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Abstract

In this thesis, we investigate optimization problems with partial differential equation
(PDE) constraints. In particular we are concerned with the efficient numerical solution
of optimum experimental design (OED) problems for parameter estimation (PE) with
PDE models, among them sampling design problems. We consider two dimensional
(2D) stationary diffusion advection reaction PDE models, including the challenging
case of an advection dominated PDE.

For the simulation of the PDE boundary value problem, we utilize discontinuous
Galerkin finite element methods and adaptive spatial grid refinement. We solve
the optimization problems with derivative-based algorithms. For the optimization
algorithms to converge fast and to converge to the ”true“ optimum, we need to provide
accurate sensitivities. It is a challenge to evaluate the sensitivities, which correspond
to the approximate solution of the primal PDE model and are in this sense consistent.
In this thesis we develop efficient and accurate methods for sensitivity generation.
We transfer the principle of internal numerical differentiation (IND) from ordinary
differential equations (ODE)s to PDEs. That means, we incorporate the sensitivity
generation in the solution process. The standard upwind discontinuous Galerkin
method is not differentiable. Therefore, we propose a differentiable discontinuous
Galerkin method and give a rigorous convergence analysis of it. We develop methods
for structure exploitation of the primal and tangential discretization schemes to
efficiently generate the sensitivities with automatic differentiation (AD). Furthermore,
we establish methods for frozen adaptivity to generate consistent sensitivities. We
are especially concerned with frozen spatial grid refinement and the adaptive step
number of the linear solver.

We implement the developed methods in the software SeafaND-Optimizer, short for
structure exploiting and frozen adaptivity numerical differentiation optimizer. It is a
software for efficient and accurate simulation, PE and OED with PDE models. We
perform numerical case studies for PE and OED problems with advection dominated
2D diffusion advection PDE models. With the structure exploiting techniques devel-
oped in this thesis, the example problems are solved with efficient memory usage. Due
to the frozen adaptivity methods, we computed efficiently the consistent sensitivities.
We test the PE algorithm with different noise levels. We perform a case study with
different diffusion coefficients for sequential OED. Finally, we investigate, whether
the developed methods are stable under mesh refinements.
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Zusammenfassung

In dieser Dissertation untersuchen wir Optimierungsprobleme mit partiellen Differ-
entialgleichungen (PDE) als Nebenbedingungen. Wir beschäftigen uns insbesondere
mit der effizienten numerischen Lösung von Problemen der optimalen Versuchspla-
nung (OED) für Parameterschätzung (PE) mit PDE Modellen, darunter das Problem
der Stichprobenplanung. Es werden zweidimensionale (2D) stationäre Diffusion-
Advektion-Reaktions-PDE Modelle betrachtet, einschließlich der anspruchsvolle Fall
eines advektionsdominierten PDE Modells.

Um das PDE Randwertproblem zu simulieren, nutzen wir diskontinuierliche Galerkin
Finite Elemente Methoden und adaptive räumliche Gitterverfeinerung. Die Opti-
mierungsprobleme werden mit ableitungsbasierten Algorithmen gelöst. Damit die
Optimierungsalgorithmen schnell und zum „wahren“ Parameterwert konvergieren,
müssen wir präzise Sensitivitäten bereitstellen. Es ist eine Herausforderung, Sensi-
tivitäten auszuwerten, die konsistent zur approximativen Lösung des primalen PDE
Problems passen. In dieser Arbeit entwickeln wir effiziente und präzise Methoden
zur Ableitungserzeugung. Wir übertragen das Prinzip der Internen Numerischen
Differentiation (IND) von gewöhnlichen Differentialgleichungen (ODE) auf PDE. Das
heißt, die Ableitungserzeugung wird in den Lösungsprozess inkludiert. Die standard-
mäßige Upwind diskontinuierliche Galerkin Methode ist nicht differenzierbar. Eine
differenzierbare Upwind diskontinuierliche Galerkin Methode wird vorgeschlagen und
eine ausführliche Konvergenzanalyse der Methode wird durchgeführt. Wir entwickeln
Methoden zur Strukturausnutzung der primalen und tangentialen Diskretisierungss-
chemata, um effizient die Sensitivitäten mit Automatischer Differentiation (AD) zu
erzeugen. Außerdem werden Methoden mit eingefrorenen adaptiven Komponenten der
PDE-Simulation erstellt, um konsistente Ableitungen zu erzeugen. Wir beschäftigen
uns im Besonderen mit adaptiver räumlicher Gitterverfeinerung und der adaptiven
Schrittanzahl des iterativen Lösers.

Die entwickelten Methoden haben wir in der neuen Software SeafaND-Optimizer,
kurz für structure exploiting and frozen adaptivity numerical differentiation optimizer,
implementiert. Es ist eine Software zur Simulation, Parameterschätung und optimalen
Versuchsplanung mit PDE Modellen. Es werden numerische Fallstudien mit den
PE und OED Problemen mit advektionsdominierten 2D Diffusion-Advections-PDE
Modellen durchgeführt. Mit den in dieser Arbeit entwickelten strukturausnutzenden
Methoden wurden die Beispielprobleme mit effizienter Speichernutzung gelöst. Durch
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die Methoden mit eingefrorenen adaptiven Komponenten wurden die konsistenten
Sensitivitäten berechnet. Wir testen den PE-Algorithmus mit unterschiedlich hohen
Messstörungen. Für sequenzielles OED führen wir eine Fallstudie mit verschiede-
nen Diffusionskoeffizienten durch. Schließlich untersuchen wir, ob die entwickelten
Methoden stabil unter Gitterverfeinerungen sind.
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1. Introduction

Mathematical models describe many processes in physics, chemistry, biology, engi-
neering and even in social sciences and psychology. With a mathematical model it is
possible to gain more insight into the underlying mechanisms and to predict future
behavior. This is of great importance for practitioners and scientists.

Often, a mathematical model consists of a system of differential equations accom-
panied by a set of unknown, or little known, parameters. In this thesis we are
particularly concerned with partial differential equation (PDE) models. To describe
the process precisely, it is crucial to estimate the parameters accurately. We formulate
a parameter estimation (PE) optimization problem, which minimizes the difference
between experimentally obtained measurement data and simulated model response
by varying parameter values. After estimating parameters, an important question is:
how can we measure the quality of the estimation? One possibility to answer this
question is to examine the statistical significance of the estimation. It can be described
quantitatively by confidence regions, which depend on the variance of the estimates.
Optimum experimental design (OED) aims at improving this statistical significance
by minimizing the confidence regions of the parameters by changing the experimental
conditions. The experimenter sets controls, which lead to a specific experimental
design. These controls are included in a nonlinear optimization problem and those
controls are searched for which the experimental setting leads to the statistically most
significant parameter estimates. In particular, we treat the special case of sampling
design, here the controls are sampling decisions to choose individual measurement
points. Thus, in this thesis we consider optimization problems with PDE constraints,
in particular OED problems for PE.

OED problems with PDE models are rarely investigated. So far, OED problems are
mainly treated with ordinary differential equation (ODE) models. In [75], [16], [66],
[96] and [56] the authors consider OED with ODE and differential algebraic equation
(DAE) models. They treat the underlying PE problem as a constrained optimization
problem and solve it by an all-at-once approach. They transfer the OED problem into
a finite dimensional nonlinear programming problem (NLP) and solve it by sequential
quadratic programming (SQP) methods. For an one-dimensional PDE constraint,
which is reduced by the method of lines to an ODE constraint, [7] and [6] use a similar
approach.
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For OED with PDE models and finitely many parameters, recently [79] and [50] solved
an OED problem for an application in material science. In [39], the authors combined
OED and shape optimization: they treat the shape as an experimental control. All of
them use derivative-based optimization algorithms. Furthermore, in the recent paper
[76], the authors propose an OED problem with a measurement setup based on a
positive Borel measure. As solution method they present a generalized conditional
gradient method in measure space.

Preliminary work similar to our approach for OED with PDE models has been done by
[34], [33], [97], [63] and [70]. In contrast to the ODE case, they solve an unconstrained
PE problem and use a reduced approach for the underlying PE problem. This reduced
approach for PE problems with PDE models has been extensively researched, see for
example [17], [18], [34], [22], [52], [3]. To solve the OED problem, which is a nonlinear
constrained optimization problem, [34] and [33] use a derivative-free method, whereas
[97], [63] and [70] utilize derivative based optimization algorithms. Particularly, they
use SQP methods to solve the nonlinear OED problem.

Simulation of the PDE model

Before discussing methods for optimization problems, we concentrate on simulation
problems for PDE models. We consider stationary 2D diffusion advection reaction PDE
models. To cover a wide range of parameters, which is important in applications, we
include advection dominated PDE models. The simulation of this advection dominated
PDE model is a challenge per se, because the standard continuous Galerkin finite
element method produces spurious oscillations [58]. A solution to that problem is the
use of discontinuous Galerkin finite element methods. For the diffusion part of the
PDE model, we select the symmetric interior penalty discontinuous Galerkin method
[9], [10]. For the advection part, we choose the upwind discontinuous Galerkin method
[84]. For the reaction part, we add an additional mass matrix.

A further challenge for the simulation of the PDE model is to compute a solution
with low effort for a prescribed accuracy. If we achieve this, it is possible to apply
our methods even to large-scale PDE models. Therefore, we investigate the well-
established technique of adaptive grid refinement for the spatial finite element grid
[83], [94].
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1. Introduction

Optimization: sensitivity generation

To solve PE and OED problems with derivative-based algorithms, we require in
particular sensitivities of the underlying PDE boundary value problem, that means
the forward or adjoint variational differential equations. The variational differential
equations are also called tangential PDEs or adjoint PDEs. We need accurate and
consistent sensitivities, otherwise the optimization algorithms could converge to a
false parameter value or converge slowly. Furthermore, the sensitivity generation is,
besides the simulation of the PDE model, the numerically most expensive part of
the optimization algorithm. Thus for an efficient algorithm it is crucial to compute
sensitivities with low numerical costs. Another error prone aspect is the operation of
the program: if the user has to provide sensitivities and thus variational differential
equations, this easily leads to errors. Therefore the sensitivities should be generated by
the program. Thus the challenge here is to efficiently generate and compute consistent
sensitivities.

Presently, two main approaches for sensitivity generation exist in the literature. First,
analytically derive the variational differential equations by the sensitivity or adjoint
approach. Then discretize these PDE problems and solve the originating systems.
Second, use automatic differentiation (AD) to calculate sensitivities. That means
differentiate the code, which means the programmed version of the discretization.

For the first approach some work exists for PE with non-advection dominated PDE
models, for example [17]. Few work exists for PE with advection dominated PDE
models: in [18] a PE problem with an advection dominated PDE model is investigated.
The PDE model is spatially discretized by conforming finite elements. In [52], [22]
and [34], the authors consider a PE problem with an advection dominated flow. The
PDE model is discretized by a continuous Galerkin method with stabilization. Of
the aforementioned publications, [17], [22] and [34] use the technique of adaptive grid
refinement.

The second approach is rarely investigated, because in the PDE framework it quickly
leads to memory issues, which makes the sensitivity generation with AD far too
expensive or even impossible [91]. To our knowledge, there are no publications for
PE or OED problems. In previous work the whole code has been processed by an
AD tool to build the sensitivities [46]. When the problem is large-scale, which is
easily the case in the PDE framework, the algorithm is not able to derive and store
the sensitivities. In spite of this black box approach, there exist few publications
where the structure of the discretization is considered [91], [55], [90], [49], [36]. In [91],
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1.1. Results of this thesis

[55] and [90] an optimal control problem with a PDE model is treated. The PDE is
discretized by a discontinuous Galerkin method. The authors exploit the structure of
the discontinuous Galerkin method by differentiating only parts of the discretization
with AD, namely the formula of the reference finite element. In [49] and [36], the
authors consider a shape optimal design problem. The PDE model is discretized by a
finite volume and finite element discretization. All of them differentiate only parts of
the discretization with AD to avoid memory issues. They do not use adaptive grid
refinement.

Both just presented approaches possess disadvantages. In the first approach, which is
mostly used for PE with PDE models, the user has to differentiate and implement
the sensitivities by hand. This procedure is very error prone. The second approach is
rarely used with PDE models, because it easily leads to severe storage space issues,
which makes it impossible to generate the sensitivities.

Furthermore both approaches do not consider the adaptive components of the solver
when generating the sensitivities. The adaptive components change depending on the
input, they are not differentiable. If the adaptive components are chosen differently for
the solving of state and sensitivity equations, it is not clear, if consistent sensitivities
are computed. The error in the generated sensitivities can become arbitrary large.

To circumvent these problems, we utilize a different way: we transfer the principle of
internal numerical differentiation (IND) to PDEs. This principle was first introduced
by Bock for ODEs [25], [26], [27] and extended amongst others by [4], [5], [15]. For a
comprehensive overview see [4] and [89]. Following the principle of IND, we include
the sensitivity evaluation into the numerical scheme. That means, we differentiate the
discretization of the PDE model to get the accurate and consistent discrete sensitivities
that approximate the continuous counterparts. First steps in this direction are made
in [70], [63] and [97]. In [70] and [63] the discretization is differentiated by hand
without AD. In [97], the author differentiates parts of the discretization by AD. In
contrast to our problem, the PDE model is not advection dominated and solved with
the continuous Galerkin method. All of them do not use adaptive grid refinement.

1.1. Results of this thesis

The aim of this thesis is the efficient numerical solution of OED problems for PE
with PDE models. We especially include the case of advection dominated PDE
models. As OED problem we treat a sampling design problem. To efficiently generate
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the consistent sensitivities, we transfer the principle of IND to PDE models. We
include the sensitivity generation into the numerical scheme. We differentiate the
discretization of the PDE model to get consistent sensitivities. More precisely we
investigate three relevant topics regarding the transfer of IND to PDE models: First,
we propose a differentiable upwind discontinuous Galerkin discretization for the
advection part of the PDE model and give a rigorous theoretical analysis of it. Second,
we propose two ways to exploit the common structure of primal and tangential
discretization schemes. This results in an efficient memory usage and improved
computational performance. The program generates the sensitivities automatically
and accurately, the user does not have to provide them. Third, we freeze the adaptive
components of the simulation algorithms. This must be done to generate consistent
sensitivities. In contrast to existing literature, we apply adaptive grid refinement and
investigate the influence of the adaptive iterative solver on the sensitivity generation.
We have implemented all developed methods in the new software SeafaND-Optimizer,
short for structure exploiting and frozen adaptivity numerical differentiation optimizer
(SeafaND-Optimizer). We demonstrate the efficiency and accurateness of the methods
by several numerical test cases.

Thus, this thesis presents novel efficient methods for sensitivity generation in the field
of PDE constrained optimization problems. In the following we describe the main
findings in detail.

OED for PE with advection dominated PDE model

We propose advanced methods for sensitivity generation to solve OED and PE
problems with PDE models. In contrast to existing approaches, we use derivative-
based optimization methods combined with a discontinuous Galerkin discretization and
adaptive grid refinement. That way, we develop algorithms, that can be applied to a
broad class of problems. The discontinuous Galerkin method is robust, it is especially
suited for advection dominated PDE models, but also suitable for non-advection
dominated PDE models.

Differentiable discretization: theoretical analysis and numerical results

To transfer the principle of IND to PDE models, the discretization of the PDE model
has to be differentiable. The standard upwind discontinuous Galerkin method [84],
[74], [59] is non-differentiable, because of the choice of the numerical fluxes. In [91]
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the authors avoid the problems arising by this discontinuity in manually constructing
an algorithm such that the fluxes are chosen correctly. To overcome this problem of
non-differentiability in a more general way we propose a new differentiable stabilization
for the advection in the upwind discontinuous Galerkin method. A detailed theoretical
convergence analysis of the new differentiable upwind discontinuous Galerkin method
is presented, including stability estimate and error estimate. The differentiable upwind
method has the same properties and error estimates as the standard upwind method.
In addition it is differentiable. Furthermore, numerical results show the predicted
behavior.

Structure exploitation of primal and tangential discretization schemes

Following the principle of IND, we use the same discretization for primal and tangential
PDE models. Therefore, we determine two possibilities to exploit the common
structure of primal and tangential discretization schemes. First, we exploit the
problem structure. We reuse parts of the discretized primal problem for the generation
of the discretized tangential problems as well as for the computational solution of the
discretized problems. Second, we exploit the structure of the finite element method.
We employ tailored algorithmic differentiation for the elements of the discontinuous
Galerkin method. In contrast to [91], we go one step further and differentiate the
innermost formula with AD to generate code to approximate the tangential PDEs.
That means, instead of differentiating the formula of the reference element such as [91],
we differentiate the core part of the quadrature formula. In only differentiating core
parts of the code, we save a considerable amount of memory space in comparison to
black box AD, where the whole code is differentiated. Furthermore, we obtain a much
higher accuracy than for example evaluating the sensitivities with finite differences.
Furthermore, the user does not have to provide sensitivities. The program generates
them automatically and accurately. We demonstrate the efficiency of the developed
structure exploiting methods by numerical examples.

Freezing of adaptive components

To transfer the principle of IND to PDE models, we freeze all adaptive components
to generate consistent sensitivities. Possible adaptive components are adaptive grid
refinement with an error indicator of the spatial finite element grid and the adaptive
step number of an iterative solver of the linear system, which we solve for the simulation
of the PDE models. We must discretize all PDE problems, that means primal and
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tangential problems, on one common finite element (FE) grid to generate consistent
sensitivities. We develop a heuristic: the error sum strategy for grid refinement. The
error sum strategy generates one adaptively refined grid which is suitable for the
simulation of primal and tangential PDE problems. With regard to the adaptive
step number of an iterative solver, we analyze two possible options to solve the linear
systems of all PDE models with an iterative solver. We select the option, which in
our scenario approximates the consistent sensitivities. We demonstrate the developed
methods for the evaluation of sensitivities by numerical examples.

Implementation: software SeafaND-Optimizer

We implemented all developed methods in a software called SeafaND-Optimizer,
which is short for structure exploiting and frozen adaptivity numerical differentiation
optimizer. It is a software for simulation, parameter estimation and optimum exper-
imental design with PDE models. In existing software for optimization with PDE
models, for example DOpElib [44] or RoDoBo [19], the user has to set up the tangential
PDE problems by hand. The software dolfin-adjoint [40], [41] utilizes symbolic
differentiation to compute the sensitivities. To our knowledge, the authors [40], [41]
do not yet apply their technique to an optimization example with adaptive FE grids.
In the software SeafaND-Optimizer we implemented our approach for sensitivity
generation to transfer the principle of IND to PDE models. That means to develop a
differentiable upwind discontinuous Galerkin method, to exploit the structure and
to freeze all adaptive components to efficiently generate consistent sensitivities with
AD. Furthermore, we utilize adaptive FE grids. For simulating the PDE models, all
functionalities of dealii and amandus are available inside the SeafaND-Optimizer.
For the optimization problems the VPLAN interface and optimization algorithms are
provided. For PE we select a Gauss-Newton algorithm with step size control in the
extension PAREMERA and for OED a SQP algorithm implemented in SNOPT. Thus with
the SeafaND-Optimizer we efficiently and accurately solve PE and OED problems
with PDE models.

Case studies for PE and OED

We illustrate the efficiency of the developed methods by several example PE and OED
problems with advection dominated 2D diffusion advection reaction PDE models.
Because of our developed structure exploitation methods, no memory issues occur
while generating the tangential problems. With the error sum strategy for adaptive
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grid refinement, the PDE models are simulated with low computational effort for a
prescribed accuracy. The number of degrees of freedom for each PDE model problem,
one primal and two tangential problems, is approximately 131,500. The PE algorithm
converges linearly for different noise levels. We perform successfully sequential OED
for different diffusion coefficients. Thus the developed methods are suitable for a class
of problems. Furthermore, we execute a numerical study on mesh independence for
both, PE and OED problems. We conclude, that the study gives strong evidence that
the developed methods are stable under grid refinements.

1.2. Thesis overview

This thesis is divided in five parts, which comprise twelve chapters.

Part I introduces the problem formulation. In Chapter 2 we depict a general class of
PE problems with PDE models. We formulate two PDE model problems, which will
be revisited at later points in this thesis. With that we formulate the PE problem as
a constrained optimization problem. We reformulate this constrained optimization
problem with the reduced approach to an unconstrained PE problem. As a numerical
solution method for this unconstrained PE problem, we present a Gauss-Newton
method. We conclude this chapter with a statistical setting and a sensitivity analysis
of the PE problem. This sensitivity analysis is needed to formulate the OED problem
in Chapter 3. We define the experimental design and formulate a nonlinear OED
problem. As OED problem we treat the special case of sampling design, also called
optimal placement problem, optimization of sensor locations or measurement selection.
We vary measurement points to enhance the significance of parameter estimates and
minimize the uncertainty of the parameter estimation. Furthermore, we treat the
relaxation of integer constraints and survey problem variants of OED problems. After
that, we give optimality conditions for the OED problem. As a numerical solution
method we present the sequential quadratic programming (SQP) method.

Part II gives an overview of the status quo in PDE discretization and sensitivity
evaluation techniques. Chapter 4 presents the foundations of the discontinuous
Galerkin methods. We especially outline the standard upwind discontinuous Galerkin
method, which we later on extend to a differentiable version. We present the discrete
problem for the diffusion advection reaction model problem. With that, we introduce
the discrete optimization problems. Finally, we recall the finite element algorithm to
simulate the PDE models. In Chapter 5 we survey sensitivity evaluation techniques.
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1. Introduction

First, we state which sensitivities we would like to generate. Afterwards, we discuss
the principle of IND, analytical sensitivity evaluation and automatic differentiation.

In Part III we propose and theoretically analyze a differentiable upwind discretization.
In Chapter 6, we propose a differentiable upwind discontinuous Galerkin discretization
and recapitulate some basic approximation formulas. We perform a theoretical analysis
for the pure advection model problem based on a standard procedure for convergence
analysis of finite element discretizations. This analysis includes consistency of the
discretization, coercivity, a stability estimate, an error estimate for the L2 projection,
an estimate for the bilinear form, an error estimate in the energy norm and a
superconvergence result. Furthermore, we show that our analysis holds as well for a
diffusion advection reaction model problem. In this case, we have to make changes.
Therefore, we again follow the standard procedure to finally show an error estimate
in the energy norm. For the case of a non normalized advection coefficient, we proof
an error estimate in the energy norm. We show that in this case the convergence
analysis changes, the constant is now dependent on the advection coefficient. All
other properties remain unchanged for the differentiable upwind discretization for the
non normalized advection coefficient. We close the chapter by numerical examples,
which confirm the developed theory.

In Part IV we develop new methods for sensitivity generation. We transfer the
principle of IND to PDE models. In Chapter 7 we propose structure exploiting
methods for the primal and tangential discretization schemes. We exploit the problem
structure by reusing common parts of the primal and tangential discretization schemes.
Furthermore, we develop an algorithm to exploit the structure of the discontinuous
FE method. We demonstrate the efficiency of the developed methods by numerical
examples. In the next Chapter 8 we propose methods to freeze the adaptive com-
ponents of primal and tangential discretization schemes. We investigate sensitivity
generation with regard to adaptive grid refinement of the spatial FE grid. We give a
literature overview and identify possible difficulties. We develop a heuristic, the error
sum strategy for grid refinement, to generate a common spatial adaptively refined
FE grid for primal and tangential problems. After that we investigate two options
to apply an iterative solver to the linear system: the piggyback approach and the
two-phase approach. Again, we close this chapter with numerical examples.

In the last Part V we present the software SeafaND-Optimizer and demonstrate the
efficiency and accurateness of the developed methods for sensitivity generation by
numerical results for PE and OED problems. In Chapter 9 we explain the functionality
of the SeafaND-Optimizer. We give an overview over the software package, explain
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1.2. Thesis overview

the program structure and the workflow of the SeafaND-Optimizer. In Chapter 10
we show numerical results for PE and OED problems with 2D advection dominated
diffusion advection PDE models. We first test the developed methods by a PE problem
with three different noise levels. After that, we perform a case study with different
diffusion coefficients for sequential OED. That means, we test if the algorithms are
applicable to a class of problems. In the last Chapter 11 we execute a numerical
study on mesh independence. We begin with a PE problem. We compare the results
of the optimization algorithm for different grid refinements of the underlying PDE
simulation. Finally, we test an OED problem for different grid refinements of the
PDE simulation to determine whether the developed algorithms are stable under
mesh refinement.
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Problem formulation
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2. Parameter estimation with PDE
models

In this chapter we introduce the parameter estimation problem for PDE models.
First we formulate PDE boundary value problems. After that we begin with a
constrained parameter estimation problem and utilize a reduced approach to attain
the unconstrained parameter estimation problem. To solve it numerically we utilize the
Gauss-Newton method. Finally we investigate the statistical setting of the parameter
estimation problem to establish the optimum experimental design problem, which we
describe in the next chapter.

2.1. PDE boundary value problem

Spaces, norms and derivatives We begin with defining two associated function
spaces and their corresponding norms: the Lebesgue space and the Sobolev space.
2.1.1 Definition. For any number p, 1 ≤ p ≤ ∞, let the Lebesgue space Lp(Ω) be
the space of functions which are p-integrable on Ω. 4

The corresponding Lebesgue norm is defined by

‖v‖Lp(Ω) :=

∫
Ω

|v|pdx


1
p

, if 1 ≤ p <∞.

We are especially using the Lebesgue space for p = 2. The corresponding Lebesgue
norm will be abbreviated by ‖.‖ := ‖.‖L2(Ω). If it is not clear on which domain the
norm operates, we write ‖.‖Ω := ‖.‖L2(Ω) . We shorten the notation in the usual way
by defining the L2(Ω) scalar product

(y, v)Ω :=
∫
Ω

yvdx.

Similarly, we define a Lebesgue space for the boundary of the domain ∂Ω, with the
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2. Parameter estimation with PDE models

Lebesgue norm

‖v‖Lp(∂Ω) :=

∫
∂Ω

|v|pds


1
p

, if 1 ≤ p <∞.

and L2(∂Ω) scalar product

(y, v)∂Ω :=
∫
∂Ω

yvds.

Furthermore, we define Sobolev spaces Wk
p(Ω) to include information about the partial

derivatives in the function space.
2.1.2 Definition. For any integer k ≥ 0 and any number p, 1 ≤ p <∞, the Sobolev
space Wk

p (Ω) consists of all functions v ∈ Lp(Ω) for which all partial derivatives ∂ωv
with |ω| ≤ k belong to the space Lp(Ω) [35], [1]. 4

The corresponding Sobolev norm is defined by

‖v‖Wk
p (Ω) :=

 ∑
|ω|≤k

∫
Ω

|∂ωv|pdx


1
p

, if 1 ≤ p <∞,

and the Sobolev semi-norm is

|v|Wk
p (Ω) :=

 ∑
|ω|=k

∫
Ω

|∂ωv|pdx


1
p

, if 1 ≤ p <∞.

For p = 2 together with the scalar product

(y, v)Wk
2 (Ω) :=

∑
|ω|≤k

∫
Ω

∂ωy∂ωvdx,

the Sobolev spaces are Hilbert spaces. Following the commonly used notation we write
Hk(Ω) :=Wk

2 (Ω). We indicate by Hk0(Ω) the closure of C∞0 (Ω) in the space Hk(Ω).
For further definitions and basic properties of Sobolev spaces see [1], [35], [47].

Moreover, we define directional derivatives and Fréchet derivatives [54], [89].
2.1.3 Definition. Let A : X → Y be an operator. For Banach spaces X and Y , the
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operator dA
dx δx is named directional derivative on X0 ⊂ X at x ∈ X0, if the limit

dA

dx
δx := lim

h→0

A(x+ hδx)−A(x)
h

∈ Y,

exists for directions δx ∈ X. 4

We use this notation for directional derivatives, because we will be concerned with
directional derivatives of matrices.
2.1.4 Definition. Let A : X → Y be an operator with X,Y Banach spaces. The
operator A is named Fréchet differentiable on X0 ⊂ X at x ∈ X0, if there exists a
linear bounded operator A′(x) : X → Y , that means A′(x) ∈ L(X,Y ), such that∥∥∥A(x+ δx)−A(x)−A′(x)δx

∥∥∥
Y

= o(‖δx‖X), for ‖δx‖X → 0.

We indicate that A is continuously Fréchet differentiable if A is Fréchet differentiable
and A is continuous. 4

The definitions hold in our setting, because Hilbert spaces are a special case of Banach
spaces.

PDE boundary value problems We start with two examples: a diffusion advec-
tion reaction PDE boundary value problem and a pure advection PDE boundary
value problem.
2.1.5 Example. Diffusion advection reaction boundary value problem. We consider
the following partial differential equation in diffusion advection reaction form, which
acts as a constraint of the parameter estimation optimization problem,

−∇ · (α∇y) + β(p) · ∇y + ρ(p)y = f(p) on Ω, (2.1a)
y = yD(p) on Γ. (2.1b)

Our goal is to estimate the unknown parameters p ∈ P ⊆ Rnp . The state variable
y ∈ Y is characterized by the partial differential equation boundary value problem
(2.1). The state space Y is a Hilbert space Hk(Ω), k ≥ 1. Let Ω be a convex domain
in Rd, d = 2, with boundary Γ := ∂Ω.

The operator ∇y designates the gradient, ∇y := (∂1y, ..., ∂dy)T , with ∂i partial
derivative with respect to the spatial variable xi, i = 1, ..., d. The divergence operator
∇·y is defined by ∇·y := ∑d

i=1 ∂iyi. Furthermore, we establish the advection operator
β(p) · ∇y := ∑d

i=1 βi(p)∂iy, where the advection direction β(p) is a constant vector in
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Rd.

The diffusion coefficient α > 0 and the reaction coefficient ρ(p) ≥ 0 are constants.
Furthermore, let f(p) ∈ L2(Ω) be the right hand side function and yD(p) ∈ L2(Γ )
the Dirichlet boundary function with Γ the boundary of the domain Ω. The reaction
coefficient ρ(p), the advection direction β(p), the right hand side function f(p) and
the Dirichlet boundary function yD(p) are allowed to be parameter dependent.
2.1.6 Remark. The ratio between diffusion and advection rate can be expressed by
the Péclet number Pe := ‖β‖he

α [85]. The constant he is defined as the characteristic
length scale of the problem setting [92]. To calculate it, the finite element grid size h
is used. We are primarily interested in the advection dominated case with a large
Péclet number Pe [85]. In practical applications that means Pe is much larger than 1.
Conversely, Pe much smaller than 1 represents a diffusion dominated case. A Péclet
number around 1 expresses that advection and diffusion are equally important [82],
[92]. 4

For a homogeneous Dirichlet boundary condition y = 0 on Γ , we get the weak or
variational form of the partial differential equation boundary value problem (2.1) by
multiplying with test functions v ∈ V (Ω) := Hk0(Ω), k ≥ 1, building the integral over
the domain Ω, using integration by parts and the fact that the advection direction
β(p) is defined as a constant vector, independent of the spatial variables. The weak
form reads: Find y ∈ Hk0(Ω) such that

αa(y, v) + b(p; y, v) + ρc(p; y, v) = f(p; v), ∀v ∈ V (Ω). (2.2a)

The left hand side splits into a diffusion part

a(y, v) =
∫
Ω

(∇y,∇v)dx, (2.2b)

an advection part

b(p; y, v) = −
∫
Ω

(y, β(p) · ∇v)dx (2.2c)

and a reaction part

c(p; y, v) =
∫
Ω

(y, v)dx. (2.2d)
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The right hand side reads

f(p; v) =
∫
Ω

(f(p), v)dx. (2.2e)

For a non-homogeneous Dirichlet boundary condition y = yD(p) on Γ , we assume
that yD ∈ L2(Ω) so that there exits an extension of yD. Let this extension be
qD ∈ Hk(Ω), k ≥ 1, such that qD = yD(p) on Γ . With y := qD + yw, yw ∈ Hk0(Ω), the
variational form (2.2) also holds for the inhomogeneous case with y ∈ Hk(Ω) [38].

We define a short notation by F : P × Y × Y → R,

F (p; y, v) := αa(y, v) + b(p; y, v) + ρc(p; y, v)− f(p; v).

The weak form (2.2) written in short notation reads

F (p; y, v) = 0, ∀v ∈ V (Ω).

This way, we are able to pose the parameter estimation problem in a more elegant
form in the next paragraph. Furthermore the sensitivity generation in Chapter 7 and
Chapter 8 will be easier to read and understand in this short notation. 4

If y is the solution of the weak form (2.2), with sufficient regularity it is also a classical
solution of the strong form of the differential equation boundary value problem (2.1)
[38], [58, p.37ff], [82]. Thus it suffices to solve the weak form (2.2), to obtain a solution
for the partial differential equation boundary value problem (2.1). The well posedness
of the weak form of the PDE follows e.g. from [82], [38]. The approximation of the
solution of the weak form will be explained in detail in Chapters 4 and 6.
2.1.7 Example. Pure advection boundary value problem. The pure advection bound-
ary value problem reads

β(p) · ∇y = f(p) on Ω, (2.3a)
y = yD(p) on Γ−(p), (2.3b)

for
∥∥β(p)

∥∥ 6= 0. As before, the unknown parameters p lie in the parameter space
P ⊆ Rnp . The domain Ω is a convex domain in Rd, d = 2.

The inflow boundary is defined as Γ−(p) := {x ∈ ∂Ω|n(x) · β(p) < 0}, the outflow
boundary is the complement of the inflow boundary Γ+(p) := Γ \ Γ−(p). As before
yD(p) ∈ L2(Γ−(p)) is the inflow boundary function and f(p) ∈ L2(Ω) is the right
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hand side function.

The variational form of (2.3) reads

b(p; y, v) = f(p; v), ∀v ∈ V (Ω). (2.4a)

The left hand side consists only of an advection part

b(p; y, v) = −
∫
Ω

(y, β(p) · ∇v)dx+
∫

Γ+(p)

((β(p) · n)y, v)ds, (2.4b)

and the right hand side additionally possesses an inflow boundary term

f(p; v) =
∫
Ω

(f(p), v)dx−
∫

Γ−(p)

((β(p) · n)yD, v)ds. (2.4c)

This variational form is well defined if y and v belong to the test space V (Ω) = V β(Ω),
defined by

V β(Ω) := {v ∈ L2(Ω) : β · ∇v ∈ L2(Ω)}.

Again, we define a short notation, bilinear form F a(p; y, v) reads

F a(p; y, v) := b(p; y, v)− f(p; v).

The weak form (2.4) in short notation is

F a(p; y, v) = 0, ∀v ∈ V (Ω).

4

General operator form In the next step, we formulate the weak PDEs in operator
form. Therefore we define an operator for the diffusion advection reaction Example
2.1.5 by D : P × Y → Y ∗, here Y ∗ is the dual of Y , < ., . >Y ∗×Y denotes the duality
pairing between Hilbert space Y and its dual Y ∗,

< D(p; y), v >Y ∗×Y = F (p; y, v), ∀v ∈ V (Ω).
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The weak form (2.2) in operator form reads

D(p; y) = 0.

Analogously for the pure advection Example 2.1.7 the operator Da reads

< Da(p; y), v >Y ∗×Y = F a(p; y, v), ∀v ∈ V (Ω).

The weak form (2.4) in operator form is

Da(p; y) = 0.

2.2. Parameter estimation problem

Constrained Parameter Estimation Problem The model responses, or in other
words the measurement functions, h̄ : P × Y → Z map the parameters p and the
state variable y to the measurement space Z = Rm. The vector h̄ consists of single
measurement functions h̄i(p; y), i = 1, ...,m. The dimension of the measurement space
is assumed to be greater or equal than the dimension of the parameter space m ≥ np.
Both, parameter and measurement space are assumed to be finite dimensional.

The measurement data η ∈ Z consists of single measurements ηi ∈ R, i = 1, ..,m,
which are the values of measurement functions h̄i with respect to the true parameters
p∗, plus measurement errors εi,

ηi = h̄i(p∗; y) + εi, i = 1, ..,m.

We assume the errors to be independent and normally distributed with zero mean
and variances σ2

i , εi ∼ N (0, σ2
i ).

The least squares functional Ḡ : P × Y → R calculates the difference between the
model response h̄i(p; y), i = 1, ...,m, and the measurement data ηi. We define a
weighted least squares functional by

Ḡ(p; y) := 1
2

m∑
i=1

(
ηi − h̄i(p; y)

σi

)2

= 1
2

m∑
i=1

r̄2
i (p; y). (2.5)

The residuals r̄i(p; y) are functions from P × Y to R. We assume, that the residuals
are continuously differentiable.
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With these ingredients we define a constrained parameter estimation problem:
2.2.1 Problem. (Constrained Parameter Estimation Problem) Minimize the
least squares functional Ḡ

min
p∈P,y∈Y

Ḡ (p; y)

subject to

F (p; y, v) = 0, ∀v ∈ V (Ω),

which is given as a weak form of a partial differential equation boundary value problem
defined in Section 2.1.

The least squares functional Ḡ : P × Y → R is minimized subject to the parameters
p and the state variables y. We are not including inequality constraints in the
optimization problem. The weighted least squares functional Ḡ(p; y) is known to
deliver a maximum likelihood estimate, see the following Section 2.4.

Unconstrained / Reduced Parameter Estimation Problem We reformulate
the constrained parameter estimation Problem 2.2.1 as an unconstrained or reduced
problem. Up to now, the optimization variables are the states y and the parameters p.
In the reduced problem, the optimization variables are only the parameters p. In that
way the optimization problem has a lower dimensionality. The storage requirements
are reduced during the solution of the optimization problem, see for example [93],
[54]. Let us make two assumptions: first let Ḡ(p; y) and F (p; y, v) be continuously
Fréchet-differentiable. Second let the state equation F (p; y, v) = 0 possess for each
p ∈ P a unique corresponding solution y(p) ∈ Y , which follows directly from the
well-posedness of the weak formulation of the PDE. Then there exists the solution
operator S(p), S : P → Y . It satisfies the state equation

F (p;S(p), v) = 0, ∀v ∈ V (Ω).

We insert this operator S(p) into our constrained parameter estimation Problem 2.2.1
and obtain the corresponding unconstrained or reduced problem.

The reduced cost functional G : P → R is defined by inserting the solution operator
S(p) in the constrained cost functional Ḡ(p; y)

G(p) := Ḡ
(
p;S(p)

)
. (2.7)
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Next we define in the same manner the reduced measurement functions hi : P → Z,
hi(p) := h̄i(p;S(p)), and the reduced residuals ri : P → R, ri(p) := r̄i(p;S(p)). Thus
the reduced cost functional G(p) altogether reads

G(p) = 1
2

m∑
i=1

(
ηi − hi(p)

σi

)2

= 1
2

m∑
i=1

r2
i (p).

We collect the single elements hi(p), ri(p), ηi and εi in vectors h(p), r(p), η and ε,
respectively.

Now we can state the unconstrained parameter estimation problem.
2.2.2 Problem. (Unconstrained Parameter Estimation Problem) Minimize
the reduced least squares functional G(p)

min
p∈P

G(p).

The solution of a weak form of a PDE boundary value problem enters the uncon-
strained parameter estimation Problem 2.2.2 via the solution operator S(p). The only
optimization variables are the parameters p.

The existence and uniqueness of a solution to the parameter estimation problems is
highly problem dependent. We assume that solutions to both the constrained Problem
2.2.1 and the unconstrained Problem 2.2.2 exist. Later in this thesis we obtain
discrete optimization problems, which are discrete with regard to the underlying PDE
boundary value problem. We assume that solutions to these corresponding discrete
optimization problems exist.

A detailed investigation of existence and uniqueness of the solution of the considered
problems, the constrained Problem 2.2.1 and the unconstrained Problem 2.2.2, for
various problem settings is found in [3], [54], [89], [93], [95]. For necessary optimality
conditions of first and second order and for sufficient optimality conditions see [54],
[93].

2.3. Numerical solution method: Gauss-Newton

To solve the unconstrained optimization problem described in Section 2.2 we utilize a
Gauss-Newton type algorithm. The Gauss-Newton algorithm iteratively approximates
the solution. This is required, because the least squares functional G is in general
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2. Parameter estimation with PDE models

nonlinear. In the next paragraph, we mainly follow [77, pp.245ff].

Starting from an “initial guess” p0, the new iterate pk+1 of the Gauss-Newton method
is

pk+1 = pk + tkδpk, 0 < tk ≤ 1,

where tk is the step length and the increment δpk∈ Rnp is the solution of the linearized
problem at p = pk

min
δp∈Rnp

1
2
∥∥ri(p) + Ji(p)δp

∥∥2
2 . (2.8)

As before, the residuals are functions r : P → Rm. The Jacobian J(p) ∈ Rm×np is
defined by

J(p) := dr(p)
dp

=
[
dri(p)
dpj

]
i=1,...,m
j=1,...,np

=


∇pr1(p)T
∇pr2(p)T

...
∇prm(p)T

 .

The optimality condition of the linearized problem (2.8) with solution δp is:

J(p)TJ(p)δp = −J(p)T r(p). (2.9)

Instead of solving the standard Newton equation ∇2G(p)p = −∇G(p) = −J(p)T r(p),
the Gauss-Newton algorithm approximates the Hessian by a product of the Jacobian:
∇2G(p) ≈ J(p)TJ(p). This is possible, because of the special structure of the least
squares problem. With help of the chain rule the Hessian ∇2G(p) can be expressed
as:

∇2G(p) = J(p)TJ(p) +
m∑
i=1

ri(y(p), p)∇2ri(p). (2.10)

If we omit the second term on the right side, we get the approximation made above.

Local convergence of the Gauss-Newton method The local convergence of
the Gauss-Newton method is proven in the local contraction theorem by Bock [27].
The conditions introduced there can be interpreted such that the Gauss-Newton
method only converges to statistical relevant minima [27, p.72]. The convergence is
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2.3. Numerical solution method: Gauss-Newton

linear [27], [77]. In addition, for small residuals the approximation of the Hessian by
the product of the Jacobian is a good approximation. This enables a fast convergence
of the Gauss-Newton method, which is almost as good as a second order convergence
[89], [75], [77]. Because of these two advantages, we choose the Gauss-Newton method
to solve the parameter estimation problem numerically.

The Gauss-Newton algorithm proceeds as follows: we solve the linearized problem
(2.8) to compute the increment δp. As long as the gradient of the least squares
functional ∇G = JT r is non-zero and the Jacobian has full rank the increment δp
is a descent direction for our Newton-type iteration [77, p.254]. Hence, we compute
the new iterate pk+1. After that the loop starts again, until the stopping criterion
‖δp‖2 ≤ tol is fulfilled. For the Gauss-Newton algorithm in the unconstrained case
this is a suitable stopping criterion, because of

δp = −(J(p∗)TJ(p∗))−1J(p∗)T r(p∗) = 0, (2.11)

⇔ J(p∗)T r(p∗) = d

dp

1
2
∥∥r(p∗)∥∥2 = 0, (2.12)

a zero increment δp, in (2.11), is equivalent to a zero derivative of the objective
function with respect to the parameters (2.12), [89]. In particular, the stopping
criterion

‖δp‖22 ≤ tol
2 · c, (2.13)

where tol is a given tolerance and c a constant scaling factor, for example the number
of variables, has been successfully approved in practice in the softwares PAREMERA [63]
and PARFIT [25], [88].

To solve equation (2.9) we need to calculate the entries of the Jacobian J(p) of the
residuals r(p). In our setting, the Jacobian is equal to the directional derivatives of
the model responses hi(y(p), p) with respect to the parameters, multiplied by the
weighting factor 1

σi
. The entries of the Jacobian are

Ji,j(p) = d

dpj
ri(p) = d

dpj

(
ηi − hi(p)

σi

)

= − 1
σi

dhi(p)
dpj

.

The main computational effort of the algorithm, besides the evaluation of the partial
differential equation boundary value problem, lies in the building and evaluation of
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2. Parameter estimation with PDE models

these derivatives. Especially the accurate, automatic and efficient derivation of the
needed derivatives is considered in Chapters 7 and 8.

2.4. Statistical setting and sensitivity analysis

The measurement data ηi are uncertain in the way that measurement errors εi are
introduced. Through the least squares functional G this uncertainty is embedded
in the parameter estimation optimization problem. Let us take a closer look at the
statistical framework. A comprehensive treatment of the topic is found in [13], [14].
A similar approach is taken in [97], [27], [66].

We first give a statistical derivation of the least squares approach. After that, we
approximate the covariance matrix in order to analyze the significance of the parameter
estimates. Finally, we approximate the confidence regions to get an explicit expression
for the statistical uncertainty of the estimates.

Statistical derivation of the least squares approach A probability distribution
function f ip(εi) describes the uncertainty of the measurement errors εi, i = 1, ..,m,
given the true parameter values p∗. Let us make the first of two assumptions.
2.4.1 Assumption. The errors are statistically independent. 4

With this Assumption 2.4.1 we define a joint probability distribution function for all
errors by the product of the single probability distribution functions

fp(ε) :=
m∏
i=1

f ip(εi).

Furthermore, we model the measurements by the following relation

ηi = hi(p∗) + εi,

the measurements consist of model response plus measurement errors. This measure-
ment model is specified along with a joint probability distribution function fp(ε).

As we have seen before, the residuals represent the error between the measurements
and the model response ri(p) = ηi − hi(p). This error should be near the true
measurement error, in case we are near the true values of the parameters. Thus, we
insert the residuals in the joint probability distribution function and replace the errors

36



2.4. Statistical setting and sensitivity analysis

ε by the residuals r(p)

L(p, ε) := fp(r(p)) = fp(η − h(p)). (2.14)

This function is called likelihood function. We get the maximum likelihood estimate
by taking the maximum of this likelihood function over the parameters

max
p
L(p, ε). (2.15)

This is done for given measurements η with measurement errors ε. Thus, by maxi-
mizing with respect to p we get the most likely parameters p̂ for given measurements
η.

What is missing is the shape of the probability distribution function for our errors ε.
Let us make a second assumption.
2.4.2 Assumption. The errors εi are normally distributed with zero mean and
variance σ2

i , εi ∼ N (0, σ2
i ). 4

For the probability distribution function for the normal distribution N (0, σ2
i ) the

joint probability distribution function is

fp(ε) =
m∏
i=1

1√
2πσ2

i

exp
(
− 1

2σ2
i

ε2
i

)
. (2.16)

If we insert the joint probability distribution function for the normal distribution
(2.16) in the likelihood function (2.14), we get

L(p, ε) = fp(η − h(p))

=
m∏
i=1

1√
2πσ2

i

exp
(
−(ηi − hi(p))2

2σ2
i

)
.

The goal is to maximize this function L(p, ε) over the parameters p. If we instead
maximize the logarithm of L(p, ε) over the parameters p, we obtain the same maximum
for p. We use the fact that the logarithm of a product is the sum of the logarithm of
the factors and get two terms. The first one is independent of p. The second one is
the negative counterpart of our least squares functional. Therefore we rewrite the
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maximization problem as a minimization problem.

argmax
p

L(p, ε) = argmax
p

log(L(p, ε))

= argmax
p

log
m∏
i=1

1√
2πσ2

i

exp
(
−(ηi − hi(p))2

2σ2
i

)

= argmax
p

m∑
i=1

log

 1√
2πσ2

i

− 1
2

m∑
i=1

(ηi − hi(p))2

σ2
i

= argmin
p

1
2

m∑
i=1

(ηi − hi(p))2

σ2
i

.

The maximum likelihood estimation problem (2.15) is equivalent to solving the
minimum least squares problem. Or in other words: our minimizing least squares
problem is a maximum likelihood problem. If we solve it, we obtain an estimator
p̂, which is the most likely value of p given the measurements η with measurements
errors ε.

Approximation of the covariance matrix In the next step, we want to verify
the statistical significance of the estimated parameters. If the estimated parameter
value is influenced strongly by insignificant variations in the data, it is ill-determined.
This is expressed by a large variance of the estimate. To analyze the significance of the
estimates we therefore compute the variance-covariance matrix, or shorter covariance
matrix, C. The idea behind this is, if we repeat the experiments often, how would
the estimates differ from one repetition to another [13]?

We examine the solution p̂ of the Gauss-Newton algorithm. The increment δp, which
is the solution of the linearized problem (2.8), is a random variable, because the
measurements are random variables. The increment is determined by the optimality
condition for the linearized problem (2.9). We compute the expected value of the
increment, by first inserting this formulation (2.9). After some transformations we
arrive at an expected value of zero

E [δp] = E
[
−(JTJ)−1JT r

]
= −(JTJ)−1JTE [r]

= −(JTJ)−1JTE
[
Σ−1(η − h)

]
= −(JTJ)−1JT 0
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2.4. Statistical setting and sensitivity analysis

= 0,

where Σ := diag (σi, i = 1, ..,m). For clarity, all arguments are omitted here.

For the expected value of the product of the residuals we have

E
[
rrT

]
= E

[
Σ−1(η − h)(η − h)TΣ−1

]
= Σ−1E

[
ηηT

]
Σ−1 = Σ−1Σ2Σ−1 = I.

With that, we get for the covariance matrix, which is defined as the expected value of
a product of increments,

C := E
[
δpδpT

]
= E

[
(−(JTJ)−1JT r)(−(JTJ)−1JT r)T

]
= E

[
(JTJ)−1JT rrTJ(JTJ)−1

]
= (JTJ)−1JTE

[
rrT

]
J(JTJ)−1

= (JTJ)−1JTJ(JTJ)−1

= (JTJ)−1. (2.17)

We arrive at a term, which is only dependent on the Jacobi matrix (2.17). Thus we
are able to compute the covariance matrix by evaluating the Jacobi matrix.
2.4.3 Remark. Another way to arrive at this representation of the covariance matrix
is to use a Taylor expansion of the optimality condition of the reduced parameter
estimation problem instead of using the linearized problem of the Gauss-Newton
algorithm. Retaining only terms of first order and applying these terms to compute
the covariance matrix leads to representation (2.17), see [13], [33], [97]. 4

Confidence region For a more explicit expression of the significance of the param-
eter estimation, we employ the concept of confidence regions.

A nonlinear confidence region for the true parameter p∗ in our setting is defined by
[97]

GN (αr, p) := {p ∈ Rnp :
∥∥r(p)∥∥2 −

∥∥r(p∗)∥∥2 ≤ γ2
r (αr)}, (2.18)

where γ2
r (αr) is the quantile of the χ2 distribution for value αr ∈ [0, 1] and np degrees

of freedom. That means, that with probability 1− αr the true parameter values p∗
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2. Parameter estimation with PDE models

lie inside the nonlinear confidence region.

Because we do not know the true parameter values p∗, we perform the computation
with the estimated parameters p̂. If we would repeat the experiments one hundred
times, each experiment would produce a different estimate p̂. For each such estimate
we could build the confidence region (2.18). Then the values of the true parameters
p∗ should be included in about (1−αr) · 100 of these confidence regions. For example
αr = 0.1, then the true parameter values should be included in ninety of these
confidence regions [13].

We approximate the nonlinear confidence region by first linearizing it and after
that showing that the linearized confidence region is part of a cuboid. A linearized
confidence region reads

GL(αr, p) := {p ∈ Rnp :
∥∥r(p∗) + J(p∗)(p− p∗)

∥∥2 −
∥∥r(p∗)∥∥2 ≤ γ2

r (αr)}.

The residual r(p∗) vanishes, thus it follows

GL(αr, p) = {p ∈ Rnp : (p− p∗)T (JTJ)(p− p∗) ≤ γ2
r (αr)}

= {p ∈ Rnp : (p− p∗)TC−1(p− p∗) ≤ γ2
r (αr)}.

Note, that the inverse of the covariance matrix C−1 is a core part of the formula for
the linearized confidence region. Instead of the unknown true parameter values p∗,
we approximate the confidence region with the estimated parameters p̂

GL(αr, p) ≈ {p ∈ Rnp : (p− p̂)TC−1(p− p̂) ≤ γ2
r (αr)}. (2.19)

In the next step, let us show that the linearized confidence region GL(αr, p) is part of
a cuboid, whose side lengths are dependent on the diagonal elements of the covariance
matrix C.
2.4.4 Lemma. Let

θi := γr(αr)
√
Cii, i = 1, ..., np

with Cii the diagonal elements of the covariance matrix C. Then the linearized
confidence region is part of a cuboid

GL(αr, p) ⊂ [p̂1 − θ1, p̂1 + θ1]× . . .× [p̂np − θnp , p̂np + θnp ].

Proof. The definition of the linearized confidence region GL(αr, p) contains the inverse
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of the covariance matrix

(p− p̂)TC−1(p− p̂) ≤ γ2
r (αr).

We treat the inequality component-wise and apply transformations

(pi − p̂i)TC−1
ii (pi − p̂i) ≤ γ2

r (αr)
⇔ (pi − p̂i)2 ≤ γ2

r (αr)Cii
⇔ |pi − p̂i| ≤ γr(αr)

√
Cii = θi,

which lead to the claim that the linearized confidence region is part of a cuboid with
side length 2 · θi.

The significance of the estimated parameters is expressed by the “size” of the confidence
region for given αr. The “smaller” the confidence region, the more significant are the
estimated parameters. As we have seen, the confidence regions can be approximated
with the help of the covariance matrix. We will utilize this relation in nonlinear
optimum experimental design in the next Chapter 3 by assigning a scalar value to
the “size” of the confidence region. For that, we will use an information function or
criterion, which operates on the covariance matrix.
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3. Optimum experimental design with
PDE models

The present chapter deals with the optimum experimental design problem for param-
eter estimation with PDE models. First the optimum experimental design (OED)
problem, specifically the sampling design problem, is presented. We first depict the
measurement design. After that we present the OED problem formulation. Thereafter
we relax the integer constraints for the numerical solution of the OED problem. Then
we present two problem variants. After that the optimality conditions for the relaxed
OED problem are formulated. Afterwards a numerical solution method for the OED
problem based on sequential quadratic programming (SQP) methods is depicted.

A similar OED setting for ordinary differential equations is presented in [66], [96] and
[56]. For PDEs, [97] and [63] investigate a similar setting. We follow them in most
points in this chapter.

3.1. Measurement design

Measurement grid A finite grid of possible measurement points

xm1 , x
m
2 , ..., x

m
nm ∈ Ω (3.1)

is constructed, see Figure 3.1, where nm is the number of possible measurement
grid points. The point measurements at these grid points are incorporated in our
measurement functions

hi(p;xmj ) = h̄i(p;S(p);xmj ), i = 1, .., ng, j = 1, ..., nm,

with ng the number of possible measurement functions. Every measurement function
describes a point measurement at a measurement point. We assume the function y to
have sufficiently many weak derivatives, such that the state space Y = Hk(Ω) embeds
in continuous functions. With that, the point measurements are well-defined.

The measurement points, which exhibit the most information for the parameter
estimation, are chosen by the optimum experimental design algorithm. It is possible,
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3.1. Measurement design

that two measurement functions h1 and h2 are available at the same measurement
point xmj : h1(p;xmj ), h2(p;xmj ). The construction of the grid may be prescribed by
the measurement methods present or by the process under investigation.

Figure 3.1.: Setup sampling design. The picture shows an example domain Ω
with circles for possible measurement points and points for realized
measurement points.

Sampling decisions For the algorithmic selection of measurement points we in-
troduce a vector of sampling decisions w = (w1, ..., wng)T . The sampling decisions
are assumed to be integer variables wi ∈ {0, 1}, i = 1, ..., ng. If the sampling decision
wi is zero, the measurement is not realized in measurement function hi(p;xmj ) in an
optimum experimental design and if the sampling decision wi is one, the measurement
is realized. Out of ng possible measurements those measurements are selected, which
contain the most information for the parameter estimation.

Inequality constraints The number of measurements to select is constrained by
an upper bound m. The sum of all sampling decisions should be below the bound

ng∑
i=1

wi ≤ m.

This guarantees that only m measurements are chosen by our algorithm. Addi-
tional constraints on the measurement design, for example a maximum number of
measurements per measurement method, can be formulated by linear functions of wi.

Another possibility to constrain the number of measurements is via costs. For example
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we have costs ci per measurement i. With a linear cost model we get

ng∑
i=1

ciwi ≤ mc,

where mc is the maximum costs we would like to spend. This concept is flexible
with regard to different costs for different measurement points or different costs for
different measurement methods. The constants ci are set before the optimization, the
sampling decisions wi are the free variables.

We combine all inequality constraints, which depict the measurement design, in the
linear constraint function cm with

0 ≤ cm(w).

Variances We weight the variances σi of the measurement errors with the sampling
decisions wi. Thus the measurement errors are normally distributed with variances
σ2
i
wi
, i.e. εi ∼ N(0, σ

2
i
wi

).

PE problem for OED Let us state the parameter estimation problem, which
underlies the optimum experimental design problem.
3.1.1 Problem. (Unconstrained parameter estimation problem for OED)
Minimize the reduced least squares functional G(p)

min
p∈P

G(p) = 1
2

ng∑
i=1

wi

(
ηi − hi(p)

σi

)2

= 1
2

ng∑
i=1

r2
i (p).

As before, the solution of the weak form of the PDE boundary value problem enters
the Problem 3.1.1 via the solution operator S(p), where G(p) = Ḡ(p;S(p)).

Notice the slight difference to the preceding parameter estimation Problem 2.2.2:
variance is σ2

i
wi

instead of σ2
i before. This way the sampling decisions wi enter the

parameter estimation problem. Because of that the residuals change as well to

ri(p) = ηi − hi(p)
σi√
wi

= √wi
ηi − hi(p)

σi
.

Additionally the sum adds the set of all possible measurement functions i = 1, ..., ng
instead of m functions before. The selection of m functions is done via the sampling
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3.2. OED problem formulation

decisions wi. Only the number of m sampling decisions is equal to 1, the remainder
is equal to 0. The sampling decisions wi are fixed during the parameter estimation.
Contrary the parameters p are fixed during the optimum experimental design.

3.2. OED problem formulation

Criteria The goal of optimum experimental design is to improve the statistical
significance of the estimated parameters. The ”size” of a confidence region expresses
the quality of the estimated parameters. The ”smaller” the region, the more significant
are the estimated parameters. A question arises: How to measure the ”size” of the
confidence region? We will make use of information functions [81], which are in the
context of OED also called criteria.

The classical optimum experimental design criteria operate on the covariance matrix
C of the parameter estimation problem. Let us introduce three classical optimum
experimental design criteria [81, p.135ff]

• average-variance criterion (A-criterion)

ΦA(C) := 1
np

tr(C),

• determinant criterion (D-criterion)

ΦD(C) := det(C)
1
np ,

• smallest-eigenvalue criterion (E-criterion)

ΦE(C) := max{λi|λi eigenvalue of C} = ‖C‖2,

and one additional criterion, indroduced by [75],

• confidence region criterion (M-criterion)

ΦM (C) := max{
√
Cii, i = 1, ..., np}.

In Figure 3.2 a geometrical interpretation of these four criteria in comparison to the
confidence region (2.19), or confidence ellipsoid in two dimensions, is shown. The
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A-criterion is proportional to the average half-axis length of the confidence ellipsoid.
The D-criterion can be visualized by the volume of the confidence ellipsoid. The
E-criterion is proportional to the largest half-axis length of the confidence ellipsoid.
The M-criterion can be depicted by a box around the confidence ellipsoid, we have
shown this connection in Lemma 2.4.4. By minimizing one of the criteria, we minimize
the confidence region [66], [15], [96].
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Figure 3.2.: Confidence ellipsoid and geometrical interpretation of A-, D-, E- and
M-criteria, taken from [96].

Other criteria based on the Fisher information matrix, which is the inverse of our
covariance matrix C, are also possible. In that case, we get a maximization problem,
see [81], [87].

A different idea is the minimization of a key performance indicator also referred to
as quantity of interest. Instead of minimizing a function of the covariance matrix
of the parameter estimation problem, another important indicator in the problem
formulation is minimized. That means, not the significance of the parameter estimation
is optimized, but an important output of the model. For OED with DAE and ODE
this idea was first introduced by [67]. In [72], [73] OED and optimal control objectives
are combined for ODE models. A user defined interest functional is presented in [22]
for model calibration with a PDE model.
3.2.1 Remark. Scaling. The A-, D-, E- and M-criteria, which we will use in this
work, are not invariant to the size of the parameters. A difference in magnitude of
the individual parameters leads to a unilateral preference of the parameters with
the biggest absolute value. A solution to this problem is scaling. In most cases the
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parameters are all scaled to one. Parameters, which are considered more important,
could be scaled to a higher value than the other parameters. That way, these
parameters are estimated with higher accuracy than the rest [15], [66]. 4

OED problem Let us formulate the OED problem. The OED or sampling design
problem is a constraint nonlinear optimization problem. It consists in minimizing
criterion Φ(C(w, p)), under constraints on the sampling decisions wi:
3.2.2 Problem. (Optimum experimental design problem)

min
w
Φ(C(w, p))

subject to

0 ≤ cm(w),
wi ∈ {0, 1}, i = 1, ..., ng.

Every sampling decision wi corresponds to one potential measurement function
hi(p;xmj ), i = 1, .., ng, which describes a point measurement at a spatial measurement
point xmj , j = 1, ..., nm. Finding the minimizing sampling decisions wi leads to a
selection of measurement functions hs(p;xmj ), s = 1, ..,m, and thus a selection of
spatial measurement points.

As defined before the objective function of Problem 3.2.2, i.e. the optimum experi-
mental design criterion, is dependent on the covariance matrix C

C = (JTJ)−1

in the solution point of the underlying reduced parameter estimation Problem 3.1.1.
The entries of the Jacobian J are

Ji,j(p) = d

dpj
ri(p) = −

√
wi
σi

dhi(p)
dpj

.

The solution of the PDE model enters here via the solution operator S(p), according to
the definition of the reduced residuals r(p) = r̄(p;S(p)) and the reduced measurement
functions h(p) = h̄(p;S(p)), see Section 2.2.

Regarding the evaluation or generation of the Jacobian J there exist different possibil-
ities. These possibilities will be investigated in detail later in the separate Chapters 5,
7 and 8.
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3.2.3 Remark. Parameter dependence. The covariance matrix C depends on the
parameters p. Usually we evaluate the covariance matrix in the solution point of the
parameter estimation Problem 3.1.1. Thus it is dependent on the parameter estimate
and indirectly also on the measurements ηi. Solution strategies to take into account
bad parameter estimates are sequential OED and robust OED, for details see the
following Section 3.4. 4

The sampling design problem investigated in this thesis is a special case of the general
optimum experimental design problem. The optimization variables only enter the
least squares functional of the parameter estimation problem, not additionally the
partial differential equation boundary value problem.

3.3. Relaxation of integer constraints

Relaxed OED problem For the numerical solution of the optimum experimental
design problem, we relax the mixed-integer constraint w ∈ {0, 1} to

w ∈ conv({0, 1}), (3.2a)
⇔ 0 ≤ wi ≤ 1, i = 1, ..., ng, (3.2b)

where conv(.) is the convex hull. The formulation (3.2) is in contrast to the mixed-
integer variant continuous. The resulting relaxed optimum experimental design
problem reads
3.3.1 Problem. (Relaxed optimum experimental design problem)

min
w
Φ(C(w, p))

subject to

0 ≤ cm(w)
0 ≤ wi ≤ 1, i = 1, ..., ng.

An important question is, if the solution of the relaxed OED Problem 3.3.1, with the
relaxed sampling decisions formulation (3.2) as a constraint, is a reasonable solution
for the OED problem with the mixed-integer constraint, Problem 3.2.2.

There are two possibilities to obtain an integer solution from a fractional solution: use
a rounding strategy [16], [66] or refine the possible measurement grid. As a rounding
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heuristic we could use a simple round up and off strategy, that means round up the
biggest sampling decisions and round off the smallest ones, keeping the sum of all
sampling decisions equal or below the maximum number m. Another possibility is
the sum up rounding strategy, where the sampling decisions are summed up until the
sum reaches one. This strategy is used in time-dependent problems. We could adapt
it to our spatial setting. In [87] it is showed, that using the sum up rounding strategy
is possible. But it could have a so-called chattering behavior, that means switching
often between yes and no. That is, why the authors in [87] recommend to refine the
possible measurement grid.

Another point investigated in [87] is the ill-posedness of the OED problem, if the
maximum number of measurements m is set too high. Additional measurements
contribute little to the minimization of the objective function, because the placed
measurements are already placed optimal. As a solution they propose a L1 penalization
in the objective function, which couples the cost of a measurement to a minimum
amount of information it has to contribute. Another possible solution is a sequential
or greedy placement of the measurement points [51].

Regarding the existence and uniqueness of a solution of the mixed-integer constrained
OED Problem 3.2.2 and of the relaxed OED Problem 3.3.1, to our knowledge results
only have been proven for DAE and ODE constraints [16], [56], [66], [75], [96]. For
PDE constraint OED problems, in [76] a unconstrained version of the OED problem
is investigated. In this thesis we do not answer the open question of existence and
uniqueness and assume, that a unique solution to both problems exists.

3.4. Problem variants

Parameter dependence As addressed in Remark 3.2.3 the covariance matrix and
thereby the objective function of the OED problem, is dependent on the parameter
estimate p̂. To decrease this influence, two solution approaches are possible, sequential
OED and robust OED. Let us sketch them briefly.

In sequential OED a cycle of practical experiments, parameter estimation and optimum
experimental design is performed. The estimates are enhanced by performing new
optimized experiments in practice. The OED objective is no longer dependent on
one set of measurements, but on multiple ones, which are performed in different
experimental settings. For further details, see [15], [16], [66], [68].

The idea of robust OED is to take a closer look at the worst case scenario. Namely
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3. Optimum experimental design with PDE models

the parameters are estimated extremely poor. A min-max optimization problem is
considered: the minimum of the maximum value of the objective function Φ(C) over
the confidence region is computed. Fur further details, see [28], [69].

Multiple experiments Instead of performing one single experiment, we could
perform multiple experiments. From multiple experiments we gain more information,
which we can use to estimate the unknown parameters. Especially when applying OED
to optimize the experimental setting, the optimized experiment should be performed
in practice. With the new measurements from the optimized experiment we once
again estimate the parameters.

All methods, which we present and discuss in this thesis, are also applicable and avail-
able for the multiple experiment setup. For details on PE with multiple experiments
see [63], [64], [65], [88] and for OED with multiple experiments see [56], [57], [66]. In
the following we present the case for a single experiment.

3.5. Optimality conditions

In this section we follow [77, chapter 12] and [97, section 4.3]. We set up the optimality
conditions for the relaxed OED Problem 3.3.1.

We reformulate the relaxed OED Problem 3.3.1 as a general constrained optimization
problem. Therefore we distinguish equality and inequality constraints. We aggregate
each of them in index sets, index set E for the equality constraints and I for the
inequality constraints.
3.5.1 Problem. (Relaxed optimum experimental design problem revisited)

min
w
Φ(C(w, p))

subject to

cj(w) = 0, j ∈ E ,
cj(w) ≥ 0, j ∈ I.

We need this distinction between equality and inequality constraints, because the
inequality constraints need special treatment in the setting up of optimality conditions.
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3.5. Optimality conditions

Therefore we use the concept of active and inactive inequality constraints and define
the active set A(w) as follows.
3.5.2 Definition. The active set A(w) at any feasible w contains the indices of the
equality index set E and the indices of the inequality constraints, which take equality
in w

A(w) := E ∪ {j ∈ I|cj(w) = 0}.

The inequality constraint j ∈ I is said to be active at w, if cj(w) = 0. 4

Let us define a condition on the gradients of the constraints cj , which we will need to
set up the optimality conditions.
3.5.3 Definition. (LICQ) Given a vector of sampling decisions w and the correspond-
ing active set A(w), Definition 3.5.2, the linear independence constraint qualification
(LICQ) holds, if the set

{∇cj(w), j ∈ A(w)}

is linearly independent. 4

Furthermore the Lagrange function L(w, l) of the relaxed OED Problem 3.5.1 reads

L(w, l) := Φ(C(w, p))−
∑

j∈E∪I
ljcj(w),

with the vector l of Lagrange multipliers lj , j ∈ E ∪ I. With these ingredients, the
necessary optimality conditions for the relaxed OED Problem 3.5.1 are
3.5.4 Lemma. Necessary optimality conditions (Karush-Kuhn-Tucker conditions) Let
w∗ be a local solution of Problem 3.5.1, the functions Φ(w, p) and cj(w) be continuously
differentiable and let LICQ in Definition 3.5.3 hold at w∗. Then there exists a Lagrange
multiplier l∗, with components l∗j , j ∈ E ∪ I, such that the following conditions are
satisfied at (w∗, l∗)

∇wL(w∗, l∗) = 0,
cj(w∗) = 0, for all j ∈ E ,
cj(w∗) ≥ 0, for all j ∈ I,

l∗j ≥ 0, for all j ∈ I,
l∗j cj(w∗) = 0, for all j ∈ E ∪ I.

Proof. A proof can be found in [77, section 12.4].
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3. Optimum experimental design with PDE models

3.6. Numerical solution methods: Sequential quadratic
programming

In this section we follow [77, chapter 18] and [97, pp.67ff]. To solve the nonlinear
problem with equality and inequality constraints, the relaxed OED Problem 3.5.1,
effectively, we approximate it by a quadratic program. Iteratively a sequence of
constrained quadratic subproblems of the form

min
δw

1
2δw

TH(w, l)δw +∇Φ(w, p)T δw

s.t. ∇cj(w)T δw + cj(w) = 0, j ∈ E ,
∇cj(w)T δw + cj(w) ≥ 0, j ∈ I,

(3.3)

are solved. The objective function of the subproblem (3.3) is composed of a approxi-
mation of the Hessian of the Lagrange function with respect to sampling decisions
w

H(w, l) ≈ ∇2
wL(w, l),

and the gradient of the objective function of the relaxed OED Problem 3.5.1. The
constraints are the linearized constraints of the relaxed OED Problem 3.5.1. We
minimize the quadratic subproblem (3.3) with respect to search direction δw.

In Algorithm 1 the complete sequential quadratic programming (SQP) algorithm
is presented. First, start values are set, functions and gradients of the objective
function Φ(C(w, p)) and the constraints cj(w) are evaluated. The Jacobian of the PE
Problem 3.1.1 is computed for a fixed parameter value p. This value p could originate
from a preceding parameter estimation. A convergence test is performed before each
iteration, to check if we can stop the algorithm. After that the search direction is
obtained by solving the quadratic subproblem (3.3) with the approximation of the
Hessian of the Lagrange function. The next step is to find a step size and finally we
update the iterates and compute the function and gradient values of the objective
function Φ(C(w, p)) and the constraints cj(w) for the new iterate.

There are many variants of SQP methods: they differ in the choice of the Hes-
sian approximation, the approximation of the quadratic subproblems, the step size
computation and the choice of the convergence test.

Computing the Hessian of the Lagrange function is computationally expensive. There-
fore we approximate it. One possibility is a quasi-Newton approximation, which
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3.6. Numerical solution methods: Sequential quadratic programming

Algorithm 1 SQP algorithm for relaxed OED problem
1: Start values w0, l0, H0. Set k = 0.
2: Evaluate Φ(C(w0, p)),∇Φ(C(w0, p)), cj(w0),∇cj(w0), j ∈ E ∪ I

and the Jacobian J(p), with value p fixed.
3: Convergence test, if satisfied stop, if not satisfied go to 4.
4: Compute search direction

if k > 0 then
Compute an approximation of the Hessian of the Lagrange function

Hk(wk, lk) ≈ ∇2
wL(wk, lk).

end if
Solve

min
δw

1
2δw

THk(wk, lk)δw +∇Φ(wk, p)T δw

s.t. ∇cj(wk)T δw + cj(wk) = 0, j ∈ E ,
∇cj(wk)T δw + cj(wk) ≥ 0, j ∈ I,

obtain δwk search direction and l̃k Lagrange multiplier. Go to 5.
5: Find step size αk. Go to 6.
6: Iterate

wk+1 := wk + αk δwk,

lk+1 := lk + αk (l̃k − lk).
(3.4)

Evaluate

Φ(C(wk+1, p)), ∇Φ(C(wk+1, p)), cj(wk+1), ∇cj(wk+1), j ∈ E ∪ I,

k := k + 1, go to 3.
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3. Optimum experimental design with PDE models

means the use of Broyden-Fletcher-Goldfarb-Shanno (BFGS) or symmetric rank one
(SR1) update formulae. For the approximation of the quadratic subproblems (3.3)
active set or interior point methods can be utilized. We will use a active set strategy
[56], [77]. For choice of step size and convergence test we refer to literature [56],
[77]. As a stopping criterion the Karush-Kuhn-Tucker conditions in Lemma 3.5.4 are
eligible.

Specially in the utilized software in SNOPT [43], [42] a limited memory BFGS is imple-
mented, where former iterates are ignored occasionally. In blockSQP [56] partitioned
quasi-Newton updates are implemented, including SR1 and BFGS updates.

Local convergence SQP The convergence properties of a SQP method are mostly
dependent on the choice of the approximation of the Hessian of the Lagrangian. With
an exact computation of the Hessian, the SQP method is equivalent to Newton’s
method with local quadratic convergence. When approximating the Hessian with
a BFGS update, under some additional conditions the local convergence rate is
superlinear. For global convergence, the choice of the step size is crucial. Hence for
proofs and further investigation of the convergence properties see [77].
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Status quo

55



4. Discontinuous Galerkin finite
element methods

In this chapter, we focus on the discretization of the underlying PDE boundary value
problem, which is a stationary 2D diffusion advection reaction PDE boundary value
problem, see Example 2.1.5. We are particularly interested in an advection dominated
case, with a Péclet number much larger than 1. For a definition of Péclet number
number see Remark 2.1.6. This leads to a symmetry loss, which in turn results in
a coercivity loss. Therefore, the solutions of continuous Galerkin methods oscillate
[38, p.166]. A standard finite element method is not suitable for this problem [58].
Hence, we use a discontinuous Galerkin method. We discretize the diffusion advection
reaction PDE boundary value problem by two discontinuous Galerkin methods: the
advection part is discretized by the upwind method [84] and the diffusion part by the
interior penalty method [9], [10]. For the reaction part an additional mass matrix is
added.

In this chapter, we first present the standard upwind discontinuous Galerkin method
for the advection part. In Chapter 6 we extend this method to a differentiable
version. After that, we state a discretization for the diffusion advection reaction PDE
model. With this dicretization for the PDE model, we formulate discrete optimization
problems. Finally, we give a short overview over the finite element algorithm. We
start with notation and definitions.

Grid cells and faces The convex domain Ω in Rd, d = 2, with boundary Γ , is sub-
divided into a triangulation Th. The triangulation Th consists of closed quadrilateral
grid cells T . The set of closed faces F of the grid cells is denoted by Fh. We define
the subsets of boundary faces and interior faces of Fh, respectively:

FΓh := {F ∈ Fh|F ∈ Γ},
Finth := {F ∈ Fh|F 6∈ Γ}.

With that, we set Fh = FΓh ∪ Finth . The index h stands for the mesh size function
hT := diam(T ) = maxx1,x2∈T ‖x1 − x2‖ , T ∈ Th. The mesh size function represents
a level of refinement of the grid. For the overall triangulation, it is defined by
h := maxT∈Th hT .
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Jumps and Averages Let the values y1 and y2 denote the traces of the function
y on F taken from T1 and T2, respectively. On an interior face F separating the two
cells T1 and T2, we define the average operator {{·}} as follows

{{y}}(x) := 1
2
(
y1(x) + y2(x)

)
.

Let n = n(x) be the outward unit normal vector and n1 and n2 the corresponding
outward unit normal vectors for T1 and T2. Then, the term

2{{yn}} = y1 · n1 + y2 · n2 = (y1 − y2)n1 = (y2 − y1)n2, (4.1)

defines a vector valued jump operator on y in a fashion that is oblivious to the choice
of T1 and T2. Additionally, we define the short hand notation for a jump operator J·K
as follows

JyK (x) = y1(x)− y2(x),

which will only be used squared, such that its sign does not matter. In particular, we
will use this short form for the term(

JyK , JvK
)
F

= 4
(
{{yn}}, {{vn}}

)
F
. (4.2)

In the same way as before (y, v)F is the L2(F ) scalar product on a face F : (y, v)F =∫
F yvds.

Norms and spaces The Lebesgue space Lp(Ω) and the Sobolev space Wk
p (Ω) are

defined in Chapter 2, Section 2.1. For the discontinuous Galerkin discretization, we
additionally need the broken Sobolev space on the triangulation Th. It consists of
functions v that belong to the Sobolev space Wk

p (T ) for each grid cell T .
4.0.1 Definition. Thus, the broken Sobolev space Wk

p (Th) is defined by [58]

Wk
p (Th) := {v ∈ Lp(Ω)| v|T ∈ Wk

p (T ), T ∈ Th},

with corresponding broken Sobolev norm defined by

‖v‖Wk
p (Th) :=

 ∑
T∈Th

‖v‖pWk
p (T )

 1
p

.
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4. Discontinuous Galerkin finite element methods

4

For p = 2, we similarly abbreviate Hk(Th) :=Wk
2 (Th).

4.0.2 Definition. Let us define the finite element space Vh. Limited to each grid cell
T the function vh belongs to the space of polynomials

Vh := {vh ∈ L2(Ω) : vh|T ∈ P(T ), T ∈ Th}.

Where P(T ) is a polynomial space on T , for instance the space of polynomials of
degree k ≥ 0 with no continuity requirements across interelement boundaries [58]. 4
4.0.3 Definition. We define the reference element T̂ with vertices (−1,−1), (1,−1),
(1, 1) and (−1, 1). For each physical element T exists a mapping M from the reference
element to the physical element

v̂h = vh ◦M.

If T is a parallelogram, the map M is affine. 4

We perform all computations on the reference element. Hence, we use the finite
element space on the reference element V̂h.
4.0.4 Definition. Finite element space on the reference element. Limited to each
grid cell T the function vh belongs to the space of polynomials

V̂h := {vh ∈ L2(Ω) : vh ◦M ∈ P(T̂ ), T ∈ Th}.

Where P(T̂ ) is a space of polynomials on the reference element T̂ . 4

For parallelograms in 2D, the finite element space on the reference element has the
same approximation properties as the finite element space on the physical element
from Definition 4.0.2 [85].

To simplify the notation we omit the dependency on the parameters p in this chapter.

4.1. Upwind method for advection problems

We begin by discretizing the advection part. The pure advection model problem
Example 2.1.7 reads
4.1.1 Example. Pure advection model problem revisited.

β · ∇y = f on Ω,

58



4.1. Upwind method for advection problems

y = yD on Γ−,

for ‖β‖ 6= 0. As before we have the inflow boundary Γ− = {x ∈ ∂Ω|n(x) · β < 0}, an
inflow boundary function yD ∈ L2(Γ−) and a right hand side function f ∈ L2(Ω). 4

For this pure advection model problem the upwind discontinuous Galerkin discretiza-
tion is: Find yh ∈ Vh such that

bh(yh, vh) = fah (vh), ∀vh ∈ Vh, (4.4a)

where

bh(yh,vh) := −
∑
T∈Th

(yh, β · ∇vh)T +
∑
F∈FΓ

h

(1
2β · nyh + 1

2σupw(β, n)yh, vh
)
F

+
∑

F∈Fint
h

(
{{yh}}, 2{{vhβ · n}}

)
F +

∑
F∈Fint

h

(1
2σupw(β, n) JyhK , JvhK

)
F
, (4.4b)

and right hand side

fah (vh) :=
∑
T∈Th

(f, vh)T −
∑
F∈FΓ

h

(1
2β · nyD −

1
2σupw(β, n)yD, vh

)
F
, (4.4c)

with stabilization function

σupw(β, n) := |β · n| . (4.5)

Instead of two separate terms for inflow and outflow element boundaries, we choose a
flux function [32], which selects inflow or outflow element boundary by addition and
subtraction

H(y1, y2, n) := β · n{{y}}+ 1
2σupw(β, n) JyK .

We see, that this numerical flux function can also be written as

H(y1, y2, n) =
{

β · n y2, if β · n(x) < 0,
β · n y1, if β · n(x) ≥ 0.

As before, y1 and y2 are the traces of y on elements T1 and T2, respectively.

The numerical flux function is already included in the discretization (4.4) on interior
faces F ∈ Finth and on boundary faces F ∈ FΓh . On the interior faces, we arrive at the
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4. Discontinuous Galerkin finite element methods

first term by using the symmetry of the L2 scalar product and the definition of the
vector valued jump operator:∑

F∈Fint
h

(
β · n{{yh}}, JvhK

)
F =

∑
F∈Fint

h

(
{{yh}}, 2{{vhβ · n}}

)
F .

4.2. Diffusion advection reaction discrete problem

In this section we consider the diffusion advection reaction model problem Example
2.1.5. It reads
4.2.1 Example. Diffusion advection reaction model problem revisited.

−∇ · (α∇y) + β(p) · ∇y + ρ(p)y = f(p) on Ω
y = yD(p) on Γ = ∂Ω.

for diffusion coefficient α > 0 and reaction coefficient ρ ≥ 0. 4

The discretization of this model problem is obtained by combining the individual
discretizations for diffusion, advection and reaction. We discretize the diffusion part
with the interior penalty method. The advection part is discretized by the upwind
method from the last Section 4.1. For the reaction part we utilize an additional mass
matrix. The right hand side of the discretization consists of the term for the right
hand side function f and the face terms resulting from the interior penalty and the
upwind discretization, which contain the Dirichlet boundary function yD.

For the discrete test space we choose the finite element space Vh. For the interior
penalty method we define a penalty factor γ. It is dependent on the polynomial
degree ki and the mesh size function hi(x) = diam(T ), x ∈ T, of both adjacent cells
i = 1, 2,

γ := 1
2 (γ1 + γ2) , γi := ki(ki + 1)

hi
, i = 1, 2.

The discrete problem for the diffusion advection reaction model problem thus reads:
Find yh ∈ Vh such that

αah(yh, vh) + bh(p; yh, vh) + ρ(p)ch(p; yh, vh) = fh(p; vh), ∀vh ∈ Vh, (4.7a)
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where the diffusion part reads

ah(yh, vh) :=
∑
T∈Th

(∇yh,∇vh)T

+
∑

F∈Fint
h

[
− 2

(
{{∇yh}}, {{vhn}}

)
F − 2

(
{{yhn}}, {{∇vh}}

)
F + γ

(
JyhK , JvhK

)
F

]

+
∑
F∈FΓ

h

[
− (∂nyh, vh)F − (yh, ∂nvh)F + 2γ (yh, vh)F

]
, (4.7b)

the advection part reads

bh(p; yh, vh) = −
∑
T∈Th

(
yh, β(p) · ∇vh

)
T +

∑
F∈Fint

h

(
{{yh}}, 2{{vh β(p) · n}}

)
F +

∑
F∈Fint

h

(1
2σupw(β(p), n) JyhK , JvhK

)
F

+
∑
F∈FΓ

h

(1
2β(p) · nyh + 1

2σupw(β(p), n)yh, vh
)
F
,

(4.7c)

the reaction part reads

ch(p; yh, vh) :=
∑
T∈Th

(yh, vh)T , (4.7d)

and the right hand side is

fh(p; vh) :=
∑
T∈Th

(
f(p), vh

)
T +

∑
F∈FΓ

h

[
2γα

(
yD(p), vh

)
F −

(
αyD(p), ∂nvh

)
F

]

−
∑
F∈FΓ

h

(1
2β(p) · nyD(p)− 1

2σupw(β(p), n)yD(p), vh
)
F
. (4.7e)

For shorter notation we define

Fh(p; yh, vh) := αah(yh, vh) + bh(p; yh, vh) + ρ(p)ch(p; yh, vh)− fh(p; vh). (4.8)

The discrete problem (4.7) in this short notation reads: Find yh ∈ Vh such that

Fh(p; yh, vh) = 0, ∀vh ∈ Vh. (4.9)

61
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4.3. Discrete optimization problems

With this discrete PDE problem the optimization problems change. Similar to the
continuous case in Problem 2.2.1 the discrete constrained PE problem reads
4.3.1 Problem. (Discrete constrained parameter estimation problem) Min-
imize the least squares functional Ḡ

min
p∈P,yh∈Vh

Ḡ (p; yh)

subject to

Fh(p; yh, vh) = 0, ∀vh ∈ Vh,

which is given as the discretized partial differential equation problem defined in equa-
tions (4.7), (4.8) and (4.9).

With the same assumptions as in Section 2.2 we define a discrete solution operator
Sh(p). The two assumptions for the continuous bilinear form F (p; y, v), should now
hold for the discrete bilinear form Fh(p; yh, vh). Then the discrete solution operator
Sh : P → Vh exists and satisfies the discrete state equation

Fh(p;Sh(p), vh) = 0, ∀vh ∈ Vh.

By inserting this operator Sh(p) into Problem 4.3.1 we obtain the corresponding
discrete unconstrained or discrete reduced problem.
4.3.2 Problem. (Discrete unconstrained parameter estimation problem)
Minimize the discrete reduced least squares functional Gh(p) := Ḡ

(
p;Sh(p)

)
min
p∈P

Gh(p).

Similar to the continuous problem, the solution of the discretized PDE problem
enters the discrete unconstrained parameter estimation Problem 4.3.2 via the discrete
solution operator Sh(p).

In the same manner we define the discrete reduced measurement functions hi,h : P →
R, hi,h(p) := h̄i(p;Sh(p)), and the discrete reduced residuals ri,h : P → R, ri,h(p)
:= r̄i(p;Sh(p)). With that, the entries of the dicrete Jacobian Jh of the discrete
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unconstrained PE problem, Problem 4.3.2, are

Ji,j,h(p) = −
√
wi
σi

dhi,h(p)
dpj

.

The discrete Jacobian enters the discrete covariance matrix Ch= (JTh Jh)−1. Thus we
arrive at the discrete OED problem including the discrete OED criterion Φh(Ch(w, p)):
4.3.3 Problem. (Discrete optimum experimental design problem)

min
w
Φh(Ch(w, p))

subject to

0 ≤ cm(w),
wi ∈ {0, 1}, i = 1, ..., ng.

As before the OED problem includes sampling decisions wi, 1, ..., ng and linear con-
straint function cm(w).

As mentioned before in Chapters 2 and 3, existence and uniqueness of solutions are
highly problem dependent. We assume, that solutions to the discrete parameter
estimation problems exist. Detailed investigations of existence and uniqueness of a
solution can be found in [3], [54], [89], [93], [95]. For the discrete OED problem we
assume, that a solution exists.

4.4. Finite element algorithm

In this section, we explain the generation of a finite dimensional problem and the
process of assembling stiffness matrix and load vector. We follow [47], [85].

Generating the finite dimensional problem To solve the discrete PDE problem
(4.7) or (4.9) computationally, we reformulate it into a system of equations. We
introduce a basis {ϕi}nbi=1, with nb number of basis functions. The discrete solution
yh has the representation

yh :=
nb∑
i=1

ϕiỹi.
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4. Discontinuous Galerkin finite element methods

We use this basis representation to reformulate the discrete problem, with gh(p; yh, vh):=
αah(yh, vh)+bh(p; yh, vh)+ρ(p)ch(p; yh, vh) including all terms on the left hand side of
the equation (4.7),

Fh(p; yh, vh) = 0,
⇔ gh(p; yh, vh) = fh(p; vh),

⇔
nb∑
i=1

gh(p;ϕi, ϕj)ỹi = fh(p;ϕj), ∀j = 1, ..., nb. (4.11)

We rewrite the last line (4.11) as a system of equations

Ahỹ = f̃h, (4.12)

with entries

aj,i := gh(p;ϕi, ϕj), j, i = 1, .., nb,
f̃h,j := fh(p;ϕj), j = 1, ..., nb.

The matrix Ah is called stiffness matrix , the vector f̃h is called load vector. The
included integrals are approximated by numerical quadrature. Furthermore, we
compute the integrals on a reference element and map it afterwards to the real
elements. This way we efficiently compute the integrals.

Assembling of stiffness matrix and load vector Before we solve this system
of equations (4.12) with an iterative solver, we compute the entries of the stiffness
matrix Ah and the load vector f̃h. Therefore, we first compute the single contributions
of the cells, interior faces and boundary faces. Then we sum all single contributions
to arrive at the entries of the stiffness matrix and of the load vector. This process of
summation is called assembling of Ah and f̃h.

In detail, the assembling algorithm proceeds as follows: We first compute values of the
basis functions ϕi and ϕj at the quadrature points. Then we compute the full discrete
terms for the single elements, that means for cells, interior faces and boundary faces.
We name a local matrix for cells AT ∈ Rndcxndc , it comprises the contribution of one
cell T , with ndc number of degrees of freedom (DoFs) per cell. Similar, matrices
AF int ∈ Rndcxndc and AFΓ ∈ Rndcxndc comprise the contributions of an interior face
or a boundary face, respectively. The last step is the summation of single summands.
We sum up the single contributions (local matrices) to arrive at entries of Ah and f̃h
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(global matrices). An entry aT [i,j] of a local matrix corresponds to the global matrix
entry aj,i. Similar an entry of a local interior face matrix aF int[i,j] or a local boundary
face matrix aFΓ [i,j] corresponds to a global matrix entry aj,i. Thus by summation of
the local entries we arrive at a global entry

aj,i =
∑
T∈Th

aT [i,j] +
∑

F∈Fint
h

aF int[i,j] +
∑
F∈FΓ

h

aFΓ [i,j].
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5. Sensitivity evaluation

In this chapter we consider sensitivity evaluation techniques. We begin with presenting
the sensitivities for the two optimization problems, the PE problem and the OED
problem. After that, we introduce the principle of internal numerical differentiation
(IND), which we will further develop in this thesis. We explain the approach of
analytical sensitivity evaluation, especially the sensitivity approach. Finally, we treat
automatic differentiation (AD).

5.1. Sensitivities for parameter estimation and optimum
experimental design

We are interested in the sensitivities for PE and OED, which involve the PDE model
problem. The remaining sensitivities, which are independent of the PDE model
problem, are computed in the same way as in the ODE or DAE setting. That is, the
derivative of the model response with respect to the parameters ∂h̄i(p;S(p))

∂pj
and the

gradient of the constraints ∇cj , j ∈ E ∪ I, of the relaxed OED Problem 3.5.1. For
details on these derivatives see [66], [97], [56].

Sensitivities for parameter estimation As depicted in the problem setting
Chapter 2, Section 2.3, to solve the optimization parameter estimation Problem 2.2.2
with the Gauss-Newton method, we need to calculate the entries of the Jacobian J(p)
of the residuals r(p). The Jacobian consists of the directional derivatives of the model
responses hi(p) with respect to the parameters p, multiplied by the weighting factor
1
σi
. Thus the entries of the Jacobian are

Ji,j(p) = d

dpj
ri(p)δpj = d

dpj

(
ηi − hi(p)

σi

)
δpj = − 1

σi

dhi(p)
dpj

δpj . (5.1)

The solution of the PDE model problem S(p) enters the sensitivity (5.1) via the model
response function hi(p) = h̄i(p;S(p)).

Sensitivities for optimum experimental design In the OED setting, the eval-
uation of the derivative of the objective function Φ(C(w, p)) with respect to the
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5.2. Principle of internal numerical differentiation (IND)

sampling decisions w is of interest. Again we compute a directional derivative. Here
we use the definition of directional derivatives for matrices [66]. We utilize the chain
rule for matrices

dΦ

dw
δw = dΦ

dC

dC

dJ

dJ

dw
δw.

We are mainly interested in the last term dJ
dwδw. The entries of the Jacobian of the

PE problem for OED, Problem 3.1.1, are

Ji,j(p) = d

dpj

(
√
wi
ηi − hi(p)

σi

)
= −
√
wi
σi

dhi(p)
dpj

.

Thus the directional derivative of the Jacobian with respect to sampling decisions w
reads

dJ

dw
δw = −diag

(
d

dwi

√
wi
σi

δwi

)
dh(p)
dp

= −1
2 diag

(
δwi√
wiσi

)
dh(p)
dp

.

We observe that the PDE model problem only enters the derivative via the last term
dh(p)
dp . Moreover the sensitivity of the PE problem (5.1) already contains this term.

Thus we need to compute the same derivative involving the PDE model problem for
PE and OED.

Notice furthermore that the sensitivity dh(p)
dp only changes with different parameters,

not with different sampling decisions. Thus for OED we only need to compute that
part of the sensitivity once. In OED the parameters stay fixed, we perform the
optimization with the sampling decisions.

5.2. Principle of internal numerical differentiation (IND)

Let us review methods to calculate the sensitivities for PE and OED from Section 5.1.
We could treat the solver as a black box and use finite differences to calculate the
sensitivities. That approach is called external numerical differentiation (END). It is
the easiest way, but it has some disadvantages: the calculated sensitivities introduce
an error, they are not accurate. On top, the adaptive components of the solver are not
considered. The adaptive components change depending on the input and they are
not differentiable. This introduces an additional error, which can become arbitrary
large.
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A second way to calculate the sensitivities is to analytically differentiate the primal
PDE problem by for example the sensitivity approach. There, we apply the implicit
function theorem and arrive at tangential equations. These tangential PDE problems
can be derived analytically and after that discretized and solved. The analytically
differentiate approach is extensively used, see for example [17], [18], [22], [23], [34],
[83]. A drawback of this approach is, first, that we have to derive the equations
analytically by hand, and, second, that again the adaptive components could be
differently chosen for primal and tangential equations. That way it is not clear if the
computed sensitivities are consistent. The error can become arbitrary large.

A third way to calculate sensitivities is automatic differentiation (AD). Here, the
computational code is processed by an AD tool, which generates new code to calculate
the sensitivities [46]. In black box AD, the complete code is processed. In the context
of PDE-constrained optimization, this easily leads to storage space problems [91].
Despite of this black box approach, there exist few publications where the structure
of the discretization is considered [36], [48], [55], [91]. Again a problem with this
approach are the adaptive components. Either there are no adaptive algorithms used,
which leads to more computing costs than necessary, or the adaptive components
are not considered. As explained before, this means that it is not clear if consistent
sensitivities are computed.

Because of these problems, we utilize a different way: the principle of internal
numerical differentiation (IND), first introduced by Bock for ODEs [25], [26], [27]. It
was extended amongst others by [4], [5], [15], see [4] and [89] for an extensive overview.
We follow the principle of IND and therefore include the sensitivity evaluation into
the numerical scheme. We transfer the principle of IND to PDEs.

We characterize the principle of IND by two aspects

1) We freeze all adaptive components and differentiate the discretized PDE problem
with fixed spatial grid, order and step size.

2) We choose the adaptive components such that all PDE problems, the primal
problem and the tangential problems, are solved well with similar accuracy.

This definition is suitable with the characterizations in [80], [89]. With the principle
of IND we obtain the exact derivative of the solution of the discretized PDE. This is
referred to as the “analytical limit of IND” [26].

We have two possibilities to differentiate the discretized PDE: finite differences or
automatic differentiation (AD). Again finite differences introduce an error, while AD
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does not introduce truncation errors. Therefore we will use AD.

In the following two sections we depict analytical sensitivity evaluation and automatic
differentiation, because we will make use of both for realizing the transfer of the
principle of IND to PDEs. In the following Chapters 6, 7 and 8 we will investigate
the transfer in detail and develop methods to apply the principle of IND to PDEs
and especially the discontinuous Galerkin method.

5.3. Analytical sensitivity evaluation: sensitivity
approach

To evaluate the sensitivities analytically we have two options: the sensitivity approach,
which is also called the forward mode, and the adjoint approach, also called the reverse
mode [54], [17]. Because of the small number of parameters compared to the number
of states the sensitivity approach is an efficient way to compute the derivatives. Thus
to compute the directional derivatives of the model responses we utilize the sensitivity
approach. Let us recapitulate it shortly, we follow [54].

We utilize the chain rule for the directional derivative of the measurement function
hi(p) = h̄i(p;S(p)) with respect to the parameter pj . For clarity we omit the direction
δpj in the following. We need the partial derivatives with respect to the second
argument ∂h̄i(p;S(p))

∂S
: Y → R and with respect to the first argument ∂h̄i(p;S(p))

∂pj
: P → R.

We define the partial derivative of the solution operator with respect to a parameter
pj by Spj := ∂S(p)

∂pj
. We obtain

dh̄i(p;S(p))
dpj

= ∂h̄i(p;S(p))
∂S

Spj + ∂h̄i(p;S(p))
∂pj

. (5.2)

In equation (5.2) the only derivative we are not able to calculate directly is Spj .

In Section 2.2 we assumed that the bilinear form F (p;S(p), v) is continuously Fréchet-
differentiable. Let us make two additional assumptions.
5.3.1 Assumption. The partial derivative of F with respect to S

∂F (p;S(p), v)
∂S

(5.3)

is in the normed space of all linear and continuous mappings from Y to R, that means
∂F (p;S(p),v)

∂S ∈ L(Y,R) = Y ∗. 4
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5. Sensitivity evaluation

5.3.2 Assumption. The derivative (5.3) is continuously invertible. 4

With these assumptions, we can apply the implicit function theorem. It ensures that
the solution operator S(p) is continuously differentiable with respect to p. The partial
derivative of the solution operator S with respect to the j-th parameter Spj solves
the tangential equation, also called sensitivity equation, which is a direct result of the
implicit function theorem:

dF (p;S(p), v)
dpj

= ∂F (p;S(p), v)
∂S

Spj + ∂F (p;S(p), v)
∂pj

= 0, ∀v ∈ V (Ω). (5.4)

To solve the tangential equation (5.4) we need to calculate two derivatives, ∂F (p;S(p))
∂S

and ∂F (p;S(p))
∂pj

. After calculating these two derivatives, we obtain the requested one
Spj = ∂S(p)

∂pj
by solving the tangential equation (5.4). Note that the tangential equation

(5.4) is a weak form of a PDE problem.

For every parameter pj one tangential equation has to be prepared and solved. The
calculation of the Jacobian consists of two steps:

1) solve tangential equations (5.4) for pj , j = 1, .., np,

2) insert solutions Spj in equation (5.2), respectively, and compute the entries of
the Jacobian (5.1).

Discrete setting We derive the tangential equation in a similar way for the discrete
setting, which we introduced in Section 4.3.

The discrete directional derivative of the measurement function hi,h(p) = h̄i(p;Sh(p))
with respect to the parameter pj reads

dh̄i(p;Sh(p))
dpj

= ∂h̄i(p;Sh(p))
∂Sh

Sh,pj + ∂h̄i(p;Sh(p))
∂pj

. (5.5)

We make similar Assumptions 5.3.1 and 5.3.2 for the discrete derivative

∂Fh(p;Sh(p), vh)
∂Sh

.

This ensures that the discrete solution operator Sh(p) is continuously differentiable
with respect to p. With the discrete analogue Sh,pj := ∂Sh(p)

∂pj
, we obtain the discrete
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5.4. Automatic differentiation

tangential equation

dFh(p;Sh(p), vh)
dpj

= ∂Fh(p;Sh(p), vh)
∂Sh

Sh,pj + ∂Fh(p;Sh(p), vh)
∂pj

= 0, ∀vh ∈ Vh.

(5.6)

The partial derivative of the discrete solution operator Sh with respect to pj solves
the tangential equation: Sh,pj .

5.4. Automatic differentiation

We now present the approach of automatic differentiation (AD). We follow [77] in this
section. For an extensive treatment of the topic of AD see the textbook of Griewank
and Walther [46].

Automatic differentiation (AD) calculates derivatives by directly differentiating the
programming code, which evaluates the function value. An AD tool processes the
programming code. Thus the derivatives are calculated automatically, not by hand as
in the analytical setting depicted in the preceding Section 5.3. A big advantage of
AD is that compared to finite differences no truncation errors arise [46].

Any function is evaluated by performing a sequence of simple elementary operations,
which contain one or two arguments. Two argument operations are for example
addition, multiplication and division. Single argument operations are trigonometric,
exponential and logarithmic functions. We segment the function into these elementary
operations. After that, the chain rule is used to arrive at the derivative.

We distinguish two basic modes of AD: the forward mode and the reverse mode. In
the forward mode, we split the function evaluation in simple elementary operations
and compute one after another. The results of intermediate computations are called
intermediate variables. The input variables are called independent variables. We
evaluate function values at the independent and intermediate variables and compute
with the help of the chain rule the derivatives of the intermediate variables. Finally,
we arrive at the function and gradient values of the overall function.

Contrary, in the reverse mode, we do not evaluate function and gradient values
concurrently. Instead, after the evaluation of the function value, the partial derivatives
with respect to intermediate and independent variables are computed by a reverse
sweep and the chain rule is applied backwards. Here we have to save the function
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5. Sensitivity evaluation

values, that means we need more memory than in the forward mode.

Computational costs The costs of the forward mode grow linearly with the
number of directions and thus independent variables. In the reverse mode the cost
grow linearly with the number of backward directions and thus with the number
of dependent variables [46]. In the parameter estimation setting, we have a low
number of parameters, that means, independent variables, compared to the number
of dependent variables. Thus the forward mode is more efficient and we choose it in
the following.

Software Regarding AD software, we distinguish two approaches: source code
transformation and operator overloading. In source code transformation, the AD
tool processes the code before compile time and creates new code for the derivative
evaluation. In operator overloading, for each elementary operation the meaning of
the corresponding operator is redefined. The operator does not only evaluate the
elementary operation, but also the associated gradient object [24].

We shortly recap advantages and disadvantages of these two approaches from [24].
An advantage of operator overloading is that only one additional class is needed
and changes in the differentiation procedure only need to be done in this class, the
source code remains unaffected. Compared to that, in source code transformation
the implementation is complex. If the given source code exceeds a certain level of
complexity, a black-box source code transformation is infeasible. Disadvantages of
operator overloading are the lack of transparency and dependent on the compiler the
runtime overhead can be substantial. In contrast, the code generated by source code
transformation is simple, which also facilitates compiler optimizations. Furthermore,
in source code transformation, there is more flexibility in applying derivative rules.
The context of the specific computation is available, not only one elementary operation
[24].

By transferring the principle of IND and therefore exploiting the structure and only
differentiating parts of the code, we circumvent the problem of high complexity in the
implementation of source code transformation. With that, the advantages of source
code transformation exceed the disadvantages. Thus, we choose code transformation.
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Part III.

Discretization: New
differentiable discontinuous

Galerkin finite element method
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6. Analysis and numerical results of
differentiable upwind method

In this chapter we propose a differentiable discretization for the advection part of the
PDE problem. The standard upwind discontinuous Galerkin method is not continu-
ously differentiable. Therefore, we first propose a differentiable upwind discontinuous
Galerkin method. Thereafter, the analysis of the new method follows, including
consistency and coercivity of the discretization, stability estimate, error estimate for
the L2-projection, error estimate in the energy norm and superconvergence result.
After that, we consider the diffusion advection reaction PDE model and show that
the error estimates also hold in this setting. Thereafter we investigate the case of a
non normalized advection coefficient, we show that the convergence analysis changes,
the constant is now dependent on the advection coefficient. We show, that all other
properties of the error estimates remain unchanged. Finally, numerical results for the
developed differentiable discretization are presented.

6.1. Upwind method with differentiable stabilization

In this section we are concerned with the upwind discretization of the advection part.
To simplify the notation we omit the dependency on the parameters p in this chapter.
We are analyzing in the next subsections the pure advection problem Example 2.1.7:

β · ∇y = f on Ω, (6.1a)
y = yD on Γ−, (6.1b)

for ‖β‖ 6= 0.

The corresponding discrete problem derived in Section 4.1 is: Find yh ∈ Vh such that

bh(yh, vh) = fah (vh), ∀vh ∈ Vh, (6.2a)

where

bh(yh,vh) = −
∑
T∈Th

(yh, β · ∇vh)T +
∑
F∈FΓ

h

(1
2β · nyh + 1

2σupw(β, n)yh, vh
)
F
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+
∑

F∈Fint
h

(
{{yh}}, 2{{vhβ · n}}

)
F +

∑
F∈Fint

h

(1
2σupw(β, n) JyhK , JvhK

)
F
, (6.2b)

and right hand side

fah (vh) =
∑
T∈Th

(f, vh)T −
∑
F∈FΓ

h

(1
2β · nyD −

1
2σupw(β, n)yD, vh

)
F
. (6.2c)

In Section 6.3, we come back to the whole diffusion advection reaction problem and
show that our analysis can be generalized.

We replace the absolute value function in the stabilization term of the standard
upwind discretization (4.5)

σupw(β, n) = |β · n| ,

by a continuously differentiable approximation σµ(β, n) with variable µ ∈ R,

σµ(β, n) :=

√
(β · n)2 + ‖β‖2 µ2√

1 + µ2 (6.3)

Let us make one assumption and let us prove two properties of the proposed stabi-
lization function σµ(β, n). The following assumption simplifies the analysis.
6.1.1 Lemma. We assume that β is normalized, i.e.

‖β‖ = 1.

The differentiable approximation σµ(β, n) reduces to

σµ(β, n) =
√

(β · n)2 + µ2√
1 + µ2 . (6.4)

At the end of this chapter, in Section 6.4, the case ‖β‖ 6= 1 will be addressed.
6.1.2 Lemma. The following inequality holds

|β · n| ≤ σµ(β, n), for β · n ∈ [−1, 1].
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Proof. Because it holds (β · n)2 ≤ 1 for β · n ∈ [−1, 1], the inequality holds:

σµ(β, n) =
√

(β · n)2 + µ2√
1 + µ2

=
√

(β · n)2


√√√√1 +

(
µ
β·n

)2

1 + µ2

 ≥|β · n| .

This will be important in the following proofs of error estimates.
6.1.3 Lemma. Furthermore, σµ(β, n) is bounded from above

σµ(β, n) ≤ 1.

Proof. This holds true, because

|β · n| ≤ ‖β‖ ‖n‖ = 1
⇒ (β · n)2 ≤ 1
⇒ (β · n)2 + µ2 ≤ 1 + µ2

⇒
√

(β · n)2 + µ2 ≤
√

1 + µ2

⇒
√

(β · n)2 + µ2√
1 + µ2 ≤ 1.

6.1.4 Remark. Numerical flux function for selection of inflow and outflow boundaries.
To ensure that equation (6.2) holds for all faces of the boundary FΓh , Γ = Γ− ∪ Γ+,
the inflow boundary function yD is continued on the outflow boundary Γ+. For the
upwind stabilization σupw(β, n) equation (4.5) this continuation will never actually be
evaluated. We choose the inflow and outflow faces via the numerical flux function, see
Section 4.1. In the case of an outflow face F ∈ Γ+, the terms including yD cancel out
and contribute a zero. For the proposed differentiable stabilization σµ(β, n) equation
(6.3), on the outflow faces the terms including yD do not cancel out completely,
depending on the size of the variable µ. This results in an artifact due to this
continuation.

We use a continuation instead of defining separate terms for inflow and outflow
boundary, because of the optimization problem. If we estimate the components
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of the advection direction, the direction changes in the course of the optimization.
The inflow boundary is dependent on this direction and thus changes, too. With
a continuation it is not necessary to assign the boundary faces to inflow or outflow
boundary. Thus if the inflow and outflow boundary change, we do not have to change
this assignment. 4

6.1.1. Basics

We recapitulate some basic approximation formulas and the reformulation of the
advective bilinear form. Both ingredients are used at several places in the proofs in
this chapter.

Approximation The L2-projection Πh : L2(Ω)→ Vh is defined by the orthogonal-
ity condition [58]

(y −Πhy, vh)Ω = 0, ∀vh ∈ Vh. (6.5)

The following inequalities are used at several places of the proofs.

Cauchy-Schwarz inequality: y, v ∈ L2(Ω),∣∣(y, v)
∣∣ ≤ ‖y‖ ‖v‖ ⇔ −(y, v) ≥ −‖y‖ ‖v‖ ∧ (y, v) ≥ −‖y‖ ‖v‖ . (6.6)

Inequality of Schwarz: y1, y2, v1, v2 ∈ R,

y1v1 + y2v2 ≤ (y2
1 + y2

2)
1
2 · (v2

1 + v2
2)

1
2 , (6.7)

It is the algebraic form of the Cauchy-Schwarz inequality.

Young’s inequality: ν > 0, a, b ∈ R,

a · b ≤ 1
2ν a

2 + ν

2 b
2. (6.8)

Trace inequality: y ∈ Hk(Th),

‖y‖∂T ≤Ch
1
2 ‖∇y‖T + Ch−

1
2 ‖y‖T (6.9)

⇔ h
1
2 ‖y‖∂T ≤Ch ‖∇y‖T + C ‖y‖T , (6.10)
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with constant C independent of the mesh size function h.

Trace inequality for polynomials: yh ∈ P(T ),

‖β · ∇yh‖∂T ≤ Ch
−1/2 ‖β · ∇yh‖T . (6.11)

Inverse estimate: yh ∈ P(T ), k ≥ 1,

‖∇yh‖T ≤ C
1
h
‖yh‖T , (6.12)

with constant C independent of h.

Green’s formula of integration by parts for the advection is

(y, β · ∇v)T = − (β · ∇y, v)T + (β · ny, v)∂T . (6.13)

Reformulation of the advective bilinear form For later use we rewrite bh(yh, vh).
Recall bh(yh, vh) from equation (6.2b):

bh(yh,vh) = −
∑
T∈Th

(yh, β · ∇vh)T +
∑

F∈Fint
h

(
{{yh}}, 2{{vhβ · n}}

)
F

+
∑

F∈Fint
h

(1
2σµ(β, n) JyhK , JvhK

)
F
,+

∑
F∈FΓ

h

(1
2β · nyh + 1

2σµ(β, n)yh, vh
)
F
.

6.1.5 Lemma. For yh, vh ∈ Vh it holds

bh(yh, vh) =
∑
T∈Th

(β · ∇yh, vh)T −
∑

F∈Fint
h

(1
2 Jβ · nyhK , JvhK

)
F

+
∑

F∈Fint
h

(1
2σµ(β, n) JyhK , JvhK

)
F

+
∑
F∈FΓ

h

(
−1

2β · nyh + 1
2σµ(β, n)yh, vh

)
F
.

Proof. First, we use integration by parts (6.13)

bh(yh, vh) (6.13)=
∑
T∈Th

(β · ∇yh, vh)T −
∑
T∈Th

(β · nyh, vh)∂T

+
∑

F∈Fint
h

(
{{yh}}, 2{{vh β · n}}

)
F +

∑
F∈Fint

h

(1
2σµ(β, n) JyhK , JvhK

)
F
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+
∑
F∈FΓ

h

(1
2β · nyh + 1

2σµ(β, n)yh, vh
)
F
.

After that we reorder the sum from cell boundaries ∂T to faces F and summing up
with the terms on interior and boundary faces:

−
∑
T∈Th

(β · nyh, vh)∂T +
∑

F∈Fint
h

(
{{yh}}, 2{{vhβ · n}}

)
F +

∑
F∈FΓ

h

(1
2β · nyh, vh

)
F
.

(6.14)

On the boundary FΓh we get

−
∑
F∈FΓ

h

(β · nyh, vh)F +
∑
F∈FΓ

h

(1
2β · nyh, vh

)
F

=
∑
F∈FΓ

h

(
−1

2β · nyh, vh
)
F
.

For the reordering of the first sum in (6.14) with respect to inner faces let us consider
an inner face F of two adjacent cells T1 and T2 and let n1 be the outward pointing
normal vector of T1 at F

−
(
(β · n1y1, v1)F (T1) + (β · n2y2, v2)F (T2)

)
= −

∫
F

(β · n1y1v1 + β · n2y2v2)ds.

The summand in the second sum of (6.14) is

(
{{yh}}, 2{{vhβ · n}}

)
F =

∫
F

1
2(y1 + y2)(v1β · n1 + v2β · n2)ds

=
∫
F

1
2 (y1v1β · n1 + y1v2β · n2 + y2v1β · n1 + y2v2β · n2) ds.

Adding these two terms yields∫
F

1
2 (−y1v1β · n1 + y1v2β · n2 + y2v1β · n1 − y2v2β · n2) ds.

On the other hand, it holds

−1
2(Jβ · nyhK , JvhK)F = −1

2

∫
F

(β · n1y1 − β · n2y2)(v1 − v2)ds
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= −1
2

∫
F

(β · n1y1v1 − β · n1y1v2 − β · n2y2v1 + β · n2y2v2)ds.

Thus, the equality in Lemma 6.1.5 holds true.

6.2. Analysis of differentiable upwind method

For the analysis of the proposed differentiable upwind method we mainly follow the
standard procedure for convergence analysis of finite element discretizations:

6.2.1 Consistency of the discretization

6.2.2 Coercivity of the bilinear form and definition of energy norm

6.2.3 Stability estimate for bilinear form

6.2.4 L2-projection error estimate

6.2.5 Estimate for bilinear form and error estimate in the energy norm

6.2.6 Superconvergence result

An analysis of the upwind discontinuous Galerkin method for advection problems
without differentiable stabilization can be found in [45], [58], [59], [60].

6.2.1. Consistency of the discretization

6.2.1 Definition. ([38]) The discretization is called consistent, if bh(., .) can be
extended from Vh × Vh to [V (Ω) + Vh]× Vh and if the exact weak solution y ∈ V (Ω)
of problem (6.1) solves the discrete problem (6.2). That means

bh(y, vh) = fh(vh), vh ∈ Vh.

4

Assume y ∈ V (Ω) to be the exact weak solution of (6.1).
6.2.2 Lemma. The discretization is consistent. That means the exact weak solution
y of (6.1) satisfies the discrete problem (6.2) .

Proof. Using the facts that all jumps vanish JyK = 0, the averages are {{y}} = y and
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y = yD on Γ , the remaining parts of (6.2) are

−
∑
T∈Th

(y, β · ∇vh)T +
∑

F∈Fint
h

(
y, 2{{vhβ · n}}

)
F

+
∑
F∈FΓ

h

(1
2β · nyD + 1

2σµ(β, n)yD, vh
)
F

(6.15a)

=
∑
T∈Th

(f, vh)T −
∑
F∈FΓ

h

(1
2β · nyD −

1
2σµ(β, n)yD, vh

)
F

⇔ −
∑
T∈Th

(y, β · ∇vh)T +
∑

F∈Fint
h

(
y, 2{{vhβ · n}}

)
F +

∑
F∈FΓ

h

(β · nyD, vh)F

=
∑
T∈Th

(f, vh)T (6.15b)

for all vh ∈ Vh. Using integration by parts (6.13), equation (6.15b) is equivalent to∑
T∈Th

(β · ∇y, vh)T −
∑
T∈Th

(β · ny, vh)∂T

+
∑

F∈Fint
h

(
y, 2{{vhβ · n}}

)
F +

∑
F∈FΓ

h

(β · nyD, vh)F =
∑
T∈Th

(f, vh)T

⇔
∑
T∈Th

(β · ∇y, vh)T =
∑
T∈Th

(f, vh)T

⇔
∑
T∈Th

(β · ∇y − f, vh)T = 0.

Hence, the exact solution of (6.1) satisfies the discretization (6.2).

6.2.2. Coercivity

6.2.3 Lemma. The bilinear form bh(., .) of (6.2b) is positive definite.

Proof. Let vh ∈ Vh. According to Green’s formula for integration by parts (6.13) we
have

(vh, β · ∇vh)T = − (β · ∇vh, vh)T + (β · nvh, vh)∂T .

Due to symmetry of the L2 scalar product this gives

2 (vh, β · ∇vh)T = (β · nvh, vh)∂T ⇔ (vh, β · ∇vh)T = 1
2 (β · nvh, vh)∂T .
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Now summing up over all cells yields

∑
T∈Th

(vh, β · ∇vh)T = 1
2
∑
T∈Th

(β · nvh, vh)∂T . (6.16)

We now reorder the sum with respect to faces. Let us consider an inner face F of two
adjacent cells T1 and T2 and let be n1 the outward pointing normal vector of T1 at F ,

1
2(β · n1v1, v1)F (T1) + 1

2(β · n2v2, v2)F (T2) = 1
2

∫
F

(β · n1v
2
1 + β · n2v

2
2)ds.

On the other hand, on an inner face F it holds

(
{{vh}}, 2{{vhβ · n}}

)
F =

∫
F

1
2(v1 + v2)21

2(v1β · n1 + v2β · n2)ds

=
∫
F

1
2(v2

1β · n1 + v1v2β · n2 + v2v1β · n1 + v2
2β · n2)ds

=
∫
F

1
2(v2

1β · n1 + v1v2(β · n2 + β · n1) + v2
2β · n2)ds

=
∫
F

1
2(v2

1β · n1 + v1v2(β · n2 − β · n2) + v2
2β · n2)ds

=
∫
F

1
2(v2

1β · n1 + v2
2β · n2)ds.

Hence, the right hand side of (6.16) is

1
2
∑
T∈Th

(β · nvh, vh)∂T =
∑

F∈Fint
h

(
{{vh}}, 2{{vhβ · n}}

)
F + 1

2
∑
F∈FΓ

h

(β · nvh, vh)F . (6.17)

Now we evaluate the bilinear form bh (6.2b) in (vh, vh) and insert (6.16) and (6.17) to
obtain

bh(vh, vh) =
−
∑
T∈Th

(vh, β · ∇vh)T

+
∑

F∈Fint
h

(
{{vh}}, 2{{vh β · n}}

)
F +

∑
F∈Fint

h

(1
2σµ(β, n) JvhK , JvhK

)
F
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+
∑
F∈FΓ

h

(1
2β · nvh + 1

2σµ(β, n)vh, vh
)
F

(6.18a)

(6.16),(6.17)= −
∑

F∈Fint
h

(
{{vh}}, 2{{vh β · n}}

)
F −

1
2
∑
F∈FΓ

h

(β · nvh, vh)F

+
∑

F∈Fint
h

(
{{vh}}, 2{{vh β · n}}

)
F +

∑
F∈Fint

h

(1
2σµ(β, n) JvhK , JvhK

)
F

+
∑
F∈FΓ

h

(1
2β · nvh + 1

2σµ(β, n)vh, vh
)
F

(6.18b)

=
∑

F∈Fint
h

(1
2σµ(β, n) JvhK , JvhK

)
F

+
∑
F∈FΓ

h

(1
2σµ(β, n)vh, vh

)
F

(6.18c)

> 0, ∀vh ∈ Vh. (6.18d)

The last inequality holds, if σµ(β, n) > 0. This is the case for µ 6= 0.

Since the bilinear form is positive definite, the linear system (6.2) has a unique
solution.

Energy norm Motivated by the coercivity we define the energy norm

|||y|||2 := bh(y, y) +
∑
T∈Th

h ‖β · ∇y‖2T . (6.19)

Note that the norm depends on σµ(β, n) via bh(y, y).

6.2.3. Stability estimate or inf-sup condition

We have to prove that for all yh ∈ Vh there exists a vh ∈ Vh such that

bh(yh, vh) ≥ C|||yh||||||vh||| (6.20)

holds with C > 0 independent of h.
6.2.4 Lemma. For yh ∈ Vh arbitrarily we set vh := C2yh + hβ · ∇yh with C2 > 0. It
is

|||vh||| = |||C2yh + hβ · ∇yh||| ≤ C|||yh|||
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where C is independent of h.

Proof. We verify this by

|||C2yh + hβ · ∇yh||| ≤ C2|||yh|||+ |||hβ · ∇yh|||
≤ C2|||yh|||+ C|||yh|||
= (C2 + C)|||yh|||.

Let us validate the second inequality. The energy norm with bilinear form bh as in
(6.18c) reads

|||hβ · ∇yh|||2 =
∑

F∈Fint
h

(1
2σµ(β, n) Jhβ · ∇yhK , Jhβ · ∇yhK

)
F

(6.21)

+
∑
F∈FΓ

h

(1
2σµ(β, n)hβ · ∇yh, hβ · ∇yh

)
F

+
∑
T∈Th

h
∥∥β · ∇(hβ · ∇yh)

∥∥2
T

We first reformulate the face terms∑
F∈Fint

h

(1
2σµ(β, n) Jhβ · ∇yhK , Jhβ · ∇yhK

)
F

+
∑
F∈FΓ

h

(1
2σµ(β, n)hβ · ∇yh, hβ · ∇yh

)
F

=
∑

F∈Fint
h

1
2σµ(β, n)

∥∥Jhβ · ∇yhK∥∥2
F +

∑
F∈FΓ

h

1
2σµ(β, n) ‖hβ · ∇yh‖2F .

We relate the faces to the boundary of one element T . Let F be the inner face between
cells T1 and T2. By the triangle inequality it holds∥∥Jhβ · ∇yhK∥∥2

F = h2 ‖β · ∇y1 − β · ∇y2‖2F ≤ h
2(‖β · ∇y1‖2F + ‖β · ∇y2‖2F ). (6.22)

With Lemma 6.1.3 we have that 1
2σµ(β, n) is bounded from above by some κ > 0,

this yields

∑
F∈Fint

h

1
2σµ(β, n)

∥∥Jhβ · ∇yhK∥∥2
F +

∑
F∈FΓ

h

1
2σµ(β, n) ‖hβ · ∇yh‖2F ≤ κh

2 ∑
T∈Th

‖β · ∇yh‖2∂T .

Now we apply the trace inequality (6.11) to obtain for the face part

κh2 ∑
T∈Th

‖β · ∇yh‖2∂T ≤ κhC
∑
T∈Th

‖β · ∇yh‖2T . (6.23)
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Second, we transform the cell part of equation (6.21) with the Cauchy-Schwarz
inequality (6.6) and with the inverse estimate (6.12)

∑
T∈Th

h
∥∥β · ∇(hβ · ∇yh)

∥∥2
T

(6.6)
≤

∑
T∈Th

h ‖β‖2T
∥∥∇(hβ · ∇yh)

∥∥2
T

(6.12)
≤ C

∑
T∈Th

h ‖β · ∇yh‖2T .

Note that we used the Assumption 6.1.1 ‖β‖ = 1. Altogether we have

∑
F∈Fint

h

(1
2σµ(β, n) Jhβ · ∇yhK , Jhβ · ∇yhK

)
F

+
∑
F∈FΓ

h

(1
2σµ(β, n)hβ · ∇yh, hβ · ∇yh

)
F

+
∑
T∈Th

h
∥∥β · ∇(hβ · ∇yh)

∥∥2
T

≤κhC
∑
T∈Th

‖β · ∇yh‖2T + C
∑
T∈Th

h ‖β · ∇yh‖2T .

We add face terms to arrive at the energy norm. The inequality still holds with these
additional face terms

|||hβ · ∇yh|||2 ≤C
[ ∑
F∈Fint

h

(1
2σµ(β, n) JyhK , JyhK

)
F

+
∑
F∈FΓ

h

(1
2σµ(β, n)yh, yh

)
F

+
∑
T∈Th

h ‖β · ∇yh‖2T
]

=C
[
bh(yh, yh) +

∑
T∈Th

h ‖β · ∇yh‖2T
]

= C|||yh|||2. (6.24)

Thus it holds

|||hβ · ∇yh||| ≤ C|||yh|||.

Therefore it is enough to prove that

bh(yh, vh) ≥ C|||yh|||2, for vh := C2yh + hβ · ∇yh,

which we do in the next lemma.
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6.2.5 Lemma. There exists a constant C2 > 0 such that for all yh ∈ Vh,

bh(yh, C2yh + hβ · ∇yh) ≥ C|||yh|||2.

Proof. We follow the proof of Lemma A.1 in [45]. Since our discretization of the
advection differs from [45] we now consider the advection parts of their proof. Hence
we have to show that for any C2 there exists a constant c′2 > 0 such that

bh(yh, C2yh + hβ · ∇yh) ≥ C2bh(yh, yh)− c′2bh(yh, yh) + h ‖β · ∇yh‖2Ω /2. (6.25)

This is enough to prove, because if we choose C2 > c′2, the inequality in Lemma
6.2.5 holds. We mainly follow the proofs of [45, Lemma A.1] and [60, Lemma 1.4.11].
However, for completeness we sketch all details. We use the reformulation of the
bilinear form bh as in Lemma 6.1.5. Applying Cauchy-Schwarz inequality (6.6) and
afterwards Young’s inequality (6.8) to all products yields

bh(yh, C2yh + hβ · ∇yh) = C2bh(yh, yh) + h ‖β · ∇yh‖2T

−
∑

F∈Fint
h

(1
2 Jβ · nyhK , Jhβ · ∇yhK

)
F

+
∑

F∈Fint
h

(1
2σµ(β, n) JyhK , Jhβ · ∇yhK

)
F

−
∑
F∈FΓ

h

(1
2β · nyh, hβ · ∇yh

)
F

+
∑
F∈FΓ

h

(1
2σµ(β, n)yh, hβ · ∇yh

)
F

(6.6),(6.8)
≥ C2bh(yh, yh) + h ‖β · ∇yh‖2T −

1
2ν

∑
F∈Fint

h

∥∥∥∥1
2 Jβ · nyhK

∥∥∥∥2

F
− ν

2
∑

F∈Fint
h

∥∥Jhβ · ∇yhK∥∥2
F

− 1
2ν

∑
F∈Fint

h

∥∥∥∥1
2σµ(β, n) JyhK

∥∥∥∥2

F
− ν

2
∑

F∈Fint
h

∥∥Jhβ · ∇yhK∥∥2
F

− 1
2ν

∑
F∈FΓ

h

∥∥∥∥1
2β · nyh

∥∥∥∥2

F
− 1

2ν
∑
F∈FΓ

h

∥∥∥∥1
2σµ(β, n)yh

∥∥∥∥2

F
− 2ν2

∑
F∈FΓ

h

‖hβ · ∇yh‖2F .

Let us sort the terms and bound them bit by bit afterwards

bh(yh, C2yh + hβ · ∇yh)
≥C2bh(yh, yh) + h ‖β · ∇yh‖2T (T0)

− 1
2ν

 ∑
F∈Fint

h

∥∥∥∥1
2σµ(β, n) JyhK

∥∥∥∥2

F
+
∑
F∈FΓ

h

∥∥∥∥1
2σµ(β, n)yh

∥∥∥∥2

F

 (T1)
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− ν

2

2
∑

F∈Fint
h

∥∥Jhβ · ∇yhK∥∥2
F + 2

∑
F∈FΓ

h

‖hβ · ∇yh‖2F

 (T2)

− 1
2ν

1
4

 ∑
F∈Fint

h

∥∥Jβ · nyhK∥∥2
F +

∑
F∈FΓ

h

‖β · nyh‖2F

 (T3)

Let us begin with T1. Assume that 1
2σµ(β, n) is bounded from above by κ and use

(6.18c) to obtain

T1 = − 1
2ν

 ∑
F∈Fint

h

∥∥∥∥1
2σµ(β, n) JyhK

∥∥∥∥2

F
+
∑
F∈FΓ

h

∥∥∥∥1
2σµ(β, n)yh

∥∥∥∥2

F

 ≥ − 1
2ν κbh(yh, yh).

(6.27)

For the second term T2, we proceed in the same fashion as in the proof of the preceding
Lemma 6.2.4. We relate the faces to the boundary of one element T . Let F be the
inner face between cells T1 and T2. With the triangle inequality it holds∥∥Jhβ · ∇yhK∥∥2

F = h2 ‖β · ∇y1 − β · ∇y2‖2F ≤ h
2(‖β · ∇y1‖2F + ‖β · ∇y2‖2F ). (6.28)

This then yields

T2 = −ν

 ∑
F∈Fint

h

∥∥Jhβ · ∇yhK∥∥2
F +

∑
F∈FΓ

h

‖hβ · ∇yh‖2F

 ≥ −h2ν
∑
T∈Th

‖β · ∇yh‖2∂T .

Now we apply the trace inequality (6.11) to obtain

T2 ≥ −h2ν
∑
T∈Th

‖β · ∇yh‖2∂T ≥ −νhC
∑
T∈Th

‖β · ∇yh‖2T . (6.29)

Let us finally bound the term T3∑
F∈Fint

h

∥∥Jβ · nyhK∥∥2
F +

∑
F∈FΓ

h

‖β · nyh‖2F (6.30a)

=
∑

F∈Fint
h

(Jβ · nyhK , Jβ · nyhK)F +
∑
F∈FΓ

h

(β · nyh, β · nyh)F . (6.30b)

We begin with the sum over the interior faces. We use the definition of the jumps
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(4.2) and reformulate

(Jβ · nyhK , Jβ · nyhK)F = 4({{β · nyh}}, {{β · nyh}})F (6.31)

=
∫
F

(β · n1y1 + β · n2y2)(β · n1y1 + β · n2y2)ds

= (β · n1)2 ∥∥JyhK∥∥2
.

It holds −1 ≤ β · n ≤ 1 since |β · n| ≤ ‖β‖ ‖n‖ = 1 due to Assumption 6.1.1. Thus we
estimate

(β · n1)2 ∥∥JyhK∥∥2 ≤|β · n1| (JyhK , JyhK)F .

Furthermore, according to Lemma 6.1.2, the differentiable stabilization is greater or
equal the absolute value function: β · n ≤|β · n| ≤ σµ(β, n). That means,

|β · n1| (JyhK , JyhK)F ≤ (σµ(β, n) JyhK , JyhK)F .

In the same way we proceed for the term over the boundary faces

(β · nyh, β · nyh)F = (β · n1)2(yh, yh)F
≤|β · n1| (yh, yh)F
≤ (σµ(β, n)yh, yh)F .

Finally, the interior and boundary faces together with the formulation of bh(yh, yh) in
(6.18c) read ∑

F∈Fint
h

(Jβ · nyhK , Jβ · nyhK)F +
∑
F∈FΓ

h

(β · nyh, β · nyh)F

≤
∑

F∈Fint
h

(σµ(β, n) JyhK , JyhK)F +
∑
F∈FΓ

h

(σµ(β, n)yh, yh)F

(6.18c)= 2bh(yh, yh). (6.32)

Putting all the pieces together, it holds

T0+T1 + T2 + T3

≥C2bh(yh, yh) + h ‖β · ∇yh‖2T −
1

2ν κbh(yh, yh)
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− νhC
∑
T∈Th

‖β · ∇yh‖2T −
1

2ν
1
42bh(yh, yh)

≥C2bh(yh, yh) + (1− νC)h ‖β · ∇yh‖2T −
1

2ν (κ+ 2)bh(yh, yh).

We choose ν := 1
2C and C2 >

1
2ν (κ+ 2) = C(κ+ 2) to complete the proof.

The main assumption of Lemmas 6.2.4 and 6.2.5 is

1
2σµ(β, n) ≤ κ ∀n. (6.33)

With Lemma 6.1.3 such a κ is easily found.

6.2.4. Error estimate for the L2-projection

Now we derive an error estimate for the L2-projection (6.5). This will be used in the
next step to get an estimate for the overall error.
6.2.6 Lemma. For any function v ∈ Hk+1(Th), the error for the L2-projection in
the energy norm can be bounded

|||v −Πhv||| ≤ Chk+ 1
2 |v|Hk+1(Th).

Proof. Again we follow the beginning of the proofs in [45, Theorem 5.1] and [60,
Theorem 1.4.13]. The standard estimates for the L2-projection are, see [35, Theorem
3.1.5], ∑

T∈Th

‖v −Πhv‖T ≤ Ch
k+1|v|Hk+1(Th), (6.34)

and ∑
T∈Th

∥∥∇(v −Πhv)
∥∥
T ≤ Ch

k|v|Hk+1(Th). (6.35)

Due to the definition of the energy norm, the error of the L2-projection in the energy
norm reads

|||(v −Πhv)||| =

bh(v −Πhv, v −Πhv) +
∑
T∈Th

h
∥∥∇(v −Πhv)

∥∥2
T

 1
2

. (6.36)
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We begin by estimating the first term. The bilinear form equation (6.18c) is

bh(v −Πhv, v −Πhv) (6.18c)=
∑

F∈Fint
h

(1
2σµ(β, n) Jv −ΠhvK , Jv −ΠhvK

)
F

+
∑
F∈FΓ

h

(1
2σµ(β, n)(v −Πhv), (v −Πhv)

)
F
.

For the interior faces, we get with Young’s inequality (6.8) and with 1
2σµ(β, n) ≤ 1

due to Lemma 6.1.3(1
2σµ(β, n) Jv −ΠhvK , Jv −ΠhvK

)
F

=
∫
F

1
2σµ(β, n)

(
(v1 −Πhv1)2 − 2(v1 −Πhv1)(v2 −Πhv2) + (v2 −Πhv2)2

)
ds

(6.8)
≤

∫
F

C
1
2σµ(β, n)

(
(v1 −Πhv1)2 + (v2 −Πhv2)2

)
ds

≤ C
∫
F

(v1 −Πhv1)2 + (v2 −Πhv2)2ds

= C
(
(v1 −Πhv1, v1 −Πhv1)F (T1) + (v2 −Πhv2, v2 −Πhv2)F (T2)

)
.

In the same way with 1
2σµ(β, n) ≤ 1, Lemma 6.1.3, we get for the boundary faces(1

2σµ(β, n)(v −Πhv), (v −Πhv)
)
F
≤
∫
F

(v −Πhv)2ds.

Altogether, we estimate the first term with bilinear form by writing the interior and
boundary faces in terms of the boundaries of the the single elements T . Thereafter,
we use the relation that the square root of a sum is less or equal a sum of square
roots. The third inequality holds, because of the trace inequality (6.9). The last step
follows directly form the standard estimates (6.34), (6.35).

|||(v −Πhv)||| =

bh(v −Πhv, v −Πhv) +
∑
T∈Th

h
∥∥∇(v −Πhv)

∥∥2
T

 1
2

≤

C ∑
T∈Th

‖v −Πhv‖2∂T +
∑
T∈Th

h
∥∥∇(v −Πhv)

∥∥2
T

 1
2
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≤ C

 ∑
T∈Th

‖v −Πhv‖∂T +
∑
T∈Th

h
1
2
∥∥∇(v −Πhv)

∥∥
T


(6.9)
≤ C

 ∑
T∈Th

h−
1
2 ‖v −Πhv‖T +

∑
T∈Th

h
1
2
∥∥∇(v −Πhv)

∥∥
T


(6.34),(6.35)
≤ Chk+ 1

2 |v|Hk+1(T).

6.2.5. Estimate for bilinear form and error estimate in the energy
norm

6.2.7 Theorem. Let y ∈ Hk+1(Th). Suppose y solves equation (6.1) and yh ∈ Vh
solves equation (6.2). Then the error y − yh admits the following estimate

|||y − yh||| ≤ Chk+ 1
2 |y|Hk+1(Th),

with C independent of the mesh size h.

Proof. As before we mainly follow the proofs in [45, Theorem 5.1] and [60, Theorem
1.4.13]. We begin the proof by applying the triangle inequality to the energy norm

|||y − yh||| ≤ |||y −Πhy|||+ |||yh −Πhy|||.

For the first term, we use the error estimate for the L2-projection of the previous para-
graph Lemma 6.2.6, the second term is estimated now. The consistent discretization,
see Lemma 6.2.2, implies Galerkin orthogonality

bh(y − yh, vh) = 0 for all vh ∈ Vh. (6.37)

With the stability result Lemma 6.2.5 applied to yh −Πhy ∈ Vh and the Galerkin
orthogonality (6.37) we have

C|||yh −Πhy|||2 ≤bh(yh −Πhy, C2(yh −Πhy) + hβ · ∇(yh −Πhy)) (6.38)
(6.37)= bh(y −Πhy, C2(yh −Πhy) + hβ · ∇(yh −Πhy)). (6.39)

For abbreviation, we set z := y−Πhy and w := yh−Πhy. We split equation (6.39) in
two terms and estimate them separately. There are two formulations of the bilinear
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form bh(yh, vh). For the first term we use the formulation of equation (6.2b). In
addition we use that h− 1

2 · h
1
2 = h0 = 1 and the symmetry of the L2-scalar product.

The first term then reads

bh(z, C2w) =
∑
T∈Th

(
h−

1
2 z,−h

1
2β · ∇C2w

)
T

+
∑

F∈Fint
h

(
{{z}}, 2{{C2w β · n}}

)
F +

∑
F∈Fint

h

(
JzK ,

1
2σµ(β, n) JC2wK

)
F

+
∑
F∈FΓ

h

(
z,

1
2β · nC2w

)
F

+
∑
F∈FΓ

h

(
z,

1
2σµ(β, n)C2w

)
F
.

For the second term we use the reformulation of the bilinear form in Lemma 6.1.5
and apply the same idea of splitting h in two portions

bh(z, hβ · ∇w) =
∑
T∈Th

(
h

1
2β · ∇z, h

1
2β · ∇w

)
T

+
∑

F∈Fint
h

(
−1

2 Jβ · nzK , Jhβ · ∇wK
)
F

+
∑

F∈Fint
h

(1
2σµ(β, n) JzK , Jhβ · ∇wK

)
F

+
∑
F∈FΓ

h

(
−1

2β · nz, hβ · ∇w
)
F

+
∑
F∈FΓ

h

(1
2σµ(β, n)z, hβ · ∇w

)
F
.

First we apply the Cauchy-Schwarz inequality (6.6), and get

bh(z, C2w + hβ · ∇w)
=bh(z, C2w) + bh(z, hβ · ∇w)
CS
≤

∑
T∈Th

∥∥∥h− 1
2 z
∥∥∥
T
·
∥∥∥−h 1

2β · ∇C2w
∥∥∥
T

+
∑

F∈Fint
h

∥∥{{z}}∥∥F · ∥∥2{{C2w β · n}}
∥∥
F +

∑
F∈Fint

h

∥∥JzK∥∥F · ∥∥∥∥1
2σµ(β, n) JC2wK

∥∥∥∥
F

+
∑
F∈FΓ

h

‖z‖F ·
∥∥∥∥1

2β · nC2w

∥∥∥∥
F

+
∑
F∈FΓ

h

‖z‖F ·
∥∥∥∥1

2σµ(β, n)C2w

∥∥∥∥
F

+
∑
T∈Th

∥∥∥h 1
2β · ∇z

∥∥∥
T
·
∥∥∥h 1

2β · ∇w
∥∥∥
T

+
∑

F∈Fint
h

∥∥∥∥−1
2 Jβ · nzK

∥∥∥∥
F
·
∥∥Jhβ · ∇wK

∥∥
F +

∑
F∈Fint

h

∥∥∥∥1
2σµ(β, n) JzK

∥∥∥∥
F
·
∥∥Jhβ · ∇wK

∥∥
F
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+
∑
F∈FΓ

h

∥∥∥∥−1
2β · nz

∥∥∥∥
F
· ‖hβ · ∇w‖F +

∑
F∈FΓ

h

∥∥∥∥1
2σµ(β, n)z

∥∥∥∥
F
· ‖hβ · ∇w‖F .

In the next step, we use the inequality of Schwarz (6.7) and sort the single terms to
estimate them step by step in the course of this proof

bh(z, C2w + hβ · ∇w)

≤C
[ ∑
F∈Fint

h

∥∥∥∥1
2σµ(β, n) JzK

∥∥∥∥2

F
+
∑
F∈FΓ

h

∥∥∥∥1
2σµ(β, n)z

∥∥∥∥2

F
(T5)

+
∑

F∈Fint
h

∥∥∥∥−1
2 Jβ · nzK

∥∥∥∥2

F
+
∑
F∈FΓ

h

∥∥∥∥−1
2β · nz

∥∥∥∥2

F
(T6)

+
∑
T∈Th

∥∥∥h 1
2β · ∇z

∥∥∥2

T
(T7)

+
∑
T∈Th

∥∥∥h− 1
2 z
∥∥∥2

T
+

∑
F∈Fint

h

∥∥{{z}}∥∥2
F +

∑
F∈Fint

h

∥∥JzK∥∥2
F + 2

∑
F∈FΓ

h

‖z‖2F
] 1

2
(T8)

·
[ ∑
F∈Fint

h

∥∥∥∥1
2σµ(β, n) JC2wK

∥∥∥∥2

F
+
∑
F∈FΓ

h

∥∥∥∥1
2σµ(β, n)C2w

∥∥∥∥2

F
(T9)

+
∑

F∈Fint
h

∥∥2{{C2w β · n}}
∥∥2
F +

∑
F∈FΓ

h

∥∥∥∥1
2β · nC2w

∥∥∥∥2

F
(T10)

+
∑
T∈Th

∥∥∥−h 1
2β · ∇C2w

∥∥∥2

T
+
∑
T∈Th

∥∥∥h 1
2β · ∇w

∥∥∥2

T

+ 2
∑

F∈Fint
h

∥∥Jhβ · ∇wK
∥∥2
F + 2

∑
F∈FΓ

h

‖hβ · ∇w‖2F
] 1

2
(T11)

=:C
[
T5 + T6 + T7 + T8

] 1
2
·
[
T9 + T10 + T11

] 1
2
.

One row corresponds to one variable Ti, i = 5, ..., 10, the last two rows are summarized
in T11 .

We first estimate the terms T5 and T9, which are the same terms only differing in the
variable z and w, respectively. Assume that 1

2σµ(β, n) is bounded from above by κ.
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Then use (6.18c) to obtain

T5 =
∑

F∈Fint
h

∥∥∥∥1
2σµ(β, n) JzK

∥∥∥∥2

F
+
∑
F∈FΓ

h

∥∥∥∥1
2σµ(β, n)z

∥∥∥∥2

F
≤ κbh(z, z) (6.41)

T9 =
∑

F∈Fint
h

∥∥∥∥1
2σµ(β, n) JC2wK

∥∥∥∥2

F
+
∑
F∈FΓ

h

∥∥∥∥1
2σµ(β, n)C2w

∥∥∥∥2

F
≤ κC2

2bh(w,w). (6.42)

The next two terms are T6 and T10. The term T6 reads

T6 =
∑

F∈Fint
h

∥∥∥∥−1
2 Jβ · nzK

∥∥∥∥2

F
+
∑
F∈FΓ

h

∥∥∥∥−1
2β · nz

∥∥∥∥2

F
.

For the sum over the interior faces we get with the same arguments as for the term
T3 in the proof of Lemma 6.2.5, see the equations (6.30) to (6.32),

1
4(Jβ · nzK , Jβ · nzK)F = ({{β · nz}}, {{β · nz}})F (6.43)

= 1
4(β · n)2 ∥∥JzK∥∥2

≤ 1
2 |β · n|

∥∥JzK∥∥2

≤
(1

2σµ(β, n) JzK , JzK
)
.

Applying the same arguments for the boundary face sum, it follows for T6

T6 =
∑

F∈Fint
h

∥∥∥∥−1
2 Jβ · nzK

∥∥∥∥2

F
+
∑
F∈FΓ

h

∥∥∥∥−1
2β · nz

∥∥∥∥2

F

≤
∑

F∈Fint
h

(1
2σµ(β, n) JzK , JzK

)
F

+
∑
F∈FΓ

h

(1
2σµ(β, n)z, z

)
F

(6.18c)= bh(z, z). (6.44)

Taking a look at T10

T10 =
∑

F∈Fint
h

∥∥2{{C2w β · n}}
∥∥2
F +

∑
F∈FΓ

h

∥∥∥∥1
2β · nC2w

∥∥∥∥2

F
, (6.45)
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we notice, that we have an average term, which equals the jumps in (6.43) or (6.31),

(2{{C2wβ · n}}, 2{{C2wβ · n}})F = (JC2wβ · nK , JC2wβ · nK)F .

Thus again with the same arguments, for the term T10 it holds

T10 =
∑

F∈Fint
h

∥∥2{{C2w β · n}}
∥∥2
F +

∑
F∈FΓ

h

∥∥∥∥1
2β · nC2w

∥∥∥∥2

F

≤
∑

F∈Fint
h

C2
2 (σµ(β, n) JwK , JwK)2

F +
∑
F∈FΓ

h

C2
2
(
σµ(β, n)w,w

)
F

≤ 2C2
2bh(w,w). (6.46)

After this we estimate the terms T7 and T11

T7 =
∑
T∈Th

∥∥∥h 1
2β · ∇z

∥∥∥2

T
, (6.47)

T11 =
∑
T∈Th

∥∥∥−h 1
2β · ∇C2w

∥∥∥2

T
+
∑
T∈Th

∥∥∥h 1
2β · ∇w

∥∥∥2

T
(6.48)

+ 2
∑

F∈Fint
h

∥∥Jhβ · ∇wK
∥∥2
F + 2

∑
F∈FΓ

h

‖hβ · ∇w‖2F . (6.49)

Similarly as in equations (6.27) -(6.29) we apply the trace inequality (6.11) to the
face terms of T11

2
∑

F∈Fint
h

∥∥Jhβ · ∇wK
∥∥2
F + 2

∑
F∈FΓ

h

‖hβ · ∇w‖2F ≤ h
2 ∑
T∈Th

‖β · ∇w‖2∂T

(6.11)
≤ hC

∑
T∈Th

‖β · ∇w‖2T .

Thus, with this trace inequality we have for the entire term T11

T11 =
∑
T∈Th

∥∥∥−h 1
2β · ∇C2w

∥∥∥2

T
+
∑
T∈Th

∥∥∥h 1
2β · ∇w

∥∥∥2

T
(6.50)

+ 2
∑

F∈Fint
h

∥∥Jhβ · ∇wK
∥∥2
F + 2

∑
F∈FΓ

h

‖hβ · ∇w‖2F (6.51)

≤
∑
T∈Th

∥∥∥−h 1
2β · ∇C2w

∥∥∥2

T
+
∑
T∈Th

∥∥∥h 1
2β · ∇w

∥∥∥2

T
(6.52)
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+ hC
∑
T∈Th

‖β · ∇w‖2T (6.53)

≤(C2
2 + 1 + C)

∑
T∈Th

h ‖β · ∇w‖2T . (6.54)

The next step is summing up the estimates for T5, equation (6.41), T6, equation (6.44)
and T7, equation (6.47), which belong to the first pair of parenthesis of (6.40)

T5 + T6 + T7 ≤ κbh(z, z) + 2bh(z, z) +
∑
T∈Th

h ‖β · ∇z‖2T (6.55)

≤ (κC + 2C) ·
(
bh(z, z) +

∑
T∈Th

h ‖β · ∇z‖2T
)

(6.56)

= C|||z|||2. (6.57)

For the energy norm of z we already have an estimate, because z was defined as the
projection error z = y−Πhy. With the error estimate for the L2-projection in Lemma
(6.2.6) we have

T5 + T6 + T7 ≤ C|||z|||2 (6.58)

≤ C
(
hk+ 1

2 |y|Hk+1(Th)

)2
. (6.59)

For the second pair of parenthesis in (6.40) we sum up the estimates of T9, equation
(6.42), T10, equation (6.46), and T11, equation (6.54)

T9 + T10 + T11 ≤ κC2
2bh(w,w) + 2C2

2bh(w,w) + (C2
2 + 1 + C)

∑
T∈Th

h ‖β · ∇w‖2T

(6.60)

≤ C
(
bh(w,w) +

∑
T∈Th

h ‖β · ∇w‖2T
)

(6.61)

= C|||w|||2. (6.62)

Term T8 is left

T8 =
∑
T∈Th

∥∥∥h− 1
2 z
∥∥∥2

T
+

∑
F∈Fint

h

∥∥{{z}}∥∥2
F +

∑
F∈Fint

h

∥∥JzK∥∥2
F + 2

∑
F∈FΓ

h

‖z‖2F . (6.63)

We apply the trace inequality (6.9) to relate the face terms of T8 to the cell terms.
Therefore we rewrite the face terms in terms of cell boundaries. With the triangle
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inequality we get for the jump term∥∥JzK∥∥2
T = ‖z1 − z2‖2 ≤ ‖z1‖2 + ‖z2‖2 .

This yields∑
F∈Fint

h

∥∥JzK∥∥2
F +

∑
F∈FΓ

h

‖z‖2F =
∑

F∈Fint
h

‖z1 − z2‖2F +
∑
F∈FΓ

h

‖z‖2F ≤
∑
F∈T
‖z‖2∂T .

For the average term we get in the same way with triangle inequality

∥∥{{z}}∥∥2
T = 1

4 ‖z1 + z2‖2 ≤ ‖z1‖2 + ‖z2‖2

and hence∑
F∈Fint

h

∥∥{{z}}∥∥2
F +

∑
F∈FΓ

h

‖z‖2F =
∑

F∈Fint
h

1
4 ‖z1 + z2‖2F +

∑
F∈FΓ

h

‖z‖2F ≤
∑
F∈Th

‖z‖2∂T ,

since 1
4 ≤ 1. In total we get by applying the trace inequality (6.9) to the cell boundary

term

T8 ≤
∑
T∈Th

h−1 ‖z‖2T + 2
∑
T∈Th

‖z‖2∂T (6.64)

(6.9)
≤

∑
T∈Th

h−1 ‖z‖2T + 2C
∑
T∈Th

h ‖∇z‖2T + 2C
∑
T∈Th

h−1 ‖z‖2T (6.65)

≤ C
( ∑
T∈Th

h−1 ‖z‖2T +
∑
T∈Th

h ‖∇z‖2T
)
. (6.66)

Because z is defined by z = y − Πhy, we use the standard estimates for the L2-
projection (6.34) and (6.35) in the form

h−
1
2
∑
T∈Th

‖z‖T ≤ Ch
k+ 1

2 |y|Hk+1(Th), (6.67)

and

h
1
2
∑
T∈Th

‖∇z‖T ≤ Ch
k+ 1

2 |y|Hk+1(Th). (6.68)
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Squaring and after that summing of (6.67) and (6.68) leads to the estimate

h−1 ∑
T∈Th

‖z‖2T + h
∑
T∈Th

‖∇z‖2T ≤ C
(
hk+ 1

2 |y|Hk+1(Th)
)2
.

Equation (6.66) thus reads

T8 ≤ C
( ∑
T∈Th

h−1 ‖z‖2T +
∑
T∈Th

h ‖∇z‖2T
)
≤ C

(
hk+ 1

2 |y|Hk+1(Th)
)2
. (6.69)

Putting all pieces together, equation (??) reads with the estimates (6.59), (6.69),
(6.62)

bh(z,C2w + hβ · ∇w) ≤ C
[
T5 + T6 + T7 + T8

] 1
2
·
[
T9 + T10 + T11

] 1
2

≤ C
[
C
(
hk+ 1

2 |y|Hk+1(Th)
)2

+ C
(
hk+ 1

2 |y|Hk+1(Th)
)2
] 1

2
·
[
C|||w|||2

] 1
2

≤ C
[
hk+ 1

2 |y|Hk+1(Th)

]
· |||w|||.

Altogether, with our abbreviations z = y−Πhy and w = yh−Πhy, the error estimate
of the discretization error in the energy norm in Theorem 6.2.7 follows from

C|||yh −Πhy|||2
(6.39)
≤ bh(y −Πhy, C2(yh −Πhy) + hβ · ∇(yh −Πhy))

≤ Chk+ 1
2 |y|Hk+1(Th)|||yh −Πhy|||

⇔ C|||yh −Πhy||| ≤ Chk+ 1
2 |y|Hk+1(Th).

6.2.6. Superconvergence result

6.2.8 Corollary. Let the grid be a Cartesian grid and the polynomial space P(T )
the space of piecewise polynomials of degree k. Let y ∈ Hk+2(Th). Suppose y solves
equation (6.1) and yh ∈ Vh solves equation (6.2). Then the error y − yh admits the
following estimate in the L2 norm

‖y − yh‖ ≤ Chk+1|y|Hk+2(Th),
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with C independent of the mesh size h.

Proof. For a proof of this result see [74, Theorem 6].

6.3. Diffusion advection reaction

In this section, we show, that the results of the previous subsections also hold for the
diffusion advection reaction problem, Example 2.1.5. In this case, we have to adjust
the test functions [11], [45]. The diffusion advection reaction PDE reads

−∇ · (α∇y) + β · ∇y + ρy = f on Ω (6.70a)
y = yD on Γ. (6.70b)

The corresponding discrete problem is, see (4.7), find yh ∈ Vh such that

αah(yh, vh) + bh(yh, vh) + ρch(yh, vh) = fh(vh), ∀vh ∈ Vh. (6.71)

Here we use the same discretization as in the previous sections with the proposed
differentiable stabilization σµ(β, n) for the advection and the standard discretization as
depicted in Chapter 4 for the diffusion part ah(yh, vh) and the reaction part ch(yh, vh)
. The advection vector β is normalized, ‖β‖ = 1. We define a different energy norm
for this diffusion advection reaction problem [11], [60]:

|||y|||2dar := α|||y|||2d + |||y|||2 + ρ|||y|||2r . (6.72)

This energy norm consists of the energy norms of the three parts. The advection
norm |||y||| is the same as in (6.19). The diffusion norm is defined as [60]

|||y|||2d :=
∑
T∈T
‖∇y‖2T +

∑
F∈Fint

h

∥∥√γ JyK
∥∥2
F +

∑
F∈FΓ

h

∥∥∥√2γy
∥∥∥2

F
, (6.73)

and the energy norm of the reaction part is

|||y|||2r :=
∑
T∈T
‖y‖2T .

With these definitions we state an estimate for the L2-projection and a stability
estimate. After that we derive an error estimate in the energy norm for the diffusion
advection reaction problem.

99



6. Analysis and numerical results of differentiable upwind method

6.3.1 Lemma. The error of the L2-projection in the energy norm for any function
v ∈ Hk+1(Th) can be estimated by

|||v −Πhv|||dar ≤ C max(
√
αhk, hk+ 1

2 ,
√
ρhk+1)|v|Hk+1(Th).

Proof. To proof Lemma 6.3.1 we take a look at the separate parts. An estimate for
the diffusion part is found in [9], [10]:

|||v −Πhv|||d ≤ Chk|v|Hk+1(Th). (6.74)

For the reaction part we use the standard estimate for L2-projection (6.34)

|||v −Πhv|||r =
∑
T∈Th

‖v −Πhv‖T ≤ Ch
k+1|v|Hk+1(Th). (6.75)

Summing up the estimates for diffusion (6.74), advection in Lemma 6.2.6 and reaction
(6.75), we arrive at the statement

|||v −Πhv|||dar ≤
√
α|||v −Πhv|||d + |||v −Πhv|||+

√
ρ|||v −Πhv|||r

≤
√
αChk|v|Hk+1(Th) + Chk+ 1

2 |v|Hk+1(Th) +√ρChk+1|v|Hk+1(Th)

≤ C max(
√
αhk, hk+ 1

2 ,
√
ρhk+1)|v|Hk+1(Th),

see also [45] for diffusion advection.

In contrast to the standard approximation results for the diffusion and reaction,
where for the stability v := y is used as a test function, in the diffusion advection
reaction case we have to use augmented test functions, which we used for the advection
vh := Cyh + hβ · ∇yh, see Lemma 6.2.5. This is because of the additional term in the
energy norm of the advection, which is important when the advection term dominates.
In the same manner as in the stability proof of the advection Lemma 6.2.5 we have
to show that for all yh ∈ Vh there exists a vh ∈ Vh such that

αah(yh, Cyh + hβ · ∇yh)
+ bh(yh, Cyh + hβ · ∇yh)
+ ρch(yh, Cyh + hβ · ∇yh) ≥ C|||yh|||dar|||vh|||dar

holds with C > 0 independent of h. We proceed in the same manner as in the stability
proofs of the advection part.
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6.3.2 Lemma. For the diffusion advection reaction energy norm (6.72) with aug-
mented test functions, it holds

|||Cyh + hβ · ∇yh|||dar ≤ C|||yh|||dar + |||hβ · ∇yh|||dar
≤ C|||yh|||dar + C|||yh|||dar
≤ C|||yh|||dar.

Proof. The first inequality holds, because of triangle inequality. We now prove the
second inequality, by showing

|||hβ · ∇yh|||dar ≤ C|||yh|||dar.

We begin with the reaction part of the diffusion advection reaction energy norm. With
the Cauchy-Schwarz inequality, ‖β‖2 = 1 and the inverse estimate (6.12) it holds

|||hβ · ∇yh|||2r =
∑
T∈T
‖hβ · ∇yh‖2T

CS
≤
∑
T∈T
‖β‖2 ‖h∇yh‖2T

(6.12)
≤ C

∑
T∈T
‖yh‖2T = C|||yh|||2r .

Furthermore we estimate the diffusion part in the same manner as we did for the
advection part in proof of Lemma 6.2.4. The diffusion part reads

|||hβ · ∇yh|||2d

=
∑
T∈T

∥∥∇(hβ · ∇yh)
∥∥2
T +

∑
F∈Fint

h

∥∥√γ Jhβ · ∇yhK
∥∥2
F +

∑
F∈FΓ

h

∥∥∥√2γhβ · ∇yh
∥∥∥2

F
.

We first reformulate the sums over the faces. In the same manner as in equation
(6.22) we get with triangle inequality∥∥√γ Jhβ · ∇yhK

∥∥2
F = h2 ∥∥√γhβ · ∇y1 −

√
γhβ · ∇y2

∥∥2

≤ h2
(∥∥√γhβ · ∇y1

∥∥2 +
∥∥√γhβ · ∇y2

∥∥2
)
.
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Thus we relate the face terms to the boundary of the elements T
∑

F∈Fint
h

∥∥√γ Jhβ · ∇yhK
∥∥2
F +

∑
F∈FΓ

h

∥∥∥√2γhβ · ∇yh
∥∥∥2

F

≤ Ch2 ∑
T∈T

∥∥√γβ · ∇yh∥∥2
∂T .

Now we apply the trace inequality (6.10) and get

Ch2 ∑
T∈T

∥∥√γβ · ∇yh∥∥2
∂T ≤ Ch

∑
T∈T

∥∥√γβ · ∇yh∥∥2
T .

Secondly we reformulate the cell part. We use the inverse estimate (6.12) and the
Cauchy-Schwarz inequality

∑
T∈T

∥∥∇(hβ · ∇yh)
∥∥2
T

(6.12)
≤ C

∑
T∈T
‖β · ∇yh‖2T

CS
≤ C

∑
T∈T
‖β‖2 ‖∇yh‖2T .

The estimates for cell and face part together thus read
∑
T∈T

∥∥∇(hβ · ∇yh)
∥∥2
T +

∑
F∈Fint

h

∥∥√γ Jhβ · ∇yhK
∥∥2
F +

∑
F∈FΓ

h

∥∥∥√2γhβ · ∇yh
∥∥∥2

F

≤ C
∑
T∈T
‖∇yh‖2T + Ch

∑
T∈T

∥∥√γβ · ∇yh∥∥2
T .

The inequality still holds, if we add face terms to arrive at the energy norm for the
diffusion part

C
∑
T∈T
‖∇yh‖2T + Ch

∑
T∈T

∥∥√γβ · ∇yh∥∥2
T

≤ C
∑
T∈T
‖∇yh‖2T + Ch

∑
T∈T

∥∥√γβ · ∇yh∥∥2
T +

∑
F∈Fint

h

∥∥√γ JyhK
∥∥2
F +

∑
F∈FΓ

h

∥∥∥√2γyh
∥∥∥2

F

= Ch
∑
T∈T

∥∥√γβ · ∇yh∥∥2
T + C|||y|||2d.

For the advection part it holds with equation (6.24) in the course of the proof of
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Lemma 6.2.4

|||hβ · ∇yh|||2

≤ C
[
bh(yh, yh) +

∑
T∈Th

h ‖β · ∇yh‖2T
]
.

We get for the overall diffusion advection reaction energy norm, where the remaining
term of the diffusion estimate enters the advection energy norm

|||hβ · ∇yh|||2dar
=α|||hβ · ∇yh|||2d + |||hβ · ∇yh|||2 + ρ|||hβ · ∇yh|||2r
≤αCh

∑
T∈T

∥∥√γβ · ∇yh∥∥2
T + αC|||y|||2d

+ Cbh(yh, yh) + C
∑
T∈Th

h ‖β · ∇yh‖2T + ρC|||yh|||2r

≤αC|||yh|||2d + C|||yh|||2 + ρC|||yh|||2r
=C|||yh|||2dar.

Thus we have

|||hβ · ∇yh|||dar ≤ C|||yh|||dar.

6.3.3 Lemma. There exists a constant C > 0 such that for all yh ∈ Vh,

αah(yh, Cyh + hβ · ∇yh)
+ bh(yh, Cyh + hβ · ∇yh)
+ ρch(yh, Cyh + hβ · ∇yh) ≥ C|||yh|||2dar.

Proof. We investigate the three parts separately, because the energy norm |||.|||dar is
a sum. For the advection part, the stability estimate is shown in Lemma 6.2.5, which
states

bh(yh, Cyh + hβ · ∇yh) ≥ C|||yh|||2. (6.76)

For the diffusion part, a proof is found in [45], proof of Lemma A.1. An important
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step is the use of the inverse inequality and the trace estimate. It concludes

αah(yh, Cyh + hβ · ∇yh) ≥ Cα|||yh|||2d. (6.77)

The stability estimate for the reaction part can be proven by applying the inverse
estimate [60, Lemma 5.1.5]

ρch(yh, Cyh + hβ · ∇yh) ≥ Cρ|||yh|||2r . (6.78)

Altogether we get

αah(yh, Cyh + hβ · ∇yh)
+ bh(yh, Cyh + hβ · ∇yh)
+ ρch(yh, Cyh + hβ · ∇yh)
≥C|||yh|||2 + Cα|||yh|||2d + Cρ|||yh|||2r
=C|||yh|||2dar.

6.3.4 Theorem. Let y ∈ Hk+1(Th). Suppose y solves equation (6.70) and yh ∈ Vh
solves the discrete problem equation (6.71). Then the error y−yh admits the following
estimate

|||y − yh|||dar ≤ C max(
√
αhk, hk+ 1

2 ,
√
ρhk+1)|y|Hk+1(Th),

with C independent of mesh size h.

Proof. The proof follows the same steps as the proof of Theorem 6.2.7. With the
previous Lemmas 6.3.1 and 6.3.3 the estimate in Theorem 6.3.4 follows. First we
apply the triangle inequality

|||y − yh|||dar ≤ |||y −Πhy|||dar + |||yh −Πhy|||dar. (6.79)

The first part of (6.79) is estimated by the projection estimate in Lemma 6.3.1. The
second part is estimated now. In a first step we use the stability estimate of Lemma
6.3.3 and, because the discretization is consistent, the Galerkin orthogonality:

|||yh −Πhy|||2dar ≤αah(yh −Πhy, C(yh −Πhy) + hβ · ∇(yh −Πhy))
+ bh(yh −Πhy, C(yh −Πhy) + hβ · ∇(yh −Πhy))
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+ ρch(yh −Πhy, C(yh −Πhy) + hβ · ∇(yh −Πhy))
=αah(y −Πhy, C(yh −Πhy) + hβ · ∇(yh −Πhy))

+ bh(y −Πhy, C(yh −Πhy) + hβ · ∇(yh −Πhy))
+ ρch(y −Πhy, C(yh −Πhy) + hβ · ∇(yh −Πhy)).

We need to use the augmented test functions here, too. Thus we have to show

αah(y −Πhy, C(yh −Πhy) + hβ · ∇(yh −Πhy))
+ bh(y −Πhy, C(yh −Πhy) + hβ · ∇(yh −Πhy))
+ ρch(y −Πhy, C(yh −Πhy) + hβ · ∇(yh −Πhy)) (6.80)

≤C max(
√
αhk, hk+ 1

2 ,
√
ρhk+1)|y|Hk+1(Th)|||yh −Πhy|||dar.

Then the error estimate in Theorem 6.3.4 follows with:

|||yh −Πhy|||2dar ≤αah(y −Πhy, C(yh −Πhy) + hβ · ∇(yh −Πhy))
+ bh(y −Πhy, C(yh −Πhy) + hβ · ∇(yh −Πhy))
+ ρch(y −Πhy, C(yh −Πhy) + hβ · ∇(yh −Πhy)) (6.81)

≤C max(
√
αhk, hk+ 1

2 ,
√
ρhk+1)|y|Hk+1(Th)|||yh −Πhy|||dar

⇔ |||yh −Πhy|||dar ≤C max(
√
αhk, hk+ 1

2 ,
√
ρhk+1)|y|Hk+1(Th).

Again, we investigate the three parts, advection, diffusion, reaction, separately. The
advection part was proven in Theorem 6.2.7, see (??):

bh(y −Πhy, C(yh −Πhy) + hβ · ∇(yh −Πhy))

≤ Chk+ 1
2 |y|Hk+1(Th)|||yh −Πhy|||, (6.82)

≤ Chk+ 1
2 |y|Hk+1(Th)|||yh −Πhy|||dar,

the diffusion part is shown in [45], proof of Theorem 5.1,

αah(y −Πhy, C(yh −Πhy) + hβ · ∇(yh −Πhy))
≤ Cαhk|y|Hk+1(Th)|||yh −Πhy|||d,

≤ C
√
αhk|y|Hk+1(Th)

√
α|||yh −Πhy|||d
|||yh −Πhy|||dar

|||yh −Πhy|||dar, (6.83)

≤ C
√
αhk|y|Hk+1(Th)|||yh −Πhy|||dar.
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For the reaction part we have to proof:

ρch(y −Πhy, C(yh −Πhy) + hβ · ∇(yh −Πhy))
≤ C√ρhk+1|y|Hk+1(Th)|||yh −Πhy|||dar. (6.84)

This follows by applying the Cauchy-Schwarz inequality (6.6), the inequality of
Schwarz (6.7), the projection estimate (6.75) of Lemma 6.3.1 and the inverse estimate
(6.12),

ρch(y −Πhy, C(yh −Πhy) + hβ · ∇(yh −Πhy))
= ρ

∑
T∈T

(y −Πhy, C(yh −Πhy) + hβ · ∇(yh −Πhy))T

(6.6)
≤ ρ

∑
T∈T
‖y −Πhy‖T

(∥∥C(yh −Πhy)
∥∥
T +

∥∥hβ · ∇(yh −Πhy)
∥∥
T

)
(6.7)
≤ ρ

∑
T∈T
‖y −Πhy‖2T

 1
2
∑
T∈T

(∥∥C(yh −Πhy)
∥∥
T +

∥∥hβ · ∇(yh −Πhy)
∥∥
T

)2
 1

2

(6.75)
≤ ρ

((
Chk+1|y|Hk+1(Th)

)2
) 1

2

∑
T∈T

(∥∥C(yh −Πhy)
∥∥
T +

∥∥hβ · ∇(yh −Πhy)
∥∥
T

)2
 1

2

(6.12)
≤ ρChk+1|y|Hk+1(Th)

∑
T∈T

C ‖yh −Πhy‖2T

 1
2

≤ √ρChk+1|y|Hk+1(Th)

√
ρ|||yh −Πhy|||r
|||yh −Πhy|||dar

|||yh −Πhy|||dar

≤ √ρChk+1|y|Hk+1(Th)|||yh −Πhy|||dar

Altogether, with the estimate for advection (6.82), for diffusion (6.83) and reaction
(6.84), equation (6.80) follows and with (6.81) the estimate in Theorem 6.3.4.

6.4. Non normalized advection coefficient

In the case that Assumption 6.1.1 does not hold, i. e. ‖β‖ 6= 1, we have to adjust
several ingredients. The main assumption originating from ‖β‖ = 1, see for example
equations (6.30)-(6.32), is

−1 ≤ β · n ≤ 1
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and thus (β · n)2 ≤|β · n|. For ‖β‖ 6= 1 this equation changes

−‖β‖ ≤ β · n ≤ ‖β‖ ,

⇔ −1 ≤ β · n
‖β‖

≤ 1.

With the weighting factor 1
‖β‖ , the term belongs always to the interval [−1, 1]. There-

fore it holds (
β · n
‖β‖

)2

≤ |β · n|
‖β‖

,

⇔ (β · n)2 ≤ ‖β‖|β · n| .

Check assumptions Let us examine the two remaining Lemmas 6.1.2 and 6.1.3.

Lemma 6.1.2 holds for a non-normalized advection coefficient
6.4.1 Lemma. The following inequality holds

|β · n| ≤ σµ(β, n).

Proof. Because of |β · n| ≤ ‖β‖ it holds (β · n)2 ≤ ‖β‖2. Therefore, the inequality
holds:

σµ(β, n) =

√
(β · n)2 + ‖β‖2 µ2√

1 + µ2

=
√

(β · n)2


√√√√1 + ‖β‖2µ2

(β·n)2

1 + µ2

 ≥|β · n| .

An adjusted variant of Lemma 6.1.3 holds as well:
6.4.2 Lemma. The continuously differentiable stabilization σµ(β, n) is bounded from
above

1
‖β‖

σµ(β, n) ≤ 1.
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Proof. This holds true, because

|β · n| ≤ ‖β‖ ‖n‖ = ‖β‖
⇒ (β · n)2 ≤ ‖β‖2

⇒ (β · n)2

‖β‖2
+ µ2 ≤ 1 + µ2

⇒
√

(β · n)2

‖β‖2
+ µ2 ≤

√
1 + µ2

⇒ 1
‖β‖

σµ(β, n) = 1
‖β‖

√
(β · n)2 + ‖β‖2 µ2√

1 + µ2 ≤ 1.

Error estimates By including an additional term 1
‖β‖ , we adjust the energy norm

|||y|||2β := bh(y, y) +
∑
T∈Th

h

‖β‖
‖β · ∇y‖2T ,

and the augmented test functions vh,β := 1
‖β‖vh = 1

‖β‖Cyh + h
‖β‖β · ∇yh.

With these adjusted energy norm and augmented test functions, the stability analysis
and error estimates of the preceding Lemmas and Theorems hold for ‖β‖ 6= 1.
6.4.3 Theorem. Let y ∈ Hk+1(Th). Suppose y solves equation (6.1) and yh ∈ Vh
solves equation (6.2). Then the error y − yh admits the following estimate

|||y − yh|||β ≤ Cβhk+ 1
2 |y|Hk+1(Th),

with Cβ independent of the mesh size h, but it depends on ‖β‖.

Proof. We do not show all steps in detail, because the proof proceeds in the same way
as in the preceding Lemmas and Theorems. As mentioned before, now the energy
norm and the augmented test functions are weighted with 1

‖β‖ . At the points in the
preceding proofs where we used ‖β‖ = 1 and therefore (β · n)2 ≤|β · n|, now it holds
(β · n)2 ≤ ‖β‖|β · n|. Additionally, we use Lemma 6.4.1 and Lemma 6.4.2, which hold
for non-normalized advection coefficient. With these changes, all other steps stay the
same. In contrast to before, the constant Cβ now depends on ‖β‖.

For a diffusion reaction advection problem, the authors in [11] investigate error
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estimates for a non normalized advection coefficient with a more sophisticated aug-
mentation of the test function. They use the standard upwind discretization for the
advection part.

6.5. Numerical results

To verify the theory developed above by numerical examples, we define two quantities:
the error eh and the experimental order of convergence (EOC). We use both to
investigate the convergence of the discretization method. We perform successive
global mesh refinements and compare the computed solutions.
6.5.1 Definition. The error eh between a global refinement step is defined by

eh :=
∥∥y(h)− y(h/2)

∥∥ .
4

6.5.2 Definition. The experimental order of convergence (EOC) is defined by

EOC := log
( ∥∥y(h)− y(h/2)

∥∥∥∥y(h/2)− y(h/4)
∥∥
)

1
log(2) .

4

The finer the mesh refinement, which means the smaller h, the smaller this error eh
should become. The experimental order of convergence should be 2 with linear finite
elements, and 3 with quadratic finite elements with respect to the L2-norm.

We test these theoretical findings for our newly developed differentiable discretization
in comparison with the standard upwind discretization. First we test it with an
example with a smooth solution, after that we show results for a nonsmooth solution.
6.5.3 Example. Smooth solution. As a first example, we take example 1 from [11].
They consider a diffusion advection problem with small diffusion. We change it to
a pure advection problem, that means α = 0 and ρ = 0, see Example 2.1.7. We
take β = (0.71, 0.71), instead of β = (1, 1) in [11], because β = (1, 1) would yield the
same value for both σµ(β, n) and σupw(β, n) and thus a comparison is not possible.
The right-hand-side f and the inflow boundary condition are chosen such that the
analytical solution is y = sin(2πx1) sin(2πx2), that means yD = sin(2πx1) sin(2πx2).
As domain we choose the rectangle Ω = [−1, 1]2.

Tables 6.1 and 6.2 show the computed errors eh and experimental orders of convergence
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(EOC) for three different settings: the differentiable discretization with σµ(β, n) from
(6.3) with µ = 0.01, the extreme case µ = 1.0, and the standard upwind discretization
with σupw(β, n) from (4.5), which is the same as σµ(β, n) with µ = 0. The first rows
of Tables 6.1 and 6.2 show the number of degrees of freedom (DoFs) which illustrate
the refinement of the mesh. Table 6.1 shows results for linear finite elements, while
Table 6.2 shows results for quadratic finite elements. All errors are computed in the
L2-norm.

σµ(β, n), µ = 1.0 σµ(β, n), µ = 0.01 σupw(β, n)
#DoFs eh EOC eh EOC eh EOC

64 1.5046 · 10−1 - 1.4357 · 10−1 - 1.4356 · 10−1 -
256 4.1625 · 10−2 1.8539 4.1502 · 10−2 1.7905 4.1502 · 10−2 1.7904
1,024 8.8261 · 10−3 2.2376 9.7460 · 10−3 2.0903 9.7463 · 10−3 2.0903
4,096 1.8906 · 10−3 2.2229 2.1208 · 10−3 2.2002 2.1209 · 10−3 2.2002
16,384 4.4762 · 10−4 2.0785 5.0049 · 10−4 2.0832 5.0051 · 10−4 2.0832
65,536 1.1024 · 10−4 2.0216 1.2308 · 10−4 2.0237 1.2309 · 10−4 2.0237

Table 6.1.: Linear finite elements. Errors eh and EOC for differentiable discretization
σµ(β, n) and standard discretization σupw(β, n).

σµ(β, n), µ = 1.0 σµ(β, n), µ = 0.01 σupw(β, n)
#DoFs eh EOC eh EOC eh EOC
576 9.7877 · 10−3 - 9.8133 · 10−3 - 9.8133 · 10−3 -
2,304 4.4884 · 10−3 1.1248 4.4401 · 10−3 1.1441 4.4401 · 10−3 1.1441
9,216 5.8977 · 10−4 2.9280 5.2576 · 10−4 3.0781 5.2575 · 10−4 3.0782
36,864 7.6045 · 10−5 2.9552 6.5406 · 10−5 3.0069 6.5405 · 10−5 3.0069
147,456 9.6173 · 10−6 2.9832 8.1726 · 10−6 3.0006 8.1723 · 10−6 3.0006
589,824 1.2072 · 10−6 2.9940 1.0215 · 10−6 3.0001 1.0215 · 10−6 3.0001

Table 6.2.: Quadratic finite elements. Errors eh and EOC for differentiable dis-
cretization σµ(β, n) and standard discretization σupw(β, n).

As expected from the theory developed above, the errors converge with order 2 for
linear finite elements (Table 6.1) and order 3 for quadratic finite elements (Table
6.2). This is true for all examined discretizations. The developed differentiable
discretization with σµ(β, n) shows a similar convergence behavior as the standard
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upwind discretization with σupw(β, n). We notice that the choice of µ has a slight
influence on the computed numbers. With µ = 1.0 we get different errors, the order
of convergence is still the same as for the upwind discretization. 4
6.5.4 Example. Nonsmooth solution: Riemann problem. Again we compute a pure
advection problem, Example 2.1.7, to compare the two discretizations. The special
feature of the Riemann problem are the boundary conditions, on the inflow boundary
it is yD = 0 for x ≤ 0 and yD = 1 for x > 0. The right hand side is f = 0. We choose
advection direction β = (0.03125, 1.0). This results in a discontinuity for the solution
y, which is nearly along the x2-axis but slightly rotated. The domain is the rectangle
Ω = [−1, 1]2.

Figure 6.1 shows the computed results for a global refinement with mesh size h = 0.0625
that results in a rather coarse grid consisting of 2,304 DoFs. The left column depicts
a three-dimensional view on the solution yh, while the right column shows the
corresponding cross section along the x1-axis at zero, respectively. The first row shows
the computed solution yh for the standard upwind discretization σupw(β, n) (4.5),
the second row shows the computed solution yh for the differentiable discretization
σµ(β, n) (6.3) with µ = 0.01 and the third row shows the computed solution yh for
µ = 1.

The results of the first two rows are almost identical. The third row with µ = 1 shows
that the choice of the variable µ is important. If it is chosen too high, as in this
example, the approximation of the solution is no longer as good as the approximation
by the upwind discretization. The choice of µ has to be further investigated. A
dependence on the mesh size h or the advection parameter β should be studied. 4
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(a) σupw(β, n)

(b) σupw(β, n),
cross section along x1-axis at zero

(c) σµ(β, n), µ = 0.01

(d) σµ(β, n), µ = 0.01,
cross section along x1-axis at zero

(e) σµ(β, n), µ = 1

(f) σµ(β, n), µ = 1,
cross section along x1-axis at zero

Figure 6.1.: Nonsmooth solution, Riemann problem. Computed solution yh for
upwind discretization with σupw(β, n) and differentiable discretization
with σµ(β, n) for µ = 0.01 and µ = 1.
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Sensitivity generation: Transfer
of the principle of IND to PDEs
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7. Structure exploitation of primal and
tangential discretization schemes

This chapter deals with novel sensitivity generation methods for parameter estimation
and optimum experimental design with PDE models. We transfer the principle of
IND to PDEs. Because of freezing the adaptive components and thus using the same
discretization for primal and tangential problems, structure exploitation becomes
possible. We exploit the common structure of primal and tangential discretizations and
develop tailored methods for algorithmic differentiation. That leads to a significant
saving of memory in comparison to differentiating the complete code as in black box
AD. Thus we develop methods to efficiently and automatically generate sensitivities.

We proceed as follows: we investigate two possibilities for structure exploitation, first
the problem structure, which means the structure of the primal and the tangential
problems derived in Chapter 5. Second, we develop a method to exploit the structure
of the finite element method. Finally, we demonstrate the efficiency of the developed
methods on numerical examples.

7.1. Problem structure

As we have seen in Chapter 5, for algorithmic solutions of both optimization problems,
the PE problem and the OED problem, the Jacobian of the PE problem is required.
The Jacobian consists in particular of directional derivatives of the model response
with respect to the parameters. To evaluate those directional derivatives, we select
the sensitivity approach, it is depicted in Section 5.3. For that, we have to set up and
solve tangential PDE problems. Following the principle of IND to generate consistent
sensitivities, we solve these tangential PDE problems with the same discretization as
the primal PDE problem. This creates possibilities to exploit the common structure
of primal and tangential discretization schemes.

The primal PDE problem in short notation is

F (p;S(p), v) = 0, ∀v ∈ V (Ω), (7.1)

with solution operator S(p), see Section 2.2.
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The corresponding tangential equation (5.4) revisited with Spj = ∂S(p)
∂pj

reads

dF (p;S(p), v)
dpj

= ∂F (p;S(p), v)
∂S

Spj + ∂F (p;S(p), v)
∂pj

= 0, ∀v ∈ V (Ω). (7.2)

Again, we omit the direction δpj of the directional derivatives for clarity.

We solve the tangential PDE problem (7.2) and get as solution the derivative of
the solution operator S(p) with respect to the j-th parameter: Spj . We repeat
this procedure for every pj , j = 1, .., np. With these derivatives Spj , j = 1, .., np, we
calculate the Jacobian, which we need in the course of the optimization algorithms
for parameter estimation and optimum experimental design.

We compute the tangential solutions Spj , j = 1, .., np, in two steps:

1) set up tangential equations (7.2), j = 1, .., np,

2) solve primal and tangential PDE problems by FE method.

In the following we explain these two steps in more detail. For each step we examine
the structure exploitation.

Tangential equations set up We begin with examining the structure exploitation
for the tangential equations (7.2) set up for j = 1, .., np. The tangential equation (7.2)
depends on the parameter pj . We take the discretized version of the primal equation
(4.9)

Fh(p; yh, vh) = 0, ∀vh ∈ Vh, (7.3)

and use it to generate a discretized version (5.6) of the tangential equation

∂Fh(p;Sh(p), vh)
∂Sh

Sh,pj = −∂Fh(p;Sh(p), vh)
∂pj

, ∀vh ∈ Vh. (7.4)

To generate the tangential equation, we need to calculate two partial derivatives: one
with respect to the discrete solution operator Sh

∂Fh(p;Sh(p), vh)
∂Sh

Sh,pj (7.5)
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and another one with respect to parameter pj

∂Fh(p;Sh(p), vh)
∂pj

. (7.6)

For derivative (7.5) we exploit the problem structure, which means the linearity of
the model problem. The derivative (7.6) is dependent on parameter pj . For the
generation of this derivative we cannot reuse parts of the primal problem. Instead
we have to differentiate the primal discretization with respect to every parameter
pj , j = 1, .., np. How we do this efficiently by exploiting the structure of the finite
element (FE) method is depicted in the next Section 7.2.
7.1.1 Example. Diffusion advection reaction model problem. We illustrate the
structure exploitation due to the linearity of the model problem by the diffusion
advection reaction model problem, Example 2.1.5. The discrete PDE model problem,
the primal problem, in short notation reads

Fh(p;Sh(p), vh) = αah(Sh(p), vh) + bh(p;Sh(p), vh) + ρ(p)ch(p;Sh(p), vh)− fh(p; vh).

We calculate the derivative of the discrete bilinear form Fh(p;Sh(p), vh) with respect
to the second argument (7.5) for the primal problem

∂Fh(p;Sh(p), vh)
∂Sh

Sh,pj =α ∂

∂Sh
ah(Sh(p), vh)Sh,pj + ∂

∂Sh
bh(p;Sh(p), vh)Sh,pj

+ ρ(p) ∂

∂Sh
ch(p;Sh(p), vh)Sh,pj −

∂

∂Sh
fh(p; vh)Sh,pj ,

=αah(Sh,pj , vh) + bh(p;Sh,pj , vh) + ρ(p)ch(p;Sh,pj , vh)
=Fh(p;Sh,pj , vh) + fh(p; vh).

We observe that the diffusion advection reaction structure remains unchanged. Except
for the right hand side function fh(p; vh), which is not dependent on the solution
operator Sh and thus cancels out, we can reuse the primal bilinear form Fh(p; ., vh)
to compute this derivative. 4

As we have seen in the example, the derivative (7.5) is the same as the left hand side
of the primal problem (7.3). Indeed, the only difference lies in the solution operator:
in the primal problem Sh(p) solves the equation, in the tangential problem Sh,pj solves
the equation. Thus if we add the right hand side of the primal problem fh(p; vh) to
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Fh(p; ., vh), the right hand side cancels out and we can write for the derivative (7.5)

∂Fh(p;Sh(p), vh)
∂Sh

Sh,pj = Fh(p;Sh,pj , vh) + fh(p; vh).

In other words, the left hand side of the tangential problem (7.4) is identical with left
hand side of the primal problem (7.3). We exploit this linearity of the model problem
by reusing the already existing discretization of the left hand side of the primal
problem (7.3) to generate the left hand side part (7.5) of the sensitivity equation.

Solve primal and tangential PDE problems by FE method After setting up
the tangential problems, we solve primal and tangential PDE problems with the FE
method. In the first step of the FE algorithm we assemble stiffness matrix and load
vector, see Section 4.4. For the computation of the left hand side the stiffness matrix
is assembled. We have seen in the last paragraph that the left hand sides of primal
and tangential problems are identical due to our linear problem setting. Therefore
the stiffness matrix is identical for primal and tangential equations. Thus it does not
need to be assembled newly for every tangential PDE problem. We can built it once
for the primal problem and reuse the stiffness matrix for the solution of the tangential
problems.
7.1.2 Remark. Matrix-free simulation. This approach of storing requires memory
space. Recent approaches in the simulation of PDE problems [71], [78] propose to not
store this matrix and to not even built it up completely. Instead, recomputing single
values is cheaper than storing the whole matrix. The developed methods for structure
exploitation of primal and tangential PDE problems can be directly transferred to
matrix-free simulation methods. 4

7.2. Structure of finite element method

In this section we exploit the structure of the FE method and therefore apply
algorithmic differentiation to core parts of the discretized primal PDE problem. We
begin with describing our general approach. After that we go into more detail and
investigate the structures induced by the FE discretization. Finally we illustrate the
structure exploitation on the algorithm level.
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General approach The derivative of the discrete bilinear form Fh(p;Sh(p), vh)
with respect to the parameter pj (7.6) has to be set up newly for every parameter
pj , j = 1, .., np:

∂Fh(p;Sh(p), vh)
∂pj

. (7.7)

It corresponds to the right hand side of the tangential equation (7.4), because it is
independent of the tangential solution operator Sh,pj . We set up and compute the
derivative (7.7) by exploiting the structure of the FE method. We apply algorithmic
differentiation to the discretized primal PDE problem (7.3). That means we process
the discretized primal PDE (7.3) by an automatic differentiation tool to generate
the discretization of the tangential problem (7.4). We only process that part of
programming code, which implements core parts of the discretization of the PDE
problem.

Structure exploitation FE discretization The discontinuous Galerkin FE dis-
cretization comprises of three major sums: one sum over the cells T ∈ Th, another
sum over the interior faces F ∈ Finth and a third one over the boundary faces F ∈ FΓh .
The summands of these sums consist in the integrals over each cell, interior face
and boundary face. We define a short notation for the terms belonging to these
integrals: gT (p; yh, vh) for the cell integral, gint(p; yh, vh) for the interior face integral
and gΓ (p; yh, vh) for the boundary face integral. The discretization of the primal
problem (7.3) in this short notation reads

Fh(p; yh, vh) =
∑
T∈Th

∫
T

gT (p; yh, vh)dx+
∑

F∈Fint
h

∫
F

gint(p; yh, vh)ds

+
∑
F∈FΓ

h

∫
F

gΓ (p; yh, vh)ds. (7.8)

Our goal is to differentiate this discretization (7.8) with respect to the parameter pj

∂

∂pj
Fh(p; yh, vh) =

∑
T∈Th

∫
T

∂

∂pj
gT (p; yh, vh)dx+

∑
F∈Fint

h

∫
F

∂

∂pj
gint(p; yh, vh)ds

+
∑
F∈FΓ

h

∫
F

∂

∂pj
gΓ (p; yh, vh)ds. (7.9a)
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Notice that a generation of the tangential discretizations from the primal discretization
is only possible, if we are operating on the identical sets Th,Finth and FΓh . That means
the triangulation of primal and tangential problems has to be identical. We use
the same triangulation with frozen adaptive components for primal and tangential
discretizations, due to the transfer of the principle of IND, see Section 5.2.

Thus the structure of the FE method consists in summing over cells, interior faces
and boundary faces and integrating over each single cell, interior face and boundary
face. We exploit this structure by differentiating the single integrands by automatic
differentiation. An automatic differentiation tool processes these parts of code and
generates via code transformation the derivatives of the integrands with respect to
parameter pj . Details about this procedure are depicted after the subsequent example
in the next paragraph.
7.2.1 Example. Structure exploitation for the diffusion advection reaction model
problem. We calculate the derivative of the discrete bilinear form with respect to
parameter pj (7.7) by the presented procedure. We use the discrete primal problem of
our diffusion advection reaction model problem Example 2.1.5 to set up the discrete
tangential problem. Thereby we exploit the structure of the FE method by only
deriving the single integrands in the discretization.

The discrete problem for the diffusion advection reaction model problem reads, see
Section 4.2 and Section 6.3: Find yh ∈ Vh such that

Fh(p; yh, vh) = αah(yh, vh) + bh(p; yh, vh) + ρ(p)ch(p; yh, vh)− fh(p; vh), (7.10a)

the diffusion part reads

ah(yh, vh) =
∑
T∈Th

∫
T

∇yh∇vhdx

+
∑

F∈Fint
h

∫
F

[
− 2{{∇yh}}{{vhn}} − 2{{yhn}}{{∇vh}}+ γ JyhK JvhK

]
ds

+
∑
F∈FΓ

h

∫
F

[
− vh∂nyh − yh∂nvh + 2γyhvh

]
ds, (7.10b)

the advection part reads

bh(p; yh, vh) = −
∑
T∈Th

∫
T

yhβ(p) · ∇vhdx+
∑

F∈Fint
h

∫
F

{{yh}}2{{vh β(p) · n}}ds (7.10c)
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+
∑

F∈Fint
h

∫
F

1
2σµ(β(p), n) JyhK JvhK ds+

∑
F∈FΓ

h

∫
F

[(1
2β(p) · nyh + 1

2σµ(β(p), n)yh
)
vh

]
ds,

the reaction part reads

ch(p; yh, vh) =
∑
T∈Th

∫
T

yhvhdx, (7.10d)

and the right hand side is

fh(p; vh) =
∑
T∈Th

∫
T

f(p)vhdx+
∑
F∈FΓ

h

∫
F

[
2γyD(p)vh − αyD(p)∂nvh

]
ds

−
∑
F∈FΓ

h

∫
F

[(1
2β(p) · nyD(p)− 1

2σµ(β(p), n)yD(p)
)
vh

]
ds. (7.10e)

We regroup the terms in a cell integral, a interior face integral and a boundary face
integral. Therefore we define a function for all cell terms

gT (p; yh, vh) := α∇yh∇vh − yhβ(p) · ∇vh + ρ(p)yhvh − f(p)vh,

a function for all terms corresponding to interior faces

gint(p; yh, vh) :=α
(
− 2{{∇yh}}{{vhn}} − 2{{yhn}}{{∇vh}}+ γ JyhK JvhK

)
+ {{yh}}2{{vh β(p) · n}}+ 1

2σµ(β(p), n) JyhK JvhK

and a function for all boundary face terms

gΓ (p; yh, vh) := α
(
− vh∂nyh − yh∂nvh + 2γyhvh

)
+
(1

2β(p) · nyh + 1
2σµ(β(p), n)yh

)
vh

−
(
2γyD(p)vh − αyD(p)∂nvh

)
+
(1

2β(p) · nyD(p)− 1
2σµ(β(p), n)yD(p)

)
vh.

With these definitions, we rewrite the discretization of the primal problem (7.10a) of
the diffusion advection reaction model problem as

Fh(p; yh, vh) =∑
T∈Th

∫
T

gT (p; yh, vh)dx+
∑

F∈Fint
h

∫
F

gint(p; yh, vh)ds+
∑
F∈FΓ

h

∫
F

gΓ (p; yh, vh)ds = 0.
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In the next step we derive the single integrands according to equation (7.9). We begin
with gT (p; yh, vh):

∂

∂pj
gT (p; yh, vh) = ∂

∂pj
(α∇yh∇vh)− ∂

∂pj

(
yhβ(p) · ∇vh

)
(7.11a)

+ ∂

∂pj

(
ρ(p)yhvh

)
− ∂

∂pj

(
f(p)vh

)
. (7.11b)

Furthermore we derive gint(p; yh, vh)

∂

∂pj
gint(p; yh, vh) = (7.12a)

∂

∂pj
α
(
− 2{{∇yh}}{{vhn}} − 2{{yhn}}{{∇vh}}+ γ JyhK JvhK

)
(7.12b)

+ ∂

∂pj

(
{{yh}}2{{vh β(p) · n}}

)
+ ∂

∂pj

(1
2σµ(β(p), n) JyhK JvhK

)
(7.12c)

and gΓ (p; yh, vh)

∂

∂pj
gΓ (p; yh, vh) = ∂

∂pj
α
(
− ∂nyhvh − yh∂nvh + 2γyhvh

)
(7.13a)

+ ∂

∂pj

(1
2β(p) · nyh + 1

2σµ(β(p), n)yh
)
vh (7.13b)

− ∂

∂pj

(
2γyD(p)vh − αyD(p)∂nvh

)
(7.13c)

+ ∂

∂pj

(1
2β(p) · nyD(p)− 1

2σµ(β(p), n)yD(p)
)
vh. (7.13d)

Thus by summing up the derivatives of the single integrands, we arrive at the derivative
of the primal discretized bilinear form with respect to parameter pj . Note that some
terms are independent of pj and thus cancel out. We get

∂Fh(p; yh, vh)
∂pj

(7.14a)

=
∑
T∈Th

∫
T

∂

∂pj
gT (p; yh, vh)dx+

∑
F∈Fint

h

∫
F

∂

∂pj
gint(p; yh, vh)ds (7.14b)

+
∑
F∈FΓ

h

∫
F

∂

∂pj
gΓ (p; yh, vh)ds (7.14c)
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=
∑
T∈Th

∫
T

[
− ∂

∂pj

(
yhβ(p) · ∇vh

)
+ ∂

∂pj

(
ρ(p)yhvh

)
− ∂

∂pj

(
f(p)vh

) ]
dx (7.14d)

+
∑

F∈Fint
h

∫
F

[
∂

∂pj

(
{{yh}}2{{vh β(p) · n}}

)
+ ∂

∂pj

(1
2σµ(β(p), n) JyhK JvhK

)]
ds (7.14e)

+
∑
F∈FΓ

h

∫
F

[
∂

∂pj

(1
2β(p) · nyh + 1

2σµ(β(p), n)yh
)
vh (7.14f)

− ∂

∂pj

(
2γyD(p)vh − αyD(p)∂nvh

)
(7.14g)

+ ∂

∂pj

(1
2β(p) · nyD(p)− 1

2σµ(β(p), n)yD(p)
)
vh

]
ds. (7.14h)

As mentioned above, the derivation of the single integrands, performed in equations
(7.11), (7.12) and (7.13), is done by an automatic differentiation tool in our algorithm.

The calculated derivative of the discrete bilinear form with respect to parameter pj
(7.14) represents the right hand side of the tangential problem belonging to pj . Thus
with equation (7.14) and the problem structure exploitation presented in the previous
Section 7.1 we set up the full discrete tangential problem for pj for the diffusion
advection reaction model problem:

Fh(p; yh, vh)− f(p; vh)

=
∑
T∈Th

∫
T

∂

∂pj
gT (p; yh, vh)dx+

∑
F∈Fint

h

∫
F

∂

∂pj
gint(p; yh, vh)ds

+
∑
F∈FΓ

h

∫
F

∂

∂pj
gΓ (p; yh, vh)ds, ∀vh ∈ Vh

⇔
αah(Sh,pj , vh) + bh(p;Sh,pj , vh) + ρ(p)ch(p;Sh,pj , vh)

=−
∑
T∈Th

∫
T

[
− ∂

∂pj

(
yhβ(p) · ∇vh

)
+ ∂

∂pj
ρ(p) (yhvh)− ∂

∂pj

(
f(p)vh

) ]
dx

−
∑

F∈Fint
h

∫
F

[
∂

∂pj

(
{{yh}}2{{vh β(p) · n}}

)
+ ∂

∂pj

(1
2σµ(β(p), n) JyhK JvhK

)]
ds

−
∑
F∈FΓ

h

∫
F

[
∂

∂pj

(1
2β(p) · nyh + 1

2σµ(β(p), n)yh
)
vh (7.15)

− ∂

∂pj

(
2γyD(p)vh − αyD(p)∂nvh

)
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+ ∂

∂pj

(1
2β(p) · nyD(p)− 1

2σµ(β(p), n)yD(p)
)
vh

]
ds, ∀vh ∈ Vh.

4

Structure exploitation FE algorithm Let us examine this structure exploitation
on algorithm level. Before solving the system of equations by an iterative solver,
we assemble the stiffness matrix to compute the left hand side and the load vector
to compute the right hand side of the PDE problem. This assembling is done by
computing the local matrices over cells, interior faces and boundary faces and after
that summing the local contributions to the global stiffness matrix. Therefore the FE
algorithm loops over all cells, interior faces and boundary faces of the grid elements.
We do not have to differentiate all these loops, but rather the inner parts, where
the mathematical formulation is encoded. For each cell, respective interior face or
boundary face, there holds the same analytical formula. That is gT (p;ϕi, ϕj) on cells,
gint(p;ϕi, ϕj) on interior faces and gΓ (p;ϕi, ϕj) on boundary faces.

We split the cell term into a matrix contribution and a right hand side contribution,
the matrix contribution depends on both basis functions ϕi and ϕj , the right hand
side contribution only depends on ϕj ,

gT (p;ϕi, ϕj) =: gT,m(p;ϕi, ϕj) + gT,r(p;ϕj).

In the same manner, we split the interior face term gint(p;ϕi, ϕj) =: gint,m(p;ϕi, ϕj) +
gint,r(p;ϕj) and the boundary face term gΓ (p;ϕi, ϕj) =: gΓ,m(p;ϕi, ϕj) + gΓ,r(p;ϕj).

Algorithm 2 shows three loops for assembling of local stiffness matrices AT for cells,
AF int for interior faces and AFΓ for boundary faces. We loop over all cells T ∈ Th,
interior faces F ∈ Finth and boundary faces F ∈ FΓh . Each of these loops contains
three additional loops: a loop over quadrature points xq, q = 1, ..., nq, where nq is
the number of quadrature points per element, and two loops over degrees of freedom
(DoFs) of a cell, ndc is the number of DoFs per cell. We evaluate the test functions ϕi
and ϕj at quadrature point xq and multiply the evaluated integrand with quadrature
weight wq.

Lines 7, 18 and 29 contain the inner part, where the mathematical formulation is
encoded. Only these lines are parameter dependent. Thus we only differentiate these
lines. The automatic differentiation tool takes the computational formulation of
gT,m(p;ϕi, ϕj) and generates a code that contains the computational formulation of
the derivative ∂

∂pj
gT,m(p;ϕi, ϕj). We use this generated derivative in the assembling
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Algorithm 2 Primal problem: assembling of local stiffness matrices. Loops over
cells, interior faces and boundary faces.

1: Initialize matrices AT , AF int , AFΓ ∈ Rndcxndc to zero.
2: . cells
3: for T ∈ Th do
4: for q = 1, ..., nq do
5: for i = 1, ..., ndc do
6: for j = 1, ..., ndc do
7: compute gT,m(p;ϕi(xq), ϕj(xq))
8: AT (i, j) = AT (i, j) + gT,m(p;ϕi(xq), ϕj(xq))wq
9: end for

10: end for
11: end for
12: end for
13: . interior faces
14: for F ∈ Finth do
15: for q = 1, ..., nq do
16: for i = 1, ..., ndc do
17: for j = 1, ..., ndc do
18: compute gint,m(p;ϕi(xq), ϕj(xq))
19: AF int(i, j) = AF int(i, j) + gint,m(p;ϕi(xq), ϕj(xq))wq
20: end for
21: end for
22: end for
23: end for
24: . boundary faces
25: for F ∈ FΓh do
26: for q = 1, ..., nq do
27: for i = 1, ..., ndc do
28: for j = 1, ..., ndc do
29: compute gΓ,m(p;ϕi(xq), ϕj(xq))
30: AFΓ (i, j) = AFΓ (i, j) + gΓ,m(p;ϕi(xq), ϕj(xq))wq
31: end for
32: end for
33: end for
34: end for
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of the right hand side load vector of the j-th tangential problem. We proceed just
the same for the two remaining derivatives ∂

∂pj
gint,m(p;ϕi, ϕj) and ∂

∂pj
gΓ,m(p;ϕi, ϕj).

In the same manner we generate the remaining derivatives from the assembling of
the right hand side local load vectors of the primal problem. Algorithm 3 shows
the corresponding loops for a local vector f̃T for the terms over cell sums, f̃F int
for the terms over interior face sums and f̃FΓ for the terms over boundary face
sums for the right hand side vector. As before in the matrix assembling loops,
lines 6, 15 and 24 contain the inner part, which is parameter dependent. We take
the computational formulation of gT,r(p;ϕj), gint,r(p;ϕj) and gΓ,r(p;ϕj) and process
these lines by an automatic differentiation tool. We get code for the derivatives
∂
∂pj

gT,r(p;ϕj), ∂
∂pj

gint,r(p;ϕj) and ∂
∂pj

gΓ,r(p;ϕj). We use the generated code in the
assembling of the tangential right hand side load vector of the j-th tangential problem.

Algorithm 4 depicts the assembling of the right hand side load vector for tangential
problem of parameter pj . Again, we see the loops over cells, interior faces and
boundary faces. In lines 5 and 6 the generated derivatives of the cell terms from local
stiffness matrix assembling and local right hand side load vector assembling of the
primal problem are evaluated. Similarly in lines 16, 17, 26 and 27 the derivatives
of the interior face terms and the boundary face terms are evaluated, respectively.
Note that depending on the problem setting the solution of the primal problem yh
can enter the tangential problem through derivatives of stiffness matrix contributions
of the primal problem.

Thus, the structure of the FE method is exploited by differentiating the single
integrands of the cell sums, interior face sums and boundary face sums. In this way,
we efficiently and automatically generate the derivatives to set up the tangential
problems.
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Algorithm 3 Primal problem: assembling of local load vectors. Loops over cells,
interior faces and boundary faces.

1: Initialize vectors f̃T , f̃F int , f̃FΓ ∈ Rndc to zero.
2: . cells
3: for T ∈ Th do
4: for q = 1, ..., nq do
5: for j = 1, ..., ndc do
6: compute gT,r(p;ϕj(xq))
7: f̃T (j) = f̃T (j) + gT,r(p;ϕj(xq))wq
8: end for
9: end for

10: end for
11: . interior faces
12: for F ∈ Finth do
13: for q = 1, ..., nq do
14: for j = 1, ..., ndc do
15: compute gint,r(p;ϕj(xq))
16: f̃F int(j) = f̃F int(j) + gint,r(p;ϕj(xq))wq
17: end for
18: end for
19: end for
20: . boundary faces
21: for F ∈ FΓh do
22: for q = 1, ..., nq do
23: for j = 1, ..., ndc do
24: compute gΓ,r(p;ϕj(xq))
25: f̃FΓ (j) = f̃FΓ (j) + gΓ,r(p;ϕj(xq))wq
26: end for
27: end for
28: end for
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7.2. Structure of finite element method

Algorithm 4 Tangential problem: assembling of local load vectors. Loops over cells,
interior faces and boundary faces.

1: Initialize vectors f̃T , f̃F int , f̃FΓ ∈ Rndc to zero.
2: . cells
3: for T ∈ Th do
4: for q = 1, ..., nq do
5: for j = 1, ..., ndc do
6: compute ∂

∂pj
gT,m(p; yh(xq), ϕj(xq))

7: compute ∂
∂pj

gT,r(p;ϕj(xq))
8: f̃T (j) = f̃T (j)− ∂

∂pj
gT,mwq + ∂

∂pj
gT,rwq

9: end for
10: end for
11: end for
12: . interior faces
13: for F ∈ Finth do
14: for q = 1, ..., nq do
15: for j = 1, ..., ndc do
16: compute ∂

∂pj
gint,m(p; yh(xq), ϕj(xq))

17: compute ∂
∂pj

gint,r(p;ϕj(xq))
18: f̃F int(j) = f̃F int(j)− ∂

∂pj
gint,mwq + ∂

∂pj
gint.rwq

19: end for
20: end for
21: end for
22: . boundary faces
23: for F ∈ FΓh do
24: for q = 1, ..., nq do
25: for j = 1, ..., ndc do
26: compute ∂

∂pj
gΓ,m(p; yh(xq), ϕj(xq))

27: compute ∂
∂pj

gΓ,r(p;ϕj(xq))
28: f̃FΓ (j) = f̃FΓ (j)− ∂

∂pj
gΓ,mwq + ∂

∂pj
gΓ,rwq

29: end for
30: end for
31: end for
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7. Structure exploitation of primal and tangential discretization schemes

7.3. Numerical results

7.3.1 Example. Structure exploiting sensitivity evaluation for advection dominated
diffusion advection PDE problem. We illustrate the structure exploiting sensitivity
evaluation with the unconstrained parameter estimation optimization Problem 2.2.2,
respectively the discrete version Problem 4.3.2. The underlying PDE model problem
possesses a small diffusion coefficient α = 0.001, a constant right hand side f = 1
and a constant Dirichlet boundary condition yD = 1. The domain Ω consists of the
rectangle [−1, 1]2. The strong form reads

−0.001∆y + β(p) · ∇y = 1 on Ω,
y = 1 on Γ = ∂Ω.

The unknown parameter vector p ∈ R2 consists of the two components of the advection
direction β(p) = (p1, p2)T . Because of the small diffusion coefficient, the PDE model
problem is advection dominated as long as the parameters do not get as small as the
diffusion coefficient.

The corresponding discrete PDE problem reads: Find yh ∈ Vh such that

αah(yh, vh) + bh(p; yh, vh) = fh(vh), ∀vh ∈ Vh,

with ah(yh, vh), bh(p; yh, vh) and fh(vh) defined as above, equation (7.10). We use the
differentiable discretization σµ(β, n) (6.3) with µ = 0.1. In this example, only the
advection part bh(p; yh, vh) depends on the parameters.

The model response consists of point measurements given by the value of the discrete
PDE solution operator at the measurement points hi,h(p) := Sh(p)

∣∣∣
x=xmi

. Thus the
discrete parameter estimation problem reads

min
p∈P

1
2

M∑
i=1

(
ηi − hi,h(p)

σi

)2

.

We generate the two tangential problems, one for the first parameter and one for the
second parameter, with the structure exploiting technique depicted in the previous
sections. Thus, we derive small parts of the primal discretization by an AD tool and
generate the discrete tangential problems. With this generated code, we compute the
tangential solutions as depicted above in Algorithm 4. We perform all computations
on an uniformly refined grid with 147,456 DoFs. We use quadratic discontinuous finite
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7.3. Numerical results

elements for all computations. We compute on a desktop computer with a Pentium®

Dual-Core CPU E5400 with 2.70GHz × 2 processor on Ubuntu 14.04 LTS with a
memory of 12GB RAM.

Figure 7.1 shows the simulation of the primal problem (7.10) for the parameter values
p1 = −0.2 and p2 = 0.3. Figure 7.2 shows on the left the simulation of the tangential
problem (7.15) for the first parameter p1 and on the right the solution of the tangential
problem for the second parameter p2. We see the influence of the advection direction
on the PDE solution in all three figures. The advection direction points from the
lower right corner to the left half of the upper boundary. If we compare the two
tangential problems, we see that the solutions of them are mirrored at the advection
direction: while the solution of the tangential problem for p1 is zero on the left side
and has very high values on the right side, the solution of the tangential problem for
p2 has very low values on the left side and is zero on the right side.

Figure 7.1.: Simulation of the primal PDE problem.

With this structure exploiting approach, the tangential problems are generated
efficiently. No memory issues appear while generating the tangential problems. In
contrast to using black box AD, we exploit the problem dependent structure and
the structure of the FE method and therefore only differentiate small parts of the
code with AD. This leads to a considerable saving of memory space, no memory
issues occur. In comparison to finite differences, we obtain a much higher accuracy
for the sensitivities. Furthermore, the user does not have to provide sensitivities. All
sensitivities are generated by the program. 4
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7. Structure exploitation of primal and tangential discretization schemes

Figure 7.2.: Simulation of tangential PDE problems for p1 (left) and p2 (right).
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8. Freezing of adaptive components

The main part of the principle of IND is frozen adaptivity. By freezing the adaptive
components, for example grid, order, step size, and using the same discretization
scheme for the primal and the tangential problems, the consistent derivatives of the
model response are computed. Possible adaptive components are frozen, so that no
problems arise with discontinuities from the adaptivity.

In our setting, potential adaptive components are the adaptive grid refinement with
an error indicator of the spatial finite element grid and the adaptive step number of
an iterative solver of the linear system. Both have to be frozen to obtain consistent
sensitivities. How to treat these adaptive components in a suitable way is discussed
in this chapter. We start with the adaptive FE grid and develop a heuristic, the error
sum strategy for grid refinement. It generates one adaptively refined grid for primal
and tangential PDE problems per Gauss-Newton iteration. After that we consider
the iterative solver of the linear system. We analyze two possible options to solve the
linear system of all PDE models. Finally, we present numerical results obtained with
the developed methods.

8.1. Adaptive finite element grid

We begin this section with a general overview of grid refinement for a finite element grid.
After that we consider the case of optimization: here we need multiple simulations of
different PDE problems. Does that mean we need multiple grids? We give a short
literature overview. Finally we propose the error sum strategy for grid refinement,
which generates one adaptively refined grid for all PDE problems, that means for
primal and tangential PDE problems, per Gauss-Newton iteration. The error sum
strategy is in accordance with the principle of IND.

Grid refinement We perform the simulation of a PDE model problem on a grid,
which is composed of closed quadrilateral grid cells. One possibility to generate such
a grid is to start with a coarse grid and uniformly refine each grid cell to arrive at a
finer grid. On the one hand, the finer the grid, the more accurate is the simulation.
This is expressed by a small discretization error. On the other hand, the finer the
grid, the more computationally expensive is the simulation.
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8. Freezing of adaptive components

To circumvent this problem, we use adaptive grid refinement [83], [94]. Instead of
refining the grid uniformly everywhere, we only refine a subset of grid cells. We use an
error indicator to select the grid cells, which we refine afterwards. For each element
we compute an a posteriori error indicator for the discretization error. The cells with
a high error are refined, while the cells with a low error are coarsened. This strategy is
called fixed fraction strategy. With this procedure, we need less computational effort
while the discretization error remains small. Figure 8.1 shows on the left hand an
uniformly refined grid and on the right hand an adaptively refined grid.

Figure 8.1.: Left hand: uniformly refined grid, right hand: adaptively refined grid.

Optimization: multiple simulations and therefore multiple grids? In our
setting of derivative based optimization methods we simulate more than one PDE
problem. We simulate primal and tangential PDE problems. To solve the optimiza-
tion problems with derivative based algorithms, we need accurate and consistent
sensitivities. Otherwise the optimization algorithm could not converge or it could
converge to a false parameter value. Thus we need to solve all PDE problems, primal
and tangential problems, as accurate as possible. That means the discretization error
of primal and tangential problems should be low. If we use adaptive grid refinement
straight forward we get for each PDE problem one individual adaptively refined grid.
Each grid is refined such that the discretization error for the corresponding PDE
problem is small. Figure 8.2 shows two different adaptively refined grids.

With this straightforward application of adaptive grid refinement, we observe two
main problems that arise with different grids:

1) Practical problem: we set up the tangential problems with the help of the primal
problem, because we exploit the common structure of primal and tangential
problems. This is difficult with different grids. We need the identical sets
Th,Finth and FΓh , otherwise our structure exploitation techniques cannot be
applied. Additionally, in some cases we need the solution of the primal problem
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8.1. Adaptive finite element grid

Figure 8.2.: Two different adaptively refined grids.

in the right hand side of the tangential problems.

2) Quality problem: the principle of IND shows that the sensitivity calculated with
different grids does not correspond to the computed solution of the simulation
of the primal problem. It is not clear, if this sensitivity is consistent, which
introduces an error, which can become arbitrary large. We need accurate
and consistent sensitivities for the optimization algorithms. Otherwise the
optimization algorithms could converge to a false value or converge slowly.

We explain briefly two possible ways to solve practical problem 1). First we could
use the smallest common grid. Figure 8.3 shows the building of the smallest common
grid from two different adaptively refined grids. On the smallest common grid of a
primal and a tangential problem, an exact integration is possible. A drawback of this
procedure is the costly implementation. The second way is to interpolate between

Figure 8.3.: Smallest common grid. Left: grid of primal problem, centre: grid
of tangential problem, right: smallest common grid for primal and
tangential problem.

grids. By interpolating we introduce an additional error.

Both ways do not solve the quality problem 2). To solve the quality problem 2) and
thus transfer the principle of IND to PDEs, we use one grid for all PDE problems. That
means we develop a strategy to generate one frozen adaptive grid per optimization
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8. Freezing of adaptive components

iteration. In this way we ensure to compute tangential solutions, which correspond to
the primal solution. Thus the computed sensitivities are consistent.
8.1.1 Remark. Freeze grid for more than one optimization iteration It is also possible
to generate a new adaptive grid not in every optimization iteration, but after several
iterations. As long as the discretization errors do not get too large, we can use the
same grid. That way we freeze the grid for more than one iteration and thus reduce
computational effort [17], [53]. 4

Literature overview A sophisticated and evidenced solution are tailored error
estimators. For a survey on adaptive mesh refinement with tailored error estimators
with the dual-weighted residual method for optimal control problems see [83]. For
parameter estimation problems, tailored error estimators, which include the primal
and tangential or adjoint solution, are proposed in [17], [21], [22], [34]. They all
use continuous finite elements. To our knowledge, for discontinuous finite elements
tailored error estimators for parameter estimation problems are not yet developed.

First steps for an a posteriori error estimator for optimum experimental design
optimization problems are undertaken in [33]. The author also uses continuous finite
elements.

Error sum strategy for grid refinement How do we obtain one grid, which is
suitable for primal and tangential PDE problems? We present a possibility to generate
one common grid for primal and tangential PDE problems by an a posteriori error
indicator.

We first solve the primal and tangential problems on the same coarse mesh. After
that, we estimate the errors per cell individually for primal and tangential problems
with the help of an error indicator. Before, the individual errors per cell were used to
generate individual grids. Instead we now sum up the individual errors cell by cell to
obtain the error sums per cell. We use these sums as an error indicator. We refine
the 30% cells with the largest values of error sum and coarsen the 3% cells with the
lowest values of error sum. Of course, we could choose other percentages to refine and
coarsen. With the chosen percentages we approximately double the number of cells
in two dimensions. That way, we obtain one adaptively refined grid that is suitable
for primal and tangential problems. Algorithm 5 depicts the procedure.

We illustrate the error sum strategy by a small example.
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8.1. Adaptive finite element grid

Algorithm 5 Error sum strategy to obtain one common adaptively refined grid.
1: Calculate error per cell individually for primal and for tangential problems.
2: Sum up errors per cell of primal and tangential problems.
3: Refine grid according to this error sum indicator.

8.1.2 Example. Error sum strategy for grid refinement. After computing the primal
and tangential solutions on a coarse mesh, we get errors per cell for primal and
tangential problems from an error indicator. The errors of the four cells of the coarse
grid sorted by size for the primal problem are e(1)

3 > e
(1)
2 > e

(1)
1 > e

(1)
4 and for the

tangential problem are e(2)
2 > e

(2)
1 > e

(2)
3 > e

(2)
4 . In the top line of Figure 8.4 we see

the primal grid with corresponding errors, the middle line shows the tangential errors.
If we refine the cell with the largest error in each case, we would get the upper right
grid for the primal problem and the middle right grid for the tangential problem.
Thus we would get two differently refined grids.

Instead, we sum up the errors per cell and get the sum of errors per cell. We sort the
sums by size and get for this example ∑2

i=1 e
(i)
2 >

∑2
i=1 e

(i)
3 >

∑2
i=1 e

(i)
1 >

∑2
i=1 e

(i)
4 .

In Figure 8.4, the bottom line depicts on the left the sums of errors and on the right
the corresponding grid, which results in refining the cell with the highest sum of
errors. 4

The proposed error sum strategy results in one adaptively refined grid. The refinement
is based on the discretization errors of primal and tangential solutions. Different
orders of magnitude of the primal and tangential errors could lead to an emphasis on
primal or on a tangential problem. This means on the adaptively refined grid based
on the error sum strategy, the discretization error of this emphasized PDE problem is
much lower than the discretization errors of the remaining PDE problems. A solution
for this issue is scaling or weighting the individual discretization errors such that
every error contributes the same proportion to the overall error.
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e
(1)
1 e

(1)
2

e
(1)
3 e
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4

2∑
i=1

e
(i)
1

2∑
i=1

e
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e
(i)
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2∑
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e
(i)
4

Figure 8.4.: Error sum strategy for grid refinement. It shows errors per cell and
corresponding adaptively refined grids for the primal problem (top),
the tangential problem (middle) and the sums of errors (bottom).

8.2. Iterative solver of linear system

To solve the linear system of equations in the course of the finite element algorithm
we utilize an iterative solver, because the dimension of the linear system of equations
is usually very large. Furthermore, iterative methods take advantage of the sparsity
of the stiffness matrix. In our examples we use GMRES [86]. The considerations in this
section also hold for other iterative solvers.

In the context of sensitivity generation with the principle of IND, the adaptive
number of steps taken by the iterative solver is of interest. Depending on the stopping
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8.2. Iterative solver of linear system

criterion, the iterative solver takes a different number of steps for primal and tangential
problems.

For the sensitivity generation, we have two possibilities to handle the iterative solver
[46, Chapter 15]:

1) Piggyback approach: we apply automatic differentiation to the iterative solver
in every iteration. That means, we compute the solution of the primal problem
and of the tangential problems in every iteration step. This leads to the use of
the same iterative solver and the same grid for all PDE problems.

2) Two-phase approach: we assume a negligible residual of the linear system and
use the implicit function theorem. We solve the primal and the tangential
problems independently by the same iterative solver on the same grid.

Let us investigate these two approaches under the principle of IND. How does the
adaptive number of iterations behave?

Piggyback approach The piggyback approach leads to the same number of iter-
ations for primal and tangential problems, because we solve all problems together.
The stopping criterion for the iterative solver depends on the accuracy of all solutions.
This corresponds to the principle of IND and leads to consistent derivatives.

A practical observation is the following [46]: in the early phase of an iteration process,
the convergence behavior of the primal problem is not smooth. Varying step lengths
could lead to severe non-differentiablities. In [46], the authors propose a “delayed
piggyback” approach. There the derivative evaluation starts later in the iteration
process, when the convergence of the primal problem is smooth.

Furthermore, in the piggyback approach, we have to consider the differentiation of
a preconditioner and of other sophisticated solution techniques. On the one hand,
this introduces difficulties, which have to be investigated in detail to arrive at the
accurate sensitivities. A short overview of possible difficulties and solution ways is
presented in [46]. On the other hand, the piggyback approach offers possibilities to
exploit the structure of the iterative solver and the preconditioner. In the context of
DAEs, the author in [15] investigated ways to exploit the structure of an iterative
solver under the principle of IND.

Two phase approach The two phase approach leads not necessarily to the same
number of iteration steps. Therefore, we iterate until the residual error of the linear
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equation system is very small. Additional iterations would lead to nearly the same
computed solution. So there is no influence of the adaptive number of iteration steps
in this very accurate computation setting. Thus, the sensitivities are consistent.

In [46, Lemma 15.1], the authors propose a “consistency check” for the computed
sensitivities. It depends on the residuals of primal and tangential problems. Thus
if we solve the primal and tangential equation systems until the errors and thus the
residuals are very small, we ensure the consistency of the computed sensitivities.

Conclusion We conclude that the piggyback approach is preferable if we desire
low accuracies. With the piggyback approach, the adaptive number of iteration steps
influences the computed solutions. To get consistent sensitivities in this setting, it is
important to use the same number of iteration steps for the primal and the tangential
problems. Contrary, if we need high accuracies, the two-step approach computes
consistent sensitivities, too. With the two-phase approach, we do not have to consider
the differentiation of a preconditioner or other solver-dependent specialities. Thus, we
will utilize the two-phase approach with a very accurate stopping criterion of 10−10.
8.2.1 Remark. In the model problems treated in this thesis, high accuracy does not
lead to high computing times. This can be the case for three dimensional problems
or other large-scale PDE problems. If high accuracy is a major reason for slow
convergence, it is advisable to use the piggyback approach with lower accuracies. 4
8.2.2 Remark. Additional adaptive components There are additional adaptive com-
ponents, which should be frozen in the sensitivity generation with the principle of
IND. Possible additional adaptive components are the order of the finite element and
the choice of the finite element. Following the principle of IND, those adaptive compo-
nents must be chosen the same in primal and tangential problems. Sometimes in the
simulation of the primal PDE, to estimate the error by a tailored error estimator, the
dual problem is computed on a finer grid or with a more accurate finite element order
[30], [31], [33]. In the context of optimization, those are adaptive components, which
must be frozen, too. That means, the same finite element with the same order as used
for the solution of the primal problem must be used for the tangential problems. 4

8.3. Numerical results

8.3.1 Example. Sensitivity evaluation with frozen adaptivity for advection dominated
diffusion advection PDE problem. We utilize the same example as in Chapter 7 on
structure exploitation, Example 7.3.1, to illustrate the frozen adaptivity for sensitivity
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evaluation. The underlying PDE model problem is an advection dominated diffusion
advection problem. The domain Ω consists of the rectangle [−1, 1]2. The strong form
reads

−0.001∆y + β(p) · ∇y = 1 on Ω,
y = 1 on Γ = ∂Ω.

As before the unknown parameters are the two components of the advection direction
β(p) = (p1, p2)T . The corresponding discrete PDE problem reads: Find yh ∈ Vh such
that

αah(yh, vh) + bh(p; yh, vh) = fh(vh), ∀vh ∈ Vh,

with ah(yh, vh), bh(p; yh, vh) and fh(vh) defined in equation (7.10). We use the
differentiable discretization σµ(β, n) defined in equation (6.3) with µ = 0.1. The
model response consists of point measurements given by the value of the discrete PDE
solution operator at the measurement points hi,h(p) = Sh(p)

∣∣∣
x=xmi

. Thus the discrete
parameter estimation problem reads

min
p∈P

1
2

M∑
i=1

(
ηi − hi,h(p)

σi

)2

.

First we present the non-frozen setting, afterwards we apply the developed error sum
strategy, Algorithm 5, to realize the frozen adaptivity and get one common grid. For
the simulations in this example, we choose p1 = −0.2 and p2 = 0.3. As before, we use
the same quadratic discontinuous finite elements for all computations.

In the non-frozen case we get three different grids, one for each PDE problem:
the primal problem, the tangential problem with respect to parameter p1 and the
tangential problem with respect to parameter p2. Each grid is refined with respect to
the discretization error of one of the just listed PDE problems. For the discretization
error indication we use the Kelly refinement indicator [37], [62] which approximates
the discretization error per cell of a PDE solution by the integration of the jump of a
gradient between cells. For further details on the choice of error indicator see Remark
8.3.2. We start on a uniform refined grid with 2,304 DoFs and perform 3 refinement
cycles. We arrive at adaptively refined grids with approximately 15,800 DoFs. Figure
8.5a shows the resulting grid, which is refined with respect to the primal problem.
Figures 8.5b and 8.5c show the grids, which are refined with respect to the tangential

139



8. Freezing of adaptive components

problems. Figure 8.5b shows the grid for the first parameter p1 and Figure 8.5c shows
the grid for the second parameter p2.

In contrast to that, our aim in the frozen adaptivity case is to generate one grid for all
three PDE problems per Gauss-Newton iteration. Therefore we apply the developed
error sum strategy, depicted in Section 8.1. It includes the discretization errors of all
three PDE problems to refine the grid. The error sum strategy leads to the grid in
Figure 8.5d.

We compute the solutions of all three PDE problems on this common grid with 15,885
DoFs. Furthermore, we use the two-phase approach and solve the three PDE problems
independently with a very accurate stopping criterion of 10−10 for the iterative solver.
Figure 8.6 shows the simulation of the primal problem on the common grid generated
by the developed error sum strategy. Figure 8.7 shows the simulation of the first
tangential problem (left) and the simulation of the second tangential problem (right).
Compared to the simulations on the uniform grid in the previous chapter, these
simulations on the adaptive grid look the same. Thus we successfully simulated the
primal and tangential PDE problems on one adaptive grid. 4
8.3.2 Remark. Choice of error indicator. The Kelly refinement indicator approx-
imates the discretization error per cell of a PDE solution by the integration of the
jump of a gradient between cells. For an advection dominated problem, sharp edges
are part of the solution. Thus this error indicator is not the best choice in this setting.
A residuum based error estimator, see for example [94], or a duality based error
estimator [20] are better suited. Nonetheless our aim to show the generation of one
common grid is illustrated well with this error indicator. 4

By utilizing the frozen adaptivity case and computing all PDE problems on one
common grid, we get accurate sensitivities. The computed sensitivities correspond
to the solution of the primal problem and are thus consistent. This consistency of
the sensitivities is important for the optimization algorithms to converge and to
converge to the ”true“ optimum. Thus, with our developed error sum strategy for grid
refinement to generate one common grid which is suitable for primal and tangential
problems and the selection of the two-phase approach for the adaptive step number
of the iterative solver, we evaluated the consistent sensitivities. With these sensitivity
generation techniques we numerically solve the PE and OED optimization problems
in the next chapters.
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(a) Mesh adaptively refined with respect
to the primal problem.

(b) Mesh adaptively refined with respect
to the tangential problem for p1.

(c) Mesh adaptively refined with respect
to the tangential problem for p2.

(d) Mesh adaptively refined with the er-
ror sum strategy. It includes the dis-
cretization errors of primal problem,
tangential problem for p1 and tangen-
tial problem for p2 for the grid refine-
ment.

Figure 8.5.: Different adaptively refined grids. Three grids (a), (b), (c) for the
non-frozen adaptivity case and one grid (d) for the frozen adaptivity
case.
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Figure 8.6.: Simulation of the primal problem on the common grid generated by the
developed error sum strategy with 15,885 DoFs, see Figure 8.5d.

Figure 8.7.: Simulation of the tangential problems with respect to p1 (left) and
p2 (right) on the common grid generated by the developed error sum
strategy with 15,885 DoFs, see Figure 8.5d.
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9. The software SeafaND-Optimizer

In this chapter the developed software SeafaND-Optimizer, short for structure exploit-
ing and frozen adaptivity numerical differentiation optimizer, is introduced. First we
give an overview over the software SeafaND-Optimizer. After that, we explain the pro-
gram structure. Finally, we describe the workflow of the software SeafaND-Optimizer.

9.1. Overview

The SeafaND-Optimizer is a software for simulation, parameter estimation and
optimum experimental design with diffusion advection reaction PDE models. For
simulation of stationary 2D diffusion advection reaction PDE models, the discontinuous
Galerkin methods depicted in Chapter 4 are implemented. Due to the modular
architecture, an extension to other PDE model problems is possible. The core part
of the software SeafaND-Optimizer consists of the efficient implementation of the
developed techniques for sensitivity generation for PE and OED depicted in the three
previous chapters on differentiable stabilization Chapter 6, on structure exploitation
Chapter 7 and on frozen adaptivity Chapter 8. With these techniques, the solution of
the PE and OED problems is possible with low memory usage and low computational
effort.

A benefit of the software SeafaND-Optimizer is that the user does not have to set up
the sensitivities, that means the tangential problems. Only the primal problem has
to be characterized by domain, boundary conditions, right hand side and parameter
values. Consistent tangential equations are generated by the program.

In addition, further options of optimization software and finite element library are
available in the program. For example globalization strategies in optimization or
different finite element mesh designs can be selected by the user.

9.2. Program structure

The SeafaND-Optimizer consists of a modular structure. For the simulation of the
PDE models, the functionalities of the finite element library dealii [8], [12] and the
experimentation suite Amandus [61] are available in the SeafaND-Optimizer. For the
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optimization problems, we use the data interface and optimization algorithms of VPLAN
[66]. We follow an object-oriented approach by establishing a new class in VPLAN,
wherein the simulating and differentiating of the PDE problem takes place. The
advantage of this approach is that in every optimization step the whole information
about the structure of solution and sensitivities is available. We implemented the
developed techniques for sensitivity generation in this new class.

VPLAN [66] is a software for simulation, parameter estimation and optimum experi-
mental design with ordinary differential equations (ODE) and differential algebraic
equations (DAE). It consists of a modular structure with individual modules for
simulation of ODEs and DAEs, sensitivity generation, parameter estimation and
optimum experimental design. In the software SeafaND-Optimizer we utilize the
VPLAN modules for optimization, that means for parameter estimation and optimum
experimental design.

Optimizer
PE, OED

simulation of
primal
PDE problem

Sensitivity
evaluation:
simulation of
tangential
PDE problems

integrands of
primal
discretization

integrands of
tangential
discretizations

PAREMERA
SNOPT

Amandus
deal.ii

TAPENADE

AD

SeafaND modules

VPLAN data structures

Figure 9.1.: Structure of the SeafaND-Optimizer.

Figure 9.1 shows the modular structure of the software SeafaND-Optimizer. As
mentioned before, it is embedded in the data structures of VPLAN. Depending on the
task, simulation, PE or OED, the optimizer provides all necessary information for
the SeafaND modules. Here, the simulation and differentiation of the primal PDE
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9. The software SeafaND-Optimizer

problem takes place.

For simulation of stationary 2D diffusion advection reaction PDE models, the interior
penalty discontinuous Galerkin method and the standard upwind discontinuous
Galerkin method are implemented. Furthermore, we implemented the developed
differentiable stabilization for the upwind discontinuous Galerkin method from Chapter
6 for the advection part of the PDE problem. The simulation relies on the finite
element library dealii and the experimentation suite Amandus.

For sensitivity generation, we transferred the principle of IND to PDEs. One main
aspect of this transfer are the structure exploitation techniques developed in Chapter
7. In particular, we exploit the structure of the FE method by only deriving single
integrands. We do not derive the complete FE code. To realize this structure
exploitation, we outsource the single integrands of the FE discretization to a separate
file. Only this file is differentiated by an AD tool. In Figure 9.1, the box “integrands
of primal discretization” represents those inner parts. The dashed line shows the
generation of the sensitivity-files by an AD tool. For each tangential problem, the
AD tool generates the “integrands of tangential discretization”. We discretize the
tangential problems by taking the generated sensitivity files (“integrands of tangential
discretization” in the figure) for the discretization of the right hand side of the
tangential problem. For the left hand side of the tangential problems we reuse the
discretization of the left hand side of the primal problem. That way, we efficiently
and automatically generate the tangential PDE problems. With the generated code,
we simulate the tangential PDE problems and set up the required sensitivities for the
optimization algorithms.

Figure 9.1 further depicts the state-of-the-art software utilized in the single steps of
the procedure. In the optimizing steps, we use PAREMERA [63] to solve the PE problem
or SNOPT [42], [43] to solve the OED problem. The computational solution of the
PDE model problems is implemented with the help of Amandus [61] and deal.ii [8],
[12]. The inner part files are automatically differentiated by the AD tool TAPENADE
[48]. The packages TAPENADE, PAREMERA and SNOPT can be interchanged with other
packages that are interfaced with VPLAN. For example, we could also use PARFIT [25],
[88] for the PE problem.

Another main aspect of the transfer of the principle of IND to PDEs for sensitivity
generation is the frozen adaptivity depicted in Chapter 8. We implemented the
developed methods. For the iterative solver of the linear system we choose the
two-phase approach, that means we solve each primal and tangential PDE problem
independently. One adaptive grid is generated for all PDE problems via the developed
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error sum strategy in Section 8.1.

Algorithm 6 Frozen adaptivity in the software SeafaND-Optimizer

1: for n = 1 to nc do
2: if n = 1 then
3: generate coarse start grid
4: else
5: refine grid adaptively by error sum strategy
6: end if
7: Assemble and solve primal and tangential equation systems independently.
8: end for
9: Evaluate measurement points for primal and tangential problems and transfer

values to optimizer.

Algorithm 6 depicts the setting. In the first step, we generate a coarse start grid.
After that, we assemble and solve primal and tangential problems independently but
on the same coarse grid. In the next iteration, we refine the grid adaptively with the
developed error sum strategy. Thereafter, primal and tangential problems are again
assembled and solved independently on the same adaptively refined grid. We repeat
this procedure, until we reach the number of refinement cycles nc prescribed by the
user. Finally we evaluate the solutions of the primal and tangential problems in the
measurement points and transfer the values to the optimizer.

9.3. Workflow of the SeafaND-Optimizer.

SeafaND-
Optimizer

domain
boundary conditions
right hand side
amandus.prm

vplan.ini
exp.ini
sigma.f
mess.dat

primal.vtk
tangential1.vtk
tangential2.vtk
...

vplan.ini
exp.ini

Figure 9.2.: Input and output of the SeafaND-Optimizer.
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9. The software SeafaND-Optimizer

Figure 9.2 shows the workflow of the SeafaND-Optimizer. As input, the user has to
provide two kinds of information, that is information about the PDE model problem
and about the optimization problem. First, for the PDE model problem, we need
the domain, the boundary conditions, the right hand side and the initial parameter
values. We define the parameter values concerning the PDE model problem in a
prm-file. With that we specify a diffusion advection reaction PDE model problem.
As default the domain is the unit rectangle, the boundary conditions are constant
Dirichlet boundary conditions along the whole boundary and the right hand side is a
constant function. Many examples of more complicated domains, boundary conditions
and right hand sides can be found in the deal.ii-library [8], [12] and can be applied
within the SeafaND-Optimizer.

Second, for the optimization problems, the user has to specify ini-files, fortran-files
and mess-files. There is one main input file, vplan.ini, where we specify which
action the program performs: (S)imulation, (P)E or (V) for OED. Furthermore, for
every experiment we create a separate exp.ini file. The most important specification
for PE is, which parameters to estimate. For OED, an important specification is
the placement of the possible measurement points with the corresponding sampling
decisions. We use the main fortran-file differently than in the ODE or DAE case. In
our PDE setting, the small inner parts with the integrands of the primal discretization
are contained in the ffcnode.f file. That means, the user does not have to specify the
dynamic model. Finally, the mess-files contain the measurement values. There are
many more options, which can be set for the optimization, see [56], [63], [66] for more
details.

After the run of the SeafaND-Optimizer, we get as output files vtk-files and ini-files.
The vtk-files contain the simulation of the primal and tangential PDE model problems.
They can be visualized by for example the software ParaView [2]. The ini-files contain
all information regarding the optimization run: estimated parameters, optimized
sampling decisions and values of the least squares functional.
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This chapter presents the numerical results obtained with the developed methods
implemented in the software SeafaND-Optimizer depicted in Chapter 9. We in-
vestigate the parameter estimation problem and the optimum experimental design
problem constrained by a stationary 2D advection dominated diffusion advection PDE
boundary value problem. The main challenge in the simulation of this PDE model
is the small diffusion factor, which leads to advection domination. Furthermore, for
the optimization problems, we are concerned with the correctness of the computed
sensitivities. Without consistent sensitivities, the optimization algorithms are likely
to not converge or they could converge to a wrong parameter value.

We begin this chapter with a section about the parameter estimation problem. First,
we describe the problem formulation. After that, we show results obtained using
three different sets of measurement data perturbed by different amounts of noise.
The subsequent section shows results for the optimum experimental design problem.
We begin with the problem formulation for sequential OED. After that, we show
computational results for sequential OED. Finally, we perform a numerical study
for different diffusion coefficients. This study demonstrates the applicability of the
developed methods not only for one specific setting, but for a class of problems.

Throughout this chapter, we generate measurement data ηi by simulating the PDE
model problem on a very fine grid. The grid is uniformly refined with 589,824 degrees
of freedom (DoFs). For the simulation of measurement data, we use the standard
upwind discretization (4.5) and quadratic discontinuous finite elements. For the
optimization algorithms for PE and OED, we use for the simulation of the PDE
problems the differentiable discretization σµ(β, n) defined in equation (6.3) with
µ = 0.1. We select for the iterative solver GMRES of the PDE simulation an accurate
stopping criterion of 10−10, due to the considerations on the handling of an iterative
solver in Section 8.2.

10.1. Parameter estimation with different noise levels

In this section we perform parameter estimation with a stationary 2D advection
dominated diffusion advection PDE problem. We select the same PDE model problem
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10. Numerical results for PE and OED

as in Examples 7.3.1 and 8.3.1. The sensitivities computed there are utilized here in
the Gauss-Newton algorithm for parameter estimation.

10.1.1. Problem formulation: Parameter estimation with 2D
advection dominated diffusion advection PDE problem

The strong form of the underlying PDE model problem reads

−0.001∆y + β(p) · ∇y = 1 on Ω,
y = 1 on Γ = ∂Ω.

The domain Ω consists of the rectangle [−1, 1]2. The corresponding discrete PDE
problem reads: Find yh ∈ Vh such that

αah(yh, vh) + bh(p; yh, vh) = fh(vh), ∀vh ∈ Vh,

with ah(yh, vh), bh(p; yh, vh) and fh(vh) defined in equation (7.10).

The discrete parameter estimation problem reads

min
p∈P

1
2

m∑
i=1

(
ηi − hi,h(p)

σi

)2

.

We estimate two parameters, which are the components of the advection direction
β(p) = (p1, p2)T . The model response ηi consists of point measurements given
by the value of the discrete PDE solution operator at the measurement points
hi,h(p) := Sh(p)

∣∣∣
x=xmi

. There are eight measurement points with coordinates

xm1 = (−0.5, 0.8), xm2 = (0.5, 0.8),
xm3 = (0.8, 0.5), xm4 = (0.8,−0.5),
xm5 = (0.5,−0.8), xm6 = (−0.5,−0.8),
xm7 = (−0.8,−0.5), xm8 = (−0.8, 0.5).

Figure 10.1 shows the placement of the measurement points in the domain Ω = [−1, 1]2.

The “true” parameter values we use for the generation of the measurement data are

p∗1 = −0.2, p∗2 = 0.3.
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10.1. Parameter estimation with different noise levels

Figure 10.1.: Placement of the measurement points xmi , i = 1, .., 8, in the domain
Ω = [−1, 1]2.

We generate three different sets of measurement data. We disturb the values of the
measurement functions by an additive normally distributed error with zero mean and
three different standard deviations, σi = 0.1, σi = 0.2, and σi = 0.3, i = 1, .., 8. This
results in variances of σ2

i = 0.01, σ2
i = 0.04, and σ2

i = 0.09, i = 1, .., 8, respectively.
Hence, we get three sets of measurement data with 1%, 4% and 9% noise and
corresponding perturbations:

1% : ε = (0.040,−0.066,−0.019,−0.004, 0.023,−0.009, 0.019,−0.008),
4% : ε = (0.048, 0.197,−0.150, 0.121, 0.157, 0.048, 0.312, 0.095),
9% : ε = (−0.390, 0.393, 0.251, 0.488, 0.355, 0.352,−0.536, 0.034).

We choose the start values of the parameters for the parameter estimation as

p0
1 = −0.1, p0

2 = −0.1.

Note that the start value of the second parameter p0
2 has a different sign than the ”true“

parameter p∗2. This introduces a difficulty for the optimization algorithm, because the
outcome of the PDE simulation changes.

Figure 10.2a shows a simulation of the primal PDE model problem for the “true”
parameter values on the very fine uniform refined grid with 589,824 DoFs, with the
standard upwind discretization. Figure 10.2b shows a simulation with the start values
on a grid, which is adaptively refined by the developed error sum strategy. The grid
has 131,148 DoFs and is simulated with the developed differentiable discretization.
We see the influence of the parameters on the state: the “true” advection direction
points from the lower right corner to the upper left corner, while the start advection

151



10. Numerical results for PE and OED

direction points from the upper right corner to the lower left corner. Moreover the
numerical values of the states differ: for the “true” parameters they are much lower
than for the start parameters.

(a) Simulation primal problem with ”true“ pa-
rameter values, p∗

1 = −0.2 and p∗
2 = 0.3,

on very fine uniform refined grid with
589,824 DoFs, with standard stabilization
σupw(β, n).

(b) Simulation primal problem with start val-
ues, p0

1 = −0.1 and p0
2 = −0.1, with devel-

oped error sum strategy adaptively refined
grid with 131,148 DoFs, with developed
differentiable stabilization σµ(β, n).

Figure 10.2.: Simulations of primal PDE problem with different parameter values,
grid refinements and stabilizations.

For the sensitivity generation, we use the structure exploiting techniques depicted in
Chapter 7. Furthermore we realize the frozen adaptivity from Chapter 8. We simulate
the primal PDE problem and the two tangential PDE problems on one common grid.
In each Gauss-Newton step, the error sum strategy depicted in Section 8.1 generates
one new common grid. We start on a uniform refined grid with 36,864 DoFs and
perform three refinement cycles. The generated grids consist of approximately 130,000
DoFs. Figure 10.3 shows the generated grid for the first optimization step with start
values p0

1 = −0.1 and p0
2 = −0.1 for the parameters.

We choose for the Gauss-Newton algorithm as step size strategy a sophisticated
globalization strategy: the restricted monotonicity test (RMT) developed by [29],
implemented in the software PAREMERA by [63].
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10.1. Parameter estimation with different noise levels

Figure 10.3.: Mesh adaptively refined with error sum strategy with 131,148 DoFs,
for start values p0

1 = −0.1 and p0
2 = −0.1.

10.1.2. Comparison of noise levels

We perform parameter estimation with three sets of measurement data, each one
disturbed by a different amount of noise with a different perturbation: 1%, 4% and 9%
noise. We perform all computations with the developed software SeafaND-Optimizer,
depicted in Chapter 9.

Table 10.1 shows results of the parameter estimation with the Gauss-Newton algorithm
including our developed sensitivity generation methods for these three different noise
levels. In the case of a rather high amount of 9% noise, the algorithm needs 4
(respectively, 3) iteration steps more to reach the stopping criterion in equation
(2.13) with tol = 10−6 compared to the lower amounts of 1% (respectively, 4%) noise.
Similarly, the estimated values for p̂1 and p̂2 are the more far off the higher the noise
level gets. That is what we expect, with a higher amount of noise it is more difficult
to estimate the parameters correctly.

Figure 10.4 depicts for the three noise levels in Figure 10.4a the error in the Euclidian
norm between estimated parameters p̂ and ”true“ parameters p∗ for every iteration
k of the Gauss-Newton algorithm. In Figure 10.4b the increment ‖δpk‖2 for every
Gauss-Newton iteration k for the three noise levels is shown. Note that we use a semi
logarithmic scale.

Let us begin with the errors in Figure 10.4a. In the first iterations, the errors increase,
after that they decrease rapidly. We see linear convergence for all three noise levels
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10. Numerical results for PE and OED

noise level p̂1 p̂2 # iteration
1% -0.2033 0.3004 11
4% -0.1857 0.2991 12
9% -0.1862 0.2807 15

Table 10.1.: Results of the parameter estimation with the Gauss-Newton algorithm
for different noise levels, 1%, 4% and 9%. The first column depicts the
noise level, the second and third column depict the estimated parameter
values p̂1 and p̂2 and the fourth column depicts the number of iterations.

after iteration k = 5. This is what we expected from the convergence theory of
the Gauss-Newton algorithm. For a lower noise level of 1% the errors get much
smaller than for the higher noise levels of 4% and 9%. For a lower noise level, the
measurements are more exact and thus the parameters can be estimated more precisely.
After iteration 10 or 12, respectively, we see an asymptotic behavior of the error, the
values do not decrease any more. Why does the Gauss-Newton algorithm not stop, if
no improvement is made? An explanation for this question can be found in Figure
10.4b. The increment decreases until the last iteration step. The Gauss-Newton
algorithm will only stop if the stopping criterion in equation (2.13) is fulfilled, which
corresponds to a small increment ‖δpk‖2. Here, we set tol = 10−5.
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10−3

10−2

10−1

Gauss-Newton iteration k

Er
ro
r

1%
4%
9%

(a) Error ‖p̂k − p∗‖2 in the Euclidian
norm between estimated parameters
p̂k and ”true“ parameters p∗ for ev-
ery iteration k of the Gauss-Newton
algorithm.
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(b) Norm of the increment ‖δpk‖2 for
every Gauss-Newton iteration k is
shown.

Figure 10.4.: Results of the parameter estimation with the Gauss-Newton algorithm
for different noise levels, 1%, 4% and 9%.
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Tables 10.2, 10.3 and 10.4 report the results of the parameter estimations corresponding
to Figure 10.4 for 1%, 4% and 9% noise, respectively. The objective functional values
(LS) and the increment values are reduced until the increment ‖δpk‖2 fulfills the
stopping criterion in equation (2.13).

Finally, let us take a closer look at the individual parameters. Figure 10.5 shows
the relative errors in parameters p1 and p2 during the course of the Gauss-Newton
iterations k for the three noise levels. We see in all three noise levels a similar
behaviour: the relative errors in both parameters at first increase, after the third and
fifth iteration, respectively, they decrease rapidly. In the fifth iteration the signs of the
second parameter estimate p̂2 change, see Tables 10.2, 10.3 and 10.4. That leads to
different outcomes of the PDE simulations. After this difficulty of changing the sign
is solved, all relative errors decrease rapidly. After the tenth and twelfth iteration,
respectively, we see for all noise levels an asymptotic behavior of both parameters. In
Figure 10.5c for 9% noise, in iteration 11 the relative error of parameter p̂1 decreases
rapidly, but after that iteration, the error increases again. This behavior can be
explained by the values in Table 10.4: the estimate of p̂1,k surpasses the true value
p∗1 = −0.2:

p̂1,10 = −0.2185, p̂1,11 = −0.2003, p̂1,12 = −0.1893,

and converges to the value −0.1893. Due to the high noise level, only this less accurate
value of −0.1893 is achievable.

Taking a closer look at the asymptotic behavior, we see that the parameters p1 slightly
increase, while the parameters p2 slightly decrease. This leads to the decrease of
the norm of the increment as we have seen in Figure 10.4b. But the overall error
‖p̂− p∗‖2, in Figure 10.4a, does not improve. The algorithm reached the asymptotic
area where no overall improvement is possible any more. A stopping criterion with
tol = 10−4 would lead to a similarly good estimation.

Altogether, the parameter estimation algorithm converges linearly for different sets
of measurement values disturbed with different sizes of standard deviations. This
is a hint, that the developed methods for sensitivity generation produce consistent
sensitivities.
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Iteration k LS Increment ‖δpk‖2 Step size tk p̂1 p̂2

1 4.1104 · 104 1.2138 · 10−1 1.0000 -0.1000 -0.1000
2 1.4856 · 104 1.8401 · 10−1 1.0000 -0.1795 -0.1558
3 6.3022 · 103 3.4892 · 10−1 0.8048 -0.3237 -0.1855
4 2.3067 · 103 1.0149 · 100 0.6299 -0.4767 -0.0211
5 1.7297 · 103 6.9071 · 10−1 0.4386 -0.5317 0.4874
6 4.4066 · 102 1.8156 · 10−1 1.0000 -0.3113 0.3866
7 3.6135 · 100 1.0795 · 10−2 1.0000 -0.1923 0.3032
8 6.6654 · 10−1 2.7054 · 10−3 1.0000 -0.2007 0.3010
9 5.1025 · 10−1 5.8114 · 10−4 1.0000 -0.2028 0.3005
10 5.0331 · 10−1 1.2005 · 10−4 1.0000 -0.2032 0.3004
11 5.0302 · 10−1 2.4177 · 10−5 1.0000 -0.2033 0.3004

Table 10.2.: Results of the parameter estimation with the Gauss-Newton algorithm
for 1% noise level. The first column depicts the iteration number k, the
second column the least squares objective value (LS), the third column
the norm of the increment ‖δpk‖2, the fourth column the step size tk,
the fifth and sixth column depict the estimated parameter values p̂1
and p̂2.
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(a) Results obtained for 1% noise level.
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(b) Results obtained for 4% noise level.
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(c) Results obtained for 9% noise level.

Figure 10.5.: Results of the parameter estimation with the Gauss-Newton algorithm
for different noise levels, 1% (a), 4% (b) and 9% (c). Relative errors
in the single parameters p1 (purple) and p2 (green) for every Gauss-
Newton iteration k.
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Iteration LS Increment ||δpk||2 Step size p̂1 p̂2

1 1.0064 · 104 1.1987 · 10−1 1.0000 -0.1000 -0.1000
2 3.6418 · 103 1.7990 · 10−1 1.0000 -0.1786 -0.1549
3 1.5419 · 103 3.3766 · 10−1 0.8082 -0.3200 -0.1816
4 5.6578 · 102 9.0849 · 10−1 0.7029 -0.4669 -0.0201
5 4.4952 · 102 6.7136 · 10−1 0.3150 -0.5199 0.4880
6 2.1038 · 102 2.6090 · 10−1 1.0000 -0.3727 0.4047
7 1.5069 · 101 2.8411 · 10−2 1.0000 -0.2073 0.2774
8 4.7236 · 100 8.2261 · 10−3 1.0000 -0.1927 0.2949
9 4.1204 · 100 1.5849 · 10−3 1.0000 -0.1870 0.2982
10 4.0956 · 100 3.2211 · 10−4 1.0000 -0.1860 0.2989
11 4.0946 · 100 6.6987 · 10−5 1.0000 -0.1858 0.2991
12 4.0945 · 100 1.3293 · 10−5 1.0000 -0.1857 0.2991

Table 10.3.: Results of the parameter estimation with the Gauss-Newton algorithm
for 4% noise level. The first column depicts the iteration number k, the
second column the least squares objective value (LS), the third column
the norm of the increment ‖δpk‖2, the fourth column the step size tk,
the fifth and sixth column depict the estimated parameter values p̂1
and p̂2.
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Iteration LS Increment ||δpk||2 Step size p̂1 p̂2

1 4.4598 · 103 1.1904 · 10−1 1.0000 -0.1000 -0.1000
2 1.6433 · 103 1.8507 · 10−1 0.9554 -0.1796 -0.1522
3 6.7221 · 102 2.8486 · 10−1 0.7764 -0.3211 -0.1533
4 2.8738 · 102 3.2037 · 10−1 0.4600 -0.4583 -0.0416
5 2.5397 · 102 1.7441 · 10−1 1.0000 -0.4868 0.0728
6 1.2009 · 102 1.3663 · 10−1 1.0000 -0.3707 0.1502
7 4.3211 · 101 6.5917 · 10−2 1.0000 -0.2741 0.2013
8 2.5033 · 101 4.8742 · 10−2 1.0000 -0.2687 0.2538
9 1.2678 · 101 1.9997 · 10−2 1.0000 -0.2338 0.2712
10 1.0881 · 101 2.3448 · 10−2 1.0000 -0.2185 0.2759
11 9.3447 · 100 1.3687 · 10−2 1.0000 -0.2003 0.2803
12 8.8875 · 100 3.0424 · 10−3 1.0000 -0.1893 0.2807
13 8.8613 · 100 6.8301 · 10−4 1.0000 -0.1869 0.2807
14 8.8599 · 100 1.5801 · 10−4 1.0000 -0.1863 0.2807
15 8.8598 · 100 3.7061 · 10−5 1.0000 -0.1862 0.2807

Table 10.4.: Results of the parameter estimation with the Gauss-Newton algorithm
for 9% noise level. The first column depicts the iteration number k, the
second column the least squares objective value (LS), the third column
the norm of the increment ‖δpk‖2, the fourth column the step size tk,
the fifth and sixth column depict the estimated parameter values p̂1
and p̂2.
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10.2. Sequential optimum experimental design: Case
study with different diffusion coefficients

In this section we show an optimum experimental design problem. We perform
sequential optimum experimental design, that means we first perform parameter
estimation, after that we perform optimum experimental design and finally a second
parameter estimation with the optimized sampling points. We generate the sensitivities
by the strategies developed in Chapter 6 on the differentiable upwind discontinuous
Galerkin discretization, Chapter 7 on structure exploitation and Chapter 8 on frozen
adaptivity.

We begin this section with the problem formulation of sequential OED. After that,
we show computational results. In the last subsection we show results for a numerical
study with different diffusion coefficients. This study confirms that the developed
methods are suitable for a whole class of problems.

10.2.1. Problem formulation: Sequential OED with 2D advection
dominated diffusion advection PDE problem

We begin the sequential optimum experimental design with a first parameter estimation.
The setting is basically the same as in the preceding Subsection 10.1.1. The true
parameter values are again p∗1 = −0.2 and p∗2 = 0.3. We choose for the standard
deviation of the measurement errors σi = 0.1, i = 1, .., 8 and get the perturbation

ε = (−0.123,−0.204, 0.006,−0.088,−0.033, 0.140,−0.017,−0.012).

We have eight measurements at the same points as in Figure 10.1.

The start values are p0= (−0.1,−0.1). We adaptively refine the grid with the error
sum strategy from Section 8.1, starting on a grid with 36,864 DoFs we perform 3
refinement cycles. This procedure leads to a grid with approximately 130,000 DoFs.

For the OED run, we define 81 possible measurement points, which are equidistantly
placed in the domain Ω = [−1, 1]2,

xm1 = (−0.8, 0.8), xm2 = (−0.6, 0.8), . . . , xm9 = (0.8, 0.8),
xm10 = (−0.8, 0.6), xm11 = (−0.6, 0.6), . . . , xm18 = (0.8, 0.6),

...
...

...
xm73 = (−0.8,−0.8), xm74 = (−0.6,−0.8), . . . , xm81 = (0.8,−0.8).
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Thereof, we choose a maximum number of 8 points, which are selected by the optimiza-
tion algorithm. We determine the optimum placement of the measurement points by
optimizing the sampling decisions wi. Every sampling decision wi corresponds to one
possible spatial measurement point xmi , i = 1, .., 81. Initially, we weight all possible
points uniformly. Therefore we choose the start values for the sampling decisions
as w0

i = 0.098765, i = 1, .., 81, because the sum of all sampling decisions equals the
number of points to select: ∑iwi = 8. We scale all parameters to 1, see Remark
3.2.1. That means β(p) = (p̂1p1, p̂2p2) and p1 = p2 = 1, p̂1, p̂2 are the estimated
parameters from the preceding PE. As objective function we choose the A-criterion
ΦA(C) = 1

np
tr(C(w)), that means we minimize the average half-axis length of the

confidence ellipsoid of the parameters.

As the last step of the sequential OED, we perform a second parameter estimation.
Now we apply the optimized measurement point setting. We generate measurement
values for the optimized measurement point setting. As before, we choose for the
standard deviation of the measurement errors σi = 0.1 and get a new perturbation

ε = (0.073, 0.290, 0.195,−0.090,−0.006, 0.014,−0.072, 0.028).

As start value for the parameter estimation, we take the estimated value from the
previous parameter estimation, p0

1 = p̂1 and p0
2 = p̂1.

10.2.2. Computational results for sequential OED

In this subsection, we show results for the diffusion coefficient α = 0.001 as depicted
in the preceding problem formulation. Figure 10.6 shows the error between estimated
parameters p̂ of the PE before OED and ”true“ parameters p∗ for every iteration
k of the Gauss-Newton algorithm. The parameter estimation convergences after
10 iterations. We choose the stopping criterion in equation (2.13) with tol = 10−4.
Table 10.5 depicts the estimated parameter values and the corresponding standard
deviations. The goal of optimum experimental design is to reduce the standard
deviations of the parameters to enhance the significance of the parameter estimates.

We scale all parameters to 1, see Remark 3.2.1. That means β(p) = (−0.2164p1, 0.3014p2)
and p1 = p2 = 1. The A-optimal design algorithm converges after 20 major iterations.
The determined optimal values for the sampling decisions ŵi sorted by size are

ŵ4 = ŵ5 = ŵ8 = ŵ14 = ŵ60 = 1,
ŵ10 = 0.8569, ŵ6 = 0.7426, ŵ9 = 0.7056, ŵ15 = 0.6949.
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10. Numerical results for PE and OED

2 4 6 8 10
10−2

10−1

Gauss-Newton iteration k

Er
ro
r

‖p̂k − p∗‖2

Figure 10.6.: Results for first parameter estimation in sequential optimum exper-
imental design. Error in the Euclidian norm between estimated pa-
rameters p̂k and ”true“ parameters p∗ for every iteration k of the
Gauss-Newton algorithm.

p̂ standard deviation
−0.2164 ±6.86%
0.3014 ±2.40%

Table 10.5.: Estimated parameter values and corresponding standard deviations
after the first parameter estimation, before optimum experimental
design.

All remaining sampling decisions are ŵi = 10−6, i 6∈ {4, 5, 6, 8, 9, 10, 14, 15, 60}, which
is a lower bound to prevent numerical difficulties for wi = 0. The optimization
algorithm computes the derivative of √wi, close to wi = 0 this term becomes very
large. To prevent numerical difficulties arising from this, we set a lower bound
wi ≥ 10−6.

We observe a fractional solution, not all sampling decisions are integers. Therefore
we use a heuristic: the round up and off strategy. We round up the largest sampling
decisions and round off the smallest ones, keeping the sum of all sampling decisions
equal or below the maximum number, see Section 3.3. Thus the selected measurement
points xmi are i ∈ {4, 5, 6, 8, 9, 10, 14, 60}.

Figure 10.7 shows the result of the OED. Three of the four measurement points with
a fractional solution are selected. We notice that two of the measurement points with
a fractional solution are neighbors. One of those neighbors is selected, the other one
is not selected. That is a hint, that a point in between these two points is optimal,
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10.2. Sequential optimum experimental design: Case study

which is not part of our fixed grid.

Figure 10.7.: Result of OED. The left picture shows the fractional solution with
blue points for wi = 1, blue circles for wi ∈ (1, 10−6) and black circles
for wi = 10−6. The right picture shows the selected measurement
points (blue points) and the not selected points (black circles).

With these optimized measurement points, we perform a second PE. Starting values
for the parameters are the estimated p̂ from the preceding PE, p0

1 = −0.2164 and
p0

2 = 0.3014. The Gauss-Newton algorithm converges after 4 iterations with the
same tolerance of tol = 10−4. The estimated parameter values are p̂1 = −0.1934 and
p̂2 = 0.3011. Again we examine the standard deviations of the parameters. Table
10.6 shows the estimated parameters and the corresponding standard deviations. We
managed to reduce the standard deviation by 5.45 percentage points for the first
parameter and by 0.66 percentage points for the second parameter. That means the
uncertainty of the parameters is reduced by applying sequential OED.

Furthermore, Table 10.7 depicts the four OED criteria after the first PE (before
OED) and after the second PE (after OED). All criteria are reduced. That means
the linearized confidence regions of the parameters are reduced.

In summary, we solved the OED problem with an advection dominated diffusion
advection PDE constraint by utilizing the developed sensitivity evaluation techniques,
the differentiable upwind discontinuous Galerkin discretization from Chapter 6, the
structure exploitation from Chapter 7 and the frozen adaptivity from Chapter 8.
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10. Numerical results for PE and OED

before OED after OED
p̂ std. dev. p̂ std. dev.

−0.2164 6.86% -0.1934 1.41%
0.3014 2.40% 0.3011 1.74%

Table 10.6.: Estimated parameters and corresponding standard deviations of esti-
mated parameters after the first PE (before OED) and after the second
PE (after OED).

Criterion A D E M
before OED 1.362 · 10−4 5.829 · 10−5 2.594 · 10−4 1.484 · 10−2

after OED 1.739 · 10−5 1.364 · 10−5 2.818 · 10−5 5.228 · 10−3

Table 10.7.: Values of the OED criteria after the first PE (before OED) and after
the second PE (after OED).

We reduced the linearized confidence regions of the parameters by selecting opti-
mal measurement points. That way we increased the significance of the estimates
considerably.

10.2.3. Comparison of diffusion coefficients

In this subsection, we test the algorithms with different diffusion coefficients:
α = 10−2, 10−3, 10−5, 10−9. That way we investigate if the developed methods are
suitable not only for one specific setting but for a class of problems.

The setting is the same as in the preceding subsection, we perform sequential OED
with a diffusion advection PDE model problem. We vary the diffusion coefficient α.
The smaller the diffusion coefficient, the more advection dominated the PDE model
becomes.

For the four choices of the diffusion coefficient α, we generate measurement data with
4% noise, that means a standard deviation of σi = 0.2, i = 1, .., 8. We get four sets of
measurement data, with four different perturbations:

α = 10−2 : ε = (−0.163, 0.014,−0.183,−0.158,−0.225, 0.208,−0.118, 0.184),
α = 10−3 : ε = (−0.246,−0.407, 0.012,−0.175,−0.066, 0.281,−0.034,−0.024),
α = 10−5 : ε = (−0.340, 0.031, 0.276,−0.001, 0.326, 0.025, 0.056, 0.166),
α = 10−9 : ε = (0.075,−0.192,−0.201,−0.245, 0.045, 0.106,−0.122,−0.016).
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10.2. Sequential optimum experimental design: Case study

Figure 10.8 shows the results for the PE before OED. For all four tested diffusion
coefficients, the Gauss-Newton algorithm converges linearly. The increment value gets
smaller than the stopping criterion in equation (2.13) with tol = 10−4. The larger
the diffusion coefficient, the less iterations are needed to reach the stopping criterion.
That means the more advection dominated the PDE model gets, the more difficult
the solution of the parameter estimation problem gets. That is what we expected.
Nonetheless, all tested cases converge within 13 iterations.
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(a) Error ‖p̂k − p∗‖2 in the Euclidian
norm between estimated parameters
p̂k and ”true“ parameters p∗ for ev-
ery iteration k of the Gauss-Newton
algorithm.
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(b) Increment ‖δpk‖2 for every Gauss-
Newton iteration k is shown.

Figure 10.8.: Results of the parameter estimation with the Gauss-Newton algorithm
for four different choices of the diffusion coefficient α.

The error between estimated and “true” parameters is reduced in all four cases, see
Figure 10.8a. Regarding the size of the error between estimated and “true” parameters
for the different diffusion coefficients, we do not see such a clear picture as for the
number of iterations: for α = 10−3 we get the largest error for the four tested cases.
That can be caused by the different perturbations of measurement errors. Taking the
same perturbation or no measurement error could lead to a different result.

In the next step of sequential OED, we perform an OED run with the A-criterion.
As before, out of 81 possible measurement points, the OED algorithm selects 8 mea-
surement points via the sampling decisions wi, i = 1, .., 81. For α = 10−2, the SQP
algorithm converges after 20 major iterations. For α = 10−3, it takes 18 major
iterations, for α = 10−5 it takes 16 major iterations, and for α = 10−9 it takes 18
major iterations. Thus all OED problems are solved within a similar number of

165



10. Numerical results for PE and OED

iterations.

α = 10−2 α = 10−3 α = 10−5 α = 10−9

w1 - - 1 x 1 x
w4 - 1 x 1 x 1 x
w5 1 x 1 x 1 x 1 x
w6 1 x 0.4125 x 0.2026 -
w7 1 x - - -
w8 1 x 1 x 0.9490 x 1 x
w9 0.6090 x 1 x 0.5060 x 0.2671
w10 0.9079 x 1 x 0.8708 x 1 x
w11 - - 0.8708 x 1 x
w14 - 1 x 1 x 1 x
w15 1 x 0.4070 0.2026 -
w16 0.5879 - - -
w19 0.8952 x 0.9732 x - -
w24 - 0.2073 0.2026 -
w33 - - 0.1955 0.7328 x

Table 10.8.: Sampling decisions wi > 10−6 for different diffusion coefficients α. The
symbol x marks selected measurement points.

Table 10.8 depicts the sampling decisions wi which are greater 10−6. Figure 10.9
shows the position of these optimized sampling decisions. We see, that the selected
measurement points shift to the left as the diffusion coefficient gets smaller. As the
solution of the PDE model gets more advection dominated, different measurement
points are optimal.

For each diffusion case, we perform a second PE with the optimized measurement
points from the preceding OED runs. Therefore, we round up the largest fractional
weights until the number of eight measurement points is reached. In Table 10.8 the
symbol x marks the selected measurement points.

The second PE converge after 3, 5, 3 and 4 iterations for α = 10−2, 10−3, 10−5 and
10−9, respectively. Table 10.9 shows the value of the objective function ΦA. We see
that the objective function values are reduced for all four diffusion cases. Table 10.10
shows the standard deviations of the two parameters for the four different diffusion
coefficients α. For all diffusion coefficients, the standard deviations of both parameters
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10.2. Sequential optimum experimental design: Case study

α Φ0
A before OED Φ1

A after OED
10−2 8.55769 · 10−4 1.03212 · 10−4

10−3 7.08039 · 10−4 4.51676 · 10−5

10−5 3.51241 · 10−4 5.48265 · 10−5

10−9 4.23966 · 10−4 6.19242 · 10−5

Table 10.9.: Values of the OED criteria after the first PE (before OED) and after
the second PE (after OED) for the four different choices of the diffusion
coefficient α.

are reduced. Thus, they are estimated more significantly. Regarding the choice of
the diffusion coefficient, we cannot see any patterns influencing the reduction of the
standard deviations.

std. dev. before OED std. dev. after OED
α p̂1 p̂2 p̂1 p̂2

10−2 17.14% 7.34% 4.34% 3.82%
10−3 14.52% 5.57% 2.44% 2.78%
10−5 11.77% 4.01% 2.58% 3.04%
10−9 12.26% 4.31% 3.33% 2.97%

Table 10.10.: Standard deviations of estimated parameters after the first PE (std.
dev. before OED) and after the second PE (std. dev. after OED) for
the four different choices of the diffusion coefficient α.

We conclude that we successfully applied the developed methods and algorithms to a
class of PDE problems. The methods work well for advection dominated diffusion
advection reaction PDE model problems. For all four tested diffusion coefficients, the
uncertainty of the parameters is reduced with the developed methods.

167



10. Numerical results for PE and OED

Figure 10.9.: Result of OED. The top left picture shows the solution for α = 10−2,
the top right picture shows the solution for α = 10−3, the bottom left
picture shows the solution for α = 10−5 and the bottom right picture
shows the solution for α = 10−9. Blue points stand for wi = 1, blue
circles for wi ∈ (1, 10−6) and black circles for wi = 10−6.
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11. Numerical study on mesh
independence for PE and OED

In this chapter we study the mesh independence of the developed optimization
methods. We first investigate a parameter estimation problem starting with the
problem formulation. We compare the output of the PE algorithm for different refined
grids of the underlying PDE simulation. In the next section we are concerned with
an OED problem. We first introduce the problem formulation. We investigate if
the developed methods are stable under grid refinement. Therefore, we compare
the output of the OED algorithm for different refined grids of the underlying PDE
simulation.

Throughout this chapter, we proceed in the same manner as in the preceding chapter:
we generate measurement data by simulating the PDE model problem with the
standard upwind discretization (4.5). We use for the optimization runs the developed
differentiable discretization σµ(β, n) defined in equation (6.3) with µ = 0.1. As
accuracy of the iterative solver GMRES we choose 10−10 for all simulations, because of
the considerations regarding the handling of the iterative solver in Section 8.2.

11.1. Parameter estimation

In this section we study mesh independence for parameter estimation with an advection
dominated diffusion advection reaction PDE model problem. We solve this PE problem
for different uniform grid refinements without measurement noise.

11.1.1. Problem formulation

We now investigate a different underlying PDE model problem: besides different
numerical values for diffusion and advection factors, we include a reaction rate. The
strong form reads

−0.0001∆y + β(p) · ∇y + 0.5y = 2 on Ω, (11.1a)
y = 0.5 on Γ = ∂Ω. (11.1b)
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11. Numerical study on mesh independence for PE and OED

The domain Ω comprises the rectangle [0, 1]× [1, 2]. The discrete PDE problem is:
Find yh ∈ Vh such that

αah(yh, vh) + bh(p; yh, vh) + ch(yh, vh) = fh(vh), ∀vh ∈ Vh,

with ah(yh, vh), bh(p; yh, vh), ch(yh, vh) and fh(vh) defined in equation (7.10).

The discrete parameter estimation problem reads

min
p∈P

1
2

m∑
i=1

(
ηi − hi,h(p)

σi

)2

.

The components of the advection direction β(p) = (p1, p2)T are the two parameters
to be estimated. Point measurements given by the value of the discrete PDE solution
operator at the measurement points hi,h(p) := Sh(p)

∣∣∣
x=xmi

, constitute the model
response. We define eight measurement points with coordinates

xm1 = (0.2, 0.25), xm2 = (0.4, 0.25),
xm3 = (0.6, 0.25), xm4 = (0.8, 0.25),
xm5 = (0.2, 1.75), xm6 = (0.4, 1.75),
xm7 = (0.6, 1.75), xm8 = (0.8, 1.75).

Figure 11.1 visualizes the placement of the measurement points in the domain [0, 1]×
[1, 2].

Figure 11.1.: Placement of the measurement points xmi , i = 1, .., 8, in the domain
Ω = [0, 1]× [1, 2].

170



11.1. Parameter estimation

For this study on mesh independence, we generate measurement data ηi without noise,
that means εi = 0, i = 1, .., 8. The “true” parameter values are

p∗1 = 1, p∗2 = 5.

We investigate two sets of start values for the parameters

(a) p0
1 = 3, p0

2 = 7, and (b) p0
1 = 6, p0

2 = 6.

For the sensitivity generation, the structure exploiting techniques depicted in Chapter 7
and the frozen adaptivity techniques from Chapter 8 are applied. Per Gauss-Newton
iteration, we simulate the primal PDE problem and the two tangential PDE problems
on one common grid, which is generated by the error sum strategy depicted in
Section 8.1. As before, we choose for the Gauss-Newton algorithm as step size
strategy the RMT globalization.

11.1.2. Comparison of grid refinements

We perform parameter estimation with the Gauss-Newton algorithm for different
uniform grid refinements and the stopping criterion in equation (2.13) with tol = 10−5.
Figure 11.2 shows the error ‖p̂k − p∗‖2 in the Euclidian norm for every iteration of
the Gauss-Newton iteration for a uniform refinement with 147, 456 DoFs. We see the
results for the two sets of start values (a) p0 = (3, 7) and (b) p0 = (6, 6). Compared
to the example before in Section 10.1, the error decreases linearly in every iteration.
Here, we do not have a sign change in the parameters, therefore, the error decreases
from the first iteration. Furthermore, we did not add any noise to the measurements,
that is why the error is much smaller in the final iteration. Comparing the two sets of
start values, we see that start values (a), which are closer to the “true” parameters,
need 3 iterations less to converge than start values (b), which are not as close to the
“true” parameters.

Table 11.1 depicts the relative errors
∥∥∥ p̂−p∗

p∗

∥∥∥
2
in the final iteration and the number of

iterations needed for five different refinements (number of DoFs) for the two sets of
start values. For both sets of start values the relative error decreases, the finer the
grid, the better the estimated parameter values. Considered separately, each set of
start values needs the same number of iterations for all evaluated grid refinements.
That gives strong evidence that the proposed methods and algorithms are mesh
independent.
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Figure 11.2.: Error ‖p̂k − p∗‖2 in the Euclidian norm between estimated parameters
p̂k and ”true“ parameters p∗ for every iteration k of the Gauss-Newton
algorithm for two sets of start values:
(a) p0 = (3, 7) and (b) p0 = (6, 6).

(a) p0 = (3, 7) (b) p0 = (6, 6)
# DoFs rel error # iter rel error # iter
576 0.003839896 9 0.003843293 12
2,304 0.001272682 9 0.001271076 12
9,216 0.000223607 9 0.000224018 12
36,864 0.000014000 9 0.000014000 12
147,456 0.000003000 9 0.000003000 12

Table 11.1.: Number of DoFs vs. relative error
∥∥∥ p̂−p∗

p∗

∥∥∥
2
and number of iterations

for two sets of start values: (a) p0 = (3, 7) and (b) p0 = (6, 6).

Comparing the two sets of start values, we see a difference between the relative errors
only in the sixth decimal place. On the two finest refinements the relative errors are
identical. For all grid refinements set (a) needs 3 iterations less than set (b). This
can be explained by the fact, that set (a) is closer to the “true” parameter values
than set (b).

Figure 11.3 depicts the relative error vs. the number of DoFs for the two sets of start
values (a) and (b), corresponding to Table 11.1. Again, we see that for a finer grid
refinement, the relative error decreases rapidly. On a finer grid, the estimation is
more accurate. That gives strong evidence that the developed methods are stable
under grid refinement.
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Figure 11.3.: Relative error
∥∥∥ p̂−p∗

p∗

∥∥∥
2
in the Euclidian norm between estimated pa-

rameters p̂ and ”true“ parameters p∗ vs. number of DoFs for uniform
mesh refinement for two different sets of start values: (a) p0 = (3, 7)
(blue) and (b) p0 = (6, 6) (green). Note, that the curves overlap each
other.

11.2. Optimum experimental design

Let us now investigate mesh independence for OED. We study the same underlying
PDE model problem as in the previous section for PE. We solve the OED problem
with the same start values for different spatial uniform grid refinements.

11.2.1. Problem formulation

The setting is basically the same as in the preceding Section 11.1. The underlying PDE
model is an advection dominated diffusion advection reaction PDE model problem,
equation (11.1).

We define 135 possible measurement points xmi , i = 1, .., 135. The measurement points
are equidistantly placed in the interior of the domain Ω = [0, 1]× [1, 2]:

xm1 = (0.1, 0.125), xm10 = (0.1, 0.25), . . . , xm127 = (0.1, 1.875),
xm2 = (0.2, 0.125), xm11 = (0.2, 0.25), . . . , xm128 = (0.2, 1.875),

...
...

...
xm9 = (0.9, 0.125), xm18 = (0.9, 0.25), . . . , xm135 = (0.9, 1.875).

The OED algorithm selects 8 of these points. The optimization variables are the
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11. Numerical study on mesh independence for PE and OED

sampling decisions wi, i = 1, .., 135, each possible measurement point corresponds
to one sampling decision wi. As starting point for the optimization we weight
all possible points uniformly and choose as start values for the sampling decisions
w0
i = 0.05926, i = 1, .., 135. The sum of all sampling decisions equals the number of

points to select: ∑iwi = 8.

We scale all parameters to 1, such that a difference in magnitude does not lead to a
unilateral preference of a parameter in the OED, see Remark 3.2.3. That means we
choose β(p) = (1.5p1, 4.6p2) and p1 = p2 = 1. As objective function we choose the
D-criterion ΦD(C) = det(C)

1
np , that means we minimize the volume of the confidence

ellipsoid of the parameters.

11.2.2. Comparison of grid refinements

We perform D-optimal design for five different uniform grid refinements. Table 11.2
reports the objective function value ΦD(C) before and after the OED run and the
standard deviations of p1 and p2 (std. dev. p1, std. dev. p2) before and after the
OED run for the five different refinements (# DoFs).

ΦD(C) std. dev. p1 std. dev. p2

# DoFs before after before after before after
576 2.21705 0.507429 222.09% 104.46% 124.15% 62.86%
2,304 2.15159 0.506812 216.49% 103.91% 122.14% 64.77%
9,216 2.10972 0.49649 212.69% 103.13% 121.15% 66.36%
36,864 2.07964 0.481361 209.95% 100.75% 120.51% 66.87%
147,456 2.0708 0.479062 209.02% 99.15% 120.42% 66.45%

Table 11.2.: Objective function ΦD(C) and standard deviation (std. dev.) of param-
eters p1 and p2 before and after the OED runs for five different grid
refinements (# DoFs).

We see, that for all five grid refinements, the objective value and the standard
deviations of both parameters are reduced substantially. Nevertheless, the standard
deviation of p1 is even after the OED runs large, the parameter is still undetermined.
Perhaps in this setting more than 8 measurements are needed to reliably estimate p1.

Comparing the different refinements for the objective value we see that the finer the
grid, the smaller the objective value. Even though the difference in the objective value
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11.2. Optimum experimental design

between the coarsest and finest grid is small. Comparing the standard deviations of
p1 and p2 for the different refinements, we see in parameter p1 a decrease for finer
grids, whereas we see in parameter p2 an increase of the standard deviation for finer
grids. That is because of the choice of the objective D-criterion. In the objective,
both parameters are considered and overall, the standard deviations are reduced.

In Table 11.3, all sampling decisions wi with wi > 10−6 are depicted for the five differ-
ent mesh refinements. Except for the two coarsest grids, the same measurement points
are determined to be important: w113, w114, w115, w122, w123, w124, w130, w131, w132 and
w133 are greater than 10−6. In Table 11.3, the symbol x marks selected sampling
decisions after rounding. We see, that although the fractional solution differs, in the
rounded solution, exactly the same 8 measurement points are chosen on the three
finest grids. Thus, on a sufficiently fine grid, the algorithm converges to the same
optimal solution.

576 2,304 9,216 36,864 147,456
w103 0.502395 - - - -
w105 0.962958 x - - - -
w112 0.707485 x - - - -
w113 - 1 x 1 x 1 x 0.806951 x
w114 - 1 x 0.180861 0.238939 0.232441
w115 1 x 0.803007 x 0.429423 0.227388 0.23245
w122 1 x 1 x 1 x 0.875151 x 0.866228 x
w123 - - 1 x 1 x 1 x
w124 1 x 1 x 1 x 1 x 1 x
w130 0.827037 x 0.856859 x 0.744777 x 0.688066 x 0.880984 x
w131 1 x 1 x 1 x 0.970331 x 0.98082 x
w132 - 0.340009 0.644813 x 1 x 1 x
w133 1 x 1 x 1 x 1 x 1 x

Table 11.3.: Sampling decisions wi > 10−6 for different numbers of DoFs. The
symbol x marks selected measurement points.

Figure 11.4 visualizes the solutions for the five different grid refinements. For all
grid refinements, the chosen measurement points are in the upper central area of the
domain. That means, the developed algorithms compute similar solutions for different
grid refinements, which is a desirable property. The finer the grid, we see convergence
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11. Numerical study on mesh independence for PE and OED

to a set of measurement points. As we have seen before in the Table 11.3, even
though the fractional sampling decisions are changing from finer grid to finer grid,
the rounded solution chooses the same measurement points (right bottom picture).
For a sufficiently fine grid, the solutions converge and the same measurement points
are chosen. That gives strong evidence that the developed methods and algorithms
are stable under grid refinement.
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11.2. Optimum experimental design

Figure 11.4.: Top (from left to right): 576 DoFs, 2, 304 DoFs, 9, 216 DoFs,
Bottom: 36, 864 DoFs, 147, 456 DoFs and rounded weights for 147, 456
DoFs. Blue dots represent a selected measurement point wi = 1,
blue circles represent a measurement point with fractional sampling
decision 10−6 < wi < 1 and black circles represent a not selected
measurement point wi = 10−6.
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12. Conclusion

In this thesis we successfully solved optimum experimental design (OED) problems
for parameter estimation (PE) with PDE models. We developed efficient and accurate
methods for sensitivity generation.

We proposed and analyzed a differentiable upwind discontinuous Galerkin discretiza-
tion. We performed a rigorous convergence analysis for the differentiable discretization
and finally arrived at an error estimate in the energy norm and a superconvergence
result. We showed that the analysis also holds for a discretization of a diffusion
advection reaction PDE model. We showed that the assumptions for the convergence
analysis hold for a non normalized advection coefficient of the differentiable stabiliza-
tion. In accordance with the standard upwind discretization for a non normalized
advection coefficient [11], the convergence behavior changes, the non normalized
advection coefficient influences the estimation constant. We showed that this behavior
also holds for the differentiable stabilization. Numerical tests confirm the predicted
behavior.

Furthermore, we developed methods for structure exploitation of the primal and tan-
gential discretization schemes. We exploited the problem structure and reused the left
hand side of the primal discretization when generating the tangential discretizations.
Moreover, we exploited the structure of the discontinuous Galerkin finite element
method. We differentiated only the core parts of the discretization by AD to efficiently
generate the tangential discretizations. Numerical examples confirm the efficiency
of the structure exploiting method. No memory issues appear while generating the
tangential problems.

We froze all adaptive components to generate the consistent sensitivities. We developed
a heuristic, the error sum strategy for grid refinement, to generate one common
spatial grid, which is suitable for primal and tangential problems. Furthermore, we
investigated the influence of the adaptive step number of the iterative solver. We
concluded, that the two step approach with an accurate stopping criterion for the
iterative solver is preferable in our setting and leads to consistent sensitivities. We
demonstrated the developed methods for frozen adaptivity by numerical examples.

We implemented the developed methods in the new software SeafaND-Optimizer,
short for structure exploiting and frozen adaptivity numerical differentiation optimizer.
It is a software for efficient simulation, parameter estimation and optimum experimen-
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tal design with PDE models. The core part of the software is a consistent sensitivity
generation with the aforementioned methods. Furthermore, the SeafaND-Optimizer
provides functionalities of dealii and Amandus for PDE simulation and of VPLAN,
PAREMERA and SNOPT for optimization. This leads to an accurate and fast solution of
the PE and OED optimization problems.

Numerical case studies for PE and OED problems with advection dominated 2D diffu-
sion advection PDE models demonstrated the efficiency and accuracy of the methods.
Each PDE simulation, one primal PDE problem and two tangential PDE problems,
had approximately 131,500 degrees of freedom. With the developed methods for sen-
sitivity generation, we efficiently and automatically generated consistent sensitivities.
We tested the PE algorithm with three different noise levels. The behavior was as
expected: the higher the noise level, the less accurate are the parameter estimates.
We successfully performed a case study with different diffusion coefficients. Thus, the
developed methods are suitable for a class of problems. We performed a numerical
study on mesh independence for PE and OED problems. We concluded, that the
study gives strong evidence that the developed algorithms are stable under mesh
refinements.

Directions for future research

Let us finally state some promising directions for future research, which came up
during the work on this thesis.

In this thesis we were concerned with the sampling design problem. For more
complicated OED problems, where the controls directly enter the PDE model, we
need second order sensitivities. The developed methods for structure exploitation
of the discretization schemes and for frozen adaptivity lay a solid groundwork and
can be extended to second order sensitivities. This requires generating and solving of
second order sensitivity or adjoint PDEs.

Another interesting question for future research is the development of tailored error
estimators for adaptive grid refinement for discontinuous Galerkin methods for PE
and OED. The error estimators should incorporate the discretization errors of the
sensitivities. The goal of the error estimators should be the accurate simulation of all
PDE problems, the primal problem as well as the sensitivity problems.
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Erratum

After the completion of this thesis, I observed a mix-up of nomenclature in Chapter
10. The numerical results remain unchanged.

On page 151 the original text is

We disturb the values of the measurement functions by an additive normally distributed
error with zero mean and three different standard deviations, σi = 0.1, σi = 0.2,
and σi = 0.3, i = 1, .., 8. This results in variances of σ2

i = 0.01, σ2
i = 0.04, and

σ2
i = 0.09, i = 1, .., 8, respectively. Hence, we get three sets of measurement data with

1%, 4% and 9% noise and corresponding perturbations:

1% : ε = (0.040,−0.066,−0.019,−0.004, 0.023,−0.009, 0.019,−0.008),
4% : ε = (0.048, 0.197,−0.150, 0.121, 0.157, 0.048, 0.312, 0.095),
9% : ε = (−0.390, 0.393, 0.251, 0.488, 0.355, 0.352,−0.536, 0.034).

Instead of stating the measurement noise in terms of percentage points, it is more
precise to state the different standard deviations. The text changes to

We disturb the values of the measurement functions by an additive normally distributed
error with zero mean and three different standard deviations, σi = 0.1, σi = 0.2,
and σi = 0.3, i = 1, .., 8. This results in variances of σ2

i = 0.01, σ2
i = 0.04, and

σ2
i = 0.09, i = 1, .., 8, respectively. Hence, we get three sets of measurement data with

corresponding perturbations:

σi = 0.1 : ε = (0.040,−0.066,−0.019,−0.004, 0.023,−0.009, 0.019,−0.008),
σi = 0.2 : ε = (0.048, 0.197,−0.150, 0.121, 0.157, 0.048, 0.312, 0.095),
σi = 0.3 : ε = (−0.390, 0.393, 0.251, 0.488, 0.355, 0.352,−0.536, 0.034).

In the same manner throughout the rest of Chapter 10, the percentage points 1%,
4% and 9% have to be replaced by the standard deviations σi = 0.1, σi = 0.2, and
σi = 0.3, respectively. In particular, they have to be replaced on pages 153 − 164,
including Table 10.1 and the captions of Table 10.2, Figure 10.5, Table 10.3 and Table
10.4.
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