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INTRODUCTION

X-ray computed tomography (CT) describes the three-dimensional (3D) acquisition
of x-ray projections of a subject or object, which are subsequently reconstructed to a
3D image data set. The main advantage of CT in diagnostic radiology is the visualiza-
tion of the body structures in slices without the superimposition of tissues. Spatial
resolution in the sub-millimeter range in all three dimensions can be obtained with
this technique, enabling the detailed evaluation of body structures.

Of all radiological procedures utilizing ionizing radiation, 9% were CT examina-
tions in Germany, in 2014. Despite this fairly low percentage compared to dental
examinations (41%) or skeletal radiography (29%), CT contributed to the collective
effective dose from radiological procedures with 65% (BfS 2016b). Because radiolog-
ical examinations using ionizing radiation are frequent at present, the utilization of
ionizing radiation in diagnostic procedures is controversially discussed due to the
potential risk of radiation-induced cancer.

Several methods exist to estimate the dose (a measure for the energy deposition of
the x-rays e.g. per unit of tissue mass) resulting from radiation exposure, by means of
conversion factors, test specimen (phantoms), dose detectors (e.g. ionization cham-
bers), or Monte Carlo (MC) simulations. These methods vary in precision, appli-
cability, and customization options. Individualized dosimetry plays an increasing
role in clinical radiology, especially for patients receiving multiple CT examinations
over a short period of time, such as during a cancer treatment. The individualized
dosimetry can take patient morphology and changes in morphology into account,
e.g. through disease or treatment-induced weight loss. This is necessary since the
body constitution, e.g. weight, height, or composition, greatly impacts dose depo-
sition. The research presented in this thesis describes the development of a MC
software tool aiming at the quantification of the radiation exposure associated with
CT examinations to calculate patient-specific radiation exposure maps.

Section 1.1 introduces the clinical background of CT imaging. Afterwards, the gen-
eral principle of CT, image acquisition, and the technical setup of a CT scanner are
described in section 1.2. This section also provides details on the x-ray source and
photon emission, photon filtration, and the utilized tube potentials of x-ray sources.
The underlying physical principles of the interactions of photons in matter are ex-
plained in section 1.3. Section 1.4 covers the radiation exposure associated with CT
examinations. An overview over the radiation exposure from diagnostic radiology
in Germany, the related risk from ionizing radiation, and techniques for dose re-
duction in CT are provided in this section. Section 1.5 presents current methods for
determining the radiation exposure of CT examinations. The first chapter ends with
the motivation and description of the goals of this work (section 1.6).



INTRODUCTION

1.1 APPLICATIONS OF COMPUTED TOMOGRAPHY (CT) IMAGING

The contrast between body tissues observed on CT images is a result of differences
in attenuation properties of tissues, which are measured by the CT scanner during
the acquisition. CT is advantageous for displaying bony structures and, combined
with the administration of contrast agents, it allows to assess blood flow e.g. in the
aorta and tissues (organ perfusion). Due to the large field-of-view (FOV) of the CT
scanner (approximately 50 cm), the aorta and branching vessels, e.g. the supply of
the kidneys, can be examined at the same time. CT is performed for staging of tumor
diseases and follow-up examinations after chemotherapy or surgical treatment. It is
a fast technique allowing image acquisition, reconstruction, and assessment within a
few minutes. A typical non-enhanced (native) acquisition of the thorax and abdomen
can be performed in less than 10 seconds. CT, aside from ultrasound (US) imaging,
is a standard for trauma patients following accidents since fractures and free fluids
(blood) can be identified quickly. Furthermore, CT is performed in vascular surgery,
e.g. as immediate control and follow-up of endovascular aortic repair (EVAR), an
intervention during which a stent is implanted in the aorta to remodel blood flow.
In terms of image quality, one disadvantage of CT is the low contrast between dif-
ferent types of soft tissues since their material composition and density properties
are similar. For soft tissue imaging, magnetic resonance imaging (MRI) is superior
to CT.

Due to the associated radiation exposure, pediatric CT is solely performed if alter-
native imaging methods, such as MRI or US, are contraindicated or not sufficient for
clinical diagnosis. Due to the long acquisition times of MRI, pediatric patients might
need to be anesthetized, involving separate risks and side effects. More information
on the radiation exposure in CT imaging is provided in section 1.4.

1
Wy
& b

(a) Axial (b) Coronal (c) Sagittal

Figure 1.1: Axial, coronal, and sagittal reconstruction of a single contrast-enhanced com-
puted tomography acquisition. Since this acquisition directly followed contrast-
agent administration, the heart and aorta appear very bright. Due to the high
density of bone, the ribs, pelvis, and spine are clearly distinguishable from soft
tissue and the lungs.



1.2 OPERATING PRINCIPLE OF CT

1.2 OPERATING PRINCIPLE OF CT

Image acquisition in planar radiography and computed tomography is based on
the attenuation (absorption and scattering) of photons (x-rays) in tissues, varying
with photon energy, material composition, and density. Only unabsorbed and un-
scattered photons positively contribute to the image signal. Absorbed photons have
lost all of their incident kinetic energy in a tissue and will not reach the image de-
tector at all. Scattered photons have either lost parts of their incident kinetic energy,
or have changed their initial direction. A scattered photon might still be detected,
however, it adversely affects the image quality by increasing image noise. Bones or
metals absorb and scatter photons to a higher degree than soft tissue or fat. On the
reconstructed images, materials with a high density (e.g. bone) appear brighter than
low-attenuating tissues. Tissues of the human body can be roughly divided into the
materials soft tissue, bone, and air (lungs). The image contrast between these three
material types in the reconstructed images is large. However, differences between
different soft tissue types (e.g. muscle tissue, liver tissue, intestines) in terms of ma-
terial composition and density are more subtle. As a consequence, the soft-tissue
contrast of CT images is rather poor.

In planar radiography (x-ray imaging), a projection or superimposition of all tis-
sues between the x-ray source and the detector is obtained as the source and the
detector position are fixed for a single acquisition. Since only a two-dimensional (2D)
image is obtained from planar radiography, an assessment of the third dimension
(e.g. depth) is impossible. During a CT acquisition, the photon-emitting source and
the detector rotate around the patient while the patient on the table (bed) is moved
through the scanner gantry (either in a steady or in a step-wise motion). In CT, in
contrast to planar radiography, thousands of projections from various positions are
obtained, which are reconstructed to a 3D image set after acquisition. The main
advantage of CT is the visualization of the body structures in slices without the
superimposition of tissues. A spatial resolution in the sub-millimeter range can be
obtained in all three dimensions, enabling a detailed evaluation of body structures.
Images can be reconstructed in the three main planes (axial, coronal, sagittal), and
additionally, in oblique planes (cf. figure 1.1).

Furthermore, the image appearance can be adapted retrospectively (window and
level settings), allowing to view the reconstructed images with different contrast
and brightness to enhance the visibility of specific structures (see figure 1.2).

1.2.1 TECHNICAL SETUP

A CT scanner can be divided into three main components: (1) the x-ray emitting
source, (2) beam-shaping filtration, and (3) the detector for image acquisition. A
schematic drawing of a CT scanner is shown in figure 1.3.

The first part, the x-ray source, produces a continuous bremsstrahlung spectrum
with characteristic peaks. Section 1.2.2 provides more information on the production
of the x-ray spectrum, its efficiency at different tube potentials, and the accessibility
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(a) Soft tissue setting (b) Lung setting (c) Bone setting

Figure 1.2: Soft tissue, lung, and bone window settings for the same slice to enhance visibility
of specific structures. The abdomen window setting (window (W) =342 HU, level
(L) = 56 HU) allows to differentiate between soft tissue types. The lung window
setting (W = 465 HU, L = -498 HU) provides detailed visibility of lung tissue.
Here, the contrast between soft tissue types or bony structures is barely visible.
The bone window setting (W = 3077 HU, L = 570 HU) enhances the visibility of
differences in bone density.

of x-ray spectra of clinical CT scanners. The bremsstrahlung spectrum contains
photon energies <20keV. The chance that these photons will reach the detector
without interaction is very low as they are easily absorbed already in small amounts
of tissue. To reduce the amount of low-energy photons, which would only increase
patient dose but not positively contribute to image quality, a filter, usually made of
aluminum, is implemented as part of the x-ray source. A bremsstrahlung spectrum
at 100 kV,, with characteristic tungsten peaks and the effect of additional aluminum
filtration is depicted in figure 1.4. The emitted x-ray fan beam covers around 50 cm
in x-direction at the isocenter of the scanner, and, depending on the specific scanner,
a z-coverage of ~3-16 cm.

The second part is the beam-shaping filter, also called bowtie filter, due to its shape.
The beam-shaping filter has two effects: (1) altering the photon fluence along the
fan beam and (2) additional filtration of the emitted photons, especially at the
edges of the fan beam. The modulation of the photon fluence and reduction of the
amount of photons at the edges of the FOV is a desired effect. Due to its shape, the
beam-shaping filter reduces the photon fluence towards the sides of the fan beam,
resulting in a fan-angle dependent photon fluence. The reduction of photons at the
fan-beam sides allows a constant exposure of the detector (ICRU 2012). An axial cut
through a human’s body is usually elliptical shaped (compare to the "patient" shape
in figure 1.3). The reduced x-ray path length through the body towards the edges
of the fan beam results in less photon attenuation, counterbalancing the reduced
photon fluence in these regions. Both the dynamic range of the detector and scatter
are reduced by the beam-shaping filter as the flux in paths with low attenuation
is reduced (Hsieh and Pelc 2013; Steuwe et al. 2018). The side effect of the beam-
shaping filter is the additional filtration of the emitted spectrum, increasing the
mean spectral energy towards the side of the fan beam. This spectral distortion is
called beam-hardening and especially affects photons with energies <35keV. The
mean spectral energy at the isocenter is therefore lower than the mean spectral
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Figure 1.3: Schematic drawing of a computed tomography (CT) scanner. Dimensions in
scheme correspond to an Aquilion™16 CT system, Toshiba Medical Systems
Corporation, Nasu, Japan (Amber Diagnostics 2018; MHRA 2004; NHS 2009). Re-
fer to appendix A for detailed CT scanner dimensions. Abbreviations: Aluminum
(Al), source-to-detector distance (SDD), source-to-isocenter distance (SID), field-
of-view (FOV).

energy at the edges of the FOV, see also figure2.4 in the materials and methods
section. Usually, a CT scanner contains two or more beam-shaping filters, differing
in shape and material, which are mainly chosen based on the patient size (ICRU
2012).

Both the (aluminum) filter inside the x-ray source and the beam-shaping filter are
scanner-dependent and information about their exact dimensions and materials are
usually proprietary. Details on the transmission of the beam-shaping filter can be
obtained by performing transmission measurements.

The third part is the image detector, combined with an anti-scatter grid to remove
scattered photons prior to detection. Since the final image reconstruction is not focus
of this work, the detector, reconstruction techniques, and employed kernels are not
covered in detail in this thesis. Please refer to the literature for details on these
contents, e.g. Bushberg et al. (2012) and Hsieh (2015).

5
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Figure 1.4: X-ray tube output: continuous bremsstrahlung spectrum and characteristic tung-
sten peaks (57.98, 59.32, and 67.24 keV) at a tube potential of 100 kV,. The peaks
at 57.98 and 59.32keV are not resolved in this plot. Addition of aluminum (Al)
filtration shifts the mean spectral energy from 46.7 to 52.7 keV by removing low-
energy photons while maintaining the same maximum photon energy (Siemens
Healthineers 2018).

1.2.2 X-RAY EMISSION

The function of the x-ray source (also referred to as x-ray tube) is the production
and emission of photons. The x-ray source consists of an electron-emitting cathode
and an anode as electron target. Electrons are accelerated between the cathode and
the anode due to an applied potential between the two electrodes. In clinical CT,
this (tube) potential is usually in the range of 70 and 150 kV. Electrons accelerated
by a tube potential of 120kV can obtain a maximum kinetic energy of 120 keV. In the
anode, electrons can undergo either an interaction with the strong field of a nucleus
of the target atom or with its surrounding, or they undergo an interaction with the
electrons of the target atom, emitting photons of various energies. Figure 1.4 shows
the emitted x-ray spectrum for a tube potential of 100 kV,,.

1.2.2.1 Bremsstrahlung spectrum

When electrons interact with the strong field of a nucleus or its close surrounding,
bremsstrahlung is emitted. Bremsstrahlung is a polyenergetic photon distribution in
a continuous spectrum. Electrons are decelerated near the nucleus due to Coulombic
forces, thereby causing a change in their direction and a loss of energy. The lost
energy is emitted as photons of that energy. The smaller the distance of an incoming
electron to the nucleus, the larger the energy of the emitted photon. The maximum
obtainable photon energy is the kinetic energy of the incoming electron (Bushberg
etal. 2012, pp. 171-206).
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1.2.2.2  Characteristic peaks

When an accelerated electron interacts with an orbital electron of one of the inner
shells (e.g. K-shell), it ejects this (K-shell) electron. The vacancy in the K-shell is
filled by an electron of the L-shell (electrons of other outer shells are also possible),
thereby emitting a characteristic x-ray. Its energy is determined by the difference in
binding energies between the K- and the L-shell. This process repeats itself until all
inner shells are complete again. The emitted photons are called characteristic x-rays,
as their energies are characteristic to the specific anode material. For tungsten, the
characteristic x-ray energies are at 57.98, 59.32, and 67.24 keV (Bushberg et al. 2012,
pp. 171-206).

1.2.2.3  Efficiency of x-ray sources

The efficiency of x-ray emission depends on the chosen tube potential. The higher
the tube potential, the larger the number of emitted photons. In clinical CT, x-ray
emission is approximately proportional to the square of the tube potential (Bushberg
et al. 2012, pp. 171-206):

x-ray emission efficiency o (tube potential)? (1.1)
K 2
x-ray emission efficiency at kV,, = ( B2 ) (1.2)

Hence, the x-ray emission for a tube potential of kV, =80kV, is approximately
0.44 times the emission for a tube potential of kVj, =120kV,,. Table 1.1 provides an
overview of the tube-potential dependent x-ray efficiency. A reduced x-ray emis-
sion efficiency can be counterbalanced by increasing the tube current, given in mil-
liampere (mA). Animportant measure in CT is the tube-current time product (TCTP),
given in milliampere seconds (mAs), which is the product of the tube current and
the duration of the x-ray exposure. The higher the tube current or the longer the
exposure duration, the more photons are emitted from the x-ray source.

Table 1.1: Efficiency of x-ray emission at different tube potentials (kV),) relative to the ef-
ficiency at kVp,, =120kV), according to equation 1.2. X-ray emission efficiency in-
creases with increasing tube potential.

Tube potential X-ray efficiency

[kV,] compared to 120 kV,
80 0.44

100 0.69

120 1.00

140 1.36
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Patient attenuation characteristics vary at different tube potentials, which addition-
ally needs to be taken into account for CT acquisition planning. Since low-energy
photons are more easily attenuated than high-energy photons, the TCTP for a tube
potential of 80 kV, needs to be higher than the TCTP for a tube potential of 120kV,, to
obtain a similar signal-to-noise ratio (SNR)! on the final reconstructed image.

A practical approach for increasing the TCTP for lower tube potentials is to increase
the TCTP by a factor of 1.5, for a reduction in tube potential of 20 kV,. Hence, given
a tube potential of 120kV,, a reduction of the tube potential to 80 kV, requires an
increase in TCTP by a factor of 2.25 (1.5 x 1.5). This factor only accounts for the
reduced efficiency at a tube potential of 80kV,, compared to 120kV,,, but not for
the higher attenuation of the low-energy photons. Bushberg et al. (2012, pp. 171-206)
provide a more drastic approach, accounting for both the reduced efficiency and
the higher attenuation of photon spectra with lower peak energies, increasing the
necessary TCTP to a larger degree (factor of 7.6, see equation 1.3 and figure 1.5).

5
) -mAs; = mAs; (1.3)

1.2.2.4 X-ray source spectra accessibility

To study the influence of x-ray spectra on radiation exposure, information on the
source components or the emitted x-ray spectra is necessary (Ay et al. 2005). As a
consequence of different x-ray tube design (e.g. anode geometry and material) and
choice of additional filtration, spectra of different CT scanners and vendors differ
in shape and mean spectral energy (Steuwe et al. 2018). The most comprehensive
method to obtain source spectra is to model the complete source and physical ef-
fects, e.g. in MC simulations (Kim et al. 2012; Taleei and Shahriari 2009). This method
requires information on x-ray source geometry, material, and filtration, which is un-
fortunately often proprietary (Kramer et al. 2017; Massoumzadeh et al. 2009).

The measurement of source spectra via Compton spectroscopy is one option to ob-
tain spectral information, and also to study the effect of beam-hardening due to the
beam-shaping filter (Matscheko and Ribberfors 1987). Especially the accessibility of
information on spectra after beam-shaping induced spectral distortion is limited.
The advantage of Compton spectroscopy is the extensive information about the
spectra and corresponding mean energies gained. However, this method requires
operating the CT scanner in service mode as the source rotation needs to be switched
off (Bazalova and Verhaegen 2007; Steuwe et al. 2018). Other research groups de-
termine spectra by means of transmission measurements (Duan et al. 2011; Lin
et al. 2014) or half value thickness measurements (Randazzo and Tambasco 2015).
Another option is the calculation of source spectra with mathematical models (Sand-
borg et al. 1994; Zhou and Boone 2008) or to use source spectra published in the

The signal-to-noise ratio (SNR) is a measure of the distinctness of an object on an image. The SNR
describes the ratio of the integrated photon signal over a region-of-interest (ROI) and the measured
background noise. The background noise is the standard deviation in a homogeneous background
region on an image. (Bushberg et al. 2012, pp. 60-100)
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Figure 1.5: Relative tube output for taking the x-ray attenuation characteristics and tube
efficiency into account (Siemens Healthineers 2018). The relative photon fluence
at different tube potentials according to a reference tube-current time product
(TCTP) of 120 mAs at 120 kV,, (standard value for a vascular abdomen acquisition)
is presented. Corresponding TCTP values, according to equation 1.3, are 911 mAs
at 80kVp, 299 mAs at 100kV,, and 55 mAs at 140 kV,,. However, these values are
notemployed in clinical practice. Instead, considerably lower values (e.g. 210 mAs
at 80kVp or 139mAs at 100kVy,) are applied to reduce radiation exposure in
the patient. A tube potential of 140kV,, is only seldom applied for abdomen
acquisitions, since it is not advantageous in terms of patient dose and image

quality.

literature or online (Fewell et al. 1981; Siemens Healthineers 2018). Some studies
make use of energy spectra obtained from the manufacturer under non-disclosure
agreements (DeMarco et al. 2005; Lin et al. 2014; Steuwe et al. 2018).

1.2.3 IMAGE ACQUISITION PARAMETERS

Prior to image acquisition, several acquisition parameters need to be configured
depending on the clinical indication. These parameters influence the extent of the
radiation exposure the patient receives during the acquisition.

As was described in section 1.2.2, the chosen tube potential influences both the num-
ber of emitted photons and the maximum photon energy. More photons are emitted
for the same tube current at higher tube potentials. Furthermore, the higher the
energy of a photon, the longer its penetration length. The TCTP is proportional to
the radiation exposure. Doubling the TCTP doubles the number of emitted photons
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and, hence, also doubles the energy deposition in the scanned subject. A reduction
of the TCTP by a factor of 2 increases the noise by a factor of V2. A larger scan length
or FOV also increases the radiation exposure.

For multi-detector computed tomography (MDCT) systems, the collimation is of
importance. The collimation determines the z-axis coverage of the image detector at
the isocenter of the CT scanner. It determines the thinnest available slice thickness of
the final reconstructed images but also influences the SNR in each detector element.
A fine collimation (e.g. 64 x 0.6 mm) allows for image reconstructions with a thin
slice thickness (t=0.6 mm) but causes a low SNR per detector element, since the
integrated signal in each detector element is small. The combination of detector ele-
ments (e.g. 32 x 1.2 mm) allows a higher SNR in the combined detectors but increases
the smallest slice thickness in the reconstruction to in this case t =1.2 mm. Note that
the nominal beam width W = N - t is equal in both examples. To counterbalance
the decreased SNR for narrow collimation settings, the TCTP needs to be increased
to increase the measured signal in the detector elements. This causes an increase of
the patient’s radiation exposure.

The pitch (unitless) is calculated as table distance, d, traveled per 360°-rotation di-
vided by the nominal beam width, W.

table distance per 360°-rotation  d

pitch = (1.4)

nominal beam width W
The pitch influences the acquisition time. For a fixed rotation time, a higher pitch de-
creases acquisition time and enables capturing of fast contrast-agent dynamics. For
fixed values of tube potential and TCTP, the pitch influences the radiation exposure: if
not compensated otherwise, a pitch > 1.0 decreases the radiation exposure, whereas
a pitch < 1.0 increases the radiation exposure due to beam overlap. However, mod-
ern CT scanners adapt the TCTP according to the pitch (increasing the pitch causes
an increase of the TCTP), keeping the radiation exposure values similar.

For each CT examination, a dose protocol is automatically created, providing infor-
mation on the radiation exposure and acquisition parameters.

1.3 RADIATION PHYSICS

This section provides a brief overview of the interactions of photons with body
tissues, contrast agents, and implants as well as their effect on the reconstructed
images. This section is based on Bushberg et al. (2012, pp.33-59). Interactions of
electrons, such as ionization, are not provided in this section. Please refer to the
literature for a more detailed explanation.

1.3.1 INTERACTIONS OF PHOTONS WITH MATTER

Interactions can be divided into two main groups: on the one hand elastic interac-
tions (Rayleigh, Thomson scattering) and on the other hand inelastic interactions
(Compton scattering, photoelectric effect).

During elastic interactions, the incident photon does not lose any energy during
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scattered photon

incident photon

A=A

Figure 1.6: Rayleigh scattering: Interaction of the incident photon with the total atom. A
photon with the same wavelength but different direction is emitted. Adapted
from Bushberg et al. (2012, pp. 33-59).

the interaction, wheres for inelastic interactions, the incident photon energy is re-
duced. Relevant interaction types in clinical CT are Rayleigh scattering, Compton
scattering and photoelectric interactions. Pair production requires photon energies
>1.022 MeV, which are not used in clinical CT. Therefore, this effect is not described
in the following.

1.3.1.1 Rayleigh scattering

Rayleigh scattering causes an oscillation of all electrons in the atom by interaction of
an incident photon with the total atom (see figure 1.6). Rayleigh scattering belongs
to the elastic interactions, since the incident photon does not lose energy. Instead,
a photon with the same wavelength (A; = A;) but with a different direction is
emitted. This effect is observable only at very low x-ray energies (15-30 keV, mainly
in mammography, Bushberg et al. 2012, pp. 33-59).

1.3.1.2  Compton scattering

During Compton scattering, an incident photon collides with an electron of the
outer shell of an atom, which is then ejected (now called Compton electron). Both
the direction and the energy of the incident photon (E;) are changed. The angle
between the direction of the incident photon and the direction of the scattered
photon, 0, can be used to calculate the energy of the scattered photon, E;. according
to the Klein-Nishina formula (equation 1.5, see also figure 1.7):

Eq

Esc = )
1+ 5111:_%(1 — COs 9)

(1.5)

Compton scattering is the most frequent interaction in soft tissues at 20keV and
above for photon energies in diagnostic imaging. For very low photon energies, the
incident photon undergoes elastic scattering, hence, only its direction changes but
not the energy (Thomson scattering) (Bushberg et al. 2012, pp. 33-59).

11
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Compton electron

incident photon N S

" ~X scattered photon
Figure 1.7: Compton scattering: The incident photon interacts with an electron of the outer

shell of an atom, which is then ejected. The incident photon energy and direction
change in consequence. Adapted from Bushberg et al. (2012, pp. 33-59).
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Figure 1.8: Photoelectric effect in the iodine atom (outer electrons in O-shell not shown): The
incident photon (energy 100 keV) collides with an electron of the inner shell with
a binding energy of 33 keV, which is ejected (photoelectron energy 67 keV). In a
cascade, the electron valence of the inner shell is filled by an electron of the outer
shell. Characteristic x-rays are released whose energies equal the differences in
binding energies of two shells. Adapted from Bushberg et al. (2012, pp. 33-59).
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1.3.1.3  Photoelectric effect

During a photoelectric interaction, an incident photon collides with an electron of
one of the inner shells of an atom. The electron, now called photoelectron, is ejected
from the atom. The incident photon is absorbed during this interaction. The energy
of the photoelectron, E,e, can be calculated by subtracting the electron binding
energy, Ey, from the energy of the incident photon, E;, see figure 1.8.

Epe =Ei—Ep (1.6)

The valence in the inner shell is filled by an electron of the next shell, releasing a
photon (characteristic x-ray) with an energy that equals the difference in binding
energies of the two shells. This process repeats itself until all inner shells are filled.

The incident photon can only cause an ejection of a photoelectron if its energy is
equal or higher than the binding energy of the photoelectron (Bushberg et al. 2012,
pp. 33-59). For photon energies just slightly above the binding energy of an e.g. K-
shell electron, there is a steep increase in the absorption coefficient. This sudden
increase is called K-edge (or correspondingly L-edge for L-shell electrons), see also
tigure 1.9 (Lusic and Grinstaff 2013). Incident photons with energies just above the
energies of these edges are likely to be absorbed in an atom during an interaction.
The photoelectric effect forms the basis of contrast agent utilization in CT (see
section 1.3.3).

1.3.2 ENERGY DEPOSITION IN DIFFERENT TISSUE TYPES

Photons that travel through a material can either be totally absorbed (photoelectric
effect), scattered (Rayleigh scattering, Compton scattering), or transmitted without
any directional or energy change (Rayleigh scattering). For Ny incoming photons,
the number of transmitted photons Nt is calculated as follows:

Nt =Ng-e ™t (1.7)

with the linear attenuation coefficient p and material thickness 1. The larger the linear
attenuation coefficient p or the material thickness 1, the more photons are attenuated
or absorbed in the material. The linear attenuation coefficient u is dependent on the
material density p, atomic number Z, atomic mass A, and on the x-ray energy E of
the incident photon:

_ pZ

= (1.8)

Materials with either a high density (p) or high atomic number (Z) are more likely to
attenuate photons, compared to materials with a lower p and Z-number. Especially
the large influence of the atomic number (Z*) and the energy (E®) on the attenuation
characteristics becomes apparent from equation 1.8 (Lusic and Grinstaff 2013).

13



14

INTRODUCTION

E 104 F T T T T o E
~ - — Jodine .
§ — Cortical bone | |
2 ek L-edges I — Fat |
2 i — Soft tissue ]
é - —— Water ]
9 i 1

&
g 107} 1
§ K-edge I i
g . edge ]
-§ | -
1] i
g 10} E
S g 1
s i 1
(2(@ [ -

100 -
10° 10 10°
Energy [keV]

Figure 1.9: X-ray mass attenuation coeffecients of iodine (red), cortical bone (black), fat
(green), soft tissue (blue), and water (gray) between 1keV and 150 keV (Chantler
et al. 2017; Hubbell and Seltzer 2018b). Note the K- and L-edges of iodine around
33.2keV and ~5.0 keV, respectively, and the K-edges of phosphorus (~2.1 keV) and
calcium (~4.0keV) in cortical bone. Also note the logarithmic scale of the x- and
y-axis.

Figure 1.9 depicts the mass attenuation coefficients for different body tissues and the
contrast-agent component iodine. The highest atomic number of fat and soft tissue
components is potassium (Z =19), according to values published in report 44 of the
International Commission on Radiation Units (ICRU) (Hubbell and Seltzer 2018a).
For cortical bone, the highest atomic number is calcium (Z = 20) and for iodine Z =53
(ICRU 2018). For cortical bone and iodine, the mass attenuation is higher than that
of water, soft tissue, or fat. Additionally, the K-edges of phosphorus (at ~2.1keV)
and calcium (at ~4.0keV) and the L- and K-edges of iodine (~5.0keV and ~33.2 keV,
respectively), originating from photoelectric interactions (refer to section 1.3.1.3), are
visible in the plot.

1.3.2.1 Hounsfield scale

CT scanners measure the extent of the attenuation of photons through different
materials. The final image value, measured in Hounsfield unit (HU), is quantifiable
and of clinical use. The larger the difference in attenuation between tissues, the larger
the contrast on the CT images. The CT number describes the linear attenuation
coefficient 1 of a volume element (voxel) at position (x, y, z) in relation to the linear
attenuation coefficient of water (Wyater) for the utilized x-ray spectrum (Bushberg
et al. 2012, pp. 312-374). The CT number is defined as:

(X, Y, 2) = Hwater

Hwater

CT number (x,y,z) = 1000 - [HU] (1.9)
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For a voxel containing only water, ((x, Y, z) — twater = 0 and so is the CT number. In
clinical CT, lowest CT numbers are obtained for air (-1000 HU), whereas highest CT
numbers are measured in very dense materials, such as bones and metals (>+3000
HU) (Bushberg et al. 2012, pp. 312-374).

1.3.3 CONTRAST AGENTS IN CT

The visibility of interfaces between adjacent tissues on CT images is poor for materi-
als of similar density and composition, and therefore complicates diagnosis (Lusic
and Grinstaff 2013). CT can take advantage of the increased photon absorption, espe-
cially at the K-edges of high Z-materials, when administering contrast agents prior
to an acquisition. Examples for applications of contrast agents are the intravenous
injection of an iodinated contrast agent for highlighting blood vessels, e.g. computed
tomography angiography (CTA) or the assessment of intestinal perforation by ad-
ministrating contrast agents rectally. In general, contrast agents increase the contrast
between similar tissues and provide functional information, e.g. information about
blood flow, blood volume, or perfusion of a tissue or tumor (Lusic and Grinstaff
2013). In 2016, 57% of the CT acquisitions, performed in the clinic where this re-
search was performed, included the administration of contrast agents (UKHD 2017).
The majority of contrast agents in CT are based on iodine due to its high atomic num-
ber (Z = 53), its K-edge in the diagnostic energy range (~33.2keV), and its sanitary
tolerance. Acquisitions at 80 or 100kV, result in a stronger attenuation than acqui-
sitions at 120kV,, and consequently in larger contrast enhancement (increase of the
CT number by 40 HU at 80 kVp, 30HU at 100 kVp, and 25 HU at 120 kVp for an io-
dine concentration of 1 mg/ml, compared to a non-enhanced acquisition) (Bae 2010;
Perisinakis et al. 2018). Less-frequently administered contrast agents are barium-
based, orally administered for gastrointestinal questions (Z =56, K-edge ~37.4keV),
gold-nanoparticles (Z =79, K-edge ~80.7 keV), or xenon gas (Z = 54, K-edge ~34.6 keV)
(Lusic and Grinstaff 2013).

Image examples of a three-phasic, contrast-enhanced CTA are presented in fig-
ure 1.10, acquired for the clinical assessment of an aortic aneurysm. A three-phasic
CTA includes a non-enhanced acquisition prior to the injection of an iodinated con-
trast agent, an arterial acquisition (starts a few seconds after the injection), and a
venous acquisition (starts ~70 seconds after the injection).

The administration of contrast agents can cause side effects which lead to contraindi-
cation for some patients. For iodine-based contrast agents, known side effects are
contrast-induced nephropathy, renal toxicity, adverse cardiac events, and thyroid
dysfunction (Lee et al. 2015; Lusic and Grinstaff 2013). Topic of recent research is the
contrast agent-enhanced radiation damage caused by CT examinations, and to what
degree contrast agents increase the risk of long-term bioeffects (Amato et al. 2013;
Pathe et al. 2011; Streitmatter et al. 2017; Wang et al. 2017). It is therefore of interest,
to what degree iodine causes an increase of the energy deposition (iodine-induced
build-up effect), especially at tissue interfaces.

15
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(a) Native phase (b) Arterial phase (c) Venous phase

Figure 1.10: Three-phasic computed tomography angiography acquisition of the abdomen.
The liver and spleen appear fairly homogeneous on the image of the non-
enhanced (native) phase (a), however, calcification of the aorta is clearly visible.
The arterial phase (b) is acquired when the contrast agent bolus passes through
the aorta, hence, the aorta and inferior vena cava and its branches are enhanced
and appear bright. Blood perfusion through the liver and spleen is already
enhanced in the arterial phase. At the time of the venous acquisition (c), the con-
trast agent has spread in the body, and the liver and the spleen are considerably
brighter than on the image of the non-enhanced acquisition, whereas the aorta
again appears darker compared to the image of the arterial phase.

14 RADIATION EXPOSUREIN CT

According to the annual report of the federal office for radiation protection in Ger-
many (Bundesamt fiir Strahlenschutz), 135 million radiological examinations were
performed in Germany in 2014, of which 55 million were dental examinations. There
was only a marginal increase in overall radiological examinations between 2007 and
2014. The average annual number of radiologic examinations per capita was 1.7
for Germany in 2014, which is high in comparison to the European average of 1.1.
Between 2007 and 2014, the number of conventional radiography examinations de-
creased, whereas the number of CT examinations considerably increased by about
40%. Similarly, the number of MRI examinations also increased between 2007 and
2014, by 55% (BfS 2016b; Nekolla et al. 2017).

1.4.1 DOSE DEFINITION

The absorbed radiation dose is the absorbed energy by ionizing radiation per unit
of mass, measured in Gray [Gy], and is commonly used in radiotherapy and nuclear
medicine:

1] 6.242-10"2 MeV
1Gy_1kg_ 1kg

(1.10)

The equivalent dose H takes the type of radiation and its radiation weighting factor into
account: photons and electrons have a radiation weighting factor of 1 throughout all
energies, whereas neutrons and protons have radiation weighting factors between
5 and 20, as the relative biological effectiveness of neutrons and protons is higher
than that of photons and electrons.
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In diagnostic radiology, the effective dose, given in millisievert [mSv], is more com-
monly used. The effective dose additionally takes tissue weighting factors into account,
which describe the risk of adverse effects of specific tissues. For example, lung tis-
sue or bone marrow is more radiosensitive than the skin or the brain. Please refer
to section 1.5 for more information on tissue weighting factors and (organ) dose
determination methods in CT.

1.4.2 NATURAL AND CIVILIZATIONAL RADIATION EXPOSURE IN GERMANY

The average annual dose per capita from all radiological examinations was 1.7 mSv
in 2015 in Germany, and in total 3.8 mSv combined with the radiation exposure
from natural sources (see table 1.2, BfS 2016b). The annual dose from medical exam-
inations increased over the last years (from 1.3 mSv in 2007) due to the increasing
number of CT examinations. The annual effective dose of radiological examinations
other than CT per capita (planar radiography, angiography, interventions) was fairly
stable between 2007 and 2014 (BfS 2016b).

The average effective dose per CT examination underwent a moderate reduction
(from ~7.5mSv to ~6.9mSv), whereas a stronger decrease in effective dose per an-
giographic and interventional procedure was noticeable (from ~6.6 mSv to ~5.5 mSv)
(Nekolla et al. 2017). However, the effective dose from CT examinations per capita
increased by 30% between 2007 and 2014 (BfS 2016b; Nekolla et al. 2017). This is a
less strong increase than the increased number of CT examinations due to the lower
effective dose per CT examination.

Table 1.2: Average effective annual dose to an individual due to ionizing radiation in 2015
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in Germany (BfS 2016b).
Average effective dose
[mSv/year]
Natural radiation exposition due to
Cosmic radiation (at sea level) ca.0.3
Terrestrial radiation ca. 04
Inhalation of radon and its progeny call
Ingestion of natural radioactive substances ca. 0.3
Total natural radiation exposure ca. 2.1
Civilizational radiation exposure due to
Fallout from nuclear weapon tests <0.01
Accident at nuclear power plant Chernobyl <0.01
Nuclear facilities <0.01
Application of radioactive substances and
ionizing radiation in medicine (w/o therapy) ca.1.7
Total civilizational radiation exposure ca. 1.7
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Frequency Exposure

Dentistry 0.6%
Skeleton 29%

Chest 10%

CT 9% 65%

Mamma 7% 1%
A&l 2% 17%

GI&UG 2% 5%
Others 0.6% 0.4%

Figure 1.11: Contribution of diagnostic x-ray procedures to total frequency (left) and col-
lective effective dose (right) in 2014 in Germany (BfS 2016b). Abbreviations:
computed tomography (CT), mammography (mamma, single-sided), angiog-
raphy and interventional procedures (A&l), gastro-intestinal and urogenitary
track (GI&UG).

Although CT examinations only accounted for 9% of all radiological examinations,
they contributed to 65% of the annual effective dose per capita (see figure 1.11, BfS
2016b). Typical effective doses for a selection of examinations for a standardized
patient of 70 kg body weight are shown in table 1.3 (BfS 2016a,b). CT examinations
and interventional procedures result in effective doses that are more than 100 times
higher than conventional radiography acquisitions (Hall and Brenner 2008), see e.g.
table 1.3 for the thorax.

1.4.3 RADIATION RISKS

Ionizing radiation is a known and proven carcinogen, especially for high doses ex-
ceeding 100 mSv (Hall and Brenner 2008; Siegel et al. 2017). From these high doses,
a deterministic risk of induced radiation damage is originating. Deterministic effects
of radiation have a threshold above which these effects increase in frequency and
severity with increasing dose (Mettler 2012). In contrast, stochastic effects of inducing
radiation damages have no threshold. Stochastic risks are originating from doses
<100 mSv. The probability of a stochastic effect increases with increasing radiation
exposure, however, not the severity.

The younger the patient, the higher the percentage lifetime cancer risk. One rea-
son for this effect is the increased dose from pediatric CT examinations as less
self-shielding is possible in tinier patients and organ doses are consequently higher.
Self-shielding is the endogeneous filtration of low-energy photons in fat and soft tis-
sue. Since especially fat tissue is less radiosensitive than e.g. kidney tissue, a larger
fat mass (e.g. in obese patients) decreases the dose to radiosensitive organs. The
second reason for the increased lifetime cancer risk at younger ages is the higher
radiosensitivity of children compared to adolescents (Hall and Brenner 2008). Radi-
ation induced double-strand breaks of the deoxyribonucleic acid (DNA) are more
likely to occur in dividing cells (Foray et al. 1997; Iliakis and Okayasu 1990). Due to
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the higher cell division rate at younger ages, the risk of double-strand breaks causing
cell alteration is increased. Furthermore, young patients are more likely to experi-
ence any possible radiation-induced tumor (that might develop after approximately
20 years) due to their long life expectancy from the moment of the CT acquisition
on, especially compared to an e.g. 80 year old multimorbid patient.

In general, a precautionary principle is applied (keep the dose as low as reason-
ably achievable, ALARA). Radiation doses >100 mSv are known to induce cancer,
since a linear relationship between excess risk and dose exists in this range (deter-
ministic radiation effects). The precautionary principle extends that excess risk also
to the lowest doses (linear no-threshold stochastic model, Hall and Brenner 2008;
Mettler 2012). Several biological and epidemiological studies have been published
that demonstrate a small risk of radiation-induced cancer for organ doses associated
with a few CT scans (Hall and Brenner 2008), however, the exact biological mecha-
nisms are still unknown and there are also positive radiation effects mentioned on
the opposite side (Siegel et al. 2017).

There are several task groups worldwide which regulate, supervise, and provide
recommendations about the handling of radiation exposure in medicine, such as
the International Commission on Radiological Protection (ICRP), the ICRU, or the
American Association of Physicists in Medicine (AAPM). According to the ICRP, the
nominal risk factor (lifetime risk estimate) for fatal cancer in the whole population
is 5.5% per Sievert (4.1%/Sv for adult workers, ICRP 2007).

Table 1.3: Effective dose per examination in diagnostic radiology in Germany. Abbreviations:
computed tomography (CT) (BfS 2016a,b).

Typical effective doses

Examination [mSv]
CT

CT head 1-3

CT thorax 4-7

CT abdomen 8-20
Angiography and interventional procedures

Arteries (angiography & intervention) 10-30
Gastrointestinal system 4-12
Planar radiography

Pelvis 0.3-0.7
Head 0.03-0.06
Dental <0.01
Thorax 0.02-0.04
Mammography (2-sided, in 2 planes) 0.2-0.4
Lumbar spine 0.6-1.1

Extremities <0.01-0.1

19



20

INTRODUCTION

144 TECHNIQUES FOR DOSE REDUCTION IN CT

The diagnostic indication, desired information, and patient constitution lead to the
specific acquisition parameters of a CT examination. A reduction of the radiation
exposure is always aimed at, while confident diagnosis should be maintained, fol-
lowing the ALARA principle. First of all, the number of acquisitions should be
reduced if possible, e.g. a non-enhanced acquisition should be omitted if the ob-
tained information will not contribute to the diagnosis. Furthermore, the acquisition
length (coverage) should be reduced to the region of interest and carefully planned.
Moreover, the desired reconstructed slice thickness should be reconsidered. A lower
necessary TCTP, and therefore radiation dose, can be achieved with a larger detector
collimation.

The software of modern scanners provides intrinsic dose modulation, also known
as automatic exposure control (AEC). The AEC regulates both the tube potential
and the tube current, based on the patient topogram (scout scan/localizer, see fig-
ure 1.12) and reference values for the tube potential and tube current.

An adjustment of the tube potential to lower values can reduce the radiation ex-
posure. This technique has two effects: (1) the image contrast increases, especially
for soft body tissues. However, due to the reduced efficiency of the x-ray tube at
low tube potentials (see section 1.2.2.3), (2) the image noise also increases (Lira et al.
2015; Seyal et al. 2015). If the tube current is not increased to fully compensate for the
increased noise level, low-kV imaging allows for a reduction in radiation exposure

250
z2
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5 150
[_4

100

200 400 600 800
Slice location [mm)]
(a) Anterio-posterior (b) Lateral topogram with corresponding automatic LTCM for
topogram successive CT acquisitions, based on the topograms

Figure 1.12: Topograms, acquired prior to a computed tomography (CT) acquisition. The
anterio-posterior topogram is acquired prior to any acquisition, whereas the lat-
eral topogram may be additionally acquired. Longitudinal tube-current modu-
lation (LTCM) and the resulting slice-specific tube-current time product (TCTP,
white curve in (b)) for successive CT acquisitions is planned on the basis of the
topograms. Water equivalent diameters are calculated based on the x-ray atten-
uation of the topogram and used to determine the appropriate tube current. For
LTCM, the tube current at each z-position (slice location) is calculated relative to
the maximum x-ray attenuation (in this example at the shoulders). The accuracy
of LTCM increases with the additional acquisition of a lateral topogram.
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(Stiller 2011). Especially for contrast-enhanced acquisitions, tube potentials lower
than 120 kV, should be used, since this does not only improve image contrast but
also enables a dose reduction by up to 50% (Kalender et al. 2009; Schegerer et al.
2017).

A longitudinal tube-current modulation (LTCM) is implemented in all modern clin-
ical CT scanner models (see figure 1.12b). LTCM is based on the patient topogram
and takes the differences in attenuation along the z-axis of the patient into account.
The tube current is increased in regions of large photon attenuation (shoulders,
hips), whereas tube current is reduced for regions of low attenuation (thorax). Fig-
ure 1.12 shows the patient-specific modulated tube current along the longitudinal
axis. Slice-specific tube current values are documented in the Digital Imaging and
Communications in Medicine (DICOM)-headers of the reconstructed images.

For some vendors, the tube current is additionally based on attenuation measure-
ments from previous 180°-rotations of the CT gantry (online/angular tube-current
modulation (ATCM), Kalender et al. 1999b). The reason for this modulation are the
differences in lateral and anterio-posterior (a.p.) diameter of patients (and hence,
x-ray pathways), especially at the shoulder or pelvis.

Great attention should be paid to the positioning of patients in the CT gantry, since
the positioning influences the efficiency of AEC and the applied radiation exposure.
If the patient is positioned off-center, dose modulation will not be as effective as if
the patient is positioned at the isocenter of the CT scanner. For an off-center position,
the water equivalent diameters (WEDs) calculated from the topograms cannot be
accurately determined since patients appear magnified on the topogram, resulting
in increased tube current values (Akin-Akintayo et al. 2018). Additionally, the arms
should be placed outside the desired examination region, e.g. arms elevated above
the head, if the abdomen is of interest. This reduces the x-ray pathway through the
patient, resulting in a reduction of the required tube current for a sufficient image
signal (Liu et al. 2015).

Due to newer developments in iterative reconstruction, images with less noise can
be obtained, allowing to reduce the reference tube current prior to the acquisi-
tion, enabling dose reductions of 30 to 60% (Kalender 2014; Schegerer et al. 2017;
Stiller 2018). Furthermore, modern CT scanners offer the possibility of dual-energy
(DE) acquisitions. From contrast-enhanced DE acquisitions, it is possible to calcu-
late virtual non-contrast (VNC) images. These VNC images allow to omit the real
non-enhanced acquisition, thereby reducing the radiation exposure to up to 25-40%
(Buffa et al. 2014; Graser et al. 2009; Toepker et al. 2012). Different techniques for
radiation exposure determination are described in the following section.
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1.5 CT DOSIMETRY

As was mentioned in section 1.2.3, a dose protocol is automatically created by the
CT scanner after an examination. The dose protocol informs about the individual
acquisition parameters, e.g. the applied tube potential, the reference and effective
TCTP, the x-ray tube rotation time, and the collimation width, and information on
the radiation exposure, making use of the quantities computed tomography dose
index (CTDI) (to be more precise, the volumetric CTDI, CTDI,,;) and the dose-length
product (DLP).

COMPUTED TOMOGRAPHY DOSE INDEX (CTDI) AND DOSE-LENGTH PRODUCT (DLP)
The CTDI is a dosimetric quantity describing the radiation exposure in CT imaging.
It is purely a measure for the radiation exposure, but does not describe the effective
dose or dose distribution of /in a patient. The CTDI is defined as "the integral along
a line parallel to the axis of rotation (z) of the dose profile (D(z)) for a single slice,
divided by the nominal slice thickness T" (Bongartz et al. 1999):

+0o0

CTDI = %J‘ D(z) dz (1.11)
The measurement of dose using a CTDI phantom (see figure 1.13) and an ionization
chamber is a standard for quality control in CT. CTDI phantoms are available in
two sizes (body 0 32cm and head @ 16 cm, thickness of 15cm in both phantoms),
representing a torso and a head. The phantoms are made of polymethyl methacrylate
(PMMA), with a density of 1.19 g/cm?. For the measurement of a volumetric CTDI,
radiation exposure is measured at five different positions (one central position,
four peripheral positions) in the phantom. For a practical CTDI measurement, the
radiation exposure is integrated in each measurement position individually over a
z-length L of 100 mm and results in the quantity CTDI;qg (unit mGy):

L =50 mm
CTDlygo = —J D(z) dz (1.12)
T L =-50 mm
From the CTDI;gp, the weighted CTDI, CTDIy, is calculated, taking the dose mea-
surements in the phantom center (c) and periphery (p) into account:

2 1
CTDI,, = 5 . CTDIlOO,p + g . CTDI]OO,C (1.13)

The volumetric computed tomography dose index (CTDI,,1), which is provided by
the dose protocol, additionally takes the pitch value into account:
CTDI,,

CTDILvol = ———

pitch (114

The CTDI,, allows to compare the influence of different acquisition parameters
(tube potential, TCTP, pitch, collimation) on the radiation exposure. Furthermore, it
allows to compare the radiation exposure of different acquisitions among scanners
and vendors. However, the index is independent of patient morphology and tissue



1.5 cT DOSIMETRY

measurement position

TO

OH HO

16 cm

TO

32 cm

Figure 1.13: Computed tomography dose index (CTDI) phantom: CTDI body (B) (dark gray,
0 32cm) and CTDI head (H) (light gray, @ 16 cm) phantom. CTDI phantom
thickness in z-direction is 15cm, made of polymethyl methacrylate (PMMA).
Both CTDI phantoms include five measurement positions for a CT ionization
chamber (one central measurement position and four positions in the periphery),
fitted with PMMA plugs for homogeneous density of the CTDI phantom. One
PMMA plug is replaced by an ionization chamber for measurement.

composition. Multiplying the CTDI,,; with the scan coverage (irradiated length in
cm) results in the DLP value, which again is provided by the dose protocol (unit
cm-mGy):

DLP = CTDI, - scan coverage (1.15)

The CTDI, and DLP only provide a measure of the intensity of the radiation being
directed at the patient but not a measure of the effective or organ dose.

TISSUE WEIGHTING FACTORs  In 1977, the ICRP published tissue weighting factors,
wrt, in ICRP publication 26 for specific tissue types (e.g. bone marrow, breast, thy-
roid tissue) (ICRP 1977). Tissue weighting factors take the radiosensitivity of specific
tissues or organs to ionizing radiation into account. The radiosensitivity of specific
cell types is determined from cell experiments and re-investigated on a regular basis.
Hence, the tissue weighting factors were updated and refined in ICRP publication
60 in 1991 and ICRP publication 103 in 2007, thereby altering the tissue weighting
factor to the currently estimated radiation sensitivity (ICRP 1991, 2007). Especially
the weighting factors for the gonads and breast have been adjusted throughout the
time: for the gonads, wt changed from 0.25 (ICRP 26) to 0.20 (ICRP 60), to 0.08 (ICRP
107), whereas for the breast, wt changed from 0.15 (ICRP 26) to 0.05 (ICRP 60), to
0.12 (ICRP 107).

Tissue weighting factors allow for the conversion between tissue dose values (equiva-
lent dose, unit Gy) and effective dose (in mSv). Tissue dose values can be determined
by means of the anthropomorphic Rando Alderson Phantom (RSD Phantoms, CA,
USA), which includes a human skeleton surrounded by tissue-equivalent materials.
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It is a common dosimetry phantom in radiology and radiotherapy departments. The
phantom consists of thin slabs allowing the insertion of small thermoluminescent
detectors (TLDs) to measure dose values at various positions inside organs, skeleton,
and surrounding tissue. Although it is a complex measurement and TLD read-out
procedure, the spatially-resolved measurement of the radiation exposure in an an-
thropomorphic phantom, which contains human and tissue equivalent materials,
allows for an increased precision and accuracy of determined dose values.

CONVERSION FACTORS  The simplest and most straightforward method for the cal-
culation of the effective dose resulting from a CT acquisition is the use of body-region
specific DLP-to-effective-dose conversion factors (unit mSv-mGy~!-em™!). The first
conversion factors were published in the European guidelines on quality criteria
for CT in 1999 based on the ICRP 60 weighting factors (Bongartz et al. 1999; ICRP
1991) and were updated in 2011 by Huda et al. (2011) based on ICRP publication 103
(ICRP 2007). The DLP-to-effective-dose conversion factors are based on the tissue
weighting factors, introduced in the last paragraph.

According to Huda and Mettler (2011), dose calculation by means of the CTDI,,, and
DLP values with conversion factors are not exact and useful for all patients, since
conversion factors are based on a standardized patient, although the actual patient
size and the morphology has a considerable impact on the effective dose (Steuwe
et al. 2016). CTDI,, and DLP values are only sufficient to give a rough estimate of
the radiation exposure from CT dose protocols.

According to McCollough et al. (2011) and Boos et al. (2016), "estimates of indi-
vidual patient risk (...) must use patient size-specific dose estimates (SSDEs)" and
not just the scanner output (CTDI,,), DLP). SSDEs are calculated by multiplication
of the CTDI,, and a conversion factor, f, which depends on the axial diameter of
a patient. The conversion factor, f, is provided by the AAPM (2011) for different
lateral- and a.p.-diameters, and for effective diameters (Deg=+/a.p.-lat), and de-
creases with increasing diameter. Hence, SSDE-conversion factors can be used to
correct the CTDI,, according to the patient’s habitus (Boos et al. 2016). Diameter
measurements on axial CT images and calculation of Deg are considered the most
accurate, as they take fat shielding into account and reduce relative dose for large
patients (see figure 3 in McCollough et al. 2011). In addition to SSDEs, Deak et al.
(2010) have published sex- and age-specific conversion factors for CT, to increase
the accuracy of effective dose values.

COMMERCIALLY AVAILABLE PROGRAMS FOR DOSE CALCULATION  Apart from ex-
perimental dose measurements and the use of conversion factors, there are several
commercial programs available for the determination of dose without the need
of own measurements, but solely requiring a CT patient data set and the acquisi-
tion parameters. These programs are often part of dose-management systems, such
as DoseTrack (Sectra Medical Systems, Cologne, Germany) and tqm | DOSE (Agfa
HealthCare, Bonn, Germany), or can be purchased individually (CT-Expo or Virtu-
alDose, Ding et al. 2015). Furthermore, open-source codes are available for research
purposes, providing a high flexibility in their applications but also the need for



1.5 cT DOSIMETRY

targeted further development. Most of these programs are based on Monte Carlo
methods which are described in more detail in section 1.5.1.

1.5.1 MONTE CARLO METHODS IN RADIOLOGY

Monte Carlo methods can be defined as "statistical methods that use random num-
bers as a base to perform simulation of any specified situation” (Ljungberg 1998, p. 1).
These statistical methods are used in a large field of applications for the simulation of
stochastic processes, especially for the simulation of particle transport in scattering
media (Chan and Doi 1983). They can be applied to study radiation physics aspects,
physical quantities, and characteristics of detection systems such as the efficiency of
gamma-ray detectors (Andreo 1991; Raeside 1976). In the medical field, MC studies
can be found in nuclear medicine, radiation therapy, and diagnostic radiology. There
is a broad scope of application since MC methods provide the most complete and
accurate method for estimating doses in organs and tissues (Chan and Doi 1983;
Christner et al. 2010; Jiang et al. 2007). In diagnostic procedures, MC methods are
used for their optimization, to improve the image quality and patient-dose ratio, and
for understanding radiation protection aspects, scatter, and attenuation principles
(Andreo 1991; Zubal 1998).

MC methods in diagnostic radiology are advantageous because no actual x-ray unit
is necessary to study the influence of x-rays in an object or patient. Furthermore,
simulations do not expose patients or staff to ionizing radiation. A model of the
CT scanner and various phantoms can be developed and implemented to track and
determine dose deposition with full flexibility: MC methods enable the alteration or
repetition of experiments at-will, allowing to easily change between different mea-
surement setups or adjusting simulation parameters to a certain research question
(Steuwe et al. 2018).

Several MC-based dose calculators are available for the calculation of dose depo-
sition in CT (Brady et al. 2012), such as ImPACT (ImPACT 2011), or ImpactDose
(IBA Dosimetry 2009; Kalender et al. 1999a). However, differences between software
tools are often significant and the user has to be aware of the limitations, such as out-
dated mathematical phantoms and look-up tables, or outdated CT scanners (Cros
et al. 2017).

1.5.1.1 Geant4

The open-source toolkit Geometry and Tracking 4 (Geant4) (Agostinelli et al. 2003;
Allison et al. 2006) is used for the simulation of physics processes in this work.
One advantage of this software compared to many commercial programs is the
possibility of adjusting the simulation parameters for the specific purposes of a
desired research project. Hence, geometry parameters (the choice and position of
the source, phantoms, or detectors) as well as the way physics processes are tracked
can be specified according to the desired simulation setup. The software and the
variable input and output parameters are described in more detail in section 2.1 and
2.1.4, respectively.
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1.6 MOTIVATION AND GOAL OF THIS WORK

This chapter described the increasing use of CT and the associated radiation expo-
sure over the past decade. Especially for patients receiving follow-up examinations
over a long period of time, it is of interest, to what degree these patients are exposed
to radiation and where the energy of x-rays is deposited in the body. Since long-
term effects of the radiation exposure from CT examinations are still not clarified,
extensive long-term studies of patients without and with CT examinations need
to be performed. The surveillance of individual effective and organ doses helps to
evaluate the effects of ionizing radiation, especially with regard to possible induced
cancerous diseases. Furthermore, deeper knowledge about the spatial distribution
of the deposited x-ray energy in relation to CT acquisition parameters might help to
develop technical improvements in CT in future.

The determination of the radiation exposure caused by CT is still a compromise
between calculation time and accuracy. Conversion factors are advantageous be-
cause of their simple and fast use, however, they are based on standardized patients
that do not represent the actual patient (Steuwe et al. 2016). The administration of
potentially toxic contrast agents and the corresponding change in energy deposi-
tion is not included in the dose calculation using conversion factors, although it is
well known that iodinated contrast agents increase the frequency of double strand
breaks of the DNA (Streitmatter et al. 2017). In contrast to the conversion factors,
determination of effective dose by MC simulations is time-intensive but yields the
advantage that the actual patient morphology and tissue composition (including
contrast agents) can be included. However, these simulations are only possible post
hoc, after the CT acquisition has been performed.

The aim of this project was the development and validation of a software for de-
termination of radiation exposure associated with CT that paves the way towards
virtual dosimetry of patients. Virtual dosimetry, in contrast to experimental dosime-
try, allows for prompt patient- and acquisition-specific dose calculations that can
be performed for all examined patients in a diagnostic radiology department. In
contrast to commercially available software, it was aimed at a program offering a
high degree of flexibility to implement any source spectra, geometrical and digitized
patient phantoms, and to simulate the effect of contrast agents on energy deposition.
Furthermore, a flexible and comprehensive data read-out and analysis was desired,
offering considerably more possibilities than commercial software.

It was the goal to understand the differences in dose distribution caused by differ-
ent source spectra and primary filtration. The knowledge about possible differences
in dose distribution helps to assess whether interchangeability between spectra is
given or whether the measurement of own source spectra is required for an ex-
act simulation of a CT acquisition. With the information obtained from the input
source spectra, the effect of different tube potentials on the energy deposition was
determined for more elaborate phantoms, without and with employing contrast
agents. Since low-kV acquisitions are encouraged nowadays, their impact on the
dose distribution, especially in the skin, is of interest as well as the effect on the
detector signal. To allow for individual patient dosimetry, the software was further
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developed to implement patient-specific phantoms. Obtaining three-dimensional
maps of the energy deposition associated with CT acquisitions, allows for (a) indi-
vidual dosimetry, (b) comparison between follow-up acquisitions, and (c) assessing
the change in energy deposition when altering scan parameters (e.g. different tube
potential) or morphological change (e.g. weight loss).

CONTRIBUTION OF OTHERS The measurement of CT x-ray spectra by Compton
spectroscopy and the production of the physical beam-shaping filter model for MC
simulations have been performed prior to this work by Dr. Wolfram Stiller and Dr.
Stella Veloza (Veloza 2012). The methodology and results of this prior work have
been reprocessed and prepared for submission during the course of the current
doctoral program (Stiller et al. 2019).

The MC software programmed during this project is a further development of a
MC model to simulate Compton spectroscopy measurements, which was part of the
doctoral thesis of Dr. Stella Veloza (Veloza 2012).

Patient data included in this thesis has been acquired during the course of this work,
as part of a clinical study (CT Angiography of the Aorta: Prospective Evaluation of
an Individualized Low-Radiation Dose and Low-Volume Contrast Media Protocol
with Dual-Energy CT for Detection of Endoleaks after Endovascular Aneurysm
Repair). The study was organized by Dr. med. Fabian Rengier and Matthias Fink,
and executed by the radiologists and technicians in the Clinic for Diagnostic and
Interventional Radiology, University Hospital Heidelberg, Germany.
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MATERIALS AND METHODS

This chapter provides necessary background information on the employed MC
model of radiation transport, the workflow of the MC simulations, the MC model’s
individual components (x-ray source emission, phantoms), and the analyses and
simulations of CT acquisitions performed during this research project.

The chapter is divided into two main parts: (1) the individual components of the
MC model and (2) the performed simulations of CT acquisitions, which evaluated
the effect of tube potential, phantom material choice, and contrast agent on the en-
ergy deposition and its spatial distribution in a multitude of simple and elaborate
phantoms.

In section 2.1 and 2.2, a description of the used MC model and its configuration are
presented as well as the implemented CT scanner geometry. In section 2.3, the em-
ployed input spectra and monoenergetic photons, beam shaping methods, as well as
the implementation of different source types and acquisition modes in the simula-
tion are described. In section 2.4, the geometrical and digitized phantoms designed
in this work and used for tracking of the radiation exposure, are presented.

Finally, with the individual components of the MC model, the performed simula-
tions are described in section 2.5. The designed phantoms increased in complexity
during the course of this work. The effect of different source spectra, material choice,
tube potential, and contrast enhancement were first assessed in simple phantoms
(water and box phantom). Afterwards, the information gained from the simple
phantoms was used to assess and understand the energy deposition in a geometri-
cal anthropomorphic phantom and several digitized patient phantoms, as a function
of the applied tube potential, contrast enhancement, and phantom morphology.
Section 2.6 describes a method used to estimate the error of the MC model.

21 DESCRIPTION OF THE MONTE CARLO MODEL

MC simulations were performed using Geant4, version 4.9.2.p04. Geant4 is an object-
oriented simulation toolkit for simulation of radiation transport in matter, providing
a set of software components implemented in the C++ programming language. The
toolkit allows to implement all aspects necessary for this work, e.g. the geometry
of the CT scanner and phantoms, desired primary particles, tracking of particles
in materials, the required physics processes, and the storage of interaction data
(Agostinelli et al. 2003; Allison et al. 2006).

The developed MC software models a CT scanner geometry and allows for sim-
ulation of CT acquisitions of patients or test specimens (phantoms). According to
section 1.2.1, the CT scanner geometry consists of three main components:
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1. the x-ray emitting source,
2. beam-shaping filtration, and
3. the detector for image acquisition (see figure 1.3).

The radiation exposure associated with CT acquisitions (energy deposition and its
spatial distribution) is tracked and measured in

4. a phantom or patient model, positioned at the isocenter of the CT geometry.

The developed MC model emits photons and tracks their physical interactions and
energy deposition between photon emission from the x-ray source and photon ab-
sorption in a phantom or detector, including all particles arising during interactions
of photons in matter (i.e. electrons, called 'secondaries' or secondary electrons?).

In the developed MC software, the x-ray source with its individual components was
not modeled since information on the geometry and materials were not available
(see section 1.2.2.4). Instead, x-ray emission was modeled by the implementation of
source spectra and monoenergetic photons. Details on the x-ray emission are pro-
vided in section 2.3.

Two different methods for beam-shaping filtration were implemented, which shape
the x-ray fan beam and alter the photon fluence according to transmission mea-
surements performed prior to this work. Details on the beam-shaping filtration are
provided in section 2.3.5.

The third part of a CT scanner geometry is the CT detector. An experimental lead de-
tector (see section 2.4.1.2) was implemented and employed in this work. A classical
CT detector for image acquisition was additionally modeled, however, since image
acquisition was not focus of this work, the latter CT detector will not be described.
The radiation exposure associated with CT examinations was simulated in a variety
of phantoms (geometrical phantoms or digitized patient phantoms). Details on the
implemented phantoms are provided in section 2.4.

The tracked physics processes of photons, electrons, and positrons (i.e. Compton
effect, Rayleigh scattering, etc.) are defined in a 'physics list' and are described in
detail in section 2.1.3.

2.1.1 USER ACTION CLASSES

The object-oriented structure of Geant4 includes a variety of classes, which the user
canadapt according to the specific needs of a MC model. Three classes are mandatory
for a MC simulation in Geant4, describing the photon emission, the geometry and
materials of the CT model and phantoms, and the tracked interactions of particles
in matter.

Incident/initial photons are also called primary photons or primaries. Electrons/photons arising from
interactions in matter are called secondary electrons/photons or secondaries.



2.1 DESCRIPTION OF THE MONTE CARLO MODEL

x-RAY EMIssION  The G4V UserPrimaryGeneratorAction class provides information
about the x-ray source, e.g. its position, number and type of particles, and the particle
distribution.

CT AND PHANTOM GEOMETRY The G4VUserDetectorConstruction class describes
information about the general scanner geometry, phantom and material selection,
filtration, and the image detector. Do not get confused on the name of this class —all
geometrical components belong to this class and are named 'detector’, not just an
image detector. All geometrical components can be made 'sensitive', meaning that
energies can be scored in all geometrical components.

pHYSICS LIST The G4VUserPhysicsList class describes all physics processes and
available particles in the simulation.

Optional user action classes, initialized in the current MC model, are G4UserEvent-
Action and G4UserRunAction. These are classes that handle data collection and stor-
age of data for further analysis.

2.1.2 RANDOM NUMBER GENERATOR

MC models use pseudo-random numbers as a base to perform the simulations. In
this implementation, the random number generator 'MTwistEngine' is employed,
which is based on the Mersenne Twister generator. It has a periodicity of 2199377 — 1
events (Matsumoto and Nishimura 1998). The random number generator uses the
value of a seed to generate a sequence of random numbers. Using exactly the same
seed value in two repetitions of a simulation will lead to exactly the same results in
both repetitions (Ljungberg 1998, p. 2). The seed value in the employed MC model is
initialized using the time stamp of the system computer clock, and therefore ensures
independent simulation statistics for different simulations.

2.1.3 PHYSICS LIST

The physics list determines the type of particles and processes, which are tracked
during the MC simulation. The user can select from existing physics lists or develop
own lists for the specific purpose of the simulation. Photon energies in diagnostic
radiology range typically between 0 and 140keV, requiring a detailed description
of low-energy physics processes. For this work, physics models developed for the
PENetration and Energy LOss of Positrons and Electrons (PENELOPE) code (version
2001) were employed (Baré et al. 1995; The Geant4 Collaboration 2008). These models
were designed for the use in MC simulations and allow tracking of energies down
to a few hundred eV. Background information on the tracked physics processes of
photons can be found in section 1.3.1.

Photons, electrons, and positrons are tracked during the simulation. For photons,
gamma conversion (G4PenelopeGammaConversion), Compton scattering (G4Penelope-
Compton), the photoelectric effect (G4PenelopePhotoElectric), and Rayleigh scattering
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Figure 2.1: Simulation of photon processes in a scattering medium in Monte Carlo (MC)
simulations, adapted from Chan and Doi (1983). Abbreviations: Klein-Nishina
equation (K-N-eqn), Thomson equation (T-eqn), scattering (scat.), threshold (TH).

(G4PenelopeRayleigh) are tracked. For electrons and positrons, the processes multiple
scattering (G4MultipleScattering), ionization (G4Penelopelonization), and bremsstrah-
lung (G4PenelopeBremsstrahlung) are tracked. Additionally, annihilation processes
(G4PenelopeAnnihilation) are tracked for positrons (Steuwe et al. 2018).

The range of photons, electrons, and positrons in a material depends on their energy
and on the material properties. In this work, a range cut-off of 100 pm was set,
corresponding to energies of 990eV in air and 1.1keV in water for photons and
84.7 keV in water for electrons and positrons (Steuwe et al. 2018). If the range of
an photon, electron, or positron is <100 pm, its energy is deposited at its current
position and the particle is not further tracked.

Chan and Doi (1983) have published a schematic overview of the photon transport
as handled by MC methods, that visualizes the processes of photons and electrons
after each interaction (see figure 2.1).

2.1.3.1 Interaction cross-sections and material database

Data of interaction cross-sections were provided by the low-energy extension of
the electromagnetic processes data, version 6.2, distributed in the source file of
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Geant4 (Steuwe et al. 2018). The material properties were retrieved from the National
Institute of Standards and Technology (NIST), ICRU databases (Hubbell and Seltzer
2018a), and literature (Carver et al. 2017; Chang et al. 2016), see appendix B.

214 STORAGE OF INTERACTION DATA

Simulation results were stored and analyzed in Root 5.34/32 (Brun and Rademakers
1996; Steuwe et al. 2018). In Root, data can be stored in large tables (branches), which
can efficiently be used for data analysis. The single branches (variables) are combined
in trees and stored as a single file.

The following information was stored for every interaction (including scattering) in
a tracked volume as branches in a Root tree:

¢ incident photon energy
* energy deposited in the phantom
* position (x,y,z) of interaction

¢ interaction type (photoelectric effect, ionization, Compton effect, bremsstrah-
lung, Rayleigh scattering, multiple scattering of charged particles in matter)

¢ volume in which the interaction took place
¢ track identification (ID) (from primary or secondary interactions)

Information stored in the different branches can be combined during analysis, e.g.
the deposited energy at specific positions can be plotted or only the energy deposi-
tion resulting from a specific interaction type.

From this information, energy maps (2D- or 3D-histograms) or profiles of the spatial
distribution of energy deposition inside phantoms can be calculated, as well as the
total energy deposition (Eioa) determined. An analysis of the simulation time, data
storage, and required disk space for the extensive data output of the simulations
can be found in appendix C.

Further analysis software tools used throughout this thesis are described in ap-
pendix D.

22 CTSCANNER GEOMETRY

In the developed MC model, the scanner geometry of the Aquilion™16 (formerly
Toshiba Medical Systems Corporation, Nasu, Japan, now Canon Medical Systems
Corporation, Otawara, Japan) was employed since the measurement of x-ray source
spectra, beam-shaping filtration, and transmission were performed on this scanner
(prior to this work). Scanner specifications can be found in appendix A. The general
geometry of a CT scanner as implemented in the MC model was presented in
figure 1.3. Please refer to section 2.3 for the measurement of x-ray spectra and section
2.3.5 for the employed beam-shaping methods.

33



34

MATERIALS AND METHODS

23 X-RAY EMISSION

This section provides the x-ray spectra employed throughout in this work. Spectra
were either measured at 120kV, (Aquilion™16) or generated using an online tool
for 80, 100, and 120 kVp (Siemens Healthineers 2018). For closer inspection, the
individual spectra are plotted in appendix E.

2.3.1 MEASURED CT X-RAY TUBE SPECTRA

Prior to this work, x-ray source spectra of the Aquilion™16 CT x-ray source (CXB-
750D MegaCool) were measured using Compton spectroscopy and reconstructed
according to Matscheko and Ribberfors (1987) (Stiller et al. 2019). Spectra were
measured for fan angles between 0° and 20°, in steps of 2°, and at 21° (see figure 2.2).
From the spectral measurements, information on the photon transmission through
the beam-shaping filter was obtained and further used to model a physical beam-
shaping filter (PBF) for MC simulations (Veloza 2012), and to implement a probability
density function (PDF) for photon fan-angle dependent photon fluence modulation
(FM), see section 2.3.5.2 and figure 2.3. Dimensions and design of the beam-shaping
filter developed prior to this work are given in appendix F.

Due to beam-hardening caused by the beam-shaping filter, the mean spectral energy
increased from 57.7 keV at a fan angle of 0° to 76.7 keV at a fan angle of 21°. Figure 2.4
compares the shape of the 0°- and 21°-spectra for normalized photon intensities.
Throughout this thesis, the measured 0°-spectrum is the reference spectrum. The
mean energy of the reference spectrum, Emean ref, €quals 57.7 keV.
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Figure 2.2: Measured fan-angle dependent Aquilion™16 spectra. Photon intensity decreased
with increasing fan angle, whereas mean spectral energy increased.
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Figure 2.3: Fan-angle dependent photon transmission caused by beam-shaping filtration.
The photon fluence is higher at the center of the fan beam, whereas it is reduced
to the sides of the fan beam. This curve is implemented as a probability density
function (PDF). Adapted from Steuwe et al. (2018).
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Figure 2.4: Measured normalized Aquilion™16 spectra at 120kV,, at 0° and 21°, showing the
beam-shaping filter induced spectral distortion at larger fan angles. The mean
spectral energy increased from 57.7 keV at a fan angle of 0°to 76.7 keV at a fan
angle of 21°.
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Figure 2.5: Generated spectra without (120kV},) and with 3.3 mm aluminum (Al) filtration
(80, 100, and 120 kV},) for matching mean energy of the generated and measured
120 kV,, spectra. Spectra available from Siemens Healthineers (2018).

2.3.2 GENERATED SPECTRA

In addition to the measured spectra, spectra were generated at tube potentials of
80, 100, and 120kV, using an online tool (Siemens Healthineers 2018). A filtra-
tion of 3.3 mm aluminum was added such that the mean energy for the gener-
ated 120 kVp,-spectrum matched the mean energy of the measured central spectrum,
Emean ref =57.7 keV. Mean energies of the generated spectra without 3.3 mm aluminum
filtration were 40.8 keV at 80 kV),, 46.7 keV at 100kV,, and 51.5keV at 120kV,. Mean
energies of the generated spectra with 3.3 mm aluminum filtration were 46.6 keV at
80 kVp, 52.7keV at 100 kVp, and 57.7keV at 120 kVp. The filtered spectra and the
unfiltered spectrum at 120kV/, are depicted in figure 2.5.

The measured and the generated filtered spectrum at 120kV, are compared in fig-
ure 2.6, showing subtle differences between 20 keV and 60 keV. The peak-positions at
the characteristic x-ray energies of tungsten at ~67 keV and ~59 keV are in accordance,
although peak height differs slightly.

2.3.3 MONOENERGETIC PHOTONS

Since source spectra are not always available, monoenergetic photons as a simplified
approximation of spectral distributions were implemented. For this purpose, the
mean spectral energy of the central reference spectrum (Emean,ref =57.7 keV) was
employed as the monoenergetic photon energy.
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Figure 2.6: Generated spectrum with 3.3 mm aluminum (Al) filtration, for matching the
mean energy of the measured 0°-spectrum at 120 kVy,. Generated spectrum avail-
able from Siemens Healthineers (2018).

2.3.4 SCALING OF PHOTON STATISTICS ACCOUNTING FOR X-RAY TUBE EFFICIENCY

In clinical CT, the TCTP is adapted to the tube potential since the x-ray source
efficiency differs for different tube potentials (see table 1.1 and corresponding expla-
nation in section 1.2.2.3). As mentioned in the introduction, a practical approach is to
increase the exposure by a factor of 1.5 for a reduction of the tube potential of 20 kV.
This factor compensates for the efficiency differences at different tube potentials
(120kVp: efficiency 1, final exposure output 1; 100 kV,,: efficiency ~0.69, compensa-
tion factor 1.5, final exposure output 1; 80 kV,,: efficiency ~0.44, compensation factor
2.25, final exposure output 1). When comparing the influence of different tube po-
tentials on energy deposition in this work, the compensation factors are intrinsically
employed by using equal numbers of photons for the different tube potentials (same
final count of emitted photons after beam-shaping filtration).

2.3.5 BEAM-SHAPING FILTRATION

2.3.5.1 Physical beam-shaping filter (PBF)

A PBF in the shape of a bowtie was positioned between the x-ray source and the
isocenter, at a distance of 15cm from the source. Dimensions and material specifi-
cations are described in appendix F. The beam-shaping filter was designed prior to
this work, according to Lambert Beer’s law (Veloza 2012).

The PBF both models fan-angle dependent photon fluence and spectral beam-
hardening, resulting in fan-angle dependent spectra (FADS). The implementation
of a PBF results in fan-angle dependent photon fluence and spectral distortion since
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photons are absorbed during the passage of the PBF. The number of initial photons
needs to be increased by a factor of approximately 2.36 to counterbalance the loss of
photons in the PBF, doubling the simulation time.

2.3.5.2 Fan-angle dependent fluence modulation (FM)

Fan-angle dependent photon fluences induced by the varying x-ray path lengths
through the beam-shaping filter were obtained prior to this work (see section 2.3.1).
The beam-shaping filter’s increasing thickness towards its edges causes a reduction
of the photon fluence, cf. figure 2.3, resulting in fan-angle dependent photon fluence.
By implementing a PDF for the fan-angle dependent photon fluence, total photon
statistics were distributed over the fan angles relative to the transmission values. Bear
in mind that the implementation of the PDF only alters the fan-angle dependent
fluence. Beam-hardening due to the beam-shaping filtration is not accounted for
(Steuwe et al. 2018). The method for evaluation of fluence modulation (FM) using a
PDF is described in section 2.5.1.3 and the results are presented in section 3.1.1.

2.3.5.3 Fan-angle dependent spectra (FADS)

Since FM only simulates the fan-angle dependent photon fluence, FADS need to be
employed in the MC model to implement spectral hardening (see figure 2.2). Before
photon emission, the angle « of the photon is determined, either from a uniform pho-
ton distribution (no photon fluence modulation (NM)) or by employing FM based
on the PDF, see figure2.3. According to this angle, the corresponding measured
spectrum (refer to section2.3.1) is determined according to table 2.1.

From the corresponding spectrum, the photon energy is sampled according to its
probability in the spectrum. Hence, of all angles, angles around 0° are most probable
and for this angle, photons with an energy of ~59 keV (characteristic x-ray energy of
tungsten, see figure 1.4) have the highest probability of being emitted.

FADS are not commonly available without measuring them directly (refer to sec-
tions 1.2.2.4 and 2.3.1). Since FADS were only available from the Aquilion™16 CT
scanner, modeling of the beam-shaping filter induced spectral distortion was not
possible for the generated spectra.

2.3.6 SOURCE IMPLEMENTATIONS

Several source implementations can be selected for MC simulations of CT acqui-
sitions, depending on the purpose of the simulation. There are two experimental
sources (point source and square source) with a fixed position and a point source
for the clinical axial (step-and-shoot) and helical (spiral) acquisition mode that have
been used in this work. Each source can emit a photon distribution according to an
energy spectrum of photons or monoenergetic photons.

2.3.6.1 Point source

The point source is placed at a fixed position (e.g. 9 or 12 0’clock) with a distance
of 60cm to the isocenter of the modeled CT system. The emitted photons cover
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Table 2.1: Assignment of the measured spectra according to the Monte Carlo sampled photon
angle a. The photon angle is either randomly chosen (uniform modulation) or
based on the transmission curve (probability density function, PDF), see figure 2.3.

Condition Spectrum

-l<a<=1 0°
l<ax<=3 o -B83<a<=-1 2°
3<a<=5 o bS<a<=-3 4°
S5<a<=7 or -7<a<=-5 6°
7<au<=9 or -9I9<a<=-7 8°
I9I<a<=11 or -ll<a<=-9 10°
1T<a<=13 or -13<a<=-11 12°

B<a<=15 or -15<a<=-13 14°
15<a<=17 or -17<a<=-15 16°
17<a<=19 or -19<a<=-17 18°
9<a<=20 or -21<a<=-19 20°
0<a<=23 or -28<a<=-20 21°

a FOV of approximately 50 cm. A specified fan angle range (e.g. + 18°) can also
be set to reduce the exposed area. In z-direction, the point source emits photons
depending on the specified collimation (~+1.528° for a z-collimation of 32 mm, see
tigure 1.3 for the coordinate system of the CT model). This point source is employed
for the acquisition of selected projections (acquisitions with one specific fixed source
position).

2.3.6.2  Square source

The square source is placed at 12 0’clock with a distance of 60 cm to the isocenter
of the modeled CT system. It is a quadratic shaped source of 10cm x 10cm size
(parallel to x-z plane), and emits photons parallel to the scanners’ y-axis. This source
produces a uniform exposure of a 10 cm x 10 cm area.

2.3.6.3 Step-and-shoot/axial acquisition mode

For the step-and-shoot acquisition mode, the x-ray source rotates around the patient
for a full rotation while the patient is in a fixed position (without table feed). After
a full rotation of the source, the patient table moves (step) and the next rotation of
the x-ray source starts (shoot). The z-collimation and the step length of the table
are flexible. If the step length equals the z-collimation, a homogeneous coverage
of the patient is achieved (contiguous coverage). For a step length longer than the
z-collimation, parts of the patient are not exposed and there are gaps between the
x-ray beams. If the step length of the table is shorter than the z-collimation, each part
of the patient is exposed more than once (overlap of x-ray beams). The influence of
the step size in the step-and-shoot mode is depicted in appendix G, figure G.1.
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2.3.6.4 Helical/spiral scquisition mode

For the helical acquisition mode, the point source moves in a 360°-rotation around
the patient during which the patient is moved. This acquisition mode is implemented
in the MC simulation as follows: while the phantom is positioned stationary, the
source rotates around the phantom and is translated along the z-direction depending
on the user-specified detector collimation and pitch. For geometrical phantoms, the
scan coverage and scan start position are user-specified, whereas these values are
obtained from the DICOM-headers for voxelized patient phantoms.

If the table displacement during one source rotation equals the z-collimation, a
pitch=1.0 is achieved, with a contiguous x-ray beam coverage of the patient. For
pitches > 1.0, x-ray beams are not contiguous, since the table displacement per source
rotation is larger than the beam collimation. Parts of the patient are not irradiated
for pitches >2.0. For pitches < 1.0, x-ray beams are overlapping along the patient
and patient tissue is exposed more than once. The helical acquisition mode was
implemented and compared to the implementation published by Kim et al. (2013).
The influence of the pitch in the helical acquisition mode is depicted in appendix G,
figure G.2.

2.3.7 TUBE-CURRENT MODULATION (TCM)

2.3.71 Longitudinal TCM (LTCM)

The tube current is modulated along the z-direction of the patient (along the body,
see figure 1.12a). Information on the slice-specific exposure (in mAs) has been ob-
tained from DICOM-headers (DICOM tag 0018,1152) of the reconstructed images.
The thinner the reconstructed slices, the more detailed the information about the
exposure.

Information on the exposure can either be read out in an independent program
and used as input in any simulation or obtained during the simulation of a digi-
tized patient (see section 2.4.2). For the latter case, the DICOM-header with all the
necessary CT-acquisition information for the simulation is read out in the file 'Di-
comHandler.cc' and transferred to the file PhantomDicom.cc'. The effect of LTCM
is depicted in appendix G, figure G.4.

2.3.7.2  Angular TCM (ATCM)

The ATCM modulates photon emission through a 360°-rotation, such that more
photons will be emitted along the lateral path, and less photons along the a.p. path.
The reason for this modulation is the difference between the lateral diameter and the
a.p.-diameter of a typical patient, which becomes apparent for the shoulder or the
hip region. The modulation reduces unnecessary radiation exposure for thin body
regions and also homogenizes the measured detector signal along the rotation.

In the MC simulation, the ATCM was implemented using the formula

AB

Np(B) = Nrot - 2o [1 —0.5-005(0—[:))5)] @.1)
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Figure 2.7: Implementation of angular tube-current modulation (ATCM), using equation 2.1
to calculate projection-angle dependent photon emission. Example with an aver-
age of Nyt = 1-10° photons per rotation. Abbreviations: anterior (a), posterior
(p), lateral (lat).

with  as projection angle, AB as angular displacement per projection, Nyt as
number of photons in one rotation and N, as number of photons per projection angle.
There are 360 individual source positions during one rotation for Ap = 1°, whereas
there are 720 individual source positions for AR = 0.5°. The angular tube-current
is not modulated online (during the simulation) based on patient attenuation, but
beforehand. In the example in figure 2.7, N, was setto 1 - 10°. The highest photon
emission occurs at 90° and 270° (lateral path), the lowest photon emission at 0°and
180° (a.p.-path).

A similar implementation is provided by Fujii et al. (2017) with a sinusoidal function
of the tube angle. The effect of ATCM on the spatial distribution of energy deposition
is depicted in appendix G, figure G.5.

24 IMPLEMENTED PHANTOMS
241 GEOMETRICAL PHANTOMS

A series of geometrical phantoms has been designed and implemented into the
MC simulation tool throughout this work. These phantoms consist of geometrical
shapes (ellipsoids, cylinders, etc.), which can be combined or subtracted (Boolean
operations). The advantage of geometrical phantoms is the ability to design the
desired setup to answer a specific research question. The shapes (e.g. G4Box, G4Tubs,
G40rb) get material properties (as G4LogicalVolume) and information about their
spatial positioning (as G4V Physical Volume).

2.4.1.1 Water phantom

The water phantom (see figure 2.8) is a cylindrical phantom of 32 cm diameter and
8cm height. It is a useful phantom to observe and study effects of different x-
ray source spectra on energy deposition and its spatial distribution. Geometrical
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7

(a) Frontal view (b) Side view (c) Oblique view

Figure 2.8: Geometrical water phantom, @ = 32cm, height 8 cm. Axes: red (x-axis), green
(y-axis), blue (z-axis).

phantoms assigned with "water" as material property are frequently employed to
study the energy deposition in MC simulations (DeMarco et al. 1998; Fogliata et al.
2007; Zhou and Boone 2008).

2.4.1.2 Box phantom

The box phantom (see figure2.9) is a geometry consisting of three cuboids, each
with side length of 10cm and height 3 cm (total height of the box phantom 9 cm).
Being in a distance of 3 cm underneath the phantom, a lead detector (5cm thick)
is positioned, to score as many as possible incoming photons. The materials of the
three layers of the box phantom were chosen depending on the research question.
The design of the phantom was taken and adapted from Verhaegen et al. (2005).

lead detector

N =
I I )
>

7 / \" { \ |

(a) Frontal view (b) Frontal view, with x-
ray emission from exper-
imental square source

Figure 2.9: Geometrical box phantom with 10 cm length in x- and z-direction and y-height
per block = 3 cm. The lead detector located underneath the phantom is depicted
in black. Adapted from Verhaegen et al. (2005). Axes: red (x-axis), green (y-axis).
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(a) Frontal view (b) Side view (c) Oblique view

Figure 2.10: Basic abdomen phantom (Amato et al. 2010), modeling the spine (blue) and the
organs liver (green), spleen (black), pancreas (pink), and one kidney (red). The
outlines of the soft tissue are indicated with the black lines. Axes: red (x-axis),
green (y-axis), blue (z-axis).

2.4.1.3 Abdomen phantom

Amato et al. (2010) have published an anthropomorphic abdomen phantom with
precise description of shape and positioning of the simulated organs. The phantom
models the liver (green), the spine (blue), one kidney (red), the spleen (black), and
the pancreas (pink), made of ellipsoids in an elliptical soft tissue tube (see figure 2.10).
This abdomen phantom has a length of 40 cm in z-direction.

The basic abdomen phantom was further developed (see figure 2.11). The shape of
the liver has been altered to that of the Medical Internal Radiation Dose (MIRD)-
phantom (ICRP 1975). Furthermore, the aorta, a simplified Gl-tract, and a second
kidney have been added. The abdomen phantom now contains (from out- to inside)
a 4mm thick skin shell (gray), a 4 mm thick subcutaneous fat shell (yellow), and a
15 mm thick soft tissue shell (salmon). The phantom is now filled with fat (yellow),
instead of soft tissue as the inner organs are usually surrounded by visceral fat. The

(a) Frontal view (b) Side view (c) Oblique view

Figure 2.11: Modified abdomen phantom with added aorta (gray), kidney (red), Gl-track
(cyan), and altered shape of liver and an increased patient diameter. Further-
more, the skin (4 mm thickness), a fat layer (4 mm thickness), and a soft tissue
layer (1.5 cm) were included in the phantom. The soft tissue inside the phantom
was replaced by fat. Axes: red (x-axis), green (y-axis), blue (z-axis).
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Figure 2.12: Shell structure of organs in the modified abdomen phantom. Inner core (gray),
outer organ shell (green), and surrounding fat shell (beige).

diameter of the phantom was increased from 30 cm to 34 cm in x-direction, and from
16 cm to 17 cm in y-direction since the new design of the liver is slightly larger.

The organs liver, spleen, kidneys, and pancreas feature a shell structure. The organs
consist of an inner organ core and an outer organ shell (thickness of 2.5 mm) where
interactions can be individually tracked and energy deposition determined. The
organs are surrounded by a fat shell (again thickness of 2.5 mm), which can also
be individually tracked. The purpose of this design is to determine the energy
deposition at interfaces of organs and the influence of iodinated contrast agents on
the energy deposition at the interfaces for various tube potentials.

2.4.2 DIGITIZED PATIENT PHANTOMS

Digitized phantoms are implementations of 3D-CT image data sets as phantoms
for MC simulations (see figure 2.13). 3D-CT image data sets contain density-specific
CT numbers and their corresponding positions, e.g. a matrix of 512 x 512 x 200
voxels, containing 200 slices of each 512 x 512 picture elements (pixels). To obtain a
digitized phantom from the image data, each image voxel is assigned to a density
and a material corresponding to its CT number and morphology. From CT image

(a) Axial plane through the heart (light red), (b) Axial plane through the femoral neck and
liver (purple), and lungs (light blue). An the bladder (water in dark blue).
aortic aneuryism is clearly visible (red).

Figure 2.13: Depiction of the digitized patient phantom converted from computed tomogra-
phy images. Note that the table contains a material inside with a density close
to that of lung tissue (probably a foam), and is automatically assigned to lung
tissue.
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data of patients, digitized patient phantoms can be constructed, allowing to create
individualized radiation exposure maps.

Appendix H provides additional information on the development of digitized pa-
tient phantoms, including the necessary segmentation steps, (post-processing) meth-
ods of segmentation, and required input files to run the simulations.

2.42.1 Segmentation of body structures

Different automatic methods are available for the segmentation of organs from CT
images, such as threshold-based methods, region growing, or shape models (Sharma
and Aggarwal 2010). As CT numbers especially in the abdomen are very close to
each other, automatic methods often fail in differentiating between organs of similar
characteristics (and hence similar CT numbers and morphology), whereas the skele-
ton and the lungs can be very reliably segmented using threshold-based methods
(Sharma and Aggarwal 2010).

The standard method in Geant4 is the segmentation via thresholding, making use
of a 'CT-to-density' conversion table (see appendix H.1). With this method, first, the
density of each voxel is calculated and afterwards, a specific material according to
this density assigned. Due to the similarity in densities in the abdomen, this method
is rather vague for specific organ identification.

In the geometrical abdomen phantom, the individual organs can be individually
tracked and the exposure values determined, since their shape and position are
mathematically defined. To allow the same measurements in the digitized patient
phantoms, it is necessary to ensure proper organ identification. For this purpose,
organs have been contoured using the software Oncentra® External Beam (version
4.5.2, Nucletron B.V, Veenendaal, the Netherlands, nowadays Elekta Brachytherapy),
which is employed in radiotherapy for contouring of target volumes and organs-at-
risk and for radiation therapy treatment planning.

The structures/organs given in table H.1 have been manually segmented and cor-
responding pixel values (material indices) have been associated. Shell structures
(thickness 2.5 mm) for the liver, spleen, and kidneys were additionally created as
has been performed for the modified abdomen phantom. Due to the small structure
of the pancreas, the shell-segmentation has not been performed in this organ.

As figure 2.13 shows, the inside of the patient table is erroneously assigned to lung
tissue as its material’s CT number is close to that of lung tissue. Manual segmenta-
tion of the lungs allows to calculate only the energy deposition inside the lungs.
The contoured organs are saved in a structure set file format (a single RS.filename.dcm
file, containing the drawn contours), and further processed in an open-source pro-
gram based on ITK4 (Importing Contours from DICOM-RT Structure Sets with
ITK4', Dowling 2013). The program reads in the underlying CT images and the struc-
ture sets and converts the structures into individual binary images. Afterwards, a
certain value can then be assigned to a specific structure to differentiate between
organs (the software Image] was used during this work, see section2.1.4).
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Figure 2.14: Overview of the segmentation process. CT images in DICOM format are a) seg-
mented using an automatic thresholding method in the gddem-setup program,
and b), specific structures are manually contoured. The automatic method as-
signs a material index and calculates a density according to the CT numbers of
the inserted DICOM image stack. The material allocation from the automatic
method and the manually segmented structures are combined in a single file
together with the automatically assigned density values. This file in inserted
in the simulation. Abbreviations: computed tomography (CT), Digital Imaging
and Communications in Medicine (DICOM).

Figure 2.14 presents the segmentation process for tissue and material allocation of
the digitized phantoms. An automatic thresholding method was employed in a first
step (‘'g4dcm_setup') to assign a material value to each image pixel and to calculate
each pixel’s density from the CT numbers (figures 2.15a). Here, only air, lung tissue,
water, soft tissue, and bones were automatically allocated (figure 2.15b). The densi-
ties were calculated using a 'CT2Density' lookup table (see listing H.2, figure H.1).
In this table, specific densities are associated with specific CT numbers (e.g. CT
number and densities for air, water, bones). The density of a specific pixel was cal-
culated by interpolation between the fixed density /CT number pairs in the lookup
table. The automatic method produced three files for each CT image: (1) a header
file with information about image slice position, exposure value, and matrix size, (2)
density values per pixel calculated from the CT numbers of the CT image, and (3)
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(a) Original CT image. (b) Identified tissues after auto-
matic thresholding segmenta-
tion.

(c) Contoured tissues as binary im- (d) Material combination after au-
age mask. Different material IDs tomatic and manual segmenta-
were already assigned to the tion.
structures.

Figure 2.15: Original computed tomography (CT) image (a), automatically segmented using
a thresholding method (b) and manually segmented (c) using the software
Oncentra® External Beam® (Nucletron, nowadays Elekta Brachytherapy). The

liver, kidneys, aorta, spleen, and the skin are visible in the mask image (c).

Material composition is combined after automatic and manual segmentation
(d) to assure proper tissue allocation (e.g. calculation of organ exposure).

the material ID per pixel.

In a second step, the manual segmentation took place (see appendix H), and binary
mask files (pixel value either 1 (inside mask) or 0 (outside mask)) were produced
from the structure sets (see figure 2.15¢). The binary images were multiplied with
the number of the material ID (e.g. 6 for the kidneys, compare with table H.1).

To assign the precise material to the structures of interest, the manually segmented
images (figure 2.15c) and the images from the threshold method (figure 2.15b) have
been merged (see figure2.15d). During the simulation, the material and density
information are combined. As an example, there are several types of the material
liver, consisting of the same basic composition, but differing in the assigned density

(Liver_0.95, density: 0.95 g/ c¢m?, material: Liver_1.05, density: 1.05 g/ cm?, material:
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Liver_1.15, density: 1.15g/cm?). The densities are always rounded to the nearest
density in 0.1 g/cm3-steps, with a minimum density of 0.05g/cm? assumed for all
newly created materials. The minimum difference in density needs to be 0.1 g/cm?3
to initiate a new material.

One input file for each CT image was then generated. This input file contained
a general header with information about number of different materials and maxi-
mum densities. This header was the same for every inserted image file. The input
files further contained an image-specific header with information about the matrix
size, image position, and exposure, and finally, the slice specific material IDs and
densities.

24.3 MATERIAL CHOICE AND CONTRAST ENHANCEMENT

The basic material compositions and densities can be found in appendix B. They are
mainly based on NIST, ICRU, and ICRP databases (Hubbell and Seltzer 2018a; ICRP
2018). For geometrical phantoms, only the basic material compositions are used. For
the digitized patient phantoms, the material density is additionally calculated from
the image CT numbers although the material composition equals that of the basic
materials.

For simulations of contrast-enhanced acquisitions, the materials of the tissues/struc-
tures aorta (blood), kidneys, liver, pancreas, and spleen were combined with the
element iodine. For this purpose, a new material was designed which combined the
original tissue (e.g. liver) with the element iodine by assigning a mass fraction for the
tissue (Y1 = my/(mt+my)) andiodine (b1 = mp/(mt+myp)), as Pt = 0.995with
P1 = 0.005, respectively. This mass fraction corresponds to a tissue iodine concentra-
tion of 5mg/ml and is applied for the simulation of contrast-enhanced acquisitions
of the geometrical abdomen and digitized patient phantoms. This mass fraction
was chosen based on Amato et al. (2010). The density of the contrast-enhanced
(iodinated) tissues (p71) was adjusted according to:
(1-¥1)

_my+mp  MTTMT—E oy
pPTI = = -

Vr Vr Ut
with mt and mp as tissue and iodine mass, respectively, V1 as tissue volume,
Pt = 1-1P7 as tissue mass fraction, and pr as tissue density (Amato et al. 2010).
This formula assumes that for small amounts of iodine, the volume of the iodinated
tissue V11 can be approximated by the volume of the original tissue V11 = V1. Ac-
cording to Amato et al. (2010), for an iodine concentration of 5mg/ml, a maximum
inaccuracy in identifying V11 = V7 of less than 0.1% is obtained. For liver tissue, the
density increases from 1.060 g/cm? to 1.065 g/cm? for the iodine-enhanced acquisi-
tion (density increase of 0.47%).

Patient data from native (non-enhanced) CT acquisitions were used for both non-
enhanced and iodine-enhanced acquisitions for the digitized patients. As already
described, iodine administration alters the CT numbers such that material assign-
ment would not be consistent between enhanced and non-enhanced acquisitions.

(2.2)
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Hence, the same initial image data and density values are inserted in the simula-
tion for both non-enhanced and enhanced acquisitions. For enhanced acquisitions,
compositions of tissue and iodine are created from the basic materials and their
density adapted according to equation 2.2. Due to rounding of the density to the
nearest 0.1 g/cm3-density step, the density increase by equation 2.2 had no effect on
the actual density of the iodine-enhanced material. Hence, for the digitized patient
phantoms, only the material composition has changed for the iodine-enhanced ac-
quisitions, however, not the density. Still, the different densities depending on the
initial image CT numbers are taken into account.

25 TOWARDS VIRTUAL DOSIMETRY: DESCRIPTION OF PERFORMED
SIMULATIONS

Several aspects of a MC model of a CT system need to be assessed to allow for
reliable and precise simulation of radiation exposure. Initially, the fundamentals of
the CT scanner model were assessed, since they form the base for all further sim-
ulations. This included the evaluation of different beam-shaping methods and the
influence of spectral properties on the total energy deposition, Eia1, and its spatial
distribution, Egpatial, in @ water phantom. These simulations were performed for a
distribution of photons corresponding to a tube potential of 120 kV, since both mea-
sured and generated spectra were available for this tube potential. The evaluation
of the beam-shaping method and the influence of different photon distributions on
Etotal and Egpatial has already been published (Steuwe et al. 2018).

After evaluation of the fundamentals of the CT scanner model, the developed soft-
ware was used to assess scientific issues in CT imaging: the choice of the tube
potential and its influence on the total energy deposition in a homogeneous ma-
terial and at material interfaces were assessed. Since iodinated contrast agents are
employed in CT imaging, the influence of different iodine concentrations in con-
nection with different tube potentials on the total energy deposition and its spatial
distribution in different materials was evaluated. The latter two investigations were
performed in a simple, box-shaped phantom, allowing for thorough understanding
of the basic principles of the radiation exposure associated with CT, without having
to account for potentially influencing factors caused by a complex geometry. The
next step towards virtual dosimetry was the implementation and assessment of an-
thropomorphic phantoms. Radiation exposure was first studied in the geometrical
abdomen phantom, followed by the evaluation in digitized patient phantoms.

A multitude of simulations and evaluations have been performed during this project.
The following nomenclature for the simulations and evaluations was employed
throughout this chapter and chapter 3: the names of the individual simulations con-
sist of a capital letter (water phantom (W), box phantom (B), modified abdomen
phantom (A), patients (P)), and an Arabic numeral (e.g. "W2", for simulation 2 in the
water phantom). The names of the subsequent evaluations again consist of a capital
letter according to the specific phantom, and a Roman numeral (e.g. "W-III" for the
third evaluation of the water phantom).
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2.5.1 ANALYSIS OF BEAM-SHAPING METHODS AND SPECTRAL PROPERTIES OF X-
RAY SOURCES EMPLOYING THE WATER PHANTOM

This subsection describes the evaluation of the fundamentals of the CT scanner
model. In clinical CT systems, a beam-shaping filter is installed to obtain a homo-
geneous signal in the image detector (see section 1.2.1) and to reduce the radiation
exposure in the patient during an x-ray source rotation (reduction of unnecessary ra-
diation exposure in shorter patient x-ray path lengths near the edges of the fan beam).
The beam-shaping filter causes the desired modulated photon transmission across
the FOV, however, it also results in spectral distortion due to beam-hardening. First,
a 'virtual beam-shaping model' was validated against the use of a physical beam-
shaping filter (PBF) in the water phantom, see sections 2.3.5 and 2.4.1.1 (evaluation
W-I).

Afterwards, the influence of the obtained fan-angle dependent photon fluence on
the energy deposition in the water phantom was studied (evaluation W-II).

In a next step, the influence and interchangeability of different source spectra and
monoenergetic photons corresponding to a tube potential of 120kV}, on the energy
deposition was assessed since measured spectra are not always accessible, see sec-
tion 1.2.2 (evaluation W-III).

The last set of simulations regarding the spectral properties of x-ray sources was
the evaluation of the influence of beam-shaping filter induced spectral distortion
on Egpatial (evaluation W-1V). Evaluations W-III and W-IV are only presented for em-
ploying FM. Evaluation W-V provides an overview of the total energy deposition in
the water phantom for all simulations employing either no beam-shaping filtration
(NM, no PBF), or virtual beam-shaping filtration (FM).

2.5.1.1 Performed simulations

For all simulations described in section 2.5.1, the same general simulation setup
was used. The MC model consisted of of three parts: (a) the experimental point
source, (b) optional beam-shaping filtration (NM, FM, or PBF), and (c) the water
phantom. The point source (section2.3.6.1) was positioned at 12 o’clock, at a dis-
tance of 60 cm to the center of the water phantom. The center of the water phantom
(section2.4.1.1) was positioned at the isocenter of the simplified CT scanner model.
Photons were emitted between -23°and +23°, resulting in a FOV of ~50 cm at the
isocenter. Z-collimation was set to 32 mm, according to the Aquilion™16 CT scan-
ner’s maximum detector z-width (MHRA 2004; Steuwe et al. 2018).

Eleven simulations have been performed for the characterization of spectral proper-
ties of x-ray sources (Steuwe et al. 2018):

W1 employing the measured 0°-reference spectrum with a uniform pho-
ton fluence (NM) and the physical beam-shaping filter (PBF),
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W2/W3  employing the measured fan-angle dependent spectra (FADS) with a
uniform photon fluence (NM) and with fan-angle dependent fluence
modulation (EM),

W4/W5  employing the measured 0°-reference spectrum with a uniform pho-
ton fluence (NM) and with fan-angle dependent fluence modulation
(EM),

W6/W7  employing the generated unfiltered spectrum with a uniform pho-
ton fluence (NM) and with fan-angle dependent fluence modulation
(EM),

W8/W9  employing the generated filtered spectrum with a uniform photon
fluence (NM) and with fan-angle dependent fluence modulation
(EM),

W10/W11 employing 57.7 keV monoenergetic photons with a uniform photon
fluence (NM) and with fan-angle dependent fluence modulation
(EM).

For the first simulation W1 employing the PBF, approximately 236 - 10° photons were
tracked to compensate for photon absorption in the beam-shaping filter, whereas
100 - 10° photons were tracked for all other simulations.

2.5.1.2 Analysis and reconstruction of exposure maps

All tracked interactions inside the phantom were stored as described in section 2.1.4.
The total energy deposition, Eia1, was calculated for all interactions inside the
phantom (including scattering) for all individual simulations (see section2.5.1.7).
Furthermore, the spatial distribution of energy deposition, Egpatial, was assessed.
For this purpose, 2D-histograms (bin size 1.0 x 1.0 mm?, scored over 80 mm in z-
direction) were created, which sum up the energy deposition per interaction along
the z-direction in the x-y plane of the phantom.

For simulations W1, W4 and W5, the integrals of the energy maps were normalized
to 1. Normalization was necessary to allow for direct comparison of Egpatial in cases
where the number of photons reaching the water phantom were not comparable (re-
quired for evaluations W-I and W-II, described hereinafter). Although the number of
photons for the PBF has been increased compared to the simulation employing the
fan-angle dependent fluence and spectra, the number of photons initially reaching
the water phantom is not perfectly equal and requires normalization.

As the 2D-histograms only present a single 0°-projection, these maps were rotated
and summed in 1°-intervals. The 360°-reconstructions allow to assess Espatial for a
full source rotation. Relative difference maps for 360°-reconstructions were calcu-
lated, comparing the reference distribution with the distributions obtained from the
generated spectra and monoenergetic photons (Steuwe et al. 2018).
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Figure 2.16: Evaluation W-I — Beam-shaping method: Schematic drawing of the simulation
setup for the evaluation of the beam-shaping method. Left: The measured 0°-
spectrum at 120kV,, was employed with a uniform photon fluence (no pho-
ton fluence modulation (NM)), but with a physical beam-shaping filter (PBF)
for beam-shaping and beam-hardening. Right: Measured fan-angle dependent
spectra (FADS) at 120kV,, were employed with a fan-angle dependent photon
fluence (FM). The latter setup presents the virtual beam-shaping filter scenario.

2.5.1.3 Ewvaluation W-I: Evaluation of the beam-shaping method

The choice of the beam-shaping method was studied to evaluate the use of a virtual
beam-shaping filter, i.e. the combination of fan-angle dependent photon fluence
and fan-angle dependent spectra, instead of simulating a physical beam-shaping
filter (evaluation W-I). The disadvantage of a PBF over a virtual filter is tracking of
photons in the PBF, requiring a larger number of initially emitted photons, which
decelerates computational time considerably (refer to section2.3.5.1).

For the evaluation of the beam-shaping method, two simulation setups were com-
pared, both including the effect of fan-angle dependent fluence and spectral distor-
tion due to beam-hardening (see figure 2.16).

The first setup employed the measured 0°-reference spectrum at 120kV,, with a
uniform photon fluence (NM) but with a PBF, simulation W1. The second setup
employed the FADS at 120 kV,, with fan-angle dependent photon fluence modula-
tion, simulation W3. This setup resulted in fan-angle dependent spectra and photon
fluence. For the direct comparison of Egpatial, the integrals of the resulting 2D-energy
maps have been normalized to 1 (Steuwe et al. 2018). Results of the evaluation of the
beam-shaping method are presented in section 3.1.1.

2.5.1.4  Evaluation W-II: Influence of the photon fluence on Espatial

In evaluation W-II (see figure2.17), the influence of the fan-angle dependent flu-
ence modulation on Egpatial has been determined, by comparing simulation W5 with
simulation W4. For the direct comparison of Espatial, the integrals of the created
2D-energy maps have been normalized to 1 (Steuwe et al. 2018). Results on the eval-
uation of the influence of spatial photon fluence modulation on Egpatia1 are presented
in section 3.1.2.
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Figure 2.17: Evaluation W-II - Influence of fan-angle dependent fluence on Egpatiar: Schematic
drawing of the simulation setup for the evaluation of the influence of fan-angle
dependent fluence on the spatial distribution of energy deposition, Espatial- Left:
Employing the measured 0°-spectrum at 120kV,, with fan-angle dependent
photon fluence modulation (FM). Right: Employing the measured 0°-spectrum
at 120kV}, with no photon fluence modulation (NM).

2.5.1.5 Evaluation W-III: Influence of photon energy distributions on Espatial

A variety of source implementations and beam-shaping filtration are employed in
MC simulations of CT. Several attempts are published in literature, such as modeling
of the complete x-ray source, employing measured or generated spectra, or using
monoenergetic photons as an approximation. A comprehensive overview over the
legitimacy of using generated spectra or approximations thereof has however not
been performed yet. For assessing the accuracy of dosimetric simulations of CT
using MC methods, it was necessary to study the influence of different input spectra
and monoenergetic photons on Ejota] and Egpatial. From the obtained information, it is

4 ¢
measured EM M generated 0°-spectrum @ 120kVp,
0°-spectrum
generated tool 0°-spectrum @
@120kV,,

120kVp +3.3mm Al
Vs.

57.7keV — Emean ref @ 120KV

Figure 2.18: Evaluation W-III — Influence of different photon energy distributions on Egpatial:
Schematic drawing of the simulation setup for the evaluation of the influence
of different photon energy distributions on Egpatial- Energy maps originating
from the simulations employing the generated spectrum at 120kV,, the gen-
erated filtered spectrum at 120 kVp, and monoenergetic photons at 57.7 keV,
the latter matching the mean energy of the measured 0°-spectrum at 120kV,,
were compared to Egpatial resulting from the simulation employing the mea-
sured 0°-spectrum at 120kVy,. In all cases, fan-angle dependent photon fluence
modulation (FM) was employed.
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Figure 2.19: Evaluation W-IV —Influence of spectral distortion on Egpatiai: Schematic drawing
of the simulation setup for the evaluation of the influence of spectral distortion
on the spatial distribution of energy deposition, Espatial- Energy maps originating
from the simulation employing the fan-angle dependent spectra (FADS) were
compared to Egpatial from the simulation employing the measured 0°-spectrum
at 120 kV,,. In both cases, fan-angle dependent photon fluence modulation (FM)
was employed.

possible to verify whether source spectra at equal tube potentials are interchangeable,
and whether spectral photon distributions can be approximated by monoenergetic
photons.

The effect of different photon energy distributions on Egpatia Wwas determined by
comparing simulation W5 with simulations W7, W9 and W11 (evaluation W-III, see
figure 2.18, Steuwe et al. 2018). Results on the evaluation of the influence of different
photon energy distributions on Egpatial are presented in section 3.1.3.

2.5.1.6 Evaluation W-1V: Influence of beam-shaping filter induced spectral distortion on
Espatial

In evaluation W-IV (see figure 2.19), the influence of beam-shaping filter induced

spectral distortion on Egpatial Was assessed, by comparing simulation W5 with sim-

ulation W3. Results of the evaluation of the influence of the beam-shaping filter
induced spectral distortion on Egptia are presented in section 3.1.4.

2.5.1.7 Ewvaluation W-V: Total energy deposition Eioq

For simulations W2-W11, Ejut, was calculated and compared in section 3.1.5 (evalu-
ation W-V).
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2.5.2 INFLUENCE OF THE TUBE POTENTIAL AND TISSUE CONTRAST ENHANCEMENT
ON THE ENERGY DEPOSITION AND DETECTOR SIGNAL IN THE BOX PHANTOM

The choice of the tube potential and the administration of contrast agents influences
the energy deposition and spatial distribution inside a scanned object. However, the
tube potential and the administration of contrast agents also influence the detector
signal.

Prior to a CT examination of a patient, the tube potential is adjusted (either au-
tomatically or manually), depending on patient morphology, FOV, and possible
administration of contrast agents. Although the effects of employing different tube
potentials are visible on the reconstructed images (less contrast but also less noise
on high kV,-images, refer to sections 1.2.2.3 and 1.3.3), the effect on the energy depo-
sition in the body, especially at the interfaced between two tissue types (e.g. muscle
and blood vessels or liver and surrounding fat) is not yet thoroughly investigated.
Furthermore, this section describes the assessment of the fundamental influences
of simulated contrast enhancement on energy deposition and the iodine-induced
energy build-up effect at the interfaces between enhanced tissues and surrounding,
non-enhanced tissues.

2.5.2.1 Performed simulations

The box phantom (section 2.4.1.2) was employed to evaluate the influence of the tube
potential and contrast enhancement on the energy deposition in different materials
and on the detector signal. The material choice of the individual layers was specified
according to the research question. In each simulation, 50 - 10° photons were emitted
from the square source (section 2.3.6.2) for the generated filtered spectra at 80, 100,
and 120kV,,. Photons were tracked in the three layers and in the lead detector. The
surrounding space of the phantom and detector was set to vacuum to avoid any
scattering of photons prior to reaching the phantom. All tracked interactions inside
the phantom were stored as described in section 2.1.4.

Simulations of the box phantom were performed, with the box layers:

Bl  constructed of identical materials in each of the three layers (either liver,
fat, soft tissue, or water). This setup enables to assess the influence of the
tube potential on the energy deposition in the material and on the detector
signal.

B2  constructed of fat tissue (layers 1 and 3) and pure liver tissue (layer 2,
P1 = 0.000). This setup enabled assessing the energy deposition at tissue
interfaces.
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B3 constructed of fat tissue (layers 1 and 3) and iodinated liver tissue
(layer 2, {1 > 0.000). In this case, different concentrations of iodine
were added to the material liver in layer 2 to assess the energy build-
up associated with the use of contrast agents. Iodine mass fractions
P =[0.001, 0.003, 0.005, 0.010, 0.015] were used, corresponding to concen-
trations of 1, 3, 5, 10, and 15mg/ml, respectively (Amato et al. 2010).

2.5.2.2  Ewvaluation B-I: Influence of the tube potential on the energy deposition and detector
signal in the box phantom

Total energy deposition in the three layers of the box phantom and in the lead
detector were calculated for simulation B1. The energy deposition was compared to
the total input photon energy and between the applied tube potentials. The detector
signal resulting from simulations Bl was compared, with regard to the material
(density) and tube potential. Results of the influence of the tube potential on the
energy deposition and on the detector signal are presented in section 3.2.1.

2.5.2.3 Ewvaluation B-II: Influence of tissue contrast enhancement on the energy deposition
in the box phantom

Egpatial resulting from simulations B2 and B3 were compared to assess the differ-
ences in energy deposition resulting from contrast enhancement. For this purpose,
2D-energy and difference maps (bin size 1.0 x 1.0 mm?, scored over 100 mm in z-
direction) were calculated for the simulations. Profiles along the y-axis of the box
phantom were plotted, taking the inner 4cm x 4cm in x-and z-axis into account
(see figure 2.20). Furthermore, the total energy deposition in the three layers of the
box phantom for simulations B2 and B3 was calculated. Results of the influence of
contrast enhancement on the energy deposition are presented in section 3.2.2.
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Figure 2.20: Calculation of interface ratios and profiles for the box phantom. Interfaces layers
with varying thickness (1.0, 2.5, and 5.0 mm) were used to assess the energy
build-up effect at material interfaces. Profiles along the y-axis were calculated
from the inner 4 cm of the box phantom. The lead detector is not shown.
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2.5.2.4 Evaluation B-III: Energy build-up effect at material interfaces in the box phantom

Energy deposition in the interface layers around the material transitions were deter-
mined and used to calculate interface ratios (‘upstream’ interface: 2a/1 and 'down-
stream’' interface: 2b/3) at varying thickness of the interface layers (1.0, 2.5, and
5.0mm) from simulations B2 and B3. Names of the interface layers and ratios are
given in figure 2.20. This analysis was performed for the non-enhanced ({1 = 0.000)
and enhanced (\p; > 0.000) liver layers, to differentiate between iodine-induced and
material-induced energy build-up at the tissue interfaces. Results of the energy
build-up effect at material interfaces are presented in section 3.2.3.

The thickness of the interface layer was of importance for later simulations of the
abdomen phantom and digitized patient phantoms, to assess the energy build-up
effect for different material interfaces.

2.5.3 CALCULATION OF EXPOSURE MAPS OF THE MODIFIED ABDOMEN PHANTOM

The modified abdomen phantom (section 2.4.1.3) allows to track photon interactions
ina more complex geometry than the box phantom (section 2.4.1.2). The advantage of
this phantom is the anthropomorphic design, the disadvantage is the larger amount
of material interfaces, complicating the analysis of the reasons of specific effects.

2.5.3.1 Performed simulations

WHOLE MODIFIED ABDOMEN PHANTOM Simulations of the modified abdomen
phantom were performed at tube potentials of 80, 100, and 120kV,, (generated fil-
tered spectra) in the helical acquisition mode (section2.3.6.4) with a pitch of 1.0,
z-collimation 32 mm, and enabled FM. LTCM and ATCM were not enabled. For sim-
ulations of the whole modified abdomen phantom, 129 - 10° photons were tracked (3
-10° photons per cm, scan coverage 43.2 cm between [-21.6 cm, 21.6 cm], with 3.2 cm
z-overranging). Performed simulations were:

Al simulation with non-enhanced tissues (\p; = 0.000) and

A2 simulation with iodinated tissues (\p1 = 0.005 in liver, spleen, kidneys, pan-
creas, and the aorta).

AXIAL SLICE OF THE MODIFIED ABDOMEN PHANTOM Furthermore, simulations
were performed with the point source (section2.3.6.1) on a single axial slice (thick-
ness of 6.4 cm) of the modified abdomen phantom at tube potentials of 80, 100, and
120kV,, (generated filtered spectra). Source position along the CT scanner’s z-axis
was fixed. Z-coverage of the x-ray source at the isocenter was 32 mm (only the center
of the slice was exposed during the acquisitions). The axial slice included liver and
soft tissue, the spine, spleen, and aorta (see figure 2.21). Hence, for simulations of
contrast-enhanced acquisitions, iodine-enhancement was only applied in the liver,
spleen, and aorta.

First, a single projection at 270° (lateral projection, x-ray source position at 9 o’clock)
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was simulated. The projection from a specific angle allows to assess the energy de-
position from photons of a single point, without the effects of overlaying energy
depositions from various angles around the phantom. 50 - 10° photons were tracked
for simulations of projections (see figure 2.21a).

Afterwards, simulations were performed for a full rotation of the x-ray source in
1°-steps. 64 - 10° photons (simulated slice thickness of 6.4 cm, see above, and 1 - 10°
photons per cm) were tracked for simulations of rotations (see figure 2.21b). FM was
enabled for the simulated projections and rotations. Performed simulations were:

A3 simulation of an axial slice of the phantom with non-enhanced tissues
(1 = 0.000), projection at 270°,

A4 simulation of an axial slice of the phantom with enhanced tissues
(1 = 0.005 in liver, spleen, and the aorta), projection at 270°,

A5 simulation of an axial slice of the phantom with non-enhanced tissues
(W1 = 0.000), full source rotation, and

A6 simulation of an axial slice of the phantom with enhanced tissues
(1 = 0.005 in liver, spleen, and the aorta), full source rotation.

All tracked interactions inside the abdomen phantom and the axial slice were stored
as described in section 2.1.4.

2.5.3.2  Evaluation A-I: Influence of the tube potential and tissue contrast enhancement on
energy deposition and its spatial distribution in the modified abdomen phantom

The total energy deposition in all tissues/organs and their spatial distribution were
determined in the modified abdomen phantom for simulations of non-enhanced and
enhanced CT acquisitions (simulations A1 and A2). 2D-energy and difference maps
(bin size 2.0 x 2.0 mm?, scored over 2 mm in z-direction) for simulated enhanced and
non-enhanced acquisitions were calculated. Results of the total energy deposition
are presented in section 3.3.1.

I

(a) Single projection at 270° (b) X-ray source rotation
around 360° in 1°-steps

Figure 2.21: Modified abdomen phantom: Simulation setup for assessment of build-up ef-
fects for a single slice of the phantom. The slice contained the organs/tissues
liver (green), spleen (black), Gl-tract (turquoise), aorta (gray), and spine (blue).
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(a) STROI1 (b) Liver ROI 2a (c) Liver ROI 2b (d) STROI 3

Figure 2.22: Position of ROIs (shown in white) in the slice of the modified abdomen phan-
tom for calculation of energy depositions and relative differences at interfaces.
Abbreviations: region-of-interest (ROI), surrounding tissue (ST, here fat).

2.5.3.3 Ewvaluation A-1I: Energy build-up effect at material interfaces in the modified ab-
domen phantom — whole phantom

Energy deposition was calculated in the organ shells and surrounding tissue shells
for simulations Al and A2. The energy deposition was normalized to the volume per
shell and interface ratios (normalized energy deposition in the organ shell divided
by normalized energy deposition in the surrounding tissue shell) calculated. Results
of the energy build-up effect in the whole phantom are presented in section 3.3.2.

2.5.3.4 Evaluation A-III: Energy build-up effect at material interfaces in the modified
abdomen phantom — axial slice

For simulations A3-A6, the resulting spatial distributions of energy deposition for
the simulations of the non-enhanced and the enhanced CT acquisitions and the
differences in energy deposition between the two corresponding simulations were
plotted as a 2D-map (energy was accumulated along the z-axis of the phantom).
From these maps, energy depositions and relative differences were determined in
ROIs positioned in the liver and fat tissue as depicted in figure 2.22 using Image]
(see appendix D).

Interface ratios (ROI 2a/1 and ROI 2b/3) were calculated from the energy deposition
inside the ROIs for the simulations of the full source rotations (simulations A5
and A6). For calculation of interface ratios, energy deposition in the ROI was first
normalized to the number of pixels in the ROI. Results of the energy build-up effect
in the axial slice are presented in section 3.3.3.

254 CALCULATION OF EXPOSURE MAPS OF DIGITIZED PATIENTS

The goal of this work was the development of a MC software for the virtual dosimetry
of patients examined in a radiology department. This section describes the assess-
ment of the influence of different tube potentials and iodinated contrast agents on
energy deposition in different organs and at organ interfaces in six male patients.
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PATIENT COHORT AND AcQuUIsITION The chosen patients took part in a clini-
cal study, investigating a low dose and low contrast agent dose CTA acquisition for
follow-up after non-invasive EVAR (Fink et al. 2018). The study was approved by the
local ethics committee (5485/2017; DRKS-ID: DRKS00013082). All patients received
a non-enhanced CT acquisition of the thorax and the abdomen on a Somatom®
Definition Flash CT scanner system (Siemens Healthineers, Forchheim, Germany).
Patients with a body mass index (BMI) <30 kgm~2 were acquired at a tube potential
of 80 kV,,, whereas patients with BMI >30 kgm ™2 were acquired at a tube potential of
100 kVp. The reference TCTP (TCTPeg) at 80 kV}, was 210 mAs (CTDlIy, =4.1 mGy),
whereas at 100 kV, TCTPeg was 87 mAs (CTDI; = 3.6 mGy). Other acquisition pa-
rameters were: 0.5 sec rotation time, z-collimation 0.6 mm, and pitch 1.2. For the
purpose of this work, images were reconstructed in 3mm slice thickness with
an increment of 3mm, using an iterative algorithm (ADMIRE, kernel I30f, level
5 (smoothest reconstruction to suppress noise), Siemens Healthineers, Forchheim,
Germany).

Acquisition parameters and slice-specific exposure values were extracted from the
corresponding DICOM-headers of the reconstructed images and are presented in
table 2.2. An overview on the morphology of the patients included in this thesis can
be found in appendix 1.

ABDOMINAL SCAN RANGE The abdominal scan range covered the abdomen, in-
cluding the whole liver, spleen, pancreas, and kidneys, with an additional scan
range of 2 x 1.8cm in cranio-caudal direction. The length of the abdominal scan
range differed per patient (range: 19.8 - 23.1 cm).

TCTPg was extracted from the DICOM-headers of the reconstructed images inside

Table 2.2: Patient characteristics and dose protocol parameters for digitized patient phan-
toms for an abdominal scan coverage, including the whole liver, spleen, pancreas,
and kidneys. DLP and TCTP.¢ were calculated from the slices covering the men-
tioned organs. All patients were originally acquired at a tube potential of 80 kV,.
Simulations covering the abdomen were run with the given number of photons.
Abbreviations: identification code (ID), body mass index (BMI), volumetric com-
puted tomography dose index (CTDI,)), dose-length product (DLP), effective
tube-current time product (TCTPe¢), number of simulated photons Nphotons-

ID | BMI Height Weight CTDIy,; DLP TCTPett Nphotons
[kg/ [mGy simulated
m?]  [cm] [kgl [mGyl -ecm] [mAs]  -10°

1A | 21.0 172 62 3.00 59.3 152.5 59.40

1B | 220 172 65 3.21 62.6 163.4 62.70

2A | 264 173 79 3.05 69.6 155.3 69.66

2B | 254 174 77 2.51 58.1 128.0 58.17

3A | 28.1 178 89 2.92 66.6 148.7 66.70

3B | 284 178 90 3.00 62.2 153.1 62.34
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the abdominal scan range. According to Salvad¢ et al. (2005), the number of photons
was set to 3 - 10° photons per cm scan coverage to obtain a relative standard error
in one slice (1 cm thickness) of <0.5%. It was subsequently scaled to each patient’s
TCTPeg. The patients were segmented according to section 2.4.2.1. For acquisitions
covering the abdominal scan range, the number of photons, Nphotons, given in ta-
ble 2.2 was determined as follows:

TCTPeff, patient ID

Nphotons = Scan coverage [cm] -3 - 10° - 2.3)

TCTPeff, patient 1A

Hence, both the scan coverage and the effective TCTP determine the number of
photons, thereby taking the TCTPqk of patient 1A as baseline. A comprehensive
review of the number of tracked photons in MC simulations of CT acquisitions can
be found in appendix].

Note that the CTDI,, and TCTP.¢ (see Table 2.2) appear to be independent of the
BMI for the six patients in this work.

2.5.4.1 Performed simulations

WHOLE DIGITIZED PATIENTS  Energy maps of all patients were calculated at 80 kV,,

(generated filtered spectra) with a pitch of 1.0 and z-collimation of 32 mm at the
isocenter. FM and LTCM were enabled. To assess the influence of iodinated contrast
agents, all simulations were performed with contrast-enhanced liver, spleen, pan-
creas, and kidney tissue, as well as blood (aorta) with a mass fraction of {; = 0.005.
The following simulations were performed:

P1 simulations at 80 kVp for all patients (non-enhanced tissues, {1 = 0.000),

P2 simulations at 80 kV,, for all patients (enhanced liver, spleen, pancreas, kid-
ney, aorta, 7 = 0.005),

P3  simulations at 120 kV}, for all patients (non-enhanced tissues),

P4  simulations at 100 and 120kV, for patient 2A (non-enhanced tissues,
P = 0.000), and

P5  simulations at 100 and 120kV,, for patient 2A (enhanced liver, spleen, pan-
creas, kidney, aorta, {1 = 0.005).

AXIAL SLICE OF A DIGITIZED PATIENT A single axial slice (slice thickness 6.4 cm,
figureI.2a) of patient 1A through the liver and kidneys was used to assess the energy
build-up effect in more detail. This patient resembled the modified abdomen phan-
tom to the highest degree and was hence chosen for this analysis. CT acquisitions
were simulated at 80, 100, and 120 kV,, (generated filtered spectra) with and without
iodine enhancement in the organs and the aorta. The z-position of the x-ray source
was stationary for these simulations. Z-coverage of the x-ray source at the isocenter
was 32 mm (only the center of the slice was exposed during the acquisitions).

First, a single projection at 270° (lateral projection, x-ray source position at 9 o’clock)
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was simulated, such as performed for the modified abdomen phantom. For each of
the simulations, 50 - 10° photons were tracked.

Afterwards, simulations were performed with a full rotation of the x-ray source in
1°-steps. For each of the simulations, 64 - 10° photons (1 -10° photons per cm) were
tracked. FM was enabled for the simulated projections and rotations. The following
simulations were performed:

P6 simulation of an axial slice of patient 1A with non-enhanced tissues
(W1 = 0.000), projection at 270°,

P7  simulation of an axial slice of patient 1A with enhanced tissues ({1 = 0.005
in liver, spleen, and the aorta), projection at 270°,

P8 simulation of an axial slice of patient 1A with non-enhanced tissues
(W1 = 0.000), full source rotation, and

P9 simulation of an axial slice of patient 1A with enhanced tissues ({1 = 0.005
in liver, spleen, and the aorta), full source rotation.

All tracked interactions inside the digitized patients and the axial slice were stored
as described in section 2.1.4.

2.5.4.2 Evaluation P-I: Influence of the tube potential and tissue contrast enhancement on
energy deposition and its spatial distribution in a digitized patient

For this evaluation, total energy deposition in organs and tissues and their spatial dis-
tribution in patient 2A were compared, acquired from simulations of non-enhanced
and enhanced acquisitions at tube potentials of 80, 100, and 120kV}, (from simu-
lations P1 and P2 for patient 2A, and simulations P4 and P5). Results of the total
energy deposition and spatial distribution are presented in section 3.4.1. 2D-energy
and difference maps were calculated with a bin size of 1.5 x 1.5 mm?, scored over
3 mm in z-direction, corresponding to a matrix size of 256 x 256 pixels.

2.5.4.3 Ewvaluation P-II: Energy build-up effect at material interfaces in a digitized patient
— whole patient

Energy deposition was calculated in the organ shells and surrounding tissue shells
for patient 2A for the tube potentials 80, 100, and 120kV}, (from simulations P1 and
P2 for patient 2A, and simulations P4 and P5). The energy deposition was normalized
to the number of voxels per shell and interface ratios (normalized energy deposition
of organ shell divided by normalized energy deposition of surrounding tissue shell)
calculated. Results of the energy build-up effect in patient 2A are presented in
section 3.4.2.

2.5.4.4 Ewvaluation P-III: Energy build-up effect at material interfaces in a digitized patient
— axial slice

Axial 2D-energy maps of the simulations of enhanced and non-enhanced acquisi-
tions were calculated for patient 1A (simulations P6 - P9). Energy was summed
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(@) STROI'1 (b) Liver ROI 2a (c) Liver ROI 2b (d) STROI 3

Figure 2.23: Position of ROIs (shown in white) in the slice of the digitized patient phantom
for calculation of energy depositions and relative differences at interfaces. ROI 1
contains only fat tissue, whereas ROI 3 includes some water (gall bladder) and
air (at upper tip of the liver), compare to the tissue morphology in figurel.2a.
Abbreviations: region-of-interest (ROI), surrounding tissue (ST).

along the z-axis of the phantom. 2D-difference maps were calculated from the en-
ergy maps of the simulated enhanced and non-enhanced acquisitions.

The energy deposition in four ROIs was calculated for every energy and difference
map (see figure2.23). ROI 1 is positioned in the surrounding tissue at the periph-
ery of the liver. ROIs 2a and 2b are positioned inside the liver, with ROI 2a at the
periphery and ROI 2b at the medial side of the liver. ROI 3 is positioned in the
surrounding tissue at the center of the phantom. ROI naming is identical for the
ROIs in the modified abdomen phantom (see figure 2.22). Interface ratios (ROI 2a/1
and ROI 2b/3) were calculated from the energy deposition inside the ROIs for the
simulations of the full source rotations (simulations P8 and P9). For this purpose,
energy deposition was first normalized to the number of pixels inside the ROIs.
Results of the energy build-up effect evaluated for the axial slice of patient 2A are
presented in section 3.4.3.

2.5.4.5 Ewvaluation P-1V: Influence of BMI and morphology on the energy deposition and
its spatial distribution in digitized patients

To evaluate the influence of the BMI and patient morphology on the energy depo-
sition in digitized patients, total energy deposition and its spatial distribution were
compared for all patients at 80 kV}, for simulations of non-enhanced and enhanced
acquisitions (simulations P1 and P2). Results of the energy deposition depending
on patient BMI and morphology are presented in section 3.4.4.

2.5.4.6 Evaluation P-V: Influence of the tube potential on the energy deposition in the skin
in digitized patients

To evaluate the influence of the tube potential on the energy deposition in the skin,
the energy deposition in each patient and in each patient’s skin resulting from
simulations of non-enhanced acquisitions at 80 kV,, and 120kV,, were compared
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(simulations P1 and P3). Since the scan ranges of the patients were not identical,
energy deposition in the skin and in the patients was scored in a 102 mm scan region
(34 image slices) covering approximately identical scan regions (the kidneys) in the
abdomen. This allowed for comparison of energy deposition between patients for the
same scan coverage. Relative differences in energy deposition between acquisitions
at 80 and 120 kV}, were calculated for the skin and the all patient tissues in the scan
region. Results are presented in section 3.4.5.

2.6 ASSESSMENT OF THE VARIATION BETWEEN IDENTICAL MC
SIMULATIONS AND EVALUATION OF THE SIMULATED NUM-
BER OF PHOTONS IN A DIGITIZED PATIENT

To estimate the error of the results obtained with the MC model with the employed
number of photon histories, re-sampling of data was used to produce sub-sets of
data containing the energy deposition of every second, fifth, tenths, etc. interaction
(data sets of reduced photon statistics). For this purpose, a CT acquisition of the
abdominal region of patient 2A (scan covered the kidneys, total scan coverage was
15 cm, non-enhanced acquisition) was simulated twice with two different initial
seeds, with a total of 45 - 10° photons (3 - 10° photons per cm scan coverage), pitch of
0.5 and LTCM enabled. Interaction data was stored in branches for post-processing.

VARIATION BETWEEN TWO IDENTICAL SIMULATIONS WITH DIFFERENT INITIAL SEEDS
The total energy deposition in the phantom and the energy deposition in the indi-
vidual organs were calculated and compared for both simulations. 2D-maps of the
energy deposition were produced and relative difference maps calculated for a single
axial slice (3 mm slice thickness) and for three adjacent slices (9 mm voxel thickness
in z-direction).

REDUCTION OF THE PHOTON STATISTICS  3D-maps of the energy deposition were
produced from all interactions, and from every second, fifth, tenth, 15th ... up till ev-
ery 45th interaction. Hence, for the latter 3D-map, only 1/45th of the total number of
interactions have contributed to the energy map. To allow for comparability between
energy maps, the integrals of the 3D-maps were normalized to 1. Maps consisting
of the reduced data were subtracted from the full data map, and the calculated dif-
ferences plotted in a one-dimensional (1D)-histogram, for the full phantom volume,
the kidneys, a single axial slice, and the kidneys inside a single axial slice. Only
data inside the contours of the patient have been taken into account. Histograms
were been fitted with a Gaussian curve. For the reduced statistics data sets, energy
deposition and interaction types contributing to the energy maps were compared
to ensure that all sub-sets contain equal percentages of energy depositions resulting
from e.g. the Compton effect or the photoelectric effect. Results are presented in
appendix], figure].1.



RESULTS

The results of this work are presented in the following chapter. The structure is
as follows: first, the beam-shaping method used throughout the simulations was
evaluated, followed by the evaluation of the influence of the fan-angle dependent
fluence on the energy deposition (Etota1) and its spatial distribution (Espatial) in a vari-
ety of geometrical and digitized phantoms. Afterwards, the influence of the spectral
properties of x-ray sources and the tube potential on energy deposition is described.
This is followed by a more detailed analysis of the energy deposition for varying
tube potentials and material types. Then, the influence of contrast-agents on the
energy deposition, especially at material interfaces, is demonstrated. Moving from
simple theoretical phantoms to more elaborate phantoms, the energy deposition in
an anthropomorphic abdomen phantom is assessed. This chapter is completed by
presenting energy maps of a set of digitized patient phantoms. The evaluation of
the beam-shaping method and the influence of spectral properties of x-ray sources
on energy deposition have already been published (Steuwe et al. 2018).

3.1 ANALYSISOFBEAM-SHAPINGMETHODS ANDSPECTRAL PROP-
ERTIES OF X-RAY SOURCES EMPLOYING THE WATER PHANTOM

3.1.1 EVALUATION W-I: EVALUATION OF THE BEAM-SHAPING METHOD

Two beam-shaping methods were compared (cf. figure 2.16 in section 2.5.1.3): on the
one hand, a physical beam-shaping filter (PBF) was modeled which altered photon
fluence as its thickness increased towards the edges of the filter and which resulted
in fan-angle dependent spectra (FADS) with increasing mean energies towards the
sides of the FOV. In this scenario, a photon distribution matching the measured 0°-
spectrum was uniformly (NM) emitted across the FOV. On the other hand, a virtual
beam-shaping method was modeled, implementing fluence modulation (FM) by
means of a probability density function (PDF), combined with the measured FADS.
The virtual filter models both photon fluence according to the measured transmis-
sion curve and the spectral distortion caused by a physical beam-shaping filter.

Figure 3.1 presents the relative difference in Egpatial between the physical and the
virtual beam-shaping filter scenario. Both scenarios modeled fan-angle dependent
fluence and spectral distortion. A maximum relative difference in Espatial of 3% was
observed at the center of the water phantom, showing that employing the virtual
beam-shaping method with a PDF for FM and FADS was reasonable in this work
(Steuwe et al. 2018).

Simulation time was 25.5 hours for the physical beam-shaping scenario (PBF and
NM) and 12.4 hours for the virtual beam-shaping scenario (FADS and FM). In both
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Figure 3.1: Evaluation W-I: Influence of beam-shaping methods with regard to the spatial dis-
tribution of simulated deposited energy, Espatial- Comparison of Egpatial resulting
from the simulation using physical beam-shaping scenario (physical beam-
shaping filter with measured 0°-reference spectrum and uniform photon fluence)
vs. the virtual beam-shaping scenario (fan-angle dependent spectra and fluence
modulation). Both scenarios modeled fan-angle dependent fluence and spectral
distortion. For better visibility of the phantom periphery, background color out-
side the water phantom was set to white. Adapted from Steuwe et al. (2018).

cases, approximately equal numbers of photons reached the surface of the water
phantom (9.24 - 107 (PBF) vs. 9.27 - 107 (FM)).

3.1.2 EVALUATION W-II: INFLUENCE OF THE PHOTON FLUENCE ON Egp riar

The influence of the photon fluence on Egpatiay was compared, see section2.5.1.4.
Figure 3.2 depicts the effect of fan-angle dependent photon fluence on Egpatial- In
figure 3.2a, photon fluence was modulated as a function of the fan angle (FM),
whereas in figure 3.2b, a uniform fluence (NM) was employed across the x-ray fan.
For a single projection and employed fluence modulation, Egpatial was concentrated
at the center of the x-ray beam entrance side. The uniform fluence resulted in a more
homogeneously distributed Egpatia across the x-ray fan.

Comparing Egpatial for a uniform photon fluence with that for fan-angle dependent
fluence (after normalization), Egpatiay Was overestimated at the phantom periphery
by up to 250% (at the sides of the fan beam), whereas Egpatia was underestimated by
up to -50% at the center of the fan beam (see figure 3.2¢). Relative energy differences
were within +50% for a full 360°-rotation (see figure3.2d). A decreased energy
deposition was noticeable at the center of the phantom and an increased energy
deposition noticeable in the periphery (Steuwe et al. 2018).

3.1.3 EVALUATION W-III: INFLUENCE OF PHOTON ENERGY DISTRIBUTIONS ON Egpariar

After evaluation of the beam-shaping method implemented for this work and the
assessment of its beam-shaping effect, the effect of employing different source spec-
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Figure 3.2: Evaluation W-IIL: Influence of fan-angle dependent fluence on spatial distribution
of simulated deposited energy, Espatia- For both the 0°-projection and the 360°-
reconstruction, energy maps were normalized prior to calculation of difference
maps. Please note the different scalings of the color bars. For better visibility of
the phantom periphery, background color outside the water phantom was set to
white. Adapted from Steuwe et al. (2018).

tra and monoenergetic photons on Eiota; and Egpatial Was assessed (see section 2.5.1.5).
This comparison aims at evaluating whether x-ray spectra and monoenergetic pho-
tons can be interchanged for dosimetric purposes, in cases where the original source
spectrum is not available.

Figure 3.3 presents Egpatial for employing the measured 0°-reference spectrum (a),
monoenergetic 57.7 keV photons (b), the generated unfiltered (c), and filtered (d)
120 kVp-spectra. The single projections showed only subtle differences at the en-
trance side of the phantom in terms of shape and penetration length for the spectra.
The maximum local energy deposition for monoenergetic photons (~200 MeV) was
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Figure 3.3: Evaluation W-III: Spatial distribution of simulated deposited energy, Espaﬁal, for
different input spectra and monoenergetic photons. Projection from 12 o’clock
source position. Fan-angle dependent fluence (FM) was applied in all simulations.
For better visibility of the phantom periphery, background color outside the water
phantom was set to white. Adapted from Steuwe et al. (2018).

lower than for the employed photon spectra (~250-270 MeV).

The relative differences in Espatia) compared to Egpatial 0f the reference spectrum are
presented in figure 3.4 for the reconstructed 360°-projections. The differences are
more conspicuous than they were in figure 3.3. Egpatial for the 57.7 keV photons was
underestimated at the periphery of the phantom (-20%), whereas at the center,
Egpatial Was overestimated by +10% (see figure 3.4a). The unfiltered generated spec-
trum led to an overestimation of Egpatial at the phantom periphery (+20%) and an
underestimation (-20%) at the phantom center (figure 3.4b). Due to the lack of ad-
ditional filtration, this spectrum is softer than the reference spectrum. Hence, more
photons were absorbed at the entrance side of the phantom, whereas less energy was
deposited at the center. The effect of the additional filtration on energy deposition is
depicted in figures 3.4c-3.4d. Beam-hardening due to the aluminum filter reduced
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Figure 3.4: Evaluation W-III: Relative difference of spatial distribution of simulated de-
posited energy, Espatial, for simulations employing different emitted photon en-
ergy distributions (360°-reconstruction). Reference for the difference maps was
Egpatial generated using the measured 0°-spectrum. Photon fluence modulation
was applied in all simulations. Note that Egpatia presented in (d) displays the
same data as in (c) but uses a smaller range of relative difference values in order
to resolve subtle differences. For better visibility of the phantom periphery, back-
ground color outside the water phantom was set to white. Adapted from Steuwe
et al. (2018).

relative differences in Egpatial compared to the reference spectrum to ~3% (Steuwe
et al. 2018).

3.14 EVALUATION W-IV: INFLUENCE OF BEAM-SHAPING FILTER INDUCED SPEC-
TRAL DISTORTION ON Egpariar

The last sections presented the influence of the photon fluence and the choice of
central source spectra and monoenergetic photons on Egpatial- Although fan-angle
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0°-spectrum, 0°-projection 0°-spectrum, 360°-rotation

Figure 3.5: Evaluation W-IV: Influence of bowtie-filter induced spectral distortion on spatial
distribution of simulated deposited energy, Espatial- Fan-angle dependent photon
fluence (FM) was employed. FADS: fan-angle dependent spectra. For better vis-
ibility of the phantom periphery, background color outside the water phantom
was set to white. Adapted from Steuwe et al. (2018).

dependent photon fluence caused by the beam-shaping filter was implemented in
the simulations by the filter’s PDF of the transmission curve, the spectral distor-
tion due to beam-shaping filtration was not represented as only the central source
spectrum across the whole fan beam was employed. As FADS are not commonly
available without measuring them directly (refer to section 2.3.5.3), the influence of
omitting spatial distortion was evaluated, see section 2.5.1.6.

There were only subtle differences visible between Espatial for the measured 0°-
spectrum and FADS (see figure 3.5a and 3.5b). For a single projection and employing
FADS, Egpatial was reduced at the outer sides of the x-ray fan beam (see figure 3.5c,
~-10%), compared to employing only the central spectrum. The central spectrum
is softer than the spectra at the outer sides of the fan beam, as the low-energy



3.1 BEAM-SHAPING METHODS AND SPECTRAL PROPERTIES

photons are filtered out by the beam-shaping filter, thereby increasing the mean
spectral energy from 57.7 keV (0°-spectrum) to 76.7 keV for the 21°-spectrum. The
beam-hardened spectra led to an increased energy deposition at the phantom cen-
ter (cf. figure 3.5d), whereas the reduced amount of low-energy photons caused a
reduction of Egpatia at the phantom periphery, for the 360°-reconstruction (Steuwe
et al. 2018).

3.1.5 EVALUATION W-V: TOTAL ENERGY DEPOSITION E grar

Etotal was highest for the virtual beam-shaping scenario (printed in bold) which, how-
ever, only resulted in a relative difference of +2.22% (FM/NM) compared to Eiuta; Of
the reference spectrum. The generated filtered spectrum showed the lowest devia-
tion (NM +0.12%, FM +0.14%). The relative differences increased if no additional
filtration was employed (NM -4.93%, FM -5.35%). Simulations with monoenergetic
57.7keV photons resulted in a slightly lower energy deposition (NM -1.48%, FM
-1.06%, Steuwe et al. 2018).

Table 3.1: Evaluation W-V: Simulated total energy deposition (Etta1) in the water phantom for
simulations without (NM) and with (FM) photon fluence modulation. The values
printed in bold shows Eiu, for the simulation modeling a 'full beam-shaping
filter' (virtual beam-shaping scenario), with modeled fan-angle dependent photon
fluence and spectra (Steuwe et al. 2018).

Emitted x-ray Uniform Fan-angle dependent

photons fluence (NM) fluence (FM)
Eiotal Rel. diff. to Eiotal Rel. diff. to
[GeV] reference [%] [GeV] reference [%]

Measured 0°-spectrum

@ 120 kV,, (reference) 20741 3063.1

Generated 0°-spectrum

@ 120 kVy, unfiltered 1971.8 -4.93 2899.3 -5.35
Generated 0°-spectrum

@120 kVp, 3.3 mm Al 2076.6 +0.12 3067.3 +0.14
57.7 keV — Enmean, ref

@120 kV,, 2043.5 -1.48 3030.7 -1.06

Measured fan-angle depen-
dent spectra @ 120 kV,, 2120.3 +2.22 3131.2 +2.22
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3.2 INFLUENCE OF THE TUBE POTENTIAL AND TISSUE CONTRAST
ENHANCEMENT ON THE ENERGY DEPOSITION AND DETEC-
TOR SIGNAL IN THE BOX PHANTOM

Until now, only 120 kV,-spectra and corresponding moneoenergetic photons were
assessed in this work regarding the energy deposition and its spatial distribution.
In the following, the results for the analysis of different tube potentials on energy
deposition and detector signal in the box phantom are presented. For all simulations
presented from here onward, only the generated filtered spectra at 80, 100, and
120kV}, were applied.

3.2.1 EVALUATION B-I: INFLUENCE OF THE TUBE POTENTIAL ON THE ENERGY DE-
POSITION AND THE DETECTOR SIGNAL IN THE BOX PHANTOM

First, all three layers of the box phantom were constructed of identical materials
(either fat, water, soft tissue, or liver), see section 2.5.2.2. Between the tube potentials
80, 100, and 120kV), Eiotal was approximately equal for each respective material
in the phantom (see table3.2). For water, soft tissue, and liver tissue, Eiya was
slightly higher at 80kV,, than at 120kV, (difference of a maximum of 1.8%). The
relative energy deposition compared to the total input photon energy was highest
at 80 kV,, for all materials and lowest at 120 kV/,.

Table 3.2: Evaluation B-I: Simulated total energy deposition, Eioa, in the box phantom for
the materials fat, water, soft tissue, and liver for the tube potentials 80, 100, and
120 kVp. Individual layers inside the box phantom contained the identical material.

Tube Eiotal Relative difference to
potential [GeV] 120 kV-acquisition [%]

Material [kVp,] Phantom Detector Phantom Detector

Fat 80 660.7 500.5 -1.80 -28.31
100 658.8 614.7 -2.10 -11.95
120 672.9 698.1

Water 80 878.6 386.5 1.76 -33.98
100 860.9 501.0 -0.28 -14.41
120 863.4 585.4

Soft tissue 80 936.2 370.1 1.63 -33.71
100 918.5 4784 -0.29 -14.31
120 921.2 558.3

Liver 80 938.0 369.7 1.64 -33.72
100 920.3 4779 -0.27 -14.32

120 922.8 557.8




3.2 INFLUENCE OF THE TUBE POTENTIAL AND CONTRAST ENHANCEMENT

For liver tissue at 80 kV,, 41% of the total input energy was absorbed in the phantom,
whereas at 120 kV},, only 32% of the total input energy was absorbed in the phantom.
The maximum difference in Eiota compared to the simulation at 120 kV, was -2.1%
for the material fat at 100 kV,,. Although Ejya in the box phantom was nearly equal
for all three tube potentials, Egpatial varied: with increasing tube potential, energy
deposition occurred at increasing depths due to the longer range of high-energy
photons (deeper penetration). Hence, the highest entrance deposition was visible
for the 80 kV,,-setting, whereas energy deposition was distributed to larger depths
for the 120 kV,-setting.

Relative differences between tube potentials were considerably higher for the energy
deposition in the detector. Compared to Eota in the detector at 120 kVy,, Eqoa; was 11-
14% lower at 100 kV, and 28-34% lower at 80 kVy,. The total deposited energy in the
detector increased with increasing tube potential. The relative energy deposition in
the detector compared to the total input photon energy was highest at 100 kV,, (~23%)
and lowest at 80 kV,, (~16%) for all materials.

Table 3.3 shows the ratio between detector signal for the different materials (i.e. for
two box phantoms in adjacent position, neglecting cross-scattering between boxes).
Largest differences between detector signal were visible at 80 kV,, and decreased
slightly with increasing tube potential. Furthermore, larger differences in density
caused larger differences in detector signal (compare detector ratios of liver and fat
tissue vs. liver and soft tissue).

Table 3.3: Evaluation B-I: Difference in detector signal between two adjacent materials. Ratios
were calculated from the detector signals presented in table 3.2. Ratios did not
include cross-scattering between the materials. The larger the deviation from a
ratio of 1.0, the larger the difference in detector signal between two materials.

Material ~ Tube potential [kV,] Fat Water Softtissue Liver

Fat 80 1.000 0.772 0.739 0.739
100 1.000 0.815 0.778 0.777
120 1.000 0.838 0.800 0.799
Water 80 1.000 0.958 0.957
100 1.000 0.955 0.954
120 1.000 0.954 0.953
Soft tissue 80 1.000 0.999
100 1.000 0.999
120 1.000 0.999
Liver 80 1.000
100 1.000

120 1.000
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3.2.2 EVALUATION B-II: INFLUENCE OF TISSUE CONTRAST ENHANCEMENT ON THE
ENERGY DEPOSITION IN THE BOX PHANTOM

In this section, the individual layers of the phantom were constructed of different
materials, to investigate the energy deposition in non-enhanced and enhanced tis-
sues, see section 2.5.2.3. In this case, the box phantom was constructed of fat (layer
1), liver (layer 2), and fat (layer 3). This setup represented the material interfaces
present in an axial slice through the abdomen at liver height. For simulations of
contrast-enhanced acquisitions, iodine was added to the material liver with mass
fractions of 1{1=[0.001, 0.003, 0.005, 0.010, 0.015], corresponding to iodine concentra-
tions of 1, 3, 5, 10, and 15mg/ml, respectively.

The total energy deposition in the box phantom was almost equal for the three
tube potentials (772.9, 764.3, and 773.6 GeV at 80, 100, and 120 kV,,, respectively, for
P = 0.000). However, relative to the incident photon energy, the highest percentage
was deposited at 80 kV}, (~33.2%) and the lowest percentage at 120 kV,, (~26.8%).
Figure 3.6 depicts 2D-energy maps of the whole phantom at 80, 100, and 120 kV}, for
the simulation of a non-enhanced ({1 = 0.000) and an enhanced ({1 = 0.010) ac-
quisition. The incident photons reached layer 1 at y =+45mm, underwent the first
material transition from fat to liver at y=+15mm, the second material transition
from liver to fat at y =-15mm, and left layer 3 at y =-45 mm. Subtle color differences
in figure 3.6 show differences at the interfaces between the layers.

Even without contrast enhancement, Egpatial increased considerably at the inter-
face between the fat and the liver layer, due to the higher density of liver tissue
(1.06 g/cm?®) compared to fat tissue (0.95 g/cm?).

The energy deposition along the y-axis of the box phantom for a simulation of a
non-enhanced ({1 = 0.000) and an enhanced acquisition with an iodine mass frac-
tion of 11 =0.010 are presented in figures 3.7-3.8. Energy deposition was highest at
the interface between layer 1 and layer 2 for the 80 kV,-setting and reduced for higher
tube potentials. Energy deposition in layer 1 was comparable for both the simula-
tion of the non-enhanced and the enhanced acquisition, though energy deposition
increased considerably in layer 2 for the simulation of the enhanced acquisition.
The 80 kV,-profiles showed the steepest gradient in layer 2. The profiles for 100 and
120kV,, were fairly identical in the first and second layer, but differed in the third
layer. Here, energy deposition was highest for the 120 kV,-spectrum and decreased
with decreasing tube potential.

The iodine concentration corresponding to the mass fraction 11 = 0.010 (10 mg/ml)
is usually only achieved in the aorta directly after injection of the contrast agent and
not in the liver. However, this mass fraction was chosen for data presentation since
the differences between tube potentials are more easily apparent for larger mass
fractions.



3.2 INFLUENCE OF THE TUBE POTENTIAL AND CONTRAST ENHANCEMENT 75

y-axis [mm]

Energy deposition [MeV]

40
X-axis [mm)]

y-axis [mm]

Energy deposition [MeV]

40 0 20 40

20 40
X-axis [mm] X-axis [mm] X-axis [mm]

39
(=3
(=}

y-axis [mm]

553
f=3
(=}

Energy deposition [MeV]

=)
S

—40 =20 0 20 40
x-axis [mm] X-axis [mm] x-axis [mm]

Figure 3.6: Evaluation B-II: Summed energy deposition along the z-axis in the box phan-
tom for the material combination in the three layers fat-liver-fat at 80 kV,, (left),
100kV, (middle), and 120kV}, (right). Top row: non-enhanced liver, middle
row: non-enhanced liver with different color scale, bottom row: enhanced liver
(1 = 0.010). Incident photons reach layer 1 at y=+45mm, undergo the first
material transition from fat to liver at y =+15 mm, the second material transition
from liver to fat at y =-15mm, and leave layer 3 at y = -45 mm. Please note the dif-
ferent color bars for energy maps of simulations of non-enhanced and enhanced
acquisitions.
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Figure 3.7: Evaluation B-II: Profile through the box phantom, constructed of fat (layer 1),
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liver (layer 2), and fat (layer 3) at 80, 100, and 120kV),. For calculation of the
profiles, only the inner 4 cm in x- and z-direction (between -20 mm and +20 mm)
were used to take only the homogenous distribution inside the phantom into
account (the energy deposition is less homogenous at the edges of the phantom
as scattered photons in these regions are only produced but their energy is not
deposited). Please note the different vertical axis scaling in the profiles in figures
3.7-3.8.
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Figure 3.8: Evaluation B-II: Profile through the box phantom, constructed of fat (layer 1),

enhanced liver (layer 2, {1=0.010), and fat (layer 3) at 80, 100, and 120 kV),.
Simulated energy deposition is highest for the 80 kV,-simulation up to y = +5 mm.
From y =+5 mm onwards until y =-45mm, energy deposition is highest for the
120 kV,,-simulation. For calculation of the profiles, again only the inner 4cm
(between -20mm and +20mm) in x- and z-direction were used, to take only
the homogenous distribution inside the phantom into account. Please note the
different vertical axis scaling in the profiles in figures 3.7-3.8.
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Figure 3.9: Evaluation B-II: Relative difference to simulated non-enhanced acquisition for
iodine mass fractions of {1 = 0.001, 0.003, 0.005, 0.010, 0.015 at 80 kV,. Only the
inner 4 cm in x- and z-direction were used for calculation of the profiles to take
only the homogenous distribution inside the phantom into account. The shaded
area in the plot highlights the interface layers covered by the interface 2a/1 and an
interface layer thickness of 2.5 mm. Please note the different vertical axis scaling
in the profiles in figures 3.9-3.10.

Figure 3.9 presents the increased energy deposition in the box phantom compared
to a simulated non-enhanced acquisition (pure liver in layer 2) for all simulated
mass fractions 1y =[0.001, 0.003, 0.005, 0.010, 0.015] (enhanced liver in layer 2) at
80kVy. For the profiles of the energy deposition along the y-axis, only the inner
4cm of the phantom (in x- and z-direction, between -20mm and +20 mm) were
taken into account, as Egpatial in this range was fairly homogeneous. The higher the
iodine concentration, the higher the relative difference in energy deposition between
simulated enhanced and non-enhanced acquisitions. For very small iodine concen-
trations (1-3mg/ml), the energy increase was relatively stable along the y-axis of
the phantom (along layer 2, between y =-15mm and y=+15mm), whereas for high
iodine concentrations (5 - 15mg/ml), the difference in energy deposition decreased
along the y-axes of the phantom. The larger the distance from the fat/liver-tissue
interface (layer 1/2) towards the detector, the lower the relative increase in energy
deposition. In layer 3, the energy deposition for simulated enhanced acquisitions
was lower compared to the energy deposition for simulated non-enhanced acquisi-
tions (negative relative differences) since a high percentage of photons was already
absorbed in layer 2.
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Figure 3.10: Evaluation B-II: Relative difference in energy deposition between simulated en-

hanced and non-enhanced acquisitions, at 80, 100, and 120 kV,,. Profile through
the box phantom, constructed of fat (layer 1), liver (layer 2, {; = 0.010), and fat
(layer 3). Only the inner 4 cm in x- and z-direction were used for calculation of
the profiles to take only the homogenous distribution inside the phantom into
account. Please note the different vertical axis scaling in the profiles in figures
3.9-3.10.

To check whether the energy build-up effect varied between tube potentials, the
relative difference between simulated enhanced and non-enhanced acquisitions was
plotted as a profile through the inner 4cm of the box phantom, see figure 3.10,
for an iodine mass fraction of 1 = 0.010. At the interface between layer 1 and 2
(interface fat to liver), no clear differences were visible between the tube potentials
100 and 120 kVp, whereas for 80 kVp, a slightly lower relative increase was noticed. At
larger depths, the relative difference in energy deposition of the simulated 80 kV -
acquisition dropped with a steeper gradient compared to the simulated 100 and
120 kVp-acquisitions.
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3.2.3 EVALUATION B-III: ENERGY BUILD-UP EFFECT AT MATERIAL INTERFACES IN
THE BOX PHANTOM

Section 3.2.2 demonstrated that the total energy deposition for different tube poten-
tials was comparable although Egpatia) varied along the y-axis (see figures 3.6, 3.7 and
3.8). A closer look at the interfaces between layers 1 and 2 and between layers 2 and
3 was therefore necessary, see section 2.5.2.4. Refer to figure 2.20 for the names of in-
terface layers. For this purpose, the deposited energy around the material transition
from fat to liver (interface 2a/1) and around the material transition from liver to fat
(interface 2b/3) were determined in the 4 cm x 4 cm central block of the box phan-
tom. This was performed for interface layer thicknesses of 1.0, 2.5, and 5.0 mm in
y-direction. Interface ratios (2a/1 and 2b/3) were calculated from the results of the
simulations of non-enhanced and enhanced acquisitions and presented in table 3.4.
More interactions were taken into account with increasing layer thickness (larger cu-
mulative energy deposition, more signal). However, with increasing distance from
the interface, the energy build-up effect at the entrance side of the photon beam
decreased (decreasing energy deposition with increasing distance from interface).
This becomes apparent at the material interfaces in the profiles, see figures 3.7 and
3.8). The ratio at the 'upstream' interface 2a/1, hence, the transition from fat (layer
1) to liver (layer 2) increased with decreasing interface layer thickness due to the
larger difference in energy deposition between interface layer 2a and 1 for thinner
interface layers. The reverse effect was visible for the 'downstream' interface 2b/3,
the transition between liver (layer 2) and fat (layer 3). The thickness of the interface
layer was a compromise between signal and ratio for the energy build-up effect.
For the assessed tube potentials, the energy build-up effect at the interfaces was
highest at 80 kV,, and lowest at 120kV},. The energy build-up effect increased with
increasing iodine mass fraction for the assessed tube potentials.

The thickness of the interface layer was of importance for later simulations of the
abdomen phantom and digitized patient phantoms, to assess the energy build-up
effect for different interfaces. The profile of the difference in energy deposition be-
tween the simulated enhanced and non-enhanced acquisitions was fairly stable for
2.5 mm after entrance in layer 2 for iodine mass fractions 11 up to 0.005 (see shaded
area in figure 3.9). Hence, for the simulations of the abdomen phantom and digitized
patient phantoms, a thickness of 2.5 mm was used for the organ shells.
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Table 3.4: Evaluation B-III: Ratios for liver/fat-interfaces for different interface widths (1.0 mm, 2.5 mm, and 5.0 mm) at 80, 100, and 120kV,, (generated
filtered spectra). Interface 2a/1 is the transition between layers 1 and 2, interface 2b/3 is the transition between layers 2 and 3. For these
ratios, the energy deposited in the liver layer was divided by the energy deposited in the fat layer. See figure2.20 for a schematic drawing
of the interfaces in the box-phantom. Interface ratios 2a/1 and 2b/3 for simulated non-enhanced ({1 = 0.000) and enhanced ({1 = 0.005)
acquisitions are marked grey for easier comparison to ratios calculated for the abdomen and digitized patient phantoms, refer to tables 3.7-3.8
and tables 3.11-3.12.

Interface width 5.0mm 2.5mm 1.0 mm
P Interface 2a/1 Interface 2b/3 Interface 2a/1 Interface 2b/3 Interface 2a/1 Interface 2b/3
80kVp  0.000 1.57 1.86 1.63 1.76 1.67 1.71
0.001 1.66 1.98 1.73 1.88 1.77 1.83
0.003 1.99 2.40 2.07 2.29 2.12 2.21
0.005 2.29 2.80 2.38 2.63 243 2.53
0.010 3.02 3.71 3.17 3.48 3.25 3.36
0.015 3.71 4.61 3.90 4.28 4.01 4.06
100kV,  0.000 1.50 1.77 1.56 1.68 1.61 1.64
0.001 1.60 1.87 1.67 1.78 1.69 1.73
0.003 1.94 227 2.00 2.17 2.05 2.09
0.005 2.24 2.65 2.33 2.50 2.36 243
0.010 2.98 3.57 3.11 3.35 3.17 3.24
0.015 3.66 4.40 3.82 4.09 3.90 3.90
120kV,  0.000 1.46 1.68 1.51 1.61 1.53 1.55
0.001 1.54 1.79 1.59 1.72 1.63 1.66
0.003 1.92 227 1.99 2.16 2.03 2.08
0.005 2.17 2.52 2.25 2.38 2.29 2.31
0.010 2.88 3.37 2.99 3.17 3.04 3.05
0.015 3.56 4.13 3.70 3.88 4.01 4.06




3.3 CALCULATION OF EXPOSURE MAPS OF THE MODIFIED ABDOMEN PHANTOM

3.3 CALCULATION OF EXPOSURE MAPS OF THE MODIFIED ABDO-
MEN PHANTOM

The next section describes the energy deposition in the modified abdomen phantom
(see section 2.4.1.3). This phantom consists of several organs and material interfaces.
Particular focus was the energy increase in an organ and at the interfaces between
visceral fat and organ tissue for simulations of iodine-enhanced acquisitions. Fig-
ure 3.11 shows the axial, coronal, and sagittal energy map of the simulated modified
abdomen phantom. Simulation parameters for this simulated non-enhanced acqui-
sition were a tube potential of 80kV,, spiral acquisition mode (pitch=1.0), and a
scan coverage of 43.2cm (40 cm phantom length + 2 x 1.6 cm overscanning). The
exposure along the z-axis of the phantom was homogeneous (no LTCM applied),
however, fan-angle dependent fluence modulation (FM) was enabled. The influence
of the spiral acquisition mode with the pitch 1.0 was visible in the coronal and sagit-
tal planes. At the phantom center, energy deposition was uniform, whereas gaps in
energy deposition are visible at the phantom periphery.
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Figure 3.11: Axial (a), coronal (b), and sagittal (c) energy deposition map of the modi-
fied abdomen phantom. Simulated non-enhanced ({; = 0.000) acquisition at
80kV,, with the spiral acquisition mode (pitch =1.0). Voxel size: 2 x 2 x 2mm?.
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3.3.1 EVALUATION A-I: INFLUENCE OF TUBE POTENTIAL AND TISSUE CONTRAST
ENHANCEMENT ON ENERGY DEPOSITION AND ITS SPATIAL DISTRIBUTION IN
THE MODIFIED ABDOMEN PHANTOM

Table 3.5 presents an overview of the total energy deposition in the modified ab-
domen phantom, for simulated non-enhanced and enhanced acquisitions at 80, 100,
and 120 kV, (refer to section 2.5.3.2). Furthermore, the calculated relative differences
in energy deposition between the simulated enhanced and the non-enhanced acqui-
sition are shown. In general, energy deposition in all structures of the phantom
increased with increasing tube potential, except for the skin (difference in energy de-
position of -4.6% between the 120 kV,,- and 80 kV,-setting). The increase amounted
to approximately (~) +12% for the the whole phantom. For individual tissues, the
increase ranged between 2% (soft tissue) and 35% (aorta). Energy deposition in tis-
sues close to the phantom center was increasing to a stronger degree with increasing
tube potential compared to energy deposition in tissues at the periphery.

For simulated contrast-enhanced acquisitions, energy deposition increased consid-
erably for the enhanced tissues (between ~30% and 50%) compared to the energy
deposition in simulated non-enhanced acquisitions. For all enhanced tissues, the
relative increase in energy deposition was highest at 120kV/, although differences
between 80 and 100kV,, were larger than between 100 and 120kV,,. For all tube
potentials, the energy deposition in the pancreas yielded the highest increase (50.7%
at 120kVy). Energy deposition in the largest organ, the liver, increased by 31-35%.
For the surrounding non-enhanced tissues, energy deposition was lower for sim-
ulated enhanced acquisitions than for simulated non-enhanced acquisitions (-1 to
-4%). The largest difference was obtained in the spine (reduction of ~-3.7%). The rel-
ative difference in energy deposition for non-enhanced tissues between simulated
enhanced and non-enhanced acquisitions were approximately equal for all tube po-
tentials.

Figure 3.12 shows an overview of an axial slice through the liver, GI-tract, spleen,
aorta, and the spine for simulated non-enhanced (top row) and enhanced (second
row) acquisitions at 80, 100, and 120 kV,,. Since simulations of CT acquisitions were
performed in helical mode with a pitch of 1.0, Egpatial at the posterior and anterior
side of the phantom was not homogeneous for an axial slice. Energy deposition in
the subcutaneous fat and visceral fat between the organs and the aorta was consider-
ably lower than in the organs as the physical density of fat is lower than the density
of organ tissue (e.g. prat < Pliver)- With increasing tube potential, energy deposition
at the phantom center increased due to the longer range of high-energy photons,
similar to the energy deposition in the box phantom, presented in section3.2.1.
Energy deposition decreased with increasing surface-to-center distance of the phan-
tom, which was especially visible for the liver. The third row in figure 3.12 depicts
the relative difference in Egpatial between the simulated enhanced and non-enhanced
acquisitions. At 120kV,, relative differences in energy deposition at the phantom
center were more homogeneously distributed than at 80 kV,,, which was especially
visible in the area between the liver and the aorta.
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Figure 3.12: Evaluation A-I: Simulated energy deposition in the modified abdomen phantom
at 80, 100, and 120 kVy,. Energy deposition for simulated non-enhanced acquisi-
tions (top row), for simulated enhanced acquisitions (second row), relative differ-
ence in energy deposition between simulated enhanced and non-enhanced ac-
quisitions (third row). Left: 80 kV,,-, middle: 100 kV,,-, right: 120 kV,-simulation.
Fourth row: relative difference in Egpatia between the simulations at 80 and
120kV}, (left) and between the simulations at 100 and 120kV,, (right), relative
difference shown for simulated non-enhanced acquisitions. Contrast-enhanced
tissues: aorta, liver, spleen, kidneys, and pancreas ({1 = 0.005).

Whereas the spatial distribution of the deposited energy was fairly equal for 100
and 120kV,, large differences appeared at the phantom center at 80kV, due to
the shorter photon range at this tube potential (visible in third and fourth row of
tigure 3.12).
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Table 3.5: Evaluation A-I: Comparison of the energy deposition in the modified abdomen phantom for simulated non-enhanced and enhanced computed

tomography acquisitions at 80, 100, and 120 kV,,. Relative differences in energy deposition between simulated enhanced and non-enhanced
acquisitions were calculated for corresponding tube potentials. Soft tissue includes the gastro-intestinal tract and the soft tissue layer at the
phantom periphery. Contrast-enhanced tissues: aorta, liver, spleen, kidneys, and pancreas ({1 = 0.005). Left (L), right (R).

Simulated energy deposition [GeV]

Whole organ
Phantom Softtissue Spine Skin Fat Aorta | Liver Spleen Kidney R KidneyL Pancreas

Simulated non-enhanced acquisition

80kV,  3251.11 1010.69  216.03 251.65 1413.77 23.44 | 230.13 36.66 15.01 14.96 5.03
100kV,  3450.44 1014.23  249.69 24196 1549.51 2775 | 251.32 39.25 16.68 16.66 5.81
120kV,  3630.65 1029.07  270.81 240.18 1667.59 30.98 | 267.49  41.28 17.95 17.98 6.39
Simulated enhanced acquisition

80kV,  3305.19 998.26 208.05 250.06 1378.71 3299 | 301.75 52.51 21.88 21.92 741
100kV,  3521.22 1000.14 24047 240.14 151091 39.94 | 33821 57.40 2491 2491 8.74
120kV, 371112 1014.08  261.09 23821 1627.26 44.79 | 363.02 60.66 26.83 2691 9.63
Relative difference to non-enhanced acquisition [%]

80kV, 1.66 -1.23 -3.69  -0.63 -248 4070 | 31.12  43.25 45.73 46.52 47.36
100kV, 2.05 -1.39 -3.69  -0.75 -249 4393 | 3458  46.24 49.34 49.55 50.48
120kV, 222 -1.46 -3.59  -0.82 -242 4456 | 3571  46.93 49.48 49.67 50.65
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3.3.2 EVALUATION A-II: ENERGY BUILD-UP EFFECT AT MATERIAL INTERFACES IN
THE MODIFIED ABDOMEN PHANTOM — WHOLE PHANTOM

The energy deposition in the organ and tissue shells of the modified abdomen phan-
tom was assessed in the following (refer to section 2.5.3.3). Particular focus was the
energy deposition at material interfaces. In the modified abdomen phantom, organs
are surrounded by visceral fat. Table 3.6 provides the energy deposition per organ
and surrounding tissue shell for the six performed simulations. Furthermore, the
corresponding relative differences in energy deposition between simulations of en-
hanced and non-enhanced acquisitions are given.

The largest change from the whole organ to the organ and surrounding fat tissue
shells was visible in the liver. Whereas the relative difference in energy deposition
between the simulation of enhanced and non-enhanced acquisition was only ~+31-
35% in the complete liver (see table 3.5), this value increased for the liver shell to
~+43%. This increase was due to the large size of the liver and its heterogeneous
energy deposition. Along the outer rim of the liver, energy deposition was approxi-
mately twice as high as at the inner rim, positioned close to the aorta. For the other
organs, the relative differences in energy deposition between the simulation of the
enhanced and the non-enhanced acquisition increased only slightly.

Energy deposition decreased in the surrounding visceral fat shell for a simulation
of an enhanced acquisition for all organs. The relative difference was strongest for
the liver (~-7%) and least observable for the left kidney (~-4 %).

Energy deposition was highest for simulations at 120kV,, and lowest at 80kV}, as
were the relative differences in energy deposition for the organ shells. Relative dif-
ferences between simulations of enhanced and non-enhanced acquisitions behaved
contrary for the surrounding fat shells: largest differences were visible at 80 kV,.
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quisitions at 80, 100, and 120kV},. Relative differences in energy deposition between simulations of enhanced and non-enhanced computed
tomography acquisitions were calculated for the corresponding tube potentials. Contrast-enhanced tissues: aorta, liver, spleen, kidneys, and
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pancreas (Y1 = 0.005). Left (L), right (R).

Simulated energy deposition [GeV]

Organ shell Surrounding fat shell
Liver Spleen KidneyR KidneyL Pancreas | Liver Spleen Kidney R KidneyL Pancreas

Simulated non-enhanced acquisition

80kV, 3222  7.60 4.01 3.99 2.02 21.32  5.11 2.83 2.83 1.64
100kV, 3443  8.07 4.42 4.41 231 2351  5.61 3.25 3.25 1.96
120kV,  36.09 845 4.74 4.77 2.55 2549  6.06 3.59 3.59 2.20
Simulated enhanced acquisition

80kV, 4557 11.13 5.93 5.94 2.98 19.86  4.84 2.70 2.72 1.54
100kV, 4936  12.03 6.67 6.67 3.50 2198  5.36 3.11 3.14 1.86
120kV, 51.82 12.61 7.21 7.20 3.84 2381 579 3.47 3.48 2.10
Relative difference to non-enhanced acquisition [%]

80kV, 4144 4651 47.85 48.85 47.78 -6.84  -5.32 -4.82 -3.83 -6.05
100kV, 43.38  49.05 50.80 51.47 51.32 -6.50  -4.46 -4.37 -3.56 -5.32
120kV, 43.58  49.32 52.04 50.92 50.58 -6.59  -4.37 -3.44 -3.05 -4.56
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Table 3.7: Evaluation A-II: Calculated interface ratios between organ shell and surrounding
fat shell at 80, 100, and 120kV,,. Energy deposition was normalized to the volume

of the shells prior to calculation of the interface ratios. Contrast-enhanced tissues:

aorta, liver, spleen, kidneys, and pancreas (\p; = 0.005). Left (L), right (R).

Interface ratio (organ shell / surrounding fat shell)

Liver Spleen Kidney R KidneyL Pancreas

Simulated non-enhanced acquisition

80kV, 1.649 1.679 1.649 1.654 1.578
100kV, 1598  1.625 1.583 1.587 1.516
120kV, 1.545 1.576 1.538 1.558 1.493
Simulated enhanced acquisition

80kV, 2504 2598 2.561 2.560 2.483
100kV, 2450  2.536 2.497 2.492 2.423
120kV, 2375  2.460 2.422 2.425 2.356

Table 3.7 presents the calculated ratios at the organ-surrounding tissue interface.

For this purpose, the energy deposition in each shell was first normalized to the
volume of the shell followed by the calculation of the organ/tissue shell ratios. The
same pattern as was seen in the box phantom (c.f. table 3.4) was observed for the
abdomen phantom, although here, interfaces 2a/1 and 2b/3 could not be separated
into 'upstream' and 'downstream' interfaces due to the full rotation of the x-ray
source around the modified abdomen phantom (stationary x-ray source in the box
phantom). For increasing tube potential, the interface ratio decreased. Ratios for the
simulated non-enhanced acquisitions ranged between 1.5 and 1.7, whereas ratios
for the simulated enhanced acquisitions ranged between 2.3 and 2.6.
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3.3.3 EVALUATION A-III: ENERGY BUILD-UP EFFECT AT MATERIAL INTERFACES IN
THE MODIFIED ABDOMEN PHANTOM — AXIAL SLICE

The energy build-up effect was further assessed in one specific axial slice of the
abdomen, containing parts of the organs liver and spleen, simulated with an in-
creased number of photons for higher statistical occupation of the energy map (see
figure 3.13 and section 2.5.3.4).

Both the simulation of the non-enhanced and enhanced acquisition were performed
for the tube potentials of 80, 100, and 120kV, for a single 270°-projection (x-
ray source position at 9 o’clock) and for a full source rotation. Figure3.13 de-
picts Egpatia for the projection and the rotation, simulated with a tube potential
of 80 kV,, (simulated enhanced (11 = 0.005) acquisition).

Table 3.8 presents the energy deposition and interface ratios for the ROIs depicted in
figures 2.22a-2.22d for the simulation of a full source rotation around the phantom.
Comparing the energy deposition between the enhanced and the non-enhanced set-
ting, energy deposition increased considerably in the liver ROI (~+46% for ROI 2a,
34-40% for ROI 2b). A slight increase was noted in ROI 1 (~+1%) and a decrease noted
in ROI 3 (~-10-14%). For the simulated non-enhanced acquisitions, both interface
ratios ranged between 1.45 and 1.68. For the enhanced acquisitions, interface ratios
were higher: for the interface 2a/1, ratios ranged between 2.15 and 2.28, whereas for
interface 2b/3, ratios ranged between 2.39 and 2.61.

Figures 3.14-3.17 present the x-axis profiles of the energy maps marked in figure 3.13
for the evaluated tube potentials for simulations of the non-enhanced and enhanced
acquisitions. The material transitions from air to skin, subcutaneous fat, soft tissue,
visceral fat, and liver are clearly visible in all profiles.

Near the entrance side of the photon beam (at x =+ 17 cm), energy deposition was
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Figure 3.13: Evaluation A-III: Energy deposition for a simulated enhanced acquisition of
a single slice of the modified abdomen phantom at 80kV),. Profiles along the
x-axis (white lines) are presented in figures 3.14-3.17. Energy deposition was
not scored in the air for this setup, hence energy deposition equals zero outside
the phantom. Contrast-enhanced tissues: aorta, liver, and spleen (\p; = 0.005).
Please note the different scaling of the color bars.
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Table 3.8: Evaluation A-III: Energy deposition and relative difference in energy deposition
between simulations of enhanced and non-enhanced computed tomography ac-
quisitions for the regions of interest (ROIs) depicted in figures2.22a-2.22d at 80,
100, and 120kV,, for the simulation of the full source rotation. Energy deposition
and relative differences were determined from placing ROIs on calculated 2D en-
ergy/difference maps. For calculation of interface ratios, energy deposition in the
ROIs was normalized to the number of pixels in the ROL. ROI 1 and ROI 3 are
positioned in the surrounding tissue (fat), ROI 2a and ROI 2b in the liver.

Simulated energy deposition [MeV] Interface ratio
ROI1 ROI2a ROI2b ROI 3 2a/1 2b/3

Simulated non-enhanced acquisition

80kV, 1519 2230 14.42 8.59 1.556  1.677
100kV, 1574  22.37 15.40 9.68 1.505  1.591
120kV, 1647  22.64 16.19 10.53 1456  1.536
Simulated enhanced acquisition

80kV, 1540  33.19 19.77 7.58 2282  2.608
100kV, 1595  33.44 21.69 8.67 2221 2502
120kV,  16.60  33.74 2298 9.60 2153 2394
Relative difference to non-enhanced acquisition [%]

80kvp, 135  46.13 34.13 -13.60
100kV, 1.28 46.91 38.79 -11.62
120kV, 0.70 46.57 40.30 -9.75

highest for the 80 kV,-spectrum for both the projection and the rotation. In the liver
tissue between x=-14 and -5 cm, the slope of the 80 kV,-profile was steepest. As a
result, energy deposition was higher at 120kV,, towards the center of the phantom
compared to the energy deposition resulting from the 80 kV,-setting. For the projec-
tion, energy deposition at the entrance side of the liver (x =-14 cm) was highest for
the 80 kV,-setting, albeit only marginally. For the full rotation, energy deposition
at the entrance side of the liver was approximately equal for all tube potentials for
simulated non-enhanced acquisitions. For simulated enhanced acquisitions, energy
deposition at the entrance side of the liver was highest at 120 kVp. However, profile
data was noisy for the full rotation and might not describe small differences between
tube potentials.
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Figure 3.14: Evaluation A-III: Central x-axis profile through the 2D-energy map of a lateral
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projection at 80, 100, and 120 l(Vp for the simulated non-enhanced acquisition.
The following materials are traversed from left (x=-17 cm) to right (x=+17 cm)
and visible on the profile: skin (shaded area, left), subcutaneous fat, soft tissue
(shaded area, middle), visceral fat, liver (shaded area, right), visceral fat, gastro-
intestinal tract, and again visceral fat. Please note the different vertical axis
scaling in the profiles in figures 3.14-3.15.
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Figure 3.15: Evaluation A-III: Central x-axis profile through the 2D-energy map of a lateral

projection at 80, 100, and 120kV,, for the simulated enhanced acquisition. The
following materials are traversed from left (x=-17 cm) to right (x=+17 cm) and
visible on the profile: skin (shaded area, left), subcutaneous fat, soft tissue
(shaded area, middle), visceral fat, liver (shaded area, right), visceral fat, gastro-
intestinal tract, and again visceral fat. Contrast-enhanced tissues: aorta, liver,
and spleen (1 = 0.005). Please note the different vertical axis scaling in the
profiles in figures 3.14-3.15.
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Figure 3.16: Evaluation A-III: Central x-axis profile through the 2D-energy map for a full
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source rotation at 80,100, and 120 kVp for the simulated non-enhanced acquisition.
The following materials are traversed from left (x=-17 cm) to right (x=+17 cm)
and visible on the profile: skin, subcutaneous fat, soft tissue, visceral fat, liver,
visceral fat, gastro-intestinal tract, visceral fat, spleen, visceral fat, soft tissue,
subcutaneous fat, and the skin.
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Figure 3.17: Evaluation A-III: Central x-axis profile through the 2D-energy map for a full

source rotation at 80, 100, and 120kV}, for the simulated enhanced acquisition.
The following materials are traversed from left (x =-17 cm) to right (x=+17 cm)
and visible on the profile: skin, subcutaneous fat, soft tissue, visceral fat, liver,
visceral fat, gastro-intestinal tract, visceral fat, spleen, visceral fat, soft tissue,
subcutaneous fat, and the skin. Contrast-enhanced tissues: aorta, liver, and

spleen ({1 = 0.005).
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34 CALCULATION OF EXPOSURE MAPS OF DIGITIZED PATIENTS

The MC software was further developed to allow for modeling and simulation of CT
acquisitions of patients to calculate the radiation exposure depending on the acqui-
sition parameters (e.g. tube potential), contrast enhancement, patient morphology,
or BMI. Figure3.18 presents the energy deposition of a simulated non-enhanced
acquisition in the axial, coronal, and sagittal plane (patient 3A). Energy deposition
was highest in the bones (ribs, spinal processes, ilium) due to the high material
density and lowest in the lungs. Due to the density differences in the lungs, subtle
differences in energy deposition were visible in the lungs.

3.4.1 EVALUATION P-I: INFLUENCE OF THE TUBE POTENTIAL AND TISSUE CON-
TRAST ENHANCEMENT ON ENERGY DEPOSITION AND ITS SPATIAL DISTRIBU-
TION IN A DIGITIZED PATIENT

For this evaluation, energy deposition in the abdominal scan range of patient 2A
was simulated for the tube potentials 80, 100, and 120kV}, for a simulation of a
non-enhanced and an enhanced acquisition (see section2.5.4.2 and figurel.2b). Re-
sults of Egpatial for an axial slice through the liver, spleen, and lungs are presented in
figure 3.19 for the simulated non-enhanced acquisitions in the top row and for the
simulated enhanced acquisitions in the second row.

At 120kV), energy deposition in the liver and the spleen was more homogeneously
distributed compared to the energy deposition resulting from the simulated non-

Energy deposition [MeV]

Energy deposition [MeV]

-15 -10 -5 0 5 10 15

(a) axial view x [cm]

Energy deposition [MeV]

(c) sagittal view y [mm]

Figure 3.18: Axial (a), coronal (b), and sagittal (c) energy deposition map for patient 3A.
Simulated non-enhanced acquisition (1 = 0.000) at 80kV,, with the spiral
acquisition mode (pitch=1.0), tube current modulation enabled. Voxel size:
1.54 x 1.54 x 3mm?3. Original computed tomography images for the presented
maps are shown in figureL.1.
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enhanced 80 kV,-acquisition, especially at the center of the abdomen.

The difference maps in figure 3.19, third row, show that the differences in energy de-
position between simulations of enhanced and non-enhanced acquisitions (for the
enhanced tissues) increased slightly with increasing tube potential. The difference
between the results of the 80 kV,,- and the 120 kV,,-setting was considerably higher
than the differences between the results of the 100 kV,,- and the 120 kV,-setting.
For the simulated 80 kV,-acquisition, mean photon ranges were shorter, which low-
ered the energy deposition at the center of the patient compared to the 120 kV,-
setting (difference between tube potentials visible in the bottom row), similar to the
energy deposition in the modified abdomen phantom, see section 3.3.1. The differ-

ence in energy deposition at the center of the patient was smaller between 100 and
120kVp.
p

Total energy deposition in patient 2A for the different tube potentials is presented
in table 3.9 for the organs and tissues. Energy deposition in the enhanced tissues
increased by ~+38% for the liver and up to ~+50% for the pancreas (refer to table 3.9).
Energy deposition decreased in non-enhanced soft tissue, bones, skin, and fat by
approximately -3%.

The higher the tube potential, the higher the energy deposition in all tissues, ex-
cept for the skin. Here, energy deposition was highest at 80 kV,, due to the higher
number of low-energy photons in the 80kV-spectrum (difference of +4.5% com-
pared to the skin deposition at 120kV},). The mean spectral energy of the initial
photons directed towards the patient was ~20% lower for the 80 kV,- compared to
the 120 kV,-spectrum.

The largest differences between the simulated 120 kV,- and 80 kV,-acquisition were
found in the pancreas and the aorta (~+30%), which are both organs/tissues posi-
tioned centrally in the patient. Differences between these tube potentials were lower
in the organ periphery (spleen ~+14%, soft tissue ~+6%). In the total patient, energy
deposition at 120 kV,, was ~10% higher than at 80 kV,.
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Figure 3.19: Evaluation P-I: Simulated energy deposition in patient 2A at 80,100, and 120 kV/,.
Energy deposition for simulated non-enhanced acquisitions (top row), for sim-
ulated enhanced acquisitions (second row), relative difference in energy depo-
sition between simulated enhanced and non-enhanced acquisitions (third row).
Left: 80kV,-, middle: 100 kV,-, right: 120 kVp,-simulation. Fourth row: relative
difference in Egpatial between the simulated acquisition at 80 and 120kVy, (left)
and between the simulated acquisition at 100 and 120kV,, (right), relative dif-
ference shown for simulated non-enhanced acquisitions. Contrast-enhanced
tissues: aorta, liver, spleen, kidneys, and pancreas ({1 = 0.005). Original axial
computed tomography image shown in figure 1.2b.
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3.4.2 EVALUATION P-II: ENERGY BUILD-UP EFFECT AT MATERIAL INTERFACES IN A
DIGITIZED PATIENT — WHOLE PATIENT

In the following subsection, the the energy build-up effect at material interfaces
in the digitized patient is evaluated (see section2.5.4.3), as was performed for the
modified abdomen phantom. Total energy deposition in patient 2A for the different
tube potentials is presented in table 3.10 for the surrounding organ and tissue shells.
Taking only the organ and surrounding tissue shells in to account, energy deposition
increased considerably for the liver (~+44%, see table 3.10).

The build-up effect was assessed in the liver, spleen, and kidneys. Due to the size and
structure of the pancreas, the shell structure could not be implemented. Interface
ratios between the organ shells and the surrounding tissue shells are presented in
table 3.11 for patient 2A and tube potentials of 80, 100, and 120 kV,. The clear trend
of an increasing ratio with decreasing tube potential, which was noted in the box
phantom and the modified abdomen phantom, was also noticeable for the digitized
patient. For simulations of non-enhanced acquisitions, ratios ranged between 1.13
and 1.33, whereas for simulations of enhanced acquisitions, ratios ranged between
1.70 and 2.03.

Table 3.10: Evaluation P-II: Simulated energy deposition in organ and surrounding soft
tissue shells for patient 2A at 80, 100, and 120kV},. The simulation covered the
liver, spleen, pancreas, and kidneys with an additional scan range of 36 mm in
cranio-caudal direction. Contrast-enhanced tissues: aorta, liver, spleen, kidneys,
and pancreas (1 = 0.005).

Simulated energy deposition [GeV]
Organ shell Surrounding tissue shell

Liver Spleen Kidneys Liver Spleen Kidneys

Simulated non-enhanced acquisition

80kV, 17.26 3.35 6.43 1591 2.66 5.36
100kV, 18.29 3.58 7.21 16.83 2.88 6.12
120kV,  19.06 3.74 7.81 17.69 3.09 6.75

Simulated enhanced acquisition
80kV, 24.69  4.95 9.10 1526  2.58 5.04

100kVp, 2637 536 10.44 16.19 283 5.85
120kV, 2755  5.62 11.34 17.07  3.03 6.53
Relative difference to non-enhanced acquisition [%]

80kVp, 43.01 47.83 41.50 -4.07  -2.98 -6.05
100kV, 4421  49.87 44.68 -3.82 -1.69 -4.28

120kV, 4458  50.26 45.10 -3.50 -1.86 -3.18
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Table 3.11: Evaluation P-II: Interface ratios calculated from normalized energy depositions
(per voxel) in the shells for patient 2A at 80, 100, and 120kV},. The simulation
covered the liver, spleen, pancreas, and kidneys with an additional scan range of
36 mm in cranio-caudal direction. Contrast-enhanced tissues: aorta, liver, spleen,
kidneys, and pancreas ({1 = 0.005).

Interface ratio (organ shell / surrounding tissue shell)

Liver Spleen Kidneys

Simulated non-enhanced acquisition

80kV, 1.141 1.330 1.320
100kVp 1.142 1.312 1.297
120kV,, 1.133 1.281 1.273
Simulated enhanced acquisition

80kVp 1.701 2.026 1.987
100kV, 1.713 2.000 1.961
120kV,, 1.697 1.961 1.908

3.4.3 EVALUATION P-III: ENERGY BUILD-UP EFFECT AT MATERIAL INTERFACES IN
A DIGITIZED PATIENT — AXIAL SLICE

The build-up effect at material interfaces was furthermore assessed for an axial
slice through the liver and kidneys in patient 1A (see figures3.20 and [.2a, and
section 2.5.4.4). This slice, especially the liver, resembled the chosen slice of the mod-
ified abdomen phantom.
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Figure 3.20: Evaluation P-III: Simulation of an enhanced acquisition of a single slice of patient
1A at 80kV,,. Profiles along the x-axis are presented in figures 3.21-3.24. Energy
deposition was scored in the air for this setup, hence energy deposition outside
the patient is non-zero. Contrast-enhanced tissues: aorta, liver, spleen, kidneys,
and pancreas (1 = 0.005). The original computed tomography image of the
presented axial slice is shown in figure I.2a. Please note the different scaling of
the color bars.
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Energy deposition and relative difference in energy deposition between simulations
of enhanced and non-enhanced acquisitions in the ROIs depicted in figures 2.23a-
2.23d are presented in table 3.12 for the simulation of the full source rotation around
the digitized patient. Comparing the energy deposition between the simulated en-
hanced and non-enhanced acquisition, energy deposition increased considerably in
the liver ROI (~+57% for ROI 2a, 34-41% for ROI 2b). A slight increase was noted in
ROI1 (~+1%) and a decrease noted in ROI 3 (~-10-14%). For all interfaces, ratios de-
creased with increasing tube potential. The interface ratio 2a/1 ranged between 1.47
and 1.52 for the non-enhanced setting, and between 2.27 and 2.35 for the enhanced
setting. Whereas the ratios of the modified abdomen phantom and the digitized
patient were similar for the simulated non-enhanced acquisitions, ratios for the
simulated enhanced acquisitions were slightly higher for the digitized patient. The
interface ratio 2b/3 ranged between 1.36 and 1.42 for the simulated non-enhanced ac-
quisition, and between 2.11 and 2.23 for the simulated enhanced acquisition. In both
the non-enhanced and the enhanced setting, ratios were slightly lower compared to
the interface ratios 2b/3 for the modified abdomen phantom.

Table 3.12: Evaluation P-III: Energy deposition and relative difference in energy deposition
between simulated enhanced and non-enhanced acquisitions for the regions of
interest (ROls) depicted in figures 2.23a-2.23d at 80, 100, and 120 kV/, for the simu-
lation of the full source rotation in patient 1A. Energy deposition and relative dif-
ferences were determined from placing ROIs on calculated 2D-energy / difference
maps. For calculation of interface ratios, energy deposition in the ROIs was nor-
malized to the number of pixels in the ROIL ROI 1 and ROI 3 are positioned in
the surrounding tissue, ROI 2a and ROI 2b in the liver.

Simulated energy deposition [MeV] Interface ratio
ROI1 ROI2a ROI2b ROI 3 2a/1  2b/3

Simulated non-enhanced acquisition

80kvV, 1411 1831 11.81 8.68 1517 1421
100kV, 1427 1823 12.44 9.42 1492 1.379
120kV, 1469  18.42 13.06 10.07 1465 1.355
Simulated enhanced acquisition

80kV, 1428 2871 16.11 7.53 2350 2234
100kV, 1447 2877 17.60 8.45 2323 2176
120kV, 14.83  28.84 18.53 9.16 2274 2111
Relative difference to non-enhanced acquisition [%]

80kv, 114  57.03 34.17 -13.95
100kV, 148  58.12 39.90 -10.79
120kV,  0.87  56.89 40.70 -9.31




3.4 CALCULATION OF EXPOSURE MAPS OF DIGITIZED PATIENTS

Again, profiles were plotted along the central x-axis of the axial energy map, for the
single 270°-projection (source position at 9 o’clock, cf. figure 3.20a and figures 3.21-
3.22) and for the full source rotation (see figure3.20b and figures 3.23-3.24). For
both simulations of non-enhanced and enhanced acquisitions of the projection, en-
ergy deposition at the entrance side of the digitized patient was highest at 80 kV/,
whereas only small differences were visible between 100 and 120kV,,. The higher
energy deposition of the simulated 80 kV-acquisition was clearly visible in the skin
and soft tissue layer between x=-17 and x=-15cm. When entering the visceral fat
layer (at x=-15cm) between the outer soft tissue layer and the liver tissue layer,
energy deposition was highest for the simulated 120 kV-acquisition. The profile of
the 80kV-setting had the steepest gradient in the liver tissue. At the entrance of
the liver, energy deposition was highest at 80 kV,,, whereas it was lowest towards
the center of the digitized patient. This pattern was also visible in the modified
abdomen phantom.

For the full source rotation, energy deposition in the skin was highest at 80kV/, for
both the simulated non-enhanced and the enhanced acquisition. For the subcuta-
neous fat and the soft tissue following the subcutaneous fat, energy deposition for
all spectra was too noisy to determine the tube potential reaching maximum energy
deposition. For the patient center (visceral fat, liver tissue, aorta, and Gl-tract) from
approximately x=-15 to x=+15cm), energy deposition was highest for the simu-
lated 120 kV-acquisition. Although all profiles follow the same pattern, there was
an offset of the 80 kV,-profile relative to the 100 kV,,- and 120 kV,-profile, especially
at the patient center.
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Evaluation P-III: Central x-axis profile through the 2D-energy map of a lateral
projection at 80, 100, and 120kV), for the simulated non-enhanced acquisition.
The following materials are traversed from left (x=-17 cm) to right (x=+17 cm)
and visible on the profile: air, skin (shaded area, left), subcutaneous fat, soft
tissue (shaded area, middle), visceral fat, liver (shaded area, right), visceral
fat, gall bladder, visceral fat, aorta, visceral fat, Gl-tract, visceral fat, soft tissue,
subcutaneous fat, and the skin. Please note the different vertical axis scaling in
the profiles in figures 3.21-3.22.
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Evaluation P-III: Central x-axis profile through the 2D-energy map of a lateral
projection at 80, 100, and 120 kVp for the enhanced acquisition. The following
materials are traversed from left (x=-17 cm) to right (x=+17 cm) and visible on
the profile: air, skin (shaded area, left), subcutaneous fat, soft tissue (shaded
area, middle), visceral fat, liver (shaded area, right), visceral fat, gall bladder,
visceral fat, aorta, and visceral fat. Contrast-enhanced tissues: aorta, liver, spleen,
kidneys, and pancreas ({1 = 0.005). Please note the different vertical axis scaling
in the profiles in figures 3.21-3.22.
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Figure 3.23: Evaluation P-III: Central x-axis profile through the 2D-energy map for a full
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source rotation at 80,100, and 120 kV,, for the simulated non-enhanced acquisition.
The following materials are traversed from left (x=-17 cm) to right (x=+17 cm)
and visible on the profile: air, skin, subcutaneous fat, soft tissue, visceral fat,
liver, visceral fat, gall bladder, visceral fat, aorta, and visceral fat. Please note
the different vertical axis scaling in the profiles in figures 3.23-3.24.
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Figure 3.24: Evaluation P-III: Central x-axis profile through the 2D-energy map for a full

source rotation at 80, 100, and 120kV), for the simulated enhanced acquisition.
The following materials are traversed from left (x=-17 cm) to right (x=+17 cm)
and visible on the profile: air, skin, subcutaneous fat, soft tissue, visceral fat, liver,
visceral fat, gall bladder, visceral fat, aorta, visceral fat, Gl-tract, visceral fat, soft
tissue, subcutaneous fat, and the skin. Contrast-enhanced tissues: aorta, liver,
spleen, kidneys, and pancreas (1 = 0.005). Please note the different vertical
axis scaling in the profiles in figures 3.23-3.24.
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3.4.4 EVALUATION P-1V: INFLUENCE OF BMI AND MORPHOLOGY ON THE ENERGY
DEPOSITION AND ITS SPATIAL DISTRIBUTION IN DIGITIZED PATIENTS

The influence of the patient morphology and BMI on energy deposition and its spa-
tial distribution was assessed (see section 2.5.4.5 and figure I.3). Figure 3.25 presents
the energy deposition maps of all patients for the simulated contrast-enhanced ac-
quisitions at 80 kV/, for the same abdominal slices as are presented in figurel.3. An
abdominal slice where both kidneys and the liver were visible was chosen, although
the shape of the organs differed considerably among the patients. Note that the
spleen was still visible for patient 1B on this slice, and that the shape and position
of the aorta deviated from the other patients.

The total energy deposition in the tracked tissues is presented in tables 3.13-3.14. The
incoming number of photons was dependent on the scan range and TCTPe¢. There
was no clear trend for the relative difference between simulations of enhanced and
non-enhanced acquisitions with respect to BMI, shape, or diameter of the patients.

Normalizing the tissue energy deposition to the initially emitted photon energies
revealed a trend in the fat tissue and the aorta. For patients 2A and 3B (effective
diameter, D >32.5cm), the relative energy deposition in fat tissue amounted to
approximately 15%, whereas this value amounted only to 10% for patients 1A, 1B,
and 2B (D¢ <28.8 cm, 13% for patient 3A, D¢g = 30.5 cm). For the centrally positioned
aorta, relative energy deposition ranged between 0.6% and 1.0% for patients 1A, 1B,
and 2B, whereas this value only amounted to 0.3-0.5% for patients 2A, 3A, and 3B.
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Figure 3.25: Evaluation P-IV: Simulated energy deposition for all patients within an ax-
ial slice through the abdomen at 80kV,. The energy map of the simulated
contrast-enhanced acquisition was printed. Contrast-enhanced tissues: aorta,
liver, spleen, kidneys, and pancreas (11 = 0.005). The original computed tomog-
raphy images of the presented axial slice are shown in figureI.3.
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Table 3.13: Evaluation P-IV: Comparison of the simulated energy deposition in patients 1A, 2A, and 3A at 80 kV},. The simulations covered the liver, spleen,
pancreas, and kidneys with an additional scan range of 36 mm in cranio-caudal direction. 3 - 10° photons per cm scan coverage were initialized.
Resulting photon statistics: patient 1A: 59.40-10°, patient 2A: 69.66-10°, and patient 3A: 66.70-10°. Longitudinal tube-current modulation was
applied. Contrast-enhanced tissues: aorta, liver, spleen, kidneys, and pancreas (11 = 0.005).

Simulated energy deposition [GeV]
Whole organ

Total patient Soft tissue Bone  Skin Fat Heart Aorta | Liver Spleen Kidneys Pancreas
Patient 1A
Non-enhanced 1406.57 235.45 13259 80.18 290.70 2574 17.63 | 14143  13.99 20.95 4.11
Enhanced 1447.82 228.39 128.35 79.51 28248 2459 23.70 | 190.20  20.59 30.14 6.08
Rel. diff. [%] 2.93 -3.00 -320 -083 283 446 3445 | 3448 4721 43.85 47.94
Patient 2A
Non-enhanced 1768.48 304.22 178.68 110.27 52219 912 887 | 14562 18.38 28.31 3.75
Enhanced 1810.26 298.49 173.79 109.61 50996 8.61 12.79 | 19548 26.66 39.77 5.45
Rel. diff. [%] 2.36 -1.88 274  -060 234 558 4420 | 3424  45.03 40.44 45.45
Patient 3A
Non-enhanced 1671.69 348.59 164.26 109.50 40394 1576 11.73 | 197.86  30.59 26.67 5.84
Enhanced 1720.85 337.62 157.08 108.37 392.82 14.85 16.06 | 259.24  43.58 36.78 7.84
Rel. diff. [%] 2.94 -3.15 -438 -1.03 275 576 3691 | 31.02 4244 37.90 34.14
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Table 3.15: Evaluation P-V: Simulated energy deposition in the skin and in the patients (all
organs/tissues) in a 102 mm scan region of the abdomen, and relative differences
between simulated acquisitions at 80 and 120 kV/,.

Simulated Simulated
energy deposition Rel. diff. to energy deposition Rel. diff. to
in skin [GeV] 120 kVp in patient [GeV] 120 kVP

ID | 80kV, 120kV, [%] 80kV, 120kV, [%]

1A | 462 44.8 3.16 818.6 891.1 -8.13
1B 57.4 55.3 3.95 878.8 956.3 -8.10
2A | 548 52.4 4.74 893.8 988.0 -9.54
2B 44.3 42.8 3.63 698.3 767.7 -9.04
3A | 556 53.4 4.08 850.1 938.6 -9.43
3B 55.7 53.1 4.83 891.6 981.3 -9.13

3.4.5 EVALUATION P-V: INFLUENCE OF TUBE POTENTIAL ON ENERGY DEPOSITION
IN THE SKIN IN DIGITIZED PATIENTS

The influence of the tube potential on the energy deposition in the skin was com-
pared for a 102 mm abdominal scan region (see section 2.5.4.6). The skin exposure
for simulated acquisitions at 80 kV,, was maximum 4.8% higher than the skin expo-
sure for simulations at 120kV), for the modified abdomen phantom and digitized
patients for employing identical numbers of emitted photons for the 80kV- and
the 120 kV,,-setting per patient (see table3.15). In contrast to the increase of ~4%
total skin exposure, the total energy deposition in the patients (all tissues/organs)
is reduced by ~9% for the 80 kV,-setting compared to the 120 kV,,-setting, again em-
ploying identical numbers of emitted photons for the 80 kV,- and the 120 kV,-setting
per patient. Relative to the total energy deposition in the scored scan region, skin
energy deposition was ~7% at 80 kV, and ~6% at 120 kV,. Maximum differences in
skin exposure between the six simulated patients were ~30% for both the simulated
acquisition at 80 kV, and at 120 kV,.

3.5 ASSESSMENT OF THE VARIATION BETWEEN IDENTICAL MC
SIMULATIONS AND EVALUATION OF THE SIMULATED NUM-
BER OF PHOTONS IN A DIGITIZED PATIENT

VARIATION BETWEEN TWO IDENTICAL SIMULATIONS WITH DIFFERENT INITIAL SEEDS
The variation between two identical simulated acquisitions with different initial
seeds was less than 1% for complete organs (including the smallest tracked organ,
the pancreas, see table 3.16) but considerably higher (up to 60%) for single voxels
(1.5 x 1.5 x 3mm?, see figure 3.26). Differences ranged between + 30% if the energy

deposition was summed over multiple slices (1.5 x 1.5 x 9 mm?3 voxel size).
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Table 3.16: Comparison of the energy deposition resulting from two identical simulations
of a non-enhanced computed tomography acquisition with different initial seeds
for patient 2A. Results presented for the total patient and the three organs/tis-
sues with the highest relative differences in energy deposition between the two
samples. Simulation parameters were: scan coverage of 15cm (abdomen), 45-10°
emitted photons, pitch 0.5, longitudinal tube-current modulation enabled.

Simulated energy
deposition [GeV] | Total patient Pancreas Spleen Aorta

Sample 1 1161.12 2.28 5.36 4.06
Sample 2 1161.06 2.26 5.37 4.05
Rel. diff. [%] 0.01 0.69 -0.10 0.08

REDUCTION OF THE PHOTON sTATIsTICs  Figures 3.27-3.30 present the differences
in normalized energy deposition between data sets with full photon statistics and
data sets with reduced photon statistics, to assess the influence of a lower number
of initially emitted photons on the obtained energy deposition (see section 2.6). Four
different sets of histograms were produced: (1) for the whole volume of the abdomen
(figure 3.27), (2) for the kidneys in the abdomen (figure 3.28), (3) for a single axial
slice (figure 3.29), and (4) for the kidney tissue of that axial slice (figure 3.30).

The larger the number of entries, the lower the mean difference between data sets
with full photon statistics and data sets with reduced photon statistics. The mean
difference between the full statistics data sets and the reduced statistics data sets was
zero in all four sets of histograms until only every 15th interaction was included in
the reduced data sets. Reducing the included number of interactions further caused
a shift of the mean, which was easily visible by the position of the peak of the
Gaussian curve. The differences between full and reduced photon data increased
while reducing the number of included interactions (larger tail towards positive
differences) causing a poorer fit between the Gaussian curve and the histograms.
Depending on the volume of interest, the number of incident photons can be reduced
without shifting the simulation results towards lower or higher energy depositions.
All reduced data stacks contained identical distributions of interaction types (see
figure].1) and mean energies per interaction.
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(a) DICOM image of correspond-
ing axial slice 17
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(b) 2D-energy map of sample 1 (1.5 x 1.5 x (c) 2D-energy map of sample 2 (1.5 x 1.5 x
3mm?, slice 17) 3mm?, slice 17)
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Figure 3.26: Evaluation of the differences in energy deposition in a digitized patient between
two identical simulations of computed tomography acquisitions with different
initial seeds. (a) Anatomy of the evaluated axial slice number 17, (b) 2D-energy
map of sample 1, (c) 2D-energy map of sample 2, (d) relative difference in energy
deposition between sample 1 and sample 2 for a single axial slice (slice 17), and
(e) for three adjacent slices (slices 16-18).
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Figure 3.27: Abdomen: 3D-energy maps were created from all interactions and every sec-
ond, fifth, tenth, and so on. Energy maps were normalized to the integral value
1. Normalized energy maps of the reduced photon statistics data set were sub-
tracted from the normalized energy maps of the original data set with full
photon statistics (containing the complete data) and differences were plotted
in 1D-histograms. Furthermore, histograms have been fitted with a Gaussian

curve.
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in 1D-histograms. Furthermore, histograms have been fitted with a Gaussian
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Figure 3.29: Axial slice: 3D-energy maps were created from all interactions and every sec-
ond, fifth, tenth, and so on. Energy maps were normalized to the integral value
1. Normalized energy maps of the reduced photon statistics data set were sub-
tracted from the normalized energy maps of the original data set with full
photon statistics (containing the complete data) and differences were plotted
in 1D-histograms. Furthermore, histograms have been fitted with a Gaussian

curve.
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Figure 3.30: Kidney tissue in an axial slice: 3D-energy maps were created from all interac-
tions and every second, fifth, tenth, and so on. Energy maps were normalized to
the integral value 1. Normalized energy maps of the reduced photon statistics
data set were subtracted from the normalized energy maps of the original data
set with full photon statistics (containing the complete data) and differences
were plotted in 1D-histograms. Furthermore, histograms have been fitted with
a Gaussian curve.



DISCUSSION

Although only 9% of all diagnostic x-ray procedures in Germany in 2014 were com-
puted tomography (CT) examinations, they contributed to the annual effective dose
with 65%. The number and the resulting annual effective dose per capita of CT exam-
inations have increased between 2007 and 2014 by 40% and 30%, respectively (BfS
2016b). High doses of ionizing radiation (>100 mSv) are known to be carcinogenic,
however, the effects of lower doses (e.g. those occurring in diagnostic CT examina-
tions) on the induction of tumors in different tissue types are still unclear (Hall and
Brenner 2008). Hence, the increase in effective dose requires thorough understand-
ing of the spatial dose distribution inside the human body and how this distribution
is influenced by CT acquisition parameters, patient morphology, age, or the admin-
istration of contrast agents. Individualized dosimetry plays an increasing role in
clinical radiology, especially for patients receiving multiple CT examinations over a
short period of time, such as during a cancer treatment. Individualized dosimetry
offers a precise evaluation of the radiation exposure, even for non-average sized or
pediatric patients, where conversion factors fail. Furthermore, the increased sensitiv-
ity of pediatric patients to ionizing radiation requires surveillance, to allow for the
execution of overdue long-term studies regarding the radiation dose of diagnostic
procedures and their potential adverse effects.

Several MC-based dose calculators are available for the calculation of dose deposi-
tion in CT (Brady et al. 2012), such as ImPACT (ImPACT 2011) or ImpactDose (IBA
Dosimetry 2009; Kalender et al. 1999a). Unfortunately, they are usually limited by re-
stricted input options, such as the CT scanner system or predefined patient models,
and by inflexible output and analysis options. Therefore, the goal of this work was
the development and validation of a Monte Carlo (MC) software for the simulation
of CT acquisitions, which offers the desired flexibility in both input and analysis
options to approach virtual dosimetry.

The results of this work are discussed in the following. In section 4.1, the x-ray
emission and beam-shaping methods employed in the developed MC model are
discussed for 120 kV,-equivalent photon distributions. Section 4.2 and section 4.3
discuss and contextualize the influence of the tube potential and iodinated contrast
agents on energy deposition in organs and at tissue interfaces, respectively. The im-
plemented geometrical abdomen and digitized patient phantoms and their design
are reviewed in section 4.4. The number of tracked photons and the data output of
the software are evaluated in section 4.5. Section 4.6 discusses the methodology of
the developed software and the limitations of the results, and offers an outlook on
future developments.
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41 EVALUATION OF X-RAY EMISSION AND BEAM-SHAPING METH-
ODS

The individual components of the developed MC software for the simulation of CT
acquisitions and the determination of the associated radiation exposure in phan-
toms and digitized patients were first assessed to ensure proper functionality and
efficiency of the MC model. This initial analysis also aimed at understanding the
underlying physics processes of CT, the effects of beam-shaping filtration (photon
fluence and beam-hardening), and the effects of different input photon distribu-
tions (monoenergetic photons, measured, or generated spectra) on the absorption
of photons in matter (i.e. phantoms or patients). Photon absorption was described
by means of the total energy deposition, Eiual, and its spatial distribution, Egpatial-

BEAM-SHAPING METHOD  Clinical CT scanners include one or more beam-shaping
filters to equalize the measured signal in the detector and to reduce unnecessary
radiation exposure in shorter patient x-ray path lengths near the edges of the fan
beam. Two beam-shaping methods were implemented in the MC model.

At first, the virtual beam-shaping method was evaluated, which implemented both
fan-angle dependent photon fluence and fan-angle dependent spectra (FADS). This
method resulted in only 3% difference in Egpatial compared to the results obtained by
implementation of a physical beam-shaping filter (PBF, see figure 3.1). The advantage
of the virtual method is the increased efficiency in computation time compared to
the implementation of a PBF as the latter causes a photon loss prior to any interaction
in a phantom due to the absorption inside the filter: more than twice the number of
photons were necessary to obtain approximately equal numbers of photons imping-
ing on the phantom (after filtration), thereby doubling the simulation time.
Omission of the beam-shaping effect of the filter caused relative differences in
Espatial of up to 50% for the simulation of a full x-ray source rotation in the wa-
ter phantom (see figure3.2). Hence, a method for modulating photon fluence is
required in a MC model of a CT scanner, independent of the emitted photon distri-
bution. Due to the small differences in energy deposition in the phantom between
the physical and the virtual filter (3%), and the considerably higher efficiency of the
latter, the virtual beam-shaping method was employed during this work (Steuwe
et al. 2018).

SPECTRAL PROPERTIES X-ray spectra are unique for a specific CT scanner’s x-
ray tube design in conjunction with specific beam filtration. Since experimentally
measured x-ray spectra are not always available, this work evaluated the usage of
different generated spectra and monoenergetic photons, corresponding to a tube
potential of 120kV, as alternatives and simplified approximations for measured
spectra. The selected monoenergetic photon energy matched the mean energy of
the experimentally measured 0°-spectrum, Emean ref-

Regarding Eja1 in the water phantom (see table 3.1), only subtle differences were
visible between the usage of the measured 0°-spectrum and the generated (unfil-
tered and filtered) 120 kV,-spectra and monoenergetic photons (max. 5%). Hence,
considering only Eia1 in a phantom, even monoenergetic photons seem feasible as
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approximation of the actual x-ray source’s emitted spectrum (Steuwe et al. 2018).
Although differences in Eiya were small when comparing results obtained with
monoenergetic photons and the measured 0°-spectrum, differences in Egpatia) were
considerably higher (+ 20%). For monoenergetic photons, absorption at the center
of the phantom was overestimated, whereas absorption was underestimated at the
periphery of the phantom. The mean energy of a photon spectrum cannot approx-
imate the absorption pattern of a polyenergetic photon distribution, since photons
of lower and higher energy are not represented by monoenergetic photons.

For the generated unfiltered spectrum at 120 kVy,, Egpatias Was overestimated in the
periphery, whereas it was underestimated at the center compared to the measured
0°-spectrum. The generated unfiltered spectrum is softer than the measured spec-
trum and thus contains more low-energy photons and less high-energy photons.
Additional aluminum filtration reduced low-energy photons and shifted the total
spectrum to a higher mean spectral energy. Hence, a matching peak tube poten-
tial and mean spectral energy results in Egpatial close to the one of the measured
0°-spectrum (difference of only 3%).

The influence of different x-ray spectra, e.g. with varying tube potential and alu-
minum filtration, on the dose deposition within phantoms in- and outside the scan
field was previously studied by Caon et al. (1998) and Boone et al. (2000). In line
with the results of this work, they noticed an increasing dose deposition and deeper
penetration of tissue layers with increasing filtration (Caon et al. 1998). However, in
contrast to the current work, the detailed spatially resolved dose deposition was not
investigated in their work.

The results obtained from the assessment of the influence of different photon distri-
butions on Eiota; and Egpatial emphasize the interchangeability of spectra for matching
tube potential and mean spectral energy. The mean spectral energy of a CT x-ray
source is easier measured than central or fan-angle dependent spectra. Both the
peak tube potential and mean spectral energy can be measured with an accuracy of
up to 2%, according to manufacturers (Cobia Flex, RTI, MoIndal Sweden, or with
the Diavolt Universal All-in-one QC Meter, PTW, Freiburg, Germany). This accuracy
is sufficient, when taking the differences in x-ray spectra between x-ray sources of
different vendors into account (cf. figure2.6), especially in the low energy range
(Steuwe et al. 2018).

SPECTRAL DISTORTION DUE TO BEAM-SHAPING FILTRATION A beam-shaping fil-
ter results in spectral distortion of the primary emitted x-ray spectrum. Section 3.1.4
showed that spectral distortion should be included in a CT model for correct re-
production of x-ray emission and the precise and accurate calculation of Eut and
Espatial- Differences between the implementation of FADS and the implementation
of solely the 0°-spectrum were 5% in Egpatial for a full source rotation. Spectral distor-
tion can be modeled by implementing fan-angle dependent spectra directly (as was
performed during this work), by calculation of energy-dependent transmission and
attenuation of photons (Jarry et al. 2003), or by employing a physical beam-shaping
filter model (Steuwe et al. 2018).

Lopez-Rendon et al. (2014) assessed differences in deposited dose for simulations
modeling the full beam-shaping effect (FM + FADS) and simulations employing
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only the fan-angle dependent fluence (FM) without taking the spectral hardening
into account. The largest differences between the full beam-shaping effect and only
FM were noticed at the thickest parts of the beam-shaping filter, hence, towards
the edges of the fan beam. The number of low-energy photons increased if only
FM without spectral hardening was applied, whereas the number of high-energy
photons decreased. Although Lopez-Rendon et al. (2014) only used computation-
ally generated spectra, their results are in agreement with the results of the work
presented here (Steuwe et al. 2018).

The initial analysis of the x-ray source emission has demonstrated that generated
spectra can be employed as an alternative for measured spectra if peak tube poten-
tial and mean spectral energy match. Furthermore, the beam-shaping filter induced
modulated photon fluence should be taken into account for modeling of clinical CT
scanners (Steuwe et al. 2018).

42 INFLUENCEOFTUBEPOTENTIALON THE ENERGY DEPOSITION
AND THE DETECTOR SIGNAL

Since CT acquisitions are often performed at other tube potentials than 120kV,,
depending on the indication, region of interest, and patient morphology, this work
additionally evaluated the energy deposition and detector response for other diag-
nostic tube potentials.

To understand the principles of energy deposition for the different tube potentials,
first, the shapes of the x-ray spectra at 80, 100, and 120kV, were compared, see
figure 2.5. Although the spectra are very similar in the range between 20 and 80 keV,
the range between 20 and 55 keV has a higher statistical occupation for the 80 kV -
spectrum, whereas the range between 55 and 80 keV is statistically higher occupied
for the 120 kV,,-spectrum.

TOTAL ENERGY DEPOSITION AND ITS SPATIAL DISTRIBUTION  Energy deposition
was first simulated in a box phantom with identical materials in all three layers
(either liver, fat, water, or soft tissue) and afterwards, with a fat and liver tissue
combination. In the latter case, photons first passed fat tissue, then liver tissue, and
finally again fat tissue. This tissue sequence can be found in the human abdomen,
although the box phantom is obviously a very simplified representation. Still, the
basic principles of energy deposition at material interfaces can be derived by means
of the box phantom. Since the 120 kV,-spectrum nearly completely encompasses the
80 kVp-spectrum, the energy deposition in the box phantom for both tube potentials
was almost equal (difference in Eiota1 <2.1% for all simulated materials, table 3.2).

For more complex phantoms, such as the modified abdomen phantom and the dig-
itized patient phantom, differences in E;u were more notable. Energy deposition
increased with increasing tube potential, except for the skin (this will be discussed
later in this section, page 118). Due to the shorter mean range of photons in the 80 kV -
spectrum, less photon interactions occur at the center of the phantom compared to
simulations with a 120 kV-spectrum. This results in a lower energy deposition at
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the phantom center at 80 kV,,. While there is barely a difference in energy deposition
at the phantom periphery between simulations at 80 and 120kV,, (e.g. skin, subcu-
taneous fat, soft tissue ring, all <5%), differences are larger in centrally positioned
organs (aorta, pancreas, ~30%).

For the box phantom, the modified abdomen phantom, and the patient phantom,
profiles of the energy deposition in the phantoms were presented (see figures 3.7,
3.14 and 3.21). For all phantoms, the highest energy deposition was found at the
beam entrance for a tube potential of 80kV,,. For larger depths, energy deposition
was highest for a tube potential of 120 kV,,. In all phantoms, the profile of the simu-
lated 80 kV,-acquisition shows the steepest gradient in the liver tissue. At the center
of the modified abdomen phantom and digitized patient phantom, energy deposi-
tion was highest at 120 kV,. This was visible both on the profiles (cf. figures 3.16 and
3.23), and on the energy maps (figures 3.12 and 3.19).

To date, the biological effect of low radiation doses and low-kV acquisitions is insuf-
ficiently understood. Although CTDI, values for low-kV acquisitions are lower, the
percentage of the total input energy absorbed in tissues is largest at 80 kV, compared
to acquisitions at 100 or 120kV}, (see section3.2.2 and Wang et al. 2012). More re-
search is required on this topic, especially with regard to changes in patient mor-
phology: worldwide, the prevalence of overweight and obesity has increased from
approximately 29% to 38% in adults between 1980 and 2013 (Smith and Smith 2016).
Physical phantoms (i.e. Alderson phantoms) are based on fairly lean, averaged sized
persons. The increased amount of fat tissue in overweight and obese patients leads
to deviations in energy deposition from CT acquisitions of standard patients. A
larger patient diameter with a larger amount of fat tissue results in fat shielding of
the radiosensitive internal organs (Wang et al. 2012). The detailed distribution of the
radiation exposure from CT acquisitions needs to be thoroughly investigated, i.e. by
MC simulations.

In current literature, MC simulations of CT acquisitions are usually performed
at a tube potential of 120kV,, independent of the scan region (Amato et al. 2010;
Fujii et al. 2017; Li et al. 2011b; Perisinakis et al. 2018, this listing can be extended).
There were only three publications employing lower tube potentials for abdominal
or thoracic examinations (Chen et al. 2012; Deak et al. 2008; Nowik et al. 2017). None
of the publications directly compared the influence of different tube potentials on
energy deposition and its spatial distribution.

Although 120 kVy-acquisitions in CT imaging are widespread, low-kV acquisitions
(i.e. at 80kVy) at increased tube-current time product (TCTP) for abdominal scan
regions are encouraged nowadays, due to the increased contrast of the reconstructed
CT images and the decreased expected radiation dose (Lira et al. 2015; Seyal et al.
2015). Increased TCTPs are possible in current CT scanners due to new x-ray tube
technology and higher generator power. However, the influence of lower tube poten-
tials than 120kV}, on the patient’s radiation exposure is still insufficiently studied
(Wang et al. 2012). This work, in contrast to the previously published studies, pro-
vides a comprehensive comparison of the influence of varying tube potentials on
total energy deposition and its spatial distribution in CT.
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DETECTOR SIGNAL The detector signal was assessed for the box phantom for
a homogeneous material distribution (see section3.2.1). Whereas the differences
in Ejoa1 between tube potentials were small in the box phantom, differences were
larger in the detector. The high energy photons (>80keV) of the 120 kV,,-spectrum
are, to a large extent, transmitted through the phantom and absorbed in the detector.
Hence, energy deposition in the detector was considerably higher at 120kV,, than
at 80 kV,, (see table 3.2).

The detector signal height influences the SNR but does not directly affect the image
contrast, which is dependent on the ratio of detector signals of adjacent materials.
Table 3.3 presents the ratio of the detector signal when comparing two materials
at 80, 100, and 120 kV,,. For adjacent materials, the detector ratio between e.g. liver
and fat would be lowest at 80kV}, (0.739) and highest at 120kV,, (0.799), ignoring
cross-scattering of photons between tissues. Hence, detector signals are more simi-
lar for the simulated 120 kV-acquisition than for the simulated 80 kV-acquisition.
The largest differences in detector signal were found to be at 80kV, and decrease
with increasing tube potential, except for the tissue combination liver and soft tissue.
Due to their identical density and similar composition, differences in detector signal
were not expected.

The contrast of CT images increases with decreasing tube potential for typical tube
potentials utilized in clinical CT, see section 1.4.4 and Stiller (2011). If there are only
slight differences in attenuation between two tissues, these slight differences will
have a greater impact on low-energy photons than on high-energy photons. Hence,
reconstructed CT images acquired at high tube potentials often appear 'gray on
gray' (with a high SNR though) compared to the large visible contrast of CT images
acquired at 70 or 80kV,,. Unfortunately, the use of low-kV acquisitions is limited
in obese patients, due to a potentially insufficient number of photons reaching the
detector, leading to excessive image noise. Obese patients therefore often have ap-
proximately 50% higher radiation doses than non-obese patients due to the required
increase of the tube potential (Wang et al. 2012). However, newer techniques in CT,
such as the iterative reconstruction, improve the feasibility of low-kV acquisitions
in larger patients, by decreasing the image noise (Shaqdan et al. 2018; Stiller 2018).

sKIN ExPOSURE  The skin exposure is often mentioned when performing CT ac-
quisitions with tube potentials of 70 or 80 kV,. Although CTDI values are lower for
70 or 80 kVp-acquisitions compared to 120 kV,-acquisitions, the presumed strong
increase in skin exposure often causes discussions about the true advantages of
acquisitions employing low tube potentials. Energy deposition in the skin increased
by ~4%, whereas total energy deposition decreased by ~9% when lowering the tube
potential from 120 to 80kV,, (see table 3.15). This slight increase in skin exposure
was caused by the larger number of low-energy photons in the 80 kV,,- compared to
the 120 kV,-spectrum. Differences in the skin energy deposition for the same tube
potential and scan coverage (for this analysis 34 slices, 102 mm) resulted in consid-
erably larger differences between patients than the increase in skin exposure due to
the usage of the lower tube potential.

The increase in skin exposure might only affect very thin, emaciated patients, which
need to undergo frequent follow-up CT examinations, e.g. during the course of a
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cancer treatment. According to ICRP publication 103, the tissue weighting factor for
skin (wt = 0.01) is considerably lower than the tissue weighting factors for abdom-
inal organs (liver, colon, stomach: wt = 0.12, ICRP 2007, see section 1.5 for more
information on tissue weighting factors). This is due to the fact that the skin is less
radiosensitive than abdominal organs. Furthermore, the skin exposure from regular
diagnostic CT-examinations is nowhere near the 2 Gy threshold for deterministic
skin effects, such as skin burns and epilation (Huda 2007). Even for CT guided inter-
ventions, resulting in repeated CT scans of the same anatomical region, skin doses
were lower than 2 Gy (for conventional CT scanners and for scanners with spiral
CT fluoroscopy) in a study of Teeuwisse et al. (2001). Hence, the advantage of the
lower cumulative dose from 80 kV,-acquisitions (and lower exposure of radiosen-
sitive tissues) exceeds the disadvantage of the slightly increase skin exposure for
these patients.

43 INFLUENCE OF CONTAST ENHANCEMENT ON ENERGY DEPO-
SITION

The usage of iodinated contrast agents is common in clinical CT imaging for the
examination of blood vessels or tissue perfusion (see section 1.3.3). Almost 60% of
all CT acquisitions made use of contrast agents in 2016 in the clinic, where this work
was performed (UKHD 2017). The increased contrast on the reconstructed images is
a result of increased scattering and absorption of photons due to interactions with
iodine. It is therefore of interest, how iodine changes the energy deposition in tissues
and at material interfaces.

4.3.1 TOTAL ENERGY DEPOSITION AND ITS SPATIAL DISTRIBUTION

The influence of contrast enhancement on energy deposition was again first assessed
in the box phantom (section 3.2.2), and afterwards, in the modified abdomen (sec-
tion 3.3.1) and in the digitized patient phantoms (section 3.4.1). For the box phantom,
the addition of iodine in the liver tissue increased the energy deposition consider-
ably in the enhanced layer 2 (see figure 3.9), whereas a decrease in energy deposition
was noted in the 'downstream' fat tissue (layer 3).

In comparison, Verhaegen et al. (2005) used the box phantom to study contrast-
enhanced radiotherapy with kilovolt x-rays. They employed higher iodine concen-
trations (50 and 300 mg/ml) and monoenergetic photons with energies of 35, 55, 75,
and 95 keV. Furthermore, all layers were filled with water (layer 2 was a water-iodine
mixture) instead of liver and fat tissue. In line with the results of this work, a steeper
dose gradient in the second layer was noticed at higher iodine concentrations, caused
by the increased photon absorption in the contrast-enhanced layer (Verhaegen et al.
2005). Hence, the higher the iodine concentration in a tissue, the more heterogeneous
is the resulting energy deposition from CT acquisitions. This topic is of importance
for the contrast-enhanced radiotherapy, where a homogeneous dose distribution in
a tumor or metastasis is desired (Pérez-Lépez and Garnica-Garza 2011; Verhaegen
et al. 2005).
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For the modified abdomen and the digitized patient phantoms, energy deposition
in the enhanced tissues (liver, spleen, pancreas, kidneys, aorta) increased consider-
ably, whereas energy deposition in the surrounding non-enhanced tissues decreased
slightly, when comparing contrast-enhanced acquisitions to non-enhanced acquisi-
tions. The highest increase in energy deposition for contrast-enhanced acquisitions
was noticed for simulated 120 kV,-acquisitions. The increase was slightly lower at
100 and 80kV,, (see tables 3.5 and 3.9). For the modified abdomen phantom, the
increase in energy deposition resulting from contrast enhancement amounted to
~+33% in the liver and to ~+50% in the pancreas (cf. table 3.5). For the digitized
patient phantoms, the increase in energy deposition varied between the patients.
However, similar relative increases were noticed: ~+34% in the liver and +34-48%
in the pancreas. The difference maps (see figures 3.12 and 3.19) were more homoge-
neous at 120kV, compared to lower tube potentials, especially at the center of the
liver.

The increase in energy deposition for contrast-enhanced acquisitions strongly de-
pends on the patient/phantom morphology. Although patients were divided into
BMI-dependent groups in this work, with matching body heights and weights in
each group, the shape of the patients differed considerably, see figurel.3, especially
between patients 3A and 3B. This resulted in large differences in the increase of en-
ergy deposition between simulations of enhanced and non-enhanced acquisitions,
e.g. in the pancreas (range +34-48%) or in the kidneys (range +38-44%) at 80 kV/, (see
tables 3.13-3.14). A proper comparison in energy deposition between BMIs should
consider larger patient groups, or groups that are based on patient diameters for a
specific slice (e.g. Deg or water-equivalent diameter (WED)).

Amato et al. (2010, 2013), Perisinakis et al. (2018), and Sahbaee et al. (2017a) also
studied the increase in radiation exposure as a result of iodine enhancement for sim-
ulations performed at a tube potential of 120 kV,. Amato et al. (2010, 2013) employed
an anthropomorphic abdomen phantom of which the further developed modified
abdomen phantom in this work was based on. Their simulations performed on the
abdomen phantom utilized a uniform photon fluence along the fan beam. Addi-
tionally, they calculated the increase in energy deposition for simulated contrast-
enhanced acquisitions for several patients, based on the increase in CT numbers.
Perisinakis et al. (2018) also calculated the increased energy deposition as result
of contrast enhancement in anthropomorphic phantoms at 120 kV,,. Moreover, they
determined the iodine uptake of each tissue from the increase in CT number of non-
enhanced and enhanced acquisitions and successively simulated CT-acquisitions.
Sahbaee et al. (2017a) simulated the radiation exposure in 58 patient models, which
included a pharmacokinetic model of the blood flow.

Table4.1 summarizes the increase in energy deposition of simulated contrast-en-
hanced acquisitions for published studies and the present work. For all studies, the
increase in energy deposition due to contrast enhancement is found to be lowest in
the liver although the increase varied between +20% (Perisinakis et al. 2018) and
+47% (Amato et al. 2010). Direct comparison between these values is difficult, as the
iodine concentration in the enhanced tissues and the morphology of the phantoms
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differed. Perisinakis et al. (2018) determined a mean iodine uptake range between
0.02-0.46% w/w (weight of iodine per weight of tissue) for their investigated tis-
sues, while an iodine mass fraction of {1 =0.005 (11 =0.5%) was employed in this
work. The unit iodine w/w (mj/mpr) is very similar to the weight fraction of iodine
(b1 = my/(mr + my)) used in this work for small amounts of iodine: for a liver mass
of 1561 g and an iodine mass of 8 g, W1 = 8 g/(1561 g + 8 g) = 0.0051 corresponding
to8g/1561 g = 0.0051 w/w. The smaller mass fraction employed by Perisinakis et al.
(2018) might explain the differences in relative energy increase in the liver and the
spleen compared to this work.

4.3.2 ENERGY BUILD-UP EFFECT AT MATERIAL INTERFACES

Since contrast agents increase the contrast between material types on reconstructed
images, a change in energy deposition at the interface between two materials is ex-
pected. The energy build-up was first assessed in the box phantom, and afterwards,
in the modified abdomen and digitized patient phantom.

In the box phantom, the energy deposition was calculated at the fat-to-liver and the
liver-to-fat interface. For this purpose, ratios of varying interface thicknesses (1.0,
2.5, and 5.0 mm) were compared for varying iodine concentrations (see section 3.2.3
and table 3.4). The summed energy deposition increased with increasing interface
thickness (more 'signal'), however, the ratio between liver and fat tissue decreased
with increasing interface thickness since the build-up effect is most notable in the
near vicinity of the interface and blurs with increasing distance to the interface.

For further calculation of interface ratios in the modified abdomen and the digitized
patient phantom, an interface thickness of 2.5 mm was chosen, which is a compro-
mise between the signal and the interface ratio. In a first analysis, the whole organ
shells were taken into account for an x-ray source which rotated around the phan-

Table 4.1: Relative increase in energy deposition in digitized patient phantoms and geo-
metrical phantoms for contrast-enhanced acquisitions compared to the energy
deposition in non-enhanced acquisitions. Results given for a tube potential of
120kVp. Amato et al. (2010) (abdomen phantom) and this work employed an
iodine mass fraction of {1 =0.005. Other iodine mass fractions were dependent
on the difference in CT number between enhanced and non-enhanced acquisi-
tions. For Perisinakis et al. (2018): weight per weight (m/mt) 0.23% (liver), 0.29%
(spleen) and 0.45% (kidneys). References: [1] Amato et al. (2010), [2] Amato et al.
(2013), [3] Perisinakis et al. (2018), [4] Sahbaee et al. (2017a). Abbreviations: GAP:
geometrical anthropomorphic phantom, Pat.: patients.

[1] [2] [3] [4] This work
Organ GAP Pat. Pat. GAP GAP GAP Pat.
Liver 47% 22%  22% 20% 35%  36% 38%

Spleen 65% 34% 33% 31% 30% 47%  49%
Kidneys | 78% 74% 71% 50% 54% 50% 45%
Pancreas | 95% 28% 33% - 24% 51% 50%
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toms (helical acquisition, see sections 3.3.2 and 3.4.2). Hence, there was only a single
interface ratio calculated for each organ for each simulation, but interface ratios
could not be separated into 'upstream' (interface ratio 2a/1) and 'downstream' (in-
terface ratio 2b/3) interfaces.

The interface ratios in the box phantom increased with decreasing tube potential and
ranged between 1.51 and 1.76 for simulated non-enhanced acquisitions ({1 = 0.000)
and between 2.25 and 2.63 for simulated enhanced acquisitions (1 = 0.005), see
shaded cells in table 3.4. The interface ratios of the modified abdomen phantom
ranged between 1.54 and 1.64 for simulated non-enhanced acquisitions and be-
tween 2.41 and 2.54 for simulated enhanced acquisitions (averaged over all organs,
compare to table 3.7). Hence, the interface rations were comparable to those of the
box phantom for {1 = 0.000 and {1 = 0.005, when averaging the ratios 2a/1 and
2b/3 of the box phantom to compensate for the 360°-rotation in the simulations
of the modified abdomen phantom. Between the different organs in the abdomen
phantom, interface ratios were approximately equal. Thus, independent of the dif-
ferent material densities, an iodine-induced build-up effect in the enhanced tissues
is noticeable. The interface ratios in the digitized patient phantom were consider-
ably lower (between 1.23 and 1.26 for the simulated non-enhanced acquisition and
between 1.86 and 1.90 for the simulated enhanced acquisition) than the ratios for
the box and the abdomen phantom (compare tables 3.7 and 3.11). In contrast to the
surrounding tissue shells of the abdomen phantom, which were constructed of fat
tissue, the surrounding tissue shells of the digitized patient also contained other
materials than fat (i.e. bones, air) since material assignment in the surrounding
tissue shells was not defined manually. The heterogeneous material composition
of the surrounding shells in the digitized patient phantom influenced the energy
deposition and probably caused the differences in interface ratios.

Interface ratios were further determined in more detail on single axial slices in the
abdomen (table 3.8) and a digitized patient phantom (table 3.12). In this evaluation,
ROIs were drawn in the "'upstream' visceral fat, liver periphery, medial liver, and
'downstream' visceral fat. The axial slice of patient 1A was chosen since the shape of
the liver resembled the shape of the liver in the abdomen phantom. The surrounding
tissue shell of patient 1A in that specific slice mainly contained fat tissue (though
water and air were present to a small degree, see figures2.23 and I.2a). Interface
ratios were very similar for the abdomen and the digitized patient phantom due
to the nearly identical tissue composition of the surrounding tissues ROIs (mainly
fat tissue). Interface ratios were only calculated for the 360°-rotation as energy de-
position in the liver and surrounding tissue ROIs was too heterogeneous for the
projections, see figures 3.13a and 3.20a.

This work demonstrated that contrast agents increase the energy deposition in
enhanced tissues and cause an iodine-induced energy build-up effect at material
interfaces. The energy build-up effect at material interfaces was highest at 80 kV,, al-
though the highest increases in energy deposition for simulated contrast-enhanced
acquisitions were noticed at 120kV,. The lower tube potential has a large impact at
material transitions due to the larger amount of low-energy photons being absorbed
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at material interfaces. The opposite behavior of radiation absorption at material in-
terfaces and for full organs demonstrates the need for the detailed, spatially resolved
dosimetry, since the total energy deposition or organ/effective doses are not mean-
ingful for heterogeneous phantoms or when only small regions around material
interfaces are of interest.

INFLUENCE OF VESSEL SIZE ON ENERGY DEPOSITION IN TISSUE  The build-up ef-
fect is of special interest for well-vascularized organs, such as the kidneys. In the
presence of iodine, photoelectric interactions and the production of secondary elec-
trons occur more frequently, causing an increase in energy deposition. The smaller
the distance between the contrast agent in a blood vessel and the surrounding tissue,
the more likely the deposition of energy by secondary electrons in the surrounding
tissue cells. Although Sahbaee et al. (2017a) determined a dose increase for simu-
lated contrast-enhanced acquisitions of +35% and +54% in the liver and kidneys,
respectively, they predicted a biologically relevant dose increase of <18% for the liver
and <27% for the kidneys. The biologically relevant dose increase was defined as
absorbed dose to tissue since they differentiated between tissue and blood vessels.
Furthermore, this measure took the proximity of iodine to the organs into account
as it distributes through the blood vessels. Capillaries experience a closer proxim-
ity to surrounding cells than arteries or veins, causing a high dose increase in the
surrounding cells of capillaries. In comparison to capillaries, energy deposition in
tissues surrounding arteries and veins is lower. The differentiation between organ
tissue and blood vessels was not implemented in the current work, impeding the
possibility of differentiating between general and biologically relevant dose increase
(Sahbaee et al. 2017a). However, since contrast agents are known to extravasate from
blood vessels into tissues (Behzadi et al. 2018), it is a fair approximation to apply a
homogeneous iodine concentration in the contrast-enhanced tissues in this work.

The flexibility of dosimetry using self-developed software enables the calculation
of the radiation exposure in various ROIs in a multitude of implemented phantoms
and digitized patients. Individualized dosimetry in digitized patients offers a pre-
cise evaluation of the radiation exposure, even for non-average sized or pediatric
patients, where conversion factors fail. Virtual dosimetry allows for prompt patient-
and acquisition-specific dose calculations for all examined patients in radiology
departments over the course of their lifetime. This enables scientific studies, inves-
tigating the long-term effects of ionizing radiation from CT acquisitions, in a large
patient cohort.

44 VALUE OF ANTHROPOMORPHIC PHANTOMS IN MC SIMULA-
TIONS

Digitized patient phantoms represent patients’ morphologies and internal anatomies
and therefore serve as basis for the best organ dose calculation (Stepusin et al. 2017).
This thesis showed that the processes to create a digitized patient phantom requires
manual adjustment for organ dosimetry and is not feasible for clinical routine yet.
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An easier but less accurate option are computational reference phantoms (Stepusin
etal. 2017).

A large number of anthropomorphic reference phantoms are employed in MC sim-
ulations. Computational phantoms have changed over the last decades, from very
basic designs to detailed representations, including pharmacokinetic models (Ding
et al. 2015; Sahbaee et al. 2017b). Stylized phantoms were developed prior to the
1980s, voxel phantoms were developed since the late 1980s, and boundary represen-
tation (BREP) phantoms were developed since the mid of the 2000s (Ding et al. 2015).
A comprehensive review of computational phantoms was published by Xu (2014).
The modified abdomen phantom implemented in this work belongs to the stylized
phantoms, whereas the digitized patient phantoms belong to the voxel phantoms.

INACCURACY OF REFERENCE PHANTOMS Commercially available software often
makes use of reference phantoms and precalculated organ doses, stored in large
databases, to predict the radiation exposure of patients undergoing CT examina-
tions. Ding et al. (2015) used 25 whole-body BREP phantoms (reference adults
(male and female), pediatric patients at different ages and pregnant females at three
gestational stages, overweight and obese patients) for the VirtualDose software to
produce a large dose database, based on MC simulations. Carver et al. (2017) pro-
vide organ and effective doses for 80 pediatric reference patients for chest, abdomen,
and pelvic CT acquisitions. They suggest that pediatric patients should be matched
to a reference phantom based on the age, stature, and diameter to predict the dose
prior to a CT scan. Stepusin et al. (2017) studied six matching metrics for phantoms:
(a) age and gender, (b) height and weight, (c) effective diameter Deg, and (d) WED.
The latter two were either calculated based on the average over all image slices or
based on the central slice of an image stack. The effective diameter is a common
metric applied in dosimetry, such as in the calculation of SSDEs (Boos et al. 2016), al-
though it depends strongly on the patient’s body posture. Often, effective diameters
of phantoms are calculated from a standing posture, whereas patient diameters are
measured from their CT images in lying position. Effective doses for patients and
computational phantoms are not comparable if effective diameters are measured in
different postures. The WED, which accounts for attenuation of internal anatomy
within the patient, was shown to be superior in terms of percent difference of organ
dose estimates (Stepusin et al. 2017). As was seen from figure 1.3, patient anatomy
varied internally, whereas computational phantoms are designed based on ideal
geometry and anatomy location. The morphometrics and lean body masses vary,
which needs to be taken into account when patients are matched to reference phan-
toms (Stepusin et al. 2017). Especially patients 3A and 3B, despite nearly identical
height and weight, have considerably different diameters, distribution of muscle
and fat tissue, and probably lean body masses.

441 THE DIGITIZED PATIENT PHANTOM

This work employed both geometrical (stylized) phantoms and voxelized patient
phantoms, derived from CT-acquisitions. The correct realization of the phantom in
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terms of material and density assignment, and hence, the accuracy of dose calcula-
tion, depends on the implementation of either automatic or manual segmentation
methods.

For the automatic segmentation process, a conversion table from CT number to
electron density is necessary. Three methods to convert CT number to a material
are described by Jiang et al. (2007). The first method is based on a stoichiometric
calibration of CT number with mass density and elemental weights (Jiang et al. 2007;
Schneider et al. 1996; Vanderstraeten et al. 2007). For this method, a set of materials
with known elemental composition and physical density is scanned to measure the
corresponding CT number at different tube potentials. The results are then fitted to
a theoretical parameter equation interrelating the CT number, density, and atomic
number (Z) of each material. The fitted parameters are used to calculate the CT
numbers of patient tissues (Vanderstraeten et al. 2007).

For the second method, the materials air (HU<-950), lung (-950<HU<-700), soft
tissue (-700<HU<+125), and bone (HU>+125) are defined with ICRP tissue compo-
sitions. The density is defined via interpolation of predefined density values of the
CT number (Jiang et al. 2007). This method was employed in this work, although
more than four basic materials were defined (here, one additional type of lung and
bone tissue was defined, as well as fat and water, see listing H.2). Furthermore, the
CT number-density pairs at maximum density varied (see. table 4.2).

In the third method, no tissue compositions are differentiated. All materials are
specified as water of various densities with varying stopping power, dependent on
the CT number. The higher the CT number, the higher the stopping power relative
to water (Jiang et al. 2007).

The described methods result in different material assignments and ultimately in

Table 4.2: Comparison of computed tomography (CT) number-to-density conversion tables.
ctcreate values obtained from Jiang et al. (2007). Densities (given in g/ mm?), other
than those provided in the table, are calculated by interpolation between the CT
number/density pairs.

ctcreate This work
Maximum density CT number | Maximum density CT number
[g/cm?] [HU] [g/cm?] [HU]
0.001 -1000 0.0 -5000
0.044 -950 0.0 -1000
0.302 -700 0.602 -400
1.101 +125 0.95 -130
2.088 +2000 1.0 0
1.075 100
1.145 300
1.856 2000
3.379 4927
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different Etota1 and Egpatial- Automatic segmentation works well for a limited number
of tissues, e.g. air, lung tissue, soft tissue, bones. However, automatic methods often
fail when differentiating between soft tissue types since there are only slight dif-
ferences in CT numbers between different soft tissue types (Sharma and Aggarwal
2010). Furthermore, assignment of specific tissue types fails if CT numbers of e.g.
the liver deviate from expected values. Patients with fatty livers have lower CT num-
bers than the expected values of ~60 HU in the liver which might result in wrong
tissue assignment. The density of the liver in this case is lower and probably cor-
rectly determined, however, liver voxels might be assigned as fat tissue and not be
included in the calculation of the liver dose. Also, CT numbers are known to differ
between CT scanners of different vendors for the same material (Lamba et al. 2014),
which requires fitting the CT number-to-density conversion file ('CT-2-density’') to
the CT scanner output. To circumvent the addressed problems, abdominal organs
were manually segmented in this work, allowing for exact organ and tissue allo-
cation. However, the surrounding tissue shells were not manually segmented and
the material allocation was done automatically using the 'CT-2-density' table. The
difference in design between the geometrical and the digitized phantoms resulted in
different interface ratios for the whole organs (refer to results of the energy build-up
effect in section 4.3.2).

4.4.1.1 Comparison of geometrical and digitized phantoms

Although the modified abdomen phantom was designed to resemble a real patient,
there are large differences in organ positioning, see figure4.1. The liver, pancreas,
spleen, and the kidneys are often to be found at the same height in humans. The
length of the abdomen from start of the liver until below the kidneys is ~19-23 cm.
However, the length covering the organs of the abdomen phantom is ~30 cm, hence,

z [cm]

z [cm]

-20 -15 -10 -5 0 5 10 15 20 -15 -10 -5 O 5 10 15
X [em] x [cm]

(a) Modified abdomen phantom (b) Patient 2A

Figure 4.1: Coronal view of modified abdomen phantom and patient 2A through the liver
(L), kidneys (K) and spleen (S), parts of the aorta (A), and the spine (digitized
patient).
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approximately 1.5 times the length in the human body. The organs are more dis-
tributed along the length, such that only the liver and the spleen are at the same
height, however, the pancreas and the kidneys are placed in a different position.
Employing the tube current modulation derived from real patient examinations is
not applicable for the abdomen phantom, since its morphology differs from the pa-
tients to a too large degree. The modified abdomen phantom does not contain lung
tissue, although large parts of the lung reach into the abdomen. Lung, due to its low
density, alters the energy deposition in the liver considerably since less photons are
being absorbed prior to reaching the liver.

The structure and shape of the single axial slice used to determine the energy build-
up effect from the abdomen and the digitized patient phantoms are fairly similar
(section2.5.3.4 and 2.5.4.4), especially regarding the sequence of materials at the
x-ray beam entrance side for the simulation of the 270°-projection (compare fig-
ure 3.13 and figure 3.20). However, in contrast to the modified abdomen phantom,
the digitized patient phantom includes the patient table, influencing the 360°-dose
distribution (this is discussed later in the limitations section).

In terms of computational time, simulations of geometrical phantoms are consider-
ably faster than simulations of digitized phantoms. As an example, the simulation of
the 270°-projection of the single axial slice took 10 hours for the modified abdomen
phantom and 24 hours for the digitized phantom. Geometrical phantoms consist
of predefined geometries of a fixed material composition and density, whereas for
digitized patient phantoms, several material types for a single material exist due
to the CT number-based densities. Whereas the organ boundaries in geometrical
phantoms are predefined, voxel-to-voxel transitions need to be tracked for digitized
patient phantoms, increasing the computational time by more than a factor of 2.

4.4.2 IMPLEMENTATION OF IODINATED CONTRAST AGENTS IN MC MODELS

The implementation of iodine as contrast agent in this work was performed by com-
bining the element iodine with the defined basic materials (e.g. liver tissue). The
composition of the two parts was defined by mass fractions {1 and P, respec-
tively. The composition of contrast-enhanced tissues contained the element iodine,
which alters the photon attenuation properties of the tissue (see section1.3.3 and
section 2.4.3). Additionally, the density of the contrast-enhanced tissue was altered
according to the iodine mass fraction.

Pérez-Lopez and Garnica-Garza (2011) added iodine into the tissue by adjusting
the mass fraction of each of the elements present in the original tissue, which corre-
sponds to the implementation of this work. However, they do not mention an altered
material density. Verhaegen et al. (2005) implemented different iodinated contrast
agents such as Omnipaque (GE Healthcare, Chicago, USA) or Optiray (Guerbet,
Sulzbach, Germany) based on their specific composition. Hence, they do not solely
implement the element iodine but use the mass density and atomic constituents of
the full contrast agent. According to their presented atomic constituents of contrast
agents, the iodine mass fraction does not increase linearly with increasing contrast-
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agent concentration. According to table1 in their publication, an iodine weight
fraction of {1 =0.047 corresponds to an iodine concentration of 50 mg/ml, whereas
P1=0.09 and 1 = 0.224 correspond to iodine concentrations of 100 and 300 mg/ml,
respectively (Verhaegen et al. 2005).

For the abdominal simulations (both geometrical abdomen and digitized phantoms)
in this work, an iodine mass fraction of {1 =0.005 was used, which, according to
Amato et al. (2010), corresponds to an iodine concentration of 5mg/ml. They also
used other mass fractions of 1073, 5-1073, 7- 1073, 1072, which should correspond
to iodine concentrations of 1, 5, 7 and, 10 mg/ml, respectively.

For the geometrical phantoms, the material composition and density was altered
depending on the chosen iodine mass fraction (see section2.4.3). For the digitized
patient phantoms, the material composition and density of the basic tissue mate-
rial was altered (increased) according to the chosen mass fraction. However, due to
the subsequent rounding of the material density during the setup of the digitized
phantoms according to the CT numbers of the inserted CT images (density steps of
0.1g/cm), the density was effectively not altered. The difference in density between
enhanced and non-enhanced materials is 0.5% for the liver, according to equation 2.2,
for P =0.995. However, a density step of 0.05 g/cm?, e.g. from 1.00 to 1.05 g/cm?, re-
sults in a difference in density of 5.0%. The difference in the density due to rounding
(5.0%) is ten times the difference in density between enhanced and non-enhanced
materials (0.5%) and, hence, has a considerably higher effect on energy deposition.
Rounding during the phantom construction ensures that only a limited number
of materials are produced, which again limits computational time. However, the
accurate density originally calculated from CT data for simulated non-enhanced
acquisitions and the density difference for simulated enhanced acquisitions suffer
from this implementation.

During this work, image data of non-enhanced CT acquisitions have been used
for organ assignment and density calculation. If image data of arterial acquisitions
would have been used, the 'CT-2-density’ conversion table would need to be ad-
justed, as CT numbers of enhanced tissues do not correspond to CT numbers of
non-enhanced acquisitions. CT numbers of the aorta in arterial acquisitions can
reach 200-500 HU, which corresponds to a density of ~1.145g/cm? (for 300 HU).
The density of non-enhanced blood is considerably lower, with 1.060 g/cm?. From
the increased density, an iodine concentration of 74 mg/ml can be calculated, accord-
ing to equation 2.2: 1 =1-(1.06/1.145) = 0.074. However, realistic maximum iodine
concentrations reached in the aorta are considerably lower, with approximately
15mg/ml. The high CT number for contrast-enhanced tissues demonstrates a high
photon attenuation, however not a high tissue density. According to Perisinakis et
al. (2018), the considerable increase in the absorption efficiency of iodinated tissue
may not be attributed to the increase of density, but to the increase of effective
atomic number Z in consequence of iodine uptake. Hence, utilizing CT images of
non-enhanced acquisitions and including the contrast agent in a successive step is a
reasonable method to obtain appropriate densities and contrast enhancement.
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45 OTHER SIMULATION PARAMETERS

NUMBER OF INITIAL PHOTONS The number of tracked photons influences the
accuracy of dose calculations but also the simulation run times. Appendix] reviews
the effect of the number of tracked photons in MC simulations of CT acquisitions.
Since results of MC simulations using larger numbers of photons are unknown (i.e.
the result for an infinite number of photons), different approaches were taken to
determine the required number of photons to reach a specific maximum error.
Figures 3.27-3.30 demonstrated that a reduced number of photons caused deviations
from the original simulation results. The larger the tracked volume, the larger the
possibility to reduce the number of photons without altering the results. Small
volumes were more vulnerable to a smaller statistical occupation than large volumes.
The initial number of photons employed for anthropomorphic phantom simulations
in this work was based on the study design of Salvadé et al. (2005) who obtained
relative standard errors of <0.5% in 1 cm thick axial slices, employing 3 - 10° tracked
photons per 1 cm-image slice. For two identical simulations with two different initial
seeds in this work, differences in organ energy deposition were <1% even for the
smallest organ (see section 3.5), caused by the statistical variation in MC simulations.
However, differences between the two simulations were up to 60% on a voxel scale
(1.5 x 1.5 x 3mm?) and ~30% when averaging over three voxels.

DATA STORAGE AND ANALYSIS Most publications related to CT dosimetry only
store 3D-distributions but not the complete tracking information, such as interaction
type or track lengths (Angel et al. 2010; Belley et al. 2014; Deak et al. 2008). Com-
pared to commercially available tools for dose calculation, the presented software
allows more options for data in- and output: although not presented in the results
of this work, it is possible to combine radiation exposure maps with specific require-
ments, e.g. an exposure map only from photoelectric interactions or scatter maps.
Unfortunately, the flexibility of the comprehensive output options comes at the cost
of large output data files (21.5 GiB (23.1 GB) for full output vs. 144.7 MiB (151.7 MB)
for solely the 3D energy distribution, see appendix C), although simulation times
did not differ considerably. If solely the 3D-energy distribution is of interest, the
reduced output is considerably less memory expensive.

4.6 LIMITATIONS AND FUTURE DEVELOPMENT

EVALUATION OF X-RAY EMISSION AND THE CT GEOMETRY  The characterization of
the geometry and the material of beam-shaping filters is difficult, since detailed in-
formation on their design is often proprietary. However, according to Boone (2010)
and Zhou and Boone (2008), most beam-shaping filters are sufficiently similar in
terms of performance across vendors. This would allow for applying beam-shaping
filters or transmission curves from one CT system to be adopted onto another sys-
tem, if information about these parts is unavailable (for the same FOV or imaged
body region).

Although CT acquisitions of the digitized patients were originally acquired on a
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Somatom® Definition Flash (Siemens Healthineers, Forchheim, Germany), the sim-
ulations employed the geometry of the Aquilion™16 CT scanner (Toshiba Medical
Systems Corporation, Nasu, Japan). This was done, as the transmission measure-
ments leading to the implementation of the fan-angle dependent fluence modula-
tion (FM) were performed on the Aquilion™16. Although the combination of the
Siemens scanner geometry and the beam-shaping characteristics of the Toshiba scan-
ner would probably be adequate according to Boone (2010) and Zhou and Boone
(2008), this mixture of geometries was avoided. Furthermore, the generated spectra
might not correspond to the Somatom® Definition Flash. In the worst case, this
would result in the combination of transmission characteristics of the Aquilion™16
with the CT scanner geometry of a Somatom® Definition Flash and spectra of yet
again a different CT scanner model.

Fan-angle dependent x-ray spectra and transmission measurements of other CT
scanners (i.e. Somatom® Definition Flash) need to be performed to allow for match-
ing CT scanner geometries and x-ray spectra. Furthermore, obtaining information
on the geometry of CT scanners of other vendors would allow to increase the limited
number of implemented CT scanners in the developed MC model.

ENERGY BUILD-UP EFFECT AT INTERFACES  For the calculation of the energy build-
up effect, energy deposition was calculated with an interface layer width of 2.5mm,
as a compromise between signal (accumulated energy deposition in an interface
layer) and noise (a decreasing energy deposition with larger distance from the
interface). The choice of the 2.5 mm seam around the organs corresponds to a width
of only 3-4 pixels in the ROIs for the abdomen and digitized patient phantom (see
figures 2.22 and 2.23). This width is vulnerable to volume artifacts (partial volume
effect) of nearby voxels. For a closer analysis of the energy build-up effect in arteries
and capillaries on cell level, a higher resolution of the original CT data or more
detailed geometrical phantoms are necessary.

EMPLOYED IODINE CONCENTRATION The employed iodine concentration in this
work neglects the physiology of the blood flow. Although the iodine concentration
is both time-dependent and tissue-dependent after contrast-agent administration,
an identical concentration in all organs and the aorta was assumed in this work.
Sahbaee et al. (2017a,b) extensively implement contrast-agent dynamics in their
anthropomorphic phantoms. The iodine concentration in this work (5mg/ml) is
slightly overestimated for the liver and underestimated in the aorta in comparison
to their implementation (maximum peak at ~3 mg/ml for the liver and at ~10 mg/ml
for the aorta, as per Sahbaee et al. (2017a,b)). However, this iodine concentration was
employed here since it is a fairly realistic assumption and simplification of the time-
and organ-dependent iodine concentration.

One option to overcome the necessity of modeling blood flow, or of using approx-
imations of iodine concentrations is the calculation of difference images from non-
enhanced and arterial /venous phase acquisitions. This, however, requires the regis-
tration of the employed image data sets. With current CT technology, iodine maps,
representing tissue iodine concentrations, can be calculated, i.e. from dual energy
CT (DECT) acquisitions, and could serve as input for MC simulations.
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AUTOMATIC AND MANUAL MATERIAL ASSIGNMENT Automatic material assign-
ment by thresholding lacks precision for soft tissue types since the CT numbers of
these tissues are similar. The 'CT-2-density' conversion table only provides a rough
classification of tissues, which causes misclassification of voxels. As an example, the
liver in figure 2.13b is surrounded by a 'clutter’ of pixels assigned as water, fat, and
soft tissue. In reality, these pixels should probably be assigned as homogeneous fat
tissue. This tissue assignment is due to the transition from fat (CT number ~-115 HU)
to soft tissue (CT number ~+60 HU). As a consequence of the partial volume effect,
pixels between fat and soft tissue are frequently assigned as water (CT number
~0HU)

Personalized 'CT-2-density' conversion tables will reduce misclassifications, how-
ever, they will not eliminate them completely due to the similarity of CT numbers
in the abdomen and partial volume effects. Manual segmentation reduces this issue,
however, this introduces further limitations. Manual segmentation is time intensive
and its execution and consistency between patients is strongly dependent on the
person that is contouring the patient. Patients in this thesis often had calcification
of their aorta and smaller blood vessels. The material blood was assigned to the
segmented aorta, which often included calcified areas. The density values of these
areas are correctly calculated since they are based on the CT numbers, however,
material allocation and composition in this case corresponds to blood and not to
calcium. The erroneous material composition of calcification will influence photon
attenuation and energy deposition in these areas. The patients included here are not
strongly affected by aortic calcification. Patients with higher degree of calcification,
implanted stent grafts, or implants (pacemaker/joints) will need to be contoured in
greater detail for correct material assignment.

CT PATIENT TABLE  During this work, the CT system’s patient table was not manu-
ally segmented, as was performed by Nowik et al. (2017). They studied the influence
of the patient table on effective dose, noticing an overestimation of the effective dose
by 5% if the patient table was not included in the simulation. The doses in individ-
ual organs were overestimated by 8% for spiral acquisitions. Since their employed
software ImpactMC (AB-CT Advanced Breast-CT GmbH, Erlangen, Germany) did
not include a carbon fiber mixture, they assignhed muscular tissue as table material
(Nowik et al. 2017). In this thesis, the table was automatically converted into soft
tissue and trabecular bone, with lung tissue inside the table for the digitized patient
phantoms. This does not correspond to the realistic material composition, however,
the table and its attenuating characteristics are included. For the modified abdomen
phantom, the table has not been included, which needs to be taken into account
when directly comparing the results of the modified abdomen and the digitized
patient phantom.

In future simulations, a model of the table with realistic dimensions and material
composition should be designed and included for both digitized and geometrical
phantoms to account for the correct photon attenuation in the table.

NUMBER OF PATIENTS AND EVALUATIONS  Only a limited number of patients were
included in this work. Therefore, only a limited number of evaluations was per-
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formed, which limits the explanatory power. However, the goal of this work was
the development of a MC software, which enabled the simulation of CT acquisi-
tions, calculation of the radiation exposure of digitized patients, and the flexibility
of software input and output/analysis options. The feasibility of virtual dosime-
try with the developed software was presented by means of a selected number of
patients and research topics of current interest. Simulations of more patients with
larger scan coverage, higher spatial resolution (especially for a thinner slice thick-
ness), and larger number of initial photons requires more computational power (i.e.
a computer cluster).

VALIDATION AGAINST GROUND TRUTH Results of the MC simulations were not
validated against experimental measurements, but only compared with results of
other MC simulations. The basic principles of radiation exposure and the function-
ality of the software can be sufficiently assessed. However, for proper validation,
results of simulations and experimental measurements need to be compared, i.e.
for a validation against CTDI measurements for different CT acquisition settings or
against TLD measurements in an Alderson phantom.

47 CONCLUSIONS

Since the annual effective dose to individuals from CT acquisitions is increasing,
thorough understanding of the radiation exposure distribution inside the patient’s
body is necessary. The MC software developed in this work offers flexibility in both
data input, output, and analysis options of the energy deposition caused by the
x-rays in CT imaging. The main conclusions and consequences of this work are as
follows:

1. X-ray source spectra are interchangeable when matching mean spectral energy
and peak tube potential. The two effects of beam-shaping filtration, modulated
photon fluence and spectral distortion, need to be included for an accurate and
precise CT model.

2. Administration of contrast agents needs to be implemented in patient dosime-
try, since contrast agents alter total energy deposition and its spatial distribu-
tion in patients.

3. Geometrical phantoms are useful to assess general principles of energy depo-
sition. Geometrical anthropomorphic phantoms serve as an approximation for
digitized patient phantoms, decreasing simulation time and complexity of the
materials

4. Digitized patient phantoms offer the best realization for individualized patient
dosimetry. The conversion of CT numbers to density offers the direct imple-
mentation of density values. However, correct tissue allocation requires man-
ual segmentation. Furthermore, simulation time and complexity is increased
compared to geometrical phantoms.



4.7 CONCLUSIONS

5. Applying lower tube potentials than 120 kV}, for non-enhanced and enhanced
CT acquisitions for increased tissue contrast and dose reduction is recom-
mended where possible. Radiation exposure can be decreased considerably
for an abdominal scan coverage by choosing 80kV,,, compared to higher tube
potentials, without increasing the skin exposure considerably.

The results of this work demonstrate that knowledge about spatially resolved radia-
tion exposure is necessary to fully understand the effects of changing CT acquisition
parameters or administration of contrast agents. Full body or organ doses are not
sufficient to describe the interactions of photons at material interfaces. Individu-
alized dosimetry offers a precise evaluation of the radiation exposure, even for
non-average sized or pediatric patients, where conversion factors fail. Furthermore,
MC simulations allow to implement contrast agents, in contrast to the usage of con-
version factors or common physical phantoms (e.g. the Alderson phantom). Once
implemented in a larger computer cluster for faster run-times, the developed virtual
dosimetry software allows for prompt patient- and acquisition-specific dose calcu-
lations for all examined patients in radiology departments over the course of their
lifetime. This enables scientific studies, investigating the long-term effects of ioniz-
ing radiation from CT acquisitions. Furthermore, knowledge about the influence of
CT acquisition parameters on dose deposition may provide positive impulses for
both acquisition execution and technical improvements in CT.
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SUMMARY

Since the range of indications of and the accessibility to computed tomography
examinations in diagnostic radiology are constantly expanding, their number and
the associated effective dose to patients have increased over the last decades. Thor-
ough understanding of the radiation effects induced by the utilized ionizing x-rays
is necessary to evaluate the risks and benefits of computed tomography examina-
tions. Ionizing radiation is a proven carcinogen, especially for high radiation doses
(>100 mSv), however, the long-term health risks of lower doses are still unknown.
To correlate computed tomography examinations with potential side effects from
ionizing radiation, studies need to be performed, which determine the spatially
resolved dose deposition associated with computed tomography examinations for
large patient cohorts over the course of decades. Monte Carlo methods offer the most
precise way to investigate the effective dose from computed tomography examina-
tions inside a variety of test specimen (phantoms), providing a spatially resolved
measure of the radiation exposure without exposing patients or staff to ionizing
radiation. Several commercial Monte Carlo software tools for dose calculation in
computed tomography are available, which are, however, often restricted in terms
of predefined scanner or phantom geometries, x-ray source spectra, and data output.

The goal of this work was the development of a Monte Carlo software tool for the
simulation of computed tomography acquisitions and the determination of the as-
sociated radiation exposure in individual patients. The software aimed at enabling
flexible integration of source spectra and scanner geometries, implementation of
self-designed geometrical and digitized patient phantoms, and the possibility of
extensive data analysis, paving the way towards virtual dosimetry — the prompt
and accurate calculation of spatially resolved radiation exposure in individual pa-
tients. For this purpose, the open-source toolkit Geant4 has been employed during
this work, for the simulation of radiation transport in matter during computed to-
mography examinations. The toolkit was further developed and adapted to provide
detailed information (e.g. interaction type and position) about the energy depo-
sition in phantoms for the retrospective creation of energy maps. The developed
Monte Carlo software modeled a computed tomography scanner, including x-ray
emission and optional beam-shaping methods, experimental and anthropomorphic
phantoms of varying complexity, and a photon detector. Several acquisition modes
and tube-current modulation were implemented. Digital patient phantoms were
constructed via automatic threshold-based and manual segmentation from com-
puted tomography image data sets and translated into voxelized phantoms.

In a first step, the basic functionality of the Monte Carlo model was reviewed
with regard to the implemented beam-shaping methods and the spectral character-
istics of x-ray emission for a set of 120kV-equivalent photon distributions. This
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analysis was important since x-ray tube-specific spectra are not easily accessible,
often resulting in the necessity to either simulate source spectra, or employ spectra
from mathematical models or online tools. Computed tomography examinations
often apply other tube potentials than 120kV}, and are frequently supported by
the administration of contrast agents. However, a contrast agent-enhanced radiation
damage caused by computed tomography examinations strengthens the need for
profound research on the effect of contrast agents on the energy deposition, espe-
cially at material interfaces. Therefore, in a second step, the influence of the applied
tube potential (80, 100, 120 kV},) and the administration of iodinated contrast agents
on total energy deposition (Eita) and its spatial distribution (Espatia1) was assessed
in a simple box phantom for a variety of iodine concentrations (1-15mg/ml). The
evaluation employing the box phantom served as basis for further simulations of
computed tomography acquisitions in a geometrical abdomen phantom, and finally,
in six digitized patients of varying body mass index and morphology. For the an-
thropomorphic phantoms (abdomen phantom and digitized patient phantoms), the
influence of the tube potential and the administration of iodinated contrast agents
on Eiota and Egpatial Was evaluated, employing contrast-enhanced tissues (aorta, kid-
neys, liver, spleen, and pancreas) with an iodine concentration of 5mg/ml. Energy
deposition was further assessed in more detail at tissue interfaces.

The results of this work demonstrated that Monte Carlo models of clinical com-
puted tomography scanners need to include the effect of beam-shaping filtration.
The performed evaluation on the spectral characteristics has demonstrated that spec-
tra are interchangeable between vendors and scanner models for matching mean
spectral energy and peak tube potential. Whereas Eyt,1 was approximately equal for
the applied tube potentials in the simple box phantom, Egpatiar differed considerably,
indicating the necessity of spatially resolved dosimetry. Simulations of the imple-
mented anthropomorphic phantoms for an abdominal scan coverage demonstrated
that energy deposition decreased with decreasing tube potential for the exposed
tissues/organs, except for the skin. In the skin, energy deposition increased by ~4%
when decreasing the tube potential from 120 to 80kV},. The increase in skin expo-
sure is negligible compared to the overall reduction of the energy deposition by ~9%,
especially when taking the low radiosensitivity of skin into account. The addition
of iodine caused an increase in energy deposition for contrast-enhanced tissues (up
to +50% for an iodine concentration of 5 mg/ml). The relative difference increased
with increasing iodine concentration and tube potential. In contrast to the enhanced
tissues, energy deposition decreased slightly in the surrounding non-enhanced tis-
sues for the anthropomorphic phantoms. An energy build-up effect was visible at
material interfaces even without the addition of iodine, due to differences in phys-
ical density. However, an additional iodine-induced energy build-up effect, which
increased with increasing iodine concentration, was visible for contrast-enhanced
acquisitions. In contrast to the total energy deposition in enhanced tissues, the en-
ergy build-up effect increased with decreasing tube potential. Hence, for low tube
potentials (e.g. 80kV},), larger differences between energy deposition in organ and
surrounding tissues were measured than for higher tube potentials.



SUMMARY

In conclusion, the developed software for the simulation of computed tomography
acquisitions paves the way towards individualized virtual dosimetry of patients.
The results of this work demonstrated that spatially resolved dosimetry is needed,
due to the differences in the spatial distribution of energy deposition depending on
tube potential, contrast agents, and material interfaces. Individual patient dosime-
try is necessary to understand differences in radiation exposure for varying patient
morphology and to estimate the radiation burden for patients undergoing frequent
examinations. Furthermore, widening the knowledge about the dose distribution
helps to improve computed tomography for dose-saving techniques in future.
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In den letzten Jahrzehnten sind die Anzahl von Computertomographieaufnahmen
und die damit einhergehende Strahlenbelastung fiir Patienten durch die groflere
Anzahl von Indikationen und die leichte Verfiigbarkeit dieser Aufnahmen deutlich
gestiegen. Ein griindliches Verstandnis der Strahleneffekte der genutzten ionisieren-
den Rontgenstrahlung ist daher notwendig, um den Nutzen und die Risiken der
Untersuchungen abschédtzen und einordnen zu kénnen. Rontgenstrahlung ist insbe-
sondere bei hohen Strahlendosen (>100 mSv) krebserregend. Die gesundheitlichen
Langzeiteffekte von niedrigen Dosen sind jedoch noch unbekannt. Um Computerto-
mographieaufnahmen mit potenziellen Nebenwirkungen der Rontgenstrahlung zu
korrelieren, sind Studien notwendig, bei denen die resultierende, rdumlich aufge-
16ste Strahlendosis in grofien Patientenkohorten iiber Jahrzehnte hinweg bestimmt
werden muss. Die genaueste Moglichkeit, die effektive Dosis von Computertomo-
graphieaufnahmen zu untersuchen, um eine rdumlich aufgeloste Verteilung der
Dosis im Patienten oder in Priifkdrpern (Phantomen) zu erhalten, ohne Patienten
oder Personal Rontgenstrahlung auszusetzen, bieten Monte Carlo Methoden. Es
gibt bereits mehrere kommerzielle Monte Carlo Programme zur Dosisberechnung
in der Computertomographie, allerdings schranken diese hdufig den Nutzer durch
vorgegebene Scanner- oder Phantomgeometrien, Rontgenspektren oder in der Da-
tenauslese ein.

Ziel dieser Arbeit war daher die Entwicklung einer Monte Carlo Software, die
eine flexible Integration von Rontgenspektren, Scannergeometrien, und selbst ge-
stalteten, geometrischen Abdomen- und digitalen Patientenphantomen ermdoglicht,
und gleichzeitig eine differenzierte Datenauswertung bereithalt. Fiir die Simulation
der physikalischen Prozesse in Phantomen bei Computertomographieaufnahmen
wurde das Open-Source Toolkit Geant4 genutzt. Nach Anpassung und Weiterent-
wicklung des Toolkits war es moglich, Informationen (z.B. Position, Interaktions-
typen) tiber die Energiedeposition von Rontgenstrahlung im Phantom zu erhalten
und Expositionskarten zu erstellen. Das in dieser Arbeit entwickelte Computerto-
mographiemodell verfiigt {iber die Emission von Réntgenstrahlung mit optionaler
Strahlformung, experimentellen und anthropomorphen Phantomen unterschiedli-
cher Komplexitdt sowie einem Photonendetektor. Unterschiedliche Aufnahmemog-
lichkeiten und Réhrenstrommodulation wurden zusitzlich implementiert. Digitali-
sierte Patientenphantome wurden aus Bilddatensdtzen von Computertomographie-
aufnahmen erstellt, wofiir die Datensitze schwellwertbasiert und manuell segmen-
tiert wurden.

Im ersten Schritt wurde die grundlegende Funktionalitit des Monte Carlo Mo-
dells beziiglich der Strahlformungsmethoden und den spektralen Eigenschaften von
120 kVp-Photonenverteilungen evaluiert. Dieser Schritt war erforderlich, da Réntgen-
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spektren von Computertomographen nur schwierig messbar und hdufig proprietar
sind, und daher oft simuliert oder aus mathematischen Modellen oder Computer-
programmen generiert werden miissen. Computertomographieaufnahmen werden
auch oft bei anderen Rohrenspannungen und unter Zugabe von Kontrastmitteln
akquiriert. Da Kontrastmittel Strahlenschdden verstirken kdnnen, sind fundierte
Studien der Effekte von Kontrastmitteln auf die Energiedeposition von Rontgen-
strahlung wichtig, insbesondere bei Materialiibergédngen von kontrastierten zu nicht-
kontrastierten Geweben. Daher wurde in einem zweiten Schritt der Einfluss der R6h-
renspannung (80, 100, 120 kV,) und die Zugabe von jodhaltigen Kontrastmitteln auf
die Gesamtenergiedeposition (Eita1) und deren rdumlichen Verteilung (Espatiar) in ei-
nem Boxphantom bei verschiedenen Jodkonzentrationen (1-15 mg/ml) untersucht.
Die Auswertung des Boxphantoms war Grundlage weiterer Simulationen von Com-
putertomographieaufnahmen eines geometrischen Abdomenphantoms und sechs
digitalisierter Patientenphantomen mit unterschiedlicher Morphologie und Body-
Mass-Index. Der Einfluss von Rohrenspannung und Kontrastmittel auf Eiy und
Egpatiat wurde auch fiir die anthropomorphen Phantome (Abdomen- und Patien-
tenphantome) bestimmt. Kontrastmittelverstiarkte Gewebe waren dabei die Aorta,
Nieren, Leber, Milz und Pankreas mit einer Jodkonzentration von 5mg/ml. Die
Energiedeposition wurde des Weiteren noch detaillierter an Gewebetibergingen
analysiert.

Die Ergebnisse der Arbeit zeigen, dass ein Monte Carlo Modell eines Computer-
tomographen den Effekt des Strahlenformfilters korrekt darstellen muss und dass
Rontgenspektren zwischen Gerédteherstellern und -modellen austauschbar sind, so-
lange die durchschnittliche Energie und die maximale Réhrenspannung iiberein-
stimmen. Obwohl Ej fiir die verschiedenen Rontgenspannungen im Boxphantom
dhnlich war, so variierte Egpatial €rheblich, was die Notwendigkeit der raumlich auf-
gelosten Dosimetrie verdeutlicht. Fiir anthropomorphe Phantome mit einer abdomi-
nellen Scanabdeckung nahm die Energiedeposition der exponierten Gewebe (mit
Ausnahme der Haut) mit geringerer Rohrenspannung ab. In der Haut nahm die
Energiedeposition bei Senkung der Rohrenspannung von 120 auf 80 kV, um ~4%
zu. Der Anstieg der Hautexposition ist im Vergleich zur generellen Abnahme der Ge-
samtenergiedeposition von ~9% vernachléssigbar, insbesondere wenn die geringe
Strahlenempfindlichkeit der Haut mit einbezogen wird. Zugabe von Jod in Geweben
erhohte die Energiedeposition fiir kontrastverstarkte Gewebe in allen Phantomen
(bis zu +50% bei einer Jodkonzentration von 5mg/ml). Der relative Unterschied in
der Energiedeposition zwischen kontrastverstarkten und nicht-kontrastierten Auf-
nahmen nahm mit zunehmender Jodkonzentration und Réhrenspannung zu. In
den umliegenden nicht-kontrastierten Geweben nahm die Energiedeposition leicht
ab. Ein Energieaufbaueffekt war bereits fiir nicht-kontrastierte Materialiibergange
aufgrund von Unterschieden der physikalischen Dichten sichtbar. Bei Zugabe von
Jod hat sich dieser Aufbaueffekt jedoch noch verstiarkt. Im Gegensatz zu den rela-
tiven Unterschieden zwischen nicht-kontrastierten und kontrastierten Aufnahmen
nahm der Aufbaueffekt mit abnehmender Rohrenspannung zu. Fiir geringere Roh-
renspannungen (z.B. 80 kV,,) werden grofsere Unterschiede in der Energiedeposition
zwischen Organen und dem umliegenden Gewebe gemessen als fiir hohere Rohren-
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spannungen.

Zusammenfassend ergibt sich, dass die entwickelte Software den Weg in Richtung
individualisierter virtueller Dosimetrie fiir Patienten ebnet. Da die Verteilung der
Energiedeposition von der Rohrenspannung, Kontrastmittelgabe und von Mate-
rialiibergdngen abhingt, ist die raumlich aufgeloste Dosimetrie fiir die korrekte
Bestimmung der Strahlenbelastung notwendig. Individualisierte Dosimetrie ist er-
forderlich, um Unterschiede der Strahlenbelastung bei unterschiedlichen Patienten-
morphologien zu verstehen, und um Abschédtzungen der Strahlenschaden fiir haufig
untersuchte Patienten zu erméglichen. Ein tieferes Verstdndnis der Dosisdepositi-
on im Korper wird dazu beitragen, technische Fortschritte in der Niedrig-Dosis-
Computertomographie zu erreichen.
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SCANNER SPECIFICATIONS

Two CT scanners were implemented in the MC simulation software, including sim-
plified models of the corresponding detectors. The specification of both scanners are
given below. Since spectral measurements, including transmission measurements,
have only been performed on the Toshiba Aquilion™16 (Toshiba Medical Systems
Corporation, Nasu, Japan) this scanner model was used for the simulation of all CT
acquisitions.

Al AQUILION™16

Table A.1: Computed tomography scanner information of an Aquilion™16, Toshiba Medical
Systems Corporation, Nasu, Japan. Information obtained from Amber Diagnos-
tics (2018), MHRA (2004), and NHS (2009).

Parameter name Value

Scanner type 3rd generation
Gantry opening [mm] 720
Source-to-object distance [mm] 600
Source-to-detector distance [mm] 1072

Fan-beam angle [degree] 49.2

Pitch 0.625-1,1.125-1.5
Scan field-of-view (FOV) [cm] 18, 24, 32, 40, 50
Reconstruction matrices [pixel x pixel] | 512 x 512

Dose modulation technique SureExposure3D
X-ray tube CXB-750D

X-ray tube anode tungsten, molybdenum, graphite
kVp-range 80, 100, 120, 135
mA-range 10-500

Detector type solid-state Gd,O,S
Number of rows along z-axis 40

Detector width at isocenter [mm)] 32

Number of detector elements 14336

Elements per row 896




SCANNER SPECIFICATIONS

A2 SOMATOM® DEFINITION FLASH

Table A.2: Computed tomography scanner information of a Somatom® Definition Flash,
Siemens Healthineers, Forchheim, Germany. Information obtained from Amber
Diagnostics (2018), Imaging Technology News (2014), and Lin et al. (2014).

Parameter name Value

Scanner type 3rd generation

Gantry opening [mm] 780

Source-to-object distance [mm] 595.0

Source-to-detector distance [mm] 1085.6

Fan-beam angle [degree] 49.95

Pitch 0.35-3.2

Scan field-of-view (FOV) [cm] 50

Reconstruction matrices [pixel x pixel] | 512 x 512

Dose modulation technique CARE Dose4D, CARE kV
X-ray tube anode Straton MX P

kVp-range 70, 80, 100, 120, 140
mA-range 20-800

Detector type 2 x multislice Stellar detector
Number of rows along z-axis 128 (2 x 64)

Detector width at isocenter [mm] 38.4

Number of detector elements

Elements per row

77824 (47104 system A; 30720 system B)
1216 (736 system A; 480 system B)




MATERIAL COMPOSITIONS

Table B.1: Basic material composition and densities of the human body materials employed

in the simulations. Material density was not altered for geometrical phantoms.

For digitized patient phantoms, density was altered according to the Hounsfield
units of the image pixels. The source code of Geant4 included several example
simulations which provided the material definitions for the bones (e.g. file path:

geant4.9.2.p04/examples/extended /medical / DICOM /DicomDetectorConstruc-

tion.cc). Abbreviations: trabec.: trabecular, exp.: expiration, in.: inspiration.

Percentage Z-fraction by weight [%]

p 1 6 7 8 1 12 15 16 17 19 20 26
Material [c313 H C N O Na MgP S Cl K Ca Fe
“Blood 1.060 |102 11.0 33 745 0.1 01 02 03 02 0.1
’Bone-dense 1.575 56 235 50 434 01 01 72 03 01 01 146
’Bone-trabec. | 1.159 | 85 404 58 367 01 0.1 34 02 02 01 44 0.1
“Breast 1.020 |10.6 332 3.0 527 0.1 01 02 01
“Fat 0950 |114 59.8 0.7 27.8 0.1 0.1 0.1
“Kidney 1.050 [10.3 132 3.0 724 0.2 02 02 02 02 01
Liver 1.060 |102 139 3.0 716 0.2 03 03 02 03
“Lung (exp.) | 0508 |103 105 31 749 02 02 03 03 0.2
“Lung (in.) 0217 |103 105 3.1 749 02 02 03 03 02
“Muscle 1.050 |10.2 143 34 71.0 0.1 02 03 01 04
Pancreas 1.040 |106 169 22 694 0.2 02 01 02 02
¢Skin 1.100 |10.1 228 46 619 *
“Soft tissue 1.060 |10.2 143 34 708 0.2 03 03 02 03
Spleen 1.060 103 11.3 32 741 0.1 03 02 02 03
“Water 1.000 |11.2 88.8

* additional components: Na, Mg, P, S, Cl, K, Ca, Fe, Zn: 0.6% together

a (Hubbell and Seltzer 2018a)
b (Geant4-Dicom-example)

¢ (Chang et al. 2016)

d (Carver et al. 2017)

e (ICRP 2018)






ANALYSIS OF SIMULATION RUN TIME AND DATA
STORAGE

One major difference between the software developed in this work and commer-
cially available software is the extensive data output available from the simulations.
Commercially available software usually only provides dose maps and organ doses.
The output in this work contains additional information e.g. about the interaction
type, material information, and incident photon energy. The additional information
comes with large volumes of data and a longer run time of the simulations.

To compare the potential for time and data volume saving, a simulation with the
same seed was run twice — once with the extensive data output, and once with only
the storage of a 3D-energy map. For this purpose, a non-enhanced acquisition of the
modified abdomen phantom was simulated at a tube potential of 80 kV,, (including
aluminum filtration) for 129 - 10° photons (z-coverage of 40cm + 3.2cm [-21.6cm,
21.6cm], 3-10° photons per cm, source collimation 32 mm, pitch 1.0). Run time, data
file volume, and energy maps were compared.

The simulation with full data output took 16.5 hours, whereas the simulation with
the reduced output took 16.4 hours for the simulation of 129 - 10° photons. Hence, run
times were almost identical. In general, run times depended more on the number of
cores that were active during run time (how many simulations run simultaneously)
than on the output storage.

However, the file size was reduced considerably for the reduced output. A file size
of 144.7 MiB (151.7 MB) was obtained for the reduced output, whereas a file size of
21.5GiB (23.1 GB) was obtained from the full simulation output.

Since the disk space was not critical during this work, full data output was ob-
tained for all of the performed simulations. Simulations were performed using an
Intel® Core™ i7-3930K processor, 3.20 GHz (Intel Corporation, Santa Clara, USA)
with 64 GB RAM.






SOFTWARE TOOLS USED FOR DATA ANALYSIS

p.1 MASKS FROM RT-STRUCTURE SET BINARY STACKS

The radiotherapy (RT) structure sets obtained from Oncentra® External Beam (ver-
sion 4.5.2, Nucletron B.V, Veenendaal, the Netherlands) were processed using an
open-source program ("Importing Contours from DICOM-RT Structure Sets with
ITK4") based on ITK4 to obtain binary masks of the contoured organs and tissues
(output: niftii-file stack for each contoured organ, Dowling 2013).

p.2 IMAGE] 1.51]8

Image], version 1.51j8 (Wayne Rasband, National Institutes of Health, USA) was
employed for the post-processing of structure sets and analysis of ROIs.

STRUCTURE SETS  The binary image stacks (values inside mask 1, outside mask 0)
of the contoured organs were multiplied in Image] with fixed value (material ID). All
processed organ/tissue mask stacks were added, to obtain a single stack containing
all masks (each mask is distinguishable by its value, the material ID). The final stack
is then saved into individual image files. These files can then be further processed in
the segmentation process (see figure 2.14), to combine them with the material files
from 'gdem_setup'.

rROI ANALYsIS  The energy deposition and relative differences between simulated
enhanced and non-enhanced acquisitions in the ROIs in the modified abdomen and
digitized patient phantom were measured in Image] 1.51j8 for the analysis of the
energy build-up effect.

p.3 TABULAR EVALUATION

Microsoft Excel 2016 (Microsoft Corporation, Redmond, Washington, USA) and
LibreOffice Calc (version 5.3.5.2, The Document Foundation, Berlin, Germany) were
used for data analysis and statistical calculations.






EMPLOYED MEASURED AND GENERATED X-RAY SPECTRA

In the following, the spectra plotted in figure 2.2 and figure 2.5 are plotted in more de-
tail. Siemens spectra are available from Siemens Healthineers (2018). An aluminum
filter of 3.3 mm was employed for all spectra, as this filtration shifts the mean spec-
tral energy of the unfiltered generated spectrum (51.5keV) at 120kV,, to the mean
spectral energy, Epean ref, Of the measured reference spectrum (57.7 keV) at 120 kVp at
0° fan angle.

el MEASURED REFERENCE SPECTRUM
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Figure E.1: Measured, normalized central spectrum at 120 kV,,. Mean spectral energy of this
spectrum is 57.7 keV. This spectrum was measured prior to this work, see Stiller
et al. (2019) and Veloza (2012) for details on the measurement procedure.
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Figure E.2: Generated spectrum at 80 kV}, with 3.3 mm aluminum (Al) filtration. Mean spec-
tral energy of this spectrum is 46.6 keV. Siemens spectra available from Siemens

Healthineers (2018).
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Figure E.3: Generated spectrum at 100 kV;, with 3.3 mm aluminum (Al) filtration. Mean spec-
tral energy of this spectrum is 52.7 keV. Siemens spectra available from Siemens
Healthineers (2018).
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Figure E.4: Generated, unfiltered spectrum at 120 kV;,. Mean spectral energy of this spectrum
is 51.5keV. Siemens spectra available from Siemens Healthineers (2018).

T
— 120kV;, +3.3mm Al

0.04

0.03 |- |

0.02 |- |

0.01

Normalized photon intensity [keV~!]

000 | | | | |
0 20 40 60 80 100 120 140

Energy [keV]

Figure E.5: Generated spectrum at 120kV,, with 3.3 mm aluminum (Al) filtration. The ad-
ditional filtration removes photons with energies <20keV, thereby increasing
the relative peak-height of the characteristic peaks. By adding the aluminum
filtration, the mean spectral energy increases from 51.5keV to 57.7 keV. Siemens
spectra available from Siemens Healthineers (2018).






BEAM-SHAPING FILTER DIMENSIONS

Prior to the work presented here, a physical beam-shaping filter model for MC
simulations has been developed (Stiller et al. 2019; Veloza 2012). This appendix
presents the shape and size of the developed and employed beam-shaping filter. The
beam-shaping filter was constructed by subtraction of regular trapezoidal Boolean

solids from a rectangular box (Steuwe et al. 2018; Veloza 2012).

Figure F.1: Employed physical beam-shaping model. Adapted from Stiller et al. (2019). The
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model was developed prior to this work (Veloza 2012).

Table F.1: X-ray path length through the physical beam-shaping filter and corresponding

dimensions (Stiller et al. 2019; Veloza 2012).

X-ray path Beam-shaping filter

Fan angle [°] | length [mm] | length x(0) [mm] thickness y(0) [mm]

0 0.0000 0.0000 - 0.0000

2 0.1954 5.2449 - 0.1953

4 1.5818 10.5994 - 1.5779

6 3.7910 16.1619 - 3.7702

8 6.6335 22.0043 - 6.5689
10 9.4248 28.0856 - 9.2816
12 14.6800 34.9356 -14.3592
14 19.6062 42.1424 -19.0238
16 25.4191 50.0183 -24.4344
18 32.0951 58.6559 -30.5242
20 39.2600 68.0232 -36.8923
21 42.6265 72.8556 -39.7953







CT ACQUISITION MODE IMPLEMENTATION

In the following, the different CT acquisition modes, implemented in the MC model,
are shortly described.

Gl STEP-AND-SHOOT/AXIAL ACQUISITION MODE

For the step-and-shoot/axial acquisition mode, the point source moves in a 360°-
rotation around the patient during which is patient remains stationary. After one
rotation, the patient is moved by the length of the detector coverage or a defined
larger or smaller step. Figure G.1 depicts the influence of the step size on energy
deposition, for a fixed z-collimation of 32 mm.

G2 HELICAL/SPIRAL ACQUISITION MODE

For the helical/spiral acquisition mode, the x-ray source rotates around the patient
while the patient table is moving through the scanner gantry (continuous move-
ment with fixed table speed). The pitch describes the relationship between table
displacement during a full source rotation and z-collimation of the x-ray source (see
section 1.2.3). Figure G.2 presents the influence of the pitch on the energy deposition.
Z-collimation was fixed to 32 mm, whereas table displacement was increasing from
16 mm (pitch of 0.5) to 64 mm (pitch of 2.0).
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Figure G.1: Implementation of the step-and-shoot acquisition mode for a z-collimation of
32 mm at the isocenter, and steps of 16, 32, 48, and 64 mm. An increasing step size
between two adjacent 360°-rotations results in a streaky pattern in the spatial
distribution of energy deposition in the patient. Energy maps presented here
show the summed energy deposition along the y-axis of the patient. Although
the z-collimation of the x-ray source is set to 32mm at the isocenter, energy
deposition from one "shoot" is spread over an area of ~ 6-7 cm in z-direction, due
to energy deposition emerging from scattered photons. The high-energy streaks
in (c) are due to overlaps of these "scatter areas" (streak width of ~1.5cm).
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Figure G.2: Implementation of the helical acquisition mode, for pitches of 0.5, 1.0, 1.5, and
2.0. With increasing pitch value, the z-displacement of the x-ray source per 360°-
rotation increases, resulting in a streaky pattern of the spatial distribution of
energy deposition in the patient. Energy maps presented here show the summed
energy deposition along the y-axis of the patient.
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CT ACQUISITION MODE IMPLEMENTATION

G3 LONGITUDINAL TUBE-CURRENT MODULATION (LTCM)

The exposure along the patient length is determined from the topograms/scout
scans, acquired at the start of each CT acquisition. Figure G.3 depicts the normalized
exposure values along the patient length with the corresponding lateral topogram.
Figure G.4 shows the corresponding energy maps. In figure G.4a, a homogeneous
photon distribution was applied, resulting in a high energy deposition at the heart.
Employing LTCM reduces the exposure in the lungs and the heart and increases
exposure in the abdomen and towards the pelvis. This increases the signal-to-noise
ratio in the detector, while increasing the energy deposition in the pelvic region.
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Figure G.3: Modulated tube current along the z-axis of the patient. The longitudinal tube-
current modulation (LTCM) decreases the tube current in areas of low attenua-
tion (e.g. the lungs) and increases tube current in highly attenuating areas, such
as the shoulders or hips. The resulting spatial distribution of energy deposition
is presented in figure G.4.

G4 ANGULAR TUBE-CURRENT MODULATION (ATCM)

Angular tube-current modulation (ATCM) alters the exposure during a single rota-
tion of the x-ray source. In this implementation, the attenuation of the table is not
accounted for, hence, tube current at 0° and at 180° are equal. Figure G.5 depicts the
increase in energy deposition at the patients lateral sides and the decrease in en-
ergy deposition at the a.p. sides (especially in the paravertebral muscles), due to the
increased x-ray exposure from the lateral directions and decreased x-ray exposure
from the a.p. directions.
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Figure G.4: Effect of longitudinal tube-current modulation (LTCM) on spatial distribution
of energy deposition. LTCM increases the tube-current time product in areas of
higher density (bones in the pelvic region) and diameter (shoulders), causing an
increased energy deposition, especially in the pelvic region. Energy deposition
in the lungs and heart is reduced if the modulated tube current is applied. The
correspoding modulated exposure progression is plotted in figure G.3.
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Figure G.5: Implementation of angular tube-current modulation (ATCM) to increase expo-
sure in lateral direction and to reduce exposure in anterio-posterior direction.
Increased energy deposition is visible in the liver, whereas a decreased energy
deposition is visible in the paravertebral muslces, if ATCM is applied.






DIGITIZED PATIENT PHANTOM

H1 AUTOMATIC SEGMENTATION USING THRESHOLDING

In the gd4cm_setup program, CT images are automatically segmented using a
thresholding method. In this automatic method, the tissues air, lung (in- and ex-
hale), fat, water, soft tissue, and bone (trabecular and dense) are assigned (other
individual organs are segmented in a later, manual step). The input file (g4dcm-
data.dat) is required to start the automatic segmentation of DICOM images. The
input file (listing H.1) includes information about the compression (1), number (5),
and names of image files (Patientl A_nat33_101-105), and material selection with
maximum density values (e.g. Air 0.03g/cm?, DenseBone 1.654 g/cm?). In this ex-
ample, only five CT images are automatically segmented.

Listing H.1: gdcm-data.dat input file

1 %compression

5 %number of input files
input_dcm/PatientlA_nat33_101 %input files
input_dcm/Patientl1A_nat33_102
input_dcm/Patientl1A_nat33_103
input_dcm/PatientlA_nat33_104
input_dcm/Patientl1A_nat33_105

8 %number of materials
Air 0.03 %materials with maximum density
LungInhale 0.390

LungExhale 0.910

AdiposeTissue 0.98

Water 1.02

SoftT 1.09

TrabecularBone 1.165

DenseBone 5.0

The CT2Density.dat file (listing H.2) is required for the calculation of density values
for each pixel. The density (given in g/mm?) is calculated by interpolation between
the CT number/density pairs given in the lookup table (see also figure H.1). The
calculated density values, in contrast to the material IDs, are not altered during the
segmentation process.

Listing H.2: CT2Density.dat input file

9 %number of CT number-density pairs
-5000 0.0 %CT number-density pairs

-1000 0.0

-400 0.602

-130 0.95
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Figure H.1: Plotted computed tomography (CT) number - density pairs, used to calculate the
densities of each voxel in the first step of the segmentation process (gdcm_setup)
via interpolation between the CT number - density pairs. An additional entry
was placed at (-5000,0), but was not plotted in the graph.

H2 MANUALSEGMENTATION USING ONCENTRA® EXTERNALBEAM

Oncentra® External Beam (version 4.5.2, Nucletron B.V, Veenendaal, the Nether-
lands) was used for manual segmentation of body structures (see figures H.2-H.3).
The external outline and the lungs are determined in Oncentra® using a threshold
method.

The skin varies in thickness for different body regions (eye lids, vs. mechanically
stressed regions (back, feet)), between 521 to 2400 pm for the epidermis and dermis
(Lee and Hwang 2002; Wei et al. 2017). In this work, a thickness of 4 mm was used
for the skin, by using an inner ROI margin of -4 mm on the external contour of the
patient. As the external contour of the patient often includes a thin air or clothing
seam, the actual skin thickness is between 3 and 4 mm. A thinner skin thickness was
unfortunately not feasible due to computational limitations of the software (ROI
margins of -2 mm or -3 mm resulted in "holes" in the skin, especially in the shoulder
and hip region).

For the shell structures of the segmented organs, ROIs were defined with a mar-
gin of 2.5 mm inside and around the organs. Figure H.4 depicts the liver shell inside
the organ and the surrounding tissue shell, each with a seam width of 2.5 mm.
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Figure H.2: Screenshot of the contouring tool ('Target Definition") of the Oncentra® External

Beam software. Structures are contoured on the axial computed tomography

(CT) reconstructions.
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(a) All internal structures (b) Lungs, stomach, and GI-tract
removed for better visibility

Figure H.3: Contoured internal structures: Bone marrow (purple), lungs (right: pink, left:
green), heart (orange), aorta (red), spleen (brown), kidneys (light and dark
green), pancreas (blue), bladder (turqoise), and gastro-intestinal (GI) tract (pink).
The skin is not shown.

(a) Liver shell inside the organ (b) Surrounding tissue shell

Figure H.4: Shell structure in the liver. The liver consists of an organ core (inside), an organ
shell (a), and an outer tissue shell surrounding the liver (b).

H3 COMBINATION OF SEGMENTED TISSUES AND STRUCTURES

Automatically and manually segmented materials for the acquisition of digitized
patient phantoms are described in table H.1.

H4 INITIALIZATION OF A SIMULATION

The input dicomdata.dat file (listing H.3) contains the compression value (1), num-
ber of files (5), file names and paths, the number of materials (15) and the individual



H.4 INITIALIZATION OF A SIMULATION

Table H.1: Automatic segmentation was performed for air, lung tissue, fat, water, soft tissue,
and bones. Manual segmentation was performed for the pancreas, kidneys, heart,
spleen, aorta, liver, and the skin (rows shaded in light gray). For contrast-enhanced
acquisitions, iodine (Wioaine = 0.005) was added to the materials marked with an
asterisk. The material compositions and densities are described in appendix B.

Structure/tissue | Assigned material | Material ID
air air [0]
lung inhale lung inhale [1]
lung exhale lung exhale [2]
fat fat [3]
water water [4]
pancreas pancreas* [5]
kidneys kidney* [6]
heart muscle [7]
soft tissue soft tissue [8]
spleen spleen* [9]
aorta blood* [10]
liver liver* [11]
skin skin [12]
trabecular bone | trabecular bone [13]
dense bone dense bone [14]

material names with corresponding maximum density (density in g/cm?). A com-
pression value of 1 uses the matrix size taken from DICOM header, whereas a
compression value of 2 reduces the number of pixels per file by a factor of 4 (e.g.
instead of a 512 x512 matrix, a matrix of 256 x 256 pixels is used). Each individual
processed image file (provided in listing H.4) contains the number of materials (15),
the material IDs and names, matrix size, x-,y-, and z-coverage, the relative TCTP
value, followed by the individual material IDs and density values of each pixel.

Listing H.3: Input file (dicomdata.dat) to start simulations of digitized phantoms. In this
example, only five computed tomography images are inserted in the simulation.
The file includes information about the compression (1), number (5) and names
of image files (Patient1 A_nat33_101-105), number of materials (15), and material
selection with maximum density values.

1 %compression

5 %number of input files
../filesforsimulation/PatientlA_nat33_101 %input files
../filesforsimulation/PatientlA_nat33_102
../filesforsimulation/PatientlA_nat33_103
../filesforsimulation/PatientlA_nat33_104
../filesforsimulation/PatientlA_nat33_105
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15
Ai

r 0.03

%number of materials
%materials with maximum density

LungInhale 0.390
LungExhale 0.910
AdiposeTissue 0.98
Water 1.02
Pancreas 1.05
Kidney 1.06
Muscle 1.06
SoftT 1.09
Spleen 1.06
Blood 1.07

Liver 1.07

Skin 1.11

TrabecularBone 1.165
DenseBone 1.654

Listing H.4: For each image, one simulation file (Patient]1 A_nat33_ImageNumber.g4dcm) is

O© 00 NO VI i WIN PR S
(9]

—_
(=]

11
12
13
14

512 512 1

-2
-2
-1
16

Air

produced. It contains the number of materials (15), the material identifications
(ID) and names, image matrix size, x-, y- and z-coverage (in mm) of the image,
the exposure value (in mAs), and all material IDs and densities (in g/cm?) per
pixel. In this example, material IDs and densities do not correspond to each
other and are solely exemplary chosen.

%number of materials
%material ID and name

LungInhale
LungExhale
AdiposeTissue

Water

Pancreas

Kidney
Muscle
SoftT
Spleen
Blood
Liver
Skin

TrabecularBone
DenseBone

29 229
29 229

%»matrix size
%x-coverage [mm]
%y-coverage [mm]

428 -1425 %z-coverage [mm]

2

%exposure [mAs]

12 4 8 8 4 3 3 5 %material IDs
1.51154 0.950769 0.551923 0©.958077 0.356538 0.23846 0.756538
0.956154 %densities [g/cm3]
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(a) axial view

(c) sagittal view

Figure I.1: Corresponding axial, coronal, and sagittal computed tomography (CT) images of
patient 3A for the 2D-energy maps presented in the results (figure 3.19).

(a) Patient1A (b) Patient 2A

Figure 1.2: Corresponding axial computed tomography (CT) images of patients 1A and 2A
for the 2D-energy maps presented in the results. (a) Patient 1A from figure 3.20
and (b) patient 2A from figure 3.19.
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Figure 1.3: Axial slices through the liver and kidneys for the six patients of this study. Patients
1A and 1B belong to the group with the lowest body mass index (BMI) (BMlIs 21.0
and 22.0, respectively), patients 2A and 2B belong to the group with a medium
BMI (BMIs 26.4 and 25.4, respectively) and, patient 3A and 3B belong the group
with the highest BMI (BMlIs 28.1 and 28.4, respectively). In each group, patients
have simular heights and weights (see table.2.2). Abdominal diameters varied
considerably among patients.



ERROR CALCULATION IN MC SIMULATIONS OF CT
ACQUISITIONS

This section of the appendix provides a small review about the error calculation in
MC simulations of CT acquisitions available in the literature and evaluates the sim-
ulated number of incident photons on the accuracy of the performed simulations.
Regarding MC simulations in CT, there are only a handful of publications which
provide information on the used MC method, CT acquisition parameters, and error
calculations in detail. Most publications employ commercial software, where only
a specific TCTP-value, but not the corresponding number of incident photons (or a
conversion factor) are given.

Li et al. (2011a) aimed at a relative error in dose of 1% or below, defined "as one
standard deviation divided by the average tally result". In their subsequent study,
determining the patient-specific radiation dose in patients, they tracked 80 - 10° pho-
tons for each CT acquisition (chest, abdomen-pelvis) of each patient (Li et al. 2011b).
Patients in their study were a newborn female and a teenaged male, for which
digitized phantom models were voxelized at 0.5 and 1 mm isotropic resolutions,
respectively. For the employed 80 - 10° photons, they calculated relative dose errors
of <1% in organs in the scan coverage (chest or abdomen-pelvis), and < 3% in organs
outside the scan coverage. However, they claim that 7 - 10° photon histories were
sufficient to achieve relative dose errors of <1% for all organs in the scan coverage
and < 10% for other organs (Li et al. 2011b).

Nowik et al. (2017) use the commercial available software package ImpactMC (AB-
CT Advanced Breast-CT GmbH, Erlangen, Germany) and employed 1 - 10'° photons
with 72 projections per rotation, and 5 - 10° photons for a projection scan (similar to
a topogram) for a full body scan (no automatic tube-current modulation (TCM) was
included). They repeated their simulations until the relative standard deviation of
their mean achieved dose was <2% in the noisiest ROI in the phantom (Nowik et al.
2017).

Fujii et al. (2017) employed 1 - 10! photon histories for chest and abdominal-pelvic
CT acquisitions, independent on the exact scan range, using the ImpactMC software.
They obtained an uncertainty of the MC results of <1% within the scan range.
Salvadé et al. (2005) employed 3 - 10° photon histories per 1cm-image slice for
patients and anthropomorphic phantoms. Voxelized phantoms consisted of a 256
x 256 x Ng matrix, with a slice thickness of 1cm. The minimum voxel size was
1.4x1.4x10mm?3, the maximum voxel size was 1.7x1.7x10mm?3. A relative stan-
dard error of the average dose in one slice of <0.5% was reached for slices directly
scanned. Outside the scan region, a relative error of 1% is reached (Salvadé et al.
2005). During this work, the employed number of photons for the anthropomorphic
phantoms (3 - 10° tracked photons per 1 cm-image slice) was calculated based on Sal-
vado et al. (2005). Although uncompressed CT images were used in the simulations
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in this work (512 x 512 matrix), energy maps were calculated for a 256 x 256 matrix.

PHOTON INTERACTION TYPES IN REDUCED INCIDENT PHOTON STATISTICS DATA
stacks To evaluate the possibility of reducing the number of initial photons in
a MC simulation of a CT acquisition, photon interaction data was subdivided into
data sets with reduced number of photon statistics (see section 2.6). Of these reduced
statistics data sets, 2D-energy maps were calculated and compared to the original
energy map.

Figure ].1 confirms that the reduced statistics data sets contain the same type and
frequency of photon interactions. Multiple scattering and Compton effects are most
frequent, whereas the photoelectric interactions are less frequent. All reduced data
sets also contain equal energy deposition distributions of the individual interactions
(results not shown). Since the reduced statistics data sets contain the same type
and frequency of photon interactions, and equal energy deposition distributions, a
comparison of the resulting energy maps is reasonable and feasible.
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Figure ].1: Present interactions in reduced statistics data sets. For each of the reduced statis-
tics data sets, photon interactions were histogrammed and normalized to allow
for direct comparison. For all reduced statistics data sets, the same type and fre-
quency of photon interactions are occurring. Interaction IDs: Compton effect (1),
photoelectric effect (2), ionization (3), multiple scattering (4), bremsstrahlung (5),
coupled transportation (6).
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