nevertheless normalise the numbers to the HSCs and pool the mice over
time among the mice, also because the ratio is the observable considered in
the model through this work anyway: Our aim is to use the hypothesis of
steady state for the total number of cells in a population, thus such number
should be constant, or, similarly, the slope of the linear regression should be
compatible with zero. We report the 95% confidence bound in the square
brackets below each plot in the above figure. We see that the steady state
assumption is solid for all compartments but DP and the B cells in the bone
marrow, for which, however, the maximum increase is less than 2 fold. We
thus consider them constant too.

The test on the ratios does not guarantee that all sizes are constant over
time. We checked for a few time points whether the number of HSC in a
comparable amount of bone marrow are changing over time. We see that the
number of HSC starts increasing when a mouse is older than 250 days, so af-
ter the duration of the experiment. We nevertheless tested the compatibility
with our model to one in which HSC increases (and thus, since the ratios are
about constant, so do the other compartments). We found no contradiction
in the estimated kinetic parameters, although the confidence bound in this
case are larger due to the larger errors on the pooled compartment ratios
(Figure 8.2).

2.3.1

It has been suggested that HSCs are heterogeneous and biased to indepen-
dently differentiate into their progeny according to different routes. One
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Figure 8.1: Time course of the pooled ratio of all populations with respect
to HSC. Square brackets represent 95% confidence interval on the best fit
value for the slope of the linear regression.
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time.
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possible scheme to describe this possibility would be in this case: Now, if

HSCa

ST MPP

HSC

HSCb

Figure 8.5: Possible scheme to account for different differentiation pathways
among the HSC population.

the initial labelling frequency is different for the subpopulations HSCa,b,
over time we would see the labelling frequency in ST-HSC and MPP equi-
librating to HSCa,b respectively. Since the observed labelling frequency in
HSC is lower than one among HSCa,b, the labelling frequency in one progeny
will overshoot the one in HSC at some point in time.

2.2

κ (d−1) τ (d) α (d−1) ratio to HSC

HSC 0 (assumed) inf (assumed) 0.009 [0.005 0.012] 1

ST 0.003 [0.002 0.004] 340 [260 450] 0.07 [0.03 0.3] 3 [2 4]

MPP 0.02 [0.01 0.08] 50 [10 80]
4 [0.7 4] in CMP

0.008 [0.005 0.017] in CLP
9 [5 15]

Table 8.1: Estimated parameters for the stem cells

3.2

Let us assume that the fraction of active cells in a certain stem population
is less than one. In this case we would have quiescent cells, meaning cells
that do nothing in steady state at all time points. The fraction of BrdU
positive cells would evolve over time according to:

Ḃ+(t) = (2 σa + γa) (Fa −B+(t)) = νa (Fa −B+(t)) (8.1)
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κ (d−1) τ (d) α (d−1) ratio to HSC

CMP 1 [0.6 2] 1 [0.5 6]
3 [0.2 4] in GMP

1.6 [0.1 1.6] in MEP
4 [2 7] ·10

GMP 2 [0.14 3.5] 0.6 [0.3 7] 4 [0.3 4] 5 [2 10] ·10

MEP 0.4 [0.04 2] 2 [0.6 22] 1 [∼0 4] 10 [6 19] ·10

GR s 2 [0.14 2.5] 0.5 [0.4 7] - 10 [4 20] ·10

pro Ery 0.12 [0.03 4] 8 [0.3 40] 1[0.5 4] 3 [0 5] ·103

baso 0.04 [0.02 4] 30 [6 60] - 1 [0 40] ·104

Table 8.2: Estimated parameters for the myeloid cellls

κ (d−1) τ (d) α (d−1) ratio to HSC

CLP 0.017 [0.009 0.035] 6 [3 10] *10
1.5 [0.6 3] in pro B

1 [0.33 3] in DN
5 [2 8]

pro B 0.05 [0.007 0.078] 2 [6 12] 0.06 [0.03 0.07] 4 [2 7] ·102

B 0.051 [0.012 4] 20 [0.3 80] - 4 [2 7] ·102

DN 0.02 [0.014 4] 20 [6 60] 4 [0.7 4] 1 [5 2] ·102

DP 0.13 [0.02 4] 70 [6 50]
0.01 [0.001 0.4] in CD4

0.002 [0.0003 0.1] in CD8
3 [1 5] ·103

CD4 1 [0.01 4] 2 [0.3 80] - 2 [1 4] ·102

CD8 4 [0.01 4] 13 [0.3 80] - 8 [4 14] ·10

Table 8.3: Estimated parameters for the lymphoid cells
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where “a” stands for active, σa and γa are the rates at which active cells
symmetrically or asymmetrically divide respectively, νa = 2 σa + γa is the
rate of self-renewal of active cells and Fa is the fraction of active cells in the
population.

On the other hand, the equation we presented in section 3.2 reads:

Ḃ+(t) = (2 σ + γ) (1−B+(t)) = ν (1−B+(t)) (8.2)

where σ and γ are the rates at which cells symmetrically or asymmetrically
divide respectively assuming that all cells are active and ν = 2 σ + γ. Let
us choose νa in order to properly describe the data for HSC-1. We plot the
average self-renewal rate νr = Fa νa against ν as inferred upon fitting Equa-
tion 8.2 to Equation 8.1 for all possible values of the fraction of active cells:
We see that already for an active fraction of around 30% the estimated self-
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Figure 8.6: Comparing a model that allows for some cells not being active
(accurate model) to model that assumes they all are (approximate model).
The estimated average self renewing rates of the stem population are com-
parable if the fraction of active cells is at least 30%.

renewal rate are similar, comparably to our result for the limited dilution
analysis 2.1.5.

The possibility of having exclusively active cells is consistent with [Cheshier
et al., 1999], who observed that after 6 months of BRDU administration all
HCSs are BrdU+, but not with [Bernitz et al., 2016], according to whose
experiment a small fraction of HSCs never divide in a life span of a mouse.

We now compare the black box model to the phase-resolved model:

77



Figure 8.7: For the more mature populations (HPC-1,2), estimates of the
proliferation rate with the black box model is less accurate than taking the
phases resolution into account.
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Abbreviations

HSCs haematopoietic stem cells

ST-HSCs short term haematopoietic stem cells

MPPs multipotent progenitors

CMPs common myeloid progenitors

GMPs granulocyte-monocyte progenitors

MEPs megakaryocyte-erythroid progenitors

GRs granulocytes

CLPs common lymphoid progenitors

proBs B cells progenitors

DNs double negative cells

DPs double positive cells

CD4s CD4 positive T cells

CD8s CD8 positive T cells

proERYs progenitors of erythroid cells

baso basophils

MCM improved Cre fused with two modified oestrogen receptors

YFP yellow fluorescent protein

bm bone marrow
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Höfer, T., and Busch, D. H. (2013). Disparate individual fates compose
robust cd8+ t cell immunity. Science, 340(6132):630–635.

[Burnham and Anderson., 2002] Burnham, K. P. and Anderson., D. R.
(2002). Model selection and multimodel inference: a practical
information-theoretic approach. Springer, 2 edition.

[Busch et al., 2015] Busch, K., Klapproth, K., Barile, M., Flossdorf, M.,
Holland-Letz, T., Schlenner, S. M., Reth, M., Höfer, T., and Rodewald,
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Terhorst, C., and Morrison, S. J. (1995). Slam family receptors distinguish
hematopoietic stem and progenitor cells and reveal endothelial niches for
stem cells. Cell, 121(7):1109–1121.

[Kondo et al., 1997] Kondo, M., Weissman, I. L., and Akashi, K. (1997).
Identification of clonogenic common lymphoid progenitors in mouse bone
marrow. Cell, 91(5):661–672.

[Lai and Kondo, 2006] Lai, A. Y. and Kondo, M. (2006). Asymmetrical
lymphoid and myeloid lineage commitment in multipotent hematopoietic
progenitors. Journal of Experimental Medicine, 203(8):1867–1873.

[Laurenti and Dick, 2012] Laurenti, E. and Dick, J. E. (2012). The tran-
scriptional architecture of early human hematopoiesis identifies multilevel
control of lymphoid commitment. Nature Immunology.

[Lemischka et al., 1986] Lemischka, I. R., Raulet, D. H., and Mulligan, R. C.
(1986). Developmental potential and dynamic behavior of hematopoietic
stem cells. Cell, 45(6):917 – 927.

[Li and Slayton, 2013] Li, X. and Slayton, W. B. (2013). Molecular mech-
anisms of platelet and stem cell rebound after 5-fluorouracil treatment.
Experimental Hematology, 41(7):635 – 645.e3.

[Lu et al., 2011] Lu, R., Neff, N. F., Quake, S. R., and Weissman, I. L.
(2011). Tracking single hematopoietic stem cells in vivo using high-
throughput sequencing in conjunction with viral genetic barcoding. Na-
ture Biotechnology, 29:928 EP –.

83



[Luchsinger et al., 2016] Luchsinger, L. L., de Almeida, M. J., Corrigan,
D. J., Mumau, M., and Snoeck, H.-W. (2016). Mitofusin 2 maintains
haematopoietic stem cells with extensive lymphoid potential. Nature,
529:528 EP –.

[MacArthur and Lemischka, 2013] MacArthur, B. D. and Lemischka, I. R.
(2013). Statistical mechanics of pluripotency. Cell, 154(3):484–489.

[Mackey, 2001] Mackey, M. C. (2001). Cell kinetic status of haematopoietic
stem cells. Cell Proliferation, 34(2):71–83.

[Manesso et al., 2013] Manesso, E., Teles, J., Bryder, D., and Peterson, C.
(2013). Dynamical modelling of haematopoiesis: an integrated view over
the system in homeostasis and under perturbation. Journal of The Royal
Society Interface, 10(80).

[Marciniak-Czochra et al., 2008] Marciniak-Czochra, A., Stiehl, T., Ho,
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