
 

 

Dissertation submitted to the  

Combined Faculty of Natural Sciences and Mathematics of the 

Ruperto Carola University Heidelberg, Germany  

for the degree of  

Doctor of Natural Sciences 

 

 

 

 

 

 

 

 

 

Presented by 

M.Sc. Anne-Kathrin Schürholz 

Born in: Leonberg 

Oral examination: 19th July 2019 



II 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



III 

 

 

 

 

Spatio-temporal control of cell wall properties and signalling 

networks in Arabidopsis meristems 

 

 

 

 

 

 

 

 

 

 

 

Referees: Prof. Dr. Jan Lohmann 

 Dr. Sebastian Wolf 

 



IV 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



V 

 

 

 

I sincerely affirm to have composed this thesis work autonomously, to have indicated completely 

and accurately all aids and sources used and to have marked anything taken from other works, 

with or without changes. Furthermore, I affirm to have observed the constitution of the University 

of Heidelberg for the safeguarding of good scientific practice, as amended. 

 

Heidelberg, May 6th 2019 

 

 

__________________ 

Anne-Kathrin Schürholz 

 

 

 

 

 

 

 

 

 

 

 



VI 

 

 

 

 

 

 

 



Abstract 

 

VII 

 

Table of Contents 

Table of Contents VII 

Abstract XI 

Kurzdarstellung XII 

1 General introduction 1 

1.1 Plant cell wall composition and synthesis 1 

1.2 Cell wall signalling 2 

1.3 Receptor-like kinases 5 

1.4 Receptor-like proteins 6 

1.5 Meristems in Arabidopsis 7 

1.6 Cell division, growth, and identities 8 

2 The role of pectin methyl esterases (PMEs) in the SAM 11 

2.1 Introduction 11 

2.1.1 PMEs and pectin-modifying enzymes in the cell wall 11 

2.1.2 PMEs and PMEIs in the shoot apical meristem 12 

2.1.3 Aims 14 

2.2 Results 15 

2.2.1 Overexpression of VGD1 and PMEI5 leads to a severe decrease in the size of the 
SAM  15 

2.2.2 PMEs are downregulated in the central zone of the SAM 18 

2.2.3 Inducible cell type-specific gene expression 22 

2.3 Discussion 28 

2.3.1 Overexpression of VGD1 and PMEI5 reduced SAM size 28 

2.3.2 PME expression in the central zone might be regulated by WUS 29 

2.3.3 Inducible, cell type-specific expression 31 

3 RLP4 and RLP4-like as putative cell wall binding proteins 32 

3.1 Introduction 32 



Abstract 

 

VIII 

 

3.1.1 Malectin-like proteins 32 

3.1.2 LRR-RLKs/-RLPs in Arabidopsis 35 

3.1.3 Aims 37 

3.2 Results 38 

3.2.1 RLP4 forms a distinct clade with the three RLP4-like proteins in a phylogenetic 
analysis of RLPs in Arabidopsis 38 

3.2.2 RLP4 is expressed in the SAM and localised in cell edges in the root 44 

3.2.3 Overexpression of RLP4 and R4L1 in the SAM did not alter above-ground 
phenotype 45 

3.2.4 CRISPR/Cas9-derived rlp4 r4l1 double mutants depict altered phenotypes 47 

3.2.5 rlp4 r4l1 does not have a shoot apical meristem phenotype 49 

3.2.6 RLP4 and R4L1 do not control vascular cell fate 50 

3.2.7 rlp4 r4l1 double mutants are hyposensitive towards salt stress 52 

3.2.8 rlp4 r4l1 r4l2 r4l3 quadruple mutants depict elevated root growth 53 

3.2.9 RLP4-ECD associates with the cell wall 56 

3.3 Discussion 59 

3.3.1 RLP4 and R4L subgroup proteins are highly conserved 59 

3.3.2 RLP4 might be a putative cell wall binding protein in cell wall edges 60 

3.3.3 Phenotypic analysis of rlp4 and r4l mutants 62 

4 Unravelling the function of CLE SIGNALLING COMPONENT1 (CSC1) 63 

4.1 Introduction 63 

4.1.1 The auxin signalling pathway 63 

4.1.2 The cytokinin signalling pathway 64 

4.1.3 CLE signalling 65 

4.1.4 Cross-talk of cytokinin and CLE signalling 67 

4.1.5 The shoot apical meristem (SAM) 68 

4.1.6 The floral meristem (FM) 69 

4.1.7 The root apical meristem (RAM) 70 

4.1.8 The cambium 71 

4.1.9 Aims 73 

4.2 Results 74 

4.2.1 CSC1 is required for normal growth in the shoot and the root 74 



Abstract 

 

IX 

 

4.2.2 CSC1 functions in CLE21 and CLE27 perception or signalling 78 

4.2.3 Mutations in CLE21 and CLE27 do not resemble csc1 phenotype 81 

4.2.4 CLE21 treatment enhances cytokin responses in the RAM 83 

4.2.5 CSC1 seems to buffer elevated cytokinin levels in the root 85 

4.2.6 CSC1 controls cytokinin response in the SAM 88 

4.2.7 CSC1 might regulate auxin response via WUS 91 

4.2.8 Genetic interaction of CSC1 and CLV3 in the SAM 92 

4.2.9 csc1 clv3-10 does not depict exaggerated phenotype in the root vasculature 94 

4.2.10 RNA-Sequencing of csc1 and Col-0 96 

4.2.11 csc1 corresponds to an unknown mutation in chromosome five 102 

4.3 Discussion 108 

4.3.1 CSC1 controls meristem size in the SAM through WUS 108 

4.3.2 CSC1 might control auxin signalling through the expression of WUS 108 

4.3.3 CSC1 controls meristem size through cytokinin signalling 110 

4.3.4 CSC1 might be involved in CLE21 and CLE27 perception or signalling 112 

4.3.5 CLE21 might cross-talk with cytokinin signalling 114 

4.3.6 CSC1 might regulate CLV3 signalling 115 

4.3.7 Identifying putative CSC1 candidates 116 

5 Conclusion 119 

6 Materials and Methods 121 

6.1 Green Gate cloning 121 

6.2 Entry module creation 121 

6.3 Intermediate module creation 123 

6.4 Destination module creation 123 

6.5 CRISPR/Cas9 126 

6.6 Transformation of E. coli and Agrobacterium tumefaciens 126 

6.7 Plant material and growth conditions 128 

6.8 Transgenic lines in A. thaliana 128 

6.9 Crossing 131 



Abstract 

 

X 

 

6.10 Genomic DNA extraction 131 

6.11 Genotyping 131 

6.12 Root and hypocotyl length measurments 132 

6.13 CLE21 and BA treatment 132 

6.14 RNA extraction for RNA-Seq 132 

6.15 Whole genome sequencing (WGS) 133 

6.16 GUS staining 134 

6.17 Basic Fuchsin and Calcofluor White staining 134 

6.18 Plasmolysis 135 

6.19 Confocal laser scanning microscopy (CLSM) 135 

6.20 Bioinformatics 136 

6.20.1 Phylogenetic tree – RLP4 136 

6.20.2 Image analysis 136 

6.20.3 Statistical analysis 136 

6.21 Primers 137 

References 143 

List of abbreviations 159 

Appendix 162 

Acknowledgments 167 

 

 

 

 

 



Abstract 

 

XI 

 

Abstract 

Post-embryonic growth and development tailored to the environmental condition is a distinguishing 

characteristic of plants imposed by their sessile lifestyle. Lifelong growth from seed to plant death 

is enabled by pluripotent stem cells encompassed in the meristems, which continuously generate 

new plant material with high proliferation rates in the periphery, and slowly dividing stem cells in 

the centre. This gradient of varying proliferation rates is tightly controlled to balance cell proliferation 

and replenishment with differentiation. A plethora of signalling networks consisting of peptides, 

phytohormones and transcriptional regulators are crucial to control all these processes in a spatio-

temporal manner. Particularly in the shoot apical meristem (SAM), these processes have to be 

tightly monitored, as cells in the SAM acquire cell identities along their trajectory from the centre of 

the meristem through the periphery irrespective of clonal lineage. In this study, we attempted to 

achieve three main aims using genetic characterization, live-cell imaging, and transcriptome 

profiling. We tried to understand how cell wall properties influence cell identity and differentiation 

by means of pectin modifications in the shoot apical meristem. We could reveal that imbalancing 

the pectin modifications in the whole SAM leads to disruption of cell size control, cell shapes, and 

overall meristem size. Second, we attempted to decipher the role of malectin-like containing RLP4 

and its RLP4-like subgroup in cell wall signalling. We show that the evolutionarily conserved RLP4 

is specifically located in cell edges. In addition, the extracellular domain of RLP4 associates with 

th cell wall, suggesting RLP4 could be a novel component of cell wall signalling. Last, we wanted 

to characterize a newly identified mutant, named cle signalling component1 (csc1) and its function 

in maintenance of the root and shoot apical meristem. csc1 displayed an enlarged SAM, defects in 

flower development and elevated xylem cells in the vasculature. We identified, that CSC1 

determines meristem size, excerting negative control over both cytokinine response and the 

expression of the stem cell fate inducing transcription factor WUSCHEL (WUS) in the SAM. 

Together, our findings expand the wiring networks in maintaining stem cells by one essential player 

and elucidate the importance of cell wall signalling and cell wall properties in the meristems of 

Arabidopsis.  
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Kurzdarstellung 

Postembryonales Wachstum und Entwicklung sind ein charakteristisches Merkmal von Pflanzen, 

welches ihnen durch ihre ortsgebundene Lebensweise auferlegt wurde, um auf Umwelteinflüsse 

reagieren zu können. Das lebenslange Wachstum, ausgehend vom Samen bis zum Absterben der 

Pflanze wird durch pluripotente Stammzellen ermöglicht, die in den Meristemen enthalten sind. 

Diese erzeugen kontinuierlich neues Pflanzenmaterial mit hohen Proliferationsraten in der 

Peripherie und sich langsam teilende Stammzellen im Zentrum des Meristems. Dieser 

Proliferationsratengradient wird durch die Pflanze streng kontrolliert, um die Zellproliferation und -

erneuerung mit der notwendigen Differenzierung auszugleichen. Eine Vielzahl von 

Signalnetzwerken, bestehend aus Peptiden, Phytohormonen und Transkriptionsregulatoren, ist 

entscheidend, um alle diese Prozesse räumlich und zeitlich zu steuern. Insbesondere im 

Sprossapikalmeristem (SAM) müssen diese Prozesse streng überwacht werden, da Zellen im SAM 

ihre Zellidentität während ihres Weges vom Zentrum des Meristems zu den Außengrenzen 

entwicklen, unabhängig der klonalen Abstammung. In dieser Arbeit haben wir versucht drei 

Hauptziele unter Anwendung der genetischen Charakterisierung, der Visualisierung von lebenden 

Zellen und dem Transkriptom-Profiling zu erreichen. Wir haben versucht herauszufinden, wie 

Pektinmodifikationen im SAM die Zellwandeigenschaften die Zellidentität und –differenzierung 

beeinflussen. Es konnte gezeigt werden, dass ein Ungleichgewicht der Pektinmodifikationen im 

SAM zu einer gestörten Entwicklung der Zellgröße, Zellformen und der Gesamtgröße des 

Meristems führt. Desweiteren wollten wir die Funktion von malectinähnlichen Domänstrukturen in 

RLP4 und der RLP4-ähnlichen Untergruppe in Zellwandsignalwegen entschlüsseln. Wir 

identifizierten das evolutionär konservierte RLP4, das spezifisch in Zellecken der Zelle lokalisiert 

ist. Zusätzlich bindet die extrazelluläre Domäne von RLP4 an die Zellwand, was darauf hindeutet, 

dass RLP4 eine neue Komponente in Zellwandsignalwegen sein könnte. Zuletzt konnte eine neu 

identifizierte Mutante namens cle signalling component1 (csc1) charakterist werden, sowie deren 

Funktion im Wurzel- und Sprossapikalmeristem. csc1 zeigte ein vergrößertes SAM, Defekte in der 

Blütenentwicklung und eine erhöhte Xylemzellanzahl im Gefäßsystem der Wurzel. So konnten wir 

feststellen, dass CSC1 die Meristemgröße beeinflusst und sowohl die Cytokinin als auch die 

Expression des Transkriptionsfaktors WUSCHEL (WUS) negativ reguliert. Unsere Ergebnisse 

konnten daher das verflochtene Netz um einen weiteren Akteur zur Aufrechterhaltung der 

Stammzellen vergrößern und verdeutlichen die Bedeutung von Zellwandsignalwegen und 

Zellwandeigenschaften in den Meristemen von Arabidopsis.  
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1 General introduction 

The following introduction is a general introduction leading to the three main chapters: 2. The role 

of pectin methyl esterases (PMEs) in the shoot apical meristem, 3. RLP4 and subfamily RLP4-

like (R4L) as putative cell wall binding proteins and 4. Unravelling the function of CSC1 – The 

CLE SIGNALLING COMPONENT1. 

1.1 Plant cell wall composition and synthesis 

Plant cell walls are a characteristic feature of multicellular plants and played a crucial role in the 

colonization of terrestrial ecosystems, enabling upright growth and the development of a vascular 

tissue system (Sorensen et al., 2010). Cell walls are characterized by a heterogeneous network 

of polysaccharides and structural proteins (Cosgrove, 2005; Somssich et al., 2016). The main 

load-bearing elements in the cell wall are the insoluble cellulose microfibrils which are organized 

in parallel and thereby contribute to mechanical properties of the cell wall (Li et al., 2014). They 

are embedded in a matrix of hemicellulose and pectins to which they are interconnected via 

various linkages (Cosgrove, 2016). Cellulose microfibrils are directly synthesized at the plasma 

membrane by cellulose synthase complexes (CSCs), forming β-1,4-linked glucan chains 

(McFarlane et al., 2014). CSCs are comprised of six subunits, whereby each subunit contains six 

cellulose synthase (CESA) proteins (Cosgrove, 2014). Plasma membrane underlying cortical 

microtubules are guiding CESAs movements and thus define the orientation of the microfibrils 

(Gu et al., 2010). Because microtubules are often oriented in parallel, they can influence the 

orientation of the microfibrils and therefore interfere with cell wall properties. (Gutierrez et al., 

2009; McFarlane et al., 2014). 

Hemicelluloses are classified into xylans, mannans, glucomannans and xyloglucans (Scheller and 

Ulvskov, 2010). Xyloglucans are the most abundant hemicelluloses in primary cell walls of 

Arabidopsis and have a linear β-1,4-linked glucan chain as backbone, similar to cellulose 

(Cosgrove, 2005). Hemicelluloses have been reported to tether cellulose microfibrils, contributing 

to cell wall rigidity and being involved in the response to pathogens (Cosgrove, 2005; Xiao et al., 

2016). 

Considered as the most complex class of polysaccharides in the plant cell wall, pectins contain 

the four mayor groups: rhamnogalacturonan I and II (RGI and RG II), xylogalacturonan (XGA), 

and homogalacturonan (HG), of which HG is the most abundant in primary cell walls (Cosgrove, 

2005; Caffall et al., 2009). Most of the pectins share a α-1,4-linked galacturonic acid (GalA) 

backbone and different side chains classifying the pectins in the aforementioned groups.  
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In contrast to cellulose, hemicelluloses and pectins are synthesised in the Golgi apparatus by 

membrane bound glycosyltransferases (GTs) and secreted to the apoplast via small secretory 

vesicles (Wolf et al., 2009). Pectins are transported highly methyl esterified to the apoplast, where 

pectin modifying enzymes such as pectin methyl esterases (PMEs) and their inhibitors (PMEIs), 

pectate lyases (PLs), polygalacturonases (PGs) or pectin acetyl esterases (PAEs) can have an 

impact on the cell wall properties (see also 2.1.1) (Wang et al., 2013; Hocq et al., 2017).  

All these polysaccharides and structural proteins are part of the primary cell wall, which is 

deposited between the plasma membrane and the pectin-rich middle lamella, the shared border 

of two neighbouring cells and important for cell adhesion (Zamil and Geitmann, 2017). Secondary 

cell walls can form in specific cell types and incorporate between primary cell wall and plasma 

membrane (Kumar et al., 2016). They are mainly composed of cellulose, hemicellulose (xylan) 

and hydrophobic, phenolic lignin (Caffall and Mohnen, 2009). Differentiation towards the 

synthesis of a secondary cell wall often initialize progressive cell death to form for instance the 

water conducting xylem tracheary elements (Schuetz et al., 2013). 

Based on the complexity of cell wall components and their modifications, identification of genes 

or enzymes involved in cell wall biosynthesis or modifications and their function in cell wall 

properties is not straightforward. For example, the cesa6/prc1-1 mutant, that depicts stunted 

growth, presumably due to a deficiency of cellulose. Further investigations revealed that the 

theseus1 (the1) mutant could restore the cesa6/prc1-1 mutant phenotype, but not the cellulose 

deficiency (Hématy et al., 2007). Thus, the stunted growth in the cesa6/prc1-1 mutant was not 

directly caused by a reduction in cellulose content, but due to a compensatory mechanism 

mediated by THE1 (Hématy et al., 2007). Likewise, these compensatory effects were also 

observed in plants overexpressing PMEI5, which showed a severe phenotype with root-waving 

and convoluted stems (Wolf et al., 2012a). These compensatory mechanisms are due to cell wall 

signalling, which will be illustrated in the next paragraph (Figure 1). 

 

1.2 Cell wall signalling 

Plant cell walls are facing a predicament: “Too soft, or not too soft, that is the question”. On the 

one hand, cell walls need to be rigid to enable upright growth, counteract the turgor pressure from 

inside the cell, and are a barrier for extrinsic cues such as abiotic and biotic stresses. On the other 

hand, cell walls need to be dynamic to respond to intrinsic cues such as plant growth, 

development and physiological processes (Cosgrove, 2005).  
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To convey extrinsic signals to the cell interior and vice versa, signals have to pass through the 

plasma membrane. In recent years, many studies were focusing on these signalling pathways, 

termed “cell wall signalling” (CWS), in cell wall containing organisms such as yeast 

(Saccharomyces cerevisiae, referred to as Saccharomyces) and plants (Arabidopsis thaliana; 

referred to as Arabidopsis) (Klis et al., 2006; Wolf et al., 2012b). In Saccharomyces, many plasma 

membrane receptors involved in CWS and the downstream signalling pathways could be 

identified (Wolf et al., 2012b). Recently various kinds of new plasma membrane proteins were 

identified in Arabidopsis, that are conveying numerous signals from the cell wall via the plasma 

membrane to the cell interior and might be putative members for CWS (Figure 1). For instance, 

stretch-activated channels, Integrin/Formin-like proteins, LRR-RLKs/RLPs, WAK1 and CrRLK1L 

(Wolf, 2017) (Figure 1). Here, we want to focus mainly on the last three classes of plasma 

membrane proteins in Arabidopsis, that are members of the receptor-like kinase (RLK) protein 

family.  

Many different signals are assumed to activate CWS via binding to their receptors in the plasma 

membrane, that convey them. Plasma membrane proteins can either directly bind to cell wall 

components such as the LRR-RLP44 to pectate (Holzwart, 2018) or the WALL-ASSOCIATED 

KINASE1 (WAK1), that binds directly to pectin or pectin break down products, the 

oligogalacturonic acids (OGs) (Kohorn and Kohorn, 2012). Cell wall break down products can be 

“plant derived” due to the activity of cell wall degrading enzymes or “pathogen-derived”. 

Pathogens as bacteria or fungi often contain their own cocktail of cell wall degrading enzymes to 

facilitate the entry to the cell interior (Kubicek et al., 2014). These derived cell wall products 

(DAMPs) can activate the plant immunity system (Savatin et al., 2014). In addition, mechanical 

stresses or tension can be sensed and conveyed by members of the CrRLK1L family, stretch-

activated ion channels or Integrin/Formin-like proteins. For instance, Formin1 (AtFH1) spans the 

plasma membrane and binds intracellularly to the actin cytoskeleton and extracellularly it anchors 

to cell wall components (Martinière et al., 2011; Feng et al., 2018) (Figure 1). Downstream of the 

receptors, signalling cascades are activated upon the ligand-receptor binding and lead to changes 

in transcription or post-translational modifications. The transcriptional machineries that are 

activated upon cell wall signalling are more or less well studied, albeit the different signalling 

components from the plasma membrane to transcription factors are often elusive. Signalling 

cascades that could be unravelled are for instance members of the receptor-like cytoplasmic 

kinases (RLCKs), Ca2+-dependent kinases (CPKs), mitogen-activated kinases (MAPKs) and 

small GTPase protein families (Vernoud et al., 2003; Hamel et al., 2012; Schulz et al., 2013; Bi et 

al., 2018) (Figure 1). 
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Figure 1. Overview of putative cell wall signalling receptors, cell wall-derived signals and 

downstream signalling pathways. Five classes of plasma membrane proteins that are involved 

in conveying cell wall signals to the cell interior: Stretch-activated ion channels, Integrin/Formin-

like, and the main group of Receptor-like kinases (RLKs) containing of LRR-RLKs, WAKs and 

CrRLK1L. Putative cell wall signals that are recognized by these proteins are: Cell wall binding 

sites or break down products, peptides and phytohormones, mechanical stresses and membrane 

tension. Activated receptors convey the signal downstream via intracellular receptor-like 

cytoplasmic kinases (RLCKs), calcium-dependent protein kinases (CPKs), mitogen-activated 

protein kinases (MAPKs) or small GTPase protein families (GTPases) and alter gene transcription 

or post-translational modifications. Modified after (Wolf, 2017). 
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1.3 Receptor-like kinases 

The class of receptor-like kinases (RLKs) contains more than 600 proteins in Arabidopsis (Shiu 

et al., 2002; Tör et al., 2009), of these the group of leucine-rich repeat (LRR) RLKs are the most 

abundant ones (Li et al., 1997; Clark et al., 1997; Gómez-Gómez et al., 2000; Li et al., 2002; Zipfel 

et al., 2006). They exhibit LRRs in their extracellular domain (ECD) which are often involved in 

protein-protein interactions and serve as ligand binding domains (Smakowska-Luzan et al., 2018). 

Protein-protein interactions were for example identified with the SOMATIC EMBRYOGENESIS 

RECEPTOR KINASEs (SERKs) that form heteromeric complexes with other LRR-RLKs and often 

function as co-receptors in the presence of a bound ligand. Upon ligand binding, auto- and trans-

phosphorylation of the intracellular protein kinases activates the downstream signalling cascades, 

altering transcription or post-translational modifications (Figure 1). One well studied LRR-RLK is 

BRASSINOSTEROID INSENSITIVE1 (BRI1), the BRASSINOSTEROID (BR) receptor, that 

interacts with SERK3, better known as BRASSINOSTEROID ASSOCIATED KINASE1 (BAK1), 

in the presence of the BR phytohormone, leading to the activation of the BR signalling pathway 

(Nam and Li, 2002). PHYTOSULFOKINE RECEPTOR1 and 2 (PSKR1/PSKR2) are two LRR-

RLKs, that also interact with BAK1 after perception of the ligand, PHYTOSULFOKINE (PSK). 

Downstream PSK signalling is involved in cell elongation, QC divisions, procambial identity and 

defence (Igarashi et al., 2012; Sauter, 2015; Holzwart et al., 2018). Two other well-studied LRR-

RLKs are involved in plant defence, ELONGATING FACTOR-TU RECEPTOR (EFR) and 

FLAGELLIN-SENSING 2 (FLS2), which are activated upon the binding of their ligands, the 

bacterial EF-TU and flagellin, respectively (Gómez-Gómez et al., 2000; Zipfel et al., 2006). In the 

shoot apical meristem (SAM), the LRR-RLK CLAVATA1 (CLV1) is involved in stem cell 

maintenance. The transcription factor WUSCHEL (WUS) is expressed in the underlying tissues 

of the stem cells in the centre of the meristem. WUS migrates into the stem cell region and 

activates the expression of the small secreted peptide CLV3, which in turn diffuses into the WUS 

domain, where it represses the expression of WUS. By this negative feedback loop, stem cells 

are maintained in the SAM (Brand et al., 2000; Schoof et al., 2000).  

A second subgroup of RLKs are the WALL ASSOCIATED KINASEs (WAKs), which contain 

characteristic epidermal growth factor (EGF) like repeats in their ECD. WAK1 was identified as a 

receptor for OGs and can also bind to pectin in the cell wall (Decreux and Messiaen, 2005; Brutus 

et al., 2010; Kohorn and Kohorn, 2012). The group of Catharanthus roseus receptor-like kinase1-

like (CrRLK1L) proteins contains 17 members in Arabidopsis, that are characterized by an 

extracellular malectin-like domain (Boisson-Dernier et al., 2011). This malectin-like domain is 

similar to the malectin protein, which was identified as a carbohydrate binding site in Xenopus 

(Schallus et al., 2008). Thus, the malectin-like domain might be a binding site for carbohydrates 
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in plants. A well-studied CrRLK1L in Arabidopsis is FERONIA (FER). FER is involved in numerous 

developmental processes such as female fertility, cell wall composition and hormone- and 

pathogen-induced responses (Li et al., 2016a).  Recent studies identified, that RAPID 

ALKALIZATION FACTOR1 (RALF1) is a ligand of FER and the loss of FER in fer mutants alters 

the cell wall and cell wall perturbations induced by salt stress, lead to cell swelling and bursting 

in fer mutants (Feng et al., 2018). Recently, it was shown, that FER can bind to pectin in cell walls 

(Feng et al., 2018; Lin et al., 2018), and THE1 is also  presumably associating with pectin 

(Hermann Höfte, personal communication). THE1 is a CrRLK1L member and was, as 

aforementioned, identified as the causative protein, for the stunted growth of the cesa6/pcr1-1 

mutant (Hématy et al., 2007). Recently, RALF34 was identified as THE1 ligand (Gonneau et al., 

2018), see also chapter 3.1.1.  

 

1.4 Receptor-like proteins 

The characteristic of the plasma membrane receptor-like proteins (RLPs) is the missing 

intracellular protein kinase domain. Therefore, many RLPs are interacting with RLKs, as 

phosphorylation is an important post-translational modification  (Gust and Felix, 2014). The 

Arabidopsis RLP family includes 57 members, that are plasma membrane proteins and 

characterized by LRRs in their extracellular domain, a transmembrane domain and a short 

cytosolic domain, which lacks a protein kinase domain (Wang et al., 2008). Several RLPs are 

involved in plant pathogen recognition. For instance, RLP18 and RLP30 are involved in plant 

resistance against Pseudomonas syringae pv phaseolicola (Psp), because rlp18 and rlp30 

mutants were more susceptible to the pathogen-associated molecular pattern (PAMP) flg22, the 

flagellin peptide from Psp (Wang et al., 2008). RLP23 was also recently identified being involved 

in plant immunity. A recently identified RLK, SUPPRESOR OF BIR1-1 (SOBIR1) is interacting 

with various RLPs, among them RLP23 and RLP30, and positively regulates defence signalling 

in Arabidopdis (Bi et al., 2014). In addition, several RLPs were described to be involved in plant 

development, for example RLP17/TMM, RLP10/CLV2, RLP4 and RLP44. The first three RLPs 

will be described in more detail in the chapter 3.1.2. Recently, RLP44 was identified as a member 

of CWS in a suppressor screen of the PECTIN METHYLESTERASE INHIBITOR5 over-expressor 

(referred to as PMEIox) (Wolf et al., 2014). PMEIox plants showed a characteristic root-waving 

and convoluted stems as a response to interference with pectin modifications. These phenotypes 

were suppressed by mutations in RLP44 or in BRI1 (Wolf et al., 2012a; Wolf et al., 2014b). PMEI5 

over-expression modifies pectin strands and thereby alters cell wall properties, which is sensed 

by RLP44. Association of the RLP44-ECD to the cell wall was observed in vivo and association 
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of RLP44 to pectate was shown in vitro (Holzwart, 2018). It is assumed that upon RLP44 activation 

by cell wall signals or its over-expression, RLP44 interacts with BAK1 and BRI1, to activate BR 

signalling. This restores structural integrity of the cell wall, but leads to the severe PMEIox 

phenotype as an indirect consequence (Wolf et al., 2012c; Wolf et al., 2014; Holzwart et al., 2018). 

Furthermore, RLP44 can also interact with PSKR1, activating the PSK signalling pathway, which 

is important for procambial identity (Holzwart et al., 2018). 

  

1.5 Meristems in Arabidopsis 

Root apical meristem (RAM) and shoot apical meristem (SAM) are primary meristems, located at 

the apices of root and shoot, respectively. They harbour stem cells, which give rise to on the one 

hand all below ground tissues and on the other hand, to all above ground tissues, driving 

longitudinal growth in plants (Gaillochet and Lohmann, 2015). A third meristem, the cambium is 

a secondary meristem, situated inside stems and roots and harbours stem cells for the vascular 

tissues, xylem and phloem, driving the radial growth of plants (Tonn and Greb, 2017). 

Although the three meristems are differently arranged in their shape and how cells acquire cell 

identities, they have in common that the stem cell pool is maintained by a negative feedback loop 

of one member of the WUSCHEL RELATED HOMEOBOX (WOX) proteins (Dolzblasz et al., 

2016). The transcription factor family comprises 15 members, with WUSCHEL (WUS) as founding 

member (Lian et al., 2014). In the SAM, WUS and CLV3 form a negative feedback loop to maintain 

stem cells (Schoof et al., 2000; Brand et al., 2000). Likewise, a negative feedback loop also 

maintains the stem cells in the RAM, here the players are CLE40-ARABIDOPSIS CRINKLY4 

(ACR4)-WOX5 and CLE41/44-PHLOEM INTERCALATED WITH XYLEM (PXY)-WOX4 in the 

cambium  (Stahl et al., 2009; Etchells et al., 2010; Dolzblasz et al., 2012). Furthermore, 

phytohormones such as auxin and cytokinin (CK) are involved in stem cell maintenance and cell 

differentiation in the meristems. In the SAM, CK signalling activates WUS expression and 

supports stem cell maintenance, whereas auxin signalling promotes differentiation and initiating 

of leave or flower primordia (Gordon et al., 2009; Vernoux et al., 2010). In the RAM, the two 

phytohormones acquire opposing functions (Liu et al., 2017). In the cambium, cytokinin is crucial 

for stem cell maintenance and auxin drives xylem and phloem differentiation (De Rybel et al., 

2016), see also chapter 4.1.8. 
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1.6 Cell division, growth, and identities 

Morphogenesis defines the biological processes, that are involved in shaping organisms, for 

example cell division, elongation, differentiation, migration and apoptosis. Since plant cells are 

encompassed by a cell wall and are glued together, migration as in animal cells can be excluded. 

Apoptosis, the programmed cell death, is taken place only in specific plant cells for example as a 

consequence of differentiation in xylem cells, that incorporate a secondary cell wall which leads 

to the formation of tracheary elements to form water-conducting tubes (Schuetz et al., 2013). In 

plants, morphogenesis is therefore largely driven by cell division, elongation and differentiation, 

to all of which the cell wall contributes in important ways (Cosgrove, 2005; Wolf and Höfte, 2014a; 

Wolf, 2017). Here, we will focus on cell division and the specification of cell identity. 

Cell division mainly takes place in the three meristems, SAM, RAM and cambium, which harbour 

the stem cells that give rise to the post-embryonically derived plant tissues. Since all cells are 

interconnected via their cell walls and cells undergo elongation, cell division has to be 

coordinated. Cell division is spatio-temporally controlled by the position of the cell plate which 

marks the plane of division (Gutierrez, 2009; Rasmussen et al., 2013; Louveaux et al., 2016). 

During the cell cycle, mainly in G1 and G2 phases, cells grow and expand their volume which leads 

to mechanical stress in the surrounding cells and altered cell wall properties and enhanced cell 

wall biosynthesis in the growing cell (Cosgrove, 2005; Mirabet et al., 2011; Braidwood et al., 2014; 

Lipka et al., 2015; Cosgrove, 2016). In meristematic cells, which display an isotropic cell growth, 

Errera’s rule can be applied (Errera, 1888), stating that cells divide along the shortest paths. 

Recently, the contribution of molecular players, such as microtubules (MTs), have been 

addressed to the implementation of Errera’s rule (Besson and Dumais, 2011; Lipka et al., 2015). 

Position and orientation of the site, where the cell plate fuses with the parental walls, is marked 

by the preprophase band (PPB), formed in the preprophase of early mitosis (Rasmussen et al., 

2013). It is established by cortical MT strands, that condense in the cell periphery close to the cell 

wall and form a ring-like structure (Smith, 2001; Rasmussen et al., 2013). 

The RAM is a rewarding meristematic organ to study cell division, elongation and differentiation 

at once. Because of the concentric design of cell tissues surrounding the stem cell niche in the 

root tip, the early identification of cell identities for almost all early root tissues is possible by 

genetically encoded reporters. Cells in different cell tissues can be visualized and traced through 

the high proliferation rate in the meristematic zone, the elongation zone and finally the 

differentiation zone. For instance, cells can differentiate and form root hairs in the epidermis, 

embed suberin in their cell walls in the endodermis and lignin in the casparian strip, or lignin in 
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xylem cells to differentiate into xylem tracheary elements (Singh et al., 2008; Grebe, 2011; 

Schuetz et al., 2013). 

 

 

 

 

 

 

 

 

 

 

In contrast to the RAM, cell identities in the SAM are not defined from early stages on, they are 

acquired during their trajectory from the meristematic centre, the central zone (CZ), through the 

peripheral zone (PZ) to the boundary zone (BZ) (Figure 2). Cell differentiation is rather dependent 

on the spatio-temporal position and positional information of the cell in the meristem than being 

primed for a cell fate/identity by its lineage (van den Berg et al., 1995; Reinhardt et al., 2003a; 

Reinhardt et al., 2003b; Gaillochet and Lohmann, 2015). During their journey from the centre to 

boundary, cells undergo molecular transitions. Some of the cells could be identified and utilized 

for cell identity reporters in the shoot apical meristem, such as CLV3 for stem cells, WUS for the 

stem cell underlying organizing centre (OC), UNUSUAL FLORAL ORGANS (UFO) expressed in 

the PZ or CUP SHAPED COTELYDONS2 (CUC2) for the BZ (Schürholz et al., 2018; see chapter 

Figure 2. Overview of factors determining cell identities in the SAM. Stem cells are located in the 

central zone (CZ) and are maintained by the negative feedback loop between CLAVATA3 (CLV3) and 

WUSCHEL (WUS) in the organizing centre (OC). Cell growth and divisions push the cells located in 

the epidermis and the underlying cell layer (L2) through the peripheral zone (PZ) to the boundary zone 

(BZ), accompanied by alterations in gene transcription. During this trajectory, they acquire cell identities 

by altered cell wall properties, for instance increased PME activity in the boundaries or phytohormone 

signals. Elevated auxin levels in the PZ prime cells for primordia initiation.  
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2.2.3). However, these domains are coarse in contrast to tissue specific markers that exist for the 

RAM. Furthermore, these markers are based on gene expression profiles, whereas changes in 

cell wall composition of modifications are neglected. As aforementioned, especially in the active 

proliferating meristems, it is assumed that cell wall biosynthesis rates are high and cell wall 

properties are challenged by cell growth and expansion and have to adopt to mechanical stresses 

due to cell divisions and cell expansions (Cosgrove, 2005 and 2015;(Cosgrove, 2015) Louveaux 

et al., 2016; Kierzkowski et al., 2019). Thus, cell wall properties and cell wall signalling are likely 

additional factors in determining cell identities in the SAM (Fleming et al., 1997; Peaucelle et al., 

2008 and 2011; Milani et al., 2011; Sassi et al., 2014; Landrein et al., 2015a; Yang et al., 2016). 

In addition, the two cross-talking phytohormone signalling pathways auxin and CK are involved 

in cell proliferation and differentiation in the SAM. Here, cytokinin is essential for WUS expression 

and maintaining stem cell activity (Leibfried et al., 2005; Gordon et al., 2009; Xie et al., 2018), 

whereas auxin triggers cells to differentiate into leaf or flower primordia (Vernoux et al., 2010; 

Besnard et al., 2014a; Schaller et al., 2015; Qi et al., 2017). Thus, cells in the SAM are facing 

many factors, that are spatio-temporally determining their cell identities.  
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2 The role of pectin methyl esterases (PMEs) in the SAM 

2.1 Introduction 

The plant cell wall is a complex structure, mainly composed of cellulose, hemicelluloses, pectins 

and structural proteins. Depending on the developmental demands of the plant, the cell wall has 

to adopt its mechanical properties to enable cell proliferation and differentiation, while at the same 

time serving as an exoskeleton necessary for upright growth and additionally, as a barrier against 

abiotic and biotic stresses (Cosgrove, 2005). In the introduction, we will focus on the function of 

pectin modifying enzymes, the pectin methyl esterases (PMEs), in the shoot apical meristem 

(SAM) of Arabidopsis.  

2.1.1 PMEs and pectin-modifying enzymes in the cell wall 

The heteropolysaccharide pectin is a major component of primary cell walls in plants  (Caffall and 

Mohnen, 2009). It includes four classes of different pectins: rhamnogalacturonan I and II (RGI 

and RGII), xylogalacturonan (XG) and homogalacturonan (HG), of which HG comprises the major 

component of plant cell walls (Caffall and Mohnen, 2009). Pectins are synthesized in the Golgi 

apparatus and linear HG can be acetylated (5-10 %) or methyl esterified (up to 80 %) (Wolf et al., 

2014a; Gou et al., 2012). Once methyl esterified, pectins are transported to the apoplast, where 

they can be further modified by a variety of pectin modifying enzymes like pectin methyl esterases 

(PMEs), pectate lyases (PL), polygalacturonases (PG) and pectin acetyl esterases (PAEs) 

(Cosgrove, 2016; Hocq et al., 2017). PAEs remove acetyl groups of pectins in the cell wall (Gou 

et al., 2012), while PLs are considered responsible for the degradation of methyl esterified pectins 

(Yadav et al., 2009b). Furthermore, PGs have been describe as the enzymes involved in the 

degradation of pectins with low degrees of methyl groups, implying prior activity of pectin methyl 

esterases (PMEs) (Daher and Braybrook, 2015). PMEs catalyze the hydrolysis of methyl groups 

from pectin producing de-methyl esterified pectin, methanol and protons (Sénéchal et al., 2014a) 

and are regulated by pectin methyl esterase inhibitors (PMEIs). The gene family of PMEs in 

Arabidopsis is comprised of 66 members and can be divided into two types. Type I PMEs include 

43 members, and proteins contain a pro-region at their N-terminus, which is similar to PMEIs and 

is assumed to have an inhibitory function (Bosch et al., 2005; Wolf et al., 2009b). For a functional 

PME, this pro-region has to be processed, which presumably happens in the Golgi apparatus, for 

example through subtilisin-like proteases (SBTs), which recognize the conserved amino acid 

region RR(K)LL (Wolf et al., 2009; Sénéchal et al., 2014b). It is assumed that the pro-region in 

type I PMEs enables better post-translational control, as unprocessed proPMEs are retained in 

the Golgi (Wolf et al., 2009; Wang et al., 2013). In contrast, type II PMEs do not contain the 
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inhibitory pro-region at their N-terminus and are comprised of 23 members. Increased activity of 

either type of PMEs in the cell wall leads to de-methyl esterification of pectin chains, called 

pectate. Block-wise de-methyl esterification produces pectate chains that can form egg-box-like 

structures together with other pectate chains upon covalent binding to Ca2+ (Grant et al., 1973; 

Peaucelle et al., 2012). In vitro and in pollen tubes it has been shown, that block wise de-methyl 

esterification results in increased cell wall stiffening, whereas patchy de-methyl esterification 

softens the cell wall, but it does not hold true for multicellular plants (Willats et al., 2001; Cosgrove, 

2016). Additionally, RG II can also form covalent bonds, not only with Ca2+, but also with borate, 

and therefore strengthen pectin cross-linkage (O’Neill et al., 2004). These modifications can 

change the mechanical properties of the cell wall. However, reports are inconclusive whether 

enhanced PME activity leads to cell wall loosening or cell wall stiffening. A variety of processes 

such as degree of de-methyl esterified pectins, apoplastic pH, availability of divalent cations, cell 

type and tissue, and compensatory mechanisms seem to play a major role in determining the 

rigidity of plant cell walls (Pelletier et al., 2004; Peaucelle et al., 2008; Peaucelle et al., 2011; Wolf 

et al., 2012a; Dünser et al., 2015). In addition, the PME and PMEI gene families are comprised 

of numerous members and are expressed throughout the whole plant with overlapping expression 

patterns, therefore impeding the generation of gain- and loss-of-function mutants. Functional 

redundancy and compensatory mechanism further result in shading phenotypes.  

In our group, we generated plants overexpressing the Arabidopsis PMEI5 (referred to as PMEIox), 

which displayed a number of phenotypes including root-waving, convoluted stems and organ 

fusion. Previous publications have attributed, this severe phenotype was a secondary effect, due 

to enhanced brassinosteroid signalling triggered by signals from the cell wall (Wolf et al., 2012b; 

Wolf et al., 2014). The over-expression of the pollen-specific PME VANGUARD1 (VGD1), 

exhibited stunted growth and a high extend of de-methyl esterified pectin in cell walls of the stem 

(Wolf et al., 2012a). Mutations of VGD1 in Arabidopsis resulted in defects in pollen tube growth 

and constrained fertility (Jiang et al., 2005). This suggests that VGD1 is indeed active in pectin 

modifications and together with PMEIox a suitable candidate to study the function of cell wall 

modifications.   

 

2.1.2 PMEs and PMEIs in the shoot apical meristem 

SAM, RAM and the cambium harbour stem cells which give rise to all above-ground, below-

ground and vascular tissues in plants, respectively. In all three meristems these stem cells are 

located in stem cell niches. Via asymmetric division and subsequent cell growth, daughter cells 
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are pushed out of the niche, where they acquire specific cell fates dependent on their position. In 

the RAM, the quiescent centre (QC) is surrounded by one layer of initial cells, each containing a 

characteristic pattern of transcription factors dependent on their position with regards to the QC 

and giving rise to one distinct tissue in the root (van den Berg et al., 1995; Drisch and Stahl, 2015). 

Here, the cell fate is directly set with the first asymmetric stem cell division. Contrary to the RAM, 

stem cells in the SAM are generalists, as they do not include initial cells for different cell tissues. 

The resulting cells acquire their cell fates/identities dependent on their position in the meristem, 

which needs to be adjusted during their route from central zone (CZ) through the peripheral zone 

(PZ) to the boundaries. In addition, cell-to-cell signalling, organ patterning and mechanical forces 

drive cell fate in the meristem (Efroni, 2018). The positional information of cell types can be 

analysed by differential expression of transcription factors or altered cell wall composition. The 

latter, is assumed to play a crucial role when defining cell identities in the SAM, as high cell 

division rates in the proliferating surrounding of the stem cells are in contrast to differentiating 

cells in the periphery, which presumably have different cell wall contents and cell wall rigidities, 

as they are receiving various positional signals and are facing different stresses due to cell 

division and elongation. Due to the dome-shaped structure of the SAM, the mechanical forces 

increase towards the meristem boundary and cells in the meristem centre are, for instance, more 

rigid compared to walls in the periphery (Peaucelle et al., 2011). In the SAM, enhanced activity of 

PME5 results in softer cell walls and emergence of a higher number of primordia, whereas 

overexpression of PMEI3 increases cell wall rigidity and inhibits primordia outgrowth (Peaucelle 

et al., 2008 and 2011). Here, the state of the cell wall either enables or inhibits outgrowth of 

primordia, but it remains to be elucidated, if changes in the mechanical properties are primary or 

secondary effects. Combining the acid growth theory with enhanced auxin signalling might 

establish a potential connection between auxin-mediated alterations in the cell wall pH and its 

effect on PME/PMEI activity, which in turn has consequences for the cell wall state (Sassi et al., 

2014; Hocq et al., 2017).  

Almost 50 years ago, the acid growth theory was formulated and is based on experiments, which 

investigated cell elongation and growth upon acidification of the apoplast (Rayle and Cleland., 

1970). Additionally, the application of auxin obtained similar results (Rayle, 1973). Recent studies 

can now support this theory by means of genetically encoded markers to visualize phytohormone 

levels or signalling such as cytokinin and auxin (Zurcher et al., 2013; Liao et al., 2015) or cell wall 

rigidity measurements by applying atomic force microscopy (AFM) (Peaucelle et al., 2011; 

Braybrook et al., 2013; Qi et al., 2014; Peaucelle et al., 2015). Research has shown, that the 

apoplastic pH can be decreased by the activity of H+-ATPases, which in turn are phosphorylated 

through auxin signalling (Takahashi et al., 2012; Haruta et al., 2016). Auxin accumulates in distinct 
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domains in the periphery, which then leads to pectin de-methyl esterification, softer cells and 

primordia outgrowth, suggesting further a role for auxin in controlling the activity of PMEs 

(Braybrook et al., 2013). 

In our research, attempts to express PME and PMEI-fluorophore fusions in the apoplast were 

unsuccessful, possibly because the proteins were not secreted to the apoplast or, similar to type 

I PMEs, were processed. Therefore, the generation of PME transcriptional reporters presented 

itself as essential and, we generated a unique inducible cell type-specific two component tool, 

which enables the expression of PME or PMEI genes in defined tissues.  

 

2.1.3 Aims 

Cell wall properties are determined on the cellular level and have to be tightly coordinated 

between neighbouring cells, thereby affecting cell types, tissues and the whole organism. As an 

abundant polysaccharide in primary cell walls, pectins and pectin modifications are mainly 

influencing cell wall properties and might mediate cell identities in the meristems. As cells in the 

shoot apical meristem are generalists, meaning they are missing initial cells for specific cell types, 

it is assumed that cell identities are accomplished through a network of distinct signals, one might 

be the state of pectin in the cell walls. Hence, we aimed to achieve the following goals: 

A) Elucidate the role of pectin modification in the shoot apical meristem 

B) Reveal the function of PMEs in differentiation in the shoot apical meristem 

C) Generate inducible, cell type-specific trans-activation/reporter lines in Arabidopsis to   

study pectin modifying genes in specific cell types in the shoot apical meristem 
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2.2 Results 

Postembryonic plant growth is driven predominantly by high proliferation rates in stem cell-

harbouring meristems. Cell proliferation is accompanied by cell expansion mainly driven by turgor 

pressure from the cell interior (Cosgrove, 2005; Braidwood et al., 2014). For cell expansion, cell 

wall properties are rearranged, leading to softer cell walls and induces stress relaxation, which 

facilitates water uptake and enables plant growth (Cosgrove, 2016). Cell wall rearrangements are 

either achieved by cell wall biosynthesis or modifications of the cell wall components by structural 

proteins. Through cell wall signalling, signals from the cell wall are conveyed over the plasma 

membrane and activate downstream signalling cascade, leading to transcriptional changes, which 

can trigger synthesis of cell wall components or structural proteins. For instance, the severe 

phenotypes in the PMEIox plants were identified as secondary and compensatory effects due to 

enhanced cell wall signalling through the activation of the BR signalling pathway (Wolf et al., 

2012b). Here, we want to study how the activity of PMEs and PMEIs in the SAM, and thereby the 

modification of pectins, might influence cell wall properties, up- and down-stream associated 

signalling processes and potentially cell fate.  

 

2.2.1 Overexpression of VGD1 and PMEI5 leads to a severe decrease in the size 

of the SAM  

In this study, we focused on the above-ground phenotypes in Arabidopsis plants over-expressing 

PMEs and PMEIs, represented by the VGD1ox (AT2G47040) and PMEIox (PMEI5; AT2G31430) 

plants. All above-ground tissues derivefrom stem cells embedded in the SAM. Thus, alterations 

in the size of the SAM or its cells, or different mechanics in the SAM, maybe due to changes in 

the cell wall state, often have significant consequences for plant phyllotaxis and normal growth 

and development (Peaucelle et al., 2008 and 2011; Wolf et al., 2012a, c; Landrein et al., 2015 b; 

Jones et al., 2017).  

Phenotypic characterization of PMEIox and VGD1ox seedlings showed a strong root-waving 

phenotype in PMEIox, whereas VGD1ox did not feature an obvious phenotype when compared 

to Col-0 wild type (Figure 3A). VGD1ox had a dwarfed phenotype in the vegetative stage in 28-

day-old plants compared to Col-0 (Figure 3B). PMEIox exhibited curled rosette leaves in 28-day-

old plants compared to Col-0 (Figure 3B). Phenotypes of VGD1ox and PMEIox were even more 

prominent in the reproductive stage of 48-day-old plants, depicting stunted growth, an altered 

shoot development and impaired silique development compared to Col-0 (Figure 3C). In detail, 



2 The role of pectin methyl esterases (PMEs) in the SAM 

 

16 

 

SAM inflorescences of VGD1ox plants were bigger, exhibiting pre-opened flower buds and 

enhanced elongated gynoecia, which could attenuate self-fertilization and could explain the many 

observed seedless siliques (Figure 3D). Furthermore, VGD1ox shoots were more brittle 

compared to Col-0 which might be a result of altered cell wall composition and modifications 

caused by a reduction of pectin methyl esterification due to VGD1 overexpression (Wolf et al., 

2012a). PMEIox plants exhibited curled and fused cauline leaves and stems, as well as small 

misshapen siliques (Figure 3E). Previous studies have shown that alterations in pectin methyl 

esterifications can be sensed by RLP44 which in turn activates the BR signalling pathway (Wolf 

et al., 2012b; Wolf et al., 2014). Enhanced BR signalling leads to up-regulation of cell wall 

modifying genes, which antagonize the alteration of the cell wall composition, but are inducing in 

a compensatory effect depicted by PMEIox phenotypes (Wolf et al., 2012b; Wolf et al., 2014). 

Therefore, the phenotypes in PMEIox plants are most likely the result of secondary effects, 

initiated by enhanced BR signalling due to loss of cell wall integrity (CWI), and not direct effects 

of overexpression of this particular PMEI (Wolf et al., 2012b; Wolf et al., 2014).  

  

Figure 3. Over-expression of VGD1 and PMEI5 leads to severe developmental phenotypes. 

Phenotypic characterization of p35S:VGD1 and p35S:PMEI5 expressed in Col-0 backgrounds 

compared to Col-0. (A) Col-0, VGD1ox and PMEIox six-day-old seedlings (left to right). Note the 

root-waving phenotype in PMEIox. Scale bar: 10 mm. (B) Above-ground phenotypes of 28-day-

old Col-0, VGD1ox and PMEIox plants (left to right). Scale bar: 50 mm.  (C) Above ground 

phenotypes of 48-day-old Col-0, VGD1ox and PMEIox plants (left to right) with inflorescences. 

Note the stunted growth of VGD1ox and PMEIox. Scale bar: 50 mm. (D) Inflorescences of Col-0 

and VGD1ox (left to right). Note the pre-opened buds and elongated gynoecia. (E) PMEIox 

inflorescences with typical curled stems and organ fusion of cauline leaves (white arrow heads). 
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For quantification of epidermal cell numbers and meristem size, shoot apices of Col-0, VGD1ox 

and PMEIox plants were dissected and cell walls were counterstained with propidium iodide (PI) 

for subsequent imaging using CLSM. Analysis of VGD1ox and PMEI5ox inflorescence shoot 

apical meristems revealed a decrease in meristem size compared to Col-0 (Figure 4A).  

 

Figure 4. Overexpression of VGD1 and PMEI5 reduces the meristem size in the SAM. (A) 

Representative 3D views of inflorescence SAMs of Col-0 (38 day-old plants), VGD1ox (45 day-

old plants) and PMEIox (45 day-old plants) (left to right). Note the zoom in of the central zone 

area and the more squared cells in VGD1ox compared to Col-0 and PMEIox. Scale bar: 20 µm. 

(B-E) Quantification of (B) meristem size, (C) epidermal cell number, (D) mean cell size and (E) 

cell size distribution in Col-0 (n=14), VGD1ox (n=10) and PMEIox (n=10) shoot apical meristems 

(35-45 day-old plants). Statistically significant difference from Col-0 and VGD1ox/PMEIox 

based on two tailed t-test (** p<0.01, *** p<0.001). (E) Cell size distribution in Col-0, VGD1ox 

and PMEIox.  
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Noticeable were the squared and symmetrical cells with four cell walls in the central zone of 

VGD1ox meristems, reminiscent of a chess board (Figure 4A). In contrast, Col-0 and PMEIox 

meristems depicted more often asymmetric cell shapes with more than four cell walls. 

Quantification of meristem size and epidermal cell number using the image analysis tool 

MorphoGraphX (Barbier de Reuille et al., 2015) exhibited a significant reduction in meristem size 

in VGD1ox and PMEIox compared to Col-0 (Figure 4B). Additionally, the meristems of the two 

over-expressing lines contained fewer cells, with VGD1ox displaying a more dramatic reduction 

of cells in the meristem in comparison to PMEIox (Figure 4C). The analysis of mean cell sizes 

revealed that VGD1ox plants have fewer epidermal cells, however increased overall cell size 

compensated for the number of meristematic cells, resulting in comparable meristem size to the 

PMEIox (Figure 4B-D). The mean cell size in PMEIox meristems was determined to be 

significantly decreased when compared to Col-0 (Figure 4D). In addition, the calculation of cell 

size distribution showed that most epidermal cells in PMEIox had a cell size of 15-20 µm2, thereby 

smaller as most cells in Col-0 with 17.5 to 22.5 µm2 (Figure 4E). In comparison, VGD1ox 

epidermal cells had a size of 20-25 µm2 and more cells than in PMEIox and Col-0 exhibited larger 

sizes of 30 to 40 µm2 (Figure 4E). Over-expression of PMEI5 and VGD1 resulted in either overall 

smaller or bigger cells compared to Col-0, so it is reasonable to argue that the activity of both 

proteins in the cell wall has an impact on cell division and growth.  

Taken together, the over-expression of the pollen-specific PME VGD1 and PMEI5 resulted in 

severe above-ground phenotypes, presumably due to the decreased size of the SAM in both lines 

over-expressing VGD1 and PMEI5. Furthermore, PMEIox exhibited overall smaller and VGD1ox 

larger cells in comparison to Col-0, suggesting an altered cell cycle or defects in cell expansion. 

 

2.2.2 PMEs are downregulated in the central zone of the SAM 

The gene families of PMEs and PMEIs in Arabidopsis thaliana include 66 PMEs and 71 PMEIs, 

and are expressed in various tissues throughout the whole plant (Wang et al., 2013). We focused 

mainly on PMEs and PMEIs that were expressed in the SAM. Here, publicly available microarray 

data, using protoplasts (Yadav et al., 2014), was combined and analysed in combination with 

ChIP-Seq and RNA-Seq experiments performed by Andrej Miotk, using WUS-GR plant samples 

(Andrej Miotk, PhD Thesis 2015, Jan Lohmann Lab). These data showed that a number of PMEs 

is differentially expressed in the SAM, whereas PMEIs are uniformly expressed throughout the 

apical meristem. Therefore, we assumed a specific role of PMEs in the SAM in development and 

focused on the expression and function of PMEs in the SAM. 
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For further analysis, we chose seven PMEs (highlighted in grey,Table 1), that were strongly 

expressed in specific domains of the SAM (Table 1). Distinct expression domains are represented 

by expression of WUSCHEL (WUS) in the organizing centre (OC) and CLAVATA3 (CLV3) for the 

central zone (CZ) of the SAM. KANADI1 (KAN1) and FILAMENTOUS FLOWER (FIL1) represent 

boundaries and abaxial domains in forming primordia, respectively. LATERAL SUPPRESSOR 

(LAS) defines adaxial domain in developing primordia. HIGH MOBILITY GROUP (HMG) marks 

expression in the whole meristem and MERISTEM LAYER1 (ML1) in the epidermal layer (L1). 

Analysis of the ChIP-Seq data revealed WUS binding peaks in PME promoters expressed in the 

SAM (Miotk, 2015). For AT5G53370, PME3, PME12, PME34 and PME44 a WUS binding peak 

was identified and, except of AT5G53370, down-regulation of PMEs was determined using the 

microarray data, suggesting a direct repression of these PMEs through WUS (Table 1). Six of the 

seven PMEs also showed weak expression in the CLV3 domain, except PME34 which was highly 

expressed throughout the whole meristem (Table 1).  Based on the microarray data, PME41 

appears to be positively regulated by WUS, however, thiscould be an indirect effect, as no WUS 

peak was found. In addition, for AT5G53370 no regulation via WUS could be assigned, although 

a WUS peak was identified (Table 1). AT5G53370 and PME5 showed elevated expression in the 

WUS, KAN1 and FIL domains, while PME3 was also expressed at low levels in the WUS domain, 

but only exhibited elevated expression levels in the FIL domain. PME12 was higher expressed in 

the KAN1 and FIL domains. PME44 depicted elevated expression in the KAN1, FIL and ML1 

domains and PME41 was similar expressed, with additional enhanced expression in the WUS 

and LAS domains (Table 1).  

Table 1. Differentially expressed PMEs in the SAM. Combined ChIP-Seq, RNA-Seq and microarray 

data from Miotk 2015 and Yadav et al., 2014, respectively. Red bars represent high PME expression 

levels in the specific domain, relative to all values. Grey labelled boxes depict PMEs used for further 

analysis. 
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In summary, the analysis of PME expression in the SAM revealed that many SAM-expressed 

PMEs had higher expression levels in the periphery of the meristem, where differentiation takes 

place, and could be repressed by WUS in the central zone. 

 

To study the role of the pectin modification state in cells of the SAM in a more genetically natural 

condition, we next wanted to generate PME double mutants using the CRISPR/Cas9 genome-

editing technique. Due to functional redundancy of many PMEs, we chose two PMEs for knock-

down that had similar expression levels in the SAM. The first combination was PME3 

(AT3G14310) and AT5G53370 which showed both elevated expression in the FIL domain, with 

Figure 5. Design of pme CRISPR/Cas9 double mutants. (A) Overview of UTRs (grey boxes), exons 

(black boxes) and introns (black lines) in PME3, AT5G53370, PME41 and PME44. Cas9 recognition 

site is depicted in green. (B) gRNA sequences and orientation for PME3, AT5G53370, PME41 and 

PME44 used in the CRISPR/Cas9 approach with PAM sequence indicated in blue. (C) PME41 and 

PME44 wild type CRISPR/Cas9 target sites together with corresponding amino acids. Both gRNAs 

were combined in one plasmid to generate a pme41 pme44 double mutant. Identified mutations in 

PME41 and PME44 are depicted in the boxes below, together with the nucleotide insertion (red) and 

changed amino acid sequences (bold and black).  
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AT5G53370 also being higher expressed in the WUS domain. The second combination was 

PME41 (AT4G02330) and PME44 (AT4G33220), which both displaying elevated expression 

levels in the KAN1 domain. Suitable gRNAs for the four target genes were designed by using the 

ChopChop webpage, targeting the beginning of the first exon (Figure 5A,B). Additionally, no off-

targets and no self-complementation was predicted for the designed gRNAs. In the T2 generation, 

only plants without the Cas9 containing T-DNA were propagated to the next generation. 

Unfortunately, we were not able to identify any mutations neither for PME3, nor for AT5G53370. 

For the second double mutant line, pme41 pme44, an insertion of a thymidine (t) was identified 

in PME41 after position 185 downstream of the ATG in the gDNA sequence (Figure 5C).  

The insertion generated an amino acid exchange from serine to leucine at position S63L, 

introducing a stop codon 17 codons downstream from the insertion (Figure 5C). In PME44, an 

adenosine (a) insertion after position 200 downstream of the ATG in the gDNA sequence was 

identified (Figure 5C). The insertion generated an amino acid exchange from asparagine to lysine 

at position N67K and introduced a stop codon seven codons downstream (Figure 5C). However, 

first phenotypic analysis in the T2 did not result in a strong phenotype of the pme41 pme44 double 

mutants compared to Col-0, presumably due to functional redundancy (data not shown).  

Next, we generated PME promoter reporter lines to verify the PME expression based on the 

microarray data in the different domains of the SAM. Promoters of the following PMEs were 

generated: PME5, PME12, AT5G53370, PME34 and PME44, which were driving the expression 

of a nucleus-targeted triple GFP fusion protein (pPME:3xGFP-NLS:tUBQ10). Inflorescence shoot 

apical meristems of T2 plants were dissected and imaged using CLSM.  

 

 

Figure 6. PME5 expression seems to be repressed in the central zone of the SAM. (A-D) 

Expression of pPME5:3xGFP-NLS in the shoot apical meristem inflorescences of 40-day old plants. 

SAMs are stained with PI to label cell walls. Scale bars: 20 µm. (A) GFP signal in the nuclei, (B) PI 

signal of cell walls (C) merge and (D) XZ and YZ cross sections.  
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However, GFP fluorescence was only detected in plants expressing pPME5:3xGFP-NLS:tUBQ10 

(Figure 6). Here, pPME5 was active in the boundaries of the SAM and young primordia. Flower 

primordia in stage 3 showed pPME5 expression in sepal buds (Figure 6A, C, D). Thus, visualized 

pPME5 expression in the shoot apical meristem confirmed expression in KAN1 and FIL domains 

as suggested by microarray and RNA-Seq data (Yadav et al., 2014; Miotk, 2015).  

Taken together, pme41 pme44 double mutants did not exhibit a striking phenotype, probably due 

to functional redundancy, so it would be advised to generate plants with a larger number of mutant 

pmes. Furthermore, a PME5 reporter line confirmed the observed microarray expression data, 

showing expression in the boundaries of the SAM with no expression in the central zone. 

 

2.2.3 Inducible cell type-specific gene expression 

As previously mentioned, PMEs are hardly expressed in the centre of the SAM. To investigate 

how and why they are not or only weakly expressed, we generated a tool, to induce the expression 

of PMEs in tissue-specific domains, for example in the SAM. 

Our approach included the generate of Arabidopsis driver lines, containing a tissue specific 

promoter driving a fluorescent reporter, whose transcription is spatially and temporally controlled, 

and responder lines carrying the effector construct. By crossing these two transgenic plant lines 

and upon induction, the phenotypes of the effector in a specific tissue type can be studied (Figure 

7) (Schürholz et al., 2018).  

To generate inducible tissue-specific driver lines, we made use of the modular Golden Gate-

based Green Gate cloning system. This technique enabled us to assemble different tissue specific 

promoters together with the Dex-inducible GR-LhG4 system and the mTurquoise2 reporter into 

one construct (Lampropoulos et al., 2013). The T-DNA was composed as followed: a tissue 

specific promoter driving the expression of the chimeric glucocorticoid/transcription factor GR-

LhG4, followed by the Rbcs terminator, the pOp6 promoter, the endoplasmatic reticulum (ER) 

signal peptide (SP), the reporter mTurquoise2 (Goedhart et al., 2012), the ER retention motif His-

Asp-Glu-Leu (HDEL), the UBQ10 terminator and a sulfadiazine resistance cassette (SulfR)  

(Lampropoulos et al., 2013). Upon Dex-induction, Dex binds to GR, which leads to nuclear import 

and binding of LhG4 to the pOp6 element in combination with a minimal 35S promoter. LhG4 

binding to pOp6 initiates transcription of ER(SP)-mTurquoise2-HDEL.  
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Due to the ER signal peptide and the ER retention signal, mTurquoise2 fluorescence is only 

detected in the ER (pOp6:SP-mTurquoise2-HDEL) (Figure 7). As GR-LhG4 is expressed under 

the control of the tissue specific promoter (pTS), the expression of mTurquoise2 is also dependent 

on the activity of the pTS. In combination with an effector line, which also harbours the pOp6 

element, the driver line expresses the “effector of interest” in a specific tissue together with the 

mTurquoise2 reporter.  

For the comprehensive tissue-specific driver lines, we chose tissue-specific promoters based on 

our own expression data and previously published literature (Table 2). All together, 19 promoters 

were selected covering most cell types in the SAM, the RAM and the cambium. The generated 

constructs were transformed into Arabidopsis Col-0 wild type plants and experiments were 

performed with stable, homozygous, single insertion T3 plants.  

Driver lines expressing root tissue specific promoters, were directly induced on plate by media 

containing 30 µM Dex for five days. Cell walls in seedling roots were counterstained with PI and 

fluorescent signals of PI and the mTurquoise2 fluorophore were imaged in five-day-old seedlings 

using CLSM. We detected tissue-specific expression of the mTurquoise2 reporter in the following 

Figure 7. Overview of the Dex-inducible GR-LhG4/pOp system. Driver lines contain the 

synthetic transcription factor LhG4, the Op6 promoter and the mTurquoise2 fluorophore, which is 

expressed upon Dex-induction in defined tissues, specified by the tissue specific promoter (pTS). 

By crossing the driver line with an effector line, containing the Op6 promoter and the “effector”, 

Dex-induction leads to binding of the GR-LhG4 transcription factor to the pOP6 promoter and 

activates simultaneously expression of the mTurquoise2 reporter and the effector, but only in 

certain cell types, determined by the tissue specific promoter in the driver line. (Schürholz et al., 

2018). 
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driver lines: pCASP1, pAHP6, pTMO5, pXPP, pATHB-8 (Figure 8). Their expression pattern was 

corresponding to data from literature (Table 2). To analyse the expression in the SAM-specific 

driver lines, inflorescence meristems were sprayed with 10 µM Dex 48 h before imaging. The 

SAMs were dissected, cell walls were counter stained with PI and fluorescent signals of PI and 

mTurquoise2 were imaged with CLSM. The following driver lines, which showed expression in 

the SAM, were generated: pML1, pCLV3, pREV, pUFO, pCUC2 and pAHP6 (Figure 9). Their 

expression pattern was corresponding to the data from literature (           Table 2). 

 

                            Table 2. Overview of promoters selected for driver lines. 

promoter expression 

pATHB-8 procambium, xylem precursors and 
columella in RAM 

pXPP xylem pole pericycle 

pAHP6 protoxylem precursor, pericycle, organ 
primordia in the SAM 

pTMO5 xylem precursors 

pCASP1 endodermis 
pML1 L1 layer, epidermis 

pCLV3 SAM stem cells 

pREV SAM rib meristem 

pUFO SAM peripheral zone 

pCUC2 boundaries in SAM and leaf 
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Figure 8. Dex-induced driver lines depict tissue specific expression in seedling roots. (A) 

Schematic overview of root tissue layers. (B-F) Induced tissue specific driver lines with PI-stained 

cell walls and mTurquoise2 reporter expression in the root. Scale bars: 50 µm. (B) pHOMEOBOX 

GENE-8 (pATHB-8) expressed in stele initials, cortex/endodermis initial (CEI) and columella initials,   

(C) pCASPARIAN STRIP MEMBRANE DOMAIN PROTEIN1 (pCASP1) expressed in the 

differentiating endodermis, (D) pHISTIDINE PHOSPHOTRANSFER PROTEIN6 (pAHP6) expressed 

in phloem precursor cells and adjacent pericycle cells, (E) pXYLEM POLE PERICYLE (pXPP) 

expressed in xylem pole pericycle cells, (F) pTARGET OF MONOPTEROS5 (pTMO5) expressed in 

xylem precursor cells. PI is false coloured in magenta, mTurquoise2 is false coloured in green. Figure 

done by Zhenni Li, modified after Schürholz et al., 2018. 
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We generated several inducible, tissue-specific driver lines in the three main meristems in 

Arabidopsis and showed, that Dex-induction is functional (Schürholz et al., 2018). We could 

further show with Dex dose-response experiments, that fluorescent intensity seemed to be 

saturated at Dex concentrations from 10-100 µM (Schürholz et al., 2018). In addition, time-course 

analysis of Dex-induction revealed that after six hours the first mTurquoise2 fluorescence was 

detectable in the RAM (Schürholz et al., 2018).  

 

 

Figure 9. Dex-induced driver lines depict tissue specific expression in the inflorescence 

shoot apical meristem. (A) Schematic overview of tissue layers in the inflorescence stem. (B-I) 

Induced tissue specific driver lines with PI-stained cell walls and mTurquoise2 reporter 

expression in the shoot apical meristem. Scale bars: 50 µm. (B) pMERISTEM LAYER1 (pML1) 

expressed in the L1 layer/epidermis, (C) pCLAVATA3 (pCLV3) expressed in the stem cell 

domain, (D) pREVOLUTA (pREV) expressed in the central zone, (E) pUNUSUAL FLOWER 

ORGANS (pUFO) expressed in the peripheral zone, (F) pCUP-SHAPED COTYLEDON2 

(pCUC2) expressed in the boundary domain and (G) (pAHP6) expressed in organ primordia. PI 

is false coloured in magenta, mTurquoise2 is false coloured in green (Schürholz et al., 2018). 
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We further tested, if Dex-induction can activate expression of an independent T-DNA insertion, 

which is also carrying a pOp element in trans, in our driver lines. For the SAM, the pCLV3 driver 

line was crossed with a nucleus-targeted triple GFP driven by the pOP6 promoter (pOp6:3xGFP-

NLS). F1 plants of the cross were mock treated and Dex-induced and subsequently imaged by 

CLSM. Mock treatment did not exhibit any fluorescence of mTurquoise2 or GFP (Figure 10A). 

Dex-induced plants depicted mTurquoise2 and GFP fluorescence in the pCLV3 domain (Figure 

10B).  These findings confirmed the specific transactivation of transgenes in F1 plants. 

Furthermore, it could be shown that Dex-induction of  F1 crosses of the pSCR driver line and the 

VND7-VP16 effector line led to the differentiation into vessel-like elements in endodermal cells, 

due to the pSCR activity (Schürholz et al., 2018). 

Taken together, we generated 19 inducible, cell type-specific driver lines for the main cell types 

and tissues in Arabidopsis, focusing on the SAM, being able study gene function in tissue specific 

context with a high spatiotemporal resolution.  

 

Figure 10. Co-expression of mTurquoise2 and triple GFP in the SAM. pCLV3 driver line 

was crossed with 3xGFP-NLS plants and Dex-induced/mock treated F1 plants were imaged 

in the SAM. Scale bar: 40 µm. PI is false coloured in blue, mTurquoise2 in green and GFP 

in red. Modified after Schürholz et al., 2018. 
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2.3 Discussion 

2.3.1 Overexpression of VGD1 and PMEI5 reduced SAM size 

The SAM is a suitable tool to investigate the spatio and temporal preparation of individual cells 

for their future cell fate. Here, we investigated the activity of PMEs in the SAM and their function 

in defining cell identities. For our analysis, we selected stable lines overexpressing plant lines, 

VGD1ox and PMEIox, that presented severe phenotypes (Wolf et al., 2012a; Wolf et al., 2012b). 

Analysis of the size of their SAMs revealed a dramatically reduction in meristem size, fewer cells, 

and altered cell size and shape (Figure 4). Phenotypic characterization of VGD1ox further 

revealed a dwarfed phenotype, brittle side shoots, reduced fertility, elongated gynoecia and a 

small SAM. Further, previous immunolabelling of the pectin state in VGD1ox revealed a strong 

decrease in the methyl esterification state of pectin in the stem (Wolf et al., 2012a). The very 

brittle side shoots that easily break off the main shoot, would suggest that enhanced PME activity 

leads to stiffer cell walls. 

For many years, it has been proposed that enhanced PME activity and the resulting de-methyl 

esterification of pectin forms egg-box-like structures with other pectate chains via covalent binding 

with Ca2+, result in stiffer cell walls (Willats et al., 2001; Wolf et al., 2009a and b). However, a 

number of studies showed the opposite results for PME/PMEI activities and their effects on cell 

wall properties, based on atomic force microscopy (AFM) or immunolabelling (Pattathil et al., 

2010; Peaucelle et al., 2011). Overexpression of the co-expressed PME5 and PMEI3 in the SAM 

resulted in less rigid cells and enhanced primordia outgrowth in PME5ox, whereas PMEI3ox 

exhibited more rigid cell walls and no emerging primordia (Peaucelle et al., 2011). PME5 and 

PMEI3 overexpression also resulted in softer and more rigid cell walls in seedling’s hypocotyls, 

respectively (Peaucelle et al., 2015). These results are contrary to the phenotypes we observed 

in VGD1ox plants. One possible explanation can be that overexpression might activate 

compensatory effects leading to alterations of other cell wall components (Zabotina et al., 2012; 

Xiao et al., 2016) or PMEs might have specific functions dependent on the tissues where they are 

expressed, leading to the observed results. Furthermore, it is possible that PMEs acquire various 

types of de-methyl esterification, either block wise or non-blockwise leading to discrete cell wall 

states (Willats et al., 2001; Hocq et al., 2017). 

As of now, we do not provide supporting AFM or immunolabelling data for our PMEIox plants, 

however, based on the observed results and literature, it is reasonable to argue that enhanced 

PMEI activity in the SAM leads to stiffer cell walls. PMEIox plants still produce primordia, although 

their meristems are very small and the cell size distribution is skewed towards smaller cells 
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compared to Col-0. AFM analysis of dark-grown hypocotyls revealed, that slow growing cells had 

reduced PME activity grew isotropically, similar to cells in the central zone, which are still 

proliferating and repress differentiation processes such as elongation (Peaucelle et al., 2015). 

Hence, enhanced activity of PMEI5 might lead to stiffer cells and thereby smaller cells. 

Interestingly, the cells in the SAM of VGD1ox were larger in relation to Col-0 and PMEIox and 

more often presented a symmetric, square shape when compared to Col-0 (Figure 4). These 

phenotypes might be caused by a different cell wall state or altered cell division patterns. It was 

reported, that the cell size is controlled by cell cycle length, which is mainly regulated by cyclin-

dependent kinases (CDKs) and CDK-specific cyclins, between G1/S and G2/M phase (Jones et 

al., 2017). A reduction in cyclins or CDKs, for example, led to cells, since each cell remained 

longer in the corresponding cell cycle phases and therefore increased in size (Jones et al., 2017). 

Although at the moment we do not have supporting data for this hypothesis, it is feasible, that 

VGD1ox cells are larger because of less rigid cell walls due to enhanced PME activity. In future 

experiments it would be important to analyse mitotically active cells by EdU staining in VGD1ox 

and PMEIox in comparison to Col-0. 

In contrast to Col-0 cells, which often have more than four cell walls and asymmetric cell shapes, 

VGD1ox cells in the central zone of the SAM often only contain four cell walls and are 

symmetrically shaped. Based on the Errera’s rule or the adjusted Besson Dumais rule, cells in 

the centre of the meristem divide along the shortest path (Besson and Dumais, 2011). However, 

in a square, all paths have the same length except for the diagonal, so this rule cannot explain 

why the cells might be symmetrical. Therefore, it would be crucial to identify how and when cells 

divide in VGD1ox and, more importantly, if cells in pme mutants present aberrant cell shapes in 

the SAM. 

 

2.3.2 PME expression in the central zone might be regulated by WUS 

Based on a large number of studies on the methyl esterification state of pectins and their influence 

on cell wall mechanics in different tissues, we wanted to identify the function of PMEs in the shoot 

apical meristem. Analysis of microarray, RNA-Seq and ChIP-Seq data of protoplasts or WUS-GR 

inflorescence meristems revealed a suppression of expression of several PMEs in the central 

zone (Table 1) (Yadav et al., 2009a; Yadav et al., 2014; Miotk, 2015). We hypothesized that PMEs 

are necessary for cell differentiation in the SAM periphery and therefore their expression in the 

central zone must be suppressed, presumably indirectly or directly by WUS. In our focus were 

seven PMEs (PME12, AT5G53370, PME5, PME34, PME44, PME41 and PME3) which were 
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strongly expressed in the KAN1, FIL or LAS domains and showed a weak expression in the CLV3 

domain, with an exception of PME34, which was highly expressed throughout the whole SAM. 

Interestingly, for six of the PMEs other than, PME41, a WUS binding peak was identified, further 

supporting our hypothesis, that WUS acts directly on PMEs (Miotk, 2015). Based on the 

expression data, most PMEs with a WUS binding peak also showed repression in the CLV3 

domain, presumably due to binding of WUS. The homeodomain transcription factor WUS is 

known to repress genes in the central zone associated with differentiation for stem cells 

maintenance. Other WUS negatively regulated genes are for instance KAN1, KAN2, AS2 and 

YAB3 (Yadav et al., 2013).  

To further substantiate our hypothesis, we tried to generate promoter reporters of five of the seven 

PMEs, but only for PME5 we wanted to generate promoter reporter constructs of five of the seven 

PMEs, but were only able to generate a stable Arabidopsis line for PME5. The PME5 reporter line 

showed no activity in the central zone, but fluorescence in the periphery and on the abaxial side 

of the emerging primordia reflecting the expression data (Figure 6). We also tried to generate two 

pme double mutants for four of the seven PMEs. The double mutant pme41 pme44 was analyzed 

in the T2 generation, but unfortunately, no morphological phenotype was observed, which might 

be due to functional redundancy of the other five PMEs, which showed similar expression patterns 

in the SAM (Figure 5). The generation of higher number pme mutants is therefore highly 

recommended. 

Our hypothesis that PME activity must be repressed in the central zone of the meristem is further 

supported by the well-established acid growth theory and more recent studies linking auxin 

signalling to the de-methyl esterification state of pectins (Braybrook et al., 2013; Qi et al., 2014; 

Qi et al., 2017). In the SAM, peripheral cells are primed for primordia initiation by high auxin levels. 

Recent publications also showed that an increase in auxin signalling can lead to cell wall 

acidification and thus increased cell growth. On the other hand, this led to an increased PME 

activity in addition to less rigid cell walls and presumably to an easier emergence of primordia 

outgrowth. PME activity and increased auxin signalling appear to have the same effect, namely 

softening of the cell wall, however, it is not known whether they are interdependent or parallel. It 

has also been shown that an auxin-mediated decrease of pH in the apoplast inhibits PME activity 

either by inhibition of PMEIs or optimal conditions with higher pH values (enzyme activity). Studies 

on auxin signalling and the methyl esterification state of pectin in young primordia (P1) identified 

high auxin levels in the abaxial side of the primordia, concurrent with higher PME activity, resulting 

in softer cell walls (Qi et al., 2014; Qi et al., 2017). In contrary, on the adaxial side, decreased 

auxin levels and reduced PME activity resulted in stiffer cell walls (Qi et al., 2014; Qi et al., 2017). 
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Although we are lacking data about the cell wall extensibility in the VGD1ox and PMEIox SAMs 

as well as more PME reporter lines and characterization of higher number pme mutants, the 

mentioned studies about the connection of auxin and PME activity support our hypothesis, that 

PME activity is correlated with differentiation in the periphery of the SAM. Thereby, it has to be 

controlled and is presumably repressed by WUS in the central zone. Mutation of WUS binding 

cassettes in PME promoters in the SAM would be a crucial future experiments, to identify the 

regulation of PMEs by WUS. 

 

2.3.3 Inducible, cell type-specific expression 

The introduction of new techniques and methods for molecular biologists, such as the genome 

editing tool CRISPR/Cas9 (Xing et al., 2014; Wang et al., 2015) or the modular cloning system 

GoldenGate/Greengate (Lampropoulos et al., 2013), enable the comparatively fast generation of 

mutants or combinations of different DNA sequences for the easy production of long DNA 

constructs.   

Here, we were able to obtain an inducible, cell type-specific two component system for driver and 

effector lines in Arabidopsis (Schürholz et al., 2018). We were able to show that the induction 

system works for driver lines and in combination with effector lines for transactivation Figure 8, 

Figure 9, Figure 10). The system is not leaky and various promoters can be activated in different 

tissues and their activity can be adjusted by Dex concentrations or the duration of induction. 

Furthermore, the system can be applied not only for Arabidopsis, but also to other plant species 

suitable for transformation. Additionally, thanks to the modular Green Gate cloning system, users 

can easily and quickly generate their own driver or effector lines. Moreover, effector cassettes 

can also be used for cell type-specific complementation, artificial microRNA induced domain-

specific knockdown or tissue-specific expression of CRISPR/Cas9 modules. Thus, this system 

provides an extensive spectrum for applications ranging from the investigation of gene expression 

in tissue-specific context to the generation of inducible genetic perturbations. We are gaining in 

importance to use this system to better analyse the functions of PMEs and PMEIs in specific 

tissues in the SAM for example by expressing PMEs or PMEIs in the CLV3 or UFO domain.  
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3 RLP4 and RLP4-like as putative cell wall binding proteins 

3.1 Introduction  

Plant cells are surrounded by the cell wall, a stiff compartment to enable mechanical support, 

counteract the intracellular turgor to prevent cell bursting, and to serve as a physiological barrier 

against biotic and abiotic stress. On the other hand, the cell wall is pliable to allow normal plant 

growth like cell division and elongation (Cosgrove, 2005). To adopt to these varying needs, 

signals from the outside to the inside of the cell and vice versa have to be conveyed. For this 

process, plasma membrane proteins and associated signalling cascades referred to as cell wall 

signalling, are crucial for plant development like cell division, elongation and differentiation (Wolf 

et al., 2012b; Wolf, 2017). To date several cell wall receptors were identified that might be putative 

candidates for members of cell wall signalling. 

 

3.1.1 Malectin-like proteins  

Recently, a group of plasma membrane proteins have been discussed as putative cell wall binding 

proteins, because they contain a malectin-like (Mal-like)  domain (Franck et al., 2018). This 

domain is structurally related to the malectin domain, which was identified in an ER-membrane 

localized protein with the potential of binding di-glucose motifs in Xenopus laevis (Schallus et al., 

2008 and 2010). Malectin-containing proteins build a subgroup of the well-studied lectin proteins, 

that are present in all kingdoms of life (Van Holle et al., 2019). Their ligands are polysaccharides 

or proteoglycans localized either in the cell interior or at the cell surface (Van Holle et al., 2019). 

In the plant kingdom, the Mal-like domain is often appended to LRRs in the extracellular domain 

and an intracellular protein kinase domain or a short intracellular tail. Additionally, the Mal-like 

domain often appears in two divergent tandem domains, assuming that their binding functions 

and their ligands might be dfferent compared to the bacteria or animal kingdom (Bellande et al., 

2017). In A. thaliana, approximately 70 Mal-like containing proteins have been identified. They 

can be divided into two main groups, the Catharanthus roseus receptor kinase 1-like (CrRLK1L) 

proteins without LRRs, and Mal-LRRs, which contain LRRs and are comprising Mal-LRR-RLKs 

and -RLPs (Schulze-Muth et al., 1996) (Figure 11). 

3.1.1.1 CrRLK1L 

This group of malectin-like domain proteins, was named after the first identified plant-specific 

member in Catharanthus roseus RLK1-like from C. roseus cell cultures (Schulze-Muth et al., 
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1996). Ten of 17 members of the CrRLKL1 group are characterized and mainly function in cell 

expansion and cell wall sensing and signalling (Figure 11), namely: FERONIA (FER), ANXUR1 

and 2 (ANX1/2), BUDDHA PAPER SEAL 1/2 (BUPS1/2), HERKULES 1 and 2 (HERK1/2), 

THESEUS1 (THE1), [Ca2+]CYT-ASSOCIATED PROTEIN KINASE 1 (CAP1/ERULUS) and 

CURVY1 (CVY1) (Hématy et al., 2007; Guo et al., 2009a; Miyazaki et al., 2009; Keinath et al., 

2010; Nissen et al., 2016; Ge et al., 2017; Stegmann et al., 2017). All members are plasma 

membrane localised proteins with an intracellular kinase domain and an extracellular Mal-like 

domain (Boisson-Dernier et al., 2011). Although the downstream signalling cascades of many 

CrRLKL1 members are still elusive, some peptides have been proposed as ligands for CrRLKL1 

proteins. Several small peptides, known as RAPID ALKALINIZATION FACTORs (RALFs) were 

identified and proposed as ligands for CrRLK1Ls, but also carbohydrates were considered as 

putative binding factors for CrRLK1Ls (Haruta et al., 2014; Nissen et al., 2016; Stegmann et al., 

2017).  

THE1 and FER contain two extracellular tandem Mal-like domains and both appeared to function 

in cell wall signalling (Hématy et al., 2007; Feng et al., 2018). THE1 was identified in a suppressor 

screen of the mutant cesa6/procruste1-1 (prc1-1), that shows a reduction in cellulose content and 

exhibits a short hypocotyl phenotype in dark-grown conditions (Hématy et al., 2007). Mutation of 

THE1 rescued the cesa6/prc1-1 hypocotyl phenotype, albeit cellulose deficiency was not 

restored, suggesting a role of THE1 in cell wall monitoring and signalling. Therefore, it is assumed, 

that the short hypocotyl phenotype of cesa6/prc1-1 is a secondary effect due to enhanced THE1 

mediated signalling, consistent with large THE1-dependent transcriptional rearrangements in the 

mutant (Hématy et al., 2007). Recently, the secreted peptide RALF34 was identified as ligand of 

THE1 (Gonneau et al., 2018). Similarly, FER functions as a receptor for RALF1 and RALF23 

(Haruta et al., 2014; Stegmann et al., 2017). FER is involved in plant immunity, in the response 

to several hormones such as ethylene, abscisic acid and BR as well as in the recognition of pollen 

tubes by the female gametophyte (Keinath et al., 2010; Ngo et al., 2014; Li et al., 2016; Liao et 

al., 2017). Furthermore, FER is considered as mechano-sensor (Shih et al., 2014) and is involved 

in cell expansion in the female gametophyte, acting as putative co-receptor of THE1 and HERK1 

and 2  (Guo et al., 2009; Guo et al., 2009b; Höfte et al., 2015). Opposite to FER, ANX1 and 2, the 

closest FER-homologues, are important for mechano-sensing and cell wall integrity in the pollen 

tubes (Boisson-Dernier et al., 2009; Ge et al., 2017). It was recently identified, that the FER 

extracellular domain containing Mal-like domains I and II can bind to pectins (polygalacturonic 

acid (PGA)) in vitro (Lin et al., 2018; Feng et al., 2018). Up to date, studies with ANX1 could not 

reveal a putative ligand since candidates  of a variety of glucose-derived disaccharides such as 

maltose, cellobiose, mannose or PGA did not bind to ANX1 (Moussu et al., 2018).  
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3.1.1.2 Mal-LRR-RLKs 

The Mal-LRR-RLK group comprises 42 proteins in Arabidopsis, that differ from their protein 

structure from the CrRLK1L group by having additional LRRs and a conserved amino acid motif, 

Gly-Asp-Pro-Cys (GDPC), in the extracellular domain (Osička et al., 2004; Lidell et al., 2006; Hok 

et al., 2011; Kosuta et al., 2011). The GDPC motif is located between the LRRs and the Mal 

domain and was identified as processing motif, cleaved either auto-catalytically or by a yet 

unidentified protease in plants (Kosuta et al., 2011; Antolín-Llovera et al., 2014) (Figure 11).  

From the Mal-LRR-RLK group in Arabidopsis, only SENESCENCE-INDUCED RECEPTOR 

KINASE 1 (SIRK1, AT2G19190), IMPAIRED OOMYCETE SUSCEPTIBILITY 1 (IOS1, 

AT1G51800) and MATERNAL EFFECT EMBRYO 39 (MEE39, AT3G46330) have been 

functionally characterized so far (Robatzek et al., 2002; Pagnussat et al., 2005; Hok et al., 2014). 

SIRK1 is involved in defence and senescence–related processes, IOS1 is involved in ABA fungal 

pathogen responses, and MEE39 is involved in embryo development (Robatzek et al., 2002; 

Pagnussat et al., 2005; Hok et al., 2014). Apart of these three Mal-LRR-RLKs in Arabidopsis, the 

best-studied Mal-LRR-RLK in plants is SYMBIOSIS RECEPTOR-LIKE KINASE (SYMRK) from 

Lotus japonicus (L. japonicus, Lj) (Stracke et al., 2002). In terms of protein domain structure 

SYMRK is very similar to RLP4 and R4L1, with the exception of the presence of a protein kinase 

domain in SYMRK. It is required for symbiosis with arbuscular mycorrhiza rhizobia in legumes 

(Antolín-Llovera et al., 2014; Stracke et al., 2002). Like the Arabidopsis Mal-LRR-RLKs, SYMRK 

comprises a Mal-like-, a LRR-, a transmembrane and an intracellular protein kinase domain 

(Antolín-Llovera et al., 2014). In the extracellular domain, LjSYMRK also harbours a conserved 

GDPC motif between the Mal-like domain and the LRRs that is either cleaved by proteases or by 

autocatalytic self-processing. Upon cleavage of the Mal-like domain in L. japonicus, the processed 

SYMRK can interact with NOD FACTOR RECEPTOR (NFR5), which is important for symbiosis 

(Antolín-Llovera et al., 2014).  

3.1.1.3 Mal-LRR-RLPs 

In a phylogenetic analysis of malectin-like proteins in Arabidopsis, several un-characterized Mal-

LRR-RLPs were identified (Bellande et al., 2017). This group comprises nine proteins that divide 

into two subgroups. The first subgroup contains five members which harbour a transmembrane- 

and a cytosolic domain. RLP4 (AT1G28340) and R4L1 (AT1G25570) cluster into this group 

together with three uncharacterized proteins AT1G24485, AT3G46270 and AT3G46280. The 

smallest subgroup comprises four proteins, that are lacking the transmembrane and cytosolic 

domain. These proteins are R4L2 (AT3G05990), R4L3 (AT3G19230) and AT3G46250 and 

AT1G51840 (Bellande et al., 2017) (Figure 11). 
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3.1.2 LRR-RLKs/-RLPs in Arabidopsis 

The group of leucine-rich repeat (LRR) RLKs are the most abundant ones of the more than 600 

RLKs in Arabidopsis (Li et al., 1997; Clark et al., 1997; Gómez-Gómez et al., 2000; Li et al., 2002; 

Zipfel et al., 2006). They contain an extracellular LRR that is involved in ligand binding or protein-

protein interactions (Smakowska-Luzan et al., 2018). Upon binding or interaction, the intracellular 

protein kinase domain is activated and auto- or transphosphorylations initiate downstream 

signalling pathways (Figure 1).  

So far, 57 proteins in Arabidopsis thaliana were annotated as receptor-like proteins (RLPs), but 

recent studies could identify eight additional proteins, extending the group of RLPs to 65 members 

in Arabidopsis (Wang et al., 2008; Augustin, 2015; Bellande et al., 2017). RLPs contain an 

extracellular leucine rich repeat (LRR), a transmembrane- and a short cytoplasmic domain. Of 

the now 65 RLPs, only a scarce amount are studied and characterized. These are for example 

Figure 11. Overview of domain structures of CrRLK1Ls, Mal-LRR-RLKs and Mal-LRR-RLPs. 

Different protein domains in the groups of malectin-like containing proteins, CrRLK1L, Mal-LRR-

RLKs and Mal-LRR-RLPs, are depicted as followed: Signal peptide (SP) in black, malectin-like 

domain in yellow, GDPC motif in orange, LRRs in red, transmembrane domain (TMD) in blue, 

cytoplasmic domain (CD) in purple and protein kinase domain in green. Representative proteins of 

each protein class are depicted below. 
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TOO MANY MOUTHS (TMM, AtRLP17; Nadeau et al., 2002), essential in stomata development 

and CLAVATA2 (CLV2, AtRLP10; Jeong et al., 1999), important for stem cell maintenance in the 

shoot apical meristem. Several RLPs have been identified in immunity such as RLP1, RLP23 and 

RLP30 (Wang et al., 2008; Bi et al., 2014). RLP44 was recently identified as a component of cell 

wall signalling, conveying signals from the cell wall to the cell interior via interacting with 

BRASSINOSTREROID INSENSITIVE1 (BRI1) and BRI1-ASSOCIATED RECEPTOR KINASE1 

(BAK1) (Wolf et al., 2014a; Holzwart et al., 2018). Thereby, the Brassinosteroid (BR) signalling 

pathway is activated, leading to expression of cell wall biosynthetic and remodelling genes (Wolf 

et al., 2014a). Additionally, the association of RLP44 to the cell wall was identified in vitro and in 

vivo (Holzwart, 2018). However, the function of most of the other RLPs are not yet identified, but 

they are presumably involved in plant immunity or development (Wang et al., 2010a). Previous 

studies largely focused on the function of the characteristic LRR domains in RLPs in protein-

protein interaction or ligand perceptions (Hazak et al., 2017; Lin et al., 2017). 

RLP4, together with its subfamily of R4Ls, form a unique group of annotated RLPs, because they 

contain a Mal-like domain in their extracellular domain. This Mal-like domain is structurally related 

to the malectin domain in animals, which is known to bind to carbohydrates (Schallus et al., 2008). 

In plants, Mal-like domain containing proteins are therefore in focus as putative carbohydrate-

binding proteins in the ER or the plasma membrane (Boisson-Dernier et al., 2011; Bellande et al., 

2017). Thus, RLP4 could function as a cell wall binding protein and cell wall signalling receptor.  

Previous studies of RLP4 in our lab led to the identification of the RLP4-like subgroup (R4L) 

consisting of R4L1 (AT1G25570), R4L2 (AT3G05990) and R4L3 (AT3G19230) (Augustin, 2015). 

These R4Ls also contain a Mal-like domain, but R4L2 and R4L3 are lacking a transmembrane 

and cytosolic domain. The presence of a putative carbohydrate binding site in the Mal-like domain, 

made these proteins suitable candidates for cell wall binding proteins. RLP4 and R4L1 are 

expressed throughout most plant tissues, with elevated levels in the shoot apical meristem and 

the epidermis in root and shoot and both localize to the plasma membrane (eFP Browser, 

Appendix A3, A4). R4L2 and R4L3 are similarly expressed with high expression levels in the shoot 

apical meristem, pollen and the vasculature (eFP Browser, Appendix A5, A6). The localization of 

R4L2 and R4L3 in contrast is not known yet. Previous experiments with RLP4 revealed a strong 

developmental phenotype of RLP4 overexpressing plants compared to Col-0 wild type. These 

plants exhibited fasciated stems which was reminiscent of clv3-10 mutant plants, suggesting a 

developmental function of RLP4 in the shoot apical meristem (Figure 25G, Figure 39) (Augustin, 

2015). Protein sequence comparisons of RLP4 and the structurally similar protein SYMRK from 

Lotus japonicus, identified the GDPC motif also in RLP4. The GDPC motif in SYMRK is important 

for processing and cleavage of the Mal-like domain (Antolín-Llovera et al., 2014). However, 
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cleavage of the Mal-like domain could not be identified in RLP4 (Figure 1) (Augustin, 2015). 

Moreover, the ability of cell wall binding of the extracellular domain of RLP4 was tested in 

plasmolysis experiments in hypocotyls. Unfortunately, no binding could be revealed (Augustin, 

2015).  

 

3.1.3 Aims 

RLP4 and the recently identified subgroup of RLP4-like proteins contain a malectin-like domain 

that is assumed to associate with carbohydrates, similar to Xenopus malectin (Schallus et al., 

2008). Therefore, this small group of RLPs in Arabidopsis are putative candidates for cell wall 

signalling and might associate with cell wall components. Thus, we aimed to achieve the following 

objectives in this study: 

A) Reveal the function of RLP4 and RLP4-like subgroup in cell wall signalling 

B) Identify the association of RLP4 to cell wall compartments 
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3.2 Results 

3.2.1 RLP4 forms a distinct clade with the three RLP4-like proteins in a 

phylogenetic analysis of RLPs in Arabidopsis 

Arabidopsis thaliana includes 65 receptor-like proteins (RLPs) that contain an extracellular 

leucine rich repeat (LRR), a transmembrane domain and a short cytoplasmic domain (Wang et 

al., 2008). Recently, three additional RLPs were identified in a phylogenetic study, analysing RLP 

orthologues in representatives of the plant kingdom (Augustin, 2015). A subgroup of the receptor-

like protein 4 (RLP4), named RLP4-like (R4L), comprised R4L1 (AT1G25570), R4L2 

(AT3G05990) and R4L3 (AT3G19230). The newly discovered R4Ls are structurally similar to 

RLP4 and also contain a malectin-like domain and LRRs (Augustin, 2015). For the phylogenetic 

analysis, the 57 annotated RLPs together with the recently identified RLP4-likes were used. RLP4 

and its subgroup of RLP4-like cluster together with RLPs from Arabidopsis and form group IV 

(Figure 12). Within this group, R4L2 and R4L3 form one clade and RLP4 and R4L1 another, which 

displays a higher similarity in sequences of RLP4-R4L1 and R4L2-R4L3 (Figure 12). R4L2 and 

R4L3 also contain a malectin-like domain, the GDPC motif and LRRs in the extracellular domain, 

but are missing the transmembrane- and cytoplasmic domain (Figure 1; Bellande et al., 2017). 

RLP4 and R4L1 are expressed in the whole plant with high expression levels in the shoot apical 

meristem (eFP Browser, Appendix A3, A4). R4L2 and R4L3 are also expressed in the shoot apical 

meristem (SAM), whereas R4L3 is more restricted to the central zone of the SAM and both are 

highly expressed in pollen. In the root, R4L2 shows increased expression in procambium and 

phloem cells, whereas R4L3 only has elevated expression levels in the procambium (eFP 

Browser, Appendix A5, A6).  

RLP44 (group III) was recently identified as an interactor of BAK1 and BRI1, conveying signals 

from the cell exterior to the cell interior upon their interaction (Wolf et al., 2014a). Recent studies 

could also show, that RLP44 associated to the cell wall in vivo and was binding to the cell wall 

component pectate in vitro (Holzwart et al., unpublished). Although RLP44 does not contain a 

malectin-like domain like RLP4 and the R4L subgroup (group IV), they are the closest relatives 

compared to other RLPs in Arabidopsis. This might hint to a putative common function in cell wall 

signalling. RLP proteins in group I have an island domain in their extracellular domain and a N-

terminal transmembrane domain, whereas group II RLPs do not contain an island domain Wang 

et al., 2008). Group V RLPs have a long island domain in the extracellular domain (Wang et al., 

2008). In general, many RLPs from groups I, II and V are not well characterized so far.  
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Figure 12. Phylogenetic tree of amino acid sequences of RLPs in Arabidopsis. RLPs 

clustered in five main groups, group I contains RLPs with an island domain and many of the RLPs 

have a N-terminal transmembrane domain. Group II comprises RLP5, 51 and 55 without island 

domain. Group III contains RLP44 and RLP57. RLP4 and the subgroup R4L form group IV with the 

characteristic malectin-like domain. Group V comprises RLPs with a long island domain. AtCLV1 

was used to root the tree. Bar represents the branch length, that corresponds to a genetic change 

of 0.3. Branch numbers represent the percentage of bootstrap values (1000 replicates). Alignment 

and phylogenetic tree were performed by CLC Main Workbench 8.1 (Qiagen). 
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Figure 13. Phylogenetic tree of RLP4 and R4L orthologues.  Group I: Orthologues of AtR4L3. 

Group II: Orthologues of AtR4L2. Group III: Comprises orthologues of AtR4L1, except orthologue in 

Populus euphratica. Group IV: Orthologues of AtRLP4.  AtCLV1 was used to root the tree. Bar 

represents the branch length, that corresponds to a genetic change of 0.6. Branch numbers represent 

the percentage of bootstrap values (1000 replicates). Alignment and phylogenetic tree were performed 

by CLC Main Workbench 8.1 (Qiagen). 
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To further analyse the RLP group IV proteins, we searched for orthologues in several sequenced 

plant orders from brassicaceas to bryophytes. In particular, we searched for orthologues in 

Arabidopsis lyrata (Al), Capsella rubella (Cr), Populus euphratica (Pe), Medicago truncatula (Mt), 

Solanum lycopersicum (Sl), Brachypodium distachyon (Bd), Zea mays (Zm), Selaginella 

moellendorffii (Sm), Physcomitrella patens (Pp) and Marchantia polymorpha (Mp). The amino 

acid sequences of AtRLP4, AtR4L1, AtR4L2 and AtR4L3 were used as bait in protein blast 

searches for orthologues (NCBI). Sequences with the highest identity and query coverage were 

included in the phylogenetic tree that was generated by maximum likelihood phylogeny and 

bootstrapping with 1000 replicates (CLC Main Workbench 8.1, Qiagen). The phylogenetic tree 

revealed a separation of the four proteins RLP4, R4L1, R4L2 and R4L3 visualized by black 

outlined boxes (I-IV) (Figure 13). Group I comprises AtR4L3 orthologues of Al, Cr, Pe, Mt, Sl and 

Zm. Orthologues of Bd, Sm, Pp and Mp could not be identified (Figure 13). This might be due to 

missing amino acid sequences of these proteins in the data bases or AtR4L3 orthologues do not 

exist in these early land plant species. Selected amino acid sequences of Bd, Sm, Pp and Mp 

with the highest identity and query coverage do not cluster in the four groups (I-IV), but form an 

outgroup together with CLV1. Similar results were identified for AtR4L2 orthologues in group II. 

Here, no orthologues for Sm, Pp and Mp could be identified (Figure 13). Amino acid sequences 

of these R4L2 and R4L3 proteins seem to be more related to CLV1 then to other RLP4 R4L amino 

acid sequences.  

To obtain further information regarding the conservation of the four RLPs, we compared their 

domain structures (Figure 14) . Annotations of malectin-like domains (yellow), the GDPC motif 

(orange), LRRs (red), the transmembrane domain (blue) and the cytosolic domain (purple) were 

annotated according to AtRLP4 as a reference (Uniprot; ID: F4HWL3). The alignment shows, that 

all of the proteins, except of CLV1, contain a malectin-like domain, depicted by the high 

conservation of amino acids in the assigned malectin-like domain from AtRLP4 (Figure 14, 

Appendix A1). Additionally, the alignment clarifies, why R4L2 and R4L3 relative proteins from S. 

moellendorffii, P. patens and M. polymorpha do not cluster with the R4L2 and R4L3 proteins from 

the other plant orders. They harbour an intracellular domain, that is longer as the cytoplasmic 

domain of RLP4 and R4L1 and blast analysis annotated this region as protein kinases. Therefore, 

they were excluded from groups I-IV and were closer related to the protein kinase containing 

CLV1.  
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Furthermore, all of the proteins, except CLV1, have a 100 % conserved GDPC motif, which is 

also present in SYMRK (Antolín-Llovera et al., 2014). In LjSYMRK, this motif is necessary to 

cleave off the malectin-like domain and enable interaction of LRRs with other proteins. It is 

assumed, that the GDPC motif is conserved in proteins containing a malectin-like domain and 

LRRs in their extracellular domain to enable processing and fine tune interaction with different 

partners. CrRLK1L proteins, which contain a malectin-like domain, but not LRRs, do not contain 

this GDPC motif. However, processing of AtRLP4 and releasing of the malectin-like domain could 

not been shown so far (Sebastian Augustin, Master thesis, 2015).  

The LRR repeats are as well conserved in all of the proteins with varying numbers of LRRs. For 

AtRLP4, four LRRs are assigned. The main difference regarding protein sequence conservation 

is found in the transmembrane domain and the cytosolic domain. Here, R4L2 and R4L3 proteins 

that cluster to form group I and II are lacking the transmembrane and cytosolic domains. The 

short sequences that were aligned and annotated to the cytoplasmic domain in the alignment, 

probably also belong to the extracellular domain (Figure 14, Appendix A1). The alignment also 

depicts, why R4L2 and R4L3 relative proteins from S. moellendorffii, P. patens and M. 

polymorpha, are excluded from group I and II. They contain a transmembrane domain and an 

intracellular domain. These proteins are presumably more related to SYMRKs, which are in terms 

of protein structure similar to RLP4 but have an additional kinase domain (Figure 11). Thus, R4L2 

and R4L3 are maybe not as conserved as RLP4 and R4L1 in the plant kingdom, the orthologue 

sequences of these proteins were not assigned in the database or were filtered out due to low 

identity and query cover. It might also be, that these taxa do not encode for R4L2 and R4L3.  

In summary, phylogenetic analysis of AtRLP4 and AtR4L subgroup proteins reveal, that AtRLP4 

and AtR4L1 are well conserved up to M. polymorpha. AtR4L2 and AtR4L3 are also conserved in 

Figure 14. Conservation of protein domains in RLP4, R4L1, R4L2 and R4L3 proteins. Domain 

structures were assigned according to AtRLP4 protein domains (Uniprot; ID: F4HWL3). Malectin-like 

domain (yellow), GDPC motif (orange), LRRs 1-4 (red), transmembrane domain (blue), cytoplasmic 

domain (purple). Putative RLP4, R4L1, R4L2 and R4L3 orthologues of the following plant species 

were aligned: Arabidopsis thaliana (At), Arabidopsis lyrata (Al), Capsella rubella (Cr), Populus 

euphratica (Pe), Medicago truncatula (Mt), Solanum lycopersicum (Sl), Brachypodium distachyon 

(Bd), Zea mays (Zm), Selaginella moellendorffii (Sm), Physcomitrella patens (Pp) and Marchantia 

polymorpha (Mp).  Green bars represent conservation of amino acids in percentage. AtCLV1 was 

used as outgroup. Alignment was performed using CLC Main Workbench 8.1 (Qiagen). 
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the plant kingdom, but presumably evolved more recently as AtRLP4 and AtR4L1, because no 

orthologues could be identified in S. moellendorffii, P. patens and M. polymorpha. 

 

3.2.2 RLP4 is expressed in the SAM and localised in cell edges in the root 

To elucidate the function of RLP4 in plant development, we expressed RLP4 fused to GFP via a 

glycine-serine-rich linker (linker-GFP) at the C-terminus under control of its own promoter, and 

terminator. The pRLP4:RLP4:linker-GFP construct was transformed into A. thaliana ecotype 

Columbia (Col-0, referred to as wildtype (WT)). Transformed plants did not exhibit an appreciable 

growth or developmental phenotype. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. RLP4 is expressed in the root and the shoot apical meristem (SAM). 

pRLP4:RLP4:linker-GFP expression and localization in roots of six-day-old seedlings and in the 

shoot apical meristem of 40-day-old plants. (A) Expression of RLP4 in the differentiated root. 

Scale bar: 20 µm. (B) Close up of (A) with polar RLP4 localization in cell edges, fire projection. 

Scale bar: 10 µm. (C) RLP4 expression in root primordium. Scale bar: 20 µm. (D) Expression of 

RLP4 in the shoot apical meristem. Maximum projection of GFP signal. Scale bar: 20 µm. (E) 

Fire projection of (D) with maximum fluorescence intensity in the periphery and early developing 

primordia. Note maximum fluorescence in the forming crease between meristem and primordia 

(white arrow heads). Maximum projection, scale bar: 20 µm. (F) Cross section of a SAM depicting 

expression of RLP4 only in the epidermis (L1) of the meristem and young flower organs.  
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Referring to publicly available gene expression data (eFP, Genevestigator, Appendix A3-A6), 

RLP4 is expressed in the whole plant, with elevated levels in the shoot apical meristem and in the 

epidermis. To corroborate these data, we analysed the expression and subcellular localisation of 

pRLP4:RLP4:linker-GFP in six-day-old-roots and 40-day-old inflorescence meristems. RLP4-

GFP fluorescence was detected in differentiated root cells. Here, RLP4 exhibited a polar 

localization with a maximum fluorescence in cell edges of the epidermis (Figure 15A,B). 

Furthermore, RLP4 expression was elevated in root primordia and young lateral roots, also 

depicting polar localization in epidermal cell edges (Figure 15C). Expression in the root 

vasculature was not visible, in contrast to what was reported for RLP44 in previous studies 

(Garnelo Gómez, 2017; Holzwart et al., 2018). 

Shoot apical meristems of inflorescences were dissected and imaged after 40 days. 

pRLP4:RLP4:linker-GFP expression was observed in the epidermis (L1) of the SAM and the 

surrounding primordia exhibiting a fluorescence maximum in the periphery of the meristem in 

early forming creases between the meristem and emerging flower primordia (stage 1) and young 

primordia (stage 2) (Figure 15D-F) (Smyth et al., 1990). RLP4-GFP was mostly localized to the 

plasma membrane, but a cell edge localization of RLP4, as it was visible for differentiated 

epidermis cells in the primary root or in lateral roots, was not detectable in epidermal cells in the 

SAM. The polar localization of RLP4 in epidermal cell edges of differentiated cells in the root and 

in young lateral roots, might indicate a specific function of RLP4 in these areas. By overexpressing 

RLP4 and R4L1, we wanted to analyse, if elevated levels of RLP4 and R4L1 influences the overall 

plant phenotype. 

 

3.2.3 Overexpression of RLP4 and R4L1 in the SAM did not alter above-ground 

phenotype 

Previous overexpression of RLP4 induced the formation of fasciated stems, but this phenotype 

was either not due to the RLP4 overexpression or was silenced in the next generation (Sebastian 

Augustin, Master’s thesis, 2015). Therefore, we generated GFP-fusion constructs of RLP4 and 

R4L1 that were expressed under the control of the ribosomal protein S5a (pRPS5a) promoter 

(pRPS5a:RLP4:GAGAGA-GFP and pRPS5a:R4L1:GAGAGA-GFP). The RPS5a promoter is 

mainly active in proliferating cells such as the shoot and the root apical meristems (Weijers et al., 

2001). We decided to use the GAGAGA-GFP GreenGate module, that uses a short glycine-

alanine linker and was kindly provided by Philipp Denninger (Guido Großmann Lab), because the 

previously used linker-GFP ((GS)11-GF) module consisted of a long stretch of eleven Gly-Ser and 
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it was previously shown that in fusion constructs with RLP44 the serines in the linker region can 

be phosphorylated (Garnelo Gómez, 2017). Fluorescence microscopy analysis in shoot apical 

meristems revealed, that both fusion proteins were located at the plasma membrane (Figure 16). 

In comparison to pRLP4:RLP4:linker-GFP, the pRPS5a-dependent expression resulted in 

broader expression patterns with detectable fluorescence in the whole meristem, not only in the 

epidermis as in plants expressing RLP4 under the endogenous promoter (Figure 15F; Figure 

16A,D). However, the overexpressing lines also displayed a maximum fluorescence intensity in 

young primordia and in the periphery, close to a forming crease which might be due to increased 

proliferation. Alternatively, post-translational modification could account for this fluorescence 

distribution. The fluorescence minimum was detected in the centre of the meristem (Figure 

16B/E), where the slowly dividing stem cells are located. Moreover, pRPS5a:R4L1:GAGAGA-

GFP depicts more signal in internal vesicles (Figure 16F), while pRPS5a:RLP4:GAGAGA-GFP is 

only visible at the plasma membrane (Figure 16C).  

 

 

 

 

 

 

 

 

 

 

Figure 16. Expression of pRPS5a:RLP4:GAGAGA-GFP and pRPS5a:RL1:GAGAGA-GFP in 

the whole shoot apical meristem. (A-C) pRPS5a:RLP4:GAGAGA-GFP expression in the SAM. 

(B) Top view of RLP4 overexpression in the SAM, fire projection. (C) Close up of RLP4 

overexpression in the centre of the SAM. (D-F) pRPS5a:R4L1:GAGAGA-GFP expression in the 

SAM. (A,D) Fire projections of cross section and (B,E) top view of the SAM. (C,F) Close ups in 

the centre of the SAM. Scale bars: 20 µm.  
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In a previous study, overexpression of RLP4 under control of the viral CaMV35S or the RPS5a 

promoter revealed fasciated shoots in around 50 % T1 plants (Sebastian Augustin, Master thesis, 

2015). However, this strong phenotype was not observed anymore in T2 plants (Sebastian 

Augustin, Master thesis, 2015). RLP4 and R4L1 overexpressing plants in this study, did not exhibit 

developmental phenotypes (data not shown). Taken together, overexpression of RLP4 and R4L1 

did lead to an increased expression domain of RLP4 and R4L1 in the SAM also in cell layers 

below the epidermis (L1). However, RLP4 and R4L1 overexpression in the SAM did not depict an 

aberrant phenotype compared to Col-0. 

 

3.2.4 CRISPR/Cas9-derived rlp4 r4l1 double mutants depict altered phenotypes 

To further characterise the function of RLP4 and R4L1 in Arabidopsis, single T-DNA lines were 

analysed (rlp4-1 (SALK_039264), rlp4-3 (WiscDsLox_419A01), rlp4-4 (WiscDsLox_437H02), 

r4l1-1 (SALK_147044)). However, no visible growth and developmental phenotype was observed, 

possibly due to functional overlap of RLP4 and R4L1 (Sebastian Augustin, Master thesis, 2015). 

Thus, we aimed to generate rlp4 r4l1 double mutants. Because RLP4 and R4L1 genes are located 

in close proximity on chromosome one (R4L1: 8995600, RLP4: 9940101), recombination and 

thereby creation of double rlp4 r4l1 mutants by crossing two single T-DNA lines, is very unlikely. 

Therefore, we employed the CRISPR/Cas9 technology (Jinek et al., 2012; Xing et al., 2014; Wang 

et al., 2015). The CRISPR/Cas9 (clustered regularly interspaced short palindromic 

repeats/CRISPR-associated protein 9) system makes use of a sequence-specific nuclease, the 

RNA-guided DNA endonuclease zCas9, Zea mays codon-optimized Cas9. In this system, a target 

specific guide RNA (gRNA) enables the sequence specific introduction of a DNA double strand 

break catalysed by Cas9. The DNA double strand break activates the plant DNA repair machinery 

often leading to an insertion or deletion of one or several nucleotides. These Insertions and 

deletions alter the amino acid sequence codon and often introduce a premature stop codon 

resulting in truncation of the gene of interest.  With this technique, multiple genome modifications 

can be created in a fast and easy manner (Xing et al., 2014; Wang et al., 2015; Zhang et al., 

2018).  

For both, RLP4 and R4L1, a gRNA was designed using the ChopChop webpage 

(http://chopchop.cbu.uib.no/). To increase the possibilities of creating a knock-out of the genes of 

interest (GOI), the 5’ end of the gene was targeted. In particular, we targeted the beginning of the 

second exon of both genes (Figure 17A). The suggested gRNAs had an efficiency with values 

over 70 %, no self-complementary and no off-targets (0-3 nucleotides) (Figure 17B). For cloning, 
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the GreenGate cloning method (Lampropoulos et al., 2013) was used to either create single 

mutants or to combine up to three gRNAs in one vector in order to target both genes 

simultaneously. Arabidopsis T1 plants were selected on hygromycin containing media and 

approximately 20 plants were sequenced in order to identify a mutation in RLP4 and R4L1. Three 

mutant alleles could be identified for RLP4 and one for R4L1 (Figure 17C). These mutations were 

verified in the T2 generation and only plants without the Cas9 T-DNA were propagated to the next 

generation and were used for experiments. In RLP4, three different alleles were identified. The 

DNA double strand break led to insertion of either an adenosine (a), a thymidine (t) or a guanosine 

(g), between guanosine (g) 263 and cytidine (c) 264 in the gDNA sequence of RLP4.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Design of rlp4 r4l1 CRISPR/Cas9 mutants. (A) Overview of UTRs (grey boxes), 

exons (black boxes) and introns (black lines) in RLP4 and R4L1, respectively. Cas9 recognition 

site depicted in green. (B) gRNA sequences and orientation for RLP4 and R4L1 used in the 

CRISPR/Cas9 approach with PAM sequence indicated in blue. (C) RLP4 and R4L1 wild type 

CRISPR/Cas9 target sites together with corresponding amino acids. Mutations for RLP4 and 

R4L1 are depicted in the boxes below, together with the nucleotide insertion (red) and changed 

amino acid sequences (bold and black).  
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This resulted in a frame shift in the amino acid sequence at position A62D and a premature stop 

codon at position 76 of the amino acid sequence. In R4L1, only one mutation, the insertion of a 

thymidine between c362 and t363 in the gDNA was identified. This also led to a frame shift in the 

amino acid sequence at position G96W and a pre-mature stop codon at position 106 of the amino 

acid sequence.    

Three independent double mutants rlp4 r4l1 #6-13, #25-17 and #32-11 (referred to as rlp4 r4l1) 

were identified. All three had the same mutation in R4L1, but different mutated alleles in RLP4.  

Line #6-13 had an insertion of an “a”, line #25-17 of a “t” and line #32-11 of a “g” (Figure 17C). All 

three insertions resulted in an amino acid frame shift and pre-mature stop codon. Additionally, 

rlp4 and r4l1 single mutants were also obtained, rlp4 #30-3 carried the same insertion of an “a” in 

RLP4 like double mutant line #6-13. Line r4l1 #24-13 carried the same “t” insertion in R4L1 like 

the double mutant lines. Because single rlp4 and r4l1 mutants did not depict a striking phenotype, 

the double mutant line rlp4 r4l1 #32-11 was used for further experiments. 

 

3.2.5 rlp4 r4l1 does not have a shoot apical meristem phenotype 

Based on publically available expression data of RLP4 and R4L1 (eFP Browser) and the analysis 

of pRLP4:RLP4.linker-GFP expression in the SAM, we wanted to test, if the loss of RLP4 and 

R4L1 might alter SAM morphologies in rlp4 r4l1. We first measured the meristem size, number of 

cells and cell size in the SAM of the rlp4 r4l1 double mutant. For quantification, shoot apices of 

rlp4 r4l1 and Col-0 inflorescences were dissected and stained with propidium iodide (PI), which 

presumably stains de-methylesterified pectins in living plant cells. Z-stacks were taken by 

confocal laser scanning microscopy and were quantified by using MorphoGraphX (Barbier de 

Reuille et al., 2015). Analysis of rlp4 r4l1 double mutant and Col-0 in the shoot apical meristem, 

did not reveal defects in cell division, which would have been depicted by either smaller or bigger 

cells in comparison to Col-0, or altered shapes of cells (Figure 18A), neither in the periphery 

where RLP4 exhibited the highest expression, driven by the endogenous promoter (Figure 15E). 

In addition, rlp4 r4l1 double mutants did not reveal a significant difference in shoot apical meristem 

size, number of cells and mean cell size compared to Col-0 (Figure 18B-D). 
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.  

 

 

3.2.6 RLP4 and R4L1 do not control vascular cell fate 

Studies of RLP44, which is closely related to RLP4 and R4L1 (Figure 12) indicated, that the cell 

wall signalling mutant rlp44cnu2 exhibited an increased number of metaxylem cells in the primary 

root (Holzwart et al., 2018). Although expression of RLP4 under the endogenous promoter only 

revealed weak expression in the vasculature, we aimed to test whether the rlp4 rl41 double mutant 

exhibited a similar phenotype.   

The vascular tissues comprise five xylem cells in the centre of the stele, oriented in one 

longitudinal axis. In the middle of the xylem axis, three metaxylem cells are located and 

encompassed by one protoxylem cell on each side. Periclinal to the xylem axis are the two phloem 

poles, comprising of  companion cells and sieve elements. The procambium is embedded 

between xylem and phloem and is the stem cell niche for xylem and phloem cells. 

Figure 18. Mutations in RLP4 and R4L1 do not change SAM morphology. (A) Representative 

images of Col-0 and rlp4 r4l1 shoot apical meristems, top view. SAMs were stained with PI. Scale 

bar: 20 µm (B) Quantification of shoot apical meristem size (C) cell number and (D) mean cell size 

in Col-0 and rlp4 r4l1. Shoot apices were dissected from primary plant inflorescences, 40-45-day-

old plants. Image analysis was performed using MorphoGraphX (mean ± SD, n=11) Student t-test 

reveal no significance between the two genotypes.  
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During vasculature differentiation, xylem cells develop a secondary cell wall that incorporates 

lignin. In order to investigate a potential function of RLP4 and R4L1 in the root vasculature, we 

stained lignin using basic fuchsin and stained cellulose using calcofluor white. Root vasculature 

was analysed in the differentiation zone, depicting fully differentiated proto- and metaxylem cells. 

Wild type roots always consisted of two protoxylem cells and three to four metaxylem cells in one 

plane axis (Figure 19A-C). In rlp4 r4l1 double mutants no difference in protoxylem or metyxylem 

cell numbers (Figure 19A-C). In addition, cross sections of the root enabled counting of total cell 

numbers in the vasculature, only counting phloem, xylem and procambium cells. Col-0 wild type 

plants have in general a consistant number of 30 cells within the vasculature in the early 

differentitation zone of the root. rlp4 r4l1 exhibited similar numbers of total vascular cells as Col-

0 (Figure 19D).  

 

Figure 19. RLP4 and R4L1 might not regulate xylem cell fate in the root. (A) Representative 

images of longitudinal sections of proto- (PX) and metaxylem (MX) cells, stained with basic fuchsin 

(left) and cross sections of the vasculature depicting all vascular tissues, that were stained with 

calcofluor white (right). (B) Percentage of protoxylem cell numbers in Col-0 and rlp4 r4l1. Two 

protoxylem cells were counted in both genotypes (light grey). (C) Percentage of metaxylem cell 

numbers in Col-0 and rlp4 r4l1. Three (middle grey) or four (dark grey) metaxylem cells were counted 

in both genotypes. (D) Total vascular cell numbers of Col-0 and rlp4 r4l1. Col-0 (n=17), rlp4 r4l1 

(n=16). Pairwise t-test revealed no significance between Col-0 and rlp4 r4l1.  
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3.2.7 rlp4 r4l1 double mutants are hyposensitive towards salt stress 

To further shed light on the function of RLP4 and R4L1 in plant development and their putative 

role in sensing cell wall properties, we treated rlp4 and r4l1 single and rlp4 r4l1 double mutants 

with different cell wall interferring chemicals and compared root growth or hypocotyl growth to 

Col-0 wild type. It has been proven, that different chemicals interfere with cell wall homeostasis 

for instance by imbalancing the ion homeostasis or inhibit the synthesis of cell wall components. 

All of these effects might have an impact on growth and on root growth in particular.  

First, we investigated the growth of Col-0, rlp4 and r4l1 single and rlp4 rl41 double mutants on 

media containing increasing sodium chloride (NaCl) concentrations, ranging from 50 – 125 mM. 

Increased concentrations of NaCl in the surrounding environment can cause osmotic and ionic 

stress, which leads to cellular toxicity and limitations in water uptake (Bohnert et al., 1995; Niu et 

al., 1995; Feng et al., 2018). In roots, high salt concentrations often lead to altered growth rates 

and can result in radial cell expansion (Dinneny et al., 2008).  Previous studies indicated that 

several mutants impaired in cell wall development and signalling displayed hypersensitivity to 

NaCl treatment, including rlp44cnu2  (Wu et al., 1996; Scheible et al., 2001; Wolf et al., 2014a; 

Zhao et al., 2018). In control conditions, rlp4 and r4l1 single and double mutants already depicted 

slightly longer roots than Col-0 (Figure 20A,B). At 125 mM NaCl conditions rlp4 and r4l1 and 

corresponding double mutants exhibited a significantly increased root growth compared to Col-0 

wild type, indicating that single and double mutants are more tolerant towards higher salt 

concentrations than Col-0 (Figure 20A). This effect might be due to altered ion concentrations in 

cell compartments, ion transport, cell wall composition or cell wall signalling in the rlp4 and r4l1 

single and double mutants. In addition to salt stress, we challenged the growth of rlp4 and r4l1 

single and double mutants with isoxaben, a cellulose synthase inhibitor (Heim et al., 1990). 

Because the effect of isoxaben is quite strong on light grown seedlings, already at low 

concentrations, we performed the experiment in the darkness with four-day-old etiolated 

seedlings. In control conditions single and double mutants depicted longer hypocotyls compared 

to Col-0. A similar result was also investigated for the roots. Isoxaben treatment reduced the 

hypocotyl growth of all mutants and Col-0 wild type at elevated isoxaben concentrations (Figure 

20B). Concentrations of 0.01 to 0.5 nM isoxaben had almost no effect on hypocotyl growth in all 

genotypes, whereas the highest applied concentration of 5 nM almost inhibited completely 

hypocotyl growth in the mutants and Col-0 (Figure 20B). rlp4 rl41 double mutants depict a slight 

insensitivity to isoxaben at 1 nM concentrations, but these data require further validation. 
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In summary, the rlp4 r4l1 double mutant exhibited slightly longer roots at standard conditions and 

hyposensitive root growth in response to 125 mM NaCl concentrations compared to Col-0 wild 

type. Thereby, rlp4 r4l1 double mutants depicted an antagonizing phenotype to rlp44 mutants, 

which were hypersensitive on elevated NaCl concentrations (Wolf et al., 2014a). It can be 

presumed, that RLP4 and R4L1 are involved in an RLP44-independent function. On the other 

hand, inhibition of cellulose synthesis, led to a slight reduction in hypocotyl growth.  

 

3.2.8 rlp4 r4l1 r4l2 r4l3 quadruple mutants depict elevated root growth  

Based on the phylogenetic analysis of RLPs, we speculated that the RLP4-R4L clade of RLPs 

might exhibit some degree of functional overlap among these sub-family members. This might be 

the reason, why we did not observe severe macroscopic and developmental phenotypes of the 

rlp4 r4l1 double mutant. To further investigate the function of the RLP4-R4L gene family, we 

generated rlp4 r4l1 r4l2 r4l3 quadruple mutants using the CRISPR/Cas9 genome-editing 

technique. Similar to the generation of the rlp4 r4l1 double mutant, a suitable gRNA for each 

target gene, R4L2 and R4L3, was designed by using the ChopChop webpage, targeting the 

beginning of exon 2 (Figure 21A,B). Several R4L2 mutant alleles were obtained harbouring a 

Figure 20. rlp4 r4l1 single and double mutants are hyposensitive towards salt stress. (A) 

Absolute root length of six-day-old Col-0 wild type, rlp4 and r4l1 single and rlp4 r4l1 double mutants 

germinated and grown on media containing indicated NaCl concentrations. Mean ± SD, representative 

graph of three technical replications, n=15-20. (B) Absolute hypocotyl length of four-day-dark grown 

Col-0 wild type, rlp4 and r4l1 single and rlp4 r4l1 double mutants on media supplemented with indicated 

isoxaben concentrations. Mean ± SD, representative graph of three technical replications, n=20-25. 

Significance was tested by ANOVA with post-hoc tukey. Experiments and data analysis were 

performed by Enric Bertran Garcia de Olalla, supervised by A.-K. Schürholz. 
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nucleotide insertion and thereby introducing a frame shift causing a pre-mature stop codon 35 

codons downstream of the insertion. Either an adenosine (a), a cytidine (c) or a thymidine (t), was 

inserted after the nucleoside at position 199 downstream of the ATG in the gDNA sequence. In 

lines #14-3/14-19, the insertion of “t” introduced an amino acid exchange at position S38F of the 

amino acid sequence, lines #14-6/26-3 carried a “c” insertion causing the exchange of amino acid 

at position V39R and the insertion of an “a” in line #26-2 led to the exchange at position S38Y. 

The insertion caused an exchange of amino acids and a subsequent frame shift in the amino acid 

sequence in all these lines. As a fourth mutant allele we identified a 30 nucleotide in-frame 

deletion, resulting in a loss of ten amino acids (CGASSSSVID) in lines #21-7/21-13. The deletion 

is located after 165 bp downstream of the ATG in the gDNA sequence and at position C32G in 

the amino acid sequence. For R4L3, also three nucleotide insertion alleles were identified leading 

to a pre-mature stop codon 15 codons downstream of the insertion site. Either an adenosine (a), 

a cytidine (c) or a thymidine (t), was inserted after the nucleoside at position 189 downstream of 

the ATG in the gDNA sequence. In line #14-3/14-19, the insertion of “c” led to an amino acid 

exchange at position P42T of the amino acid sequence, lines #21-7/21-13 carried a “t” insertion 

leading to the exchange of amino acid at position T41I and the insertion of an “a” in the lines #26-

2/26-3 led toan amino acid exchange at position T41N. The insertion led to an exchange of amino 

acids and a subsequent frame shift in the amino acid sequence in all these lines. As a fourth 

mutant allele we identified a 21 nucleotide in-frame deletion, resulting in a loss of seven amino 

acids (NLNEIEY) in the line #14-6. The deletion is located after 268 bp downstream of the ATG 

in the gDNA sequence and at position N34T in the amino acid sequence. 

T1 lines #14, #21 and #26 were bi-allelic for mutations in R4L2 as well as for R4L3. Thus, for one 

allele, two different mutations can appear in the next generation (Figure 21C). Several 

independent quadruple mutant lines were phenotypically analysed in the T3 generation. All six 

lines, except line #14-19, exhibited a similar phenotype on soil (Figure 21). However, quadruple 

mutants appeared to have slightly wider rosette leaves, or leaves are flattened compared to Col-

0 wild type (25-day-old plants) (Figure 21D). Line #14-19 was smaller and had wrinkled rosette 

leaves (Figure 21D). Also the roots of line #14-19 six-day-old seedlings are significantly shorter 

compared to the other quadruple mutant lines and Col-0 wild type (Figure 21E). Since both lines, 

#14-3 and #14-19 harbour exactly the same mutations in R4L2 and R4L3 and all other quadruple 

lines exhibit a similar phenotype, line #14-19 most possibly contains an un-specific background 

mutation introduced by Cas9 in an off-target gene or from the T-DNA insertion (Zhang et al., 

2018). Therefore, lines #14-3, #14-6, #21-7, #21-13, #26-2 and #26-3 were kept. As previously 

discussed, we hypothesised, that rlp4 r4l1 double mutants did not depict a severe macroscopic 

or microscopic phenotype, because of a possible functional redundancy of the RLP4 clade. 
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However, initial macroscopic phenotyping revealed only a mild rosette phenotype (Figure 21D) 

and slightly longer roots in rlp4 r4l1 r4l2 r4l3 quadruple mutants compared to Col-0 wild type 

(Figure 21E). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Design and phenotypic analysis of rlp4 r4l1 r4l2 r4l3 CRISPR/Cas9 mutants. (A) 

Overview of the two target genes R4L2 and R4L3 with 5’- and 3’- UTRs (grey boxes), exons (black 

boxes) and introns (black lines). Scissors indicate Cas9 target site. (B) gRNA orientation and 

sequences of the two target genes with PAM sequence indicated in blue. (C) R4L2 and R4L3 WT 

sequences in proximity of the target region. Amino acid sequences are indicated below.  Mutant 

alleles of R4L2 and R4L3 are depicted in the boxes below together with the changes in gDNA and 

amino acid sequences (D). Images of 25-day-old Arabidopsis T3 plants with indicated genotypes. 

Scale bar: 5 cm. (E) Root length measurements of six-day-old Col-0 wild type and quadruple mutant 

alleles (T3). Statistically significant differences from Col-0 per repetition after pairwise t-test 

(*p<0.05, **p<0.01, ***p<0.001). Three technical repetitions, n=15-20 per repetition.  
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3.2.9 RLP4-ECD associates with the cell wall  

RLP4 and its subfamily of R4Ls comprise a unique feature in the family of RLPs in A. thaliana, 

the malectin-like (Mal) domain. This extracellular domain (ECD) is known to bind carbohydrates 

in Xenopus (Schallus et al., 2008). Thus, the malectin-like domain of RLP4 and the R4Ls making 

them to putative cell wall binding proteins in Arabidopsis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: RLP4-ECD associates to the cell wall in lateral roots. (A) Schematic overview of 

RLP4 full length protein with the signal peptide (SP), malectin-like domain (Mal), GDPC motif, 

LRRs, the transmembrane domain (TMD) and the cytosolic domain (CD). RLP4 extracellular 

domain (RLP4-ECD) lacks TMD and CD. (B-E) pUBQ10:RLP4-ECD:mCherry and plasma 

membrane marker p35S:GFP:LTI6b in Arabidopsis lateral root cells (seven day-old). For 

plasmolysis, seedlings were incubated in 0.6 M sorbitol. (B) GFP-LTI6b is localized at the 

plasma membrane of plasmolysed cells. (C) RLP4-ECD:mCherry attaches to the cell wall with 

increased signals in cell wall edges (white arrow heads). (D) Merged GFP and mCherry 

channels. (E) Merged channels of GFP, mCherry and brightfield. Scale bars = 10 µm. 
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To test this hypothesis, we fused the ECD of RLP4 to mCherry (pUBQ10:RLP4-ECD:mCherry) 

and investigated the localization of this construct in transgenic Arabidopsis plants. The RLP4-

ECD construct contains the signal peptide, the malectin-like domain, the GDPC motif and LRRs, 

which leads to secretion into the apoplast (Figure 22A). The plasma membrane bound GFP-LTI6b  

cannot associate with the cell wall and served as negative control and plasma membrane marker 

(Cutler et al., 2000). The p35S:GFP-LTI6b construct  was stably expressed in Arabidopsis and 

crossed with the stable Arabidopsis line pUBQ10:RLP4-ECD:mCherry. Descendenats of the 

cross were used for plasmolysis experiments. To study putative cell wall association of RLP4-

ECD, we incubated plant tissues in a hypertonic solution, which leads to plasmolysis, meaning 

the detachment of the plasma membrane from the cell wall. Therefore, plasma membrane binding 

can be distiniguished from cell wall binding. For plasmolysis analysis seven-day-old seedlings 

expressing p35S:GFP-LTI6b together with pUBQ10:RLP4-ECD:mCherry were incubated in 0.6 

M sorbitol. After 20 min, plasmolysis was clearly visible for epidermis and cortex cells of lateral 

roots (Figure 22B,D,E). RLP4-ECD:mCherry exhibited an increased signal at the cell walls with a 

maximum fluorescence intensity in cell edges (Figure 22C). This accumulation is a clear indication 

of an association of RLP4-ECD with cell wall components, especially in the cell edges. In contrary, 

GFP-LTI6b located at the plasma membrane (Figure 22B). 

To gain further insights into the function and interaction of proteins with other proteins or ligands, 

such as hormones or cell wall components, we can make use of crystal structure analysis. 

Although, the crystal structure of the extracellular domain of RLP4 is not yet explored, we can 

make use of recent studies of ANX1 and 2, CrRLK1L proteins, that contain malectin-like domains 

(Moussu et al., 2018).  

To predict the crystal structure of RLP4-ECD protein, we used Phyre2 

(http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index). The prediction is based on similar 

amino acid sequences and protein domains. For AtRLP4, the ANX1 crystal structure served as a 

template (PDB 6fig) 85 % of the RLP4 protein could be predicted and modelled (Figure 23). The 

ribbon diagram of RLP4 shows the malectin-like (Mal) domain at the N-terminal moiety of the 

protein (Figure 23A). Due to the similar structure of this domain compared to the ANX1 and 2 

malectin-like domains, it is likely, that RLP4 harbours two tandem malectin-like domains, termed 

mal-N and mal-C (Moussu et al., 2018). The four LRRs are depicted by the parallel β leaflet 

structure and are followed by the transmembrane domain (green) and the short cytoplasmic tail 

(red) (Figure 23A). Surface representations of RLP4 reveals a deep cleft in the N-terminal moiety 

of the malectin-like domain and might be a putative area for binding of cell wall components 

(Figure 23B,C, black triangles). 
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In summary, we could identify, that RLP4-ECD associates with cell wall components in lateral 

roots. Therefore, RLP4 might be a putative cell wall signalling components. In the future, 

mutational anaysis of amino acids forming this cleft could help to unravel a potential function of 

the RLP4 Mal-domain in binding to cell wall components. Furthermore, douple and quadruple 

RLP4 and RLP4-like mutants displayed slightly longer roots in standard growth conditions, which 

has to be further analysed by induction of mechanical cell wall stresses and subsequenct CLSM 

analysis. In addition, immunolabelling of cell wall components in the mutants might reveal further 

insight into the function of RLP4 in cell edge localisation.  

 

 

 

 

 

 

Figure 23. Predicted 3D protein structure of AtRLP4. (A) Ribbon diagram of AtRLP4 depicts 

the extracellular domain with LRRs and malectin-like domain in gray (Mal), the transmembrane 

domain (TMD) in green and the cytosolic domain (CD) in red. (B) Surface representation of AtRLP4 

reveals a deep cleft in the malectin-like domain (black arrows). (C) Close up and side view of the 

cleft (black arrows). AtRLP4 strucutre was modeled using Phyre2 and EzMol based on the 

ANXUR1 structure (PDB 6fig) as a template. 
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3.3 Discussion 

3.3.1 RLP4 and R4L subgroup proteins are highly conserved 

Previous phylogenetic analysis of RLPs in A. thaliana grouped 57 proteins into the RLP family 

(Wang et al., 2008). Recently, three un-identified RLPs were discovered that form a subgroup of 

RLP4 and also contain the malectin-like domain that is unique for RLPs (Sebastian Augustin, 

Master thesis 2015; this study). The analysis of a phylogenetic tree of 60 RLPs (Figure 12) 

revealed that RLP4 and the subgroup R4L form one group, which is evolutionary distinct to other 

RLPs, because of their extracellular malectin-like domain. Within this group, R4L2 and R4L3 form 

a sub-clade, because they do not contain the transmembrane domain. These proteins are not 

characterized and their localizations have not been determined yet (Bellande et al., 2017). 

Cell wall binding capacities have been proposed for malectin-like containing proteins such as the 

RLP4-R4L group IV (Figure 12) (Boisson-Dernier et al., 2011). Structurally, RLP4 and R4L1 are 

similar to the Lotus japonicus SYMRK, which has comparable protein domains like the two RLPs, 

but additionally contains an extracellular kinase domain, which is missing in all RLPs (Antolín-

Llovera et al., 2014). The malectin-like domain in SYMRK is cleaved at the conserved GDPC 

motif, located between the malectin-like domain and LRRs. After processing and cleavage of the 

malectin-like domain, LRRs can bind to NFR5, necessary for symbiosis (Antolín-Llovera et al., 

2014). The GDPC motif is as well present in RLP4 and the R4L subgroup and most of the Mal-

LRR-RLKs, such as IOS1 (AT1G51800) and MEE39 (AT3G46330) do contain the GDPC motif. 

One can speculate, that the processing of the malectin-like domain in LjSYMRK is necessary to 

enable the interaction of the actual binding domain in the LRRs to obtain protein-protein 

interaction with NFR5. Therefore, the malectin-like domain could 1) not be involved in association 

with cell wall components and the actual binding is through LRRs or 2) the malectin-like domain 

could shield the LRRs and prevent constitutively protein-protein interaction, which might be more 

likely. It is possible, that the malectin-like domain is only processed upon association with a 

specific component in the cell wall or the apoplast and due to this binding, the protein is 

processed, released and downstream signalling is activated.  

Processing of RLP4 at the GDPC motif has not been observed yet (Augustin, 2015). It is possible, 

that RLP4 and R4L1 acquired different functions in non-symbiontic plants like a putative cell wall 

binding function and cell wall signalling processes. On the other hand, it might be, that processing 

could not be observed, because specific external stimuli are required or it only occurs in certain 

tissues. SYMRK-homologous Receptor-like kinase1 (SHRK1, AT1G67720) and SHRK2 
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(AT2G37050), the closest homolgous of SYMRK in Arabidopsis, do not contain the Mal-domain, 

but are LRR-RLKs and involved in plant immunity (Ried, 2014).  

Our phylogenetic results revealed, that all four RLPs that contain the malectin-like domain are 

well conserved and RLP4 and R4L1 are even conserved in the evolutionary old plant species 

Marchantia polymorpha (Figure 13). However, the missing intracellular kinase domain would 

suggest an interaction presumably with a protein kinase domain-containing protein, to convey 

signals from the apoplast via the plasma membrane to the cell interior and activate downstream 

signalling cascades, although the missing cytoplasmic protein kinase domain does not exclude 

the interaction with other proteins via the cytoplasmic domain. To identify putative protein 

interactors and downstream signalling members of RLP4, crucial future experiments would be to 

perform IP-MS. Additonally, it would be also appealing to identify the function of R4L2 and R4L3, 

because they contain the malcetin-like domain, but no transmembrane domain. 

 

3.3.2 RLP4 might be a putative cell wall binding protein in cell wall edges 

Malectin-containing proteins in animals are located in the endoplasmatic reticulum and are 

involved in protein N-glycosylation (Schallus et al., 2008 and 2010). The malectin domain 

harbours a carbohydrate binding site which allows binding of ligands consisting of di-glucose-

high-mannose-N-glycans (Schallus et al., 2008 and 2010). The homologues domain in plants is 

the malectin-like domain, that is located in the extracellular domain of plasma membrane proteins. 

Due to the carbohydrate binding capability of malectin domains in animals, it was hypothesised, 

that malectin-like containing proteins in plants are putative cell wall binding proteins (Boisson-

Dernier et al., 2011). The so far best studied groups of malectin-like containing proteins in A. 

thaliana, is the group of CrRLKL1, comprising 17 proteins, consisting for instance of FER, THE1, 

ANX1 and 2. For FER1, direct association with polygalacturonic acid (PGA) could be identified 

(Feng et al., 2018) and  THE1 can associate with pectate (Herman Höfte, personal 

communication). Recently, the crystal structures of the malectin-like domains of ANX1 and 2 were 

revealed, albeit several carbohydrate polymers could not been identified as ligands of ANX1 

(Moussu et al., 2018).  

Within this study, we identified localization of RLP4 to cell edges in epidermal cells in the 

differentiation zone of the root. In the SAM, RLP4 is expressed in epidermal cells with a maximum 

intensity in the periphery, especially in the area of the future forming crease of primordia (Figure 

15). This expression pattern is similar to the expression of SHOOT MERISTEMLESS (STM), a 

transcription factor involved in regulating meristem functionality by repressing differentiation 
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(Landrein et al., 2015a). STM is upregulated due to mechanical stresses and is required for organ 

separation (Landrein et al., 2015a). It might be, that STM is a putative negative regulator of RLP4, 

or the expression of RLP4 and R4L1 could be directly, presumably negatively, controlled by WUS, 

because two WUS binding peaks were identified in RLP4 and three in R4L1 (Miotk, 2015). 

As identified in this study, RLP4-ECD can associate to cell wall components in the lateral root 

(Figure 22). Intriguingly, strong RLP4-ECD signals were, similarly to expression of the full RLP4 

protein, associated to cell wall components in cell edges. Hence, RLP4 might be involved in cell 

wall signalling processes not only in the root, but presumably also in the shoot meristem. 

Additionally, evidence comes also from collaborative work revealing that RLP4 and R4L1 co-

localized in RAB-A5c compartments (Charlotte Kirchhelle, personal communication). RAB-A5c is 

a GTPase of the RAB (ras-like small GTPases) family of membrane-trafficking regulators and 

expressed in young lateral roots and young primary leaves (Kirchhelle et al., 2016). On the cellular 

level, RAB-A5c is localized to cell plates and shuttles from TGN to “RAB-A5c” compartments. 

These compartments accumulate at the plasma membrane mainly at cell edges in epidermal cells 

(Kirchhelle et al., 2016). Mutants in RAB-A5c lost the cell edge localization and exhibit a strong 

mutant phenotype with reduced root length, reduced root hair elongation and lateral roots with 

irregular cell geometries and incomplete cytokinesis or oblique cell walls compared to Col-0 wild 

type (Kirchhelle et al., 2016). Therefore, the transport of RAB-A5c compartments to the plasma 

membrane and the cell plates seems to be pivotal for cell division and cell growth in lateral roots 

(Kirchhelle et al., 2016). Recent studies could identify RLP4 and R4L1 co-localizing with RAB-

A5c within these compartments (Charlotte Kirchhelle, personal communication). Together with 

our findings, that RLP4 is expressed in the epidermis in the primary root, specifically in cell edges, 

the shoot apical meristem, the surrounding primordia and the lateral roots, we can suggest that 

RLP4 and R4L1 are transported within RAB-A5c compartments to the plasma membrane, mainly 

to cell edges. This hypothesis is supported by experiments with Arabidopsis lines, expressing the 

RAB-A5c mutant version and RLP4:GFP or R4L1:GFP driven by the endogenous promoter. Here, 

RLP4 and R4L1 did not longer localize to the plasma membrane and cell edges (Charlotte 

Kirchhelle, personal communication). Therefore, the absence of RLP4 and R4L1 at the plasma 

membrane might cause the severe phenotype in RAB-A5c plants. 

The fact, that RLP4-ECD is binding to cell wall components, specifically to cell wall edges in the 

epidermis of lateral roots, might hint to a function of RLP4 in cell wall signalling in these areas or 

RLP4 might assist in getting edge cell wall material transported to the plasma membrane. 

Computational analysis revealed, that reduction in cell wall edge stiffness led to changes in cell 

geometry resulting in inflated cells in the epidermis (Kirchhelle et al., 2016b). A recent study could 

demonstrate for epidermal cells in the hypocotyl, that isotropic cells depict the same stiffness in 



3 RLP4 and RLP4-like as putative cell wall binding proteins 

 

62 

 

all cell walls. During anisotropic growth, longitudinal walls are becoming softer then transverse 

walls to enable cell expansion (Peaucelle et al., 2015).  

These findings might support the hypothesis, that RLP4 and R4L1 might be essential for cell wall 

signalling in the cell edge compartments of epidermal cells, maintaining stiffness during cell 

elongation to enable cell growth. However, rlp4 r4l1 double mutants were not analysed in the 

lateral root regarding these phenotypes. In the future, analysis of a lateral root phenotypes in rlp4 

r4l1 double and rlp4 r4l1 r4l2 r4l3 quadruple mutants will be crucial experiments. Furthermore, it 

would be essential to identify how RLP4-ECD is associating to cell wall components. Therefore, 

mutations in amino acids, that are predicted to be involved in ligand binding, have to be mutated 

and also different ECD deletion constructs have to be tested to identify, if the association is 

accomplished by the malectin-like domain.  

 

3.3.3 Phenotypic analysis of rlp4 and r4l mutants 

Based on our hypothesis, that RLP4 is a putative cell wall sensor and might convey changes in 

the cell wall state to the cell interior via cell wall signalling processes, interfering with cell wall 

composition in the rlp4 r4l1 double mutant can lead to alterations in plant development. The cell 

wall signalling mutant rlp4 is hypersensitive towards elevated NaCl concentrations, whereas rlp4 

rl41 is more resistant to NaCl on high concentrations compared to Col-0 (Figure 20). Isoxaben 

treatment, a cellulose synthesis inhibitor did not show a significant effect. rlp4 r4l1 double as well 

as rlp4 r4l1 r4l2 r4l3 quadruple mutants depicted under normal conditions longer roots compared 

to Col-0 (Figure 20, Figure 21). Due to the absence of RLP4-R4L1 in cell edges, it might be 

possible that reduced cell wall signalling this location leads to softening of cell walls and increased 

cell elongation, resulting in longer primary roots (Peaucelle et al., 2015). Because RLP4 is mainly 

expressed in the epidermis, changes in the epidermis can have effects on the whole plant 

morphogenesis revealed for the shoot apical meristem (Gruel et al., 2016; Kimura et al., 2018). 

Additional mutations of R4L2 and R4L3 in the rlp4 r4l1 double mutant line does not increase the 

root length phenotype at standard conditions, but it is not known, if the additional mutations in 

R4L2 and R4L3 have an effect on the microscopic phenotype or if they are even present in the 

RAB-A5c compartments. These would be important future experiments to gain more insights into 

the function of the RLP4 clade proteins. Furthermore, rlp4 r4l1 and rlp4 r4l1 r4l2 r4l3 quadruple 

mutants can be incubated in hypotonic solutions in comparison to Col-0, to analyse how the cells 

bulge at the edges.  
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4 Unravelling the function of CLE SIGNALLING 

COMPONENT1 (CSC1) 

4.1 Introduction 

Pluripotent stem cells in the three meristems, shoot and root apical meristem and (pro)cambium, 

enable developmental plasticity to adapt to extrinsic and intrinsic cues such as light, pathogens, 

salt stress or cell division, expansion and the sugar state of the cell, respectively (Cosgrove, 2005; 

Janocha and Lohmann, 2018). To be able to adapt to changing environmental or developmental 

conditions, all these varieties of signals have to be processed and integrated into responses 

adequate to the conditions (Janocha and Lohmann, 2018). These mechanisms involve for 

instance phytohormonal networks, peptides and transcription factors, that have to be spatio-

temporally controlled to maintain developmental plasticity in plants (Janocha and Lohmann, 

2018). 

 

4.1.1 The auxin signalling pathway 

The auxin signalling pathway is besides cytokinins (CK), brassinosteroid (BR), gibberellic acid 

(GA) and abscisic acid (ABA), one major phytohormone signalling pathway in plants and is well 

studied in Arabidopsis. It is involved in a plethora of developmental processes such as organ 

initiation, cell type specification, root stem cell maintenance and stress responses (Weijers and 

Wagner, 2016). Indole-3-acetic acid, the most active form of auxin, is a tryptophan derivative and 

synthesized by TRYPTHOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA1) and 

YUCCA (YUC) family proteins, which are key players in the multiple-step auxin biosynthesis 

pathway (Cheng, 2006, Stepanova et al., 2008; Mashiguchi et al., 2011). The direct auxin receptor 

is TRANSPORT INHIBITOR RESPONSE 1 (TIR1), which is together with AUXIN SIGNALING F-

BOX (AFB) family members, part of the SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase complex, 

located in the nucleus (Gray et al., 2001). In conditions with low levels of auxin, the transcriptional 

repressors of the AUXIN/INDOLE-3-ACETIC ACID (AUX/IAAs) family bind to AUXIN RESPONSE 

FACTORs (ARFs) (Weijers et al., 2005; Li et al., 2016b). In the presence of auxin, AUX/IAAs are 

degraded and ARF TFs can bind to auxin-response target genes (Calderón Villalobos et al., 

2012). An important transcription factor is for instance ARF5/MONOPTEROS (MP), responsible 

for vascular development and patterning in the SAM (Hardtke, 1998; Bhatia et al., 2016). A direct 

target of MP is TARGET OF MONOPTEROS 5 (TMO5), which is crucial to establish vasculature 

tissues in the early embryo (Ohashi-Ito et al., 2013). Although the auxin signalling pathway does 
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not consist of many key components or modules, it is highly modular with for instance 29 

AUX/IAAs or 22 ARFs in Arabidopsis, allowing dynamic fine tuning of auxin signalling in different 

developmental processes or tissues (Calderón Villalobos et al., 2012). Auxin often acts away from 

its side of synthesis and establishes morphogenetic gradients, which are concentration 

dependently (Vernoux et al., 2010; Tian et al., 2013). To reach cells in which it is not actively 

synthesised, the protonated form of auxin can cross membranes, but needs to be actively 

exported (Petrasek and Friml, 2009). Several transporters are involved in auxin transport such as 

PIN-LIKEs (PILS), AUXIN 1/LIKE AUX1 (AUX1/LAX) and ATP-BINDING CASSETTE 

SUBFAMILY B (ABCB) proteins (Geisler et al., 2005; Yang et al., 2006; Petrasek and Friml, 2009; 

Peret et al., 2012; Barbez et al., 2012). Localization of auxin carrier proteins also determine where 

auxin maxima or minima are established and thereby regulating auxin patterning in the shoot and 

root apical meristem or the vasculature  (Band et al., 2014; Bhatia et al., 2016).  

 

4.1.2 The cytokinin signalling pathway 

Cytokinins are N6-substituted adenine derivatives, that are involved in a plethora of plant 

developmental processes such as cell proliferation, shoot initiation, stem cell maintenance, flower 

development, leaf senescence and vascular development (Kieber et al., 2018). Biosynthesis of 

cytokinin is a multistep process and is catalysed by several enzymes such as ISOPENTENYL-

TRANSFERASEs (IPTs) (Miyawaki et al., 2006) or LONELY GUY (LOG), which catalyses the last 

step of the biosynthesis to active cytokinin (Kuroha et al., 2009). Inactivation of cytokinins can be 

achieved either by degradation via cytokinin oxidases (CKXs) or conjugation to sugars (Werner, 

2003; Kieber et al., 2014). For many years, it was thought that cytokinins are exclusively 

synthesized in root tissues and are transported to the shoot. However, cytokinins are synthesized 

in several different tissues in the root and the shoot and are either transporter acropetally (root to 

shoot) or basipetally (shoot to root) (Park et al., 2017). Recent studies deepened our insight into 

the mechanistic details of long-distance transport of cytokinins either via influx or efflux 

transporters, but mainly achieved by xylem and phloem transport. G SUBFAMILY ATP-BINDING 

CASSETTE (ABCG) transporters were identified to be involved in long distance transport (Zhang 

et al., 2014; Ko et al., 2014) and PURINE PERMEASES (PUPs) are cytokinin importers, rather 

involved in short-distance signalling. Cytokinins are perceived by membrane bound 

ARABIDOPSIS HISTIDINE KINASEs (AHKs). Upon binding, autophosporylation of a conserved 

histidine in AHK leads to the activation of the two-component phosphorelay pathway, which is 

similar to the two-component signalling pathway in bacteria (Stock et al., 2000; Cheung and 

Hendrichson, 2011). The phosphate group is transferred from histidine to aspartate in the receiver 
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domain and subsequently relayed to the downstream components of ARABIDOPSIS HISTIDINE 

PHOSPHOTRANSFER PROTEINs (AHPs) (Riefler et al., 2006). AHPs1-5 are positive regulators 

in cytokinin signalling, shuttle to the nucleus where they transfer the phosphoryl group to the 

receiver domain of AUXIN RESPONSE REGULATORs (ARRs) (Hwang and Sheen, 2001). In 

Arabidopsis, two different types of ARRs exist: type-A ARRs are negative regulators of the 

cytokinin response and do not contain a DNA-binding domain, but are induced by type-B ARRs, 

which contain a DNA-binding domain and promote expression of cytokinin response genes upon 

activation by AHPs (Hwang and Sheen, 2001). Many phytohormone pathways display crosstalk 

to a certain extent depending on the signalling pathway and the type of tissue or developmental 

stage (Chandler et al., 2015; Liu et al., 2017). For auxin and cytokinin signalling pathways, 

crosstalk was identified for instance in the shoot apical meristem or the vasculature. For 

protoxylem development, the expression of AHP6, a pseudo-histidine transfer protein, is crucial 

to establish low cytokinin signalling. AHP6 competes with AHPs1-5, thereby negatively regulates 

cytokinin signalling in the protoxylem  (Mähönen et al., 2006; Chandler and Werr, 2015). In turn, 

AHP6 is positively regulated by auxin via MP and TMO5-LHW in the vasculature (Bishopp et al., 

2011; Ohashi-Ito et al., 2014). Interestingly, cross-talk of cytokinin signalling via type-A ARRs was 

identified with several members of CLAVATA3/ENDOSPERM  SURROUNDING REGION (CLE) 

family members, which are small peptides involved in a plethora of developmental process in 

plants (Wang et al., 2016). 

 

4.1.3 CLE signalling 

In Arabidopsis, the CLAVATA3/ENDOSPERM SURROUNDING REGION (CLE) family, 

comprises 32 genes, some of them with redundant functionality (Strabala, 2006). They encode 

for small, pre-pro-peptides with a conserved 14 amino acid CLE domain and give rise to 27 distinct 

CLE peptides (Yamaguchi et al., 2016). Proteolytic processing yield the active CLE peptides, that 

are secreted and bind to their receptors, which are LRR receptor-like kinases (RLKs)  (Gao et al., 

2012). In each Arabidopsis tissue, at least one of the 32 CLE genes is expressed, indicating that 

CLE peptides might be involved in a vast number of biological processes during plant 

development (Jun et al., 2010). Although many CLE peptides have not been functionally 

characterized yet, for several of them, functions in regulating stem cell homeostasis in the SAM, 

RAM and cambium, vascular formation or lateral root establishment could be identified 

(Betsuyaku et al., 2011 a). CLAVATA3 (CLV3), the founding member and best-studied peptide in 

the CLE family is expressed in stem cells in the shoot apical meristem and controls the size of 

the apical meristem (Brand et al., 2000; Rojo et al., 2002). Upon binding of CLV3 peptide to its 
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receptor CLV1, downstream signalling cascades are activated, which leads to transcriptional 

repression of WUS (Schoof et al., 2000). In turn, WUS expression is required to promote CLV3 

expression in the stem cells (Laux et al., 1996; Mayer et al., 1998). As a consequence, CLV3-

CLV1-WUS regulate, in a negative feedback loop, the stem cell maintenance in the shoot apical 

meristem (Schoof et al., 2000; Brand et al., 2000).  

CLE40 is the closest relative of CLV3 and regulates stem cell maintenance in the root apical 

meristem (Hobe et al., 2003; Jun et al., 2008; Stahl et al., 2009). In the RAM, CLE40 is expressed 

in differentiating vascular cells in the stele and in columella cells. By diffusion, CLE40 migrates 

into RAM initals, where it promotes the expression of its putative receptor, the RLK 

ARABIDOPSIS CRINKLY4 (ACR4) (De Smet et al., 2008; Stahl et al., 2009). ACR4 can form 

heterodimers with CLV1, which is also the receptor for CLV3 in the shoot apical meristem (Stahl 

et al., 2013), and negatively regulates the expression of the homeodomain transcription factor 

WUSCHEL RELATED HOMEOBOX 5 (WOX5)  (Sarkar et al., 2007). WOX5 is expressed in the 

quiescent centre (QC), the stem cell niche in the root apical meristem, which is surrounded by 

stem cell initial cells for columella, epidermis, cortex/endodermis, and stele (Scheres, 2007). 

Thus, the promoting effect of CLE40 on ACR4 expression restricts WOX5 expression to the QC 

and thereby restricts distal root meristem stem cells (Stahl et al., 2013).  

In the third meristem, the cambium, CLE41/44 control cell proliferation by binding to their receptor 

PHLOEM INTERCALATED WITH XYLEM (PXY). CLE41/44 are expressed in phloem tissues and 

diffuse into cambium stem cells, where they can bind to PXY (Hirakawa et al., 2008; Etchells and 

Turner, 2010). Analogous to WOX5 in the RAM and WUS in the SAM, WOX4 maintains stem 

cells of the cambium. Interaction of CLE41/44-PXY supports cambial stem cell maintenance by 

suppressing xylem differentiation (Ito et al., 2006). In addition, the receptor for CLE45, BARELY 

ANY MERISTEM 3 (BAM3), which represses phloem differentiation upon CLE45 perception, was 

recently identified (Depuydt et al., 2013; Rodriguez-Villalon et al., 2014; Hazak et al., 2017). It 

was considered as putative CLE45 receptor, because bam3 mutants did not show root growth 

inhibition in a CLE45 bioassay (Depuydt et al., 2013). Recently, CLE25 was identified as a 

component of long-distance signalling, conveying water-deficiency signals from the vasculature 

to leaves, where they associate with BAM receptors, affecting stomatal closure and abscisic acid 

synthesis (Takahashi et al., 2018).  

Although several of the CLE peptides and their receptors are well studied, many functions of CLEs 

and their receptors are still unknown. CLE root growth sensitivity bioassays are an effective tool, 

to screen for mutants that might be putative CLE receptors (Kondo et al., 2011). For this, 17 CLEs 

(CLV3, CLE8, 9/10, 11 12, 13, 14, 16, 18, 19, 20, 21, 22, 27, 40, 45), which are considered as 
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root-active and inhibit root growth and protoxylem formation, can be tested in combination with 

putative mutants in CLE perception or signalling (Kondo et al., 2011). 

 

4.1.4 Cross-talk of cytokinin and CLE signalling 

Phytohormones as well as peptide signalling pathways are crucial players for plant development. 

In the last years, more and more studies revealed cross-talk between different phytohormone 

pathways, for instance auxin and cytokinin signalling pathways controlling vasculature, root and 

shoot apical meristem maintenance (Bishopp et al., 2011; Liu et al., 2017; Xie et al., 2018). As 

previously stated, cytokinin and CLE peptides control diverse developmental processes in plants 

and are often involved in vascular development (Ito et al., 2006; Mähönen et al., 2006; Hirakawa 

et al., 2008; Ohashi-Ito et al., 2014; Bishopp et al., 2011; Kondo et al., 2011; Qian et al., 2018).  

In vascular tissues, distinct levels of cytokinin signalling are required to determine cell fate and 

patterning. In the xylem, protoxylem cells are characterized by AHP6 expression, a negative 

cytokinin signalling regulator, resulting in low cytokinin signalling (Mähönen et al., 2006). 

Metaxylem cells are in contrast characterized by elevated cytokinin signalling (Ohashi-Ito et al., 

2014). In addition, many CLE peptides were identified being active in root tissues and being 

involved in vascular development (Ito et al., 2006; Hirakawa et al., 2008; Kondo et al., 2011; Qian 

et al., 2018). 17 CLE peptides are known to inhibit root growth and protoxylem formation at 

elevated concentrations, such as CLE9/10, CLE45, CLE21 and CLE27 (Kondo et al., 2011; Hazak 

et al., 2017; Qian et al., 2018). It is likely, that CLE9/10 and other root-active CLEs, can modulate 

cytokinin signalling locally by binding to their CLE receptors and activate downstream CLE 

signalling (Kondo et al., 2011). It was assumed, that activated CLE signalling can regulate type-

A ARRs, thereby interfering with the cytokinin signalling pathway (Kondo et al., 2011). However, 

many of the CLE receptors are still unknown and how the cross-talk of CLEs and cytokinin 

signalling is achieved and regulated in detail, remains elusive.  

In conclusion, CLE peptide signalling and phytohormone signalling pathways are involved in a 

plethora of developmental processes. In particular, these pathways are essential for stem cell 

maintenance in the three main meristems, the SAM, RAM and cambium, in Arabidopsis. 
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4.1.5 The shoot apical meristem (SAM) 

The SAM harbours the stem cells, that give rise to all above ground tissues. In the RAM, the 

individual root tissues are defined in concentric layers around the vasculature. Almost all root 

tissues arise from specific initial or progenitor cells positioned adjacent to the quiescent centre 

(QC). Thus, cell identity and clonal identity largely overlap. However, in the SAM, descendants of 

transient amplifying cells acquire cell fate independent of lineage, but strictly dependent on 

positional information (Laufs et al., 1998; Gaillochet et al., 2017). Therefore, various signalling 

networks have to control proliferation and differentiation processes and restrict them to specific 

domains within the meristem. As mentioned before, the key regulators in maintaining stem cells 

and thereby proliferation are the homeodomain transcription factor WUS and the secreted peptide 

CLV3 in the centre of the meristem. WUS is expressed in the cell layers underneath the stem 

cells in the organizing centre (OC) and moves through plasmodesmata apically into the central 

zone (CZ) (Yadav et al., 2011; Daum et al., 2014). In the CZ, WUS directly represses or induces 

a plethora of genes, CLV3 is one of the positively regulated WUS target genes (Laux et al., 1996; 

Mayer et al., 1998; Yadav et al., 2013; Miotk, 2015). From stem cells, CLV3 diffuses to the OC, 

where it can bind to several homo- and heteromultimeric complexes formed by the LRR-RLKs 

CLV1 and its homologues BARELY ANY MERISTEM 1 and 2 (BAM1 and 2), CLV2, CORYNE 

(CRN) and RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2) (Brand et al., 2000; Schoof et al., 

2000; Ogawa et al., 2008; Bleckmann et al., 2009; Nimchuk et al., 2015; Shinohara et al., 2015). 

CLV3 binding to its receptors activates a downstream signalling cascade which in turn repress 

WUS expression (Betsuyaku et al., 2011). Thus, stem cell maintenance is mainly controlled by 

the negative feedback loop of WUS and CLV3. In addition to the main WUS-CLV3 pathway, stem 

cell identities are maintained by elevated cytokinin signalling, because the cytokinin transcription 

factors type-B ARRs 1, 10 and 12, activate WUS expression (Leibfried et al., 2005; Gruel et al., 

2016). Thus, cytokinin signalling promotes the proliferation of undifferentiated cells and represses 

their differentiation through the activation of WUS (Gordon et al., 2009; Gruel et al., 2016).  

Besides the tightly controlled proliferation zone in the centre of the meristem, various factors also 

control the differentiation zone in the periphery of the meristem, where new lateral organs are 

initiated in a highly organized manner contributing to a regular arrangement, named phyllotaxis 

(Mirabet et al., 2012). A key factor for primordia initiation is auxin (Cheng, 2006; Vernoux et al., 

2010; Bhatia et al., 2016). MP is upregulated upon auxin signalling and positively regulates the 

expression of AHP6, which in turn negatively regulates CK signalling and the establishement of 

CK inhibitory fields (Mähönen et al., 2006a; Besnard et al., 2014a/b; Bhatia et al., 2016). 

Furthermore, MP stabilizes the auxin maxima by redirecting the localization of PIN FORMED 1 

(PIN1), the auxin efflux transporter towards domains of elevated auxin levels (Bhatia et al., 2016), 
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forming a positive feedback loop. In parallel to the auxin signalling pathway, numerous other 

factors are involved in differentiation processes in the periphery of the apical meristem. KANADI 

1 (KAN1), KAN2, ASYMMETRIC LEAVES 2 (AS2), and YABBY3 encode key transcription factors 

that are involved in the determination of lateral organs (Yadav et al., 2013). These genes were 

also identified as being directly repressed by WUS, to prevent differentiation in the centre of the 

meristem (Yadav et al., 2009; Yadav et al., 2013). The group of HD-ZIP III transcription factors 

HOMEOBOX GENE8 (ATHB-8), CORONA (CNA), PHABULOSA (PHB), PHAVOLUTA (PHV) 

and REVOLUTA (REV) (Landau et al., 2015) specify the adaxial side of leaves and form together 

with the abaxial KANADI (KAN1-4) group the dorsiventral patterning of the vascular system in 

leaves (Ramachandran et al., 2016).    

Proliferation and differentiation processes in the shoot apical meristem are thereby tightly 

controlled to enable cell growth, expansion and differentiation, while stem cell identities are 

maintained in the centre of the meristem.  

 

4.1.6 The floral meristem (FM) 

In the reproductive stage of Arabidopsis, the shoot apical meristem shifts from initiating lateral 

organ/leaf primordia to flower primordia. In the SAM, cells are pushed from the centre towards 

the periphery, where they can acquire flower primordia fates. The floral meristem (FM) is initiated 

in young primordia by re-establishing of WUS-CLV3 and elevated cytokinin levels (Chandler, 

2012). In contrast to the indeterminate SAM, stem cells are no longer maintained after initiation 

of carpels in the FM (Lenhard et al., 2001). Termination of the FM is controlled by a second 

negative feedback loop, the interplay of WUS and the MADS-box transcription factor AGAMOUS 

(AG) (Lohmann et al., 2001). Together with the transcription factor LEAFY (LFY), WUS activates 

the expression of AG in the centre of the flower at stage 3, which in turn directly and indirectly 

represses WUS (Smyth et al., 1990; Lohmann et al., 2001; Sun et al., 2009). When carpel 

primordia form in stage 6 flowers, WUS mRNA is already undetectable (Sun et al., 2009; Liu et 

al., 2011). Besides the two crucial negative feedback loops, that establish and terminate the floral 

meristem, many other signalling cascades are involved in fine-tuning the stem cell population, 

floral patterning and organogenesis (Thomson et al., 2016). LFY is expressed throughout the 

floral meristem and is crucial for floral meristem initiation but also promotes the expression of four 

classes of floral homeotic genes: A, B, C and E (Winter et al., 2011). The homeotic genes define 

the four concentric whorls that give rise to flower organs (Coen et al., 1991). From the most outer 

whorl (whorl one) to the inner whorl (whorl four), the whorls develop to four sepals, four petals, 
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six stamens and two carpels and are forming the later flower (Coen and Meyerowitz, 1991). Each 

letter represents a class of transcription factors that are active in two adjacent whorls (Winter et 

al., 2011). Class A comprises APETALA1 (AP1) and 2 (AP2), which are active in whorl one and 

two, class B contains AP3 and PISTILLATA (PI), which are active in whorl two and three. Class 

C comprises AG and is essential to establish whorls three and four and to terminate the floral 

meristem (Lohmann et al., 2001). Class E transcription factors SEPALLATA 1 (SEP1), SEP2, 

SEP3 and SEP4, function in identity determination of  the four flower organs (Pelaz et al., 2000). 

Additionally, genes apart of the flower homeotic genes are crucial for flower patterning such as 

UNUSUAL FLOWER ORGANS (UFO), or boundary genes such as CUP SHAPED 

COTELYDONS (CUCs) and genes involved in organ differentiation such as the aforementioned 

KANADI and HD-ZIP III transcription factors ATHB-8, CNA, PHB, PHV and REV (Landau et al., 

2015). 

 

4.1.7 The root apical meristem (RAM) 

The root meristem is composed of concentric layers of specific tissues, whose development is 

tightly controlled and can be spatially traced back to the first transient amplifying tissue-specific 

stem cells (Dolan et al., 1993; Wachsman et al., 2015). In the centre of the RAM, four largely 

mitotically arrested cells form the organizing centre also termed Q of the root meristem (Dolan et 

al., 1993). The QC is surrounded by initial/progenitor cells of the different root tissues: Columella 

initials, epidermis initials, cortex/endodermis initials and stele initials (Scheres, 2007; Sozzani and 

Iyer-Pascuzzi, 2014). WUS-RELATED HOMEOBOX 5 (WOX5) is expressed in the QC and 

diffuses into the adjacent cells repressing their differentiation (De Smet et al., 2008; Stahl et al., 

2009). CLE40, the closest relative of CLV3, is expressed in the stele, can migrate into the initials, 

where it promotes expression of ACR4, which in turn represses WOX5 and restricts it to the QC 

(Sarkar et al., 2007). The stem cells for the different tissues divide asymmetrically by producing 

one stem cell and a daughter cell, also called transit-amplifying cell (Scheres, 2007). Auxin and 

cytokinin are crucial for stem cell maintenance in the root meristem (Bishopp et al., 2011a; 

Schaller et al., 2015). High auxin response signals are found in the area of proliferating cells, like 

columella stem cells, but also in the QC, and in xylem cells (Liao et al., 2015;  Liu et al., 2017), 

whereas cytokinin response signals are strong in the stele, procambial initials and in the 

columella, but not in xylem precursor cells (Zurcher et al., 2013; Ohashi-Ito et al., 2014).  
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4.1.8 The cambium  

Vascular elements are a key innovation during the evolution from water to land plants. These 

conducting tissues transport water, nutrients and small molecules and provide the mechanical 

support for upright growth (De Rybel et al., 2016). The cambium is a secondary meristem and 

harbours the stem cells for secondary phloem and xylem cells, thus contributes to lateral growth 

in many plants (Greb and Lohmann, 2016; Tonn and Greb, 2017). In the primary root of A. 

thaliana, xylem cells are located in the centre of the stele in a single-cell-wide axis containing 

three to four metaxylem cells and one protoxylem cell on each end of the xylem axis. Phloem 

tissues comprise four cells in each of the two phloem poles perpendicular to the xylem axis with 

procambium cells located between xylem and phloem cells (De Rybel et al., 2015). Early in 

embryogenesis, the vascular tissues are established by various factors such as phytohormones, 

transcription factors or small peptides (De Rybel et al., 2016). Xylem tissues are mainly specified 

through three important processes that involve several pathways: 1. Establishing corresponding 

phytohormone tissue patterns by cross-talk of auxin and cytokinin signalling and 2. Establishment 

of tissue boundaries and 3. Non-cell autonomous functions of HD-ZIP III and miR165/166 

gradients in proto- and metaxylem formation.  

Early in embryogenesis, the four provascular cells are already patterned by asymmetric auxin 

distribution. High auxin expression in two of the four provascular cells, leads to expression of 

MONOPTEROS (MP/ARF5), which is critical for vascular tissue formation (Hardtke et al., 1998). 

Subsequently, MP directly activates TMO5 which forms a complex with LHW (Ohashi-Ito et al., 

2013; De Rybel et al., 2013). Upon this interaction, cells divide in a periclinal manner and thereby 

increase the vasculature cell number during development from four to around 30 cells in the 

mature root (Ohashi-Ito et al., 2007; Ohashi-Ito et al., 2013; De Rybel et al., 2013). In addition, 

TMO5-LHW activate local CK biosynthesis by directly activating the transcription of LONELY GUY 

3 and its homologue 4 (LOG3 and 4) (Kuroha et al., 2009). High cytokinin (CK) levels are on the 

one hand important for procambial identity and cell divisions in the vasculature, on the other hand 

they inhibit the differentiation of protoxylem (Mähönen et al., 2006a). The wooden leg mutant (wol) 

has a dominant negative mutation in AHK4/CRE1, which is a CK receptor localized mostly in the 

ER. This mutant depicts reduced periclinal divisions in the vasculature and additionally only 

differentiated protoxylem cells, whereas treatment with CK inhibits this increased protoxylem 

formation (Scheres et al., 1995; Mähönen et al., 2000). In contrast, high auxin levels specify 

protoxylem cells and the expression of AHP6, a negative CK signalling regulator, represses CK 

signalling in the protoxylem (Mähönen et al., 2006; Bishopp et al., 2011) (Figure 24A). 
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In addition to mutually inhibitory auxin and cytokinin response domains, AT-HOOK MOTIF 

NUCLEAR LOCALIZED 3 (AHL3) and  AHL4 were identified as central genes in establishing a 

boundary between procambium and xylem cells (Zhou et al., 2013). Knockout of AHL3 and/or 

AHL4 leads to establishment of more proto- and metaxylem cells (Zhou et al., 2013) Figure 24B). 

Furthermore, xylem patterning is also controlled by non-cell-autonomous function of SHR-SCR-

miR165/166 (Greenham, 2010). The transcription factor SHORT ROOT (SHR) is expressed in 

the stele, moves into the endodermis where it activates the expression of the transcription factor 

SCARECROW (SCR) and induces the expression of the microRNA 165/166 (miR156/166) 

(Greenham, 2010). In turn, miR156/166 diffuse towards the centre of the root establishing a 

gradient with high levels in the periphery of vasculature tissues and low levels in the centre 

(Greenham, 2010). Direct targets of miR165/166 are the HOMEODOMAIN-LEUCINE ZIPPER  

Figure 24. Networks involved in vascular development. (A) Auxin and cytokinin (CK) gradients 

establish proto- and metaxylem cells in the vasculature. Protoxylem cells are marked by elevated 

auxin levels, leading to expression of TARGET OF MONOPTEROS (TMO5), LONESOME 

HIGHWAY (LHW) and LONELY GUY 4 (LOG4). LOG4 synthesizes CK and establishes a 

cytokinin gradient in the metaxylem cells and the surrounding procambium. Elevated cytokinin 

levels trigger periclinal divisions in the procambium. ARABIDOPSIS HISTIDINE 

PHOSPHOTRANSFER PROTEIN6 (AHP6) is negatively regulated by cytokinin. (B) The 

transcription factors SHORT ROOT (SHR) and SCARECROW (SCR) promote expression of 

miRNA165/166 in the endodermis. miRNA165/166   diffuses towards the centre of the root and 

represses HD-ZIP IIIs in the outer xylem cells, leading to protoxylem formation. Higher HD-ZIP III 

concentration in the inner xylem cells differentiate into metaxylem cells. (C) AT-HOOK MOTIF 

NUCLEAR LOCALIZED (AHL) transcription factors are expressed in the procambium and 

establish the boundary between procambial and xylem cells. Modified after De Rybel et al., 2015. 
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Class III (HD-ZIP III) transcription factors PHB, PHV, REV, CNA and ATHB-8 that are expressed 

in the root and shoot apical meristem (Prigge et al., 2004). In the outermost xylem cells, 

miR165/166 levels are still high enough to repress HD-ZIP III genes, which leads to the 

establishment of protoxylem cells (Du et al., 2015). In the centre of the stele, miR165/166 levels 

are too low to suppress genes leading to metaxylem cells (Du et al., 2015). Higher order mutants 

of HD-ZIP III genes depict ectopic protoxylem cells suggesting a default protoxylem differentiation 

programme in xylem cells (Greenham, 2010). Recent studies revealed putative downstream 

targets of HD-ZIP III genes, which are involved in xylem differentiation or secondary cell wall 

synthesis (Kubo et al., 2005; Yamaguchi et al., 2011; Liu et al., 2014; Taylor-Teeples et al., 2015) 

(Figure 24C).  

Once specified, xylem cells have to differentiate into tracheary elements to be able to function as 

conductive tissues (De Rybel et al., 2015). Here, the NAC transcription factors VASCULAR-

RELATED NAC-DOMAIN 6 (VND6 and 7) control the differentiation into proto- and metaxylem 

cells and upregulate genes which are required for secondary cell wall biogenesis and 

programmed cell death (Ohashi-Ito et al., 2010; Yamaguchi et al., 2011). Activation of secondary 

cell wall synthesis results in lignin-rich cell walls in xylem cells with the characteristic ladder-like 

cell wall thickenings in the protoxylem or pits in the secondary cell wall of metaxylem cells 

(Schuetz et al., 2013 b). 

 

4.1.9 Aims 

Phenotypic and genetic characterizations of an originally derived CRISPR/Cas9 attempt to 

generate rlp4 r4l1 double mutants exhibited severe phenotypes. These phenotypes were 

independent of the mutations in RLP4 and R4L1 mutations and comprised an increased shoot 

apical meristem, flower developmental permutations and alterations of vascular cell numbers, 

which were not reported so far. Analysis of the mutant by performing a CLE root growth bioassay, 

revealed a function in CLE perception or signalling, leading to the mutant name cle signalling 

component1 (csc1). In this study, we aimed to attain the following goals: 

A) Reveal the function of CSC1 in the shoot and the root apical meristem 

B) Elucidate the role of CSC1 in CLE and cytokinin signalling 

C) Identify the mutation/s in csc1 
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4.2 Results 

4.2.1 CSC1 is required for normal growth in the shoot and the root 

The csc1 mutant was originally discovered in an approach to generate a rlp4 r4l1 double mutant 

using the CRISPR/Cas9 technique where three independent alleles were identified for rlp4 r4l1 

(Figure 17C). Line #32-11 did not exhibit an obvious developmental phenotype, whereas lines 

#6-13 and #25-17 had enlarged shoot apical meristems in inflorescences and defects in flower 

development compared to Col-0 wild type (Figure 25). Initially, we assumed that mutations in 

RLP4 and R4L1 were causing the developmental phenotype in lines #6-13 and #25-17 and 

selected line #6-13 for experiments. While analysing segregating F2 plants of line #6-13 with 

marker lines, we realized, that the shoot apical meristem and flower developmental phenotype 

was segregating independently of the rlp4 r4l1 mutations. Thus, mutations in RLP4 and R4L1 

were not causative for the developmental phenotype. However, due to the unique phenotype of 

the lines #6-13 and #25-17, we decided to unravel the mutation that was causing the 

developmental phenotype. To distinguish the different mutant lines, rlp4 r4l1 #6-13 was named 

cle signalling component 1 (referred to as csc1), because it depicted root growth insensitivity on 

CLE21 and CLE27 containing media. These results, described in 4.2.2, suggest a function of 

CSC1 in CLE perception or signalling (Figure 28). It has to be mentioned that all phenotypic 

characterizations, CLE sensitivity assays and vasculature analysis of csc1 were performed with 

the line csc1 #6-13 still carrying the mutations in RLP4 and R4L1. Experiments with csc1 #6-13 

crossed with marker lines were analysed in the F3 generation and only plants wild type for RLP4 

and R4L1 were used for experiments (Figure 34, Figure 36, Figure 35, Figure 38, Figure 39, 

Figure 40). Recently analysed plants of csc1 backcrosses with Col-0 wild type revealed that 

mutation of RLP4 and R4L1 does not contribute to the csc1 phenotype in a detectable manner.   

csc1 mutant plants exhibited no obvious developmental phenotype in the vegetative stage 

compared to Col-0 wild type (data not shown). In the reproductive stage, 40-45-day-old plants 

with shoot lengths of around 15-20 cm had enlarged shoot apical meristems compared to Col-0 

and defects in flower development (Figure 25). Defects in flower development did not occur in all 

flowers but appeared unregularly indicated by delays in fruit development or un-opened buds 

(Figure 25A-C). Furthermore, csc1 plants also showed flower organ permutation based on the 

position of the siliques at the stem (white arrow heads, Figure 25B). Dissected un-opened buds 

revealed various defects in floral organ development such as presence of only two sepals or 

completely missing whorls for petals, stamens and carpels (Figure 25C, left). Some flowers had 

all four whorls but were not properly elongated, resulting in a small, underdeveloped gynoecium 

(white arrow head, Figure 25C, right). The most severe defects in flower development were 
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depicted by pedicels and completely missing flower whorls (white arrow heads, Figure 25D).  

Shoot apical meristems of csc1 seemed to be enlarged and encompass more primordia compared 

to Col-0 wild type (Figure 25E). csc1 opened flowers often exhibited five to six petals instead of 

four (Figure 25F). The un-opened bud phenotype is reminiscent of the severe clv3-10 phenotype, 

which additionally depicts a massively enlarged SAM, club-like siliques and a fasciated stem 

(Figure 25G). Although the other clv3-10 phenotypes are not present in csc1, all phenotypes hint 

towards a function of CSC1 in the SAM.  

 

 

 

 

 

 

 

 

 

 

 

Figure 25. csc1 depicts an enhanced SAM and defects in phyllotaxis and flower development. 

(A) Stem of csc1 with un-opened flower buds.  (B) Phyllotaxis defects in csc1 and delays in fruit 

development (white arrow heads). (C) Flower bud with missing petals, anthers and gynoecium (left, 

white arrow head) and flower bud with sepals and petals, but defects in anthers and gynoecium 

development (right, white arrow head). (D) Completely missing flower, only development of pedicels 

(white arrow heads). (E) Representative inflorescences of Col-0 and csc1. csc1 depicts enlarged SAM 

with elevated primordia numbers. (F) Representative flowers of Col-0 and csc1, with elevated petal 

numbers in csc1. (G) clv3-10 with similar flower phenotype as csc1 (white arrow heads). csc1 and clv3-

10, 43-day-old plants.  
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To explore the possible CSC1 function in the SAM, we decided to analyze the csc1 phenotypes 

in detail by dissecting and imaging using CLSM, csc1 and Col-0 wild type shoot apical meristems 

of inflorescences. Representative 3D images of Col-0 and csc1 revealed an increased shoot 

apical meristem size in csc1 plants (Figure 26A,B). In addition, csc1 seemed to have more organ 

primordia than Col-0 (Figure 26B). Quantifications of meristem size and epidermal cell number 

using the image analysis tool MorphoGraphX (Barbier de Reuille et al., 2015), exhibited a 

significant increase in meristem size and cell number of csc1 compared to Col-0 wild type (Figure 

26C,D). In contrast, cells in the epidermis of csc1 had a smaller mean cell size as Col-0 (Figure 

26E). These results support the macroscopic phenotypes of csc1 and suggests a function of 

CSC1 in restricting the shoot apical meristem size.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26. CSC1 regulates size and number of cells in the SAM. (A-B) Representative 3D 

views of shoot apical meristems of (A) Col-0 wild type and (B) csc1 mutant. Scale bars: 50 µm. 

(C-E) Quantification of (C) meristem size, (D) epidermal cell numbers and (E) mean cell size in 

Col-0 wild type (n=10) and csc1 (n=10) shoot apical meristems (37-day-old plants). Statistically 

significant difference from Col-0 based on pairwise t-test (*** p< 0.001). 
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We further wanted to investigate if csc1 may also displayed defects in the development of below-

ground tissues. Therefore, six-day-old seedlings of csc1 and Col-0 were stained with basic fuchsin 

(Dharmawardhana et al., 1995) and calcofluor white (Waaland and Waaland, 1975). Basic fuchsin 

stains lignin in secondary cell walls of differentiated cells such as the endodermis (casparian strip) 

or proto- and metaxylem cells in the vasculature (Figure 27A,B). 

 

 

 

Figure 27. CSC1 regulates xylem and vascular cell number in the primary root. (A-B) Basic 

fuchsin and calcofluor white staining of six-day-old roots. Basic fuchsin labels lignified 

secondary cell walls in protoxylem (P) and metaxylem (M) cells (left). Calcofluor white labels 

cellulose in all cells (right). (A) Representative longitudinal (left) and orthogonal (left bottom, 

right) views (maximum projection) of vascular cells in the differentiation zone of the root in (A) 

Col-0 wild type and (B) csc1 mutant. Note ectopic protoxylem cells (white arrow heads). (C-D) 

Quantification of (C) protoxylem and (D) metaxylem cells in Col-0 wild type (n=14) and csc1 

(n=14). Squares with different shades of grey represent numbers of protoxylem or metaxylem 

cells, respectively. (E) Quantification of total vascular cell number in Col-0 wild type (n=5) and 

csc1 (n=5). Statistically significant difference from Col-0 based on Kruskal-Wallis test (*** 

p<0.001). 
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Calcofluor white stains cellulose, enabling counting of total cells in the root vascular tissues. In 

longitudinal microscopic sections, differentiated protoxylem cells were distinguishable from 

metaxylem cells by their characteristic ladder-like cell wall thickenings. Metaxylem cells depicted 

circular pits in the secondary cell walls (Figure 27A,B, left). Six-day-old seeding roots were imaged 

in the differentiation zone. Col-0 exhibited three to four metaxylem cells in one axis in the centre 

of the root with two protoxylem cells, one on each side of the metaxylem cells. For csc1, we 

observed elevated protoxylem numbers of three to five (Figure 27C). Furthermore, additional 

protoxylem cells often occurred in the procambial position, outside of the primary xylem axis 

(Figure 27B, white arrow head). Intriguingly, also metaxylem cells were elevated in csc1 mutants, 

often depicting four or five metaxylem cells (Figure 27Figure 26D).  

Next, we analysed if the increase in cell numbers was restricted to xylem or if enhanced 

proliferation in the vasculature resulted in increased total vascular cell numbers. For total vascular 

quantification, six-day-old seedling roots were stained with calcofluor white and imaged using 

CLSM cross-sections in the early differentiation zone. A significant increase in total vascular cell 

number was observed in csc1 compared to Col-0 (Figure 27E). Taken together, the results of the 

cell number quantification in the shoot apical meristem and the vasculature, suggests that CSC1 

functions in regulating cell proliferation.   

 

4.2.2 CSC1 functions in CLE21 and CLE27 perception or signalling 

Macroscopic and microscopic characterization of the csc1 phenotype revealed severe 

developmental defects in the shoot apical meristem as well as in the vasculature of the root. 

Strikingly, csc1 exhibited elevated vasculare cell numbers, presumably due to enhanced cytokinin 

signalling, which promotes cell proliferation (Kieber et al., 2018). Previous studies assumed a 

cross-talk of cytokinin signalling and the CLAVATA3/ENDOSPERM-SURROUNDING REGION-

RELATED (CLE) peptides of which 17 have been distinguished as inhibitors of root growth (Kondo 

et al., 2011). Therefore, we used a CLE root sensitivity assay to gain further information about 

the function of CSC1 in vascular cell development.  

We analysed the response of Col-0, csc1 and bam3-1 seven-day-old seedling roots growth on 

standard media containing concentrations from 0-100 nM of 14 root-active CLEs (CLE1/3/4, 

CLE9/10, CLE11, CLE13, CLE14, CLE18, CLE21, CLE25, CLE26, CLE27, CLE40, CLE41/44, 

CLE45 and CLV3) (Kondo et al., 2011). We chose bam3-1 as a positive control for CLE45, 

because BAM3 is the receptor for CLE45 and mutants in BAM3 showed a strong root growth 

insensitivity towards CLE45 (Depuydt et al., 2013; Rodriguez-Villalon et al., 2014; Hazak et al., 
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2017). CLE root sensitivity assays were repeated four times and concentrations for the various 

CLEs were adjusted dependent on their effect on root growth. Among all tested CLE peptides, all 

four repetitions showed reduced sensitivity of csc1 to the growth-inhibiting effects of CLE11, 

CLE21 and CLE27 with stronger effects on plates containing CLE21 and CLE27 (Figure 28). 

Graphs in Figure 28 show representative results of one of four independent experiment. Root 

growth on standard medium is slightly enhanced in csc1 and bam3-1 compared to Col-0 (Wolf et 

al., 2014). On 50 nM CLE21, csc1 displayed a significant insensitivity in root growth compared to 

Col-0, whereas bam3-1 was only slightly insensitive (Figure 28A). On elevated CLE21 

concentrations (100 nM), both mutant genotypes depicted significantly longer roots than Col-0 

(Figure 28A). Strongest root growth insensitivity could be detected on media containing 50 nM 

and 100 nM CLE27 for csc1 and bam3-1. Col-0 showed on both CLE27 concentrations the same 

root growth reduction (Figure 28B). Compared to Col-0, csc1 also showed a mildly increased root 

growth on 50 nM and 100 nM CLE11 (Figure 28C). bam3-1 did not exhibit root growth insensitivity 

on CLE11 (Figure 28C). The strong root growth insensitivity of csc1 towards CLE21 and CLE27 

suggests a function of CSC1 in CLE perception or CLE signalling.  

 

 

 

 

Figure 28. CSC1 might function in CLE21 and CLE27 perception or signalling. CLE root 

sensitivity assay with different Arabidopsis genotypes on medium containing various concentrations 

of CLE21, CLE27 and CLE11. Root length was measured from seven-day-old seedlings. (A-C) 

Quantification of root length of Col-0 wild type, csc1 and bam3-1 grown on media containing 50 nM 

and 100 nM (A) CLE21, (B) CLE27 and (C) CLE11. Asterisks indicate statistically difference from 

Col-0 per condition based on Kruskal-Wallis test (*p < 0.05, **p < 0.01, ***p < 0.001), (mean ± SD) 

(n=10-20). Experiments performed by Nabila El Arbi, supervised by A.-K. Schürholz.  
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Unfortunately, most of the CLE peptides are not well-studied so far and only for a few of them, 

the receptors have been identified. For CLE27, a putative receptor, the LRR-RLK ARABIDOPSIS 

THALIANA FASCIATED EAR 3 (AtFEA3, AT3G25670) was identified (Je et al., 2016), but for 

CLE21 no putative receptor is yet revealed. 

Based on previous characterizations of csc1 mutant plants, we expected a function of CSC1 in 

the shoot and root apical meristems and the vasculature. If CSC1 might function in CLE21 and 

CLE27 perception or signalling, we would expect that CLE21 and CLE27 were expressed in the 

SAM and in the root vasculature, in similar tissues where we observed csc1 phenotypes. We 

analysed pCLE21:GUS and pCLE27:GUS by analysing GUS expression in seven-day-old 

seedlings and in the shoot apical meristem of 35-day-old plants expressing pCLE27:GUS (Figure 

29 and Figure 30) (Jun et al., 2010). CLE21 activity was observed in the whole vascular tissues 

and the primary RAM, but not in the shoot apical meristem (Figure 29).  

 

 

 

 

 

 

 

 

 

 

 

Figure 29. CLE21 is expressed in the vasculature. Six-day-old seedlings expressing 

pCLE21:GUS in (A) hypocotyl and petiole vasculature and (B) vasculature in the cotyledons. (C) 

pCLE21 is not active in lateral root primordia, but in (D) the root vasculature. (E) CLE21 promoter 

activity in the primary root columella and slightly in the RAM. Scale bars: 100 µm.  
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Analysis of CLE27 promoter activity revealed expression in the hypocotyl, lateral root primordia 

and the RAM in lateral roots, but not in the primary RAM (Figure 30A-D). Additionally, CLE27 was 

expressed in leaves and young primordia in the SAM (Figure 30A,F). CLE21 and CLE27 

promoters are either active in the vasculature in the whole plant or in young primordia in the shoot 

apical meristem. Although pCLE21 and pCLE27 do not show the same expression pattern, CSC1 

still might be involved in CLE21 and CLE27 perception or signalling. Dependent on how far CLE 

peptides are transported, they can also function away from cells/tissues, where they are 

expressed and synthesised (Stahl et al., 2009; Hazak et al., 2017).  

 

4.2.3 Mutations in CLE21 and CLE27 do not resemble csc1 phenotype 

The most severe developmental defects in csc1 plants were identified in the vasculature, the SAM 

and the flower organs. We therefore wanted to analyse if mutants in CLE21, CLE27 and CLE11, 

which shows a similar expression pattern as CLE21, depict a csc1 related phenotype (Jun et al., 

2010). CRISPR/Cas9 derived cle11 cr3 (+53 bp, referred to as cle11), cle21 cr1 (-1bp, referred 

to as cle21) and cle27 cr1 (+1bp, referred to as cle27) mutants carried insertions or deletions 

creating frame shifts which led to knock-out lines (Yamaguchi et al., 2017). Seeds of single mutant 

Figure 30. CLE27 is expressed in root and shoot primordia. (A-D) Six-day-old seedlings 

expressing pCLE27:GUS in young leaves, (B) the hypocotyl and lateral roots and primordia (black 

arrow heads). (C) pCLE27 activity in elongation and differentiation zone in the lateral root. (D) 

CLE27 promoter is not active in the primary root RAM. Scale bars: 100 µm. (E-F) Shoot apical 

meristems of 35-day-old plants. (E) Col-0 and (F) pCLE27:GUS. Note the slightly blue GUS 

staining of a young primordia in the SAM. Scale bar: 500 µm. 
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lines were kindly provided by Takashi Ishida (Yamaguchi et al., 2017). We generated cle11 cle21 

and cle21 cle27 double mutants to overcome potential functional redundancy mainly in CLE11 

and CLE21. However, CLE single and double mutants did not show any developmental 

phenotype compared to Col-0 (data not shown). Therefore, we next assessed if CLE single and 

double mutants exhibited a vascular phenotype in the root.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31. cle mutants do not exhibit csc1 similar phenotypes in the vasculature. (A-B) Basic 

fuchsin staining of six-day-old roots. Basic fuchsin labels lignified secondary cell walls in protoxylem 

and metaxylem cells. Quantification of (A) protoxylem and (B) metaxylem cells in Col-0 (n=40), cle11 

(n=21), cle21 (n=22), cle27 (n=21), cle11 cle21 (n=20) and cle21 cle27 (n=17) roots. (C) Basic 

fuchsin and calcofluor white staining of six-day-old roots, confocal stacks, orthogonal views (left). 

Calcofluor white labels cellulose in all cell walls and allows quantification of vascular cell number in 

Col-0 (n=21), cle11 cle21 (n=20), cle21 cle27 (n=13) (right). Statistically significant difference from 

Col-0 based on Kruskal-Wallis test (*p < 0.05, **p < 0.01). 
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Lignified secondary cell walls of protoxylem and metaxylem cells were stained with basic fuchsin 

and cross-sections of six-day-old seedling roots in early differentiation zone were imaged for 

xylem cell quantifications (Figure 31). Col-0 roots had three to four metaxylem cells and always 

two protoxylem cells. For protoxylem cell numbers, no significant differences could be identified 

in cle single and double mutants compared to Col-0 (Figure 31A). Counts for metaxylem cell 

numbers revealed a significant increase of metaxylem cells in cle11 and cle21 single mutants 

compared to Col-0 (Figure 31B). Intriguingly, double mutants of cle11 cle21 and cle21 cle27 

depicted Col-0-like metaxylem cell numbers (Figure 31B). In addition, total vascular cell numbers 

in Col-0, cle11 cle21 and cle21 cle27 double mutants were quantified by cellulose staining of cell 

walls with calcofluor white (Figure 31C). However, no alterations in cell numbers or cell positions 

in procambium, phloem or xylem cells were visible in the transverse cross-sections of the double 

mutants compared to Col-0 (Figure 31C, left). Counts for total vascular cell numbers neither 

revealed any differences compared to Col-0 (Figure 31C, right).  

Taken together, cle11 and cle21 single mutants depict a slight increase in metaxylem cells, but 

not in protoxylem cells. Additionally, CLE single and double mutants do not show elevated cell 

numbers in the vasculature, which suggests that, assuming the cle mutants are null, the csc1 

phenotype cannot be explained by the CLEs. 

 

4.2.4 CLE21 treatment enhances cytokin responses in the RAM 

A previous study could reveal a connection between CLE and cytokinin signalling in the root of 

Arabidopsis (Kondo et al., 2011). CLE9/10 treatment inhibited the expression of type-A ARRs 

which are negative regulators of cytokinin signalling, thereby enhancing cytokinin signalling and 

expression of CK target genes (Kondo et al., 2011).  

In order to test, if the application of CLE21 can also interfere with cytokinin signalling in the root, 

we imaged the expression of the pTCSn:GFPer cytokinin signalling reporter, kindly provided by 

Christophe Gaillochet (Jan Lohmann Lab, originally from Bruno Müller), in five-day-old seedlings 

grown on control media and media containing 50 nM CLE21 (Figure 32) (Zurcher et al., 2013). 

The seedling roots were stained with propidium iodide (PI) to counterstain cell wall. Fire projection 

of pTCSn:GFPer  revealed highest fluorescence intensity in the lateral root cap, in pericycle initials 

and stele initials (sieve element-procambium precursor) and weaker expression in further 

differentiated  protophloem, metaphloem and procambium files (Figure 32, top). 
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Figure 32. CLE21 treatment affects expression of pTCSn and pAHP6 in the RAM. (A) 

Representative cytokinin response (pTCSn:GFPer) in the RAM after mock (top) and 50 nM CLE21 

treatment in five-day-old seedling roots, grown for five days on plates containing control media or 

CLE21 media (bottom). Fire projection, propidium iodide (PI) and merged channels. (B) 

Representative pAHP6:GFPer expression in the RAM after mock (top) and 50 nM CLE21 treatment 

(bottom). Fire projection, propidium iodide (PI) and merged channels. (C) Representative auxin 

response (pDR5v2:mTurquoise-NLS) in the RAM after mock (top) and 50 nM CLE21 treatment 

(bottom). Fire projection, pRPS5a:ntdTomato and merged channels. Five-day-old seedlings. Scale 

bars = 20 µm, n=5-6. Experiment performed by Sebastian Wolf, analysed by A.-K. Schürholz. 
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CLE21 treatment enhanced the expression of TCSn in the lateral root cap, but led to decreased 

signal in the pericycle and stele initials. However, the TCSn signal clearly expanded further 

towards inner stele cell files and shootwards (Figure 32A, bottom). The cytokinin signalling 

reporter pAHP6:GFPer, kindly provided by Ari Pekka Mähönen, was showing weak activity in 

pericycle and sieve element-procambium precursor cells, but depicted an increased activity in 

young pericycle and sieve element precursor cells (Figure 32B, top)  (Mähönen et al., 2006 a). 

CLE21 treatment led to weakening of pAHP6:GFPer signal, which was only detectable in one cell 

strand in the more mature vasculature (Figure 32B, bottom). Fire projections of fluorescence 

signal derived from the auxin signalling marker pDR5v2:mTurquoise-NLS, kindly provided by 

Marion (Maizel Lab), did not reveal severe differences between control conditions and CLE21 

treatment (Figure 32C). CLE21 treatment lead to a mild decrease in DR5v2 signal in the stele of 

the root (Figure 32, bottom). 

These data suggest a cross-talk of CLE21 and cytokinin signalling by positively regulating 

cytokinin signalling. CLE21 does not seem to affect auxin signalling in the root apical meristem. 

Based on these results and the fact, that cytokinin is important for cell proliferation and represses 

protoxylem differentiation, we wanted to explore, if exogenous cytokinin affects vascular cell 

numbers in csc1 (Mähönen et al., 2006a).  

 

4.2.5 CSC1 seems to buffer elevated cytokinin levels in the root 

Cytokinin is a crucial plant hormone for vascular development, enhancing procambial 

proliferation, whereas it suppresses on the other hand protoxylem formation (Mähönen et al., 

2006; Hejatko et al., 2009). Exogenous application of the cytokinin derivate 6-benzylaminopurine 

(BA), was shown to promote proliferation in the stele of the root in the ahp6-1 mutant, leading to 

elevated vascular cell numbers (Mähönen et al., 2006a). Furthermore, increased cytokinin 

signalling led to a reduction in protoxylem cell files (Mähönen et al., 2006a).  

Taking this into account together with increased total vascular cell numbers in csc1 seedling roots, 

we tested the effect of cytokinin treatment on the total vascular cell number in csc1 and Col-0. 

Cell walls of seedling roots were stained with basic fuchsin to visualize lignified secondary cell 

walls and calcofluor white to visualize cellulose in primary cell walls. In control conditions, five-

day-old Col-0 wild type roots exhibited an average of 32 cells in the vasculature in the early 

differentiation zone, whereas csc1 displayed an average of 45 cells (Figure 33A,B). Treatment 

with 0.1 µM BA resulted in a mild increase of vascular cells from an average of 32 to 33 in Col-0, 

but in a significant increase in csc1 from an average of 45 to 52 cells (Figure 33A,B). Treatment 
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with higher BA concentrations of 1 µM BA increased the vascular cell number in Col-0 to an 

average of 39 cells, in csc1 to an average of 69, almost twice as many as untreated Col-0 (Figure 

33A,B). 

 

 

 

 

 

 

 

 

The elevated cytokinin levels resulted not only in enhanced proliferation, but also in repression of 

protoxylem cell formation, as reported in previous studies (Mähönen et al., 2006a; Mähönen et 

al., 2006b). Intriguingly, enhanced CK signalling, did not only repress protoxylem formation and 

differentiation, but also metaxylem formation and differentiation, indicated by the absence of basic 

fuchsin stained xylem cells at 1 µM BA treatments in Col-0 and csc1 (Figure 33A, green arrow 

heads, top and bottom). 

The strong effect of cytokinin treatment on the vascular cell number in csc1 plants suggests, that 

CSC1 functions in buffering the response to cytokinin. It might also be possible, that cytokinin 

Figure 33. csc1 is affected in the response to elevated cytokinin levels. (A) Basic fuchsin and 

calcofluor white staining in five-day-old seedling roots to visualise lignified secondary cell walls 

(green arrow heads, mock) and cellulose in cell walls, respectively. Transverse cross-sections 

obtained by confocal imaging depict vascular cells in Col-0 and csc1 mock conditions (top) and 

treated with 0.1 µM (middle) and 1 µM BA (bottom). Note absence of lignified secondary cell walls 

in the xylem axis in Col-0 and csc1 treated with 1 µM BA (green arrow heads, bottom). (B) 

Quantification of vascular cells in Col-0 and csc1 in mock conditions and treated with 0.1 µM and 

1 µM BA. Statistically significant difference from Col-0 based on Kruskal-Wallis test (**p < 0.01). 

Mean ± SD, n = 5/condition and genotype. Experiment performed by Sebastian Wolf, analysed by 

A.-K. Schürholz. 
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levels are already elevated in csc1 compared to Col-0 and increasing cytokinin levels cannot be 

buffered anymore. 

To distinguish between these two hypotheses, we analysed the expression of the cytokinin 

signalling marker pTCSn in combination with an ubiquitous nuclei marker pUBQ10:3xGFP-NLS 

for cell counting. Expression of pTCSn:GFP-NLS/pUBQ10:3xmCherry-NLS, kindly provided by 

Christian Wenzl (Jan Lohmann Lab), was analysed in Col-0 and csc1 mutant backgrounds in the 

RAM of seven-day-old seedlings. Similar to the pTCSn:GFPer marker (Figure 32A),  

 

 

 

 

 

 

 

 

 

 

 

 

pTCSn:GFP-NLS marker also depicted strong cytokinin response in the lateral root cap and in 

the stele, close to the QC, in Col-0 (Figure 34A). However, no precise statement regarding the 

type of cell in the stele could be done, because cell outlines were not visible, which made it difficult 

Figure 34. CSC1 represses cytokinin response levels in the RAM. (A-B) Cytokinin response 

(pTCSn:GFP-NLS) in root apical meristems of seven-day-old seedlings in (A) Col-0 and (B) csc1 

backgrounds. Representative images of pTCSn:GFP-NLS signals (fire), pUBQ10:3xmCherry-

NLS signals (grey), merge and maximum projection (fire) in longitudinal and transverse sections 

from left to right. Col-0 (n=5) and csc1 (n=5). Scale bars: 20 µm.  
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to distinguish the different cell types. The cross section of a maximum projection also depicted 

the cytokinin response in the stele (Figure 34A; right-bottom). Expression of pTCSn:GFP-NLS in 

csc1 revealed cytokinin response in the lateral root cap and in the stele (Figure 34B). Compared 

to Col-0, pTCSn expression in csc1 was broader and slightly stronger in vascular cells, close to 

the QC and in further differentiated vascular cells in more mature cells shootwards (Figure 34B). 

Maximum projection of longitudinal and transverse root sections depicted a wider pTCSn signal 

in the stele of csc1 compared to Col-0, which is presumably due to more vascular cell files in csc1 

(Figure 34A,B; right-bottom). Together, the analysis of cytokinin treatment in the root vasculature 

and the cytokinin response in the RAM in Col-0 and csc1, suggested that CSC1 might function in 

regulating cytokinin signalling.  

 

4.2.6 CSC1 controls cytokinin response in the SAM 

Based on the data that csc1 showed an enhanced cytokinin response in the RAM, we wanted to 

test, if this holds true for the SAM using the same line, pTCSn:GFP-NLS/pUBQ10:3xmCherry-

NLS in Col-0 and csc1 mutant backgrounds.  

To investigate the CSC1 function in cytokinin response in more detail in the shoot meristems, we 

applied the image analysis pipeline developed by Christian Wenzl for our imaged z-stacks of csc1 

and Col-0 SAMs, to quantify cell numbers and expression domains in the SAM (Jan Lohmann 

Lab) (Berthold et a., 2008). 3D views of representative shoot meristems revealed an increased 

SAM in csc1 plants compared to Col-0 and an additional increment of pTCSn expression domain 

(Figure 36A,B; top and bottom). Quantifications of TCSn signals in the shoot meristems revealed 

a significant increase (+116 %)  in TCSn positive cells in csc1 compared to Col-0 (Figure 36C). 

In addition, csc1 exhibited almost twice as many cells (+87 %) in the total meristem as Col-0 

(Figure 36D).   
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Figure 36. CSC1 function regulates cytokinin response in the SAM. (A-B) Representative views of 

3D-reconstructed SAMs after nuclei segmentation from (A) Col-0 and (B) csc1 in the pTCSn:GFP-NLS 

/pUBQ10:GFP-NLS reporter. Dark blue: primordia cells, cyan: SAM cells, magenta: TCSn positive cells. 

(C-D) Quantification of (C) TCSn positive cells and (D) total cell numbers in the SAM. Percentage values 

depict increase of cells from Col-0 to csc1 Shoot meristems of 35-day-old plants. Statistically significant 

difference from Col-0 based on Kruskal-Wallis test (***p < 0.001). Col-0 (n=14), csc1 (n=16).  

Figure 35. CSC1 functions in restricting WUS domain in the SAM. (A-B) Representative views 

of 3D-reconstructed SAMs after nuclei segmentation from (A) Col-0 and (B) csc1 in the pCLV3:BFP-

NLS/pWUS:2xVenus-NLS/pUBQ10:3xmCherry-NLS triple reporter. Dark blue: primordia cells, cyan: 

SAM cells, yellow: CLV3 positive, red: WUS positive cells. (C-E) Quantification of (C) CLV3 positive 

cells, (D) WUS positive cells and (E) total cell numbers in the SAM. Percentage values depict 

increase of cells from Col-0 to csc1. Shoot meristems of 35-day-old plants. Statistically significant 

difference from Col-0 based on Kruskal-Wallis test (***p < 0.001). Col-0 (n=18) csc1 (n=16). 
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Second, we analysed the expression of WUS in the organising centre (OC) and CLV3 in the 

central zone (CZ) of Col-0 and csc1 shoot meristems using the pCLV3:BFP-NLS/pWUS:2xVenus-

NLS/pUBQ10:3xmCherry-NLS triple reporter, kindly provided by Christian Wenzl (Jan Lohmann 

Lab). Cross-sections of 3D views of representative shoot meristems exhibited an expanded WUS 

distribution domain in csc1 plants compared to Col-0 (Figure 35A,B). Quantifications of CLV3 

positive cells revealed a slight, but significant increase in csc1 (+46 %) (Figure 35C). WUS 

positive cells were dramatically increased (+200 %) and the WUS domain expanded further into 

the rib meristem in csc1 than in Col-0 (Figure 35B,D). The total cell number in the SAM also 

increased in csc1 (+64 %) compared to Col-0 (Figure 35E). To identify, if this dramatic increase 

in the WUS domain is due to the general increase of the meristem size, we calculated the ratios 

of for instance WUS positive cells and total cells in the meristem for csc1 and Col-0 (Figure 37). 

The ratios for CLV3 depicted a smaller ratio for CLV3 in csc1 compared to Col-0. This means, 

that in relation to the total cell number in the meristem, there are fewer CLV3 positive cells in csc1 

than in Col-0 (Figure 37). In contrast to CLV3, the ratio of WUS positive cells in relation to total 

cell number is dramatically bigger in csc1 compared to Col-0 (Figure 37). The difference of the 

ratio between TCSn positive and total cell number in Col-0 and csc1 is almost the same, implying 

that the elevated TCSn positive cells might correlate with the increased meristem size (Figure 

37).  

 

 

 

 

 

 

 

 

Figure 37. WUS domain increases independently of shoot apical meristem size in csc1. Ratios 

of CLV3-WUS-pTCSn positive cells/total cell number in Col-0 or csc1. Statistically significant 

difference from Col-0 based on pairwise t-test (***p < 0.001). Col-0 (n=14-18) csc1 (n=14-15).  
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Taken together, we could identify a drastically increase in the WUS domain in csc1 SAMs, 

whereas the CLV3 domain only slightly increased compared to Col-0, resulting in a reduction of 

the CLV3 domain in relation to the total cell number. These findings imply that CSC1 might 

uncouple the WUS-CLV3 feedback loop.   

 

4.2.7 CSC1 might regulate auxin response via WUS   

After identifying, that CSC1 might function in regulating cytokinin responses in the root and shoot 

apical meristem, we wanted to investigate, if auxin, the second important phytohormone signalling 

pathway in root and shoot meristems, is also altered in csc1 mutants (Leyser, 2018). Therefore, 

we crossed the auxin response marker pDR5v2:YFPer, kindly provided by Jiyan Qi (Thomas Greb 

Lab), into csc1. Shoot apical meristems of 35-40-day-old plants with csc1 phenotypes of a 

segregating F2 population of this cross, were imaged (Figure 38).  

 

 

 

 

 

 

 

 

 

 

Figure 38. csc1 depicts smaller auxin response domains. Representative 3D views of SAMs 

expressing auxin response marker pDR5v2:YFPer in Col-0 (top) and csc1 (bottom) backgrounds of 

35-40-day-old plants. Left to right: pDR5v2:YFPer channel, PI channel, merge. Col-0 (n=4), csc1 (n=5), 

scale bar: 50 µm. 
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In the Col-0 background, the pDR5v2 depicted a weak signal in the centre of the meristem (CZ) 

with increasing signals in spiral shaped zones towards the periphery (Figure 38, top). Auxin 

maxima define the loci of primordia initiation and can be directly used as read out for where and 

how many primordia are initiated (Heisler et al., 2005).  Auxin response domains in csc1 seemed 

to be smaller and they did not exhibit a spiral shaped zone from the centre of the meristem towards 

the periphery like Col-0, consistent with more WUS in the SAM (Figure 38, bottom) (Ma et al., 

2018). In addition, no pDR5v2:YFP signal was detected in csc1 plants in the centre of the SAM 

(Figure 38, bottom). However, the number of pDR5v2 positive domains might be elevated in csc1 

compared to Col-0, which would support the assumption that csc1 exhibited more primordia in 

the shoot apical meristem (Figure 26B). Compared to Col-0, the single domains were more 

constraint and presumably harboured less cells in each domain, which might also explain defects 

in flower development.  

 

4.2.8 Genetic interaction of CSC1 and CLV3 in the SAM 

Analysis of WUS and CLV3 markers in the csc1 mutant background revealed that the mutation in 

CSC1 resulted in an increased WUS domain but only a slight increase in the CLV3 domain, 

suggesting, that in csc1 mutants WUS-CLV3 feedback is uncoupled. Previous studies of clv3 

mutants revealed, that the absence of the CLV3 peptide results in a massive increase in the WUS 

and the CLV3 domain in the shoot apical meristem (Schoof et al., 2000; Muller et al., 2008).  

We wanted to investigate if CSC1 might genetically interact with CLV3 to gather more information 

where and how CSC1 functions in the shoot apical meristem. We crossed csc1 with the TALEN 

derived clv3-10 mutant (Forner et al., 2015). csc1 clv3-10 double mutants in the F3 generation, 

wild type for RLP4 and R4L1 mutations, were phenotypically characterized. The clv3-10 mutant 

displayed a strong developmental phenotype with a fasciated stem, a massively increased SAM 

and club-like siliques (Figure 25G, Figure 39). As previously mentioned, csc1 depicted un-opened 

flower buds, presumably due to defects in flower development, reminiscent of clv3-10 (Figure 

25A-D,G). During vegetative stage and early reproductive stage of csc1 clv3-10 double mutants, 

it seemed as if csc1 could repress the severe clv3-10 phenotype (data not shown). Around 30-35 

days after germination, csc1 clv3-10 double mutants started developing a severe developmental 

phenotype. Around the same developmental stage, csc1 also started depicting flower 

developmental phenotypes. csc1 clv3-10 double mutants exhibited either one thick round stem 

or a thick fasciated stem, that often started splitting (Figure 39A-E, white arrow heads). Compared 
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to csc1 or clv3-10 single mutants, it is striking, that csc1 clv3-10 double mutants did not develop 

side shoots at the primary shoot and only in rare occasions siliques (Figure 39A-C).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39. CSC1 and CLV3 seem to genetically interact in controlling shoot apical meristem. (A-

C) Three representative phenotypes of csc1 clv3-10 with csc1 and clv3-10 single mutants (left to right). 

Scale bars: 50 mm. Note splitting of primary stem and outgrowth of silique (white arrow heads). (D-E) 

Representative images of csc1 clv3-10 inflorescences and (D) fasciated primary stem or (E) split stem 

with pedicels and missing flower whorls. Note white and black arrow heads. Scale bars: 10 mm (F) 

Rosette leaves of Col-0, csc1, clv3-10 and csc1 clv3-10, left to right. Scale bar: 10 mm. Note the 

radialzed rosette leaf of csc1 clv3-10.  (G) Siliques in pairs of Col-0, csc1, clv3-10 and csc1 clv3-10, 

left to right. Scale bar: 10 mm. (H) Siliques of csc1 clv3-10 with outgrowth, presumable non-terminated 

flower meristem, scale bar: 10 mm. (I) Inflorescences of csc1 (left) and clv3-10 (right), scale bar: 5 mm 

(J-K) Inflorescences of clv3-10 (Left) and csc1 clv3-10 #33 (right), scale bar: 5 mm (K) Inflorescences 

of clv3-10 (left) and csc1 clv3-10 #34 (right), scale bar: 5 mm. (L) Dissected SAMs of clv3-10 (left) and 

two representative SAMs of csc1 clv3-10 (middle, right) depicting either a split meristem (middle) or a 

circular meristem. For all phenotypic characterizations, 35-50-day-old plants were analysed.  
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Double mutants exhibited severe flower developmental phenotypes only developing pedicels and 

completely missing flower whorls (Figure 39E). Furthermore, csc1 clv3-10 double mutants had 

also a rosette leaf phenotype in which the leaves had a darker green colour, were more rigid, 

exhibited downward curled and radialized leaves (Figure 39F) (Williams et al., 2005). In 

comparison to Col-0 or csc1 siliques, siliques of double mutants were often reminiscent of clv3-

10, exhibiting more than two carpels and a club-like shape (Figure 39G). On the other hand, 

double mutants also displayed Col-0 or csc1-like siliques (Figure 39G). Intriguingly, club-like 

shaped siliques of csc1 clv3-10 double mutants occasionally increased in size and aberrant 

structures did grow out of the siliques probably due to non-terminated floral meristems (Figure 

39H). Inflorescences of csc1 and clv3-10 single mutants depicted an enhanced shoot apical 

meristem of clv3-10 with elevated numbers of flower buds (Figure 39I). Comparison of 

representative inflorescences of csc1 clv3-10 double mutant lines #33 and #34 with clv3-10, 

revealed often smaller, but split inflorescences or similar sizes with increased flower buds (Figure 

39J,K). These inflorescences were dissected and clv3-10 depicted an increased sausage-like 

meristem (Figure 39L, left). The two representative csc1 clv3-10 inflorescences exhibited an 

increased, but split meristem and an increased meristem with a circular structure (Figure 39L, 

middle and right). 

Taken together, these phenotypic analyses of csc1 clv3-10 revealed, that csc1 seems to repress 

the clv3-10 phenotype in the vegetative stage, but exacerbates it in the reproductive stage, 

suggesting a function of CSC1 and CLV3 in regulating stem cell maintenance in the inflorescence 

SAM.  

 

4.2.9 csc1 clv3-10 does not depict exaggerated phenotype in the root 

vasculature  

Although CLV3 is only expressed by stem cells in the shoot apical meristem, we wanted to 

analysed if csc1 clv3-10 plants might depict as well an exaggerated phenotype in the vasculature 

as in the SAM due to long distance effects. Six-day-old seedlings were stained with basic fuchsin 

and calcofluor white to counterstain lignin in secondary cell walls in xylem cells and cellulose in 

primary cell walls, respectively. Analysis of protoxylem cell numbers in the early differentiation 

zone of seedling roots revealed no differences in clv3-10 compared to Col-0, whereas csc1 clv3-

10 had elevated protoxylem cell numbers like csc1 (Figure 40A). 
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However, in 10 % of the counted metaxylem cells, only two metaxylem cells were counted in clv3-

10 and the double mutant csc1 clv3-10, instead of three to four in Col-0 (Figure 40B). The analysis 

of total vascular cell numbers in Col-0 and the three mutant genotypes revealed that clv3-10 

depicted a slightly decrease with an average of 29 cells in the vasculature compared to Col-0 with 

around 30 (Figure 40D). The double mutant and csc1 revealed a similar vascular cell number with 

around 40 cells (Figure 40D).  

Figure 40. csc1 clv3-10 does not depict enhanced phenotypes in root vasculature. Basic 

fuchsin and calcofluor white staining of six-day-old seedling roots. (A-B) Basic fuchsin staining 

enables counting of (A) protoxylem and (B) metaxylem cells. Squared greyish boxes depicts 

numbers of proto- or metaxylem cells, respectively. Col-0 wild type (n=21), csc1 (n=18), clv3-10 

(n=19) and csc1 clv3-10 (n=20). Statistically significant differences based on ANOVA and post-

hoc Tukey. (C) Calcofluor white staining enables counting of vascular cells in the root. 

Representative orthogonal views of Col-0, csc1, clv3-10 and csc1 clv3-10 vascular cells in the 

early differentiation zone in the root. (D) Quantification of vascular cell numbers in Col-0 wild type 

(n=14), csc1 (n=13), clv3-10 (n=17) and csc1 clv3-10 (n=12). Statistically significant difference 

from Col-0 based on Kruskal-Wallis test (***p < 0.001). 
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4.2.10 RNA-Sequencing of csc1 and Col-0 

To gain further inside of the function of CSC1, we wanted to analyse which genes are down- or 

upregulated in the csc1 mutant in the shoot and in the root apical meristems compared to Col-0. 

To perform this experiment, 20 SAMs of 35-day-old csc1, in rlp4 r4l1 mutant background, and 

Col-0 plants with shoots around 10 cm, were dissected, primordia until flower stage 2 (Smyth et 

al., 1990) were removed, and triplicates were collected. For collection of root apical meristems, 

csc1 and Col-0 seeds were sown out on nylon meshes which were placed on standard medium 

plates. Root apical meristems of six-day-old seedlings were collected in triplicates by cutting of 

the root apical meristems of csc1 and Col-0, respectively. The RNA was extracted using a kit with 

additional DNase digestion and RNA concentrations of 350 - 750 ng/µL were sent for RNA 

sequencing. RNA sequencing was performed by next generation sequencing at the Deep 

sequencing platform at the University of Heidelberg by David Ibberson.  

Using a NextSeq 550 sequencing platform and 75 bp single end read length, we obtained 30 – 

60 Mio reads per sample. Reads were aligned to the Arabidopsis reference sequence (TAIR10) 

using RNA-Star software and over 90 % of reads could be aligned. Read counts were assinged 

by FeatureCounts and differentially expressed transcripts were calculated by DeSeq2. Adaptors 

were not removed from reads, due to the short sequencing length.  

For further analysis, we analysed genes, that were significantly up- or downregulated, with a 

log2fold change (log2FC) of <-0.5 for downregulated genes and >0.5 for upregulated genes 

(Figure 41A). We utilized a VENN diagram to represent the significantly up- and down regulated 

genes in csc1 in SAM and RAM (Figure 41A). In total, 2916 genes were differentially regulated in 

csc1 in the RAM and the SAM. In the SAM, 2399 genes are either up- or downregulated, in the 

RAM 576 (Figure 41A). Of the 2916 genes, 24 were downregulated in SAM and RAM and 35 

genes were upregulated in the both meristems (Figure 41A). Due to the fact, that csc1 depicts a 

striking phenotype in the SAM and the RAM/vasculature, we further analysed genes that were 

significantly up- or downregulated in both. GO term analysis could not be computed, because of 

the small number common differentially expressed genes. In the list of down regulated genes in 

SAM and RAM, RLP4 and R4L1 are present, because csc1 is still in the rlp4 r4l1 double mutant 

background (Figure 41B). Furthermore, ORA47 (AT1G74930) is downregulated in csc1. 

ORA47 encodes a transcription factor which is proposed to act in ethylene, jasmonic acid (JA) 

and abscisic acid (ABA) signalling in response to wounding  (Chen et al., 2016). Recent studies 

identified ORA47 as a putative actor in developmental processes based on the fact, that ORA47 

binds to the promoter region of WUS and overexpression of ORA47 seems to decrease the WUS 
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domain in the SAM (personal conversation; Dan Zhang and Yanling Yu, Rosa Lozano Durán Lab). 

The increased WUS domain in csc1 plants might be in response to downregulation of ORA47.  

Among up regulated genes in SAM and RAM two genes are involved in secondary cell wall 

biosynthesis (Figure 41C). TRACHEARY ELEMENT DIFFERENTIATION-RELATED 6 (TED6, 

AT1G43790), which is crucial for the differentiation of protoxylem and metaxylem cells (Endo et 

al., 2009) and ALTERED XYLOGLUCAN 4 (AXY4 or TBL27, AT1G70230), which is a member of 

the TRICHOME BIREFRINGENCE-LIKE (TBL) gene family and a putative xyloglucan (XyG) O-

acetyltransferase, therefore presumably essential for the cell wall composition and properties 

(Gille et al., 2011; Zhu et al., 2014). Both genes are also expressed in the root and the shoot (eFP 

Browser; Zhu et al., 2014) and upregulation of these two genes might correlate with the increased 

numbers of vascular cells with elevated proto- and metaxylem cells in csc1.  
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Additionally, we performed GO-enrichment analysis with all significantly up- and downregulated 

genes in the RAM and SAM samples, respectively. GO-enrichments for molecular function were 

calculated by Panther. 3770 genes were differentially expressed in the RAM and of these genes, 

3238 genes could be classified depending on their molecular function (Table 3). Three different 

classes were highlighted, either because of a high fold enrichment in csc1 compared to the 

reference genome or many genes were classified into one molecular function. The green group 

comprised genes involved in ATP/nucleotide binding, the yellow group genes, involved in protein 

kinase activity and the blue group depicted the highest fold enrichment compared to the reference 

and comprised genes involved in RNA binding/ribosomal complexes (Table 3). Based on this 

data, CSC1 might regulate signalling cascades, which often contain protein kinases and 

phosphorylation and de-phosphorylation events. Downstream of activated signalling cascades, 

transcriptional and translational machineries are activated, which might be indicated by the 

overrepresentation of genes involved in RNA binding/ribosomal complexes. The GO-enrichment 

analysis of significantly up- and downregulated genes in SAM samples revealed similar results. 

5942 genes were differentially expressed in the SAM and of these genes, 5054 genes could be 

classified depending on their molecular function (Table 4). However, only the blue and green 

groups with genes involved in RNA binding/ribosomal complexes and ATP/nucleotide binding 

could be assigned, respectively.  

Figure 41. VENN diagramme shows more differentially expressed genes in the shoot apical 

meristem of csc1. (A) VENN diagram of significant up- (log2FC>0.5) or downregulated (log2FC<-

0.5) genes (2916) in shoot and root of csc1 compared to Col-0. (B) Table of 24 genes, that are 

significantly down regulated in SAM and RAM in csc1 compared to Col-0, indicated by green circle 

(data from A). (C) Table of 35 genes, that are significantly up regulated in SAM and RAM in csc1 

compared to Col-0, indicated by red circle (data from A).  
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Table 3. GO-enrichment for molecular function of significantly up- and downregulated genes 

in the RAM. Genes involved in translation (rRNA) (blue), in kinase activity (yellow) and nucleotide 

binding (green) are highlighted.  
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Table 4. GO-enrichment for molecular function of significantly up- and downregulated genes 

in the SAM. Genes involved in translation (rRNA) (blue), and nucleotide binding (green) are 

highlighted.  
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4.2.11 csc1 corresponds to an unknown mutation in chromosome five 

4.2.11.1 Bulked segregant analysis identifies mutation on chromosome five 

First, we attempted to narrow down the mutation to a chromosomal region by bulked segregant 

analysis. Thus, we crossed csc1 (Col-0 background), still carrying mutations in RLP4 and R4L1, 

with the Landsberg erecta (Ler) ecotype (Figure 42). These two ecotypes contain repetitive 

regions interspersed on all chromosomes, that differ in lengths and thereby can be used as 

marker regions for PCR based amplifications (James et al., 2013).  

F1 hybrids of csc1 and Ler crosses depicted a phenotype similar to Col-0 (Figure 42A), consistent 

with a recessive mutation. Due to recombination events from F1 to F2 populations, the 

descendants of the F1 plants are carrying chromosomes with a diverse csc1 (Col-0) and Ler region 

pattern. 200 F2 plants were phenotypically characterized and genomic DNA (gDNA) was extracted 

from plants with csc1 (+) and without csc1 (-) phenotypes. Bulked gDNA of plants with csc1 

phenotypes (+) was analysed with a set of markers for all five chromosomes. As the mutation 

originates from plants with Col-0 background, we would expect only Col-0 DNA in the 

chromosomal region close to the mutation. Amplified PCR fragments of markers will show one 

strong band for Col-0 in this area. In areas further upstream or downstream of the mutation, 

recombination events occurred, leading to a higher percentage of Ler, which will be depicted by 

a strong Col-0 band and a weak Ler band. In chromosome areas, where Col-0 and Ler are equally 

distributed, Col-0 and Ler will depict bands with the same intensity.   

PCRs of all markers in the five Arabidopsis chromosomes were performed with a Col-0 and Ler 

gDNA control, the bulked gDNA of F2 plants with the csc1 phenotype (+) and as a negative control, 

bulked gDNA of F2 plants without csc1 phenotype (-). Gel electrophoresis revealed a 

characteristic Col-0/Ler band pattern for the bottom of chromosome five, highlighted by the red 

frame (Figure 42B). For marker K6M13ind33 (~20 Mio bp), only one band at the size of the Col-

0 band, was visible (Figure 42B). The flanking markers (~17.6 Mio bp and ~24.5 Mio bp) still 

depicted a weak band for Ler, meaning that the mutation of csc1 is localized in this area (Figure 

42B). Additionally markers in this area could further narrowed down the region of the csc1 

mutation to a region from ~18 Mio bp to ~20 Mio bp (Figure 42B).  
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Figure 42. Mutation in csc1 is localized on chromosome five. Bulked segregant analysis of a F2 

population of csc1 in Col-0 crossed with Ler. (A) Overview of establishing the bulked segregant 

population with csc1 and Ler. Pooled gDNA of F2-plants with a csc1 phenotypes was used for PCR 

reactions with genetic markers for the five chromosomes. (B) The mutation was identified on 

chromosome five using genetic markers that are amplifying the depicted areas on the chromosome 

and reveal different PCR amplified fragments depending on the ecotype background. Samples of 

Col-0 (C), Ler (L) and bulked gDNA of plants with csc1 (+) and without (-) phenotype were analysed. 

Red frame depicts the three genetic markers, where shifts in the intensity of band patterns occurred. 

In marker K6M13ind35 (~20.3 Mio bp), only a Col-0 band was detected.  
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4.2.11.2 Whole Genome Sequencing identifies three mutations in csc1 

To identify the mutation in the csc1 mutant, we sent samples for whole genome sequencing 

(WGS). Therefore, cauline leaves of a segregating csc1 Col-0 F2 population were collected. Plant 

material of around 50 plants (40 DAG) with csc1 phenotype (+) and without csc1 phenotype (-), 

were harvested. Additionally, around 50 seedlings of the same F2 population were also screened 

and collected for the protoxylem csc1 phenotype (+) and without csc1 phenotype (-). Plant 

material from adult plants (F2) and seedlings (F2) with the csc1 phenotype were bulked as one 

sample (+), the same was done for the samples without csc1 phenotyppes (-). As a third sample, 

csc1 seedlings and cauline leaves of adult plants were collected and bulked. Of all three plant 

samples gDNA was extracted using the CTAB-gDNA extraction protocol. Concentrations of 450 

– 850 ng/µL gDNA were sent for sequencing (StarSeq, Mainz).  

 

Figure 43. Identification of a SNP in Acetoacetyl-CoA Thiolase 1 (AACT1) in csc1 plants. (A) 

Overview of mapping populations and position of identified SNP in exon eleven of AT5G47720 – 

Acetoacetyl-CoA Thiolase 1 (AACT1). SNP was identified in all reads in csc1, in around one third of 

reads of a segregating csc1 Col-0 F2 population, from plants without csc1 phenotype (-), and in all 

reads of a segregating csc1 Col-0 F2 population, from plants with csc1 phenotype (+). The mutation 

is located 2015 bp downstream of the ATG (gDNA), exchange from guanine to thymine. (B) Overview 

of gene structure with exons (black boxes), introns (black lines), UTRs (grey boxes) and ATG codon. 

All five splice variants of AACT1 are listed. The position of the SNP is marked in red in exon eleven 

and is based on the splice variant 2 CDS sequence (AT5G47220.2). Base exchange from guanine to 

thymine leads to an exchange of amino acids from glycine (G) to valine (V) at amino acid sequence 

position 354 (G354V). Alignment was performed by IGV_2.5.0 
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Sequenced reads with a length of 150 bp were aligned to the Arabidopsis thaliana reference 

genome. Reads of csc1, csc1 Col-0 F2 (+) and csc1 Col-0 F2 (-) were aligned with the reference 

genome and analyzed using IGV_2.5.0. We could identify three SNPs on chromosome five, 

supporting the results from the bulked segregant analysis (Figure 42). The first SNP was located 

in AT5G47720 which encodes for ACETOACETYL-COA THIOLASE 1 (AACT1). In all three 

samples, the point mutation with an exchange of guanine to thymine was visible (Figure 43A). 

The mutation was found in 100 % of the csc1 and csc1 Col-0 F2 (+) reads, and in around 35 % of 

the csc1 Col-0 F2 (-) samples. We expected around one third of mutations in the csc1 Col-0 F2 (-

) population due to heterozygous plants. The SNP is situated in exon eleven, 2015 bp downstream 

of the ATG (gDNA) which leads to an exchange in the amino acids sequence from glycine to 

valine G354V. This position of amino acids exchange is based on the amino acid sequence of 

splice variant AT5G47720.2 (Figure 43B). AACT1 is located in the cytoplasm and chloroplasts, 

were it catalyzes the condensation of two acetyl-CoAs to form acetoacetyl-CoA (Jin et al., 2012). 

This is the initial step in the mevalonate (MVA) pathway, which includes also the synthesis of 

brassinosteroids (Jin et al., 2012). RNA-Seq data showed a significant downregulation of AACT1 

in the csc1 mutant in the SAM, but in the RAM it was not differentially regulated (Appendix A2). 

The second SNP was discovered in AT5G43810, better known as ZWILLE or ARGONAUTE 10 

(ZLL/AGO10). The point mutation depicted an almost 100 % penetration in csc1 and csc1 Col-0 

F2 (+) samples with an exchange of guanine to adenine 1333 bp downstream of ATG (gDNA) 

(Figure 44A). This point mutation is leading to an amino acid exchange from glutamic acid to 

lysine at position E444K in exon six both splice variants (Figure 44B). AGO10 is required to 

establish the central-peripheral organization of the embryo apex and controls together with WUS 

and CLV3 the organization of central and peripheral zone by sequestering miR165/166 to regulate 

SAM development (Manavella et al., 2011; Tucker et al., 2013; Xue et al., 2017). RNA-Seq data 

showed a significant upregulation of AGO10 in the RAM of the csc1 mutant, but in the SAM it was 

not differentially expressed (Appendix A2).  

The third SNP was discovered either in the presumed terminator region of AT5G51560 or the 

predicted promoter region of the downstream gene AT5G51570. In 100 % of csc1 and csc1 Col-

0 F2 (+) reads, the point mutation showed an exchange of adenine to cytosine and is located 3328 

bp downstream of the ATG in AT5G51560 (Figure 46A). The negative control showed the point 

mutation only in two reads (Figure 46A). AT5G51560 encodes for a LRR-RLK, thus being a 

putative candidate for CSC1 as a receptor for CLE21 or CLE27. However, RNA-Seq data did not 

reveal a significant downregulation of At5G51560 in csc1 in the RAM nor in the SAM compared 

to Col-0. AT5G51570 encodes for a SPFH/Band 7/PHB domain-containing membrane-associated 
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protein, but was not further characterized. RNA-Seq data neither revealed differentially 

expression of AT5G51570 in csc1. 

 In summary, results of phenotypic characterizations, phytohormonal and peptide responses, 

transcriptional and genetic analysis of CSC1 can be depicted in a preliminary scheme (Figure 

45). We could reveal that CSC1 might regulate proliferation by negatively regulating cytokinin 

response in the shoot and root apical meristem. CSC1 is presumably involved in CLE21/CLE27 

signalling which seems to cross-talk with cytokinin signalling. In the SAM, the regulation of 

proliferation is presumably controlled either via a direct or indirect interaction with WUS. In 

addition, CSC1 seems to positively regulate CLV3 signalling depicted by uncoupling the WUS-

CLV3 feedback loop in the csc1 mutant.  

Figure 44. Identification of SNP in ZWILLE/ARGONAUTE10 (ZLL/AGO19) in csc1 plants. (A) 

Overview of mapping populations and position of identified SNP in exon six of AT5G43810 – 

ZWILLE/ARGONAUTE10 (ZLL/AGO10). SNP was identified in all reads in csc1, only in two reads of 

a segregating csc1 Col-0 F2 population, from plants without csc1 phenotype (-), and in almost all reads 

of a segregating csc1 Col-0 F2 population, from plants with csc1 phenotype (+). The mutation is located 

1333 bp downstream of the ATG (gDNA) with a base exchange from guanine to adenine. (B) Overview 

of gene structure with exons (black boxes), introns (black lines), UTRs (grey boxes) and ATG codon. 

Position of the identified SNP is marked in red at the end of exon six. Base exchange from guanine to 

adenine leads to an exchange of amino acids from glutamic acid (E) to lysine (K) at amino acid 

sequence position 444 (E444K). Both splice variants of ZLL/AGO10 are listed. Alignment was 

performed by IGV_2.5.0. 
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Figure 46. Identification of SNP in terminator or promoter region of AT5G51560/AT5G51570 in 

csc1 plants. (A) Overview of a SNP in the terminator region of AT5G51560, encodes for a LRR-

RLK or the promoter region of AT5G51570, encodes for SPFH/Band7/PHB domain-containing 

membrane-associated protein family. Replacement of an adenosine by cytosine, 3328 bp (A3328C) 

downstream of the AT5G51560 ATG. SNP was identified in all reads in csc1, only in two reads of a 

segregating csc1 Col-0 F2 population, from plants without csc1 phenotype (-), and in all reads of a 

segregating csc1 Col-0 F2 population, from plants with csc1 phenotype (+). (B) Overview of gene 

structure with exons (black boxes), introns (black lines), UTRs (grey boxes) and ATG codon. Position 

of the identified SNP is marked by a red box between AT5G51560 and AT5G51570. Alignment was 

performed by IGV_2.5.0 

Figure 45. Overview of putative functions of CSC1 in maintaining stem cells in the SAM and 

controlling CLE and cytokinin signalling in shoot and root. The factors in green are 

specifically expressed in the shoot apical meristem, all other factors are expressed in shoot and 

root. 
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4.3 Discussion 

4.3.1 CSC1 controls meristem size in the SAM through WUS  

In this study, we could identify CSC1 as a new player in regulating meristem size presumably 

through regulating the cytokinin signalling pathway. csc1 displayed severe defects in flower 

development, an enlarged SAM and more vascular cell numbers, which suggested a function of 

CSC1 in the SAM and the RAM.  

The size of the SAM is mainly controlled by the negative feedback loop of the homeodomain 

transcription factor WUSCHEL (WUS) and the small secreted CLV3 peptide. Mutations in the 

CLV3 peptide or in the CLV3 receptors and co-receptors CLV1/CLV2/CRN/BAMs result in the 

disruption of the core WUS-CLV3 feedback loop and lead to severe stem cell over-proliferation, 

causing an increased SAM (Fletcher et al., 1999; Muller et al., 2008). csc1 mutant plants also 

showed an increased apical meristem with more initiated primordia, reminiscent of the 

aforementioned mutants (Figure 25, Figure 26). We assessed if the increase in SAM size might 

be due to altered WUS and/or CLV3 expression in the csc1 mutant, analysing the pCLV3:BFP-

NLS/pWUS:2xVenus-NLS marker. Analysis revealed a strong increase in the WUS domain in 

csc1 plants and ratios of pWUS positive cells and total cell numbers in the SAM compared to Col-

0 showed an increase independent of meristem size (Figure 37). Furthermore, the CLV3 domain 

was slightly increased in the csc1 mutant, which might be sufficient to increase the number of 

highly proliferating cells and to increase overall apical meristem size. Intriguingly, analysis of 

CLV3/total meristem size ratios in Col-0 and csc1 plants revealed, that the CLV3 domain was 

slighty reduced in relation to the meristem size in csc1 plants (Figure 37). These findings are 

contradictory to previous studies, which showed that interferring with one player of the tightly 

controlled WUS-CLV3 feedback loop, affected all players, mainly leading to an increase of WUS 

and CLV3 domains (Fletcher et al., 1999; Muller et al., 2008; Je et al., 2016). Thus, these findings 

suggest, that CSC1 might interfere and modulate the WUS-CLV3 feedback loop.  

 

4.3.2 CSC1 might control auxin signalling through the expression of WUS 

In addition to a severe vascular and shoot apical meristem phenotype, csc1 exhibited flower 

developmental defects. These defects did not occur from the early reproductive stage, but in 

plants approximately 40-45 days old with shoots around 15-20 cm. All degrees of developmental 

severity in flower development were visible along the primary shoot, mostly depicted by missing 

organs in the single whorls or completely missing flowers, elucidated by pedicels (Figure 25). 
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Strikingly, wild type-like flowers were still able to form and siliques of these flowers were also wild 

type-like. Thus, the csc1 flower phenotype is presumably a secondary effect due to volatile 

concentrations of signal peptides or phytohormones and their signalling pathways, because wild 

type-like flowers and siliques could still be formed. We identified a similar phenotype in clv3-10 

mutant plants, either depicting too many organs, mainly in stamens and carpels, or exhibited the 

csc1 phenotype with missing flower organs. It was previously reported, that increased shoot apical 

meristem size can result in flower development defects due to the initiation of too many primordia 

and/or the failure of establishing inhibitory fields by cytokinin signalling in between the initiated 

primordia (Mirabet et al., 2012; Besnard et al., 2014b; Landrein et al., 2015b). Primordia are 

initiated by establishing fields with elevated auxin signalling output, which can be visualized by 

the pDR5v2 marker (Liao et al., 2015). In wild type conditions, pDR5v2:YFP is weakly expressed 

in the centre of the meristem and increases in a wedged shape towards the periphery, marking 

the area of primordia initiation (Figure 38). A recent study identified that low auxin signalling levels 

in the centre of the shoot apical meristem, mediated by WUS,  are essential to maintain stem cell 

identities (Ma et al., 2018). Intriguingly, csc1 plants did not show pDR5v2 signal in the centre of 

the meristem and Dr5v2 positive areas are smaller represented by a roundish shape (Figure 38). 

However, we identified an increased WUS domain in csc1 that might compensate the missing 

auxin signalling domain in the centre. Smaller pDR5v2 positive domains might signify less cells 

that are primed as primordia cells, which are missing in establishing a functional floral meristem 

and will lead to flower defects. Once cells are recruited and primed in the pDR5v2 domain, the 

absence of csc1 might also lead to increased cytokinin and WUS expression in the establishing 

floral meristem. Resulting either in wild type-like flowers or, if the WUS domain expands too much, 

in flowers with elevated organ numbers. The csc1 flower developmental phenotype is also 

reminiscent of the FILAMENTOUS FLOWER (FIL) mutant phenotype. FIL on the one hand 

terminates floral meristem and is involved in specifying abaxial cell types, on the other hand fil 

mutants also depict increased shoot apical meristems, similar to csc1 (Sawa et al., 1999; Lugassi 

et al., 2010; Bonaccorso et al., 2012). However, RNA-Seq data did not reveal differentially 

transcribed FIL in csc1 (Appendix A2).  

In conclusion, CSC1 seems to regulate auxin signalling by repressing WUS and constraining its 

activity to the centre of the meristem. The expanded cytokinin signalling domain in the centre of 

csc1 meristems also forms an increased inhibitory field for auxin signalling and the initiation of 

primordia, pushing them towards the boundary zone (Besnard et al., 2014a, b). Probably due to 

the increased meristem size in csc1, phyllotaxis is altered and several primordia seemed to be 

initiated at the same time. It would be important for future analysis, to test if the application of 

CLV3 peptide might restore the csc1 apical meristem and flower phenotypes.  
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4.3.3 CSC1 controls meristem size through cytokinin signalling 

Cytokinin signalling is, together with auxin signalling, a crucial phytohormone in meristem 

maintenance in the SAM and the RAM. In the SAM, cytokinin levels in the organizing centre (OC) 

and the positive transcriptional regulators type-B ARRs (such as ARR10 and 12) promote WUS 

transcription and WUS in turn represses the cytokinin repressors type-A ARRs (Leibfried et al., 

2005; Gordon et al., 2009; Xie et al., 2018). Thus, stem cell maintenance and meristem size is, 

apart from the WUS-CLV3 feedback loop, tightly controlled by cytokinin signalling which is also 

in cross-talk with other signalling pathways (Kondo et al., 2011; Uchida et al., 2013; Besnard et 

al., 2014a; Xie et al., 2018).  

As mentioned before, cytokinin signalling can promote WUS expression via the transcriptional 

regulators type-B ARRs. Therefore, we analysed the cytokinin response in the shoot apical 

meristem of csc1 mutants with the synthetic type-A ARR cytokinin reporter pTCSn:GFP-NLS. 

csc1 plants showed a strong increase in the pTCSn domain, but ratios of pTCSn positive cells 

and total cell numbers in the SAM revealed almost the same ratios in Col-0 and csc1, assuming 

that the increase in pTCSn positive cells might be correlated with the increase of total meristem 

size and seems to be uncoupled from WUS, which showed a stronger increase in the expression 

domain (Figure 37). Wild type plants almost display the same amount of cells, that are positive 

for pTCSn and pWUS (Figure 34, Figure 36), displaying the tight control of cytokinin signalling 

and WUS. Recently, a publication could show, that the application of nitrate led to an increased 

SAM and affected to the most extent the cytokinin response (pTCSn) and to a lesser extent WUS 

and CLV3 expression, suggesting a buffered system. In addition, it implies that WUS expression 

is only regulated via cytokinin signalling (Landrein et al., 2018). Furthermore, it could be identified, 

that elevated cytokinin signalling and an increase in WUS expression contributes more to the size 

of the SAM, than the expression of CLV3 (Landrein et al., 2018). In our study, we revealed, that 

the mutation in CSC1 had the strongest effect on WUS and to a lesser extent on cytokinin 

signalling and CLV3. This suggests, that CSC1 regulates (directly) WUS and cytokinin signalling, 

thereby maintaining stem cells in the apical meristem.  

In addition to the severe csc1 phenotype in the SAM, phenotypic characterization of csc1 showed 

an increase in total root vascular cell numbers compared to Col-0 (Figure 27). Interestingly, 

procambium and xylem cell numbers were elevated, but phloem cell numbers did not seem to be 

affected. In the xylem, more metaxylem and protoxylem cells were counted already in the early 

differentiating zone of the root, likely due to a function of CSC1 in the root apical meristem, as 

ectopic xylem cells in rlp44, bri1 and pskr1 pskr2 occurred much later, because of cell fate shift 

(Holzwart et al., 2018). Especially the high numbers of four to five protoxylem numbers in csc1 
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compared to two in Col-0 were striking (Figure 27). Patterning and establishment of xylem 

identities is a highly controlled process in plants and involves interplay of phytohormonal and 

transcriptional networks as well as spatio-temporal patterning in the early embryo (De Rybel et 

al., 2016). Previously reported mutants with elevated protoxylem cell numbers were either 

involved in cytokinin perception/signalling or in tissue patterning in the root vasculature (Mähönen 

et al., 2000; Mähönen et al., 2006; Zhou et al., 2013). Reductions in cytokinin signalling levels in 

the vasculature due to mutations in cytokinin receptors cre1 ahk3 or wol (ahk4), results in fewer 

vascular cells but in turn also fewer metaxylem cells and ectopic protoxylem (Mähönen et al., 

2000; Mähönen et al., 2006). High levels of cytokinin maintain the vascular stem cells and repress 

differentiation into phloem and xylem cells. On the other hand, downregulation of cytokinin and 

upregulation of AHP6 by auxin is crucial, to establish protoxylem cells (De Rybel et al., 2016). We 

hypothesised, that increased cytokinin levels in csc1 might be causative for this effect and tested 

if exogenous cytokinin application may enhance the vascular cell number in csc1. In fact, 

exogenous cytokinin revealed a slight increase in total vascular cells, but a dramatic increase in 

csc1 (Figure 33). These results indicate, that CSC1 might function in buffering cytokinin levels or 

is balancing cytokinin signalling to repress increased proliferation. 

A second phenotype we identified in Col-0 and csc1 plants treated with cytokinin, is the absence 

of protoxylem cells, depicted by the absence of secondary cell walls (Figure 33). These findings 

are supported by previous studies (Mähönen et al., 2006a). In higher concentrations even 

metaxylem cells were absent. These results suggest, that enhanced cytokinin signalling promotes 

proliferation of procambial cells and leads to reduction of cell differentiation, depicted by the 

absence of proto- and metaxylem cells. Contradictory, csc1 mutants in standard conditions 

exhibits more vascular stem cells, but also more differentiated meta- and protoxylem cells. 

Because elevated cytokinin levels lead to enhanced proliferation but also inhibition of 

differentiation, additional factors have to be involved in xylem differentiation. AT-HOOK (AHL) 

transcriptions factors regulate tissue patterning in the vasculature and are crucial in establishing 

a boundary between procambium and xylem. In a recent study it is hypothesised, that these 

transcription factors are in a cross-talk with cytokinin (Zhou et al., 2013). Enhanced cytokinin 

signalling seems to positively regulate AHL3 and AHL4. Increased AHL3 and AHL4 activity might 

explain, why csc1 still has differentiated xylem cells, although presumably elevated cytokinin 

levels promote proliferation. However, based on RNA-Seq data, upregulation of AHL3 and AHL4 

could only be identified in the SAM of csc1 (Appendix A2).  

On grounds of the previous results, investigations of cytokinin responses (pTCSn:GFP-NLS) in 

the root apical meristem vasculature in Col-0 and csc1 revealed, that the cytokinin response in 

csc1 was slightly increased, but much broader and also in more mature cells in the vasculature 
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compared to Col-0 (Figure 34). The extensive response in the vasculature in csc1 is presumably 

due to more procambium cells than in Col-0. In light of the phenotypes of csc1 in the shoot and 

the root, CSC1 might function in repressing cytokinin signalling in both meristems, which has to 

be further investigated.  

 

4.3.4 CSC1 might be involved in CLE21 and CLE27 perception or signalling 

Phenotypical characterization of csc1 phenotypes revealed an increased number of vascular 

cells, in particular more protoxylem cells, compared to Col-0. The CLE root bioassay is based on 

the growth-inhibitory effect of 17 root-active CLE peptides and a useful test to reveal putative new 

CLE receptors (Ito et al., 2006; Strabala, 2006). Mutations in putative receptors or downstream 

signalling components depict insensitivity to CLEs, illustrated by longer roots compared to Col-0 

(Kondo et al., 2011). Therefore, we tested the csc1 mutant root growth on root-active CLEs and 

identified an insensitivity towards CLE21 and CLE27 and a mild insensitivity towards CLE11. We 

have to mention, that csc1 was still in the rlp4 r4l1 double mutant background, hence we tested 

in parallel the root growth of rlp4 r4l1 #32-11 double mutant on all CLEs, which behaved wild type-

like. Thus, we hypothesized that CSC1 might function in direct CLE21 and CLE27 perception or 

downstream in CLE signalling (Figure 28). Several CLE peptides with their corresponding 

receptors could be identified over the last years, such as CLV3-CLV1/CLV2/CRN, CLE41/44-PXY 

or BAM1 serving as a receptor for many CLEs, but the receptors for several CLE peptides are 

still unknown. Expression analysis of CLE21 and CLE27 in this study could show, that CLE21 is 

mainly expressed in the vasculature in the shoot and the root and, to a lesser extent,  in the 

primary root meristem (Figure 29). CLE27 is expressed in root primordia and meristems of lateral 

roots, in young leaves and in early primordia of the inflorescence meristem (Figure 30). This data 

supports the hypothesis, that CSC1 might be a receptor of CLE21 and CLE27, because we 

identified the severe phenotypes in csc1 mainly in the tissues where CLE21 and CLE27 are 

expressed.  

Based on the hypothesis, that CSC1 might function in perceiving CLE21 and CLE27 or being 

involved in CLE-activated downstream signaling cascades, we assumed, that cle21 and cle27 

mutants presumably depicts elevated protoxylem cells, similar to csc1 (Yamaguchi et al., 2017). 

Therefore, we investigated cle21, cle27 and also cle11 single mutants, because csc1 depicted a 

slight insensitivity to CLE11 and CLE11 is also expressed in the vasculature (Jun et al., 2010). 

Several CLE peptides are functionally redundant, therefore we obtained cle11 cle21 and cle21 

cle27 double mutants (Yamaguchi et al., 2017; Gregory et al., 2018). Single as well as cle11 cle21 
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and cle21 cle27 double mutants did not show an above ground phenotype in comparison to Col-

0. However, cle11 and cle21 single mutants depicted more metaxylem rather than protoxylem 

cells in the vasculature (Figure 31). We expected, that knock-out of root-active CLEs such as 

CLE11, CLE21 or CLE27 would increase the number of protoxylem cells, based on a previous 

study, that revealed, that CLE application inhibits protoxylem formation (Kondo et al., 2011). It 

has to be taken in consideration, that these experiments were performed with artificial CLE 

concentrations. Therefore, it is possible that root-active CLEs do not inhibit protoxylem formation. 

Another explanation might be that CLE11 and CLE21, which are expressed in the root 

vasculature, function similar as CLE9/10 in defining the periclinal cell division in the outer most 

xylem cell, to produce one metaxylem and one protoxylem cell (Qian et al., 2018). BAM1 was 

identified as the main CLE9/10 receptor in the vasculature. Upon binding of CLE9/10 to the 

receptor, the periclinal division is suppressed and protoxylem differentiation is presumably 

inhibited, supported by phenotypes after exogenous CLE treatment (Qian et al., 2018). 

Intriguingly, cle11 cle21 and cle21 cle27 double mutants displayed meta- and protoxylem cell 

numbers similar to Col-0. Single cle27 mutants showed a slight increase in metaxylem cells but 

no differences were visible in the cle21 cle27 double mutants compared to Col-0. Based on the 

strong activity of pCLE27 only in root primordia, young leaves and inflorescence primordia, CLE27 

signalling pathways may be only functional in these tissues, therefore no phenotypic differences 

compared to Col-0 were depicted in the vasculature of single and double mutants. Furthermore, 

analysis of the total vascular cell numbers in CLE single and double mutants did not show 

differences compared to Col-0 (Figure 31). Due to the functional redundancy of CLEs, as shown 

for CLE16, CLE17 and CLE27 in the SAM (Gregory et al., 2018), it would be necessary to 

generate cle11 cle21 cle27 triple mutants and to identify protein-protein interactions.  

To date only a putative receptor for CLE27 was identified, but receptors for CLE21 and CLE11 

are still unknown. A recent study in maize could discover FASCIATED EAR3 (FEA3) and its 

Arabidopsis orthologue AtFEA3 (AT3G25670), an LRR-RLK, as a putative receptor for CLE27 

(Je et al., 2016). In maize, FEA3 is expressed in the organizing centre of the shoot apical meristem 

and the orthologue of CLE27, ZmFCP1 is expressed in differentiating primordia. ZmFCP1 diffuses 

towards the shoot apical meristem where it can bind to FEA3 and represses WUS expression and 

stem cell proliferation (Je et al., 2016). Mutation of the FEA3 receptor leads to an increased 

meristem size in maize and mutations in AtFEA3 in Arabidopsis revealed a similar meristem 

increase (Je et al., 2016). Albeit the direct binding of ZmFCP1 to FEA3 or CLE27 to AtFEA3 was 

not shown, AtFEA3 thus is a putative receptor for CLE27. These findings conclude, that the well-

known WUS-CLV3 feedback loop is not the only CLE peptide signalling pathway, that controls 

stem cell maintenance in the SAM (Je et al., 2016). However, we could not find mutations in 
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AtFEA3 in the csc1 mutant and RNA-Seq data did not reveal differentially expressed AtFEA3 in 

csc1 (Appendix A2). Based on our previous results, CSC1 might function downstream of CLE27 

perception, negatively regulating WUS expression. In addition, RNA-Seq data illustrated, that the 

transcription factor ORA47 is downregulated in the SAM of csc1. ORA47 was identified as a 

transcriptional repressor of WUS, maybe downstream of CSC1 (personal communication, Yanling 

Yu, Rosa Lozano Durán Lab and Dan Zhang, now Michael Raissig Lab). Future analysis should 

focus on the detailed analysis of RNA-Seq results and GO-enrichments, to identify putative target 

genes of CSC1. Preliminary analysis suggests a function of CSC1 in translation.  

 

4.3.5 CLE21 might cross-talk with cytokinin signalling 

As previously mentioned, CLE peptide signalling and cytokinin signalling might cross-talk to 

regulate eclectic developmental processes. However, neither many CLE receptors nor their 

downstream signalling members are identified to date. Application of exogenous CLE9/10 led to 

a repression of cytokinin negative regulators, the type-A ARRs. Thereby, the cytokinin signalling  

pathway is elevated and can repress the expression of AHP6, a negative cytokinin regulator, 

which is active in protoxylem cells (Mähönen et al., 2006 a). By now, the interaction of CLE and 

cytokinin signalling pathways was only reported for CLE9/10, although it is possible, that all root-

active CLEs might inhibit the differentiation of protoxylem cells via the upregulation of cytokinin 

levels in the root vasculature or this effect is due to artificial CLE concentrations (Kondo et al., 

2011).  

To further test the hypothesis, that root-active CLEs might cross-talk with cytokinin signalling, we 

analysed the effect of exogenous applied CLE21 on a cytokinin response marker (pTCSn:GFPer), 

a reporter for the negative cytokinin regulator (pAHP6:GFPer) and an auxin response marker 

(pDR5v2:mTurquoise) in the root apical meristem. Interestingly, CLE21 decreases the cytokinin 

response signal in the stele initials, but broadens and extends it in the vasculature of the RAM 

(Figure 32). pCLE21:GUS expression revealed pCLE21 activity in a similar domain as the pTCSn 

reporter in the root apical meristem. Elevated CLE21 treatment could therefore result in increased 

cytokinin response downstream of CLE21-receptor perception and would support the hypothesis 

of CLE21 and cytokinin signalling cross-talk. Consequently, CLE21 treatment leads to a decrease 

of the pAHP6 signal in the vasculature (Figure 32). However, CLE21 treatment of pDR5v2 only 

slightly decreased the signal in the vasculature, indicating no effect of CLE21 on auxin signalling 

in the root apical meristem (Figure 32). These results support our hypothesis, that elevated CLE21 

can activate the cytokinin signalling pathway represented by increased activity of the pTCSn 
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marker in the vasculature and a decrease of pAHP6 activity, which might lead to reduced 

protoxylem differentiation. With these findings, we partially disagree with previous finding, 

showing that CLE9/10 activate the cytokinin signalling pathway via the downregulation of type-A 

ARRs (Kondo et al., 2011). However, dependent on the CLE peptide, they might activate and 

cross-talk with CK signalling via type-A or type-B ARRs. Albeit the exact cross-talk mechanism of 

CLE21 and CK signalling could not be deciphered, it can be assumed, that AHP6 was repressed 

upon CLE21 treatment, which resulted in increased CK signalling or vice versa. To test the cross-

talk of CLE21 and CK signalling, the dynamics of the two transcriptional reporters have to be 

studied in detail. Furthermore, experiments with the pTCSn:GFPer marker treated with cytokinin 

in Col-0 and csc1 backgrounds, or with CLE21 in the csc1 background would be crucial 

experiments, to identify, if and how CSC1 might modulate cytokinin and CLE signalling.  

 

4.3.6 CSC1 might regulate CLV3 signalling 

Based on previous results, we attempted to identify if CSC1 and CLV3 might interact in regulating 

the shoot apical meristem. The combination of csc1 and clv3-10 mutants results in a dramatic 

phenotype in the reproductive stage. The absence of CSC1 seems to repress the clv3-10 mutant 

phenotype until the reproductive stage in which csc1 starts depicting flower developmental 

defects (Figure 39). The primary shoots of csc1 clv3-10 double mutants did not establish side 

shoots and flower developmental defects were increased illustrated by almost only pedicels at 

the primary shoot. Radialized rosette leaves and un-determined floral meristems were not visible 

in single csc1 or clv3-10 mutants. These findings suggest a function of CSC1 in a similar pathway 

as CLV3, due to the increased developmental phenotype of the csc1 clv3-10 double mutant. In 

combination with the results of the pCLV3, pWUS and pTCSn marker lines in the SAM of csc1, 

CSC1 might be a positive regulator of CLV3 signalling within the WUS-CLV3 feedback loop. 

Additional analysis of vasculature cells revealed, that csc1 clv3-10 double mutants depict the csc1 

phenotype. This is in line with the expression and function of CLV3 only in the SAM and is neither 

functional in the vasculature via a long-distance effect. However, no further conclusions can be 

considered due to the missing supporting data and putative multiple undefined background 

mutations in the mutants’ genomes.  
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4.3.7 Identifying putative CSC1 candidates 

By using next generation sequencing, three SNPs on chromosome five in the region of 17.6 Mio 

bp to 20.9 Mio bp were revealed in csc1, which is supported by results of the bulked segregant 

analysis (Figure 42). The first SNP was identified in AT5G43810 which encodes for 

ZWILLE/ARGONAUTE (ZLL/AGO10) (Figure 44). AGO10 is a member of ELONGATION 

INITIATION FACTOR 2C (EIF2C) and controls together with WUS and CLV3 the organization of 

central and peripheral zones in the SAM by sequestering miR165/166, which in turn cannot 

interact with the HD-ZIP III target genes  REV, PHB, PHV, ATHB-8 and CNA (Manavella et al., 

2011; Tucker et al., 2013; Xue et al., 2017). A recent study unravelled, that AGO10-miR165/166 

interaction leads to upregulation of PHB and REV genes, which are regulating SAM formation 

and pattern the adaxial side of leaf and flower primordia (Zhou et al., 2015). A miR166g 

overexpressing mutant, jba-1D, depicts an enlarged SAM, vascular defects and radialized leaves 

(Williams et al., 2005). This phenotype is reminiscent of csc1 and RNA-Seq analysis revealed, 

that AGO10 is upregulated in the root. In the vasculature, miR165/166 represses HD-ZIP III target 

genes in the outer xylem axis cells, leading to differentiation into protoxylem cells(Carlsbecker et 

al., 2010; Du et al., 2015; Ramachandran et al., 2016). Thus, more AGO10 could sequester 

miR165/166 which would lead to a reduced repression of HD-ZIP III genes in the vasculature and 

thereby to fewer protoxylem cells. This regulation would be contrary to our csc1 phenotype with 

elevated protoxylem cells. Intriguingly, the miR166g overexpressing jba-1D plant depicts ectopic 

xylem cells close to the periphery and by forming extra vascular bundles in the inflorescence stem 

(Williams et al., 2005). Moreover, radialized leaves were identified in jba-1D plants, similar as 

depicted in csc1 clv3-10 double mutants. ChIP-Seq analysis performed by Andrej Miotk (Miotk, 

PhD Thesis, 2015), could identify a WUS peak close to the ATG, assuming a direct regulation of 

AGO10 by WUS.  AGO10 might be a putative candidate for CSC1, because it could explain the 

expanded WUS domain, if HD-ZIP III did not establish properly SAM boundary domains (Xue et 

al., 2017).  

The second SNP was located in AT5G47720 and encodes for ACETOACETYL-COA THIOLASE 

1 (AACT1). AACT1 is catalyzing the first step of the mevalonate (MVA) pathway, the condensation 

of two acetyl-CoAs to form acetoacetyl-CoA either in the cytoplasm or in chloroplasts (Jin et al., 

2012). Knock-down or knock-out of AACT1 would lead to Acetyl-CoA accumulation, which has 

been shown to promote acetylation of histones, resulting in wide-spread gene expression 

changes (Cai et al., 2011; Chen et al., 2017). RNA-Seq analysis of csc1 reveald many 

differentially expressed genes in the RAM and the SAM, thus AACT1 might be a putative CSC1 

candidate.  
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The third mutation was identified in the untranscribed genomic region between AT5G51560 and 

AT5G51570. Both genes are un-characterized and no further studies are available. ChIP-Seq 

analysis performed by Andrej Miotk (Miotk, PhD Thesis, 2015), could identify a WUS peak 

upstream of AT5G51560, indicating a direct regulation of AT5G51560 by WUS. AT5G51560 

encodes for a LRR-RLK, which makes it to a putative CSC1 candidate, because many LRR-RLKs 

are involved in ligand perceptions or protein-protein interactions (He et al., 2018).  

Taken together, we could identify three point mutations in genes, that might cause the csc1 

mutant phenotype. One point mutation was located either in the terminator region of AT5G51560 

or the promoter region of AT5G51570. However, RNA-Seq analysis did not show changes in the 

expression of these two genes, why they were not longer considered as putative mutations 

causing the csc1 phenotype. However, the mutations for AACT1 and AGO10 are located in an 

exon, but the point mutation is only exchanging one amino acid and does not introduce a 

premature stop codon. It is still possible, that the exchange of an amino acid could lead to miss 

folding and degradation of the protein. Nevertheless, the RNA-Seq results of AACT1 and AGO10 

did reveal contrary results. AACT1 was not differentially expressed in the RAM, but was 

downregulated in the SAM (-0.674 log2FC). AGO10 is slightly upregulated in the RAM (0.4862 

log2FC) and not differentially expressed in the SAM. First, it is surprising, that the genes are not 

similar expressed in the two meristems. Because csc1 depicts severe developmental phenotypes 

in the SAM and the RAM, we expected that the mutated gene, that is causing the phenotype is 

similarly expressed in both tissues. Secondly, the point mutation in AGO10 is resulting in an 

upregulation of the gene. This might be explained by a secondary effect, a compensatory 

upregulation of the gene, due to impaired function. Another question is how was the mutation 

introduced into csc1 mutant? As mentioned before, the csc1 phenotype was identified in a 

CRISPR/Cas9 generated rlp4 r4l1 double mutant. Recent studies revealed, that the Cas9 we 

were using in our cloning system is not as precise as predicted and can cause unspecific 

background mutations (Zhang et al., 2018). However, this explanation is unlikely, because we 

discovered the same csc1 phenotype in two plants of the T1 population of transformed Col-0 

plants with the CRISPR/Cas9 plasmid carrying the 2gRNA for RLP4 and R4L1. Another 

explanation might be, that the CRISPR/Cas9 construct was not transformed into Col-0 plants. It 

is possible, that the Col-0 seeds were contaminated for instance with another ecotype albeit 

sequence analysis of csc1 with the 1001 Arabidopsis genome programme did not reveal any 

result (https://1001genomes.org/). An additional explanation is, that the Col-0 seeds accumulated 

and fixed a spontaneous mutation creating a new Col-0 accession. This mutation in the Col-0 

background can for instance cause the csc1 phenotype. Eventually, the mutation in csc1 is not 
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one of the mentioned before, but is still unknown and was not discovered yet, because of the 

relatively short reads that are produced by next generation sequencing.  

To identify, if one the three point mutations is causative for the csc1 phenotype, the next crucial 

experiments will be the complementation of csc1 phenotypes with AGO10, because we assume, 

that it is the most promising SNP causing the csc1 phenotype. Additionally, if expression of 

ago10csc1 in Col-0 will show the csc1 phenotype, the actual CSC1 gene would be unravelled. 
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5 Conclusion 

The role of pectin methyl esterases (PMEs) in the SAM 

The goal of our work was to identify the function of PMEs in differentiation in the SAM. We could 

show that pectin modification by overexpression of a PME, VANGUARD1 (VGD1), or the PME 

inhibitor, PMEI5, resulted in a decrease of SAM size, indicating the importance of the cell wall 

state in cells in the SAM. Furthermore, we could illustrate that the expression of PMEs and PMEIs 

in the centre of the meristem seemed to negatively affect the morphology of the meristem, 

indicated by altered cell sizes and arbitrary cell morphologies. Previous studies revealed the 

(direct) repression of PMEs by WUS in the centre of the SAM, which we could support with the 

PME5 reporter that exhibits activity only in the periphery and boundary domains of the SAM. We 

were also able to generate a toolkit for inducible, tissue-specific expression in the three meristems 

of Arabidopsis through a trans-activation approach in combination with effectors, which enables 

the expression of PMEs and PMEIs in specific tissues in the SAM.  

RLP4 and subfamily RLP4-like as putative cell wall binding proteins  

Within this work, we were able to identify a new class of putative cell wall signalling components 

in the group of receptor-like proteins, RLP4 and the three RLP4-likes, R4L1, R4L2 and R4L3. We 

could illustrate that all contain a malectin-like domain and are well conserved in the plant kingdom. 

Additionally, we showed, that RLP4 localizes in the epidermal plasma membrane in differentiating 

cells in the shoot and the root and presumably identified RLP4 as a new class of cell wall signalling 

components, exhibiting a polar localization to cell edges in the root epidermis. Furthermore, we 

revealed association of the extracellular domain of RLP4 to the cell wall with preferences to cell 

edges in the lateral root.  

Unravelling the function of CLE SIGNALLING COMPONENT1 (CSC1) 

The newly identified cle signalling component1 (csc1) mutant exhibited severe phenotypes in the 

shoot and the root apical meristems. Our experiments revealed, that CSC1 is a putative member 

of the CLE21/CLE27 signalling pathways and we could support the hypothesis, that CLE 

signalling, here CLE21, cross-talks with cytokinin signalling pathway (Kondo et al., 2011). 

Thereby, CSC1 is a negative regulator of CLE21/27 and cytokinin signalling, repressing enhanced 

cell proliferation in the shoot and the root apical meristems. For the SAM, we could identify, that 

CSC1 represses cytokinin responses and WUS expression, but might positively regulate CLV3 

expression. Thus, CSC1 is a noteable new player in the maintenance of stem cell identities in the 

shoot apical meristem, orchestrating the WUS-CLV3 signalling pathway and additionally the CLE 
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and cytokinin signalling pathways, which might be directly or indirectly connected. Furthermore, 

we could localize the probably causative mutation in csc1 on chromosome five, identifying three 

SNPs with the most promising one in ARGONAUTE10 (AGO10), involved in domain 

specifications in the SAM and the RAM.   

Taken together, we could identify new players and their function in regulating phytohormonal 

networks in cross-talk with peptide signalling, and the importance of cell wall signalling and cell 

wall properties in establishing cell identities. Within this work, we could elucidate a small part of 

the wiring networks that have to be spatio-temporally controlled to maintain developmental 

plasticity in plants. 
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6 Materials and Methods 

6.1 Green Gate cloning 

All constructs in this study were created by using the modular GreenGate (GG) cloning method   

(Lampropoulos et al., 2013; Schürholz et al., 2018). 

6.2 Entry module creation 

Genomic sequences of interest were amplified with GreenGate specific primers (Table 13) using 

the Q5® High-Fidelity DNA Polymerase (NEB #M0491). Internal Eco31I sites were mutated by 

site-directed mutagenesis taking care, that amino acids in the open reading frame are not 

changed (Table 13). PCR cycler conditions and reaction mix components are listed in (Table 5). 

The amplified PCR product was separated on a 1 – 2 % agarose gel depending on the fragment 

size, cut out of the gel and purified with GeneJET PCR Purification Kit (ThermoFisher #K0701). 

PCR product and the empty entry vector (pGGA000-pGGI000) were digested separately with 

Eco31I FD (Thermo Fisher #FD0294) for 1 h at 37 °C. The digested PCR product was column-

purified with GeneJET PCR Purification Kit (ThermoFisher #K0701), the digested entry vector 

was separated on a 1 % agarose gel and the vector backbone was cut out of the gel and purified 

using the same kit as for the PCR product. Digested and purified PCR product and entry vector 

were ligated using either the Instant Sticky-end Ligase Master Mix (NEB #M0370) or the T4 Ligase 

(5 U/µL; Thermo Fisher #EL0011). Entry vectors were transformed into chemically competent 

Escherichia coli (E. coli), colonies were tested for the presence of the entry vector and positive 

colonies were used for over night cultures (see also 6.6). The plasmids were purified and their 

sequence was verified by sequencing. Entry vectors were used for the final GreenGate reaction 

into the pGGZ001 vector. Entry modules used in this study are depicted in Table 6. 

     Table 5. PCR reaction mix and PCR cycler conditions. 

25 µL reaction 
mix 1x [µL] temperature [°C] duration  

number of 
cycles 

10xPCR Buffer 2.5 95 5 min   

dNTPs (10 mM) 0.5 95 25 s  
35 

Primer A 0.25 54 25 s 

Primer B 0.25 72 1 min/ 1kb (TAQ Pol.) 

TAQ-Polymerase 0.25 72 5 min  

H20 to 25 4 ∞  

DNA colony/ 2    
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      Table 6. Entry modules used for GreenGate constructs. 

plasmid number name source of plasmid 

pSW810 pAt5g47500 this study 

pSW179 pML1 (pGGA022) Jan Lohmann Lab 

pSW177 pCASP1 (pAVB009) Alexis Maizel Lab 

pSW178 pXPP (pAVB017) Andersen et al., 2017 

pSW454 pUFO Jan Lohmann Lab 

pSW455 pCLV3 Jan Lohmann Lab 

pSW597 pCUC2 Gaillochet et al., 2017 

pSW377 pTMO5 Schürholz et al., 2018 

pSW614 pREV Schürholz et al., 2018 

pSW615 pATHB-8 Schürholz et al., 2018 

pSW618 pAHP6 Schürholz et al., 2018 

pSW457 tCLV3 Jan Lohmann Lab 

pSW185 Rbcs term (pGGE001) Lampropoulos et al., 2013 

pSW186 UBQ10 term (pGGE009) Lampropoulos et al., 2013 

pSW181   GR-LhG4 (pGGC018) Jan Lohmann Lab 

pSW610 GR-LHG4_BD Schürholz et al., 2018 

pSW180 pOp4 (pGGA016) Jan Lohmann Lab 

pSW180a pOp6 (pGGA016) Jan Lohmann Lab 

pSW182 B-Dummy (pGGB003) Lampropoulos et al., 2013 

pSW184 D-Dummy  (pGGD002)  Lampropoulos et al., 2013 

pSW188 F-H adapter (pGGG001) Lampropoulos et al., 2013 

pSW189 H-A adapter (pGGG002) Lampropoulos et al., 2013 

pSW548 Signal Peptide (ER) Lampropoulos et al., 2013 

pSW550 HDEL Lampropoulos et al., 2013 

pSW596 mTurquoise2 (pGGC088) Jan Lohmann Lab 

pSW393 SulfR Lampropoulos et al., 2013 

pSW319 BastaR Lampropoulos et al., 2013 

pSW322 3xGFP (pGGC025) Lampropoulos et al., 2013 

pSW323 linker-NLS (pGGD007) Lampropoulos et al., 2013 

pSW549 YFP/VENUS (pGGC023) Jan Lohmann Lab 

pSW321 pRPS5a (pGGA012) Lampropoulos et al., 2013 

pSW842 GAGAGA-eGFP Guido Großmann Lab 

pSW459 t-RLP4 Sebastian Wolf Lab 

pSW330 pRLP4 Sebastian Wolf Lab 

pSW333 RLP4 Sebastian Wolf Lab 

pSW183 linker-GFP (pGGD001) Lampropoulos et al., 2013 

pSW724 R4L1 Sebastian Wolf Lab 
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6.3 Intermediate module creation 

Driver lines were created by making use of the intermediate module pGGM000 and pGGN000, 

that consists both of six entry modules, whereas the sixth entry module of pGGM000 is not 

carrying a resistance cassette, but an adaptor sequence (F-H adaptor), that can be ligated to the 

adaptor sequence in the first entry module of pGGN000 (H-A adaptor). The intermediate vectors 

can be combined by performing the standard GreenGate reaction (Table 7). 

6.4 Destination module creation 

For the final GreenGate reaction (Table 7), 1.5 µL of each entry module (pGGA000 – pGGF000), 

1 µL of destination vector (pGGZ001), 2 µL 10x FD buffer, 1.5 µL 10 mM ATP, 1 µL T4 DNA 

Ligase (30 U/µL) and 1 µL Eco31I were added and mixed directly in a PCR tube. GreenGate 

reaction was performed as depicted in (Table 7) and generated final GreenGate constructs in this 

study are depicted in (Table 8) (Lampropoulos et al., 2013). 

                                  Table 7. GreenGate reaction programme. 

temperature [°C] duration [min] number of cycles 

37 2 
30 

16 2 

50 5 1 

80 5 1 

                                          

Table 8. GreenGate destination constructs  

plasmid 
number construct names  

plasmid 
number construct names 

pSW919 
CRISPR_2gRNA 
at5g53370-PME3  pSW689 CRISPR_RLP4_1 

pHEE401E backbone plasmid  pHEE401E backbone plasmid 

pSW919a 
CRISPR_2gRNA PME41-

PME44  pSW745 CRISPR 2gRNA RLP4-R4L1 

pHEE401E backbone plasmid  pHEE401E backbone plasmid 

pSW834 pAt5g47500::3xGFP-NLS  pSW908 CRISPR_R4L2_R4L3_exon2 

pSW810 pAt5g47500  pHEE401E backbone plasmid 

pSW182 B-Dummy (pGGB003)  pSW726 
pRLP4:RLP4:linkerGFP:tRLP4:Bast

aR 

pSW322 3xGFP (pGGC025)  pSW330 pRLP4 

pSW323 linker-NLS (pGGD007)  pSW182 B-Dummy (pGGB003) 

pSW186 UBQ10 term (pGGE009)  pSW333 RLP4 

pSW319 BastaR  pSW183 linker-GFP (pGGD001) 
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pGGZ001 destination vector  pSW459 t-RLP4 

pSW609 

pOp4:ER-mTurq2-
HDEL:tUBQ10:SulfR 

(N001)  pSW319 BastaR 

pSW189 H-A adapter (pGGG002)  pGGZ001 destination vector 

pSW180 pOp4 (pGGA016)  pSW878 pRPS5a:RLP4:GAGAGA-GFP 

pSW548 
Signal Peptide, ER 

(pGGB006)  pSW321 pRPS5a (pGGA012) 

pSW596 mTurquoise2 (pGGC088)  pSW182 B-Dummy (pGGB003) 

pSW550 HDEL (pGGD008)  pSW333 RLP4 

pSW186 UBQ10 term (pGGE009)  pSW842 GAGAGA-eGFP 

pSW393 SulfR (pGGF012)  pSW186 UBQ10 term (pGGE009) 

pGGN000 intermediate vector  pSW319 BastaR 

pSW699 

pOp6:ER-mTurq2-
HDEL:tUBQ10:SulfR 

(N002)  pGGZ001 destination vector 

pSW189 H-A adapter (pGGG002)  pSW875 pRPS5a:R4L1:GAGAGA-GFP 

pSW180a pOp6 (pGGA016)  pSW321 pRPS5a (pGGA012) 

pSW548 
Signal Peptide, ER 

(pGGB006)  pSW182 B-Dummy (pGGB003) 

pSW596 mTurquoise2 (pGGC088)  pSW724 R4L1 

pSW550 HDEL (pGGD008)  pSW842 GAGAGA-eGFP 

pSW186 UBQ10 term (pGGE009)  pSW186 UBQ10 term (pGGE009) 

pSW393 SulfR (pGGF012)  pSW319 BastaR 

pGGN000 intermediate vector  pGGZ001 destination vector 

pSW646 

pML1::GR-LhG4:tRbsc-
pOp4::ER-mTurquoise2-

HDEL:tUBQ10:SulfR  pSW710 
pCUC2::GR-LhG4:tRbsc-pOp6::ER-
mTurquoise2-HDEL:tUBQ10:SulfR 

pSW304 
pML1::GR-LhG4:tRbsc 

(M003)  pSW597 pCUC2  (pGGA045) 

pSW609 

pOp4:ER-mTurq2-
HDEL:tUBQ10:SulfR 

(N001)  pSW610 GR-LHG4_BD 

pGGZ001 destination vector  pSW185 Rbcs term (pGGE001) 

pSW648 

pREV::GR-LhG4:tRbsc-
pOp4::ER-mTurquoise2-

HDEL:tUBQ10:SulfR  pSW188 F-H adapter (pGGG001) 

pSW614 pREV  pSW699 
pOp6:ER-mTurq2-

HDEL:tUBQ10:SulfR (N002) 

pSW610 GR-LHG4_BD  pGGZ001 destination vector 

pSW185 Rbcs term (pGGE001)  pSW725 
pUFO::GR-LhG4:tRbsc-pOp6::ER-
mTurquoise2-HDEL:tUBQ10:SulfR 

pSW188 F-H adapter (pGGG001)  pSW454 pUFO (pGGA027) 

pSW609 

pOp4:ER-mTurq2-
HDEL:tUBQ10:SulfR 

(N001)  pSW610 GR-LHG4_BD 

pSW698 

pCLV3::GR-LhG4:tCLV3-
pOp6::ER-mTurquoise2-

HDEL:tUBQ10:SulfR  pSW185 Rbcs term (pGGE001) 

pSW455 pCLV3 (pGGA033)  pSW188 F-H adapter (pGGG001) 
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pSW610 GR-LHG4_BD  pSW699 
pOp6:ER-mTurq2-

HDEL:tUBQ10:SulfR (N002) 

pSW457 t-CLV3 (pGGE008)  pGGZ001 destination vector 

pSW188 F-H adapter (pGGG001)  pSW696 

pATHB-8::GR-LhG4:tRbsc-
pOp6::ER-mTurquoise2-

HDEL:tUBQ10:SulfR 

pSW699 

pOp6:ER-mTurq2-
HDEL:tUBQ10:SulfR 

(N002)  pSW615 pATHB-8 

pGGZ001 destination vector  pSW610 GR-LHG4_BD 

pSW665 
pAHP6::GR-LhG4:tRbsc 

(M013)  pSW185 Rbcs term (pGGE001) 

pSW618 pAHP6  pSW188 F-H adapter (pGGG001) 

pSW610 GR-LHG4_BD  pSW699 
pOp6:ER-mTurq2-

HDEL:tUBQ10:SulfR (N002) 

pSW185 Rbcs term (pGGE001)  pGGZ001 destination vector 

pSW188 F-H adapter (pGGG001)  pSW682 

pCASP1::GR-LhG4:tRbsc-
pOp4::ER-mTurquoise2-

HDEL:tUBQ10:SulfR 

pGGM000 intermediate vector  pSW302 pCASP1::GR-LhG4:tRbsc (M001) 

pSW683 

pAHP6::GR-LhG4:tRbsc-
pOp4::ER-mTurquoise2-

HDEL:tUBQ10:SulfR  pSW609 
pOp4:ER-mTurq2-

HDEL:tUBQ10:SulfR (N001) 

pSW665 
pAHP6::GR-LhG4:tRbsc 

(M013)  pGGZ001 destination vector 

pSW609 

pOp4:ER-mTurq2-
HDEL:tUBQ10:SulfR 

(N001)  pSW702 
pXPP::GR-LhG4:tRbsc-pOp6::ER-
mTurquoise2-HDEL:tUBQ10:SulfR 

pGGZ001 destination vector  pSW178 pXPP (pAVB017) 

pSW697 

pTMO5::GR-LhG4:tRbsc-
pOp6::ER-mTurquoise2-

HDEL:tUBQ10:SulfR  pSW610 GR-LHG4_BD 

pSW377 pTMO5  pSW185 Rbcs term (pGGE001) 

pSW610 GR-LHG4_BD  pSW188 F-H adapter (pGGG001) 

pSW185 Rbcs terminator (pGGE001)  pSW699 
pOp6:ER-mTurq2-

HDEL:tUBQ10:SulfR (N002) 

pSW188 F-H adapter (pGGG001)  pGGZ001 destination vector 

pSW699 

pOp6:ER-mTurq2-
HDEL:tUBQ10:SulfR 

(N002)    

pGGZ001 destination vector    
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6.5 CRISPR/Cas9 

Suitable gRNAs for the target genes were designed by using the ChopChop webpage 

(https://chopchop.cbu.uib.no/), targeting the beginning of the gene. To create a single gRNA, the 

following forward primer (5’ ATTGnnnnnnnnnnnnnnnnnnn 3’) was designed with the first four 

nucleotides that serve as adaptor for Greengate cloning, followed by the gRNA sequence. The 

reverse primer (5’ nnnnnnnnnnnnnnnnnnnGTTT 3’) consists of the reverse complement 

sequence of the gRNA followed by four nucleotide adaptor sequence. The complement primers 

were annealed and ligated into the pHEE401E vector. For the creation of two different gRNAs in 

one vector, the two gRNA sequences were incorporated into forward and reverse primer, 

respectively. The primers also contain the Eco31I recognition site before the gRNA sequence and 

the pHEE2E-TRI specific sequence (Forward primer: 5’ 

aacaGGTCTCaattgNNNNNNNNNNNNNNNNNNNgttttagagctagaaatagc; reverse primer: 5’ 

aacaGGTCTCtaaacNNNNNNNNNNNNNNNNNNNcaatctcttagtcgactctac).  pHEE2E-TRI is used 

as template to amplify the two gRNAs together with promoter and terminator regions, an 

approximately 600 bp fragment. The amplified PCR product was gel purified and ligated into 

pHEE401E using the GreenGate reaction (Table 7) (Xing et al., 2014; Wang et al., 2015). 

6.6 Transformation of E. coli and Agrobacterium tumefaciens 

Ligated entry vectors/intermediate vectors/destination vectors assessed by GreenGate cloning, 

were transformed into chemically competent E. coli bacteria (DH5α) with the required volume of 

plasmid. Bacteria were incubated 10 min on ice, heat-shock at 42 °C for 45 s, and after 2 min on 

ice, 1 mL liquid LB medium was added. After 2-5 h incubation, the bacteria were plated on a LB-

agar plate with carbenicillin/ampicillin for entry vectors, kanamycin for intermediate vectors and 

spectinomycin for destination vectors, over night at 37 °C (Table 9). The next day, colonies were 

checked for the presence of the ligated PCR product in the entry vector or the different entry 

modules in the intermediate or the destination vector, by colony PCRs with primers binding in the 

backbone of the entry/intermediate/destination vector and PCR product specific primers (Table 

13). After the PCR, products were separated on a 1-2 % agarose gel. Positive colonies were 

picked and incubated over night in 2-3 mL liquid LB medium with the according antibiotics in a 37 

°C shaker. Plasmids were isolated using GeneJet Plasmid Miniprep Kit (Thermo Fisher #K0502). 

The correct plasmid sequence was further verified by sequencing at Eurofins Genomics.  

For GreenGate-derived constructs, plasmids were transformed into the chemically competent 

ASE pSOUP+ Agrobacterium tumefaciens (A. tumefaciens) strain. 5-10 µl of plasmid were added 

and bacteria were frozen for 5 min in liquid nitrogen with subsequent incubation for 5 min at 37 
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°C. 1 mL of liquid B medium was added and bacteria were incubated for 3-4 hours at 28 °C. For 

selection, bacteria were plated on LB-agar with the following antibiotics: chloramphenicol, 

kanamycin, spectinomycin and tetracyclin (CKST) and incubated at 28 °C for two to three nights. 

The antibiotics were used as depicted in Table 9. 

CRISPR/Cas9 constructs were transformed into chemically competent E. coli bacteria (DH5α) as 

mentioned before, but with kanamycin as selection antibiotic. Colonies were checked by 

performing colony PCRs with primers binding in the backbone of the vector and the gRNA/PCR 

product specific primers (Table 13). After the PCR, products were separated on a 1-2 % agarose 

gel. Positive colonies were picked and incubated overnight in 2-3 mL liquid LB medium with the 

according antibiotics in a 37 °C shaker. Plasmids were isolated using GeneJet Plasmid Miniprep 

Kit (Thermo Fisher #K0502). The correct plasmid sequence was further verified by sequencing at 

Eurofins Genomics. A. tumefaciens transformation was performed as mentioned above, but with 

the A. tumefaciens strain GV3101. Transformed bacteria were plated on LB-agar plates 

containing rifampecin, gentamycin and kanamycin (RGK) and incubated for two to three nights at 

28 °C. The antibiotics were used as depicted in Table 9. 

 

 Table 9. Antibiotics for selection of bacteria. 

antibiotics final concentration [µg/mL] 

ampicillin 100 

carbenicillin 50 

chloramphenicol 34 

gentamycin 50 

kanamycin 50 

rifampicin 25 

spectinomycin 50 

tetracyclin 12.5 

 

 

 

 

 



6 Materials and Methods 

 

128 

 

6.7 Plant material and growth conditions 

Seeds were sterilised in a reaction tube using 1 mL of the sterilisation solution (70 % ethanol, 

1:10 dilution of 1.3 % (v/v) sodium hypochlorite), mixed for 1 min, the solution was removed and 

seeds were washed twice with 100 % ethanol each time for 1 min and dried in a laminar flow 

cabinet.   

The sterilsed seeds were grown on ½ MS (Murashige Skoog, Duchefa), 1 % Sucrose (Carl Roth) 

and 0.9 % phytoagar (Duchefa), adjusted with KOH to pH 5.8. After two days of stratification, the 

plates were put in a vertical position in growth chambers with long day conditions (16 h light/8 h 

dark, 60-70 % humidity, 100 μmol·m-2·s-1 light intensitiy, 22 °C, Polyclima or Conviron) for 6-7 

days, afterwards the seedlings were transferred to soil (CLT-SM soil, Einheitserde Classic) and 

were grown in plant rooms with long day conditions (16/8 h, 65 % humidity; 100 µE light intensity; 

22 °C). For different seedling experiments on plate, the growth conditions can vary and are listed 

in the following sections. 

6.8 Transgenic lines in A. thaliana 

Plants for transformation with A. tumefaciens were grown for four to five weeks in plant rooms 

with long day conditions. The first inflorescence was cut off to induce the development of multiple 

inflorescences. Before dipping, siliques were removed from stems.  

For GreenGate constructs, a positive transformed A. tumefaciens (ASE+pSOUP) colony was 

plated on LB agar with chloramphenicol, kanamycin, spectinomycin and tetracyclin (CKST) and 

incubated for one day at 28 °C. For CRISPR/Cas9-derived constructs, a positive transformed A. 

tumefaciens (GV3101) colony was plated on LB agar with rifampecin, gentamycin and kanamycin 

(RGK) and incubated for one day at 28 °C. From this plate, bacteria material was transferred on 

two LB-CKST plates with the appropriate antibiotics and incubated for two days at 28 °C. To each 

plate, 15 mL LB medium was added and Agrobacteria were carefully removed and resuspended 

from the LB agar. The 30 mL Agrobacteria suspension was added to 120 mL H2O containing 5 % 

sucrose and 45 µL Silwet L-77 (Lehle Seeds). Plants’ inflorescences were dipped for 30 s into the 

Agrobacteria suspension. After dipping, they were placed in a tray, wrapped in an autoclaving 

bag, sprayed with water and were kept at a dark place overnight, to keep a humid environment. 

To increase the transformation efficiency, dipping was repeated after one week.  

T1 plants were selected on ½ MS, 0.9 % phytoagar and the corresponding concentration of the 

selection marker (BASTA/glufosinate ammonium: 7.5 µg/mL, sulfadiazine: 1.875-3.75 µg/mL, end 

concentrations in medium). Around 40 positive T1 plants were selected and propagated on soil. 
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20-30 T2 seedlings were further analysed on ½ MS, 1 % sucrose, 0.9 % phytoagar and the 

respective selection marker for single integration of the T-DNA. Around ten T2 plants with a ratio 

of 3:1 (alive/dead) were transferred on soil. In the T3 generation, seedlings were analysed on 

selection plates for homzygosity (100 % alive) and these stable Arabidopsis lines were used for 

experiments. 

CRISPR/Cas9 T1 plants were selected on ½ MS, 0.75 % phytoagar and 15 µg/mL hygromycin. 

Plates were covered with sheets of paper for four to six days until positive T1 plants with an 

elongated hypocotyl could be distinguished and kept for another four days at full light. Around 40 

T1 plants were transferred to soil and analysed for a phenotype due to the CRISPR/Cas9 mutation 

and additionally genotyped for a mutation in the GOI, see 6.11. Plants with a mutation were 

analysed in the T2 generation for the absence of the Cas9 T-DNA either by genotyping the T2 

population for Cas9 using Cas9 specific primers (Table 14) or the selection on ½ MS, 0.75 % 

phytoagar and hygromycin and recover seedlings that might not be resistance to hygromycin 

anymore. Experiments were done with stable T3 Arabidopsis lines. All lines used for experiments 

are depicted in Table 10. 

Table 10. Arabidopsis lines used in this study.  

genotype reference 

Col-0 Arabidopsis biological 
resource centre 

Ler Arabidopsis biological 
resource centre 

pme41 pme44 this study 

pPME5:3xGFP-NLS this study 

VGD1ox Wolf et al., 2012c 

PMEIox Wolf et al., 2012a 

pATHB-8>GR>mTurquoise2 Schürholz et al., 2018 

pAHP6>GR>mTurquoise2 Schürholz et al., 2018 

pCASP1>GR>mTurquoise2 Schürholz et al., 2018 

pTMO5>GR>mTurquoise2 Schürholz et al., 2018 

pXPP>GR>mTurquoise2 Schürholz et al., 2018 

pCLV3>GR>mTurquoise2 Schürholz et al., 2018 

pCUC2>GR>mTurquoise2 Schürholz et al., 2018 

pML1>GR>mTurquoise2 Schürholz et al., 2018 

pREV>GR>mTurquoise2 Schürholz et al., 2018 

pUFO>GR>mTurquoise2 Schürholz et al., 2018 

pCVLV3>GR>3xGFP-NLS Schürholz et al., 2018 

rlp4 #30-3 this study 

r4l1#24-13 this study 

rlp4 r4l1 #32-11 this study 

rlp4 r4l1 r4l2 r4l3 #14-3 this study 
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rlp4 r4l1 r4l2 r4l3 #14-6 this study 

rlp4 r4l1 r4l2 r4l3 #14-19 this study 

rlp4 r4l1 r4l2 r4l3 #21-7 this study 

rlp4 r4l1 r4l2 r4l3 #21-13 this study 

rlp4 r4l1 r4l2 r4l3 #26-2 this study 

rlp4 r4l1 r4l2 r4l3 #26-3 this study 

p35S:mGFP-LTI6b Cutler et al., 2000 

pUBQ10:RLP4-ECD:mCherry 
Sebastian Augustin, 
2015 

p35S:mGFP-LTI6b 
pUBQ10:RLP4-ECD:mCherry 

this study 

csc1 #6-13 this study 

cle11 Yamaguchi et al., 2017 

cle21 Yamaguchi et al., 2017 

cle27 Yamaguchi et al., 2017 

cle11 cle21 this study 

cle21 cle27 this study 

clv3-10 Forner et al., 2015 

csc1 clv3-10 this study 

bam3-1 SALK_44433 

pCLE21:GUS Jun et al., 2010 

pCLE27:GUS Jun et al., 2010 

pTCSn:GFPer Jan Lohmann Lab 

pTCSn:GFP-NLS 
pUBQ10:3xmCherry-NLS 

Jan Lohmann Lab 

pAHP6:GFPer Mähönen et al., 2006a 

C3PO (pDR5v2:mTurquoise-NLS 
/ pRPS5a:mDII:ntdTomato 
/pRPS5a:DII:n3xVenus) 

Dolf Weijers, not 
published 

pDR5v2:YFP / pPXY:CFP Thomas Greb Lab 

pCLV3:BFP-NLS / 
pWUS:2xVenus-NLS / 
pUBQ10:3xmCherry-NLS 

Jan Lohmann Lab 
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6.9 Crossing 

A. thaliana plants with inflorescences SAMs were used for crossing. Siliques and already opened 

flower buds were removed from one stem of the “mother plant” either by sciccors or a sharp 

forcep. Under a binoccular, the SAM, primordia and young flower buds were removed from the 

centre of the inflorescence, except four to five closed but fully developed flower buds. These buds 

were opened by a sharp forcep and sepals, petals and stamens were carefully dissected. Anthers 

of the “father plant” were swept over the pistil until it was covered with pollen. Crossed plants 

were kept separately from others in the plant room in long day conditions and were harvested 

once they were dry.   

6.10 Genomic DNA extraction 

Plant material was collected in a 2 mL reaction tube with one to two glass beads and immediately 

put into liquid nitrogen. The samples were ground using the tissue homogenizer (Retsch mill, 

QIAGEN) for 30 s and 30 rpm. 250 µL of gDNA extraction buffer (150 mM Tris-HCl (pH 8), 250 

mM NaCl, 25 mM EDTA 0.5% (w/v) SDS) was added to the samples, mixed and centrifuged for 

15 min at max. speed at RT. 150 µL of the supernatant were transferred to a 1.5 mL reaction tube 

and 150 µL isopropanol was added, mixed and centrifugated for 10 min at max. speead at RT. 

The supernatant was discarded and precipitated DNA pellet was washed with 500 mL of 70 % 

ethanol and centrifugated for 10 min. The supernatant was discarded and the samples were 

briefly centrifugated to remove the residual ethanol. The DNA pellet was air-dried and dissolved 

in 40 µL TlowE buffer (10 mM Tris-HCl (pH 8), 0.5 mM EDTA). 

6.11 Genotyping 

CRISPR/Cas9-derived mutations in the target gene/s were either validated by amplification of the 

loci of interest and subsequent sequencing, for example for mutations in R4L2 and R4L3 in rlp4 

r4l1 r4l2 r4l3 quadruple mutants, or by using cleaved amplified polymorphic sequences (CAPS). 

They are useful for mutants with a SNP or an insertion or deletion of one nucleotide. CAPS 

markers were designed for rlp4 r4l1, cle21 and cle27 mutants. Primers and restriction enzymes 

are listed in Table 13. 

The T-DNA mutant bam3-1 (SALK_44433) was genotyped for the presence of the T-DNA with a 

T-DNA specific primer, listed in Table 14. 

All reporter lines (pTCSn:GFP-NLS, pCLV3:BFP-NLS/pWUS:2xYFP-NLS/pUBQ10:3xmCherry-

NLS, pDR5v2:YFPer) in this study crossed with csc1 were genotyped for mutations in RLP4 and 
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R4L1. As csc1 was derived from a CRISPR/Cas9-derived attempt to generate rlp4 r4l1 double 

mutants, csc1 is still carrying these mutations. Only lines wild type for RLP4 and R4L1 were used 

for analysis. The triple reporter pCLV3:BFP-NLS/pWUS:2xYFP-NLS/pUBQ10:3xmCherry-NLS 

was additionally genotyped for the presence of the fluorophores, listed in Table 14. 

 

6.12 Root and hypocotyl length measurments 

Dependent on the experimental set up, seeds were either grown in light on vertical plates 

containing ½ MS, 0.9 % phytoagar and 1 % sucrose or in the dark on horizontal plates with ½ MS 

and 0.75 % phytoagar.  

For root growth experiments, seedlings were grown on vertical plates with the standard medium, 

supplemented with sodium chloride (NaCl, Fisher chemicals). Root length was measured after 

six days in light. For the CLE root growth insensitivity assay, standard medium was supplemented 

with CLE peptides, either CLE11 (RVVPSGPNPLHH), CLE21 (RSIPTGPNPLHN) or CLE27 

(RIVPSCPDPLHN) (GeneScript USA Inc.). Root length was measured after seven days in light.  

For hypocotyl length experiments, seedlings were grown on horizontal plates with reduced 

phytoagar and no sugar and supplemented isoxaben (Sigma-Aldrich), see above. Plates with 

stratified seed were put in light for six hours and afterwards, plates were wrapped in aluminium 

foil to cover them completely from light. After four days, hypocotyl lengths were measured.  

6.13 CLE21 and BA treatment   

Col-0 and csc1 seedlings were grown for five days on standard medium and supplemented with 

0.1 and 1 µM 6-Benzylaminopurine (BA), respectively (Sigma-Aldrich). After five days, seedlings 

were stained with the combined basic fuchsin/calcofluor white protocol, see 6.17. Total vascular 

cell number was analysed by CLSM imagine, see 6.19. 

pTCSn-GFPer, pAHP6:GFPer and pDR5v2:mTurquoise-NLS/pRPS5a:ntd:Tomato reporter lines 

were grown for five days on standard medium and supplemented with 50 nM CLE21, respectively. 

After five days, seedlings were stained with PI and imaged using CLSM, see 6.19.  

6.14 RNA extraction for RNA-Seq 

For RNA-Seq analysis, Col-0 and csc1 plant material was collected from SAM and RAM. RAM 

material was collected from seedlings growing on a nylon mesh on ½ MS (Duchefa), 0.9 % 
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phytoagar (Duchefa) and 1 % sucrose (Carl Roth) in squared petri dishes in a vertical position. 

Seven days after gemination the root tip of the seedlings was cut off and approximatelly 70 – 80 

mg plant material was collected. From both genotypes triplicates were collected and stored at - 

80 °C. For SAM material, plants of both genotypes were grown on soil in single pots. After 28 

days on soil, SAMs of Col-0 and csc1 plants with a shoot hight of 10 – 20 cm were dissected to 

remove flower buds and primordia. Per genotype, 20 SAMs were dissected and approxiametelly 

70 – 80 mg of plant material was collected. From both genotypes, triplicates were collected and 

stored at – 80 °C. Plant material was ground with a metal bead using a tissue homogenizer 

(Retsch Mill, QIAGEN). For RNA isolation, the RNA plant purification kit (Roboklon) was used 

following manufacturer’s instruction. The DNase digestion step was performed on the column, 

with the recommended enzyme from Roboklon. RNA was eluted in RNase-free H2O and the 

concentration was measured with a nanodrop. Next generation sequencing was conducted at the 

Deep Sequencing Core Facility by David Ibberson, Bioquant, University of Heidelberg.  

 

6.15 Whole genome sequencing (WGS) 

For whole genome sequence analysis, plant material of three different populations of csc1 plants 

were sent for next generation sequencing (NGS). The csc1 #6-13 mutant in the rlp4 r4l1 Col-0 

mutant background (#1 csc1), csc1 crossed with Col-0 in F2 generation showing the csc1 mutant 

phenotype (enlarged SAM in adult plants and more protoxylem cells for seedlings) (#2 csc1 Col-

0 F2 +) and csc1 crossed with Col-0 in F2 generation without csc1 phenotype (#3 csc1 Col-0 F2 -

). Sample #1 comprised small pieces of rosette leaves of three adult csc1 #6-13 plants, sample 

#2 comprised pooled cauline leaves of ~ 50 adult plants with the csc1 SAM phenotype and ~ 50 

seedlings with csc1 protoxylem phenotype. Sample #3 comprised also pooled cauline leaves of 

~ 50 adult plants without the csc1 SAM phenotype and ~ 50 seedlings without csc1 protoxylem 

phenotype.  

For gDNA extraction, the CTAB DNA preparation method was used. The samples were ground 

under liquid nitrogen using pistil and mortar and 70 – 100 mg plant material was collected in a 2 

mL reaction tube. 600 µL CTAB buffer (2 % CTAB, 1 % PVP 4000, 1.4 M NaCl, 100 mM Tris-HCl, 

pH 8, 20 mM EDTA, pH 8) was added and vortexed until the samples were solubilized. After one 

hour incubation at 65 °C, samples were colled down for 10 min at RT and 1 µL RNaseA (1 mg/mL) 

was added. Samples were incubated for one hour at 37 °C. 60 µL CHCl3 were added, gently 

mixed by inverting the tubes and spin down at 5000 rpm for 10 min at RT. The polar phase (~ 500 

µL) were transferred to a new 2 mL reaction tube and 2.5x the volume (1250 mL) of 100 % ethanol 
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(-20 °C) were added, gently mixed by inverting the tubes and followed by incubating the samples 

for 30 min at – 20 °C. Afterwards, the samples were centrifugated at full speed for 10 min at 4 °C. 

The supernatant was discarded and 500 µL of 70 % ethanol (- 20 °C) were added to wash the 

precipitated DNA. The samples were again centrifugated at full speed for 10 min at 4 °C. The 

supernatant was discarded and the DNA pellet was dried at 55 °C until residual ethanol 

evaporated. The DNA pellet was resuspended in 50 µL H2O (important for sequencing: no EDTA 

in DNA). Next generation sequencing for the whole genome was performed by Starseq (Mainz). 

6.16 GUS staining 

Whole seedlings and dissected shoot apical meristems were used for GUS staining. The plant 

material was collected in a 2 mL reaction tube and fixed with 90 % acetone for one hour at – 20 

°C. Afterwards, the samples were twice washed with washing buffer (0.1 M phosphate buffer 

(Na2HPO4/NaH2PO4), pH 7, 10 mM EDTA and 2 mM K3Fe(CN)6 (K-Ferri)) under vacuum for 5 

min. The washing buffer was removed and samples were infiltrated with staining buffer (0.1 M 

phosphate buffer, pH 7, 10 mM EDTA, 1 mM K3Fe(CN)6 (K-Ferri), 1 mM K4Fe(CN)6 * 3H2O (K-

Ferro) and 2 mM X-Gluc) by a brief vacuum treatment and samples were incubated overnight at 

37 °C. GUS stained tissues were fixed in a 3:1 mixture of ethanol (100 %) and acetic acid for two 

to three hours. Afterwards, the samples were cleared and mounted in clearing solution (chloral 

hydrate:water:glycerol, 8:3:1) for long term storage, kept at 4 °C. Images were acquired using the 

Zeiss microscope Axio Imager.M1.   

6.17 Basic Fuchsin and Calcofluor White staining 

Seedlings grown for six to seven days on vertical ½ MS, 0.9 % phytoagar and 1 % sucrose plates, 

were used for staining. Seedlings were placed in cell strainers (Corning) into six well plates 

(Sarstedt), covered with 1 M KOH (~ 5 mL/well) and incubated for four to six hours at 37 °C. After 

incubation, KOH was removed and seedlings were stained with 0.01 % basic fuchsin in H2O for 

five min. After incubation, the basic fuchsin solution was removed and seedlings were washed in 

70 % ethanol for 10 min with subsequently three washing steps with 50 mM Tris-HCl, pH 7.5. 

Neutral pH was verified with litmus paper strips. Afterwards, seedlings were stained with 100 

µg/mL Calcofluor White in 50 mM Tris-HCl, pH 7.5 for 90 min with slight agitation on a benchtop 

shaker. Seedlings were de-stained by three washing steps with 50 mM Tris-HCl, pH 7.5. For 

storage, the buffer was replaced by 50 % glycerol and samples were kept at 4 °C. Secondary cell 

wall staining in the xylem and cellulose staining in the root cells was imaged using CLSM (Table 

12). 
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6.18 Plasmolysis 

Plasmolysis was performed with the stable Arabidopsis line carrying the plasma membrane 

marker p35S:GFP-LTI6b and pUBQ10:RLP4-ECD:mCherry. Seven day-old seedlings were 

incubated for 20 min in 0.6 M sorbitol solution and directly imaged using CLSM (Table 12). 

6.19 Confocal laser scanning microscopy (CLSM) 

Confocal images for the SAM were acquired on a Nikon A1 Confocal with a CFI Apo LWD 25x 

water immersion objective.   

Inflorescence meristems were dissected by cutting the stem with and primordia were removed by 

a forcep or a canula up to flower stage 3-4. Shoot apical meristems were counter stained, if 

needed, with PI (200 µg/mL) dissolved in water for 5 min and mounted in a small petri dish with 

3 % agarose and covered with water. Excitation wavelengths for imaged fluorophors and the 

according emission wavelength are depicted in (Table 11). 

 

                    Table 11. Excitation and emission wavelengths used with Nikon microscope 

fluorophore excitation [nm] emission [nm] 

mTurquoise2 405 425-475 

GFP 488 500-550 

YFP 488 500-550 

mCherry 561 570-620 

PI 561 570-620 

 

Confocal images for the root were acquired on a Leica TCS SP5 inverted confocal microscope 

with a 63x water objective. If needed, roots were incubated in PI (10 µg/mL) dissolved in water 

for 20 min and directly imaged. Excitation wavelengths for used fluorophores and their according 

emission wavelengths are depicted in Table 12.                
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                   Table 12. Excitation and emission wavelengths used with Leica microscope 

 

 

 

 

 

6.20 Bioinformatics 

6.20.1 Phylogenetic tree – RLP4 

Protein sequences for phylogenetic analysis were received from the NCBI data base. The 

alignment of all amino acids and the phylogenetic tree was done using the programme/software 

CLC Main Workbench 8.1 (QIAGEN). For phylogenetic tree analysis, maximum likelihood 

phylogeny was performed using the ‘neighbor joining’ construction method and ‘WAG’ for the 

protein substitution model with a transition/transversion ratio of 2.0. Bootstrapping was performed 

with 1000 replicates.  

6.20.2 Image analysis 

All non-quantitative images were processed using ImageJ. MorphoGraphX was used to quantify 

cell surface area and cell numbers in the epidermis of the SAM (Barbier de Reuille et al., 2015). 

For the quantification of cells within a specific domain in the SAM, a customized workflow using 

KNIME Image Processing platform was established by Dr. Christian Wenzl (Berthold et al., 2008). 

Ubiquitiously expressed nuclear mCherry marked each nucleus in the SAM. CLV3 and WUS 

positive cells in the reporter pCLV3:BFP-NLS/pWUS:2xYFP-NLS/pUBQ10:3xmCherry-NLS and 

pTCSn positive cells in the pTCSn:GFP-NLS/pUBQ10:3xmCherry-NLS reporter line were 

assigned by using KNIME.  

6.20.3 Statistical analysis  

Significant differences between samples was either calculated by performing a one-factor 

analysis of variance (ANOVA) with Tukey’s test as post-hoc analysis, a Student’s t-test or Kruskal-

Wallis test. 

fluorophore excitation [nm] emission [nm] 

mTurquoise2 458 490-525 

GFP 488 480-530 

YFP 488 480-530 

mCherry 561 560-610 

PI 561 560-610 

Basic Fuchsin 514 560-610 

Calcofluor white 405 500-520 
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6.21 Primers  

    Table 13. Primers used for cloning. 

primer name stock name sequence [5'-3] gene 

pAT5g47500_pPME5_
GG_F 

SW1871 aacaGGTCTCaACCTcatccgcaacgatagat
tat 

AT5G47500 

pAT5g47500_pPME5_
GG_R 

SW1872 aacaGGTCTCtTGTTtggcttgtgagaaagga
aac 

AT5G47500 

2gRNA_PME44_F SW1876 atatatGGTCTCgATTGGGATCGCCGGC
TGCAGAATGgttttagagctagaaatagc 

AT4G33220 

2gRNA_PME41_R SW1877 attattGGTCTCgAAACCTTCTCCCTCCG
CAAATCGCcaatctcttagtcgactctac 

AT4G02330 

2gRNA_at5g53370_F SW1882 atatatGGTCTCgATTGGTGTAGTTCCG
GGAGTGACGgttttagagctagaaatagc 

AT5G53370 

2gRNA_PME3_R SW1883 attattGGTCTCgAAACCCGTAGCTTTG
CTCTTCGTCcaatctcttagtcgactctac 

AT3G14310 

pREV_GGA_F SW1337 AACAGGTCTCAACCTacacctctttctgatta
ctag 

AT5G60690 

pREV_GGA_R SW1338 AACAGGTCTCATGTTtttagctcgaccctcaa
aaaaag 

AT5G60690 

pAtHB-8_GGA_F SW1329 AACAGGTCTCAACCTggtcgaaaaatgtat
aacaatac 

AT4G32880 

pAtHB-8_GGA_R SW1330 AACAGGTCTCtTGTTctttgatcctctccgatc AT4G32880 

pAtHB-8_in_F SW1331 AACAGGTCTCAtccagTgaccagcgtgatca
aaaac 

AT4G32880 

pAtHB-8_in_R SW1332 AACAGGTCTCAtggaagcaaaggaagatata
g 

AT4G32880 

GGA_pAHP6_F SW1477 AACAGGTCTCAACCTCACGGGGCGC
AAAGAAG 

AT1G80100 

GGB_pAHP6_R SW1478 AACAGGTCTCTTGTTCAACGGCACAC
CCGTCTT 

AT1G80100 

pTMO5_GGA_F SW1223 AACAGGTCTCAACCTGTTGAACGTC
GTGTGGGCTTC 

AT3G25710 

pTMO5_GGA_R SW1224 AACAGGTCTCATGTTTTTTTGGTTTTT
TTGGTTTTTTAGTTTTTGG 

AT3G25710 

GR-
LHG4_GG_F_BD_ada
ptor 

SW1469 AACAGGTCTCaAACAcaATGGCTAGT
GAAGCTCGA 

 

GR-
LHG4_GG_R_BD_ada
ptor 

SW1470 AACAGGTCTCtGCAGTTACTCTTTTTT
TGGGTTTG 

 

RLP4_1_2gRNA_F_1 SW1788 aacaGGTCTCaattgGTAAGTAGGCGTT
GTTGCATgttttagagctagaaatagc 

AT1G28340 

R4L1_1_2gRNA_R_1 SW1789 aacaGGTCTCtaaacTCCTGGTCGTTAC
TATCTCCcaatctcttagtcgactctac 

AT1G25570 

R4L3_CRISPR_2gRN
A_Exon2_F 

SW2145 ATATATGGTCTCGATTGaacgagatagaa
tacacacGTTTTAGAGCTAGAAATAGC 

AT3G19230 
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R4L2_CRISPR_2gRN
A_Exon2_R 

SW2146 ATTATTGGTCTCGAAACcctccgtaatcga
cggccgCAATCTCTTAGTCGACTCTTAC 

AT3G05990 

 

    Table 14. Primers used for genotyping. 

primer name stock 
name 

sequence [5'-3] gene special 
remark 

PME44_CRISPR_Geno_F SW1878 TCATCGGAGGAGAAT
TTTCAAT 

AT4G33220  

PME44_CRISPR_Geno_R SW1879 ACTTTCCATATACCGG
CAATA 

AT4G33220  

PME41_CRISPR_Geno_F SW1880 ATGCTATCTCTCAAAC
TCTTC 

AT4G02330  

PME41_CRISPR_Geno_R SW1881 GCAATGCGACACCGT
TTC 

AT4G02330  

at5g53370_CRISPR_Geno_F SW1884 gtgatgcagtcgttatatatg AT5G53370  

at5g53370_CRISPR_Geno_R SW1885 ATCATCAAGTAACTCA
AGGC 

AT5G53370  

PME3_CRISPR_Geno_F SW1886 ctgataacgacggtccag AT3G14310  

PME3_CRISPR_Geno_R SW1887 GCTTCTTCACGGTGA
AGTA 

AT3G14310  

CRISPR_Cas9_F SW1861 AACCCCATTAATGCGT
CAGGCG 

  

CRISPR_Cas9_R SW1862 GTCAATGTACCCAGC
GTAGCCG 

  

p6xOP_F SW1777 TGCATATGTCGAGCT
CAAGAA 

  

p6xOP_R SW1778 CTTATATAGAGGAAG
GGTCTT 

  

rlp4_r4l1_cr1_forRLP4_capsF SW2063 GGATTAGTTGTGGAG
CTAG 

AT1G28340 HypCH4V 

rlp4_r4l1_cr1_forRLP4_capsR SW2064 TTGACTACTCCAACCA
GATT 

AT1G28340 

rlp4_r4l1_cr1_forR4L1_capsF SW2065 aaactgaattcttcctctgtt AT1G25570 BstNI 

rlp4_r4l1_cr1_forR4L1_capsR SW2066 ATCTCCAAGAGAAAA
CAAGAG 

AT1G25570 

R4L2_at3g05990_F SW2098 tatgctaacttcttctctacc AT3G05990  

R4L2_at3g05990_R SW2099 TCGTAATAAGAAGCG
AGACC 

AT3G05990  

R4L3_at3g19230_F SW2100 ccattaacgacaatggaaaga
a 

AT3G19230  

R4L3_at3g19230_R SW2101 GCTAGACAAACACTTA
GTCTG 

AT3G19230  
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pCLE11_F_end SW2030 ttactctatatcataatttgaa AT1G49005  

CLE11_CDS_R SW2031 cgcaacaaaaatctattgaaac
a 

AT1G49005  

cle21_caps_F SW2164 ATGTTAATTTTATCTT
CACGA 

AT5G64800 XbaI 

cle21_caps_R SW2165 ACATATATACACCAAA
CGAAC 

AT5G64800 

cle27_caps_F SW2166 ATGACTCATGCTCGA
GAATG 

AT3G25905 RsaI 

cle27_caps_R SW2167 TATGAAATGGTTATAG
ATCAGT 

AT3G25905 

mVenus_F SW2084 cttccggatagcccagct   

mVenus_R SW2085 aagggcgaggagctgttc   

mCherry_F SW2086 aaggtgaagaggataatatgg   

mCherry_R SW2087 cttcttcctcaccctcgttt   

BFP_F SW2088 agggtgaagagcttatcaaag   

BFP_R SW2089 agtcctgcgtatcttgcca   

SALK044433_bam3-1_F SW2067 CTGCAACTTCTTCTCC
GTTTG 

AT4G20270  

SALK044433_bam3-1 R SW2068 GATTCCTTCGAAACTC
GGATC 

AT4G20270  

LBb1.3 SW230 ATTTTGCCGATTTCGG
AAC 

  

 

         Table 15. Primers for bulked segregant analysis. 

primer name 
stock 
name sequence [5'-3] 

chromosome 
area 

CER448567_F SW675 ATA GAA AGG TTT GAG 
GGG GC 

459000 

CER448567_R SW676 TGC GAA GAA CCA CTA 
AAC CC 

F9L1_F SW677 CTC GGA AAT TCT TAG 
CTT TC 

5022000 

F9L1_R SW678 TTA TAA CTT GCC CAA 
AGC GAA 

F1K23ind38_F SW679 GGA TTG AAC ATA GGG 
AAG GGG 

9893000 

F1K23ind38_R SW680 GAT CTG TAT CTG AAA 
CCT GGG 

CER464787-Indel-44_F SW681 TTT GAA CTA ACC TTC 
TGA GG 

13780000 

CER464787-Indel-44_R SW682 CAT GTT GAT GAT TCA 
ATT GC 
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F6D8ind94_F SW683 CCG TTA CCC CCA TAC 
GAA CG 

19614000 

F6D8ind94_R SW684 TCG TGA GGT TAT GCC 
GAT CC 

F5I14_F SW685 CTG CCT GAA ATT GTC 
GAA AC 

23701000 

F5I14_R SW686 GGC ATC ACA GTT CTG 
ATT CC 

CER459153_F SW687 TCG TGA CCA AAT CCT 
GAA CA 

1562000 

CER459153_R SW688 TGT CCA AGT AAT GCC 
GTG AG 

CER466780_F SW689 GAA CCC TTA TAA TAT 
GGC TGG C 

6785000 

CER466780_R SW690 GGA AGT ATT CCC AAG 
ACA AGG 

MSAT2-36_F SW691 GAT CTG CCT CTT GAT 
CAG C 

8690000 

MSAT2-36_R SW692 CCA AGA ACT CAA AAC 
CGT T 

F3N11_F SW693 GTT AAA GCG AGG ACG 
ATT GG 

12107000 

F3N11_R SW694 AGA TAC TGT CGC CAT 
CAA GG 

T2P4_F SW695 ACT AGT CCC ACT GTC 
GAT C 

15011000 

T2P4_R SW696 GTT ACT TCG TAA GTC 
CCT AC 

MSAT2-9_F SW697 TAA AAG AGT CCC TCG 
TAA AG 

18150000 

MSAT2-9_R SW698 GTT GTT GTT GTG GCA 
TT 

nga172_F SW699 AGC TGC TTC CTT ATA 
GCG TCC 

790000 

nga172_R SW700 CAT CCG AAT GCC ATT 
GTT C 

CER455386_F SW701 CTC TTT TGG CTC GGA 
CAA G 

4590000 

CER455386_R SW702 GTT GTA ATC GGG AAA 
ATG C 

CER455914_F SW703 GGA GCA GAG AAA GAG 
AC 

7450000 

CER455914_R SW704 GAG GAA GGA CAA CAT 
GGC 

CER456071-Indel-35_F SW705 AGC CAT AGG TAA TGT 
CCA CG 

9170000 

CER456071-Indel-35_R SW706 CTC GCG GAT GAG TAT 
CAT CC 

CER470441_F SW707 GCT AAC AGG GAT ATC 
AAA TGT GC 

11886000 
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CER470441_R SW708 CGG ACG AGC TGA CAC 
TTG TA 

CER470172_F SW709 GTA AAA CTC CTC CTC 
TGG GG 

18247000 

CER470172_R SW710 TGT AAT CGT GGC GGA 
ACG GG 

CER459609_F SW711 TCG CTT TTG AAG ATT 
TGT GC 

1997000 

CER459609_R SW712 GGG AGC TTC TCA GTG 
GTC TG 

nga8_F SW713 GAG GGC AAA TCT TTA 
TTT CGG 

5630000 

nga8_R SW714 TGG CTT TCG TTT ATA 
AAC ATC C 

FCA0ind25_F SW715 AAG CCA ACT ATT GCC 
AAG GG 

8101000 

FCA0ind25_R SW716 TCA CTG CCC TTT ACT 
CCG GT 

F7J7-47_F SW717 TGG TGA AGA GCT TAG 
TTG ATG A 

11293000 

F7J7-47_R SW718 TCA CTA GAT ATC TCT 
AGT GGC T 

CER451534_F SW719 AGC TAC GGT GGA GTG 
TAA TTT CGT 

14602000 

CER451534_R SW720 GCT GAT ACT TGC TTT 
CGC TTT GCA G 

CER459444_F SW721 AGT AGC ATC GTA GCT 
CCT AGG 

18000000 

CER459444_R SW722 GTT GTA TAC GTG CAC 
GTT CCC 

CER456519_F SW723 TGC TAA AAT ATA AAA 
CTT CC 

2247000 

CER456519_R SW724 TTA TGC AGA TGT ATG 
AGG CC 

nga151_F SW725 GTT TTG GGA AGT TTT 
GCT GG 

4670000 

nga151_R SW726 CAG TCT AAA AGC GAG 
AGT ATG ATG 

nga139_F SW727 GGT TTC GTT TCA CTA 
TCC AGG 

8430000 

nga139_R SW728 AGA GCT ACC AGA TCC 
GAT GG 

T26D22-
IND52/CER459812_F 

SW729 TCC CAC GAA GAG AGA 
AGT GC 

13575000 

T26D22-
IND52/CER459812_R 

SW730 CTA TTT GCT TAT GAA 
GGT GTC C 

CER456772_F SW731 CCA TGT GAC ATG CAC 
TTA CAC 

17610000 

CER456772_R SW732 ACC ATT CTC TAC CAC 
TCC AC 

K6M13ind33/CER454758_F SW733 ATA GAT GAG ATC CAC 
TTG CC 

20130000 

K6M13ind33/CER454758_R SW734 ACA AAC TGT TGC TGT 
GGG AG 



6 Materials and Methods 

 

142 

 

MBK5ind35/CER455203_F SW735 ATT CTC GGA CCA GGC 
TTC AT 

24544000 

MBK5ind35/CER455203_R SW736 AAA GAA CAG CTA CTG 
CGT GC 
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aa                                 Amino acid  
AACT1   Acetoacetyl-CoA Thiolase 1 
AGO10/ZWILLE  ARGONAUTE10/ZWILLE 
AHL                              AT HOOK MOTIF NUCLEAR LOCALIZED  
AHP6                           ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 6 
ARE    Auxin response element 
ARF   Auxin response factor 
ATHB-8   HOMEOBOX GENE8 
BA   6-Benzylaminopurine 
BAK1                            BRI-ASSOCIATED KINASE 1 
BAM   BARELY ANY MERISTEM 
bp   Base pairs 
BR                                Brassinosteroid 
BRI1                             BRASSINOSTEROID RECEPTOR1 
BZ   Boundary zone 
CD   Cytoplasmic domain 
CDS      Coding sequence   
CESA                           Cellulose synthase 
ChIP   Chromatin immunoprecipitation 
Col-0   Columbia-0 
CK    Cytokinin 
CNA   CORONA 
CRISPR   Clustered regularly interspaced short palindromic repeats 
CRN   CORYNE 
CrRLK1L   Catharanthus roseus Receptor-like kinase1-like 
CLE    CLAVATA3/ENDOSPERM-SURROUNDING (ESR)-RELATED 
CLSM   Confocal laser scanning microscopy 
CLV3   CLAVATA3 
CPKs   Ca2+-dependent kinase 
CSC   Cellulose synthesis complex 
CSC1   CLE SIGNALLING COMPONENT1 
CUC2   CUP-SHAPED COTELYDON2 
CWS   Cell wall signalling 
CZ   Central zone 
Dex   Dexamethasone 
DMSO     Dimethyl sulfoxide 
DNA   Deoxyribonucleic acid  
ECD   Extracellular domain   
FEA3   ARABIDOPSIS THALIANA FASCIATED EAR 3 
FER   FERONIA 
FM   Floral meristem 
FIL   FILAMENTOUS FLOWER 
GA   Giberrellic acid 
gDNA   Genomic DNA 
GO   Gene ontology 
GOI   Gene of interest 
GFP   Green fluorescent protein 
GT   Glycosyltransferase 
HG   Homogalacturonan 
HMG   HIGH MOBILITY GROUP 
JA   Jasmonic acid 
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KAN   KANADI 
LAS   LATERAL SUPPRESSOR 
Ler   Landsberg erecta 
LHW   LONESOME HIGHWAY 
LOG4   LONELY GUY4 
LRRs   Leucine rich repeats 
LTI6b   LOW TEMPERATURE INDUCED PROTEIN 6B 

M   Molar 
MAPK   Mitogen-activated protein kinase 
Mal   Malectin-like 
MP   MONOPTEROS 
MS   Murashige & Skroog 
MT   Microtubule 
NGS   Next-generation sequencing  
NLS   Nuclear localization signal 
OC   Organizing centre 
OG   Oligogalacturonic acid  
PAE   Pectin acetyl esterase 
PCR   Polymerase chain reaction 
PG   Poly galacturonase 
PHB   PHABULOSA 
PHV   PHAVOLUTA 
PI   Propidium iodide 
PL   Pectate lyase 
PM   Plasma membrane 
PME   Pectin methyl esterase 
PMEI   Pectin methyl esterase inhibitor 
PMEIox   PECTIN METHYL ESTERASE INHIBITOR5 over-expressing 
PSK   Phytosulfokine 
PSKR   Phytosulfokine receptor 
PPB   Pre prophase band 
pTS   Tissue specific promoter 
PXY   PHLOEM INTERCALATED WITH XYLEM 
PZ   Peripheral zone 
QC   Quiescent centre 
RALF   RAPID ALKALIZATION FACTOR1  
RAM   Root apical meristem  
REV   REVOLUTA 
RGI/II   RhamnogalacturonanI/II 
RLK   Receptor-like kinase 
RLCK   Receptor-like cytoplasmic kinases 
RLP   Receptor-like protein 
RNA   Ribonucleic acid 
R4L   RLP4-like 
SAM   Shoot apical meristem 
SBTs   Subtilisin-like serine protease 
SCR   SCARECROW 
SD   Standard deviation 
SERK    SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE 
SHR   SHORT ROOT 
SNP   Single nucleotide polymorphism 
T-DNA   Transfer DNA 
TFs   Transcription factors 
THE1   THESEUS1 



List of abbreviations 

 

161 

 

TMD   Transmembrane domain 
TMO5   TARGET OF MONOPTEROS5 
UFO   UNUSUAL FLORAL ORGANS 
UTR   Untranslated region 
VGD1   VANGUARD1 
VND   VASCULAR RELATED NAC DOMAIN 
WAKs   WALL ASSOCIATED KINASE 
WUS   WUSCHEL 
XGA   Xylogalacturonan 
X-Gluc   ß-Glucuronidase 
XPP   XYLEM POLE PERICYCLE  
YFP   Yellow fluorescent protein  
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Appendix 

A1 Alignment of RLP4, R4L1, R4L2, R4L3 and CLV1: only on attached CD 

A2 RNA-Seq data from csc1, significantly/non-significantly transcripts: only on attached CD 

A3 eFP Browser data for RLP4 

A4 eFP Browser data for R4L1 

A5 eFP Browser data for R4L2 

A6 eFP Browser data for R4L3 
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A4. Expression of R4L1 (AT1G25570) in Arabidopsis, eFP Browser data. 



Appendix 

 

165 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A5. Expression of R4L2 (AT3G05990) in Arabidopsis, eFP Browser data. 
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A6. Expression of R4L3 (AT3G19230) in Arabidopsis, eFP Browser data. 
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