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Abstract 

The primary aim of this thesis is the creation of new electrochemical biosensor systems 

on solution-gated GaN/AlGaN/GaN high electron mobility transistors (HEMT) for the 

transduction of biological functions into electrical readouts. For this purpose, the surface 

of transistors was functionalized with various biomimetic and bioorganic molecular 

systems, such as helical peptides, lipid monalayers and membranes. The full 

characterization of thickness, roughness, and density of such biomimetic molecular 

assemblies enables to quantitatively translate the change in surface monopoles and 

dipoles into the carrier mobility. 

In Chapter 4, monolayers of bio-inspired, non-biological helical peptides were deposited 

on GaN semiconductor surfaces in order to modulate the electronic band structures of 

GaN by macromolecular dipole moments. By covalently coupling the peptides via N- or 

C-terminus to the GaN surfaces, the sign (direction) of exerted dipole moments could 

precisely be controlled, realizing the modulation of the carrier mobility. Moreover, the 

chronoamperometry measurements have demonstrated the additional ferrocene terminal 

group enables the directed electron transfer through peptide chains via an inelastic 

hopping mechanism. 

In Chapter 5.3, cell membrane models were deposited on the GaN surfaces pre-coated 

with hydrophobic, organic silane monolayers. By incorporating lipids with nitrilotriacetic 

acid (NTA) head groups into lipid membranes, changes in the surface potentials induced 

by the binding of charged recombinant proteins to the surface lipid membranes could be 

detected at a high sensitivity. The systematic variation of surface density of NTA lipids 

and the comparison with impedance spectroscopy data of bulk GaN electrodes, it has 

been demonstrated that the sensitivity of this system to changes in the surface charge 

density is as high as ΔQ < 0.1 μC/cm
2
. 

In Chapter 5.2, to accommodate the incorporation of transmembrane proteins under non-

denaturing conditions, a more realistic cell membrane model, bilayer lipid membranes, 

was deposited on GaN by using regenerated cellulose films as the polymer support. The 

current-voltage characteristics clearly indicated the high electric resistance of lipid 

membranes, which seems promising for the detection of molecular recognition and 

selective material transport. 

Last but not least, such molecular constructs were transferred onto the surface of 

molecularly thin, organic semiconductors that have shown a high charge mobility under 

dry conditions (Chapter 6). The preliminary attempts already demonstrated the formation 

of uniform lipid monolayers on organic semiconductor surfaces exposing hydrocarbon 

chains. Moreover, the reversible binding and unbinding of recombinant proteins has been 

confirmed. Although further optimization of the device geometry and Ohmic contacts are 



 
 

 

necessary, the data suggest a large potential of all organic electronic sensors operating 

under water.  

The obtained results highlighted the potential of the combination of biomimetic molecular 

constructs and inorganic and organic semiconductor devices for the highly sensitive and 

quantitative determination of properties and functions under physiological conditions. 

 



 
 

Zusammenfassung 

Diese Arbeit beschreibt die Entwicklung neuer elektrochemischer Biosensorsysteme auf 

Basis von GaN/AlGaN/GaN-Transistoren mit hoher Elektronenbeweglichkeit (engl. 

HEMT), die es ermöglichen biologische Funktionen in elektrische Signale zu übersetzen. 

Dazu wurde die Modulation der elektronischen Umgebung der Transistor Oberfläche 

durch Veränderungen in den Oberflächenpotentialen und -Ladungen untersucht, die durch 

die Funktionalisierung der GaN-Transistoroberflächen mit verschiedenen biomimetischen 

und bioorganischen mole-kularen Systemen erzeugt werden. Verschiedene Membran- 

und Monolagenmodell von bio-analogen Molekülen wurden dafür zur quantitativen 

Charakterisierung der Eigenschaften und Prozesse, die an solchen Systemen stattfinden, 

untersucht. 

Biologische Systeme zeigen eine breite Reihe möglicher Molekülladungen und 

Dipolmomente auf. Die Modulation von elektronischen Bandenprofilen durch solche 

Dipolmomente wurde anhand von GaN-Halbleitern gezeigt, unter Verwendung von 

makromolekularen Dipolpotentialen, die von geordneten Monolagen von synthetischen, 

bioinspirierten, helikalen Peptiden erzeugt werden. Die kovalente Bindung der Peptide 

über den N- oder C-Terminus an GaN ermöglichte die kontrollierte Ausrichtung der 

Dipol-momente, die entweder in Richtung oder von der GaN Oberfläche weg zeigen. In 

Abhängigkeit von dieser Richtung zeigten die Stromspannungseigenschaften des GaN-

HEMT, dass eine präzise Modulation der Ladungsträgerbeweglichkeit im 

zweidimensionalen Elektronengase des GaN Transistors durch den Peptiddipol erreicht 

wurde. 

Veränderungen der Oberflächenmonopole wurden durch die Bindung von rekombinanten 

Proteinen an Festkörper gestützten Lipid Membranen nachgewiesen. Diese enthielten 

Ankerlipide mit Nitrilotriessigsäure (NTA) Kopfgruppen, welche in Gegenwart von Ni
2+

 

die reversible Komplexierung von Oligohistidin markierten rekombinanten Proteinen 

(eGFP) ermöglicht. Änderungen in den HEMT-Strom-Spannungs-Kurven zeigten, dass 

Unterschiede in der Oberflächenladungsdichte Q, die durch diese Prozesse verursacht 

werden, mit einer hohen Empfindlichkeit von ΔQ < 0,1 μC/cm
2
 nachgewiesen werden 

können. 

Ein weiteres Membran-Modellsystem wurde durch die Funktionalisierung von GaN-

HEMTs mit Lipidmembranen auf regenerierten Cellulose Polymeren entwickelt. Dies 

ermöglicht den Einbau von Transmembranproteinen und die Messung deren Funktionen 

in einer naturähnlichen Umgebung. Die Eigenschaft von Lipidmembranen wie ein 

elektrischer Isolator zu wirken wurde durch einen deutlichen Anstieg des Widerstands 

gegenüber angelegten Gate Potentialen in den HEMT Strom-Spannungs Kurven bestätigt, 



 
 

 

was eine ausreichende Empfindlichkeit für die Bestimmung von Membranprotein 

Aktivitäten gewährleistet. 

Das oben erwähnte Monoschichtmodell wurde schließlich auf neuartige flüssigkristalline 

organische Halbleitermaterialien, zur Schaffung einer neuen Klasse von 

Biosensorsystemen, angewendet. Erste Schritte dahin wurden durch die Bildung von 

Lipid Monolagen auf diesen Halbleitern und deren Betrieb in wässrigem Medium 

beschreiben, was bisher nicht tiefgehend untersucht wurde. 

Die hier erhaltenen Ergebnisse verdeutlichen das Potenzial von kombinierten GaN-

Halbleiterbauelementen und biomimetischen Molekülstrukturen zur hochempfindlichen 

und quantitativen Bestimmung von Eigenschaften und Funktionen biologischer und bio-

mimetischer Systeme. 
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1.  Introduction  

Biosensors combine the specificity and selectivity of biochemical recognition elements 

with a transducer, generating a quantifiable readout. In this context, label free electronic 

readouts such as potentiometry, conductometry and impedance measurements (Thévenot 

2001) are utilized in conjecture with semiconductors as sensor platform. After the 

development of one of the first biosensors by Clark and Lyons in 1962 for the monitoring 

of a patients’ blood oxygen and carbon dioxide levels over the blood pH (Clark and 

Lyons 1962), the recognition of biological processes has been achieved with enzymes 

(Müntze, Baur et al. 2015), deoxyribonucleic acid (DNA) strands (Thapa et al. 2012) and 

antibodies (Huang et al. 2013) as well. Recently, the development of such sensors was 

expandend to encompass further medicinal applications, such as drug development 

(Gebinoga et al. 2012, Makowski et al. 2013,  Kang et al. 2013), diagnostics (Chen, 

Svedendahl et al. 2011, Zhang et al 2011) and protein detection (Kang et al. 2005, Huang 

et al. 2013).  In nature, many of the physical and biochemical interactions of biosystems 

(e.g. cells) involve biological interfaces. The most prominent examples of such 

biointerfaces are cell membranes. The interactions at the interface are mediated by 

complex interplays of short and long-range forces (e.g. van der Waals, electrostatic, steric 

(entropic) forces, and hydration forces (Israelachvili 1985, Derjaguin 1987), often 

involving many elemental and synergistic processes, which are difficult to quantify 

directly. Thus, the design of cell membrane models with a reduced number of 

components is necessary to study the fundamental principles of reactions and processes at 

biological interfaces. Modification of planar solid surfaces with organic, biocompatible 

layers enables the fabrication of novel biofunctional hybrid materials. Using this approach 

of “supported membranes” (Sackmann 1996, Sackmann and Tanaka 2000, Tanaka and 

Sackmann 2005) allows for the matching of interface properties between solid surfaces 

and biological systems for the stress-free immobilization of artificial as well as native cell 

membranes and proteins onto solid-based devices (Hillebrandt et al. 1999, Purrucker et al. 

2001, Hillebrandt et al. 2002). A high sensitivity to the immobilization and functionality 

of biosystems can be achieved by the use of semiconductors, which translate changes in 

surface potential from reactions at the biointerface into electronic signals (Bergveld 

1986). The use of GaN as semiconductor material promises outstanding chemical and 

electrochemical stability over a broad frequency range (Steinhoff, Hermann et al. 2003, 

Steinhoff, Purrucker et al. 2003, Schaefer, Koch et al. 2012). This notion is further 

supported, since no degradation under physiological conditions is observed for GaN 

compared to other materials, such as Si (Allongue 1985, Bergveld 1986) and GaAs 

(Adlkofer 2000). As a wide band gap semiconductor (Eg = 3.4 eV) GaN further allows for 

a higher flexibility and control in its electronic properties by doping, as well as a high 
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degree of band gap engineering by alloying it with In or Al. This enables the fabrication 

of various complex semiconductor heterostructures, possessing high carrier densities and 

thus high sensitivities to their electronic surface environment. To this date several studies 

detailing the immobilization of biosystems on bulk GaN electrodes (Schubert, Steinhoff 

et al. 2009, Stine et al. 2010) have been reported. However, the use of GaN 

heterostructure devices as biological sensor platform has only recently drawn attention 

(Baur, Howgate et al. 2006, Müntze, Baur et al. 2015). In this work the use of GaN 

semiconductors and GaN/AlGaN/GaN high electron mobility transistors was explored as 

highly sensitive sensor platform for the recognition of various biological systems, 

molecules, proteins. 

First, in Chapter 4, the potential of band gap engineering using the tunable macro 

molecular dipole moment of synthetic helical peptides (Morita 2000, Kaindl 2010, 

Frenkel 2015) to modulate the surface potential and electronic band structures in bulk 

GaN semiconductors and GaN/AlGaN/GaN heterostructures was investigated (in 

collaboration with Prof. Dr. S. Kimura, Kyoto Univ. and Prof. Dr. M. Eickhoff, Univ. 

Bremen). The peptides, based on a leucine - α-amino isobutyric acid (Leu - Aib)n 

sequence, form a stable α-helix and through interdigitation of the side chains are able to 

form well-packed self-assembled monolayers (Morita and Kimura 2003, Kitagawa 2004). 

Covalent grafting of these peptides on either C- or N-termini to the solid support enables 

the directional control of the applied dipole moment (Figure 1.1). The peptide 

functionalization was first performed on bulk GaN electrodes. After systematic structural 

characterization of the formed peptide layers, grafting protocols were transferred to 

GaN/AlGaN/GaN transistors, in order to investigate and quantify the impact of the macro 

molecular dipole moment on the electrochemical properties of GaN and GaN 

heterostructures. 
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Figure 1.1: Schematic representations of the aminosilanized and helical peptide grafted 

GaN/AlGaN/GaN heterostructures. The arrows indicate the possible orientations of the 

peptide dipole moment. 

In Chapter 5.1, a hybrid sensor system for the electronic detection of the 

binding/unbinding of recombinant proteins to membrane surfaces was investigated by the 

functionalization of GaN/AlGaN/GAN heterostructure (in collaboration with Prof. Dr. M. 

Eickhoff, Univ. Bremen) surfaces with supported lipid membranes. In order to 

demonstrate the potential of this multilayer system for the electronic detection of the protein 

binding/unbinding, nitrilotriaceticacid (NTA) chelator lipids were incorporated into the 

supported lipid monolayer. These lipids allow the formation of charged chelator complexes 

with divalent metal ions and the reversible coupling of histidine tagged recombinant proteins 

(Figure 1.2a) onto the lipid monolayer. Changes in the surface potential at the membrane 

interface, caused by reversible chemical/biochemical protein binding were then 

investigated by the changes in current-voltage (I-V) characteristics of GaN/AlGaN/GaN 

HEMTs.  
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Figure 1.2: Schematic representation of (a) reversible couping of charged proteins on 

supported monolayer membrane containing NTA chelator lipids and (b) polymer 

supported lipid bilayer membrane for the incorporation of intermembrane proteins, such 

as ion channels, under non-denaturating conditions. 

Additionally, Chapter 5.2, details the immobilization of biological membrane models on 

soft polymer supports of hydrated cellulose on GaN/AlGaN/GaN HEMT devices (Figure 

1.2b). Here ultrathin polymer “cushions” (Wegner 1992 and 1993, Sackmann 1996) of 

cellulose are used to separate soft membrane model systems and reduce their interaction 

with the rigid surface of the sensor platform. These cushions provide a bioanalogous 

environment for membrane proteins, creating hydration pathways and enabling the 

incorporation of integral proteins without denaturation (Hillebrandt et al. 1999). 

Membranes exhibit similar fluidity and self healing properties to biological membranes on 

such soft polymer interfaces (Rädler 1995, Nissen 1999) reducing defects in the 

membrane. Thus high electrical resistance in these membranes can be achieved, allowing 

for a high sensitivity to the functions of the membrane and integral proteins (e.g. ion 

channels) (Hillebrandt et al. 1999). Here, the influence of such membrane systems on 

electronic properties of GaN heterostructures is analyzed by the change in I-V 

characteristics of GaN/AlGaN/GaN HEMTs.  
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Figure 1.3: Schematic representation of anchored recombinant proteins on the organic 

semiconductor (DNBDT) film.  

In Chapter 6 the same approach detailed in Chapter 5.2 was applied to a single crystalline 

film of an organic semiconductor material developed by the group of Okamoto and 

Takeya et al. (Mitsui, Okamoto et al. 2014, Makita et al. 2017). The provided 

semiconductor material Dinaphtho[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b’] dithiophene 

(DNBDT) is used as a support for membrane systems towards the fabrication of novel 

organic field effect transistor (OFET) biosensors using the flexibility and low cost of 

OFETs (in collaboration with Prof. Dr. T. Okamoto and Prof. Dr. J. Takeya, Univ. 

Tokyo). This structure self-assembles into a single crystal film forming π-stacks from its 

N-shaped π-core system (Figure 1.3) (Mitsui, Okamoto et al. 2014) and expresses 

outstanding carrier mobility and low threshold voltage. This makes this material a very 

promising candidate for the exploration of biosensor applications of supported membrane 

models on organic semiconductor materials. In this Chaper the lipid monolayer formation 

on these materials is detailed. The operation of these materials is furthermore investigated 

under aqueous buffer conditions, marking this work as one of the first times such a single 

crystalline OFET is operated under water. The details of the obtained results are described 

in the following sections. 
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2. Materials and Methods 

2.1 Materials 

2.1.1 Chemicals 

Cholesterol and 1,2-dioleoyl- sn -glycero-3-[( N -(5-amino-1-carboxy-

pentyl)iminodiacetic acid)succinyl] (nickel salt) (DGS-NTA(Ni)), 1,2-dioleoyl-sn-gly-

cero-3-phosphocholine (DOPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) 

and 1,2-dimyristoyl-3-trimethylammonium-propane (chloride salt) (DMTAP) were 

purchased from Avanti Polar Lipids (Alabaster, USA). The expression and prurification 

of his-tagged GFP from E.coli is described elsewhere (Frenkel 2014). His-tagged ds-Red 

protein monomers were purchased from Biovision (Milpitas, USA).  Unless stated 

otherwise, all other chemicals were purchased from Sigma Aldrich (Steinheim, Germany) 

and used without further purification. Ultrapure water (Millipore, Molsheim, France) with 

a resistivity of 18.2 MΩcm was used in all experiments. Standard HEPES buffer 

contained 10 mM HEPES, 150 mM NaCl at pH 7.5. For Ca- and Ni- buffers additional 2 

mM NiCl2 or CaCl2 respectively were added. For peptide coated GaN experiments 

(Chapter 4) a HEPES buffer containing 10 mM HEPES and 100 mM NaCl at pH 7.0 was 

used. 

2.1.2 Substrates 

Native oxide Si (100) substrates used for AFM and X-ray reflection experiments and 

thermal oxide Si (100) with an oxide layer of 150 nm used for ellipsometry were 

purchased from Si-Mat (Landsberg/Lech, Germany). Glass cover slips made from 

borosilicate glass (Menzel GmbH, Braunschweig, Germany) with a diameter of 32 mm 

and thickness of 0.17 ± 1 mm were used for Fluorescence microscopy and FRAP 

experiments.  

GaN films were grown on c-plane sapphire substrates (330 µm) with a total thickness of 3 

μm (first 300 nm low temperature undoped GaN buffer, then 2.7 µm C-compensated 

GaN) by metal organic chemical vapor deposition (MOCVD). GaN wafers were cleaved 

into 5 × 5 mm
2
 pieces for AFM, XPS, and XRR. For Electrochemical Impedance 

Spectroscopy and Cyclic Voltammetry, a 210 nm thick Ge doped (ND = 1 × 10
20

 cm
−3

) 

GaN film was deposited on an undoped GaN templates by MOCVD (Fritze 2012). The 

high donor concentration ensures a sufficiently high semiconductor space charge 

capacitance for electrochemical sensing. High-electron-mobility-transistor (HEMT) 

heterostructures (GaN/Al0.25Ga0.75N (20 nm)/GaN) grown on Si(111) substrates by 
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MOCVD (Figure 2) were generous gifts from Fujitsu Ltd. (Kawasaki, Japan). The sheet 

carrier density and the carrier mobility of the two-dimensional electron gas (2DEG) were 

determined to (8.3 ± 0.1) x 10
12

 cm
–2

 and (1781 ± 5) cm
2
·V

–1
·s

–1 
at room temperature 

from Hall-effect measurements. Organic C8-DNBDT transistors were a generous gift 

from Prof. Dr. T. Okamoto Group (Tokyo University). The organic semiconductor phase 

was drop cast onto Si (100) and cover slip substrates. 

2.1.3 Chemical Coupling of Peptides 

The three formyl-terminated peptides used in this study (F8OMe, Boc8F, and Fc8F) were 

previously synthesized (Frenkel 2015, Mehlhose and Frenkel 2018) and are shown in 

Figure 1. The peptides are built with repeated units of leucine (Leu) and aminoisobutyric 

acid (Aib) and form stable α-helix (Fujita, Kimura et al 1995, Miura, Kimura et al 1998) 

and are coupled to the surface from either the N-terminus (F8OMe, FcF8) or from the C-

terminus (Boc8F). 

Prior to surface functionalization, GaN and HEMT substrates were cleaned in a 3:1 

H2SO4:H2O2 solution for 15 min, rendering the surface hydrophilic and terminated with 

hydroxyl groups. After thorough rinsing with water the samples were dried under N2 

stream, and treated by an UV-Ozone cleaner (ProCleaner™, BioForce Nanosciences, 

Wetzlar, Germany) for 20 min. The hydrophilic GaN samples were immersed into a 

solution of aminopropyltriethoxysilane (APTES, 20 mM) in dry toluene. After the 

condensation reaction at 50 °C for 10 min, the samples were rinsed in toluene, methanol, 

and acetic acid to remove the residual amount of physisorbed silane molecules. 

Afterwards they were dried under N2 stream and stored in vacuum.  The coupling of the 

formyl-terminated peptides to the primary amine of APTES was performed by reflux of 

the APTES coated sample in the peptide solution in CHCl3 (c = 0.2 mM) overnight, 

rinsing with in CHCl3, and drying under N2 stream. 
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Figure 2.1: Chemical structures of the three peptides used in this study and the schematic 

representation of the direction of their projected macromolecular dipole moment (red). 

2.1.4 Substrate Coating with Octadecyltrimethoxysilane (ODTMS) 

GaN/AlGaN/GaN HEMT structures, Si or glass substrates were coated with octadecyl-

trimethoxysilane (ODTMS) in order to achieve hydrophobic surfaces for lipid monolayer 

deposition (Mooney et al. 1996, Baur, Howgate et al. 2006, Howgate, Schoell et al. 

2010). Before functionalization, the substrates were cleaned by immersion in 3:1 H2SO4: 

H2O2 solution for 5 minutes followed by thorough rinsing with water and drying under N2 

stream. The freshly cleaned substrates were then silanized, using an ice-cooled (T = 0 °C) 

solution of 5% (v/v) solution of ODTMS in water-free toluene with 0.5% (v/v) 

butylamine as catalyst (Brzoska et al. 1992). In contrast to previous repots (Baur, 

Howgate et al. 2006, Frenkel 2014) the substrates were incubated for 90 min without 

sonication at T = 0 °C in order to minimize damage to the ohmic contacts. After rinsing 

with isopropanol the substrates were dried at 70 °C and stored in a vacuum chamber. 

Static contact angle of each ODTMS monolayer was evaluated to be beyond 90°, to 

confirm that the GaN surface was hydrophobic enough for the deposition of a lipid 

monolayer. 

2.1.5 Synthesis of Trimethylsilylcellulose (TMSC) 

Microcrystalline cellulose (0.5 g) was dried under nitrogen atmosphere for 2 h at 105 °C. 

The dried cellulose was suspended in dimethylacetamide (DMAc) (20 ml, anhydr.) and 

continued to stir 1 h at 150 °C under nitrogen atmosphere. The suspension was left to cool 

down to 100 °C and LiCl was added (1.5 g). After 5 min further stirring the suspension 

was left to cool to room temperature and turned transparent. Hexamethyldisilazane 

(HDMS) (2 ml) was stepwise added over 1 h at 80 °C and the solution becomes turbid. 

The solution was then centrifuged at 3040 rpm for 20 min and the yellowish solvent 
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removed. The gel phase was washed with MeOH. The resulting white solid was dissolved 

in THF and recrystallized with MeOH. A yield of 0.34 g TMSC was achieved. 

2.1.6 TMSC coating of substrates 

Prior to the coating of the substrates they were cleaned by immersion in 3:1 H2SO4: H2O2 

solution for 5 minutes. Afterwards the substrates were rinsed extensively with water and 

dried under N2 stream. A solution of 4 g/L TMSC in Toluene was spun on a Delta 10 spin 

coater (BLE Laboratory Equipment GmbH, Radolfzell am Bodensee) for 30 s at 4000rpm 

on a freshly cleaned Si, glass or HEMT substrate. To regenerate the cellulose from TMSC 

the samples were exposed to HCl vapor and rinsed with water. A dry film thickness of ~ 5 

nm is achieved. Film thickness and roughness were determined by Ellipsometry, AFM 

and XRR. 

2.1.7 Lipid membrane Preparation 

Stock solutions of DOPC or DMPC and DMTAP in CHCl3 (25 mg/mL) were mixed with 

cholesterol in various molar fractions for use in bilayer studies.  Molar fractions of 

40/20/40 % or 65/0/35 % of DOPC/DMTAP/cholesterol or DMPC/DMTAP/cholesterol 

were used respectively. For fluorescence experiments 0.2 mol% Texas-Red-DHPE was 

added to this mixture.  

Vesicle fusion protocol 

After evaporation of CHCl3 under a gentle nitrogen stream and storage under vacuum 

overnight, the lipids were suspended in HEPES buffer (150 mM NaCl, 10 mM Hepes, pH 

7.5) to a concentration of 2 mg/ml and sonicated with a titanium microtip sonicator S3000 

(Misonix Inc., Farmingdale, USA) for 10 min to obtain small unilamellar vesicles 

(SUVs). To remove any residual titanium particles, vesicle suspensions were centrifuged 

(Eppendorf, Hamburg, Germany) for 10 min at 13400g.  

Cellulose and solid supported membranes were prepared by vesicle fusion (Sackmann 

1996). SUV suspensions were injected into a flow chamber containing the sample 

substrate and incubated at 40°C, followed by rinsing with HEPES buffer (150 mM NaCl, 

10 mM Hepes, pH 7.5) to remove excess SUVs. 
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Solvent exchange protocol 

As a second method for the deposition of lipid bilayers onto cellulose coated surfaces the 

dried lipid mixtures were suspended in 50 % Isopropanol and 50 % HEPES buffer. This 

suspension was injected into a flow chamber containing the sample substrate and in 

intervals of 15 minutes the buffer content of the solution was increased by 5 % up to a 

final buffer content of 90% (Hohner 2010). After 30 minutes at the final concentration the 

substrate was rinsed with HEPES buffer. 
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2.2 Methods 

2.2.1 Atomic Force Microscopy (AFM)  

Principle of the Technique 

The Atomic Force Microscopy (AFM) is a versatile technique for the study of samples at 

nanoscale. The detection of attractive or repulsive forces, such as van der Waals, dipole-

dipole, electrostatic and magnetic forces, between sample and probe, allows the 

determination of mechanical properties and the 3-D topography of a surface (Binnig; 

Quate 1986). Resolution and sensitivity of the measurement are greatly limited by the 

design, geometry and coating of the sensing probe, the so called cantilever. 

A schematic setup is shown in Figure 2.1. The spring-like cantilever with a sharp tip is 

positioned over the sample. A piezoelement enables z-plane movement and oscillation for 

the cantilever. For movement in xy-plane the sample is mounted on another piezomotor. 

Interactions of the cantilever with the sample result in its deflection. With a laser reflected 

on the back of the cantilever this deflection is measured on a photodiode as a change in 

photocurrent. 

 

Figure 2.1: Schematic setup of the AFM showing the delection pathway of the laser on 

the cantilever. 

The AFM can be used in three modalities: force measurement, manipulation, and 

imaging. 

In force measurement the interaction forces between the sample and the cantilever probe 

are measured in terms of their spatial separation. This is used for the determination of the 
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mechanical and electrical properties of the sample, such as stiffness, adhesion strength, 

conductivity and surface potential. 

For manipulation mode, the cantilever probe can be used for the creation of artificial 

surface structures on a nanometer scale (Lieber 1993). Controlled atomic manipulation 

with interaction forces between probe and sample are used in techniques like scanning 

probe lithography. 

In imaging mode the deflection of the cantilever imposed by the interaction with the 

sample can be used to record the 3D-topography of the sample. The sample is raster 

scanned along the x-y-plane, while employing either a constant height or force between 

probe and sample with an electronic feedback loop. To characterize the topography the 

root-mean square (rms) roughness can be used as a measure of the surface smoothness. 

The rms roughness is described as the average height deviation from the mean height 

value: 

     
          

 
                 (2.1) 

Where    is the sampling point height,    the mean height, and N the number of recorded 

data points. 

Approaching the surface with the cantilever attractive forces dominate at first, with 

repulsive forces becoming larger at the point of contact. With this, different imaging 

modes can be realized: (i) contact mode, (ii) non-contact mode, (iii) tapping or 

intermittent contact mode. 

In contact mode the surface profile is gained directly from the deformation of the 

cantilever pressing on the surface with a certain force. To gain a large signal from the 

cantilever deformation and to avoid damage to the sample, low stiffness cantilevers that 

have a low spring constant k are needed. Since this mode is prone to noise and drift 

intermittent contact mode is more commonly used (Zhong 1993). In non-contact mode is 

kept at a certain height above the sample, where changes in the height profile 

reduce/increase the attractive forces between sample and probe and thus cause changes in 

the cantilever deflection. For intermittent contact mode the cantilever is oscillated near its 

resonance frequency. The cantilever is in contact with the sample only at the bottom of its 

amplitude. Near the sample, interaction forces between surface and cantilever cause its 

oscillation to change. By keeping the oscillation frequency and amplitude constant with 

and electronic feedback loop the changes in the amplitude can be translated into height 

differences in the sample. For a stable oscillation stiffer cantilevers compared to contact 
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mode are used. In general intermittent contact mode caused less damage to the surface, 

since forces on the surface are only applied for a short duration and lateral forces are 

significantly lower. 

Protocols  

Measurements for were performed on glass or silicon substrates with a JPK Nanowizard 3 

(JPK Instruments AG, Berlin, Germany). For measurements in contact mode SNL-10 

cantilevers with a spring constant of k = 0.35 N/m and a tip radius of 12 nm (Bruker, 

Karlsruhe, Germany) were used. NCHV-A cantilevers (Bruker, Karlsruhe, Germany) 

with a spring constant of 42 N/m and a tip radius of 8 nm were used for intermittent 

contact mode measurements. The scanning speed was 0.3 Hz for scan areas of 10 × 10 

μm
2
. The images were subjected to a plane correction procedure. Thickness estimation of 

the grafted peptide, cellulose or other organic  layer was done by scratching the surface 

using RTESPA cantilevers with a spring constant of k = 5 N/m (Bruker, Karlsruhe, 

Germany) in contact mode in an area of 0.5 × 0.5 µm
2
 at F = 1 µN. After the scratching, 

the topographic profile of an area of 1.5 × 1.5 µm
2
 was recorded with using the same 

cantilever at F = 31.6 nN. 

2.2.2 Ellipsometry  

Principle of the Technique  

Using the change in polarization of light upon reflection Ellipsometry is used for the non-

destructive, non-contact investigation of thin multilayer structures. The ellipsometer is 

used in the PCSA-configuration where the laser beam passes a polarizer, compensator, 

sample and analyzer in sequence before its intensity is measured in a detector afterwards. 

The monochromatic light from the source is linearly polarized by the polarizer. The 

compensator, usually a λ/4 plate, imposes a defined phase retardation on either the 

perpendicular (s) or the parallel (p) oriented part of the beam. After reflection on the 

sample under an angle φ the analyzer determines the changed polarization. In 

Nullellipsometry the reflected linear polarized light is recorded at the state where the 

analyzer completely cancels out its polarization and the intensity at the detector is zero. 

Hitting the surface the laser beam is reflected and its polarization is changed after passing 

layers of optical active materials depending on the refractive indices and thicknesses of 

each layer. The light polarization is represented by two parameters, the ellipsometric 

angles Δ and Ψ, which are given by the complex reflection coefficients Rs (s-polarized 

light, perpendicular oriented) and Rp (p-polarized light, parallel oriented):  
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                 (2.2)  

where    (Ψ) is the amplitude ratio upon reflection and Δ is the phase shift. From these 

two abstact parameters the material characteristics of thickness d and refractive index n of 

each passed layer can be gained through model fitting. As a prerequisite for the 

measurement samples with well defined, homogeneous layers and low interfacial 

roughness are needed. Since no further sample preparation is needed, Ellipsometry allows 

fast data acquisition of solid as well as liquid thin films while high spatial resolutions in 

the Angstrom range are achieved. (Fujiwara 2007).  

Measurement Protocol 

All Elliplometry measurements were performed on thermal oxide Si-wafers (Si-Mat, 

Kaufering, Germany) with an oxide layer thickness d of ~ 144 nm. An Optrel Multiskop 

(Sinzing, Germany) was used with a wavelength of λ = 632.8 nm at an incident angle of 

70°. The data was fitted using a self-written script based on IGOR Pro (Wavemetrics, 

USA).  

2.2.3 Contact Angle  

Principle of the Technique  

Contact angle is a tool used to describe the wettability of a solid surface via the 

determination of the angle between the contact line of the solid/liquid and liquid/vapor 

interface. Each system has a unique equilibrium contact angle at a given pressure and 

temperature defined by the properties of the solid (S), liquid (L) and vapor (V) phase. The 

equilibrium contact angle is taken at the state of thermodynamic equilibrium and reflects 

the strength of molecular interaction at the solid, liquid, vapor interfaces. Molecules at the 

interface between two phases possess different potential energies to those inside the bulk 

material. The presence of different neighbors to the bulk forces a change in coordination 

number, resulting in surface tension and the difference in the interfacial energy γ. 

The interfacial energy is given by the change in free energy upon creation of a new 

surface area: 

    
  

  
 
  

                (2.3) 

With the minimization of the free energy G per surface area A in equilibrium: 

                            (2.4) 
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The change in interfacial area by the droplet is given by: 

                                              (2.5) 

With this the free energy is obtained by: 

                                           (2.6) 

In the equilibrium state the contact angle is then only dependent on the interfacial 

energies given by the Young Equation: 

                                  (2.7) 

Where     is the interfacial energy between the solid and the vapor,     the interfacial 

energy between the solid and the liquid and     is the interfacial energy between the 

liquid and the vapor. As described in Figure 2.2 θC is the equilibrium contact angle 

(Tadmor 2004).  

 

Figure 2.2: Schematic representation of the solid-liquid (SL), solid-vapor (SV) and 

liquid-vapor (LV) interfaces formed by a droplet on a surface. 

The equilibrium contact angle is subject to hysteresis in form an advancing and receding 

contact angle, which describes the maximum and minimum contact angle respectively. 

Removal or addition of a small amount of liquid to an already deposited droplet causes a 

de- or increase in the contact angle, while the contact line remains pinned. From this 

observation the advancing (θA) and receding (θR) contact angles are derived and the 

hysteresis as θA  θR. For a perfectly flat surface the equilibrium contact angle θC can be 

calculated by:  

          
              

     
               (2.8) 
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With     
      

               
 
   

 ,     
      

               
 
   

          (2.9) 

Where θA  and θR are the advancing and receding contact angles (Tadmor 2004, 

Chibowski 2008). 

The contact angle is also influenced by the interfacial roughness of a surface. It is found 

that the wettability expressed by the surface is enhanced with added roughness if the 

surface is homogeneously covered by the liquid. As described by the Wenzel equation a 

hydrophobic surface would become more hydrophobic with additional roughness: 

                                      (2.10) 

Where θm is the measured contact angle, θC is the contact angle and r is the roughness 

ratio between the actual and projected solid surface area, describing the additional surface 

area contributed by the texture. Influences on the surface wetting were fond for micro as 

well as nano scale roughness (Wenzel 1936). 

If the liquid does not penetrate into the grooves of a rough surface the measured contact 

angle is described by the Cassie-Baxter equation, giving the contact angle for a 

heterogeneous surface with two different materials (Cassie; Baxter 1944): 

                                               (2.11) 

With x1 and x2 as the area fraction of the two different materials. If the second material is 

air the equation can be written as: 

                                           (2.12)  

Surfaces with contact angles below 90° are considered hydrophilic, whereas for 

hydrophobic surfaces contact angles over 90° are observed. 

Protocols  

Static contact angle measurements were performed in this study on an Optrel Multiskop 

goniometer (Sinzing, Germany) equipped with a back light and a CCD camera to capture 

the profile of the water droplet. The water droplet volume deposited on the surface was 2 

μl at room temperature. Contact angles determined in this fashion are close to the 

advancing contact angles. 
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2.2.4 X-ray Photoelectron Spectroscopy (XPS)  

Principle of the Technique  

X-ray Photoelectron Spectroscopy (XPS) is a quantitative surface analysis technique 

which gives access to the elemental composition of the surface as well as the bonding 

states of the elements (Vickerman and Gimore 2009). High energy X-ray beams, most 

commonly Mg Kα (1253.6 eV) und Al Kα (1486.6 eV), are used to irradiate the sample 

surface. Energy transfer from the X-ray photon to an electron of surface atoms causes 

photoemission of electrons with a defined kinetic energy Ekin that is characteristic for a 

specific element:  

                                      (2.13) 

Where Ekin is the kinetic energy of the photoelectrons, hν is the X-ray photon energy, Φ is 

the work function depending on the sample and spectrometer setup and EB is the binding 

energy of the corresponding core level electrons. 

The electrons can be emitted from the core level as well as occupied valence band states. 

In Figure 2.3 the electron emission processes are presented. 

 

Figure 2.3: Scheme of the photoelectron emission processes. 

The first process is the photoemission of a core level (1s) electron with the energy Ekin – 

E1s, caused by the energy transfer from the X-ray photon. The hole left is then filled by an 

electron from a higher energy level (2s). This process is called rearrangement. Excess 

energy E1s – E2s left from this process allows for either emission of an X-ray photon with 

lower energy than the source beam (X-Ray fluorescence) or the emission of an electron 

from an energetically higher level (e.g. 2p) (Auger electrons). The characteristic kinetic 

energy of such Auger electrons is: 
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                                                          (2.14) 

Where Einter(2s2p) is the interaction energy between the 2s and 2p energy levels and  ER is 

the relaxation energy of the intra- and inter-atomic processes. 

The binding energy of an element can differ depending on its chemical environment. This 

so called chemical shift depends on the degree of electron bond polarization between 

nearest neighbor atoms, since the core binding energies are determined by electrostatic 

interaction between core electrons and nucleus, and by the electrostatic shielding of the 

nuclear charge from all other electrons in the atom.  

For an accurate detection of the emitted photoelectrons the XPS must be operated under 

ultra high vacuum (UHV) conditions (p < 10
-9 

mbar < 10
-7

 mbar) since the electron 

counting detectors are usually one meter away from the sample. The intensity of 

photoelectrons detected from the surface of the sample is much stronger than from atoms 

below the surface, since emitted photoelectrons can undergo inelastic collisions, 

recombination and excitation of the sample. This causes an exponential attenuation of the 

photoelectron intensity according to Lambert-Beer law: 

      
                                         (2.15) 

Where I0 is the photoelectron intensity emitted at depth d, IS is the intensity at the surface 

and λ is the attenuation length. 

Since the recorded signal is strongly surface weighted, this can be exploited to estimate 

the depth of the measured element in layered samples. The sampling depth of the XPS is 

not dependent of the X-ray penetration depth (1-10 µm) but rather on the inelastic mean 

free path of an electron λe in a solid. Only electrons that can leave the surface without 

energy loss contribute to a sharp peak of the element specific kinetic energy. Electrons 

that lost energy before escaping the surface contribute to the background intensity. 

Characteristic peaks seen in XPS spectra correspond to the electron configuration of the 

electrons in the element. The intensity is related to the amount of the specific element in 

the volume sampled by the X-ray beam. Atomic percentages can be gathered from 

normalized intensities of each detected element, excluding Hydrogen and Helium, which 

cannot be detected. 
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Protocols  

XPS measurements were carried out under UHV conditions (5 × 10
–9

 mbar) with a 

MAX200 spectrometer (Leybold-Heraeus, Cologne, Germany) equipped with an Mg Kα 

X-ray source (1253.6 eV, 200 W) and a hemispherical analyzer. The recorded spectra on 

functionalized GaN substrates were corrected for the spectrometer transmission. 

2.2.5 High-Energy Specular X-ray Reflectivity (XRR) 

Principle of the Technique  

X-rays have become an important tool to probe the structure of matter since the discovery 

by Röntgen in 1895 (Röntgen 1898). With the total reflection of X-rays on layered, solid 

substrates with smooth surfaces, reported by Compton in 1923 (Compton 1923), X-Ray 

Reflectivity becomes a highly surface sensitive technique. By measuring the reflected 

intensity of a monochromatic X-ray beam in dependence of the angle of incidence αi the 

layer thickness, roughness and electron density of single or multilayered samples can be 

determined (Tolan 1999). Since the index of refraction n of materials is below unity for 

X-rays, total external reflection is observed at sufficiently low incidence angles. At higher 

angles of incidence the refection intensity decays steeply, enabling the high surface 

sensitivity of the technique. While the dependency of the penetration depth on the angle 

of incidence XRR allows for the investigation of thin films in the range of Ångstroms up 

to several nanometers, such as polymer films (Russell 1990), biological films and 

supported membranes (Salditt 2002, Rosetti 2015). The complex refractive index n in the 

X-ray region is given by: 

                               (2.16) 

Where the real part δ describes the interaction strength between material and the X-ray 

beam and is related to the electron density ρe and in turn to the scattering length density 

(SLD). 

  
  

  
     

  

  
                         (2.17) 

With re being the classical electron radius and λ the X-ray wavelength. The imaginary 

part β is related the X-ray attenuation coefficient 1/μ (Tolan 1999, Als-Nielsen 2011): 

  
  

  
                    (2.18) 
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δ values are typically in the range of 10
–5

 - 10
–6

 and for most biological matter β is in the 

range of 10
–8

. 

Figure 2.4 shows the reflection and refraction of an X-ray beam occurring between two 

media with the refractive indices n1 and n2. 

 

Figure 2.4: Reflection and refraction of an incident plane wave at a solid, smooth 

surface. 

Since n < 1 for X-rays in most materials, X-rays are refracted away from the surface 

normal at the air-solid or air water interface.  The relationship between angle of incidence 

αi and the angle of refraction αr is given by Snell’s law: 

                                       (2.19) 

Where the critical angle αc where only total external reflection is observed for a single 

vacuum/medium interface is defined as: 

                                         (2.20) 

For the vacuum-silicon interface αc = 0.22° at 1.54 Å and for the vacuum-GaN interface 

αc = 0.67°. Above the critical angle, refraction is occurring as well, leading to an 

exponential decrease in reflected intensity R. In most cases, reflectivity profiles are given 

as a function of the reflection wave vector transfer qz. 

   
  

 
                            (2.21) 

The reflection (r) and transmission (tr) of an incident beam (i) on a smooth surface is 

described by the Fresnel equations (Born 1999).  By using Snells law and the Maxwell 

equations for the propagation of an electromagnetic wave in matter the coefficient of 

reflection is given by: 
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                        (2.22) 

At small incident angle αi and in the absence of absorption, the Equation 2.22 can be 

written as: 

      
      

    
 

      
    

 
                       (2.23) 

The reflectivity R corresponds to the square of the reflection coefficient. With the 

absorption of the X-ray beam by the material taken into account the Fresnel reflectivity 

RF is given by: 

           
      

    
     

      
    

     
 

 

   
      

    
        

 
 

      
    

        

 
 

  

 

                     (2.24) 

The intensity profile of to the Fresnel reflectivity shows three distinct regions. A plateau 

region at 0 < qz < qc where total external reflection of the incident X-ray beam is 

occurring. At qz ≥ qc, where the incidence angle becomes greater than the critical angle, 

the reflected intensity decays very rapidly with higher fractions of transmission and 

refraction  occurring. This leads to an asymptotic dependence of RF at qz > 3qc. In this 

regime the reflectivity decreases with 1/qz
4
 and can be written as: 

       
  

 

    
                       (2.25) 

The transmitted intensity in the Fresnel reflection is: 

        
   

      
    

     
 

 

   
   

      
    

        

 
 

  

 

                  (2.26) 

With the Fresnel coefficient of the transmission as: 

       
     

           
                       (2.27) 
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These equations are only valid for the reflection on a single smooth layer. To investigate 

systems with several layers of differing electron densities the mathematical description of 

the reflection is more complex (Als-Nielsen 2011). The kinematical theory allows the 

calculation of the reflection on multilayer systems for an arbitrary number of 

homogeneous layers with sharp interfaces, while it assumes that multiple reflections and 

refractions are negligible small. The reflectivity is calculated for one layer and added up 

to the whole multilayer system and depends on the reflectivity for one layer, the average 

absorption per layer and the layer thickness. This approximation is only valid at higher 

angles (qz > 3qc) and for smooth surfaces where the reflection of the X-ray beam is purely 

specular (in XZ plane). A different approach using the Born approximation to describe 

the ratio of the reflected intensity and the Fresnel reflectivity as a function of the absolute 

square of the Fourier transform of the normalized gradient of the electron density across 

the interface 

    

     
    

  

  
       

 

  
 
 

                        (2.28) 

also is only valid for high q ranges and fails to describe the reflectivity near the critical 

angle (Als-Nielsen 2011). 

To improve the description of the intensity profile in small qz regions Parratt introduced a 

recursive method using the ratio Xj of the amplitude of the transmitted Tj and reflected X-

rays Rj (Parratt 1954). 

   
  

  
          

            
             

             
                        (2.29)  

With the Fresnel coefficient given by: 

       
             

             
                        (2.30) 

The specular reflected intensity R is then obtained by: 

      
 
                    (2.31) 

With this method multiple reflections at different interfaces and refraction effects are 

taken into account. The Parratt formalism is the most widely used method to model data 

for layer structures.  
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The described models assume smooth interfaces. Real interfaces always have a certain 

roughness causing a steeper decrease of the reflectivity profile and loss of information 

due to additional diffusive off-specular reflectivity. The Parratt formalism can be 

extended to account for the interfacial roughness by introducing an idealized uncorrelated 

roughness σ, if the relative roughness is small compared to the layer thickness.  

The roughness here is used as the mean standard deviation of the layer thickness   

     . With this the extended Fresnel coefficient is then given by: 

           
 
                   (2.32) 

Some information on the thickness, electron density and roughness of the sample can 

directly be determined from the shape of the reflectivity profiles.  Figure 2.5 shows the 

simulated reflectivity profiles for different film thicknesses. With rising film thickness 

more pronounced minima can be observed in the profiles (green curve). These so-called 

Kiessing fringes are oscillations from destructive and constructive interference of the 

reflected beams from two interfaces. 

 

Figure 2.5: simulated reflectivity profiles for different top layer thickness. 

The thickness d can be estimated from the distance between the minima Δqz with: 

                                  (2.33)  

The minimum thickness that can be resolved by XRR is determined by the maximum qz, 

which is dependent on the flux and focus of the X-ray beam and the brilliancy of the 

sample. Additionally the difference in electron density between the film and the substrate 
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is reflected is the amplitude of the oscillations and the roughness determines the steepness 

of the intensity decay as given by equation 2.29. To obtain quantitative results from the 

fitting of the reflectivity data a model representing the experimental system is assumed. 

For multilayer systems a slab of homogenous electron density ρi, thickness di and 

roughness σi < di is used for each assumed layer. 

Protocols  

XRR measurements were performed using a Bruker D8 Diffractometer (Karlsruhe, 

Germany). Mo Kα radiation (E = 17.48 keV, λ = 0.0709 nm) with a beam size of 200 µm 

was used for all measurements. Samples measured in aqueous buffer were placed in a 

Teflon chamber with Kapton windows. The momentum transfer perpendicular to the 

interface is given as a function of the angle of incidence αi;    
  

λ
     . After the 

subtraction of background and the beam footprint correction, the specular reflectivity was 

fitted using the Parratt formalism (Parratt 1954, Tolan 1999) implemented in the Motofit 

software package with a genetic minimization algorithm (Nelson 2006).  

2.2.6 Fluorescence Recovery after Photobleaching (FRAP) 

Principle of the Technique  

FRAP is used to measure the lateral mobility of fluorescent labeled particles (Axelrod et 

al. 1976). It can be employed to determine the Diffusion coefficient D and mobile 

fraction R in a lipid mono- or bilayer. In order to do this, lipid vesicles of a matrix lipid, 

mixed with a small molar fraction of a dye-labeled lipid were deposited on the substrate 

(Merkel et al. 1989). A defined area of the substrate is photobleached with a focused, 

high intensity laser pulse.  The recovery of the fluorescence intensity in the bleached area 

due to lateral diffusion of unbleached fluorophores from the surrounding membrane is 

then observed (Merkel et al. 1989, Sigl et al. 1997). This recovery is described by 

equation 2.31 (Soumpasis 1983):  

                        
   

      
  

 
     

  

 
                      (2.34) 

where F(∞) is the equilibrium intensity at the time point t,  F0 is the initial fluorescence 

intensity before bleaching, F(0) is the intensity in the bleach spot at time t = 0 after 

bleaching,  I0 and I1 are modified Bessel functions of the zero and first order, respectively 

and τ is the characteristic time constant. With the assumption of a Gaussian profile of the 

bleaching beam the lateral diffusion coefficient D can be determined by: 
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                              (2.35)  

With D as the diffusion coefficient, τ as the characteristic time constant and r as the 

radius of the bleached area at t = 0.  

The relative recovery R of the fluorescence, which can be related to the fraction of mobile 

fluorophores can be given by: 

   
         

       
                            (2.36) 

In this study, through-the-objective total internal reflection fluorescence (TIRF) 

microscopy was used for the FRAP measurements.  Using a high numerical aperture (NA) 

objective, a laser beam with the excitation wavelength of the fluorophore is shot through 

the front lens of the objective with a shallow, but greater angle than the angle of total 

reflection at the sample interface. From the total reflection at the interface a thin (~200 

nm) evanescent electromagnetic field, propagating in z-direction into the sample medium, 

is created. Only in this defined region the excitation of fluorescent labeled molecules and 

structures can take place, allowing for the study of samples near the surface without the 

extra-focal blur of usual fluorescence microscopes. The minimum necessary NA of the 

objective depends on the maximum angle of light exiting the objective and is given by: 

                                   (2.37) 

To achieve total reflection at the interface between one medium (n1) and another (n2), one 

requires that n1 > n2 and a greater incidence angle than the critical angle of total reflection 

αi > αc. With this, 

                                (2.38)                

is given and the required NA can be determined as NA ≥ n2. For samples suspended in 

aqueous medium, an objective with NA > 1.33 is required for TIRF imaging. 

Protocols  

FRAP measurements were carried out on a Nikon Ti2 inverted microscope with H-TIRF 

module (Nikon Plan Apo VC 60× NA 1.4 oil immersion objective, Hamamatsu C9100–

02 EMCCD camera) at the Nikon Imaging Center, Heidelberg University. The bleach 

spot size was r = 5.75 μm with an illumination wavelength of λ = 561 nm. The data were 

evaluated according to the procedure described by Soumpasis (Soumpasis 1983). Dyes of 

Texas-Red-DHPE with a molar fraction of 0.2% were used for cellulose and C8-DNBDT 
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supported membranes and DS-Red monomers were used to determine protein diffusion 

on C8-DNBDT surfaces. 

All other fluorescence images were taken on Axio Observer Z1 microscope (Zeiss, 

Oberkochen, Germany) equipped with an oil immersion objective lens (NA 1.25, 63 ×). A 

monochromatic light from a high-pressure metal halide lamp (λ = 546 nm) was selected 

with a band-pass filter for the observation of stained membranes. 

2.2.7 Impedance Spectroscopy (IS)  

Principle of the Technique  

Impedance spectroscopy (IS) is an important technique especially in interfacial 

electrochemistry and material science for the observation of electrochemical processes, 

like charge transfer processes, dynamics of ionic transport or surface charges (MacDonald 

and Kenan 1987) at complex electrode/electrolyte interfaces. The IS method provides a 

fixed measurement setup and the possible automation of the measurement process and as 

a noninvasive and label-free technique enables the investigation of biophysical systems 

under its natural environment. Thus IS has gained a growing interest in the field of 

Biophysics and Biosensing. Systems involving functional proteins, such as ions channels 

or specific adsorption on lipid membranes which are deposited on solid supported planar 

electrodes (Stelzle, Weissmuller 1993, Sackmann 1996, Gritsch, Nollert 1998, Sackmann 

and Tanaka 2000, Tanaka and Sackmann 2005, Frenkel 2014) or on field effect 

transistors (Rentschler and Fromherz 1998) were investigated by the determination of 

their electrochemical properties. For such biological systems IS allows an accurate insight 

into material properties, such as dielectric constants, thickness and diffusion constants, as 

well as mass transport properties, including the rate of chemical reactions, microstructure 

and influences on the conductance from the composition of the liquids, ions, membranes 

or solids involved. 

By recording the current response to an applied sinusoidal voltage the frequency 

dependent impedance Z(ω) of the system is gained. The analysis of this impedance 

employs theoretical circuit models composed of equivalent circuit components, which are 

associated to specific chemical or physical processes occurring at the electrode interface. 

Using a non-linear curve fitting algorithm, the impedance Z(ω) values are fitted with the 

equivalent circuit models to simulate the impedance spectra equivalent to the 

experimental impedance spectra, allowing one to understand the physical meaning of 

each component used (MacDonald and Kenan 1987).  
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The complex impedance Z(ω), where ω is the angular frequency, can be interpreted as the 

frequency dependent resistance to an AC voltage. It is defined as the ratio of the Fourier-

transform Û(ω) of the applied AC voltage U(t), and the Fourier-transform Î(ω) of the 

current response I(t). 

     
    

    
                          (2.39)   

In cartesian or polar coordinates the complex impedance Z(ω) can be given as 

                                                         (2.40) 

Where i =√−1 and φ is the phase shift between the applied AC potential and the current 

response. Impedance spectra Z(ω) can be obtained in either the time domain or in the 

frequency domain. In the time domain measurement, also called spectral analysis, the AC 

perturbing signal is composed of multiple frequencies that are all applied simultaneously 

(Popkirov and Schindler 1992, Popkirov and Schindler 1993). This technique provides an 

enhanced time resolution allowing for the investigation of highly dynamic processes, like 

the opening of membrane ion channels (Wiegand, Sackmann 2000). In the frequency 

domain used in this study sinusoidal potentials with given frequencies 

                                               (2.41) 

were applied, while the current response 

                                              (2.42) 

was simultaneously recorded at the same frequency with a Lock-in amplifier. The 

impedance spectrum is obtained by a sequential frequency sweep for each separate 

frequency over the desired frequency range. A high enough perturbation amplitude U0(ω) 

has to be considered  to overcome thermodynamic fluctuations, but it should otherwise be 

small to keep the system in a linear response regime. The resulting impedance spectra 

were plotted either in polar representation (Bode Plot) or in Cartesian coordinates 

(Nyquist Plot). 
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Equivalent Circuits 

The physical and electrochemical properties and processes occurring in the studied 

system are directly associated to particular circuit elements, that compound the idealized 

electric circuit model used for the analysis. The connection of different circuit elements to 

an equivalent circuit model follows the first and second Kirchoff law (MacDonald and 

Kenan 1987). The Impedance Z(ω) of a serial connection of i circuit elements is the sum 

of the separate impedances of each element Zi(ω) 

                                        (2.43) 

while a parallel connection results in the reciprocal sum of each element. 

 

 
  

 

  
                           (2.44) 

The equivalent circuit model usually cannot resolve all processes on the surface and 

becomes a simplification of the real system. Since the designed circuit models become 

unambiguous if a large amount of circuit elements are used, only the simplest circuits 

give a unique description of the experimental data (MacDonald and Kenan 1987). Ideal 

circuit elements, such as Resistance R and Capacitance C, are often used to make up the 

equivalent circuit. The Resistance R describes the ohmic behaviour of the electrode 

interface and includes all events that occur in phase (Δφ = 0) with the applied AC voltage 

U(ω) and are independent from the frequency. Thus the resistance contributions to the 

impedance do not scale with the frequency. The AC-impedance response for the 

resistance is: 

                                 (2.45) 

Ideal capacitors react to external potentials with charge redistribution. This causes a 

capacitive current response ic(ω) with a phase shift of −90° in regards to the applied AC 

voltage U(ω). The resulting impedance response of the capacitor is: 

   
 

   
                        (2.46) 
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From this equation one can see, that the capacitor impedance has a strong dependence on 

the AC frequency, which grows with the power of -1. The capacitance of a planar 

capacitor is given by: 

  
  

  
 

   

 
                            (2.47) 

where ε0 is the dielectric constant in vacuum, ε the relative dielectric constant of the 

medium,  A the active electrode area and d the distance between the capacitor ‘plates’. 

This planar capacitor model can be used to extract the thickness for systems like organic 

thin films, membranes or the Helmholz layer on the electrode surface, since their discrete 

thickness defines the interplate distance of the capacitance. 

The current response of the semiconductor/electrolyte system is a sum of faradaic 

currents if, occurring across the interface and capacative currents ic, occurring from 

charging processes at the semiconductor or electrode interface. Faradaic currents are 

generated in processes that involve charge transfer between ions in the electrolyte and the 

semiconductor, but processes such as adsorption and ion diffusion can also contribute to 

this. As shown in Figure 2.6a these currents occur in parallel in the semiconductor, which 

leads to a parallel connection of their corresponding impedance elements, the total 

interface capacitance Cp (ic) and the resistive element Zf (if) occurring from the faradaic 

currents, as well.  

 

Figure 2.6: (a) Simplified equivalent circuit model of the electrolyte/electrode interface 

and the occurrence of faradaic and capacitive currents. R0 is the electrolyte ohmic 

resistance, Cp the total interface capacitance resulting from capacitive currents and Zf is 

the resistive element attributed to the faradaic currents. (b) Schematic impedance 

spectrum in Nyquist representation of the simplified equivalent circuit. 

For biophysical systems deviations from the ideal behavior can be caused from structural 

inhomogeneities, finite permeability and diffusive processes of the system. To account for 

these contributions distributed elements, such as the Warburg element W and the Constant 
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Phase Element CPE are introduced. The Warburg element arises from non-localized 

processes at the electrode surface. It was first introduced to account for the electron 

transfer from the bulk electrolyte to the semiconductor (Randles 1947). Later it was 

demonstrated that the Warburg element could also be used to quantify the diffusion of 

metals into electrodes (Ho, Raistrick et al. 1980) and ions across thin layers (Finklea, 

Snider et al. 1993).For diffusively controlled charge transfer processes, the real and 

imaginary part of the total impedance Z(ω) are equal –                   and the 

phase shift ϕ becomes −45°. The Warburg impedance is then defined as (MacDonald and 

Kenan 1987): 

             
 

  
                             (2.48) 

From the Warburg parameter σw the diffusion constant D of the ions across the layer can 

be determined by: 

   
   

        
 

 

  
                         (2.49) 

with the active electrode area A, the diffusion constant D, the surface ion density ρ. The 

constants R, T, n, and F have their usual meaning as gas constant, absolute temperature, 

the ion charge of the electrolyte, and Faraday constant respectively. The frequency 

dependency of the total impedance grows with the power of −0.5 (MacDonald and Kenan 

1987), as shown by equation 2.45. Thus with higher frequencies the influence of the 

Warburg element and in turn the diffusion processes to the total impedance is diminished. 

In the Nyquist representation of the impedance spectra of the semiconductor/electrolyte 

system (Figure 2.6b) two regions can be distinguished. In the first region, at high AC 

frequencies, the spectrum is dominated by kinetically controlled faradaic processes that 

can be represented by an ohmic resistance R. In the second, low frequency region 

diffusion controlled processes becomes dominant. There the rate of ion adsorption and 

diffusion to the electrode surface is slower than the rate of charge transfer, limiting the 

speed of the charge transfer (Sluyters and Oomen 1960). These diffusion controlled 

faradaic processes are modeled with a Warburg resistance. For non-ideal systems both 

kinetic and diffusive controlled processes coexist and the resistive element Zf is then 

compounded by a serial connection of an Ohmic resistance and a Warburg resistance. 

The Constant Phase Element is an empirical impedance element that takes the frequency 

and non-linear dependencies from inhomogeneities (MacDonald 1994) or surface 

roughness appearing in real systems into account (de Levie 1989, Lindholm-Sethson 

1996).    
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The impedance response of the CPE is given by:  

                                  (2.50) 

In ideal systems the CPE corresponds to an ideal resistor when the frequency exponent α 

= 0 and K = R. When α = 1 and K = 1/C the CPE acts as an ideal capacitance and for α = 

0.5 as an ideal Warburg impedance. Inhomogeneities from defects or roughness cause 

deviations from these ideal values. Although the use of a CPE improves the fit quality, 

the analysis is only of a qualitative manner, since the CPE is just an empirical element. In 

this work impedance spectra were interpreted with the electrochemical equivalent circuit 

models presented in Figure 2.7a. 

 

Figure 2.7: (a) Equivalent circuits used for impedance analysis. Model 1 depicts the 

general equivalent circuit for the electrolyte-semiconductor interface. R0 represents the 

resistance of electrolyte and ohmic contacts, RP the semiconductor/electrolyte interface 

resistance, CGSC is the capacitance of the Gouy-Chapman-Stern layer, CSS and RSS are the 

capacitance and resistance of surface states and CSC the interface capacitance, 

represented by the space charge capacitance of semiconductor. Model 2 is a simplified 

equivalent circuit used for the analysis of untreated semiconductor samples. Model 3 

includes an additional RC circuit for coated semiconductors including the peptide or 

membrane capacitance Cpep or  Cm the Warburg impedance W and phase transfer 

resistance RPT. (b) Three electrode flow chamber used for electrochemical analysis with 
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Pt counter electrode, Ag/AgCl reference electrode and top and side view of the bulk GaN 

working electrode. 

A general representation for the impedance response of the semiconductor/electrolyte 

interface is described by Allongue and Horowitz and shown in the equivalent circuit 

Model 1 (Horowitz, Allongue 1984, Allongue 1985). This model includes impedance 

representations for the resistance of the electrolyte and ohmic contacts R0, the 

semiconductor interface resistance Rp and the interface capacitance, as well as resistance 

and capacitance contributions (RSS and CSS) arising from surface states and defects in the 

semiconductor. The interface capacitance Cp includes contributions from the capacitance 

of the Gouy-Chapman-Stern layer CGCS forming at the electrolyte/semiconductor interface 

and the space-charge capacitance CSC of the semiconductor interface (Bard 1980). The 

capacitance contribution of the Gouy-Chapman-Stern layer can further be separated into 

influences from the Helmholtz layer CH and diffuse ion layer Cdiff. These contributions 

usually can be omitted (Aldkofer 2001), since CH ≥ 140 µFcm
–2 

and Cdiff ≥ 0.9 Fcm
–2

 

(Bard 1980) the semiconductor interface is not sensitive enough to changes in these 

parameters. For capacitances connected in series, the smaller capacitance is dominant and 

has a stronger influence on the total impedance. Additionally the contributions from 

surface states, arising from the break in lattice periodicity at the semiconductor surface, 

can be neglected when the measurement is performed at bias potentials far away from the 

flat band condition of the semiconductor (Schmuki 1995). There the ratio CSS/CSC < 0.1 

and the quantitative determination of CSS is not possible (Horowitz, Allongue 1984, 

Allongue 1985). Using these simplifications the semiconductor/electrolyte interface can 

be described with Model 2 (Steinhoff, Purrucker 2003), where the semiconductor 

interface capacitance is mainly dependent on its space-charge capacitance CSC. With 

Model 3 deposited organic layers or biological membranes on the semiconductor are 

modeled by an additional Randles cell that includes phase transfer resistance RPT, 

Warburg element W and capacitance for the peptide layer or lipid membrane used in this 

work (Randles 1947, Schubert, Steinhoff 2009). 

Protocols 

Electrochemical measurements were carried out in an electrochemical flow chamber 

(Figure 2.7b) equipped with the functionalized GaN as working electrode, a Pt counter 

electrode, and a Ag/AgCl reference electrode (World Precision Instruments, Berlin, 

Germany). The GaN electrodes with an active area of 0.5 cm
2
 were contacted by four 

copper plates touching the front side corners of the substrate with four Ti (30 nm)/Au 

(100 nm) Ohmic contacts (Figure 2.6 b). The buffer was continuously pumped through 

the chamber with a flow rate of 1 ml/min by a peristaltic pump (Perimax, Spetec GmbH, 
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Erding, Germany) to avoid the formation of dielectric surface layers. The impedance 

spectra of GaN were measured at frequencies between 100 kHz and 15 mHz with 20 

frequencies per decade and with an AC voltage oscillation amplitude of 20 mV. The 

obtained impedance spectra were fitted using non-linear curve fitting algorithm 

(Macdonald and Kenan 1987). 

2.2.8 Cyclic Voltammetry 

Cyclic Voltammetry (CV) is an electrochemical technique providing information on the 

thermodynamics of redox processes and the kinetics of heterogeneous electron-transfer 

and redox reactions present in an analyte. CV is performed by cycling a linear voltage 

sweep between a fixed potential range (Figure 2.8a) and at a fixed rate and measuring the 

current response of the system. To induce the redox process a larger potential range than 

predicted by the Nernst equation (Equation 2.51) for the measured redox system is 

needed. 

     
  

  
     

  
                         (2.51)  

With the standard cell potential E
0
, universal gas constant R, temperature T, number of 

transferred electrons in the reaction z, Faraday constant F and the chemical activity a of 

the reactants. 

Usually CV is performed with a three electrode setup of reference, working and counter 

electrode (Figure 2.6b), where the potential and current of the working electrode, in this 

case the sample electrode, is measured against the reference electrode. The reference 

electrode is maintaining a constant potential in the meantime. (Bard 2000, Wang 2000) 
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Figure 2.8: (a) applied voltage profile in CV and (b) the resulting current response from 

one sweep cycle.  

The potential sweep, depicted in Figure 2.8a, first starts with a negative potential V1 (a) 

and is linearly scaled to the so called switching potential V2 (d), that is sufficient to 

initiate the redox process in the analyte. Then the reverse scan is performed from V2 (d) 

to V1 (g). In the reverse scan the potential is brought back to the equilibrium position, 

gradually converting electrolysis product of the forward scan back to the original reactant. 

The current flow now is opposite to the forward sweep from the solution species back to 

the working electrode. The resulting current signal of such a potential sweep is depicted 

in Figure 2.8b. showing a typical reduction peak occurring in the region from (a) to (d) 

where the potential scans positively and an oxidation peak occurring from (d) to (g) 

where the potential scans negatively. The resulting current in the forward scan (a-d) is 

called cathodic current (ic), with the corresponding cathodic peak potential (Epc) occurring 

at (c), when the analyte at the working electrode surface has been reduced completely. 

The reverse scan (d-g) causes an anodic current (ia) from oxidation until the anodic peak 

potential (Epa) is reached with complete oxidation at (f). The characteristic CV peaks 

reflect the formation of the diffusion layer near the electrode surface. The continuous 

change in the surface concentration at the working electrode induces an expansion of the 

diffusion layer thickness. Thus, the peak current corresponds to a purely diffusion 

controlled reaction, while the drop in current after the peak shows a dependence of t
–1/2

, 

indifferent to the applied potential. With the use of microelectrodes the shape of the 
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voltammogramm is sinusoidal, since the mass transport process dominated by radial, 

instead of linear diffusion. 

Reversible Systems 

The CV of a reversible electrochemical reaction with fast reaction kinetics is defined by 

several parameters. These include the two peak currents and potentials, which provide the 

basis for analyzing the CV response developed by Nicholson and Shain (Nicholson 

1965). The peak current given for a reversible redox couple at 25°C, is given by the 

Randles-Sevcik equation: 

                                                  (2.52) 

with the anodic or cathodic peak current ip, the number of electrons n, the electrode area A 

in cm
2
, the concentration c in mol/cm

3
, the diffusion coefficient D in cm

2
/s, and the scan 

rate v (in V/s). According to this equation the peak current is increases with the square 

root of the scan rate as shown in Figure 2.9a. With varying scan rates the formation 

diffusion layer above the electrode is different.  

For low scan rates the diffusion layer reaches further from the electrode, while the flux to 

the electrode is smaller than at faster scan rates. Since the current is proportional to the 

flux towards the electrode, this causes a decrease in current compared to faster scan rates. 

Further, the scan rate can be determined from the slope of the anodic and cathodic current 

peaks.  
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Figure 2.9: (a) scan rate dependent change in CV spectra for a reversible redox system 

and (b) change in spectra depending on electron transfer rate for irreversible systems. 

Using the formal potential E
0
 from Nernst Equation of the measured redox system, the 

position of the peak potentials Ep can be determined by:  

                                       (2.53) 

This equation shows that the formal potential for a reversible redox system is centered 

between Epa and Epc, with the separation between the peak potentials given by: 

                                          (2.54) 

With this the number of electrons n transferred in the reaction can be calculated from the 

peak separation. The peak separation can also be used to confirm Nernstian behavior of 

the redox process, where both the cathodic and anodic peak potentials are independent of 

the scan rate.  

A further criteria for reversible systems is the unity of anodic-to-cathodic peak current 

ratio (ipa/ipc =1). This ratio is strongly influenced by reactions coupled to the redox 

process, such as instability of the redox products or irreversible reactions. The magnitudes 

of the current peaks are determined by extrapolation of the preceding baseline current. 
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Irreversible and Quasi-reversible Systems 

The above conditions only apply when the electron transfer rate in the reaction is high. In 

case this transfer process is slow in relation to the scan rate the system is not reversible 

anymore and is referred to as quasi-reversible or irreversible. Figure 2.9b shows 

voltammogramms for different oxidation and reduction rate constants. In case the 

oxidation and reduction rate constants are still fast compared to the scan rate (black 

curve) the voltammogramm is similar to that of a reversible system. As the rate constants 

decrease a shift towards more reductive potentials is observed. The applied voltage in this 

case does not generate sufficient concentration of the redox reaction product predicted by 

the Nernst equation at the electrode surface. Due to the slow reaction kinetics the 

equilibrium at the electrode surface cannot be rapidly established in comparison to the 

voltage scan rate. In these cases the peak separation is not constant but varies with the 

scan rate, since the current takes more time to respond to the applied voltage than in the 

reversible case, while the change in the peak current is no longer proportional to the 

square root of the scan rate. For irreversible processes the current peaks are reduced in 

magnitude with a larger peak separation. The shift of the peak potential for completely 

irreversible systems is defined by:  

       
  

    
          

  

 
 
 

     
    

  
 
   

                     (2.55) 

where α is the transfer coefficient, na is the number of electrons involved in the charge-

transfer step and k
0
 the electron transfer rate. From this it is apparent that Ep occurs at 

higher potentials than E
0
, with the overpotential related to k

0
 and α. The peak potential 

will differ by 48/αn mV, increasing the peak separation proportionally as αn decreases. 

From the shift in peak position it is possible to determine the electron transfer rate 

constants. 

The peak current of an irreversible process is then given by: 

                                                      (2.56)  

Where n is the number of electrons transferred in the reduction, A is the working 

electrode surface area in cm
2
, D is the diffusion coefficient in cm

2
/s, v is the scan rate in 

V/s, and c is the bulk molar concentration in mol/cm
3
. The decrease in pear current 

magnitude depends on α. When α = 0.5, the irreversible current peak is about 80 % of the 

peak in the reversible case. In quasi-reversible systems, when 10
–1

 > k° > 10
–5

 cm/s, the 

current is dependent upon the charge transfer at the electrode as well as the mass 
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transport. The shape of The CV is then determined by the ratio of     
     

  
    , with an 

increasingly reversible like behavior as the ratio increases.  

Nonfaradaic current 

Another current contribution to the CV spectra occurs from of a nonfaradaic current. In 

contrast to the faradaic current response from the charge transfer at the electrode, the 

nonfaradaic stems from the charging of the double layer capacitance at the electrode 

surfaces with changing potentials.  

The current response from the nonfaradaic process causes the hysteresis in CV spectra 

(Figure 2.10a), with the current proportional to the scan rate v: 

   
     

 
     

  

  
                             (2.57)  

with the double-layer capacitance Cdl in the equivalent circuit for the ion-double-layer 

(Figure 2.10b) described by: 

     
     

   
                          (2.58)  

where RF is the resistance of the Faradaic reaction, Rcell the resistance of the solution to 

the diffusion of ions, ddl the double-layer thickness and A the electrode area.  

 

Figure 2.10: (a) schematic faradaic current response and (b) equivalent circuit for the 

formation of the ion-double-layer at the electrode surfaces.  
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Protocols  

Voltammograms of ferrocene terminated peptides were measured in Na2SO4 (100 mM) in 

the potential range between – 1 V and + 1.5 V for 5 cycles and at various scan speeds of 

50-120 mV/s. A three electrode electrochemical flow chamber setup under static 

conditions, as described for impedance measurements was used. 

2.2.9 Chronoamperometry 

Chronoamperometry is an electrochemical technique investigating the current response 

over time to a potential step on the working electrode and is used to study kinetics of 

redox reactions and diffusion processes. Like in cyclic voltammetry a three electrode 

setup is used for this technique. At first a potential V0 where no faradaic process occurs is 

applied to the working electrode (Figure 2.11).  

 

Figure 2.11: (a) schematic representation of the potential step applied during the 

measurement and (b) the resulting faradaic and capacitive current response from the 

occurring electron transfer and double layer charging. 

At t = t0 the potential is stepped to a value V1 at which electron transfer at the electrode 

(e.g. the redox reaction of the analyte) can occur. This faradaic reaction at the electrode 

generates a so called faradaic current response that decays over time as the initial 

concentration of the analyte undergoes redox reaction and is only replenished by 

diffusion.  
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For diffusion controlled reaction this current decays with t
1/2

 and follows the Cottrell-

equation (Bard 2000): 

           
 

  
                          (2.59) 

where n is the number of electrons in the redox process, F is the Faraday constant, A is 

electrode area, c0 the bulk concentration of the electro active species, D is the diffusion 

coefficient of the redox species and t is time.  

The potential step applied between the working and reference electrode also causes a 

nonfaradaic response in the form of the reordering of the ion double layer near the 

electrode surface. This current generated from the charging of the double layer is purely 

capacitive and decays exponentially over         . This capacitive current is only 

significant during the initial period following the step and can usually be avoided by only 

taking the data of the last 90% of the step time into account.  

Protocols  

The electron transfer rate was measured by chronoamperometry, using the same buffer 

and experimental setup as for cyclic voltammetry. The bias potential was stepped from 

0 V to various over-potential of 0.2 – 1 V and the current response was monitored over 

time.  

2.2.10 Transistor I-V Characteristics 

The operation of the high-electron-mobility-transistor (HEMT) in general is similar field 

effect transistors (FET). But unlike other types of transistors conduction is determined by 

the formation of a two-dimensional electron gas (2DEG) close to the Hetero-junction 

between two semiconductor phases, allowing for a high mobility of the electrons. As a 

result an enhanced performance is achieved for HEMTs compared to standard junction or 

metal-oxide-semiconductor-FETs. For the AlGaN/GaN HEMT used in this study the 

2DEG is formed by the diffusion of electrons from the n-type AlGaN to the hetero-

junction (Figure 2.12b). The bias or gate potential (VG) applied to the transistor gate 

modulates the number of electrons in the 2DEG and thus the carrier mobility and 

transistor conductivity (Ambacher 2000). Such changes are observed by the 

determination of the transistor current-voltage (I-V) characteristics, by recording of its 

output and transfer curves. The Output characteristics are gained by recording the current 

at the drain electrode (IDS) versus the voltage applied between the drain and source 

contacts (VDS) at various VG. As shown in Figure 2.12c the characteristic output curves of 
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an n-channel transistor can be divided in different regions. When VG < Vth, with Vth as the 

threshold voltage, the transistor is in the subthreshold region. The threshold voltage is 

defined as the minimum gate voltage (VG) where a conducting path between the drain and 

source contacts in the transistor is established. Below Vth only a thermally induced 

subthreshold current is observed (Gray 2001). At higher VG conduction through the 

transistor is possible and the transistor is in “on-state”. It then performs in a linear or 

ohmic region, when VG > Vth and VDS < VG − Vth. The drain to source current (IDS) through 

the transistor is linearly proportional to the applied voltage VDS and is given by equation 

2.60 (Thuselt 2005), while the slope gives the output resistance. 

       
 

 
             

 

 
   

                        (2.60) 

At VDS ≥ (VG – Vth) the transistor reaches the saturation region and a near constant 

saturation-current IDS,sat is observed, given by (Thuselt 2005): 

            
 

  
                                           (2.61) 
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Figure 2.12: (a) Realistic top view of a processed GaN/AlGaN/GaN HEMT and (b) 

schematic side view. (c) Schematic Output- and (d) Transfer-characteristics of the 

GaN/AlGaN/GaN HEMT. 

The transfer curves (Figure 2.12d) are gained by measuring IDS versus the applied gate 

voltage (VG) at various drain-source-potentials (VDS). It is used to identify the region of 

linearity and to determine transconductance gm of the transistor the from its slope, which 

is dependent on the capacitance Cs of the AlGaN layer, the carrier mobility µ in the 

2DEG and geometric factors of the channel width w and length L of the transistor 

(Thuselt 2005). 

    
  

  
    

 

 
                               (2.62) 

Further extrapolation of the linear region to IDS = 0 allows the determination of the 

threshold voltage (Vth). With increasing VDS higher currents are obtained. According to 

ohmic law,        , the rise in VDS leads to a higher potential gradient dV and thus a 

larger current in the transfer curves. Larger VG on the other hand induce higher carrier 
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densities in the conducting channel or 2DEG, increasing the conductivity and at constant 

dV a larger current. 

Protocols  

The current-voltage (I-V) characteristics of GaN/AlGaN/GaN HEMT and organic C8-

DNBDT semiconductor chips before and after functionalization were measured in a self-

built liquid (Figure 2.13) cell by gating the chip in HEPES (10 mM) with NaCl (150 mM, 

pH 7.5) with a Ag/AgCl reference electrode. Two gold needles protected with o-rings 

from the surrounding electrolyte were used to contact the source and drain of the chip. A 

double source-meter (Keithley Instruments GmbH, Germering, Germany) setup was used 

to apply the drain-source voltage VDS and the gate potential VG. The measurement 

software was written in LabView (National Instruments, USA) and recorded the 

relationships between the drain-source current IDS and VG (transfer curves) were 

monitored at constant VDS of – 3 V and         – 30 V, and IDS versus VDS (output curves) 

was recorded for fixed VG between 5 V and – 30 V for organic C8-DNBDT 

semiconductor samples. Transfer curves for GaN HEMT samples were recorded at VG 

between – 3.5 V and 0.5 V at constant VDS of 0.3 V and output curves at fixed VG between 

– 3 V and 0.5 V. 

 

Figure 2.13: 3D-model of the electrochemical flow chamber (developed by Eickhoff 

group, Univertity Gießen/Bremen) used for the characterization of HEMT samples (WE). 

Gate potential is applied by an external potentiostat between Ag/AgCl reference electrode 
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(RE) positioned in the inflow reservoir and platinum counter electrode (CE) at the 

chamber outflow. 

2.2.11 Spin Coating 

Spin coating is a procedure used for the deposition of uniform thin films on flat substrates 

by the use of centrifugal force of a rotating plate. A small amount of a dissolved polymer 

or molecule that forms the film is deposited in the center of the substrate. High speed 

rotation of the substrate causes the coating solution to spread over the substrate (Figure 

2.14). 

 

Figure 2.14: Schematic representation of the spin coating process. Film formation is 

induced by the spreading of the coating solution by rotation of the substrate and 

subsequent evaporation of the solvent. 

Usually a volatile solvent is used that evaporates simultaneous as the film is deposited. 

The resulting film thickness is highly dependent on the coating material concentration and 

the angular speed of the rotating substrate as shown in equation 2.63. The final height h is 

defined as (Norrman 2005): 

   
         

             
   

                         (2.63) 

Where ϕ is the solvent evaporation rate, ϑ the kinematic viscosity of the solution, c the 

concentration of the deposited molecule or polymer and ω the spin rate. 

For a stable deposition of the film subsequent backing is soften required. Spin coating is 

used microfabrication, e.g. for functional oxide layers on single crystal or glass substrates, 

where films with nanoscale thicknesses are produced, and the deposition of photoresist 

layers in photolithography (Middleman 1993).  
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3. Fundamentals 

3.1 Properties of GaN/AlGaN/GaN High-Electron-Mobility-Transistors 

Gallium nitride is a group-III-nitride semiconductor that can exist in the stable wurtzite 

and thermodynamically metastable zinc blende crystal structure (Lei et al. 1991). As 

shown in Figure 3.1 the more common wurtzite crystal structure is described by the 

lattice parameters a0, c0 and the distance between a nitrogen and group-III atom (e.g. Ga) 

along the c-axis u0. Two crystal polarities can be discerned by the growth direction. A 

Ga-faced polarity is gained with the growth parallel to the c-direction and n-faced polarity 

in antiparallel direction. In this structure each group-III atom is surrounded by four 

nitrogen atoms forming a tetrahedron that is compressed in c-direction and elongated in 

the c-plane. With the difference in electronegativity between nitrogen and gallium (Δχ = 

1.23) (Allred 1961) four microscopic dipole moments pointing towards the 

electronegative nitrogen are formed. Since the wurtzite structure is not centrosymmetric 

these dipoles do not compensate each other, thus generating a macroscopic spontaneous 

polarization PSP of 0.029 Cm
–2 

in antiparallel direction to the c-axis (Bernadini 1997). 

 

Figure 3.1: (a) Schematic illustration of the structure and direction of the spontaneous 

polarization in the GaN wurtzite crystal. (b) Scheme of the band profile in the Ga-face 

GaN/ AlxGa1-xN/GaN heterostructure used in this work, indicated with the directions of 

spontaneous and piezoelectric polarization and the resulting induced sheet charge density 

σ of the AlxGa1-xN layer.  

In the AlxGa1-xN alloy used in the HEMT heterostructures both AlN and GaN exist in 

wurtzite structure. The spontaneous polarization in the AlN tetrahedron is 2.8 times 

higher (– 0.081 Cm
–2

) than for GaN (Bernadini 1997), since AlN possesses a higher 
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difference in electronegativity (Δχ = 1.43) (Allred 1961). Further increase in the 

spontaneous polarization of AlN in comparison to GaN is obtained from the increase of u0 

from 0.376 to 0.380 (Bernadini 1997) and the decrease in the ratio c0/a0. Assuming the 

polarization in the AlxGa1-xN phase scales linearly with the aluminum content x, its 

spontaneous polarization PSP(x) can then be given by (Ambacher 1999): 

                                     (3.1) 

At layer thicknesses d ≤ 30 nm and aluminum contents up to 0.38 the AlxGa1-xN layer is 

pseudomorph (Ambacher 2000), causing compressive strain along and tensile strain 

perpendicular to the growth direction from the difference in lattice parameters of AlN and 

GaN. This strain causes an additional piezoelectric polarization PPE of the AlxGa1-xN layer 

and thus this layer exerts a significantly larger total polarization P(x) than the strain less 

GaN layer. The total polarization P(x) is given by: 

                                   (3.2) 

Where PPE is dependent on the elastic constants C13(x), C33(x) and piezoelectric constants 

e31(x) and e33(x) of the wurtzite crystal lattice (Ambacher 1999): 

    
                

     
              

      

      
             (3.3) 

The sharp difference in polarization at the GaN/AlxGa1-xN heterojunction causes the 

formation of sheet charge densities σ(x) at the interfaces. 

                                   (3.4) 

As indicated in Figure 3.1b, the sheet charge density formed in the lower GaN/AlxGa1-xN   

interface for the Ga-faced heterostructure carries a positive sign (σ
+
(x)) and is negative 

(σ
–
(x)) at the upper interface closer to the surface. An electrical field     of about  

1 MVcm
–2

 (Ambacher 1999) in growth direction is generated between these sheet charge 

densities, that is significantly larger than for other group-III semiconductors (Chen 1995). 

The emergence of such a strong electric field induces the bending of the conduction and 

valence bands in the heterostructure as shown in Figure 3.1b, causing free electrons in the 

AlxGa1-xN layer to accumulate at the lower GaN/AlGaN interface to compensate for the 

positive surface charge density. Due to this a quantum well in the conduction band, 

dropping below the Fermi level EF at the lower GaN/AlGaN interface is formed 

(Ambacher 2000), where the accumulated free electrons are confined in z-direction 

(growth direction) in a highly conductive sheet, the so called 2D-electron-gas (2DEG). 
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For N-faced GaN the sign of the polarities and surface charges is inverted and the 2DEG 

is formed at the upper GaN/AlGaN interface. The sheet carrier concentration nS in the 

2DEG  depends on the properties of the AlxGa1-xN layer, mainly the aluminum content x, 

the thickness d of the layer, as well as the temperature T. The carrier concentration nS 

decreases exponentially with T, as the amount of free electrons decreases in the AlxGa1-xN 

layer, until it reaches a constant level at T < 100 K (Smorchkova 1999), while increases in 

d and x both lead to increases in nS (Ambacher 1999). The increase in x not only 

influences nS, but also the carrier mobility µS inside the 2DEG. An initial increase in µS is 

seen with rising x, due to an increased barrier height of the conduction and valence bands 

at the GaN/AlxGa1−xN interface. This leads to a heightened screening of ionized 

impurities in the heterostructure, as the penetration of the electron wave function is 

reduced (Smorchkova 1999). Due to increasing alloy disorder and interface roughness 

with larger aluminum content μS starts to decrease at about nS > 2∙10
12

 cm
−2 

(Smorchkova 

1999). Usually besides large carrier concentrations in the order of 10
13

 cm
–2 

(Ambacher 

1999), a high mobility of electrons μS in the 2DEG of about 10
3
 cm

2
V

−1
s

−1
 (Smorchkova 

1999) is achieved compared to other types of transistors, making the GaN/AlxGa1-xN/GaN 

heterostructures a high electron mobility transistors (HEMT). 

3.2 Surface Electronic Structure of (GaN) Semiconductors  

The surface band structure of a semiconductor in contact with an electrolyte or other 

medium depends on its electron affinity χe. For a semiconductor the electron affinity is 

defined as the energy needed to release an electron from the semiconductor surface 

conduction band into the vacuum energy level and is given by (Sze 1985, Thuselt 2005), 

                               (3.5) 

where ϕW is the work function, ϕBB the band bending, EC and EF the conduction band and 

Fermi energy levels. For other materials, such as metals, the electron affinity is equal to 

the work function ϕW. The work function defines the energy difference between the Fermi 

level EF, where most of the carriers in metals exist, and the vacuum level. At the contact 

area of the semiconductor with an electrolyte or metal, the Fermi energy levels are equal, 

assuming thermodynamic equilibrium with no electron-transfer across the interface 

(Figure 3.2a). A difference in electron affinity emerges at the interface between the two 

materials, due to an intrinsic difference in their work functions. This creates a contact 

potential, forcing the band bending and thus redistribution of carrier density at the 

interface to the bulk semiconductor, forming the space charge region (Thuselt 2005). 
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Figure 3.2: (a) Schematic interface band structure of a semiconductor and (b) space-

charge regimes for an n-doped semiconductor.  

The formation of the space charge region is directly influenced by changes in the surface 

charge, such as ion accumulation, pH changes and molecular dipoles (Bergveld 2003, 

Ashkenasy 2002, Steinhoff, Herrman 2003, Luber 2004), while the magnitude of the 

semiconductor electron affinity defines the sensitivity to such influences. As such, the 

space charge region is also modified by an external bias potential Ubias (Figure 3.2b). For 

an n-doped semiconductor the Fermi level of the electrolyte is raised compared to the 

semiconductor level at Ubias > 0, forming the depletion regime in the space charge region. 

In this regime the electron density near the interface is depleted. With increasing Ubias the 

valence band level EV at the interface becomes higher than the Fermi level EF. Holes 

become the majority carriers near the surface instead of electrons, while electrons are the 

bulk majority carriers, creating the inversion regime. Negative applied Ubias results in 

downwards band bending and the so called accumulation regime is formed, where the 

electron density at the semiconductor surface is increasing. For a p-doped semiconductor 
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the opposite reaction to the applied potential is observed. At a certain Ubias when there is 

no band bending at the surface (ϕBB = 0) the flat band condition is reached. The flat-band 

potential UFB at this condition is an intrinsic characteristic of the semiconductor and is 

sensitive to all changes in surface potential besides Ubias. 

3.3 Requirements for Biosensor Applications 

As described above the semiconductor electronic structure at the interface can be 

influenced by changes in the surface potential ψs. The resulting redistribution of majority 

carriers inside the semiconductor is seen in the modification of its space-charge 

capacitance CSC. This relationship on the surface potential is given by the differential 

capacitance (Sze 1985): 

        
   

   
 

 
   

    

 

  
 

  

  
              

 
  

  
                    

 

 

  
 

                     (3.6) 

Here ε and ε0 are the permittivity of the semiconductor and vacuum respectively, n0 and p0 

the electron carrier and hole density in the bulk semiconductor, e the elemental charge, k 

the Boltzman constant and T the temperature. The Debye length dn is given by    

          and       .  
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Figure 3.3: Normalized space-charge capacitance as a function of semiconductor surface 

potential (ψs). CSC(ψs) is normalized to the insulator capacitance Ci in an electrolyte-

insulator-semiconductor system (EIS). The three space-charge regimes show different 

capacitive sensitivities to changes of surface potentials. 

Figure 3.3 shows the simulated surface potential sensitivity of the differential space-

charge capacitance CSC(ψs) that is normalized to the insulator capacitance Ci in an 

electrolyte/ insulator/semiconductor system. The three space-charge regimes at the 

semiconductor interface arise in dependence of the magnitude of surface potential. In the 

inversion regime the semiconductor shows the highest sensitivity of CSC to changes in 

surface potential. However, the sensitive potential in this regime is narrow. In the 

depletion regime the potential range where CSC is sensitive to ψs is broader and the Mott-

Shottky relation (Equation 3.7) becomes linear, allowing for a direct correlation between 

ψs and UFB (Sze 1985). 

 
 

   
  

 

       
           

  

 
               (3.7) 

Ensuring the linearity of      
  versus Ubias also allows for the extraction of the 

semiconductor doping ratio Nd. Under these conditions any changes in the surface 

potential, e.g. from changes in ion concentration, pH, and grafting of additional layers on 

the semiconductor surface, causes changes in the space-charge capacitance. In case of the 

GaN/AlGaN/GaN heterostructures used in this work, the band structure of the different 

semiconductor phases is also influenced by the surface potential. Depending on ψs the 

inclination of the band profiles is modulated and thus the depth of the quantum well, 

changing the carrier concentration accumulation in the 2DEG. This change is reflected in 
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the transistor I-V characteristics as Cs and µ are influenced by the surface potential ψs in 

equation 2.62.  
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4. Modulation of Electronic Band Structures in GaN Semiconductors 

Using Helical Peptides 

4.1 Introduction 

The physical properties of semiconductors are mainly determined by their crystalline 

structures. By changing the atomic composition, commonly via doping, the 

semiconductor properties can be modulated within narrow limits, as lattice strain becomes 

detrimental to the desired properties with increasing doping ratio. As a new strategy for a 

more flexible modulation of the electronic structures of semiconductor devices, the 

deposition of organic molecules is drawing increasing attention. This not only alters the 

semiconductor surface structure, but also the surface charges form the introduction of 

mono- or dipoles, which result in a change in electron affinity and band bending 

(Ashkenasy 2002, Bergveldt 2003). This concept was explored by the use of small 

organic thiols that exert a molecular dipole moment perpendicular to the surface of 

       D (Sengupta 2005). The change in surface potential induced by these molecules 

is for instance detectable in the lateral resistance of GaAs/AlGaAs heterostructures 

(Luber 2004). Instead of small organic molecules Kimura et al. further extended this 

strategy and used helical peptides as building blocks to extend the possible range of 

surface dipoles. In nature the peptide helix commonly exists in α-helical conformation 

and is one of the common secondary structures in proteins, which is known to carry 

macromolecular dipoles (Wada 1976). The formation of α-helical structures was studied 

by Karle and Balaram 1990, Otoda, Kimura et al. 1993, Toniolo et al. 2001, using 

synthetical oligopeptides containing 2-aminoisobutyric acid (Aib). As the allowed angles 

for the Aib residue occurred in two very restricted regions, corresponding to a right-

handed α-helix or 310-helix or a left-handed α-helix, respectively (Marshall and Bosshard 

1972, Burgess and Leach 1973), it is the most promising building block to achieve α-

helical structures in artificial peptides. Since the Aib residue does not have an asymmetric 

Cα atom, L- or D-configuration of the helix is equally possible. L- or D-handedness of the 

helix is fixed by other residues in the peptide sequence (Karle and Balaram 1990). Due to 

the helix formation, the helical peptides can be considered as rigid rods with a diameter of 

approximately 1.5 nm. The dipole moment in helical peptides originates from each 

peptide bond in the sequence and can reach up to 3.5 D per peptide unit. Since the dipole 

moments in an α-helix are nearly parallel aligned to the helix axis (Wada 1976, Hol 

1978), the peptides can exert a much larger macrodipole moments which is proportional 

to the number of peptide units (Hol 1978). A helical peptide with 16 amino acids for 

instance can amount to 50 D (Hol 1978, Sengupta 2005). The electric field generated 

from the dipole of these peptides alters the surface potential of semiconductors and has a 

various impact on protein functions, such as frequent N-termini binding of phosphate 
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moieties, long-range attraction of charged molecules or stabilization of intermediates (Hol 

1978), indicating the potential of peptides as biosensing platform. It was further shown, 

that sequences of (Ala-Aib)n or (Leu-Aib)n adopt a stable α-helical conformation and 

form a well-packed monolayer on Au substrates with tilt angles of 30° to the surface 

normal (Fujita, Kimura et al. 1995, Miura, Kimura et al. 1998). The combination of 

dipole interactions and other secondary interactions, such as electron transfer processes, 

opens up an emerging field of “molecular dipole engineering” (Kimura 2008), using 

various functional nanoarchitectures inspired by the molecular design of nature. 

Following the previous studies on GaAs-based 2DEG devices functionalized with small 

organic molecules (Luber 2004), and their influence on the carrier mobility in GaAs-

based 2DEGs (Kaindl 2010), several helical peptides based on (Leu-Aib)n sequences were 

covalently coupled to GaN surfaces. The use of the wide band gap (3.4 eV) 

semiconductor GaN and GaN/AlGaN/GaN HEMT structures promises high sensitivity for 

the flexible modulation of its electronic band structures by coupling of helical peptides 

with tunable macromolecular dipole moments. Following the sequence in Figure 4.1, 

covalent coupling of peptides was performed by first functionalizing the chemically 

oxidized GaN surface with an amino silane monolayer
 
(Baur, Steinhoff et al 2005) 

followed by covalent coupling of the formyl terminated helical peptides to the amino 

silane layer. Other than the control of magnitude of macromolecular dipoles by the length 

of α-helices (Kaindl 2010), the sign of dipoles was altered by coupling α-helices either 

via their C- or N-terminus. Furthermore, one peptide sequence was functionalized with a 

terminal ferrocene moiety to investigate the electron transfer through the α-helices. 
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Figure 4.1: Flow of the step-by-step functionalization of GaN. 

Various surface sensitive and electrochemical techniques were used in order to first 

characterize the surface modification and the modulation of electronic characteristics in 

GaN semiconductors. Functionalization protocols were later applied on GaN/AlGaN/GaN 

heterostructures to investigate the influence of the peptide dipole on the transistor I-V 

characteristics and carrier density in the 2DEG. The details of the obtained results are 

presented in the following sections. Parts of this Chapter were previously published in 

Mehlhose and Frenkel et al. 2018. 
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4.2. Topography, Chemical Composition and Fine-Structure 

Characterization of the GaN/Peptide Interface 

Topographic profiles of planar GaN electrodes were characterized by contact mode AFM 

within an area of 1.5 × 1.5 μm
2
 before and after the functionalization with APTES as well 

as deposition of peptide. The topographic profiles and scratch tracks are presented in the 

Supplementary Information section 9.1.1. A root mean square (rms) roughness of σ = 3.2 

Å was obtained for the wet chemically oxidized GaN. The grafting of APTES and 

peptides led to a slight increase in the surface roughness to σ = 5.0 Å for F8OMe, σ = 5.9 

Å for BocF8 and σ = 5.7 Å for F8Fc, with no major defects or piles of molecules 

observed. In fact, the film thickness of 13 Å, 15 Å and 18 Å determined for F8Fc, F8OMe 

and Boc8F respectively from the height difference between the film surface and the 

scratch track confirms the deposition of a peptide monolayer. After each functionalization 

step the chemical surface composition of GaN was assessed by XPS. Data for the Ga3d, 

N1s, Fe2p, C1s and O1s spectra from untreated GaN, APTES grafted GaN with and GaN 

deposited with APTES and peptides are presented in Table 4.1. The evolution of the 

Ga3d, N1s and Fe2p spectra upon functionalization is shown Figure 4.A for the F8Fc 

peptide. 

Table 4.1: Mean atomic composition from XPS in percentages of untreated GaN, GaN 

grafted with APTES and GaN grafted with APTES and peptides (F8OMe, Boc8F and 

Fc8F). 

Sample Concentration (%) Ratio 

 Ga O N C Fe N/C O/C N/Ga Fe/C 

GaN 28 9 21 42 0 0.50 0.20 0.75 - 

APTES 21 16 16 47 0 0.35 0.35 0.78 - 

F8OMe 19 15 16 49 0 0.32 0.31 0.82 - 

Boc8F 11 35 10 44 0 0.22 0.80 0.87 - 

Fc8F 17 15 15 50 3 0.29 0.31 0.90 0.05 

As shown in Table 4.1, a monotonic decrease in Ga3d signals was observed after each 

grafting step. The Ga surface concentration decreases from bare (28 %) to lower 

concentrations for APTES (21 %) and peptide coated samples (11-19 %). The same trend 

was seen for the concentration of N, while an increase in the N/Ga ratio was observed 

from bare (0.75) to APTES (0.78) and peptide grafted GaN (0.82-0.90), indicating a 

growth of the organic layers after each reaction step as more layers containing N are 

deposited. A decrease in the N/C ratio a can clearly be seen as well after each successive 

reaction step, further confirming a successful layer deposition. Compared to the APTES 
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sample F8OMe showed the least difference in concentration of N and Ga out of all 

peptides. This might be due to a lesser density of the peptide layer. For all other peptides 

the change is more pronounced, indicating higher densities in those films. Moreover, 

Fe2p doublet peak near 710 eV binding energy was detected for F8Fc (Figure 4.2c), 

confirming the successful grafting of the ferrocene ferrocene-functionalized F8Fc 

peptides.  

Figure 4.2: Core level spectra of (a) Ga3d, (b) N1s, and (c) Fe2p from untreated GaN 

(black), APTES grafted GaN (grey) and GaN after the deposition of APTES and F8Fc 

(red). 

The thickness, roughness, and density of the films were evaluated by XRR after each 

reaction step. The preparation protocols were first tested on bulk GaN and the best 

procedure transferred to the GaN/AlGaN heterostructure. Since the features in the curves 

are not very prominent, due to the high transparency of the samples the XRR curves were 

normalized by qz
4
 and given as Fresnel plot. The XRR curves of wet chemically oxidized 

GaN (black), GaN coated with APTES and F8OMe (orange), Boc8F (blue), and F8Fc 

(red) are shown in Figure 4.3. 
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Figure 4.3: Fresnel plots of wet chemically oxidized GaN (black) and GaN after the 

grafting of APTES and peptide layers. Orange, blue and red symbols correspond to the 

experimental data of F8OMe, Boc8F and F8Fc peptides respectively and the solid lines 

represent the fitting results. 

The bulk GaN samples the measured XRR signals could be well fitted with a three slab 

model consisting of a slab for peptide, APTES and wet chemically oxidized GaN layers 

on bulk GaN. For all investigated GaN samples thickness values for the oxide layer of 

doxide = 5 – 6 Å and APTES layer of dAPTES = 5 – 8 Å were obtained. The obtained 

APTES thickness lies very well within reasonable range for a monolayer with an 

expected thickness of 9 Å (Kim 2011). Additionally the thicknesses of these layers were 

also investigated before grafting of the peptide by ellipsometry. APTES layers of 9 Å, 5 

Å and 7 Å were found for the samples to be grafted with F8OMe, Boc8F and F8Fc 

respectively, confirming the values obtained by XRR. Thickness, scattering length 

density and roughness values for the peptide layers on bulk GaN are given in Table 4.2. 

Table 4.2: Best fit parameters (χ
2
 ≤ 0.01) for the XRR results for the F8OMe, Boc8F or 

FcF8 peptide layer coupled over APTES to bulk GaN. 

Peptide d [Å] SLD [10
6
 Å

–2
] σ [Å] 

F8OMe 16.4 5.4 5.5 

Boc8F 16.9 6.4 5.0 

FcF8 14.8 6.5 5.5 
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The thickness values of the peptide layers were found to be dF8OMe = 16.4 Å, dBoc8F = 16.9 

Å, and dF8Fc = 14.8 Å for F8OMe, Boc8F, and F8Fc peptides respectively. For 

comparison, estimated lengths L of the peptides were calculated by summing up the helix 

length, the lengths of the two linker parts, and the size of a ferrocene unit (Arikuma 

2010). The helix lengths were estimated with 2.0 Å per residue for a 310-helix of an 

octamer (Benedetti 1991). For an α-helix (16mer−64mer) the length per residue 1.5 Å 

should have been considered (Benedetti 1991). The half value of the full-extended length 

of the linker parts was taken as approximation, because of the unknown conformation and 

tilt angles. A ferrocene unit was assumed to be a sphere with a 6 Å diameter. Finally, the 

calculated lengths of the peptides shown in Figure 4.1 are LF8OMe = 19 Å, LBoc8F = 20.5 Å, 

LF8Fc = 26.0 Å. The obtained thickness values of each peptide are smaller than the 

theoretically expected length L, suggesting that the helical axis is tilted to the direction 

normal to the substrate plane. The tilt angles from the surface normal were estimated 

from the ratio between the peptide thickness d calculated from XRR and the estimated 

length of the molecule L,           . The tilt angles found for F8OMe and Boc8F 

peptides of θF8OMe = 30.3° and θBoc8f = 35.5° agree well with similar peptide monolayers 

from Kimura et al. (Morita and Kimura 2003). For the F8Fc peptide a larger tilt angle of 

θF8Fc = 55.3° was found, due to its smaller layer thickness compared to the other peptides. 

Gaussian roughness values of σ = 4.5 – 5.5 Å at the air/peptide interface were obtained 

for all measured samples, implying a consistent and homogenous coverage of the peptide 

layer. These values are consistent between AFM and X-ray reflectivity, although they are 

estimated in two different manners. Roughness measured by X-ray reflectivity coincides 

with the gradual change in the scattering length density across the interface and σ 

measured by AFM is calculated from the topographic image. Scattering length densities 

(SLD) of the peptides, SLDF8OMe = 5.4∙10
–6

 Å
2
, SLDBoc8F = 6.4∙10

–6
 Å

2
, and SLDF8Fc = 

6.5∙10
–6

 Å
2
, are in reasonable agreement with the value of peptides composed of the same 

amino acid components grafted on GaAs, 5.6∙10
–6

 Å
2
 (Kaindl 2010). From the obtained 

SLD and thickness d values of the peptide layers the occupied area A of one peptide helix 

can be calculated can be gained by: 

   
     

     
                 (4.1) 

where re is the Thomson electron radius and Ne is the total number of electrons per 

molecule. The occupied areas per peptide molecule for F8OMe and Boc8F, AF8OMe = 174 

Å
2
 and ABoc8F = 134 Å

2
, seems to agree well with the values reported previously for a 

peptide with twice as more repeat units measured at the air/water interface, A = 150 Å
2
 

(Kaindl 2010, Kitagawa 2002). An apparently larger area was estimated for F8Fc, AF8Fc = 
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185 Å
2
, further suggesting a larger molecular tilt from the direction normal to the 

substrate, which seems reasonable from its smaller thickness value. 

Previously, similar surface coverage results were achieved with other helical peptide 

SAMs on Au. For instance, tridecapeptides bound to a gold surface at their C-terminal 

had surface coverage to a lesser extent than those bound at their N-terminal (Morita and 

Kimura 2003). In addition, other Aib-containing helical peptide SAMs bound to a gold 

surface via the N-terminal were more dense than the peptide SAM bound via the C-

terminal (Fujita et al 1998). The less dense packing of the latter films was explained by 

unfavorable electrostatic repulsion which possibly takes place between the dipoles of the 

helical peptide directing towards an aqueous phase and the dipoles of an S-Au linkage 

opposing the helix dipoles. However, other factors such as the chain-length difference at 

the anchor part of the molecules and the different size and polarity of the protecting 

terminal groups could not be excluded (Morita et al 2000, Biebuyck and Whitesides 1993, 

Nuzzo et al 1987). The difference in SLD between F8OMe and Boc8F is not significant 

enough to support this for the peptides used in this work. Orientation of the dipole 

moment has seemingly no effect on the density of the surface coverage. This affinity for 

less dense packing of C-terminal peptides might be reduced in Boc8F due to the usage of 

aminobenzaldehyde as a link for covalent bonding to the surface. In this case an opposing 

dipole moment as seen in the S-Au linkage in SAMs on Au substrates might not present.  

4.3. Electrochemical Characterization of Peptide/GaN Interface 

Electrochemical characterization was performed on Ge-doped bulk GaN electrodes with a 

carrier concentration Nd of 1∙10
20

 cm
–3

. The very high carrier density achieved by doping 

with Ge as a donor allows the preparation of sufficiently sensitive electrodes to track the 

change in electrochemical properties by means of impedance spectroscopy (Fritze 2012).
 

Impedance spectra were measured between 100 kHz and 50 mHz in standard HEPES 

buffer and analyzed with equivalent circuit model 2 for the untreated GaN/electrolyte 

interface and model 3 for the APTES and peptide grafted GaN (Figure 4.4, see section 

2.2.7). At f < 50 mHz the signal to noise ratio becomes too low. The fit results for 

untreated GaN (black), GaN after the deposition of APTES (green), F8OMe (orange), 

Boc8F (blue), and F8Fc (red) are represented as Nyquist plot of – Z" as a function of Z' 

(Figure 4.4b) and summarized in Table 4.3. 
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Figure 4.4: (a1) Simplified circuit model 2 for the semiconductor/electrolyte interface. 

(a2) Expanded circuit model 3, accounting for the additional peptide layer. The peptide 

layer is modeled by the parallel combination of the capacitance Cpep, phase transfer 

resistance RPT, and Warburg element W (b) Impedance spectra of bare GaN (black), GaN 

coated with APTES (grey) and F8OMe (orange), Boc8F (blue), and F8Fc (red), 

measured in the frequency range between 100 kHz and 50 mHz. (c) Mott-Shottky plots 

calculated from the impedance spectra.  

From Figure 4.4b one can clearly see a distinct change in impedance spectra upon 

deposition of APTES and the subsequent peptide. Interestingly, F8OME and F8Fc 

peptides, whose macromolecular dipole moments point towards GaN, show an almost 

identical change in the global shape of the curves. The Boc8F peptide in contrast, where 

the helix sequence and its dipole moment point to the opposite direction, showed a shift in 

the opposite direction. 

Table 4.3: Fitting coefficients from impedance spectroscopy.  

coating CSC
a

 

[µF/cm
2
] 

UFB
a 

[V] 

Cpep 

[µF/cm
2
] 

RPT 

 [Ω/cm
2
] 

W 

[MΩ/cm
2
] 

Untreated GaN 3.56 – 0.38 - - - 

APTES 3.88 – 0.35 1.1 1092 0.29 

F8OMe 4.33 – 0.14 1.4 2743 0.40 

Boc8F 3.26 – 0.47 1.5 1763 0.30 

F8Fc 4.39 – 0.12 1.2 1818 0.44 
a
 CSC measured at Ubias = 0.2 V, 

b
 UFB for peptide/GaN systems determined from the 

linear extrapolation of Mott-Schottky plots (0 V ≤ Ubias ≤ 0.6 mV). 
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The electrochemical properties of APTES and peptide layers could be best represented by 

the equivalent circuit model 3 (Figure 4.4a2), that includes additional impedance 

representations for the APTES or peptide layer capacitance Cpep, phase transfer RPT, and 

Warburg element W. (Hillebrandt and Tanaka 2001, Schubert 2009,) With the 

introduction of W the APTES and peptide layers cannot be assumed as pure dielectric 

layers, represented by the parallel combination of a resistance and a capacitance. The 

Warburg element in this model is necessary to account for the frequency dispersion of 

impedance spectra at high Z' values, as seen for APTES-coated GaN, due to the 

occurrence of kinetically or diffusion controlled charge processes. From the Warburg 

impedances obtained in Table 4.3, a clear deviation from an ideal dielectric layer model 

can be discerned. This suggests that these layers can act as a diffusion barrier for ions. 

The Warburg impedance can be used as an approximation to quantify diffusion of ions 

through the APTES layer. With 

             
 

  
       ,    

   

        
 

 

  
          (2.48, 2.49) 

the diffusion coefficient D of ions through the peptide layer, can be calculated from the 

Warburg impedance W(ω),
 [26]

 where A is the active electrode area, ρ the ion 

concentration at the interface and R, T, n, and F have their usual meaning.  

With the assumption of a comparable ion concentration at the GaN interface as in the 

bulk electrolyte the Warburg parameter can be calculated to σ = 8.5 x 10
4
 V/A s

1/2 
and the 

diffusion coefficient of ions in the peptide layer to D = 3.1∙10
−4

 µm
2
s

–1
. Compared to the 

diffusion coefficient of ions in bulk solutions (D ~ 10
3
 µm

2
s

–1
) (Poisson and Papaud 

1983), this diffusion constant is seven orders of magnitude smaller. This suggests the 

formation of highly dense layers of helical peptides acting like a diffusion barrier that 

significantly suppress the diffusion of ions, similar to other self-assembled monolayers 

and supported lipid monolayers (Hillebrandt and Tanaka 2001, Frenkel 2014). 

Additionally, the rise in Cpep, W as well as RPT after grafting of peptides on APTES coated 

GaN further confirms the successful peptide deposition. As seen from Table 4.3 the 

subsequent grafting of APTES and peptide incurs changes in the semiconductor space 

charge capacitance CSC. The dependency of CSC on the applied Ubias shows linear 

behavior in the Mott-Schottky plots in Figure 4.4c (CSC
–2

 vs. UBias) for untreated GaN 

(black), GaN after the deposition of APTES (grey), F8OMe (orange), Boc8F (blue), and 

F8Fc (red) at the applied Ubias range of 0 V ≤ Ubias ≤ 0.6 mV, confirming that the GaN 

semiconductor operates in the sensitive depletion region. This allows the calculation of 

the change in the flat band potential UFB from the linear extrapolation of the Mott-

Schottky plot of each peptide/GaN system given by the Mott-Shottky relation: 
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               (3.7) 

From the slope of each plot the carrier concentration Nd = 1.1∙10
20

 cm
–3

 could be 

determined using εS =8.9 (Levinshtein
 
2001) for the GaN semiconductor, which agrees 

well with the value determined from Hall effect measurements of Nd(Hall) = 1∙10
20

 cm
–3

 on 

the same wafer.  

From the grafting of APTES on GaN only a slight increase in CSC from CSC(GaN) = 

3.56 μFcm
−2 

to CSC(APTES) = 3.88 μFcm
−2 

was observed. This increase also causes a slight, 

but already clearly distinguishable increase in the flat band potential from UFB(GaN) = – 

0.38 V to UFB(APTES) = – 0.35 V as seen in Figure 4.4c, possibly due to the change in 

surface potential incurred by partial protonation of the APTES amino groups. The 

subsequent grafting of peptides caused a much more pronounced change. For F8OMe 

(orange) the interface or space-charge capacitance CSC and UFB increased to CSC(F8OMe) = 

4.33 μFcm
−2 

and UFB(F8OMe) = – 0.14 V, causing a change in UFB compared to APTES only 

coated GaN of ΔUFB,F8OMe = 0.21 V. Due to the dipole potential of F8OMe pointing 

towards GaN the surface potential is increased, causing the change in band bending at the 

semiconductor interface and thus increase in CSC. This notion is further supported by the 

deposition of Boc8F (blue), which exerts a dipole moment opposite direction. The 

grafting of this peptide caused a shift to the opposite direction in the Mott-Schottky plot 

and a decrease in CSC and UFB to CSC(Boc8F) = 3.26 μFcm
−2 

and UFB(Boc8F) = – 0.47 V with a 

change in UFB compared to APTES only coated GaN of ΔUFB,Boc8F = – 0.12 V. This was 

further verified by F8Fc (red), that has the same helical part as F8OMe and caused 

changes in CSC and UFB in the same direction and with comparable magnitude. With 

CSC(F8Fc) = 4.39 μFcm
−2 

and UFB(F8Fc) = – 0.12 V the caused ΔUFB,F8Fc = 0.23 V compared 

to APTES only coated GaN is similar to the value achieved from the grafting of F8OMe. 

These results indicate that the macromolecular dipole moments exerted by helical 

peptides can play a dominant role for the modulation of surface potentials and 

semiconductor band profiles. 

 

 

 

 



4. Modulation of Electronic Band Structures in GaN Semiconductors Using Helical Peptides 

 
63 

 

4.4. Investigation of Electron Transfer Across Peptide Helices 

To investigate the possibility of electron transfer across the peptide layer the peptide helix 

was modified with a redox active ferrocene moiety for F8Fc. First, Cyclic voltammetry of 

untreated GaN (black) and GaN coated with F8OMe (orange) was performed at scan rates 

of vscan = 50 – 120 mVs
–1 

in 100 mM Na2SO4 (Figure 4.5a). 

  

Figure 4.5: (a) Cyclic votlammograms of F8OMe coated GaN (orange) and untreated GaN 

electrodes (black) with 0.1M Na2SO4 supporting electrolyte at scan speed of vscan = 100 mV/s. (b) 

Cyclic votlammogram of F8Fc coated GaN in the same electrolyte, measured at vscan = 50, 

80, and 120 mVs
–1

. The Dependency of peak oxidation current Ipeak for F8Fc on the scan speed 

is presented in the inset. 
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The unmodified GaN electrode showed no sign of irreversible electrochemical 

degradations in the applied voltage range, owing to the excellent chemical stability 

compared to GaAs (Adlkofer 2000). Interestingly, the deposition of F8OMe resulted in a 

drastic suppression of two orders of magnitude for both oxidation and reduction currents. 

This can be explained by the formation of a diffusion barrier by the grafted peptides, as 

seen from impedance results, causing the suppression of ion diffusion and thus charge 

transport towards the GaN electrode interface. For the ferrocene-functionalized peptide 

(F8Fc) coated GaN, distinct oxidation peaks ipc at U = – 0.16 V could indeed be detected 

(Figure 4.5b). Although weak the observed peaks were stable over multiple cycles. 

Additionally, anodic reduction peaks could not be clearly discerned at lower scan speeds, 

which could be attributed to the decomposition of the ferrocenium ion process in the 

presence of Na2SO4 after the oxidation process. A linear relationship between oxidation 

peak current Ipeak and the square root of the scan rate vscan
1/2 

was found, suggesting that the 

charge transfer occurs through the organic layers and is not dominated by the charge 

transfer through defects(Nicholson 1965, Morita and Kimura 2003). These results clearly 

indicate that the observed redox process is caused by the electron transfer from the 

ferrocene moiety to GaN through the peptide helix. One should note, that NaClO4 is more 

commonly used for such experiments, as Kimura et al. previously reported for similar 

peptides grafted on Au surfaces (Morita and Kimura 2003). Na2SO4 was used in this 

study in order to minimize any potential risk to damage the Ohmic contacts of GaN 

electrodes. Since ferrocenium ions are partially active in Na2SO4, as Valincius et al 

reported (Valincius 2004) and only the electron transfer mediated by "active" ferrocenes 

are detected by the following chronoamperometric measurements, the electrolyte can be 

substituted in this manner. 
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Figure 4.6: Chronoamperometry of untreated GaN (black), F8OMe (orange) and F8Fc 

(red) coated GaN, recorded at the overpotential 480 mV. The dependency of electron 

transfer rate ket of F8Fc-coated GaN on the overpotential Ubias is depicted in the inset. 

The rate of electron transfer through the peptide layer was examined by 

chronoampreometry. In Figure 4.6 the current responses to an overpotential step of Ubias = 

480 mV at t = 30 s is shown. The current responses of untreated (black) and F8OMe 

coated (orange) GaN electrodes were almost identical. For both samples an exponential 

current decay that reached the baseline within the first few second was observed with a 

characteristic rate constant of k = 6.0 ± 0.3 s
−1

. Since the decay shows a dependency 

of         , the observed current response is purely capacitive. This seems plausible, as 

the CV spectra of both samples show no distinct reductive or oxidative current response 

at the applied Ubias range. For ferrocene-functionalized F8Fc (red) in contrast, a much 

slower current decay was observed with some saturation current level of I > 0.2 µA 

remaining even after 30 s. This current response could be well described by the Cottrell 

equation, 

           
 

  
                            (2.59) 

confirming the faradaic redox process occurring in the presence of the ferrocene moiety. 

A six times smaller electron transfer rate constant ket = 1.1 s
−1 

was obtained, further 

indicating a sustained electron transfer due to the ferrocene redox reaction. The transfer 

rate showed a linear dependency on the applied bias potential (inset Figure 4.6), allowing 

the determination of the the standard electron transfer rate constant ket
0
 = 0.91 s

−1
 by 

linear extrapolation to Ubias = 0 V. Similar transfer rates of ket
0
 = 0.68 s

−1
 (Morita and 

Kimura 2003) were reported by Morita and Kimura for longer peptides with16 amino 
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acids on Au surfaces. The obtained electron transfer rate suggests that the transfer follows 

an inelastic hopping mechanism along the peptide helix, since it is several orders of 

magnitude larger than the rate calculated for the supercharge mechanism (Immergut 

1989). 

4.5 Carrier Density Modulation by Macromolecular Dipole Moment in 

GaN/AlGaN/GaN HEMT Structures 

To demonstrate the potential of helical peptides towards the modulation of the channel 

current in the 2DEGs confined in GaN/AlGaN/GaN heterostructures and further quantify 

the effect of the peptide deposition on surface potentials, the helical peptides were 

deposited on the gate region of HEMTs based on GaN/AlGaN/GaN heterostructures 

(Figure 4.1). The changes in the electrical I-V characteristics were analyzed before and 

after the chemical functionalization by first measuring the HEMT transfer characteristics 

as the gate voltage (VG) dependent drain-source current (IDS) at a constant source-drain 

voltage VDS = 0.3 V (Figure 4.7). The measurements were performed in HEPES buffer 

under constant flow of 2 ml/min. It should be noted, that measurements for F8OME and 

F8Fc coated heterostructures was performed on two transistor chips cut from the same 

wafer, while a chip from a different wafer was used for the Boc8F coated HEMT. The 

IDS-VG curves of two untreated GaN chips produced from the same wafer were almost 

identical (see Supplementary Information section 9.1.3) and showed no remarkable 

changes from the amonosilanization with APTES. Since the HEMTs had to be dis- and 

remounted for each chemical functionalization, the reproducibility of the measured I-V 

characteristics was confirmed by repetitive dismounting/mounting cycles prior to the 

grafting of organic layers. Almost no changes in the I-V characteristics were found, with 

an error range of ΔVth = ± 17 mV and ΔIDS = ± 1.7 µA from repeated installation cycles 

of the HEMT chip (see Supplementary Information 9.1.3). The changes caused by 

APTES deposition are within this error range. 
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Figure 4.7: (a) Transfer (IDS-VG) curves from two HEMT chips produced from Wafer 1 

measured at VDS = 0.3 V, with the untreated HEMT (black), APTES (grey), F8OMe 

(orange) and F8Fc (red) grafted HEMT. The transfer curves of the untreated HEMT 

(black) and APTES-coated HEMT (grey) were identical between two chips, confirming 

the excellent reproducibility. (b) IDS-VG curves from one HEMT chip from Wafer 2 

measured at VDS = 0.3 V, with the untreated HEMT (black), APTES (grey) and Boc8F 

(blue) grafted HEMT. Threshold voltage Vth and transconductance g values were 

obtained from linear regression at VG = – 1.50 ± 0.25 V. 
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The deposition of F8OMe and F8Fc resulted in a more pronounced change in the IDS-VG 

curves (Figure 4.7a). Irrespective of the presence or absence of peptide layers the linear 

region of the ISD-VG curves yields the transconductance of the 2DEG channel of    

          
         

        . As summarized in Table a) in Figure 4.7, the 

threshold voltage Vth, obtained from the linear extrapolation of IDS-VG curves at VG = – 

1.50 ± 0.25 V to IDS = 0, exhibited pronounced changes in Vth from functionalization with 

F8OMe and F8Fc to Vth(F8OMe) = – 2.38 V and Vth(F8Fc) = – 2.40 V respectively. It is 

noteworthy that the deposition of two peptides possessing the same macromolecular 

dipole moments pointing towards GaN led to comparable shifts in the threshold voltage, 

∆Vth = 140 – 160 mV with no remarkable change in the channel transconductance. Figure 

4.7b represents the results from a different chip cut a second wafer that was grafted with 

the Boc8F peptide. Though the absolute levels of gm and Vth of bare GaN showed a 

deviation from those presented in Figure 4.7a, the obtained results show a clear trend. The 

functionalization with Boc8F, carrying an opposite dipole moment from F8OMe and 

F8Fc, resulted in a "decrease" in the threshold voltage of ∆Vth = – 140 mV without 

changing the slope of IDS-VG curves (Table b, Figure 4.7). These data clearly indicate that 

the surface functionalization, especially the deposition of helical peptides carrying 

macromolecular dipole moments, can be detected using surface sensitive 

GaN/AlGaN/GaN HEMT structures. The directions of the shift in Vth are consistent with 

the shift of UFB obtained from impedance spectroscopy. The APTES deposition led to a 

slight increase in UFB and the further functionalization with F8OMe and F8Fc resulted in 

a more pronounced increase in UFB. In contrast, the deposition of Boc8F resulted in a 

clear decrease in UFB, while the magnitudes of the changes are comparable between Vth 

and UFB. These results confirm that the surface density and the orientation of peptide 

helices are comparable to those on bulk GaN electrodes. As determined from the 

impedance spectra, the dipole moments of F8OMe and F8Fc point towards GaN, while 

that of Boc8F points the opposite direction.  
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Figure 4.8: Output (IDS-VDS) curves measured at VG = – 1.5 V of (a) untreated HEMT 

from Wafer 1 at various VG. Output curves of (b) two HEMT chips from Wafer 1, and (c) 

HEMT chip from Wafer 2 after each functionalization step. 

In the next step, the changes in VG caused by the deposition of peptide monolayers were 

determined. To calculate the effective dipole potential generated by each peptide, the 

Output (IDS -VDS) characteristics of the HEMT structures were measured. Figure 4.8a 

represents the IDS-VDS characteristics of a bare HEMT chip measured at different VG. The 

deposition of F8OMe and F8Fc caused decreases in IDS, which can be translated into the 

decrease in surface potential VG (Figure 4.8b), while the deposition of Boc8F resulted in a 

shift in the opposite direction (Figure 4.8c). These measurements were performed at VG = 

– 1.5 V, where all the samples exhibited the maximum transconductance and thus 
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maximum sensitivity. The calibration with the IDS-VDS curves of bare HEMT at various 

VG enables one to estimate the apparent change in VG (∆VG) corresponding to each 

peptide to ∆VG(F8OMe) = – 0.29 V, ∆VG(F8Fc) = – 0.16 V, and ∆VG(Boc8F) = + 0.28 V. The 

magnitude of these changes agrees well with those determined for UFB (Table 4.3). The 

changes have opposite signs, since VG is applied from the gate (Ag/AgCl) to the source 

(GaN/AlGaN/GaN), while Ubias is applied from the working electrode (GaN) to the 

reference electrode (Ag/AgCl). A much higher sensitivity to the effective potential 

applied by the peptide dipole moment can be obtained from these measurements, as 

shown by the higher accuracy of the fit for the determination of Vth (r
2
 = 0.995) compared 

to UFB in Mott-Shottky plots (r
2
 = 0.831), confirming that the modulation of the electronic 

band profile by macromolecular dipoles can be detected by GaN HEMT with a high 

sensitivity. The effective dipole potentials exerted from the peptide helix on the HEMT 

structure can also be estimated from the threshold voltage shifts in IDS-VG curves. 

However, the experiments at different VG would provide with less reliable data because 

the HEMT is operating under different working points. The influence of ferrocene 

moieties could further not be discerned from the I–V characteristics, which could be 

attributed to a faster carrier relaxation time in the 2DEG channel of the HEMT than 

electron transfer rate (ket
0
 = 0.91 s

−1
). 

The dipole potential generated by the deposition of peptides ∆VG calculated from Figure 

4.8b and Figure 4.8c follows the Helmholtz equation and can be given as a function of the 

macromolecular dipole moment ρ of a helical peptide: 

    
 

    
                        (4.2) 

where ε is the dielectric constant of peptide, ε0 the permittivity of vacuum, A the average 

area per molecule, and   the tilt angle between the helical axis and surface normal. The 

tilt angle was approximated by the ratio between the peptide thickness calculated from 

XRR d and the estimated length of the molecule L; cos( ) = d/L. The dielectric constant 

of the peptide layer ε was calculated from the experimentally determined Cpep, d, and the 

electrode area Aele = 0.5 cm
2
: 

      
     

      
.                            (4.3) 

With the obtained capacitance values of the peptide layer Cpep(F8OMe) = 1.4 μFcm
−2

, 

Cpep(Boc8F) = 1.5 μFcm
−2

, and Cpep(F8Fc) = 1.2 μFcm
−2

, the dielectric constants of peptides 

were determined to εF8OMe = 5.2, εBoc8F = 5.9, and εF8Fc = 4.0. Since the peptides in this 

study are immersed in bulk water (ε = 80), the slightly larger dielectric constants 

compared to "dry" peptides in air εdry = 3.5 seem reasonable (Fujita, Kimura et al 1995), 
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possibly due to the water incorporation into the peptide layer. From these values, the 

macromolecular dipole moments exerted by the peptides can finally be calculated to 

ρF8OMe = – 8.1 D, ρBoc8F = 7.1 D, and ρF8Fc = – 5.5 D. The obtained values seem smaller 

than those expected from the dipole per peptide bond in vacuum (3.45 D) (Sengupta 

2005),
 
which can also be attributed to the screening effect by aqueous media and the tilted 

conformation of the peptide layer. Interestingly a larger ΔVth from peptide deposition on 

the GaN/AlGaN/GaN heterostructure was achieved compared to a peptide with twice as 

many repeat units on GaAs (Kaindl 2010), demonstrating the excellent sensitivity of the 

GaN heterostructures. 

4.6 Summary 

The flexible modulation of the surface band profiles was achieved via macromolecular 

dipole moments by covalent coupling of bio-inspired, but non-biological peptide helices 

on GaN semiconductor and heterostructures surfaces. After the formation of well defined 

peptide monolayers was confirmed on GaN by AFM, XPS, and XRR, it was shown that 

the peptide macromolecular dipoles alter the flat band potentials by means of 

electrochemical impedance spectroscopy. The sign of the alterations could be controlled 

by the sign of dipole moments, determined by the selective termination of either N- or C-

terminal with aldehyde moieties. It was further demonstrated by using a peptide helix 

terminated with a ferrocene moiety that electron transfer along the peptide helix can occur 

via inelastic hopping. Without ferrocene chronoamperometry measurements revealed that 

the current response is purely capacitive. The functionalization protocol transferred from 

GaN to GaN/AlGaN/GaN HEMT structures demonstrated that the macromolecular dipole 

potentials exerted by helical peptides modulate the carrier density in the polarization-

induced two-dimensional electron gas, whereas a stronger alteration of the carrier density 

was achieved as for other semiconductor materials. These results suggested that the 

surface functionalization with bio-inspired peptide helices could have a large potential 

towards the macromolecular dipole engineering of wide band gap GaN semiconductors, 

possibly exceeding the limits of inorganic doping.  
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5. Supported Lipid Mono and Bilayers on GaN/AlGaN/GaN HEMT 

Structures 

5.1 Introduction 

Functional immobilization of biological systems on solid semiconductor based devices is 

an interdisciplinary challenge for the creation of novel hybrid sensor materials for 

numerous scientific and technological applications, such as the understanding of basic 

cell adhesion principles, signal transduction, high throughput screening assays and 

protein/DNA senor chips. An important step towards such hybrid systems is the 

combination of hard solids and soft biological matters by functionalization of solid 

surfaces with organic, biocompatible materials. The use of semiconductors as solid 

substrate material is advantageous for such hybrid systems, as it allows for a tracer less 

opto- electric sensing at low noise levels. Despite the successful demonstrations of 

several novel sensor platforms (Cui et al. 2001, Steinhoff, Hermann et al. 2003, Luber 

2004, Steinhoff, Baur et al. 2005) and high sensitivity to detect traces of the analyte, only 

their presence could be detected in most cases. Quantitative sensing remains to be 

difficult, as control of the surface chemistry, i.e. lateral density, conformation, and 

orientation of functional molecules on the surface remains a major challenge. Based on 

so-called “supported membrane concepts” (Sackmann 1996) proposed by Tanaka et al., 

several membrane-based biosensors on bulk GaAs and ITO semiconductor electrodes 

were developed (Purrucker et al. 2001, Hillebrandt et al. 1999 and 2002, Gassull 2008) 

using ultrathin polymer supports, based on regenerated cellulose, to fine-tune membrane-

substrate contacts (Tanaka and Sackmann 2005 and 2006). One strategy to achieve this is 

the use of phospholipid membranes incorporating specific anchor lipids (e.g. DGS-NTA), 

whose lateral distances can be controlled with nm accuracy by variation of its 

concentration. This approach ensures a natural environment for the non-denaturing 

immobilization of proteins in well-defined orientation (Sackmann 1996, Sackmann and 

Tanaka 2000). The combination of protein-anchored lipid membranes with sensor 

materials opens a wide range of biological applications. Due to its excellent 

chemical/electrochemical stability and high carrier density, wide band gap 

GaN/AlGaN/GaN HEMT structures offer high sensitivity in variations of surface 

potential and are thus a promising sensor material. Following the work of Frenkel et al. 

2014 on bulk GaN electrodes in chapter 5.2, a complex supported lipid monolayer system 

for biosensoric applications was developed using phospholipid monolayers deposited on 

negatively doped GaN/AlGaN/GaN HEMT structures funcionalized with hydrophobic 

octadecyltrimethylsilane (ODTMS) monolayers (Figure 5.1a). Chelator lipids containing 

nitrilo-triaceticacid (NTA) headgroups were incorporated into the supported monolayer in 
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defined ratios to reversibly modify the membrane surface charge density. The NTA-lipids 

form chelator complexes with divalent metal ions (e.g. Ni
2+

) and allow the coupling of 

recombinant proteins over histidine tags, such as green fluorescence proteins (GFP), 

allowing the reversible and highly sensitive detection of protein binding by this sensor 

platform.  

 

Figure 5.1: Schematic representation of (a) reversible couping of charged proteins on 

supported monolayer membrane containing NTA chelator lipids and (b) polymer 

supported lipid bilayer membrane. 

Another strategy for modeling the interactions between cells and tissues, mediated by 

short- and long-range forces (e.g.van der Waals forces, electrostatic forces, steric or 

entropic forces, and hydration forces) (Derjaguin and Churaev 1987, Israelachvili 1985) 

is the design of biomimetic molecular assemblies with a reduced number of components 

to create simple physical models. Here, the deposition of model cell membranes and 

artificial extracellular matrix (ECM) onto planar substrates is a powerful strategy to 

quantitatively study their functions. The use of artificial ECM supports not only enables 

the accommodation of integral- and trans-membrane proteins without denaturation on 

solid substrates but creates hydrating pathways for material transport as well. Such 

supports further allow for the formation of highly resistive membranes, necessary to 

generate the ionic potential gradients occurring across natural cell membrane in order to 

investigate functions of integral proteins, such as ion channels. Various studies 

demonstrated that natural extracellular matrix materials like laminin, fibronectin, and 

hyaluronic acid (Fromherz 1991, Comper 1996) can accommodate cells and natural 

membranes on solid substrates without inducing apoptosis or denaturing of proteins. 

However, the physical properties of these natural macromolecules are not well defined. 

As an alternative, regenerated thin films of cellulose can be fabricated with nm accuracy 

in thickness and very small topographic roughness by deposition of synthetically 

modified cellulose and subsequent chemical regeneration to the original cellulose 

(Rehfeldt, Tanaka 2003). This interlayer has been reported to accommodate artificial and 

native cell membranes without notable defects (Gönnenwein et al 2004, Tanaka 2001, 



5. Supported Lipid Mono and Bilayers on GaN/AlGaN/GaN HEMT Structures 

 
74 

 

Tanaka 2004). Chapter 5.3 details the use of regenerated cellulose interlayers on 

GAN/AlGaN/GaN HEMT structures as a sensor platform for the label free detection of 

membrane formation (Figure 5.1b).   
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5.2 Reversible Membrane Charge Sensor based on Supported Lipid 

Monolayers on GaN HEMTs  

5.2.1 Monolayer Formation on ODTMS Support 

To achieve a well defined formation of the above mentioned monolayer system, an 

ODTMS support on GaN is employed to provide a hydrophobic interface for lipid 

monolayer deposition. High hydrophobic behavior of the ODTMS coated GaN was 

confirmed for all samples by contact angle measurements (Figure 5.2a and b), where a 

water contact angle θ > 90° was obtained. A low rms roughness (σ < 1 nm) of the 

ODTMS coated GaN surface was further confirmed by AFM measurements (Figure 

5.2d), determined from a 10 µm x 10 µm scanning area in contact mode, enabling the 

deposition of a lipid monolayer with low defect density.  

 

Figure 5.2: Sessile drop contact angle of GaN (a) before and (b) after silanization with 

ODTMS. 10 µm x 10 µm topographic image of (c) native and (d) ODTMS coated GaN. 

In a next step the monolayer membrane formation and binding of his-eGFP proteins was 

investigated on a cover glass substrate by fluorescence microscopy by vesicle fusion of a 

DMPC/cholesterol/DGS-NTA lipid mixture of 63/35/2 mol% and 64.5/35/0.5 mol%, 

containing 0.2 mol% texas-red-DHPE respectively. Protein binding onto the membrane 

was tested for two DGS-NTA chelator lipid concentrations (0.5 mol% and 2 mol%). 

Assuming the molecular area of one lipid of 65 Å
2
, these concentrations correspond to an 

intermolecular distance of d = 9 nm and 5.7 nm between the DGS-NTA lipids.. At 2 

mol% DGS-NTA, this distance matches the average diameter of his-eGFP of d = 5.2 nm, 

determined by dynamic light scattering measurements. Thus, a complete coverage of the 

lipid monolayer with GFP can be achieved. Figure 5.3a shows the monolayer containing 

2 mol% DGS-NTA prior to protein binding. Few defects and spots with higher intensity 

could be observed in the texas-red stained monolayer. This could be caused by 

undulations in the ODTMS support observed in AFM measurements (Figure 5.2c), 

causing local differences in the monolayer formation. 
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Figure 5.3: Fluorescence images of a lipid monolayer of (a) DMPC/cholesterol/DGS-

NTA (63/35/2 mol%) containing 0.2 mol% texas-red-DHPE, (b) DMPC/cholesterol/DGS-

NTA (63/35/2 mol%) and (c) DMPC/cholesterol/DGS-NTA (64.5/35/0.5 mol%) after GFP 

binding. 

Nonetheless, after protein binding for 1 h with 0.25 µg/ml his-eGFP, a more 

homogeneous distribution in the GFP fluorescence for 2 mol% DGS-NTA was observed. 

As expected from the higher intermolecular distance and thus lower density of the DGS-

NTA binding sites, more defects and inhomogeneities as well as lower fluorescence 

intensity was observed for 0.5 mol% DGS-NTA. The distribution of the GFP 

fluorescence signal though still suggests a high enough density to influence the HEMT 

surface potential due to GFP binding in a significant manner. The diffusion and self 

healing capability of these monolayer membranes was confirmed in previous accounts 

(Frenkel 2014 and 2015), yielding a mobile fraction of 88 % and the lateral diffusion 

coefficient of D = 0.77 μm
2
s

-1
, which is comparable to values of lipid monolayers on 

other hydrophobic polymer supports (D = 1.0 - 1.5 μm
2
s

−1
) (Sigl, Brink et al. 1997).  

The lipid monolayer formation was further examined by high specular X-ray reflectivity 

(XRR) after vesicle fusion of a 63/35/2 mol% DMPC/cholesterol/DGS-NTA mixture on 

ODTMS coated native Si as well. Here, the thickness d, scattering length density SLD and 

roughness σ were determined prior to protein binding by employing a four slab model, 

representing the lipid headgroups, the lipid hydrocarbon chains, the ODTMS silane layer 

and silicon oxide layer. An additional slab representing the layer of bound protein was 

used for the reflectivity curve measured after 1 h incubation with 0.25 µM his-eGFP. The 

appearance of the board peak at qz ~ 0.3 Å
–1 

in the reflectivity graph prior to protein 

binding (Figure 5.4a, red circles) confirmed the formation of the monolayer on a larger 

scale (~ 1-2 mm
2
).  



5.2 Reversible Membrane Charge Sensor based on Supported Lipid Monolayers on GaN HEMTs 

 
77 

 

Figure 5.4: (a) Reflectivity graphs normalized by qz
4
 of a DMPC/cholesterol/DGS-NTA 

(63/35/2 mol%) monolayer on ODTMS coated Si measured in HEPES buffer. The solid 

lines represent the fitting result (χ² = 0.015) of the experimental data of the monolayer 

before (red circles) and after eGFP binding (green circles). (b) Schematic representation 

of the layered structure.  

The obtained results for SLD and σ (Table 5.1) of the lipid head groups and hydrocarbon 

chains agree well with the results of a similar membrane, using 5 mol% DGS-NTA 

(Frenkel 2015). The combined thickness of the ODTMS layer and the lipid hydrocarbon 

chains as well was similar to the previously obtained results. Only the thickness of the 

lipid head groups was slightly smaller. Since the NTA-lipids posess a larger head group 

than other pohospholipids, the lower amount of NTA-lipids used in this monolayer could 

have caused the smaller observed thickness. The similar SLD however suggests that the 

formation of a well defined and dense monolayer could be achieved. 

Table 5.1: Best fit parameters (χ² = 0.010) of the 2 mol% DGS-NTA containing lipid 

monolayer on ODTMS coated Si in HEPES buffer.  

layer prior to eGFP binding after eGFP binding 

 d [Å] SLD [10
–6

 Å
–2

] σ [Å] d [Å] SLD[10
–6

 Å
–2

] σ[Å] 

his-eGFP - - - 51 11.6 49 

lipid head group 8.7 10.7 5.0 8.5 10.6 3.3 

lipid alkyl chains 14.4 7.9 4.7 15.9 7.1 3.3 

ODTMS 16.1 8.3 4.3 16.7 8.3 3.7 

SiO2 9.4 18.6 4.6 9.1 18.6 4.4 

Upon protein binding the minimum position in the reflectivity graphs shifts from qz ~        

0.21 Å
–1

 (red curve) to qz ~ 0.18 Å
–1

 (green curve), indicating an increase in the total 

thickness due to the protein adsorption. As demonstrated by the obtained best fit 

parameters in Table 5.1, no remarkable changes in the thickness, SLD, and interface 

roughness of the lipid monolayer were caused by the complexation of eGFP, indicating 

that only adsorption of GFP onto the monolayer occurs. The obtained thickness of the 

eGFP layer of 51 Å agrees well with the expected value of around d ~ 50 Å for one GFP 
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molecule, determined by dynamic light scattering measurements. With this and the 

similar obtained SLD (SLDGFP = 11.6∙10
–6

 Å
–2

) to the value calculated from the protein 

sequence and its molecular weight (SLD = 12.4∙10
-6

 Å
-2

), an almost saturated coverage of 

the lipid monolayer with eGFP can be confirmed.  The large GFP interface roughness of 

49 Å however suggests that the eGFP “layer” is not fully saturated. Analogous 

measurements on undoped GaN were not conclusive, since the lipid interface becomes 

too diffuse due to its larger rms roughness compared to Si.  

5.2.2 Modulation of HEMT I-V Characteristics by Reversible Monolayer 

Charging and Recombinant Protein Binding  

The deposition protocols tested on bulk GaN and Si substrates were transferred to the 

GaN/AlGaN/GaN HEMT structures (Figure 2.12) in order to explore the potential of this 

system for the recognition of processes occurring at the monolayer surface. Variation in 

membrane charges due to binding of charged proteins changes surface potential, which in 

turn incurs changes in the transistor carrier density and thus, its performance. These 

changes are monitored and quantified by recording the transistor transfer curves (IDS vs. 

VG) and output curves (IDS vs. VDS) at different charge states of the lipid monolayer. DGS-

NTA groups in the deposited monolayers were reversibly charged and de-charged using 

Ni-buffer (2 mM NiCl2) and EDTA-buffer (100 mM EDTA). An octahedral chelator 

complex is formed by the NTA groups with Ni
2+

 or other divalent cations, where the 

loading and unloading of the monolayer with Ni
2+

 causes a change in the molecular net 

charge from by 1 e
–
 (Beauchamp et al. 1969, Hillebrandt et al. 2002). Protein binding to 

the membrane was achieved by using eGFP with his-tags that further bind specifically to 

the Ni
2+

 in the Ni-NTA complex by replacing its H2O ligands (Schmitt et al. 1994). This 

further causes changes in the monolayer charge, since the isoelectric point of his-eGFP is 

~ 4.8 (Tanaka et al. 2007) and thus GFP is negatively charged at pH = 7.5. The 

immobilization of GFP onto the monolayer can then be broken by extraction and 

complexation of the bound Ni
2+

 (unloading) by EDTA (Figure 5.5).  
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 Figure 5.5: Schematic flow of the loading/unloading of NTA lipids with Ni
2+

 and his-

eGFP. 

The measurements were first performed with 2mol % DGS-NTA, since at 0.5 mol% 

DGS-NTA the eGFP-loaded and unloaded states were not distinguishable in previous 

repots (Frenkel 2014 and 2015). In Figure 5.6 the I-V characteristics of the 

DMPC/cholesterol/DGS-NTA (63/35/2 mol%) monolayer are presented at Ni-loaded 

(red), eGFP-loaded (green) and unloaded (blue) states. Prior to the first measurement the 

lipid monolayer was rinsed 15 min with Ni-buffer to ensure a full complexation of the 

DGS-NTA groups. All measurement steps were then performed after rinsing 15 min with 

HEPES buffer to avoid changes in surface potential due to different ion concentration in 

the buffers. 
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Figure 5.6: (a) Transfer curves (IDS vs. VG) of the DMPC/cholesterol/DGS-NTA (63/35/2 

mol%) monolayer on ODTMS coated HEMT at unloaded (blue), Ni
2+

-loaded (red) and 

eGFP-loaded (green) states. (b) Magnification of the threshold region in the transfer 

curves. (c) Output curves (IDS vs. VDS) of the lipid monolayer at VG = – 1.8 V for the 

different monolayer charge states and various applied gate voltages for Ni-loaded state. 

First, transfer curves of the HEMT were measured at constant VDS of 0.3 V for the 

different monolayer charge states (Figure 5.6a and b). Threshold voltage Vth and 

transconductance g were determined from these curves by linear regression at VG = – 2.1 

V to VG = – 1.8 V and are summarized in Table 5.2. At the Ni-loaded state a threshold 

voltage of Vth, Ni = – 2.59 V was determined. After injection of GFP (0.25 µg/ml) for three 

hours at constant flow of 0.5 ml/min a distinct shift in threshold voltage to Vth, GFP = – 

2.48 V; ΔVth, GFP = 0.11 V was observed, which increased further to Vth, EDTA = – 2.37 V; 

ΔVth, EDTA = 0.22 V after unloading the monolayer with EDTA (100 mM). An almost 

complete recharging of the NTA groups in lipid monolayer with Ni
2+

 could be further 

achieved, confirming the reproducibility of the monolayer charging (see Supplementary 

Information section 9.1.3). For all monolayer charge states similar g values were found, 

indicating that the resistance of the monolayer system stayed constant over duration of the 
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measurements, with no degradation of the lipid monolayer discerned. The change in Vth 

from the Ni-loaded state to the unloaded state, ΔVth, EDTA = 0.22 V, can be understood by 

the change of net charges in NTA group. At the unloaded state and assuming complete 

dissociation the NTA-group carries a net charge of – 2 due to its free carbonate moieties. 

In the Ni-loaded state the net charge of the Ni-complex formed is – 1. Thus the surface 

potential of the lipid monolayer is negatively charged when unloading with EDTA, 

causing the change in carrier concentration, and with that Vth in the GaN HEMT. With the 

binding of eGFP though, the Ni-complex carries no net charge, but a weaker negative 

charging of the surface potential is still observed. This is attributed to the negative net 

charge of carried by eGFP itself at pH = 7.5. 

Table 5.2: Summary of threshold voltage Vth and transconductance g values at different 

monolayer charge states using 2 mol% DGS-NTA. The values were determined from 

linear regression of the transfer curves between VG = – 2.2 and – 1.8 V. 

state Vth [V] g [µS] 

Ni-loaded – 2.59 36.1 

eGFP loaded – 2.48 37.4 

unloaded (EDTA) – 2.37 36.9 

The changes in apparent VG induced by loading and unloading of the membrane were 

determined from the transistor the output curves (IDS vs. VDS). In Figure 5.6c the output 

curves of the transistor with Ni-loaded monolayer are shown for different applied gate 

potentials VG (red curves). Similar to the untreated transistor in Chapter 4 an increase in 

IDS with increasing VG was observed. For the eGFP-loaded and unloaded states a decrease 

in IDS was observed at constant VG = – 1.8 V, which corresponds to an apparent decrease 

in VG of ΔVG, GFP = – 0.1 V and ΔVG, EDTA = – 0.24 V respectively. These values 

correspond well to the determined shifts in Vth determined from the transfer curves. 

However, the observed shifts were less pronounced than the previously reported shifts in 

flat band potential Ufb for eGFP binding (ΔUfb = 0.44 V) and monolayer unloading (ΔUfb 

= 0.81 V) determined from impedance measurements on bulk GaN electrodes (Frenkel 

2014). This could be caused by the smaller deposition area of the gate region in the 

HEMT measurements. Still, the changes from the different charge states can be clearly 

distinguished, show the same tendency and a comparable ratio of the changes between the 

eGFP-loaded and unloaded state.  
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5.2.3 Resolution Limit of the Sensor 

In the next step the limits of this system to sense changes in the surface charge density 

were tested by deposition of a monolayer containing 0.5 mol % DGS-NTA chelator 

lipids. Transfer curves of the monolayer were measured in Ni-loaded (red), eGFP loaded 

(green) and unloaded (blue) states at constant VDS of 0.3 V as well. As expected, the shifts 

of the curves from changing the monolayer charge states observed in Figure 5.7a and b 

were not as pronounced as for the 2 mol% DGS-NTA containing monolayer. The lower 

amount of charged NTA groups in the monolayer express a reduced charge density at the 

HEMT surface. Thus, a reduced change in the surface potential upon loading and 

unloading is generated, leading to a reduced modulation of carrier density and change in 

Vth in the GaN HEMT. 

 

Figure 5.7: (a) Transfer curves (IDS vs. VG) of the DMPC/cholesterol/DGS-NTA 

(64.5/35/0.5 mol%) monolayer on ODTMS coated HEMT at unloaded (blue), Ni
2+

-loaded 

(red) and eGFP-loaded (green) states. (b) Magnification of the threshold region in the 

transfer curves. (c) Output curves (IDS vs. VDS) of the lipid monolayer at VG = – 1.8 V for 

the different monolayer charge states and various applied gate voltages for Ni-loaded 

state. 
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The changes in Vth and g upon protein binding and unloading of the monolayer with 0.5 

mol% DGS-NTA were determined by linear regression at same VG region (from VG = – 

2.1 V to VG = – 1.8 V) as for the 2 mol% DGS-NTA containing monolayer (Table 5.3). 

The addition of eGFP over three hours at constant flow of 0.5 ml/min led to a slight shift 

in Vth; ΔVth, GFP = 0.03 V from the Ni-loaded state. This change however is near the 

resolution limit of the HEMT determined from the variance in I-V characteristics (ΔVth = 

0.017 V) observed after repeated installations of the same transistor chip in the flow 

chamber (see Supplementary Information section 9.1.3), but could still be distinguished. 

The shift after unloading with EDTA; ΔVth, EDTA = 0.08 V on the other hand is clearly 

discernible, showing that the change of the molecular net charge of 1e
–
 between Ni-

loaded and unloaded states can be clearly determined at low charge densities. Further, no 

changes in transconductance g at the different monolayer charge states were determined 

as well (Table 5.3).  

Table 5.3: Summary of threshold voltage Vth and transconductance g values at different 

monolayer charge states using 0.5 mol% DGS-NTA. The values were determined from 

linear regression of the transfer curves between VG = – 2.2 and – 1.8 V. 

state Vth [V] g [µS] 

Ni-loaded – 2.37 39.9 

eGFP loaded – 2.34 40.1 

unloaded (EDTA) – 2.29 39.9 

As shown in Figure 5.7c, a decrease in IDS state (red) upon protein docking (green) and 

Ni-unloading (blue) of the monolayer from the Ni-loaded state was observed. From this 

decrease at VDS = 0.3 V the apparent change in VG induced by the change in surface 

potential between the different monolayer charge states was determined to Delta ΔVG, GFP 

= – 32 mV and ΔVG, EDTA = – 77 mV EDTA after protein docking and unloading of Ni
2+

 

respectively. These shifts were again similar to the determined ΔVth. Here, the shift after 

unloading is almost two times larger than after eGFP binding. This trend was similarly 

observed for the 2 mol% DGS-NTA containing lipid monolayer, suggesting a good 

stability and repeatability of these measurements even at the low membrane charge 

density from 0.5 mol % DGS-NTA. 

With an assumed molecular area per lipid of 0.65 nm
2
 in the fluid phase (Lantzsch et al. 

1996) and the amount of charged NTA lipids in the monolayer, the sensitivity of the 

HEMT to changes in surface charge density can be determined. In case of the monolayer 

incorporating 2 mol% DGS-NTA the change in molecular net charge by 1 e
–
 between the 

Ni-loaded and unloaded state yielded a sensitivity of ΔQ = 0.5 µCcm
-2

. With 0.5 mol% 

NTA, a change in charge density from Ni-loading and unloading of ΔQ = 0.1 μC/cm
-2
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could still be clearly resolved, which equates to a change of one elementary charge per 

130 nm
2
. Here, even the surface potential change in eGFP-loaded state could be 

distinguished, using GaN HEMT structures, which could not be shown in previous 

experiments on bulk GaN (Frenkel 2014). With ΔVth from eGFP docking being 

approximately half of the value observed from complete unloading of the monolayer, a 

possible resolution close to ΔQ = 0.05 μC/cm
-2

 is suggested. This demonstrates the great 

sensitivity achieved by this GaN/AlGaN/GaN heterostructures, which expressed a 

considerably improved sensitivity compared to other semiconductor materials, such as 

ITO; ΔQ = 2.2 μC/cm
-2

 (Hillebrandt et al. 2002) and GaAs; ΔQ = 0.9 μC/cm
-2

 (Gassull et 

al. 2008). 

One has to note that DGS-NTA is only completely deprotonated if pH ≥ pKa(NTA) = 

9.73. At pH = 7.5 during these measurements only a minor fraction of NTA lipids will 

carry a net charge of – 2. Thus, the actual change in net charge upon complexation with 

Ni
2+

 is smaller than 1 e
–
. This suggests that a much smaller change in the surface charge 

density occurs at this stage ans a significantly higher sensitivity towards the surface 

charge density is expected.With the degree of protolysis α for weak acids, 

    
  

 
 and    

          

 
          (5.1) and (5.2) 

Where Ka is the acid dissociation constant and c the acid (NTA) concentration, the 

amount of completely dissociated DGS-NTA can be calculated to α = 0.6%. 
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5.3 Towards Detection of Integral- and Transmembrane Protein 

Function in Polymer Supported Membranes on GaN/AlGaN/GaN 

HEMTs 

5.3.1 Surface Topography of the Cellulose Support 

In order to create sensor platform for the investigation of membrane functions mediated 

by integral and trans-membrane proteins, such as material and energy transport, signaling 

and cell adhesion (Saier et al. 2009), a nature-like membrane model is needed. Here, 

hydrated cellulose polymer films were used on GaN heterostructures to mimic the 

extracellular matrix, creating hydration pathways between semiconductor and membrane 

and acting as cushion to avoid direct protein-semiconductor contact and denaturation. The 

versatility of regenerated cellulose films with flexibly adjustable thickness and wetting 

properties (Schaub et al. 1993) allows for the fabrication of polymer cushions with 

defined structural and mechanical properties. In previous studies it has been shown that 

human erythrocyte membranes and sarcoplasmic reticulum membranes (Tanaka et al. 

2001) can be deposited on such cellulose polymers, using polymers with a dry thickness 

of approximately 5 nm 

First, the successful deposition by spin coating of the trimethylsilyl-substituted cellulose 

(TMSC) and subsequent regeneration in HCl vapor was confirmed by contact angle 

measurements. Spin coating of the 2.7 g/l TMSC solution resulted in a strongly 

hydrophobic surface, as shown by the high contact angle θ ~ 90° observed in Figure 5.8a. 

The trimethylsilyl- moieties create a so called ‘hairy-rod’ polymer, rending the former 

hydrophilic cellulose backbone hydrophobic. After cleavage of these moieties with HCl 

vapor the water contact angle on the dried surface sharply decreases to 18° (Figure 5.7b), 

confirming the successful regeneration of the cellulose polymer. 
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Figure 5.8: Contact angle of (a) TMSC coated Si; θ ~ 90° and (b) contact angle after 

regeneration of cellulose; θ ~ 18°. (c) AFM image of dry cellulose on Si after 

regeneration, image size is 10 x 10 µm. (d) AFM image of the scratched surface, image 

size is 1.5 x 1.5 µm and (e) the corresponding height profile of the scratch indicated with 

the solid blue line. The height difference between the film surface and the scratch track (5 

nm) suggests the formation of a peptide monolayer. 

The surface topography of the regenerated and dried film is shown in Figure 5.8c. The 

10 µm x 10 µm areas, recorded by contact mode AFM show that a homogeneous 

coverage of cellulose with a low defect density was achieved. This was reflected by the 

low mean square roughness of  σ = 0.5 – 0.7 nm obtained, which agrees well with values 

from previous reports (Rosetti et al. 2008) and supports the further formation of a 

homogeneous lipid membrane. In Figure 5.8d the scratch track produced by high force 

contact mode AFM in a small 0.5 µm x 0.5 µm area is shown. From the height difference 

between the cellulose film and the scratched area a thickness of the dry cellulose layer of 

d = 5 – 6 nm was determined, which was further confirmed by ellipsometry 

measurements.  

5.3.2 Lipid Membrane Formation 

To mimic and transduce membrane and membrane-protein functionalities, such as the 

creation of certain ionic concentration gradients and membrane potentials between 

cytosol and ECM by ion channels, into an electrical signal a high electrical resistance and 

thus low defect rate in the membrane is needed. The homogeneity of the membranes 

formed on the regenerated cellulose cushions was assessed by fluorescence microscopy 

for different lipid compositions and vesicle fusion and solvent exchange preparation 
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methods. Compositions of 55 mol%, 50 mol%  and 40 mol% DMPC or DOPC as matrix 

lipid, 5 mol%, 10 mol% and 20 mol% positively charged DMTAP and 39.8 mol% 

cholesterol, including 0.2 mol% texas-red-DHPE were used. Membranes using DMPC as 

matrix lipid and 20 mol% DMTAP showed the most homogeneous distribution in the 

fluorescence intensity (Figure 5.9). The use of lower DMTAP concentrations led to the 

appearance of more inhomogeneities and even phase separation in some cases. Stronger 

interaction forces between the positively charged DMTAP and cellulose hydroxyl-

moieties with increasing DMTAP ratio in the membrane cause an improved wettability of 

the cellulose polymer for the membrane. Membranes with 20 mol% DMTAP prepared by 

vesicle fusion further showed, at first, a similar intensity distribution as solvent exchange 

prepared membranes. For the latter membrane however an increase in inhomogeneities 

was observed over time, suggesting a better membrane stability gained from the vesicle 

fusion protocol. This is further expressed by the larger inhomogeneity observed at lower 

DMTAP ratios in the membranes prepared from solvent exchange (Figure 5.9, bottom). 

 

Figure 5.9: Fluorescence images of 0.2 mol% texas-red-DHPE containing lipid 

membranes on regenerated cellulose with different ratios of positively charged DMTAP, 

deposited by vesicle fusion (top) and solvent exchange (bottom).  

Even though the DOPC membrane should possess a higher mobility, due to the two 

double bonds in the DOPC fatty acids reducing the hydrophobic interaction between the 

lipid tails, more inhomogeneities and phase separation at lower DMTAP concentrations 

were observed as well as a reduced stability of the membrane over time. 

The mobility of the DOPC and DMPC membranes, as a measure for the capability of 

membranes to heal defects, was quantified by FRAP. Here, DOPC and DMPC 

membranes containing 20 mol% DMTAP were deposited by vesicle fusion, since these 
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membranes showed the most homogeneous coverage. Lateral diffusion coefficients D 

were determined from the intensity recovery after the fluorescence dye was bleached in a 

radius of 5 µm by a short pulse (200 µs) of high intensity laser light. 

 Figure 5.10: Normalized FRAP intensity recovery of the regenerated cellulose layer 

after deposition of (a) 40/20/40 mol% DOPC/DMTAP/cholesterol membrane and (b) 

40/20/40 mol% DMPC/DMTAP/cholesterol membrane with 0.2mol% Texas-Red.  

From the intensity recoveries shown in Figure 5.19, lateral diffusion coefficients of 

DDOPC = 0.8 ± 0.2 µm
2
/s and DDMPC = 0.3 ± 0.1 µm

2
/s with a mobile fraction 80 % and 

40% were found for the DOPC and DMPC membrane respectively. Compared to similar 

experiments on a 10 nm cellulose cushion using a lipid bilayer containing 65/30/5 mol% 

DOPC/cholesterol/DMTAP (D = 1.4 µm
2
/s) (Hillebrandt 2002) a slightly lower diffusion 

coefficients was observed for DOPC membrane. This is explained by the higher 

proportion of cholesterol used here, causing the membrane to form a liquid ordered phase 

with higher rigidity and thus a reduced lateral diffusion (Sigl et al. 1997). A further 

decrease in D and even fraction of mobile lipids was observed for the DMPC membrane. 

Since, in contrast to DOPC, the fatty acids in DMPC do not possess double bonds, 

stronger interaction forces between the lipid molecules are allowed, causing a tighter 

packaging of the lipid phase and further reducing the membrane mobility and fluidity. 

Although the self-healing capability is reduced, 40/20/40 mol% 

DMPC/DMTAP/cholesterol membranes deposited by vesicle fusion were used for further 

experiments, due to the improved homogeneity and stability compared to other lipid 

compositions. 

The formation of membrane (40/20/40 mol%) was further investigated by XRR on 

regenerated cellulose coated native oxide Si substrates. First, the thickness, SLD and 

roughness of the hydrated cellulose layer were determined from the reflectivity graphs in 

Figure 5.11 prior to the membrane formation (blue), using a 2 slab model. This model 

included representations for the SiO2 layer and the regenerated cellulose polymer that was 

hydrated in HEPES buffer. After membrane formation by vesicle fusion for 3 h the 

reflectivity graph was analyzed with 3 additional slabs for the lipid membrane (red), 
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describing the layer of the lower lipid head groups at the cellulose interface, lipid tails, 

and upper head groups at the lipid/water interface. 

 

Figure 5.11: Reflectivity graphs normalized by qz
4
 of the regenerated cellulose polymer 

on Si measured in HEPES buffer. The solid lines represent the fitting result (χ² < 0.02) of 

the experimental data (a) before (green circles) and (b) after membrane deposition 

(40/20/40 mol%)  (red circles). A respective scheme of the stratified model system is 

shown in the inset. 

The obtained best fit parameters (Table 5.4) for the regenerated cellulose layer prior to 

membrane deposition showed that the cellulose thickness increased approximately 2 

times upon hydration compared to the dry state thickness, measured by ellipsometry and 

AFM. This swelling of the cellulose polymer under buffer conditions agrees well with 

previous accounts, where an increase by the factor of 1.5 – 2 in cellulose thickness was 

observed (Hillebrandt et al. 2002). This is further accompanied by an increase in 

roughness from σ = 6 Å determined by AFM to σ = 12.5 Å. The obtained SLD of the 

cellulose layer of 7.3∙10
–6

 Å
–2 

also agrees well with a similar spin coated film fabricated 

by Rosetti et al. (Rosetti et al. 2008). 

By comparing the two reflectivity curves before (Figure 5.11a) and after membrane 

deposition (Figure 5.11b) one can clearly observe an increase in intensity at qz ~ 0.2 Å
–1

,
 

suggesting the successful formation of the membrane. One has to note that the membrane 

formation was performed on a different sample. 
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Table 5.4: Best fit parameters (χ² < 0.02) of the regenerated cellulose polymer on Si, 

hydrated in HEPES buffer. 

layer prior to membrane deposition after membrane deposition 

 d [Å] SLD [10
–6

 Å
–2

] σ [Å] d [Å] SLD [10
–6

 Å
–2

] σ [Å] 

lipid head group - - - 9.4 9.7 8.7 

lipid alkyl chains - - - 28.3 8.4 9.8 

lipid head group - - - 11.8 9.6 8.6 

regenerated 

cellulose 
110 7.3 12.5 129 9.3 4.8 

SiO2 16.0 18.6 6.7 16.7 18.6 4.1 

Here, a similar swelling of the hydrated cellulose layer to d = 129 Å was observed, while 

the cellulose interface roughness decreased compared to the state prior to membrane 

formation. Compared to solid supported membranes (Frenkel 2015) higher roughness 

values across the whole lipid membrane were observed, due to the intrinsic higher 

roughness of the cellulose support. This suggests the ‘healing’ of defects in the cellulose 

layer by formation of the lipid membrane, as undulations and other defects in the 

cellulose polymer are filled by the membrane. The obtained SLD though were smaller for 

the lipid head groups and higher for the lipid alkyl chains. This could possibly be caused 

due to the increased fraction of cholesterol in the membrane which is incorporated in lipid 

tail region near the head/tail interface, thus increasing the alkyl SLD and lowering the 

head group density. These results clearly indicate that a successful membrane formation 

over large area was achieved with little defects.  

5.3.3 Impact of Lipid Membranes on HEMT I-V-Characteristics 

The potential sensory capability of this membrane model was evaluated by depositing the 

regenerated cellulose and membrane (40/20/40 mol% DMPC/DMTAP/cholesterol) on 

GaN/AlGaN/GaN HEMT gate regions. Changes in the electrical I-V characteristics were 

analyzed before and after the cellulose and membrane deposition by recording the HEMT 

transfer characteristics as the gate voltage (VG) dependent drain-source current (IDS) at a 

constant source-drain voltage VDS = 0.3 V, as well as output characteristics as the VDS 

dependent drain-source current (IDS) at a constant VG = – 1.5 V. First, the influence of the 

regenerated cellulose deposition was investigated. Transfer (IDS – VG) and output (IDS – 

VDS) curves of the GaN HEMT were recorded before (black) and after the deposition and 

hydration for 15 min of regenerated cellulose (blue) in standard HEPES buffer (Figure 

5.12). The threshold voltage Vth and transconductance g values collected from the slope 

and linear regression at VG = – 1.75 ± 0.5 V of the transfer curves in Figure 5.12a show 

only a minor deviation from the untreated state (black) of Vth, untreated = – 2.27 V and 
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guntreated = 35.3 µS to Vth, cellulose =  – 2.25 V and gcellulose = 34.3 µS  after cellulose 

deposition (blue). 

 Figure 5.12: Influence of regenerated cellulose deposition on I-V characteristics of the 

GaN HEMT. Comparison between the untreated GaN HEMT (black) and the cellulose 

coated HEMT (blue) shows only minor changes in (a) transfer (ISD-VG) curves measured 

at VSD = 0.3 V and (b) output (IDS-VDS) curves measured at VG = – 1.5 V. 

Surprisingly, slightly stronger changes in the output characteristics (Figure 5.12b) were 

observed. Here, from the drop in IDS after cellulose deposition, the apparent change in VG 

can be equated to ΔVG, cellulose = 64 mV. Since the regenerated cellulose film becomes 

hydrated and swells in aqueous buffer (Hillebrandt et al. 2002, Rosetti et al. 2008), it acts 

electronically like an electrolyte layer. Most changes in surface dielectric structure 

incurred by cellulose deposition are thus screened by incorporation of water. The minor 

changes observed in I-V characteristics suggest that the regenerated cellulose film is 

almost completely hydrated.  

In the next step lipid membranes (40/20/40 mol% DMPC/DMTAP/cholesterol) were 

further deposited by vesicle fusion on the HEMT gate region. To demonstrate the 

potential of this system towards the sensing of biological processes occurring at the 

membrane, the membranes were subjected to a flow (0.25 ml/min) of 5 µM 

phospholipase A2 (Pla2) in Ca-buffer for 2 h. Transfer and output curves of the HEMT 

after deposition of cellulose (blue), lipid membrane (red) and Pla2 incubation (green) are 

presented in Figure 5.13.  
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Figure 5.13: (a) Transfer (IDS-VG) curves measured at VDS = 0.3 V of the HEMT after 

cellulose (blue) and lipid membrane (40/20/40 mol% DMPC/DMTAP/cholesterol) (red) 

deposition and subsequent rinsing with 5 µM phospholipase A2 (Pla2) in Ca-buffer for 2 

h (green). Threshold voltage Vth and transconductance g values were obtained from 

linear regression at VG = – 1.50 ± 0.25 V. (b) Output (IDS-VDS) curves measured at VG = 

– 1.5 V of the cellulose (blue), membrane (red) and Pla2 (green) washed HEMT.  

As seen in the transfer curves in Figure 5.13a, membrane deposition resulted in a 

significant decrease in transconductance g from 33.9 µS after cellulose deposition to 30.1 

µS (Table 5.5); Δg = – 3.8 µS, while Vth exhibited almost no changes. Since   
  

   
 

       the decrease in g due to membrane formation can be understood as a rise in 

resistance towards the gate potential, suggesting the successful formation of an electrical 

insulating membrane with a resistance of 0.26 MΩ. From the decrease in IDS after 

membrane formation in Figure 5.13b, the apparent change in VG that is “felt” by the GaN 

HEMT was estimated to ΔVG, membrane = 75 mV. These changes were almost completely 

reversed after Pla2 incubation. Pla2 cleaves one alkyl tail of the lipid fatty acid, leading to 

a destabilization and loss of insulating property of the membrane. This clear change in I-V 

characteristics observed  from the interaction of the enzyme with the membrane 

demonstrates the potential of this membrane sensor model  for further experiments, where 

the incorporation of trans membrane proteins, such as ion channels, could lead to a 

selective change in the resistance generated by the lipid membrane for certain ion species. 
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Table 5.5: Summary of threshold voltage Vth and transconductance g values the HEMT 

after deposition of regenerated cellulose, membrane (40/20/40 mol% 

DMPC/DMTAP/cholesterol) and after rinsing with 5 µM phospholipase A2 (Pla2) in Ca-

buffer. The values were determined from linear regression of the transfer curves between 

VG = – 1.50 ± 0.25 V. 

state Vth [V] g [µS] 

regenerated cellulose – 2.08 33.9 

lipid membrane – 2.04 30.1 

Pla2 – 2.06 33.8 

The Vth levels observed after membrane deposition however were not consistent between 

multiple measurements. As shown in Figure 5.14a and summarized in Table 5.6, a drastic 

change in Vth of ΔVth = – 0.26 V was also observed upon membrane formation, while the 

change in transconductance of Δg = – 3.3 µS was consistent with the previous 

measurement.  The consistent Δg = – 3 to – 4 µS observed further confirms the 

reproducibility of the decrease in g caused by the membrane. Similar to the previous 

measurement, the effect of the membrane on the I-V characteristics could be fully 

reversed by washing with isopropanol. This completely removed the deposited membrane 

and thus further suggests that the observed ΔVth and Δg were caused by the formation of 

the lipid membrane.  

 

Figure 5.14: (a) Transfer (IDS-VG) curves measured at VDS = 0.3 V of the HEMT after 

cellulose (blue) and lipid membrane (40/20/40 mol% DMPC/DMTAP/cholesterol) (red) 

deposition and subsequent rinsing with isopropanol for 10 min (light green).  
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Table 5.6: Summary of threshold voltage Vth and transconductance g values the HEMT 

after deposition of regenerated cellulose, membrane (40/20/40 mol% 

DMPC/DMTAP/cholesterol) and after rinsing with isopropanol. The values were 

determined from linear regression of the transfer curves between VG = – 1.50 ± 0.25 V. 

state Vth [V] g [µS] 

regenerated cellulose – 2.41 33.5 

lipid membrane – 2.67 30.2 

isopropanol – 2.35 34.8 

The large ΔVth suggests a change in surface potential of the HEMT occurred after 

membrane deposition.  Influences from the membrane charges itself should not be sensed 

by the GaN HEMT due to the hydrated cellulose cushion between membrane and 

transistor. The Debye length λD can be given as a measure for the sensitivity of the HEMT 

to potential changes occurring not directly on its surface (Lu et al. 2014). It describes the 

characteristic distance at which the potential exerted by a local charge decays to 1/e and is 

given by: 

     
       

      
                

 

 

   

    (5.3) 

where T, kB, NA and e have their usual meaning, ε0 is the permittivity of vacuum, εr the 

dielectric constant of the medium, here water (ε = 80) and I the ionic strength of the 

buffer, determined from its molar concentration bi and charge number zi of its i ion 

species.  

Taking the standard HEPES buffer used in these measurements λD = 2.9 nm is obtained. 

The cellulose polymer used here is thicker (ddry = 5nm) than λD, especially in its hydrated, 

swollen state, where its thickness is approximately 1.5 times higher than in its dry state 

(Hillebrandt et al. 2002, Rosetti et al. 2008). Hydrated cellulose that is saturated with 

water effectively screens the charges and dipoles in the membrane similarly to the bulk 

buffer, thus no effect on the surface potential should be observed from membrane 

deposition. The different ΔVth observed however might by an uncontrollable change in 

surface potential between semiconductor, the electrolyte like cellulose polymer and 

membrane insulator. 
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5.4 Summary 

Reversible modulation of surface charges was achieved by deposition of a supported lipid 

monolayer on ODTMS coated GaN heterostructures containing a defined amount of lipid 

anchors with NTA head groups (DGS-NTA (Ni)), allowing for the coupling of the 

histidine-tagged recombinant protein eGFP. After confirmation of the formation of a 

homogeneous ODTMS support with AFM and subsequent lipid monolayer formation and 

protein binding with XRR and fluorescence microscopy, clearly distinguishable changes 

in the GaN HEMT I-V characteristics and Vth were observed from protein complexation 

on the Ni-NTA groups and breaking of the complex with EDTA. The reversible change in 

Vth from loading and unloading of the monolayer with Ni
2+

 as well as protein binding 

demonstrated that a sensitivity towards the change of surface charge density and thus 

surface potential of ΔQ < 0.5 µCcm
–2

 was achieved using 2 mol% NTA lipids in the 

monolayer. The use of 0.5 mol% DGS-NTA further demonstrated that a much higher 

sensitivity than most other semiconductor materials close to ΔQ ≥ 0.05 µCcm
–2

 can be 

reached with these GaN heterostructures. 

In the next step the modulation of resistance towards VG was demonstrated by lipid 

membrane deposition on GaN heterostructures coated with regenerated cellulose polymer 

support. After determination of well defined thickness and roughness of the regenerated 

cellulose layer by AFM, the deposition of lipid bilayers by vesicle fusion on this thin 

polymer support displayed the best homogeneity and stability with high molar ratio of 

positively charged lipid from fluorescence microscopy measurements. Consistent Δg of –

 3 to – 4 µS in the I-V characteristics were achieved after membrane deposition resulting 

in an increase of the HEMT resistance towards the applied VG. Further digestion of the 

membrane by Pla2 enzyme could be observed as well in the I-V characteristics. The 

observed changes in Vth however were inconsistent. The distinguished Δg upon 

membrane deposition demonstrates the potential of this membrane model on the GaN 

heterostructure for the incorporation of membrane proteins, such as ion channels, and the 

detection of their functionalities by the change in membrane resistance towards the 

applied VG. 
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6. Towards Membrane Monolayer Models on OFET Biosensors 

6.1 Introcuction 

Biosensors based on organic field effect transistors (OFETs) are one of the more 

promising device applications in organic electronics. Due to their unique properties of 

sustainability, flexibility, lightweight and low energy consumption, as well as low 

production costs, OFETs have been extensively studied as one of the most promising 

building blocks for printable electronic devices such as displays (Yagi et al. 2008), 

sensors (Knopfmacher et al. 2014), and radio-frequency identification tags (Cantatore et 

al. 2014). However, biosensors based on OFETs are still not investigated extensively 

compared to other electrochemical biosensors. Research in OFETs and their advantages 

have been recently extended beyond electrical engineers and information displays to 

biomedical engineers and sensor applications (Lin and Yan 2012, Minami et al. 2014, 

Torsi et al. 2013, Hirschhaeuser et al. 2011), opening a way for the creation of novel 

biosensor device platforms. The key properties for OFETs to fabricate such devices are a 

high carrier mobility, low subthreshold swing and threshold voltage (Vth), together with 

an excellent compatibility of the organic semiconductor to solution- and low-temperature 

processes. Charge transport in field-effect transistors occurs at the interface between 

semiconductor and gate insulator. Thus, the minimization of structural and energetic 

disorders at the interface leads to an improved device performance. This can be achieved 

by the use of self-assembled monolayers (SAMs) as well as blends of insulating polymer 

and organic semiconductor (Smith et al. 2012, Lui et al. 2013, Hunter et al. 2014, 

Shiwaku et al. 2016) as an interfacial modification layer, resulting in lower subthreshold 

swing and controllable Vth. The carrier mobility of these often polycrystalline organic 

semiconductor materials however is limited by grain boundaries and defects (Verlaak et 

al. 2003). To overcome this limitation, a single crystal semiconductor thin film was 

developed by the group of Okamoto and Takeya et al. (Mitsui, Okamoto et al. 2014, 

Makita et al. 2017), using a combination of polymer blend methods and the continuous 

edge-casting method with a mixture of N-shaped π-conjugated octyl or nonyl substituted 

dinaphtho[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b’]dithiophene (DNBDT) and poly(methyl-

methacrylate) as insulating polymer (Figure 6.1) (Soeda, Okamoto et al. 2016). The 

interaction of N-shaped π-stacks an hydrophobic alkyl chains produces an ultra-thin film 

composed of a single-crystalline organic semiconductor on the top of an amorphous 

insulating polymer layer, achieving a high hole mobility of μ = 16 cm
2
 V

−1 
s

−1
, low 

threshold voltage of about − 5 V and low trap-density (Mitsui, Okamoto et al. 2014). 
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Figure 6.1: (a) π-stacks formation in the N-shaped DNBDT single crystal film. (b) 

Schematic OFET structure. The C9-DNBDT film is edge casted on n-type Si with a 100 

nm insulating polymer dielectric. (c) Top view of the DNBDT OFET. 

The well ordered crystalline structure of the alkyl chains in the DNBDT film creates a 

hydrophobic interface and the possibility to facilitate monolayer membrane models. This 

chapter details the exploration of biosensoric applications of this OFET system as support 

of membrane monolayer systems containing phospholipids and DGS-NTA chelator lipids 

for the reversible anchoring of proteins. 

6.2 Structural Characterization of the Organic Semiconductor Material  

Prior to membrane deposition topographic images were taken of the C8- and C9-DNBDT 

semiconductor surface in an area of 25 µm x 25 µm by contact mode AFM. The bulk C8- 

and C9-DNBDT samples were provided by Prof. Dr. T. Okamoto and Prof. Dr. J. Takeya 

(Univ. Tokyo) on glass and silicon substrates respectively.  Figures 6.2a – c show that 

large, lamella-like crystalline layers of the organic semiconductor DNBDT could be 

created by the drop-casting procedure. The rms roughness collected from an 25 µm x 25 

µm
 
area is 2.6 Å for the C8-DNBDT semiconductor. This value is dependent from the 

scan area, and the uniformity of the layer. As shown in Figure 6.2b larger scale defects 

could be observed with an increased surface roughness of 7.1 nm. Several smaller 

structures in the semiconductor layer were observed with discrete step heights of 

approximately 3 nm (Figure 6.2d1), which possibly corresponds to the length of a C8-

DNBDT molecule in a near upright orientation. Other discrete step heights of up to 8 nm 

were observed, suggesting the crystallization of C8-DNBDT molecules in multilayers.  
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Figure 6.2: (a) and (b) AFM images of the as received C8-DNBDT semiconductor with a 

scan area of 10 µm x 10 µm. Height map is given with a relative color scale. (c)  Height 

tack of (d1) C8-DNBDT and (d2) C9-DNBDT indicated by the blue line in Figure 1a and 

c respectively.  

The C9-DNBDT material on the other hand showed a more homogeneous coverage with 

an rms roughness of 1.2 nm (Figure 6.2c), suggesting the formation of considerable fewer 

defects compared to C8-DNBDT. Discrete step heights in the height track (Figure 6.2d2) 

of 3.5 – 4 nm were observed, which correspond well to the values obtained for the similar 

C10-DNBDT previously reported (Mitsui, Okamoto et al. 2014). Some 4 nm high 

artifacts and islets were observed as well, suggesting a small degree of multilayer 

formation also occurring for the C9 semiconductor.  To determine the thickness of the 

film more precisely on a larger scale, XRR measurements were performed.  
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First the reflectivity graph of the as received C8-DNBDT on glass substrate was 

investigated in aqueous buffer (HEPES), using a one slab model for the semiconductor 

layer (Figure 6.3a). The obtained best fitting parameters of the layer thickness d, 

scattering length density SLD and interface roughness σ are summarized in Table 6.1. 

Table 6.1: Best fit parameters (χ² = 0.02) of the as received C8-DNBDT organic 

semiconductor in aqueous buffer. 

layer thickness [Å] SLD [10
–6

 Å
–2

] roughness [Å] 

C8-DNBDT 20.2 11.9 6.2 

The obtained C8-DNBDT thickness dC8 = 20 Å is comparable to the AFM result for the 

discrete step height for one C8-DNBDT layer.  Compared to the thickness of the 

previously reported similar C10-DNBDT (dC10 = 41 Å) (Mitsui, Okamoto et al. 2014) 

however, a slightly lower thickness than expected was obtained. Sharp edges and 

inhomogeneities seen in AFM images and the high roughness possibly led to an 

underestimation of thickness by XRR. The RMS roughness of 6.2 Å collected over a 

large beam footprint of ~ 2 mm
2 

although, suggests the formation of a "molecularly" 

smooth film, while the SLD of C8-DNBDT (11.9 ∙ 10
–6

 Å
–2

) is reasonable compared to 

the value expected from a similar, chrysene-like crystal with a calculated SLD of 11.4 ∙ 

10
–6

 Å
–2

. 

 

Figure 6.3: Fresnel plots normalized by qz
4
of (a) as received C8-DNBDT organic 

semiconductor and (b) C8-DNBDT after deposition of a DOPC monolayer in HEPES 

buffer. (c) Logarithmic reflectivity curve and (d) Fresnel plot normalized by qz
4
 of C9-

DNBDT after deposition of a DOPC monolayer in HEPES buffer. 
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Figure 6.2b shows the C8-DNBDT semiconductor after DOPC monolayer deposition. A 

three slab model was employed including slabs for the C8-DNBDT layer, lipid alkyl 

chains and head groups, with the best fit parameters are summarized in Table 6.2. The 

appearance of the broad peak at qz = 0.25 Å
–1 

suggests the successful formation of the 

monolayer.  

Table 6.2: Best fit parameters (χ² = 0.02) of C8-DNBDT after vesicle fusion in aqueous 

buffer. 

layer thickness [Å] SLD [10
–6

 Å
–2

] roughness [Å] 

lipid head group 9.4 10.5 6.9 

lipid alkyl chains 15.2 7.4 7.9 

C8-DNBDT 27.3 11.3 3.3 

The total thickness of the lipid monolayer dDOPC = 24.6 Å is reasonable, while the values 

SLD of the head groups and hydrocarbon chains agree well with the previous studies 

(Frenkel 2015). The best fit results implied a slight increase in the thickness of C8-

DNBDT (Δd = 7 Å) and a decrease in the semiconductor interface roughness, which 

suggests that the local defects (Fig. 6.2) were healed by hydrocarbon chains of lipid 

molecules.  

XRR measurements for C9-DNBDT were performed on silicon substrate. This and higher 

the higher thickness of the organic semiconductor layer observed by AFM enables an 

improved structural characterization of the C9-DNBDT layer. Thus, C9-DNBDT was 

analyzed by a four slab model including additional representations for the C9 chains at 

the Si interface, separate DNBDT π-core system, the combined C9 and lipid alkyl chains 

and the lipid head groups (Table 6.3).  

Table 6.3: Best fit parameters (χ² = 0.05) of C9-DNBDT after vesicle fusion in aqueous 

buffer. 

layer thickness [Å] SLD [10
–6

 Å
–2

] roughness [Å] 

lipid head group 10.7 13.3 4.3 

lipid alkyl chains 

+ C9 Chains 
24.9 7.6 9.5 

DNBDT 25.3 12.6 3.3 

C9 Chains 11.6 7.6 6.7 

The appearance of the sharp peak at qz = 0.15 Å
–1 

(Figure 6.3c-d) could not be completely 

accounted for by the fit. Additional refraction and reflection events at the multilayer 

islets, observed by AFM, possibly cause a sharper peak and the divergence in the fit. 
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Nonetheless, reasonable thickness values for C9-DNBDT were obtained, which are 

comparable to the results from AFM measurements. For the lipid membrane similar 

thickness values as for C8-DNBDT were obtained as well.  

Higher SLD, thickness and roughness values of the lipid head groups suggest that an 

increased uniformity and density of the DOPC membrane is achieved on C9-DNBDT. 

The observed increase in SLD and d of the DNBDT layer compared to the C8-

semiconductor, while σ stays constant, suggests a tighter packaging of the semiconductor 

phase. This is possibly achieved by an improved immobilization and suppression of 

thermal fluctuation and thus increased stability of the film due to the stronger 

hydrophobic interaction of the longer C9 alkyl chains. However, an increased roughness 

at the interface between lipid alkyl chains and C9-DNBDT was determined, which could 

be caused by the appearance of larger islets, as seen in AFM measurements.  

6.3 Homogeneity and Fluidity of the Lipid Monolayer 

To further investigate the membrane formation and its self healing properties, a lipid 

monolayer using DOPC (2 mg/ml) with 0.2 mol% texas-red-DHPE was deposited by 

vesicle fusion on a cover slip coated with C8-DNBDT. By recording fluorescence images 

of the deposited membrane the quality and homogeneous distribution of fluorescence 

intensity was verified. Using FRAP the fluidity of the membrane was quantified by 

determination of the lateral diffusion coefficient D of lipids. The membrane deposition on 

C9-DNBDT was not investigated, since only the C8-DNBDT samples were provided on 

glass substrates. The inset in Figure 6.4a shows that a homogeneous coverage with a 

DOPC monolayer on C8-DNBDT is achieved with little defects, supporting the “healing” 

of defects by the lipid monolayer observed by XRR. This is aided by the high lateral 

diffusion coefficients of the membrane, determined by FRAP measurements with a bleach 

spot with the radius of 5.75 µm. From 3 independent measurements a diffusion 

coefficient of DDOPC = 1.6 ± 0.1 µm
2
/s was obtained for the DOPC membrane. This value 

is comparable to the values on hydrophobic polymer supports of D = 1.0 – 1.5 μm
2
/s (Sigl 

et al. 1997). The high homogeneity and fluidity of the membrane achieved confirm that 

the well ordered layers of octyl chains in the C8-DNBDT crystals can be employed as an 

excellent support for lipid membranes. Membrane formation was stable and showed little 

defects for at least three cycles of membrane deposition and removal with isopropanol on 

the same sample. 
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Figure 6.4: (a) FRAP and Fluorescence image (inset) of C8-DNBDT with DOPC 

monolayer containing 0.2 mol % texas-Red. b) Homogeneity and mobility of the 

recombinant proteins anchored on the lipid monolayer. FRAP and Fluorescence image 

(inset) of C8-DNBDT with lipid DS-Red stained lipid monolayer containing 2 mol % 

DGS-NTA. 

To determine the mobility of anchored recombinant proteins in the membrane, 2 mol% 

DGS-NTA was incorporated in the DOPC vesicles. His-tagged DS-red monomers were 

added to the sample after vesicle fusion and incubated for further 30 min at 38°C. Here 

DS-red was used since its excitation wavelength (λex,DS-red = 561 nm) does not conflict 

with the auto fluorescence of C8-DNBDT (λex,C8-DNBDT = 488 nm) (see Supplementary 

Information section 9.1.4). Assuming a homogeneous distribution of DGS-NTA, 2 mol% 

in the lipid phase correspond to an intermolecular distance of 5.7 nm (Frenkel 2015). 

With the diameter of a DS-red monomer of ~ 6 nm, this constitutes to a full coverage of 

the surface. The inset in Figure 6.4b indeed shows a mostly homogeneous distribution of 

DS-red in on the membrane, however with few aggregates formed and a lower intensity 

than the membrane with texas-red-DHPE. The observed diffusion coefficient DDS-red = 

1.5 ± 0.3 µm
2
/s is similar to the pure DOPC membrane and suggests that the binding of 

recombinant proteins imposes no restriction to the membrane fluidity and self healing 

properties. However, some restriction in the lateral diffusion of lipids is seen from the 

decrease in mobile fraction. Compared to the pure DOPC membrane, with approximately 

90 % mobile lipids, the mobile fraction of immobilized DS-red proteins is only 63 %. 

This restricted mobility is possibly caused by the high surface coverage achieved with 2 

mol% DGS-NTA, causing a tighter conformation of DS-red proteins on the surface and a 

higher degree of immobilization. 
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6.4 I-V Characteristics  

The base operation of the provided transistor structures of both C8- and C9-DNBDT on 

Si substrates (Figure 6.1b) in aqueous medium was investigated before membrane 

deposition. Threshold voltage Vth and transconductance g values were extracted from 

linear regression in the measured transfer curves between VG = – 5 V and 5 V for C8-

DNBDT and between VG = – 15 V and – 20 V for C9-DNBDT and are summarized in 

Table 6.4. The Performance of the C8-compound was first tested in air by using three 

contact pins with one acting as a back gate contact and the other two as source and drain 

contacts. Even in air C8-DNBDT expressed instability between subsequent 

measurements, in the observed threshold voltage (ΔVth,-20V = 11 V), especially at the 

applied drain voltage of – 20 V (Figure 6.5a). This change in Vth interestingly is much 

less pronounced at VDS = – 10 V, with only ΔVth,-10V = 2 V observed. The 

transconductance though, was not strongly affected and was comparable between the two 

measurements for both applied drain voltages. Compared to the values of a similar 

compound (Mitsui, Okamoto et al. 2014) much higher Vth and lower currents IDS, max at VG 

= – 20 V than expected were contained. This suggests a possible degradation of the 

semiconductor layer even in air, which could be caused by large scale defects observed 

for C8-DNBDT. 
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 Figure 6.5: Transfer curves of C8-DNBDT at (a) VDS = – 20 V and (b) VDS = – 10 V in 

air and aqueous buffer (HEPES). Transfer curves at (c) VDS = – 20 V and (d) VDS = – 10 

V of C9-DNBDT in aqueous buffer. IDS after subtraction of leak current are shown. 

Further measurement of the C8-DNBDT transistor in HEPES buffer led to an almost 

complete loss in conductance. This loss of conduction could be caused by partial 

dissolution of the semiconductor phase and water penetration into defects, creating a 

conduction path between gate and drain electrode and thus disrupting the transistor 

operation. Due to the already high variation of the transistor output in air and strong 

decrease of conduction in aqueous buffer, lipid membranes were not deposited on the C8-

DNBDT samples. 

Table 6.4: Summary of threshold voltage Vth and transconductance g extracted from 

linear regression between VG = – 5 V and 5 V for C8-DNBDT and between VG = – 15 V 

and – 20 V for C9-DNBDT. 

measurement g [µS] 

(–10V) 

Vth [V] 

(–10V) 

g [µS] 

(–20V) 

Vth [V] 

(–20V) 

C8-DNBDT air, 0 min  1.1 9.5 2.1  0.3 

C8-DNBDT air, 10 min 1.1 11.6  1.9  11.5 

C9-DNBDT 0h, HEPES 16.6 – 9.5 14.9  2.6 

C9-DNBDT 4h, HEPES 10.7 – 10.3 12.5 – 7.1 

C9-DNBDT 6h, HEPES 6.8 – 9.8 4.7 2.5 
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From the better quality of the organic semiconductor film determined by AFM and XRR, 

an improved operation in the transistor I-V characteristics is expected for C9-DNBDT. 

Indeed the transistor performance of C9-DNBDT could be confirmed in buffer 

conditions, as shown in Figure 6.5c and d. Higher currents IDS, max at VG = – 20 V than for 

C8-DNBDT in air were obtained, confirming the increased quality of the of the C9 

organic semiconductor film. Large leak currents (IG) up to 100 µA were observed (see 

Supplementary Information section 9.1.4) even after careful insulation of the source and 

drain contacts from the surrounding electrolyte. This however causes most of the 

observed current to run between the source and gate electrodes and not to rech the drain 

electrode. These currents were subtracted from IDS shown in Figure 6.5. The obtained IDS 

current levels at the source electrode and Vth at VDS = – 10 V (Table 6.4) were comparable 

to similar C10 compound previously reported (Mitsui, Okamoto et al. 2014). Vth were 

largely constant over several hours as well, but displayed a large shift between the two 

drain voltages applied. Degradation in the transistor performance over time however was 

also observed, primarily in the decrease in IDS, max and thus transconductance g. 

Transconductance values decreased approximately 60% over 6h at both applied drain 

voltages. This can also be explained by partial dissolution of the semiconductor phase at 

the lamella like crystal edges, increasing the barrier for conduction and leading to a 

reduction in electron mobility in the semiconductor crystal. Thus an increase in resistance 

and decrease in transconductance is observed. In further experiments the stabilization of 

the C9-DNBDT semiconductor by membrane deposition will be investigated. 

6.5 Summary  

The C9-DNBDT semiconductor showed the most promise as membrane support from 

high film homogeneity measured in AFM as well as high semiconductor layer and lipid 

membrane density determined by XRR. Further, repeatedly high membrane uniformity 

and mobility of a DOPC membrane could be achieved on C8-DNBDT. The I-V 

characteristics of C8-DNBDT however showed too large instabilities in Vth and 

drastically reduced conductivity in aqueous buffer for further investigation. For C9-

DNBDT though, the transistor operation could be confirmed in buffer conditions. Here, 

determined Vth were largely stable, but transconductance values decreased approximately 

60% over 6h, showing the necessity for stabilization of the semiconductor phase in 

aqueous medium. This could be achieved by covalently linking the semiconductor SAM 

to the surface or introduction of thin stabilizing coating or possibly membrane deposition. 
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7. Conclusions 

In this thesis new electrochemical biosensor systems were fabricated to transduce 

biological functions of lipid membrane systems and bio-inspired molecules into electrical 

readouts. 

In Chapter 4, a new strategy for the modulation of electronic band structures of GaN 

semiconductors and GaN/AlGaN/GaN HEMT heterostructures was examined using the 

macromolecular dipole potentials induced by synthetic α-helical peptides. 

Functionalization steps of the substrates with aminosilane (APTES) and formyl 

terminated peptides (F8OME, Boc8F and F8Fc) were first optimized on bulk GaN 

electrodes. The same functionalization protocol was then transferred onto GaN 

heterostructures. First the surface topography before and after peptide grafting was 

examined. A rise in rms roughness from σ = 3 Å before grafting to σ = 5 – 6 Å after 

grafting was determined for all peptides by contact mode AFM in an 1.5∙1.5 μm
2 

area, 

confirming that the deposition of peptides did not lead to a significant roughening of 

substrates. Thicknesses of 13 Å, 15 Å and 18 Å were determined from AFM scratching 

for F8Fc, F8OMe and Boc8F respectively, further confirming the formation of a peptide 

monolayer. Additionally, XPS spectra were taken before and after each functionalization 

step, exhibiting a decrease in peak intensity for both Ga3d and N1s after subsequent 

formations of the APTES and peptide layers. Presence of the Fe2p peak from the 

ferrocene moiety was detected as well for the F8Fc peptide. Fine structures of the 

stratified layers were further obtained by XRR within Ångström accuracy, yielding the 

peptide layer thickness of dF8Fc = 14.8 Å, dF8OMe = 16.4 Å and dBoc8F = 16.9 Å, which 

agree well with results from AFM scratching. These obtained peptide thicknesses were 

lower than their theoretical length, suggesting a tilted conformation of the peptide helix 

with tilt angles determined to θF8Fc = 55.3°, θF8OMe = 30.3° and θBoc8f = 35.5°. The areas 

occupied by one peptide molecule could be estimated as well from the XRR results to 

AF8Fc = 185 Å
2
,
 
AF8OMe = 174 Å

2
 and ABoc8F = 134 Å

2
. 

In the next step, the electrochemical properties of the grafted peptide layer was 

investigated on bulk GaN electrodes with a doping ratio of ND = 1∙10
20

 cm
−3

 to ensure a 

high detection sensitivity. Electrochemical impedance spectroscopy was employed over a 

wide frequency range (100 kHz – 50 mHz) to discriminate changes in the resistive and 

capacitive contributions in the semiconductor upon peptide grafting. Using equivalent 

circuit models variation in the space-charge capacitance CSC, peptide layer capacitance 

Cpep, phase transfer resistance RPT and Warburg impedance W were determined, as well as 

the flat band potential UFB from Mott-Schottky analysis. A linear behavior in the Mott-

Shottky plots was observed for all peptides, ensuring that the semiconductor operates in 
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the depletion region, where it is highly sensitive towards capacitance changes. Here, the 

GaN semiconductor exhibited a change in CSC dependent on the direction of the peptide 

dipole potential. Both F8OMe and F8Fc peptides, whose dipole moments point towards 

the GaN interface, caused an similar increase in CSC from CSC(APTES) = 3.88 μFcm
−2

,
 
prior 

to peptide grafting, to CSC(F8OMe) = 4.33 μFcm
−2 

and CSC(F8Fc) = 4.39 μFcm
−2

. For the 

Boc8F peptide conversely, the dipole moment direction is inverted and a decrease in CSC 

to CSC(Boc8F) = 3.26 μFcm
−2

 was observed. This dependency on the dipole direction was 

also reflected in the changes in UFB that were determined to ΔUFB,F8Fc = 0.23 V, 

ΔUFB,F8OMe = 0.21 V and ΔUFB,Boc8F = – 0.12 V. Additionally, Cyclic voltammetry 

confirmed the possible electron transfer through the peptide layer for the F8Fc peptide by 

the appearance of distinct oxidation peaks at U = – 0.16 V. The anodic reduction peaks 

however could not be clearly discerned at lower scan speeds. The standard electron 

transfer rate constant ket
0
 = 0.91 s

−1
, determined by chronoamperometry meanwhile 

suggested that the electron transfer can occur via an inelastic hopping mechanism along 

the peptide helix. 

Finally, the grafting protocol was transferred onto GaN/AlGaN/GaN heterostructures 

Transfer and output curves were measured after each functionalization step to record 

changes in the transistor I-V characteristics. For this threshold voltage Vth and 

transconductance g values were determined from the linear region in the transfer curves. 

Similar to the changes in UFB, an increase in Vth of ∆Vth = 140 for F8Fc, ∆Vth = 160 mV 

for F8OMe and a decrease of ∆Vth = – 140 mV for Boc8F were observed upon peptide 

grafting, caused by the different polarity of the dipole potential exerted by the peptide 

helix. From the transistor output curves these dipole potentials could be determined to 

∆VG(F8Fc) = – 0.16 V, ∆VG(F8OMe) = – 0.29 V and ∆VG(Boc8F) = + 0.28 V, allowing in turn 

the calculation of the macromolecular dipole moments exerted perpendicular to surface 

by the peptides to ρF8OMe = – 8.1 D, ρBoc8F = 7.1 D, and ρF8Fc = – 5.5 D. These 

measurements demonstrated that a higher sensitivity towards the molecular dipole 

moment could be reached on GaN heterostructures than for other semiconductor 

materials. 

In Chapter 5.2, GaN heterostructures were functionalized with planar ODTMS supported 

lipid membranes to create a novel electrical sensor platform for the detection of the 

reversible recombinant protein binding on lipid monolayers. Using a defined amount of 

lipid anchors with NTA head groups (DGS-NTA (Ni)), which allows for the 

complexation of histidine-tagged recombinant proteins (e.g. eGFP), this system enables 

the transduction of the surface charge density variations ΔQ, induced by reversible 

complexation/de-complexation of chelator lipids and histidine-tagged proteins, into 

changes in the HEMT I-V characteristics. First the deposition of the ODTMS support with 
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low roughness σ = 0.9 nm was verified by AFM on bulk GaN substrates. The formation 

of a well defined and homogeneous lipid monolayer further confirmed by XRR and 

fluorescence microscopy on Si and glass substrates respectively. This monolayer system 

was then transferred on the GaN heterostructure and its I-V characteristics recorded at the 

different monolayer charge states (Ni-loaded, eGFP-loaded and unloaded).  

For the lipid monolayer containing 2 mol% NTA lipids, the threshold voltage Vth 

determined from the linear region in the transfer curves exhibited a clear increase from 

the Ni-loaded state; Vth, Ni = – 2.59 V upon complexation of eGFP; Vth, GFP = – 2.48 V, 

while the transconductance g was constant throughout all measurements. The dissolution 

of the Ni-histidine-complex by EDTA showed a further increase in Vth to Vth, unloaded = – 

2.37 V. While the reversibility of the Ni loading/unloading has been shown, the 

reproducibility of the protein docking has yet to be verified. 

Using 0.5 mol% NTA lipids, the switching between Ni-loaded; Vth, Ni = – 2.37 V and Ni-

unloaded states; Vth, unloaded = – 2.29 V were still distinguishable. However, only a minor 

increase in Vth after eGFP complexation to Vth, GFP = – 2.34 V that is near the thermal 

fluctuation in the I-V characteristics was observed. With this amount of NTA lipids it 

could be demonstrated that a sensitivity of ΔQ < 0.1 μCcm
-2

 can be reached, which 

corresponds to the sensitivity to a change in one elemental charge in less than 130 nm
2
. 

The high sensitivity achieved demonstrates the further potential of this GaN HEMT 

sensor platform for other processes occurring at the membrane, such as antibody/antigen 

recognition and cell-cell interactions. 

In Chapter 5.3 the deposition of lipid membranes on GaN heterostructures coated with 

regenerated cellulose polymers was explored, in order to fabricate a sensor platform for 

the study of membrane and membrane protein functionalities. The use of the regenerated 

and hydrated cellulose polymer as a membrane support allows for the incorporation of 

trans- and integral membrane proteins in a nature like environment. First, the deposition 

protocol of the regenerated cellulose was optimized on Si substrates. A thickness d of 5 

nm and hydrophilic surface with low roughness σ = 0.6 nm was confirmed by AFM, 

contact angle and ellipsometry measurements. 

Lipid bilayer deposition on the hydrated cellulose was investigated by fluorescence 

microscopy with different lipid compositions and deposition methods, where membranes 

deposited by vesicle fusion and containing 40/20/40 mol% DMPC/DMTAP/cholesterol 

exhibited the highest homogeneity and stability. Diffusion coefficients of DDMPC = 0.3 ± 

0.1 µm
2
/s were determined by FRAP for this membrane with a mobile fraction of 40%, 

indicating that the deposition of a dense membrane, which is limited in its self-healing 

properties, was achieved.  
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The impact of the membrane deposition on the GaN HEMT I-V characteristics was 

investigated in the next step. Here, consistent decreases in transconductance Δg of – 3 µS 

to    – 4 µS were determined from the slope of the linear region in the HEMT transfer 

curves after membrane deposition by vesicle fusion. Further, interaction of enzymes with 

the membrane could be demonstrated by the digestion of phospholipids in the membrane 

by phospholipase A2. After incubation with phospholipase A2 the effects from the 

membrane deposition on the I-V curves was completely reversed. Vth after membrane 

formation however was inconsistent over multiple measurements. Nonetheless, these 

results demonstrate the first steps towards a sensor for the investigation of integral or 

trans membrane protein functions, such as ion channels. The incorporation of such 

proteins could lead to a modulation of Δg, depending on different ion species present in 

the buffer. 

In chapter 6 the first steps towards a new class of biosensors utilizing novel organic 

semiconductor substrates provided by Prof. Dr. T. Okamoto and Prof. Dr. J. Takeya 

(Univ. Tokyo) is explored. N-shaped DNBDT molecules with octyl- (C8) and nonyl- (C9) 

alkyl chains self assemble into a highly conductive single crystalline layer. As observed 

by AFM a lamella like structure of the single crystals is formed, where, as evidenced by 

the higher roughness, a higher defect rate for C8-DNBDT (σ = 2.4 nm) was observed than 

for the C9 semiconductor (σ = 1.2 nm). Successful lipid monolayer formation over a wide 

area could be confirmed by XRR for both materials, whereas an increased SLD of the 

lipid head groups was determined for the C9-semiconductor, suggesting an improved 

monolayer density on this material. The homogeneity and fluidity of DOPC monolayers 

were verified by FRAP, yielding a high lateral diffusion coefficient of DDOPC = 1.6 ± 0.1 

µm
2
/s and the mobile fraction of 90 %. The immobilization of DS-red monomers onto 

this monolayer led to no clear impact on the lateral diffusion (DDS-red = 1.5 ± 0.3 µm
2
/s). 

However, a smaller mobile fraction of 63 % was detected for the immobilized proteins 

than for the pure lipid monolayer.   

First tests to measure the I-V characteristics of C8-DNBDT in aqueous buffer resulted in 

the disruption of its conductive behavior. For C9-DNBDT, operation in aqueous buffer 

could be confirmed with relatively stable Vth. The transconductance of the transistor 

however decreased approximately 60% over 6h, indicating a degradation of the 

semiconductor material. These result indicated the need for further stabilization of the 

organic semiconductor layer in water. 

In conclusion, novel hybrid bioelectronic materials could be fabricated by the 

combination of GaN-based semiconductor and heterostructures devices with biomimetic 

or biological systems, such as supported membranes and peptide monolayers, 

demonstrating high sensitivities towards changes in their electronic environment. These 
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materials proved to be a promising tool for the transduction and quantification of 

functions and processes in biological systems into an electronic readout. 
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8. Appendix I 

8.1 Structural Characterization of Aptasensors on Graphene Oxide 

Structural analysis of two different apatsensors for protein recognition, provided by Dr. 

Yuko Ueno and NTT Research Laboratories (Japan), was performed by XRR to confirm 

the mechanism of the sensor. The provided aptasensors were grafted with a pyrene linker 

onto a graphene oxide coated silicon wafer (Figure 8.1) and further consist of a specific 

single stranded aptamer sequence with a fluorescence dye coupled to it. In this state the 

fluorescence of the dye is quenched by the close proximity of the dye to the graphene 

oxide surface. Upon addition of the corresponding protein or aptamer sequence specific to 

the one used in the sensor the fluorescence signal is observed. As proposed by Ueno et al. 

the hybridization of the aptamer in the sensor causes the detachment of the dye from the 

surface and thus enabling the fluorescence (Furukawa, Ueno 2013, Ueno 2015). 

 

Figure 8.1: Schematic illustration of the aptasensor on graphene oxide. Before 

hybridization the single stranded aptasensor is collapsed and the fluorescence dye is 

quenched by the graphene oxide. After hybridization with the corresponding strand, the 

dye is lifted up and the fluorescence signal is observed.   

The two aptamer sequences used for the analysis of structural changes upon hybridization 

are abbreviated with T for the sequence with 15 nucleic acids and P for the sequence with 

37 units (Figure 8.1). Both aptamer sequences were used without fluorescence dyes. 
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Figure 8.2: XRR curves in Fresnel plot of (a) the graphene oxide on Si in air, (b) T 

aptamer before (red) and after (green) hybridization and (c) P aptamer before (red) and 

after (green) hybridization in aqueous buffer. Symbols represent the experimental data 

and the solid lines the fitting result respectively. 

Thickness d, scattering length density (SLD) and roughness σ parameters were 

determined by XRR for the graphene oxide layer without aptasensor and with the grafted 

aptasensor before, as well as after hybridization using the slab model for each layer. 

Figure A.B shows that the data could be well fitted with a two slab model for the native 

SiO2 and graphene layers and a three slab model for the additional aptamer layer. The 

best fit parameters are summarized in Tables 8.1 – 8.5. The native SiO2 thickness for all 

samples was 12 – 13.5 Å, while the obtained roughness was 3.5 – 4.5 Å. For the graphene 

layer a thickness of 8.3 Å with roughness of 6.6 Å was obtained (Table 8.1), suggesting a 

mostly uniform layer. The SLD of 14.7∙10
–6

Å
–2 

is in a good agreement with the SLD 

estimated from the density of natural graphite (17.8∙10
–6

Å
–2

). 

Table 8.1: Best fit parameters (χ
2
 < 0.02) for graphene oxide layer on Si in air: 

layer thickness [Å] SLD [10
–6

Å
–2

] roughness [Å]  

graphene oxide 8.3 14.7 6.6  

native SiO2 12.8 18.9 3.5  

Comparable parameters for the graphene layer were also obtained for the samples with 

deposited aptamer. The SLD obtained for the T aptamer before hybridization (SLDT,ss = 

7∙10
–6

Å
–2

) agrees well with half of the value expected for double stranded DNA  
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(11.6∙10
–6

Å
–2

) (Erokhina 2007). Assuming the length of 3.4 Å per nucleic acid the 

expected length for the short T aptamer (15 units) is about 51 Å. However, the obtained 

thickness dT,ss = 6.5 Å (Table 8.2) of the layer is significantly lower. This can be 

explained by the persistence length of 2.2 nm of single stranded DNA (Chi 2013) lower 

than the theoretical length of the aptamer, causing the collapse of the aptamer to the 

surface. 

Table 8.2: Best fit parameters (χ
2
 < 0.02) for the single strand (ss) T aptamer in aqueous 

buffer (10 mM PBS, 100 mM NaCl, pH 7): 

layer thickness [Å] SLD [10
–6

Å
–2

] roughness [Å]  

T aptamer (ss) 6.5 7 5.3  

graphene oxide 8.4 14.8 4.1  

native SiO2 13.5 18.9 3.5  

After hybridization by incubation for 4h at 37 °C with a 50µg/ml solution of the 

complementary T aptamer to the double stranded aptasensor, a clear change in the curve 

profile can be seen (Figure 8.2b and c), suggesting a significant change in the aptamer 

layer. 

Table 8.3: Best fit parameters (χ
2
 < 0.02) for the double stranded T aptamer after 

hybridization in aqueous buffer (10 mM PBS, 100 mM NaCl, pH 7): 

layer thickness [Å] SLD [10
–6

Å
–2

] roughness [Å]  

T aptamer (ds) 21.2 11.4 28.3  

graphene oxide 8.4 12.8 6.9  

native SiO2 12.9 18.9 3.5  

A major increase in thickness to 21.2 Å and roughness to 28.3 Å with a rise in SLD, 

which is in a good agreement with the expected SLD of a double stranded DNA, is 

observed (Table 8.3). These findings confirm the successful hybridization of the 

aptasensor and suggest a change in layer conformation and detachment of the aptasensor 

from the surface. With the persistence length of ~50 nm (Manning 2006) for the double 

stranded DNA, that is far larger than the estimated length of the aptasensor, the 

hybridized aptasensor is more rigid and takes up a rod-like, tilted conformation. The 

estimated tilt angle from the theoretical and obtained layer thickness is 65° from the 

surface normal.  

A similar trend is observed for the longer P aptamer (37 units) with a theoretical length of 

125 Å. In case of the single stranded aptasensor before hybridization the obtained 

thickness and SLD is about twice as high as for the shorter T aptamer (Table 8.4). 
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Additionally a significantly larger roughness of 16.2 Å is observed as well.  While the 

low thickness of 13.7 Å compared to the expected aptamer thickness suggests the 

collapsed state of the aptasensor, the increased SLD and roughness could be caused by 

the formation of aptamer stacks. As the P aptamer length far exceeds the persistence 

length of the single stranded DNA, the aptamer chain can take a random orientation and 

conformation. 

Table 8.4: Best fit parameters (χ
2
 < 0.02) for the single strand (ss) P aptamer in aqueous 

buffer (10 mM PBS, 100 mM NaCl, pH 7): 

layer thickness [Å] SLD [10
–6

Å
–2

] roughness [Å]  

P aptamer (ss) 13.7 11.9 16.2  

graphene oxide 8.5 12.4 4.6  

native SiO2 12.2 18.9 4.6  

Upon hybridization a similar strong increase in the aptamer thickness to 60 Å and a 

similar roughness of 23.3 Å to the T aptamer is observed (Table 8.5). This confirms the 

detachement of the aptasensor from the surface, as the aptamer chain becomes more rigid. 

The tilt angle fron the surface normal of the double stranded T aptamer is estimated to 

61°. 

Table 8.5: Best fit parameters (χ
2
 < 0.02) for the double stranded P aptamer after 

hybridization in aqueous buffer (10 mM PBS, 100 mM NaCl, pH 7): 

layer thickness [Å] SLD [10
–6

Å
–2

] roughness [Å]  

P aptamer (ds) 60 11.2 23.3  

graphene oxide 8.6 12.0 7.0  

native SiO2 12.0 18.9 3.5  

The proposed mechanism of the detachment of the aptasensor upon hybridization with the 

corresponding aptamer can be confirmed from the increase in thickness and roughness 

after hybridization for both investigated aptamers.  Fit parmeters after hybridization 

suggest a tilted conformation of the aptamers with a tilt angle of ~60°. 
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8.2 Electrochemical Analysis of a Liquid Crystalline Ion Selective 

Membrane on GaN 

The electrochemical analysis for the ion selective membrane samples, kindly provided by 

Prof. Takashi Kato (Tokyo University), was performed with impedance spectroscopy and 

chronoamperometry on the bulk GaN semiconductor (Nd(Ge) = 5∙10
19

 cm
–3

). The 

membrane deposited on GaN consists of wedge-shaped liquid crystal molecules with a 

small triethyl-amino head-group and larger hydrophobic body. This molecule polymerizes 

into bicontinuous cubic phase (Cubbi) through nanosegregation between its ionic and non-

ionic parts, and forms ionic nanochannels (Henmi, Kato 2012, Sakamoto 2018). The 

formed nanochannels have a pore size of ~ 0.6 nm and its walls are formed by triethyl-

amino head-groups. This membrane shows high ion selectivity, where the permeation of 

monovalent anions is inhibited compared to divalent anions. For instance, with a 

thickness of 50 – 100 nm of the polymerized liquid-crystalline molecule, a rejection rate 

of 58 % for chloride ions and 33 % for sulfate ions was reported by Kato et al. (Henmi, 

Kato 2012).  To investigate the anion selectivity of this membrane between mono and 

divalent anions, MgSO4 (10 mM HEPES with 10 mM MgSO4, pH = 6.5) and MgCl2-

Buffer solutions (10 mM HEPES with 10 mM MgCl2, pH = 6.5) were used. Impedance 

spectra were first recorded at Ubias = ± 400 mV to simulate the working pressure of 0.75 

MPa used by Kato et al. At Ubias = + 400 mV the membrane coated GaN electrode is 

negatively charged and the electric field between reference electrode and the GaN 

electrode causes cations to diffuse to the membrane and an cation pressure of 0.75 MPa. 

At Ubias = – 400 mV anions diffuse to the membrane, allowing the investigation of the 

anion selectivity. Ten measurements were taken for each salt and bias potential condition 

with additionally 10 min of bias potential applied before each measurement. To avoid 

hysteresis, the membrane was exposed to the continuous flow of deionized water for 1 h 

between the measurement cycles. 
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Figure 8.3: Nyquist plot of the raw impedance data showing (a) a steady change in the 

spectra at negative applied bias potentials and (b) almost no change at positive Ubias. 

Figure 8.3 shows the Nyquist plots of the impedance spectra recorded over 7 h for both 

salt buffers used. At Ubias = + 400 mV no distinct changes in impedance observed, 

suggesting no permeation of cation into the membrane. At Ubias = – 400 mV however, a 

continuous change in the spectra is observed, confirming the permeation of anions into 

the membrane. All spectra were fitted with the equivalent circuit model 3 (see Figure 2.7, 

section 2.2.7) to investigate changes in semiconductor space-charge capacitance CSC, 

membrane capacitance Cm, Warburg Impedance W and diffusion coefficient D through 

the membrane due to ion permeation. For the applied Ubias = – 400 mV, the changes in 

these parameters are depicted in Figure 8.4. 
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Figure 8.4:  Time dependent changes in (a) space-charge capacitance CSC, (b) membrane 

capacitance Cm, (c) Warburg impedance W and (d) diffusion coefficient D, and chrono-

amperometry of 10 mM MgCl2 (red) and 10 mM  MgSO4 (black) at – 400 mV Ubias. 

For both sulfate and chloride a change in CSC due to the permeation of ions through the 

membrane and accumulation at the GaN interface is observed (Figure 8.4a). The decrease 

in CSC reaches a saturation level at 5.3 µF/cm
2
 after 7 h. The change in CSC is faster for 

sulfate (τSO4, Csc = 128 min) than for chloride ions (τCl, Csc = 182 min), while Cm stays 

almost constant for SO4
2– 

(Figure 8.4b), suggesting a faster permeation of SO4
2–

 through 

the membrane.  In contrast a decrease in Cm is observed for chloride ions, suggesting a 

more pronounced accumulation of chloride ions inside the membrane instead of 

permeation as seen for SO4
2–

. These findings support the observed anion selectivity of 

divalent anions over monovalent ions by Kato et al. There the selectivity is proposed to be 

caused by a stronger specific interaction of monovalent anions (Cl
–
) with the nanochannel 
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walls (Henmi, Kato 2012). The Warburg element W, acting as resistance towards ion 

diffusion through the membrane, is at first similar for both salts (Figure 8.4c), but 

increases faster for Cl
–
 (τCl,W = 118 min) with about half the characteristic time constant τ 

than for SO4
2– 

(τSO4,W = 202 min). After 7 h a higher saturation level is reached for Cl
–
. 

Due to the higher accumulation rate of Cl
– 

in the membrane the diffusion barrier of the 

Warburg impedance increases faster, causing the inhibition of further diffusion. With 

             
 

  
       ,    

   

        
 

 

  
                     (2.48, 2.49) 

the diffusion coefficients D of ions through the membrane were calculated (Figure 8.4d). 

A similar trend is seen as for W, where D decreases almost twice as fast for Cl
– 

(τCl,D = 40 

min) than for SO4
2– 

(τSO4,D = 74 min). The diffusion coefficient D decays form 1.3∙10
–3

 

µm
2
/s for both anions to 0.3∙10

–3
 µm

2
/s for SO4

2– 
and 0.2∙10

–3
 µm

2
/s for Cl

–
 in 7 h. After 

the initial measurement D for Cl
–
 is always smaller than for SO4

2–
, further supporting the 

inhibition of Cl
–
 transport through the membrane compared to SO4

2–
. At Ubias = + 400 mV 

(cation transport) in contrast no sign of Mg
2+

 transport through the membrane could be 

detected, since CSC remained constant at 2.2 µF/cm
2
 over 7 h. Additionally large Warburg 

impedances (W(MgSO4) = 176 kΩ/cm², W(MgCl2) = 137 kΩ/cm²) were observed, with 

the corresponding diffusion coefficients (D(MgSO4) = 2.5∙10
−5

 µm
2
/s, D(MgCl2) = 

4.2∙10
−5

 µm
2
/s) that are one (after 7 h) to two (at the first measurement) orders of 

magnitude smaller than the values for anions. This suggests a very strong inhibition of 

Mg
2+

 diffusion into the membrane. In total the diffusion coefficients in the membrane are 

6 (anions) to 8 (cations) orders of magnitude smaller than in bulk solutions (D ~ 10
3
 

µm
2
s

–1
) (Poisson and Papaud 1983). Throughout all measurements membrane 

capacitances of Cm = 1.1 - 1.5 µF/cm² were observed. With,             

   
    

  
                           (2.47) 

the reported membrane thickness dm = 50-100 nm, the permittivity of vacuum ε0 and 

electrode area A = 0.5 cm² the dielectric constant of the membrane εm can be estimated to 

εm = 101 - 248.  Thus, the membrane shows a larger dielectric constant than bulk water 

(ε = 80), that can be explained by the higher ion density inside the membrane 

nanochannels due to the permeation and accumulation of anions.  

Chronoamperometric measurements were performed by applying Ubias = – 400 mV at t = 

2 min, that was sustained for 1 h. For both anions the current level does not go back to the 

initial level even after 1 h, further suggesting the irreversible ion deposition in the 

membrane. The time constant τ of current recovery of SO4
2–

 (τSO4 = 4.8 s) is by a factor of 

1.5 larger than Cl
–
 (τCl = 3.2 s), implying that the transport of SO4

2-
 is sustained over a 
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longer period. For Ubias = + 400 mV the current dropped back to the initial current level at 

Ubias = 0 mV within the first few seconds. The current signal in this case is only caused by 

capacitive effects at the electrode surfaces, thus further confirming that no permeation of 

cations through the membrane is occurring.  

 

Figure 8.5: Chronoamperometry (left) of the ion selective membrane on GaN (Nd(Ge) = 

1∙10
19

 cm
–3

) with 10 mM MgSO4 (a) and 10 mM (b) MgCl2 at bias potentials from – 100 

mV to – 500 mV, applied at t = 120 s. The graphs on the right depict the transfer rates k 

through the membrane dependent on the applied Ubias. 

Further variation in the applied bias potential from – 100 mV to – 500 mV (Figure 8.5) 

showed a linear dependency of the transfer rate k through the membrane, confirming that 

the response function is diffusion controlled and well represented by Cottrell equation: 

           
 

 
                        (2.59) 

The standard electron transfer rate constant is obtained by linear extrapolation to Ubias = 

0 V to ket
0
 = 0.18 s

−1 
for Cl

– 
and an almost three times larger rate of ket

0
 = 0.64 s

−1
 for 

SO4
2–

, further confirming the faster sulfate transport through the membrane. 
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From this data the selective transport of anion vs. cation could be confirmed. From the  

1.5 – 2 times faster ion permeation and slower increase of W and decrease in D for SO4
2–

,
 

the selectivity of anions (SO4
2–

 vs. Cl
–
) could be confirmed, while the stronger increase in 

Cm for Cl
–
 suggests a stronger interaction of monovalent anions with the membrane 

nanochannels. The 1.5 – 2 times difference in τ between SO4
2–

 and Cl
–
 are also in a good 

agreement with the observed rejection rates of Kato et al. The faster transport of SO4
2–

 

was clearly detected by chronoamperometry as well, suggesting the irreversible 

deposition of anions at the GaN/membrane interface. 
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 9. Appendix II 

9.1 Supplementary Information 

9.1.1 Surface topography of F8OMe, Boc8F and F8Fc 

 

Figure 9.1: AFM images of a bare, untreated GaN substrate (a) and after the deposition 

of F8Fc (b). The obtained rms roughness values from the 1.5 µm × 1.5 µm scan area are 

presented in insets. (c) AFM image of the 0.25 µm² scratch area and (d) Height profile of 

the scratch indicated with the solid red line. The height difference between the film 

surface and the scratch track (13 Å) suggests the formation of a peptide monolayer. 

 

Figure 9.2: AFM images of a bare, untreated GaN substrate (a) and after the deposition 

of Boc8F (b). The obtained rms roughness values from the 1.5 µm × 1.5 µm scan area 

are presented in insets. (c) AFM image of the 0.25 µm² scratch area and (d) Height 

profile of the scratch indicated with the solid red line. The height difference between the 

film surface and the scratch track (18 Å) suggests the formation of a peptide monolayer. 

σ = 5.9 Å 

c) 

σ = 5.9 Å 

σ = 5.9 Å 

c) 

σ = 5.9 Å 
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Figure 9.3: AFM images of a bare, untreated GaN substrate (a) and after the deposition 

of F8OMe (b). The obtained rms roughness values from the 1.5 µm × 1.5 µm scan area 

are presented in insets. (c) AFM image of the 0.25 µm² scratch area and (d) Height 

profile of the scratch indicated with the solid red line. The height difference between the 

film surface and the scratch track (15 Å) suggests the formation of a peptide monolayer. 

9.1.2 Mott-Shottky Plot of Bulk GaN with Various Doping Ratios 

 

Figure 9.4: Influence of carrier concentrations Nd in Mott-Schottky plot for different 

untreated GaN with the doping ratio of Nd = 1∙10
19 

cm
–3

(green), 5∙10
19 

cm
–3

(blue) and 

2∙10
20 

cm
–3

(black) given by the manufacturer. Carrier concentrations calculated from the 

slope were 1.3∙10
19

 cm
–3

, 6.3∙10
19

 cm
–3

 and 1.1∙10
20

 cm
–3

. Flat-band potential were 

obtained from extrapolation of the linear regime to – 1.18 V, – 0.76 V and – 0.38 V 

respectively. 
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9.1.3 Stability of GaN/AlGaN/GaN HEMT I-V Characteristics 

 

Figure 9.5: IDS-VG curves from two uncoated HEMT chips produced from the same wafer 

measured at VDS = 0.3 V. (b) IDS-VDS curves measured at VG = – 1.5 V. Almost no 

changes in the curves were observed between the two chips.    

Figure 9.6: Influence of repetitive dis- and remounting of the HEMT chip in the flow 

chamber. (a) ISD-VG curves measured at VSD = 0.3 V and (b) IDS-VDS curves measured at 

VG = – 1.5 V, showing almost no changes. An error range of ΔVth = ± 17 mV and ΔIDS = 

±1.7µA, with low leak currents (IG) < 100 nA were found from repeated installation of the 

same chip. 
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 Figure 9.7: Influence of APTES coating on I-V characteristics of the GaN HEMT. 

Comparison between the untreated GaN HEMT (black) and the ATPES coated HEMT 

(grey) shows almost no changes in (a) ISD-VG curves measured at VSD = 0.3 V and (b) IDS-

VDS curves measured at VG = – 1.5 V. 

 

Figure 9.8: Repetitive loading and unloading of the DMPC/cholesterol/DGS-NTA 

(63/35/2 mol%) monolayer with Ni
2+

. (a) ISD-VG curves measured at VSD = 0.3 V and (b) 

IDS-VDS curves measured at VG = – 1.8 V show that the original Ni-loaded state could be 

reached again after unloading of the membrane with EDTA. 
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9.1.4 Background Fluorescence and Leak Current of the DNBDT OFET 

 

Figure 9.9: Fluorescence image showing auto fluorescence of the single crystallites of 

the C8-DNBDT semiconductor prior to membrane fusion. Excitation wavelength is 488 

nm. 

 

Figure 9.10: Gate to source (Leak) current IG of C9-DNBDT at VDS = – 10 V. 
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9.2 List of Abbreviations 

 

2DEG    two dimensional electron gas 

AFM    atomic force microscopy 

Aib    α-amino isobutyric acid 

APTES   (3-aminopropyl)triethoxysilane 

CE    counter electrode 

CGCS    capacitance of the Gouy-Chapman-Stern layer 

Cm    membrane capacitance 

Cp    semiconductor interface capacitance 

CPE    constant phase element 

Cpep    peptide layer capacitance 

CSC    space-charge capacitance 

Css     capacitance of surface states 

CV    cyclic voltammetry 

D    diffusion coefficient 

DGS-NTA 1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl)- 

iminodiacetic acid)succinyl]- nitrilotriaceticacid (nickel 

salt) 

DMTAP   1,2-dimyristoyl-3-trimethylammonium-propane (chloride 

salt) 

DMPC    1,2-dimyristoyl-sn-glycero-3-phosphocholine 

DNA    deoxyribonucleic acid 

DNBDT   dinaphtho[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b’] dithiophene 

DOPC    1,2-dioleoyl-sn-glycero-3-phosphocholine 

DsRed    discosoma red fluorescent protein 

ECM    extra cellular matrix 

e.g.       exempli gratia 

et al.    et alia 

FET    field effect transistor 

FRAP    fluorescence recovery after potobleaching 

g    transconductance 

HEMT    high electron mobility transistor 
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HEPES   4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

his-eGFP   histidin tagged green fluorescent protein 

IDS     drain to source current 

IS    impedance spectroscopy 

Leu    leucine  

MOCVD   metal oxide chemical vapor deposition 

ODTMS   octadecyl-trimethoxy-silane 

OFET    organic field effect transistor 

PBS    phosphate buffered saline 

R0    electrolyte resistance 

RE    reference electrode 

Rp    semiconductor resistance 

RPT    phase transfer resistance 

Rss    surface state resistance 

SAM    self assembled monolayer 

texas red DHPE 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine, 

Triethylammonium Salt 

TMSC    trimethyl-silyl-cellulose 

Ubias    working electrode to reference electrode bias potential 

Ufb    flatband potential 

VDS    drain to source voltage 

VG    gate to source voltage 

Vth    threshold voltage 

W    Warburg element 

WE    working electrode 

XRR    X-ray reflectivity 

XPS    X-ray photoemission spectroscopy 
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