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INTRODUCTION

X-ray computed tomography (CT) describes the three-dimensional (3D) acquisition

of x-ray projections of a subject or object, which are subsequently reconstructed to a

3D image data set. Themain advantage of CT in diagnostic radiology is the visualiza-

tion of the body structures in slices without the superimposition of tissues. Spatial

resolution in the sub-millimeter range in all three dimensions can be obtained with

this technique, enabling the detailed evaluation of body structures.

Of all radiological procedures utilizing ionizing radiation, 9% were CT examina-

tions in Germany, in 2014. Despite this fairly low percentage compared to dental

examinations (41%) or skeletal radiography (29%), CT contributed to the collective

effective dose from radiological procedures with 65% (BfS 2016b). Because radiolog-

ical examinations using ionizing radiation are frequent at present, the utilization of

ionizing radiation in diagnostic procedures is controversially discussed due to the

potential risk of radiation-induced cancer.

Several methods exist to estimate the dose (a measure for the energy deposition of

the x-rays e.g. per unit of tissuemass) resulting from radiation exposure, bymeans of

conversion factors, test specimen (phantoms), dose detectors (e.g. ionization cham-

bers), or Monte Carlo (MC) simulations. These methods vary in precision, appli-

cability, and customization options. Individualized dosimetry plays an increasing

role in clinical radiology, especially for patients receiving multiple CT examinations

over a short period of time, such as during a cancer treatment. The individualized

dosimetry can take patient morphology and changes in morphology into account,

e.g. through disease or treatment-induced weight loss. This is necessary since the

body constitution, e.g. weight, height, or composition, greatly impacts dose depo-

sition. The research presented in this thesis describes the development of a MC

software tool aiming at the quantification of the radiation exposure associated with

CT examinations to calculate patient-specific radiation exposure maps.

Section 1.1 introduces the clinical background of CT imaging. Afterwards, the gen-

eral principle of CT, image acquisition, and the technical setup of a CT scanner are

described in section 1.2. This section also provides details on the x-ray source and

photon emission, photon filtration, and the utilized tube potentials of x-ray sources.

The underlying physical principles of the interactions of photons in matter are ex-

plained in section 1.3. Section 1.4 covers the radiation exposure associated with CT

examinations. An overview over the radiation exposure from diagnostic radiology

in Germany, the related risk from ionizing radiation, and techniques for dose re-

duction in CT are provided in this section. Section 1.5 presents current methods for

determining the radiation exposure of CT examinations. The first chapter ends with

the motivation and description of the goals of this work (section 1.6).
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1.1 APPL ICAT IONS OF COMPUTED TOMOGRAPHY (CT ) IMAGING

The contrast between body tissues observed on CT images is a result of differences

in attenuation properties of tissues, which are measured by the CT scanner during

the acquisition. CT is advantageous for displaying bony structures and, combined

with the administration of contrast agents, it allows to assess blood flow e.g. in the

aorta and tissues (organ perfusion). Due to the large field-of-view (FOV) of the CT

scanner (approximately 50 cm), the aorta and branching vessels, e.g. the supply of

the kidneys, can be examined at the same time. CT is performed for staging of tumor

diseases and follow-up examinations after chemotherapy or surgical treatment. It is

a fast technique allowing image acquisition, reconstruction, and assessmentwithin a

fewminutes.A typical non-enhanced (native) acquisition of the thorax andabdomen

can be performed in less than 10 seconds. CT, aside from ultrasound (US) imaging,

is a standard for trauma patients following accidents since fractures and free fluids

(blood) can be identified quickly. Furthermore, CT is performed in vascular surgery,

e.g. as immediate control and follow-up of endovascular aortic repair (EVAR), an

intervention during which a stent is implanted in the aorta to remodel blood flow.

In terms of image quality, one disadvantage of CT is the low contrast between dif-

ferent types of soft tissues since their material composition and density properties

are similar. For soft tissue imaging, magnetic resonance imaging (MRI) is superior

to CT.

Due to the associated radiation exposure, pediatric CT is solely performed if alter-

native imagingmethods, such asMRI or US, are contraindicated or not sufficient for

clinical diagnosis. Due to the long acquisition times ofMRI, pediatric patients might

need to be anesthetized, involving separate risks and side effects. More information

on the radiation exposure in CT imaging is provided in section 1.4.

(a) Axial (b) Coronal (c) Sagittal

Figure 1.1: Axial, coronal, and sagittal reconstruction of a single contrast-enhanced com-

puted tomography acquisition. Since this acquisition directly followed contrast-

agent administration, the heart and aorta appear very bright. Due to the high

density of bone, the ribs, pelvis, and spine are clearly distinguishable from soft

tissue and the lungs.
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1.2 OPERAT ING PR INC IPLE OF CT

Image acquisition in planar radiography and computed tomography is based on

the attenuation (absorption and scattering) of photons (x-rays) in tissues, varying

with photon energy, material composition, and density. Only unabsorbed and un-

scattered photons positively contribute to the image signal. Absorbed photons have

lost all of their incident kinetic energy in a tissue and will not reach the image de-

tector at all. Scattered photons have either lost parts of their incident kinetic energy,

or have changed their initial direction. A scattered photon might still be detected,

however, it adversely affects the image quality by increasing image noise. Bones or

metals absorb and scatter photons to a higher degree than soft tissue or fat. On the

reconstructed images, materials with a high density (e.g. bone) appear brighter than

low-attenuating tissues. Tissues of the human body can be roughly divided into the

materials soft tissue, bone, and air (lungs). The image contrast between these three

material types in the reconstructed images is large. However, differences between

different soft tissue types (e.g. muscle tissue, liver tissue, intestines) in terms of ma-

terial composition and density are more subtle. As a consequence, the soft-tissue

contrast of CT images is rather poor.

In planar radiography (x-ray imaging), a projection or superimposition of all tis-

sues between the x-ray source and the detector is obtained as the source and the

detector position are fixed for a single acquisition. Since only a two-dimensional (2D)

image is obtained from planar radiography, an assessment of the third dimension

(e.g. depth) is impossible. During a CT acquisition, the photon-emitting source and

the detector rotate around the patient while the patient on the table (bed) is moved

through the scanner gantry (either in a steady or in a step-wise motion). In CT, in

contrast to planar radiography, thousands of projections from various positions are

obtained, which are reconstructed to a 3D image set after acquisition. The main

advantage of CT is the visualization of the body structures in slices without the

superimposition of tissues. A spatial resolution in the sub-millimeter range can be

obtained in all three dimensions, enabling a detailed evaluation of body structures.

Images can be reconstructed in the three main planes (axial, coronal, sagittal), and

additionally, in oblique planes (cf. figure 1.1).

Furthermore, the image appearance can be adapted retrospectively (window and

level settings), allowing to view the reconstructed images with different contrast

and brightness to enhance the visibility of specific structures (see figure 1.2).

1.2.1 technical setup

A CT scanner can be divided into three main components: (1) the x-ray emitting

source, (2) beam-shaping filtration, and (3) the detector for image acquisition. A

schematic drawing of a CT scanner is shown in figure 1.3.

The first part, the x-ray source, produces a continuous bremsstrahlung spectrum

with characteristic peaks. Section 1.2.2 providesmore information on the production

of the x-ray spectrum, its efficiency at different tube potentials, and the accessibility
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(a) Soft tissue setting (b) Lung setting (c) Bone setting

Figure 1.2: Soft tissue, lung, andbonewindowsettings for the same slice to enhance visibility

of specific structures. The abdomenwindow setting (window (W) = 342HU, level

(L) = 56HU) allows to differentiate between soft tissue types. The lung window

setting (W = 465HU, L = -498HU) provides detailed visibility of lung tissue.

Here, the contrast between soft tissue types or bony structures is barely visible.

The bone window setting (W = 3077HU, L = 570HU) enhances the visibility of

differences in bone density.

of x-ray spectra of clinical CT scanners. The bremsstrahlung spectrum contains

photon energies <20 keV. The chance that these photons will reach the detector

without interaction is very low as they are easily absorbed already in small amounts

of tissue. To reduce the amount of low-energy photons, which would only increase

patient dose but not positively contribute to image quality, a filter, usually made of

aluminum, is implemented as part of the x-ray source. A bremsstrahlung spectrum

at 100 kVp with characteristic tungsten peaks and the effect of additional aluminum

filtration is depicted in figure 1.4. The emitted x-ray fan beam covers around 50 cm

in x-direction at the isocenter of the scanner, and, depending on the specific scanner,

a z-coverage of ~3-16 cm.

The second part is the beam-shaping filter, also called bowtie filter, due to its shape.

The beam-shaping filter has two effects: (1) altering the photon fluence along the

fan beam and (2) additional filtration of the emitted photons, especially at the

edges of the fan beam. The modulation of the photon fluence and reduction of the

amount of photons at the edges of the FOV is a desired effect. Due to its shape, the

beam-shaping filter reduces the photon fluence towards the sides of the fan beam,

resulting in a fan-angle dependent photon fluence. The reduction of photons at the

fan-beam sides allows a constant exposure of the detector (ICRU 2012). An axial cut

through a human’s body is usually elliptical shaped (compare to the "patient" shape

in figure 1.3). The reduced x-ray path length through the body towards the edges

of the fan beam results in less photon attenuation, counterbalancing the reduced

photon fluence in these regions. Both the dynamic range of the detector and scatter

are reduced by the beam-shaping filter as the flux in paths with low attenuation

is reduced (Hsieh and Pelc 2013; Steuwe et al. 2018). The side effect of the beam-

shaping filter is the additional filtration of the emitted spectrum, increasing the

mean spectral energy towards the side of the fan beam. This spectral distortion is

called beam-hardening and especially affects photons with energies <35 keV. The

mean spectral energy at the isocenter is therefore lower than the mean spectral
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Figure 1.3: Schematic drawing of a computed tomography (CT) scanner. Dimensions in

scheme correspond to an Aquilion™16 CT system, Toshiba Medical Systems

Corporation, Nasu, Japan (Amber Diagnostics 2018; MHRA 2004; NHS 2009). Re-

fer to appendixA for detailedCT scanner dimensions. Abbreviations: Aluminum

(Al), source-to-detector distance (SDD), source-to-isocenter distance (SID), field-

of-view (FOV).

energy at the edges of the FOV, see also figure 2.4 in the materials and methods

section. Usually, a CT scanner contains two or more beam-shaping filters, differing

in shape and material, which are mainly chosen based on the patient size (ICRU

2012).

Both the (aluminum) filter inside the x-ray source and the beam-shaping filter are

scanner-dependent and information about their exact dimensions andmaterials are

usually proprietary. Details on the transmission of the beam-shaping filter can be

obtained by performing transmission measurements.

The third part is the image detector, combined with an anti-scatter grid to remove

scattered photons prior to detection. Since the final image reconstruction is not focus

of this work, the detector, reconstruction techniques, and employed kernels are not

covered in detail in this thesis. Please refer to the literature for details on these

contents, e.g. Bushberg et al. (2012) and Hsieh (2015).
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Figure 1.4: X-ray tube output: continuous bremsstrahlung spectrum and characteristic tung-

sten peaks (57.98, 59.32, and 67.24 keV) at a tube potential of 100 kVp. The peaks

at 57.98 and 59.32 keV are not resolved in this plot. Addition of aluminum (Al)

filtration shifts the mean spectral energy from 46.7 to 52.7 keV by removing low-

energy photons while maintaining the same maximum photon energy (Siemens

Healthineers 2018).

1.2.2 x-ray emission

The function of the x-ray source (also referred to as x-ray tube) is the production

and emission of photons. The x-ray source consists of an electron-emitting cathode

and an anode as electron target. Electrons are accelerated between the cathode and

the anode due to an applied potential between the two electrodes. In clinical CT,

this (tube) potential is usually in the range of 70 and 150 kV. Electrons accelerated

by a tube potential of 120 kV can obtain a maximum kinetic energy of 120 keV. In the

anode, electrons can undergo either an interaction with the strong field of a nucleus

of the target atom or with its surrounding, or they undergo an interaction with the

electrons of the target atom, emitting photons of various energies. Figure 1.4 shows

the emitted x-ray spectrum for a tube potential of 100 kVp.

1.2.2.1 Bremsstrahlung spectrum

When electrons interact with the strong field of a nucleus or its close surrounding,

bremsstrahlung is emitted. Bremsstrahlung is a polyenergetic photon distribution in

a continuous spectrum. Electrons are decelerated near the nucleus due toCoulombic

forces, thereby causing a change in their direction and a loss of energy. The lost

energy is emitted as photons of that energy. The smaller the distance of an incoming

electron to the nucleus, the larger the energy of the emitted photon. The maximum

obtainable photon energy is the kinetic energy of the incoming electron (Bushberg

et al. 2012, pp. 171-206).
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1.2.2.2 Characteristic peaks

When an accelerated electron interacts with an orbital electron of one of the inner

shells (e.g. K-shell), it ejects this (K-shell) electron. The vacancy in the K-shell is

filled by an electron of the L-shell (electrons of other outer shells are also possible),

thereby emitting a characteristic x-ray. Its energy is determined by the difference in

binding energies between the K- and the L-shell. This process repeats itself until all

inner shells are complete again. The emitted photons are called characteristic x-rays,

as their energies are characteristic to the specific anode material. For tungsten, the

characteristic x-ray energies are at 57.98, 59.32, and 67.24 keV (Bushberg et al. 2012,

pp. 171-206).

1.2.2.3 Efficiency of x-ray sources

The efficiency of x-ray emission depends on the chosen tube potential. The higher

the tube potential, the larger the number of emitted photons. In clinical CT, x-ray

emission is approximately proportional to the square of the tube potential (Bushberg

et al. 2012, pp. 171-206):

x-ray emission efficiency ∝ (tube potential)
2

(1.1)

x-ray emission efficiency at kVp2
≡

(
kVp2

kVp1

)
2

(1.2)

Hence, the x-ray emission for a tube potential of kVp2
= 80 kVp is approximately

0.44 times the emission for a tube potential of kVp1
= 120 kVp. Table 1.1 provides an

overview of the tube-potential dependent x-ray efficiency. A reduced x-ray emis-

sion efficiency can be counterbalanced by increasing the tube current, given in mil-

liampere (mA).An importantmeasure inCT is the tube-current timeproduct (TCTP),

given in milliampere seconds (mAs), which is the product of the tube current and

the duration of the x-ray exposure. The higher the tube current or the longer the

exposure duration, the more photons are emitted from the x-ray source.

Table 1.1: Efficiency of x-ray emission at different tube potentials (kVp2
) relative to the ef-

ficiency at kVp1
= 120 kVp, according to equation 1.2. X-ray emission efficiency in-

creases with increasing tube potential.

Tube potential X-ray efficiency
[kVp2] compared to 120 kVp1

80 0.44

100 0.69

120 1.00

140 1.36



8 introduction

Patient attenuation characteristics vary at different tube potentials, which addition-

ally needs to be taken into account for CT acquisition planning. Since low-energy

photons are more easily attenuated than high-energy photons, the TCTP for a tube

potential of 80 kVp needs to be higher than the TCTP for a tube potential of 120 kVp to

obtain a similar signal-to-noise ratio (SNR)
1
on the final reconstructed image.

A practical approach for increasing the TCTP for lower tube potentials is to increase

the TCTP by a factor of 1.5, for a reduction in tube potential of 20 kVp. Hence, given

a tube potential of 120 kVp, a reduction of the tube potential to 80 kVp requires an

increase in TCTP by a factor of 2.25 (1.5 x 1.5). This factor only accounts for the

reduced efficiency at a tube potential of 80 kVp compared to 120 kVp, but not for

the higher attenuation of the low-energy photons. Bushberg et al. (2012, pp. 171-206)

provide a more drastic approach, accounting for both the reduced efficiency and

the higher attenuation of photon spectra with lower peak energies, increasing the

necessary TCTP to a larger degree (factor of 7.6, see equation 1.3 and figure 1.5).(
kVp1

kVp2

)
5

·mAs1 � mAs2 (1.3)

1.2.2.4 X-ray source spectra accessibility

To study the influence of x-ray spectra on radiation exposure, information on the

source components or the emitted x-ray spectra is necessary (Ay et al. 2005). As a

consequence of different x-ray tube design (e.g. anode geometry and material) and

choice of additional filtration, spectra of different CT scanners and vendors differ

in shape and mean spectral energy (Steuwe et al. 2018). The most comprehensive

method to obtain source spectra is to model the complete source and physical ef-

fects, e.g. inMC simulations (Kim et al. 2012; Taleei and Shahriari 2009). Thismethod

requires information on x-ray source geometry, material, and filtration, which is un-

fortunately often proprietary (Kramer et al. 2017; Massoumzadeh et al. 2009).

The measurement of source spectra via Compton spectroscopy is one option to ob-

tain spectral information, and also to study the effect of beam-hardening due to the

beam-shaping filter (Matscheko and Ribberfors 1987). Especially the accessibility of

information on spectra after beam-shaping induced spectral distortion is limited.

The advantage of Compton spectroscopy is the extensive information about the

spectra and corresponding mean energies gained. However, this method requires

operating theCT scanner in servicemode as the source rotation needs to be switched

off (Bazalova and Verhaegen 2007; Steuwe et al. 2018). Other research groups de-

termine spectra by means of transmission measurements (Duan et al. 2011; Lin

et al. 2014) or half value thickness measurements (Randazzo and Tambasco 2015).

Another option is the calculation of source spectra withmathematical models (Sand-

borg et al. 1994; Zhou and Boone 2008) or to use source spectra published in the

1 The signal-to-noise ratio (SNR) is a measure of the distinctness of an object on an image. The SNR

describes the ratio of the integrated photon signal over a region-of-interest (ROI) and the measured

background noise. The background noise is the standard deviation in a homogeneous background

region on an image. (Bushberg et al. 2012, pp. 60-100)
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Figure 1.5: Relative tube output for taking the x-ray attenuation characteristics and tube

efficiency into account (Siemens Healthineers 2018). The relative photon fluence

at different tube potentials according to a reference tube-current time product

(TCTP) of 120mAs at 120 kVp (standardvalue for a vascular abdomenacquisition)

is presented. Corresponding TCTPvalues, according to equation 1.3, are 911mAs

at 80 kVp, 299mAs at 100 kVp and 55mAs at 140 kVp. However, these values are

not employed in clinical practice. Instead, considerably lowervalues (e.g. 210mAs

at 80 kVp or 139mAs at 100 kVp) are applied to reduce radiation exposure in

the patient. A tube potential of 140 kVp is only seldom applied for abdomen

acquisitions, since it is not advantageous in terms of patient dose and image

quality.

literature or online (Fewell et al. 1981; Siemens Healthineers 2018). Some studies

make use of energy spectra obtained from the manufacturer under non-disclosure

agreements (DeMarco et al. 2005; Lin et al. 2014; Steuwe et al. 2018).

1.2.3 image acquisition parameters

Prior to image acquisition, several acquisition parameters need to be configured

depending on the clinical indication. These parameters influence the extent of the

radiation exposure the patient receives during the acquisition.

As was described in section 1.2.2, the chosen tube potential influences both the num-

ber of emitted photons and the maximum photon energy. More photons are emitted

for the same tube current at higher tube potentials. Furthermore, the higher the

energy of a photon, the longer its penetration length. The TCTP is proportional to

the radiation exposure. Doubling the TCTP doubles the number of emitted photons
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and, hence, also doubles the energy deposition in the scanned subject. A reduction

of the TCTP by a factor of 2 increases the noise by a factor of

√
2. A larger scan length

or FOV also increases the radiation exposure.

For multi-detector computed tomography (MDCT) systems, the collimation is of

importance. The collimation determines the z-axis coverage of the image detector at

the isocenter of the CT scanner. It determines the thinnest available slice thickness of

the final reconstructed images but also influences the SNR in each detector element.

A fine collimation (e.g. 64 x 0.6mm) allows for image reconstructions with a thin

slice thickness (t= 0.6mm) but causes a low SNR per detector element, since the

integrated signal in each detector element is small. The combination of detector ele-

ments (e.g. 32 x 1.2mm) allows a higher SNR in the combined detectors but increases

the smallest slice thickness in the reconstruction to in this case t= 1.2mm. Note that

the nominal beam width W � N · t is equal in both examples. To counterbalance

the decreased SNR for narrow collimation settings, the TCTP needs to be increased

to increase the measured signal in the detector elements. This causes an increase of

the patient’s radiation exposure.

The pitch (unitless) is calculated as table distance, d, traveled per 360°-rotation di-

vided by the nominal beam width,W.

pitch �
table distance per 360°-rotation

nominal beam width

�
d

W
(1.4)

The pitch influences the acquisition time. For a fixed rotation time, a higher pitch de-

creases acquisition time and enables capturing of fast contrast-agent dynamics. For

fixed values of tube potential and TCTP, the pitch influences the radiation exposure: if

not compensated otherwise, a pitch > 1.0 decreases the radiation exposure, whereas

a pitch < 1.0 increases the radiation exposure due to beam overlap. However, mod-

ern CT scanners adapt the TCTP according to the pitch (increasing the pitch causes

an increase of the TCTP), keeping the radiation exposure values similar.

For each CT examination, a dose protocol is automatically created, providing infor-

mation on the radiation exposure and acquisition parameters.

1.3 RADIAT ION PHYS ICS

This section provides a brief overview of the interactions of photons with body

tissues, contrast agents, and implants as well as their effect on the reconstructed

images. This section is based on Bushberg et al. (2012, pp. 33-59). Interactions of

electrons, such as ionization, are not provided in this section. Please refer to the

literature for a more detailed explanation.

1.3.1 interactions of photons with matter

Interactions can be divided into two main groups: on the one hand elastic interac-

tions (Rayleigh, Thomson scattering) and on the other hand inelastic interactions

(Compton scattering, photoelectric effect).

During elastic interactions, the incident photon does not lose any energy during
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Figure 1.6: Rayleigh scattering: Interaction of the incident photon with the total atom. A

photon with the same wavelength but different direction is emitted. Adapted

from Bushberg et al. (2012, pp. 33-59).

the interaction, wheres for inelastic interactions, the incident photon energy is re-

duced. Relevant interaction types in clinical CT are Rayleigh scattering, Compton

scattering and photoelectric interactions. Pair production requires photon energies

>1.022MeV, which are not used in clinical CT. Therefore, this effect is not described

in the following.

1.3.1.1 Rayleigh scattering

Rayleigh scattering causes an oscillation of all electrons in the atom by interaction of

an incident photon with the total atom (see figure 1.6). Rayleigh scattering belongs

to the elastic interactions, since the incident photon does not lose energy. Instead,

a photon with the same wavelength (λ1 � λ2) but with a different direction is

emitted. This effect is observable only at very low x-ray energies (15-30 keV, mainly

in mammography, Bushberg et al. 2012, pp. 33-59).

1.3.1.2 Compton scattering

During Compton scattering, an incident photon collides with an electron of the

outer shell of an atom, which is then ejected (now called Compton electron). Both

the direction and the energy of the incident photon (Ei) are changed. The angle

between the direction of the incident photon and the direction of the scattered

photon, θ, can be used to calculate the energy of the scattered photon, Esc according

to the Klein-Nishina formula (equation 1.5, see also figure 1.7):

Esc �
Ei

1+
Ei

511keV (1− cos θ)
(1.5)

Compton scattering is the most frequent interaction in soft tissues at 20 keV and

above for photon energies in diagnostic imaging. For very low photon energies, the

incident photon undergoes elastic scattering, hence, only its direction changes but

not the energy (Thomson scattering) (Bushberg et al. 2012, pp. 33-59).
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Figure 1.8: Photoelectric effect in the iodine atom (outer electrons in O-shell not shown): The

incident photon (energy 100 keV) collides with an electron of the inner shell with

a binding energy of 33 keV, which is ejected (photoelectron energy 67 keV). In a

cascade, the electron valence of the inner shell is filled by an electron of the outer

shell. Characteristic x-rays are released whose energies equal the differences in

binding energies of two shells. Adapted from Bushberg et al. (2012, pp. 33-59).
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1.3.1.3 Photoelectric effect

During a photoelectric interaction, an incident photon collides with an electron of

one of the inner shells of an atom. The electron, now called photoelectron, is ejected

from the atom. The incident photon is absorbed during this interaction. The energy

of the photoelectron, Epe, can be calculated by subtracting the electron binding

energy, Eb, from the energy of the incident photon, Ei, see figure 1.8.

Epe � Ei − Eb (1.6)

The valence in the inner shell is filled by an electron of the next shell, releasing a

photon (characteristic x-ray) with an energy that equals the difference in binding

energies of the two shells. This process repeats itself until all inner shells are filled.

The incident photon can only cause an ejection of a photoelectron if its energy is

equal or higher than the binding energy of the photoelectron (Bushberg et al. 2012,

pp. 33-59). For photon energies just slightly above the binding energy of an e.g. K-

shell electron, there is a steep increase in the absorption coefficient. This sudden

increase is called K-edge (or correspondingly L-edge for L-shell electrons), see also

figure 1.9 (Lusic and Grinstaff 2013). Incident photons with energies just above the
energies of these edges are likely to be absorbed in an atom during an interaction.

The photoelectric effect forms the basis of contrast agent utilization in CT (see

section 1.3.3).

1.3.2 energy deposition in different tissue types

Photons that travel through a material can either be totally absorbed (photoelectric

effect), scattered (Rayleigh scattering, Compton scattering), or transmitted without

any directional or energy change (Rayleigh scattering). For N0 incoming photons,

the number of transmitted photons NT is calculated as follows:

NT � N0 · e−µ·l (1.7)

with the linear attenuation coefficientµ andmaterial thickness l. The larger the linear

attenuation coefficient µ or thematerial thickness l, themore photons are attenuated

or absorbed in the material. The linear attenuation coefficient µ is dependent on the

material density ρ, atomic number Z, atomic mass A, and on the x-ray energy E of

the incident photon:

µ �
ρZ4

AE3
(1.8)

Materials with either a high density (ρ) or high atomic number (Z) are more likely to

attenuate photons, compared to materials with a lower ρ and Z-number. Especially

the large influence of the atomic number (Z
4
) and the energy (E

3
) on the attenuation

characteristics becomes apparent from equation 1.8 (Lusic and Grinstaff 2013).



14 introduction

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

K-edge I

L-edges I

K-edge P

K-edge Ca

Energy [keV]

M
a
s
s
a
t
t
e
n
u
a
t
i
o
n
c
o
e
ffi
c
i
e
n
t
µ
/ρ
[c
m

2
/g
]

Iodine

Cortical bone

Fat

Soft tissue

Water

Figure 1.9: X-ray mass attenuation coeffecients of iodine (red), cortical bone (black), fat

(green), soft tissue (blue), and water (gray) between 1 keV and 150 keV (Chantler

et al. 2017; Hubbell and Seltzer 2018b). Note the K- and L-edges of iodine around

33.2 keV and ~5.0 keV, respectively, and theK-edges of phosphorus (~2.1 keV) and

calcium (~4.0 keV) in cortical bone. Also note the logarithmic scale of the x- and

y-axis.

Figure 1.9 depicts themass attenuation coefficients for different body tissues and the

contrast-agent component iodine. The highest atomic number of fat and soft tissue

components is potassium (Z= 19), according to values published in report 44 of the

International Commission on Radiation Units (ICRU) (Hubbell and Seltzer 2018a).

For cortical bone, the highest atomic number is calcium (Z= 20) and for iodine Z= 53

(ICRU 2018). For cortical bone and iodine, the mass attenuation is higher than that

of water, soft tissue, or fat. Additionally, the K-edges of phosphorus (at ~2.1 keV)

and calcium (at ~4.0 keV) and the L- and K-edges of iodine (~5.0 keV and ~33.2 keV,

respectively), originating fromphotoelectric interactions (refer to section 1.3.1.3), are

visible in the plot.

1.3.2.1 Hounsfield scale

CT scanners measure the extent of the attenuation of photons through different

materials. The final image value, measured in Hounsfield unit (HU), is quantifiable

and of clinical use. The larger the difference in attenuation between tissues, the larger

the contrast on the CT images. The CT number describes the linear attenuation

coefficient µ of a volume element (voxel) at position (x,y, z) in relation to the linear

attenuation coefficient of water (µwater) for the utilized x-ray spectrum (Bushberg

et al. 2012, pp. 312-374). The CT number is defined as:

CT number (x,y, z) � 1000 · µ(x,y, z) − µwater

µwater

[HU] (1.9)
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For a voxel containing only water, µ(x,y, z) − µwater � 0 and so is the CT number. In

clinical CT, lowest CT numbers are obtained for air (-1000 HU), whereas highest CT

numbers are measured in very dense materials, such as bones and metals (>+3000

HU) (Bushberg et al. 2012, pp. 312-374).

1.3.3 contrast agents in ct

The visibility of interfaces between adjacent tissues on CT images is poor for materi-

als of similar density and composition, and therefore complicates diagnosis (Lusic

andGrinstaff 2013). CT can take advantage of the increased photon absorption, espe-

cially at the K-edges of high Z-materials, when administering contrast agents prior

to an acquisition. Examples for applications of contrast agents are the intravenous

injection of an iodinated contrast agent for highlighting blood vessels, e.g. computed

tomography angiography (CTA) or the assessment of intestinal perforation by ad-

ministrating contrast agents rectally. In general, contrast agents increase the contrast

between similar tissues and provide functional information, e.g. information about

blood flow, blood volume, or perfusion of a tissue or tumor (Lusic and Grinstaff

2013). In 2016, 57% of the CT acquisitions, performed in the clinic where this re-

search was performed, included the administration of contrast agents (UKHD 2017).

Themajority of contrast agents in CT are based on iodine due to its high atomic num-

ber (Z = 53), its K-edge in the diagnostic energy range (~33.2 keV), and its sanitary

tolerance. Acquisitions at 80 or 100 kVp result in a stronger attenuation than acqui-

sitions at 120 kVp, and consequently in larger contrast enhancement (increase of the

CT number by 40HU at 80 kVp, 30HU at 100 kVp, and 25HU at 120 kVp for an io-

dine concentration of 1mg/ml, compared to a non-enhanced acquisition) (Bae 2010;

Perisinakis et al. 2018). Less-frequently administered contrast agents are barium-

based, orally administered for gastrointestinal questions (Z= 56, K-edge~37.4 keV),

gold-nanoparticles (Z= 79,K-edge~80.7 keV), or xenongas (Z= 54,K-edge~34.6 keV)

(Lusic and Grinstaff 2013).

Image examples of a three-phasic, contrast-enhanced CTA are presented in fig-

ure 1.10, acquired for the clinical assessment of an aortic aneurysm. A three-phasic

CTA includes a non-enhanced acquisition prior to the injection of an iodinated con-

trast agent, an arterial acquisition (starts a few seconds after the injection), and a

venous acquisition (starts ~70 seconds after the injection).

The administration of contrast agents can cause side effects which lead to contraindi-

cation for some patients. For iodine-based contrast agents, known side effects are

contrast-induced nephropathy, renal toxicity, adverse cardiac events, and thyroid

dysfunction (Lee et al. 2015; Lusic and Grinstaff 2013). Topic of recent research is the

contrast agent-enhanced radiation damage caused by CT examinations, and to what

degree contrast agents increase the risk of long-term bioeffects (Amato et al. 2013;

Pathe et al. 2011; Streitmatter et al. 2017; Wang et al. 2017). It is therefore of interest,

to what degree iodine causes an increase of the energy deposition (iodine-induced

build-up effect), especially at tissue interfaces.
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(a) Native phase (b) Arterial phase (c) Venous phase

Figure 1.10: Three-phasic computed tomography angiography acquisition of the abdomen.

The liver and spleen appear fairly homogeneous on the image of the non-

enhanced (native) phase (a), however, calcification of the aorta is clearly visible.

The arterial phase (b) is acquired when the contrast agent bolus passes through

the aorta, hence, the aorta and inferior vena cava and its branches are enhanced

and appear bright. Blood perfusion through the liver and spleen is already

enhanced in the arterial phase. At the time of the venous acquisition (c), the con-

trast agent has spread in the body, and the liver and the spleen are considerably

brighter than on the image of the non-enhanced acquisition, whereas the aorta

again appears darker compared to the image of the arterial phase.

1.4 RADIAT ION EXPOSURE IN CT

According to the annual report of the federal office for radiation protection in Ger-

many (Bundesamt für Strahlenschutz), 135 million radiological examinations were

performed inGermany in 2014, of which 55millionwere dental examinations. There

was only a marginal increase in overall radiological examinations between 2007 and

2014. The average annual number of radiologic examinations per capita was 1.7

for Germany in 2014, which is high in comparison to the European average of 1.1.

Between 2007 and 2014, the number of conventional radiography examinations de-

creased, whereas the number of CT examinations considerably increased by about

40%. Similarly, the number of MRI examinations also increased between 2007 and

2014, by 55% (BfS 2016b; Nekolla et al. 2017).

1.4.1 dose definition

The absorbed radiation dose is the absorbed energy by ionizing radiation per unit

of mass, measured in Gray [Gy], and is commonly used in radiotherapy and nuclear

medicine:

1 Gy �
1 J

1 kg

�
6.242 · 1012 MeV

1 kg

(1.10)

The equivalent doseH takes the type of radiation and its radiationweighting factor into
account: photons and electrons have a radiation weighting factor of 1 throughout all

energies, whereas neutrons and protons have radiation weighting factors between

5 and 20, as the relative biological effectiveness of neutrons and protons is higher

than that of photons and electrons.
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In diagnostic radiology, the effective dose, given in millisievert [mSv], is more com-

monly used. The effective dose additionally takes tissue weighting factors into account,
which describe the risk of adverse effects of specific tissues. For example, lung tis-

sue or bone marrow is more radiosensitive than the skin or the brain. Please refer

to section 1.5 for more information on tissue weighting factors and (organ) dose

determination methods in CT.

1.4.2 natural and civilizational radiation exposure in germany

The average annual dose per capita from all radiological examinations was 1.7mSv

in 2015 in Germany, and in total 3.8mSv combined with the radiation exposure

from natural sources (see table 1.2, BfS 2016b). The annual dose frommedical exam-

inations increased over the last years (from 1.3mSv in 2007) due to the increasing

number of CT examinations. The annual effective dose of radiological examinations

other than CT per capita (planar radiography, angiography, interventions) was fairly

stable between 2007 and 2014 (BfS 2016b).

The average effective dose per CT examination underwent a moderate reduction

(from ~7.5mSv to ~6.9mSv), whereas a stronger decrease in effective dose per an-

giographic and interventional procedurewas noticeable (from~6.6mSv to ~5.5mSv)

(Nekolla et al. 2017). However, the effective dose from CT examinations per capita

increased by 30% between 2007 and 2014 (BfS 2016b; Nekolla et al. 2017). This is a

less strong increase than the increased number of CT examinations due to the lower

effective dose per CT examination.

Table 1.2: Average effective annual dose to an individual due to ionizing radiation in 2015

in Germany (BfS 2016b).

Average effective dose
[mSv/year]

Natural radiation exposition due to

Cosmic radiation (at sea level) ca. 0.3

Terrestrial radiation ca. 0.4

Inhalation of radon and its progeny ca 1.1

Ingestion of natural radioactive substances ca. 0.3

Total natural radiation exposure ca. 2.1
Civilizational radiation exposure due to

Fallout from nuclear weapon tests <0.01

Accident at nuclear power plant Chernobyl <0.01

Nuclear facilities <0.01

Application of radioactive substances and

ionizing radiation in medicine (w/o therapy) ca. 1.7

Total civilizational radiation exposure ca. 1.7
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Figure 1.11: Contribution of diagnostic x-ray procedures to total frequency (left) and col-

lective effective dose (right) in 2014 in Germany (BfS 2016b). Abbreviations:

computed tomography (CT), mammography (mamma, single-sided), angiog-

raphy and interventional procedures (A&I), gastro-intestinal and urogenitary

track (GI&UG).

Although CT examinations only accounted for 9% of all radiological examinations,

they contributed to 65% of the annual effective dose per capita (see figure 1.11, BfS

2016b). Typical effective doses for a selection of examinations for a standardized

patient of 70 kg body weight are shown in table 1.3 (BfS 2016a,b). CT examinations

and interventional procedures result in effective doses that are more than 100 times

higher than conventional radiography acquisitions (Hall and Brenner 2008), see e.g.

table 1.3 for the thorax.

1.4.3 radiation risks

Ionizing radiation is a known and proven carcinogen, especially for high doses ex-

ceeding 100mSv (Hall and Brenner 2008; Siegel et al. 2017). From these high doses,

a deterministic risk of induced radiation damage is originating. Deterministic effects

of radiation have a threshold above which these effects increase in frequency and

severity with increasing dose (Mettler 2012). In contrast, stochastic effects of inducing
radiation damages have no threshold. Stochastic risks are originating from doses

<100mSv. The probability of a stochastic effect increases with increasing radiation

exposure, however, not the severity.

The younger the patient, the higher the percentage lifetime cancer risk. One rea-

son for this effect is the increased dose from pediatric CT examinations as less

self-shielding is possible in tinier patients and organ doses are consequently higher.

Self-shielding is the endogeneous filtration of low-energy photons in fat and soft tis-

sue. Since especially fat tissue is less radiosensitive than e.g. kidney tissue, a larger

fat mass (e.g. in obese patients) decreases the dose to radiosensitive organs. The

second reason for the increased lifetime cancer risk at younger ages is the higher

radiosensitivity of children compared to adolescents (Hall and Brenner 2008). Radi-

ation induced double-strand breaks of the deoxyribonucleic acid (DNA) are more

likely to occur in dividing cells (Foray et al. 1997; Iliakis and Okayasu 1990). Due to
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the higher cell division rate at younger ages, the risk of double-strand breaks causing

cell alteration is increased. Furthermore, young patients are more likely to experi-

ence any possible radiation-induced tumor (that might develop after approximately

20 years) due to their long life expectancy from the moment of the CT acquisition

on, especially compared to an e.g. 80 year old multimorbid patient.

In general, a precautionary principle is applied (keep the dose as low as reason-

ably achievable, ALARA). Radiation doses >100mSv are known to induce cancer,

since a linear relationship between excess risk and dose exists in this range (deter-

ministic radiation effects). The precautionary principle extends that excess risk also

to the lowest doses (linear no-threshold stochastic model, Hall and Brenner 2008;

Mettler 2012). Several biological and epidemiological studies have been published

that demonstrate a small risk of radiation-induced cancer for organ doses associated

with a few CT scans (Hall and Brenner 2008), however, the exact biological mecha-

nisms are still unknown and there are also positive radiation effects mentioned on

the opposite side (Siegel et al. 2017).

There are several task groups worldwide which regulate, supervise, and provide

recommendations about the handling of radiation exposure in medicine, such as

the International Commission on Radiological Protection (ICRP), the ICRU, or the

AmericanAssociation of Physicists inMedicine (AAPM). According to the ICRP, the

nominal risk factor (lifetime risk estimate) for fatal cancer in the whole population

is 5.5% per Sievert (4.1%/Sv for adult workers, ICRP 2007).

Table 1.3: Effective dose per examination in diagnostic radiology inGermany. Abbreviations:

computed tomography (CT) (BfS 2016a,b).

Typical effective doses
Examination [mSv]
CT

CT head 1-3

CT thorax 4-7

CT abdomen 8-20

Angiography and interventional procedures

Arteries (angiography & intervention) 10-30

Gastrointestinal system 4-12

Planar radiography

Pelvis 0.3-0.7

Head 0.03-0.06

Dental <0.01

Thorax 0.02-0.04

Mammography (2-sided, in 2 planes) 0.2-0.4

Lumbar spine 0.6-1.1

Extremities <0.01-0.1
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1.4.4 techniques for dose reduction in ct

The diagnostic indication, desired information, and patient constitution lead to the

specific acquisition parameters of a CT examination. A reduction of the radiation

exposure is always aimed at, while confident diagnosis should be maintained, fol-

lowing the ALARA principle. First of all, the number of acquisitions should be

reduced if possible, e.g. a non-enhanced acquisition should be omitted if the ob-

tained informationwill not contribute to the diagnosis. Furthermore, the acquisition

length (coverage) should be reduced to the region of interest and carefully planned.

Moreover, the desired reconstructed slice thickness should be reconsidered. A lower

necessary TCTP, and therefore radiation dose, can be achievedwith a larger detector

collimation.

The software of modern scanners provides intrinsic dose modulation, also known

as automatic exposure control (AEC). The AEC regulates both the tube potential

and the tube current, based on the patient topogram (scout scan/localizer, see fig-

ure 1.12) and reference values for the tube potential and tube current.

An adjustment of the tube potential to lower values can reduce the radiation ex-

posure. This technique has two effects: (1) the image contrast increases, especially

for soft body tissues. However, due to the reduced efficiency of the x-ray tube at

low tube potentials (see section 1.2.2.3), (2) the image noise also increases (Lira et al.

2015; Seyal et al. 2015). If the tube current is not increased to fully compensate for the

increased noise level, low-kV imaging allows for a reduction in radiation exposure
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(b) Lateral topogramwith corresponding automatic LTCM for

successive CT acquisitions, based on the topograms

Figure 1.12: Topograms, acquired prior to a computed tomography (CT) acquisition. The

anterio-posterior topogram is acquired prior to any acquisition, whereas the lat-

eral topogram may be additionally acquired. Longitudinal tube-current modu-

lation (LTCM) and the resulting slice-specific tube-current time product (TCTP,

white curve in (b)) for successive CT acquisitions is planned on the basis of the

topograms. Water equivalent diameters are calculated based on the x-ray atten-

uation of the topogram and used to determine the appropriate tube current. For

LTCM, the tube current at each z-position (slice location) is calculated relative to

themaximum x-ray attenuation (in this example at the shoulders). The accuracy

of LTCM increases with the additional acquisition of a lateral topogram.
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(Stiller 2011). Especially for contrast-enhanced acquisitions, tube potentials lower

than 120 kVp should be used, since this does not only improve image contrast but

also enables a dose reduction by up to 50% (Kalender et al. 2009; Schegerer et al.

2017).

A longitudinal tube-current modulation (LTCM) is implemented in all modern clin-

ical CT scanner models (see figure 1.12b). LTCM is based on the patient topogram

and takes the differences in attenuation along the z-axis of the patient into account.

The tube current is increased in regions of large photon attenuation (shoulders,

hips), whereas tube current is reduced for regions of low attenuation (thorax). Fig-

ure 1.12 shows the patient-specific modulated tube current along the longitudinal

axis. Slice-specific tube current values are documented in the Digital Imaging and

Communications in Medicine (DICOM)-headers of the reconstructed images.

For some vendors, the tube current is additionally based on attenuation measure-

ments from previous 180°-rotations of the CT gantry (online/angular tube-current

modulation (ATCM), Kalender et al. 1999b). The reason for this modulation are the

differences in lateral and anterio-posterior (a.p.) diameter of patients (and hence,

x-ray pathways), especially at the shoulder or pelvis.

Great attention should be paid to the positioning of patients in the CT gantry, since

the positioning influences the efficiency of AEC and the applied radiation exposure.

If the patient is positioned off-center, dose modulation will not be as effective as if

the patient is positioned at the isocenter of the CT scanner. For an off-center position,

the water equivalent diameters (WEDs) calculated from the topograms cannot be

accurately determined since patients appear magnified on the topogram, resulting

in increased tube current values (Akin-Akintayo et al. 2018). Additionally, the arms

should be placed outside the desired examination region, e.g. arms elevated above

the head, if the abdomen is of interest. This reduces the x-ray pathway through the

patient, resulting in a reduction of the required tube current for a sufficient image

signal (Liu et al. 2015).

Due to newer developments in iterative reconstruction, images with less noise can

be obtained, allowing to reduce the reference tube current prior to the acquisi-

tion, enabling dose reductions of 30 to 60% (Kalender 2014; Schegerer et al. 2017;

Stiller 2018). Furthermore, modern CT scanners offer the possibility of dual-energy

(DE) acquisitions. From contrast-enhanced DE acquisitions, it is possible to calcu-

late virtual non-contrast (VNC) images. These VNC images allow to omit the real

non-enhanced acquisition, thereby reducing the radiation exposure to up to 25-40%

(Buffa et al. 2014; Graser et al. 2009; Toepker et al. 2012). Different techniques for

radiation exposure determination are described in the following section.
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1.5 CT DOS IMETRY

As was mentioned in section 1.2.3, a dose protocol is automatically created by the

CT scanner after an examination. The dose protocol informs about the individual

acquisition parameters, e.g. the applied tube potential, the reference and effective

TCTP, the x-ray tube rotation time, and the collimation width, and information on

the radiation exposure, making use of the quantities computed tomography dose

index (CTDI) (to bemore precise, the volumetric CTDI, CTDIvol) and the dose-length

product (DLP).

computed tomography dose index (ctdi) and dose-length product (dlp)

The CTDI is a dosimetric quantity describing the radiation exposure in CT imaging.

It is purely a measure for the radiation exposure, but does not describe the effective

dose or dose distribution of/in a patient. The CTDI is defined as "the integral along

a line parallel to the axis of rotation (z) of the dose profile (D(z)) for a single slice,

divided by the nominal slice thickness T" (Bongartz et al. 1999):

CTDI �
1

T

∫
+∞

−∞
D(z) dz (1.11)

The measurement of dose using a CTDI phantom (see figure 1.13) and an ionization

chamber is a standard for quality control in CT. CTDI phantoms are available in

two sizes (body ∅ 32 cm and head ∅ 16 cm, thickness of 15 cm in both phantoms),

representing a torso and ahead. Thephantoms aremade of polymethylmethacrylate

(PMMA), with a density of 1.19 g/cm
3
. For the measurement of a volumetric CTDI,

radiation exposure is measured at five different positions (one central position,

four peripheral positions) in the phantom. For a practical CTDI measurement, the

radiation exposure is integrated in each measurement position individually over a

z-length L of 100mm and results in the quantity CTDI100 (unit mGy):

CTDI100 �
1

T

∫
L = 50 mm

L = -50 mm

D(z) dz (1.12)

From the CTDI100, the weighted CTDI, CTDIw, is calculated, taking the dose mea-

surements in the phantom center (c) and periphery (p) into account:

CTDIw �
2

3

·CTDI100,p +
1

3

·CTDI100,c (1.13)

The volumetric computed tomography dose index (CTDIvol), which is provided by

the dose protocol, additionally takes the pitch value into account:

CTDIvol �
CTDIw

pitch

(1.14)

The CTDIvol allows to compare the influence of different acquisition parameters

(tube potential, TCTP, pitch, collimation) on the radiation exposure. Furthermore, it

allows to compare the radiation exposure of different acquisitions among scanners

and vendors. However, the index is independent of patient morphology and tissue
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Figure 1.13: Computed tomography dose index (CTDI) phantom: CTDI body (B) (dark gray,

∅ 32 cm) and CTDI head (H) (light gray, ∅ 16 cm) phantom. CTDI phantom

thickness in z-direction is 15 cm, made of polymethyl methacrylate (PMMA).

Both CTDI phantoms include five measurement positions for a CT ionization

chamber (one centralmeasurementpositionand fourpositions in theperiphery),

fitted with PMMA plugs for homogeneous density of the CTDI phantom. One

PMMA plug is replaced by an ionization chamber for measurement.

composition. Multiplying the CTDIvol with the scan coverage (irradiated length in

cm) results in the DLP value, which again is provided by the dose protocol (unit

cm·mGy):

DLP � CTDIvol · scan coverage (1.15)

The CTDIvol and DLP only provide a measure of the intensity of the radiation being

directed at the patient but not a measure of the effective or organ dose.

tissue weighting factors In 1977, the ICRPpublished tissueweighting factors,

wT , in ICRP publication 26 for specific tissue types (e.g. bone marrow, breast, thy-

roid tissue) (ICRP 1977). Tissueweighting factors take the radiosensitivity of specific

tissues or organs to ionizing radiation into account. The radiosensitivity of specific

cell types is determined from cell experiments and re-investigated on a regular basis.

Hence, the tissue weighting factors were updated and refined in ICRP publication

60 in 1991 and ICRP publication 103 in 2007, thereby altering the tissue weighting

factor to the currently estimated radiation sensitivity (ICRP 1991, 2007). Especially

the weighting factors for the gonads and breast have been adjusted throughout the

time: for the gonads,wT changed from 0.25 (ICRP 26) to 0.20 (ICRP 60), to 0.08 (ICRP

107), whereas for the breast, wT changed from 0.15 (ICRP 26) to 0.05 (ICRP 60), to

0.12 (ICRP 107).

Tissueweighting factors allow for the conversion between tissue dose values (equiva-

lent dose, unit Gy) and effective dose (inmSv). Tissue dose values can be determined

by means of the anthropomorphic Rando Alderson Phantom (RSD Phantoms, CA,

USA), which includes a human skeleton surrounded by tissue-equivalent materials.
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It is a common dosimetry phantom in radiology and radiotherapy departments. The

phantom consists of thin slabs allowing the insertion of small thermoluminescent

detectors (TLDs) tomeasure dose values at various positions inside organs, skeleton,

and surrounding tissue. Although it is a complex measurement and TLD read-out

procedure, the spatially-resolved measurement of the radiation exposure in an an-

thropomorphic phantom, which contains human and tissue equivalent materials,

allows for an increased precision and accuracy of determined dose values.

conversion factors The simplest andmost straightforwardmethod for the cal-

culation of the effectivedose resulting fromaCTacquisition is theuse of body-region

specific DLP-to-effective-dose conversion factors (unit mSv·mGy
−1·cm−1). The first

conversion factors were published in the European guidelines on quality criteria

for CT in 1999 based on the ICRP 60 weighting factors (Bongartz et al. 1999; ICRP

1991) andwere updated in 2011 by Huda et al. (2011) based on ICRP publication 103

(ICRP 2007). The DLP-to-effective-dose conversion factors are based on the tissue

weighting factors, introduced in the last paragraph.

According toHuda andMettler (2011), dose calculation bymeans of the CTDIvol and

DLP values with conversion factors are not exact and useful for all patients, since

conversion factors are based on a standardized patient, although the actual patient

size and the morphology has a considerable impact on the effective dose (Steuwe

et al. 2016). CTDIvol and DLP values are only sufficient to give a rough estimate of

the radiation exposure from CT dose protocols.

According to McCollough et al. (2011) and Boos et al. (2016), "estimates of indi-

vidual patient risk (...) must use patient size-specific dose estimates (SSDEs)" and

not just the scanner output (CTDIvol, DLP). SSDEs are calculated by multiplication

of the CTDIvol and a conversion factor, f, which depends on the axial diameter of

a patient. The conversion factor, f, is provided by the AAPM (2011) for different

lateral- and a.p.-diameters, and for effective diameters (Deff =

√
a.p. · lat), and de-

creases with increasing diameter. Hence, SSDE-conversion factors can be used to

correct the CTDIvol according to the patient’s habitus (Boos et al. 2016). Diameter

measurements on axial CT images and calculation of Deff are considered the most

accurate, as they take fat shielding into account and reduce relative dose for large

patients (see figure 3 in McCollough et al. 2011). In addition to SSDEs, Deak et al.

(2010) have published sex- and age-specific conversion factors for CT, to increase

the accuracy of effective dose values.

commercially available programs for dose calculation Apart from ex-

perimental dose measurements and the use of conversion factors, there are several

commercial programs available for the determination of dose without the need

of own measurements, but solely requiring a CT patient data set and the acquisi-

tion parameters. These programs are often part of dose-management systems, such

as DoseTrack (Sectra Medical Systems, Cologne, Germany) and tqm|DOSE (Agfa

HealthCare, Bonn, Germany), or can be purchased individually (CT-Expo or Virtu-

alDose, Ding et al. 2015). Furthermore, open-source codes are available for research

purposes, providing a high flexibility in their applications but also the need for
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targeted further development. Most of these programs are based on Monte Carlo

methods which are described in more detail in section 1.5.1.

1.5.1 monte carlo methods in radiology

Monte Carlo methods can be defined as "statistical methods that use random num-

bers as a base to perform simulation of any specified situation" (Ljungberg 1998, p. 1).

These statisticalmethods are used in a large field of applications for the simulation of

stochastic processes, especially for the simulation of particle transport in scattering

media (Chan and Doi 1983). They can be applied to study radiation physics aspects,

physical quantities, and characteristics of detection systems such as the efficiency of

gamma-ray detectors (Andreo 1991; Raeside 1976). In the medical field, MC studies

can be found in nuclearmedicine, radiation therapy, and diagnostic radiology. There

is a broad scope of application since MC methods provide the most complete and

accurate method for estimating doses in organs and tissues (Chan and Doi 1983;

Christner et al. 2010; Jiang et al. 2007). In diagnostic procedures, MC methods are

used for their optimization, to improve the image quality and patient-dose ratio, and

for understanding radiation protection aspects, scatter, and attenuation principles

(Andreo 1991; Zubal 1998).

MCmethods in diagnostic radiology are advantageous because no actual x-ray unit

is necessary to study the influence of x-rays in an object or patient. Furthermore,

simulations do not expose patients or staff to ionizing radiation. A model of the

CT scanner and various phantoms can be developed and implemented to track and

determine dose deposition with full flexibility: MCmethods enable the alteration or

repetition of experiments at-will, allowing to easily change between different mea-

surement setups or adjusting simulation parameters to a certain research question

(Steuwe et al. 2018).

Several MC-based dose calculators are available for the calculation of dose depo-

sition in CT (Brady et al. 2012), such as ImPACT (ImPACT 2011), or ImpactDose

(IBA Dosimetry 2009; Kalender et al. 1999a). However, differences between software

tools are often significant and the user has to be aware of the limitations, such as out-

dated mathematical phantoms and look-up tables, or outdated CT scanners (Cros

et al. 2017).

1.5.1.1 Geant4

The open-source toolkit Geometry and Tracking 4 (Geant4) (Agostinelli et al. 2003;

Allison et al. 2006) is used for the simulation of physics processes in this work.

One advantage of this software compared to many commercial programs is the

possibility of adjusting the simulation parameters for the specific purposes of a

desired research project. Hence, geometry parameters (the choice and position of

the source, phantoms, or detectors) as well as the way physics processes are tracked

can be specified according to the desired simulation setup. The software and the

variable input and output parameters are described in more detail in section 2.1 and

2.1.4, respectively.
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1.6 MOTIVAT ION AND GOAL OF THI S WORK

This chapter described the increasing use of CT and the associated radiation expo-

sure over the past decade. Especially for patients receiving follow-up examinations

over a long period of time, it is of interest, to what degree these patients are exposed

to radiation and where the energy of x-rays is deposited in the body. Since long-

term effects of the radiation exposure from CT examinations are still not clarified,

extensive long-term studies of patients without and with CT examinations need

to be performed. The surveillance of individual effective and organ doses helps to

evaluate the effects of ionizing radiation, especially with regard to possible induced

cancerous diseases. Furthermore, deeper knowledge about the spatial distribution

of the deposited x-ray energy in relation to CT acquisition parameters might help to

develop technical improvements in CT in future.

The determination of the radiation exposure caused by CT is still a compromise

between calculation time and accuracy. Conversion factors are advantageous be-

cause of their simple and fast use, however, they are based on standardized patients

that do not represent the actual patient (Steuwe et al. 2016). The administration of

potentially toxic contrast agents and the corresponding change in energy deposi-

tion is not included in the dose calculation using conversion factors, although it is

well known that iodinated contrast agents increase the frequency of double strand

breaks of the DNA (Streitmatter et al. 2017). In contrast to the conversion factors,

determination of effective dose by MC simulations is time-intensive but yields the

advantage that the actual patient morphology and tissue composition (including

contrast agents) can be included. However, these simulations are only possible post

hoc, after the CT acquisition has been performed.

The aim of this project was the development and validation of a software for de-

termination of radiation exposure associated with CT that paves the way towards

virtual dosimetry of patients. Virtual dosimetry, in contrast to experimental dosime-

try, allows for prompt patient- and acquisition-specific dose calculations that can

be performed for all examined patients in a diagnostic radiology department. In

contrast to commercially available software, it was aimed at a program offering a

high degree of flexibility to implement any source spectra, geometrical and digitized

patient phantoms, and to simulate the effect of contrast agents on energy deposition.

Furthermore, a flexible and comprehensive data read-out and analysis was desired,

offering considerably more possibilities than commercial software.

It was the goal to understand the differences in dose distribution caused by differ-

ent source spectra and primary filtration. The knowledge about possible differences

in dose distribution helps to assess whether interchangeability between spectra is

given or whether the measurement of own source spectra is required for an ex-

act simulation of a CT acquisition. With the information obtained from the input

source spectra, the effect of different tube potentials on the energy deposition was

determined for more elaborate phantoms, without and with employing contrast

agents. Since low-kV acquisitions are encouraged nowadays, their impact on the

dose distribution, especially in the skin, is of interest as well as the effect on the

detector signal. To allow for individual patient dosimetry, the software was further
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developed to implement patient-specific phantoms. Obtaining three-dimensional

maps of the energy deposition associated with CT acquisitions, allows for (a) indi-

vidual dosimetry, (b) comparison between follow-up acquisitions, and (c) assessing

the change in energy deposition when altering scan parameters (e.g. different tube

potential) or morphological change (e.g. weight loss).

contribution of others The measurement of CT x-ray spectra by Compton

spectroscopy and the production of the physical beam-shaping filter model for MC

simulations have been performed prior to this work by Dr. Wolfram Stiller and Dr.

Stella Veloza (Veloza 2012). The methodology and results of this prior work have

been reprocessed and prepared for submission during the course of the current

doctoral program (Stiller et al. 2019).

The MC software programmed during this project is a further development of a

MCmodel to simulate Compton spectroscopymeasurements, which was part of the

doctoral thesis of Dr. Stella Veloza (Veloza 2012).

Patient data included in this thesis has been acquired during the course of this work,

as part of a clinical study (CT Angiography of the Aorta: Prospective Evaluation of

an Individualized Low-Radiation Dose and Low-Volume Contrast Media Protocol

with Dual-Energy CT for Detection of Endoleaks after Endovascular Aneurysm

Repair). The study was organized by Dr. med. Fabian Rengier and Matthias Fink,

and executed by the radiologists and technicians in the Clinic for Diagnostic and

Interventional Radiology, University Hospital Heidelberg, Germany.





2
MATERIALS AND METHODS

This chapter provides necessary background information on the employed MC

model of radiation transport, the workflow of the MC simulations, the MC model’s

individual components (x-ray source emission, phantoms), and the analyses and

simulations of CT acquisitions performed during this research project.

The chapter is divided into two main parts: (1) the individual components of the

MC model and (2) the performed simulations of CT acquisitions, which evaluated

the effect of tube potential, phantom material choice, and contrast agent on the en-

ergy deposition and its spatial distribution in a multitude of simple and elaborate

phantoms.

In section 2.1 and 2.2, a description of the used MC model and its configuration are

presented as well as the implemented CT scanner geometry. In section 2.3, the em-

ployed input spectra andmonoenergetic photons, beam shapingmethods, as well as

the implementation of different source types and acquisition modes in the simula-

tion are described. In section 2.4, the geometrical and digitized phantoms designed

in this work and used for tracking of the radiation exposure, are presented.

Finally, with the individual components of the MC model, the performed simula-

tions are described in section 2.5. The designed phantoms increased in complexity

during the course of this work. The effect of different source spectra, material choice,

tube potential, and contrast enhancement were first assessed in simple phantoms

(water and box phantom). Afterwards, the information gained from the simple

phantoms was used to assess and understand the energy deposition in a geometri-

cal anthropomorphic phantom and several digitized patient phantoms, as a function

of the applied tube potential, contrast enhancement, and phantom morphology.

Section 2.6 describes a method used to estimate the error of the MC model.

2.1 DESCR IPT ION OF THE MONTE CARLO MODEL

MCsimulationswere performedusingGeant4, version 4.9.2.p04. Geant4 is an object-

oriented simulation toolkit for simulation of radiation transport inmatter, providing

a set of software components implemented in the C++ programming language. The

toolkit allows to implement all aspects necessary for this work, e.g. the geometry

of the CT scanner and phantoms, desired primary particles, tracking of particles

in materials, the required physics processes, and the storage of interaction data

(Agostinelli et al. 2003; Allison et al. 2006).

The developed MC software models a CT scanner geometry and allows for sim-

ulation of CT acquisitions of patients or test specimens (phantoms). According to

section 1.2.1, the CT scanner geometry consists of three main components:
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1. the x-ray emitting source,

2. beam-shaping filtration, and

3. the detector for image acquisition (see figure 1.3).

The radiation exposure associated with CT acquisitions (energy deposition and its

spatial distribution) is tracked and measured in

4. a phantom or patient model, positioned at the isocenter of the CT geometry.

The developed MC model emits photons and tracks their physical interactions and

energy deposition between photon emission from the x-ray source and photon ab-

sorption in a phantom or detector, including all particles arising during interactions

of photons in matter (i.e. electrons, called 'secondaries' or secondary electrons
2
).

In the developedMC software, the x-ray source with its individual components was

not modeled since information on the geometry and materials were not available

(see section 1.2.2.4). Instead, x-ray emission was modeled by the implementation of

source spectra and monoenergetic photons. Details on the x-ray emission are pro-

vided in section 2.3.

Two different methods for beam-shaping filtration were implemented, which shape

the x-ray fan beam and alter the photon fluence according to transmission mea-

surements performed prior to this work. Details on the beam-shaping filtration are

provided in section 2.3.5.

The third part of a CT scanner geometry is the CT detector. An experimental lead de-

tector (see section 2.4.1.2) was implemented and employed in this work. A classical

CT detector for image acquisition was additionally modeled, however, since image

acquisition was not focus of this work, the latter CT detector will not be described.

The radiation exposure associated with CT examinations was simulated in a variety

of phantoms (geometrical phantoms or digitized patient phantoms). Details on the

implemented phantoms are provided in section 2.4.

The tracked physics processes of photons, electrons, and positrons (i.e. Compton

effect, Rayleigh scattering, etc.) are defined in a 'physics list' and are described in

detail in section 2.1.3.

2.1.1 user action classes

The object-oriented structure of Geant4 includes a variety of classes, which the user

canadapt according to the specificneedsof aMCmodel. Three classes aremandatory

for a MC simulation in Geant4, describing the photon emission, the geometry and

materials of the CT model and phantoms, and the tracked interactions of particles

in matter.

2 Incident/initial photons are also called primary photons or primaries. Electrons/photons arising from

interactions in matter are called secondary electrons/photons or secondaries.
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x-ray emission The G4VUserPrimaryGeneratorAction class provides information

about the x-ray source, e.g. its position, number and type of particles, and the particle

distribution.

ct and phantom geometry The G4VUserDetectorConstruction class describes

information about the general scanner geometry, phantom and material selection,

filtration, and the image detector. Do not get confused on the name of this class – all

geometrical components belong to this class and are named 'detector', not just an
image detector. All geometrical components can be made 'sensitive', meaning that

energies can be scored in all geometrical components.

physics list The G4VUserPhysicsList class describes all physics processes and

available particles in the simulation.

Optional user action classes, initialized in the current MC model, are G4UserEvent-
Action and G4UserRunAction. These are classes that handle data collection and stor-

age of data for further analysis.

2.1.2 random number generator

MC models use pseudo-random numbers as a base to perform the simulations. In

this implementation, the random number generator 'MTwistEngine' is employed,

which is based on the Mersenne Twister generator. It has a periodicity of 2
199377 − 1

events (Matsumoto and Nishimura 1998). The random number generator uses the

value of a seed to generate a sequence of random numbers. Using exactly the same

seed value in two repetitions of a simulation will lead to exactly the same results in

both repetitions (Ljungberg 1998, p. 2). The seed value in the employedMCmodel is

initialized using the time stamp of the system computer clock, and therefore ensures

independent simulation statistics for different simulations.

2.1.3 physics list

The physics list determines the type of particles and processes, which are tracked

during the MC simulation. The user can select from existing physics lists or develop

own lists for the specific purpose of the simulation. Photon energies in diagnostic

radiology range typically between 0 and 140 keV, requiring a detailed description

of low-energy physics processes. For this work, physics models developed for the

PENetration andEnergyLOss of Positrons andElectrons (PENELOPE) code (version

2001)were employed (Baró et al. 1995; TheGeant4Collaboration 2008). Thesemodels

were designed for the use in MC simulations and allow tracking of energies down

to a few hundred eV. Background information on the tracked physics processes of

photons can be found in section 1.3.1.

Photons, electrons, and positrons are tracked during the simulation. For photons,

gamma conversion (G4PenelopeGammaConversion), Compton scattering (G4Penelope-
Compton), the photoelectric effect (G4PenelopePhotoElectric), and Rayleigh scattering
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Figure 2.1: Simulation of photon processes in a scattering medium in Monte Carlo (MC)

simulations, adapted from Chan and Doi (1983). Abbreviations: Klein-Nishina

equation (K-N-eqn), Thomson equation (T-eqn), scattering (scat.), threshold (TH).

(G4PenelopeRayleigh) are tracked. For electrons and positrons, the processes multiple

scattering (G4MultipleScattering), ionization (G4PenelopeIonization), and bremsstrah-

lung (G4PenelopeBremsstrahlung) are tracked. Additionally, annihilation processes

(G4PenelopeAnnihilation) are tracked for positrons (Steuwe et al. 2018).

The range of photons, electrons, and positrons in amaterial depends on their energy

and on the material properties. In this work, a range cut-off of 100µm was set,

corresponding to energies of 990 eV in air and 1.1 keV in water for photons and

84.7 keV in water for electrons and positrons (Steuwe et al. 2018). If the range of

an photon, electron, or positron is <100µm, its energy is deposited at its current

position and the particle is not further tracked.

Chan and Doi (1983) have published a schematic overview of the photon transport

as handled by MC methods, that visualizes the processes of photons and electrons

after each interaction (see figure 2.1).

2.1.3.1 Interaction cross-sections and material database

Data of interaction cross-sections were provided by the low-energy extension of

the electromagnetic processes data, version 6.2, distributed in the source file of
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Geant4 (Steuwe et al. 2018). Thematerial propertieswere retrieved from theNational

Institute of Standards and Technology (NIST), ICRU databases (Hubbell and Seltzer

2018a), and literature (Carver et al. 2017; Chang et al. 2016), see appendix B.

2.1.4 storage of interaction data

Simulation results were stored and analyzed in Root 5.34/32 (Brun and Rademakers

1996; Steuwe et al. 2018). In Root, data can be stored in large tables (branches), which

can efficiently beused for data analysis. The single branches (variables) are combined

in trees and stored as a single file.

The following information was stored for every interaction (including scattering) in

a tracked volume as branches in a Root tree:

• incident photon energy

• energy deposited in the phantom

• position (x,y,z) of interaction

• interaction type (photoelectric effect, ionization, Compton effect, bremsstrah-

lung, Rayleigh scattering, multiple scattering of charged particles in matter)

• volume in which the interaction took place

• track identification (ID) (from primary or secondary interactions)

Information stored in the different branches can be combined during analysis, e.g.

the deposited energy at specific positions can be plotted or only the energy deposi-

tion resulting from a specific interaction type.

From this information, energymaps (2D- or 3D-histograms) or profiles of the spatial

distribution of energy deposition inside phantoms can be calculated, as well as the

total energy deposition (Etotal) determined. An analysis of the simulation time, data

storage, and required disk space for the extensive data output of the simulations

can be found in appendixC.

Further analysis software tools used throughout this thesis are described in ap-

pendixD.

2.2 CT SCANNER GEOMETRY

In the developed MC model, the scanner geometry of the Aquilion™16 (formerly

Toshiba Medical Systems Corporation, Nasu, Japan, now Canon Medical Systems

Corporation,
¯
Otawara, Japan) was employed since the measurement of x-ray source

spectra, beam-shaping filtration, and transmission were performed on this scanner

(prior to this work). Scanner specifications can be found in appendixA. The general

geometry of a CT scanner as implemented in the MC model was presented in

figure 1.3. Please refer to section 2.3 for themeasurement of x-ray spectra and section

2.3.5 for the employed beam-shaping methods.
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2.3 X-RAY EMISS ION

This section provides the x-ray spectra employed throughout in this work. Spectra

were either measured at 120 kVp (Aquilion™16) or generated using an online tool

for 80, 100, and 120 kVp (Siemens Healthineers 2018). For closer inspection, the

individual spectra are plotted in appendix E.

2.3.1 measured ct x-ray tube spectra

Prior to this work, x-ray source spectra of the Aquilion™16 CT x-ray source (CXB-

750D MegaCool) were measured using Compton spectroscopy and reconstructed

according to Matscheko and Ribberfors (1987) (Stiller et al. 2019). Spectra were

measured for fan angles between 0° and 20°, in steps of 2°, and at 21° (see figure 2.2).
From the spectral measurements, information on the photon transmission through

the beam-shaping filter was obtained and further used to model a physical beam-

shapingfilter (PBF) forMCsimulations (Veloza 2012), and to implement aprobability

density function (PDF) for photon fan-angle dependent photon fluence modulation

(FM), see section 2.3.5.2 and figure 2.3. Dimensions and design of the beam-shaping

filter developed prior to this work are given in appendix F.

Due to beam-hardening caused by the beam-shaping filter, themean spectral energy

increased from 57.7 keV at a fan angle of 0° to 76.7 keV at a fan angle of 21°. Figure 2.4
compares the shape of the 0°- and 21°-spectra for normalized photon intensities.

Throughout this thesis, the measured 0°-spectrum is the reference spectrum. The

mean energy of the reference spectrum, Emean,ref, equals 57.7 keV.
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Figure 2.2: Measured fan-angledependentAquilion™16 spectra. Photon intensitydecreased

with increasing fan angle, whereas mean spectral energy increased.
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Figure 2.3: Fan-angle dependent photon transmission caused by beam-shaping filtration.

The photon fluence is higher at the center of the fan beam, whereas it is reduced

to the sides of the fan beam. This curve is implemented as a probability density

function (PDF). Adapted from Steuwe et al. (2018).
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Figure 2.4: Measured normalizedAquilion™16 spectra at 120 kVp at 0° and 21°, showing the

beam-shaping filter induced spectral distortion at larger fan angles. The mean

spectral energy increased from 57.7 keV at a fan angle of 0° to 76.7 keV at a fan

angle of 21°.
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Figure 2.5: Generated spectra without (120 kVp) and with 3.3mm aluminum (Al) filtration

(80, 100, and 120 kVp) for matching mean energy of the generated and measured

120 kVp spectra. Spectra available from Siemens Healthineers (2018).

2.3.2 generated spectra

In addition to the measured spectra, spectra were generated at tube potentials of

80, 100, and 120 kVp using an online tool (Siemens Healthineers 2018). A filtra-

tion of 3.3mm aluminum was added such that the mean energy for the gener-

ated 120 kVp-spectrummatched the mean energy of the measured central spectrum,

Emean,ref = 57.7 keV.Mean energies of the generated spectrawithout 3.3mmaluminum

filtration were 40.8 keV at 80 kVp, 46.7 keV at 100 kVp, and 51.5 keV at 120 kVp. Mean

energies of the generated spectra with 3.3mm aluminum filtration were 46.6 keV at

80 kVp, 52.7 keV at 100 kVp, and 57.7 keV at 120 kVp. The filtered spectra and the

unfiltered spectrum at 120 kVp are depicted in figure 2.5.

The measured and the generated filtered spectrum at 120 kVp are compared in fig-

ure 2.6, showing subtle differences between 20 keV and 60 keV. The peak-positions at

the characteristic x-ray energies of tungsten at ~67 keVand~59 keVare in accordance,

although peak height differs slightly.

2.3.3 monoenergetic photons

Since source spectra are not always available, monoenergetic photons as a simplified

approximation of spectral distributions were implemented. For this purpose, the

mean spectral energy of the central reference spectrum (Emean,ref = 57.7 keV) was

employed as the monoenergetic photon energy.
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Figure 2.6: Generated spectrum with 3.3mm aluminum (Al) filtration, for matching the

mean energy of the measured 0°-spectrum at 120 kVp. Generated spectrum avail-

able from Siemens Healthineers (2018).

2.3.4 scaling of photon statistics accounting for x-ray tube efficiency

In clinical CT, the TCTP is adapted to the tube potential since the x-ray source

efficiency differs for different tube potentials (see table 1.1 and corresponding expla-

nation in section 1.2.2.3). Asmentioned in the introduction, a practical approach is to

increase the exposure by a factor of 1.5 for a reduction of the tube potential of 20 kV.

This factor compensates for the efficiency differences at different tube potentials

(120 kVp: efficiency 1, final exposure output 1; 100 kVp: efficiency ~0.69, compensa-

tion factor 1.5, final exposure output 1; 80 kVp: efficiency ~0.44, compensation factor

2.25, final exposure output 1). When comparing the influence of different tube po-

tentials on energy deposition in this work, the compensation factors are intrinsically

employed by using equal numbers of photons for the different tube potentials (same

final count of emitted photons after beam-shaping filtration).

2.3.5 beam-shaping filtration

2.3.5.1 Physical beam-shaping filter (PBF)

A PBF in the shape of a bowtie was positioned between the x-ray source and the

isocenter, at a distance of 15 cm from the source. Dimensions and material specifi-

cations are described in appendix F. The beam-shaping filter was designed prior to

this work, according to Lambert Beer’s law (Veloza 2012).

The PBF both models fan-angle dependent photon fluence and spectral beam-

hardening, resulting in fan-angle dependent spectra (FADS). The implementation

of a PBF results in fan-angle dependent photon fluence and spectral distortion since
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photons are absorbed during the passage of the PBF. The number of initial photons

needs to be increased by a factor of approximately 2.36 to counterbalance the loss of

photons in the PBF, doubling the simulation time.

2.3.5.2 Fan-angle dependent fluence modulation (FM)

Fan-angle dependent photon fluences induced by the varying x-ray path lengths

through the beam-shaping filter were obtained prior to this work (see section 2.3.1).

The beam-shaping filter’s increasing thickness towards its edges causes a reduction

of the photon fluence, cf. figure 2.3, resulting in fan-angle dependent photon fluence.

By implementing a PDF for the fan-angle dependent photon fluence, total photon

statisticsweredistributedover the fan angles relative to the transmissionvalues. Bear

in mind that the implementation of the PDF only alters the fan-angle dependent

fluence. Beam-hardening due to the beam-shaping filtration is not accounted for

(Steuwe et al. 2018). The method for evaluation of fluence modulation (FM) using a

PDF is described in section 2.5.1.3 and the results are presented in section 3.1.1.

2.3.5.3 Fan-angle dependent spectra (FADS)

Since FM only simulates the fan-angle dependent photon fluence, FADS need to be

employed in the MCmodel to implement spectral hardening (see figure 2.2). Before

photon emission, the angleα of the photon is determined, either fromauniformpho-

ton distribution (no photon fluence modulation (NM)) or by employing FM based

on the PDF, see figure 2.3. According to this angle, the corresponding measured

spectrum (refer to section 2.3.1) is determined according to table 2.1.

From the corresponding spectrum, the photon energy is sampled according to its

probability in the spectrum.Hence, of all angles, angles around 0° aremost probable

and for this angle, photons with an energy of ~59 keV (characteristic x-ray energy of

tungsten, see figure 1.4) have the highest probability of being emitted.

FADS are not commonly available without measuring them directly (refer to sec-

tions 1.2.2.4 and 2.3.1). Since FADS were only available from the Aquilion™16 CT

scanner, modeling of the beam-shaping filter induced spectral distortion was not

possible for the generated spectra.

2.3.6 source implementations

Several source implementations can be selected for MC simulations of CT acqui-

sitions, depending on the purpose of the simulation. There are two experimental

sources (point source and square source) with a fixed position and a point source

for the clinical axial (step-and-shoot) and helical (spiral) acquisition mode that have

been used in this work. Each source can emit a photon distribution according to an

energy spectrum of photons or monoenergetic photons.

2.3.6.1 Point source

The point source is placed at a fixed position (e.g. 9 or 12 o’clock) with a distance

of 60 cm to the isocenter of the modeled CT system. The emitted photons cover
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Table 2.1: Assignment of themeasured spectra according to theMonteCarlo sampledphoton

angle α. The photon angle is either randomly chosen (uniform modulation) or

based on the transmission curve (probability density function, PDF), see figure 2.3.

Condition Spectrum
−1 < α <� 1 0°

1 < α <� 3 or −3 < α <� −1 2°
3 < α <� 5 or −5 < α <� −3 4°
5 < α <� 7 or −7 < α <� −5 6°
7 < α <� 9 or −9 < α <� −7 8°
9 < α <� 11 or −11 < α <� −9 10°

11 < α <� 13 or −13 < α <� −11 12°
13 < α <� 15 or −15 < α <� −13 14°
15 < α <� 17 or −17 < α <� −15 16°
17 < α <� 19 or −19 < α <� −17 18°
19 < α <� 20 or −21 < α <� −19 20°
20 < α <� 23 or −23 < α <� −20 21°

a FOV of approximately 50 cm. A specified fan angle range (e.g. ± 18°) can also

be set to reduce the exposed area. In z-direction, the point source emits photons

depending on the specified collimation (~±1.528° for a z-collimation of 32mm, see

figure 1.3 for the coordinate system of the CTmodel). This point source is employed

for the acquisition of selected projections (acquisitionswith one specific fixed source

position).

2.3.6.2 Square source

The square source is placed at 12 o’clock with a distance of 60 cm to the isocenter

of the modeled CT system. It is a quadratic shaped source of 10 cm x 10 cm size

(parallel to x-z plane), and emits photons parallel to the scanners’ y-axis. This source

produces a uniform exposure of a 10 cm x 10 cm area.

2.3.6.3 Step-and-shoot/axial acquisition mode

For the step-and-shoot acquisitionmode, the x-ray source rotates around the patient

for a full rotation while the patient is in a fixed position (without table feed). After

a full rotation of the source, the patient table moves (step) and the next rotation of

the x-ray source starts (shoot). The z-collimation and the step length of the table

are flexible. If the step length equals the z-collimation, a homogeneous coverage

of the patient is achieved (contiguous coverage). For a step length longer than the

z-collimation, parts of the patient are not exposed and there are gaps between the

x-ray beams. If the step length of the table is shorter than the z-collimation, each part

of the patient is exposed more than once (overlap of x-ray beams). The influence of

the step size in the step-and-shoot mode is depicted in appendixG, figureG.1.
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2.3.6.4 Helical/spiral scquisition mode

For the helical acquisition mode, the point source moves in a 360°-rotation around

thepatient duringwhich thepatient ismoved. This acquisitionmode is implemented

in the MC simulation as follows: while the phantom is positioned stationary, the

source rotates around thephantomand is translated along the z-directiondepending

on the user-specified detector collimation and pitch. For geometrical phantoms, the

scan coverage and scan start position are user-specified, whereas these values are

obtained from the DICOM-headers for voxelized patient phantoms.

If the table displacement during one source rotation equals the z-collimation, a

pitch = 1.0 is achieved, with a contiguous x-ray beam coverage of the patient. For

pitches > 1.0, x-ray beams are not contiguous, since the table displacement per source

rotation is larger than the beam collimation. Parts of the patient are not irradiated

for pitches ≥ 2.0. For pitches < 1.0, x-ray beams are overlapping along the patient

and patient tissue is exposed more than once. The helical acquisition mode was

implemented and compared to the implementation published by Kim et al. (2013).

The influence of the pitch in the helical acquisition mode is depicted in appendixG,

figureG.2.

2.3.7 tube-current modulation (tcm)

2.3.7.1 Longitudinal TCM (LTCM)

The tube current is modulated along the z-direction of the patient (along the body,

see figure 1.12a). Information on the slice-specific exposure (in mAs) has been ob-

tained from DICOM-headers (DICOM tag 0018,1152) of the reconstructed images.

The thinner the reconstructed slices, the more detailed the information about the

exposure.

Information on the exposure can either be read out in an independent program

and used as input in any simulation or obtained during the simulation of a digi-

tized patient (see section 2.4.2). For the latter case, the DICOM-header with all the

necessary CT-acquisition information for the simulation is read out in the file 'Di-

comHandler.cc' and transferred to the file 'PhantomDicom.cc'. The effect of LTCM

is depicted in appendixG, figureG.4.

2.3.7.2 Angular TCM (ATCM)

The ATCM modulates photon emission through a 360°-rotation, such that more

photons will be emitted along the lateral path, and less photons along the a.p. path.

The reason for thismodulation is the difference between the lateral diameter and the

a.p.-diameter of a typical patient, which becomes apparent for the shoulder or the

hip region. The modulation reduces unnecessary radiation exposure for thin body

regions and also homogenizes the measured detector signal along the rotation.

In the MC simulation, the ATCM was implemented using the formula

Np(β) � Nrot ·
∆β

360
◦ ·

[
1− 0.5 · cos

(
β

0.5

)]
(2.1)
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Figure 2.7: Implementation of angular tube-current modulation (ATCM), using equation 2.1

to calculate projection-angle dependent photon emission. Example with an aver-

age of Nrot � 1 · 106 photons per rotation. Abbreviations: anterior (a), posterior

(p), lateral (lat).

with β as projection angle, ∆β as angular displacement per projection, Nrot as

number of photons in one rotation andNp as number of photonsperprojection angle.

There are 360 individual source positions during one rotation for ∆β � 1
◦
, whereas

there are 720 individual source positions for ∆β � 0.5
◦
. The angular tube-current

is not modulated online (during the simulation) based on patient attenuation, but

beforehand. In the example in figure 2.7,Nrot was set to 1 · 106. The highest photon
emission occurs at 90° and 270° (lateral path), the lowest photon emission at 0° and
180° (a.p.-path).
A similar implementation is provided by Fujii et al. (2017) with a sinusoidal function

of the tube angle. The effect of ATCMon the spatial distribution of energy deposition

is depicted in appendixG, figureG.5.

2.4 IMPLEMENTED PHANTOMS

2.4.1 geometrical phantoms

A series of geometrical phantoms has been designed and implemented into the

MC simulation tool throughout this work. These phantoms consist of geometrical

shapes (ellipsoids, cylinders, etc.), which can be combined or subtracted (Boolean

operations). The advantage of geometrical phantoms is the ability to design the

desired setup to answer a specific research question. The shapes (e.g.G4Box,G4Tubs,
G4Orb) get material properties (as G4LogicalVolume) and information about their

spatial positioning (as G4VPhysicalVolume).

2.4.1.1 Water phantom

The water phantom (see figure 2.8) is a cylindrical phantom of 32 cm diameter and

8 cm height. It is a useful phantom to observe and study effects of different x-

ray source spectra on energy deposition and its spatial distribution. Geometrical
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(a) Frontal view (b) Side view (c) Oblique view

Figure 2.8: Geometrical water phantom, ∅ = 32 cm, height 8 cm. Axes: red (x-axis), green

(y-axis), blue (z-axis).

phantoms assigned with "water" as material property are frequently employed to

study the energy deposition in MC simulations (DeMarco et al. 1998; Fogliata et al.

2007; Zhou and Boone 2008).

2.4.1.2 Box phantom

The box phantom (see figure 2.9) is a geometry consisting of three cuboids, each

with side length of 10 cm and height 3 cm (total height of the box phantom 9 cm).

Being in a distance of 3 cm underneath the phantom, a lead detector (5 cm thick)

is positioned, to score as many as possible incoming photons. The materials of the

three layers of the box phantom were chosen depending on the research question.

The design of the phantom was taken and adapted from Verhaegen et al. (2005).

(a) Frontal view (b) Frontal view, with x-

ray emission from exper-

imental square source

Figure 2.9: Geometrical box phantom with 10 cm length in x- and z-direction and y-height

per block = 3 cm. The lead detector located underneath the phantom is depicted

in black. Adapted from Verhaegen et al. (2005). Axes: red (x-axis), green (y-axis).



2.4 implemented phantoms 43

(a) Frontal view (b) Side view (c) Oblique view

Figure 2.10: Basic abdomen phantom (Amato et al. 2010), modeling the spine (blue) and the

organs liver (green), spleen (black), pancreas (pink), and one kidney (red). The

outlines of the soft tissue are indicated with the black lines. Axes: red (x-axis),

green (y-axis), blue (z-axis).

2.4.1.3 Abdomen phantom

Amato et al. (2010) have published an anthropomorphic abdomen phantom with

precise description of shape and positioning of the simulated organs. The phantom

models the liver (green), the spine (blue), one kidney (red), the spleen (black), and

thepancreas (pink),madeof ellipsoids in an elliptical soft tissue tube (see figure 2.10).

This abdomen phantom has a length of 40 cm in z-direction.

The basic abdomen phantom was further developed (see figure 2.11). The shape of

the liver has been altered to that of the Medical Internal Radiation Dose (MIRD)-

phantom (ICRP 1975). Furthermore, the aorta, a simplified GI-tract, and a second

kidney have been added. The abdomen phantom now contains (from out- to inside)

a 4mm thick skin shell (gray), a 4mm thick subcutaneous fat shell (yellow), and a

15mm thick soft tissue shell (salmon). The phantom is now filled with fat (yellow),

instead of soft tissue as the inner organs are usually surrounded by visceral fat. The

(a) Frontal view (b) Side view (c) Oblique view

Figure 2.11: Modified abdomen phantom with added aorta (gray), kidney (red), GI-track

(cyan), and altered shape of liver and an increased patient diameter. Further-

more, the skin (4mm thickness), a fat layer (4mm thickness), and a soft tissue

layer (1.5 cm) were included in the phantom. The soft tissue inside the phantom

was replaced by fat. Axes: red (x-axis), green (y-axis), blue (z-axis).
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Figure 2.12: Shell structure of organs in the modified abdomen phantom. Inner core (gray),

outer organ shell (green), and surrounding fat shell (beige).

diameter of the phantomwas increased from 30 cm to 34 cm in x-direction, and from

16 cm to 17 cm in y-direction since the new design of the liver is slightly larger.

The organs liver, spleen, kidneys, and pancreas feature a shell structure. The organs

consist of an inner organ core and an outer organ shell (thickness of 2.5mm) where

interactions can be individually tracked and energy deposition determined. The

organs are surrounded by a fat shell (again thickness of 2.5mm), which can also

be individually tracked. The purpose of this design is to determine the energy

deposition at interfaces of organs and the influence of iodinated contrast agents on

the energy deposition at the interfaces for various tube potentials.

2.4.2 digitized patient phantoms

Digitized phantoms are implementations of 3D-CT image data sets as phantoms

for MC simulations (see figure 2.13). 3D-CT image data sets contain density-specific

CT numbers and their corresponding positions, e.g. a matrix of 512 x 512 x 200

voxels, containing 200 slices of each 512 x 512 picture elements (pixels). To obtain a

digitized phantom from the image data, each image voxel is assigned to a density

and a material corresponding to its CT number and morphology. From CT image

(a) Axial plane through the heart (light red),

liver (purple), and lungs (light blue). An

aortic aneuryism is clearly visible (red).

(b) Axial plane through the femoral neck and

the bladder (water in dark blue).

Figure 2.13: Depiction of the digitized patient phantom converted from computed tomogra-

phy images. Note that the table contains a material inside with a density close

to that of lung tissue (probably a foam), and is automatically assigned to lung

tissue.
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data of patients, digitized patient phantoms can be constructed, allowing to create

individualized radiation exposure maps.

AppendixH provides additional information on the development of digitized pa-

tient phantoms, including the necessary segmentation steps, (post-processing)meth-

ods of segmentation, and required input files to run the simulations.

2.4.2.1 Segmentation of body structures

Different automatic methods are available for the segmentation of organs from CT

images, such as threshold-basedmethods, regiongrowing, or shapemodels (Sharma

and Aggarwal 2010). As CT numbers especially in the abdomen are very close to

each other, automatic methods often fail in differentiating between organs of similar

characteristics (and hence similar CT numbers andmorphology), whereas the skele-

ton and the lungs can be very reliably segmented using threshold-based methods

(Sharma and Aggarwal 2010).

The standard method in Geant4 is the segmentation via thresholding, making use

of a 'CT-to-density' conversion table (see appendixH.1). With this method, first, the

density of each voxel is calculated and afterwards, a specific material according to

this density assigned. Due to the similarity in densities in the abdomen, this method

is rather vague for specific organ identification.

In the geometrical abdomen phantom, the individual organs can be individually

tracked and the exposure values determined, since their shape and position are

mathematically defined. To allow the same measurements in the digitized patient

phantoms, it is necessary to ensure proper organ identification. For this purpose,

organs have been contoured using the software Oncentra
®
External Beam (version

4.5.2, Nucletron B.V, Veenendaal, theNetherlands, nowadays Elekta Brachytherapy),

which is employed in radiotherapy for contouring of target volumes and organs-at-

risk and for radiation therapy treatment planning.

The structures/organs given in tableH.1 have been manually segmented and cor-

responding pixel values (material indices) have been associated. Shell structures

(thickness 2.5mm) for the liver, spleen, and kidneys were additionally created as

has been performed for the modified abdomen phantom. Due to the small structure

of the pancreas, the shell-segmentation has not been performed in this organ.

As figure 2.13 shows, the inside of the patient table is erroneously assigned to lung

tissue as its material’s CT number is close to that of lung tissue. Manual segmenta-

tion of the lungs allows to calculate only the energy deposition inside the lungs.

The contouredorgans are saved ina structure set file format (a singleRS.filename.dcm

file, containing the drawn contours), and further processed in an open-source pro-

gram based on ITK4 ('Importing Contours from DICOM-RT Structure Sets with

ITK4', Dowling 2013). The program reads in the underlying CT images and the struc-

ture sets and converts the structures into individual binary images. Afterwards, a

certain value can then be assigned to a specific structure to differentiate between

organs (the software ImageJ was used during this work, see section 2.1.4).
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CT image data set

g4dcm_setup contouring

header materialdensity segmented
structures

combined
materials

input-files
general
header
header
material
density

simulation

general
header

Figure 2.14: Overview of the segmentation process. CT images in DICOM format are a) seg-

mented using an automatic thresholding method in the g4dcm-setup program,

and b), specific structures are manually contoured. The automatic method as-

signs a material index and calculates a density according to the CT numbers of

the inserted DICOM image stack. The material allocation from the automatic

method and the manually segmented structures are combined in a single file

together with the automatically assigned density values. This file in inserted

in the simulation. Abbreviations: computed tomography (CT), Digital Imaging

and Communications in Medicine (DICOM).

Figure 2.14 presents the segmentation process for tissue and material allocation of

the digitized phantoms. An automatic thresholding method was employed in a first

step ('g4dcm_setup') to assign a material value to each image pixel and to calculate

each pixel’s density from the CT numbers (figures 2.15a). Here, only air, lung tissue,

water, soft tissue, and bones were automatically allocated (figure 2.15b). The densi-

ties were calculated using a 'CT2Density' lookup table (see listingH.2, figureH.1).

In this table, specific densities are associated with specific CT numbers (e.g. CT

number and densities for air, water, bones). The density of a specific pixel was cal-

culated by interpolation between the fixed density/CT number pairs in the lookup

table. The automatic method produced three files for each CT image: (1) a header

file with information about image slice position, exposure value, andmatrix size, (2)

density values per pixel calculated from the CT numbers of the CT image, and (3)
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(a) Original CT image. (b) Identified tissues after auto-

matic thresholding segmenta-

tion.

(c) Contoured tissues as binary im-

age mask. Different material IDs

were already assigned to the

structures.

(d) Material combination after au-

tomatic and manual segmenta-

tion.

Figure 2.15: Original computed tomography (CT) image (a), automatically segmented using

a thresholding method (b) and manually segmented (c) using the software

Oncentra
®
External Beam

®
(Nucletron, nowadays Elekta Brachytherapy). The

liver, kidneys, aorta, spleen, and the skin are visible in the mask image (c).

Material composition is combined after automatic and manual segmentation

(d) to assure proper tissue allocation (e.g. calculation of organ exposure).

the material ID per pixel.

In a second step, the manual segmentation took place (see appendixH), and binary

mask files (pixel value either 1 (inside mask) or 0 (outside mask)) were produced

from the structure sets (see figure 2.15c). The binary images were multiplied with

the number of the material ID (e.g. 6 for the kidneys, compare with tableH.1).

To assign the precise material to the structures of interest, the manually segmented

images (figure 2.15c) and the images from the threshold method (figure 2.15b) have

been merged (see figure 2.15d). During the simulation, the material and density

information are combined. As an example, there are several types of the material

liver, consisting of the same basic composition, but differing in the assigned density

(Liver_0.95, density: 0.95 g/cm
3
, material: Liver_1.05, density: 1.05 g/cm

3
, material:
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Liver_1.15, density: 1.15 g/cm
3
). The densities are always rounded to the nearest

density in 0.1 g/cm
3
-steps, with a minimum density of 0.05 g/cm

3
assumed for all

newly created materials. The minimum difference in density needs to be 0.1 g/cm
3

to initiate a new material.

One input file for each CT image was then generated. This input file contained

a general header with information about number of different materials and maxi-

mum densities. This header was the same for every inserted image file. The input

files further contained an image-specific header with information about the matrix

size, image position, and exposure, and finally, the slice specific material IDs and

densities.

2.4.3 material choice and contrast enhancement

The basic material compositions and densities can be found in appendix B. They are

mainly based on NIST, ICRU, and ICRP databases (Hubbell and Seltzer 2018a; ICRP

2018). For geometrical phantoms, only the basic material compositions are used. For

the digitized patient phantoms, the material density is additionally calculated from

the image CT numbers although the material composition equals that of the basic

materials.

For simulations of contrast-enhanced acquisitions, thematerials of the tissues/struc-

tures aorta (blood), kidneys, liver, pancreas, and spleen were combined with the

element iodine. For this purpose, a newmaterial was designed which combined the

original tissue (e.g. liver)with the element iodine by assigning amass fraction for the

tissue (ψT � mT/(mT +mI)) and iodine (ψI � mI/(mT +mI)), asψT � 0.995with

ψI � 0.005, respectively. Thismass fraction corresponds to a tissue iodine concentra-

tion of 5mg/ml and is applied for the simulation of contrast-enhanced acquisitions

of the geometrical abdomen and digitized patient phantoms. This mass fraction

was chosen based on Amato et al. (2010). The density of the contrast-enhanced

(iodinated) tissues (ρTI) was adjusted according to:

ρTI �
mT +mI

VT
�

mT +mT
(1−ψT )
ψT

VT
�
ρT

ψT
(2.2)

with mT and mI as tissue and iodine mass, respectively, VT as tissue volume,

ψT � 1 −ψI as tissue mass fraction, and ρT as tissue density (Amato et al. 2010).

This formula assumes that for small amounts of iodine, the volume of the iodinated

tissue VTI can be approximated by the volume of the original tissue VTI � VT . Ac-

cording to Amato et al. (2010), for an iodine concentration of 5mg/ml, a maximum

inaccuracy in identifying VTI � VI of less than 0.1% is obtained. For liver tissue, the

density increases from 1.060 g/cm
3
to 1.065 g/cm

3
for the iodine-enhanced acquisi-

tion (density increase of 0.47%).

Patient data from native (non-enhanced) CT acquisitions were used for both non-

enhanced and iodine-enhanced acquisitions for the digitized patients. As already

described, iodine administration alters the CT numbers such that material assign-

ment would not be consistent between enhanced and non-enhanced acquisitions.
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Hence, the same initial image data and density values are inserted in the simula-

tion for both non-enhanced and enhanced acquisitions. For enhanced acquisitions,

compositions of tissue and iodine are created from the basic materials and their

density adapted according to equation 2.2. Due to rounding of the density to the

nearest 0.1 g/cm
3
-density step, the density increase by equation 2.2 had no effect on

the actual density of the iodine-enhanced material. Hence, for the digitized patient

phantoms, only the material composition has changed for the iodine-enhanced ac-

quisitions, however, not the density. Still, the different densities depending on the

initial image CT numbers are taken into account.

2.5 TOWARDS V IRTUAL DOS IMETRY: DESCR IPT ION OF PERFORMED

S IMULAT IONS

Several aspects of a MC model of a CT system need to be assessed to allow for

reliable and precise simulation of radiation exposure. Initially, the fundamentals of

the CT scanner model were assessed, since they form the base for all further sim-

ulations. This included the evaluation of different beam-shaping methods and the

influence of spectral properties on the total energy deposition, Etotal, and its spatial

distribution, Espatial, in a water phantom. These simulations were performed for a

distribution of photons corresponding to a tube potential of 120 kVp since both mea-

sured and generated spectra were available for this tube potential. The evaluation

of the beam-shaping method and the influence of different photon distributions on

Etotal and Espatial has already been published (Steuwe et al. 2018).

After evaluation of the fundamentals of the CT scanner model, the developed soft-

ware was used to assess scientific issues in CT imaging: the choice of the tube

potential and its influence on the total energy deposition in a homogeneous ma-

terial and at material interfaces were assessed. Since iodinated contrast agents are

employed in CT imaging, the influence of different iodine concentrations in con-

nection with different tube potentials on the total energy deposition and its spatial

distribution in different materials was evaluated. The latter two investigations were

performed in a simple, box-shaped phantom, allowing for thorough understanding

of the basic principles of the radiation exposure associated with CT, without having

to account for potentially influencing factors caused by a complex geometry. The

next step towards virtual dosimetry was the implementation and assessment of an-

thropomorphic phantoms. Radiation exposure was first studied in the geometrical

abdomen phantom, followed by the evaluation in digitized patient phantoms.

Amultitude of simulations and evaluations have been performedduring this project.

The following nomenclature for the simulations and evaluations was employed

throughout this chapter and chapter 3: the names of the individual simulations con-
sist of a capital letter (water phantom (W), box phantom (B), modified abdomen

phantom (A), patients (P)), and an Arabic numeral (e.g. "W2", for simulation 2 in the

water phantom). The names of the subsequent evaluations again consist of a capital

letter according to the specific phantom, and a Roman numeral (e.g. "W-III" for the

third evaluation of the water phantom).
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2.5.1 analysis of beam-shaping methods and spectral properties of x-

ray sources employing the water phantom

This subsection describes the evaluation of the fundamentals of the CT scanner

model. In clinical CT systems, a beam-shaping filter is installed to obtain a homo-

geneous signal in the image detector (see section 1.2.1) and to reduce the radiation

exposure in the patient during an x-ray source rotation (reduction of unnecessary ra-

diation exposure in shorter patient x-raypath lengths near the edges of the fan beam).

The beam-shaping filter causes the desired modulated photon transmission across

the FOV, however, it also results in spectral distortion due to beam-hardening. First,

a 'virtual beam-shaping model' was validated against the use of a physical beam-

shaping filter (PBF) in the water phantom, see sections 2.3.5 and 2.4.1.1 (evaluation

W-I).

Afterwards, the influence of the obtained fan-angle dependent photon fluence on

the energy deposition in the water phantom was studied (evaluation W-II).

In a next step, the influence and interchangeability of different source spectra and

monoenergetic photons corresponding to a tube potential of 120 kVp on the energy

deposition was assessed since measured spectra are not always accessible, see sec-

tion 1.2.2 (evaluation W-III).

The last set of simulations regarding the spectral properties of x-ray sources was

the evaluation of the influence of beam-shaping filter induced spectral distortion

on Espatial (evaluationW-IV). Evaluations W-III andW-IV are only presented for em-

ploying FM. Evaluation W-V provides an overview of the total energy deposition in

the water phantom for all simulations employing either no beam-shaping filtration

(NM, no PBF), or virtual beam-shaping filtration (FM).

2.5.1.1 Performed simulations

For all simulations described in section 2.5.1, the same general simulation setup

was used. The MC model consisted of of three parts: (a) the experimental point

source, (b) optional beam-shaping filtration (NM, FM, or PBF), and (c) the water

phantom. The point source (section 2.3.6.1) was positioned at 12 o’clock, at a dis-

tance of 60 cm to the center of the water phantom. The center of the water phantom

(section 2.4.1.1) was positioned at the isocenter of the simplified CT scanner model.

Photons were emitted between -23° and +23°, resulting in a FOV of ~50 cm at the

isocenter. Z-collimation was set to 32mm, according to the Aquilion™16 CT scan-

ner’s maximum detector z-width (MHRA 2004; Steuwe et al. 2018).

Eleven simulations have been performed for the characterization of spectral proper-

ties of x-ray sources (Steuwe et al. 2018):

W1 employing the measured 0°-reference spectrum with a uniform pho-

ton fluence (NM) and the physical beam-shaping filter (PBF),
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W2/W3 employing themeasured fan-angle dependent spectra (FADS)with a

uniform photon fluence (NM) andwith fan-angle dependent fluence

modulation (FM),

W4/W5 employing the measured 0°-reference spectrum with a uniform pho-

ton fluence (NM) and with fan-angle dependent fluence modulation

(FM),

W6/W7 employing the generated unfiltered spectrum with a uniform pho-

ton fluence (NM) and with fan-angle dependent fluence modulation

(FM),

W8/W9 employing the generated filtered spectrum with a uniform photon

fluence (NM) and with fan-angle dependent fluence modulation

(FM),

W10/W11 employing 57.7 keV monoenergetic photons with a uniform photon

fluence (NM) and with fan-angle dependent fluence modulation

(FM).

For the first simulationW1 employing the PBF, approximately 236 · 106 photonswere

tracked to compensate for photon absorption in the beam-shaping filter, whereas

100 · 106 photons were tracked for all other simulations.

2.5.1.2 Analysis and reconstruction of exposure maps

All tracked interactions inside the phantomwere stored as described in section 2.1.4.

The total energy deposition, Etotal, was calculated for all interactions inside the

phantom (including scattering) for all individual simulations (see section 2.5.1.7).

Furthermore, the spatial distribution of energy deposition, Espatial, was assessed.

For this purpose, 2D-histograms (bin size 1.0 x 1.0 mm
2
, scored over 80mm in z-

direction) were created, which sum up the energy deposition per interaction along

the z-direction in the x-y plane of the phantom.

For simulations W1, W4 andW5, the integrals of the energy maps were normalized

to 1. Normalization was necessary to allow for direct comparison of Espatial in cases

where the number of photons reaching the water phantomwere not comparable (re-

quired for evaluationsW-I andW-II, described hereinafter). Although the number of

photons for the PBF has been increased compared to the simulation employing the

fan-angle dependent fluence and spectra, the number of photons initially reaching

the water phantom is not perfectly equal and requires normalization.

As the 2D-histograms only present a single 0°-projection, these maps were rotated

and summed in 1°-intervals. The 360°-reconstructions allow to assess Espatial for a

full source rotation. Relative difference maps for 360°-reconstructions were calcu-

lated, comparing the reference distribution with the distributions obtained from the

generated spectra and monoenergetic photons (Steuwe et al. 2018).
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PBF

measured

0°-spectrum
@ 120 kVp

NM

vs.

measured

FADS
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Figure 2.16: Evaluation W-I – Beam-shaping method: Schematic drawing of the simulation

setup for the evaluation of the beam-shaping method. Left: The measured 0°-
spectrum at 120 kVp was employed with a uniform photon fluence (no pho-

ton fluence modulation (NM)), but with a physical beam-shaping filter (PBF)

for beam-shaping and beam-hardening. Right: Measured fan-angle dependent

spectra (FADS) at 120 kVp were employed with a fan-angle dependent photon

fluence (FM). The latter setup presents the virtual beam-shaping filter scenario.

2.5.1.3 Evaluation W-I: Evaluation of the beam-shaping method

The choice of the beam-shaping method was studied to evaluate the use of a virtual

beam-shaping filter, i.e. the combination of fan-angle dependent photon fluence

and fan-angle dependent spectra, instead of simulating a physical beam-shaping

filter (evaluation W-I). The disadvantage of a PBF over a virtual filter is tracking of

photons in the PBF, requiring a larger number of initially emitted photons, which

decelerates computational time considerably (refer to section 2.3.5.1).

For the evaluation of the beam-shaping method, two simulation setups were com-

pared, both including the effect of fan-angle dependent fluence and spectral distor-

tion due to beam-hardening (see figure 2.16).

The first setup employed the measured 0°-reference spectrum at 120 kVp with a

uniform photon fluence (NM) but with a PBF, simulation W1. The second setup

employed the FADS at 120 kVp with fan-angle dependent photon fluence modula-

tion, simulationW3. This setup resulted in fan-angle dependent spectra and photon

fluence. For the direct comparison of Espatial, the integrals of the resulting 2D-energy

maps have been normalized to 1 (Steuwe et al. 2018). Results of the evaluation of the

beam-shaping method are presented in section 3.1.1.

2.5.1.4 Evaluation W-II: Influence of the photon fluence on Espatial

In evaluation W-II (see figure 2.17), the influence of the fan-angle dependent flu-

ence modulation on Espatial has been determined, by comparing simulationW5with

simulation W4. For the direct comparison of Espatial, the integrals of the created

2D-energy maps have been normalized to 1 (Steuwe et al. 2018). Results on the eval-

uation of the influence of spatial photon fluencemodulation on Espatial are presented

in section 3.1.2.
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measured

0°-spectrum
@ 120 kVp

FM

vs.

measured

0°-spectrum
@ 120 kVp

NM

Figure 2.17: EvaluationW-II – Influence of fan-angle dependent fluence onEspatial: Schematic

drawing of the simulation setup for the evaluation of the influence of fan-angle

dependent fluence on the spatial distribution of energy deposition, Espatial. Left:

Employing the measured 0°-spectrum at 120 kVp with fan-angle dependent

photon fluence modulation (FM). Right: Employing the measured 0°-spectrum
at 120 kVp with no photon fluence modulation (NM).

2.5.1.5 Evaluation W-III: Influence of photon energy distributions on Espatial

A variety of source implementations and beam-shaping filtration are employed in

MCsimulations of CT. Several attempts are published in literature, such asmodeling

of the complete x-ray source, employing measured or generated spectra, or using

monoenergetic photons as an approximation. A comprehensive overview over the

legitimacy of using generated spectra or approximations thereof has however not

been performed yet. For assessing the accuracy of dosimetric simulations of CT

usingMCmethods, it was necessary to study the influence of different input spectra

andmonoenergetic photons on Etotal and Espatial. From the obtained information, it is

measured

0°-spectrum
@ 120 kVp

FM

vs.

generated 0°-spectrum @ 120 kVp

generated tool 0°-spectrum @

120 kVp + 3.3mm Al

57.7 keV→ E
mean,ref

@ 120 kVp

FM

Figure 2.18: Evaluation W-III – Influence of different photon energy distributions on Espatial:

Schematic drawing of the simulation setup for the evaluation of the influence

of different photon energy distributions on Espatial. Energy maps originating

from the simulations employing the generated spectrum at 120 kVp, the gen-

erated filtered spectrum at 120 kVp, and monoenergetic photons at 57.7 keV,

the latter matching the mean energy of the measured 0°-spectrum at 120 kVp,

were compared to Espatial resulting from the simulation employing the mea-

sured 0°-spectrum at 120 kVp. In all cases, fan-angle dependent photon fluence

modulation (FM) was employed.
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measured

0°-spectrum
@ 120 kVp

FM

vs.

measured

FADS

@ 120 kVp

FM

Figure 2.19: EvaluationW-IV – Influence of spectral distortion on Espatial: Schematic drawing

of the simulation setup for the evaluation of the influence of spectral distortion

on the spatial distributionof energydeposition, Espatial. Energymapsoriginating

from the simulation employing the fan-angle dependent spectra (FADS) were

compared to Espatial from the simulation employing the measured 0°-spectrum
at 120 kVp. In both cases, fan-angle dependent photon fluence modulation (FM)

was employed.

possible toverifywhether source spectra at equal tubepotentials are interchangeable,

and whether spectral photon distributions can be approximated by monoenergetic

photons.

The effect of different photon energy distributions on Espatialwas determined by

comparing simulationW5 with simulations W7, W9 andW11 (evaluationW-III, see

figure 2.18, Steuwe et al. 2018). Results on the evaluation of the influence of different

photon energy distributions on Espatial are presented in section 3.1.3.

2.5.1.6 Evaluation W-IV: Influence of beam-shaping filter induced spectral distortion on
Espatial

In evaluation W-IV (see figure 2.19), the influence of beam-shaping filter induced

spectral distortion on Espatialwas assessed, by comparing simulation W5 with sim-

ulation W3. Results of the evaluation of the influence of the beam-shaping filter

induced spectral distortion on Espatial are presented in section 3.1.4.

2.5.1.7 Evaluation W-V: Total energy deposition Etotal

For simulations W2-W11, Etotalwas calculated and compared in section 3.1.5 (evalu-

ation W-V).
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2.5.2 influence of the tube potential and tissue contrast enhancement

on the energy deposition and detector signal in the box phantom

The choice of the tube potential and the administration of contrast agents influences

the energy deposition and spatial distribution inside a scanned object. However, the

tube potential and the administration of contrast agents also influence the detector

signal.

Prior to a CT examination of a patient, the tube potential is adjusted (either au-

tomatically or manually), depending on patient morphology, FOV, and possible

administration of contrast agents. Although the effects of employing different tube

potentials are visible on the reconstructed images (less contrast but also less noise

on high kVp-images, refer to sections 1.2.2.3 and 1.3.3), the effect on the energy depo-

sition in the body, especially at the interfaced between two tissue types (e.g. muscle

and blood vessels or liver and surrounding fat) is not yet thoroughly investigated.

Furthermore, this section describes the assessment of the fundamental influences

of simulated contrast enhancement on energy deposition and the iodine-induced

energy build-up effect at the interfaces between enhanced tissues and surrounding,

non-enhanced tissues.

2.5.2.1 Performed simulations

The box phantom (section 2.4.1.2) was employed to evaluate the influence of the tube

potential and contrast enhancement on the energy deposition in different materials

and on the detector signal. Thematerial choice of the individual layers was specified

according to the research question. In each simulation, 50 · 106 photonswere emitted

from the square source (section 2.3.6.2) for the generated filtered spectra at 80, 100,

and 120 kVp. Photons were tracked in the three layers and in the lead detector. The

surrounding space of the phantom and detector was set to vacuum to avoid any

scattering of photons prior to reaching the phantom. All tracked interactions inside

the phantom were stored as described in section 2.1.4.

Simulations of the box phantom were performed, with the box layers:

B1 constructed of identical materials in each of the three layers (either liver,

fat, soft tissue, or water). This setup enables to assess the influence of the

tube potential on the energy deposition in the material and on the detector

signal.

B2 constructed of fat tissue (layers 1 and 3) and pure liver tissue (layer 2,

ψI � 0.000). This setup enabled assessing the energy deposition at tissue

interfaces.
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B3 constructed of fat tissue (layers 1 and 3) and iodinated liver tissue

(layer 2, ψI > 0.000). In this case, different concentrations of iodine

were added to the material liver in layer 2 to assess the energy build-

up associated with the use of contrast agents. Iodine mass fractions

ψI � [0.001, 0.003, 0.005, 0.010, 0.015]wereused, corresponding to concen-

trations of 1, 3, 5, 10, and 15mg/ml, respectively (Amato et al. 2010).

2.5.2.2 Evaluation B-I: Influence of the tube potential on the energy deposition and detector
signal in the box phantom

Total energy deposition in the three layers of the box phantom and in the lead

detector were calculated for simulation B1. The energy deposition was compared to

the total input photon energy and between the applied tube potentials. The detector

signal resulting from simulations B1 was compared, with regard to the material

(density) and tube potential. Results of the influence of the tube potential on the

energy deposition and on the detector signal are presented in section 3.2.1.

2.5.2.3 Evaluation B-II: Influence of tissue contrast enhancement on the energy deposition
in the box phantom

Espatial resulting from simulations B2 and B3 were compared to assess the differ-

ences in energy deposition resulting from contrast enhancement. For this purpose,

2D-energy and difference maps (bin size 1.0 x 1.0 mm
2
, scored over 100mm in z-

direction) were calculated for the simulations. Profiles along the y-axis of the box

phantom were plotted, taking the inner 4 cm x 4 cm in x-and z-axis into account

(see figure 2.20). Furthermore, the total energy deposition in the three layers of the

box phantom for simulations B2 and B3 was calculated. Results of the influence of

contrast enhancement on the energy deposition are presented in section 3.2.2.
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Figure 2.20: Calculation of interface ratios and profiles for the box phantom. Interfaces layers

with varying thickness (1.0, 2.5, and 5.0mm) were used to assess the energy

build-up effect at material interfaces. Profiles along the y-axis were calculated

from the inner 4 cm of the box phantom. The lead detector is not shown.
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2.5.2.4 Evaluation B-III: Energy build-up effect at material interfaces in the box phantom

Energy deposition in the interface layers around the material transitions were deter-

mined and used to calculate interface ratios ('upstream' interface: 2a/1 and 'down-

stream' interface: 2b/3) at varying thickness of the interface layers (1.0, 2.5, and

5.0mm) from simulations B2 and B3. Names of the interface layers and ratios are

given in figure 2.20. This analysis was performed for the non-enhanced (ψI � 0.000)

and enhanced (ψI > 0.000) liver layers, to differentiate between iodine-induced and

material-induced energy build-up at the tissue interfaces. Results of the energy

build-up effect at material interfaces are presented in section 3.2.3.

The thickness of the interface layer was of importance for later simulations of the

abdomen phantom and digitized patient phantoms, to assess the energy build-up

effect for different material interfaces.

2.5.3 calculation of exposure maps of the modified abdomen phantom

Themodified abdomen phantom (section 2.4.1.3) allows to track photon interactions

in amore complexgeometry than theboxphantom (section 2.4.1.2). The advantageof

this phantom is the anthropomorphic design, the disadvantage is the larger amount

of material interfaces, complicating the analysis of the reasons of specific effects.

2.5.3.1 Performed simulations

whole modified abdomen phantom Simulations of the modified abdomen

phantom were performed at tube potentials of 80, 100, and 120 kVp (generated fil-

tered spectra) in the helical acquisition mode (section 2.3.6.4) with a pitch of 1.0,

z-collimation 32mm, and enabled FM. LTCM and ATCMwere not enabled. For sim-

ulations of thewholemodified abdomen phantom, 129 · 106 photonswere tracked (3

·106 photons per cm, scan coverage 43.2 cm between [-21.6 cm, 21.6 cm], with 3.2 cm

z-overranging). Performed simulations were:

A1 simulation with non-enhanced tissues (ψI � 0.000) and

A2 simulation with iodinated tissues (ψI � 0.005 in liver, spleen, kidneys, pan-

creas, and the aorta).

axial slice of the modified abdomen phantom Furthermore, simulations

were performed with the point source (section 2.3.6.1) on a single axial slice (thick-

ness of 6.4 cm) of the modified abdomen phantom at tube potentials of 80, 100, and

120 kVp (generated filtered spectra). Source position along the CT scanner’s z-axis

was fixed. Z-coverage of the x-ray source at the isocenter was 32mm (only the center

of the slice was exposed during the acquisitions). The axial slice included liver and

soft tissue, the spine, spleen, and aorta (see figure 2.21). Hence, for simulations of

contrast-enhanced acquisitions, iodine-enhancement was only applied in the liver,

spleen, and aorta.

First, a single projection at 270° (lateral projection, x-ray source position at 9 o’clock)
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was simulated. The projection from a specific angle allows to assess the energy de-

position from photons of a single point, without the effects of overlaying energy

depositions from various angles around the phantom. 50 · 106 photons were tracked

for simulations of projections (see figure 2.21a).

Afterwards, simulations were performed for a full rotation of the x-ray source in

1°-steps. 64 · 106 photons (simulated slice thickness of 6.4 cm, see above, and 1 · 106
photons per cm) were tracked for simulations of rotations (see figure 2.21b). FMwas

enabled for the simulated projections and rotations. Performed simulations were:

A3 simulation of an axial slice of the phantom with non-enhanced tissues

(ψI � 0.000), projection at 270°,

A4 simulation of an axial slice of the phantom with enhanced tissues

(ψI � 0.005 in liver, spleen, and the aorta), projection at 270°,

A5 simulation of an axial slice of the phantom with non-enhanced tissues

(ψI � 0.000), full source rotation, and

A6 simulation of an axial slice of the phantom with enhanced tissues

(ψI � 0.005 in liver, spleen, and the aorta), full source rotation.

All tracked interactions inside the abdomen phantom and the axial slice were stored

as described in section 2.1.4.

2.5.3.2 Evaluation A-I: Influence of the tube potential and tissue contrast enhancement on
energy deposition and its spatial distribution in the modified abdomen phantom

The total energy deposition in all tissues/organs and their spatial distribution were

determined in themodified abdomenphantom for simulations of non-enhanced and

enhanced CT acquisitions (simulations A1 and A2). 2D-energy and difference maps

(bin size 2.0 x 2.0 mm
2
, scored over 2mm in z-direction) for simulated enhanced and

non-enhanced acquisitions were calculated. Results of the total energy deposition

are presented in section 3.3.1.

(a) Single projection at 270° (b) X-ray source rotation

around 360° in 1°-steps

Figure 2.21: Modified abdomen phantom: Simulation setup for assessment of build-up ef-

fects for a single slice of the phantom. The slice contained the organs/tissues

liver (green), spleen (black), GI-tract (turquoise), aorta (gray), and spine (blue).
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(a) ST ROI 1 (b) Liver ROI 2a (c) Liver ROI 2b (d) ST ROI 3

Figure 2.22: Position of ROIs (shown in white) in the slice of the modified abdomen phan-

tom for calculation of energy depositions and relative differences at interfaces.

Abbreviations: region-of-interest (ROI), surrounding tissue (ST, here fat).

2.5.3.3 Evaluation A-II: Energy build-up effect at material interfaces in the modified ab-
domen phantom – whole phantom

Energy deposition was calculated in the organ shells and surrounding tissue shells

for simulationsA1 andA2. The energy depositionwas normalized to the volume per

shell and interface ratios (normalized energy deposition in the organ shell divided

by normalized energy deposition in the surrounding tissue shell) calculated. Results

of the energy build-up effect in the whole phantom are presented in section 3.3.2.

2.5.3.4 Evaluation A-III: Energy build-up effect at material interfaces in the modified
abdomen phantom – axial slice

For simulations A3-A6, the resulting spatial distributions of energy deposition for

the simulations of the non-enhanced and the enhanced CT acquisitions and the

differences in energy deposition between the two corresponding simulations were

plotted as a 2D-map (energy was accumulated along the z-axis of the phantom).

From these maps, energy depositions and relative differences were determined in

ROIs positioned in the liver and fat tissue as depicted in figure 2.22 using ImageJ

(see appendixD).

Interface ratios (ROI 2a/1 andROI 2b/3)were calculated from the energy deposition

inside the ROIs for the simulations of the full source rotations (simulations A5

and A6). For calculation of interface ratios, energy deposition in the ROI was first

normalized to the number of pixels in the ROI. Results of the energy build-up effect

in the axial slice are presented in section 3.3.3.

2.5.4 calculation of exposure maps of digitized patients

Thegoal of thisworkwas thedevelopment of aMCsoftware for thevirtual dosimetry

of patients examined in a radiology department. This section describes the assess-

ment of the influence of different tube potentials and iodinated contrast agents on

energy deposition in different organs and at organ interfaces in six male patients.
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patient cohort and acquisition The chosen patients took part in a clini-

cal study, investigating a low dose and low contrast agent dose CTA acquisition for

follow-up after non-invasive EVAR (Fink et al. 2018). The studywas approved by the

local ethics committee (S485/2017; DRKS-ID: DRKS00013082). All patients received

a non-enhanced CT acquisition of the thorax and the abdomen on a Somatom
®

Definition Flash CT scanner system (Siemens Healthineers, Forchheim, Germany).

Patients with a body mass index (BMI) <30 kgm
−2

were acquired at a tube potential

of 80 kVp, whereas patients with BMI >30 kgm
−2

were acquired at a tube potential of

100 kVp. The reference TCTP (TCTPeff) at 80 kVp was 210mAs (CTDIvol = 4.1mGy),

whereas at 100 kVp TCTPeff was 87mAs (CTDIvol = 3.6mGy). Other acquisition pa-

rameters were: 0.5 sec rotation time, z-collimation 0.6mm, and pitch 1.2. For the

purpose of this work, images were reconstructed in 3mm slice thickness with

an increment of 3mm, using an iterative algorithm (ADMIRE, kernel I30f, level

5 (smoothest reconstruction to suppress noise), Siemens Healthineers, Forchheim,

Germany).

Acquisition parameters and slice-specific exposure values were extracted from the

corresponding DICOM-headers of the reconstructed images and are presented in

table 2.2. An overview on the morphology of the patients included in this thesis can

be found in appendix I.

abdominal scan range The abdominal scan range covered the abdomen, in-

cluding the whole liver, spleen, pancreas, and kidneys, with an additional scan

range of 2 x 1.8 cm in cranio-caudal direction. The length of the abdominal scan

range differed per patient (range: 19.8 - 23.1 cm).

TCTPeff was extracted from the DICOM-headers of the reconstructed images inside

Table 2.2: Patient characteristics and dose protocol parameters for digitized patient phan-

toms for an abdominal scan coverage, including the whole liver, spleen, pancreas,

and kidneys. DLP and TCTPeff were calculated from the slices covering the men-

tioned organs. All patients were originally acquired at a tube potential of 80 kVp.

Simulations covering the abdomen were run with the given number of photons.

Abbreviations: identification code (ID), body mass index (BMI), volumetric com-

puted tomography dose index (CTDIvol), dose-length product (DLP), effective

tube-current time product (TCTPeff), number of simulated photons Nphotons.

ID BMI Height Weight CTDIvol DLP TCTPeff Nphotons

[kg/ [mGy simulated
m2] [cm] [kg] [mGy] ·cm] [mAs] ·106

1A 21.0 172 62 3.00 59.3 152.5 59.40

1B 22.0 172 65 3.21 62.6 163.4 62.70

2A 26.4 173 79 3.05 69.6 155.3 69.66

2B 25.4 174 77 2.51 58.1 128.0 58.17

3A 28.1 178 89 2.92 66.6 148.7 66.70

3B 28.4 178 90 3.00 62.2 153.1 62.34
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the abdominal scan range. According to Salvadó et al. (2005), the number of photons

was set to 3 · 106 photons per cm scan coverage to obtain a relative standard error

in one slice (1 cm thickness) of <0.5%. It was subsequently scaled to each patient’s

TCTPeff. The patients were segmented according to section 2.4.2.1. For acquisitions

covering the abdominal scan range, the number of photons, Nphotons, given in ta-

ble 2.2 was determined as follows:

Nphotons � scan coverage [cm] · 3 · 106 ·
TCTPeff, patient ID

TCTPeff, patient 1A
(2.3)

Hence, both the scan coverage and the effective TCTP determine the number of

photons, thereby taking the TCTPeff of patient 1A as baseline. A comprehensive

review of the number of tracked photons in MC simulations of CT acquisitions can

be found in appendix J.

Note that the CTDIvol and TCTPeff (see Table 2.2) appear to be independent of the

BMI for the six patients in this work.

2.5.4.1 Performed simulations

whole digitized patients Energymaps of all patientswere calculated at 80 kVp

(generated filtered spectra) with a pitch of 1.0 and z-collimation of 32mm at the

isocenter. FM and LTCMwere enabled. To assess the influence of iodinated contrast

agents, all simulations were performed with contrast-enhanced liver, spleen, pan-

creas, and kidney tissue, as well as blood (aorta) with a mass fraction of ψI � 0.005.

The following simulations were performed:

P1 simulations at 80 kVp for all patients (non-enhanced tissues, ψI � 0.000),

P2 simulations at 80 kVp for all patients (enhanced liver, spleen, pancreas, kid-

ney, aorta, ψI � 0.005),

P3 simulations at 120 kVp for all patients (non-enhanced tissues),

P4 simulations at 100 and 120 kVp for patient 2A (non-enhanced tissues,

ψI � 0.000), and

P5 simulations at 100 and 120 kVp for patient 2A (enhanced liver, spleen, pan-

creas, kidney, aorta, ψI � 0.005).

axial slice of a digitized patient A single axial slice (slice thickness 6.4 cm,

figure I.2a) of patient 1A through the liver and kidneyswas used to assess the energy

build-up effect in more detail. This patient resembled the modified abdomen phan-

tom to the highest degree and was hence chosen for this analysis. CT acquisitions

were simulated at 80, 100, and 120 kVp (generated filtered spectra) with andwithout

iodine enhancement in the organs and the aorta. The z-position of the x-ray source

was stationary for these simulations. Z-coverage of the x-ray source at the isocenter

was 32mm (only the center of the slice was exposed during the acquisitions).

First, a single projection at 270° (lateral projection, x-ray source position at 9 o’clock)
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was simulated, such as performed for the modified abdomen phantom. For each of

the simulations, 50 · 106 photons were tracked.

Afterwards, simulations were performed with a full rotation of the x-ray source in

1°-steps. For each of the simulations, 64 · 106 photons (1 ·106 photons per cm) were

tracked. FM was enabled for the simulated projections and rotations. The following

simulations were performed:

P6 simulation of an axial slice of patient 1A with non-enhanced tissues

(ψI � 0.000), projection at 270°,

P7 simulation of an axial slice of patient 1A with enhanced tissues (ψI � 0.005

in liver, spleen, and the aorta), projection at 270°,

P8 simulation of an axial slice of patient 1A with non-enhanced tissues

(ψI � 0.000), full source rotation, and

P9 simulation of an axial slice of patient 1A with enhanced tissues (ψI � 0.005

in liver, spleen, and the aorta), full source rotation.

All tracked interactions inside the digitized patients and the axial slice were stored

as described in section 2.1.4.

2.5.4.2 Evaluation P-I: Influence of the tube potential and tissue contrast enhancement on
energy deposition and its spatial distribution in a digitized patient

For this evaluation, total energydeposition in organs and tissues and their spatial dis-

tribution in patient 2Awere compared, acquired from simulations of non-enhanced

and enhanced acquisitions at tube potentials of 80, 100, and 120 kVp (from simu-

lations P1 and P2 for patient 2A, and simulations P4 and P5). Results of the total

energy deposition and spatial distribution are presented in section 3.4.1. 2D-energy

and difference maps were calculated with a bin size of 1.5 x 1.5mm
2
, scored over

3mm in z-direction, corresponding to a matrix size of 256 x 256 pixels.

2.5.4.3 Evaluation P-II: Energy build-up effect at material interfaces in a digitized patient
– whole patient

Energy deposition was calculated in the organ shells and surrounding tissue shells

for patient 2A for the tube potentials 80, 100, and 120 kVp (from simulations P1 and

P2 forpatient 2A, and simulationsP4 andP5). The energydepositionwasnormalized

to the number of voxels per shell and interface ratios (normalized energy deposition

of organ shell divided by normalized energy deposition of surrounding tissue shell)

calculated. Results of the energy build-up effect in patient 2A are presented in

section 3.4.2.

2.5.4.4 Evaluation P-III: Energy build-up effect at material interfaces in a digitized patient
– axial slice

Axial 2D-energy maps of the simulations of enhanced and non-enhanced acquisi-

tions were calculated for patient 1A (simulations P6 - P9). Energy was summed
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(a) ST ROI 1 (b) Liver ROI 2a (c) Liver ROI 2b (d) ST ROI 3

Figure 2.23: Position of ROIs (shown in white) in the slice of the digitized patient phantom

for calculation of energy depositions and relative differences at interfaces. ROI 1

contains only fat tissue, whereas ROI 3 includes some water (gall bladder) and

air (at upper tip of the liver), compare to the tissue morphology in figure I.2a.

Abbreviations: region-of-interest (ROI), surrounding tissue (ST).

along the z-axis of the phantom. 2D-difference maps were calculated from the en-

ergy maps of the simulated enhanced and non-enhanced acquisitions.

The energy deposition in four ROIs was calculated for every energy and difference

map (see figure 2.23). ROI 1 is positioned in the surrounding tissue at the periph-

ery of the liver. ROIs 2a and 2b are positioned inside the liver, with ROI 2a at the

periphery and ROI 2b at the medial side of the liver. ROI 3 is positioned in the

surrounding tissue at the center of the phantom. ROI naming is identical for the

ROIs in the modified abdomen phantom (see figure 2.22). Interface ratios (ROI 2a/1

and ROI 2b/3) were calculated from the energy deposition inside the ROIs for the

simulations of the full source rotations (simulations P8 and P9). For this purpose,

energy deposition was first normalized to the number of pixels inside the ROIs.

Results of the energy build-up effect evaluated for the axial slice of patient 2A are

presented in section 3.4.3.

2.5.4.5 Evaluation P-IV: Influence of BMI and morphology on the energy deposition and
its spatial distribution in digitized patients

To evaluate the influence of the BMI and patient morphology on the energy depo-

sition in digitized patients, total energy deposition and its spatial distribution were

compared for all patients at 80 kVp for simulations of non-enhanced and enhanced

acquisitions (simulations P1 and P2). Results of the energy deposition depending

on patient BMI and morphology are presented in section 3.4.4.

2.5.4.6 Evaluation P-V: Influence of the tube potential on the energy deposition in the skin
in digitized patients

To evaluate the influence of the tube potential on the energy deposition in the skin,

the energy deposition in each patient and in each patient’s skin resulting from

simulations of non-enhanced acquisitions at 80 kVp and 120 kVp were compared
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(simulations P1 and P3). Since the scan ranges of the patients were not identical,

energy deposition in the skin and in the patients was scored in a 102mm scan region

(34 image slices) covering approximately identical scan regions (the kidneys) in the

abdomen. This allowed for comparison of energydeposition betweenpatients for the

same scan coverage. Relative differences in energy deposition between acquisitions

at 80 and 120 kVp were calculated for the skin and the all patient tissues in the scan

region. Results are presented in section 3.4.5.

2.6 ASSESSMENT OF THE VAR IAT ION BETWEEN IDENT ICAL MC

S IMULAT IONS AND EVALUAT ION OF THE S IMULATED NUM-

BER OF PHOTONS IN A DIG IT IZED PAT IENT

To estimate the error of the results obtained with the MC model with the employed

number of photon histories, re-sampling of data was used to produce sub-sets of

data containing the energy deposition of every second, fifth, tenths, etc. interaction

(data sets of reduced photon statistics). For this purpose, a CT acquisition of the

abdominal region of patient 2A (scan covered the kidneys, total scan coverage was

15 cm, non-enhanced acquisition) was simulated twice with two different initial

seeds, with a total of 45 · 106 photons (3 · 106 photons per cm scan coverage), pitch of

0.5 and LTCM enabled. Interaction data was stored in branches for post-processing.

variation between two identical simulations with different initial seeds

The total energy deposition in the phantom and the energy deposition in the indi-

vidual organs were calculated and compared for both simulations. 2D-maps of the

energydepositionwereproducedand relativedifferencemaps calculated for a single

axial slice (3mm slice thickness) and for three adjacent slices (9mm voxel thickness

in z-direction).

reduction of the photon statistics 3D-maps of the energy deposition were

produced from all interactions, and from every second, fifth, tenth, 15th ... up till ev-

ery 45th interaction. Hence, for the latter 3D-map, only 1/45th of the total number of

interactions have contributed to the energymap. To allow for comparability between

energy maps, the integrals of the 3D-maps were normalized to 1. Maps consisting

of the reduced data were subtracted from the full data map, and the calculated dif-

ferences plotted in a one-dimensional (1D)-histogram, for the full phantom volume,

the kidneys, a single axial slice, and the kidneys inside a single axial slice. Only

data inside the contours of the patient have been taken into account. Histograms

were been fitted with a Gaussian curve. For the reduced statistics data sets, energy

deposition and interaction types contributing to the energy maps were compared

to ensure that all sub-sets contain equal percentages of energy depositions resulting

from e.g. the Compton effect or the photoelectric effect. Results are presented in

appendix J, figure J.1.
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RESULTS

The results of this work are presented in the following chapter. The structure is

as follows: first, the beam-shaping method used throughout the simulations was

evaluated, followed by the evaluation of the influence of the fan-angle dependent

fluence on the energy deposition (Etotal) and its spatial distribution (Espatial) in a vari-

ety of geometrical and digitized phantoms. Afterwards, the influence of the spectral

properties of x-ray sources and the tube potential on energy deposition is described.

This is followed by a more detailed analysis of the energy deposition for varying

tube potentials and material types. Then, the influence of contrast-agents on the

energy deposition, especially at material interfaces, is demonstrated. Moving from

simple theoretical phantoms to more elaborate phantoms, the energy deposition in

an anthropomorphic abdomen phantom is assessed. This chapter is completed by

presenting energy maps of a set of digitized patient phantoms. The evaluation of

the beam-shaping method and the influence of spectral properties of x-ray sources

on energy deposition have already been published (Steuwe et al. 2018).

3.1 ANALYS I S OF BEAM-SHAP ING METHODS AND SPECTRAL PROP-

ERT IES OF X-RAY SOURCES EMPLOY ING THE WATER PHANTOM

3.1.1 evaluation w-i: evaluation of the beam-shaping method

Two beam-shapingmethods were compared (cf. figure 2.16 in section 2.5.1.3): on the

one hand, a physical beam-shaping filter (PBF) was modeled which altered photon

fluence as its thickness increased towards the edges of the filter and which resulted

in fan-angle dependent spectra (FADS) with increasing mean energies towards the

sides of the FOV. In this scenario, a photon distribution matching the measured 0°-
spectrum was uniformly (NM) emitted across the FOV. On the other hand, a virtual
beam-shaping method was modeled, implementing fluence modulation (FM) by

means of a probability density function (PDF), combined with the measured FADS.

The virtual filter models both photon fluence according to the measured transmis-

sion curve and the spectral distortion caused by a physical beam-shaping filter.

Figure 3.1 presents the relative difference in Espatial between the physical and the

virtual beam-shaping filter scenario. Both scenarios modeled fan-angle dependent

fluence and spectral distortion. A maximum relative difference in Espatial of 3% was

observed at the center of the water phantom, showing that employing the virtual

beam-shaping method with a PDF for FM and FADS was reasonable in this work

(Steuwe et al. 2018).

Simulation time was 25.5 hours for the physical beam-shaping scenario (PBF and

NM) and 12.4 hours for the virtual beam-shaping scenario (FADS and FM). In both
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Figure 3.1: EvaluationW-I: Influenceof beam-shapingmethodswith regard to the spatial dis-

tribution of simulated deposited energy, Espatial. Comparison of Espatial resulting

from the simulation using physical beam-shaping scenario (physical beam-

shaping filter withmeasured 0°-reference spectrum and uniform photon fluence)

vs. the virtual beam-shaping scenario (fan-angle dependent spectra and fluence

modulation). Both scenarios modeled fan-angle dependent fluence and spectral

distortion. For better visibility of the phantom periphery, background color out-

side the water phantom was set to white. Adapted from Steuwe et al. (2018).

cases, approximately equal numbers of photons reached the surface of the water

phantom (9.24 · 107 (PBF) vs. 9.27 · 107 (FM)).

3.1.2 evaluation w-ii: influence of the photon fluence on Espatial

The influence of the photon fluence on Espatialwas compared, see section 2.5.1.4.

Figure 3.2 depicts the effect of fan-angle dependent photon fluence on Espatial. In

figure 3.2a, photon fluence was modulated as a function of the fan angle (FM),

whereas in figure 3.2b, a uniform fluence (NM) was employed across the x-ray fan.

For a single projection and employed fluence modulation, Espatialwas concentrated

at the center of the x-ray beam entrance side. The uniform fluence resulted in amore

homogeneously distributed Espatial across the x-ray fan.

Comparing Espatial for a uniform photon fluence with that for fan-angle dependent

fluence (after normalization), Espatialwas overestimated at the phantom periphery

by up to 250% (at the sides of the fan beam), whereas Espatialwas underestimated by

up to -50% at the center of the fan beam (see figure 3.2c). Relative energy differences

were within ± 50% for a full 360°-rotation (see figure 3.2d). A decreased energy

deposition was noticeable at the center of the phantom and an increased energy

deposition noticeable in the periphery (Steuwe et al. 2018).

3.1.3 evaluation w-iii: influence of photon energy distributions on Espatial

After evaluation of the beam-shaping method implemented for this work and the

assessment of its beam-shaping effect, the effect of employing different source spec-
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(a) E
spatial

for application of the measured 0°-
spectrum and fan-angle dependent photon

fluence (FM)

(b) E
spatial

for application of the measured 0°-
spectrum and uniform photon fluence (NM)

(c) Relative difference in E
spatial

between simula-

tions without and with fluence modulation,

0°-projection

(d) Relative difference in E
spatial

between simula-

tions without and with fluence modulation,

360°-reconstruction

Figure 3.2: EvaluationW-II: Influence of fan-angle dependent fluence on spatial distribution

of simulated deposited energy, Espatial. For both the 0°-projection and the 360°-
reconstruction, energy maps were normalized prior to calculation of difference

maps. Please note the different scalings of the color bars. For better visibility of

the phantom periphery, background color outside the water phantom was set to

white. Adapted from Steuwe et al. (2018).

tra andmonoenergetic photons on Etotal and Espatialwas assessed (see section 2.5.1.5).

This comparison aims at evaluating whether x-ray spectra and monoenergetic pho-

tons can be interchanged for dosimetric purposes, in cases where the original source

spectrum is not available.

Figure 3.3 presents Espatial for employing the measured 0°-reference spectrum (a),

monoenergetic 57.7 keV photons (b), the generated unfiltered (c), and filtered (d)

120 kVp-spectra. The single projections showed only subtle differences at the en-

trance side of the phantom in terms of shape and penetration length for the spectra.

The maximum local energy deposition for monoenergetic photons (~200MeV) was
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(a) Measured 0°-spectrum (b) Monoenergetic 57.7 keV photons

(c) Generated unfiltered 120 kVp-spectrum (d) Generated filtered 120 kVp-spectrum

Figure 3.3: Evaluation W-III: Spatial distribution of simulated deposited energy, Espatial, for

different input spectra and monoenergetic photons. Projection from 12 o’clock

source position. Fan-angle dependent fluence (FM)was applied in all simulations.

For better visibility of thephantomperiphery, backgroundcolor outside thewater

phantom was set to white. Adapted from Steuwe et al. (2018).

lower than for the employed photon spectra (~250-270MeV).

The relative differences in Espatial compared to Espatial of the reference spectrum are

presented in figure 3.4 for the reconstructed 360°-projections. The differences are

more conspicuous than they were in figure 3.3. Espatial for the 57.7 keV photons was

underestimated at the periphery of the phantom (-20%), whereas at the center,

Espatialwas overestimated by +10% (see figure 3.4a). The unfiltered generated spec-

trum led to an overestimation of Espatial at the phantom periphery (+20%) and an

underestimation (-20%) at the phantom center (figure 3.4b). Due to the lack of ad-

ditional filtration, this spectrum is softer than the reference spectrum. Hence, more

photonswere absorbed at the entrance side of the phantom,whereas less energywas

deposited at the center. The effect of the additional filtration on energy deposition is

depicted in figures 3.4c-3.4d. Beam-hardening due to the aluminum filter reduced
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(a) Monoenergetic 57.7 keV photons (b) Generated unfiltered 120 kVp-spectrum

(c) Generated filtered 120 kVp-spectrum (d) Generated filtered 120 kVp-spectrum (differ-

ent scale)

Figure 3.4: Evaluation W-III: Relative difference of spatial distribution of simulated de-

posited energy, Espatial, for simulations employing different emitted photon en-

ergy distributions (360°-reconstruction). Reference for the difference maps was

Espatial generated using the measured 0°-spectrum. Photon fluence modulation

was applied in all simulations. Note that Espatial presented in (d) displays the

same data as in (c) but uses a smaller range of relative difference values in order

to resolve subtle differences. For better visibility of the phantom periphery, back-

ground color outside the water phantomwas set to white. Adapted from Steuwe

et al. (2018).

relative differences in Espatial compared to the reference spectrum to ~3% (Steuwe

et al. 2018).

3.1.4 evaluation w-iv: influence of beam-shaping filter induced spec-

tral distortion on Espatial

The last sections presented the influence of the photon fluence and the choice of

central source spectra and monoenergetic photons on Espatial. Although fan-angle
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(a) E
spatial

for the measured 0°-spectrum (b) E
spatial

for the measured FADS

(c) Relative difference in E
spatial

between simula-

tions employing the FADS and the measured

0°-spectrum, 0°-projection

(d) Relative difference in E
spatial

between simula-

tions employing the FADS and the measured

0°-spectrum, 360°-rotation

Figure 3.5: EvaluationW-IV: Influence of bowtie-filter induced spectral distortion on spatial

distribution of simulated deposited energy, Espatial. Fan-angle dependent photon

fluence (FM) was employed. FADS: fan-angle dependent spectra. For better vis-

ibility of the phantom periphery, background color outside the water phantom

was set to white. Adapted from Steuwe et al. (2018).

dependent photon fluence caused by the beam-shaping filter was implemented in

the simulations by the filter’s PDF of the transmission curve, the spectral distor-

tion due to beam-shaping filtration was not represented as only the central source

spectrum across the whole fan beam was employed. As FADS are not commonly

available without measuring them directly (refer to section 2.3.5.3), the influence of

omitting spatial distortion was evaluated, see section 2.5.1.6.

There were only subtle differences visible between Espatial for the measured 0°-
spectrum and FADS (see figure 3.5a and 3.5b). For a single projection and employing

FADS, Espatialwas reduced at the outer sides of the x-ray fan beam (see figure 3.5c,

~-10%), compared to employing only the central spectrum. The central spectrum

is softer than the spectra at the outer sides of the fan beam, as the low-energy
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photons are filtered out by the beam-shaping filter, thereby increasing the mean

spectral energy from 57.7 keV (0°-spectrum) to 76.7 keV for the 21°-spectrum. The

beam-hardened spectra led to an increased energy deposition at the phantom cen-

ter (cf. figure 3.5d), whereas the reduced amount of low-energy photons caused a

reduction of Espatial at the phantom periphery, for the 360°-reconstruction (Steuwe

et al. 2018).

3.1.5 evaluation w-v: total energy deposition Etotal

Etotalwashighest for the virtual beam-shaping scenario (printed in bold)which, how-

ever, only resulted in a relative difference of +2.22% (FM/NM) compared to Etotal of

the reference spectrum. The generated filtered spectrum showed the lowest devia-

tion (NM +0.12%, FM +0.14%). The relative differences increased if no additional

filtration was employed (NM -4.93%, FM -5.35%). Simulations with monoenergetic

57.7 keV photons resulted in a slightly lower energy deposition (NM -1.48%, FM

-1.06%, Steuwe et al. 2018).

Table 3.1: EvaluationW-V: Simulated total energydeposition (Etotal) in thewater phantom for

simulations without (NM) and with (FM) photon fluence modulation. The values

printed in bold shows Etotal for the simulation modeling a 'full beam-shaping

filter' (virtual beam-shaping scenario), with modeled fan-angle dependent photon

fluence and spectra (Steuwe et al. 2018).

Emitted x-ray Uniform Fan-angle dependent
photons fluence (NM) fluence (FM)

Etotal Rel. diff. to Etotal Rel. diff. to

[GeV] reference [%] [GeV] reference [%]

Measured 0°-spectrum
@ 120 kVp (reference) 2074.1 3063.1

Generated 0°-spectrum
@ 120 kVp, unfiltered 1971.8 -4.93 2899.3 -5.35

Generated 0°-spectrum
@ 120 kVp, 3.3 mm Al 2076.6 +0.12 3067.3 +0.14

57.7 keV→ Emean, ref

@ 120 kVp 2043.5 -1.48 3030.7 -1.06

Measured fan-angle depen-
dent spectra @ 120 kVp 2120.3 +2.22 3131.2 +2.22
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3.2 INFLUENCE OF THE TUBE POTENT IAL AND T I S SUE CONTRAST

ENHANCEMENT ON THE ENERGY DEPOS IT ION AND DETEC -

TOR S IGNAL IN THE BOX PHANTOM

Until now, only 120 kVp-spectra and corresponding moneoenergetic photons were

assessed in this work regarding the energy deposition and its spatial distribution.

In the following, the results for the analysis of different tube potentials on energy

deposition and detector signal in the box phantom are presented. For all simulations

presented from here onward, only the generated filtered spectra at 80, 100, and

120 kVp were applied.

3.2.1 evaluation b-i: influence of the tube potential on the energy de-

position and the detector signal in the box phantom

First, all three layers of the box phantom were constructed of identical materials

(either fat, water, soft tissue, or liver), see section 2.5.2.2. Between the tube potentials

80, 100, and 120 kVp, Etotalwas approximately equal for each respective material

in the phantom (see table 3.2). For water, soft tissue, and liver tissue, Etotalwas

slightly higher at 80 kVp than at 120 kVp (difference of a maximum of 1.8%). The

relative energy deposition compared to the total input photon energy was highest

at 80 kVp for all materials and lowest at 120 kVp.

Table 3.2: Evaluation B-I: Simulated total energy deposition, Etotal, in the box phantom for

the materials fat, water, soft tissue, and liver for the tube potentials 80, 100, and

120 kVp. Individual layers inside the boxphantomcontained the identicalmaterial.

Tube Etotal Relative difference to
potential [GeV] 120kVp-acquisition [%]

Material [kVp] Phantom Detector Phantom Detector
Fat 80 660.7 500.5 -1.80 -28.31

100 658.8 614.7 -2.10 -11.95

120 672.9 698.1

Water 80 878.6 386.5 1.76 -33.98

100 860.9 501.0 -0.28 -14.41

120 863.4 585.4

Soft tissue 80 936.2 370.1 1.63 -33.71

100 918.5 478.4 -0.29 -14.31

120 921.2 558.3

Liver 80 938.0 369.7 1.64 -33.72

100 920.3 477.9 -0.27 -14.32

120 922.8 557.8
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For liver tissue at 80 kVp, 41% of the total input energywas absorbed in the phantom,

whereas at 120 kVp, only 32% of the total input energywas absorbed in the phantom.

The maximum difference in Etotal compared to the simulation at 120 kVp was -2.1%

for the material fat at 100 kVp. Although Etotal in the box phantom was nearly equal

for all three tube potentials, Espatial varied: with increasing tube potential, energy

deposition occurred at increasing depths due to the longer range of high-energy

photons (deeper penetration). Hence, the highest entrance deposition was visible

for the 80 kVp-setting, whereas energy deposition was distributed to larger depths

for the 120 kVp-setting.

Relative differences between tube potentials were considerably higher for the energy

deposition in the detector. Compared to Etotal in the detector at 120 kVp, Etotalwas 11-

14% lower at 100 kVp and 28-34% lower at 80 kVp. The total deposited energy in the

detector increased with increasing tube potential. The relative energy deposition in

thedetector compared to the total input photon energywashighest at 100 kVp (~23%)

and lowest at 80 kVp (~16%) for all materials.

Table 3.3 shows the ratio between detector signal for the different materials (i.e. for

two box phantoms in adjacent position, neglecting cross-scattering between boxes).

Largest differences between detector signal were visible at 80 kVp and decreased

slightly with increasing tube potential. Furthermore, larger differences in density

caused larger differences in detector signal (compare detector ratios of liver and fat

tissue vs. liver and soft tissue).

Table 3.3: EvaluationB-I:Difference indetector signal between twoadjacentmaterials. Ratios

were calculated from the detector signals presented in table 3.2. Ratios did not

include cross-scattering between the materials. The larger the deviation from a

ratio of 1.0, the larger the difference in detector signal between two materials.

Material Tube potential [kVp] Fat Water Soft tissue Liver
Fat 80 1.000 0.772 0.739 0.739

100 1.000 0.815 0.778 0.777

120 1.000 0.838 0.800 0.799

Water 80 1.000 0.958 0.957

100 1.000 0.955 0.954

120 1.000 0.954 0.953

Soft tissue 80 1.000 0.999

100 1.000 0.999

120 1.000 0.999

Liver 80 1.000

100 1.000

120 1.000
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3.2.2 evaluation b-ii: influence of tissue contrast enhancement on the

energy deposition in the box phantom

In this section, the individual layers of the phantom were constructed of different

materials, to investigate the energy deposition in non-enhanced and enhanced tis-

sues, see section 2.5.2.3. In this case, the box phantom was constructed of fat (layer

1), liver (layer 2), and fat (layer 3). This setup represented the material interfaces

present in an axial slice through the abdomen at liver height. For simulations of

contrast-enhanced acquisitions, iodine was added to the material liver with mass

fractions of ψI=[0.001, 0.003, 0.005, 0.010, 0.015], corresponding to iodine concentra-

tions of 1, 3, 5, 10, and 15mg/ml, respectively.

The total energy deposition in the box phantom was almost equal for the three

tube potentials (772.9, 764.3, and 773.6GeV at 80, 100, and 120 kVp, respectively, for

ψI � 0.000). However, relative to the incident photon energy, the highest percentage

was deposited at 80 kVp (~33.2%) and the lowest percentage at 120 kVp (~26.8%).

Figure 3.6 depicts 2D-energy maps of the whole phantom at 80, 100, and 120 kVp for

the simulation of a non-enhanced (ψI � 0.000) and an enhanced (ψI � 0.010) ac-

quisition. The incident photons reached layer 1 at y =+45mm, underwent the first

material transition from fat to liver at y =+15mm, the second material transition

from liver to fat at y = -15mm, and left layer 3 at y = -45mm. Subtle color differences

in figure 3.6 show differences at the interfaces between the layers.

Even without contrast enhancement, Espatial increased considerably at the inter-

face between the fat and the liver layer, due to the higher density of liver tissue

(1.06 g/cm
3
) compared to fat tissue (0.95 g/cm

3
).

The energy deposition along the y-axis of the box phantom for a simulation of a

non-enhanced (ψI � 0.000) and an enhanced acquisition with an iodine mass frac-

tion of ψI = 0.010 are presented in figures 3.7-3.8. Energy deposition was highest at

the interface between layer 1 and layer 2 for the 80 kVp-setting and reduced for higher

tube potentials. Energy deposition in layer 1 was comparable for both the simula-

tion of the non-enhanced and the enhanced acquisition, though energy deposition

increased considerably in layer 2 for the simulation of the enhanced acquisition.

The 80 kVp-profiles showed the steepest gradient in layer 2. The profiles for 100 and

120 kVp were fairly identical in the first and second layer, but differed in the third

layer. Here, energy deposition was highest for the 120 kVp-spectrum and decreased

with decreasing tube potential.

The iodine concentration corresponding to the mass fraction ψI � 0.010 (10mg/ml)

is usually only achieved in the aorta directly after injection of the contrast agent and

not in the liver. However, this mass fraction was chosen for data presentation since

the differences between tube potentials are more easily apparent for larger mass

fractions.
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Figure 3.6: Evaluation B-II: Summed energy deposition along the z-axis in the box phan-

tom for the material combination in the three layers fat-liver-fat at 80 kVp (left),

100 kVp (middle), and 120 kVp (right). Top row: non-enhanced liver, middle

row: non-enhanced liver with different color scale, bottom row: enhanced liver

(ψI � 0.010). Incident photons reach layer 1 at y =+45mm, undergo the first

material transition from fat to liver at y =+15mm, the second material transition

from liver to fat at y = -15mm, and leave layer 3 at y = -45mm. Please note the dif-

ferent color bars for energy maps of simulations of non-enhanced and enhanced

acquisitions.
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Figure 3.7: Evaluation B-II: Profile through the box phantom, constructed of fat (layer 1),

liver (layer 2), and fat (layer 3) at 80, 100, and 120 kVp. For calculation of the

profiles, only the inner 4 cm in x- and z-direction (between -20mm and +20mm)

were used to take only the homogenous distribution inside the phantom into

account (the energy deposition is less homogenous at the edges of the phantom

as scattered photons in these regions are only produced but their energy is not

deposited). Please note the different vertical axis scaling in the profiles in figures

3.7-3.8.
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Figure 3.8: Evaluation B-II: Profile through the box phantom, constructed of fat (layer 1),

enhanced liver (layer 2, ψI = 0.010), and fat (layer 3) at 80, 100, and 120 kVp.

Simulated energydeposition is highest for the 80 kVp-simulationup to y=+5mm.

From y=+5mm onwards until y = -45mm, energy deposition is highest for the

120 kVp-simulation. For calculation of the profiles, again only the inner 4 cm

(between -20mm and +20mm) in x- and z-direction were used, to take only

the homogenous distribution inside the phantom into account. Please note the

different vertical axis scaling in the profiles in figures 3.7-3.8.



3.2 influence of the tube potential and contrast enhancement 77

−40−30−20−10010203040

−50

0

50

100

150

y [mm]

R
e
l
a
t
i
v
e
d
i
ff
e
r
e
n
c
e
t
o
s
i
m
u
l
a
t
e
d

n
o
n
-
e
n
h
a
n
c
e
d
a
c
q
u
i
s
i
t
i
o
n
[
%
]

0.001

0.003

0.005

0.010

0.015

photon direction

initial

fat (layer 3)

liver (layer 2)fat (layer 1)

Figure 3.9: Evaluation B-II: Relative difference to simulated non-enhanced acquisition for

iodine mass fractions of ψI = 0.001, 0.003, 0.005, 0.010, 0.015 at 80 kVp. Only the

inner 4 cm in x- and z-direction were used for calculation of the profiles to take

only the homogenous distribution inside the phantom into account. The shaded

area in the plot highlights the interface layers covered by the interface 2a/1 and an

interface layer thickness of 2.5mm. Please note the different vertical axis scaling

in the profiles in figures 3.9-3.10.

Figure 3.9 presents the increased energy deposition in the box phantom compared

to a simulated non-enhanced acquisition (pure liver in layer 2) for all simulated

mass fractions ψI = [0.001, 0.003, 0.005, 0.010, 0.015] (enhanced liver in layer 2) at

80 kVp. For the profiles of the energy deposition along the y-axis, only the inner

4 cm of the phantom (in x- and z-direction, between -20mm and +20mm) were

taken into account, as Espatial in this range was fairly homogeneous. The higher the

iodine concentration, the higher the relative difference in energy deposition between

simulated enhanced and non-enhanced acquisitions. For very small iodine concen-

trations (1-3mg/ml), the energy increase was relatively stable along the y-axis of

the phantom (along layer 2, between y= -15mm and y=+15mm), whereas for high

iodine concentrations (5 - 15mg/ml), the difference in energy deposition decreased

along the y-axes of the phantom. The larger the distance from the fat/liver-tissue

interface (layer 1/2) towards the detector, the lower the relative increase in energy

deposition. In layer 3, the energy deposition for simulated enhanced acquisitions

was lower compared to the energy deposition for simulated non-enhanced acquisi-

tions (negative relative differences) since a high percentage of photons was already

absorbed in layer 2.
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Figure 3.10: Evaluation B-II: Relative difference in energy deposition between simulated en-

hanced and non-enhanced acquisitions, at 80, 100, and 120 kVp. Profile through

the box phantom, constructed of fat (layer 1), liver (layer 2, ψI = 0.010), and fat

(layer 3). Only the inner 4 cm in x- and z-direction were used for calculation of

the profiles to take only the homogenous distribution inside the phantom into

account. Please note the different vertical axis scaling in the profiles in figures

3.9-3.10.

To check whether the energy build-up effect varied between tube potentials, the

relative difference between simulated enhanced and non-enhanced acquisitionswas

plotted as a profile through the inner 4 cm of the box phantom, see figure 3.10,

for an iodine mass fraction of ψI � 0.010. At the interface between layer 1 and 2

(interface fat to liver), no clear differences were visible between the tube potentials

100 and 120 kVp, whereas for 80 kVp, a slightly lower relative increasewas noticed.At

larger depths, the relative difference in energy deposition of the simulated 80 kVp-

acquisition dropped with a steeper gradient compared to the simulated 100 and

120 kVp-acquisitions.
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3.2.3 evaluation b-iii: energy build-up effect at material interfaces in

the box phantom

Section 3.2.2 demonstrated that the total energy deposition for different tube poten-

tials was comparable although Espatial varied along the y-axis (see figures 3.6, 3.7 and

3.8). A closer look at the interfaces between layers 1 and 2 and between layers 2 and

3 was therefore necessary, see section 2.5.2.4. Refer to figure 2.20 for the names of in-

terface layers. For this purpose, the deposited energy around the material transition

from fat to liver (interface 2a/1) and around the material transition from liver to fat

(interface 2b/3) were determined in the 4 cm x 4 cm central block of the box phan-

tom. This was performed for interface layer thicknesses of 1.0, 2.5, and 5.0mm in

y-direction. Interface ratios (2a/1 and 2b/3) were calculated from the results of the

simulations of non-enhanced and enhanced acquisitions and presented in table 3.4.

More interactions were taken into account with increasing layer thickness (larger cu-

mulative energy deposition, more signal). However, with increasing distance from

the interface, the energy build-up effect at the entrance side of the photon beam

decreased (decreasing energy deposition with increasing distance from interface).

This becomes apparent at the material interfaces in the profiles, see figures 3.7 and

3.8). The ratio at the 'upstream' interface 2a/1, hence, the transition from fat (layer

1) to liver (layer 2) increased with decreasing interface layer thickness due to the

larger difference in energy deposition between interface layer 2a and 1 for thinner

interface layers. The reverse effect was visible for the 'downstream' interface 2b/3,

the transition between liver (layer 2) and fat (layer 3). The thickness of the interface

layer was a compromise between signal and ratio for the energy build-up effect.

For the assessed tube potentials, the energy build-up effect at the interfaces was

highest at 80 kVp and lowest at 120 kVp. The energy build-up effect increased with

increasing iodine mass fraction for the assessed tube potentials.

The thickness of the interface layer was of importance for later simulations of the

abdomen phantom and digitized patient phantoms, to assess the energy build-up

effect for different interfaces. The profile of the difference in energy deposition be-

tween the simulated enhanced and non-enhanced acquisitions was fairly stable for

2.5mm after entrance in layer 2 for iodine mass fractions ψI up to 0.005 (see shaded

area in figure 3.9). Hence, for the simulations of the abdomen phantom anddigitized

patient phantoms, a thickness of 2.5mm was used for the organ shells.
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3.3 CALCULAT ION OF EXPOSURE MAPS OF THE MODIF I ED ABDO-

MEN PHANTOM

The next section describes the energy deposition in themodified abdomen phantom

(see section 2.4.1.3). This phantom consists of several organs and material interfaces.

Particular focus was the energy increase in an organ and at the interfaces between

visceral fat and organ tissue for simulations of iodine-enhanced acquisitions. Fig-

ure 3.11 shows the axial, coronal, and sagittal energymap of the simulatedmodified

abdomen phantom. Simulation parameters for this simulated non-enhanced acqui-

sition were a tube potential of 80 kVp, spiral acquisition mode (pitch = 1.0), and a

scan coverage of 43.2 cm (40 cm phantom length + 2 x 1.6 cm overscanning). The

exposure along the z-axis of the phantom was homogeneous (no LTCM applied),

however, fan-angle dependent fluence modulation (FM) was enabled. The influence

of the spiral acquisition mode with the pitch 1.0 was visible in the coronal and sagit-

tal planes. At the phantom center, energy deposition was uniform, whereas gaps in

energy deposition are visible at the phantom periphery.

Figure 3.11: Axial (a), coronal (b), and sagittal (c) energy deposition map of the modi-

fied abdomen phantom. Simulated non-enhanced (ψI � 0.000) acquisition at

80 kVp with the spiral acquisition mode (pitch = 1.0). Voxel size: 2 x 2 x 2mm
3
.
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3.3.1 evaluation a-i: influence of tube potential and tissue contrast

enhancement on energy deposition and its spatial distribution in

the modified abdomen phantom

Table 3.5 presents an overview of the total energy deposition in the modified ab-

domen phantom, for simulated non-enhanced and enhanced acquisitions at 80, 100,

and 120 kVp (refer to section 2.5.3.2). Furthermore, the calculated relative differences

in energy deposition between the simulated enhanced and the non-enhanced acqui-

sition are shown. In general, energy deposition in all structures of the phantom

increasedwith increasing tube potential, except for the skin (difference in energy de-

position of -4.6% between the 120 kVp- and 80 kVp-setting). The increase amounted

to approximately (~) + 12% for the the whole phantom. For individual tissues, the

increase ranged between 2% (soft tissue) and 35% (aorta). Energy deposition in tis-

sues close to the phantom center was increasing to a stronger degreewith increasing

tube potential compared to energy deposition in tissues at the periphery.

For simulated contrast-enhanced acquisitions, energy deposition increased consid-

erably for the enhanced tissues (between ~30% and 50%) compared to the energy

deposition in simulated non-enhanced acquisitions. For all enhanced tissues, the

relative increase in energy deposition was highest at 120 kVp, although differences

between 80 and 100 kVp were larger than between 100 and 120 kVp. For all tube

potentials, the energy deposition in the pancreas yielded the highest increase (50.7%

at 120 kVp). Energy deposition in the largest organ, the liver, increased by 31-35%.

For the surrounding non-enhanced tissues, energy deposition was lower for sim-

ulated enhanced acquisitions than for simulated non-enhanced acquisitions (-1 to

-4%). The largest difference was obtained in the spine (reduction of ~-3.7%). The rel-

ative difference in energy deposition for non-enhanced tissues between simulated

enhanced and non-enhanced acquisitions were approximately equal for all tube po-

tentials.

Figure 3.12 shows an overview of an axial slice through the liver, GI-tract, spleen,

aorta, and the spine for simulated non-enhanced (top row) and enhanced (second

row) acquisitions at 80, 100, and 120 kVp. Since simulations of CT acquisitions were

performed in helical mode with a pitch of 1.0, Espatial at the posterior and anterior

side of the phantom was not homogeneous for an axial slice. Energy deposition in

the subcutaneous fat and visceral fat between the organs and the aorta was consider-

ably lower than in the organs as the physical density of fat is lower than the density

of organ tissue (e.g. ρfat < ρliver). With increasing tube potential, energy deposition

at the phantom center increased due to the longer range of high-energy photons,

similar to the energy deposition in the box phantom, presented in section 3.2.1.

Energy deposition decreased with increasing surface-to-center distance of the phan-

tom, which was especially visible for the liver. The third row in figure 3.12 depicts

the relative difference in Espatial between the simulated enhanced and non-enhanced

acquisitions. At 120 kVp, relative differences in energy deposition at the phantom

center were more homogeneously distributed than at 80 kVp, which was especially

visible in the area between the liver and the aorta.
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Figure 3.12: EvaluationA-I: Simulated energydeposition in themodified abdomenphantom

at 80, 100, and 120 kVp. Energy deposition for simulated non-enhanced acquisi-

tions (top row), for simulated enhanced acquisitions (second row), relativediffer-

ence in energy deposition between simulated enhanced and non-enhanced ac-

quisitions (third row). Left: 80 kVp-, middle: 100 kVp-, right: 120 kVp-simulation.

Fourth row: relative difference in Espatial between the simulations at 80 and

120 kVp (left) and between the simulations at 100 and 120 kVp (right), relative

difference shown for simulated non-enhanced acquisitions. Contrast-enhanced

tissues: aorta, liver, spleen, kidneys, and pancreas (ψI � 0.005).

Whereas the spatial distribution of the deposited energy was fairly equal for 100

and 120 kVp, large differences appeared at the phantom center at 80 kVp due to

the shorter photon range at this tube potential (visible in third and fourth row of

figure 3.12).
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3.3.2 evaluation a-ii: energy build-up effect at material interfaces in

the modified abdomen phantom – whole phantom

The energy deposition in the organ and tissue shells of the modified abdomen phan-

tom was assessed in the following (refer to section 2.5.3.3). Particular focus was the

energy deposition at material interfaces. In the modified abdomen phantom, organs

are surrounded by visceral fat. Table 3.6 provides the energy deposition per organ

and surrounding tissue shell for the six performed simulations. Furthermore, the

corresponding relative differences in energy deposition between simulations of en-

hanced and non-enhanced acquisitions are given.

The largest change from the whole organ to the organ and surrounding fat tissue

shells was visible in the liver. Whereas the relative difference in energy deposition

between the simulation of enhanced and non-enhanced acquisition was only ~+31-

35% in the complete liver (see table 3.5), this value increased for the liver shell to

~+43%. This increase was due to the large size of the liver and its heterogeneous

energy deposition. Along the outer rim of the liver, energy deposition was approxi-

mately twice as high as at the inner rim, positioned close to the aorta. For the other

organs, the relative differences in energy deposition between the simulation of the

enhanced and the non-enhanced acquisition increased only slightly.

Energy deposition decreased in the surrounding visceral fat shell for a simulation

of an enhanced acquisition for all organs. The relative difference was strongest for

the liver (~-7%) and least observable for the left kidney (~-4 %).

Energy deposition was highest for simulations at 120 kVp and lowest at 80 kVp as

were the relative differences in energy deposition for the organ shells. Relative dif-

ferences between simulations of enhanced and non-enhanced acquisitions behaved

contrary for the surrounding fat shells: largest differences were visible at 80 kVp.
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Table 3.7: Evaluation A-II: Calculated interface ratios between organ shell and surrounding

fat shell at 80, 100, and 120 kVp. Energy deposition was normalized to the volume

of the shells prior to calculation of the interface ratios. Contrast-enhanced tissues:

aorta, liver, spleen, kidneys, and pancreas (ψI � 0.005). Left (L), right (R).

Interface ratio (organ shell / surrounding fat shell)
Liver Spleen Kidney R Kidney L Pancreas

Simulated non-enhanced acquisition

80 kVp 1.649 1.679 1.649 1.654 1.578

100 kVp 1.598 1.625 1.583 1.587 1.516

120 kVp 1.545 1.576 1.538 1.558 1.493

Simulated enhanced acquisition

80 kVp 2.504 2.598 2.561 2.560 2.483

100 kVp 2.450 2.536 2.497 2.492 2.423

120 kVp 2.375 2.460 2.422 2.425 2.356

Table 3.7 presents the calculated ratios at the organ-surrounding tissue interface.

For this purpose, the energy deposition in each shell was first normalized to the

volume of the shell followed by the calculation of the organ/tissue shell ratios. The

same pattern as was seen in the box phantom (c.f. table 3.4) was observed for the

abdomen phantom, although here, interfaces 2a/1 and 2b/3 could not be separated

into 'upstream' and 'downstream' interfaces due to the full rotation of the x-ray

source around the modified abdomen phantom (stationary x-ray source in the box

phantom). For increasing tube potential, the interface ratio decreased. Ratios for the

simulated non-enhanced acquisitions ranged between 1.5 and 1.7, whereas ratios

for the simulated enhanced acquisitions ranged between 2.3 and 2.6.
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3.3.3 evaluation a-iii: energy build-up effect at material interfaces in

the modified abdomen phantom – axial slice

The energy build-up effect was further assessed in one specific axial slice of the

abdomen, containing parts of the organs liver and spleen, simulated with an in-

creased number of photons for higher statistical occupation of the energy map (see

figure 3.13 and section 2.5.3.4).

Both the simulation of the non-enhanced and enhanced acquisition were performed

for the tube potentials of 80, 100, and 120 kVp for a single 270°-projection (x-

ray source position at 9 o’clock) and for a full source rotation. Figure 3.13 de-

picts Espatial for the projection and the rotation, simulated with a tube potential

of 80 kVp (simulated enhanced (ψI � 0.005) acquisition).

Table 3.8 presents the energy deposition and interface ratios for the ROIs depicted in

figures 2.22a-2.22d for the simulation of a full source rotation around the phantom.

Comparing the energy deposition between the enhanced and the non-enhanced set-

ting, energy deposition increased considerably in the liver ROI (~+46% for ROI 2a,

34-40% for ROI 2b). A slight increasewas noted inROI 1 (~+1%) and adecrease noted

in ROI 3 (~-10-14%). For the simulated non-enhanced acquisitions, both interface

ratios ranged between 1.45 and 1.68. For the enhanced acquisitions, interface ratios

were higher: for the interface 2a/1, ratios ranged between 2.15 and 2.28, whereas for

interface 2b/3, ratios ranged between 2.39 and 2.61.

Figures 3.14-3.17 present the x-axis profiles of the energymapsmarked in figure 3.13

for the evaluated tube potentials for simulations of the non-enhanced and enhanced

acquisitions. The material transitions from air to skin, subcutaneous fat, soft tissue,

visceral fat, and liver are clearly visible in all profiles.

Near the entrance side of the photon beam (at x =± 17 cm), energy deposition was

(a) Projection at 270° (b) 360°-rotation

Figure 3.13: Evaluation A-III: Energy deposition for a simulated enhanced acquisition of

a single slice of the modified abdomen phantom at 80 kVp. Profiles along the

x-axis (white lines) are presented in figures 3.14-3.17. Energy deposition was

not scored in the air for this setup, hence energy deposition equals zero outside

the phantom. Contrast-enhanced tissues: aorta, liver, and spleen (ψI � 0.005).

Please note the different scaling of the color bars.
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Table 3.8: Evaluation A-III: Energy deposition and relative difference in energy deposition

between simulations of enhanced and non-enhanced computed tomography ac-

quisitions for the regions of interest (ROIs) depicted in figures 2.22a-2.22d at 80,

100, and 120 kVp for the simulation of the full source rotation. Energy deposition

and relative differences were determined from placing ROIs on calculated 2D en-

ergy/difference maps. For calculation of interface ratios, energy deposition in the

ROIs was normalized to the number of pixels in the ROI. ROI 1 and ROI 3 are

positioned in the surrounding tissue (fat), ROI 2a and ROI 2b in the liver.

Simulated energy deposition [MeV] Interface ratio
ROI 1 ROI 2a ROI 2b ROI 3 2a/1 2b/3

Simulated non-enhanced acquisition

80 kVp 15.19 22.30 14.42 8.59 1.556 1.677

100 kVp 15.74 22.37 15.40 9.68 1.505 1.591

120 kVp 16.47 22.64 16.19 10.53 1.456 1.536

Simulated enhanced acquisition

80 kVp 15.40 33.19 19.77 7.58 2.282 2.608

100 kVp 15.95 33.44 21.69 8.67 2.221 2.502

120 kVp 16.60 33.74 22.98 9.60 2.153 2.394

Relative difference to non-enhanced acquisition [%]

80 kVp 1.35 46.13 34.13 -13.60

100 kVp 1.28 46.91 38.79 -11.62

120 kVp 0.70 46.57 40.30 -9.75

highest for the 80 kVp-spectrum for both the projection and the rotation. In the liver

tissue between x= -14 and -5 cm, the slope of the 80 kVp-profile was steepest. As a

result, energy deposition was higher at 120 kVp towards the center of the phantom

compared to the energy deposition resulting from the 80 kVp-setting. For the projec-

tion, energy deposition at the entrance side of the liver (x = -14 cm) was highest for

the 80 kVp-setting, albeit only marginally. For the full rotation, energy deposition

at the entrance side of the liver was approximately equal for all tube potentials for

simulated non-enhanced acquisitions. For simulated enhanced acquisitions, energy

deposition at the entrance side of the liver was highest at 120 kVp. However, profile

datawas noisy for the full rotation andmight not describe small differences between

tube potentials.
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Figure 3.14: Evaluation A-III: Central x-axis profile through the 2D-energy map of a lateral

projection at 80, 100, and 120 kVp for the simulated non-enhanced acquisition.

The following materials are traversed from left (x = -17 cm) to right (x =+17 cm)

and visible on the profile: skin (shaded area, left), subcutaneous fat, soft tissue

(shaded area, middle), visceral fat, liver (shaded area, right), visceral fat, gastro-

intestinal tract, and again visceral fat. Please note the different vertical axis

scaling in the profiles in figures 3.14-3.15.
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Figure 3.15: Evaluation A-III: Central x-axis profile through the 2D-energy map of a lateral

projection at 80, 100, and 120 kVp for the simulated enhanced acquisition. The

following materials are traversed from left (x = -17 cm) to right (x =+17 cm) and

visible on the profile: skin (shaded area, left), subcutaneous fat, soft tissue

(shaded area, middle), visceral fat, liver (shaded area, right), visceral fat, gastro-

intestinal tract, and again visceral fat. Contrast-enhanced tissues: aorta, liver,

and spleen (ψI � 0.005). Please note the different vertical axis scaling in the

profiles in figures 3.14-3.15.
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Figure 3.16: Evaluation A-III: Central x-axis profile through the 2D-energy map for a full

source rotation at 80, 100, and120 kVp for the simulatednon-enhanced acquisition.
The following materials are traversed from left (x = -17 cm) to right (x =+17 cm)

and visible on the profile: skin, subcutaneous fat, soft tissue, visceral fat, liver,

visceral fat, gastro-intestinal tract, visceral fat, spleen, visceral fat, soft tissue,

subcutaneous fat, and the skin.
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Figure 3.17: Evaluation A-III: Central x-axis profile through the 2D-energy map for a full

source rotation at 80, 100, and 120 kVp for the simulated enhanced acquisition.

The following materials are traversed from left (x = -17 cm) to right (x =+17 cm)

and visible on the profile: skin, subcutaneous fat, soft tissue, visceral fat, liver,

visceral fat, gastro-intestinal tract, visceral fat, spleen, visceral fat, soft tissue,

subcutaneous fat, and the skin. Contrast-enhanced tissues: aorta, liver, and

spleen (ψI � 0.005).
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3.4 CALCULAT ION OF EXPOSURE MAPS OF D IG IT IZED PAT IENTS

TheMC softwarewas further developed to allow formodeling and simulation of CT

acquisitions of patients to calculate the radiation exposure depending on the acqui-

sition parameters (e.g. tube potential), contrast enhancement, patient morphology,

or BMI. Figure 3.18 presents the energy deposition of a simulated non-enhanced

acquisition in the axial, coronal, and sagittal plane (patient 3A). Energy deposition

was highest in the bones (ribs, spinal processes, ilium) due to the high material

density and lowest in the lungs. Due to the density differences in the lungs, subtle

differences in energy deposition were visible in the lungs.

3.4.1 evaluation p-i: influence of the tube potential and tissue con-

trast enhancement on energy deposition and its spatial distribu-

tion in a digitized patient

For this evaluation, energy deposition in the abdominal scan range of patient 2A

was simulated for the tube potentials 80, 100, and 120 kVp for a simulation of a

non-enhanced and an enhanced acquisition (see section 2.5.4.2 and figure I.2b). Re-

sults of Espatial for an axial slice through the liver, spleen, and lungs are presented in

figure 3.19 for the simulated non-enhanced acquisitions in the top row and for the

simulated enhanced acquisitions in the second row.

At 120 kVp, energy deposition in the liver and the spleen was more homogeneously

distributed compared to the energy deposition resulting from the simulated non-

Figure 3.18: Axial (a), coronal (b), and sagittal (c) energy deposition map for patient 3A.

Simulated non-enhanced acquisition (ψI � 0.000) at 80 kVp, with the spiral

acquisition mode (pitch = 1.0), tube current modulation enabled. Voxel size:

1.54 x 1.54 x 3mm
3
. Original computed tomography images for the presented

maps are shown in figure I.1.
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enhanced 80 kVp-acquisition, especially at the center of the abdomen.

The difference maps in figure 3.19, third row, show that the differences in energy de-

position between simulations of enhanced and non-enhanced acquisitions (for the

enhanced tissues) increased slightly with increasing tube potential. The difference

between the results of the 80 kVp- and the 120 kVp-setting was considerably higher

than the differences between the results of the 100 kVp- and the 120 kVp-setting.

For the simulated 80 kVp-acquisition, mean photon ranges were shorter, which low-

ered the energy deposition at the center of the patient compared to the 120 kVp-

setting (difference between tube potentials visible in the bottom row), similar to the

energy deposition in the modified abdomen phantom, see section 3.3.1. The differ-

ence in energy deposition at the center of the patient was smaller between 100 and

120 kVp.

Total energy deposition in patient 2A for the different tube potentials is presented

in table 3.9 for the organs and tissues. Energy deposition in the enhanced tissues

increased by ~+38% for the liver and up to ~+50% for the pancreas (refer to table 3.9).

Energy deposition decreased in non-enhanced soft tissue, bones, skin, and fat by

approximately -3%.

The higher the tube potential, the higher the energy deposition in all tissues, ex-

cept for the skin. Here, energy deposition was highest at 80 kVp due to the higher

number of low-energy photons in the 80 kVp-spectrum (difference of +4.5% com-

pared to the skin deposition at 120 kVp). The mean spectral energy of the initial

photons directed towards the patient was ~20% lower for the 80 kVp- compared to

the 120 kVp-spectrum.

The largest differences between the simulated 120 kVp- and 80 kVp-acquisition were

found in the pancreas and the aorta (~+30%), which are both organs/tissues posi-

tioned centrally in the patient. Differences between these tube potentials were lower

in the organ periphery (spleen ~+14%, soft tissue ~+6%). In the total patient, energy

deposition at 120 kVp was ~10% higher than at 80 kVp.
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Figure 3.19: EvaluationP-I: Simulated energydeposition inpatient 2Aat 80, 100, and 120 kVp.

Energy deposition for simulated non-enhanced acquisitions (top row), for sim-

ulated enhanced acquisitions (second row), relative difference in energy depo-

sition between simulated enhanced and non-enhanced acquisitions (third row).

Left: 80 kVp-, middle: 100 kVp-, right: 120 kVp-simulation. Fourth row: relative

difference in Espatial between the simulated acquisition at 80 and 120 kVp (left)

and between the simulated acquisition at 100 and 120 kVp (right), relative dif-

ference shown for simulated non-enhanced acquisitions. Contrast-enhanced

tissues: aorta, liver, spleen, kidneys, and pancreas (ψI � 0.005). Original axial

computed tomography image shown in figure I.2b.
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3.4.2 evaluation p-ii: energy build-up effect at material interfaces in a

digitized patient – whole patient

In the following subsection, the the energy build-up effect at material interfaces

in the digitized patient is evaluated (see section 2.5.4.3), as was performed for the

modified abdomen phantom. Total energy deposition in patient 2A for the different

tube potentials is presented in table 3.10 for the surrounding organ and tissue shells.

Taking only the organ and surrounding tissue shells in to account, energy deposition

increased considerably for the liver (~+44%, see table 3.10).

The build-up effectwas assessed in the liver, spleen, and kidneys. Due to the size and

structure of the pancreas, the shell structure could not be implemented. Interface

ratios between the organ shells and the surrounding tissue shells are presented in

table 3.11 for patient 2A and tube potentials of 80, 100, and 120 kVp. The clear trend

of an increasing ratio with decreasing tube potential, which was noted in the box

phantom and the modified abdomen phantom, was also noticeable for the digitized

patient. For simulations of non-enhanced acquisitions, ratios ranged between 1.13

and 1.33, whereas for simulations of enhanced acquisitions, ratios ranged between

1.70 and 2.03.

Table 3.10: Evaluation P-II: Simulated energy deposition in organ and surrounding soft

tissue shells for patient 2A at 80, 100, and 120 kVp. The simulation covered the

liver, spleen, pancreas, and kidneys with an additional scan range of 36mm in

cranio-caudal direction. Contrast-enhanced tissues: aorta, liver, spleen, kidneys,

and pancreas (ψI � 0.005).

Simulated energy deposition [GeV]
Organ shell Surrounding tissue shell

Liver Spleen Kidneys Liver Spleen Kidneys
Simulated non-enhanced acquisition

80 kVp 17.26 3.35 6.43 15.91 2.66 5.36

100 kVp 18.29 3.58 7.21 16.83 2.88 6.12

120 kVp 19.06 3.74 7.81 17.69 3.09 6.75

Simulated enhanced acquisition

80 kVp 24.69 4.95 9.10 15.26 2.58 5.04

100 kVp 26.37 5.36 10.44 16.19 2.83 5.85

120 kVp 27.55 5.62 11.34 17.07 3.03 6.53

Relative difference to non-enhanced acquisition [%]

80 kVp 43.01 47.83 41.50 -4.07 -2.98 -6.05

100 kVp 44.21 49.87 44.68 -3.82 -1.69 -4.28

120 kVp 44.58 50.26 45.10 -3.50 -1.86 -3.18
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Table 3.11: Evaluation P-II: Interface ratios calculated from normalized energy depositions

(per voxel) in the shells for patient 2A at 80, 100, and 120 kVp. The simulation

covered the liver, spleen, pancreas, and kidneys with an additional scan range of

36mm in cranio-caudal direction. Contrast-enhanced tissues: aorta, liver, spleen,

kidneys, and pancreas (ψI � 0.005).

Interface ratio (organ shell / surrounding tissue shell)
Liver Spleen Kidneys

Simulated non-enhanced acquisition

80 kVp 1.141 1.330 1.320

100 kVp 1.142 1.312 1.297

120 kVp 1.133 1.281 1.273

Simulated enhanced acquisition

80 kVp 1.701 2.026 1.987

100 kVp 1.713 2.000 1.961

120 kVp 1.697 1.961 1.908

3.4.3 evaluation p-iii: energy build-up effect at material interfaces in

a digitized patient – axial slice

The build-up effect at material interfaces was furthermore assessed for an axial

slice through the liver and kidneys in patient 1A (see figures 3.20 and I.2a, and

section 2.5.4.4). This slice, especially the liver, resembled the chosen slice of the mod-

ified abdomen phantom.

(a) Projection at 270° (b) 360°-rotation

Figure 3.20: EvaluationP-III: Simulationof an enhancedacquisitionof a single slice of patient

1A at 80 kVp. Profiles along the x-axis are presented in figures 3.21-3.24. Energy

deposition was scored in the air for this setup, hence energy deposition outside

the patient is non-zero. Contrast-enhanced tissues: aorta, liver, spleen, kidneys,

and pancreas (ψI � 0.005). The original computed tomography image of the

presented axial slice is shown in figure I.2a. Please note the different scaling of

the color bars.
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Energy deposition and relative difference in energy deposition between simulations

of enhanced and non-enhanced acquisitions in the ROIs depicted in figures 2.23a-

2.23d are presented in table 3.12 for the simulation of the full source rotation around

the digitized patient. Comparing the energy deposition between the simulated en-

hanced and non-enhanced acquisition, energy deposition increased considerably in

the liver ROI (~+57% for ROI 2a, 34-41% for ROI 2b). A slight increase was noted in

ROI 1 (~+1%) and a decrease noted in ROI 3 (~-10-14%). For all interfaces, ratios de-

creased with increasing tube potential. The interface ratio 2a/1 ranged between 1.47

and 1.52 for the non-enhanced setting, and between 2.27 and 2.35 for the enhanced

setting. Whereas the ratios of the modified abdomen phantom and the digitized

patient were similar for the simulated non-enhanced acquisitions, ratios for the

simulated enhanced acquisitions were slightly higher for the digitized patient. The

interface ratio 2b/3 ranged between 1.36 and 1.42 for the simulated non-enhanced ac-

quisition, and between 2.11 and 2.23 for the simulated enhanced acquisition. In both

the non-enhanced and the enhanced setting, ratios were slightly lower compared to

the interface ratios 2b/3 for the modified abdomen phantom.

Table 3.12: Evaluation P-III: Energy deposition and relative difference in energy deposition

between simulated enhanced and non-enhanced acquisitions for the regions of

interest (ROIs) depicted infigures 2.23a-2.23d at 80, 100, and 120 kVp, for the simu-

lation of the full source rotation in patient 1A. Energy deposition and relative dif-

ferenceswere determined fromplacingROIs on calculated 2D-energy/difference

maps. For calculation of interface ratios, energy deposition in the ROIs was nor-

malized to the number of pixels in the ROI. ROI 1 and ROI 3 are positioned in

the surrounding tissue, ROI 2a and ROI 2b in the liver.

Simulated energy deposition [MeV] Interface ratio
ROI 1 ROI 2a ROI 2b ROI 3 2a/1 2b/3

Simulated non-enhanced acquisition

80 kVp 14.11 18.31 11.81 8.68 1.517 1.421

100 kVp 14.27 18.23 12.44 9.42 1.492 1.379

120 kVp 14.69 18.42 13.06 10.07 1.465 1.355

Simulated enhanced acquisition

80 kVp 14.28 28.71 16.11 7.53 2.350 2.234

100 kVp 14.47 28.77 17.60 8.45 2.323 2.176

120 kVp 14.83 28.84 18.53 9.16 2.274 2.111

Relative difference to non-enhanced acquisition [%]

80 kVp 1.14 57.03 34.17 -13.95

100 kVp 1.48 58.12 39.90 -10.79

120 kVp 0.87 56.89 40.70 -9.31
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Again, profiles were plotted along the central x-axis of the axial energy map, for the

single 270°-projection (source position at 9 o’clock, cf. figure 3.20a and figures 3.21-

3.22) and for the full source rotation (see figure 3.20b and figures 3.23-3.24). For

both simulations of non-enhanced and enhanced acquisitions of the projection, en-

ergy deposition at the entrance side of the digitized patient was highest at 80 kVp,

whereas only small differences were visible between 100 and 120 kVp. The higher

energy deposition of the simulated 80 kVp-acquisition was clearly visible in the skin

and soft tissue layer between x= -17 and x= -15 cm. When entering the visceral fat

layer (at x = -15 cm) between the outer soft tissue layer and the liver tissue layer,

energy deposition was highest for the simulated 120 kVp-acquisition. The profile of

the 80 kVp-setting had the steepest gradient in the liver tissue. At the entrance of

the liver, energy deposition was highest at 80 kVp, whereas it was lowest towards

the center of the digitized patient. This pattern was also visible in the modified

abdomen phantom.

For the full source rotation, energy deposition in the skin was highest at 80 kVp for

both the simulated non-enhanced and the enhanced acquisition. For the subcuta-

neous fat and the soft tissue following the subcutaneous fat, energy deposition for

all spectra was too noisy to determine the tube potential reaching maximum energy

deposition. For the patient center (visceral fat, liver tissue, aorta, and GI-tract) from

approximately x = -15 to x =+15 cm), energy deposition was highest for the simu-

lated 120 kVp-acquisition. Although all profiles follow the same pattern, there was

an offset of the 80 kVp-profile relative to the 100 kVp- and 120 kVp-profile, especially

at the patient center.
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Figure 3.21: Evaluation P-III: Central x-axis profile through the 2D-energy map of a lateral

projection at 80, 100, and 120 kVp for the simulated non-enhanced acquisition.

The following materials are traversed from left (x = -17 cm) to right (x =+17 cm)

and visible on the profile: air, skin (shaded area, left), subcutaneous fat, soft

tissue (shaded area, middle), visceral fat, liver (shaded area, right), visceral

fat, gall bladder, visceral fat, aorta, visceral fat, GI-tract, visceral fat, soft tissue,

subcutaneous fat, and the skin. Please note the different vertical axis scaling in

the profiles in figures 3.21-3.22.
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Figure 3.22: Evaluation P-III: Central x-axis profile through the 2D-energy map of a lateral

projection at 80, 100, and 120 kVp for the enhanced acquisition. The following

materials are traversed from left (x = -17 cm) to right (x =+17 cm) and visible on

the profile: air, skin (shaded area, left), subcutaneous fat, soft tissue (shaded

area, middle), visceral fat, liver (shaded area, right), visceral fat, gall bladder,

visceral fat, aorta, andvisceral fat. Contrast-enhanced tissues: aorta, liver, spleen,

kidneys, and pancreas (ψI � 0.005). Please note the different vertical axis scaling

in the profiles in figures 3.21-3.22.
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Figure 3.23: Evaluation P-III: Central x-axis profile through the 2D-energy map for a full

source rotation at 80, 100, and120 kVp for the simulatednon-enhanced acquisition.
The following materials are traversed from left (x = -17 cm) to right (x =+17 cm)

and visible on the profile: air, skin, subcutaneous fat, soft tissue, visceral fat,

liver, visceral fat, gall bladder, visceral fat, aorta, and visceral fat. Please note

the different vertical axis scaling in the profiles in figures 3.23-3.24.
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Figure 3.24: Evaluation P-III: Central x-axis profile through the 2D-energy map for a full

source rotation at 80, 100, and 120 kVp, for the simulated enhanced acquisition.

The following materials are traversed from left (x = -17 cm) to right (x =+17 cm)

andvisible on the profile: air, skin, subcutaneous fat, soft tissue, visceral fat, liver,

visceral fat, gall bladder, visceral fat, aorta, visceral fat, GI-tract, visceral fat, soft

tissue, subcutaneous fat, and the skin. Contrast-enhanced tissues: aorta, liver,

spleen, kidneys, and pancreas (ψI � 0.005). Please note the different vertical

axis scaling in the profiles in figures 3.23-3.24.
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3.4.4 evaluation p-iv: influence of bmi and morphology on the energy

deposition and its spatial distribution in digitized patients

The influence of the patient morphology and BMI on energy deposition and its spa-

tial distribution was assessed (see section 2.5.4.5 and figure I.3). Figure 3.25 presents

the energy deposition maps of all patients for the simulated contrast-enhanced ac-

quisitions at 80 kVp, for the same abdominal slices as are presented in figure I.3. An

abdominal slice where both kidneys and the liver were visible was chosen, although

the shape of the organs differed considerably among the patients. Note that the

spleen was still visible for patient 1B on this slice, and that the shape and position

of the aorta deviated from the other patients.

The total energy deposition in the tracked tissues is presented in tables 3.13-3.14. The

incoming number of photons was dependent on the scan range and TCTPeff. There

was no clear trend for the relative difference between simulations of enhanced and

non-enhanced acquisitions with respect to BMI, shape, or diameter of the patients.

Normalizing the tissue energy deposition to the initially emitted photon energies

revealed a trend in the fat tissue and the aorta. For patients 2A and 3B (effective

diameter, Deff >32.5 cm), the relative energy deposition in fat tissue amounted to

approximately 15%, whereas this value amounted only to 10% for patients 1A, 1B,

and 2B (Deff <28.8 cm, 13% for patient 3A, Deff = 30.5 cm). For the centrally positioned

aorta, relative energy deposition ranged between 0.6% and 1.0% for patients 1A, 1B,

and 2B, whereas this value only amounted to 0.3-0.5% for patients 2A, 3A, and 3B.
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Figure 3.25: Evaluation P-IV: Simulated energy deposition for all patients within an ax-

ial slice through the abdomen at 80 kVp. The energy map of the simulated

contrast-enhanced acquisition was printed. Contrast-enhanced tissues: aorta,

liver, spleen, kidneys, and pancreas (ψI � 0.005). The original computed tomog-

raphy images of the presented axial slice are shown in figure I.3.
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Table 3.15: Evaluation P-V: Simulated energy deposition in the skin and in the patients (all

organs/tissues) in a 102mm scan region of the abdomen, and relative differences

between simulated acquisitions at 80 and 120 kVp.

Simulated Simulated
energy deposition Rel. diff. to energy deposition Rel. diff. to

in skin [GeV] 120 kVp in patient [GeV] 120 kVp

ID 80kVp 120 kVp [%] 80 kVp 120 kVp [%]
1A 46.2 44.8 3.16 818.6 891.1 -8.13

1B 57.4 55.3 3.95 878.8 956.3 -8.10

2A 54.8 52.4 4.74 893.8 988.0 -9.54

2B 44.3 42.8 3.63 698.3 767.7 -9.04

3A 55.6 53.4 4.08 850.1 938.6 -9.43

3B 55.7 53.1 4.83 891.6 981.3 -9.13

3.4.5 evaluation p-v: influence of tube potential on energy deposition

in the skin in digitized patients

The influence of the tube potential on the energy deposition in the skin was com-

pared for a 102mm abdominal scan region (see section 2.5.4.6). The skin exposure

for simulated acquisitions at 80 kVp was maximum 4.8% higher than the skin expo-

sure for simulations at 120 kVp for the modified abdomen phantom and digitized

patients for employing identical numbers of emitted photons for the 80 kVp- and

the 120 kVp-setting per patient (see table 3.15). In contrast to the increase of ~4%

total skin exposure, the total energy deposition in the patients (all tissues/organs)

is reduced by ~9% for the 80 kVp-setting compared to the 120 kVp-setting, again em-

ploying identical numbers of emitted photons for the 80 kVp- and the 120 kVp-setting

per patient. Relative to the total energy deposition in the scored scan region, skin

energy deposition was ~7% at 80 kVp and ~6% at 120 kVp. Maximum differences in

skin exposure between the six simulated patients were ~30% for both the simulated

acquisition at 80 kVp and at 120 kVp.

3.5 ASSESSMENT OF THE VAR IAT ION BETWEEN IDENT ICAL MC

S IMULAT IONS AND EVALUAT ION OF THE S IMULATED NUM-

BER OF PHOTONS IN A DIG IT IZED PAT IENT

variation between two identical simulations with different initial seeds

The variation between two identical simulated acquisitions with different initial

seeds was less than 1% for complete organs (including the smallest tracked organ,

the pancreas, see table 3.16) but considerably higher (up to 60%) for single voxels

(1.5 x 1.5 x 3mm
3
, see figure 3.26). Differences ranged between ± 30% if the energy

deposition was summed over multiple slices (1.5 x 1.5 x 9mm
3
voxel size).
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Table 3.16: Comparison of the energy deposition resulting from two identical simulations

of a non-enhanced computed tomography acquisition with different initial seeds

for patient 2A. Results presented for the total patient and the three organs/tis-

sues with the highest relative differences in energy deposition between the two

samples. Simulation parameters were: scan coverage of 15 cm (abdomen), 45·106
emitted photons, pitch 0.5, longitudinal tube-current modulation enabled.

Simulated energy
deposition [GeV] Total patient Pancreas Spleen Aorta
Sample 1 1161.12 2.28 5.36 4.06

Sample 2 1161.06 2.26 5.37 4.05

Rel. diff. [%] 0.01 0.69 -0.10 0.08

reduction of the photon statistics Figures 3.27-3.30 present the differences

in normalized energy deposition between data sets with full photon statistics and

data sets with reduced photon statistics, to assess the influence of a lower number

of initially emitted photons on the obtained energy deposition (see section 2.6). Four

different sets of histogramswere produced: (1) for thewhole volume of the abdomen

(figure 3.27), (2) for the kidneys in the abdomen (figure 3.28), (3) for a single axial

slice (figure 3.29), and (4) for the kidney tissue of that axial slice (figure 3.30).

The larger the number of entries, the lower the mean difference between data sets

with full photon statistics and data sets with reduced photon statistics. The mean

difference between the full statistics data sets and the reduced statistics data sets was

zero in all four sets of histograms until only every 15th interaction was included in

the reduced data sets. Reducing the included number of interactions further caused

a shift of the mean, which was easily visible by the position of the peak of the

Gaussian curve. The differences between full and reduced photon data increased

while reducing the number of included interactions (larger tail towards positive

differences) causing a poorer fit between the Gaussian curve and the histograms.

Depending on the volumeof interest, the number of incident photons can be reduced

without shifting the simulation results towards lower or higher energy depositions.

All reduced data stacks contained identical distributions of interaction types (see

figure J.1) and mean energies per interaction.
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(a) DICOM image of correspond-

ing axial slice 17

(b) 2D-energy map of sample 1 (1.5 x 1.5 x

3mm
3
, slice 17)

(c) 2D-energy map of sample 2 (1.5 x 1.5 x

3mm
3
, slice 17)

(d) Difference map for a single slice (1.5 x 1.5

x 3mm
3
, slice 17)

(e) Differencemap for three adjacent slices (1.5

x 1.5 x 9mm
3
, slices 16-18)

Figure 3.26: Evaluation of the differences in energy deposition in a digitized patient between

two identical simulations of computed tomography acquisitions with different

initial seeds. (a) Anatomy of the evaluated axial slice number 17, (b) 2D-energy

map of sample 1, (c) 2D-energymap of sample 2, (d) relative difference in energy

deposition between sample 1 and sample 2 for a single axial slice (slice 17), and

(e) for three adjacent slices (slices 16-18).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.27: Abdomen: 3D-energy maps were created from all interactions and every sec-

ond, fifth, tenth, and so on. Energy maps were normalized to the integral value

1. Normalized energy maps of the reduced photon statistics data set were sub-

tracted from the normalized energy maps of the original data set with full

photon statistics (containing the complete data) and differences were plotted

in 1D-histograms. Furthermore, histograms have been fitted with a Gaussian

curve.



110 results

(a) (b)

(c) (d)

(e) (f)

Figure 3.28: Kidneys: 3D-energy maps were created from all interactions and every second,

fifth, tenth, and so on. Energy maps were normalized to the integral value 1.

Normalized energy maps of the reduced photon statistics data set were sub-

tracted from the normalized energy maps of the original data set with full

photon statistics (containing the complete data) and differences were plotted

in 1D-histograms. Furthermore, histograms have been fitted with a Gaussian

curve.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.29: Axial slice: 3D-energy maps were created from all interactions and every sec-

ond, fifth, tenth, and so on. Energy maps were normalized to the integral value

1. Normalized energy maps of the reduced photon statistics data set were sub-

tracted from the normalized energy maps of the original data set with full

photon statistics (containing the complete data) and differences were plotted

in 1D-histograms. Furthermore, histograms have been fitted with a Gaussian

curve.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.30: Kidney tissue in an axial slice: 3D-energy maps were created from all interac-

tions and every second, fifth, tenth, and so on. Energymapswere normalized to

the integral value 1. Normalized energy maps of the reduced photon statistics

data set were subtracted from the normalized energy maps of the original data

set with full photon statistics (containing the complete data) and differences

were plotted in 1D-histograms. Furthermore, histograms have been fitted with

a Gaussian curve.
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DISCUSS ION

Although only 9% of all diagnostic x-ray procedures in Germany in 2014 were com-

puted tomography (CT) examinations, they contributed to the annual effective dose

with 65%. The number and the resulting annual effective dose per capita of CT exam-

inations have increased between 2007 and 2014 by 40% and 30%, respectively (BfS

2016b). High doses of ionizing radiation (>100mSv) are known to be carcinogenic,

however, the effects of lower doses (e.g. those occurring in diagnostic CT examina-

tions) on the induction of tumors in different tissue types are still unclear (Hall and

Brenner 2008). Hence, the increase in effective dose requires thorough understand-

ing of the spatial dose distribution inside the human body and how this distribution

is influenced by CT acquisition parameters, patient morphology, age, or the admin-

istration of contrast agents. Individualized dosimetry plays an increasing role in

clinical radiology, especially for patients receiving multiple CT examinations over a

short period of time, such as during a cancer treatment. Individualized dosimetry

offers a precise evaluation of the radiation exposure, even for non-average sized or

pediatric patients, where conversion factors fail. Furthermore, the increased sensitiv-

ity of pediatric patients to ionizing radiation requires surveillance, to allow for the

execution of overdue long-term studies regarding the radiation dose of diagnostic

procedures and their potential adverse effects.

Several MC-based dose calculators are available for the calculation of dose deposi-

tion in CT (Brady et al. 2012), such as ImPACT (ImPACT 2011) or ImpactDose (IBA

Dosimetry 2009; Kalender et al. 1999a). Unfortunately, they are usually limited by re-

stricted input options, such as the CT scanner system or predefined patient models,

and by inflexible output and analysis options. Therefore, the goal of this work was

the development and validation of a Monte Carlo (MC) software for the simulation

of CT acquisitions, which offers the desired flexibility in both input and analysis

options to approach virtual dosimetry.

The results of this work are discussed in the following. In section 4.1, the x-ray

emission and beam-shaping methods employed in the developed MC model are

discussed for 120 kVp-equivalent photon distributions. Section 4.2 and section 4.3

discuss and contextualize the influence of the tube potential and iodinated contrast

agents on energy deposition in organs and at tissue interfaces, respectively. The im-

plemented geometrical abdomen and digitized patient phantoms and their design

are reviewed in section 4.4. The number of tracked photons and the data output of

the software are evaluated in section 4.5. Section 4.6 discusses the methodology of

the developed software and the limitations of the results, and offers an outlook on

future developments.
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4.1 EVALUAT ION OF X-RAY EMISS ION AND BEAM-SHAP ING METH-

ODS

The individual components of the developed MC software for the simulation of CT

acquisitions and the determination of the associated radiation exposure in phan-

toms and digitized patients were first assessed to ensure proper functionality and

efficiency of the MC model. This initial analysis also aimed at understanding the

underlying physics processes of CT, the effects of beam-shaping filtration (photon

fluence and beam-hardening), and the effects of different input photon distribu-

tions (monoenergetic photons, measured, or generated spectra) on the absorption

of photons in matter (i.e. phantoms or patients). Photon absorption was described

by means of the total energy deposition, Etotal, and its spatial distribution, Espatial.

beam-shaping method Clinical CT scanners include one ormore beam-shaping

filters to equalize the measured signal in the detector and to reduce unnecessary

radiation exposure in shorter patient x-ray path lengths near the edges of the fan

beam. Two beam-shaping methods were implemented in the MC model.

At first, the virtual beam-shaping method was evaluated, which implemented both

fan-angle dependent photon fluence and fan-angle dependent spectra (FADS). This

method resulted in only 3% difference in Espatial compared to the results obtained by

implementation of a physical beam-shaping filter (PBF, see figure 3.1). The advantage

of the virtual method is the increased efficiency in computation time compared to

the implementation of a PBF as the latter causes a photon loss prior to any interaction

in a phantom due to the absorption inside the filter: more than twice the number of

photons were necessary to obtain approximately equal numbers of photons imping-

ing on the phantom (after filtration), thereby doubling the simulation time.

Omission of the beam-shaping effect of the filter caused relative differences in

Espatial of up to 50% for the simulation of a full x-ray source rotation in the wa-

ter phantom (see figure 3.2). Hence, a method for modulating photon fluence is

required in a MC model of a CT scanner, independent of the emitted photon distri-

bution. Due to the small differences in energy deposition in the phantom between

the physical and the virtual filter (3%), and the considerably higher efficiency of the

latter, the virtual beam-shaping method was employed during this work (Steuwe

et al. 2018).

spectral properties X-ray spectra are unique for a specific CT scanner’s x-

ray tube design in conjunction with specific beam filtration. Since experimentally

measured x-ray spectra are not always available, this work evaluated the usage of

different generated spectra and monoenergetic photons, corresponding to a tube

potential of 120 kVp as alternatives and simplified approximations for measured

spectra. The selected monoenergetic photon energy matched the mean energy of

the experimentally measured 0°-spectrum, Emean,ref.

Regarding Etotal in the water phantom (see table 3.1), only subtle differences were

visible between the usage of the measured 0°-spectrum and the generated (unfil-

tered and filtered) 120 kVp-spectra and monoenergetic photons (max. 5%). Hence,

considering only Etotal in a phantom, even monoenergetic photons seem feasible as
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approximation of the actual x-ray source’s emitted spectrum (Steuwe et al. 2018).

Although differences in Etotalwere small when comparing results obtained with

monoenergetic photons and the measured 0°-spectrum, differences in Espatialwere

considerably higher (± 20%). For monoenergetic photons, absorption at the center

of the phantom was overestimated, whereas absorption was underestimated at the

periphery of the phantom. The mean energy of a photon spectrum cannot approx-

imate the absorption pattern of a polyenergetic photon distribution, since photons

of lower and higher energy are not represented by monoenergetic photons.

For the generated unfiltered spectrum at 120 kVp, Espatialwas overestimated in the

periphery, whereas it was underestimated at the center compared to the measured

0°-spectrum. The generated unfiltered spectrum is softer than the measured spec-

trum and thus contains more low-energy photons and less high-energy photons.

Additional aluminum filtration reduced low-energy photons and shifted the total

spectrum to a higher mean spectral energy. Hence, a matching peak tube poten-

tial and mean spectral energy results in Espatial close to the one of the measured

0°-spectrum (difference of only 3%).

The influence of different x-ray spectra, e.g. with varying tube potential and alu-

minum filtration, on the dose deposition within phantoms in- and outside the scan

field was previously studied by Caon et al. (1998) and Boone et al. (2000). In line

with the results of this work, they noticed an increasing dose deposition and deeper

penetration of tissue layers with increasing filtration (Caon et al. 1998). However, in

contrast to the current work, the detailed spatially resolved dose deposition was not

investigated in their work.

The results obtained from the assessment of the influence of different photon distri-

butions on Etotal andEspatial emphasize the interchangeability of spectra formatching

tube potential and mean spectral energy. The mean spectral energy of a CT x-ray

source is easier measured than central or fan-angle dependent spectra. Both the

peak tube potential and mean spectral energy can be measured with an accuracy of

up to 2%, according to manufacturers (Cobia Flex, RTI, Mölndal Sweden, or with

the Diavolt Universal All-in-one QCMeter, PTW, Freiburg, Germany). This accuracy

is sufficient, when taking the differences in x-ray spectra between x-ray sources of

different vendors into account (cf. figure 2.6), especially in the low energy range

(Steuwe et al. 2018).

spectral distortion due to beam-shaping filtration A beam-shaping fil-

ter results in spectral distortion of the primary emitted x-ray spectrum. Section 3.1.4

showed that spectral distortion should be included in a CT model for correct re-

production of x-ray emission and the precise and accurate calculation of Etotal and

Espatial. Differences between the implementation of FADS and the implementation

of solely the 0°-spectrumwere 5% in Espatial for a full source rotation. Spectral distor-

tion can be modeled by implementing fan-angle dependent spectra directly (as was

performed during this work), by calculation of energy-dependent transmission and

attenuation of photons (Jarry et al. 2003), or by employing a physical beam-shaping

filter model (Steuwe et al. 2018).

Lopez-Rendon et al. (2014) assessed differences in deposited dose for simulations

modeling the full beam-shaping effect (FM + FADS) and simulations employing
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only the fan-angle dependent fluence (FM) without taking the spectral hardening

into account. The largest differences between the full beam-shaping effect and only

FM were noticed at the thickest parts of the beam-shaping filter, hence, towards

the edges of the fan beam. The number of low-energy photons increased if only

FM without spectral hardening was applied, whereas the number of high-energy

photons decreased. Although Lopez-Rendon et al. (2014) only used computation-

ally generated spectra, their results are in agreement with the results of the work

presented here (Steuwe et al. 2018).

The initial analysis of the x-ray source emission has demonstrated that generated

spectra can be employed as an alternative for measured spectra if peak tube poten-

tial and mean spectral energy match. Furthermore, the beam-shaping filter induced

modulated photon fluence should be taken into account for modeling of clinical CT

scanners (Steuwe et al. 2018).

4.2 INFLUENCE OF TUBE POTENT IAL ON THE ENERGY DEPOS IT ION

AND THE DETECTOR S IGNAL

Since CT acquisitions are often performed at other tube potentials than 120 kVp,

depending on the indication, region of interest, and patient morphology, this work

additionally evaluated the energy deposition and detector response for other diag-

nostic tube potentials.

To understand the principles of energy deposition for the different tube potentials,

first, the shapes of the x-ray spectra at 80, 100, and 120 kVp were compared, see

figure 2.5. Although the spectra are very similar in the range between 20 and 80 keV,

the range between 20 and 55 keV has a higher statistical occupation for the 80 kVp-

spectrum, whereas the range between 55 and 80 keV is statistically higher occupied

for the 120 kVp-spectrum.

total energy deposition and its spatial distribution Energy deposition

was first simulated in a box phantom with identical materials in all three layers

(either liver, fat, water, or soft tissue) and afterwards, with a fat and liver tissue

combination. In the latter case, photons first passed fat tissue, then liver tissue, and

finally again fat tissue. This tissue sequence can be found in the human abdomen,

although the box phantom is obviously a very simplified representation. Still, the

basic principles of energy deposition at material interfaces can be derived by means

of the box phantom. Since the 120 kVp-spectrum nearly completely encompasses the

80 kVp-spectrum, the energy deposition in the box phantom for both tube potentials

was almost equal (difference in Etotal ≤ 2.1% for all simulated materials, table 3.2).

For more complex phantoms, such as the modified abdomen phantom and the dig-

itized patient phantom, differences in Etotalwere more notable. Energy deposition

increased with increasing tube potential, except for the skin (this will be discussed

later in this section, page 118).Due to the shortermean rangeof photons in the 80 kVp-

spectrum, less photon interactions occur at the center of the phantom compared to

simulations with a 120 kVp-spectrum. This results in a lower energy deposition at
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the phantom center at 80 kVp. While there is barely a difference in energy deposition

at the phantom periphery between simulations at 80 and 120 kVp (e.g. skin, subcu-

taneous fat, soft tissue ring, all <5%), differences are larger in centrally positioned

organs (aorta, pancreas, ~30%).

For the box phantom, the modified abdomen phantom, and the patient phantom,

profiles of the energy deposition in the phantoms were presented (see figures 3.7,

3.14 and 3.21). For all phantoms, the highest energy deposition was found at the

beam entrance for a tube potential of 80 kVp. For larger depths, energy deposition

was highest for a tube potential of 120 kVp. In all phantoms, the profile of the simu-

lated 80 kVp-acquisition shows the steepest gradient in the liver tissue. At the center

of the modified abdomen phantom and digitized patient phantom, energy deposi-

tion was highest at 120 kVp. This was visible both on the profiles (cf. figures 3.16 and

3.23), and on the energy maps (figures 3.12 and 3.19).

To date, the biological effect of low radiation doses and low-kV acquisitions is insuf-

ficiently understood. AlthoughCTDIvol values for low-kV acquisitions are lower, the

percentage of the total input energy absorbed in tissues is largest at 80 kVp compared

to acquisitions at 100 or 120 kVp (see section 3.2.2 and Wang et al. 2012). More re-

search is required on this topic, especially with regard to changes in patient mor-

phology: worldwide, the prevalence of overweight and obesity has increased from

approximately 29% to 38% in adults between 1980 and 2013 (Smith and Smith 2016).

Physical phantoms (i.e. Alderson phantoms) are based on fairly lean, averaged sized

persons. The increased amount of fat tissue in overweight and obese patients leads

to deviations in energy deposition from CT acquisitions of standard patients. A

larger patient diameter with a larger amount of fat tissue results in fat shielding of

the radiosensitive internal organs (Wang et al. 2012). The detailed distribution of the

radiation exposure from CT acquisitions needs to be thoroughly investigated, i.e. by

MC simulations.

In current literature, MC simulations of CT acquisitions are usually performed

at a tube potential of 120 kVp, independent of the scan region (Amato et al. 2010;

Fujii et al. 2017; Li et al. 2011b; Perisinakis et al. 2018, this listing can be extended).

There were only three publications employing lower tube potentials for abdominal

or thoracic examinations (Chen et al. 2012; Deak et al. 2008; Nowik et al. 2017). None

of the publications directly compared the influence of different tube potentials on

energy deposition and its spatial distribution.

Although 120 kVp-acquisitions in CT imaging are widespread, low-kV acquisitions

(i.e. at 80 kVp) at increased tube-current time product (TCTP) for abdominal scan

regions are encouraged nowadays, due to the increased contrast of the reconstructed

CT images and the decreased expected radiation dose (Lira et al. 2015; Seyal et al.

2015). Increased TCTPs are possible in current CT scanners due to new x-ray tube

technology and higher generator power. However, the influence of lower tube poten-

tials than 120 kVp on the patient’s radiation exposure is still insufficiently studied

(Wang et al. 2012). This work, in contrast to the previously published studies, pro-

vides a comprehensive comparison of the influence of varying tube potentials on

total energy deposition and its spatial distribution in CT.
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detector signal The detector signal was assessed for the box phantom for

a homogeneous material distribution (see section 3.2.1). Whereas the differences

in Etotal between tube potentials were small in the box phantom, differences were

larger in the detector. The high energy photons (>80 keV) of the 120 kVp-spectrum

are, to a large extent, transmitted through the phantom and absorbed in the detector.

Hence, energy deposition in the detector was considerably higher at 120 kVp than

at 80 kVp (see table 3.2).

The detector signal height influences the SNR but does not directly affect the image

contrast, which is dependent on the ratio of detector signals of adjacent materials.

Table 3.3 presents the ratio of the detector signal when comparing two materials

at 80, 100, and 120 kVp. For adjacent materials, the detector ratio between e.g. liver

and fat would be lowest at 80 kVp (0.739) and highest at 120 kVp (0.799), ignoring

cross-scattering of photons between tissues. Hence, detector signals are more simi-

lar for the simulated 120 kVp-acquisition than for the simulated 80 kVp-acquisition.

The largest differences in detector signal were found to be at 80 kVp and decrease

with increasing tube potential, except for the tissue combination liver and soft tissue.

Due to their identical density and similar composition, differences in detector signal

were not expected.

The contrast of CT images increases with decreasing tube potential for typical tube

potentials utilized in clinical CT, see section 1.4.4 and Stiller (2011). If there are only

slight differences in attenuation between two tissues, these slight differences will

have a greater impact on low-energy photons than on high-energy photons. Hence,

reconstructed CT images acquired at high tube potentials often appear 'gray on

gray' (with a high SNR though) compared to the large visible contrast of CT images

acquired at 70 or 80 kVp. Unfortunately, the use of low-kV acquisitions is limited

in obese patients, due to a potentially insufficient number of photons reaching the

detector, leading to excessive image noise. Obese patients therefore often have ap-

proximately 50% higher radiation doses than non-obese patients due to the required

increase of the tube potential (Wang et al. 2012). However, newer techniques in CT,

such as the iterative reconstruction, improve the feasibility of low-kV acquisitions

in larger patients, by decreasing the image noise (Shaqdan et al. 2018; Stiller 2018).

skin exposure The skin exposure is often mentioned when performing CT ac-

quisitions with tube potentials of 70 or 80 kVp. Although CTDI values are lower for

70 or 80 kVp-acquisitions compared to 120 kVp-acquisitions, the presumed strong

increase in skin exposure often causes discussions about the true advantages of

acquisitions employing low tube potentials. Energy deposition in the skin increased

by ~4%, whereas total energy deposition decreased by ~9%when lowering the tube

potential from 120 to 80 kVp (see table 3.15). This slight increase in skin exposure

was caused by the larger number of low-energy photons in the 80 kVp- compared to

the 120 kVp-spectrum. Differences in the skin energy deposition for the same tube

potential and scan coverage (for this analysis 34 slices, 102mm) resulted in consid-

erably larger differences between patients than the increase in skin exposure due to

the usage of the lower tube potential.

The increase in skin exposure might only affect very thin, emaciated patients, which

need to undergo frequent follow-up CT examinations, e.g. during the course of a
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cancer treatment. According to ICRP publication 103, the tissue weighting factor for

skin (wT � 0.01) is considerably lower than the tissue weighting factors for abdom-

inal organs (liver, colon, stomach: wT � 0.12, ICRP 2007, see section 1.5 for more

information on tissue weighting factors). This is due to the fact that the skin is less

radiosensitive than abdominal organs. Furthermore, the skin exposure from regular

diagnostic CT-examinations is nowhere near the 2Gy threshold for deterministic

skin effects, such as skin burns and epilation (Huda 2007). Even for CT guided inter-

ventions, resulting in repeated CT scans of the same anatomical region, skin doses

were lower than 2Gy (for conventional CT scanners and for scanners with spiral

CT fluoroscopy) in a study of Teeuwisse et al. (2001). Hence, the advantage of the

lower cumulative dose from 80 kVp-acquisitions (and lower exposure of radiosen-

sitive tissues) exceeds the disadvantage of the slightly increase skin exposure for

these patients.

4.3 INFLUENCE OF CONTAST ENHANCEMENT ON ENERGY DEPO -

S I T ION

The usage of iodinated contrast agents is common in clinical CT imaging for the

examination of blood vessels or tissue perfusion (see section 1.3.3). Almost 60% of

all CT acquisitions made use of contrast agents in 2016 in the clinic, where this work

was performed (UKHD 2017). The increased contrast on the reconstructed images is

a result of increased scattering and absorption of photons due to interactions with

iodine. It is therefore of interest, how iodine changes the energy deposition in tissues

and at material interfaces.

4.3.1 total energy deposition and its spatial distribution

The influence of contrast enhancement on energy depositionwas again first assessed

in the box phantom (section 3.2.2), and afterwards, in the modified abdomen (sec-

tion 3.3.1) and in the digitized patient phantoms (section 3.4.1). For the box phantom,

the addition of iodine in the liver tissue increased the energy deposition consider-

ably in the enhanced layer 2 (see figure 3.9), whereas a decrease in energy deposition

was noted in the 'downstream' fat tissue (layer 3).
In comparison, Verhaegen et al. (2005) used the box phantom to study contrast-

enhanced radiotherapy with kilovolt x-rays. They employed higher iodine concen-

trations (50 and 300mg/ml) and monoenergetic photons with energies of 35, 55, 75,

and 95 keV. Furthermore, all layers were filledwithwater (layer 2 was awater-iodine

mixture) instead of liver and fat tissue. In line with the results of this work, a steeper

dose gradient in the second layerwas noticed at higher iodine concentrations, caused

by the increased photon absorption in the contrast-enhanced layer (Verhaegen et al.

2005).Hence, the higher the iodine concentration in a tissue, themore heterogeneous

is the resulting energy deposition from CT acquisitions. This topic is of importance

for the contrast-enhanced radiotherapy, where a homogeneous dose distribution in

a tumor or metastasis is desired (Pérez-López and Garnica-Garza 2011; Verhaegen

et al. 2005).
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For the modified abdomen and the digitized patient phantoms, energy deposition

in the enhanced tissues (liver, spleen, pancreas, kidneys, aorta) increased consider-

ably,whereas energydeposition in the surrounding non-enhanced tissues decreased

slightly, when comparing contrast-enhanced acquisitions to non-enhanced acquisi-

tions. The highest increase in energy deposition for contrast-enhanced acquisitions

was noticed for simulated 120 kVp-acquisitions. The increase was slightly lower at

100 and 80 kVp (see tables 3.5 and 3.9). For the modified abdomen phantom, the

increase in energy deposition resulting from contrast enhancement amounted to

~+33% in the liver and to ~+50% in the pancreas (cf. table 3.5). For the digitized

patient phantoms, the increase in energy deposition varied between the patients.

However, similar relative increases were noticed: ~+34% in the liver and +34-48%

in the pancreas. The difference maps (see figures 3.12 and 3.19) were more homoge-

neous at 120 kVp compared to lower tube potentials, especially at the center of the

liver.

The increase in energy deposition for contrast-enhanced acquisitions strongly de-

pends on the patient/phantom morphology. Although patients were divided into

BMI-dependent groups in this work, with matching body heights and weights in

each group, the shape of the patients differed considerably, see figure I.3, especially

between patients 3A and 3B. This resulted in large differences in the increase of en-

ergy deposition between simulations of enhanced and non-enhanced acquisitions,

e.g. in the pancreas (range +34-48%) or in the kidneys (range +38-44%) at 80 kVp (see

tables 3.13-3.14). A proper comparison in energy deposition between BMIs should

consider larger patient groups, or groups that are based on patient diameters for a

specific slice (e.g. Deff or water-equivalent diameter (WED)).

Amato et al. (2010, 2013), Perisinakis et al. (2018), and Sahbaee et al. (2017a) also

studied the increase in radiation exposure as a result of iodine enhancement for sim-

ulations performed at a tube potential of 120 kVp. Amato et al. (2010, 2013) employed

an anthropomorphic abdomen phantom of which the further developed modified

abdomen phantom in this work was based on. Their simulations performed on the

abdomen phantom utilized a uniform photon fluence along the fan beam. Addi-

tionally, they calculated the increase in energy deposition for simulated contrast-

enhanced acquisitions for several patients, based on the increase in CT numbers.

Perisinakis et al. (2018) also calculated the increased energy deposition as result

of contrast enhancement in anthropomorphic phantoms at 120 kVp. Moreover, they

determined the iodine uptake of each tissue from the increase in CT number of non-

enhanced and enhanced acquisitions and successively simulated CT-acquisitions.

Sahbaee et al. (2017a) simulated the radiation exposure in 58 patient models, which

included a pharmacokinetic model of the blood flow.

Table 4.1 summarizes the increase in energy deposition of simulated contrast-en-

hanced acquisitions for published studies and the present work. For all studies, the

increase in energy deposition due to contrast enhancement is found to be lowest in

the liver although the increase varied between +20% (Perisinakis et al. 2018) and

+47% (Amato et al. 2010). Direct comparison between these values is difficult, as the

iodine concentration in the enhanced tissues and the morphology of the phantoms
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differed. Perisinakis et al. (2018) determined a mean iodine uptake range between

0.02-0.46% w/w (weight of iodine per weight of tissue) for their investigated tis-

sues, while an iodine mass fraction of ψI = 0.005 (ψI = 0.5%) was employed in this

work. The unit iodine w/w (mI/mT ) is very similar to the weight fraction of iodine

(ψI � mI/(mI +mT )) used in this work for small amounts of iodine: for a liver mass

of 1561 g and an iodine mass of 8 g, ψI � 8g/(1561g+ 8g) � 0.0051 corresponding

to 8g/1561g � 0.0051w/w. The smallermass fraction employed by Perisinakis et al.

(2018) might explain the differences in relative energy increase in the liver and the

spleen compared to this work.

4.3.2 energy build-up effect at material interfaces

Since contrast agents increase the contrast between material types on reconstructed

images, a change in energy deposition at the interface between two materials is ex-

pected. The energy build-up was first assessed in the box phantom, and afterwards,

in the modified abdomen and digitized patient phantom.

In the box phantom, the energy deposition was calculated at the fat-to-liver and the

liver-to-fat interface. For this purpose, ratios of varying interface thicknesses (1.0,

2.5, and 5.0mm) were compared for varying iodine concentrations (see section 3.2.3

and table 3.4). The summed energy deposition increased with increasing interface

thickness (more 'signal'), however, the ratio between liver and fat tissue decreased

with increasing interface thickness since the build-up effect is most notable in the

near vicinity of the interface and blurs with increasing distance to the interface.

For further calculation of interface ratios in themodified abdomen and the digitized

patient phantom, an interface thickness of 2.5mm was chosen, which is a compro-

mise between the signal and the interface ratio. In a first analysis, the whole organ

shells were taken into account for an x-ray source which rotated around the phan-

Table 4.1: Relative increase in energy deposition in digitized patient phantoms and geo-

metrical phantoms for contrast-enhanced acquisitions compared to the energy

deposition in non-enhanced acquisitions. Results given for a tube potential of

120 kVp. Amato et al. (2010) (abdomen phantom) and this work employed an

iodine mass fraction of ψI = 0.005. Other iodine mass fractions were dependent

on the difference in CT number between enhanced and non-enhanced acquisi-

tions. For Perisinakis et al. (2018): weight per weight (mI/mT ) 0.23% (liver), 0.29%

(spleen) and 0.45% (kidneys). References: [1] Amato et al. (2010), [2] Amato et al.

(2013), [3] Perisinakis et al. (2018), [4] Sahbaee et al. (2017a). Abbreviations: GAP:

geometrical anthropomorphic phantom, Pat.: patients.

[1] [2] [3] [4] This work
Organ GAP Pat. Pat. GAP GAP GAP Pat.
Liver 47% 22% 22% 20% 35% 36% 38%

Spleen 65% 34% 33% 31% 30% 47% 49%

Kidneys 78% 74% 71% 50% 54% 50% 45%

Pancreas 95% 28% 33% - 24% 51% 50%
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toms (helical acquisition, see sections 3.3.2 and 3.4.2). Hence, there was only a single

interface ratio calculated for each organ for each simulation, but interface ratios

could not be separated into 'upstream' (interface ratio 2a/1) and 'downstream' (in-
terface ratio 2b/3) interfaces.

The interface ratios in the box phantom increasedwith decreasing tube potential and

ranged between 1.51 and 1.76 for simulated non-enhanced acquisitions (ψI � 0.000)

and between 2.25 and 2.63 for simulated enhanced acquisitions (ψI � 0.005), see

shaded cells in table 3.4. The interface ratios of the modified abdomen phantom

ranged between 1.54 and 1.64 for simulated non-enhanced acquisitions and be-

tween 2.41 and 2.54 for simulated enhanced acquisitions (averaged over all organs,

compare to table 3.7). Hence, the interface rations were comparable to those of the

box phantom for ψI � 0.000 and ψI � 0.005, when averaging the ratios 2a/1 and

2b/3 of the box phantom to compensate for the 360°-rotation in the simulations

of the modified abdomen phantom. Between the different organs in the abdomen

phantom, interface ratios were approximately equal. Thus, independent of the dif-

ferent material densities, an iodine-induced build-up effect in the enhanced tissues

is noticeable. The interface ratios in the digitized patient phantom were consider-

ably lower (between 1.23 and 1.26 for the simulated non-enhanced acquisition and

between 1.86 and 1.90 for the simulated enhanced acquisition) than the ratios for

the box and the abdomen phantom (compare tables 3.7 and 3.11). In contrast to the

surrounding tissue shells of the abdomen phantom, which were constructed of fat

tissue, the surrounding tissue shells of the digitized patient also contained other

materials than fat (i.e. bones, air) since material assignment in the surrounding

tissue shells was not defined manually. The heterogeneous material composition

of the surrounding shells in the digitized patient phantom influenced the energy

deposition and probably caused the differences in interface ratios.

Interface ratios were further determined in more detail on single axial slices in the

abdomen (table 3.8) and a digitized patient phantom (table 3.12). In this evaluation,

ROIs were drawn in the 'upstream' visceral fat, liver periphery, medial liver, and

'downstream' visceral fat. The axial slice of patient 1Awas chosen since the shape of

the liver resembled the shape of the liver in the abdomen phantom. The surrounding

tissue shell of patient 1A in that specific slice mainly contained fat tissue (though

water and air were present to a small degree, see figures 2.23 and I.2a). Interface

ratios were very similar for the abdomen and the digitized patient phantom due

to the nearly identical tissue composition of the surrounding tissues ROIs (mainly

fat tissue). Interface ratios were only calculated for the 360°-rotation as energy de-

position in the liver and surrounding tissue ROIs was too heterogeneous for the

projections, see figures 3.13a and 3.20a.

This work demonstrated that contrast agents increase the energy deposition in

enhanced tissues and cause an iodine-induced energy build-up effect at material

interfaces. The energy build-up effect at material interfaces was highest at 80 kVp, al-

though the highest increases in energy deposition for simulated contrast-enhanced

acquisitions were noticed at 120 kVp. The lower tube potential has a large impact at

material transitions due to the larger amount of low-energy photons being absorbed
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at material interfaces. The opposite behavior of radiation absorption at material in-

terfaces and for full organs demonstrates the need for the detailed, spatially resolved

dosimetry, since the total energy deposition or organ/effective doses are not mean-

ingful for heterogeneous phantoms or when only small regions around material

interfaces are of interest.

influence of vessel size on energy deposition in tissue The build-up ef-

fect is of special interest for well-vascularized organs, such as the kidneys. In the

presence of iodine, photoelectric interactions and the production of secondary elec-

trons occur more frequently, causing an increase in energy deposition. The smaller

the distance between the contrast agent in a blood vessel and the surrounding tissue,

the more likely the deposition of energy by secondary electrons in the surrounding

tissue cells. Although Sahbaee et al. (2017a) determined a dose increase for simu-

lated contrast-enhanced acquisitions of +35% and +54% in the liver and kidneys,

respectively, they predicted a biologically relevant dose increase of <18% for the liver

and <27% for the kidneys. The biologically relevant dose increase was defined as

absorbed dose to tissue since they differentiated between tissue and blood vessels.

Furthermore, this measure took the proximity of iodine to the organs into account

as it distributes through the blood vessels. Capillaries experience a closer proxim-

ity to surrounding cells than arteries or veins, causing a high dose increase in the

surrounding cells of capillaries. In comparison to capillaries, energy deposition in

tissues surrounding arteries and veins is lower. The differentiation between organ

tissue and blood vessels was not implemented in the current work, impeding the

possibility of differentiating between general and biologically relevant dose increase

(Sahbaee et al. 2017a). However, since contrast agents are known to extravasate from

blood vessels into tissues (Behzadi et al. 2018), it is a fair approximation to apply a

homogeneous iodine concentration in the contrast-enhanced tissues in this work.

The flexibility of dosimetry using self-developed software enables the calculation

of the radiation exposure in various ROIs in a multitude of implemented phantoms

and digitized patients. Individualized dosimetry in digitized patients offers a pre-

cise evaluation of the radiation exposure, even for non-average sized or pediatric

patients, where conversion factors fail. Virtual dosimetry allows for prompt patient-

and acquisition-specific dose calculations for all examined patients in radiology

departments over the course of their lifetime. This enables scientific studies, inves-

tigating the long-term effects of ionizing radiation from CT acquisitions, in a large

patient cohort.

4.4 VALUE OF ANTHROPOMORPHIC PHANTOMS IN MC S IMULA-

T IONS

Digitizedpatientphantoms representpatients’morphologies and internal anatomies

and therefore serve as basis for the best organ dose calculation (Stepusin et al. 2017).

This thesis showed that the processes to create a digitized patient phantom requires

manual adjustment for organ dosimetry and is not feasible for clinical routine yet.
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An easier but less accurate option are computational reference phantoms (Stepusin

et al. 2017).

A large number of anthropomorphic reference phantoms are employed in MC sim-

ulations. Computational phantoms have changed over the last decades, from very

basic designs to detailed representations, including pharmacokinetic models (Ding

et al. 2015; Sahbaee et al. 2017b). Stylized phantoms were developed prior to the

1980s, voxel phantoms were developed since the late 1980s, and boundary represen-

tation (BREP) phantomswere developed since themid of the 2000s (Ding et al. 2015).

A comprehensive review of computational phantoms was published by Xu (2014).

The modified abdomen phantom implemented in this work belongs to the stylized

phantoms, whereas the digitized patient phantoms belong to the voxel phantoms.

inaccuracy of reference phantoms Commercially available software often

makes use of reference phantoms and precalculated organ doses, stored in large

databases, to predict the radiation exposure of patients undergoing CT examina-

tions. Ding et al. (2015) used 25 whole-body BREP phantoms (reference adults

(male and female), pediatric patients at different ages and pregnant females at three

gestational stages, overweight and obese patients) for the VirtualDose software to

produce a large dose database, based on MC simulations. Carver et al. (2017) pro-

vide organ and effective doses for 80 pediatric reference patients for chest, abdomen,

and pelvic CT acquisitions. They suggest that pediatric patients should be matched

to a reference phantom based on the age, stature, and diameter to predict the dose

prior to a CT scan. Stepusin et al. (2017) studied six matching metrics for phantoms:

(a) age and gender, (b) height and weight, (c) effective diameter Deff, and (d) WED.

The latter two were either calculated based on the average over all image slices or

based on the central slice of an image stack. The effective diameter is a common

metric applied in dosimetry, such as in the calculation of SSDEs (Boos et al. 2016), al-

though it depends strongly on the patient’s body posture. Often, effective diameters

of phantoms are calculated from a standing posture, whereas patient diameters are

measured from their CT images in lying position. Effective doses for patients and

computational phantoms are not comparable if effective diameters are measured in

different postures. The WED, which accounts for attenuation of internal anatomy

within the patient, was shown to be superior in terms of percent difference of organ

dose estimates (Stepusin et al. 2017). As was seen from figure I.3, patient anatomy

varied internally, whereas computational phantoms are designed based on ideal

geometry and anatomy location. The morphometrics and lean body masses vary,

which needs to be taken into account when patients are matched to reference phan-

toms (Stepusin et al. 2017). Especially patients 3A and 3B, despite nearly identical

height and weight, have considerably different diameters, distribution of muscle

and fat tissue, and probably lean body masses.

4.4.1 the digitized patient phantom

This work employed both geometrical (stylized) phantoms and voxelized patient

phantoms, derived from CT-acquisitions. The correct realization of the phantom in



4.4 value of anthropomorphic phantoms in mc simulations 125

terms of material and density assignment, and hence, the accuracy of dose calcula-

tion, depends on the implementation of either automatic or manual segmentation

methods.

For the automatic segmentation process, a conversion table from CT number to

electron density is necessary. Three methods to convert CT number to a material

are described by Jiang et al. (2007). The first method is based on a stoichiometric

calibration of CT number withmass density and elemental weights (Jiang et al. 2007;

Schneider et al. 1996; Vanderstraeten et al. 2007). For this method, a set of materials

with known elemental composition and physical density is scanned to measure the

corresponding CT number at different tube potentials. The results are then fitted to

a theoretical parameter equation interrelating the CT number, density, and atomic

number (Z) of each material. The fitted parameters are used to calculate the CT

numbers of patient tissues (Vanderstraeten et al. 2007).

For the second method, the materials air (HU≤-950), lung (-950<HU≤-700), soft
tissue (-700<HU≤+125), and bone (HU>+125) are defined with ICRP tissue compo-

sitions. The density is defined via interpolation of predefined density values of the

CT number (Jiang et al. 2007). This method was employed in this work, although

more than four basic materials were defined (here, one additional type of lung and

bone tissue was defined, as well as fat and water, see listingH.2). Furthermore, the

CT number-density pairs at maximum density varied (see. table 4.2).

In the third method, no tissue compositions are differentiated. All materials are

specified as water of various densities with varying stopping power, dependent on

the CT number. The higher the CT number, the higher the stopping power relative

to water (Jiang et al. 2007).

The described methods result in different material assignments and ultimately in

Table 4.2: Comparison of computed tomography (CT) number-to-density conversion tables.

ctcreate values obtained from Jiang et al. (2007). Densities (given in g/mm
3
), other

than those provided in the table, are calculated by interpolation between the CT

number/density pairs.

ctcreate This work
Maximum density CT number Maximum density CT number
[g/cm3

] [HU] [g/cm3
] [HU]

0.001 -1000 0.0 -5000

0.044 -950 0.0 -1000

0.302 -700 0.602 -400

1.101 +125 0.95 -130

2.088 +2000 1.0 0

1.075 100

1.145 300

1.856 2000

3.379 4927
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different Etotal and Espatial. Automatic segmentation works well for a limited number

of tissues, e.g. air, lung tissue, soft tissue, bones. However, automatic methods often

fail when differentiating between soft tissue types since there are only slight dif-

ferences in CT numbers between different soft tissue types (Sharma and Aggarwal

2010). Furthermore, assignment of specific tissue types fails if CT numbers of e.g.

the liver deviate from expected values. Patients with fatty livers have lower CT num-

bers than the expected values of ~60HU in the liver which might result in wrong

tissue assignment. The density of the liver in this case is lower and probably cor-

rectly determined, however, liver voxels might be assigned as fat tissue and not be

included in the calculation of the liver dose. Also, CT numbers are known to differ

between CT scanners of different vendors for the same material (Lamba et al. 2014),

which requires fitting the CT number-to-density conversion file ('CT-2-density') to
the CT scanner output. To circumvent the addressed problems, abdominal organs

were manually segmented in this work, allowing for exact organ and tissue allo-

cation. However, the surrounding tissue shells were not manually segmented and

the material allocation was done automatically using the 'CT-2-density' table. The
difference in design between the geometrical and the digitized phantoms resulted in

different interface ratios for the whole organs (refer to results of the energy build-up

effect in section 4.3.2).

4.4.1.1 Comparison of geometrical and digitized phantoms

Although the modified abdomen phantom was designed to resemble a real patient,

there are large differences in organ positioning, see figure 4.1. The liver, pancreas,

spleen, and the kidneys are often to be found at the same height in humans. The

length of the abdomen from start of the liver until below the kidneys is ~19-23 cm.

However, the length covering the organs of the abdomen phantom is ~30 cm, hence,

(a) Modified abdomen phantom (b) Patient 2A

Figure 4.1: Coronal view of modified abdomen phantom and patient 2A through the liver

(L), kidneys (K) and spleen (S), parts of the aorta (A), and the spine (digitized

patient).
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approximately 1.5 times the length in the human body. The organs are more dis-

tributed along the length, such that only the liver and the spleen are at the same

height, however, the pancreas and the kidneys are placed in a different position.

Employing the tube current modulation derived from real patient examinations is

not applicable for the abdomen phantom, since its morphology differs from the pa-

tients to a too large degree. The modified abdomen phantom does not contain lung

tissue, although large parts of the lung reach into the abdomen. Lung, due to its low

density, alters the energy deposition in the liver considerably since less photons are

being absorbed prior to reaching the liver.

The structure and shape of the single axial slice used to determine the energy build-

up effect from the abdomen and the digitized patient phantoms are fairly similar

(section 2.5.3.4 and 2.5.4.4), especially regarding the sequence of materials at the

x-ray beam entrance side for the simulation of the 270°-projection (compare fig-

ure 3.13 and figure 3.20). However, in contrast to the modified abdomen phantom,

the digitized patient phantom includes the patient table, influencing the 360°-dose
distribution (this is discussed later in the limitations section).

In terms of computational time, simulations of geometrical phantoms are consider-

ably faster than simulations of digitized phantoms. As an example, the simulation of

the 270°-projection of the single axial slice took 10 hours for the modified abdomen

phantom and 24 hours for the digitized phantom. Geometrical phantoms consist

of predefined geometries of a fixed material composition and density, whereas for

digitized patient phantoms, several material types for a single material exist due

to the CT number-based densities. Whereas the organ boundaries in geometrical

phantoms are predefined, voxel-to-voxel transitions need to be tracked for digitized

patient phantoms, increasing the computational time by more than a factor of 2.

4.4.2 implementation of iodinated contrast agents in mc models

The implementation of iodine as contrast agent in this work was performed by com-

bining the element iodine with the defined basic materials (e.g. liver tissue). The

composition of the two parts was defined by mass fractions ψI and ψT , respec-

tively. The composition of contrast-enhanced tissues contained the element iodine,

which alters the photon attenuation properties of the tissue (see section 1.3.3 and

section 2.4.3). Additionally, the density of the contrast-enhanced tissue was altered

according to the iodine mass fraction.

Pérez-López and Garnica-Garza (2011) added iodine into the tissue by adjusting

the mass fraction of each of the elements present in the original tissue, which corre-

sponds to the implementation of this work. However, they do notmention an altered

material density. Verhaegen et al. (2005) implemented different iodinated contrast

agents such as Omnipaque (GE Healthcare, Chicago, USA) or Optiray (Guerbet,

Sulzbach, Germany) based on their specific composition. Hence, they do not solely

implement the element iodine but use the mass density and atomic constituents of

the full contrast agent. According to their presented atomic constituents of contrast

agents, the iodine mass fraction does not increase linearly with increasing contrast-
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agent concentration. According to table 1 in their publication, an iodine weight

fraction of ψI = 0.047 corresponds to an iodine concentration of 50mg/ml, whereas

ψI = 0.09 and ψI = 0.224 correspond to iodine concentrations of 100 and 300mg/ml,

respectively (Verhaegen et al. 2005).

For the abdominal simulations (both geometrical abdomen and digitized phantoms)

in this work, an iodine mass fraction of ψI = 0.005 was used, which, according to

Amato et al. (2010), corresponds to an iodine concentration of 5mg/ml. They also

used other mass fractions of 10
−3
, 5 · 10−3, 7 · 10−3, 10−2, which should correspond

to iodine concentrations of 1, 5, 7 and, 10mg/ml, respectively.

For the geometrical phantoms, the material composition and density was altered

depending on the chosen iodine mass fraction (see section 2.4.3). For the digitized

patient phantoms, the material composition and density of the basic tissue mate-

rial was altered (increased) according to the chosen mass fraction. However, due to

the subsequent rounding of the material density during the setup of the digitized

phantoms according to the CT numbers of the inserted CT images (density steps of

0.1 g/cm), the density was effectively not altered. The difference in density between

enhanced andnon-enhancedmaterials is 0.5% for the liver, according to equation 2.2,

forψT = 0.995. However, a density step of 0.05 g/cm
3
, e.g. from 1.00 to 1.05 g/cm

3
, re-

sults in a difference in density of 5.0%. The difference in the density due to rounding

(5.0%) is ten times the difference in density between enhanced and non-enhanced

materials (0.5%) and, hence, has a considerably higher effect on energy deposition.

Rounding during the phantom construction ensures that only a limited number

of materials are produced, which again limits computational time. However, the

accurate density originally calculated from CT data for simulated non-enhanced

acquisitions and the density difference for simulated enhanced acquisitions suffer

from this implementation.

During this work, image data of non-enhanced CT acquisitions have been used

for organ assignment and density calculation. If image data of arterial acquisitions

would have been used, the 'CT-2-density' conversion table would need to be ad-

justed, as CT numbers of enhanced tissues do not correspond to CT numbers of

non-enhanced acquisitions. CT numbers of the aorta in arterial acquisitions can

reach 200-500HU, which corresponds to a density of ~1.145 g/cm
3
(for 300 HU).

The density of non-enhanced blood is considerably lower, with 1.060 g/cm
3
. From

the increased density, an iodine concentration of 74mg/ml can be calculated, accord-

ing to equation 2.2: ψI = 1-(1.06/1.145) = 0.074. However, realistic maximum iodine

concentrations reached in the aorta are considerably lower, with approximately

15mg/ml. The high CT number for contrast-enhanced tissues demonstrates a high

photon attenuation, however not a high tissue density. According to Perisinakis et

al. (2018), the considerable increase in the absorption efficiency of iodinated tissue

may not be attributed to the increase of density, but to the increase of effective

atomic number Z in consequence of iodine uptake. Hence, utilizing CT images of

non-enhanced acquisitions and including the contrast agent in a successive step is a

reasonable method to obtain appropriate densities and contrast enhancement.
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4.5 OTHER S IMULAT ION PARAMETERS

number of initial photons The number of tracked photons influences the

accuracy of dose calculations but also the simulation run times. Appendix J reviews

the effect of the number of tracked photons in MC simulations of CT acquisitions.

Since results of MC simulations using larger numbers of photons are unknown (i.e.

the result for an infinite number of photons), different approaches were taken to

determine the required number of photons to reach a specific maximum error.

Figures 3.27-3.30 demonstrated that a reduced number of photons caused deviations

from the original simulation results. The larger the tracked volume, the larger the

possibility to reduce the number of photons without altering the results. Small

volumesweremore vulnerable to a smaller statistical occupation than large volumes.

The initial number of photons employed for anthropomorphic phantom simulations

in this work was based on the study design of Salvadó et al. (2005) who obtained

relative standard errors of <0.5% in 1 cm thick axial slices, employing 3 · 106 tracked
photons per 1 cm-image slice. For two identical simulationswith two different initial

seeds in this work, differences in organ energy deposition were <1% even for the

smallest organ (see section 3.5), caused by the statistical variation inMC simulations.

However, differences between the two simulations were up to 60% on a voxel scale

(1.5 x 1.5 x 3mm
3
) and ~30% when averaging over three voxels.

data storage and analysis Most publications related to CT dosimetry only

store 3D-distributions but not the complete tracking information, such as interaction

type or track lengths (Angel et al. 2010; Belley et al. 2014; Deak et al. 2008). Com-

pared to commercially available tools for dose calculation, the presented software

allows more options for data in- and output: although not presented in the results

of this work, it is possible to combine radiation exposure maps with specific require-

ments, e.g. an exposure map only from photoelectric interactions or scatter maps.

Unfortunately, the flexibility of the comprehensive output options comes at the cost

of large output data files (21.5GiB (23.1GB) for full output vs. 144.7MiB (151.7MB)

for solely the 3D energy distribution, see appendixC), although simulation times

did not differ considerably. If solely the 3D-energy distribution is of interest, the

reduced output is considerably less memory expensive.

4.6 L IM ITAT IONS AND FUTURE DEVELOPMENT

evaluation of x-ray emission and the ct geometry The characterization of

the geometry and the material of beam-shaping filters is difficult, since detailed in-

formation on their design is often proprietary. However, according to Boone (2010)

and Zhou and Boone (2008), most beam-shaping filters are sufficiently similar in

terms of performance across vendors. This would allow for applying beam-shaping

filters or transmission curves from one CT system to be adopted onto another sys-

tem, if information about these parts is unavailable (for the same FOV or imaged

body region).

Although CT acquisitions of the digitized patients were originally acquired on a
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Somatom
®
Definition Flash (Siemens Healthineers, Forchheim, Germany), the sim-

ulations employed the geometry of the Aquilion™16 CT scanner (Toshiba Medical

Systems Corporation, Nasu, Japan). This was done, as the transmission measure-

ments leading to the implementation of the fan-angle dependent fluence modula-

tion (FM) were performed on the Aquilion™16. Although the combination of the

Siemens scanner geometry and the beam-shaping characteristics of the Toshiba scan-

ner would probably be adequate according to Boone (2010) and Zhou and Boone

(2008), this mixture of geometries was avoided. Furthermore, the generated spectra

might not correspond to the Somatom
®
Definition Flash. In the worst case, this

would result in the combination of transmission characteristics of the Aquilion™16

with the CT scanner geometry of a Somatom
®
Definition Flash and spectra of yet

again a different CT scanner model.

Fan-angle dependent x-ray spectra and transmission measurements of other CT

scanners (i.e. Somatom
®
Definition Flash) need to be performed to allow for match-

ing CT scanner geometries and x-ray spectra. Furthermore, obtaining information

on the geometry of CT scanners of other vendorswould allow to increase the limited

number of implemented CT scanners in the developed MC model.

energy build-up effect at interfaces For the calculation of the energy build-

up effect, energy deposition was calculated with an interface layer width of 2.5mm,

as a compromise between signal (accumulated energy deposition in an interface

layer) and noise (a decreasing energy deposition with larger distance from the

interface). The choice of the 2.5mm seam around the organs corresponds to a width

of only 3-4 pixels in the ROIs for the abdomen and digitized patient phantom (see

figures 2.22 and 2.23). This width is vulnerable to volume artifacts (partial volume

effect) of nearby voxels. For a closer analysis of the energy build-up effect in arteries

and capillaries on cell level, a higher resolution of the original CT data or more

detailed geometrical phantoms are necessary.

employed iodine concentration The employed iodine concentration in this

work neglects the physiology of the blood flow. Although the iodine concentration

is both time-dependent and tissue-dependent after contrast-agent administration,

an identical concentration in all organs and the aorta was assumed in this work.

Sahbaee et al. (2017a,b) extensively implement contrast-agent dynamics in their

anthropomorphic phantoms. The iodine concentration in this work (5mg/ml) is

slightly overestimated for the liver and underestimated in the aorta in comparison

to their implementation (maximumpeak at ~3mg/ml for the liver and at ~10mg/ml

for the aorta, as per Sahbaee et al. (2017a,b)). However, this iodine concentrationwas

employed here since it is a fairly realistic assumption and simplification of the time-

and organ-dependent iodine concentration.

One option to overcome the necessity of modeling blood flow, or of using approx-

imations of iodine concentrations is the calculation of difference images from non-

enhanced and arterial/venous phase acquisitions. This, however, requires the regis-

tration of the employed image data sets. With current CT technology, iodine maps,

representing tissue iodine concentrations, can be calculated, i.e. from dual energy

CT (DECT) acquisitions, and could serve as input for MC simulations.
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automatic and manual material assignment Automatic material assign-

ment by thresholding lacks precision for soft tissue types since the CT numbers of

these tissues are similar. The 'CT-2-density' conversion table only provides a rough

classification of tissues, which causes misclassification of voxels. As an example, the

liver in figure 2.13b is surrounded by a 'clutter' of pixels assigned as water, fat, and

soft tissue. In reality, these pixels should probably be assigned as homogeneous fat

tissue. This tissue assignment is due to the transition from fat (CT number ~-115HU)

to soft tissue (CT number ~+60HU). As a consequence of the partial volume effect,

pixels between fat and soft tissue are frequently assigned as water (CT number

~0HU)

Personalized 'CT-2-density' conversion tables will reduce misclassifications, how-

ever, they will not eliminate them completely due to the similarity of CT numbers

in the abdomen and partial volume effects. Manual segmentation reduces this issue,

however, this introduces further limitations. Manual segmentation is time intensive

and its execution and consistency between patients is strongly dependent on the

person that is contouring the patient. Patients in this thesis often had calcification

of their aorta and smaller blood vessels. The material blood was assigned to the

segmented aorta, which often included calcified areas. The density values of these

areas are correctly calculated since they are based on the CT numbers, however,

material allocation and composition in this case corresponds to blood and not to

calcium. The erroneous material composition of calcification will influence photon

attenuation and energy deposition in these areas. The patients included here are not

strongly affected by aortic calcification. Patients with higher degree of calcification,

implanted stent grafts, or implants (pacemaker/joints) will need to be contoured in

greater detail for correct material assignment.

ct patient table During this work, the CT system’s patient table was not manu-

ally segmented, as was performed byNowik et al. (2017). They studied the influence

of the patient table on effective dose, noticing an overestimation of the effective dose

by 5% if the patient table was not included in the simulation. The doses in individ-

ual organs were overestimated by 8% for spiral acquisitions. Since their employed

software ImpactMC (AB-CT Advanced Breast-CT GmbH, Erlangen, Germany) did

not include a carbon fiber mixture, they assigned muscular tissue as table material

(Nowik et al. 2017). In this thesis, the table was automatically converted into soft

tissue and trabecular bone, with lung tissue inside the table for the digitized patient

phantoms. This does not correspond to the realistic material composition, however,

the table and its attenuating characteristics are included. For the modified abdomen

phantom, the table has not been included, which needs to be taken into account

when directly comparing the results of the modified abdomen and the digitized

patient phantom.

In future simulations, a model of the table with realistic dimensions and material

composition should be designed and included for both digitized and geometrical

phantoms to account for the correct photon attenuation in the table.

number of patients and evaluations Only a limited number of patients were

included in this work. Therefore, only a limited number of evaluations was per-
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formed, which limits the explanatory power. However, the goal of this work was

the development of a MC software, which enabled the simulation of CT acquisi-

tions, calculation of the radiation exposure of digitized patients, and the flexibility

of software input and output/analysis options. The feasibility of virtual dosime-

try with the developed software was presented by means of a selected number of

patients and research topics of current interest. Simulations of more patients with

larger scan coverage, higher spatial resolution (especially for a thinner slice thick-

ness), and larger number of initial photons requires more computational power (i.e.

a computer cluster).

validation against ground truth Results of the MC simulations were not

validated against experimental measurements, but only compared with results of

other MC simulations. The basic principles of radiation exposure and the function-

ality of the software can be sufficiently assessed. However, for proper validation,

results of simulations and experimental measurements need to be compared, i.e.

for a validation against CTDI measurements for different CT acquisition settings or

against TLD measurements in an Alderson phantom.

4.7 CONCLUS IONS

Since the annual effective dose to individuals from CT acquisitions is increasing,

thorough understanding of the radiation exposure distribution inside the patient’s

body is necessary. The MC software developed in this work offers flexibility in both

data input, output, and analysis options of the energy deposition caused by the

x-rays in CT imaging. The main conclusions and consequences of this work are as

follows:

1. X-ray source spectra are interchangeablewhenmatchingmean spectral energy

and peak tube potential. The two effects of beam-shaping filtration,modulated

photon fluence and spectral distortion, need to be included for an accurate and

precise CT model.

2. Administration of contrast agents needs to be implemented in patient dosime-

try, since contrast agents alter total energy deposition and its spatial distribu-

tion in patients.

3. Geometrical phantoms are useful to assess general principles of energy depo-

sition. Geometrical anthropomorphic phantoms serve as an approximation for

digitized patient phantoms, decreasing simulation time and complexity of the

materials

4. Digitized patient phantoms offer the best realization for individualized patient

dosimetry. The conversion of CT numbers to density offers the direct imple-

mentation of density values. However, correct tissue allocation requires man-

ual segmentation. Furthermore, simulation time and complexity is increased

compared to geometrical phantoms.
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5. Applying lower tube potentials than 120 kVp for non-enhanced and enhanced

CT acquisitions for increased tissue contrast and dose reduction is recom-

mended where possible. Radiation exposure can be decreased considerably

for an abdominal scan coverage by choosing 80 kVp, compared to higher tube

potentials, without increasing the skin exposure considerably.

The results of this work demonstrate that knowledge about spatially resolved radia-

tion exposure is necessary to fully understand the effects of changing CT acquisition

parameters or administration of contrast agents. Full body or organ doses are not

sufficient to describe the interactions of photons at material interfaces. Individu-

alized dosimetry offers a precise evaluation of the radiation exposure, even for

non-average sized or pediatric patients, where conversion factors fail. Furthermore,

MC simulations allow to implement contrast agents, in contrast to the usage of con-

version factors or common physical phantoms (e.g. the Alderson phantom). Once

implemented in a larger computer cluster for faster run-times, the developed virtual

dosimetry software allows for prompt patient- and acquisition-specific dose calcu-

lations for all examined patients in radiology departments over the course of their

lifetime. This enables scientific studies, investigating the long-term effects of ioniz-

ing radiation from CT acquisitions. Furthermore, knowledge about the influence of

CT acquisition parameters on dose deposition may provide positive impulses for

both acquisition execution and technical improvements in CT.
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SUMMARY

Since the range of indications of and the accessibility to computed tomography

examinations in diagnostic radiology are constantly expanding, their number and

the associated effective dose to patients have increased over the last decades. Thor-

ough understanding of the radiation effects induced by the utilized ionizing x-rays

is necessary to evaluate the risks and benefits of computed tomography examina-

tions. Ionizing radiation is a proven carcinogen, especially for high radiation doses

(>100mSv), however, the long-term health risks of lower doses are still unknown.

To correlate computed tomography examinations with potential side effects from

ionizing radiation, studies need to be performed, which determine the spatially

resolved dose deposition associated with computed tomography examinations for

large patient cohorts over the course of decades.Monte Carlomethods offer themost

precise way to investigate the effective dose from computed tomography examina-

tions inside a variety of test specimen (phantoms), providing a spatially resolved

measure of the radiation exposure without exposing patients or staff to ionizing

radiation. Several commercial Monte Carlo software tools for dose calculation in

computed tomography are available, which are, however, often restricted in terms

of predefined scanner or phantomgeometries, x-ray source spectra, and data output.

The goal of this work was the development of a Monte Carlo software tool for the

simulation of computed tomography acquisitions and the determination of the as-

sociated radiation exposure in individual patients. The software aimed at enabling

flexible integration of source spectra and scanner geometries, implementation of

self-designed geometrical and digitized patient phantoms, and the possibility of

extensive data analysis, paving the way towards virtual dosimetry – the prompt

and accurate calculation of spatially resolved radiation exposure in individual pa-

tients. For this purpose, the open-source toolkit Geant4 has been employed during

this work, for the simulation of radiation transport in matter during computed to-

mography examinations. The toolkit was further developed and adapted to provide

detailed information (e.g. interaction type and position) about the energy depo-

sition in phantoms for the retrospective creation of energy maps. The developed

Monte Carlo software modeled a computed tomography scanner, including x-ray

emission and optional beam-shaping methods, experimental and anthropomorphic

phantoms of varying complexity, and a photon detector. Several acquisition modes

and tube-current modulation were implemented. Digital patient phantoms were

constructed via automatic threshold-based and manual segmentation from com-

puted tomography image data sets and translated into voxelized phantoms.

In a first step, the basic functionality of the Monte Carlo model was reviewed

with regard to the implemented beam-shaping methods and the spectral character-

istics of x-ray emission for a set of 120 kVp-equivalent photon distributions. This
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analysis was important since x-ray tube-specific spectra are not easily accessible,

often resulting in the necessity to either simulate source spectra, or employ spectra

from mathematical models or online tools. Computed tomography examinations

often apply other tube potentials than 120 kVp and are frequently supported by

the administration of contrast agents. However, a contrast agent-enhanced radiation

damage caused by computed tomography examinations strengthens the need for

profound research on the effect of contrast agents on the energy deposition, espe-

cially at material interfaces. Therefore, in a second step, the influence of the applied

tube potential (80, 100, 120 kVp) and the administration of iodinated contrast agents

on total energy deposition (Etotal) and its spatial distribution (Espatial) was assessed

in a simple box phantom for a variety of iodine concentrations (1-15mg/ml). The

evaluation employing the box phantom served as basis for further simulations of

computed tomography acquisitions in a geometrical abdomen phantom, and finally,

in six digitized patients of varying body mass index and morphology. For the an-

thropomorphic phantoms (abdomen phantom and digitized patient phantoms), the

influence of the tube potential and the administration of iodinated contrast agents

on Etotal and Espatialwas evaluated, employing contrast-enhanced tissues (aorta, kid-

neys, liver, spleen, and pancreas) with an iodine concentration of 5mg/ml. Energy

deposition was further assessed in more detail at tissue interfaces.

The results of this work demonstrated that Monte Carlo models of clinical com-

puted tomography scanners need to include the effect of beam-shaping filtration.

The performed evaluation on the spectral characteristics has demonstrated that spec-

tra are interchangeable between vendors and scanner models for matching mean

spectral energy and peak tube potential. Whereas Etotalwas approximately equal for

the applied tube potentials in the simple box phantom, Espatial differed considerably,

indicating the necessity of spatially resolved dosimetry. Simulations of the imple-

mented anthropomorphic phantoms for an abdominal scan coverage demonstrated

that energy deposition decreased with decreasing tube potential for the exposed

tissues/organs, except for the skin. In the skin, energy deposition increased by ~4%

when decreasing the tube potential from 120 to 80 kVp. The increase in skin expo-

sure is negligible compared to the overall reduction of the energy deposition by ~9%,

especially when taking the low radiosensitivity of skin into account. The addition

of iodine caused an increase in energy deposition for contrast-enhanced tissues (up

to +50% for an iodine concentration of 5 mg/ml). The relative difference increased

with increasing iodine concentration and tube potential. In contrast to the enhanced

tissues, energy deposition decreased slightly in the surrounding non-enhanced tis-

sues for the anthropomorphic phantoms. An energy build-up effect was visible at

material interfaces even without the addition of iodine, due to differences in phys-

ical density. However, an additional iodine-induced energy build-up effect, which

increased with increasing iodine concentration, was visible for contrast-enhanced

acquisitions. In contrast to the total energy deposition in enhanced tissues, the en-

ergy build-up effect increased with decreasing tube potential. Hence, for low tube

potentials (e.g. 80 kVp), larger differences between energy deposition in organ and

surrounding tissues were measured than for higher tube potentials.



summary 137

In conclusion, the developed software for the simulation of computed tomography

acquisitions paves the way towards individualized virtual dosimetry of patients.

The results of this work demonstrated that spatially resolved dosimetry is needed,

due to the differences in the spatial distribution of energy deposition depending on

tube potential, contrast agents, and material interfaces. Individual patient dosime-

try is necessary to understand differences in radiation exposure for varying patient

morphology and to estimate the radiation burden for patients undergoing frequent

examinations. Furthermore, widening the knowledge about the dose distribution

helps to improve computed tomography for dose-saving techniques in future.





6
ZUSAMMENFASSUNG

In den letzten Jahrzehnten sind die Anzahl von Computertomographieaufnahmen

und die damit einhergehende Strahlenbelastung für Patienten durch die größere

Anzahl von Indikationen und die leichte Verfügbarkeit dieser Aufnahmen deutlich

gestiegen. Ein gründliches Verständnis der Strahleneffekte der genutzten ionisieren-

den Röntgenstrahlung ist daher notwendig, um den Nutzen und die Risiken der

Untersuchungen abschätzen und einordnen zu können. Röntgenstrahlung ist insbe-

sondere bei hohen Strahlendosen (>100mSv) krebserregend. Die gesundheitlichen

Langzeiteffekte von niedrigen Dosen sind jedoch noch unbekannt. UmComputerto-

mographieaufnahmen mit potenziellen Nebenwirkungen der Röntgenstrahlung zu

korrelieren, sind Studien notwendig, bei denen die resultierende, räumlich aufge-

löste Strahlendosis in großen Patientenkohorten über Jahrzehnte hinweg bestimmt

werden muss. Die genaueste Möglichkeit, die effektive Dosis von Computertomo-

graphieaufnahmen zu untersuchen, um eine räumlich aufgelöste Verteilung der

Dosis im Patienten oder in Prüfkörpern (Phantomen) zu erhalten, ohne Patienten

oder Personal Röntgenstrahlung auszusetzen, bieten Monte Carlo Methoden. Es

gibt bereits mehrere kommerzielle Monte Carlo Programme zur Dosisberechnung

in der Computertomographie, allerdings schränken diese häufig den Nutzer durch

vorgegebene Scanner- oder Phantomgeometrien, Röntgenspektren oder in der Da-

tenauslese ein.

Ziel dieser Arbeit war daher die Entwicklung einer Monte Carlo Software, die

eine flexible Integration von Röntgenspektren, Scannergeometrien, und selbst ge-

stalteten, geometrischen Abdomen- und digitalen Patientenphantomen ermöglicht,

und gleichzeitig eine differenzierte Datenauswertung bereithält. Für die Simulation

der physikalischen Prozesse in Phantomen bei Computertomographieaufnahmen

wurde das Open-Source Toolkit Geant4 genutzt. Nach Anpassung und Weiterent-

wicklung des Toolkits war es möglich, Informationen (z.B. Position, Interaktions-

typen) über die Energiedeposition von Röntgenstrahlung im Phantom zu erhalten

und Expositionskarten zu erstellen. Das in dieser Arbeit entwickelte Computerto-

mographiemodell verfügt über die Emission von Röntgenstrahlung mit optionaler

Strahlformung, experimentellen und anthropomorphen Phantomen unterschiedli-

cher Komplexität sowie einem Photonendetektor. Unterschiedliche Aufnahmemög-

lichkeiten und Röhrenstrommodulation wurden zusätzlich implementiert. Digitali-

sierte Patientenphantome wurden aus Bilddatensätzen von Computertomographie-

aufnahmen erstellt, wofür die Datensätze schwellwertbasiert und manuell segmen-

tiert wurden.

Im ersten Schritt wurde die grundlegende Funktionalität des Monte Carlo Mo-

dells bezüglich der Strahlformungsmethodenundden spektralenEigenschaften von

120 kVp-Photonenverteilungen evaluiert. Dieser Schrittwar erforderlich, daRöntgen-
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spektren von Computertomographen nur schwierig messbar und häufig proprietär

sind, und daher oft simuliert oder aus mathematischen Modellen oder Computer-

programmen generiert werden müssen. Computertomographieaufnahmen werden

auch oft bei anderen Röhrenspannungen und unter Zugabe von Kontrastmitteln

akquiriert. Da Kontrastmittel Strahlenschäden verstärken können, sind fundierte

Studien der Effekte von Kontrastmitteln auf die Energiedeposition von Röntgen-

strahlungwichtig, insbesondere beiMaterialübergängenvonkontrastierten zunicht-

kontrastiertenGeweben. Daherwurde in einem zweiten Schritt der Einfluss der Röh-

renspannung (80, 100, 120 kVp) und die Zugabe von jodhaltigen Kontrastmitteln auf

die Gesamtenergiedeposition (Etotal) und deren räumlichen Verteilung (Espatial) in ei-

nem Boxphantom bei verschiedenen Jodkonzentrationen (1-15mg/ml) untersucht.

Die Auswertung des Boxphantoms war Grundlage weiterer Simulationen von Com-

putertomographieaufnahmen eines geometrischen Abdomenphantoms und sechs

digitalisierter Patientenphantomen mit unterschiedlicher Morphologie und Body-

Mass-Index. Der Einfluss von Röhrenspannung und Kontrastmittel auf Etotal und

Espatialwurde auch für die anthropomorphen Phantome (Abdomen- und Patien-

tenphantome) bestimmt. Kontrastmittelverstärkte Gewebe waren dabei die Aorta,

Nieren, Leber, Milz und Pankreas mit einer Jodkonzentration von 5mg/ml. Die

Energiedeposition wurde des Weiteren noch detaillierter an Gewebeübergängen

analysiert.

Die Ergebnisse der Arbeit zeigen, dass ein Monte Carlo Modell eines Computer-

tomographen den Effekt des Strahlenformfilters korrekt darstellen muss und dass

Röntgenspektren zwischen Geräteherstellern und -modellen austauschbar sind, so-

lange die durchschnittliche Energie und die maximale Röhrenspannung überein-

stimmen. Obwohl Etotal für die verschiedenen Röntgenspannungen im Boxphantom

ähnlich war, so variierte Espatial erheblich, was die Notwendigkeit der räumlich auf-

gelöstenDosimetrie verdeutlicht. Für anthropomorphe Phantomemit einer abdomi-

nellen Scanabdeckung nahm die Energiedeposition der exponierten Gewebe (mit

Ausnahme der Haut) mit geringerer Röhrenspannung ab. In der Haut nahm die

Energiedeposition bei Senkung der Röhrenspannung von 120 auf 80 kVp um ~4%

zu.DerAnstieg derHautexposition ist imVergleich zur generellenAbnahmederGe-

samtenergiedeposition von ~9% vernachlässigbar, insbesondere wenn die geringe

Strahlenempfindlichkeit derHautmit einbezogenwird. Zugabe von Jod inGeweben

erhöhte die Energiedeposition für kontrastverstärkte Gewebe in allen Phantomen

(bis zu +50% bei einer Jodkonzentration von 5mg/ml). Der relative Unterschied in

der Energiedeposition zwischen kontrastverstärkten und nicht-kontrastierten Auf-

nahmen nahm mit zunehmender Jodkonzentration und Röhrenspannung zu. In

den umliegenden nicht-kontrastierten Geweben nahm die Energiedeposition leicht

ab. Ein Energieaufbaueffekt war bereits für nicht-kontrastierte Materialübergänge

aufgrund von Unterschieden der physikalischen Dichten sichtbar. Bei Zugabe von

Jod hat sich dieser Aufbaueffekt jedoch noch verstärkt. Im Gegensatz zu den rela-

tiven Unterschieden zwischen nicht-kontrastierten und kontrastierten Aufnahmen

nahm der Aufbaueffekt mit abnehmender Röhrenspannung zu. Für geringere Röh-

renspannungen (z.B. 80 kVp) werden größereUnterschiede in der Energiedeposition

zwischen Organen und dem umliegenden Gewebe gemessen als für höhere Röhren-
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spannungen.

Zusammenfassend ergibt sich, dass die entwickelte Software den Weg in Richtung

individualisierter virtueller Dosimetrie für Patienten ebnet. Da die Verteilung der

Energiedeposition von der Röhrenspannung, Kontrastmittelgabe und von Mate-

rialübergängen abhängt, ist die räumlich aufgelöste Dosimetrie für die korrekte

Bestimmung der Strahlenbelastung notwendig. Individualisierte Dosimetrie ist er-

forderlich, um Unterschiede der Strahlenbelastung bei unterschiedlichen Patienten-

morphologien zu verstehen, undumAbschätzungender Strahlenschäden für häufig

untersuchte Patienten zu ermöglichen. Ein tieferes Verständnis der Dosisdepositi-

on im Körper wird dazu beitragen, technische Fortschritte in der Niedrig-Dosis-

Computertomographie zu erreichen.
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A
SCANNER SPEC IF ICAT IONS

Two CT scanners were implemented in the MC simulation software, including sim-

plifiedmodels of the corresponding detectors. The specification of both scanners are

given below. Since spectral measurements, including transmission measurements,

have only been performed on the Toshiba Aquilion™16 (Toshiba Medical Systems

Corporation, Nasu, Japan) this scanner model was used for the simulation of all CT

acquisitions.

a.1 AQUIL ION™ 1 6

Table A.1: Computed tomography scanner information of anAquilion™16, ToshibaMedical

Systems Corporation, Nasu, Japan. Information obtained from Amber Diagnos-

tics (2018), MHRA (2004), and NHS (2009).

Parameter name Value
Scanner type 3rd generation

Gantry opening [mm] 720

Source-to-object distance [mm] 600

Source-to-detector distance [mm] 1072

Fan-beam angle [degree] 49.2

Pitch 0.625-1, 1.125-1.5

Scan field-of-view (FOV) [cm] 18, 24, 32, 40, 50

Reconstruction matrices [pixel x pixel] 512 x 512

Dose modulation technique SureExposure3D

X-ray tube CXB-750D

X-ray tube anode tungsten, molybdenum, graphite

kVp-range 80, 100, 120, 135

mA-range 10-500

Detector type solid-state Gd2O2S

Number of rows along z-axis 40

Detector width at isocenter [mm] 32

Number of detector elements 14336

Elements per row 896
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a.2 SOMATOM
®

DEF IN IT ION FLASH

Table A.2: Computed tomography scanner information of a Somatom
®

Definition Flash,

Siemens Healthineers, Forchheim, Germany. Information obtained from Amber

Diagnostics (2018), Imaging Technology News (2014), and Lin et al. (2014).

Parameter name Value
Scanner type 3rd generation

Gantry opening [mm] 780

Source-to-object distance [mm] 595.0

Source-to-detector distance [mm] 1085.6

Fan-beam angle [degree] 49.95

Pitch 0.35 - 3.2

Scan field-of-view (FOV) [cm] 50

Reconstruction matrices [pixel x pixel] 512 x 512

Dose modulation technique CARE Dose4D, CARE kV

X-ray tube anode Straton MX P

kVp-range 70, 80, 100, 120, 140

mA-range 20-800

Detector type 2 x multislice Stellar detector

Number of rows along z-axis 128 (2 x 64)

Detector width at isocenter [mm] 38.4

Number of detector elements 77824 (47104 system A; 30720 system B)

Elements per row 1216 (736 system A; 480 system B)



B
MATERIAL COMPOSIT IONS

Table B.1: Basic material composition and densities of the human body materials employed

in the simulations. Material density was not altered for geometrical phantoms.

For digitized patient phantoms, density was altered according to the Hounsfield

units of the image pixels. The source code of Geant4 included several example

simulations which provided the material definitions for the bones (e.g. file path:

geant4.9.2.p04/examples/extended/medical/DICOM/DicomDetectorConstruc-

tion.cc). Abbreviations: trabec.: trabecular, exp.: expiration, in.: inspiration.

Percentage Z-fraction by weight [%]
ρ 1 6 7 8 11 12 15 16 17 19 20 26

Material [
g

cm3 ] H C N O Na Mg P S Cl K Ca Fe

a
Blood 1.060 10.2 11.0 3.3 74.5 0.1 0.1 0.2 0.3 0.2 0.1

b
Bone-dense 1.575 5.6 23.5 5.0 43.4 0.1 0.1 7.2 0.3 0.1 0.1 14.6

b
Bone-trabec. 1.159 8.5 40.4 5.8 36.7 0.1 0.1 3.4 0.2 0.2 0.1 4.4 0.1

a
Breast 1.020 10.6 33.2 3.0 52.7 0.1 0.1 0.2 0.1

a
Fat 0.950 11.4 59.8 0.7 27.8 0.1 0.1 0.1

c
Kidney 1.050 10.3 13.2 3.0 72.4 0.2 0.2 0.2 0.2 0.2 0.1

d
Liver 1.060 10.2 13.9 3.0 71.6 0.2 0.3 0.3 0.2 0.3

a
Lung (exp.) 0.508 10.3 10.5 3.1 74.9 0.2 0.2 0.3 0.3 0.2

a
Lung (in.) 0.217 10.3 10.5 3.1 74.9 0.2 0.2 0.3 0.3 0.2

a
Muscle 1.050 10.2 14.3 3.4 71.0 0.1 0.2 0.3 0.1 0.4

d
Pancreas 1.040 10.6 16.9 2.2 69.4 0.2 0.2 0.1 0.2 0.2

e
Skin 1.100 10.1 22.8 4.6 61.9 *

a
Soft tissue 1.060 10.2 14.3 3.4 70.8 0.2 0.3 0.3 0.2 0.3

d
Spleen 1.060 10.3 11.3 3.2 74.1 0.1 0.3 0.2 0.2 0.3

a
Water 1.000 11.2 88.8

* additional components: Na, Mg, P, S, Cl, K, Ca, Fe, Zn: 0.6% together

a (Hubbell and Seltzer 2018a)

b (Geant4-Dicom-example)

c (Chang et al. 2016)

d (Carver et al. 2017)

e (ICRP 2018)





C
ANALYS IS OF S IMULATION RUN TIME AND DATA
STORAGE

One major difference between the software developed in this work and commer-

cially available software is the extensive data output available from the simulations.

Commercially available software usually only provides dose maps and organ doses.

The output in this work contains additional information e.g. about the interaction

type, material information, and incident photon energy. The additional information

comes with large volumes of data and a longer run time of the simulations.

To compare the potential for time and data volume saving, a simulation with the

same seed was run twice – once with the extensive data output, and once with only

the storage of a 3D-energymap. For this purpose, a non-enhanced acquisition of the

modified abdomen phantom was simulated at a tube potential of 80 kVp (including

aluminum filtration) for 129 · 106 photons (z-coverage of 40 cm + 3.2 cm [-21.6 cm,

21.6 cm], 3 · 106 photons per cm, source collimation 32mm, pitch 1.0). Run time, data

file volume, and energy maps were compared.

The simulation with full data output took 16.5 hours, whereas the simulation with

the reducedoutput took 16.4 hours for the simulationof 129 · 106 photons.Hence, run

times were almost identical. In general, run times depended more on the number of

cores that were active during run time (how many simulations run simultaneously)

than on the output storage.

However, the file size was reduced considerably for the reduced output. A file size

of 144.7MiB (151.7MB) was obtained for the reduced output, whereas a file size of

21.5GiB (23.1GB) was obtained from the full simulation output.

Since the disk space was not critical during this work, full data output was ob-

tained for all of the performed simulations. Simulations were performed using an

Intel
®
Core™ i7-3930K processor, 3.20GHz (Intel Corporation, Santa Clara, USA)

with 64GB RAM.





D
SOFTWARE TOOLS USED FOR DATA ANALYS IS

d.1 MASKS FROM RT- STRUCTURE SET B INARY STACKS

The radiotherapy (RT) structure sets obtained from Oncentra
®
External Beam (ver-

sion 4.5.2, Nucletron B.V, Veenendaal, the Netherlands) were processed using an

open-source program ("Importing Contours from DICOM-RT Structure Sets with

ITK4") based on ITK4 to obtain binary masks of the contoured organs and tissues

(output: niftii-file stack for each contoured organ, Dowling 2013).

d.2 IMAGE J 1 . 5 1 J 8

ImageJ, version 1.51j8 (Wayne Rasband, National Institutes of Health, USA) was

employed for the post-processing of structure sets and analysis of ROIs.

structure sets The binary image stacks (values inside mask 1, outside mask 0)

of the contoured organsweremultiplied in ImageJwith fixed value (material ID). All

processed organ/tissue mask stacks were added, to obtain a single stack containing

all masks (each mask is distinguishable by its value, the material ID). The final stack

is then saved into individual image files. These files can then be further processed in

the segmentation process (see figure 2.14), to combine them with the material files

from 'gdcm_setup'.

roi analysis The energy deposition and relative differences between simulated

enhanced and non-enhanced acquisitions in the ROIs in the modified abdomen and

digitized patient phantom were measured in ImageJ 1.51j8 for the analysis of the

energy build-up effect.

d.3 TABULAR EVALUAT ION

Microsoft Excel 2016 (Microsoft Corporation, Redmond, Washington, USA) and

LibreOffice Calc (version 5.3.5.2, The Document Foundation, Berlin, Germany) were

used for data analysis and statistical calculations.





E
EMPLOYED MEASURED AND GENERATED X-RAY SPECTRA

In the following, the spectra plotted in figure 2.2 andfigure 2.5 are plotted inmore de-

tail. Siemens spectra are available from Siemens Healthineers (2018). An aluminum

filter of 3.3mm was employed for all spectra, as this filtration shifts the mean spec-

tral energy of the unfiltered generated spectrum (51.5 keV) at 120 kVp to the mean

spectral energy, Emean,ref, of themeasured reference spectrum (57.7 keV) at 120 kVp at

0° fan angle.

e.1 MEASURED REFERENCE SPECTRUM
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Figure E.1: Measured, normalized central spectrum at 120 kVp. Mean spectral energy of this

spectrum is 57.7 keV. This spectrum was measured prior to this work, see Stiller

et al. (2019) and Veloza (2012) for details on the measurement procedure.
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e.2 GENERATED SPECTRA
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80 kVp + 3.3mmAl

Figure E.2: Generated spectrum at 80 kVp with 3.3mm aluminum (Al) filtration. Mean spec-

tral energy of this spectrum is 46.6 keV. Siemens spectra available from Siemens

Healthineers (2018).
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Figure E.3: Generated spectrumat 100 kVp with 3.3mmaluminum (Al) filtration.Mean spec-

tral energy of this spectrum is 52.7 keV. Siemens spectra available from Siemens

Healthineers (2018).
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Figure E.4: Generated, unfiltered spectrumat 120 kVp.Mean spectral energyof this spectrum

is 51.5 keV. Siemens spectra available from Siemens Healthineers (2018).
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Figure E.5: Generated spectrum at 120 kVp with 3.3mm aluminum (Al) filtration. The ad-

ditional filtration removes photons with energies < 20 keV, thereby increasing

the relative peak-height of the characteristic peaks. By adding the aluminum

filtration, the mean spectral energy increases from 51.5 keV to 57.7 keV. Siemens

spectra available from Siemens Healthineers (2018).





F
BEAM-SHAPING F ILTER DIMENSIONS

Prior to the work presented here, a physical beam-shaping filter model for MC

simulations has been developed (Stiller et al. 2019; Veloza 2012). This appendix

presents the shape and size of the developed and employed beam-shaping filter. The

beam-shaping filter was constructed by subtraction of regular trapezoidal Boolean

solids from a rectangular box (Steuwe et al. 2018; Veloza 2012).
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Figure F.1: Employed physical beam-shaping model. Adapted from Stiller et al. (2019). The

model was developed prior to this work (Veloza 2012).

Table F.1: X-ray path length through the physical beam-shaping filter and corresponding

dimensions (Stiller et al. 2019; Veloza 2012).

X-ray path Beam-shaping filter
Fan angle [°] length [mm] length x(0) [mm] thickness y(0) [mm]
0 0.0000 0.0000 - 0.0000

2 0.1954 5.2449 - 0.1953

4 1.5818 10.5994 - 1.5779

6 3.7910 16.1619 - 3.7702

8 6.6335 22.0043 - 6.5689

10 9.4248 28.0856 - 9.2816

12 14.6800 34.9356 -14.3592

14 19.6062 42.1424 -19.0238

16 25.4191 50.0183 -24.4344

18 32.0951 58.6559 -30.5242

20 39.2600 68.0232 -36.8923

21 42.6265 72.8556 -39.7953





G
CT ACQUIS IT ION MODE IMPLEMENTATION

In the following, the different CT acquisitionmodes, implemented in theMCmodel,

are shortly described.

g.1 STEP-AND- SHOOT/AX IAL ACQUIS I T ION MODE

For the step-and-shoot/axial acquisition mode, the point source moves in a 360°-
rotation around the patient during which is patient remains stationary. After one

rotation, the patient is moved by the length of the detector coverage or a defined

larger or smaller step. FigureG.1 depicts the influence of the step size on energy

deposition, for a fixed z-collimation of 32mm.

g.2 HEL ICAL/SP IRAL ACQUIS I T ION MODE

For the helical/spiral acquisition mode, the x-ray source rotates around the patient

while the patient table is moving through the scanner gantry (continuous move-

ment with fixed table speed). The pitch describes the relationship between table

displacement during a full source rotation and z-collimation of the x-ray source (see

section 1.2.3). FigureG.2 presents the influence of the pitch on the energy deposition.

Z-collimation was fixed to 32mm, whereas table displacement was increasing from

16mm (pitch of 0.5) to 64mm (pitch of 2.0).



172 ct acquisition mode implementation

(a) 32mm z-collimation, 16mm steps (b) 32mm z-collimation, 32mm steps

(c) 32mm z-collimation, 48mm steps (d) 32mm z-collimation, 64mm steps

Figure G.1: Implementation of the step-and-shoot acquisition mode for a z-collimation of

32mmat the isocenter, and steps of 16, 32, 48, and 64mm.An increasing step size

between two adjacent 360°-rotations results in a streaky pattern in the spatial

distribution of energy deposition in the patient. Energy maps presented here

show the summed energy deposition along the y-axis of the patient. Although

the z-collimation of the x-ray source is set to 32mm at the isocenter, energy

deposition from one "shoot" is spread over an area of ~ 6-7 cm in z-direction, due

to energy deposition emerging from scattered photons. The high-energy streaks

in (c) are due to overlaps of these "scatter areas" (streak width of ~ 1.5 cm).
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(a) Pitch 0.5 (b) Pitch 1.0

(c) Pitch 1.5 (d) Pitch 2.0

Figure G.2: Implementation of the helical acquisition mode, for pitches of 0.5, 1.0, 1.5, and

2.0. With increasing pitch value, the z-displacement of the x-ray source per 360°-
rotation increases, resulting in a streaky pattern of the spatial distribution of

energy deposition in the patient. Energymaps presented here show the summed

energy deposition along the y-axis of the patient.
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g.3 LONGITUD INAL TUBE -CURRENT MODULAT ION (LTCM)

The exposure along the patient length is determined from the topograms/scout

scans, acquired at the start of each CT acquisition. FigureG.3 depicts the normalized

exposure values along the patient length with the corresponding lateral topogram.

FigureG.4 shows the corresponding energy maps. In figureG.4a, a homogeneous

photon distribution was applied, resulting in a high energy deposition at the heart.

Employing LTCM reduces the exposure in the lungs and the heart and increases

exposure in the abdomen and towards the pelvis. This increases the signal-to-noise

ratio in the detector, while increasing the energy deposition in the pelvic region.
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Figure G.3: Modulated tube current along the z-axis of the patient. The longitudinal tube-

current modulation (LTCM) decreases the tube current in areas of low attenua-

tion (e.g. the lungs) and increases tube current in highly attenuating areas, such

as the shoulders or hips. The resulting spatial distribution of energy deposition

is presented in figure G.4.

g.4 ANGULAR TUBE -CURRENT MODULAT ION (ATCM)

Angular tube-current modulation (ATCM) alters the exposure during a single rota-

tion of the x-ray source. In this implementation, the attenuation of the table is not

accounted for, hence, tube current at 0° and at 180° are equal. FigureG.5 depicts the

increase in energy deposition at the patients lateral sides and the decrease in en-

ergy deposition at the a.p. sides (especially in the paravertebral muscles), due to the

increased x-ray exposure from the lateral directions and decreased x-ray exposure

from the a.p. directions.
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(a) 32mmcollimation, 16mmsteps,without

LTCM

(b) 32mm collimation, 16mm steps, with

LTCM

Figure G.4: Effect of longitudinal tube-current modulation (LTCM) on spatial distribution

of energy deposition. LTCM increases the tube-current time product in areas of

higher density (bones in the pelvic region) and diameter (shoulders), causing an

increased energy deposition, especially in the pelvic region. Energy deposition

in the lungs and heart is reduced if the modulated tube current is applied. The

correspoding modulated exposure progression is plotted in figure G.3.

(a) Without ATCM (b) With ATCM

Figure G.5: Implementation of angular tube-current modulation (ATCM) to increase expo-

sure in lateral direction and to reduce exposure in anterio-posterior direction.

Increased energy deposition is visible in the liver, whereas a decreased energy

deposition is visible in the paravertebral muslces, if ATCM is applied.
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DIGIT IZED PATIENT PHANTOM

h.1 AUTOMAT IC SEGMENTAT ION US ING THRESHOLD ING

In the gd4cm_setup program, CT images are automatically segmented using a

thresholding method. In this automatic method, the tissues air, lung (in- and ex-

hale), fat, water, soft tissue, and bone (trabecular and dense) are assigned (other

individual organs are segmented in a later, manual step). The input file (g4dcm-

data.dat) is required to start the automatic segmentation of DICOM images. The

input file (listingH.1) includes information about the compression (1), number (5),

and names of image files (Patient1A_nat33_101-105), and material selection with

maximum density values (e.g. Air 0.03 g/cm
3
, DenseBone 1.654 g/cm

3
). In this ex-

ample, only five CT images are automatically segmented.

Listing H.1: gdcm-data.dat input file

1 %compression

5 %number of input files

input_dcm/Patient1A_nat33_101 %input files

input_dcm/Patient1A_nat33_102

input_dcm/Patient1A_nat33_103

input_dcm/Patient1A_nat33_104

input_dcm/Patient1A_nat33_105

8 %number of materials

Air 0.03 %materials with maximum density

LungInhale 0.390

LungExhale 0.910

AdiposeTissue 0.98

Water 1.02

SoftT 1.09

TrabecularBone 1.165

DenseBone 5.0

The CT2Density.dat file (listingH.2) is required for the calculation of density values

for each pixel. The density (given in g/mm
3
) is calculated by interpolation between

the CT number/density pairs given in the lookup table (see also figureH.1). The

calculated density values, in contrast to the material IDs, are not altered during the

segmentation process.

Listing H.2: CT2Density.dat input file

9 %number of CT number-density pairs

-5000 0.0 %CT number-density pairs

-1000 0.0

-400 0.602

-130 0.95
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Figure H.1: Plotted computed tomography (CT) number - density pairs, used to calculate the

densities of each voxel in the first step of the segmentation process (gdcm_setup)

via interpolation between the CT number - density pairs. An additional entry

was placed at (-5000,0), but was not plotted in the graph.

h.2 MANUAL SEGMENTAT ION US ING ONCENTRA
®
EXTERNAL BEAM

Oncentra
®

External Beam (version 4.5.2, Nucletron B.V, Veenendaal, the Nether-

lands) was used for manual segmentation of body structures (see figuresH.2-H.3).

The external outline and the lungs are determined in Oncentra
®
using a threshold

method.

The skin varies in thickness for different body regions (eye lids, vs. mechanically

stressed regions (back, feet)), between 521 to 2400 µm for the epidermis and dermis

(Lee and Hwang 2002; Wei et al. 2017). In this work, a thickness of 4mm was used

for the skin, by using an inner ROI margin of -4mm on the external contour of the

patient. As the external contour of the patient often includes a thin air or clothing

seam, the actual skin thickness is between 3 and 4mm. A thinner skin thickness was

unfortunately not feasible due to computational limitations of the software (ROI

margins of -2mm or -3mm resulted in "holes" in the skin, especially in the shoulder

and hip region).

For the shell structures of the segmented organs, ROIs were defined with a mar-

gin of 2.5mm inside and around the organs. Figure H.4 depicts the liver shell inside

the organ and the surrounding tissue shell, each with a seam width of 2.5mm.
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Figure H.2: Screenshot of the contouring tool ("Target Definition") of theOncentra
®
External

Beam software. Structures are contoured on the axial computed tomography

(CT) reconstructions.
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(a) All internal structures (b) Lungs, stomach, and GI-tract

removed for better visibility

Figure H.3: Contoured internal structures: Bone marrow (purple), lungs (right: pink, left:

green), heart (orange), aorta (red), spleen (brown), kidneys (light and dark

green), pancreas (blue), bladder (turqoise), and gastro-intestinal (GI) tract (pink).

The skin is not shown.

(a) Liver shell inside the organ (b) Surrounding tissue shell

Figure H.4: Shell structure in the liver. The liver consists of an organ core (inside), an organ

shell (a), and an outer tissue shell surrounding the liver (b).

h.3 COMB INAT ION OF SEGMENTED T I S SUES AND STRUCTURES

Automatically and manually segmented materials for the acquisition of digitized

patient phantoms are described in tableH.1.

h.4 IN IT IAL IZAT ION OF A S IMULAT ION

The input dicomdata.dat file (listingH.3) contains the compression value (1), num-

ber of files (5), file names and paths, the number of materials (15) and the individual
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Table H.1: Automatic segmentation was performed for air, lung tissue, fat, water, soft tissue,

and bones. Manual segmentationwas performed for the pancreas, kidneys, heart,

spleen, aorta, liver, and the skin (rows shaded in light gray). For contrast-enhanced

acquisitions, iodine (ψiodine = 0.005) was added to thematerials markedwith an

asterisk. The material compositions and densities are described in appendix B.

Structure/tissue Assigned material Material ID
air air [0]

lung inhale lung inhale [1]

lung exhale lung exhale [2]

fat fat [3]

water water [4]

pancreas pancreas* [5]

kidneys kidney* [6]

heart muscle [7]

soft tissue soft tissue [8]

spleen spleen* [9]

aorta blood* [10]

liver liver* [11]

skin skin [12]

trabecular bone trabecular bone [13]

dense bone dense bone [14]

material names with corresponding maximum density (density in g/cm
3
). A com-

pression value of 1 uses the matrix size taken from DICOM header, whereas a

compression value of 2 reduces the number of pixels per file by a factor of 4 (e.g.

instead of a 512 x 512 matrix, a matrix of 256 x 256 pixels is used). Each individual

processed image file (provided in listingH.4) contains the number of materials (15),

the material IDs and names, matrix size, x-,y-, and z-coverage, the relative TCTP

value, followed by the individual material IDs and density values of each pixel.

Listing H.3: Input file (dicomdata.dat) to start simulations of digitized phantoms. In this

example, only five computed tomography images are inserted in the simulation.

The file includes information about the compression (1), number (5) and names

of imagefiles (Patient1A_nat33_101-105), number ofmaterials (15), andmaterial

selection with maximum density values.

1 %compression

5 %number of input files

../filesforsimulation/Patient1A_nat33_101 %input files

../filesforsimulation/Patient1A_nat33_102

../filesforsimulation/Patient1A_nat33_103

../filesforsimulation/Patient1A_nat33_104

../filesforsimulation/Patient1A_nat33_105
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15 %number of materials

Air 0.03 %materials with maximum density

LungInhale 0.390

LungExhale 0.910

AdiposeTissue 0.98

Water 1.02

Pancreas 1.05

Kidney 1.06

Muscle 1.06

SoftT 1.09

Spleen 1.06

Blood 1.07

Liver 1.07

Skin 1.11

TrabecularBone 1.165

DenseBone 1.654

Listing H.4: For each image, one simulation file (Patient1A_nat33_ImageNumber.g4dcm) is

produced. It contains the number of materials (15), the material identifications

(ID) and names, image matrix size, x-, y- and z-coverage (in mm) of the image,

the exposure value (in mAs), and all material IDs and densities (in g/cm
3
) per

pixel. In this example, material IDs and densities do not correspond to each

other and are solely exemplary chosen.

15 %number of materials

0 Air %material ID and name

1 LungInhale

2 LungExhale

3 AdiposeTissue

4 Water

5 Pancreas

6 Kidney

7 Muscle

8 SoftT

9 Spleen

10 Blood

11 Liver

12 Skin

13 TrabecularBone

14 DenseBone

512 512 1 %matrix size

-229 229 %x-coverage [mm]

-229 229 %y-coverage [mm]

-1428 -1425 %z-coverage [mm]

162 %exposure [mAs]

12 4 8 8 4 3 3 5 %material IDs

1.51154 0.950769 0.551923 0.958077 0.356538 0.23846 0.756538

0.956154 %densities [g/cm3]
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Figure I.1: Corresponding axial, coronal, and sagittal computed tomography (CT) images of

patient 3A for the 2D-energy maps presented in the results (figure 3.19).

(a) Patient1A (b) Patient 2A

Figure I.2: Corresponding axial computed tomography (CT) images of patients 1A and 2A

for the 2D-energy maps presented in the results. (a) Patient 1A from figure 3.20

and (b) patient 2A from figure 3.19.
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Figure I.3: Axial slices through the liver andkidneys for the six patients of this study. Patients

1A and 1B belong to the groupwith the lowest bodymass index (BMI) (BMIs 21.0

and 22.0, respectively), patients 2A and 2B belong to the group with a medium

BMI (BMIs 26.4 and 25.4, respectively) and, patient 3A and 3B belong the group

with the highest BMI (BMIs 28.1 and 28.4, respectively). In each group, patients

have simular heights and weights (see table. 2.2). Abdominal diameters varied

considerably among patients.
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ERROR CALCULATION IN MC SIMULATIONS OF CT
ACQUIS IT IONS

This section of the appendix provides a small review about the error calculation in

MC simulations of CT acquisitions available in the literature and evaluates the sim-

ulated number of incident photons on the accuracy of the performed simulations.

Regarding MC simulations in CT, there are only a handful of publications which

provide information on the used MCmethod, CT acquisition parameters, and error

calculations in detail. Most publications employ commercial software, where only

a specific TCTP-value, but not the corresponding number of incident photons (or a

conversion factor) are given.

Li et al. (2011a) aimed at a relative error in dose of 1% or below, defined "as one

standard deviation divided by the average tally result". In their subsequent study,

determining the patient-specific radiation dose in patients, they tracked 80 · 106 pho-
tons for each CT acquisition (chest, abdomen-pelvis) of each patient (Li et al. 2011b).

Patients in their study were a newborn female and a teenaged male, for which

digitized phantom models were voxelized at 0.5 and 1mm isotropic resolutions,

respectively. For the employed 80 · 106 photons, they calculated relative dose errors

of <1% in organs in the scan coverage (chest or abdomen-pelvis), and < 3% in organs

outside the scan coverage. However, they claim that 7 · 106 photon histories were

sufficient to achieve relative dose errors of <1% for all organs in the scan coverage

and < 10% for other organs (Li et al. 2011b).

Nowik et al. (2017) use the commercial available software package ImpactMC (AB-

CTAdvanced Breast-CT GmbH, Erlangen, Germany) and employed 1 · 1010 photons
with 72 projections per rotation, and 5 · 109 photons for a projection scan (similar to

a topogram) for a full body scan (no automatic tube-current modulation (TCM) was

included). They repeated their simulations until the relative standard deviation of

their mean achieved dose was <2% in the noisiest ROI in the phantom (Nowik et al.

2017).

Fujii et al. (2017) employed 1 · 1011 photon histories for chest and abdominal-pelvic

CT acquisitions, independent on the exact scan range, using the ImpactMC software.

They obtained an uncertainty of the MC results of <1% within the scan range.

Salvadó et al. (2005) employed 3 · 106 photon histories per 1 cm-image slice for

patients and anthropomorphic phantoms. Voxelized phantoms consisted of a 256

x 256 x Ns matrix, with a slice thickness of 1 cm. The minimum voxel size was

1.4 x 1.4 x 10mm
3
, the maximum voxel size was 1.7 x 1.7 x 10mm

3
. A relative stan-

dard error of the average dose in one slice of <0.5% was reached for slices directly

scanned. Outside the scan region, a relative error of 1% is reached (Salvadó et al.

2005). During this work, the employed number of photons for the anthropomorphic

phantoms (3 · 106 tracked photons per 1 cm-image slice) was calculated based on Sal-

vadó et al. (2005). Although uncompressed CT images were used in the simulations
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in this work (512 x 512 matrix), energy maps were calculated for a 256 x 256 matrix.

photon interaction types in reduced incident photon statistics data

stacks To evaluate the possibility of reducing the number of initial photons in

a MC simulation of a CT acquisition, photon interaction data was subdivided into

data setswith reduced number of photon statistics (see section 2.6). Of these reduced

statistics data sets, 2D-energy maps were calculated and compared to the original

energy map.

Figure J.1 confirms that the reduced statistics data sets contain the same type and

frequency of photon interactions. Multiple scattering and Compton effects are most

frequent, whereas the photoelectric interactions are less frequent. All reduced data

sets also contain equal energy deposition distributions of the individual interactions

(results not shown). Since the reduced statistics data sets contain the same type

and frequency of photon interactions, and equal energy deposition distributions, a

comparison of the resulting energy maps is reasonable and feasible.
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(a) (b)

(c) (d)

(e) (f)

Figure J.1: Present interactions in reduced statistics data sets. For each of the reduced statis-

tics data sets, photon interactions were histogrammed and normalized to allow

for direct comparison. For all reduced statistics data sets, the same type and fre-

quency of photon interactions are occurring. Interaction IDs: Compton effect (1),

photoelectric effect (2), ionization (3), multiple scattering (4), bremsstrahlung (5),

coupled transportation (6).
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