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Abstract

Background: Helium (*He) ion beam therapy provides favorable biophysical characteristics compared to currently
administered particle therapies, i.e, reduced lateral scattering and enhanced biological damage to deep-seated
tumors like heavier ions, while simultaneously lessened particle fragmentation in distal healthy tissues as observed
with lighter protons. Despite these biophysical advantages, raster-scanning *He ion therapy remains poorly explored
eg. clinical translational is hampered by the lack of reliable and robust estimation of physical and radiobiological
uncertainties. Therefore, prior to the upcoming “He ion therapy program at the Heidelberg lon-beam Therapy
Center (HIT), we aimed to characterize the biophysical phenomena of “He ion beams and various aspects of the
associated models for clinical integration.

Methods: Characterization of biological effect for “He ion beams was performed in both homogenous and patient-
like treatment scenarios using innovative models for estimation of relative biological effectiveness (RBE) in silico and
their experimental validation using clonogenic cell survival as the gold-standard surrogate. Towards translation of
RBE models in patients, the first GPU-based treatment planning system (non-commercial) for raster-scanning “He
ion beams was devised in-house (FRoG).

Results: Our data indicate clinically relevant uncertainty of £5-10% across different model simulations, highlighting
their distinct biological and computational methodologies. The in vitro surrogate for highly radio-resistant tissues
presented large RBE variability and uncertainty within the clinical dose range.

Conclusions: Existing phenomenological and mechanistic/biophysical models were successfully integrated and
validated in both Monte Carlo and GPU-accelerated analytical platforms against in vitro experiments, and tested
using pristine peaks and clinical fields in highly radio-resistant tissues where models exhibit the greatest RBE
uncertainty. Together, these efforts mark an important step towards clinical translation of raster-scanning “He
ion beam therapy to the clinic.
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Background

With nearly 150,000 patients treated globally to date, par-
ticle therapy has revolutionized cancer therapy by offering
enhanced precision and radiobiological properties over the
conventional photons [1]. At the Heidelberg Ion-Beam
Therapy Center (HIT), proton (*H) and carbon (*?C) ion
beams, the leading modalities in hadrontherapy, are applied
clinically, with two additional particle species available for
experimentation: oxygen (*0) and helium (*He) ion
beams. Interest in medical applications using helium ions
began during the clinical trials at Lawrence Berkeley La-
boratory (LBL) between the years of 1977 and 1993, with
over 2000 patients successfully treated [2]. Since the pro-
gram’s end, “He ion beams remain clinically unexploited.

It is well known that, experimentally, heavier ions ex-
hibit greater biological damage and consequently, the
biophysical properties of *He are intermediate of the two
clinically administered particle beams. That being said,
application of helium ions provides a distinct clinical ad-
vantage, i.e. favorable dose distributions with attributes
such as a sharper Bragg peak and lateral penumbra (re-
duced range straggling and scattering) compared to pro-
tons, and similar potential for tumor control with a
substantially reduced fragmentation tail compared to
carbons ions [3, 4]. With these characteristics, helium
ions have been proposed as an ideal treatment option
for radio-resistant diseases and delicate patient cases e.g.
meningioma and pediatrics [5, 6].

Next year, HIT will launch the first European clinical
program using therapeutic *He ion beams, which marks
the world’s first clinical application of raster-scanning
*He ion therapy. Over the past decade, substantial ef-
forts have been made at HIT to characterize *He ion
beams via measurement and FLUKA Monte Carlo (MC)
simulation [7, 8] both dosimetrically, i.e. in terms of
depth and lateral dose distributions with single pencil
beam (PB) and spread-out Bragg peak (SOBP) plans, as
well as nuclear fragmentation [9-12]. In addition, classi-
fication of the beam’s biological effects is in progress,
studying both in silico [5] and clonogenic cell survival in
clinically-relevant conditions [13-15]. Presently, there is
no commercial treatment planning system (TPS) avail-
able for “He ion beams; however, research-based tools
were recently introduced or updated to allow planning
with *He ion beams [10, 14, 16].

Relative to the clinical standard photons and protons,
*He ion beams exhibit, in certain cases, more advanta-
geous biological dose distributions with a higher linear
energy transfer (LET) [17] in the tumor, resulting in su-
perior relative biological effectiveness (RBE) in the target
compared to the entrance channel, a valuable attribute
for treatment of deep-seated radio-resistant tumors. To
anticipate variability of tissue-specific radio-sensitivity in
the clinic, the TPS predictions of physical dose will be

Page 2 of 16

coupled with a biophysical (RBE) model for calculation
of an effective dose.

In contrast with proton RBE with nearly 300 experi-
mental in vitro measurements, data for helium is rela-
tively scarce (~1/3 as large), leading to larger
uncertainties in helium RBE. As for in vivo investigation
of *He ion beams, few publications examine evidence of
enhanced tumor control compared to conventional tech-
niques, most of which originate from the LBL trials from
prior decades, yet only a fraction of these works relate
findings to RBE [18, 19]. In preparation for the first pa-
tient treatment with *He ion beams at HIT, we com-
pared the predictions of three existing RBE models to
biological measurements in vitro with monoenergetic
beams and in clinically-relevant scenarios, as well as
highlighting the inter- and intra-model variations as
a function of tissue type, dose level, LETy, depth and
beam configuration in silico. For the in vitro study, a
cell line exhibiting substantial radio-resistance was se-
lected for irradiation with both pristine beams and
clinical-like fields. These more radio-resistant tissues (o/
B < 4Gy) are of particular interest considering they make
up only ~5% of the available experimental data in the
literature for *He ion beams. In addition to in vitro
study, patient treatment plans were calculated and com-
pared, applying the various *He RBE schemes in place of
a constant RBE [20]. The three published models for
RBE prediction with *“He ion beams investigated in this
study are as follows: a data-driven phenomenological
model (DDM) [13, 14] and two biophysical models fea-
turing the Local Effect Model (LEM, version IV) [21]
and the modified Microdosimetric Kinetic Model
(MKM) [22, 23]. With a long-term outlook in mind for
*He RBE study and clinical integration, this work can
serve as a foundation for clinical decision-making re-
garding effective dose calculation, in preparation for the
first “He ion beam therapy patient treatments in Europe.

Methods and materials

Experimental investigations

Cell culture and clonogenic assay

Murine renal adenocarcinoma cells (Renca ATCC®
CRL-2947™) were cultured in RPMI-1640 Medium (Gibco,
Germany) supplemented with 10% heat-inactivated Fetal
Bovine Serum (FBS, Millipore, Germany) and 1% Penicil-
lin/Streptomycin (Gibco, Germany) at 37 °C and 5% CO,
atmosphere. Clonogenic cell survival assay, ie. seeding, ir-
radiation, incubation and read-out, was performed as previ-
ously described using 96-well plates [24]. Image acquisition
took place with the IncuCyte® System (Essen BioScience,
UK) for colony counting. A baseline characterization of the
cell line was performed separately prior to experiment A
(pristine peaks) and experiment B (SOBPs), which involved
photon irradiation delivery (LINAC, 6 MV, Artist Siemens)
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with dose levels of 1, 2, 4, and 8 Gy for determination of
the LQ parameters (o, and f,).

Irradiation with Monoenergetic beams

To most closely resemble track segment conditions, cell
were irradiated with monoenergetic “He beams (E4 e =
56.66 MeV/u, dgp =259 mm) in experiment A. Two sets
of biological measurement points were taken at 6 mm and
12 mm water-equivalent depth (WED). Cell-kill measure-
ments were collected for the pristine beams at dose levels
of approximately 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, and 3.0
Gy. Dosimetric measurements were performed using a
Farmer ionization chamber (TM30010, PTW, Freiburg)
for validation of FLUKA MC predictions.

Irradiation with SOBPs

For investigating clinical-like conditions, the same plate
configuration was used as in the base-line photon irradia-
tions. Experiment A and B involved 96-well plates posi-
tioned against various thicknesses of PMMA, such that
each plate corresponded to a specific depth (and hence,
LET,) in the SOBP irradiation [24], with positions of 3.0
cm (pl), 598 cm (p2), 7.61 cm (p3), and 8.35cm (p4) in
PMMA. WED values were calculated using a multiplica-
tive factor of 1.165 and are highlighted in Fig. 1 (right
panel). SOBP plans were physically optimized in water for
the following doses in the 12 cm x 8 cm x 4 cm target re-
gion centered at 8 cm depth: 0.5, 1.0, 2.0, 3.0, 4.0 and 6.0
Gy. The 96-well plate geometry with corresponding ma-
terial composition was integrated into the FLUKA MC
simulation.
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Models and MC simulation
Modeling the relative biological effectiveness of “He ion
beams
Biological dose prediction begins with modeling cell sur-
vival (S), traditionally described as a linear-quadratic (LQ)
trend, with o and [ representing the linear and quadratic
coefficients, respectively, as a function of physical dose
(D). The ratio of the linear and quadratic coefficients, (a/
B)w is often referred to as a description for the sensitivity
of the cell line when exposed to photon radiation (x). The
RBE is a multifunctional quantity defined as the isoeffec-
tive dose ratio between a reference radiation (D,) and a
particle radiation (D,), traditionally modeled as a function
of three parameters: (a/B),, LET and D,. Biological (or ef-
fective) dose (Dgrgg) is defined as the product of the RBE
and the physical dose.

Within the LQ framework, we can determine a de-
pendency of RBE on (a/), the helium absorbed dose,
RBE, and Rg [13, 14]:

RBE ( (;%) X;(D, RBE,, RB>
R

n % \/ i (%)2 + RBE, (%) D+ RpD? (2)

In the next sections, the expressions for RBE, and Rg
per the three models will be introduced. In the case of
the LEM, the LQ approximation for the photon response
is valid up to threshold dose D, which marks the transi-
tion dose at which the survival curve for photon irradi-
ation is assumed to have an exponential shape with the
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Fig. 1 Left: cross-section of schematic for the 96-well plate geometry and composition in FLUKA MC for experiment A and B. Right: central line
profile through physically optimized SOBP plan for experiment B, displaying both physical dose and LETy. The biological measurement positions
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Table 1 Photon parameters applied during the in silico investigations. The D, parameter is required for LEM calculations only

a, [Gy ] B [Gy™ 2] (a/B)x [Gy] D; [Gy] calculation type References

0.2 0.1 2 6.2 water

0.2 0.02 10 15 water

0.036 0.024 15 5.65 prostate Brenner and Hall (1999) [39]
0.089 0.0287 3.1 741 prostate Terry and Denekamp (1984) [41]
0.077 0.009 8.6 1341 head Jones and Sanghera (2007) [42]
0.0499 0.0238 2.1 6.31 head Meeks et al. (2000) [43]

maximum slope Sy =0y + 2D [25]. In this work,
the dose levels have been chosen within the range of
LQ applicability, i.e. < Dy.

The predictions of the three RBE models have been
assessed by comparing RBE, and Rg as a function of
LET, and the RBE values as a function of LET and dose
for two tissue types irradiated with *He ion beams. Pa-
rameters characterizing the hypothetical tissues consid-
ered for this study are reported in Table 1 and labeled
water case. The (a/f), values were selected similar to re-
cent works [26] to represent late-responding tissues (low
(a/B)x from 2 to 3 Gy), and early-responding normal tis-
sues and most common tumors (high (a/f), from
around 10 Gy).

Data-driven LET-based model

A phenomenological model for RBE with “He ion beams
was developed by fitting in vitro experimental data avail-
able in the literature in Mairani et al. 2016a [11] and re-
fined in Mairani et al. 2016b [12]. For RBE,, the
following parameterization has been introduced:

-1
N

where L* represents the rescaled *He LET [13]:

RBE, =1+

L* = LET-LET, + LETgoco (4)

LET, and LET4c, are, respectively, the LET of pho-
ton under study and of the reference ®°Co. The parame-
ters used in eq. 3 are as follows [12]: ko = 8.924 x 10”*
Gy ! and k; =3.368 x 10" um-keV ™', and k, = 2.858 x

10" °um*keV™% For Rp we have introduced an
LET-dependent parameterization fitting the running av-
erages of Rg as function of LET:

Ry = bye ()] 8

The coefficients for the Ry parameterization are b, =
2.66, by =62.61 keV um ™" and b, = 48.12 keV pum™!

For comparison in track-segment conditions, we have
assumed L' =LET while for the clinically-relevant sce-
narios and in vitro studies, we used 6 MV photon beams
as a reference radiation for calculating rescaled L
values.

Modified Microdosimetric kinetic model (MKM)

In the modified MKM [22, 23], for any radiation quality,
RBE, is expressed as a function of the saturation-corrected
dose-mean specific energy of the domain delivered in a sin-
gle event zj, divided by the (a/p), ratio:

RBE, — 1 + (g) _1-sz (6)

X

z;p depends on z, the specific energy, and z,, the
saturation-corrected specific energy which accounts for
the decrease of RBE due to the overkilling effect for high
specific energy values [27]. z depends on the radius of
the domain (R;) while z,,, depends R, and the radius of
the cell nucleus (R,) [22]. MKM input parameters (R,
and R,) have been tuned in a previous work [22] to re-
produce an in vitro experimental biological database of

Table 2 Clonogenic cell survival LQ fit parameters for photon (a, and {3,) and helium ion beam (a and f) irradiation using the
Renca cells in vitro with corresponding LET, derived from MC simulation. Data for both experiment A (pristine peaks) and experiment

B (SOBPs) are provided

Exp. a, [Gy ] Bx Gy’2 (o/B)y [Gy] alGy] B Gy LET4 [keV/pm]
A 0034 (+0.004) 8 (0.001) 179 0039 (£0.013) 0029 (+0.003) 533

A 0,034 (+0.004) 8 (0.001) 179 0094 (+0.012) 0,046 (+0.012) 1481

B 0,050 (+0.064) 0,023 (+0014) 217 0,076 (+0.083) 0024 (+0.02) 478

B 0,050 (£0.064) 0,023 (£0014) 217 0.150 (£0.071) 0018 (£0.018) 1018

B 0,050 (+0.064) 0,023 (+0.014) 217 0.201 (+0.048) 0017 (0.005) 1537

B 0,050 (+0.064) 0,023 (+0014) 217 0.305 (+0.144) 0022 (+0.032) 2652
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initial RBE. The resulting best fit values of R;=0.3 um
and R, =3.6 um obtained in Mairani et al. 2017 have
been used in this work without further adjustments. For
the Rg term, it is assumed [28]:

Rg = 1. (7)

Local effect model (LEM)

The LEM-version IV developed by the GSI Helmholtz
Centre for Heavy Ion Research (Darmstadt, Germany)
[21] relates the biological response directly to the
double-strand breaks pattern and has been benchmarked
by its developers in various publications [10, 21]. The
LEM intrinsic a, tables are obtained using the PT RBE
Generator software by Siemens which is available at
HIT, while for ,, we have used the approximation 3, = (
Smax — @)/ (2D;), with negative values found at high LET
forced to zero [25]. The LQ parameters are calculated at
different energies applying the low dose approximation,
which describes how to link the input LEM-calculated
intrinsic microscopic parameters, o, and B, to the
macroscopic values, a and (. The initial RBE can be
written as:

1-e %4

O(xdl

RBE, = (8)

with Rp as:

a\’/B
Re=|—]| |5 9
- (a) () ©
d; is the dose deposited by a single particle traversal
[29, 30].

MC simulation of the in vitro study

For both experiment A and B, the target (96-well
plate irradiation system) was incorporated into
FLUKA MC, including a detailed geometry of the
HIT beam-line [31], for validating the biological dose
models against experimental measurements. Once bio-
logical measurements were acquired, simulations were
executed to score physical dose and LETq4, as well as
the various biological parameters necessary for Dggpg
using the DDM, MKM and LEM. With a detailed
geometry of the 96-well plate target, parameters were
scored on a per well basis to reduce physical and bio-
logical uncertainties during evaluation of measure-
ment and simulation outcomes, as shown in Fig. 1.
Cell survival and, in turn, RBE results were compared
to MC prediction to validate enhanced cell-kill with
increased LET4 for helium ions and to evaluate model
performance.
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Patient studies and validations

Retrospective study: patient treatment planning and
forward computation of Dgge

In this work, the MC-based treatment planning tool
(MCTP) [32, 33] is employed to create biologically opti-
mized treatment plans and to perform forward dose cal-
culation for retrospective study. The MCTP relies on
FLUKA'’s capability to describe the interaction and trans-
port of radiation with matter for *He ion beams and is
coupled with both biophysical and phenomenological
RBE models for *He. FLUKA has been benchmarked
against dosimetric data, demonstrating overall a satisfac-
tory agreement [11].

The MCTP uses dosimetrically commissioned scanned
pencil beams as available at HIT [34]. The data-driven
RBE model has been used for treatment plan optimization.
The MCTP tool relies on externally generated databases
for each biological effect model to calculate RBE and Dgpg
values [37, 38]. To properly calculate effective dose for he-
lium ion beams, Z =2 primary particles and secondary
fragments as well as Z =1 secondary fragments must be
scored separately. Hence, both the DDM and a phenom-
enological model for Z=1 were used during biological
dose weighting of Z = 2 and Z = 1, respectively [35].

MCTP-based plans have been calculated to achieve a
homogeneous three-dimensional Dgpe of 2.0 Gy (RBE)
and 4.0 Gy (RBE) in the target region with a single field
and a two opposing fields arrangement in water. Two
targets were chosen: rectangular parallelepiped volumes
of 6cmx6cmx6cm and 3cmx 3 cm x 3 cm centered
at 12.5 cm water-equivalent depth. FLUKA MC scoring
for physical and biological quantities was performed in
voxels of 2 mm x 2mm x 2mm. The lateral PB spacing
was 3mm while the depth separation between Bragg
peak positions of two consecutive energy slices was 2
mm. The plans have been calculated assuming two rep-
resentative tissues with (a/B)x of 2 Gy and 10 Gy as re-
ported in the first two rows of Table 1.

MCTP-based plans for two patients (previously treated
with protons at HIT) were simulated using one and two
*He ion beam portals. Beam configurations for the head
and prostate case involved a single field (superior-infer-
ior direction) and parallel opposed fields (anterior-pos-
terior / posterior-anterior direction), respectively. To
achieve dose homogeneity in the target of the head case,
a ripple filter has been used for broadening the beam
longitudinally [36]. The lateral PB spacing was 3 mm
while depth separation between two consecutive energy
slices was 3 mm. FLUKA MC scoring was performed in
voxels of 1 mmx1 mmx3 mm. The planned doses
were 54 Gy (RBE) in 27 fractions and 66 Gy (RBE) in 20
fractions for the head and the prostate cases, respectively
[35], applying the clincal fractionation scheme used at
HIT with proton beams.
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Forward re-computation of the optimized plans have
been carried out to investigate the variation of the DygE as
a function of the depth, applying the biophysical models
previously described. LET, distributions were additionally
scored for dose values larger than 5% of the maximum
Z =2 dose. For dose distribution characterization in the
target of the SOBPs, equivalent uniform dose (EUD) was
applied [37]. We have calculated EUD as follows [38]:

w36

where S is the mean survival in the target. For the pa-
tient cases, we have also analyzed the Dggg volume his-
tograms (DrgegVH).

Following the previous works [14], tissue parameters for
the prostate case were set to a,=0.036 Gy * and Py =
0.024 Gy 2 for (a/B)y = 1.5 Gy [39, 40]. For the surround-
ing healthy tissues, (a/B)x=3.1 Gy with a, =0.089 Gy*
and P, =0.0287 Gy > was applied [41]. For the head pa-
tient case, for the planning target volume (PTV) assuming
a glioma tumor, we have used o, =0.077 Gy * and Py =
0.009 Gy >, yielding (a/B)x = 8.6 Gy [42] while for the rest
of the brain, we have assumed a, = 0.0499 Gy ' and By =
0.0238 Gy 2, yielding (a/B)x = 2.1 Gy [43]. Further details
regarding these values are provided in Table 1.

(10)

Development and validation of an analytical biological
dose calculation engine: FRoG
Once patient case dose calculation was established via bio-
logical dose models coupled with FLUKA, validation of the
fast (GPU-based) analytical dose engine, FRoG, was per-
formed [44, 45]. Physical and biological parameter database
generation took place using FLUKA MC simulation. Corre-
sponding biological parameters for DDM (o and Pre),
LEM (otpe and Pre), and MKM (zj,) were scored as a func-
tion of depth, along with the necessary physical parameters
(dose and LET,). The physical and biological tables were
incorporated into the FRoG platform, enabling multi-tissue
(variable (a/p),) dose calculation for the three biological
dose models. The glioma patient plan was executed in
FRoG for comparison with the gold standard FLUKA MC.
All patients records were anonymized prior to the study,
obtained with informed consent and handled following
the Helsinki Declaration. All methods were approved by
the Heidelberg University Medical Faculty, following ap-
plicable guidelines and regulations of the institution.

Results

Investigating model dependencies in silico: SOBPs and
patient cases

Clinically relevant scenarios were used to further
characterize model variations. Figure 2 presents RBE-
weighted dose (Dggg) for the SOBPs, calculated via MC
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simulation, as a function of depth in water for the three in-
vestigated models, as well as physical dose and LET4. RBE
variation and %Agpg are also visualized in the following
middle and lower panels, respectively. The SOBP plan, bio-
logically optimized using the DDM, was applied to reach a
biological dose level of 2 Gy (RBE) and for two tissue types,
exhibiting (a/B)x of 2Gy and 10 Gy, experimental surro-
gates for testing radio-resistant and radio-sensitive tissues,
respectively. A similar investigation was executed for an ir-
radiation plan with two opposing fields, as shown in Add-
itional file 1: Figure S1. For quantification of global
difference in the target between the various models, EUD
calculations for the SOBPs studied in silico are provided in
Additional file 1: Table S2 and S3.

Model dependencies in clinically-relevant scenarios:
patient cases

In Fig. 3, an investigation of RBE model performance of
a prostate cancer patient in silico is displayed. The
MCTP calculated Dggg distribution for the pelvic case
applying the DDM and LET, distribution are shown as
well as dose difference (Agyrgr)) from the reference
when performing forward calculations with LEM and
MKM. The physical dose volume histogram (DVH) and
biological dose volume histogram (DrggVH) for the PTV
and rectum, chosen as a representative organ at risk
(OAR), are displayed in the bottom panel. DVH statistics
for the PTV in terms of Dsgy, Drpe-50% and the inhomo-
geneity coefficient Iy, = (Dsy, - Dosy) / Dreg,p have been
analyzed. Drgg s50%, Dree-s% and Drpe.osy represent the
biological dose received by 50%, 5% and 95% of the PTV
volume in the cumulative DrgeVH, respectively. Drgg,p,
is the prescribed biological dose. I5y evaluates the bio-
logical dose gradient introduced in the PTV by perform-
ing forward calculation of the patient plans with the
various RBE models. LEM resulted in —5.7% lower D5y,
while applying the MKM vyielded 8.3% higher Dsgy. The
Iso, values were, respectively, ~12% for MKM, and ~
10% for both LEM and the reference (Dyrgg calculated
with DDM). The Dsy, for the rectum was 50.2 Gy (RBE)
for MKM, 46.0 Gy (RBE) for LEM and 48.2 Gy (RBE) for
DDM.

Validating RBE models in a clinical platform: FRoG

A glioma patient case is displayed in Fig. 4 for RBE
evaluation and validation of a fast analytical dose calcu-
lation engine (FRoG). FRoG calculation run-time for the
glioma patient (yielding D and Dgge applying DDM,
MKM and LEM) was 142, a time gain factor of ~ 225
when compared to MC simulation using a 300 node
CPU-cluster. The MCTP calculated Dgpg distribution
for the head case applying the DDM and the resulting
LET4 distribution are shown as well as dose difference
Agy rep) from the reference when performing forward
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Fig. 2 Biologically optimized SOBPs at 2 Gy (RBE) using the data-driven model (DDM) assuming two distinctive tissue types with (a/B), =2 Gy
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calculations with (¢) LEM and (d) MKM. For the LEM-
and MKM-based forward biological dose calculations,
D5y, for the PTV is 1.5% higher and —3.7% lower, respect-
ively, than the reference. Larger I5, values were found for
LEM and MKM of ~18% and ~14%, respectively, relative
to the reference of ~13%. The greatest variations between
the models occur for the normal tissue with (a/B), = 3.1
Gy, outside of the PTV, especially in the distal region
where the highest LET components of the distribution are
prevalent. For the glioma patient case, there are no OARs
in proximity of the target.

As shown in Fig. 4, DVH and DgrggVH plots be-
tween FRoG and FLUKA are in good agreement.
The percent absolute deviations in Dsgy and
Drge-50% for the PTV between FLUKA and FRoG for
physical dose (Dppys) and the three biological doses
are as follows: 0.2, 0.4, 0.4, 0.6%, for Dppnys, Dppm,
Diem and Dym, respectively. Further details regard-
ing DVH and DgpgVH statistics are provided in
Additional file 1: Table S1.

Experimental evaluation of the RBE models

Enhanced cell-killing was observed in the biological mea-
surements of experiment A for higher LET4 (~15
keV-um ') compared to lower LETq4 (~ 6 keV-um™'). Fig-
ure 5 displays both the experimental findings (points with
error bars) and FLUKA MC-coupled RBE model predic-
tions for cell survival and RBE, as well as percent differ-
ence in RBE (%Agrgg) of the three models against
experimental data. Linear quadratic (LQ) fitting of the cell
survival data from photon irradiations with the 6MV
LINAC yielded a,=0.034Gy ' and B, =0.018 Gy %, for
an (a/P)y of 1.79 Gy. For the lower LET, condition, LEM
exhibited the most stable prediction of RBE as a function
of dose below 1.5 Gy with %Aggg < 5% but consistently un-
derestimates RBE. On the other hand, DDM and MKM
yielded better RBE predictions from 1.5 Gy and above. For
the higher LET4 condition, DDM and MKM predicted
with the highest relative accuracy within the studied dose
range, with %Agrge < 5% up to 2 Gy. LQ-fit parameters for
two LET4 conditions are listed in the Table 2.
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applied beam optimization procedure to meet dose constraints in the rectum while maintaining target coverage

Regarding outcome of experiment B, initial investiga-
tion of cell-kill response to photon irradiation yielded
& =0.050 Gy" ' and Bx=0.023 Gy~ 2 for an (af B)x of
2.17 Gy, which is on average 0.38 Gy higher than the (a/
B)x found in experiment A. Figure 6.a displays the cell
survival versus dose for the four LETy conditions (~ 5
keV-um™ !, ~10keV-um™, ~ 15 keV-pum ™!, ~ 27 keV-pum™
1 within a clinically relevant dose range (Dppys <3 Gy).
For both model predictions and experimental data, a
dose dependence in RBE was observed in all cases. In
general, DDM and MKM performed best for both higher
and lower LET4 conditions in the studied dose range,
consistent with findings from the monoenergetic beam
experiment. RBE predictions for all three models agreed
within +5% of the experimental data for the two highest
LET4 conditions (~15keV-um™' and ~27keV-um™?),
especially DDM and MKM for dose levels >2 Gy. For 2
Gy, %Agge for the four LET4 conditions (in ascending
order) were roughly, +3.7%, —1.9%, —1.9%, —44% for
DDM, -1.7%, —5.3%, —3.4% and + 0.9% for LEM, and -

4.1%, - 1.1%, —1.1% and - 4.8% for MKM. For the lower
LET condition of ~ 5 keV-um™ ' (entrance channel measure-
ment), all models produced RBE predictions within +5
—-10%, reaching ~ 1.3 for 0.5Gy, ~ 1.25 for 1 Gy, ~ 1.18 at 2
Gy and stabilizing to ~ 1.1 for the higher doses. As for the
LET, conditions found in the target (~ 10 keV-um™*, ~ 15
keV.um™!, ~27keV-um™ '), representing a low, mid and
high range LET for therapeutic helium ion beams, respect-
ively, greater variability was observed as a function of dose,
especially for doses <2 Gy. For 1 Gy, observed RBE values
were ~ 1.8, ~ 2.2, ~ 2.8 for the low, mid and high LET 4 con-
ditions in the target. At 4 Gy, RBE values decreased to ~

1.3, ~ 1.5, ~ 1.8 for the low, mid and high LET conditions.

Discussion

RBE model assessment

To best interpret the biological models for *He ion beams,
one must begin with a survey of their dependencies in
track-segment conditions, i.e. monoenergetic beam case
disregarding contributions from a mixed radiation field. In
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Fig. 6 Clonogenic assay for clinical-like fields (SOBPs) for the Renca cell line in experiment B. MC simulation estimated LETy values of biological
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represent the LQ-fit of the Renca cells photon irradiation and “He irradiation, respectively. LQ-fit parameters for the four LET, conditions are listed

track-segment conditions, one can clearly discern the
basis of intra- and intermodal variation as a function of
dose, LET and tissue type.

Figure 7.a shows the comparison of RBE, (top) and Rg
(bottom), for mono-energetic “He jon beams as a

function of LET for two tissues, («/f),=2Gy (left
panels) and 10 Gy (right panels), representing two dis-
tinct tissue types with differing responses to radiation.
Comparison of these cases shows RBE, and (a/p), are
negatively correlated. As particle LET increases, an
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upward trend for RBE,, as a function of LET is observed,
until a saturation point, where the RBE, plateaus prior
to fall-off. In general, this fall-off is more prominent and
occurs at a lower LET range in lower (a/p), tissues. For
lower LET, the largest inter-model variation occurs for
the (a/B), =2 Gy case between LEM and the other two
models, while for the higher LET region, all models ex-
hibit a varying response. For (a/f)y =10 Gy, the models

yield similar predictions for LET values lower than about
20 keV-um™'. The location of RBE, maximum changes
as a function of the model applied.

Regarding Rg, the models assume or predict different
behaviors as function of LET. In the MKM [28], Rg is as-
sumed to be unity, i.e. Py =P, while for the single-hit
based version of LEM applied in this work [21], Rg de-

creases as LET increases. In the LET-based DDM



Mein et al. Radiation Oncology (2019) 14:123

approach, Rg increases with LET until reaching a max-
imum at ~ 63 keV-um ™' and then drops to zero for LET >
100 keV-um™*. For the data-driven approach, Rg is inde-
pendent of (a/B)y, and therefore it’s behavior is consistent
between tissue types. These differences in expressing Rg
lead to significant variations among the models which, in
part, reflect the large experimental uncertainties of the
available experimental in vitro data [13].

RBE versus LET for the two tissues at physical dose
levels of 2 Gy (left column) and 4 Gy (right column) are
depicted in Fig. 7 b. As expected, the RBE initially in-
creases with LET, reaches a maximum and then de-
creases. The RBE decreases for increasing dose mainly
for low (a/P),, and increases for decreasing («/f), of the
tissue. RBE results at lower LET and higher LET are pre-
sented as a function of physical dose for the two tissues.
The chosen LET values are representative of the LET4
values found in the entrance channel and in the middle
of an SOBP, respectively, for the two opposing beam
fields arrangement depicted in Additional file 1: Figure
S1. For clinical targets like an SOBP, one must consider
a mixed radiation field with a complex LET spectrum,
rather than a single LET value as in the case of an ion in
the track-segment condition.

As expected, an enhanced RBE is observed at lower
doses for all models, and this trend is more pronounced
for lower (a/P), tissues. For the low LET condition, LEM
predicted a limited RBE variation within the studied dose
level, between maximum and minimum values, of about
20% and of about 4% for (a/f)x =2 Gy and (a/f), = 10 Gy,
respectively. For 15keV-um™" and for (a/p)y = 2 Gy, MKM
and the DDM approach resulted in roughly the same pre-
dictions, while for (a/f),=10Gy the DDM estimated
about 15% higher RBE. In order to reduce model-related
uncertainties in the target region, assuming 15 keV-um™*
is a representative LET4 value for Z =2 in the target, one
could use hypo-fractionated treatments (Dggg>4 Gy
(RBE)) where variations in RBE prediction decrease. In
addition, hypo-fractionated treatments reduce the impact
of precise (a/B)x value assignment for target tissues on
RBE determination. On the other hand, hypo-fraction-
ation may diminish the therapeutic window by reducing
the ratio of the target RBE compared to the entrance
channel (i.e. tumor to normal tissue effective dose ratio).
With typical peak-to-plateau dose ratio of ~ 2 for *He ion
beams and assuming a dose value of 4 Gy in target, RBE
predictions (averaging over the three models in this work)
are as follows: ~ 1.1 for 4.0keV.um™ and ~ 1.45 for 15
ke\/um’1 in low (at/p)y tissues, and ~ 1.1 for 4.0 keV-um™"
and ~1.35 for 15keV-um™" in high (a/p)x tissues. Con-
versely, standard fractionation schemes (~ 2 Gy (RBE) tar-
get doses) can enhance the peak-to-plateau ratio.

Close examination of the Rg component for the DDM
reveals that for LET of ~ 4 keV.um™, Rg converges to ~
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0.6, while for 15keV.um™ Rg approaches ~1. As de-
scribed in previous works [13, 14], Rg parameterization
was obtained by a convenient parameterization which fits
the running averages of the experimental data, neglecting
any (a/P)x dependencies due to the large uncertainties
effecting the  term. Recent works develop a phenomeno-
logical model for proton beams from in vitro data follow-
ing a similar approach to Rg handling by assuming a
negligible (a/B)x dependency [35, 46]. With DDM, param-
eter fittings are merged to a relatively small amount of
data using a running average and thus, this work can shed
light on RBE model performance in regions where data is
sparse and predictions exhibit large uncertainties. More-
over, existing experimental data is especially scarce for low
(a/B)x values (<3 Gy) [14], where the largest RBE values
are expected and the highest variations among the models
occur. Further data for low (a/f), tissues and for
clinically-relevant dose levels, especially in standard frac-
tionation regimes (Dgrpg < ~ 3 Gy (RBE)), are essential for
benchmarking the predictive power of these RBE models.

Experimental benchmarking (in vitro)

RBE model benchmarking through in vitro experimenta-
tion with a low (a/B), cell line was the next logical step
to verify the significant RBE enhancement observed in
the models for dose levels <4 Gy, a clinically relevant
range bearing in mind the typical fractionation size for
proton beams of ~2 Gy (RBE). Qualitatively, the study
investigated both lower LET (< 10 ke\/-pm’l) and higher
LETq (210keV-um™) values, pertinent endpoints for
both normal tissue complication and tumor control
probability (TCP). In addition, critical structures sur-
rounding or distal to the target are also associated with
the highest LET4 values in the study. It is important to
note, however, that the in vitro data available in the lit-
erature is solely based on cell-kill of tumor tissues with
RBE as the end point. Therefore, the models provide
insight into RBE from the perspective of TCP rather
than normal tissue response, which requires the
immortalization of normal cell lines to investigate rele-
vant end points [47].

For RBE prediction versus measurement in experiment
A (Fig. 5), LEM exhibited the highest accuracy for low
LETq at dose levels <2Gy, while MKM and DDM per-
formed best for the higher doses. For higher LET, condi-
tions, MKM and DDM both outperformed LEM in
predictive power, with local %Arge between ~ 1% and ~
8%, as the dose increases. Although direct comparison of
the track-segment condition in silico study shown in Fig.
7 and the monoenergetic beam in vitro study is incompat-
ible due to the oversimplification of LET4 (neglecting
mixed field spectra) and the inherently non-linear rela-
tionship of RBE and LET, general trends between the
models are consistent.
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As for investigations in experiment B (clinical-like
fields in Fig. 6), interpretation becomes more convoluted
when considering the complex mixed radiation field. In
general, DDM and MKM demonstrated the lowest local
|%Agrgg| of <10%, overall. As anticipated, |%Agrpg| de-
creased with increasing dose for all three models. Dis-
agreement in the lower LET4 condition can be explained
by the scarce amount of data for low LET,, especially
with cell lines with (a/B)x <3 Gy, which suggests that
further in vitro study and tweaking of the models could
yield improved RBE predictions. Nevertheless, 5% to
10% predictive power for RBE in the target region is ac-
ceptable considering the uncertainty of the reference
photon sensitivity measurement. For the entrance chan-
nel condition in Fig. 6, all three models (especially
DDM) tend to overestimate RBE for <1 Gy, a typical
fractionation treatment dose range, offering a conserva-
tive estimate for normal tissue in the plateau region.

DDM depends only on the (a/f)x ratio while the MKM,
instead, depends also on the absolute value of f,, which
contributes in the determination of zg, [22]. Low p, values
result in a reduced saturation coefficient, leading to RBE
enhancement. To further shed light on this point, calcula-
tions were performed with the two fields arrangement ap-
plying (a/P)x=2.0Gy, planned Dgpe=4Gy (data not
shown) and B, =0.02Gy > finding consistently higher
Drge values (about 8%). In contrast, LEM depends on
multiple parameters, including o, Px and D;. By varying
a, and B, by 25% but maintaining the same (a/f),, no
measurable dependence of RBE, was found for clinically-
relevant LET values using carbon ion beams, with a lim-
ited effect on the RBE at 10% survival [48].

Clinical outlook

Regarding patient dose calculation, LET,4 prediction
for the prostate case was in line with the findings
from the SOBP study; however, the head case plan
exhibited lower LET, values since the energy spread
of the beam is increased by the ripple filter (RiFi) to
reduce BP sharpness for clinically acceptable target
dose homogeneity. Furthermore, FRoG calculated
physical and biological dose distributions were in
good agreement with FLUKA MC and well within
clinically acceptable tolerances. At HIT, both the
MCTP and FRoG dose engine are functional for he-
lium ion beam therapy, enabling future treatment
planning comparison and robust RBE optimization
studies necessary before and during clinical trials, as
performed in previous works for carbon ions [49]. In
addition, the FRoG platform will support the develop-
ment and validation of the first analytical TPS for he-
lium ion beams, providing multiple biological models
for clinical research.
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As HIT prepares for clinical translation of “He, the
findings and efforts in this work may serve as a starting
point for clinical decision making. Currently, there is no
official consensus as to which RBE model for helium
ions is best suited for treatment and whether a single tis-
sue approximation for biological dose prediction will be
used as done with carbon ions. In light of these issues,
the FRoG platform includes all three models presented
in this work, as well as tissue-dependent biological dose
calculation, providing valuable insight into radiological
uncertainty during treatment planning. Regarding
optimization of a next generation TPS for particle ther-
apy, advanced optimization strategies are recommended
considering the large uncertainties associated with bio-
logical modeling and the lack of evidence supporting in
vitro model applicability to in vivo settings [50]. With
techngiues like RBE/LET gradient minimization in the
target, constant over- or under-estimation of Dygg could
be detected in an initial dose-escalation phase. At HIT, a
systematic clinical investigation with an initial group of
patients is anticipated to observe and analyze clinical
outcome.

All presented RBE models are based on the same set (or
sub-set) of the published biological in vitro data, used re-
peatedly for model tuning and benchmarking purposes. In
vivo data is sparse at best and rarely used to verify the
models’ predictions [51]. The experimental and intrinsic
uncertainties in the data constrain the confidence in these
models to a degree which is less than clinically desirable,
yielding model fits with significant variation. It is worth
noting here that the agreement of the LEM used for this
study with respect to the other models might further im-
prove if the same set of in vitro data would have been used
for tuning the LEM, as done for the DDM and MKM.
These findings suggest that systematics in RBE predictions
in the high dose region for clinical *He ion treatment
fields due to different choices of RBE modelling ap-
proaches can be restricted to be mostly within 10% to 15%
when tuning the parameters of the RBE models to the
same (or a similar) set of the available in vitro cell data for
*He ions.

In turn, this may imply that systematic uncertainties in
the prediction of RBE for helium ions for clinical scenar-
ios are not primarily dominated by the choice of the
RBE model, but instead dictated by the choice of the in
vitro dataset and methodology used for tuning the RBE
model parameters. Similar conclusions might hold true
for RBE models of higher Z ion species. Additional sys-
tematic RBE uncertainties arise from differences between
in vivo and in vitro data; however, due to their scarcity,
in vivo and clinical data are hardly used to tune RBE
models, but rather for validation of commonly estab-
lished RBE models [52], exception being the
neutron-equivalent scaling point used for carbon ions
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[53, 54]. Previous works also propose application of clin-
ical data for RBE model tuning in addition to in vitro
and in vivo measurements [55].

For helium ions, it is certainly challenging to make de-
finitive statements about RBE considering the lacking of
experimental data. To reduce RBE model uncertainties
for *He, collecting additional evidence, especially in vivo,
is recommended before clinical application. However,
the differences in RBE predictions found in this study
for the three presented models are similar to the RBE
variation for in vitro data in proton beams, which are
typically knowingly accepted when assuming RBE =1.1
[47]. Ultimately, the choice of model and tissue type
for biological dose optimization is a clinical decision
to ensure the most safe and effective patient treat-
ment and care possible.

Conclusion

Before the start-up of a “He ion beam therapy program,
a comprehensive evaluation of the variable RBE and the
associated models is critical. The main dependencies of
three RBE models for “He ion beam therapy were stud-
ied in silico and validated against in vitro experimenta-
tion with a radio-resistant tumor cell line. Clinically
relevant uncertainties were observed, especially for low
(a/B)x values where the available literature data are
scarce. The observed uncertainties between the models
as well as variability of RBE as a function of its depend-
ency (especially for low (a/p)y tissues commonly treated
with particle therapy) suggest that the selection, refine-
ment and validation of either a biophysical/mechanistic-
or phenomenological-based approach are essential prior
to clinical translation of helium ion beam therapy.

Additional file

Additional file 1: Supplementary data analysis for biological dose
prediction using “He ions, including SOBPs for a parallel opposed beam
plan (two-field), DVH statistics for FRoG against FLUKA MC for the two
patient cases, and EUD calculations comparing the three investigated RBE
models. (DOCX 1421 kb)
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