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Abstract 

COPI vesicles mediate retrograde Golgi to ER transport and intra-Golgi transport within 

the secretory pathway. COPI vesicles are Golgi derived vesicles, which are coated with 

heptameric complex known as coatomer. Coatomer is made up of seven subunits 

!,", "’, #, $, % and &-COP. COPI coatomer is recruited to the Golgi membrane with the help 

of small GTPases Arf to stimulate the vesicle formation and capture cargo proteins to 

deliver them to the targeted membrane.  
 

In mammals the $-COP subunit has two paralogs. Whereas in the related COPII system, 

paralogs of coat subunits were shown to expand the cargo repertoire of COPII vesicles, no 

paralog specific function had been described to date for COPI paralog subunits. In this work 

we have set out to investigate such specific functions.  
 

Guided by RNAseq data in differentiating mouse embryonic stem cells (mES) showed that 

Copg1 is upregulated during neuronal differentiation. We generated Copg1 and Copg2 KO 

P19 pluripotent cells and studied if they could differentiate. Strikingly Copg1 KO cells fail 

to form tight embryonic bodies (EBs) and to form long neurites though they could 

differentiate into neurons. 

 

This work shows for the first time strong evidence for paralog-specific function of the COPI 

pathway in mammalian cells. 
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Zusammenfassung 

COPI-Vesikel sind verantwortlich für den retrograden Golgi -ER Transport und intra-Golgi 

Transporte, welche Bestandteile des Sekretionsweges sind. COPI-Vesikel sind vom Golgi 

stammende Vesikel, welche mit einem heptameren Komplex beschichtet sind, dem 

sogenannten Coatomer. Das Coatomer besteht aus sieben Untereinheiten: !, ", "’, #, $, % 

und & -COP. Mit der Hilfe von der kleinen GTPase Arf wird das COPI Coatomer zur Golgi-

Membran rekrutiert. Dadurch kommt es zur Stimmulierung der Vesikelformation und der 

Rekutierung weiterer Cargo Proteine, um sie an ihre Zielmembran zu transportieren. 

 

Bei Säugetieren existieren zwei Paraloge der  $-COP Untereinheit. Während im verwandten 

COPII-System Paraloge von Manteluntereinheiten das Frachtrepertoire der COPII-Vesikel 

erweitern konnten, wurden bislang keine paralog-spezifische Funktionen für COPI-

Paraloguntereinheiten beschrieben. In der folgenden Arbeit haben wir uns mit der 

Erforschungsolcher möglichen spezifischen Funktionen beschäftigt.  

 

Basierend auf RNAseq-Daten, dievon sich differenzierenden mouse embryonic stem cells 

(mES) gesammelt wurden, konnte man einen Zusammenhang zwischen der neuronalen 

Differenzierung und der Copg1 Hochregulierung beobachten. Der Ansatz bestand im 

Folgenden darin Copg1 und Copg2 KO P19 pluripotente Zelllinien zu generieren, und deren 

Kapazität zur Zelldifferenzierung zu untersuchen. Auffallend war vor allem, dass Copg1 

KO-Zellen nicht mehr in der Lage waren kompakte embryonale Körperchen (EBs) und 

Neuriten zu bilden, obwohl sie sich zu Neuronen differenzieren konnten. 

 

In dieser Arbeit wurden zum ersten Mal aussagekräftige Hinweise auf eine 

paralogspezifische Funktion des COPI-Weges in Säugetierzellen gezeigt.  
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1.! Introduction 
 
Nearly all proteins made by a cell need to be localized at define places to fulfill their 

functions. Specific localization can be achieved either by localized translation or protein 

transport. About a third of eukaryotic proteins rely on the secretory pathway to reach their 

final localizations. These proteins are made at the endoplasmic reticulum (ER) and then 

travel within small-coated vesicles from one organelle to the next. 

1.1.! The secretory pathway 
 
The secretory pathway is composed of the rough endoplasmic reticulum (rough ER), ER 

exit sites (ERESs) the ER-to-Golgi intermediate compartment (ERGIC), the Golgi complex 

and post-Golgi carriers en route to their final destination. Each organelle in the secretory 

pathway has a precise structure, organization and function in order to provide appropriate 

protein folding and post-translation modifications (Mellman and Warren 2000; Spang 

2009). Synthesis of proteins, intracellular transport and storage was first discovered in the 

pancreas cells of guinea pig during the study of digestive enzyme pathway (Caro and Palade 

1964). Secretory proteins are synthesized on the polysomes attached to the rough 

Endoplasmic Reticulum (ER) membrane. The ER plays an important role in maintaining 

the quality control, for example disulfide bridge formation or N-glycosylation (Ellgaard and 

Ruddock 2005).  

The ER is the entry site to the secretory or endomembrane system therefore around 30% of 

eukaryotic proteins should be targeted and translocated to ER (reviewed in (Aviram and 

Schuldiner 2017). Translocation of proteins can be done post-translationally or co-

translationally (Cross et al. 2009; Rapoport 2007). In the co-translational pathway, proteins 

start the journey through the secretory pathway through their signal sequence-dependent 

delivery to the ER (Blobel and Dobberstein 1975). ER targeting signals are hydrophobic 

and an interaction through this N-terminal sequence with the signal recognition particle 

(SRP) guard this hydrophobic signal from premature folding of the polypeptide. Further, 

the ribosome-bound nascent chain is targeted to ER membrane through the interaction with 

the SRP receptor (Blobel and Dobberstein 1975; Berndt et al. 2009; Gilmore, Blobel, and 

Walter 1982; Mary et al. 2010; Walter and Blobel 1980).  
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Co-translational translocation is facilitated by the multi-subunit complex translocon that is 

situated in the ER membrane. Sec61 which is a conserved protein-conducting channel 

provides the core of the translocon complex. It binds to translating ribosomes to provide co-

translational route for the delivery of proteins into and across the membrane (reviewed in 

(Pfeffer et al. 2015). 

Tail anchored (TA) proteins are another group of membrane proteins which are post-

translationally inserted in the ER membrane. Their hydrophobic transmembrane (TM) 

region helps them to get delivered to the ER and anchor them within the membrane 

(Osborne, Rapoport, and van den Berg 2005; Kutay, Hartmann, and Rapoport 1993). 

Biogenesis of TA proteins is an ATP dependent process and it requires the interaction with 

TRC40, which is a cytoplasmic transmembrane domain (TMD) recognition complex of 

40kDa, also knowm as Asna1 (conserved homologues in yeast termed as Get3) (Favaloro 

et al. 2008; Stefanovic and Hegde 2007; Schuldiner et al. 2008). Carboxy terminal signal 

sequence of TA proteins help in its integration in the membrane post-translationally. In this 

case incorporation of N-glycosylation helps in correct integration of TA proteins (Borgese, 

Brambillasca, and Colombo 2007; Rabu and High 2007; Kutay et al. 1995). In case of co-

translation signal sequence is present at the N-terminal of nascent chain (Walter and Blobel 

1980).  

 
 

Figure 1: Schematic presentation of the secretory pathway.  

The main cell organelles and different transport ways of the secretory, lysosomal and endosomal 

pathway are depicted. Secretory pathway vesicles COPII (blue), COPI (red) and clathrin (yellow) are 

presented by color labels. Reprinted from Cell, (Bonifacino and Glick 2004), Copyright (2004), with 

permission from Elsevier, License number: 4518820947623 
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Interestingly not all the secretory proteins are dependent on the SRP or Get/TRC40 

pathways for the translocation. This could be due to physical restrictions or if hydrophobic 

ER targeting sequence fail to engage SRP. In the SRP-independent (SND) pathway for 

example Calmodulin might play role in promoting the substrates (Ast and Schuldiner 2013). 

After the translation process, secreted and lysosomal proteins are translocated in the ER 

lumen whereas membrane proteins are directly inserted in the ER membrane (Braakman 

and Bulleid 2011). Post-translational modifications for example N-glycosylation (Kornfeld 

and Kornfeld 1985) and disulfide bridge formation (Ellgaard and Ruddock 2005) take place 

in the ER lumen to provide correct folding of the protein. In the ER two systems have been 

described that regulate the quality control for misfolding or aggregation of proteins. One is 

the unfolded-protein response (UPR) in which upregulation of chaperone synthesis 

promotes correct folding of proteins and the second is ER-associated degradation (ERAD) 

in which misfolded proteins are translocated back to cytoplasm and get degraded via the 

ubiquitin proteasomal degradation pathway (Ellgaard and Helenius 2003; Friedlander et al. 

2000). 

Once proteins are correctly folded and modified they are assembled at ER exit sites and 

encapsulated in COPII vesicles (Klumperman 2000; Pfeffer and Rothman 1987). Two 

distinct models have been suggested to explain this process. The cargo capture model states 

that recognition of proteins via cargo receptors that interact with COPII proteins leads to 

their concentration in ERES and COPII vesicles. In the bulk flow model secretory proteins 

are carried without receptor by passive incorporation of bulk membrane and fluid. By 

contrast, partially folded and assembled proteins are selectively hold back in the ER (Thor 

et al. 2009; Wieland et al. 1987). Experimental evidence exists for both models and thus 

both transport mechanisms probably co-exist in cells (Béthune and Wieland 2018). ER exit 

sites are comprised of either composite network of tubules and vesicles or distinct buds, 

which are lacking ribosomes known as transition sites (Bannykh and Balch 1997; Hara-

Kuge et al. 1994; Orci et al. 1991). These budding sites are coated with COPII and transform 

into COPII coated vesicles (Klumperman 2000). COPII vesicles transport proteins from the 

ER to the Golgi via the ER-Golgi intermediate compartment (ERGIC), that is described by 

its marker proteins the GTPase Rab2 and the intracellular lectin ERGIC53 (Hauri et al. 

2000). ERGIC is also referred as vesicular-tubular clusters (VTCs), is found between the  
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ER and the Golgi and works as a junction for both COPI and COPII mediated transport, 

because marker proteins of both coated vesicles can be found in this compartment (Bannykh 

and Balch 1997). COPI coated vesicles are involved in the retrograde transport of proteins 

from the Golgi to the ER and in intra Golgi transport as well (Letourneur et al. 1994; Orci, 

Glick, and Rothman 1986; Serafini et al. 1991). 

The Golgi is the center of the secretory pathway. The Golgi was first discovered in the nerve 

cells of spinal ganglia and named Golgi after Camillo Golgi (Golgi 1989). The Golgi 

apparatus is made of a stack of elongated membrane structure known as cisternae. Protein 

starts travelling from cis side of the cisternae (early Golgi) that faces the ER, then pass 

through the middle cisternae and finally are exported to the cell surface or the endo-

lysosomal system (trans Golgi network or late Golgi) (Rothman and Wieland 1996). Each 

of these compartments contains a different set of glycosyltransferases as well as other 

enzymes, which further process glycoproteins (Pfeffer 2010). Different models have been 

described in the literature to explain how protein transport takes place through the Golgi 

complex. According to the anterograde vesicular trafficking model, the Golgi is referred as 

a section that possesses stable stacks in harmony with their enzymes so that cargo can be 

delivered through vesicular transport. By contrast, cisternal maturation model explains 

movement and hence maturation of the enzymes describing cis-medial-trans Golgi stacks, 

whereas cargo stays in one compartment. Recent models been proposed are the stable 

compartment of cisternal progenitors and the rapid-partitioning model. First model 

describes movement of cargo from ER to Golgi through vesicles and Rab dependent 

transformation elucidating fusion and segregation of Golgi domains. Second explains 

bidirectional movement of proteins via lipid sorting driving force (see reviews (Glick and 

Luini 2011; Jackson 2009; Pelham and Rothman 2000; Pfeffer 2010). The Golgi has two 

major functions that are transport of secreted proteins out of the cell and to other organelles 

for example to the plasma membrane or lysosomes, and the glycosylation of secreted serum 

proteins and plasma membrane glycoproteins. Many secreted proteins are glycoproteins 

(Fleischer 1983). Glycoproteins undergo several modifications during the glycosylation 

process before they get transferred to the final destination (Kornfeld and Kornfeld 1985). 

Glycosylation, a very common post-translational modification of proteins and lipids, 

terminates at the Golgi apparatus. Addition of sugar chain to proteins is a complex multi- 
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step process that requires multiple enzymes. Many of those are localized at the Golgi and 

exhibit a concentration gradient across the Golgi stack that is thought to ensure correct 

glycan chains are added to secretory proteins (Stanley 2011). In eukaryotic cells multiple 

endocytosis, exocytosis and membrane recycling pathways are established, which play 

crucial role to maintain the balance with in the cell (Farquhar 1983). During exocytosis 

secretory granules are discharged to the cell surface which is coupled to endocytosis in 

which receptor proteins are recycled back to the cell or cell uptake the material and nutrients 

from outside to maintain organelle quality and signaling. Clathrin coated vesicles (CCVs) 

have been suggested to play role during the transport along these routes (Palade 1975; 

Farquhar 1983; Langemeyer, Frohlich, and Ungermann 2018; Karatekin and Rothman 

2018).  

1.2.! Vesicular Transport 
 
In eukaryotes, protein trafficking is generally important to maintain homeostasis, and more 

specifically to bring newly synthesized proteins to their site of function. Virtually all newly 

synthesized transmembrane and secretory proteins destined to the secretory and 

endolysosomal systems are first inserted in the endoplasmic reticulum (ER) and then 

transported from the ER to the Golgi apparatus before they are delivered to their final 

destinations. In eukaryotic cells transport of transmembrane and secreted proteins is mainly 

mediated by coated vesicles (Bonifacino and Glick 2004). Three types of coated vesicles 

have been studied (i) Clathrin coated vesicles, (ii) COPI vesicles, (iii) COPII vesicles. 

Clathrin coated vesicles transport secretory proteins in the late secretory pathway and the 

endocytic pathway (Robinson 2004).  COPII vesicles export proteins from the endoplasmic 

reticulum (ER) to the Golgi apparatus, termed as anterograde pathway (Hughes and 

Stephens 2008). COPI vesicles mediate transport routes from the Golgi apparatus to the ER, 

termed as retrograde pathway, and between Golgi cisternae (Bethune et al. 2006). 

1.2.1.! Clathrin Coated Vesicles 
 
Clathrin coated vesicles were first discovered while studying yolk protein absorption in 

developing mosquito oocyte. They  were observed as coated vesicles and on their convex 

cytoplasmic side they have bristle coat of 20µm  (Roth and Porter 1964).  These coats were  

found to have a lattice shape structure in the cytoplasm and were named as clathrin. Initial  
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purifications from the pig brains revealed a single protein of 180Kda on SDS-PAGE. Amino 

sugars were absent on clathrin suggesting it cytoplasmic protein (Pearse 1976). From 

crosslinking experiment, it was found that clathrin contains three heavy chains and three 

light chains. Each heavy chain is tightly bound to one light chain, like this they make pair 

of trimers (Kirchhausen and Harrison 1981; Ungewickell and Branton 1981). Under 

suitable conditions polymerization of these trimers leads to formation of pentagons and 

hexagons coated vesicles (Crowther and Pearse 1981). A clathrin assembly protein of 50-

KDa (AP50) was described to initiate assembly of clathrin coat (Keen, Chestnut, and Beck 

1987). Nowadays, in higher eukaryotes, four different AP complexes have been identified 

and play important role in coat formation. AP1 (Keen, Chestnut, and Beck 1987)and AP4 

(Dell'Angelica, Mullins, and Bonifacino 1999) play role in transporting cargos between the 

TGN and endosomes (Owen, Collins, and Evans 2004) whereas AP3 (Dell'Angelica et al. 

1997) transports cargo from early endosomes to late endosomes or lysosomes-like 

organelles (Owen, Collins, and Evans 2004). AP2 coated vesicles(Ahle et al. 1988) are 

involved in endocytosis from the plasma membrane to endosomes. With the exception of 

AP-2, GTPase Arf1 helps in recruiting the adapter protein complexes on to membranes.   

Binding of discrete AP complexes to membranes also occurs by selective small sequence 

motifs which are found on the cytoplasmic domains of the cargo proteins and interaction to 

phosphatidylinositol phosphates (PIPs) in the membrane (Owen, Collins, and Evans 2004).  

1.2.2.! COPII coated vesicles 
 

Once proteins have been translated and correctly folded they leave the ER through vesicles 

that package cargo proteins and fuse with the target membrane. ER vesicles are coated with 

the COPII coat which is made of three components Sar1p, Sec23/24p and Sec13/31p. Sar1p 

is a GTP-binding protein of 21kDa, that is recruited to the ER via its nucleotide exchange 

factor Sec12p and gets converted to its GTP-bound form (Barlowe and Schekman 1993; 

Nakano and Muramatsu 1989). Activated Sar1p further enlist the Sec23/24p complex. 

Sec24p helps in the uptake of specific cargos whereas Sec23 retain a Sar1-GAP activity 

which can stimulate GTP hydrolysis (Barlowe et al. 1994; Matsuoka et al. 1998).The 

Sec13p/31p heterodimer complex makes the outer cage and its binding to the inner 

Sec23p/Sec24p coat complex is umpired by Sec31p.  
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1.2.3.! COPI coated vesicles 
 
Background 

Purification of non-clathrin coated vesicles from isolated Golgi membranes was the first 

evidence for the transportation of cargo between Golgi cisternae and also possibly from the 

Golgi to the ER (Ref). These Golgi derived vesicles were first discovered in a cell free 

system when Golgi membranes were incubated with ATP and cytosol in presence of GTP$s. 

Subsequently the corresponding coat protein complex was named coatomer. It was 

observed together with ADP-ribosylation factor (Arf1), which is small Sar1p-related 

GTPase required from the cytosol for COPI vesicle assembly and budding (Orci et al. 1993). 

In addition to Arf1 and coatomer, budding of COPI vesicles from artificial lipid bilayers 

that mimic the Golgi membrane also needs cytoplasmic tails of p24 protein family (putative 

cargo receptors) or cargo proteins that contain a KKXX ER-retrieval signal (Bremser et al. 

1999). In vitro studies showed that coatomer directly binds to dilysine motifs (Cosson and 

Letourneur 1994), which suggest its role in the retrograde pathway (Golgi to ER). Any 

mutation in the motifs leads to loss of binding to coatomer and impaired retrieval to the ER 

(Cosson and Letourneur 1994; Letourneur et al. 1994). Electron microscopic studies 

suggested bidirectional transport of COPI vesicles. Indeed, COPI vesicles were found to 

contain both pro insulin and VSV G proteins for anterograde pathway and KDEL receptors 

for retrograde pathway (Orci et al., 1997). A recent study unveiled a sorting mechanism for 

anterograde cargo, in which s-palmitoylation of proteins encourages assembly of membrane 

cargo at cisternal rim, thus enabling its efficient anterograde transport across the Golgi 

(Ernst et al. 2018). Another study also shows that different coiled-coil proteins from the 

golgin family can be used to isolate two different set of COPI vesicles. Vesicles bound to 

the golgin84-CASP tether lacked members of the p24 putative cargo receptors and 

contained glycosylation enzymes rather than anterograde cargos, suggesting a role of this 

tether in the retrograde pathway whereas the COPI vesicles bound to the p115 golgin tether 

contained p24 proteins and an anterograde cargo (Malsam et al. 2005). As mentioned above 

whether COPI vesicles mediate both retrograde and anterograde transport is still under 

debate and several intra-Golgi transport mechanisms have been proposed and may co-exist 

within cells. 
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1.3.! COPI vesicle formation 
 
1.3.1.! Coatomer 
 
His6-tagged radiolabeled coatomer was used to determine that the whole coatomer is 

recruited en bloc during COPI coated vesicle formation (Hara-Kuge et al. 1994). Coatomer 

is made up of seven subunits called heptameric complex: α-COP (140 kDa), β-COP (107 

kDa), β’-COP (102 kDa), γ-COP (98 kDa), δ-COP (61 kDa), ε-COP (34 kDa) and ζ-COP 

(20 kDa) (Hara-Kuge et al. 1994). In vitro studies suggest that this complex can be 

disassembled at high salt concentration. A partial complex that contains α, β’ and ε-COP 

interacts directly to γ and ζ-COP. This complex can bind to Golgi membrane due to 

interaction with KKXX motifs or alternatively binding to lipids of membrane (Lowe and 

Kreis 1995). Using two-hybrid system it was demonstrated that coatomer has two 

subcomplexes; α, β’ and ε-COP subcomplex and β, γ, δ and ζ-COP subcomplex. β, γ, δ and 

ζ-COP subcomplex is related to AP adapter complexes (Eugster et al. 2000). In yeast, β’ 

and γ-COP interact directly with Arf-GTP-activating protein (GAP) Glo3p (Eugster et al. 

2000; Watson et al. 2004). In vivo analysis of α-COP showed that WD40 domain of N-

terminal is non-essential for yeast cell viability but it is important for KKXX regulated 

trafficking also the last 170 amino acids are required for the integration of ε-COP into 

coatomer and also to maintain its levels (Eugster et al. 2004). EM studies unveiled that β’ 

and α-COP do not make a cage-like structure around the β, γ, δ and ζ-COP subcomplex as 

previously proposed. In fact, coatomer bound to membranes cannot be divided into two 

subcomplexes instead the α, β’, ε-COP and  β, γ, δ, ζ-COP modules are interwined and, in 

contrast to the COPII and clathrin coats, no “outer” and “inner” layer coat can be defined 

(Dodonova et al. 2015). In higher eukaryotes γ-COP comes as two paralogs γ1-COP and 

γ2-COP, it applies to ζ-COP as well (ζ1 and ζ2-COP) (Blagitko et al. 1999; Futatsumori et 

al. 2000). γ-COP paralogs share 80% identity and ζ-COP shares 75% identity of amino 

acids. Immunofluorescence analysis reveals that β-COP is co-localized together with γ2 and 

ζ2-COP at cis side of the Golgi (Futatsumori et al. 2000). Only one isoform is present at a 

time in the coatomer complex, proposing four possible combinations of isotypes of 

coatomer in mammals γ1ζ1, γ1ζ2, γ2ζ2 and γ2ζ1. The first three forms of coatomer are 

present in a ratio of 2:1:2 respectively in the liver cytosol (Wegmann et al. 2004).  
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Immunogold labeling of Golgi stacks using anti- γ1-COP and anti- γ2-COP antibodies 

showed that γ1-COP was preferentially localized to the early Golgi and a pre-Golgi 

compartment and the majority of γ2-COP-containing isoforms of the complex was localized 

to the trans side of the Golgi (Moelleken et al. 2007). 

1.3.2.! Arf1 
 
Arf1 was first purified from rabbit liver membranes as a necessary factor for cholera toxin 

dependent ADP ribosylation of GTP binding regulatory component of (Gsα) adenylate 

cyclase (Kahn and Gilman 1984). Arf1is a ubiquitous and highly conserved GTP binding 

protein of 21kDa. From the immunofluorescence and electron microscopy analysis it was 

observed in the mammalian cells that Arf is localized to the cis side of the Golgi in the 

cytosol. Altogether these studies suggested that Arf1 plays an important role in the secretory 

pathway (Stearns et al. 1990). The Arf family has 6 different mammalian Arf proteins, 

which can be divided into three classes based on amino acid sequences and protein sizes. 

Arfs 1-3 come into class I and have 180 amino acids but different sequence close to the C-

terminal. Arf 4 and 5 belong to class II and have 180 amino acids and also differ in the 

sequence near the C-terminal. Class III Arf 6 has 175 amino acids and its sequence is the 

most different from Arfs 1-5 (Tsuchiya et al. 1991). Arf proteins are small GTPase and 

localized to the membrane containing myristoylated amphiphatic N-terminal helix, 

important for membrane binding. All the Arfs are localized to Golgi membrane except Arf6, 

which is localized to plasma membrane (PM) and Arf2 does not exist in the humans 

(summarized in (Donaldson and Jackson 2011). Activated form of Arf supervise the 

recruitment of AP1 and coatomer to the membrane (Stamnes and Rothman 1993; Austin, 

Hinners, and Tooze 2000). Arf activation occurs when GDP is exchanged to GTP which 

leads to the structural changes in the N-terminal and integrates myristoylated ! helix into 

the membrane (Kahn, Goddard, and Newkirk 1988; Kahn et al. 1992). 
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1.3.3.! Biogenesis of COPI vesicle 
 
Initiation of COPI coat assembly occurs with the binding of Arf1 to the Golgi membrane. 

C terminal of Arf1 was recognized to interact with the diphenylalanine or diphenyllysine 

motifs of Golgi native transmembrane proteins of the p24 family in its GDP bound form 

(Contreras, Ortiz-Zapater, and Aniento 2004; Gommel et al. 2001; Majoul et al. 2001). In 

addition to p24 proteins ER-Golgi SNARE called membrin is also involved to recruit Arf1 

to the Golgi membrane (Honda et al. 2005). After effective binding of Arf1 near to 

membrane exchanging of GDP to GTP occurs, which is an activation step, leads to the 

conformational changes in Arf1 structure. Gbf1 (Golgi BFA resistant factor) which is 

known as guanine nucleotide exchange factor localized to Golgi cisternae, is depicted to be 

in charge of this exchange (Claude et al. 1999; Garcia-Mata et al. 2003; Niu et al. 2005). 

This conformational change exposes the myristoylated amphiphatic N-terminal helix (this 

leads to firm anchorage to the membrane) and binding sites for coatomer. This exposure 

causes introduction of new hydrophobic face and consequently interaction with 

phospholipids of membrane (Antonny et al. 1997; Franco et al. 1996). Myristoylation 

elevates helical content of N-terminus, hence enhancing the membrane binding affinity. 

Myristoylated helix is proposed to extend within the lipid headgroups of the membrane 

(Harroun et al. 2005) more precisely the myristoyl residue interacts with the helix by folding 

back at the N-terminus (Liu, Kahn, and Prestegard 2010). Once Arf1 is tied to the membrane 

it separates from p24 proteins and the enlistment of the coat proteins begins (Sun et al. 

2007). Unlike COPII and Clathrin coated vesicle COPI coatomer is recruited as an intact 

unit (Hara-Kuge et al. 1994). In addition to Arf1 coatomer interacts with p24 proteins as 

well as ER retrieval proteins via different domains. For instance, Arf1 binds with trunk 

domain " and $-COP (Sun et al. 2007; Zhao et al. 1997; Zhao et al. 1999) also with & and 

#-COP (Eugster et al. 2000; Sun et al. 2007). Cryo-EM structure of COPI coatomer also 

supports the binding of ARF through its multiple interfaces and proposed binding of two 

Arf1 molecules per coatomer heptamer (Dodonova et al. 2015).   
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Figure 2: Schematic presentation of COPI vesicle biogenesis.  

Mechanism of COPI vesicle budding and uncoating. Adapted from FEBS letters, (Beck et al. 2009), 

Copyright (2009), with permission from John Wiley and Sons, License number 4518830985902  

 

Coatomer is proposed to bind with cytoplasmic domains of p24 proteins and ER native 

proteins (Harter and Wieland 1998; Majoul et al. 2001). Cytoplasmic domains of p24 

proteins bear dilysine diphenylalanine motifs shown to interact with appendage and trunk 

domain of $-COP (Bethune et al. 2006). This contact conducts a geometry change to a 

“hyper-open” form, polymerization of coatomer complexes and promotes membrane 

curvature (Reinhard et al. 1999; Langer et al. 2008; Dodonova et al. 2015). Besides that, 

WD40 domain of ! and "’-COP helps coatomer in binding with KKXX or KXKXXX 

motifs of ER resident proteins ensuring packaging if cargo and cargo receptors in COPI 

vesicles (Eugster et al. 2000, 2004; Bremser et al. 1999). In the further steps during COPI 

coated vesicle formation budding of membrane and release of vesicle occurs. Interaction of 

Arf dimers with multiple coatomers in negatively curved regions (edge of the growing coat) 

through an inappropriate orientation of amphipathic helix leads to the deformation of the 

membrane (Beck et al. 2011). Arf1-GTP forms dimers which is a crucial step for membrane 

curvature during the vesicle formation (Beck et al. 2008). Membrane budding takes place  
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provided membrane curvature by coatomer whereas scission of vesicles is governed by 

dimerization of small GTPases ARF1 not ARF GTP hydrolysis (Adolf et al. 2013; Beck et 

al. 2011). After budding and before the transfer of proteins to the target membrane an 

important process is the uncoating of vesicles which is initialized by ARF-mediated GTP 

hydrolysis. This event is stimulated by enzymes called ARF-GTPase activating proteins 

(ARF-GAPs) (Cukierman et al. 1995; Reinhard et al. 2003; Tanigawa et al. 1993) that are 

directly recruited by coatomer. The final and important step of COPI vesicle formation is 

to deliver the protein to the target membrane which is promoted by SNARE proteins 

situated on acceptor and donor membranes and that promote membrane fusion (McNew et 

al. 2000).  

Twenty years ago, genome wide analysis found paralogs of $ and %-COP coatomer subunits. 

The original $ and %-COP sequences were referred to as $1 and %1-COP and the novel 

isoforms were named $2 and %2-COP.  $2-COP was observed as an imprinted gene in human 

chromosome 7q32 overlapping with the MEST (Mesoderm Specific Transcript) gene. Both 

$-COP paralogs show 80% identity in their amino acid sequence (Blagitko et al. 1999; 

Futatsumori et al. 2000). $-COP is made of an N-terminal trunk domain and C-terminal 

appendage domain (Schledzewski, Brinkmann, and Mendel 1999; Eugster et al. 2000; 

Hoffman et al. 2003; Watson et al. 2004). The trunk domains shows 81% and the appendage 

domain shows 75% identity in mouse (Moelleken et al. 2007). The %2-COP paralog mainly 

differs from %1-COP by a  30 amino acids extension at its N-terminus (Futatsumori et al. 

2000). In contrast with COPII sec24 paralogs that show binding of different cargos, COPI 

subunit paralogs have not been assigned specific functions to date (Adolf et al. 2019).   

1.4.! Potential role of COPI vesicles in cell polarization 
 

Establishment and maintenance of cellular polarity is an essential process that sustains cell 

fate determination and differentiation, which is essential for the development of a 

multicellular organism or tissue. Neurons are probably the most complex cells and the 

epitome of cellular polarization with a long axon extending from the cell soma and an 

elaborate dendritic network. Neuronal polarization occurs shortly after mitosis and involves 

a coordinated cytoskeleton and endomembrane rearrangement allowing axon growth. 

Several lines of evidence suggest that vesicular transport plays a role in axonal growth and 

neuronal polarization. From a previous study it is known that short treatment with Brefeldin  
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A, a drug that inhibits the formation of Golgi-derived transport vesicles, inhibits axonal 

growth of existing axons, and prevents the formation of axons from unpolarized cells (Jareb 

and Banker 1997) which suggests the importance of COPI vesicles during neuronal 

differentiation. In addition, centrosome-mediated positioning of the Golgi apparatus 

determines where the forming axon forms, and is necessary for axonal growth. 

Centrosomes, the Golgi apparatus and endosomes were found clustered together next to the 

place where the neurite formation starts, which is opposite to the plane of last mitotic 

division, indicating plane of mitotic division defines the neuronal polarization. If 

centrosome positioning plays important role during cell polarization, microtubule 

polymerization and membrane trafficking should be polarized in the direction of growth (de 

Anda et al. 2005). Finally, knock down of !-COP resulted in significant reduction of both 

dendritic and axonal growth in primary cortical neurons (Custer et al. 2013; Peter et al. 

2011; Li et al. 2015). The role of COPI vesicles in the transport of proteins and lipids 

between the Golgi apparatus and the ER has been well described. Yet, they have been much 

less studied in polarized cells such as neurons. Interestingly, !'COP was observed in the 

neurites and growth cones in primary neurons and was transported towards the axonal 

growth cone upon activation by BDNF, suggesting COPI vesicles not only mediate short-

range transport between Golgi and ER, but also long-range transport along the axon (Peter 

et al. 2011). However, their precise role in this context is currently unknown. Until now, 

though slightly distinct subcellular localization could be observed but no functional 

difference could be found between coatomer complexes containing $1- or $2-COP. Before 

starting this project, examination of publicly available whole transcriptome-profiling data 

indicates that $1- and $2-COP are differentially expressed during mouse embryonic stem 

cells differentiation into neurons (Tippmann et al. 2012). Altogether this suggest that COPI 

vesicle may play an important role during neuronal differentiation with potential paralog-

specific functions in this context.  
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1.5.! Aim of the study 
 
The goal of this thesis is to study potential paralogs specific roles of the COPI pathway 

during neuronal differentiation. Recent evidence suggests that Golgi-derived vesicles play 

a critical role in axonal growth and polarization of neuronal cells. The precise role and 

function of COPI vesicles in the highly polarized neuronal cells has however, to date, 

remains unexplored. Recent data indicates that, in neurons, COPI vesicles travel long 

distances within the axon and regulate neurite outgrowth. This suggests that COPI vesicles 

play a yet overlooked important role in neuronal differentiation. Until now, though slightly 

distinct subcellular localization could be observed (Moelleken et al. 2007), no functional 

difference could be found between coatomer complexes containing $1- or $2-COP. Above 

studies suggests that potential functional differences between the $1-COP and $2-COP 

containing coatomers may be found in neuronal cells. This work aims to analyze the 

contribution and significance of COPI mediated trafficking in neuronal differentiation by 

addressing the following questions: 

•! Does the COPI pathway play a role in neuronal differentiation/establishment of cellular 

polarity? 

•! Do $1 and $2-COP containing coatomer have different functions in this process? 

 

For specifications gene is referred as Copg1 and Copg2 and for protein $1-COP and $2-

COP has used. 
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2.! Results 
 

2.1.! Down-regulation of Copg2 protein ratio and mRNA levels 
 
Since whole transcriptomics analysis of the neuronal cells differentiated from mouse 

embryonic stem cells had indicated that Copg1 is upregulated upon neuronal differentiation, 

suggesting that Copg1 might play important role during neuronal differentiation (figure 3) 

(Tippmann et al. 2012). Based on that protein and mRNA expression of gamma-COP 

paralogs were investigated in P19 WT cells during neuronal differentiation.  

 

Figure 3: Transcriptomics profiling of mouse embryonic stem cells.  

RNAseq expression profiling performed on mES and their derived neuroprogenitors (NP) and terminal 

neurons (TN).!Figure was generated by Julien Béthune using raw data from (Tippmann et al. 2012) 

 

To study the role of gamma-COPI in neuronal differentiation, P19 cells were used as a 

model cell line. These are mouse pluripotent cells of cancerous origin that can be 

differentiated into neurons and glial cells in presence of retinoic acid (RA) (Jones-

Villeneuve et al. 1982). An established classical method for efficient neurogenesis of P19 

has been used to differentiate the cells into neurons (figure 4). To differentiate P19 cells 

into neurons, cells were first cultured in non-adherent condition in presence of 0.1µM RA  

in 10cm bacterial plates for 4 days during which cells aggregate to form embryoid bodies  
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(EB).  After 4 days these aggregates were collected and dissociated, plated and after two 

days of plating treated with 10um Cytosine-1-"-D-arabinofuranoside (AraC). The 

nucleoside analog AraC inhibits DNA replication and leads to DNA fragmentation, and 

thus acts as a poison for dividing cells. Hence AraC treatment promotes the enrichment of 

post-mitotic neurons. Every second-day samples were collected to isolate protein and 

RNA.  

 

 
 

Figure 4: Schematic representation of classical two step P19 neuronal differentiation method using 

Retinoic Acid. 

 

Protein expression of gamma-COP paralogs was analyzed using specific antibodies against 

each paralog. $2-COP protein expression was downregulated while $1-COP protein was 

upregulated at day 8 post-differentiation (figure 5a & 5c). "'tubulin III (also known as TujI) 

was used a neuronal-specific marker, and Oct-4 was used as a pluripotency marker. 

Quantification of mRNA levels of the two paralogs revealed that the expression of Copg2 

was decreased but Copg1 was highly expressed during neuronal differentiation at day 8 

post-differentiation (figure 5b & 5d). All the other subunits were found to behave in a 

similar manner to Copg1. Ratios of protein and mRNA expression of these two paralogs 

were measured separately which also show increase in protein and mRNA levels of 

Copg1.The difference in Copg1 and Copg2 regulation during neuronal differentiation 

suggests non-overlapping functions.  
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Figure 5: Differential expression of Copg1 and Copg2 paralogs during P19 neuronal differentiation. 

 (a-b) Show protein and mRNA expression of different COPI subunits during P19 WT neuronal 

differentiation. (*) shows non-specific signal. (c-d) Represent ratio of protein and mRNA of Copg1 and  
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Copg2 paralogs. Two-tailed unpaired t-test was performed for statically significant analysis (* p-value 

is <0.05).  

 

2.2.! Disruption of!$1- and!$2-COP subunits in P19 cells 
 
To determine whether Copg1 and Copg2 are functionally redundant, loss-of-function 

models for both these genes were generated using state of the art cas9-mediated genome 

editing techniques. Single guide RNAs (sgRNAs) targeting the open reading frames of 

either Copg1 or Copg2 were designed using online design tools (for Copg1 MIT CRISPR 

tool was used (Ran et al. 2013), Copg2 CHOP-CHOP was used (Labun et al. 2016) and 

eSpCas9 Copg1 E-CRISP was used (Heigwer, Kerr, and Boutros 2014)) to minimize 

potential off-targets (figure 6a &b).  

 

 
 

 
 

Figure 6: Schematic representation of the genomic locus of Copg1 and Copg2 paralogs.  

(a-b) show schematic representation of whole locus of Copg1 and Copg2 genes respectively. Light red 

vertical arrow shows the exon number where sgRNA is targeted. Dark red arrows show PCR primers 

for T7 endonuclease assay around the cut site. 

 

These sgRNAs were then cloned downstream of the U6 promoter into the PX458 plasmid 

(which also contains a Cas9 and GFP expression cassette). These plasmids, containing the 

individual sgRNAs, were then transfected into P19 cells to test their cutting efficiencies 

using a T7 endonuclease test. When the sgRNA-Cas9 complex is recruited to the genomic 

DNA (gDNA), it induces a double-stranded break (DSB) at that site. The resulting DSB can  

 

(b) 

(a) 
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then be repaired by either the error-prone non-homologous end-joining (NHEJ), or the 

error-free homologous recombination (HR) pathway.  

 

 

 

Figure 7: sgRNA cutting efficiency test.  

(a & b) T7 endonuclease assay to test the efficiency of sgRNA to create double-stranded break in the 

gDNA. Red stars indicate expected band size after digestion. For Copg1 product length is 800 and 

expected bands are 299 and 501bp. For Copg2 product length is 711 and expected bands are 378 and 

333 bp. 
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The NHEJ pathway is predominantly used by the cells and results in insertions or deletions 

(indels) of few base pairs at the cut site. The T7 endonuclease test exploits this property to 

determine the cutting efficiency of the Cas9-sgRNA complex. Genomic DNA from the 

transfected cells was isolated and the region around the cut site was PCR-amplified. The  

PCR product was denatured and reannealed by ramping down the temperature from 95o to 

25oc at 1 degree per second. Since the transfected cells contained a pool of several mutants 

(due to Cas9 induced indels), the resulting PCR product also contained these mutations. 

Upon denaturation and reannealing, several DNA strands re-anneal with the wrong cognate 

anti-strand resulting in a heteroduplex formation (with a bulge at the sgRNA binding site). 

These heteroduplexes were digested with the T7 endonuclease I enzyme which recognizes 

and cleaves the bulge into two DNA fragments that can be seen on a 2% agarose gel (Ran 

et al. 2013). In case of Copg1, the sgRNA targeting exon2 whereas in case of Copg2, at the 

sgRNA targeting exon6, were the most efficient ones (figure 7a & 7b). Once it was 

confirmed that these sgRNAs were efficient in generating indels at the desired loci, they 

were transfected into P19 cells and 72 hours post-transfection, GFP-positive single cells 

were sorted into 96 well plates and allowed to grow for 2 weeks. The clones thus obtained 

were screened for Copg1 and Copg2 protein expression using specific antibodies against 

these paralogs. In case of Copg1 two clones survived after FACS sorting and two of them 

showed complete deletion of protein (figure 8)  

 

Figure 8: Analysis of P19WT and Copg1 KO cells.  

Western blotting from clone 1 to see $1-COP protein knockout. Star shows non-specific band. Expected 

molecular weight for $1-COP is 99.5 kDa and for $2-COP is 97.5 kDa and !-tubulin is 55 kDa, protein 

loading control. 
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(western blotting in the figure from clone 1) whereas for Copg2 out of several clones five 
clones were screened by western blotting and three clones showed complete knock out of 
Copg2 protein (figure 10a).  
 

 

 
 

 

 
 

Figure 9: Sequence characterization of the $1'COP KO clones.  

 (a-b) Represent frameshift mutations in the g.DNA of Copg1 KO clone 1(insertion) & 2 (deletion). 

Green arrows show potential sgRNAs against the targeting sequence. Red marking shows the mutations 

in the g.DNA sequence.  
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To further validate the knockout at the genomic level, gDNA from these clones were 

sequenced. Sanger sequencing of the Copg1(both clones) and Copg2 (clone c15) knockout 

clones revealed that each of them had frameshift mutations which results in premature 

translation termination (figure 9a-b & 10b).  

 

 
 

 
 

Figure 10: Analysis of the Copg2 KO clones.   

(a) Western blotting of Copg2 knockout clones to check the deletion of $2-COP protein using mixture 

of $1 & $2 COP specific antibodies. Star shows non-specific band. Expected molecular weight for $1-

COP is 99.5 kDa and for $2-COP is 97.5 kDa and !-tubulin is 55 kDa, protein loading control. (b) 

Represent frameshift mutations in the g.DNA of Copg2 KO clone C15 (deletion). Green arrows show 

potential sgRNAs against the targeting sequence. 
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For the Copg1 gene an additional knockout cell line was generated using the eSpCas9(1.1) 

variant. In this variant, three-point mutations in the Cas9 sequence reduce off target 

cleavage without affecting on-target cleavage efficiency(Slaymaker et al. 2016). Out of 

three clones made with the eSpCas9(1.1) protein, one clone showed complete deletion of 

$1-COP protein (figure 11). eSpCas9(1.1) Copg1 knockout clone was used for embryonic 

body formation experiments to exclude clonal variation. For further experiments this clone 

was not used since the rescue cell lines were generated in Copg1 KO clone1. 

 

 

Figure 11: Analysis of the Copg1 KO clones generated using eSpCas9(1.1).   

Western blotting of Copg1 knockout clones to check the deletion of $1-COP protein using mixture of $1 

& $2 COP specific antibodies. * represents non-specific band. Copg1 KO clone from normal CRISPR-

Cas9 system was used as a positive control and eSpCas9(1.1) (empty plasmid) was used as a transfection 

control. Expected molecular weight for $1-COP is 99.5 kDa and for $2-COP is 97.5 kDa and !-tubulin 

is 55 kDa, protein loading control. 

 

2.3.! Generation of rescue cells  
 
Furthermore, to validate any phenotype resulting in absence of both Copg1 and Copg2 gene, 

rescue cell lines were firstly generated by using PiggyBac (PB) plasmids. Copg1KO cells 

were rescued with full length Copg1 gene (PB-Copg1) and Copg2 KO cells were rescued 

with full length Copg2 gene (PB-Copg2) using PB system. In the PB system, the transgene 

is inserted between two inverted terminal repeat sequences (ITRs) that are recognized by 

the PB transpose and thus enables its random integration preferentially at TTAA  
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chromosomal sites of the target genome (Cary et al. 1989; Fraser et al. 1995). Pool of cells 

were selected with hygromycin since the integration plasmid had hygromycin selection 

cassette. In the rescued cell line, western blot analysis revealed that constitutive 

overexpression of one paralogue suppresses the expression of other paralogue (figure 12, 

3rd and 6th lane from left). The rescue plasmid drive expression of $1-COP or $2-COP with 

a strong CAG promoter. In addition, the rescue cassette may integrate multiple times into 

the genome. This probably leads to a considerable overexpression of the exogenous myc-

tagged $-COP paralog that will then efficiently compete out the endogenous paralog for  

access to coatomer. As individual COP subunits are normally not observed outside of the 

assembled complex (Wegmann et al. 2004) and $-COP was found to be insoluble as a 

recombinant protein (Wegmann et al. 2004), it is highly probable that non-assemble $-COP 

is rapidly degraded.  Altogether, overexpression of $1-COP leads to the disappearance of 

$2-COP and vice versa. To solve this issue, a bacterial artificial chromosome for DNA 

integration (Bacmid) system was used.  It allows integration of an extra chromosomal copy 

of a gene with its own promoter into the genome, leading to physiological expression and 

regulation (Pennock, Shoemaker, and Miller 1984). Using this system rescue cells for 

Copg1 gene was generated, where the whole locus of Copg1 (with all the exons and introns) 

subunit, tagged with GFP at the C-terminus, was exogenously reintroduced (figure 12, 4th 

lane from left). Using Bacmid system protein expression of both paralogs was observed like 

the endogenous one and did not suppress the expression of other paralog. 
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Figure 12: Copg1 rescue using piggybac and bacmid system.  

Western blotting of rescue cells to see the expression of $1 & $2 COP protein using specific (mixed) 

antibodies. Star shows non-specific band. Expected molecular weight for $1-COP is 99.5 kDa and for 

$2-COP is 97.5 kDa, Copg1-GFP is 135kDa and !-tubulin is 55 kDa, protein loading control. 

 

In the GFP-tagged $1-COP expressing BAC-rescued cells to verify if this protein can 

integrate into the complex which is important for the function of the gene. From the 

immunoprecipitation it was observed that $1-COP-GFP can be immunoprecipitated 

together with the !-COP and "’-COP subunits (figure 13a). To verify the functionality of  

GFP-tagged $1-COP, Copg2 was disrupted in the BAC-rescued Copg1 knockout cell line. 

Since all COP subunits, except e-COP, are essential (Watson et al. 2004), obtaining cells 

that solely express $1-COP-GFP is a read-out for functionality. I was successful in obtaining 

such a cell line (figure 13b) indicating that the GFP tag does not interfere with the 

functionality of the gene, which also supports the data from the pulldown of coatomer.        
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Figure 13: Functionality test for the Bacmid Copg1 rescue cells.  

(a) Immunoprecipitation of different COPI subunits using CM1 antibody and blotted against specific 

antibodies. 2% of input was used for western blotting. (b) Western blotting of $1-COP-GFP protein. 

Star shows non-specific band.  

 

Rescue cells generated by using Bacmid system have been used for all the experiments to 

show recovery of the phenotype so that gene regulation can be maintained like the 

endogenous. For embryonic body formation and neurite formation experiments rescue cells 

made by using PiggyBac system have also been used. 
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2.4.! Coatomer complex formation is not affected upon knockout 

 
Coatomer is a very stable heptameric complex. To determine that the existing phenotype is 

because of the gamma paralogs it is important to see whether knock out of both paralogs 

affecting the expression of other subunits of coatomer. Protein expression of other subunits 

of coatomer were analyzed using specific antibodies. In the Copg1 KO cells expression 

level of Copg2 is increased and in Copg2 KO cells levels of Copg1 is increased while 

expression of other subunits is not affected (figure 14a).  This suggests that the total amount 

of coatomer remains unchanged in the cell. Coatomer is only functional as a fully assembled 

complex. To study whether coatomer subunits are correctly incorporated into complex in 

the absence of one $-COP paralog, immunoprecipitation of coatomer using the CM1 

antibody, an antibody that recognizes native coatomer (Wegmann et al. 2004) was  

performed. All the analyzed coatomer subunits were efficiently immunoprecipitated in WT, 

Copg1 KO and COpg2 KO cells (figure 14b). This result shows that coatomer complex 

formation is unaffected in absence of one or the other paralogue of $-COP. 
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Figure 14: Analysis of coatomer subunits and complex formation.  

(a) Western blotting of different COPI subunits using specific antibodies in absence of Copg1 and 

Copg2 genes. (b) Coatomer pulldown using CM1 (native coatomer) antibody. 2% of input was used for 

western blotting. 

 
2.5.! Copg1 is necessary for embryonic body formation 

 
After generating knock out cells an important aim was to study if absence of Copg1 and 

Copg2 affect neurogenesis. Before starting with the neuronal differentiation pluripotency 

of the knockout cells was first determined. Since P19 cells are pluripotent and can be 

differentiated into neurons they should express pluripotent markers. Proteins levels of 

Nanog and Oct-4 transcription factors, which play important role during self-renewal of 

undifferentiated cells also known as pluripotent markers (ref), were analyzed by western 

blotting using specific antibodies. Both KO cells do express pluripotent marker (figure 15). 

Suggesting that pluripotency of the cells is not affected in the KO cells. 

In the classical differentiation protocol, to activate signaling pathways for cell polarization, 

cell-cell contacts are a very important process for neural induction (Wang et al. 2006). 

Before the formation of neurites P19 cells are cultivated to make cell aggregates, also 

known as embryonic bodies, when treated with RA. Cell aggregation in presence of RA 

leads to the formation of mesoderm and endoderm cell types (Wang et al. 2006). 
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Figure 15: Analysis of pluripotency markers in Copg1 and Copg2 KO cells. 

 Western blotting of pluripotent markers Oct-4 and Nanog in P19WT, Copg1 and Copg2 KO cells using 

specific antibodies. Star shows non-specific band. Molecular weight of Oct-4 is 45kDa, Nanog is 45kDa 

and !-tubulin is 55 kDa, protein loading control.  

 

To determine whether KO of $-COP paralogs affect the embryonic body formation, the 

hanging drop method was used. For each hanging drop 20 µL of volume containing 200 

cells were used. After two and four days of aggregation images were taken with the bright 

field microscope. It was observed that for the majority of P19 WT and Copg2 KO cells’  

embryonic bodies had tight boundaries and cells were nicely connected with each other by 

contrast Copg1 KO EBs lacked tight boundaries, however the cells showed aggregation but 

with cells loosely connected to each other (figure 16a). Partial rescue was observed in 

Copg1-GFP rescued cells.  
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Figure 16: Hanging drop assay for Copg1 and Copg2 KO cells.  

(a) Embryonic body formation at day 2 and day 4. Images were taken using 10x objective under the 

brightfield microscope. (b) Quantification of embryonic bodies. Circularity was measured using Fiji 

(imageJ). value of 1.0 indicates a perfect circle. Box plot was plotted, it indicated minimum to maximum 

values and line between the box shows the median value. 
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When embryonic bodies from eSpCas9(1.1) Copg1 were observed they also showed poor 

cell aggregation (figure 17a). For quantitative analysis the circularity index of embryonic 

bodies was measured by using ImageJ for more than 100 aggregates per condition. For the 

quantification, aggregates which contained more than 10 cells were taken into 

consideration. The circularity index gives the ratio of 4π*area/perimeter^2; a value of 1.0 

indicates a perfect circle. As the value approaches 0.0, it indicates an increasingly elongated 

shape (Values may not be valid for very small particles.) (figure 16b & 17b).  

 
 

  

  
 

 
Figure 17: Hanging drop assay for HiFi Copg1 KO cells.  

 (a) Embryonic body formation form HiFi Copg1KO at day 2 and day 4. Images were taken using 10x 

objective with the help of brightfield microscope. (b) Quantification of embryonic bodies. Circularity 

was measured using Fiji (imageJ). value of 1.0 indicates a perfect circle. Box plot was plotted, it 

indicates minimum to maximum values and line between the box shows the median value.  
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2.6.! Copg1 is necessary for neurite formation 

 
In presence of RA cell aggregates lead to neurite formation, derived from neuroectoderm 

when dissociated and re-plated in adherent conditions (McBurney 1993). To analyse neurite 

formation, cells (106 total per dish) were first cultured on non-adherent bacterial dishes to 

make EB, which is the classical protocol, in presence of RA for 4 days. As expected from 

the hanging drops experiments, Copg1 KO cells show less and smaller cell aggregates with 

more single cells present in the background of the dish (figure 18).  

  

Figure 18: Cell aggregation assay in non-adherent condition.  

Cell aggregation at Day2 and Day4 in presence of 0.1um RA in non-adherent condition in 10cm 

bacterial dish. Images were taken with 10x objective under the brightfield microscope.  
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After 4 days of aggregation cells were dissociated and 50,000 cells per well were plated 

onto poly-L-lysine coated 8-well ibidi slides. After 2 days of plating 10 µM Cytosine-1-"-

D-arabinofuranoside (AraC) treatment was given so that dividing cells can be poisoned to 

enrich for non-dividing neuronal cells. After 8 days of differentiation protocol cells were  

fixed with 4% PFA and stained to detect neurite formation by immunofluorescence 

microscopy. To detect neurites the neuronal specific marker Tubulin ß III was detected with 

the specific antibody TujI was used (figure 19a).   
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Figure 19: Immunofluorescence microscopy for neuronal differentiation using classical method.  

(a) Neuronal differentiation using classical protocol and immunostaining with "-tubulinIII (Cy5, red 

channel) to detect neurites. DAPI (405nm, blue channel) is used to stain DNA and $1-COP-GFP protein 

is observed in GFP channel (488nm, green channel). Brightness intensity is same for all the images blue 

(600-800), green (700-1100) and red channel (600-700). Scale bar is 30um. (b) Quantification of neurite 

length using neurite quant software. Two-tailed unpaired t-test was performed for the statically 

significant analysis (*** p-value is <0.0001). Here n=20 since 20 random pictures were taken for the 

analysis. 

 

From the immunofluorescence microscopy it was observed that Copg1 KO cells do not 

show a comparable neurite outgrowth pattern to the P19 WT cells. They have either none 

or very short neurites (figure 19a). However, Copg1 KO cells do show staining against ß-

tubulin III antibody, which was also observed by western blot analysis (figure 20a), which 

means they have the ability to differentiate into neurons but they are incapable of producing 

neurites. This phenotype was rescued in Copg1-GFP rescued cells. By contrast Copg2 KO 

cells show similar neurite outgrowth compared to the P19 WT cells (figure 19a & b). In the 

initial analysis of P19 WT cells during neuronal differentiation, I observed that $2-COP 

protein is less expressed at late differentiation stages (figure 5a). I thus sought to check if 

there are sufficient amounts of coatomer present during all neuronal differentiation stages 

upon Copg1 KO. Protein expression for $1 and $2-COP was observed comparable to 

P19WT cells. Two other coatomer subunits !'COP and #'COP were observed to be  

expressed at comparable levels in P19 WT and Copg1 KO cells during neuronal  
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differentiation. Oct-4 and Tubulin ß III used as pluripotency and neuronal markers 

respectively, were also comparable in WT and Copg1 KO cells (figure 20a & 20b) 

 

 
 

 
 

Figure 20: Analysis of different coatomer subunit during classical neuronal differentiation. 

 Western blotting of different COPI subunits, neuronal and pluripotent marker during neuronal 

differentiation of P19WT, Copg1 and Copg2 KO cells using specific antibodies. Star shows non-specific 

band. Molecular weight of !-COP 135 kDa, #-COP 60 kDa, Tuj1 55kDa, Oct-4 45 kDa and GAPDH is 

35 kDa, used for protein loading control. Western blotting was done by Karla Lopez. 

 

Interestingly when the PB rescue cells for Copg1 and Copg2 genes were treated with 0.1µM 

of RA to induce EB formation on non-adherent bacterial dishes, Copg1 rescue cells showed 

fewer single cells in the background and improved cell aggregation compared to Copg1 KO 
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cells whereas EBs from Copg2 rescue cells were similar to those of Copg2 KO cells. EB 

morphology was quantified as described above with the circularity index (figure 21a & 

21b). 

 

 
 

 

 

(a) 
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Figure 21: Cell aggregation assay for PB rescue cells.  

(a) Cell aggregation at Day2 and Day4 in presence of 0.1um RA in non-adherent condition in 10cm 

bacterial dish. Images were taken with 10x objective under the brightfield microscope. (b&c) 

Quantification of embryonic bodies. Circularity was measured using Fiji (imageJ). value of 1.0 indicates 

a perfect circle. Box plot was plotted, it indicates minimum to maximum values and line between the 

box shows the median value.  

 

When these aggregates were plated on poly-L-lysine coated plates and treated with 10µM 

of AraC, PB-Copg1 rescue cells showed improved neurite growth after 8 days of 

differentiation compared to Copg1 KO cells. While PB-Copg2 rescue cells showed reduced 

neurite outgrowth compared to Copg2 KO cells (figure 22a). Neurite lengths were measured 

using the same software Neurite Quant like previous data (figure 22b). Suggesting that 

increasing in protein levels of $2-COP would show reverse phenotype supporting $1-COP 

specific phenotype. As shown above, with the strong constitutive overexpression of $1-COP 

as the expense of $2-COP, PB-Copg1 rescue cells resemble Copg2 KO cells. Conversely, 

for the same reason, PB-Copg2 rescue cells are a mimic of Copg1 KO cells. Altogether, 

these results unravel an important function of $1-COP during neurite formation and also 

suggest that increased expression of $2-COP cannot overcome the phenotype of Copg1 KO 

cells.  

 

 

 

 

(c) (b) 
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Figure 22: Immunofluorescence microscopy for neuronal differentiation in PB rescue cells using 

classical method.  

(a) Neuronal differentiation using classical protocol method and immunostaining of the neurites using 

antibody against Tubulin ß III (TujI) (488nm, green channel) DAPI (405nm, blue channel) is used to 

stain DNA. Brightness intensity is same for all the images blue channel (54-129), green channel (0-184). 

Scale bar is 0.3um.  (b) Quantification of neurite length using neurite quant software. Two-tailed 

unpaired t-test was performed for the statically significant analysis (p-value * <0.05, ** < 0.01, *** 

<0.0001). Each dot indicates around 100 cells in total 500 cells were used for the analysis. Here n=5 

since 5 random pictures were taken. 

 

2.7.! Copg1 Knock out shows changes in Golgi morphology 
 

It is very well established that COPI-coated vesicles are Golgi-derived vesicles and one of 

the important transport pathways in eukaryotic cells.  It was thus important to analyze if the 

knockout of $-COP paralogs affects morphology that organelle because this can affect the 

secretion or localization of proteins inside the cell. To analyze Golgi morphology, electron 

microscopic (EM) analysis was performed in the P19 WT monolayer cells together with 

Copg1/Copg2 KO and Copg1-GFP rescue cells (figure 23a). 30 cells per sample and around 

60-70 Golgi stacks were used for the analysis.  

  

(b) 
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From the quantification it was observed that: 

1)! More Golgi stacks per cell in Copg1 and Copg2 KO cells, not significant when compared 

WT vs. rescue. 

2)! Smaller Golgi area in Copg1 and Copg2 KO cells, not significant when compared WT vs. 

rescue. 

3)! More vesicles around Golgi stacks in Copg1 KO, suggests stronger fragmentation in these 

cells. 

4)! Smallest ellipse similar in all conditions: no dispersion of Golgi stacks throughout the cells.  

Both $1 and $2-COP are necessary for a correct Golgi morphology. Fragmented Golgi is 

usually coupled to transport defects and may for example affect the correct localization of 

glycosylation enzymes (figure 23b-e). 
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Figure 23: Endomembrane morphology analysis. 

(a) Electron microscopy of Golgi morphology in P19 WT, Copg1/Copg2 KO and Copg1 rescue cells. (b) 

Quantification of total amount of Golgi stacks per cell (c) Area of Golgi stacks (d) % of Golgi with more 

than 50% of vesicles per stack (e) Distribution of Golgi through-out the cell. Samples were fixed and 

embedded at the EM core facility. Further analysis imaging and quantification was done in 

collaboration with Judith Klumperman’s group. (p-value * <0.05, ** < 0.01, *** <0.0001). 

 

From the electron microscopic study, it was observed that Golgi is fragmented in Copg1KO 

cells we also wanted to see if the ER is stressed. ER stress inhibits neurite outgrowth 

(Kawada et al. 2014). To exclude that we checked the apoptosis in the KO cells, since ER  

  

(b) (c) 

(d) (e) 
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stress induce the apoptotic cell death, found no apoptotic bodies in the cells. In these 

knockout cells, cell death was also determined by using the apoptosis marker Caspase-3.  

As a positive control for apopotic cells, P19 WT cells were treated with 1µM of 

Thapsigargin for 6hrs to induce ER stress which further leads to the cell death. By contrast 

to the thapsigargin-treated cells, WT and KO cells did not show significant staining for 

Caspase-3 suggesting knockout of $1-COP or $2-COP does not lead to pro-apoptotic cells 

(figure 24).  

 

 
  Figure 24: Immunofluorescence microscopy for apoptosis marker.  

Immunostaining of cells with cleaved caspase-3 antibody. Red channel (cy5) shows fluorescence 

for apoptosis marker. DAPI (405nm, blue channel) is used to stain DNA and $1-COP-GFP protein 

is observed in GFP channel (488nm, green channel). Brightness intensity is same for all the images 

blue channel (67-173), green (225-3624) and red (1425-4095). Scale bar is 10um. Immunostaining 

was done by Karla Lopez 
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2.8.! Copg1 Knock out shows delay in cell cycle 

 
Knock out clones were tested for cell growth to analyze if cell proliferation is affected upon 

knock out of $-COP paralogs. Cells were incubated at 370C for 72hrs in an incubator fitted 

with a camera to allow live-cell imaging. Percentage area occupancy of the cells over time 

was measured and analyzed using the Inqucyte software. Both KO cells showed slower 

growth compared to WT cells with Copg1 KO cells showing the slowest proliferation rates. 

This phenotype of Copg1 KO cells was partially rescued with COPG1-GFP rescue cells 

(figure 25). Suggesting that both the paralogs are important for the cell proliferation. 

 
 

Figure 25: Analysis of cell proliferation.  

Cell proliferation curve was generated using Inqucyte software. It shows percentage of the confluency 

of the cells per area over the 72hrs. Copg1 and Copg2 KO cells show slow growth compare to P19WT 

cells.  

 

To further characterize the observed differences in proliferation rates, propidium iodide (PI) 

DNA staining was performed to analyze the cell cycle in WT and KO cells. PI staining is  

used to stain DNA to determine cell viability. It binds to double stranded DNA by 

intercalating between the base pairs. 100000 Cells were seeded in the 12 well plate for 

24hrs. Fluorescence-activated cell sorting (FACS) was used to measure the fluorescence 

intensity of the dye which shows the population of cells in different phases of the cell 

cycle. It was found that Copg1 knock out has more cells in G1 phase and less cells in G2  
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phase as it shows lower intensity peak for G2 phase (figure 26b) and this phenotype was 

also overcome in the Copg1 rescue cells (figure 26d). Interestingly Copg2 KO cells which  

also showed slower growth compare to P19WT cells during cell proliferation do not show 

any block at a specific cell cycle stage (figure 26c), indicating an altogether slower cell 

cycle. This result also shows that the two $-COP paralogs are not functionally redundant 

as they affect the cell cycle differently (figure 26b & 26c).  

 
                                

 

Figure 26: Cell cycle analysis. 

 

 

(b) 

n=3 
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(a-d) PI staining of the cells to detect cell cycle defects using Flow cytometry. Excitation of PI dye is at 

488nm and emission is at 617nm. (e) Quantification of cell distribution during G1/S/G2 phase of the cell 

cycle.    

 
2.9.! Copg1 Knock out shows reduced neurite outgrowth using 

NeuroD2 differentiation method 
 

Cell aggregation is important for the neurite outgrowth in presence of RA (Wang et al. 

2006). We wanted to see if the cells are bypassed from the cell aggregation and if this effects 

the neurite out growth. To study the same cells were differentiated into neurons using 

another protocol in which cells were co-transfected with neurod2-mcherry, a basic helix-

loop-helix (BHLH) transcription factor and its dimerization partner E12. After co-

transfection cyclin-dependent kinase inhibitor p27Kip1 is elevated and cell cycle withdrawal 

occurs in the cell, which lead to the induction of neuronal differentiation. After 6 days only, 

neuronal cells are survived in the culture because media was replaced every second day 

with and without Glutamine along with AraC (Farah et al. 2000). With this protocol cells 

do not make embryonic body, after 6 days of differentiation immunostaining for neuronal 

specific marker TujI or Tubulin ß III was performed. Similar to the two-step differentiation 

protocol, Copg1 KO cells show much less neurite outgrowth compare to P19 WT cells. 

Rescue of neurite outgrowth was observed in Copg1-GFP cells (figure 27a). Neurite lengths 

were analyzed from both protocols using the Neurite Quant software, an open software for 

high content screening of neuronal morphogenesis (Dehmelt et al. 2011), for quantitative 

analysis and then plotted the number of cells in the analyzed field. (figure 27b). Each dot in  

the graph indicates analysis of 100-200 cells in total more than 1000 cells were used for the 

quantification. Quantification of neurite length tells us that even without embryonic body 

formation Copg1KO cells do not have neurite formation as compare to the P19WT cells. 
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Figure 27: Immunofluorescence microscopy for neuronal differentiation using NeuroD2 method.  
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(a) Neuronal differentiation using neuroD2 differentiation method and immunostaining of the neurites 

using "-tubulinIII (FITC, Cyan color) antibody. DAPI (405nm, blue channel) is used to stain DNA and 

$1-COP-GFP protein is observed in GFP channel (488nm, green channel). Brightness intensity is same 

for all the images blue (800-1500), red channel (600-900), green (800-1400) and cyan (600-1200). Scale 

bar is 30um. (b) Quantification of neurite length using neurite quant software. Two-tailed unpaired t-

test was performed for the statically significant analysis (*** p-value <0.0001). Here n=12 since 12 

random pictures were taken for the analysis. 
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3.! Discussion 

 
Two COPI subunits come as two paralogs. However, by contrast to Sec24 paralogs that 

have been shown to expand the cargo repertoire of COPII vesicle, no clear function has 

been assigned to COPI paralog subunits. In addition, though the function and mechanism 

of the COPI pathway is generally well defined, more cell type-specific functions are not 

well studied. Publicly available whole transcriptomics data pointed that both gamma-COP 

paralogs are expressed differentially during mouse embryonic stem cells differentiation 

(Tippmann et al. 2012). Using $1- and $2-COP KO cell lines we have uncovered a role for 

$1-COP in this process by independently regulating EB formation and neurite extension. In 

addition, and more generally Golgi morphology analysis and proliferation assays suggest 

that $1- and $2-COP are only partially redundant but both have specific functions. 

Altogether this suggest that gamma-COP paralogs, which were considered to be redundant 

until now, also clearly have specialized non-redundant functions.  

3.1.! COPII paralogs 
 

Human cells express four different paralogs of Sec24p. Increased number of COP subunits 

are suggested to extend cargo repertoire since every coat variant is proposed to reveal 

contrasting affinity for cargo transport signals (Mancias and Goldberg 2008; Wendeler, 

Paccaud, and Hauri 2007). Several studies have shown the functional difference between 

Sec24 isoforms depending on the paralog used during the coating and the transport of 

vesicles (Adolf et al. 2019). There are few studies which suggest that COPII pathway might 

have cell specific function as well. For example, colocalization of endogenous Sec13 

protein with exogenously expressed Sec24-YFP protein suggests presence of ER exit sites 

in neuronal dendrites and also cargo carriers generated from these sites are distributed 

throughout the dendrites (Horton and Ehlers 2003). Additionally, precise targeting of 

GABA-1 transporter to axon is depend upon COPII and ARFGAP1(Reiterer et al. 2008). 

In recent study it was shown that Sec24c knockout in mice neural progenitors during 

embryogenesis causes unfolded protein response and apoptosis in postmitotic neurons 

(Wang et al. 2018). This study suggested that Sec24c is a crucial cargo adapter of COPII 

dependent transport in postmitotic neurons which has partial overlapping function with 

Sec24d in mammals.    
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3.2.! COPI paralogs 

 
COPI coated vesicles are made of seven subunits. $-COP subunit has two paralogs in 

mammalian cells. These two paralogs are differentially localized in the cell at the Golgi; 

$1-COP is localized more at the cis side of the Golgi and $2-COP is more at the trans side 

of the Golgi (Moelleken et al. 2007). However, proteomics analysis of COPI vesicles 

generated with the different isoforms of $/%-COP containing coat complex did not detect 

any paralog-specific cargo proteins, but as only cargo receptors and core machinery were 

detected  (Adolf et al. 2019) this could be due to the limitation of the detection assay.  

Our study from $1-COP KO cells shows impaired embryonic body formation compared to 

WT cells.  Failure in embryonic body formation can be due to loss or mislocalization of any 

cell surface protein. A possible way to find out the putative lost or mislocalized surface 

protein(s) would be to do the proteomic study of knockout cells together with WT and 

rescue cells. So-called organelle proteomics maps can be generated by combining a SILAC-

based approach to a differential fractionation approach in which  organelles can be separated 

partially with a minimum number of fractionation steps which will generate organelle 

profiles providing high-accuracy quantification of each fraction against an invariant 

reference to find out mislocalized proteins via mass- spectrometry (Itzhak et al. 2016). 

Unfortunately, in a pilot attempt at SILAC based proteomic analysis from different 

organelle fractions of the cells we failed to detect any specific cargo protein. This was 

however be due to an unexpected big variation in protein levels between KO and WT cells 

which greatly limited the possibility to compare different organelle maps. This variation 

was most probably due to clonal effects with the KO cell line being quite unique when 

compared to the pool of parental P19 cells. A way to circumvent this would be to use a pool 

of KO cell lines. Another way to find putative specific cargo proteins of the $-COP paralogs 

could be to perform BioID experiments in which the Copg1 and Copg2 genes would be 

tagged with the BirA* enzyme to allow the labeling of potential interacting partners in 

living cells in a proximity-dependent manner (Roux et al. 2012). Another point of interest 

would be to study cell secretion in the KO cells. Since from the endomembrane morphology 

study it was observed that Golgi is fragmented in Copg1 KO cells, which may affect the 

secretion of proteins, I am at the moment performing RUSH assays to study cell secretion.  
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This assay is depending upon the two expressed fusion proteins. One is hook protein which 

is fused with streptavidin, stably expressed at donor compartment and the other one is the 

reporter protein which is fused with the SBP and can bind reversibly with streptavidin. 

When Biotin treatment is given streptavidin can outcompete with it and the reporter protein 

is free to release. In our case, secretory protein E-Cadherin (reporter protein) which is 

tagged with a fluorescent protein and in presence of Biotin it should be released to the 

plasma membrane which can be observed under the microscope (Boncompain et al. 2012). 

A last potential function of $1-COP may be in the regulation of the glycolysation of proteins 

and lipids. Indeed,  in a recent study it was shown that pathogenic mutation in the Scyl1- 

(binding partner of COPI coatomer) (Burman et al. 2008; Burman, Hamlin, and McPherson 

2010)) binding protein (Scyl1BP1) GORAB causes defective protein glycosylation (Witkos 

et al. 2019). COPI is important for recycling of Golgi-resident protein as well as 

glycosylation enzymes (Fisher and Ungar 2016). Precise distribution of glycosylation 

enzymes within Golgi is important for the properties and function of glycoproteins and 

glycolipids (Fisher and Ungar 2016) and abnormalities in glycosylation can lead to 

cognitive diseases (Joshi et al. 2014).  

In vertebrates, the plasma membrane of neurites is enriched in gangliosides, which belongs 

to an heterogenous family of acidic glycosphingolipids (Liour, Kapitonov, and Yu 

2000)(Sandhoff and Harzer 2013). Glycosphingolipids (GSLs) are derived from 

glucosylceramide (transmembrane protein), important for embryonic development (Jeckel 

et al. 1992; Futerman and Pagano 1991). De-novo synthesis of gangliosides initiates at ER 

in combination with glycosyltransferase at the Golgi complex followed by delivery to the 

plasma membrane. These gangliosides play important role in cell-cell adhesion, neuronal 

differentiation, and defects in gangliosides cause neurodegeneration (Liour, Kapitonov, and 

Yu 2000; Daniotti and Iglesias-Bartolome 2011; Kwak et al. 2011). There is switch between 

ganglioside pattern during neural development, failure in the switch can lead to pathological 

diseases (Russo et al. 2018). Gangliosides pattern changes from GM3 and GD3 (simple 

pattern) to complex pattern (a and b series of gangliosides) in vertebrate brain (Yu 1994). 

Undifferentiated cells express GM3 and GD3 gangliosides and as cells progress towards 

the neurite outgrowth stage GM1, GM2, GD1a, GD1b, GT1b and GQ1b gangliosides are  
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upregulated (Liour, Kapitonov, and Yu 2000). Although this switch with in the gangliosides 

pattern is not the inducer of neuronal differentiation rather result of neuronal differentiation 

but important for neural development. 

Since the study of endomembrane morphology reveals that $1-COP KO cells have swollen 

and vesiculated Golgi cisternae, which can affect the distribution of Golgi enzymes, it 

would be interesting to study the ganglioside pattern of WT and Copg1 KO cells during the 

neuronal differentiation.  

To summarize, up to now, there was no evidence which indicate paralog-specialized 

functions or cell-type specific functions of COPI vesicles. Altogether, with my work, this 

is the first time that a $1-COP specific phenotype is described. Moreover, this phenotype is 

observed during neuronal differentiation, which unravels a critical contribution of the COPI 

pathway in this process. This study opens the question if these two gamma-COP paralogs 

have other cell specific functions and what is their mechanisms. At the moment we do not 

know why $1-COP specific phenotype cannot be overcome by the $2-COP in the cell. This 

raises further questions if these two paralogs have different cargo-binding sites which make 

them play independent role in different trafficking pathways. By answering such questions 

novel pathways may be discovered which might be important in understanding and treating 

pathological disorders. 

 

 

 

 

 

 

 

  



 64 

 

4.! Materials and Methods 
 

4.1.! Materials 
 

4.1.1.! Antibodies 
 

Table 1:  Primary antibodies 

Antibody Host Company and catalogue number 
Application 

and dilution 

anti-Nanog rabbit Biomol (A300397AT) 
WB, 1:1000 

 

anti-Oct-4 Rabbit Abcam (ab18976) WB, 1:500 

anti-ß-Tubulin 

(TujI/TUBB3) 
mouse Biolegend (MMS435P25) WB, 1:1000 

anti-δ-COP 

(877) 
Rabbit 

Wieland group 

(BZH, 

Heidelberg) 
WB, 1:1000 

anti-γ1-COP rabbit 
Wieland group 

(BZH, 

Heidelberg) 
WB, 1:500 

anti-γ2-COP rabbit 
Wieland group 

(BZH, 

Heidelberg) 
WB, 1:500 

anti-!-COP 

(1409B) 
rabbit 

Wieland group 

(BZH, 

Heidelberg) 

WB, 1:5000 

anti-&-COP rabbit 
Wieland group 

(BZH, 

Heidelberg) 

WB, 1:2000 

Cleaved Caspase-

3 
rabbit Cell Signaling (9661T) IF, 1:100 

anti-CM1 rabbit 
Wieland group 

(BZH, 

Heidelberg) 
IP 
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anti-GAPDH mouse Proteintech (60004-1-Ig) WB, 1:20000 

anti-!'tubulin mouse Sigma (T5168) WB, 1:10000 

anti-!'tubulin rabbit Abcam (Ab18251) WB, 1:10000 

 

Table 2: Secondary antibodies 

 

4.1.2.! Eukaryotic strains 

Table 3: Eukaryotic strains 

Antibody Host 
Company and 

catalogue number 

Application and 

dilution 

anti-mouse IgG IRDye 

800CW 
goat LI-COR (926-32210) WB, 1:10000 

anti-mouse IgG Alexa 

Fluor 680 
goat 

Thermo Scientific 

(A21057) 
WB, 1:10000 

anti-rabbit IgG IRDye 

800CW 
goat LI-COR (926-32211) WB, 1:10000 

anti-rabbit IgG IRDye 

680CW 
goat LI-COR (926-68071) WB, 1:10000 

anti-mouse Alexa 647 donkey Invitrogen (A28175) IF, 1:1000 

anti-rabbit Alexa 633 goat Invitrogen (A21070) IF, 1:1000 

anti-mouse Alexa 546 goat 
Invitrogen (A11030) 

 
IF, 1:1000 

Strain Species Manufacturer 

P19 WT Mouse Sigma (95102107) 

P19 Copg1-/- Mouse generated in this study 

P19 Copg2-/- Mouse generated in this study 

P19 CRISPR-Cas9 control Mouse generated in this study 

P19 HiFi Copg1-/- Mouse generated in this study 

P19 HiFi CRISPR-Cas9 

Conrtol 
Mouse generated in this study 

P19 PiggyBac 

Copg1-/-+ Copg1-OE 
Mouse generated in this study 
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4.1.3.! Cells medium and supplements  
 

Table 4: Composition of P19 cells medium 

 

Table 5: Other supplements and antibiotics 

 

  

P19 PiggyBac 

Copg2-/-+ Copg2-OE 
Mouse 

generated in this study 

 

P19 BACMID Copg1-/- 

+ LAP-Copg1-/--GFP 
Mouse 

Dr. Michaela Müller-McNicoll 

(Goethe University Frankfurt) 

Component 
Company and 

catalogue number 
Concentration 

Alpha-MEM Sigma (M4526) ~88% (v/v) 

Fetal Bovine Serum BioWest (S181B) 10%(v/v) 

L-Glutamine Sigma (G7513) 2 mM (1% (v/v)) 

Penicillin-Streptomycin Gibco (15140-122) 1%(v/v) 

Supplement name Company and catalogue number Concentration 

Hygromycin B Sigma (H0654) 150 µg/mL 

Retinoic Acid Sigma Aldrich (R-2625) 0.1 µM 

AraC Sigma (C1768) 10 µM 

Thapsigargin 
Caymen Chemicals  

(Cay10522-1) 
1 µM 

Neurobasal media 
Thermo (21103049) 

 
1x 

B27-supplement 
Life technology (12587010) 

 
1x 

Ampicillin Sigma (A9518) 100 µg/mL 

Kanamycin Carl Roth (T832.1) 34 µg/mL 
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Table 6: Other buffers or solutions used in cell culture 

 

 

 

 

 

 

 

 

 

 

4.1.4.! Prokaryotic strains 
 

Table 7: Prokaryotic strains 

 

4.1.5.! Prokaryotes growth medium 
 

Table 8: Media for prokaryotes 

Name Company and catalogue number 

D-PBS Sigma (D8537) 

Trypsin Gibco (2530054) 

Optimem Gibco (31985070) 

DMSO Sigma (D2438) 

Cell dissociation 

buffer 
Gibco (13151014) 

Poly-L/D-Lysine Sigma (P0899) 

DNAseI Applichem (A3778) 

Strain Species Company Application 

DH5!   E.Coli Invitrogen Cloning 

BL21 star E.Coli Invitrogen Protein expression 

Medium Ingredients 
Company and 

catalogue number 

LB (for 1 L) 10 g Bactotryptone BD (211705) 

 5 g Bactoyeast Roth (2363.3) 

 10 g NaCl Sigma (31434) 

 1mL NaOH (1M) 
Bernd-Kraft 

(1474574) 

LB Agar 350 mL LB Medium + 1.5% (w/v) Agar Fluka (05040) 

LB Plates LB Agar + 100 µg/mL Ampicillin Sigma (A9518) 
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LB, LB-Agar and SOB medium were autoclaved prior to use. 

 

4.1.6.! Material for cloning procedures and kits 
 

All the reagents used for cloning (restriction enzymes, ligase, polymerases, etc.) were 

purchased from New England Biolabs (NEB).  

Table 9: Kits  

Kit Application 
Company and 

catalogue number 

GeneElute HP Plasmid Miniprep Kit Plasmid purification Sigma (NA0160) 

GeneElute HP Plasmid Midiprep Kit Plasmid purification Sigma (33209) 

Zymo PureTM MidiPrep kit 

 

Fast Gene Gel PCR Extraction kit 

 

 

Zymo RNA 

First Strand cDNA synthesis Kit 

QIamp DNA Mini kit 

 

Endotoxin free 

plasmidpurification 

DNA purification 

and agarose gel 

extraction 

RNA extraction 

cDNA preparation 

Genomic DNA 

extraction 

Zymo (D4200) 

Nippon Genetics 

(91302) 

 

Zymo (R2052) 

Roche 

Qiagen (51304) 

 

TA Cloning Kit Cloning of PCR 
fragments 

Invitrogen  
(45-0046) 

 

  

LB Agar + 34 µg/mL Kanamycin Carl Roth (T832.1) 

SOB 2% (w/v) Bactotryptone BD (211705) 

(pH 6.7-7) 0.5% (w/v) Bactoyeast Roth (2363.3) 

 10 mM NaCl Sigma (31434) 

 

2.5mM KCl 

10 mM MgCl2 

10 mM MgSO4 

Applichem (A3582) 

Applichem (A3618) 

Millipore (1.05886) 
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4.1.7.! Plasmids  

 
Table 10: Plasmids used in this study: 

Plasmid Description Source 

pSPCas9(BB)-2TA-GFP 

 
Cas9-GFP Addgene (48138) 

pSPCas9(BB)-2TA-GFP 

COPG1 exon2 sgRNA 

sgRNA targeting exon2 

with Cas9 

Generated during 

the study 

pSPCas9(BB)-2TA-GFP 

COPG2 exon6 sgRNA 

sgRNA targeting exon4 

with Cas9 

Generated during 

the study 

 

eSpCas9(1.1) 

 

High fidelity 

Cas9-GFP 

Sven Diederichs’ 

lab 

 

eSpCas9(1.1) COPG1 exon2 

sgRNA 

 

sgRNA targeting exon2 

with Cas9 

Generated during 

the study 

pCyL50-mCOPG1-Hyg 

 
Full length Copg1 

Generated during 

the study by Julien 

Bethune 

pCyL50-mCOPG2-Hyg 

 
Full length Copg2 

Generated during 

the study by Julien 

Bethune 

CAG-NeuroD2 ires mcherry NeuroD2-mCherry 
Generated during 

the study 

 

p3xflag mE47/E12 

 

 

NeuroD2 binding partner 

 

Addgene (34585) 

 

Maps and sequences from plasmids were generated in the Béthune’s Lab, are saved in the 

database and can be requested if needed. 
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4.1.8.! Primers and oligos  

 
All the primers/oligos were purchased in desalted and lyophilized form from IDT.  

Table 11: List of primers and oligos used for molecular cloning: 

 

Plasmid 
PCR 

Template 
Forward oligo Reverse oligo 

COPG1 sgRNA 

exon2 T7-

endonuclease 

 

 
TCACAGTTCGGGG

CTGTAAC 

 

TCACAGTTCGGGGC

TGTAAC 

 

COPG2 sgRNA 

exon4 T7-

endonuclease 

 

 
ACCACAACACAAT

AACAAGGTAGCA 

 

ACCACAACACAATA

ACAAGGTAGCA 

 

mCherry 

Cloning primer 

pJB023_pRe

porter-Mut-

hmga2-BoxB 

 

ATGGTGAGCAAGG

GCGAGGAGGATA 

 

TTACTTGTACAGCT

CGTCCATGCCG 

 

 

  

Plasmid sense oligo antisense oligo 

COPG1 sgRNA exon2 

 

CACCGAAGAGTGCCG

TACTCCAAG 

 

AAACGCACATTTCCG

GGGATTGAT 

 

COPG2 sgRNA exon4 

 

CACCGGAAAGGAAG

ATGTATACCG 

 

AAACCGGTATACATCT

TCCTTTCC 
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List of primers and oligos used in qPCR: 

 

  

Gene 

IDT prime 

Time Assay 

Name 

Forward primer Reverse primer 

Copa 

 

Mm.PT.58.3138

9808  

CAA ACC GAT TCC 

GAG CAA C 

ACC TAC GAC CTA 

TAC ACC ATC C 

Copb1 

 

Mm.PT.58.7341

394  

ATA AGC AAC ATA 

GCC TCA GCA 

CTC GCC ACA ACT 

CTA ACC AA 

Copb2 

 

Mm.PT.58.3249

1925  

CCG AAG CTC TTG 

TTC CTC AA 

CCA CAG ACC ATT 

CAG CAC A 

Copg1 

 

Mm.PT.58.5337

327 

CTG ATG ATG CAG 

TCC ACA ATG 

GTG CCA GAA GTA 

TCC TCG AAA G 

Copg2 
qMmCID00052

46 

ATC CTA CCT CGT 

TAG CCT GTA 

AAG AAG AAT GTA 

AAA GGT GGT GTG 

Arcn1 

 

Mm.PT.58.7859

979 

CTC CAA GTT TCA 

AAG CCT TGC 

CAG CCA TGA TCA 

CAG AGA CTA TC 

Copz1 

 

Mm.PT.58.9686

781 

CCC TCC ATC TAC 

AAT TTC ATC CA 

TCT GAA CTG CCT 

CTT CGA TTC 

Copz2 

 

Mm.PT.58.1395

1793 

AAA CCA TCT GCT 

CCT TCA CG 

GAA CCT TCT CTC 

TAC ACC ATC AAG 

 

Cope 

 

Mm.PT.58.8414

483 

AGG ATC TGA ATC 

GTC ATG GC 

GAC CAA TAC CAC 

TTT CCT GCT 
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4.1.9.! Buffer for agarose gels electrophoresis 

 
Table 12: TAE agarose electrophoresis buffer composition 

Buffer Ingredients 
Company and 

catalogue number 

TAE (Tris Acetate - EDTA) 40 mM Tris Roth (4855.2) 

(pH 8) 40 mM Acetic Acid Sigma (33209) 

 1mM EDTA pH 8 Applichem (A0878) 

 

4.1.10.! Buffers and Solutions for SDS-Page and Western Blotting  
 

Table 13: Buffers and solutions for SDS-Page and Western Blotting 

Name Ingredients 
Company and catalogue 

number 

PBS (1X) 7.4 g NaCl Sigma (31434) 

 3.18 g Na2HPO4 * 12H2O VWR (28028.298) 

 0.36 g NaH2PO4 * 2H2O Grüssing (12133) 

0.1% PBST 1X PBS + 0.1% Tween 20(v/v) Roth (9127.1) 

Sample Loading Dye (5X) 

 

 

 

5% "'Mercaptoethanol 

0.02% Bromophenol blue 

30% Glycerol 

10% SDS 

250 mM Tris 

Sigma (M6250) 

Waldeck (4F-057) 

Sigma (G5516) 

Sigma (05030) 

Sigma (31434) 

Running Buffer (1X) 25 mM Tris Sigma (31434) 

 192 mM Glycine Sigma (33226) 

 0.1% SDS Sigma (05030) 

Wet Blotting Buffer 

 

 

25 mM Tris 

192 mM Glycine 

0.1% SDS 

Sigma (31434) 

Sigma (33226) 

Sigma (05030) 

Semi-dry Blotting Buffer 

 

 

48 mM Tris 

39 mM Glycine 

20% Ethanol 

0.1% SDS 

Sigma (31434) 

Sigma (33226) 

 

Sigma (05030) 
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Blocking Buffer 5% Milk in PBS Roth (T145.1) 

Buffer for antibody dilutions 1-3% BSA in 0.1%PBST Roth (8076.2) 

Destaining Solution 

 

20% Ethanol 

5% Acetic Acid 

 

Fuka (33209) 

Coomassie Staining Solution 

40% Ethanol 

10 % Acetic Acid 

0.25% Brilliant Blue R250 

 

Fuka (33209) 

Applichem (A1092) 

 
 

 

4.2.! Molecular Biology Methods 
 

4.2.1.! DNA constructs 
 

 NeuroD2-mCherry plasmid was generated using MscI and BsrgI restriction enzymes. PCR 

fragment was amplified using pReporter-Mut-hmga2-BoxB as a PCR template. mCherry 

fragment was ligated with the digested NeuroD2-GFP plasmid where GFP was removed 

using MscI and BsrgI enzymes. Ligation was performed using Quick ligase enzyme 5mins 

at room temperature.  

For annealing of oligos the reaction was incubated at 95°C for 5 mins and then ramped 

down to 25° at 0.1°C per sec. Cloning of oligo within Cas9-GFP vector is a one-step cloning 

reaction where digestion of the GFP-Cas9 vector and ligation were performed together in 

one reaction. The reaction was assembled as follow: 

 

Name Ingredients 
Company and catalogue 

number 

Coomassie Brilliant Blue 

G250 staining solution 

 

5% Aluminiumsulfate 

10% Ethanol 

8% Phosphoric Acid 

0.5% Brilliant Blue G250 

Applichem (A3578) 

 

Sigma (30417) 

Applichem (A3480) 

Destaining Brilliant Blue 

Solution 

10% Ethanol 

2% Phosphoric Acid 

 

Sigma (30417) 
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For the cloning of CRISPR/Cas9 plasmid, oligos containing the BbsI restriction enzyme 

overhangs were annealed. Oligos for sgRNA were designed using CRISPR mit /chop-chop/ 

E-CRISPR tools. 

 

 

 

 

 

 

 

 

 

The reaction was incubated in the Thermal cycler (Analytic Jena) using the following 

program: 

 

 

 

 

 

Correct sequence of all plasmids was obtained by Sanger sequencing method (Eurofins 

Genomic) 

  

Component Amount (µL) 

pSPCas9(BB)-2TA-GFP 100ng 

Oligo duplex 1µl 

Quick ligase Buffer (2X) NEB 10µl 

BbsI 1 

Quick ligase 1 

Water up to 20 

Total 20 

Component Amount (µL) 

sgRNA sense (100 µM) 1 

sgRNA antisense (100 µM) 1 

Quick ligation Buffer (2X) NEB 5 

Water 3 

Total 10 

Cycle number Condition 

1-6 
1st step: 37°C for 5 min, 2nd step: 16°C for 5 

min 
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4.2.2.! Polymerase chain reaction, restriction digestion and ligation 

 
All PCR reactions were performed using Q5 High Fidelity DNA Polymerase (NEB) except 

the T7 endonuclease assay where Dream Taq DNA polymerase was used following the 

manufacturer’s protocol in a Thermal cycler FlexCycler2 (Analytic Jena). Annealing 

temperatures were calculated using the online tool NEB Tm Calculator or gradient PCR. 

All restriction digestions were performed using NEB restriction enzymes according to 

manufacturer’s protocols. Ligations were performed using Quick LigationTM Kit (NEB) 

according to manufacturer’s instructions. 

 

4.2.3.! Bacterial transformation 
 

50 µl of chemically competent DH5! cells were mixed with 2-3 µL of ligation reaction and 

incubated for 10 to 30 min on ice. Heat shock was performed for 45 sec at 42°C followed 

by 2 min incubation on ice. After 200 µL of LB medium was added to the cells and the 

incubated for 1 hour at 37°C with agitation. Transformed cells were spread on LB Agar 

plates containing the appropriate antibiotic and incubated ON at 37°C. 

 

4.2.4.! DNA isolation and purification 
 

Single colonies were picked and inoculated ON in LB media along with the appropriate 

antibiotic at 37 °C.  From bacterial cultures DNA isolation was performed using the Plasmid 

Mini or Midi Kit GeneElute HP (Sigma) and in case of stable cell line preparation with the  

endotoxin free DNA Isolation kit Zymo PureTM Plasmid Midiprep Kit (Zymo Research). 

DNA clean up and gel extraction was performed using the Fast Gene Gel PCR Extraction 

kit (Nippon Genetics). 

 

4.2.5.! Preparation of protein lysates 
 

Media was removed from the cells and collected by centrifuging at 1000g for 3mins. Pellet 

was washed once with PBS and recovered the pellet. Add 100µl of lysis buffer (according 

to the cell pellet). Lysed samples were kept for 10mins on ice and in every 10mins sonicated  
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(Bandelin SONOREX, TYP: RK31) for 30 secs (repeated 3 times). After that centrifuged 

for 45mins at maximum speed at in cooled centrifuge. Gently collected the supernatant and 

O.D was taken 595nm by using Bradford assay. 

 

 

 

 

 

 

4.2.6.! RNA isolation 
 

Cells pellets were lysed by adding TRI reagent, following the manufacturer’s protocol. 

Samples were then incubated for 5 mins at RT and then equal volume of 100% Ethanol was 

added. RNA purification was performed using Direct-zol™ RNA Miniprep (Zymo 

Research) which includes a DNAse treatment step. RNA samples were eluted in RNAse 

free water and stored at -80°C. 

 

4.2.7.! Determination of DNA or RNA concentration 
 

DNA and RNA concentration of samples was determined using the ND-1000 

spectrophotometer from PeqLab (Erlangen, Germany) by measuring the absorbance of the 

sample at 260 nm. Calculation of the concentrations was done by using the corresponding 

software based on Lambert Beers Law. 

 

4.2.8.! cDNA preparation  
 

cDNAs were made using the First Transcriptor first strand cDNA synthesis kit (Roche). 

Before preparing cDNA 1 µg of RNA was treated with DNAseI (NEB) for 10 mins at 37°C 

followed by an inactivation step for 15 min at 75°C. Primer annealing was done for 10 mins 

at 65°C using 11 or 12 µL of pre-treated RNA using either oligo(dT) or random hexamers 

primers by adding 2 µl dNTPs (10 mM each) and 1µL of oligos(dT) (50 µM) or 2µl of 

random hexamers (600 µM), in a total volume of 15 µL. Further cDNA synthesis step was 

performed using 4 µL of the Transcriptor reverse transcriptase reaction buffer (5X), 0.5 µL 

of Protector RNase inhibitor and 0.5 µL of Transcriptor RT in a final volume of 20 µL.  

 

Lysis Buffer 

25mM Tris HCl (pH 7.4) + 150mM NaCl + 

0.05% Triton + 1mM DTT + 1xPI 

 



 77 

Final cDNA synthesis was performed for 1h at 50°C, followed by an inactivation step for 5 

min at 85°C.  

 

4.2.9.! qPCR 
 

qPCRs were performed in a StepOne Plus Real-Time PCR system (Applied Biosciences) 

using 2 µL of 1/5 cDNA diluted samples in water together with 0.25 µM of each primer 

and Fast Start Universal SYBR Green (2X) (Roche). The heating block of the thermo-cycler 

was pre-heated for 2 min at 50°C followed by an initial denaturation for 5 min at 95°C. A 

total of 40 cycles with 15 sec at 95°C for denaturation, 15 sec at 55°C for annealing and 30 

sec at 72°C for elongation were used. Each reaction was performed in technical duplicates 

and the relative expression levels were calculated using the formula 2^-((Ct), where (Ct is 

Ct (HPRT) and Ct is the equivalent cycle number at which the chosen threshold is crossed.   

 

4.2.10.! Protein expression in E.Coli 
 

GST tagged plasmids pProGST-TEV-m$1appendage and pProGST-TEV-m$2appendage 

were transformed in BL21(DE3) cells. For the transformation 0.5ul of BL21 competent 

cells were used and incubated for 5mins on ice. Then heat shock was done at 42oC for 45 

sec followed by incubation on ice for 2mins. After 80ul of LB medium was mixed in the 

reaction and incubated at 37oC for 15 mins and then cells were spread on LB-ampicillin 

plates. Further single colony from each was inoculated in 3ml of LB media containing 

ampicillin at 37oC ON. It is critical to use fresh plates for protein purification. Later on, 3ml  

culture was transferred to 1litr of medium at 37oC for each and 180rpm and measure O.D 

until it reaches 0.6 at 600nm wavelength. After that 0.1mM of IPTG was added to induce 

protein expression and incubated ON at 16oC and 180rpm. Next day cells were recovered 

by centrifuging at 4000g for 10mins. Pellets were resuspended in 20ml of lysis buffer 

(snapped freeze in liquid nitrogen until further processing. Thaw resuspended cell pellets 

in a water bath). Cells were lysed by multiple passages through a high pressure cell 

homogenizer. Lysate was then centrifuged at 30’000 x g, 4°C for 10 mins. The supernatant 

was then recentrifuged at 100’000 x g, 4°C for 1 hr. The second supernatant is the starting 

material for the purification (Take a small sample for SDS-PAGE). 

 

 

  
Lysis Buffer 

1x PBS + 1mM DTT + Protease inhibitor 

cocktail 
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4.3.!Biochemical Methods 

 
4.3.1.! Protein purification 

 
1ml of glutathione beads (glutathione sepharose high performance, Amersham biosciences, 

Freiburg) were pre-equilibrated with PBS containing 1mM DTT. Cleared cell lysate was 

loaded on to pre-equilibrated beads for 1he at room temperature. Beads were recovered by 

centrifuging at 1000g for 3mins. Supernatant was kept at 4oc until final SDS-PAGE 

analysis. Beads were washed 3 times with 40ml of ice cold PBS contained 1mM DTT (all  

the supernatants were kept at 4oc as wash1, wash2, wash3 samples until final SDS-PAGE  

analysis). Beads were incubated with 1ml of elution buffer for 10mins at room temperature. 

Eluted material was recovered by pouring into 5ml disposable column with a frit (Bio-Rad, 

Munich) (this was kept as sample elution1). 1ml of elution buffer was added on top of the 

column and eluted material eluted (elution sample2). This was repeated one more time 

(elution sample3). Fractions containing recombinant protein were pooled together some 

sample was kept for SDS-PAGE analysis. Protein was dialysed against 2L PBS+ 10% 

glycerol and 1mM DTT (cold buffers were used in the cold room. Dialyses tube was used 

MW cut-off below 30kDa. It was done in 2 rounds 1x 1hr and 1x overnight). Next day  

dialysed sample was recovered and protein concentration was measured. Sample was 

aliquoted and snapped freeze in liquid nitrogen and stored at -80oc. 

 

 

 

 

 

 

 

 

It is critical to adjust the pH after addition of glutathione. This buffer has to be prepared 

fresh and cannot be conserved for more than a couple of weeks at -20°C) 

  

Elution Buffer 

 

50 mM Tris pH 8.0 + 150 mM KCl + 1 mM 

DTT + 20 mM Glutathione 
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4.3.2.! Negative affinity purification of anti $1 and $2 antibodies 

 
2.5 mg of GST-$1-appendage and GST-$2-appendage proteins were thawed on ice. Both 

proteins were centrifuged at 100’000g (45’000 rpm with a TLA-55 rotor) for 1h at 4°C in 

the table top ultracentrifuge (ultracentrifugation resistant 1.5 mL tubes were used). 2 x 300 

µL (bedvolume) of glutathione-sepharose beads were equilibrated with PBS + 1mM DTT 

(by washing the beads twice with 1 mL buffer). Supernatants from the ultracentrifugation 

were recovered and mixed then with the pre-equilibrated beads (300 µL per supernatant), 

PBS was added + 1 mM DTT to both 1.5 mL tubes so that ca. 1.4 mL volume is occupied 

and incubated overnight at 4°C on the rotating plate.  

Next day beads were washed three times with 1 mL PBS (No DTT). 7.5 mL of anti $1-COP 

serum (r1.2 serum) and anti $2-COP serum (r2.2 serum) were thawed. 750µl of 10x PBS 

was added to both sera. GST-$1-appendage coupled beads were added to anti $2-COP serum 

and GST-$2-appendage coupled beads were added to $1-COP serum. Serum and beads were 

incubated for 2hrs at room temperature on the rotating wheel and after transferred to two 

1ml BioRad disposable columns and flow through was recovered on ice. Once the flow 

through is collected 1ml of PBS was added to both columns and additional elution was 

collected in the same tubes on ice (10µl of sample was kept for SDS-PAGE analysis). 

Further ammonium sulfate was added progressively to both antibody solutions (eluted  

material) to 40% saturation at 40c (24.3g/100ml), incubated 10 more mins in the cold room 

on rotating wheel. Later centrifuged at 7000g at 40c and supernatant was discarded carefully 

and pellets were resuspended in 5ml PBS. Antibodies were dialyzed three times (2x 1 hr 

and 1x overnight) against 1L PBS (use a cut-off of 14-16 kDa). Next day dialyzed material 

was recovered and centrifuged at 100,000g for 1hr at 4oc (10µl of sample was kept for SDS-

PAGE analysis). Absorbance was measured at )=280nm for both samples, PBS was used 

for blank. IgG concentration was calculated according to Beer-Lambert law (A=&.l.c, for 

IgG &= 210,000 *'1.cm-1). Supernatant was aliquoted, flashed free in liquid nitrogen and 

stored at -800c. 
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4.3.3.! Agarose gel electrophoresis 

 
DNA bands were excised by using 0.5-2% (w/v) agarose (Sigma) gel, depending on the size 

of the product, in TAE buffer added with 1:50000 diluted Red Safe TM stain (iNtRON 

Biotechnology). 6X Purple loading Dye (NEB) was used for loading the samples and 1kb 

plus DNA ladder GeneRulerTM to identify the size of the DNA. GelDoc system (BioRad) 

was used to detect the DNA bands under the UV irradiation. To excise the bands during the 

experiments LED Iluminator (INTAS) was used to prevent UV induced DNA mutations. 

 

4.3.4.! SDS-PAGE 
 

Sodium-dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) was used to 

separate the protein based on the size (Laemmli et al. 1970). Homemade gels were made  

with 4% stacking gel and 8-15% resolving gels or 4-20% gradient gels. Protean II system  

from BioRad was used with a constant voltage of 110V until the samples passed the stacking 

gel and with 160V for the separating gel. Before loading samples were mixed with 5X SDS 

loading dye and boiled at 950C for 5 mins. Blue star prestained protein marker plus (Nippon 

Genetics) was used to detect the molecular weight of the protein.  

 

The following components were used to prepare the SDS gels: 

 

  

Stacking 

gel 
H2O [mL] 

Tris pH 

6.8(1M) 

[mL] 

30% 

Acryli 

de[mL] 

10% 

SDS 

[µL] 

10% 

APS 

[µL] 

TEMED 

[µL] 

4% 1.4 0.25 0.33 20 20 2 
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For making a gradient gel first pipette 2.5 mL of the lower percent solution and then 2.5 

mL of the higher percent solution. Then draw up to 2 air bubble to mix and generate a 

gradient, repeat this step. The following components were used to prepare the SDS gradient 

gel: 

 

 

4.3.5.! Western Blot 
 

Proteins were transferred into a PVDF membrane (Millipore) using either the Trans Blot 

Turbo System (semi dry transfer) (Biorad) or a Mini Trans-Blot Cell (wet transfer) (Biorad) 

for 1h at 100 V or ON at 80 mA in case of high molecular weight protein, according to the 

manufacturer’s instructions. After that membranes were blocked in blocking buffer for 1 hr 

at RT or ON at 4°C. Then membranes were incubated with the primary antibody using the 

suggested concentration for 1h at RT or ON at 4°C. After three washing steps of 10 min  

  

Separating 

gel 

H2O 

[mL] 

Tris pH 

8.8 (1M) 

[mL] 

30% 

Acrylamide 

[mL] 

10% 

SDS 

[µL] 

10% 

APS 

[µL] 

TEMED 

[µL] 

8% 2.3 

1.3 

1.3 

50 50 4 
10% 1.9 1.7 

12% 1.6 2 

15% 1.1 2.5 

Separating 

gel 

H2O 

[mL] 

Tris pH 

8.8 (1M) 

[mL] 

30% 

Acrylamide 

10% 

SDS 

[µL] 

10% 

APS 

[µL] 

TEMED 

[µL] 

4% 1.79 

0.75 

0.4 

30 30 2.5 

6% 1.59 0.6 

8% 1.39 0.8 

10% 1.19 1 

12% 0.99 1.2 

15% 0.688 1.5 

20% 0.188 2 
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each with 0.1%PBST, IRDye coupled secondary antibodies were used to detect primary 

antibodies for 1h at RT. The membrane was then washed two times with 0.1% PBST and 

one time with PBS for 10 min. To detect the blots Odyssey CLx imaging system (LICOR) 

was used. Analysis of the blots was performed using the Image Studio Software (LICOR) 

following the producer instructions. 

 

4.3.6.! Coomassie Staining 
 

Following gel electrophoretic separation, polyacrylamide gels were stained with Coomassie 

Staining solution and microwave for 1min after that kept on shaker for 10mins. Gels were 

then rinse in water before adding the coomassie destaining solution for around 30 min, 

followed by several washes with water.  

 

4.3.7.! Determination of protein concentration 
 

Protein concentration was determined using the Bradford assay. BSA solutions with in a 

range of 250-3000 ng/µL were used to generate a BSA standard curve. 1ml volume of 

reaction mixture was prepared where Bradford solution is diluted 1:2 from Bradford Ultra 

Expedeon. After mixing the samples they were incubated for 5 min at RT before measuring 

the O.D using 6310 Spectrophotometer (Jenway) at a wavelength of 595 nm. 

Concentrations of the samples were determined by using the standard curve.  

 

4.3.8.! Cytosol preparation from adherent cells 
 

Cells were used from two full confluent 15cm dishes. Cells were washed in the dishes twice 

with cold PBS. Then lysis buffer was added to the first dish (second plate still in PBS) and  

scrap the cells. Scrapped cells were transferred to the second plate and scrapped the cells 

from this plate as well. Transfer scrapped cells to a 1.5 mL tube and keep on ice. Cells were 

lysed further using gauge needles 20 times (10 times up, 10 times down) through a 21 Gauge 

needle and then 20 times through a 27 Gauge needle. Centrifuge the lysed cells at 4°C, 800x 

g, 5 min to remove nuclei and cell debris. Take the supernatant and transfer to 

ultracentrifugation-resistant 1.5 mL tubes. Centrifuge at 4°C, 100’000x g, 1h. Carefully  
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remove the supernatant and transfer to a fresh 1.5 mL tube, keep on ice until use (always 

used freshly prepared cytosol for coatomer IP). Estimate protein concentration using a 

Bradford assay. Expect a yield of ca. 1.5 mg protein per 15 cm plate. 

 

 

 

 

4.3.9.! Coatomer pulldown 
 

Freshly prepared cytosol was used corresponding to 500µg protein. Before that magnetic 

ProteinG beads for IP needs to be equilibrated. Per IP, use 10 µL magnetic ProteinG beads. 

Beads were washed twice with IP buffer. (If doing three IPs, wash 30 µL beads by mixing 

them with 1 mL IP buffer, then recover the beads on a magnet. After the second wash,  

proceed to antibody coupling). Then 100 µL CM1 supernatant per 10 µL ProteinG beads 

was added, filled up the tube to ca. 1.4 mL with IP buffer and incubated for 1h at RT on a 

rotating wheel. Then, beads were washed once with IP buffer (1mL).  

If doing three IPs, add 300 µL CM1 supernatant per 30 µL ProteinG beads, fill up the tube 

to ca. 1.4 mL with IP buffer and incubated for 1h at RT on a rotating wheel. Then, beads 

were washed once with IP buffer (1mL). Finally, resuspended the beads in 150 µL IP buffer 

and distributed in 3 x 50µL in three fresh tubes. 500µg protein was loaded on to the beads, 

if needed fill up the tubes to ca. 1.4 mL with IP buffer containing protease inhibitors. 

Incubated for 1h at RT on a rotating wheel. Then beads were washed three times with IP 

buffer to remove unbound proteins. Bound proteins were eluted by incubating the beads 

with 20 µL 3x SDS loading buffer and incubation at 70°C for 10 min. Beads were separated 

from the eluted material on a magnet, and the eluted material was transferred to a fresh tube. 

 

 

 

 

 
  

Lysis Buffer 
25mM Tris, pH 7.4 + 150mM NaCl + 1mM 

EDTA + Protease inhibitor cocktail 

Lysis Buffer 

25mM Tris, pH 7.4 + 150mM NaCl + 1mM 

EDTA + 0.025% (v/v) tween20 + Protease 

inhibitor cocktail 
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4.4.! Cell Biology Methods 

 
4.4.1.! Cell Culture 

 
All P19 cells lines are listed in Table 4, were cultured at 37°C with 5% CO2 in a humidified 

incubator. Cells were splitted in every two days in a ratio of 1:10. P19 growth medium 

(alpha-MEM) contained 10%FBS + 1% Pen/Streptomycin + 1% Glutamine. Contamination 

of mycoplasma was regularly tested using a Mycoplasma PCR detection kit (Mycoscope, 

Genlatis).  

 

4.4.2.! Heat inactivation of serum 
 

500ml bottle was thawed overnight in 40c fridge. Next day bottle was place in 37oc 

incubator to complete the thawing, in every 10mins bottle was inverted for complete 

mixing. Water in the incubator was filled higher than the serum level. Once serum is  

completely thawed it was incubated 15mins more to equilibrate with the 37oc bath. 

Temperature of the water bath was raised to 56oc. In 30-35 mins temperature of the water 

bath was reached to 56oc. In every 10mins bottle was inverted for complete mixing. After  

that serum was kept for 30mins and in every 10mins bottle was inverted for complete 

mixing. After 30mins of incubation serum was cooled down at room temperature for 

30mins. Serum was aliquoted in 50ml falcon tubes under the cell culture hood and stored 

at -20oc. 

 

4.4.3.! Generation of stable cell line 
 

P19 Copg1 and Copg2 KO cells were generated by using CRISPR-Cas9 gene editing tool. 

sgRNAs against Copg1 and Copg2 genes were cloned into pSPCas9(BB)-2TA-GFP vector 

between BbsI restriction enzyme sites. 200,000 cells/ml were seeded in 6 well plate and  

after 12 hrs 2.5µg of sgRNA cloned pSPCas9(BB)-2TA-GFP vector was transfected using 

lipofectamin3000. After 72 hrs GFP positive cells were selected and transferred into 96 well 

plate using FACS single cell sorting machine (ZMBH-Flow Cytometry &FACS Core 

Facility) detection kit (Mycoscope, Genlatis). 
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P19 PB-Copg1 and PB-Copg2 cells were generated by seeding Copg1Ko and Copg2 KO 

cells respectively, 200,000 cells/ml were in 6 well plate and after 12 hrs 2.5µg of plasmid 

was mixed with lipofectamin3000 reagent. 1,5 µg pBase plasmid (pJB114, coding for the 

PiggyBac transposase) 1,5 µg pCyl50 plasmid (coding for the gene to be inserted and the 

selection marker. Both plasmids were diluted in 125 µL OptiMEM. 5µl of P3000 reagent 

was added and gently and briefly mixed. 5 µL lipofectamine 3000 + 120 µL OptiMEM 

were prepared, briefly and gently mixed. Lipofectamine and DNA were mixed together and 

incubated for 5-10 min at room temperature. 250 µL of the transfection mix per well was 

added to transfect. Next day cells were transferred into two 10 cm plates: one containing 

about 1/3 of the transfected cells, the other about 1/5 of the transfected cells. At that point 

selection antibiotic was not added. Cells were incubated for 3 days to allow transposition 

to occur. At day 6 Medium of the transfected cells was changed to growth medium 

containing the selection antibiotic (Hygromycin 150µg/ml). Growth medium was replaced 

every 2nd - 3rd day with fresh medium containing selection antibiotic. Cells were trasferred  

to a new plate when they reach ca. 80% confluency. After 15-16 days all m164-GFP 

transfected cells were green. Transfected cells were kept on selection media for another 4-

5 days, then stocks were made and then cells were characterized by doing Western blotting.  

 

4.4.4.! FACS Sorting 
 

After transfection media was removed and then washed with PBS. Then cells were 

trypsinized. Cells were resuspended in (to neutralize the trypsine) serum free media with 

5% dissociation buffer and centrifuged at 500g for 5 mins at room temperature to pellet the 

cells. Supernatant was discarded and resuspended again in 500ul serum free media with 5% 

dissociation buffer. Cells were passed through a cell strainer to remove clumps. Cells were 

transferred on ice until cell sorting. 96 well plates were prepared prior to processing the 

cells by adding 200 ul media per well (contained antibiotics) and transferred it to 37oc  

incubator until the cells are ready. After sorting cells were transferred to the 96 well plates 

to 37 oc incubator. After two weeks colonies were transferred into the 12 well plate and later 

on to the 6 well plate. Then clones were screened by doing western blotting. 
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4.4.5.! Transient transfection 

 
Cells were seeded to 60-70% confluency one day before to transfection. After 12 hrs of 

seeding transfection was done using Jet-Prime reagent in a 1:2 (DNA: Reagent) ratio. 

Transfection was followed according to manufacturer’s protocol. In 6 well plate 2.5µg of 

DNA was used. 

In 8 well Ibidi slides reverse transfection was done. After poly-L/D-lysine coating seeding 

of cells (30,000-40,000 cells) and transfection (using Jet-prime reagent) were done together 

according to manufacturer’s protocol in a ratio of 1:2 (DNA: Reagent). 250ng DNA was 

used in 8well Ibidi slides 

 

4.4.6.! Poly-L/D-Lysine coating 
 

Surface was aseptically coated with 1.0 mL/25 cm2 (only). Rock gently to ensure even 

coating of the culture surface (for 6 well 360µl per well). After 5 minutes solution was 

removed by aspiration and thoroughly rinse surface with sterile tissue culture grade water 

2 times. Allowed drying at least 2 hours before introducing cells and medium.  

 
4.4.7.! Hanging drop assay 

 
200 cells were seeded (cells are treated with Retinoic Acid 0.1um with 5% FBS in growth 

medium) per drop. One drop is equal to 20ul. 30 drops were made inside the lid of 10cm 

bacterial dish. Dish was filled with 10ml PBS to avoid evaporation. Lid was inverted 

carefully not too fast neither too slow. After two- and four-days images were taken. For 

taking images lid was inverted on empty dish. Images were taken using 10x objective. 

 

4.4.8.! P19 differentiation 
 

106 cells were cultured in !-MEM medium along with 5% FBS+ 1% Pen/Streptomycin + 

1% Glutamine and 0.1µM RA to make cell aggregates in bacterial 10cm dish in non- 

adherent conditions. After two days fresh media was replaced and new 0.1µM was added.  

After 4 days of aggregation aggregates were centrifuged at 1000g for 5mins and then 

washed once with serum free media. After that aggregates were dissociated using 2ml 

trypsin + 50µg/ml DNAseI (prevents gel formation) and incubated for 10mins in 37oc  
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incubator. Further 4ml of P19 growth media was added to stop the trypsin activity and cells 

were collected by centrifuging at 1000g for 5mins. Pellet was resuspended in 5ml of fresh 

P19 growth media and then cells were counted and 3.75cells/ml cells were plated onto poly-

L/D-lysine coated 6 well plate and in case of plating on to Ibidi 8well slides cells were 

resuspended in 1ml of fresh media and passed through the BD strainer in order to remove 

the clumps. After 2 days of plating fresh media was added along with 10µM of AraC in 

order to kill dividing cells. 

 

4.4.9.! Immunofluorescence  
 

After seeding or differentiation of the cells, cells were washed carefully with warm 300 mL 

PBS, then incubated with warm 300 µL of PBS+4% formaldehyde at 37°C for 20 min to 

fix the cells. Cells were washed twice with 300 µL PBS, and then incubated with 300µL 

PBS+0.25% Triton X-100 at room temperature for 10 mins to permeabilize the cells. Cells 

were washed twice with 300 µL PBS + 2% BSA. For blocking cells were incubated with 

300 µL PBS + 10% BSA for 30 min at RT. Then incubated with primary antibody diluted 

in PBS, 2% BSA, 150 µL per well, 1h at room temperature or overnight. After that cells  

were washed three times with PBS, 2% BSA. Then incubated with secondary antibody 

diluted 1:1000 in PBS, 2% BSA, 150 µL per well, 30 min at room temperature in the dark. 

Later cells were washed twice with PBS, 2% BSA. Then incubated with DAPI (diluted at 

0.1µg/mL in PBS), 150 µL per well, 10 min at room temperature in the dark. Two brief and 

gentle washes were done with PBS, 2% BSA + one gentle wash with PBS. Ibidi mounting 

medium dropwise was added to cells, not directly on the cells, about 150 µL per well.  
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6.! Abbreviations 
 
% percentage 
°C degree Celsius 
bp base pairs 
Da dalton 
g gram 
h hour 
k kilo 
L litre 
m milli 
min minute 
n nano 
s second 
U enzyme unit 
V Volt 
µ micro 
µg microgram 
µl microlitre 
AA amino acid 
AP adaptor protein 
AP affinity purification 
Arf1 ADP-ribosylation factor 1 
ATP adenosine triphosphate 
BioID method to analyze proximate or interacting proteins in vivo 
COPI Coat protein complex I 
COPII Coat protein complex II 
DAPI 4',6-diamidino-2-phenylindole 
!'EMEM Eagle’s minimum essential medium alpha modified 
DMSO dimethyl sulfoxide 
DNA deoxyribonucleic acid 
DTT dithiothreitol 
EDTA ethylenediaminetetraacetic acid 
EM electron microscopy 
ER endoplasmic reticulum 
ERAD ER-associated degradation 
ERGIC ER-Golgi intermediate compartment 
GAP GTPase-activating protein 
GBF1 Golgi-specific brefeldin-A-resistant factor 1 
GEF guanine nucleotide exchange factor 
GM130 130 kDa cis-Golgi matrix protein 
GO gene ontology 
GST glutathione S-transferase 
GTP guanosine-5'-triphosphate 
Hsp90 heat-shock protein HSP90 beta 
IP immunoprecipitation 
IPTG isopropyl β-D-1-thiogalactopyranoside 
KO knock out 



 98 

KD knock down 
mES mouse embryonic stem cells 
mRNA messenger RNA 
MS mass spectrometry 
NLS nuclear localization sequence 
OD optical density 
ON over night 
P19 embryonic mouse carcinoma cell line derived from embryo derived 
teratocarcinoma 
PAGE polyacrylamide gel electrophoresis 
PBS phosphate buffered sialine 
PCR polymerase chain reaction 
qPCR quantitative PCR 
RNA ribonucleic acid 
RNAseq RNA sequencing 
RNP ribonucleoprotein 
rpm rounds per minute 
RT room temperature 
SDS sodium dodecyl sulfate 
SILAC stable isotope labeling by/with amino acids in cell culture 
SMN1 survival motor neuron 1 
SNARE soluble NSF Attachment Protein receptor 
SRP signal recognition particle 
TEMED tetramethylethylenediamine 
TGN trans-Golgi network 
UPR unfolded-protein response 
UV ultraviolet 
VTC vesicular-tubular clusters 
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7.! Amino acid code 

 
A            Ala       Alanine 
C            Cys       Cysteine 
D            Asp      Aspartate 
E           Glu       Glutamate 
F             Phe       Phenylalanine 
G            Gly       Glycine 
H            His        Histidine 
I              Ile         Isoleucine 
K            Lys        Lysine 
L            Leu        Leucine 
M           Met        Methionine 
N           Asn         Asparagine 
P            Pro          Proline 
Q           Gln          Glutamine 
R           Arg          Arginine 
S           Ser           Serine 
T           Thr          Threonine 
V           Val          Valine 
Y           Tyr          Tyrosine 
W          Trp          Tryptophan 
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