
DISSERTATION
submitted to the

Combined Faculties for the Natural Sciences and for Mathematics
of the Ruperto-Carola University of Heidelberg, Germany

for the degree of
Doctor of Natural Sciences

Put forward by
M.Sc. Philipp Johannes Kreyenberg

born in Herrenberg

Oral examination: November 6, 2019

FLOW FIELD ESTIMATION OF ACTIVE SOLUTE TRANSPORT
–

INFORMATION TRANSFER FROM SYNTHETIC DATA
TO HELE-SHAW CELL EXPERIMENTS

USING CONVOLUTIONAL NEURAL NETWORKS

Referees:

Prof. Dr. Kurt Roth
Prof. Dr. Werner Aeschbach

Flow Field Estimation of Active Solute Transport: Variable density groundwater
flow associated with active solute transport is understood reasonably well. Never-
theless, predictions are operationally still difficult due to joint effects of nonlinear
processes and uncertain boundary conditions. Gaining deeper insight into the dy-
namics of these groundwater systems therefore relies on the availability of accurate
and dense measurements of the complete system state and parameters. Often, such
measurements are hard to come by, hence our information is incomplete. Recent
deep learning methods in conjunction with numerical simulation of the physical
processes to create large training datasets enable the information transfer to real
world problems. To demonstrate this, I chose a laboratory experiment on density-
driven active solute transport observed in a Hele-Shaw cell, where high resolution
measurements of the solute concentration distribution are available. With the
use of deep convolutional neural networks I was able to estimate the otherwise
inaccessible flow fields and to identify the influence of background flow for this
experiment without explicit knowledge of the boundary conditions. The situa-
tion of missing data, as encountered here, is typical also for other hydrological
systems, from soil-vegetation-atmosphere interactions to catchment dynamics and
groundwater recharge. Hence, I believe that the approach has wide applicability.

Schätzung von Strömungsfeldern für Aktiven Stofftransport: Die Strömung von
Grundwasser mit variabler Dichte im Zusammenhang mit aktivem Stofftransport
ist hinreichend gut verstanden. Dennoch sind Vorhersagen aufgrund von kombi-
nierten Auswirkungen nichtlinearer Prozesse und ungewisser Randbedingungen in
der Praxis nach wie vor schwierig. Um einen tieferen Einblick in die Dynamik
dieser Grundwassersysteme zu erhalten, müssen genaue und gut aufgelöste Mes-
sungen des gesamten Systemzustands und der Parameter verfügbar sein. Oft ist
es schwierig solche Messungen zu erhalten, weshalb unsere Informationen über die
Systeme unvollständig sind. Aktuelle Deep-Learning-Methoden in Verbindung mit
numerischer Simulation der physikalischen Prozesse zur Generierung großer Trai-
ningsdatensätze ermöglichen den Informationstransfer hin zu realen Problemen.
Um dies zu demonstrieren, habe ich ein Laborexperiment zu dichtegetriebenem
aktiven Stofftransport in einer Hele-Shaw-Zelle gewählt, in dem hochaufgelöste
Messungen der Konzentrationsverteilung des gelösten Stoffes verfügbar sind. Un-
ter Verwendung von Deep-Convolutional-Neural-Networks konnte ich, ohne die
genaue Kenntnis der Randbedingungen, die sonst unzugänglichen Strömungsfel-
der schätzen und den Einfluss der Hintergrundströmung für dieses Experiment
identifizieren. Die Situation fehlender Daten, wie sie in diesem Beispiel auftritt,
ist auch für andere hydrologische Systeme typisch, von Wechselwirkungen zwischen
Boden, Vegetation und Atmosphäre über die Dynamik von Wassereinzugsgebie-
ten bis hin zur Grundwasserneubildung. Deshalb glaube ich, dass der Ansatz eine
breite Anwendbarkeit hat.

CONTENTS
1 Introduction 1

2 Active Solute Transport 5
2.1 Fluid Dynamics in Porous Media . 5

2.1.1 Conservation of Mass . 6
2.1.2 Conservation of Momentum . 7
2.1.3 Hele-Shaw Cells as Models of Porous Media 7

2.2 Solute Transport . 9
2.2.1 Molecular Diffusion . 9
2.2.2 Dispersion . 10
2.2.3 Conservation of Solute Mass . 13

2.3 Density-Driven Instabilities . 14
2.3.1 Dynamics . 14
2.3.2 Dimensionless Formulation . 17

3 Numerical Experiments 23
3.1 Constant Concentration Boundary Condition (NE1) 23
3.2 Modified Concentration Boundary Condition (NE2) 27
3.3 Representation of Superscale Convection (NE3) 29

4 Laboratory Experiment 33
4.1 Experimental Setup . 33
4.2 Temporal Development . 36

5 Convolutional Neural Networks 41
5.1 Conceptual Outline . 41
5.2 Model Components . 44

5.2.1 Convolution Layers . 44
5.2.2 Activation Functions . 46
5.2.3 Pooling and Strided Convolutions 47
5.2.4 Transposed Convolutions . 49

5.3 Training Process . 50
5.3.1 Loss Functions and Regularization 50
5.3.2 Backpropagation . 52
5.3.3 Stochastic Gradient Descent . 55
5.3.4 Weight Initialization . 57

5.4 Network Architectures for Flow Field Estimation 59
5.4.1 Models . 59
5.4.2 Training Scheme . 62
5.4.3 Datasets . 63

iii

Contents

6 Application 69
6.1 Data Preprocessing . 69
6.2 Concentration Field Propagation . 70
6.3 Results on the Numerical Experiments 71
6.4 Results on the Laboratory Experiment 79
6.5 Representation of Superscale Convection 83

6.5.1 Results on the Numerical Experiments 83
6.5.2 Results on the Laboratory Experiment 89

6.6 Summary & Discussion . 94

7 Conclusion & Outlook 99

A Appendix 103
A.1 Additional Data: Numerical Experiments 103
A.2 Network Architecture Details . 109
A.3 Additional Data: Application . 113

B List of Figures 119

C List of Tables 121

Acknowledgments 123

Bibliography of Own Publications 125

References 127

iv

1 INTRODUCTION
Based on Kreyenberg et al. [2019].

Gaining deeper insight into hydrological systems is challenging and relies on the avail-
ability of accurate measurements that are dense in space and time. More and more of
such data become available with increasing deployment of e.g., satellite-based sensors
or embedded sensor networks. However, some relevant system quantities, for instance
local flow velocities, remain difficult to measure. On the other hand, simulations of-
fer the advantage of detailed information, also of the quantities that are difficult to
measure. They are often based on a good physical understanding, but the presence of
nonlinear processes and multiscale heterogeneities typically impedes accurate predic-
tions.
Advances can be made by closing the information gap of missing system quantities

with consistent information transfer from simulation of relevant physical processes to
the real world. Associated with this is the evaluation of the representation of relevant
physical processes in the simulation. As elucidated in Marçais and de Dreuzy [2017],
Shen [2018], and Shen et al. [2018] the progress and increasing availability of modern
deep learning algorithms combined with the increasing availability of measured data
open new possibilities to address these challenges.
To explore these possibilities I focus on one exemplary problem: flow field esti-

mation of density-driven active solute transport observed in a small scale laboratory
experiment within a Hele-Shaw cell, where high-resolution measurements of the solute
concentration distribution are available.
Density-driven active solute transport is a relevant process for geological storage of

anthropogenic CO2 [Weir et al., 1995; Lindeberg and Wessel-Berg, 1997; Ennis-King
and Paterson, 2003, 2005]. Capturing atmospheric CO2 and storing it in 1 to 3 km
deep geological brine formations is, among others, one of the most promising techniques
to mitigate climate change [IPCC , 2005]. At the prevalent conditions in these depths
the supercritical CO2, being trapped underneath impermeable cap rock, overlies the
resident brine. The CO2 dissolves into the brine leading to a local density increase
at the interface. Eventually, this gives rise to density-driven instabilities drastically
shortening the time scale of the mixing process in contrast to pure diffusion [Ennis-
King and Paterson, 2003; Hassanzadeh et al., 2005; Yang and Gu, 2006; Farajzadeh
et al., 2007; Pruess and Zhang, 2008; Kneafsey and Pruess, 2010; Pau et al., 2010].
Density-driven flow is a key process in several other settings beyond CO2-sequestration.
Examples include the description of water dynamics beneath saline lake formations
[Wooding et al., 1997a, b], toxic and radioactive waste disposal [Kolditz et al., 1998],
and saltwater intrusion into exploited coastal aquifers [Diersch and Kolditz, 2002].

To investigate the dynamics of density-driven flow several experimental studies using
optical observation of CO2 and brine analogous solutions in Hele-Shaw cells have been

1

1 Introduction

conducted at the laboratory scale [Fernandez et al., 2002; Oltean et al., 2004; Kneafsey
and Pruess, 2010; Backhaus et al., 2011; Kneafsey and Pruess, 2011; Faisal et al., 2013;
Slim et al., 2013; Faisal et al., 2015; Ecke and Backhaus, 2016; Rasmusson et al., 2017;
Thomas et al., 2018]. As shown by Thomas et al. [2015] the use of color indicators often
fails to completely visualize the flow patterns in Hele-Shaw cell experiments. Using a
colored solute in water to introduce the density contrasts, simultaneously allows the
accurate visualization of the solute concentration distribution with high resolution light
transmission measurements [Slim et al., 2013]. Contrary to the dense measurements of
the concentration distribution, the flow field that describes the movement of the fluid
remain experimentally inaccessible.
Optical flow estimation is a classical task in computer vision with the aim to esti-

mate the motion of objects given two consecutive images. Typical applications are in
autonomous driving [Janai et al., 2017] and action recognition [Simonyan and Zisser-
man, 2014b]. The introduction of supervised deep learning using convolutional neural
networks (CNNs) to the field of optical flow estimation in conjunction with training on
synthetic data [Dosovitskiy et al., 2015] has led to a paradigm shift [Ilg et al., 2017].
CNNs with an encoder-decoder architecture to estimate motion showed state-of-the-art
results on benchmark datasets, while enabling the estimation in real time.
de Bezenac et al. [2017] applied an adapted encoder-decoder CNN to a related sys-

tem, the prediction of synthetically generated sea surface temperature data described
by convection-diffusion. For this example they showed that the method can learn
the underlying processes such that it is competitive with a numerical assimilation
method. Zhu and Zabaras [2018] used encoder-decoder CNNs as surrogate models for
uncertainty quantification in modeling steady-state single phase flow in heterogeneous
media. With Bayesian treatment of the CNN by adopting the variational inference
method of Liu and Wang [2016] and Liu [2017] they showed improved scalability to
high-dimensional problems with limited training data. Mo et al. [2019] adopted the
network architecture of Zhu and Zabaras [2018] and extended the model as a surrogate
for uncertainty quantification of transient multiphase flow in heterogeneous media.
Whereas these studies focus on replacing the forward models of related physical sys-
tems using an encoder-decoder CNN, in this work I use similar deep learning methods
to aim at the estimation of missing system quantities. Generally these challenges are
subject to methods like inverse modeling and data assimilation.
In this work, I explore the information transfer from synthetically generated data,

representing the process understanding, to a laboratory experiment with missing flow
field data using recent deep learning methods. For the information transfer to be
coherent this requires (i) the physical processes that occur in the laboratory experi-
ment to be represented completely and faithfully in the physical model and therefore
in the synthetic data and (ii) the experimental and the synthetic data to have the
same, in my case image-like, structure. In a first step, I generated a set of synthetic
training data through numerical simulation of density-driven active solute transport.
Based on FlowNet by Dosovitskiy et al. [2015] and FlowNet 2.0 by Ilg et al. [2017]
and analogously to de Bezenac et al. [2017], Zhu and Zabaras [2018], and Mo et al.

2

[2019] I trained encoder-decoder CNNs, adaptations of FlowNet2-s and FlowNet2-SD
[Ilg et al., 2017], on the synthetic training data in an end-to-end fashion. In the encoder
high-level features in the input concentration fields are extracted and transferred to a
coarse abstract representation that is refined in the decoder to reconstruct the output
flow fields. The trained CNN was then used to estimate flow fields from concentra-
tion measurements of a synthetic test dataset. This test dataset was again obtained
from numerical simulation, but with the concentration boundary condition being mod-
ified to test the generalization of the method. In a next step, I applied the CNN to
concentration measurements of a Hele-Shaw cell experiment. This way I estimated
the flow fields that were otherwise inaccessible for density-driven flow and assessed the
representation of the relevant physical transport processes in the numerical simulation.
With this approach the CNNs implicitly learn, relying purely on synthetic data,

the phenomenology of a class of physical processes on a broad parameter spectrum.
This incorporated representation of the physical processes can then be directly uti-
lized to estimate missing system quantities on measurements. In this sense, I see this
as a complementary approach to inverse modeling and data assimilation of physical
processes. These methods are based on accurate models of the processes, where the
missing system quantities are reconstructed by calibrating the forward model on the
measured data.

The remainder of this dissertation is organized as follows. Chapter 2 introduces the
theoretical background of active solute transport. Chapter 3 presents the numerical
experiments conducted over a large parameter range to generate the synthetic datasets
that represent the relevant transport processes. Chapter 4 introduces the laboratory
experiment that is the target for the information transfer with respect to the flow field
estimation. Chapter 5 provides deeper insight into the background of the utilized deep
learning methods and details the CNNs that I trained on the numerical experiments
to incorporate the process representation and used to estimate the flow fields in the
laboratory experiment. In Chapter 6, I present and discuss the results of the flow field
estimation on a synthetic test case and the laboratory experiment, before I draw a
conclusion and give an outlook in Chapter 7.

3

2 ACTIVE SOLUTE TRANSPORT
The transport of a solute in a fluid can proceed passively by being convected purely
due to externally imposed dynamics of the fluid, or actively due to influences of the
solute on the flow resulting in additional driving forces. In this work, I consider active
solute transport in porous media saturated with water. The presence of the solute
considered here alters the density and may lead to instabilities that induce convection
of the water.
This chapter introduces the mathematical description of the physical processes im-

portant to active solute transport. These involve the dynamics of pure water in porous
media (Section 2.1) that are transferred to Hele-Shaw cells as an experimental model
of the flow domain. In combination with dispersion, which arises from molecular diffu-
sion and convective mixing due to the pore geometry, this describes the transport of a
solute (Section 2.2). In both sections, the presentation is based on Roth [2017], where
a more in-depth introduction to these topics is found. Accounting for the influences on
the density due to the solute concentration results in the coupling to the dynamics of
the water, where density-driven instabilities arise from unstable layering due to solute
concentration gradients (Section 2.3).

2.1 Fluid Dynamics in Porous Media
A porous medium generally defines a medium that is composed of voids embedded in
a solid matrix. In nature, soils can be described as such media that are composed of ir-
regular solid grains of various sizes with pore space in between. In multiphase systems,
the pore space can be occupied by multiple fluids, such as air, oil, and water. Here, I
solely consider single phase water flow, where the pore space is completely saturated.
Interconnectedness of the pore space is an important property to allow for water flow.
These interconnected pores define the microscopic flow domain that can have quite
complicated architectures. Therefore, when observing the flow at larger scales, the de-
tailed description in the individual pores is intractable. Employing an upscaling from
the microscopic pore scale to the macroscopic continuum scale by spatially averaging
the system quantities overcomes this issue. Nonetheless, for this upscaling to be valid
the existence of an Representative Elementary Volume (REV) is required. The REV
is the minimal volume for which the averaged quantities become independent of vari-
ations in its shape and size. In this formulation the porosity φ is defined by the ratio
of the pore space volume Vpore and the total volume Vtot:

φ = Vpore
Vtot

. (2.1)

For saturated porous media the water content θ is equal to the porosity: φ = θ.

5

2 Active Solute Transport

The water dynamics under isothermal conditions are described by the conservation
of mass and the conservation of momentum. The following outlines the upscaling of
the microscopic quantities to achieve the continuum formulation under the assumption
of water to be an uniform and incompressible Newtonian fluid.

2.1.1 Conservation of Mass
The mass balance describes the rate of change of mass in the water saturated pore
space Vw resulting from the flow across the pores at its boundary ∂Vw:

∂

∂t

∫
Vw

ρµwdV = −
∫
∂Vw

ρµwuµ · dA = −
∫
Vw

∇ · [ρµwuµ]dV, (2.2)

where, denoted with superscripted µ as the microscopic quantities, ρw is the water
density and u is the velocity vector. The minus originates from setting the area
element dA to point outward and Gauss’ theorem has been used in the second equality.
Eq. (2.2) can be reformulated to

0 = ∂

∂t

∫
Vw

ρµwdV +∇ ·
∫
Vw

[ρµwuµ]dV = ∂

∂t
‖Vw‖〈ρµw〉+∇ · [‖Vw‖〈ρµwuµ〉] , (2.3)

where ‖Vw‖ is the volume of Vw and the spatial averaging 〈. . . 〉 must be supported
by a REV, meaning that the pore space Vw must be embedded in an macroscopic
volume element V that qualifies as REV. Dividing Eq. (2.3) by ‖V ‖, the volume of
V , and recognizing that according to Eq. (2.1) θ = φ = ‖Vw‖/‖V ‖ for the saturated
pore space, this yields the macroscopic mass balance, which formulates the continuity
equation on this scale:

∂

∂t
[φρw] +∇ · [ρwjw] = 0, (2.4)

wherein the macroscopic quantities result from the spatial averaging. Accordingly, the
density is defined as ρw = 〈ρµw〉 and the introduced macroscopic water flux as

jw = φ〈uµ〉. (2.5)

For the derivation of Eq. (2.4) from Eq. (2.3) to be valid 〈ρµwuµ〉 = 〈ρµw〉〈uµ〉 must
hold. This is true for water flow in saturated porous media, as it can be argued that
the correlation of ρµw and uµ is negligible (cf. Roth [2017]).

Assuming the porous media to be incompressible, the porosity φ and accordingly
the water content θ are constant over time. In addition, under the assumption of the
Oberbeck-Boussinesq approximation, the continuity equation can be simplified to

∇ · jw = 0, (2.6)

where, according to Oberbeck [1879] and Boussinesq [1903], the variation of the density
is neglected unless it is coupled to the influence of gravity.

6

2.1 Fluid Dynamics in Porous Media

2.1.2 Conservation of Momentum
The conservation of linear momentum of flow in the pores of the porous medium can
be described by the stationary Stokes equation:

µw∇2uµ = ∇pµ − ρwg, (2.7)

where µw is the dynamic viscosity of water, pµ the pressure, and g the acceleration of
gravity. For Eq. (2.7) to be a valid description, several assumptions have to be made:
(i) The water is assumed to be incompressible and its temperature is set constant
justifying constant ρw and µw. (ii) The external forcing of the system has to be
slow when measured on the inherent time scale, allowing for the time-independent
formulation. (iii) Inertia has to be negligible, which holds for small pores as the effect
of the water-matrix interface is very strong eliminating turbulences in the flow.
In this setting, the velocity uµ is parallel to −∇2uµ. This is because uµ adjusts such

that the viscous term balances the driving potential gradient, left and right hand side
of Eq. (2.7), respectively. This yields

uµ = −κ(x)∇2uµ = −κ(x)
µw

[∇pµ − ρwg] (2.8)

with the introduced linear scaling κ(x) that incorporates the complicated pore space
geometry. Upscaling of Eq. (2.8) supported by a plane REV results in the continuum
formulation:

jw = −φ 1
µw
〈κ[∇pµ − ρwg]〉 (2.9)

with the macroscopic water flux jw = φ〈uµ〉 and the averaging 〈. . . 〉 as before.
Note that the stationary Stokes equation is linear, meaning that if {u, p} solves

Eq. (2.7) then also {αu, αp} does. This implies that the magnitudes of the microscopic
pressure gradient ∇pµ is proportional to the macroscopic pressure gradient ∇p. Yet,
due to the pore space geometry, they need not to be parallel. This relation can be
described by ∇pµ = a(x)∇p, where a(x) is a second rank, symmetric tensor. Further
recognizing that κ is independent of u and ∇p renders the averaging and thus the
upscaling to be valid. This leads to Darcy’s empirical flux law:

jw = − k
µw

[∇p− ρwg], (2.10)

where the permeability k, again a second rank, symmetric tensor, absorbs κ and a(x):
k = φ〈κa〉. Therefore, k relates the response of the flow to the forcing by also repre-
senting the anisotropy of the medium. In Eq. (2.10) the volumetric water flux is also
denoted as the Darcy velocity u = jw representing the flow field.

2.1.3 Hele-Shaw Cells as Models of Porous Media
Hele-Shaw cells [Hele-Shaw, 1898] are simplified physical models of porous media that
make it possible to easily observe the fluid flow. They consist of two parallel glass

7

2 Active Solute Transport

y

d

z

xux(z)

z0

Figure 2.1: Illustration of the parabolic Hagen-Poiseuille velocity profile (blue)
between two parallel plates (gray). The driving is due to a large scale pressure
field whose isosurfaces are depicted in red. Modified from Roth [2017].

plates, separated by a small gap of width d that serves as the flow domain. To be
a valid model for a porous medium d is required to be so small that the influence of
the fluid-glass interface on the dynamics is large and the flow can be described by the
stationary Stokes equation (Eq. (2.7)). In this case, the same governing equations as
for the continuum formulation for porous media arise by averaging over the gap. For
Hele-Shaw cells, the water saturated gap d embedded between the glass plates results
in a porosity of φ = 1 and the requirement of small d combined with the construction
inevitably restricts the observations to quasi 2-dimensional flow.

Conservation of Mass The mass balance in the gap of a Hele-Shaw cell directly
describes the conservation of mass. It takes the form

∂ρw
∂t

+∇ · [ρwu] = 0, (2.11)

where, because of the relation in Eq. (2.5) and φ = 1, the quantities in the continuum
scale correspond to the averaged microscopic ones and u = 〈uµ〉 is the macroscopic
velocity. Again, invoking the Oberbeck-Boussinesq approximation this reduces to

∇ · u = 0. (2.12)

Conservation of Momentum As depicted in Fig. 2.1, consider horizontal oriented
glass plates to allow for a more compact formulation by omitting the influence of grav-
ity. For small d, the conservation of linear momentum is then given by the stationary
Stokes equation:

µ∇2u = ∇p, (2.13)

where the driving pressure gradients are parallel to the glass plates. Let the gap width
d = 2z0 and choose the coordinate system such that the x- and y-directions are parallel
to the glass plates, which are situated at z0 and −z0 respectively. With the constraint

8

2.2 Solute Transport

that u(z0) = u(−z0) = 0 the parabolic Hagen-Poiseuille velocity profile (cf. Fig. 2.1)
establishes between the glass plates:

u(z) = − 1
2µ∇p[z

2
0 − z2], (2.14)

which is a solution of Eq. (2.13). Integrating over the gap width d in direction of z
yields Darcy’s empirical flux law for the specific geometry of a Hele-Shaw cell:

u = − d2

12µ∇p. (2.15)

For the horizontal orientation of the glass plates the pressure gradient drives the flow.
In stationary flows of isotropic fluids it is admissible to replace −∇p by the sum of
all driving forces. Reintroducing the influence of gravity, when the glass plates are
oriented vertically, leads to

u = − d2

12µ [∇p− ρwg]. (2.16)

Comparison to Eq. (2.10) identifies that the permeability k reduces to a scalar k =
d2/12 for Hele-Shaw cells.

2.2 Solute Transport
This section introduces the passive transport of a solute added to the water. Here, the
solute is considered to act as a passive, conservative tracer, meaning that its mass in
the fluid phase is conserved and it does not alter the properties of water. Generally,
this holds for nonreactive solutes and small concentrations. In this case, the movement
of the solute particles can be considered to be superposed to the dynamics of a pure
fluid. For larger concentrations, however, the solute can affect the density of the
fluid, leading to a coupling to the gravitational driving. These effects of active solute
transport are discussed in Section 2.3.
Passive solute transport is governed by three processes. Molecular diffusion smooths

any solute concentration gradients, while convection with the mean flow redistributes
the solute. On the continuum scale, the combined effects then result in dispersion.
Analogously to the dynamics of the fluid, first the concepts are introduced considering
the microscopic pore scale that are then upscaled to achieve the formulation on the
continuum scale.

2.2.1 Molecular Diffusion

At the molecular scale the solute particles are diffusively transported by Brownian
motion. This resembles an undirected random walk of the molecules that effectively

9

2 Active Solute Transport

attenuates any given gradient of the solute concentration ∇C. The resulting transport
in the fluid is described by Fick’s first law [Fick, 1855]:

js = −Dm∇C (2.17)

that relates the flux of solute mass js to the concentration gradient ∇C with the
constant of proportionality Dm being the molecular diffusion coefficient. Hence, Dm

is assumed to be isotropic, but depends on the properties of the solute and the fluid.
Combining Eq. (2.17) with the conservation of solute mass:

∂C

∂t
+∇ · js = 0 (2.18)

yields Fick’s second law that is also referred to as diffusion equation:

∂C

∂t
−Dm∇2C = 0, (2.19)

which describes the development of the concentration in time due to its gradients.
With a typical value of a diffusion coefficient being Dm = 10−10 m2s−1, purely diffusive
transport is only sufficiently fast over very small distances.

2.2.2 Dispersion
Flow in porous media and generally in thin flow domains results in heterogeneous
velocity fields. In longitudinal direction the velocities are altered due to the pore ge-
ometry. Given a stationary driving, velocities are higher in small diameter pores, while
slower in large diameter pores. In transversal direction the velocities are affected by
the boundaries. Close to the water-solid interfaces friction leads to slow flow that influ-
ences the velocities across the entire pore cross-section. Consequently, the interplay of
molecular diffusion with the latter effect can result in further dispersion of the solute.
This is known as Taylor-Aris dispersion. In combination with diffusive and convective
mixing at the junctions of the pores this leads to the effect of hydrodynamic dispersion.

Taylor-Aris Dispersion Consider the flow in a single pore, for instance a small gap
between parallel glass plates (Fig. 2.1), where the x-direction is chosen to point in the
direction of the mean flow. In this geometry the velocity field is given by the Hagen-
Poiseuille profile as in Eq. (2.14). Now consider an initial pulse of solute particles
located at a distinct cross-section perpendicular to the mean flow. According to the
velocity field, the particles get spread in the longitudinal direction, populating the
parabolic profile. Due to molecular diffusion, the particles also move in transverse
direction and, therefore, jump from stream lines in the center of the pore, where
the flow is fast, to streamlines closer to the boundaries, where the flow is slow and
vice versa. For sufficiently long time scales the particles are able to travel across the
gap multiple times, enabling them to encounter the entire velocity field in transverse

10

2.2 Solute Transport

direction. The repeated acceleration and deceleration, relative to each other, spreads
the particles in the longitudinal direction. For the geometry of cylindrical pores this
effect was initially described by Taylor [1953] and later extended to arbitrary cross-
sections by Aris [1956] and is therefore referred to as Taylor-Aris dispersion.

Although dispersion emerges from a different process than molecular diffusion, its
formal description is the same, except for an adapted effective diffusion coefficient:

Deff = Dm + α
ū2r2

0
Dm

(2.20)

with the mean velocity ū, the characteristic length scale r0 of the cross-sectional area,
and a dimensionless parameter α that represents the pore geometry. Note that the
additional second term is proportional to 1/Dm. This means that for smaller values of
Dm and therefore slower mixing in transverse flow direction, the particles experience
stronger dispersion in the direction of the mean flow. Accounting for the transport
along with the mean flow, the solute flux in x-direction is then given by

js = ūC −Deff
∂C

∂x
, (2.21)

where ūC is the convective flux.
This description in Eqs. (2.20) and (2.21) reflects that mixing due to dispersion is

only apparent in moving fluids. For absent flow, the effective dispersion coefficient
Deff reduces to the coefficient of molecular diffusion Dm that always contributes to the
mixing.

While Taylor-Aris dispersion describes the mixing process in single pores, additional
mixing occurs at the junctions of the pore network. Considering the two situations
illustrated in Fig. 2.2, mixing can range from purely diffusive mixing to dominantly
convective mixing.

Diffusive Mixing The charactersitic length l of the pore junction (cf. Fig. 2.2 (left))
defines the contact length of fluid that originates from different pores. This determines
the available time l/ū for solute particles to diffuse in transverse flow direction, where
ū is the mean velocity in the junction. Conceptually, this process is equivalent to
Taylor-Aris dispersion in a short pore, where the contact time is too short to allow
diffusion across the entire characteristic radius r0. Assuming the pore network exhibits
a characteristic distance between pore junctions Λ, the ratio l/Λ gives the fraction of
the fluid travel distance for which diffusive mixing does occur. With decreasing l and
increasing Λ the effective mixing in transverse flow direction is reduced. Similar to
Taylor-Aris dispersion, an effective dispersion coefficient arises:

Deff = α′
Λ
l

ū2r2
0

Dm
, (2.22)

11

2 Active Solute Transport

l

r0

Figure 2.2: Mixing processes at pore junctions of fluid with high solute concen-
tration (darker blue) and fluid with low concentration (lighter blue). Purely
diffusive mixing (left): The fluids are in contact over the length l. Within the
time of contact that depends on l and the flow velocity, solute particles can
diffuse into the low concentration fluid. Dominantly convective mixing (right):
The fluid with low concentration gets partially merged into a pore with high
solute concentration. Subsequently, the two fluids mix due to Taylor-Aris
dispersion. Modified from Roth [2017].

that is larger for a slower effective transverse mixing process. Here again, α′ is a
dimensionless parameter that represents the geometry of the junction, ū the mean
velocity, and Dm the molecular diffusion coefficient.

Convective Mixing A fundamentally different process contributing to dispersion of
the solute is convective mixing in pore junctions (Fig. 2.2 (right)) that is referred to as
hydromechanic dispersion. Assuming laminar flow and neglecting molecular diffusion,
the pore geometry exclusively determines the fraction κ of the fluid that gets merged
with fluid of different solute concentration. The number of junctions the fluid needs
to encounter for complete mixing is then given by 1/κ. Again, assuming that the
characteristic distance between the junctions is described by Λ, the travel distance
for complete mixing is Λ/κ and the time needed to do so is Λ/κū. In this case the
dispersion coefficient is proportional to ū and given by

Deff = βΛū = λū, (2.23)

where the constant β incorporates κ and the dispersivity λ describes the characteristic
extent of the structures that contribute to the mixing.

The dispersive processes being present for solute transport at the microscopic pore
scale are manifold. Their representation involves the effects of molecular diffusion,
the coupling of the latter to the flow field, and the influence of the geometry of the
pore network itself. Mainly depending on the mean flow velocity, their individual
contribution can vary greatly. Commonly, the combination of the introduced processes
is described by the summarizing term of hydrodynamic dispersion.

12

2.2 Solute Transport

To this point only dispersion in the direction of the flow has been considered lead-
ing to Deff being represented as a scalar quantity. Dispersion, however, is generally
different in longitudinal and transverse direction and is therefore described by the ten-
sor Deff . For transport in an isotropic medium and under the assumption of purely
hydromechanic dispersion Bear [1961] and Scheidegger [1961] provide a theoretical
description. In this case, the components of Deff are given by

Dij = [λl − λt]
uiuj
|u| + λt|u|δij (2.24)

with longitudinal and transverse dispersivities λl and λt, mean velocity u with com-
ponents ui and uj , and Kronecker’s delta δij .

2.2.3 Conservation of Solute Mass
Like the description of the dynamics of pure fluids it rapidly becomes unfeasible to
describe solute transport at the pore space, when considering larger spatial scales.
Therefore, the same approach of upscaling the microscopic description to arrive at the
macroscopic continuum formulation is introduced. Analogously, the upscaling needs
to be supported by the existence of an averaging volume V that has to be an REV,
not only for the pore space and the water content, but in addition for the solute
concentration. The solute mass contained in the averaging volume then is∫

Vw

CµwdV = ‖Vw‖〈Cµw〉, (2.25)

where the concentration Cw is contained in the fraction Vw of V that is occupied with
water with volume ‖Vw‖. Again, the microscopic quantities are identified with super-
scripted µ and the spatial averaging is denoted by 〈. . . 〉. Dividing by the volume ‖V ‖
of V and identifying θ = φ = ‖Vw‖/‖V ‖ yields the macroscopic total concentration:

Ctot = ‖Vw‖
‖V ‖

〈Cµw〉 = φ〈Cµw〉 = φCw, (2.26)

where the relation to the macroscopic concentration in the water phase Cw is given by
the volume fraction φ for a saturated porous medium.
As already given in Eq. (2.21), the solute transport at the pore scale is composed of

the convective and the dispersive transport. The solute flux jµs is then described by

jµs = uµCµw − Dµ
eff∇C

µ
w, (2.27)

where u is the velocity field, Cw the solute concentration in the fluid, and Deff the
hydrodynamic dispersion tensor. With this, we can set the balance for the solute mass
to be

∂

∂t

∫
Vw

CµwdV = −
∫
∂vw

jµs · dA = −
∫
Vw

∇ · [uµCµw − Dµ
eff∇C

µ
w]dV, (2.28)

13

2 Active Solute Transport

where Gauss’ theorem has been utilized in the second equality. Again dividing by ‖V ‖
and spatial averaging results in

φ
∂Cw
∂t

+∇ · [φ〈uµCµw〉]−∇ · [φ〈D
µ
eff∇C

µ
w〉] = 0, (2.29)

where the correlation terms 〈uµCµw〉 and 〈D
µ
eff∇Cµw〉 emerge. For the discussion of these

terms and the argumentation how the involved quantities can be rendered independent
the reader is referred to Roth [2017] at this point.
For a macroscopic uniform porous medium and slow flow velocities, Deff can be

approximated to be independent of the location x. With the continuity equation, as
presented in Eq. (2.6), Eq. (2.29) simplifies to

φ
∂Cw
∂t

+ u · ∇Cw − φDeff∇2Cw = 0, (2.30)

where u = jw = φ〈uµ〉 is now the Darcy velocity representing the flow field. Eqs. (2.29)
and (2.30) both formulate the convection-dispersion equation that represents the solute
transport on the macroscopic continuum scale.

2.3 Density-Driven Instabilities
The description of passive solute transport is based on the assumption that the solute
does not affect the flow (cf. Section 2.2). In general this is not true, as the solute can
alter the properties of the fluid. In the following, the influence on the density of water
ρw is considered and the resulting flow dynamics in porous media is introduced.

Given a heterogeneous solute distribution, unstable fluid layering can occur, meaning
that denser fluid is situated above lighter fluid. This situation can lead to Rayleigh-
Taylor like instabilities that, given their cause, are referred to as density-driven insta-
bilities in this work. Let such a system be initially at rest and without any additional
external driving. Due to the instabilities, convection sets in and regions of downwelling
and upwelling develop. Hence, the transport is actively driven by the presence of the
solute itself and causes a regime shift from purely diffusive to convective transport.
For instance, this is very important to the application of carbon dioxide sequestration,
where the time scale of the transport process may reduce from thousands to hundreds
of years [Hassanzadeh et al., 2005].

2.3.1 Dynamics
Consider a 2-dimensional system with the initial condition as depicted in Fig. 2.3.
The flow domain represents a water saturated porous medium at the macroscopic
continuum scale as introduced in Section 2.1. Let the upper and lower boundary be
impermeable to the flow, while the upper boundary is in contact with a solute-bearing
layer. Representing the concentration boundary condition with Cmax, there the solute
can infiltrate into the flow domain, increasing the density of water at the very top. The

14

2.3 Density-Driven Instabilities

z

x

H

0

Cmax

 C0,½0g

1

2

Figure 2.3: Initial condition for the density-driven instability: The flow domain
of height H (red rectangle) represents a water saturated porous medium with
C0 and ρ0. The system is at rest. The solute-bearing layer (blue) with Cmax >
C0 above the domain sets the upper concentration boundary condition. Detail:
Illustration of a small perturbation of an exemplary wavelength being present
at the boundary that displaces the interface from position 1 to position 2. The
blue arrows indicate the direction of subsequent smoothing due to molecular
diffusion.

dynamics of this system are described by the combination of the continuity equation
(Eq. (2.6)), Darcy’s empirical flux law (Eq. (2.10)), and the convection dispersion
equation (Eq. (2.30)):

∇ · u = 0, (2.31)

u = − k

µw
[∇p− ρw(Cw)gez], (2.32)

φ
∂Cw
∂t

= −u · ∇Cw + φDeff∇2Cw, (2.33)

where the medium is assumed to be isotropic, resulting in scalar permeability k, and
the gravitational acceleration is split into the scalar g and the unit vector in z-direction
ez. Because of the 2-dimensional formulation, the Darcy velocity is u = (ux, uz)> and
the gradients are defined by ∇ = (∂/∂x, ∂/∂z)>. Coupling Eq. (2.32) to Eq. (2.33),
the water density ρw now depends on the solute concentration Cw. Hence, the flow is
driven by the presence of the solute. For small variation in Cw this relation is linearly
approximated by

ρw(Cw) = ρ0 + ∆ρwC̃w (2.34)
with the density difference ∆ρw = ρw(Cmax)− ρw(C0) and the reduced concentration

C̃w = [Cw − C0]/[Cmax − C0]. (2.35)

Instability Onset With the interface initially being perfectly flat, the weight of the
denser fluid above is perfectly supported by the fluid beneath. In this case the transport

15

2 Active Solute Transport

would be purely diffusive. However, the natural presence of small perturbations at
the interface arising from thermal fluctuations and vibrations can lead to an onset of
convection. The illustration of an exemplary perturbation wavelength is given in the
detail of Fig. 2.3. In general, a broad wavelength spectrum of perturbations is present
promoting the onset of convection. Let’s consider the 1-dimensional formulation of
Darcy’s flux law in direction of gravity to get insight into the amplification of the
initial perturbations:

∂p

∂z
= −µw

k
uz + ρw(Cw)g. (2.36)

We can derive the resulting driving due to an pressure change δp when considering
a small displacement δz of the interface from position 1 with ρw(Cmax) to position 2
with ρw(C0) to be

δp = ∂p2
∂z

δz − ∂p1
∂z

δz = [ρw(C0)− ρw(Cmax)] g δz, (2.37)

where the initial flow velocity is assumed to be uz = 0. Since ρw(C0) < ρw(Cmax), this
results in δp/δz < 0, which represents an increased driving force. Hence, the initial
displacement promotes the onset of convection.
In contrast to the amplification of the perturbations, molecular diffusion can stabilize

the situation by smoothing out the perturbations sufficiently fast before they can grow.
According to Eq. (2.17) and as depicted in the detail of Fig. 2.3, net diffusive transport
is perpendicular to the interface. Due to the geometry, the diffusive flux into regions
where the interface is concave is effectively enhanced and may lead to the vanishing of
the perturbation.
The interplay between the small perturbations promoting convection and the smooth-

ing due to molecular diffusion determines the onset of the instability and is governed by
three aspects: (i) for small distances, diffusive transport is sufficiently fast to smooth
out the perturbation, (ii) convective growth of the perturbations is stronger for shorter
wavelengths, and (iii) driving of convection is larger for larger density gradients. The
combination of these aspects defines whether the situation gets unstable and, if it
does, a critical wavelength λcrit of the perturbation that experiences the strongest am-
plification. Subsequently, macroscopic convection patterns develop according to λcrit.
Conducting a linear stability analysis of the system, the relation

λcrit = 2πµwDm

0.07k∆ρwg
(2.38)

can be deduced for the regime where convection actually does occur [Riaz et al., 2006].

Temporal development After the onset, the system is subject to a transient relax-
ation process, where the dense fluid is transported toward the bottom boundary and
the flow domain eventually saturates. As there is no solute sink at the bottom this
process is different from the more commonly studied asymptotic regime of Rayleigh-
Bénard convection observed for heat transport in free fluids [Bénard, 1900; Rayleigh,

16

2.3 Density-Driven Instabilities

1916] and its porous medium analog [Horton and Rogers Jr , 1945; Lapwood, 1948].
There, the heat source at the bottom and the sink at the top lead to a dynamic
equilibrium in the system’s final state.
According to a number of numerical and experimental studies the system encounters

several temporal regimes [e.g., Slim et al., 2013; Slim, 2014; Kreyenberg, 2015; Ecke and
Backhaus, 2016; Thomas et al., 2018]. At first, small density fingers arising from the
unstable perturbation wavelength grow linearly. When they have grown sufficiently
large, they start to interact nonlinearly through coupling of their surrounding flow
fields. The flow velocities along the fingers points downward due to the negative
buoyancy of the denser fluid, while the velocities between them points upward to
balance the downward flow. Irregularities in the rising of less dense fluid can push
fingers closer together, causing them to merge. Subsequently, the merged fingers form
larger plumes that dominate the temporal development of their environment. Because
their seeding points at the upper boundary are now spaced coarsely, new small fingers
form similarly to the initial finger formation at the onset. The larger plumes then
feed on the reinitialized fingers as the dominant flow field pushes them toward the
plumes. This process persists until the fastest plumes reach the bottom boundary and
saturation of the flow domain begins.

2.3.2 Dimensionless Formulation
To get a deeper understanding of the system’s development according to the boundary
condition and the water and solute properties, it is useful to introduce a dimensionless
formulation of Eqs. (2.31) to (2.33). To achieve this, the system is scaled by its
characteristic length scale Lc, typical velocity Uc, and intrinsic time scale Tc. There
are two reasonable choices for the characteristic length scale Lc: (i) the usual approach
is to scale by the height of the flow domain as in [e.g., Riaz et al., 2006; Wooding et al.,
1997a] and (ii) the more elegant approach by Slim and Ramakrishnan [2010] (SR2010)
is to scale by the convection-diffusion length. Both are discussed in the following,
whereas the generic denotion Lc is used for now. The characteristic velocity that is
encountered in the temporal development of the instability is given by the buoyancy
velocity Uc = ∆ρwgk/µw, which is defined as the sinking velocity of a water parcel with
density ρw(Cmax) in a surrounding with ρw(C0). For the entirety of the characteristic
quantities this results in

Lc, Uc = ∆ρwgk
µw

, Tc = Lc
Uc
, Pc = µwUcLc

k
, and Cc = Cmax − C0 (2.39)

with the additional characteristic pressure Pc and concentration Cc. This leads to

u = Ucũ, x = Lcx̃, t = φTct̃, p−ρ0gzez = Pcp̃, and Cw−C0 = CcC̃w, (2.40)

where ·̃ denotes the now dimensionless quantities and C̃w is again the reduced concen-
tration as defined above. Choosing Lc to either be the domain height or the convection-
diffusion length leads to different dimensionless formulations.

17

2 Active Solute Transport

Scaling by the Domain Height With Eq. (2.40) and Lc = H the scaling of Eqs. (2.31)
to (2.33) results in

∇̃ · ũ = 0, (2.41)
ũ = −∇̃p̃+ C̃wez, (2.42)

∂C̃w
∂t̃

= −ũ · ∇̃C̃w + 1
Ra∇̃

2C̃w. (2.43)

While the continuity equation and the flux law render independent of any parameter,
the Rayleigh number emerges in the convection dispersion equation:

Ra = ∆ρwgkH
µwφDeff

. (2.44)

Note that dispersion is assumed to be isotropic here and Deff therefore reduces to Deff .
In this formulation Ra is interpreted as the scaling parameter between the convective
and the diffusive term and determines the instability of the system by quantifying the
aspects as introduced in the discussion of the instability onset above. For small Ra,
diffusion is dominant and smooths out perturbations before they can lead to convec-
tion. Above a certain threshold value Racrit that depends on the initial and boundary
condition [Nield and Bejan, 2006] convection sets in and leads to the formation of
the density fingers. Values of Racrit have been reported to be in the range between
O(40) and O(500) [Lapwood, 1948; Lindeberg and Wessel-Berg, 1997; Graf et al., 2002;
Kneafsey and Pruess, 2010]. Comparing the definition of the Rayleigh number with
Eq. (2.38) yields the relation λcrit ∝ H(φRa)−1 and therefore for the scaled critical
wavelength

λ̃crit = λcrit/H ∝ (φRa)−1 (2.45)

in this formulation.

Scaling by the Convection-Diffusion Length SR2010 propose the convection-diffusion
length as characteristic length scale Lc = φDeff/Uc, which defines the length over which
diffusion and convection do balance. Scaling with this length yields

∇̃ · ũ = 0, (2.46)
ũ = −∇̃p̃+ C̃wez, (2.47)

∂C̃w
∂t̃

= −ũ · ∇̃C̃ + ∇̃2C̃w. (2.48)

In contrast to the scaling by H this formulation is independent of any dimensionless
parameter, revealing the universal development of the system. This means that the
transport in any saturated porous medium with an unstable layering of a more dense
fluid layer above a less dense one (cf. Fig. 2.3) will undergo the exact same temporal
development independent of the initial values. However, the system is bounded in space

18

2.3 Density-Driven Instabilities

by the lower boundary. Therefore, the temporal development halts, when the fastest
plumes reach the bottom, the domain begins to saturate, and the transport starts to
shut down. In fact, scaling the position of the lower boundary by the convection-
diffusion length results in

H̃ = H

Lc
= ∆ρwgkH

µwφDeff
= Ra, (2.49)

which is identified to be the Rayleigh number in this formulation. Also quantifying the
instability of the system, Ra is interpreted as the dimensionless height of the domain
that bounds the temporal development. For a shallow dimensionless formulated system
Ra is small and only diffusive transport is encountered until the bottom is reached.
Above a critical value the system is deep enough for convection to develop. Further
increased Ra leads to the development of more and more temporal regimes before
transport shuts down.

Comparison Although the two dimensionless formulations, as introduced above, seem
to be quite simple, their implications may not be intuitive. Deeper understanding can
be achieved by observing the response of the system and its dimensionless formulations
to variation of the quantities defining the initial condition, i.e. domain height H,
porosity φ, dispersion coefficient Deff , density difference ∆ρw, and permeability k. For
brevity the scaling by the domain height is referred to as classical formulation, whereas
the scaling by the convection-diffusion length is referred to as formulation of SR2010
in the following.
Consider a dimensional system 1 of height H with an arbitrary but fixed width. At

a fixed time t, let system 1 exhibit two initial density fingers right after convection
onset. Now, change the quantities individually to represent a system 2 such that the
Rayleigh number doubles in value: Ra2 = 2Ra1. The resulting changes of system 2
together with the changes in the dimensionless scales reveal the differences between
the classical formulation and the formulation of SR2010. This proceeding is illustrated
in Fig. 2.4. In the upper left of the figure, the considered dimensional system 1 is
depicted along with the general formulation of the characteristic scales. Note that for
the classical formulation and the formulation of SR2010, Ra and Uc have the same form,
while the definitions of Lc and Tc differ significantly. The scales are correspondingly
superscripted withH for the domain height and CD for the convection-diffusion length.
In the following the individual initial quantities are varied and the implications are
discussed:

• Case 1: H2 = 2H1 (upper right in Fig. 2.4). Despite the change in depth,
system 2 does not change, still exhibiting two initial fingers at time t. However,
Ra2 = 2Ra1 indicates a more unstable situation. For the formulation of SR2010
this does make sense, as larger Ra relates to a deeper domain and consequently
leads to the development of more temporal regimes, which we expect for the
dimensional system in this case. Accordingly, LCD

c and TCD
c remain unchanged.

19

2 Active Solute Transport

For the classical formulation, on the other hand, the increase of Ra also implies
a more unstable situation. According to Eq. (2.45), this leads to an increased
number of initial fingers per unit length. In the dimensionless formulation this
is true, since LHc,2 = 2LHc,1, but there is no direct implication for the dimensional
system in this case. The fact that THc,2 = 2THc,1 represents that time t corresponds
to an earlier point in time in this formulation, which similarly to the formulation
of SR2010 implies that the system develops further in time. Therefore, the
implication of both dimensionless formulations are similar for the dimensional
system, however, the interpretation of the classical formulation is more obscure
in the case of the variated domain height H.

0

0 0

0

Figure 2.4: Comparison of the characteristic scales as obtained from scaling
by the domain height (light blue) and the convection-diffusion length (light
red): A dimensional system with domain height H exhibits two initial density
fingers at time t (upper left). Snapshots at t of the otherwise same dimensional
system are illustrated for an altered domain height (upper right), effective
dispersion coefficient (lower left), and density difference (lower right). The
corresponding changes of the characteristic scales reveal the differences of the
formulations.

20

2.3 Density-Driven Instabilities

• Case 2: Deff,2 = 0.5Deff,1 (lower left in Fig. 2.4). From Eq. (2.38) we know that
the number of initial fingers doubles for this case. Here, this is coherent with the
classical formulation, where the more unstable situation implies an increase in
the number of initial fingers per unit length. Accordingly, LH

c and TH
c now remain

unchanged. In the formulation of SR2010 the characteristic length scale reduces:
LCD
c,2 = 0.5LCD

c,1 . Therefore, in relation to LCD
c,1 , the lower boundary moves further

away and the more unstable situation, again, implies that the system encounters
more temporal regimes. LCD

c,2 = 0.5LCD
c,1 also reveals that in this scaling the

number of fingers per unit length is conserved. Hence, the interpretation of the
formulation of SR2010 is more obscure with respect to the spatial characteristics
at the onset. (Analog to this case is the variation of porosity φ.)

• Case 3: ∆ρw,2 = 2∆ρw,1 (lower right in Fig. 2.4). This case is similar to case 2,
as the dimensional system exhibits four initial fingers. However, the penetration
depth of the fingers at time t is larger, which is due to the increased buoyancy
velocity Uc. The fact that the fingers are already closer to the lower boundary
is reflected in both dimensionless formulations as THc,2 = 0.5THc,1 and TCD

c,2 =
0.25TCD

c,1 . Again, the number of fingers per unit length is preserved for the
formulation of SR2010, while prediction of an increase of the total number of
initial fingers is coherent with the classical formulation. (Analog to this case is
the variation of permeability k.)

Summarizing the considerations above, both dimensionless formulations aid the under-
standing of the system. While both are consistent within their framework, the classical
formulation emphasizes the spatial aspects of the initial density fingers, whereas the
formulation of SR2010 gives direct insight into the transient development of the relax-
ation process.

21

3 NUMERICAL EXPERIMENTS
The numerical experiments form the data basis of the information transfer from the
simulation to the laboratory experiment. The assumption is that the physical process
is completely and faithfully represented in the generated synthetic data that then can
be learned by the CNNs. The trained CNNs are then able to transfer the information
to the laboratory experiment, making the inaccessible flow fields accessible. This
chapter summarizes the settings used to generate the datasets for training the CNNs
and presents the temporal development in the numerical experiments.
For the numerical simulation of the dynamics of active solute transport I used a

numerical solver implemented by P. Bastian in Dune [Blatt and Bastian, 2007; Bas-
tian et al., 2008a, b; Blatt and Bastian, 2008; Blatt et al., 2016], which solves the
dimensionless formulated problem according to the scaling by the domain height (cf.
Eqs. (2.41) to (2.43)). The solver uses a cell-centered finite volume method to solve the
flow problem, a symmetric interior penalty discontinuous Galerkin method to solve the
transport problem, and offers several explicit and implicit time stepping schemes. For
a broad range of Rayleigh numbers I ran the simulations on a 2-dimensional rectangu-
lar structured grid using the Alexander time stepping scheme of order two [Alexander ,
1977]. The spatial extent of the flow domain was set to x̃ = 1.0 and z̃ = 0.5 at a
corresponding resolution of 768×384 and the temporal resolution for the data output
was set to dt̃ = 0.02. To cut down the computation time for the individual simulation
runs, each run was computed in parallel on four CPU cores. With this, I conducted
three distinct sets of numerical experiments: the first set of experiments (NE1) im-
plements a constant upper concentration boundary condition of C̃w = 1 (Section 3.1),
the second set of experiments (NE2) introduces spatial and temporal variation of the
upper concentration boundary condition (Section 3.2), and the third set of experi-
ment (NE3) includes superscale convection by adding driving of the background flow
at the lateral boundaries, while resembling the first dataset in the upper concentration
boundary condition (Section 3.3). In their entirety, these sets of numerical experiments
represent the processes that are expected to occur in the laboratory experiment.

3.1 Constant Concentration Boundary Condition (NE1)

For NE1, the concentration was set to a constant value of C̃w = 1 at the upper
boundary, while all boundaries were set to be impermeable to the fluid flow. Initially,
the flow domain exhibited the density C̃w = 0 and each forward simulation was run for
8,000 time steps. For the individual runs this roughly corresponded to the time, when
the fastest density finger reached the bottom boundary. I ran 39 individual simulations
in the range of Rasim ∈ [2,000, 27,000], where the Rayleigh numbers were chosen to be
almost equally distributed.

23

3 Numerical Experiments

0

50

100
(a)

0

50

100

150
(b)

0

50

100

150

200

z
[p

x
]

(c)

0 75 150 225 300 375 450 525 600 675 750

x [px]

0

50

100

150

200

250

300

350
(d)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C̃
w

[C
c
]

Figure 3.1: Concentration fields of NE1 for Rasim = 4,000 at t̃ = 3.1 (a),
t̃ = 3.8 (b), t̃ = 4.8 (c), and t̃ = 5.9 (d). The complete width of the domain
is presented, while the shown portion of the depth is adapted to the density
fingers.

Examples of the temporal development of the concentration fields are shown in
Fig. 3.1 for Rasim = 4,000 and additionally in Figs. A.1 and A.2 for Rasim = 12,000
and 26,000. At first, the initial fingers develop, whereby more fingers are observed for
higher Rayleigh numbers. Note that the nonuniform initiation of these fingers is due to
the parallelized computation on four CPU cores. The domain is divided into smaller
subdomains that are computed on the individual cores. This introduces boundary
effects at the interfaces of the subdomains that cause earlier initiation. For later times
the initial fingers start to interact and merge, leading to dominant plumes that are

24

3.1 Constant Concentration Boundary Condition (NE1)

0.0

1.0

2.0

3.0

4.0

5.0
(a)

0.0

1.0

2.0

3.0

t̃
[T

c
]

(b)

0 75 150 225 300 375 450 525 600 675 750

x [px]

0.0

1.0

2.0

3.0 (c)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C̃
w

[C
c
]

Figure 3.2: Space-time maps of NE1: temporal development of concentration
profiles 5 px below the upper boundary for Rasim = 4,000 (a), Rasim = 12,000
(b), and Rasim = 26,000 (c).

now more coarsely spaced. Whereas for Rasim = 4,000 no secondary density fingers
are initiated in between the dominant plumes, they get more and more abundant for
higher Rayleigh numbers.
Space-time maps for NE1 for Rasim = 4,000, 12,000, and 26,000 are shown in Fig. 3.2,

where the concentration profile at the fixed position of 5 px below the upper boundary
is plotted over the course of the numerical experiments. In the beginning, the con-
centration is zero, before the solute gets uniformly transported to z = 5 px by pure
diffusion. For lower Rayleigh numbers the diffusive process is more pronounced and
has a longer duration when compared to higher Rayleigh numbers. At the instability
onset the initial fingers develop and accumulate the solute from their surrounding.
This initiation appears earlier at distinct, regularly spaced positions, which is again
due to the parallelized computation on four CPU cores. In this representation, the
subsequent lateral movement of the seeding points during the merging of the fingers
that leads to a spatial coarsening of the resulting plumes becomes observable. In

25

3 Numerical Experiments

2000 4000 6000 8000 10000 12000 14000 16000

Rasim [−]

10

20

30

40

50

60

70

λ̃
−

1
c
ri

t
[−

]

1536 px× 768 px

768 px× 384 px

384 px× 192 px

Figure 3.3: Observed relation of the reciprocal critical wavelength and the
Rayleigh number of NE1: The black dashed line gives the theoretical pro-
portional relation. At Rasim = 12,000 simulation runs with higher (orange
cross) and lower resolution (green cross) are given to show the influence of
numerical dispersion.

the spaces in between, the concentration again increases due to diffusion, before the
secondary fingers reinitiate. Subsequently, the secondary fingers are swept into the
dominant plumes, providing them with more solute. In addition to the lateral move-
ment of the finger seeding points, the space-time maps reveal the self similar temporal
behavior of the transient relaxation process. Going from low to high Rayleigh num-
bers, the same spatio-temporal structures appear on decreasing spatial and shortening
temporal scales.
In Fig. 3.3 the observed relation of the initial finger wavelength λ̃crit to the Rayleigh

number Rasim is compared to the expected proportionality (cf. Eq. (2.45)). The pre-
sentation of values for Rasim > 15,000 is omitted, however, as it does not provide
further insight into the relation for the numerical experiment. For low Rayleigh num-
bers the numerical experiments agree with the expected proportional relation, whereas
the values start to divert for Rasim > 6,000.

Discussion I attribute the observed disagreement to the effect of numerical dispersion
that arises as a numerical error when the spatial discretization of the problem is too
coarse. As a result, the solute is subjected to stronger spreading than due to the pure
physical dispersion. Since the phenomenology of the numerical and physical dispersion
is the same, this results in an apparent dispersivity in the simulations, which according
to Eq. (2.44), effectively reduces the Rayleigh number. Accordingly, the value of λ̃−1

crit
is reduced in this case. To support this, I ran two additional simulations at Rasim =
12,000 with a decreased resolution of 384×192 and an increased resolution of 1536×768.

26

3.2 Modified Concentration Boundary Condition (NE2)

As shown in Fig. 3.3, the simulation with a finer discretization alleviates the issue,
while the coarser discretization exacerbates it. With this assessment I argue that the
physical process is still represented correctly, but in accordance to an adjusted apparent
Rayleigh number that is smaller than the chosen simulation parameter: Raapp < Rasim.
This justifies the choice of the resolution of 768×384, which made the generation of
the large datasets computationally feasible.

3.2 Modified Concentration Boundary Condition (NE2)

0

50

100
(a)

0

50

100

150
(b)

0

50

100

150

200

z
[p

x
]

(c)

0 75 150 225 300 375 450 525 600 675 750

x [px]

0

50

100

150

200

250

300

350
(d)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C̃
w

[C
c
]

Figure 3.4: Concentration fields of NE2 for Rasim = 5,750 at t̃ = 0.3 (a),
t̃ = 1.0 (b), t̃ = 1.8 (c), and t̃ = 2.9 (d). Same representation as in Fig. 3.1.

27

3 Numerical Experiments

0.0

0.8

1.6

2.4 (a)

0.0

0.8

1.6

2.4

t̃
[T

c
]

(b)

0 75 150 225 300 375 450 525 600 675 750

x [px]

0.0

0.8

1.6

2.4 (c)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C̃
w

[C
c
]

Figure 3.5: Space-time maps of NE2: temporal development of concentration
profiles 5 px below the upper boundary for Rasim = 3,750 (a), Rasim = 5,750
(b), and Rasim = 13,750 (c).

In the second set of numerical experiments, NE2, the upper concentration boundary
condition was chosen to be spatially nonuniform. The concentration was set to C̃w = 1
for 230 px < x < 538 px and C̃w = 0 for the remainder. Additionally, the concentration
was set to C̃w = 0 after t̃ = 5

6Tc at the entire upper boundary, introducing a temporal
cutoff. The boundary conditions with respect to the flow were set equivalent to NE1.
With these settings, I ran 6 individual simulations evenly spaced in the parameter
range of Rasim ∈ [3,750, 13,750], again for 8,000 time steps each.

The temporal development of the concentration fields are shown for the example of
Rasim = 5,750 in Fig. 3.4 and for the examples of Rasim = 3,750 and 13,750 in Figs. A.3
and A.4, respectively. Again, finer initial fingers are found for larger Rayleigh numbers,
the detailed development of the instability is different to NE1, however. Due to the
spatially nonuniform boundary condition, fine instabilities are initiated at the positions
of the concentration jumps. These first fingers propagate downward as their seeding
points laterally move toward the center of the domain. During this lateral movement
the first fingers incorporate smaller fingers that were initiated at later times. Only very
late independent fingers get initiated at the center of the domain, before the temporal
cutoff of the concentration at the top slows down the development of the system.
The same behavior is observed in the space-time maps for NE2. In Fig. 3.5 examples

are depicted for Rasim = 3,750, 5,750, and 13,750. The first fingers initiate right away,
due to the introduced instabilities at the concentration jumps, and their seeding points

28

3.3 Representation of Superscale Convection (NE3)

laterally move to the center. For low Rasim, it appears that almost all initial fingers
are influenced by the first instabilities due to the nonuniform boundary condition. For
larger values, more and more independent fingers form in the center and initiation
patterns similar to the observations for NE1 emerge. After the temporal cutoff of C̃w
at the top, the remaining solute is transported downward and the concentration drops
to zero at the observation position of z = 5 px.

3.3 Representation of Superscale Convection (NE3)

0

50

100
(a)

0

50

100

150
(b)

0

50

100

150

200

z
[p

x
]

(c)

0 75 150 225 300 375 450 525 600 675 750

x [px]

0

50

100

150

200

250

300

350
(d)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C̃
w

[C
c
]

Figure 3.6: Concentration fields of NE3 for Rasim = 9,000 at t̃ = 0.4 (a),
t̃ = 0.8 (b), t̃ = 1.2 (c), and t̃ = 2.2 (d). Same representation as in Fig. 3.1.

29

3 Numerical Experiments

0.0

1.0

2.0
(a)

0.0

1.0

2.0

t̃
[T

c
]

(b)

0 75 150 225 300 375 450 525 600 675 750

x [px]

0.0

1.0

2.0 (c)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C̃
w

[C
c
]

Figure 3.7: Space-time maps of NE3: temporal development of concentration
profiles 5 px below the upper boundary for Rasim = 4,500 (a), Rasim = 9,000
(b), and Rasim = 16,000 (c).

NE1 and NE2 exclusively accounted for the transport processes of the density-driven
instability itself. For the third set of numerical experiments, NE3, I additionally in-
troduced superscale convection represented as lateral background flow that was super-
posed to the development of the instability. The upper and lower boundaries were
still set to be impermeable. At the lateral positions I implemented Dirichlet boundary
conditions, where the chosen potential led to a lateral gradient, driving the background
convection in the domain. The right boundary was set to p̃ = 0 throughout the com-
plete simulation runs. On the left boundary the pressure was variated with time:

p̃(t̃, x̃ = 0) = 0.15 sin
(

2π t̃

t̃max

)
, (3.1)

where t̃max is the dimensionless time that corresponds to the maximum time step of
the simulation run. Accordingly, the pressure gradient slowly increased, driving the
background fluid flow in the positive x-direction, before it decreased and inverted to
drive the flow in the negative x-direction. The concentration boundary condition was
set equivalent to NE1, with C̃w = 1 at z̃ = 0. With these settings, I ran 16 simulations
over the course of 8,000 time steps in the range of Rasim ∈ [1,500, 16,000], again almost
evenly distributed over the parameter range.
For the example of Rasim = 9,000 the temporal development is shown in Fig. 3.6

and additional examples are given in Figs. A.5 and A.6 for Rasim = 4,500 and 16,000.
The onset of the instability in NE3 combines effects of NE1 and NE2. Similar to NE2
the instabilities are already initiated at lateral positions, while in the center of the
domain the transport is still governed by diffusion. As the early initiation regions are

30

3.3 Representation of Superscale Convection (NE3)

further apart than in NE2, more regularly spaced initial fingers can develop in the
center, which is similar to the observations in NE1. Apart from these similarities to
NE1 and NE2, a qualitative difference of the transport is observed for NE3. Due to the
background flow, complete fingers and large plumes are convected in lateral direction.
For NE1 and NE2 lateral movement is only observed for smaller fingers and the finger
seeding points, while larger fingers and plumes stay at their lateral position.
In the space-time maps for NE3 the influence of the background flow on the positions

of the seeding points becomes clearly visible. Examples for Rasim = 4,500, 9,000, and
16,000 are given in Fig. 3.7. According to the sinusoidal boundary condition on the
pressure, the seeding points shift to the right for the first half of the simulation runs,
then shift to the left for the second half. This lateral movement is superposed to the
lateral movement due the density-driven instability as already observed for NE1 and
NE2.

31

4 LABORATORY EXPERIMENT
In parts based on Kreyenberg et al. [2019].

The real world data that represent the target of the information transfer are provided
by a laboratory experiment to observe active solute transport in a Hele-Shaw cell.
These kind of experiments allow for high resolution measurements of the concentra-
tion fields and their temporal development. However, it is impossible to experimentally
infer the corresponding flow fields. This is obvious for regions where the solute dis-
tribution is homogeneous and, therefore, no information about the flow is given. In
regions where the temporal development of the solute concentration provides infor-
mation about the movement, it is still impossible to disentangle the solute transport
due to dispersion from convective transport without modeling the underlying processes
numerically, which implicates the estimation of the system parameters and is a chal-
lenge of its own. Since the process is slow and sensitive to small density differences,
typical methods to measure fluid flow, e.g. particle image velocimetry, are generally
inapplicable.
The data used for the analysis in this work were originally recorded in the course

of the experimental study of Kreyenberg [2015], where a detailed description of the
measurement technique is given. This chapter summarizes the laboratory experiment
to support the understanding of the data. First, the experimental setup is presented,
before the temporal development is discussed to allow for a comparison to the numerical
experiments.

4.1 Experimental Setup
The experimental setup (Figure 4.1) is composed of a Hele-Shaw cell, an LED light
source, an optical band-pass filter, and a CCD camera to observe the solute concen-
tration distribution by employing light transmission measurements.
The Hele-Shaw cell is made from two 8 mm thick glass plates with the dimensions of

500×300 mm. Spacers of 0.4 mm thickness and sealing material along the left, right,
and lower edges hold the glass plates apart to create a narrow gap d that serves as the
quasi 2-dimensional flow domain. In this narrow gap, the fluid flow is described by the
same governing equations as for porous media (cf. Section 2.1.3) with porosity φ = 1.
It was ensured that the gap width satisfies d < 10(φD/Uc), as deduced by Slim et al.
[2013] from the results of Fernandez et al. [2002], in order to reduce the influence of
possible 3-dimensional effects.
Three inlet ports at the lower edge were connected to an external fluid reservoir to

keep the fluid level stable during the course of the experiment. The fluid used in the
experiment is deionized water with Brilliant Blue FCF (BB) as a tracer and solute

33

4 Laboratory Experiment

30 cm
5
0
 c

m

~1 m

19.4 cm

9
.7

 c
m

Figure 4.1: Illustration of the experimental setup: The Hele-Shaw cell (50×30
cm) is placed in front of the LED light source. During the evaporation induced
density-driven instability experiments, the external fluid reservoir keeps the
fluid level inside the Hele-Shaw cell stable. The CCD camera captures the
transmitted light. The red rectangle highlights the chosen observation area
used for the flow field estimation.

simultaneously that allows to observe the dynamics as well as to introduce density
contrasts depending on the BB concentration. Based on the Beer-Lambert law the
absorption coefficient of BB was determined using the measured light extinction in a
spectrometer.
The light source consists of an LED-array and a translucent acrylic glass plate as

optical diffuser up front to create a homogeneous illumination of the Hele-Shaw cell.
The LEDs match the maximum light absorption wavelength of BB (630 nm) in their
maximum emission wavelength (625 nm). The optical band-pass filter in front of
the CCD camera (AVT Pike F505B, 2452×2054 px) was chosen accordingly with a
transmission band of 632± 11 nm.
To determine the spatially resolved gap width of the Hele-Shaw cell, calibration

measurements were performed using two uniform BB concentration solutions. By
measuring the light intensity with the CCD camera the width can be inferred by the

34

4.1 Experimental Setup

Table 4.1: Characterization of the laboratory experiment.
Parameter Value Unit
Height of the Hele-Shaw cell H 490± 5 mm
Width of the Hele-Shaw cell W 270± 5 mm
Height of observation area Hobs 97.2± 1.1 mm
Width of observation area Wobs 194.4± 1.1 mm
Temporal resolution ∆t 600 s
Mean gap width at the upper edgea d̄top 0.61± 0.04 mm
Mean gap width in observation area d̄obs 0.72± 0.05 mm
Permeabilitya,b k [3.1± 0.4]× 10−8 m2

Base concentration C0 86.5± 0.5 kg/m3

Maximum concentration Cmax 154.4± 11.9 kg/m3

Solutal expansion coefficient of BB βs [1.90± 0.15]× 10−4 kg m3/(m3 kg)
Density differencec ∆ρ [12.9± 2.5]× 10−3 kg/m3

Dynamic viscosity of waterd µw 1.002× 10−3 Pa s
Porosity φ 1 m3/m3

Diffusion coefficient of BB Dm [2.9± 1.0]× 10−10 m2/s
Rayleigh numbera Ralab 6,600± 2,700 –
a Relevant value for the instability onset.
b Results from k = d̄2

top/12.
c Results from ∆ρ = βs(Cmax − C0).
d From Lide [2004] for 20°C.

Beer-Lambert law. This calibration for the gap width allowed for the spatially resolved
determination of the BB concentrations during the experiment, where an image was
recorded every 10 minutes.
For the density-driven instability experiment, the flow domain was initially com-

pletely filled with uniform BB concentration solution (C0 = 86.5 kg/m3). Through
water evaporation at the upper unsealed edge of the Hele-Shaw cell, BB accumulated
locally up to Cmax = 154.4 kg/m3. This set the upper boundary condition for the
experiment. Note that this temporal build up qualitatively differs from the numerical
experiments, where the upper boundary is set to the maximum concentration at the
initial time. Therefore, the initial times tlab = 0 h and t̃sim = 0 have different mean-
ing with respect to the temporal development. The fluid loss due to evaporation was
compensated by inflow of BB solution with C0 through the three inlet ports at the
bottom, which increased the total BB amount in the cell over time. The increased BB
concentration at the top altered the density (∆ρ = [12.9 ± 2.8] × 10−3 kg/m3) of the
solution there, leading to an unstable layering within the fluid.
The above and additional parameters that characterize the laboratory experiment

are summarized in Table 4.1. The given values are determined experimentally with

35

4 Laboratory Experiment

their according uncertainty from propagating the errors, except for the diffusion coeffi-
cient of BB, where only an estimation based on the size of the dye molecules and their
assumed movement in water is available. Accordingly, the estimated Rayleigh number
of Ralab = 6,600±2,700 incorporates this uncertainty, where the values relevant to the
onset of the instability have been taken into account.

4.2 Temporal Development

After the evaporation at the upper boundary of the Hele-Shaw cell induced the un-
stable fluid layering due to the increased BB concentration there, the density-driven
instability developed in its full beauty (video of the observation available at https:
//doi.org/10.11588/data/7NEEKF). The temporal development of the concentration
fields is depicted in Fig. 4.2 for the observation area in the upper center of the cell as
indicated in Fig. 4.1. The observation area is 19.4 cm wide and is chosen to exclude re-
gions at the left and right side of the cell, where the lateral boundaries are expected to
affect the flow. The depth of the observation area is set to 9.7 cm, since I focus on the
early and intermediate temporal regimes in accordance to the numerical experiments.
In general, the observed concentration fields qualitatively agree with the concentration
fields of the numerical experiments, while substantial noise in the concentration values
is observed due to the measurement technique. At early times the initial fingers form,
which are almost regularly spaced. Their individual initiation time is less uniform,
however, with fingers that already have developed a length of about 10 mm being right
next to fingers that are barely initiated. I attribute this to irregularities in the ex-
perimental setup. Due to the capillarity and imperfections on the surface of the glass
plates the water interface at the upper edge was not perfectly flat. Also, the gap in the
center of the cell was 0.2 mm wider than the gap at the sides. Both effects can cause
nonuniform evaporation, which influences the initiation and the regularity of the initial
fingers. For later times the initial fingers start to merge, forming the large dominant
plumes. In the laboratory experiment these plumes are subjected to lateral movement,
which is most prominent for the outermost ones that show the fastest development and
get deflected toward the center of the cell. Qualitatively, these effects are similar to
the observations of NE2 and NE3 with the nonuniform concentration boundary con-
dition and the introduced background flow, but are much stronger in the laboratory
experiment. This comparison supports that there are influences of a nonuniform con-
centration boundary condition and that the flow is affected by the background flow in
the Hele-Shaw cell that balances the evaporation at the upper edge.
The space-time map of the laboratory experiment as depicted in Fig. 4.3 confirms

these observations. The seeding points of the initial fingers move closer together as
they merge to form larger plumes. The outermost seeding points move toward the
center, incorporating the other fingers on the way, which is similar to the observations
in NE2. Superposed to that is a general drift to the right at early times, similar to
the observation in NE3, that vanishes for later times. Until t = 19.83 h, when the

36

https://doi.org/10.11588/data/7NEEKF
https://doi.org/10.11588/data/7NEEKF

4.2 Temporal Development

0

10

20 (a)

0

10

20

30 (b)

0

10

20

30

40

50

z
[m

m
]

(c)

0 15 30 45 60 75 90 105 120 135 150 165 180

x [mm]

0

10

20

30

40

50

60

70

80 (d)
80

90

100

110

120

130

140

150

160

C
w

[k
g
/m

3
]

Figure 4.2: Concentration fields of the laboratory experiment for Ralab ∼ 6,600
at t = 2.33 h (a), t = 4.17 h (b), t = 6.50 h (c), and t = 9.83 h (d).

fastest plume reaches the bottom of the observation area, the regimes encountered in
the temporal development are similar to the ones encountered for Ra = 4,000 in NE1,
since no initiation of secondary fingers is apparent yet. For later times the initiation
patterns on the left are congruent with the ones observed at the outermost plumes for
NE2 and NE3 at large Rayleigh numbers. On the right the pattern is quite different,
however, as there fewer finger seeding point move toward the dominant plume.
Besides the qualitative agreement between the laboratory experiment and the numer-

ical experiments after the onset of the instability, a major difference becomes evident
in Figs. 4.2 and 4.3. In the laboratory experiment, the temporal regime, in which
the transport is purely diffusive, is not observable. This is due to the construction

37

4 Laboratory Experiment

0 15 30 45 60 75 90 105 120 135 150 165 180

x [mm]

0

5

10

15

20

25

30

t
[h

]

80

90

100

110

120

130

140

150

160

C
w

[k
g
/m

3
]

Figure 4.3: Space-time map of the laboratory experiment: Temporal devel-
opment of the concentration profile 2.6 mm below the upper boundary for
Ralab ∼ 6,600. Blank data are due to missing images in the observation
at t = 12.67, 13.00, and 22.50 h. The dashed black line indicates the time
t = 19.83 h, when the fastest plume reaches the bottom of the observation
area as marked by the red rectangle in Fig. 4.1.

of the Hele-Shaw cell. The two glass plates have chamfered edges, which introduced
refraction of the light in the small region at the top, where pure diffusion is expected
to be apparent. Therefore, this small region was optically inaccessible.

The critical wavelength λcrit for the laboratory experiment can be determined from
the spatial distribution of the initial fingers. The concentration profile 1.3 mm below
the upper boundary for t = 2.0 h is depicted in Fig. 4.4 (black dashed line) with
its subsequent development (blue shades). To cope with the measurement noise and
allow for a clean signal a standard median image filter with a kernel size of 5 px, which
corresponds to 1.26 mm, was applied to the concentration field before taking the profile.
Again, the temporally nonuniform initiation due to the expected irregularities in the
experiment becomes apparent. While 24 peaks can be distinguished over the width
of the observation area, 4 positions with a very small increase in the concentration
can be identified in between. In the subsequent development these small increases
in concentrations vanish as they are swept into the adjacent peaks. Therefore, it is
ambiguous whether initial fingers might have developed at these positions in case
of a more uniform temporal initiation. Representing this uncertainty, the critical
wavelength for the laboratory experiment is determined to be λcrit = 8.1± 1.7 mm.

38

4.2 Temporal Development

0 15 30 45 60 75 90 105 120 135 150 165 180

x [mm]

80

100

120

140

160
C
w

[k
g
/
m

3
]

t
→

Figure 4.4: Spatial distribution of the initial fingers of the laboratory exper-
iment at Ralab ∼ 6,600: The dashed black line represents the concentration
profile 1.3 mm below the upper boundary at t = 2.0 h. The subsequent devel-
opment is indicated in blue shades.

Scaling the critical wavelength with the domain height H = 490 ± 5 mm results
in the dimensionless value of λ̃crit = [1.65± 0.36] × 10−2. Invoking the linear re-
lation between the Rayleigh number and the reciprocal dimensionless critical wave-
length (cf. Eq. (2.45)) and using the proportionality as reported by Riaz et al.
[2006] (cf. Eq. (2.38)), the observed wavelength corresponds to a Rayleigh number
of Ra = 5,400 ± 1,200. Within the error bounds this agrees with the estimated value
from the experimental parameters Ralab = 6,600 ± 2,700, however, the uncertainties
for both values are large. Unfortunately, these estimates reveal a discrepancy toward
the numerical experiments. Using the same approach by invoking the linear relation
between Ra and λ̃−1

crit and using the linearity as predicted in NE1 (cf. Fig. 3.3) results
in Rasim = 12,100± 2,600 for the measured value of λ̃crit = [1.65± 0.36]× 10−2.

Discussion Although the phenomenology of the density-driven instability observed
in the numerical experiments is consistent with the observations of the laboratory
experiment, a discrepancy is encountered in the quantification of the Rayleigh number.
The values obtained from the experimental parameters and the critical wavelength
according to the proportionality as reported by Riaz et al. [2006] do not agree with
the value predicted from the numerical simulations. Since there are large uncertainties
in the estimation of the diffusion coefficient for the laboratory experiment, there is no
robust insight at this point to resolve this discrepancy between the experimental value
and the value motivated from linear stability analysis, on the one side, and the value
from the numerical prediction, on the other side. However, the disagreement does not
affect the applicability of the flow field estimation based on the numerical experiments.
As long as the correct phenomenology is contained in the data, the correct relation

39

4 Laboratory Experiment

between the concentration fields and the corresponding flow fields is represented. This
is due to the self-similarity of the density-driven instability, where the same spatio-
temporal patterns emerge for different Rayleigh numbers, but on smaller spatial and
shorter time scales for increasing values of Ra.

40

5 CONVOLUTIONAL NEURAL
NETWORKS

Deep learning in general and convolutional neural networks (CNNs) in particular are
powerful methods to extract complicated features contained in data. CNNs are de-
signed to extract the features of multi dimensional data with a given spatial structure,
such as image data, and can learn to associate these features to a desired output. In
this chapter the deep learning methods employed in this work are introduced. First,
an overview of the concepts important to CNNs is given in Section 5.1. Sections 5.2
and 5.3 provide deeper insight into the background of the concepts and are based on
Goodfellow et al. [2016], where a comprehensive description of deep learning is given.
The specific network architectures used for the flow field estimation in this work are
described in detail in Section 5.4.

5.1 Conceptual Outline

The majority of deep learning methods can be described by combining the same basic
concepts. A deep learning model (Section 5.2) is used to perform a desired task on the
basis of provided input data. Instances of such tasks are image classification, where
labels describing objects in an image are predicted, or more general regression tasks,
such as optical flow estimation that predicts the apparent movement of objects in sub-
sequent images. Instead of specifically designing the model to perform the task, which
can be intractable, a multitude of adaptable parameters that are linked using simple
linear and nonlinear mathematical operations are incorporated in the model and ar-
ranged in a network structure. The aim is to achieve generic approximation capability
for very complicated mappings between the input data and the desired output that
is specified by the task. Subsequently, the model is trained on input-output example
data to learn the task by adapting the internal parameters (Section 5.3).

Besides restricted Boltzmann machines, autoencoders, and sparse coding that are
not further discussed in this work, methods based on CNNs are among the most
popular deep learning models [Guo, 2017]. Typically, they are utilized to extract
features from multidimensional data with a grid like topology, such as image data,
but find their application also in analyzing sequential data, like audio data. Their
architecture is organized in stacked layers that are connected by convolution filters (cf.
Section 5.2.1). Since convolution itself is linear, the chaining of several convolutions is
still linear. Therefore, activation functions (cf. Section 5.2.2) following the convolution
layers introduce nonlinearities to the model to generate an universal approximator.
Indeed, it has been shown that CNNs can represent any continuous function, given

41

5 Convolutional Neural Networks

that they are deep enough [Petersen and Voigtlaender , 2018; Yarotsky, 2018; Zhou,
2018]. Here, the term depth refers to the number of layers.
Given the hierarchically layered structure, CNNs are able to efficiently extract hi-

erarchical features in the input data [Zeiler and Fergus, 2014]. Low-level features like
edges combine to wrinkles, as an example, and more and more abstract concepts in
subsequent layers. Reducing the resolution of the layers with increasing depth of the
network by introducing pooling or strided convolutions (cf. Section 5.2.3) improves
the computational efficiency and condenses the information into an abstract latent
representation [Goodfellow et al., 2016]. Often it is useful to reconstruct the output
at a higher spatial resolution as the latent representation [Ronneberger et al., 2015].
This can be achieved by appropriate upsampling, which can even be incorporated into
the deep learning algorithm by the introduction of transposed convolution layers (cf.
Section 5.2.4). This divides the architecture in a contracting part that encodes the in-
formation and an expanding part that reconstructs or decodes the information. Hence,
these specific architectures are referred to as encoder-decoder CNNs. For an example
of such an architecture see Fig. 5.6.
During training, the internal model parameters are adapted based on a training

dataset. For supervised learning, the training dataset contains a large number of ex-
amples representing the task by associated input-output pairs, such as labeled images
for image classification. The model processes the input data examples to predict the
output in a forward pass. A loss function (Section 5.3.1) quantifies the discrepancy
between the model prediction and the corresponding desired output. This informa-
tion can then be utilized to adapt the model parameters in a backward pass using
backpropagation (Section 5.3.2) in order to decrease the loss in the next forward pass.
This procedure is repeated iteratively using an according optimization method (Sec-
tion 5.3.3).

Despite the expressive power of CNNs, there is no assurance that they actually learn
to represent the desired function during the training process. This is because nearly all
deep learning problems are ill-posed with the degree of freedom in the model param-
eters surpassing the available training data examples [Hinton et al., 2012]. Therefore,
CNNs are prone to overfitting, which means that they may learn to represent the
training data very well, but fail to generalize to any data beyond that. This is a
major concern when using deep learning methods [Goodfellow et al., 2016] that needs
to be addressed by thoroughly selecting the optimization method and incorporating
regularization of the model parameters (Section 5.3.1).
Besides the internal model parameters that are adapted during training, the network

is defined by multiple hyperparameters. These hyperparameters include several design
choices, such as number of layers, filter number and size, and choice of activation
function, additional to the hyperparameters involved in the optimization process, such
as choice of the regularization and the learning rate. In some cases there is a theoretical
or empirical basis proposing standard choices for these hyperparameters, whereas in
other cases only rough guidance exists [Bengio, 2012]. Therefore, it often is tedious to

42

5.1 Conceptual Outline

find a set of good hyperparameters, enabling the model to perform well [Goodfellow
et al., 2016].
Under this premise, the training process needs to be monitored and the generaliza-

tion of the trained model needs to be evaluated. Additional to the training dataset,
this requires a distinct validation dataset and a test dataset. The validation dataset
is a fixed set of data examples that typically is randomly drawn from the original
training dataset. These data examples are then excluded from the dataset which is
used to adapt the model parameters during training. The loss, which indicates the
agreement between the model prediction and the truth, calculated on the validation
dataset represents the validation error and is a measure of the performance of the
model on the desired task. This information may be used to improve the model by
tuning the hyperparameters. The test dataset is used to test the generalization of the
fully trained network. To test for a broad generalization, the test dataset may include
structural differences to the training and validation datasets. The measure to quantify
the generalization is the loss calculated on the test dataset representing the test error.
To allow for an unbiased evaluation of the generalization, it is crucial that the test
dataset has not been utilized in the training process to adapt the model parameters,
nor to adapt the model hyperparameters.

Empirically, it has been demonstrated that CNNs perform remarkably well for var-
ious computer vision tasks, while greater depth seems to improve the generalization
[e.g., Bengio et al., 2007; Bengio, 2009; Cireşan et al., 2012; Farabet et al., 2012;
Krizhevsky et al., 2012; Sermanet et al., 2013; Simonyan and Zisserman, 2014a; Doso-
vitskiy et al., 2015; Szegedy et al., 2015; Ilg et al., 2017]. However, there is a lack in the
understanding of how they internally work rendering the methods into ’black boxes’,
which is unsatisfactory from a scientific point of view. Therefore, research is concerned
with supporting the empirical findings with a theoretical understanding. Providing a
basis that CNNs actually can work, only recently it has been shown that the discrep-
ancy between the validation and the test error is bounded for CNN architectures [Zhou
and Feng, 2018]. Additionally, techniques to visualize intermediate feature maps pro-
vide insight into how CNNs extract the hierarchical features [Simonyan et al., 2013;
Zeiler and Fergus, 2014; Nguyen et al., 2017; Olah et al., 2018], but are primarily ex-
plored with a focus on image classification only.

To employ the methods, there are several deep learning software frameworks, e.g.,
Caffe [Jia et al., 2014], PyTorch [Paszke et al., 2017], and TensorFlow [Abadi et al.,
2016]. They provide the implementation of the building blocks needed to design and
train a deep CNN model and therefore make the usage of deep learning methods readily
applicable. Typically, the implementation is highly optimized to cut the computational
cost and to be able to train and deploy the models on suited hardware, like graphics
processing units (GPUs) or tensor processing units (TPUs). Because of these opti-
mizations, the implementation often deviates from the formulation of the concepts as
introduced in the following, the operations they represent is equivalent however.

43

5 Convolutional Neural Networks

5.2 Model Components
CNNs can be thought of as modular models composed of a variety of components
that are arranged in layers, where the output of each layer represents the input of
the subsequent layer. This section introduced the most common components used in
modern CNNs. With the CNNs being applied to gray scale image data in this work, I
predominantly motivate the concepts with this data structure in mind. Nevertheless,
the same concepts can be extended toward differently structured data.

5.2.1 Convolution Layers
CNNs make use of a specific mathematical operation in their computational graph: the
convolution operation. Mathematically the convolution s of two real-valued functions
x and ω is given by

s(t) =
∫ ∞
−∞

x(τ)ω(t− τ)dτ = [x ∗ ω](t), (5.1)

where the convolution operation is denoted by the asterisk. Although suggested by
the symbol t, convolution is not restricted to the temporal domain. Especially in deep
learning the convolution is often calculated in the spatial domain. There we refer to
x as the input, to ω as the kernel, and to s as the feature map. With the assumption
that x and ω are only defined on discretized t, the convolution can be defined as

s(t) =
∞∑

τ=−∞
x(τ)ω(t− τ) = [x ∗ ω](t). (5.2)

To make this useful for the framework of deep learning the discretized convolution
needs to be expanded to be applicable to the inputs that are typically multidimensional
arrays of data:

S(i, j) = [I ∗K](i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n), (5.3)

where the convolution is given for the example of 2-dimensional data, as for instance
image data, with the input I, kernel K, and feature map S. Here, the kernel K
contains the parameters or weights that are adapted during training of the CNN to
extract a feature, given the respective input. In practice, the Kernel K is chosen to
have a small spatial extent in comparison to the input I, meaning that the weights are
nonzero in only a small region. An illustration of Eq. (5.3) is shown in Fig. 5.1.
Depending on the size of the kernel, the output is reduced in size compared to the

input, if the convolution is restricted to positions where the filter fits completely into
the input (cf. Fig. 5.1). This can be resolved by zero padding the input: adding rows
and columns of zeros to the boundaries such that there is a valid position of the kernel
for every pixel in the input. With this, the size from input to output is conserved.

44

5.2 Model Components

a b c d

e f g h

i j k l

w x

y z

az+by

+ex+fw

bz+cy

+fx+gw

cz+dy

+gx+hw

ez+fy

+ix+jw

fz+gy

+jx+kw

gz+hy

+kx+lw

Input

Kernel

Feature map

Figure 5.1: Illustration of the discrete convolution on 2-dimensional input:
Here, the output in the feature map is restricted to positions where the kernel
fits completely into the input. The red, blue, and purple arrows and boxes in-
dicate the convolution in the three possible top positions of the kernel. Figure
adapted from Goodfellow et al. [2016].

In deep learning terminology the convolution operation as introduced above is re-
ferred to as convolution filter. To build a deep learning model these convolution filters
are organized in layers. Each layer contains several convolution filters with the aim to
extract different features from the input. The number of channels (in analogy to the
color channels of RGB-images) or the depth of the resulting feature map is determined
by the number of filters used in the convolution layer. An illustration of a convolution
layer with two filters is shown in Fig. 5.3. Several convolution layers are then chained
together with the feature map resulting from one layer as the input to the next layer:

Sk(i, j) = [[[I ∗K1] ∗K2] ∗ · · · ∗Kk] (i, j), (5.4)

where for simplicity of the formulation only one convolution filter Kk is contained
in the individual k layers here. Also note that typically an element-wise bias term
is added after each convolution filter to introduce additional parameters. These are
omitted here as well. In this layered structure the input of the network, the very
first layer, and the output, the very last layer, are called visible layers, whereas the
internal layers are called hidden layers. Consequently, the number of hidden layers
defines the depth of the network. Fig. 5.2 depicts the connectivity pattern of a CNN
in one dimension with two hidden convolution layers, feature map (s1, s2, s3), input
layer (i1, . . . , i5), and output z1. By stacking the convolution layers, the regions in
the network input that influence entries in the individual feature maps increase with
depth of the network, which is also denoted as the perceptual field. In the example of
Fig. 5.2 the perceptual field of z1 has the size of 5.

45

5 Convolutional Neural Networks

i1

i2

i3

i4

i5

s1

s2

s3

z1

w1
w2

w3

Figure 5.2: Illustration of the connectivity in the CNN: Example of a 1-
dimensional representation of two convolutional layers with a kernel size of
3. The elements in the feature maps (boxes) are connected by the filter
weights (arrows). In each layer the filter weights are redundant at the dif-
ferent positions.

5.2.2 Activation Functions

Since convolution itself is linear the chaining of convolutions as in Eq. (5.4) is still linear.
However, the aim of using deep learning models is to be able to approximate very
complicated functions. To achieve this, nonlinearities are introduced to the network
structure.
The introduced nonlinearities are referred to as activation functions g(Sk(i, j)) and

are applied to the feature maps, typically in an element-wise fashion. In deep learning
several of these activation functions exist with their specific advantages and disadvan-
tages. Here, only three possible choices are presented that are illustrated in Fig. 5.4.
One of the most classical activation functions is the sigmoid activation:

gsigmoid(x) = 1
1 + e−x

. (5.5)

Before the introduction of rectified linear units (ReLU), the sigmoid activation was
commonly used in neural networks. the major drawback of the sigmoid activation is
that it saturates over the larger portion of its domain, meaning it returns only values
close to 1 for x > 5 and values close to 0 for x < −5. This becomes a problem when
we calculate the gradients of the activation as it is needed for the optimization method
used to train the network (5.3.3). This makes it hard to train neural networks that
employ sigmoid activation functions in practice. The introduction of rectified linear
units

grelu(x) = max(0, x) (5.6)

alleviates this for positive input values. However, for negative input values this draw-
back still exists and may lead to many dead activations in the network, meaning that
the activation kills the signal as it always returns 0 for any negative input. To cir-
cumvent this it may help to initialize the parameters of the convolution filters with

46

5.2 Model Components

3

16

16

1 1

16

16

Input Feature map

+

Figure 5.3: Illustration of a single convolution layer: In this example the input
has a depth of three, as for instance for the red, green, and blue channels of
a color image. The depicted layer contains two convolution filters, shown as
smaller boxes in the input with red and blue faces, that extract two different
features. The results for every filter position is stored in the feature map and
its depth is given by the number of filters in the layer. Two exemplified entries
are depicted as small boxes in the feature map connected with the filters by
dashed lines of the respective color.

positive values. Another approach is to use leaky rectified linear units (leaky ReLU)
[Maas et al., 2013]:

glrelu(x) = max(αx, x), (5.7)

where the slope of the function in the negative domain is chosen to be α < 1, effectively
preventing dead activations there. Since ReLU and leaky ReLU are very close to a
linear function they make it comparably easy to train the neural network and represent
a sensible standard choice of activation functions.
Note that ReLU and leaky ReLU are not differentiable at x = 0 and therefore seem

to be unsuited for neural networks. Nonetheless, as iterative methods are used for
optimization of the parameters it can be argued that the value x = 0 is quite rarely
encountered in the process of training. Also, the issue can be avoided by setting the
gradient returned by the activation function to 1 for x = 0.

5.2.3 Pooling and Strided Convolutions

As empirically found, the depth of the network is important for CNNs to perform well
[e.g., Krizhevsky et al., 2012; Simonyan and Zisserman, 2014a; Szegedy et al., 2015].
To be able to design deep CNNs there is a need to constrain the number of parameters

47

5 Convolutional Neural Networks

−10 −5 0 5 10

x

0.0

0.2

0.4

0.6

0.8

1.0

g
(x
)

Sigmoid

−10 −5 0 5 10

x

0

2

4

6

8

10

ReLU

−10 −5 0 5 10

x

0

2

4

6

8

10

leaky ReLU

Figure 5.4: Illustration of activation functions: example activation functions
that are applied to the feature maps to introduce nonlinearities and therefore
the expressive power of the neural network.

in the model to preserve the computational feasibility. Therefore, methods to down-
sample the feature maps, i.e. to decrease their resolution, are introduced. There are
two common approaches in doing so: (i) additional pooling layers at several locations
of the network and (ii) convolution filters with a discrete stride larger than 1 are used
at some instances of the convolution layers.
Pooling is typically applied to the feature maps following the activation functions.

The individual channels of the feature maps are divided in small rectangular regions
or neighborhoods of a few pixels. From these neighborhoods a metric is calculated
determining a single output. For the case of max pooling, this output is the maximum
value in the neighborhood [Zhou and Chellappa, 1988]. There are also several other
pooling options by taking some weighted average over the pixel region. Depending
on the size of the neighborhood, the resolution of the feature map is decreased, while
the number of channels is conserved. Additionally, pooling introduces some degree
of invariance to translations of the input data, as for small spatial shifts in the pixel
values, the output of the pooling layer remains similar. Note that this might be an
issue, if estimation of movement in the data is the task the CNN is ought to learn.
Strided convolution, on the other hand, avoids the introduction of additional layers

to the network. At some of the existing convolution layers, the convolution filters are
only applied to every r-th position of its input. This can be expressed as

S(i, j) = [I ∗K](i, j) =
∑
m

∑
n

I(r · i−m, r · j − n)K(m,n), (5.8)

where r is the stride of the filter. Choosing r = 1, this again results in Eq. (5.3).
Depending on the choice of r this also reduces the resolution of the returned feature
map and simultaneously reduces the number of computations.
With either of these two approaches, the information contained in the abstract

features is condensed with increasing depth. Also, there is evidence that for the appli-
cation to image recognition there is no performance difference between the two choices

48

5.2 Model Components

[Springenberg et al., 2014]. Given this, when designing a convolution one might choose
the more simple approach by omitting pooling layers.

5.2.4 Transposed Convolutions
Depending on the task the neural network is ought to learn, a mapping from the
condensed abstract feature representation is needed to reconstruct the output. For
instance for image classification this is usually accomplished by adding few fully con-
nected layers that map to the given class labels. When the aim is to reconstruct
multidimensional output data the condensed representation has to be extrapolated.
This up-sampling can also be incorporated into the learning process and is typically
done by introducing transposed convolutions [Zeiler et al., 2010; Zeiler et al., 2011] to
the network. Note that in the deep learning literature transposed convolution layers
are often referred to as deconvolution layers, albeit this term is technically incorrect
as the mathematical definition of deconvolution describes a different operation.
To understand transposed convolutions, the discrete convolution introduced in Eq. (5.3)

has to be revisited. Resuming to the example of 2-dimensional data, the input and
output can be rearranged as vectors i = (i1, i2, . . . , ii)> and s = (s1, s2, . . . , sj)>, by as-
signing the entries from left to right and top to bottom. For the example as illustrated
in Fig. 5.1 this results in

i =



a
b
c
...
k
l


and s =



az + by + ex+ fw
bz + cy + fx+ gw
cz + dy + gx+ hw
ez + fy + ix+ jw
fz + gy + jx+ kw
gz + hy + kx+ lw


(5.9)

as input and feature map vectors, respectively. With this, the convolution with the
kernel K can be rewritten as matrix multiplication:

K · i = s, (5.10)

where K is a sparse Toeplitz matrix constructed from the weights in the convolution
kernel K. Each row shares the weights of the previous row while being shifted. For
the given 2-dimensional example K is a doubly block circulant matrix, a special case
of a Toeplitz matrix, and takes the form

K =



z y 0 0 x w 0 0 0 0 0 0
0 z y 0 0 x w 0 0 0 0 0
0 0 z y 0 0 x w 0 0 0 0
0 0 0 0 z y 0 0 x w 0 0
0 0 0 0 0 z y 0 0 x w 0
0 0 0 0 0 0 z y 0 0 x w


, (5.11)

49

5 Convolutional Neural Networks

which samples down from i with length 12 to s with length 6 in the example. Construct-
ing a transformation that is capable of up-sampling while maintaining the connectivity
structure from convolution filters as depicted in Figs. 5.1 to 5.3 can be achieved with
the multiplication by the transposed matrix K> that is therefore also defined by the
kernel K:

K> · it = st, (5.12)

where it and st are now the input and output vectors respectively. This up-sampling is
called transposed convolution, where the dimension of st is larger than the dimension
of it.
Equivalent to the convolution filters, the transposed convolutions are arranged in lay-

ers containing several of these transformations, while the adaptability of the weights
of the transposed convolutions makes the extrapolation learnable by the deep learning
method. By also applying activation functions to the output of each transposed con-
volution layer, the extrapolation can be nonlinear as well.

5.3 Training Process

Designing CNNs, using the concepts introduced above, aims at creating deep learning
models with great expressive power. To enable the CNN to actually approximate the
complicated mappings to perform the desired task, the parameters of the network need
to be adapted. In the process of training, the adaption of the parameters is guided
by learning the task on a large set of example data, the training dataset. First an
objective function on the output generated by the CNN needs to be defined. In deep
learning this objective function is composed by the so-called loss function on the data
and added regularization on the parameters to counter overfitting. The loss function
provides a global signal on how to adapt the parameters that is distributed to the
individual parameters with backpropagation. According to this signal, typically the
gradients, the parameters are adapted iteratively during optimization.

5.3.1 Loss Functions and Regularization

The loss function quantifies the performance of the CNN on the task based on the
output of the network. In a supervised learning problem this is done by introducing a
measure of comparison between the network prediction and the ground truth contained
in the training dataset.
Defining the loss function Li for the individual training data examples i, the global

loss over the training dataset is the averaged sum L = 1
N

∑
i Li, where N is the size of

the training dataset. For regression tasks, aiming to predict real valued quantities that
in general can be multidimensional, often the squared L2 vector norm of the difference

50

5.3 Training Process

between the estimated prediction sest and the ground truth strue is employed as loss:

Li(sest) = ‖sest − strue‖22 =
Ns∑
j=1

(sest
j − strue

j)2, (5.13)

where sest and strue are enrolled into vectors in the same way as in Eqs. (5.9) and (5.10)
and Ns is their respective dimension. Another common choice for the loss is the L1

vector norm of the difference:

Li(sest) = ‖sest − strue‖1 =
Ns∑
j=1
|sest
j − strue

j |, (5.14)

depending on the desired influence of outliers. Several other choices can be made that
might depend on the task specifically and can significantly facilitate the process of
training.
Since a forward pass of the model is needed to calculate the loss for each data

example, it is computationally infeasible to calculate the global loss for large datasets.
Sampling a minibatch of m examples that are randomly drawn from the training
dataset and calculating the loss over the minibatch

Lm = 1
m

m∑
i=1

Li (5.15)

as an approximation of the global loss overcomes this issue. Subsequently, the mini-
batch loss is calculated iteratively to update the model parameters, whereby a training
epoch is defined by the number of iterations needed to process every of the N/m mini-
batches and therefore every training example once. In practice, the minibatch sizes
range from 1 to a few hundreds, depending on how many examples can be loaded into
the memory simultaneously.
Because of the ability of CNNs to approximate very complicated mappings, it is

crucial to introduce regularization during the training process. This is done to prevent
the model from overfitting the training data and thereby enabling it to generalize to
data that it has not encountered during training.
A common approach is to include norm penalties Ω(w) on the network parameters

w into the objective function J :

J(w) = L(w) + αΩ(w), (5.16)

where the additional hyperparameter α > 0 is introduced to scale the norm penalty.
Regularization based on the L2 norm of the network parameters

ΩL2(w) = 1
2‖w‖

2
2 = 1

2w>w (5.17)

is also known as weight decay. Over the course of the training process this regular-
ization term incrementally decreases the network parameters that are not decisive to

51

5 Convolutional Neural Networks

decreasing the loss function L(w). Ideally, these parameters that the loss function is
not sensitive to are decreased to zero, effectively reducing the degrees of freedom of
the model. Along this line, also pooling and strided convolutions (Section 5.2.3) can
be interpreted as a measure of regularization. Hereby, the number of parameters of
the network is strongly reduced, when compared to an architecture of the same depth
that doesn’t implement pooling or strided convolutions. Consequently, the degrees of
freedom are reduced and the possibility to overfit is contained.
The obvious way to increase the generalization of a model is to train it on a larger

dataset. However, the amount of available data is limited, but can be synthetically
increased by data augmentation. The idea is to transform the input data in such a
way that it still corresponds to the same ground truth. For some tasks this is straight
forward, e.g. in image classification the location and orientation of the object in the
image should not affect the given label, hence additional generic data can be created
by performing these operations on the existing data. For tasks, where the position and
orientation of the features in the input are crucial for the correct prediction, ways to
properly augment the data are not obvious. In these cases data augmentation can still
be used to introduce random noise to the pixels of the input images to make the model
predictions more robust. Otherwise, neural networks seem to not cope well with noise
in the input data [Tang and Eliasmith, 2010].

Applying random noise to the parameters of the hidden layers while training also
increases the robustness of the model and improves generalization. The most radical
approach is known as dropout [Srivastava et al., 2014], where a random fraction of the
weights is set to zero during each model forward pass. This randomly eliminates some
connections in the network, enforcing the model to learn a redundant representation
of the task.
Beyond the comparatively generic measures to regularize the model as introduced

above it can be beneficial to introduce restrictions that represent prior knowledge about
the output data. For the prediction of synthetically generated sea surface tempera-
ture data using an encoder-decoder CNN de Bezenac et al. [2017] successfully added
the divergence, the magnitude, and the smoothness of the flow field to the objective
function.

5.3.2 Backpropagation

Executing a forward pass of the model results in the calculation of the loss during train-
ing. Calculating the gradient of the loss with respect to the model weights ∇wLi(w)
represents the signal on how to adapt the parameters to minimize the loss. Back-
propagation [Rumelhart et al., 1986] distributes the gradients to the individual model
parameters during the backward pass.
To understand the principle of backpropagation we need to investigate the signal

path backwards through the network starting from the loss. The network can be
interpreted as interlinked chained mathematical operations. The signal propagation
along one of these chains can be understood with the chain rule of calculus. For real

52

5.3 Training Process

Input

Kernel

Feature map

Forward pass

Backward pass

Figure 5.5: Computational graph of a discrete convolution as illustrated in
Fig. 5.1 for the first output element s1. In the forward pass (red) the input
values and the kernel weights (boxes) are mapped to the output with simple
operations (circles). In the backward pass (blue) the partial derivatives of the
loss L are calculated using the chain rule.

valued functions, the chain rule is used to calculate the derivatives by decomposition
into functions with known derivatives. With x ∈ R, p : R → R, and q : R → R let
y = q(x) and z = p(y) = p(q(x)). For the derivative the chain rule states

∂z

∂x
= ∂z

∂y

∂y

∂x
. (5.18)

Backpropagation makes use of the chain rule to propagate the derivatives through the
network in an efficient way.
Further, the concept of a computational graph of the network explains how the

chain rule is calculated along the individual network paths. However, illustrating the
complete computational graph even of a simple CNN would already be unfeasible. To

53

5 Convolutional Neural Networks

get an understanding, Fig. 5.5 depicts the computational graph for one element in
the feature map si of the convolution as formulated in Eq. (5.10) and illustrated in
Fig. 5.1. In the given example, the illustration shows how the value of the element
s1 is calculated in the forward pass, while the derivatives in the backward pass for
each connection are calculated using the chain rule. Suppose, the derivative of the loss
∂L
∂s1

is known at s1 either from already backpropagating the derivative to this point
of the network, or the output s1 is at the last layer of the network. For instance, the
derivative of the loss at input element f then results in

∂L

∂f
= ∂L

∂s1

∂s1
∂[fw]

∂[fw]
∂f

= ∂L

∂s1

∂[az + by + ex+ fw]
∂[fw]

∂[fw]
∂f

= ∂L

∂s1
w, (5.19)

when only considering the contribution as depicted in Fig. 5.5. In the forward pass the
input at element f additionally contributes to the output at elements s2, s4, and s5
(cf. Eqs. (5.9) and (5.10)). Using backpropagation, the sum over all the contributions
is calculated. For the input element f this results in

∂L

∂f
= ∂L

∂s1
w + ∂L

∂s2
x+ ∂L

∂s4
y + ∂L

∂s5
z. (5.20)

Enrolling the derivatives at every input and output in the vectors∇iL =
(
∂L
∂a ,

∂L
∂b , . . . ,

∂L
∂l

)>
and ∇sL =

(
∂L
∂s1
, ∂L∂s2

, . . . , ∂L∂sm

)>
, where the indices i and s denote the partial deriva-

tives with respect to the inputs and outputs, the backpropagation of the convolution
can be written as

Kw,backprop · ∇sL = ∇iL, (5.21)
where

Kw,backprop =



z 0 0 0 0 0
y z 0 0 0 0
0 y z 0 0 0
0 0 y 0 0 0
x 0 0 z 0 0
w x 0 y z 0
0 w x 0 y z
0 0 w 0 0 y
0 0 0 x 0 0
0 0 0 w x 0
0 0 0 0 w x
0 0 0 0 0 w



. (5.22)

When comparing Eqs. (5.10) and (5.11) with Eqs. (5.21) and (5.22) it turns out that
the convolution with K in the forward pass results in a transposed convolution with
Kw,backprop = K> in the backward pass and vice versa. In this sense, convolutions and
transposed convolutions are symmetric with respect to the direction of the signal prop-
agation through the network. Hence, the backpropagation of transposed convolutions
is convolution and already known.

54

5.3 Training Process

Analogously, backpropagating the derivatives of the loss with respect to the model
weights ∇wL =

(
∂L
∂w ,

∂L
∂x , . . . ,

∂L
∂z

)>
can be computed with

Ki,backprop · ∇sL = ∇wL (5.23)

that represents a convolution with the input values. For the given example Ki,backprop
takes the values

Ki,backprop =


f g h j k l
e f g i j k
b c d f g h
a b c e f g

 , (5.24)

which is not sparse since the weights contribute to every output value in the forward
pass.

When backpropagating the loss through the network, also the activation functions
and the pooling layers, depending on their usage, need to be considered. Since the
activation functions are applied element-wise their backpropagation is done by simply
including the partial derivatives according to the chain rule. For pooling layers the
backpropagation is equally straight forward. For max pooling the gradient is passed
to the input with the maximum value during the forward pass, whereas for weighted
pooling the gradient is distributed to all inputs according to the weights.
Accumulation of all derivatives with respect to all model weights w and the derivative

of the regularization term results in the gradient ∇wJ(w) = ∇wL(w) + α∇wΩ(w),
which is subsequently used in the stochastic gradient descent to optimize the model
parameters.

5.3.3 Stochastic Gradient Descent
In deep learning, the optimization of the model parameters is done using an update
procedure that is based on gradient descent [Cauchy, 1847]. The aim is to significantly
reduce the objective function J(w) that is composed of the loss L(w) and regularization
terms Ω(w) (cf. Eq. (5.16)). The gradient of the objective function, with respect to
the weights ∇wJ(w), resulting from backpropagation, represents the sensitivity of the
model performance on the parameters w and is used for the iterative updates:

w(t) = w(t− 1)− ε∇wJ(w(t− 1)), (5.25)

with iteration t and the learning rate ε as hyperparameter to scale the update. Graph-
ically speaking, this corresponds to the step-wise descent along the slope of the opti-
mization landscape.
Since it is unfeasible to calculate the loss for large datasets the update is calcu-

lated using the loss over minibatches of size m with the according gradients ∇wLm.
Depending on the size m the loss Lm is an approximation of the global loss L that
fluctuates according to the radomly sampled data examples in the minibatch. Using

55

5 Convolutional Neural Networks

the minibatch approach, the update procedure is therefore called stochastic gradient
descent (SGD) with the update rule for each iteration:

w(t) = w(t− 1)− ε [∇wLm(w(t− 1)) + α∇wΩ(w(t− 1))] . (5.26)

There are several improvements to SGD to prevent it from getting stuck at saddle
points of the optimization landscape or being inefficient in regions, where the gradient
is steep in one direction, but shallow in another. Also the noise in the gradients due
to the minibatch approach can impede the optimization process substantially.

Momentum One popular approach involves taking an exponentially decaying moving
average over the past gradients. This introduces a formal velocity v to the update:

w(t) = w(t− 1) + v(t− 1) (5.27)

with
v(t− 1) = γv(t− 2)− ε∇wLm(w(t− 1)) and v(0) = 0, (5.28)

where the hyperparameter γ ∈ [0, 1) determines the decay of the previous gradient
contributions. In analogy to a physical particle in a potential the method gains mo-
mentum along past gradients, keeps moving in this direction and, therefore, is able to
alleviate issues with noisy gradients and in shallow regions. However, this improvement
comes with the cost of an additional hyperparameter γ that needs to be set.

Adaptive Learning Rates Setting the learning rate ε adequately is crucial to a suc-
cessful optimization process. If the value is too small, the update increments are also
too small to allow for efficient optimization. Eventually the process will be able to ex-
plore a minimum of the objective function, but the required time might be unfeasible.
If the learning rate and therefore the update steps are set too large, the optimization
method is likely to overshoot the minima and is unable to converge. Choosing this hy-
perparameter by hand and testing for the resulting performance is therefore a tedious
task and approaches to automatically adapt the learning rate are introduced. Among
others, Adam [Kingma and Ba, 2014] is an algorithm that employs adaptive learning
rates.
Adam, from ’adaptive moment estimation’, estimates the first and second moments

of the gradient to individually adapt the learning rate of each model weight. Anal-
ogously to the momentum method, the estimators m and v of the moments of the
gradient g(t) = ∇wLm(w(t)) are calculated using moving averages:

m(t) = β1m(t− 1) + [1− β1]g(t) = [1− β1]
t∑
i=1

βt−i1 g(i), (5.29)

v(t+ 1) = β2v(t) + [1− β2]g(t) ◦ g(t) = [1− β2]
t∑
i=1

βt−i2 g(t) ◦ g(t), (5.30)

56

5.3 Training Process

with the exponential decay rates β1, β2 ∈ [0, 1) and ◦ denoting the element-wise product
of the vectors. Initializing the estimators to zero: m(0),v(0) = 0 results in biased
estimation of the moments in the beginning of training. Considering the expected
value of the estimator m(t) yields

〈m(t)〉 =
〈

[1− β1]
t∑
i=1

βt−i1 g(i)
〉

(5.31)

= 〈g(t)〉[1− β1]
t∑
i=1

βt−i1 + ζ (5.32)

= 〈g(t)〉[1− βt1] + ζ, (5.33)

where the formula for the finite geometric series has been used in the last line. The
estimation error ζ of the true gradient 〈g(t)〉 emerges due to the moving average, but
can be neglected, if only small weights are assigned to gradients far in the past. This
leaves the term [1− βt1] due to the initialization with zero that needs to be corrected.
Analogously, this can be derived for the estimation of the second moment 〈v(t)〉 and
a bias correction is introduced to the estimators:

m̂(t) = m(t)
1− βt1

and n̂(t) = n(t)
1− βt2

. (5.34)

With this, the update rule for Adam is defined as

w(t) = w(t− 1)− ε m̂(t)√
n̂(t) + δ

, (5.35)

where
√

n̂(t) denotes the element-wise square root of n̂(t), a small constant δ is intro-
duced to stabilize the division for small gradients, and ε sets an upper bound for the
learning rate.
With the adaptive learning rate and the introduction of momentum with the moving

averages, Adam is seen to be a comparably reliable optimization method for deep
learning problems and is therefore widely used. Still, the method introduces additional
hyperparameters, but Kingma and Ba [2014] provide very robust default values of
β1 = 0.9, β2 = 0.999, ε = 10−3, and δ = 10−8 often eliminating the need to hand-pick
them.

5.3.4 Weight Initialization
The iterative optimization methods used for training deep learning models require an
starting point to be specified. This starting point is set with the initialization of the
model weights, representing one point in the parameter space. Since training in deep
learning is sufficiently difficult, the most methods are highly sensitive to the initial-
ization scheme. Consequently, the choice may influence how quickly the optimization
converges and can impede convergence altogether. Unfortunately, the current insight

57

5 Convolutional Neural Networks

into optimizing deep networks is limited and therefore specifically designed initializa-
tion strategies are lacking. However, there are some strategies to achieve nice properties
for the optimization.
When initializing the weights, the aim is to set them as close as possible to the op-

timal values. Since already very rough estimates of the optimal values are inaccessible
a reasonable first guess is that the trained weights will be symmetrically distributed
with an expected value of zero. Additionally, it is important that the weights are
initialized with varying values to avoid filter redundancies in the individual layers of
the network. This often leads to a initialization strategy, where the weights are ran-
domly sampled from small numbers distributed around zero. Following this simple
approach, issues due to too small or too large values can arise. From backpropagation
(Section 5.3.2) we know that the gradients in the shallow layers (close to the network
input) depend on the weights in the deeper layers as they appear as coefficients in
the chain rule (cf. Eqs. (5.20) to (5.22)). Suppose the weights are initialized with
large values. In the backward pass the multiplication of the large values leads to phe-
nomenon called exploding gradients in the shallower layers resulting in large parameter
updates during optimization that are likely to impede convergence. Contrarily, very
small initialization values lead to vanishing gradients that are too small to propagate
the signal through the network during the backward pass, resulting in insufficiently
small updates of the weights. The desired appropriate choice prevents these effects
and allows optimal signal propagation through the network.
Glorot and Bengio [2010] introduced a strategy that conserves the variance of the

activations gl(sl) across layers l, meaning that

var(gl(sl)) = var(gl−1(sl−1)), (5.36)

effectively eliminating issues with exploding and vanishing gradients. For hyperbolic
tangent tanh(sl) as activation function, they deduce the initialization of the weights
per layer wl sampled from a normal distribution

wl ∼ N
(
µ = 0, σ2 = 1

nl−1

)
(5.37)

to fulfill the requirement of Eq. (5.36). Here, the variance σ2 depends on the number
of connections nl−1 to the previous layer l− 1. He et al. [2015] extended this approach
specifically for the usage of ReLU activation functions and derive a weight initialization
scheme with an adapted variance σ2:

wl ∼ N
(
µ = 0, σ2 = 1

2nl−1

)
. (5.38)

Commonly this strategy is seen as a default choice, when ReLU activation functions
and their derivatives are employed in the network architecture.

58

5.4 Network Architectures for Flow Field Estimation

5.4 Network Architectures for Flow Field Estimation
In parts based on Kreyenberg et al. [2019].

In this work I utilized two CNNs to estimate flow fields for active solute transport.
The networks were trained on purely synthetic data that was generated by numeri-
cal simulation of the physical process over a broad parameter range with the aim to
incorporate the physical representation of the process. The used models are detailed
in Section 5.4.1 and their training is described in Section 5.4.2. The datasets used to
train, validate, and test the models are introduced in Section 5.4.3.

5.4.1 Models
The architectures I used for the CNNs are encoder-decoders very similar to two FlowNet2
variants as proposed by Ilg et al. [2017]. The first architecture I will refer to as Archi-
tecture 1 from here on, which is derived from FlowNet2-s, and the second architecture
I will refer to as Architecture 2, which is derived from FlowNet2-SD. The architectures
are illustrated in Figs. 5.6 and 5.7, while the details are given in Table 5.1, Table 5.2,
Fig. A.7, and Fig. A.8. The CNNs were implemented using the Caffe deep learning
software framework [Jia et al., 2014] and trained on a single Nvidia GTX 1080 Ti
GPU. As input the CNNs take two subsequent concentration fields, concatenated to
produce the input image, and output a flow field prediction.
Both CNNs consist of the same base architecture. An encoder of either 10 or 13

convolution layers followed by a decoder of 4 transposed convolution layers, with leaky
ReLU activation functions with negative slope of 0.1 following the individual layers.
Additional convolution layers were used to predict the estimated flow fields. At the
input of the networks, I added Gaussian noise with standard deviation uniformly sam-
pled from [0, 0.04] as data augmentation to the concentration fields. Generally, every
second convolution layer is strided and reduces the resolution of the feature maps by a
factor of 2 to allow for a deep architecture that is still reasonably fine at the bottleneck.
Exceptions are at the first few layers, where the resolution is reduced more often. In-
cluding more layers and therefore increasing the nonlinearity with the according leaky
ReLU layers is beneficial as it makes the approximator more discriminative [Simonyan
and Zisserman, 2014a]. In the decoder each of the four transposed convolution layers
increases the resolution by a factor of 2. Following the decoder a convolution layer
without leaky ReLU layer predicts the flow estimation and the flow is split in its
x− and z−components. I introduced another convolution layer (without leaky ReLU
layer) with a single 1×1 convolution for each flow velocity component. This enables
the CNNs to adapt a scaling of the flow velocity vector components.

The differences of Architecture 1 and 2 are the following: (i) Architecture 2 swaps
the first few layers from Architecture 1 for more layers with 3 × 3 convolution filters
instead of the 7 × 7 and 5 × 5 convolution filters. (ii) Architecture 2 makes use of
skip connections (or residual connections) that are omitted in Architecture 1. These

59

5 Convolutional Neural Networks

Table 5.1: Network and training hyperparameters for Architecture 1.
Network architecture:
Layer Nfilter, kernel size, stride, pad Resolutiona

Encoder
Input - 768× 384
conv1b 24, 7× 7, 2, 3 384× 192
conv2b 48, 5× 5, 2, 2 192× 96
conv3b 96, 5× 5, 2, 2 96× 48
conv3_1b 96, 3× 3, 1, 1 96× 48
conv4b 192, 3× 3, 2, 1 48× 24
conv4_1b 192, 3× 3, 1, 1 48× 24
conv5b 192, 3× 3, 2, 1 24× 12
conv5_1b 192, 3× 3, 1, 1 24× 12
conv6b 384, 3× 3, 2, 1 12× 6
conv6_1b 384, 3× 3, 1, 1 12× 6

Decoder
convT5b 192, 4× 4, 2, 1 24× 12
convT4b 96, 4× 4, 2, 1 48× 24
convT3b 48, 4× 4, 2, 1 96× 48
convT2b 24, 4× 4, 2, 1 192× 96

Prediction
Predict_conv 2, 3× 3, 1, 1 192× 96
Slice - 192× 96; 192× 96
Scale_X_conv || Scale_Z_conv 1, 1× 1, 1, 0 || 1, 1× 1, 1, 0 192× 96; 192× 96
Training hyperparameters:
Optimization algorithm Adamc β1 = 0.9, β2 = 0.999
Learning rate 10−5

Batch size 24
Training epochs 540
Weight decay 4 · 10−4

aRefers to the resolution of the feature map after the respective network layer.
bLayer is followed by a leaky ReLU activation function with negative slope of 0.1.
cKingma and Ba [2014].
|| denotes parallel layers at same depth of the network.

60

5.4 Network Architectures for Flow Field Estimation

Table 5.2: Network hyperparameters for Architecture 2.
Layer Nfilter, kernel size, stride, pad Resolutiona

Encoder
Input - 768× 384
conv0b 64, 3× 3, 1, 1 768× 384
conv1b 64, 3× 3, 2, 1 384× 192
conv1_1b 128, 3× 3, 1, 1 384× 192
conv2b 128, 3× 3, 2, 1 192× 96
conv2_1b 128, 3× 3, 1, 1 192× 96
← skip2 - -
conv3b 256, 3× 3, 2, 1 96× 48
conv3_1b 256, 3× 3, 1, 1 96× 48
← skip3 - -
conv4b 512, 3× 3, 2, 1 48× 24
conv4_1b 512, 3× 3, 1, 1 48× 24
← skip4 - -
conv5b 512, 3× 3, 2, 1 24× 12
conv5_1b 512, 3× 3, 1, 1 24× 12
← skip5 - -
conv6b 1024, 3× 3, 2, 1 12× 6
conv6_1b 1024, 3× 3, 1, 1 12× 6

Decoder
convT5b || upscalingc 512, 4× 4, 2, 1 || - 24× 12
→ skip5 - -
convT4b || upscalingc 256, 4× 4, 2, 1 || - 48× 24
→ skip4 - -
convT3b || upscalingc 128, 4× 4, 2, 1 || - 96× 48
→ skip3 - -
convT2b || upscalingc 64, 4× 4, 2, 1 || - 192× 96
→ skip2 - -

Prediction
Predict_conv 2, 3× 3, 1, 1 192× 96
Slice - 192× 96; 192× 96
Scale_X_conv || Scale_Z_conv 1, 1× 1, 1, 0 || 1, 1× 1, 1, 0 192× 96; 192× 96
aRefers to the resolution of the feature map after the respective network layer.
bLayer is followed by a leaky ReLU activation function with negative slope of 0.1.
c For details of the upscaling connection see Fig. A.10.
|| denotes parallel layers at same depth of the network.
← and → indicate the connection pattern of the skip connections.

61

5 Convolutional Neural Networks

Table 5.3: Training hyperparameters for Architecture 2.
Optimization algorithm Adama β1 = 0.9, β2 = 0.999
Learning rate 10−5

Batch size 12
Training epochs 540
Weight decay 4 · 10−4

aKingma and Ba [2014].

connections bypass the downsampling and upsamling of feature maps (cf. Fig. A.9)
at certain layers to allow signals at a finer resolution to pass through the network [He
et al., 2016]. (iii) Architecture 2 incorporates upscaling connections [Ilg et al., 2017],
which can be seen as a special type of skip connections. Parallel to the transposed
convolution layers, the flow is predicted at a coarse resolution with a convolution layer
of two filters and then upsampled using a transposed convolution layer (cf A.10), while
no activation function is employed. (iv) In general, Architecture 2 has substantially
more filters in each layer with a maximum of 1024 filters per layer compared to a
maximum of 384 filters per layer for Architecture 1.

For both Architectures, the coarsening in the encoder effectively reduces the res-
olution by a factor of 64, while the decoder refines the resolution by a factor of 16,
resulting in a total resolution decrease by a factor of 4. I used bilinear interpolation as a
postprocessing step on the estimated flow fields to recover the original resolution of the
input concentration fields during deployment of the CNNs. Further upsampling using
additional transposed convolution layers in the decoder does not necessarily produce
significantly better results Dosovitskiy et al. [2015].

5.4.2 Training Scheme

During training I did sample down the true flow field to match the resolution of the
estimated flow field before the loss was calculated. As training loss I calculated the L2

regularized sum of squares error of the flow field components:

J(w) =
Nest∑
j=1

[[
ũest
x,j − ũtrue

x,j

]2
+
[
ũest
z,j − ũtrue

z,j

]2]
+ α

2 w>w (5.39)

with network weights w, weight decay α = 4 · 10−4, and the number of pixels N est of
the estimated, coarse flow fields. For the training scheme I used a batch size of 24 for
Architecture 1 and 12 for Architecture 2 and a learning rate of 10−5 over 540 training
epochs. Following Dosovitskiy et al. [2015], I used the Adam optimization algorithm
[Kingma and Ba, 2014] with β1 = 0.9 and β2 = 0.999 for the optimization during the
training, while the weights were initialized according to He et al. [2015]. Additionally

62

5.4 Network Architectures for Flow Field Estimation

to the loss calculation at the output of the network, Architecture 2 incorporates cal-
culation of the loss at the coarser resolution levels. After each transposed convolution
layer, the coarse flow is predicted and the loss is calculated as formulated in Eq. (5.39)
and illustrated in Fig. A.11. The loss contributions are then combined by a weighted
sum, where the weights are chosen such that the individual contributions are similar.
The respective training hyperparameters are summarized in Tables 5.1 and 5.3.

With this, the essential modifications toward the original FLowNet2 architectures
are: (i) I only introduced noise to augment the data, whereas no other transformations
where applied at the input. (ii) I introduced an additional convolution layer with 1×1
convolution filters to scale the individual flow components of the prediction. (iii) I
introduced the component-wise loss as given in Eq. (5.39) compared to the standard
L1 loss (cf. Eq. (5.14)). Additionally, Architecture 1 omits the skip connections of
FlowNet2-s.

5.4.3 Datasets
The datasets I used to train, validate and test the CNNs were obtained from the
numerical experiments as introduced in Chapter 3. The concentration fields of two
subsequent time steps were grouped into image pairs, together with the flow field
that conveys the solute between the two. I constructed five distinct datasets that I
named according to their purpose and to indicate their origin from the individual set
of numerical experiments. The datasets are described below and a summary of the
details is given in Table 5.4.

TrainNE1 & ValidateNE1 The first training and validation sets were obtained from
NE1. Accordingly, these datasets represent the process of plain active solute transport.
Out of the total of 5,616 image pairs I equidistantly excluded 269 image pairs as the
first validation dataset ValidateNE1 resulting in 5,347 image pairs for the Training
dataset TrainNE1.

TrainNE1+3 & ValidateNE1+3 The data in the second training and validation sets
originate from the combined data of NE1 and NE3. Accordingly, active solute transport
is represented as in TrainNE1 and ValidateNE1, whereby in addition the superscale
convection is incorporated due to the background flow introduced in NE3. Since the
background convection in NE3 is consistently initiated in the positive x-direction, I
additionally included the mirrored concentration and flow fields of NE3 to introduce
a symmetric distribution of the flow direction. Again, I equidistantly excluded image
pairs to create the validation set ValidateNE1+3 of 591 image pairs, which resulted in
11,705 image pairs for TrainNE1+3.

TestNE2 The test dataset is obtained from NE2, which is qualitatively different from
NE1 and NE3, since the upper concentration boundary condition is chosen to be

63

5 Convolutional Neural Networks

Table 5.4: Summary of the synthetic training, validation, and test datasets.
TrainNE1

Number of image pairs 5,347
Range of Ra [2,000, 27,000]
Resolution 768 px × 384 px
Upper boundary condition C̃ = 1
Superscale convection not represented

ValidateNE1
Number of image pairs 269
Range of Ra [2,000, 27,000]
Resolution 768 px × 384 px
Upper boundary condition C̃ = 1
Superscale convection not represented

TrainNE1+3
Number of image pairs 11,705
Range of Ra [2,000, 27,000] (background flow only in [3,750, 13,750])
Resolution 768 px × 384 px
Upper boundary condition C̃ = 1
Superscale convection represented as described in Section 3.3 for 6,358 image pairs

ValidateNE1+3
Number of image pairs 591
Range of Ra [2,000, 27,000] (background flow only in [3,750, 13,750])
Resolution 768 px × 384 px
Upper boundary condition C̃ = 1
Superscale convection represented as described in Section 3.3 for 322 image pairs

TestNE2
Number of image pairs 829
Range of Ra [3,750, 13,750]
Resolution 768 px × 384 px
Upper boundary condition C̃ = 1 for 230px < x < 538px and t̃ < 5

6 t̃max; C̃ = 0 else
Superscale convection not represented

64

5.4 Network Architectures for Flow Field Estimation

nonuniform and a temporal cutoff of the supplied solute is introduced, while no super-
scale convection is represented (cf. Chapter 3). TestNE2 contains 829 image pairs in
total.

I chose to train Architecture 1 on TrainNE1 to learn the physical representation of
pure active solute transport. Architecture 2, the model with the larger capacity (more
model weights), was trained on TrainNE1+3 to learn the physical representation of
active solute transport along with the introduced superscale convection. The train-
ing processes of both CNNs were monitored using ValidateNE1 and ValidateNE1+3,
respectively, and also to manually adapt the hyperparameters. TestNE2 was neither
used to optimize the model parameters nor the hyperparameters. Therefore, this data
represents the synthetic test case, where the true flow fields are available, to test the
generalization of the CNNs toward a qualitatively different concentration boundary
condition, besides the real world test case of the laboratory experiment, where the
quantitative knowledge of the concentration boundary condition is missing and flow is
experimentally inaccessible.

65

5 Convolutional Neural Networks

1

Input

1 76
8X
38
4

7X
7

24 38
4X
19
2

5X
5

48 19
2X
96

5X
5

96 96
X4
8

3X
3

96 96
X4
8

3X
3

192 48
X2
4

3X
3

192 48
X2
4

3X
3

192 24
X1
2

3X
3

192 24
X1
2

3X
3

384 12
X6

3X
3

384 12
X6

192 24
X1
2

4X
4

96 48
X2
4

4X
4

48 96
X4
8

4X
4

24 19
2X
96

*

4X
4

3X
3

2 19
2X
96

1 19
2X
96

*

1

*

1X
1

1X
1

1 19
2X
96

1 19
2X
96

Prediction

Figure 5.6: Architecture 1 (details in Table 5.1): Two subsequent concentra-
tion fields are fed into the network. Feature maps are depicted as light gray
boxes. Convolution layers are depicted as boxes with red faces indicating their
mapping from the respective feature map to the next. Transposed convolution
layers are depicted as boxes with blue faces indicating their mapping from the
previous to the respective feature map. Asterisks indicate convolution layers
without leaky ReLU activation function. The dotted red lines indicate slic-
ing of the feature map into x- and z-components of the predicted flow field.
Bilinear interpolation as postprocessing of the predicted flow field is used to
recover the full input resolution (not depicted).

66

5.4 Network Architectures for Flow Field Estimation

1

Input

1 76
8X
38
4

3X
3

64 76
8X
38
4

3X
3

64 38
4X
19
2

3X
3

128 38
4X
19
2

3X
3

128 19
2X
96

3X
3

128 19
2X
96

3X
3

256 96
X4
8

3X
3

256 96
X4
8

3X
3

512 48
X2
4

3X
3

512 48
X2
4

3X
3

512 24
X1
2

3X
3

512 24
X1
2

3X
3

1024 12
X6

3X
3

1024 12
X6

512 24
X1
2

4X
4

256 48
X2
4

4X
4

128 96
X4
8

4X
4

64 19
2X
96

*

4X
4

3X
3

64 19
2X
96

*

3X
3

2 19
2X
96

1 19
2X
96

*

1

*

1X
1

1X
1

1 19
2X
96

1 19
2X
96

Prediction

Figure 5.7: Architecture 2 (details in Table 5.2): Two subsequent concentra-
tion fields are fed into the network. Feature maps are depicted as light gray
boxes. Convolution layers are depicted as boxes with red faces indicating their
mapping from the respective feature map to the next. Transposed convolution
layers are depicted as boxes with blue faces indicating their mapping from the
previous to the respective feature map. Asterisks indicate convolution layers
without leaky ReLU activation function. Skip and upscaling connections (de-
tails in Figs. A.9 and A.10) are indicated by the dotted purple and dotted
green lines, respectively. The dotted red lines indicate slicing of the feature
map into x- and z-components of the predicted flow field. Bilinear interpo-
lation as postprocessing of the predicted flow field is used to recover the full
input resolution (not depicted).

67

6 APPLICATION
In parts based on Kreyenberg et al. [2019].

The conceptual objective of this work is to transfer information that is contained in
synthetically generated data, which completely and faithfully represent the process
understanding, to real world data, where system quantities are inaccessible. I realized
this on the example of active solute transport, where I generated large datasets of
the process by numerical simulation distributed over a wide parameter range. Two
variants of a CNN, Architecture 1 and Architecture 2, were trained on that data to
incorporate the physical process representation with respect to the prediction of the
flow fields. The application of the trained CNNs to the laboratory experiment enabled
the estimation of the flow fields in a real world case that were otherwise experimentally
inaccessible.
This chapter presents the results of this approach and is structured as follows: The

preprocessing of the laboratory experiment data used as a preparation step for the
flow field estimation is described in Section 6.1. The true flow fields are inaccessible
in the laboratory experiments. Therefore, the quality and accuracy of the flow field
estimation is not directly measurable in this case. As introduced in Section 6.2, I
used the estimated flow fields to propagate the measured concentration fields forward
in time to make the performance of the flow field estimation assessable. The results
of the flow field estimation using Architecture 1 trained on pure active solute trans-
port (TrainNE1) are given for the synthetic test case and the real world test case in
Sections 6.3 and 6.4, respectively. The representation of superscale convection, which
is expected to be apparent in the laboratory experiment, is incorporated by train-
ing Architecture 2 on TrainNE1+3. The respective results are given in Section 6.5.
Section 6.6 summarizes and discusses the results presented in this chapter.

6.1 Data Preprocessing
To prepare the data of the laboratory experiment for the flow field estimation I used
the following preprocessing steps. To reduce the image noise, I used a standard median
filter with a kernel size of 5×5 px. The use of a median image filter, in comparison
to a Gaussian image filter, keeps the blurring minimal and therefore reduces the in-
troduced error with respect to the dispersive transport process. Additionally, I used
a threshold filter slightly above the base concentration of C0 = 86.5 kg/m3, setting all
concentration values beneath C = 90.0 kg/m3 to zero to extract the density fingers
only.
To enable the direct comparison to the numerical experiment, I scaled the measured

concentrations according to Eq. (2.35). Also, I chose to restrict my observations to

69

6 Application

the upper 9.7 cm of the Hele-Shaw cell with a observation window width of 19.4 cm to
achieve geometric similarity to the domain of the numerical experiments. With this, I
received the resolution of 768×384 px for the concentration fields in accordance to the
simulations.

6.2 Concentration Field Propagation

When estimating the flow fields with the trained CNNs, ground truth is only available
for the numerical experiments, but not for the laboratory measurements. To be able
to evaluate the performance of the estimation, I propagated the concentration fields
forward in time using the estimated flow fields. The resulting estimated concentration
fields were then compared to the concentration fields of the corresponding time step dt
as a basis for the performance evaluation of the flow field estimation. The propagation
was performed through two subsequent processing steps: (i) I used warping [Ilg et al.,
2017], the bilinear interpolation of the propagated concentration values, to account
for the convective transport process and (ii) I used a standard Gaussian image filter
with σ =

√
2Ddt to approximate the dispersive transport process that is a solution

to Eq. (2.19). Note that the phenomenology of the Gaussian image filter is similar,
but not identical, to the physical dispersive process, since the smoothing is isotropic.
Therefore, it is expected that an additional error is introduced that is not due to the
performance of the flow field estimation.

As the training of the CNN was performed based on dimensionless simulations, the
estimations contain dimensionless flow velocities ũ. Therefore, I needed to scale these
flow velocities with the dimensionless time step dt̃ to get the displacement for the
warping method. For the synthetic data, this was given by the chosen output time
step of the numerical simulation dt̃ = 0.02. With the known dispersion coefficient of
D = 1/Ra (cf. Eq. (2.43)) in the numerical simulations the standard deviation for the
Gaussian image filter is given by σ̃ =

√
2 dt̃/Ra.

For the laboratory experiment, I lack the accurate knowledge of the dimensionless
time step dt̃ and the standard deviation for the Gaussian blurring σ̃, because of uncer-
tainties in the experimental determination of Tc = 12µwH/[∆ρgd̄2

obs] and Dm. When
scaling the measurements contained in the observation area to be dimensionless, the
relevant length scale is the height of the observation area Hobs = 9.7 cm. For the time
step this results in dt̃ = dt/Tc = 0.034 ± 0.07. Because of the large uncertainties and
since the values are expected to introduce biases that cannot be assessed, I chose to
optimize the time step and standard deviation for the warping and Gaussian filtering
of the measured data by a simple parameter scan, such that the root mean squared
error between the propagated and the corresponding measured concentration field is
minimized. This implicitly scales the flow velocities, resulting in a better agreement
of the propagated and measured concentration fields. However, I argue that the incor-
poration of this information is valid, since the objective is to get the best estimate of

70

6.3 Results on the Numerical Experiments

the inaccessible flow fields, which is different from the correct forward propagation of
the concentration fields.

6.3 Results on the Numerical Experiments

For the first application case of the flow field estimation, I trained Architecture 1 on
TrainNE1 to incorporate the process representation of pure active solute transport.
This section presents the results on the synthetic test case TestNE2 along with a
comparison to the validation data ValidateNE1. To present the qualitative results, I
chose two representative image pair examples from ValidateNE1 and TestNE2 such
that they exhibit the typical characteristics of the respective dataset. The estimated
flow field is shown in Fig. 6.1(b) for the ValidateNE1 example and in Fig. 6.3(b) for
the TestNE2 example. For comparison, the true flow fields are shown in Figs. 6.1(a)
and 6.3(a), respectively.
The flow field estimation captures the characteristic of the true flow field reasonably

well. In general, regions where the flow points downward and where the flow points
upward are predicted reliably. As regions with upward flow in between of the density
fingers are predicted without explicit information about the flow velocity there, since
the solute concentration in these regions is zero, this shows that the CNN is able
to learn the characteristics of the physical flow phenomenon of the density-driven
instability. Also, the flow structures at the upper boundary are accurately reproduced
with the lateral flow pointing toward the density finger seeding points. At the tips of
the density fingers the flow separates toward the positive and negative x−direction, as
it is found in the true flow field. Inspecting areas around the finger tips shows that
the prediction gradually fails when moving further away from the tip. The method is
unable to reliably predict the flow field there without information about the flow given
as the transport of the concentration.
In addition to the good reproduction of the large flow patterns I find that some finer

patterns can be predicted as well. For instance in Fig. 6.1(b) in the region around
(420, 90) the complicated flow structure of interacting density fingers are reproduced.
The flow pattern around (140, 210) is reproduced in the qualitative shape but not
quite as accurately. In contrast, in the region around (40, 225) the prediction deviates
apparently due to insufficient information given by the low concentration values there.
The predictive capabilities of the CNN for the validation data ValidateNE1 remain

intact also for the test dataset TestNE2. This is quite remarkable, since there I chose
the upper boundary condition for the concentration to be different from the boundary
condition of the training (TrainNE1) and validation dataset (ValidateNE1) in spatial
extent as well as in temporal duration (cf. Chapter 3). Especially the larger areas of
the upward flow left and right to the middle region containing the density fingers are
captured astonishingly well (cf. Figs. 6.3(a), (b)), when considering that the training
data do not contain image pairs showing such large upwelling zones.

71

6 Application

0

75

150

225

300

375

z
[p

x
]

(a)

0 75 150 225 300 375 450 525 600 675 750

x [px]

0

75

150

225

300

375

z
[p

x
]

(b)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C̃
w

[C
c
]

Figure 6.1: Estimated flow field for the ValidateNE1 example: truth (a) and
estimation (b) of the flow field shown as streamlines (red color intensity in-
dicates absolute flow velocity) on top of the color coded prior concentration
field.

Figures 6.2 and 6.4 present the corresponding flow field divergence values for the
true and the estimated flow field for the ValidateNE1 and the TestNE2 examples.
For the true flow fields from numerical simulation, I observe divergences in the range
[−9.3, 8.6] · 10−3 and divergences in the range [−30.0, 9.0] · 10−3 for the estimated flow
fields. The larger range of divergences for the estimated flow fields arise from the
imperfect estimation of the CNN and are related to the velocity errors occurring per
characteristic time period Tc. Still, the encountered values are at least two orders of
magnitude smaller than the encountered typical flow velocities of |ũ| ≈ 3.5.

72

6.3 Results on the Numerical Experiments

0

75

150

225

300

375

z
[p

x
]

(a)

0 75 150 225 300 375 450 525 600 675 750

x [px]

0

75

150

225

300

375

z
[p

x
]

(b)

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

d
iv

ũ
[1
/
T

c
]

×10−4

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

d
iv

ũ
[1
/T

c
]

×10−2

Figure 6.2: Flow field divergence for the ValidateNE1 example for the true (a)
and the estimated (b) flow field. Concentration isolines are given at levels
C̃w = (0.25, 0.5, 0.75). Note that for better visibility of low values the scales
for the divergence differ by two orders of magnitude, while the actual deviation
between maxima and minima is lower.

As a quantitative error measure, I took the mean endpoint error (MEPE =∑N
j=1

√
[ũest
j − ũtrue

j]2 + [w̃est
j − w̃true

j]2/N with N being the number of pixels in the im-
ages) between the estimated and the true flow field. The distributions of this error
measure over ValidateNE1 and the TestNE2 are shown in Figs. 6.5(a) and (b), re-
spectively. The MEPE is given in the units of the characteristic velocity Uc and is a
measure of the error in flow velocity averaged over all pixels of the respective image
pair. Typical absolute velocity values encountered after the onset of the instability
are in the range of |ũ| ≈ 0.5Uc . . . 0.8Uc. Note that the MEPE is expected to result

73

6 Application

0

75

150

225

300

375

z
[p

x
]

(a)

0 75 150 225 300 375 450 525 600 675 750

x [px]

0

75

150

225

300

375

z
[p

x
]

(b)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C̃
w

[C
c
]

Figure 6.3: Estimated flow field for the TestNE2 example. Same representa-
tion as in Fig. 6.1.

in low values for image pairs with very little to no dynamics, hence for the very early
development of the instability.

For ValidateNE1 the MEPE remains below 0.022 for all the image pairs, suggesting
good agreement between the estimation and the truth. Image pairs with very little
dynamics result in low values beneath 0.001. In fact the majority of the data count
in this range originates from image pairs during the purely diffusive regime. For the
image pairs after the instability onset, the majority is contained within the MEPE
range from 0.007 to 0.022.

The distribution of the MEPE over TestNE2 (Fig. 6.5(b)) is similar to the distribu-
tion over the validation dataset with the maximum MEPE being 0.021. Note that for
the test dataset the flow is being contained in smaller regions, given the nonuniform

74

6.3 Results on the Numerical Experiments

0

75

150

225

300

375

z
[p

x
]

(a)

0 75 150 225 300 375 450 525 600 675 750

x [px]

0

75

150

225

300

375

z
[p

x
]

(b)

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

d
iv

ũ
[1
/
T

c
]

×10−4

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

d
iv

ũ
[1
/T

c
]

×10−2

Figure 6.4: Flow field divergence for the TestNE2 example. Same representa-
tion as in Fig. 6.1.

boundary condition. In contrast to the MEPE distribution over ValidateNE1, the por-
tion of image pairs with mean endpoint error below 0.001 is lower. This is due to the
composition of the test dataset. With the nonuniform boundary condition, I introduce
an earlier onset of the instability there. I observe a broad distribution of the MEPE in
the range between 0.001 and 0.021. Overall the distribution exhibits that the estima-
tion performs well on the test dataset, showing the robustness of the method toward
the introduced spatial and temporal variability in the upper concentration boundary
condition.
To get an assessment of the spatial distribution of the errors, I additionally calculated

the angular error and the normalized velocity error as local error measures. The
results for the ValidateNE1 example and the TestNE2 example are shown in Figs. 6.6
and 6.7, respectively. The respective MEPE values of the examples are indicated in

75

6 Application

0

50

100

C
ou

n
t

(a)

0.000 0.005 0.010 0.015 0.020 0.025

Mean endpoint error [Uc]

0

20

40

60

C
o
u

n
t

(b)

Figure 6.5: Error distributions of the mean endpoint error for ValidateNE1 (a)
and TestNE2 (b). Mean endpoint error values of the representative dataset
examples, shown in Figs. 6.1 and 6.3, respectively, are indicated by the red
dashed lines.

Figs. 6.5(a) and (b) with the dashed red lines, supporting their choice as representative
examples, as the majority of the concentration pairs exhibit a lower MEPE and hence a
better agreement between truth and estimation. The angular error shows the angular
difference between the estimated flow direction and the true flow direction for each
pixel and is given in degrees. The normalized velocity error is the difference between
the absolute estimated flow field and the absolute true flow field normalized by the
maximum absolute value of the true flow field: [|ũest|−|ũtrue|]/max(|ũtrue|) and yields
structurally similar results to the L2 error often used in the field of deep learning.
Figure 6.6(a) and Fig. 6.7(a) show that the direction of the flow is generally esti-

mated accurately where information is given by the concentration. The CNN is even
capable of estimating the flow direction accurately in larger regions surrounding the
density fingers. Areas where the estimation of the flow direction fails are located di-
rectly at the flanks of density fingers. There the flow is typically small and deviates
from being parallel to the orientation of the density fingers. Additionally, the concen-
tration values are low. Combined, this results in low dynamics impeding the flow field
estimation there. Also boundary effects become apparent in the ValidateNE1 example
(Fig. 6.6(a)) at the rightmost density finger. There, the flow points downward directly
at the right boundary causing the shape of the finger to be structurally different as
it appears to be cut in half. In the regions further away from the density fingers, the
flow velocity is close to zero, the angle correspondingly ill-defined.

76

6.3 Results on the Numerical Experiments

0

75

150

225

300

375

z
[p

x
]

(a)

0 75 150 225 300 375 450 525 600 675 750

x [px]

0

75

150

225

300

375

z
[p

x
]

(b)

0

20

40

60

80

100

120

140

160

180

A
n

g
u

la
r

er
ro

r
[◦

]

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

N
or

m
al

iz
ed

ve
lo

ci
ty

er
ro

r
[−

]
Figure 6.6: Error measures for the ValidateNE1 example: Angular error (a)
and normalized velocity error (b) (negative for |ũest| < |ũtrue|). Concentration
isolines are given for the levels C̃w = (0.25, 0.5, 0.75).

Figures 6.6(b) and 6.7(b) show that the method predominantly underestimates the
flow velocity values. Apart from the boundary effects on the rightmost density finger
in the ValidateNE1 example (Fig. 6.6(b)), large portions of the region where C̃w > 0
exhibit a normalized velocity error roughly in the range between −13% to 6% also with
a strong tendency to underestimate the flow. Locally, the error can exceed these values.
For instance at the seeding point of the second density finger from the left the normal-
ized velocity error ranges down to −23%. Also the flow velocities are underestimated
in the regions with upward flow between the density fingers. There, the normalized
velocity error roughly ranges from −7% to −4%. Figure 6.7(b) shows that the un-
derestimation is generally less pronounced for the TestNE2 example. This is mainly
due to the predominantly lower velocities (cf. Figs. 6.1(a) and 6.3(a)). However, the

77

6 Application

0

75

150

225

300

375

z
[p

x
]

(a)

0 75 150 225 300 375 450 525 600 675 750

x [px]

0

75

150

225

300

375

z
[p

x
]

(b)

0

20

40

60

80

100

120

140

160

180

A
n

g
u

la
r

er
ro

r
[◦

]

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

N
or

m
al

iz
ed

ve
lo

ci
ty

er
ro

r
[−

]
Figure 6.7: Error measures for the TestNE2 example. Same representation as
in Fig. 6.6.

span of the normalized velocity error is similar to the validation dataset example with
a range from −20% to 6%.

The incapability to estimate the absolute values of the flow velocities clearly shows
the limits of the flow field estimation with the implementation of the CNN I used. The
smooth concentration gradients that are encountered in the flow field estimation for
active solute transport are quite different to the high contrast image data in typical
applications of CNNs, like image classification. Together with the generally small
displacements in the concentration field data, this seems to impede the quantitatively
correct detection of the movement.

78

6.4 Results on the Laboratory Experiment

6.4 Results on the Laboratory Experiment

Also for the laboratory experiment, the flow fields are estimated using Architecture
1 trained on TrainNE1. Figure 6.8 shows the results on an exemplary concentration
field pair. The quality of the flow field estimation is consistent with the estimation
for the numerical experiment (cf. Fig. 6.1(b), and Fig. 6.3(b)). Predominantly, the
flow structures seem to be estimated reliably. Also the resulting divergence of the
estimated flow field (Fig. 6.8(b)) is consistent with the synthetic case (cf. Fig. 6.1(d)).
Nevertheless, the ground truth for the laboratory experiment is inaccessible for direct
performance evaluation. To assess the performance on the real data, I propagated
the measured concentration fields forward in time using the estimated flow fields (see
Section 6.2). The propagated concentration fields are then compared to the respective
measured concentration fields.
As described in Section 6.2, I chose to optimize for the propagation time step and

the Gaussian image filter standard deviation, although I am aware that this alleviates
the expected underestimation of the flow field with the CNN. On the other hand, the
physically scaled value for dt̃ introduces estimation biases, that cannot be assessed. My
choice results in dt̃ = 0.0438 and σ = 2.6 px for Architecture 1 trained on TrainNE1
(results are illustrated in Fig. A.17(a)). Additionally, in the laboratory experiment I
do not know the upper boundary condition for the concentration. Therefore, I took
the upper ten pixel lines of the measured concentration field and set these pixel lines
as the upper boundary condition before every warping step. Using these parameters
for the concentration field propagation, I received the estimated concentration fields
as shown in Fig. 6.9(d)-(f) together with the respective measured concentration fields
in Fig. 6.9(a)-(c). The propagation times are t̃p = 0.0438, t̃p = 0.0876, and t̃p = 0.219,
respectively. To the eye the concentration fields at t̃p = 0.0438 do agree in general,
although slight deviations at the leftmost and rightmost density fingers already become
apparent. At t̃p = 0.0876 and t̃p = 0.219 these deviations become even larger until the
concentration fields do not agree very well anymore. In the center region the agreement
in the shape is still very good despite the appearance of the slightly pointier finger
tips. Given the evaporation boundary condition and the balancing upward flow in
the laboratory experiment together with the observed strong lateral movement of the
outer density finger seeding points (cf. Fig. 4.3), I assume that the outermost fingers
are strongly affected by the background flow. As indicated by the blue dotted lines in
Fig. 6.9, I divide the observed area into outer regions, where I expect the influence to
be strong, and a center region with small, but still noticeable influence. In TrainNE1,
only the effects of pure active solute transport are represented, the outer regions are
coherently beyond the capabilities of the flow field estimation in this case. Hence, I
focus on the discussion of the center region for the remainder of this section.
To be able to compare the quality of the results on real and synthetic data, I also

used concentration field propagation as described in Section 6.2 on the synthetic data
to obtain a reference. The upper boundary condition for the concentration is set to
C̃w = 1, resembling the boundary condition in the numerical simulations. I chose one

79

6 Application

0

75

150

225

300

375

z
[p

x
]

(a)

0 75 150 225 300 375 450 525 600 675 750

x [px]

0

75

150

225

300

375

z
[p

x
]

(b)

0.0

0.2

0.4

0.6

0.8

1.0

C̃
w

[C
c
]

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

d
iv

ũ
[1
/T

c
]

×10−2

Figure 6.8: Estimated flow field for the laboratory experiment (a) shown as
streamlines (red color intensity indicates absolute flow velocity) on top of the
color coded prior concentration field. Flow field divergence of the estimated
flow field (b). Concentration isolines are given at levels C̃w = (0.25, 0.5, 0.75).

distinct concentration field with the propagation time t̃p = 0 as the starting point.
The concentration field is then iteratively propagated by the propagation time step
dt̃ = 0.02, since the true concentration field is present in this temporal resolution. For
the chosen concentration field, the given propagation time step results in σ = 2.43 px
for the Gaussian blurring. The examples of the synthetic reference, as presented in
Fig. A.12, are chosen for the propagation times t̃p = 0.04, t̃p = 0.08, and t̃p = 0.22
to closely match the propagation times for the laboratory experiments as shown in
Fig. 6.9.

80

6.4 Results on the Laboratory Experiment

0

100

200

300

(a)
0

100

200

300

z
[p

x
]

(b)

0 100 200 300 400 500 600 700

x [px]

0

100

200

300

(c)

(d)

(e)

0 100 200 300 400 500 600 700

x [px]

(f)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C̃
w

[C
c
]

Figure 6.9: Concentration field propagation for the laboratory experiment:
True concentration fields (a)-(c) and concentration fields propagated with
estimated flow fields (d)-(f) at propagation times t̃p = 0.0438 (top row),
t̃p = 0.0876 (center row), and t̃p = 0.219 (bottom row). The red dashed line
marks the initial position of the respective density finger seeding point. The
blue dotted lines indicate the region of concentration error evaluation pre-
sented in Figs. 6.10(d)-(f).

For the synthetic reference, a detailed look at the deviations between the concen-
tration fields that are propagated with the estimated flow fields and the true concen-
tration fields is presented in Fig. 6.10(a)-(c) as the normalized concentration errors
([C̃est

w − C̃true
w]/max(C̃true

w)) for the same propagation times t̃p = 0.04, t̃p = 0.08, and
t̃p = 0.22, respectively. At t̃p = 0.04, the deviations in the middle region, where the
flow velocities are relatively small, roughly range from −1.5% up to 1.5%. In regions
with higher velocities on the left, the concentration field deviates stronger. Especially
at the tip of the furthest developed density finger (at x = 50) the normalized concen-
tration error is −3%. This is consistent with the already observed underestimation of
the absolute flow velocities (cf. Figs. 6.6(b) and 6.7(b)). The solute there is not trans-
ported as far as in the true concentration field. For the subsequent propagation times
the estimated and the true concentration fields diverge even further, also as expected
due to the underestimation of the flow fields.

81

6 Application

0

100

200

300
(a)

0

100

200

300

z
[p

x
]

(b)

0 100 200 300 400 500 600 700

x [px]

0

100

200

300
(c)

(d)

(e)

0 100 200 300 400 500 600 700

x [px]

(f)
−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

N
o
rm

al
iz

ed
co

n
ce

n
tr

at
io

n
er

ro
r

[−
]

Figure 6.10: Normalized concentration errors for propagated concentration
fields. Numerical experiment: (a) at t̃p = 0.04, (b) at t̃p = 0.08, and (c) at
t̃p = 0.22. Laboratory experiment: (d) at dt̃ = 0.0438, (e) at t̃p = 0.0876,
and (f) at t̃p = 0.219. Normalized concentration errors are chosen to be neg-
ative for C̃est

w < C̃true
w . The black dashed line indicates the initial position of

the respective density finger seeding point (cf. red dashed line in Fig. 6.9).
The black dotted lines indicate the center region with small influence of the
background flow.

For the laboratory experiment, Figs. 6.10(d)-(f) show the normalized concentration
errors at t̃p = 0.0438, t̃p = 0.0876, and t̃p = 0.219, respectively. At t̃p = 0.0438,
the normalized concentration error is generally low, with values roughly ranging from
−10% to 10% for the center region, where the influence of the background flow is
small (black dotted lines). For the longer propagation times the errors increase, as the
estimated concentration field diverges more and more from the measured one. When
compared to the normalized concentration errors of the numerical experiment (Figs.
6.10(a)-(c)), the errors are typically larger for the laboratory experiment. Neverthe-
less, in regions with higher flow velocities, as seen in the region with x < 200 px for
the numerical experiment, errors can reach similar values as in the center region of
the laboratory experiment. The qualitative structure of the errors differs, however.
For the numerical experiment the concentrations are underestimated in front of the

82

6.5 Representation of Superscale Convection

density finger tips, whereas for the laboratory experiment the concentrations are un-
derestimated on the right flank of the fingers, while being overestimated on left flank.
This shows that for the numerical experiment the downward flow is too slow, whereas
for the laboratory experiment the estimation is unable to predict a general rightward
flow. As the rightward drift there seems to affect all the fingers quite uniformly, I
attribute this to the earlier mentioned convection currents in the Hele-Shaw cell in-
dependent of the density-driven flow. This is also observed for fingers in the central
region, as is seen in Figs. 6.9(a)-(c), where not only the seeding point of the density
finger, initially located at the red dashed line, but the complete finger shifts to the
right. The corresponding position in Figs 6.10(d)-(f) is indicated by the black dashed
line. This kind of background convection is not represented in TrainNE1, hence, it is
coherent that the method cannot estimate the flow fields in this respect.

6.5 Representation of Superscale Convection
The results presented in Section 6.3 show that the flow fields are estimated reliably for
the synthetic test case using Architecture 1 trained on TrainNE1 and can generalize to
variations in the concentration boundary condition, while the quantitative investigation
showed a general underestimation of the absolute flow velocities. Applying the same
CNN to the real test case (Section 6.4) showed that in some regions the estimated
flow fields can describe the observed concentration fields reasonably well. However, in
other regions the estimated flow fields qualitatively do not agree with the observations,
revealing that important transport processes are not represented in TrainNE1. In this
section, I present the results when using TrainNE1+3 as training data to include the
representation of superscale convection.
As Architecture 1 showed improved, but still unsatisfactory estimations of the flow

fields for the real world test case (results shown in Fig. A.15), I used Architecture 2
in this case. The idea is that the skip connections in Architecture 2 aid to propagate
fine graded information through the network, which is important to account for the
background flow. In addition, the larger capacity of the model can facilitate the
incorporation of more transport processes. The results of the flow field estimation
using Architecture 2 trained on TrainNE1+3 are presented for the synthetic test case
first (Section 6.5.1), followed by the results on the laboratory test case (Section 6.5.2).

6.5.1 Results on the Numerical Experiments
To follow the same line as in Section 6.3, I chose a representative concentration field
pair example from ValidateNE1+3, along with the already introduced example from
TestNE2, to present the results with the represented background flow. Using Archi-
tecture 2 trained on TrainNE1+3 resulted in the estimated flow fields as depicted in
Figs. 6.11 and 6.12 for the ValidateNE1+3 and TestNE2 examples, respectively.
The ValidateNE1+3 example exhibits strong background flow in the negative x-

direction that is superposed to the flow structures of the density-driven instability. As

83

6 Application

0

75

150

225

300

375

z
[p

x
]

(a)

0 75 150 225 300 375 450 525 600 675 750

x [px]

0

75

150

225

300

375

z
[p

x
]

(b)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C̃
w

[C
c
]

Figure 6.11: Estimated flow field for the ValidateNE1+3 example with repre-
sented superscale convection: truth (a) and estimation (b) of the flow field
shown as streamlines (red color intensity indicates absolute flow velocity) on
top of the color coded prior concentration field.

depicted in Fig. 6.11(a) for the true flow field, areas of the superposition are located in
the outer regions of the upper half of the domain. There, the streamlines show wave
like patterns that have an upward component in between the fingers and a downward
component where the solute induces downward movement along the fingers. Right in
the upper left corner, a quite interesting pattern is observed, as parts of the streamlines
are directed opposite to the background flow direction. No fingers have developed in
the center of the domain, hence, the flow there is horizontal at the top. Below, the flow
exhibits a slight upward component for the upper half, but is again perfectly horizontal
for the lower half of the domain.

84

6.5 Representation of Superscale Convection

0

75

150

225

300

375

z
[p

x
]

(a)

0 75 150 225 300 375 450 525 600 675 750

x [px]

0

75

150

225

300

375

z
[p

x
]

(b)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C̃
w

[C
c
]

Figure 6.12: Estimated flow field for the TestNE2 example with represented
superscale convection. Same representation as in Fig. 6.11.

The estimated flow field, as depicted in Fig. 6.11(b), is in good agreement with
the true flow field. The same main flow direction to the left is predicted reliably,
which is quite remarkable since for large parts of the domain no information by solute
movement is given. In the outer regions, the same wave like patterns in the streamlines
are observed and even the earlier mentioned flow in the opposite direction to the
background flow in the upper left corner is predicted correctly. The main difference
that is evident in the estimation is the absence of an small upward flow component in
the upper half of the domain center.
The flow field estimation for the TestNE2 example is shown in Fig. 6.12(b), along

with the true field in Fig. 6.12(a) for comparison. The estimation correctly detects
the absence of the background flow in TestNE2, while in the regions of the density
fingers, the shape of the depicted streamlines qualitatively still agrees with the truth.

85

6 Application

0

50

100

C
ou

n
t

(a)

0.000 0.005 0.010 0.015 0.020 0.025

Mean endpoint error [Uc]

0

20

40

60

C
o
u

n
t

(b)

Figure 6.13: Error distributions of the mean endpoint error for ValidateNE1+3
(a) and TestNE2 (b) with represented superscale convection. Mean end-
point error values of the representative dataset examples, shown in Figs. 6.11
and 6.12, respectively, are indicated by the red dashed lines.

The flow points downward along the fingers, upward in small regions in between, and
in some places the already observed circular patterns are apparent. When moving
away from the fingers, the estimated flow velocities quickly drop to very small values
close to 0. This is different to the estimated flow fields of Architecture 1 trained on
TrainNE1 (cf. Fig. 6.3), where the estimation better described the true flow field in
the surroundings of the fingers. Nonetheless, Architecture 2 trained on TrainNE1+3
still generalizes reasonably well for the qualitatively different concentration boundary
condition in TestNE2.
For both, the ValidateNE1+3 and the TestNE2 examples, the investigation of the

flow field divergences showed similar values as in Section 6.3 (cf. Figs. A.13 and A.14).
Therefore, the introduced errors with respect to spurious fluid sources and sinks are
comparable to the estimations using Architecture 1 trained on TrainNE1.
As a quantitative measure, I again calculated the MEPE for the estimated flow fields

of the individual image pairs of ValidateNE1+3 and TestNE2. The respective error
distributions are shown in Fig. 6.13(a) and (b). For ValidateNE1+3, the histogram
shows the maximum value of 0.024, which is slightly higher than the observed 0.022 for
ValidateNE1 without the representation of superscale convection (cf. Fig. 6.5(a)), but
still suggests a good overall agreement between the estimation and the truth for this
case. The same situation with a main part of the data count being below MEPE=0.001,

86

6.5 Representation of Superscale Convection

0

75

150

225

300

375

z
[p

x
]

(a)

0 75 150 225 300 375 450 525 600 675 750

x [px]

0

75

150

225

300

375

z
[p

x
]

(b)

10−1

100

101

102

A
n

g
u

la
r

er
ro

r
[◦

]

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

N
or

m
al

iz
ed

ve
lo

ci
ty

er
ro

r
[−

]
Figure 6.14: Error measures for the ValidateNE1+3 example with represented
superscale convection: Angular error (a) and normalized velocity error (b)
(negative for |ũest| < |ũtrue|). Concentration isolines are given for the levels
C̃w = (0.15, 0.4, 0.65). Note the logarithmic scale for better visibility of small
angular error values.

due to the little dynamics in these image pairs, is encountered as well. The error dis-
tribution for TestNE2, as depicted in Fig. 6.13(b), also shows higher MEPE values,
when compared to the results for Architecture 1 trained on TrainNE1 (cf. Fig. 6.5(b)),
with the maximum being at 0.024. This is expected when recalling the estimation, as
shown in Fig. 6.12. There, the estimation of the correct flow field fails in the closer
surroundings of the density fingers, while Architecture 1 trained on TrainNE1 is able
to better extrapolate in these regions. Note that also the MEPE of the ValidateNE1+3

87

6 Application

0

75

150

225

300

375

z
[p

x
]

(a)

0 75 150 225 300 375 450 525 600 675 750

x [px]

0

75

150

225

300

375

z
[p

x
]

(b)

0

20

40

60

80

100

120

140

160

180

A
n

g
u

la
r

er
ro

r
[◦

]

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

N
or

m
al

iz
ed

ve
lo

ci
ty

er
ro

r
[−

]
Figure 6.15: Error measures for the TestNE2 example with represented su-
perscale convection: Angular error (a) and normalized velocity error (b)
(negative for |ũest| < |ũtrue|). Concentration isolines are given for the levels
C̃w = (0.25, 0.5, 0.75).

and TestNE2 examples are indicated in Fig. 6.13, which supports their choice as rep-
resentative examples, in the sense that the estimation achieves a lower value on the
majority of the image pairs as for the given examples.

For the assessment of the spatial distribution, the angular error and the normalized
velocity error for the representative examples are depicted in Figs. 6.14 and 6.15. Their
investigation supports the observations already deduced from Figs. 6.11 and 6.12. For
the ValidateNE1+3 example, the agreement of the flow direction is reasonably good
for the most part. The main deviations are located in the upper left corner, where
relatively fine fingers are apparent. Note that in the presentation a logarithmic scale is
chosen to improve the visibility of the low values. As already observed in Section 6.3

88

6.5 Representation of Superscale Convection

for Architecture 1 trained on TrainNE1, Architecture 2 also mainly underestimates
the absolute flow velocities, which can be seen in Fig. 6.14(b). The observed values
for the normalized velocity error are at around -5% in regions where only background
flow is present. The same is true for large parts in the region of the density fingers,
but values as low as -22.1% are encountered at their seeding points, which is coherent
with the errors presented in Section 6.3.
The angular error distribution for the TestNE2 example is shown in Fig. 6.15(a). In

this case, the flow direction is still predicted reasonably well where C̃w > 0. Outside of
these regions, the predicted directions generally do not agree anymore, as the angular
error ranges up to 180◦ there. This is coherent with the composition of TrainNE1+3,
since parts contain background flow, while others do not. No explicit information by
lateral movement of whole density fingers is apparent in the TestNE2 example, hence
the estimation of the direction seems to be ambiguous in this case. The normalized
velocity errors for the TestNE2 example, as depicted in Fig. 6.15(b), are in agreement
with the previous observations that the flow velocities are generally underestimated.
For the most part the errors are contained in a similar range as before, but additional
areas of strong underestimated flow velocities, which are already indicated in Fig. 6.12,
become apparent. At the outsides of the leftmost and rightmost large plumes, where
C̃w is close to 0, the encountered values range between -10% and -26%.

In summary, the application of the flow field estimation on the synthetic test case
showed that the background flow can be predicted reliably, when the process is rep-
resented in the training data. The predictive capability for the TestNE2 example
decreased, but remained reasonably good in regions, where information is given by the
density fingers and plumes. As encountered before in Section 6.3, the limitations of
the method to accurately estimate the absolute flow velocities persist with the same
tendency to underestimate the values.

6.5.2 Results on the Laboratory Experiment

The flow field estimation on the laboratory experiment example using Architecture
2 trained on TrainNE1+3 is presented in Fig. 6.16. With the represented superscale
convection in the training data, the estimated flow field is qualitatively different from
the estimation using Architecture 1 trained on TrainNE1 (cf. Fig. 6.8). The flow field
can be divided in three regions. The first ranges from x = 0 px to 450 px, where a
strong background flow in the positive x-direction is predicted. In the upper part of
this region, the background flow is superposed to the density-driven instability and
the same wave like patterns in the streamlines as for the synthetic case do occur.
Between x = 450 px and 600 px, the background flow is generally weaker and shifts
from rightward to leftward. In the upper part, the flow seems to be hardly affected
by this background flow, since the patterns of the streamlines resemble the patterns
observed for the case without the representation of the superscale convection. For
x between 600 px and 768 px, the predicted background flow points in the negative

89

6 Application

0

75

150

225

300

375

z
[p

x
]

(a)

0 75 150 225 300 375 450 525 600 675 750

x [px]

0

75

150

225

300

375

z
[p

x
]

(b)

0.0

0.2

0.4

0.6

0.8

1.0

C̃
w

[C
c
]

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

d
iv

ũ
[1
/T

c
]

×10−2

Figure 6.16: Estimated flow field for the laboratory experiment with repre-
sented superscale convection (a) shown as streamlines (red color intensity
indicates absolute flow velocity) on top of the color coded prior concentration
field. Flow field divergence of the estimated flow field (b). Concentration iso-
lines are given at levels C̃w = (0.25, 0.5, 0.75). The black dotted lines indicate
regions with different influence of the background flow.

x-direction and is weaker in comparison to the flow in the first region. There again,
in the upper part, the wave like patterns in the streamlines are encountered, but the
upward and downward components are more pronounced. Overall, the predictions are
coherent with the observed lateral movement of the fingers in the temporal development
of the laboratory experiment as presented in Section 4.2. This already indicates a more
consistent estimation of the flow field in this case.
The corresponding flow field divergence values are shown in Fig. 6.16(b). In the

region of the density fingers, the values are generally similar to the case without the

90

6.5 Representation of Superscale Convection

570 620 670 720

0

50

100

150

z
[p

x
]

(a)

570 620 670 720

x [px]

(b)

570 620 670 720

(c)
0.0

0.2

0.4

0.6

0.8

1.0

C̃
w

[C
c
]

Figure 6.17: Detail of the propagated concentration fields for the three right-
most density fingers: the true concentration field (a) compared to the pre-
dicted concentration fields after five propagation steps for Architecture 1
trained on TrainNE1 (b) and for Architecture 2 trained on TrainNE1+3 (c).

representation of superscale convection. This is true, except for small areas at the
outermost fingers, where values up to 1.3 · 10−2 are found. Hence, for the most of the
upper part the errors introduced in this respect are expected to be similar as before.
As a qualitative difference, values between −1.3 · 10−3 and 1.0 · 10−3 are found in the
lower part, where the flow field divergence was 0 in the previous case. When going
from left to right, this is due to the gradual increase and following gradual decrease of
the parallel flow leading to the spurious fluid sources and sinks. However, the values
encountered there are similar to the divergences in the upper part and the introduced
errors are therefore similar.
Also for the flow field estimation with Architecture 2 trained on TrainNE1+3, I

propagated the measured concentration fields using the estimated flow field as de-
scribed in Section 6.2. The optimized values resulted in dt̃ = 0.0336 and σ = 2.2 px
for the dimensionless time step and the standard deviation of the Gaussian image fil-
ter, respectively (results are illustrated in Fig. A.17(b)). The expectation is that with
the represented superscale convection the estimated flow fields better explain the mea-
sured concentration fields. A comparison is presented in Fig. 6.17, where the measured
concentrations of the three rightmost fingers in the observation area are shown along
with the propagated concentration fields with and without the represented superscale
convection. Most prominently, the shape of the density finger on the right qualita-
tively agrees significantly better when using Architecture 2 trained on TrainNE1+3
for the estimation. Also the other two fingers better resemble the measured ones in
their shape, but the improvements are more subtle there.
For a quantitative insight into the improvements, I present the comparison of the nor-

malized concentration errors with and without the represented superscale convection
in Fig. 6.18. The concentration fields are propagated using the respective optimized
time steps and standard deviations for Gaussian image filtering for this comparison.
Therefore, I used dt̃ = 0.0438 and σ = 2.6 px for the case of Architecture 1 trained on
TrainNE1 and dt̃ = 0.0336 and σ = 2.2 px for the case of Architecture 2 trained on

91

6 Application

0

100

200

300
(a)

0

100

200

300

z
[p

x
]

(b)

0 100 200 300 400 500 600 700

x [px]

0

100

200

300
(c)

(d)

(e)

0 100 200 300 400 500 600 700

x [px]

(f)
−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

N
o
rm

al
iz

ed
co

n
ce

n
tr

at
io

n
er

ro
r

[−
]

Figure 6.18: Comparison of the normalized concentration errors for the cases
with and without represented superscale convection: Results for Architecture
1 trained on TrainNE1 ((a) to (c)) and Architecture 2 trained on TrainNE1+3
((d) to (f)), both after one (top row), two (middle row), and five (bottom row)
propagation steps using their respective optimized time steps dt̃. Normalized
concentration errors are chosen to be negative for C̃est

w < C̃true
w . The black

dotted lines indicate regions with different influence of the background flow.

TrainNE1+3. Again, the three regions with different influence of the background flow,
as described above, become recognizable.
In the region for 0 px < x < 450 px with a strong background flow to the right

(cf. Fig. 6.16(a)), normalized concentration errors as low as -46% and as high as 17%
already become noticeable after one propagation step, when the superscale convection
is not represented in the training data. For the subsequent propagation steps the errors
increase significantly with a typical deviation structure that the concentrations are too
low on the right and too high on the left of the fingers. This is due to the lateral
movement of the fingers that is apparent in the measurements, but not represented in
the estimated flow fields. In contrast, for the case with the represented background
flow in the training data, the errors are generally smaller, with few exceptions, and
also qualitatively different. Since the errors at the individual fingers are approximately
symmetric in the lateral direction, the estimated flow fields better represent the lateral

92

6.5 Representation of Superscale Convection

0

100

200

300

z
[p

x
]

(a)

0 100 200 300 400 500 600 700

x [px]

0

100

200

300

z
[p

x
]

(c)

(b)

0 100 200 300 400 500 600 700

x [px]

(d)
−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

N
or

m
al

iz
ed

co
n

ce
n
tr

at
io

n
er

ro
r

[−
]

Figure 6.19: Comparison of the effects due to CNN architecture and repre-
sented superscale convection in the training data: normalized concentration
errors after five propagation steps for Architecture 1 trained on TrainNE1 (a),
Architecture 2 trained on TrainNE1 (b), Architecture 1 on TrainNE1+3 (c),
and Architecture 2 trained on TrainNE1+3 (d).

movement of the fingers. Also, the concentrations are typically underestimated at
the finger tips and overestimated at their cores, which is coherent with the already
encountered tendency of the method to underestimate the absolute flow velocities.
Despite the reasonable qualitative agreement with the measurements, still substantial
errors are encountered, especially, at the leftmost fingers after five propagation steps. It
seems that there the affect of the superscale convection is stronger than the estimation
is able to detect.
In the region for 450 px < x < 600 px, where the influence of the background flow

is weak, the errors are generally smaller for the case where the background flow is
not represented in the training data. This can be explained, as the relevant process
is represented reasonably good in both cases, but the larger optimized time step for
Architecture 1 trained on TrainNE1 compensates for the typical underestimation of
the absolute flow velocities.
In the last region for 600 px < x < 768 px, the background flow is directed to the

left and again affects the movement of the density fingers. Apart from the fact that
the flow is in the opposite direction compared to the first region, the observations are
the same.
Overall, the following conclusions can be drawn from this. The flow field estimation

with Architecture 2 trained on TrainNE1+3 better describes the lateral movement of
the density fingers and is therefore more consistent with the measurements. While the
optimization of the time step in the case of Architecture 1 trained on TrainNE1 allows

93

6 Application

to compensate for the underestimated absolute flow velocities, the lateral flow in the
case of represented superscale convection in the training data introduces an additional
constraint for the optimization of the time step, such that the lateral position of the
fingers has to match the measurements. With this, I argue that the optimized time
step dt̃ = 0.0336 is more consistent with the measurements.

To get an assessment of the effect on the results due to the differences between Ar-
chitecture 1 and Architecture 2, namely the introduction of skip connections to allow
for fine grained information to propagate through the network and the larger model
capacity, a comparison of the normalized concentration errors between the individual
cases is shown in Fig. 6.19. From the left to the right column, Architecture 1 is swapped
for Architecture 2 and from the top to the bottom row, superscale convection is in-
cluded in the training data. When trained on TrainNE1, the normalized concentration
errors for Architecture 1 and Architecture 2 are very similar, therefore, no significant
effect of the architecture differences are encountered in this case. The smaller model
capacity of Architecture 1 already seems to be large enough to incorporate the rele-
vant processes and the skip connections in Architecture 2 seem to be irrelevant for the
detection of the solute movement due to the density-driven flow. When introducing
the representation of background flow the results also improve for Architecture 1, in
the sense that the lateral movement is generally better estimated by the flow fields.
Still, the lateral position is off for some density fingers in the outermost regions. The
overall best results with respect to a consistent representation of the relevant physical
processes are achieved with Architecture 2 trained on TrainNE1+3, although underes-
timated absolute flow velocities introduce underestimated concentrations at the finger
tips in this case. This suggests that skip connections are important to better identify
the small lateral movements, along with the larger model capacity to be capable to
represent the associated background flow.

6.6 Summary & Discussion

I estimated the flow fields for a synthetic and a real world test case by using two
versions, a simplified and an extended one, of the same CNN that I trained on purely
synthetic data of active solute transport and showed the capabilities and limitations
of the approach. In doing so, I successfully transferred the flow field information,
contained in the numerical simulations, over to the laboratory experiment.
First, I used the simpler of the two CNN versions, Architecture 1, trained on the

data that only account for the process of the density-driven instability (TrainNE1).
For the synthetic test case (TestNE2), I chose a representative example to present
the results. For this test case, the method was able to reliably predict the local flow
directions, even in surrounding areas of the density fingers, where no direct information
was given by solute movement. This is quite remarkable, since the concentration
boundary condition in test case was chosen to be different from the boundary condition
in the training data. Furthermore, this demonstrates that the CNN was able to learn

94

6.6 Summary & Discussion

the representation of the physical process and transfer the information to data that
exhibits some qualitative differences to the data it has encountered during the training
process. However, limitations of the method to accurately estimate the absolute flow
velocities were encountered. The CNN tends to underestimate the true values. In
typical applications, like image classification and image segmentation, for which CNNs
originally were developed, high contrast images are encountered. This is different
to the characteristics of the concentration fields observed for active solute transport.
The smooth concentration gradients in conjunction with small displacements seem to
impede the quantitative correct detection of the movement and an improved adaptation
of the method to the physical problem is needed at this point.
In a next step, the same version of the CNN was applied to the laboratory experi-

ment and the flow fields were estimated successfully. This demonstrated exemplarily
the information transfer to real data. The qualitative flow structures were consistent
with the structures in the synthetic data. To investigate the correctness of the esti-
mation, I propagated the concentration fields forward in time, using the displacement
by the estimated flow fields and Gaussian image filtering, and compared the resulting
concentration fields to the measured ones. To obtain the displacement, the flow fields
needed to be scaled with the according time step. Calculation of the time step by
using the characteristics of the experiment resulted in a value of dt̃ = 0.034 ± 0.07
with a large uncertainty and which is also expected to introduce biases that cannot be
assessed. Therefore, I chose to optimize the time step such that the root mean squared
error between the propagated concentration fields and the measured ones were mini-
mized. With this, I obtained a value of dt̃ = 0.0438, which is substantially larger than
the experimentally predicted one. This implicitly scaled the flow fields and therefore
alleviated the suspected and previously in the synthetic test case observed underesti-
mation of the absolute flow velocities. However, I argue that the incorporation of this
information is valid, since the interest is in the best estimate of the experimentally
inaccessible flow fields in between two subsequent time steps. This is conceptually dif-
ferent from using the CNN as a surrogate forward model to predict the next unknown
time steps.
The results on the propagated concentration fields of the laboratory experiment show

that the estimated flow fields explain the measured concentration fields reasonably well
in the center region of the observation area. Comparison to the synthetic reference
showed that the encountered error values can be similar there, but are qualitatively
different in their spatial distribution. According to the underestimated absolute flow
velocities, the propagated concentrations were underestimated at the finger tips in the
synthetic reference, while in the laboratory case, the concentrations were underesti-
mated at the right side of the fingers and overestimated at their left sides. This is
attributed to a lateral drift of whole density fingers, which was observed in the lab-
oratory experiment, but was not represented in the training data, in this case. The
errors due to the lateral drift of density fingers were substantially larger in the outer
regions, where the flow field estimation failed to explain the measured concentration
fields. This indicated the missing representation of relevant transport processes and

95

6 Application

shows that the CNN, despite its capability to generalize to different situations, is only
able to learn the physics presented in the training data.
To account for superscale convection in the synthetic training data, I introduced

background flow by temporally altering the potential at the lateral boundary condi-
tions in the numerical simulation. The extended version of the CNN, Architecture 2,
incorporates more convolution layers and introduces skip connections to allow signal
propagation of fine grained information through the network. I then trained this ver-
sion of the CNN on the extended training data (TrainNE1+3) so that it learned the
representation of the density-driven solute transport along with the superscale convec-
tion. In this case, the method was able to reliably distinguish between the presence and
absence of background flow in the synthetic test data, while maintaining the predictive
capability of the flow due to the density differences, where information was given by
the solute. The method still showed the tendency to underestimate the absolute flow
velocities, as for Architecture 1 trained on the data without represented superscale
convection. As a difference, Architecture 2 trained on the extended training data lost
some of the predictive capability in the surroundings of the density fingers for the
synthetic test example. However, this seems to be attributed to the characteristics of
the training data used in this case, since the flow direction in the bulk without solute
is ambiguous if no explicit information by lateral movement of whole fingers is present.
For the application of Architecture 2 trained on the extended training data with

represented superscale convection on the laboratory experiment, again, the time step
for the concentration field propagation was optimized. In this case, the optimiza-
tion resulted in dt̃ = 0.0336, which is substantially smaller than the previous value
of dt̃ = 0.0438. This is coherent with the presence of the lateral movement of the
density fingers. The objective of the time step optimization was to minimize the root
mean squared error between the propagated and measured concentration fields. Hence,
the lateral movement introduced additional constraints such that not only the finger
lengths had to match but also their lateral positions. Accordingly, the compensation
of the underestimated absolute flow velocities by the implicit scaling of the estimated
flow fields by the time step is expected to be smaller here.
Architecture 2 trained on the extended training data predicted the expected back-

ground flow for the laboratory experiment, whereat regions with strong and weak
influence were detected. Hence, the obtained normalized concentration errors showed
improved qualitative agreement. The lateral positions of the density fingers were pre-
dicted reasonably well, while the propagated concentration values were typically un-
derestimated at the finger tips in accordance to the observed tendency of the method
to underestimate the absolute flow velocities. Especially in the regions with a strong
influence of the background flow, the encountered errors improved in comparison to
Architecture 1 trained on the training data without represented superscale convection
(TrainNE1). In the regions where the influence of the background flow was small,
smaller errors were encountered for Architecture 1 trained on the training data with-
out represented superscale convection, which I attribute to the compensation by the
larger time step. With this and since the predictions of Architecture 2 trained on the

96

6.6 Summary & Discussion

extended training data were more consistent with the measurements, I argue that the
optimized time step of dt̃ = 0.0336 is the more consistent one. This is also supported
by the experimental time step dt̃ = 0.034± 0.07, however, the reliability is limited due
to the large uncertainties there.
The main limitation of the method to typically underestimate the absolute flow

velocities remains at this point. However, using the presented approach I was able
to estimate the otherwise inaccessible flow fields in the laboratory experiment, which
were affected by superscale convection. The main advantage is that this was achieved
without the explicit knowledge of neither the boundary condition with respect to the
concentration, nor the boundary condition with respect to the flow.

97

7 CONCLUSION & OUTLOOK
Improving the representation of hydrological systems is challenging and usually relies
on the availability of accurate and dense measurements. Often, researchers in this field
encounter the situation, where a good understanding of the physical processes is given,
but information about the observed system is incomplete. The presence of nonlinear
processes in combination with uncertain boundary conditions typically impedes accu-
rate predictions. Based on the process understanding and increasing computational
power, large datasets generated by numerical simulations are available. These simu-
lations offer the advantage of detailed information, also of quantities that are difficult
to measure. To close the information gap in real systems, I propose to use recent
deep learning methods that are capable of incorporating the process representation
contained in synthetic datasets to transfer the information to the measurements. In
this work, I demonstrated this approach on the example of flow field estimation for
active solute transport observed in a Hele-Shaw cell experiment, where high resolution
measurements of the solute concentration distribution and its temporal development
are available, while the direct inference of the corresponding flow fields is impossible.
Using numerical simulation of the physical processes, I generated synthetic datasets

over a wide range of Rayleigh numbers. I used a CNN that I adapted from work on
optical flow estimation [Ilg et al., 2017] to estimate the flow fields, after training it on
the synthetic data.
The application of the trained CNN to a synthetic test case showed that the method

was able to learn the structurally correct representation of the physical processes,
hence, the flow fields were predicted reliably in their flow direction. Additionally, the
method was able to generalize toward spatial and temporal variations in the upper
concentration boundary condition. However, limitations were found in the estimation
of the absolute flow velocities, for which the CNN tends to underestimate the true
values.
To explore the capabilities on real data, I applied the flow field estimation with

the CNN to a Hele-Shaw cell experiment. The estimated flow fields showed the same
structural quality as for the synthetic test case. Temporal propagation of the con-
centration fields using the estimated flow fields was able to explain the measurements
reasonably well in the center of the cell, while the underestimation of the absolute flow
velocities also remained in this case. In the outer regions, the observed agreement be-
tween the propagated concentration fields and the measurements was poor and strong
influences of background flow in the laboratory experiment were identified as being
unrepresented in the synthetic data. By extending the training data to also incorpo-
rate superscale convection and using an extended version of the CNN, I resolved this
issue. The method was able to reliably predict the direction of the background flow
and hence the influence of superscale convection without explicit knowledge of the

99

7 Conclusion & Outlook

boundary conditions, which is remarkable. This capability to estimate missing sys-
tem quantities without explicit knowledge of boundary conditions is relevant to solve
inverse problems in hydrology and is a major advantage compared to other methods
used to address these problems. Alternatives, like inverse modeling, are typically very
sensitive to boundary conditions, which are challenging to infer correctly.

To resolve the main limitation of the method to correctly estimate the absolute flow
velocities, which I mainly attribute to ambiguous detection of the solute movement
due to the encountered smooth concentration gradients in the input data, a better
understanding of the input-output relation of the CNNs is needed. Approaches to gain
insight into the network internal signal propagation for the problem of image recog-
nition [e.g., Zeiler and Fergus, 2014; Olah et al., 2018; Carter et al., 2019] need to be
adapted, utilized, and interpreted for physical problems and could help in this regard.
Also, I expect that a more explicit incorporation of time information by employing
principles of long short-term memory [Hochreiter and Schmidhuber , 1997] to enable
inference of the flow fields from the entire temporal development of the experiments
is advantageous over the input of only two subsequent concentration fields. Corre-
sponding technical improvement of the CNNs possibly leads to a more robust relation
between the movement observed in the input and the corresponding flow velocities.
The presented approach is not limited to flow field estimation of active solute trans-

port, which I chose for the demonstration. The conceptual idea can be transferred
to other inverse problems, such as estimation of soil material properties based on ob-
servations of passive solute transport. Other inverse problems will give rise to new
challenges, which require further development of the utilized deep learning methods.
First steps are already done, e.g. with Bayesian inference of the internal model param-
eters of CNNs [Zhu and Zabaras, 2018] to quantify the uncertainty and the reliability
of the network estimations. In conjunction with the availability of suited training data,
I expect a wide applicability of the presented approach.

100

A APPENDIX
A.1 Additional Data: Numerical Experiments

0

50

100
(a)

0

50

100

150
(b)

0

50

100

150

200

z
[p

x
]

(c)

0 75 150 225 300 375 450 525 600 675 750

x [px]

0

50

100

150

200

250

300

350
(d)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C̃
w

[C
c
]

Figure A.1: Concentration fields of NE1 for Rasim = 12,000 at t̃ = 1.4 (a),
t̃ = 2.0 (b), t̃ = 2.6 (c), and t̃ = 3.9 (d). The complete width of the domain
is presented, while the shown portion of the depth is adapted to the density
fingers.

103

A Appendix

0

50

100
(a)

0

50

100

150
(b)

0

50

100

150

200

z
[p

x
]

(c)

0 75 150 225 300 375 450 525 600 675 750

x [px]

0

50

100

150

200

250

300

350
(d)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C̃
w

[C
c
]

Figure A.2: Concentration fields of NE1 for Rasim = 26,000 at t̃ = 1.0 (a),
t̃ = 1.3 (b), t̃ = 2.0 (c), and t̃ = 3.6 (d). Same representation as in Fig. A.1.

104

A.1 Additional Data: Numerical Experiments

0

50

100
(a)

0

50

100

150
(b)

0

50

100

150

200

z
[p

x
]

(c)

0 75 150 225 300 375 450 525 600 675 750

x [px]

0

50

100

150

200

250

300

350
(d)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C̃
w

[C
c
]

Figure A.3: Concentration fields of NE2 for Rasim = 3,750 at t̃ = 0.3 (a),
t̃ = 1.0 (b), t̃ = 1.8 (c), and t̃ = 2.8 (d). Same representation as in Fig. A.1.

105

A Appendix

0

50

100
(a)

0

50

100

150
(b)

0

50

100

150

200

z
[p

x
]

(c)

0 75 150 225 300 375 450 525 600 675 750

x [px]

0

50

100

150

200

250

300

350
(d)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C̃
w

[C
c
]

Figure A.4: Concentration fields of NE2 for Rasim = 13,750 at t̃ = 0.3 (a),
t̃ = 0.8 (b), t̃ = 1.6 (c), and t̃ = 2.7 (d). Same representation as in Fig. A.1.

106

A.1 Additional Data: Numerical Experiments

0

50

100
(a)

0

50

100

150
(b)

0

50

100

150

200

z
[p

x
]

(c)

0 75 150 225 300 375 450 525 600 675 750

x [px]

0

50

100

150

200

250

300

350
(d)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C̃
w

[C
c
]

Figure A.5: Concentration fields of NE3 for Rasim = 4,500 at t̃ = 0.5 (a),
t̃ = 0.7 (b), t̃ = 1.2 (c), and t̃ = 2.0 (d). Same representation as in Fig. A.1.

107

A Appendix

0

50

100
(a)

0

50

100

150
(b)

0

50

100

150

200

z
[p

x
]

(c)

0 75 150 225 300 375 450 525 600 675 750

x [px]

0

50

100

150

200

250

300

350
(d)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C̃
w

[C
c
]

Figure A.6: Concentration fields of NE3 for Rasim = 16,000 at t̃ = 0.4 (a),
t̃ = 0.9 (b), t̃ = 1.4 (c), and t̃ = 2.1 (d). Same representation as in Fig. A.1.

108

A.2 Network Architecture Details

A.2 Network Architecture Details

Loss calculation ()

ReLU13 (ReLU)

blob34

ReLU6 (ReLU)

blob17

ReLU2 (ReLU)

blob13

conv6_1 (Convolution) kernel size: 3 stride: 1 pad: 1

blob21

384

ReLU7 (ReLU)

blob18

blob10

conv1 (Convolution) kernel size: 7 stride: 2 pad: 3

conv5 (Convolution) kernel size: 3 stride: 2 pad: 1

192

blob15

ReLU4 (ReLU)conv4 (Convolution) kernel size: 3 stride: 2 pad: 1

convT5 (Deconvolution) kernel size: 4 stride: 2 pad: 1

blob24

192

ReLU11 (ReLU)

blob20

ReLU9 (ReLU)

ReLU1 (ReLU)

blob12

blob42

slice_blob42 (Slice)

conv3 (Convolution) kernel size: 5 stride: 2 pad: 2

conv6 (Convolution) kernel size: 3 stride: 2 pad: 1

384

24

convT4 (Deconvolution) kernel size: 4 stride: 2 pad: 1

blob29

96

convT3 (Deconvolution) kernel size: 4 stride: 2 pad: 1

48

blob14

ReLU3 (ReLU)conv3_1 (Convolution) kernel size: 3 stride: 1 pad: 1

ReLU14 (ReLU)

blob39

NoiseAugmentationFlow (FlowAugmentation)

flow_aug

Eltwise3 (Eltwise)

blob11

conc0_aug

Concat1 (Concat)

NoiseAugmentationParams (GenerateAugmentationParameters)

blob_flow_yblob_flow_x

convT2 (Deconvolution) kernel size: 4 stride: 2 pad: 1

24

conc0

RescaleConcValues0 (Eltwise)

predict_conv2 (Convolution) kernel size: 3 stride: 1 pad: 1

2

TrainingData (CustomData)

flowconc1

blob7

conc1s_aug (DataAugmentation)

scale_flow_x (Convolution) kernel size: 1 stride: 1 pad: 0

blob_flow_x_scaled

1

ReLU12 (ReLU)

ReLU10 (ReLU)

blob16

conv4_1 (Convolution) kernel size: 3 stride: 1 pad: 1 ReLU5 (ReLU)

blob3

conc1_aug

RescaleConcValues1 (Eltwise)

ReLU8 (ReLU)

blob19

NoiseAugmentation (DataAugmentation)

conv5_1 (Convolution) kernel size: 3 stride: 1 pad: 1

192

blob4

conv2 (Convolution) kernel size: 5 stride: 2 pad: 2

48

scale_flow_y (Convolution) kernel size: 1 stride: 1 pad: 0

96

192

blob6

192

blob_flow_y_scaled

1

ValidationData (CustomData)

96

Figure A.7: Details of Architecture 1 (not optimized for print): The feature
maps (gray) are connected with convolution and transposed convolution layers
(red) that are followed by leaky ReLU activation functions (green). Utility
layers like data augmentation, slicing and concatenation, and the calculation
of the loss (cf. Fig. A.11) are depicted in blue.

109

A Appendix

ReLU2 (ReLU)

conv1

input

conv0 (Convolution) kernel size: 3 stride: 1 pad: 1

Loss calculation 5 (q = 0.8)

convT4

ReLU15 (ReLU)

Concat3 (Concat)

blob_flow2_y

scale_flow2_y (Convolution) kernel size: 1 stride: 1 pad: 0

ReLU11 (ReLU)

conv5_1

interconv3 (Convolution) kernel size: 3 stride: 1 pad: 1

blob45

128

blob_flow4_y_scaled

Loss calculation 4 (q = 0.1)

slice_predict_flow5 (Slice)

blob_flow5_x blob_flow5_y

convT3 (Deconvolution) kernel size: 4 stride: 2 pad: 1

convT3

128

blob3

NoiseAugmentationParams (GenerateAugmentationParameters)

NoiseAugmentation (DataAugmentation)

NoiseAugmentationFlow (FlowAugmentation)

flow_aug

conv6 (Convolution) kernel size: 3 stride: 2 pad: 1

Concat2 (Concat)

conv6_1 (Convolution) kernel size: 3 stride: 1 pad: 1

conv6_1

1024

concat5

convT4 (Deconvolution) kernel size: 4 stride: 2 pad: 1interconv5 (Convolution) kernel size: 3 stride: 1 pad: 1

conc0

RescaleConcValues0 (Eltwise)

TrainingData (CustomData)

flow conc1

blob7

conc1s_aug (DataAugmentation)

slice_predict_flow4 (Slice)

blob_flow4_y blob_flow4_x

slice_predict_flow2 (Slice)

blob_flow2_x

interconv4_2 (Convolution) kernel size: 3 stride: 1 pad: 1

predict_flow4

2

blob39

Eltwise3 (Eltwise)

conv3_1

conv4 (Convolution) kernel size: 3 stride: 2 pad: 1 ReLU7 (ReLU)

Concat4 (Concat)

predict_flow2

blob13

Loss calculation 2 (q = 0.015)

Loss calculation 6 (q = 3.2)

Loss calculation 3 (q = 0.02)

upsampled_flow6_to_5

interconv_2 (Convolution) kernel size: 3 stride: 1 pad: 1

predict_flow5

2

blob_flow3_x_scaled

slice_predict_flow3 (Slice)

blob_flow3_x blob_flow3_y

scale_flow2_x (Convolution) kernel size: 1 stride: 1 pad: 0

256

convT4_2 (Deconvolution) kernel size: 4 stride: 2 pad: 1

upsampled_flow5_to_4

2

blob33

512

upsampled_flow4_to_3

concat4

interconv4 (Convolution) kernel size: 3 stride: 1 pad: 1

conv4

512

conv0

64

scale_flow3_y (Convolution) kernel size: 1 stride: 1 pad: 0

blob_flow3_y_scaled

1

conv1 (Convolution) kernel size: 3 stride: 2 pad: 1

64

convT5_2 (Deconvolution) kernel size: 4 stride: 2 pad: 1

2

conv6

ReLU12 (ReLU)

conc0_aug

Concat1 (Concat)

blob_flow6_x_scaled

ReLU3 (ReLU)

conv1_1

conv4_1

conv5 (Convolution) kernel size: 3 stride: 2 pad: 1 ReLU9 (ReLU)

ReLU10 (ReLU)

conv5

conv1_1 (Convolution) kernel size: 3 stride: 1 pad: 1

conc1_aug

blob_flow2_x_scaled

scale_flow5_x (Convolution) kernel size: 1 stride: 1 pad: 0

blob_flow2_y_scaled

1

RescaleConcValues1 (Eltwise)

blob4

convT2 (Deconvolution) kernel size: 4 stride: 2 pad: 1

convT2

64

blob_flow5_x_scaled

scale_flow4_y (Convolution) kernel size: 1 stride: 1 pad: 0

256

conv3 (Convolution) kernel size: 3 stride: 2 pad: 1

conv3

256

convT5 (Deconvolution) kernel size: 4 stride: 2 pad: 1

convT5

512

interconv2 (Convolution) kernel size: 3 stride: 1 pad: 1

blob51

64

ReLU14 (ReLU)

scale_flow4_x (Convolution) kernel size: 1 stride: 1 pad: 0

blob_flow4_x_scaled

1

512

blob_flow6_y_scaled

1024

conv2_1

Concat5 (Concat)

ReLU5 (ReLU)

scale_flow3_x (Convolution) kernel size: 1 stride: 1 pad: 0

1

ReLU6 (ReLU)

ReLU13 (ReLU)interconv6 (Convolution) kernel size: 3 stride: 1 pad: 1

interconv3_2 (Convolution) kernel size: 3 stride: 1 pad: 1

predict_flow3

2

slice_predict_flow6 (Slice)

blob_flow6_y blob_flow6_x

1

ReLU17 (ReLU)

1

1

conv5_1 (Convolution) kernel size: 3 stride: 1 pad: 1

512

conv2 (Convolution) kernel size: 3 stride: 2 pad: 1

128

blob6

scale_flow5_y (Convolution) kernel size: 1 stride: 1 pad: 0

predict_flow6

ReLU16 (ReLU)

ValidationData (CustomData)

ReLU1 (ReLU)

ReLU8 (ReLU)conv4_1 (Convolution) kernel size: 3 stride: 1 pad: 1

scale_flow6_y (Convolution) kernel size: 1 stride: 1 pad: 0

concat3

concat2

scale_flow6_x (Convolution) kernel size: 1 stride: 1 pad: 0

interconv2_2 (Convolution) kernel size: 3 stride: 1 pad: 1

2

convT3_2 (Deconvolution) kernel size: 4 stride: 2 pad: 1

2

2

convT2_2 (Deconvolution) kernel size: 4 stride: 2 pad: 1

upsampled_flow3_to_2

2

conv3_1 (Convolution) kernel size: 3 stride: 1 pad: 1

11

conv2

ReLU4 (ReLU) conv2_1 (Convolution) kernel size: 3 stride: 1 pad: 1

128

128

256

512

blob_flow5_y_scaled

1

Figure A.8: Details of Architecture 2 (not optimized for print): The loss con-
tributions at the coarse resolutions are calculated as depicted in Fig. A.11,
which are combined by a weighted sum according to the weights q. Same
representation as Fig. A.7.

110

A.2 Network Architecture Details

conv (Convolution) kernel size: 3 stride: 2 pad: 1

Feature map b

256

Feature map a

Concatenate (Concat)leaky ReLU2 (ReLU)

Feature map c

convT (Deconvolution) kernel size: 4 stride: 2 pad: 1

256

leaky ReLU1 (ReLU)

Figure A.9: Detail of a skip connection: convolution and transposed convolu-
tion layers are bypassed by concatenating a shallower feature map a with a
deeper feature map c.

Predicted flow

Upsampling (Deconvolution) kernel size: 4 stride: 2 pad: 1

Upsampled flow prediction

2

Feature map a

convT (Deconvolution) kernel size: 4 stride: 2 pad: 1 Coarse flow prediciton (Convolution) kernel size: 3 stride: 1 pad: 1

Concatenate (Concat)

leaky ReLU (ReLU)

Feature map b

512 2

Figure A.10: Detail of an upsampling connection: similar to the skip connec-
tion (cf. Fig. A.9), the transposed convolution layers is bypassed by flow
prediciton using a convolution layer and subsequent upsamling using a trans-
posed convolution layer (both without activation functions).

111

A Appendix

Elementwise flow difference y

Elementwise squares y (Power)

Downsampled true flow field

Slice true flow field (Slice)

Elementwise difference y (Eltwise)

Predicted flow field x

Elementwise difference x (Eltwise)

Combined loss

Sum over all elements flow x (Reduction)

Loss x

Predicted flow field y

Elementwise squares of flow diff y

Downsampled true flow field x Downsampled true flow field y

Sum (Eltwise)

Elementwise squares of flow diff x

Elementwise flow difference x

Downsample to match predicition (Downsample)

Loss y

Sum over all elements flow y (Reduction)

Elementwise squares x (Power)

True flow field

Figure A.11: Illustration of the loss calculation as defined in Eq. (5.39): sev-
eral utility layers (blue) are used to calculate the elementwise differences and
squares of the flow components (gray), before the sum over all elements is
calculates as the loss.

112

A.3 Additional Data: Application

A.3 Additional Data: Application

0

100

200

300

(a)
0

100

200

300

z
[p

x
]

(b)

0 100 200 300 400 500 600 700

0

100

200

300

(c)

(d)

(e)

0 100 200 300 400 500 600 700

x [px]

(f)

(g)

(h)

0 100 200 300 400 500 600 700

(i)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C̃
w

[C
c
]

Figure A.12: Concentration field propagation by t̃p = 0.04 (top row), 0.08 (cen-
ter row), and 0.22 (bottom row) for TrainNE1: true concentration fields (a)-
(c), concentration fields propagated with true flow fields (d)-(f), and concen-
tration fields propagated with estimated flow fields (g)-(i).

113

A Appendix

0

75

150

225

300

375

z
[p

x
]

(a)

0 75 150 225 300 375 450 525 600 675 750

x [px]

0

75

150

225

300

375

z
[p

x
]

(b)

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

d
iv

ũ
[1
/T

c
]

×10−4

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

d
iv

ũ
[1
/T

c
]

×10−2

Figure A.13: Flow field divergence on the ValidateNE1+3 example with repre-
sented superscale convection for the true (a) and the estimated (b) flow fields.
Concentration isolines are given at levels C̃ = (0.25, 0.5, 0.75).

114

A.3 Additional Data: Application

0

75

150

225

300

375

z
[p

x
]

(a)

0 75 150 225 300 375 450 525 600 675 750

x [px]

0

75

150

225

300

375

z
[p

x
]

(b)

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

d
iv

ũ
[1
/T

c
]

×10−4

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

d
iv

ũ
[1
/T

c
]

×10−2

Figure A.14: Flow field divergence on the TestNE2 example with represented
superscale convection for the true (a) and the estimated (b) flow fields. Same
representation as in Fig. A.13.

115

A Appendix

0

100

200

300
(a)

0

100

200

300

z
[p

x
]

(b)

0 100 200 300 400 500 600 700

x [px]

0

100

200

300
(c)

(d)

(e)

0 100 200 300 400 500 600 700

x [px]

(f)
−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

N
or

m
al

iz
ed

co
n

ce
n
tr

a
ti

on
er

ro
r

[−
]

Figure A.15: Comparison of the normalized concentration errors for the cases
with and without represented superscale convection using only Architecture
1: Results for training on TrainNE1 ((a) to (c)) and training on TrainNE1+3
((d) to (f)), both after one (top row), two (middle row), and five (bottom row)
propagation steps using their respective optimized time steps dt̃. Normalized
concentration errors are chosen to be negative for C̃est

w < C̃true
w . The black

dotted lines indicate regions with strong and weak influence of the background
flow. The black dashed line indicates the initial position of the respective
density finger seeding point.

116

A.3 Additional Data: Application

0

100

200

300

(a)
0

100

200

300

z
[p

x
]

(b)

0 100 200 300 400 500 600 700

x [px]

0

100

200

300

(c)

(d)

(e)

0 100 200 300 400 500 600 700

x [px]

(f)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C̃
w

[C
c
]

Figure A.16: Concentration field propagation for the laboratory experiment
with represented superscale convection using Architecture 2: True concen-
tration fields (a)-(c) and concentration fields propagated with estimated flow
fields (d)-(f) at propagation times t̃p = 0.0336 (top row), t̃p = 0.0672 (center
row), and t̃p = 0.168 (bottom row). The red dashed line marks the initial
position of the respective density finger seeding point.

117

A Appendix

1.0 2.0 3.0 4.0 5.0

σ [px]

0.01

0.03

0.05

0.07

d
t̃
[−

]

(a)

1.0 2.0 3.0 4.0 5.0

σ [px]

(b)
2

3

4

5

6

7

R
M

S
E

[−
]

Figure A.17: Results of the parameter scans for the optimized dimensionless
time step and standard deviation of the Gaussian image filter: The root mean
squared error (RMSE) of the propagated and measured concentration fields,√[∑N

j=1

[
C̃est
j − C̃true

j

]2]
/N with N being the number of pixels, for Architec-

ture 1 trained on TrainNE1 (a) and Architecture 2 trained on TrainNE1+3 (b).
The black dotted lines indicate the resulting values dt̃ = 0.0438, σ = 2.6 px
(a) and dt̃ = 0.0336, σ = 2.2 px (b). Note that the minimum for Architecture
2 trained on TrainNE1+3 is lower showing a overall better agreement with
the measurements.

118

B LIST OF FIGURES
2.1 Illustration of the parabolic Hagen-Poiseuille velocity profile between

two parallel plates . 8
2.2 Illustration of the mixing processes at pore junctions. 12
2.3 Initial condition for the density-driven instability 15
2.4 Comparison of the dimensionless formulations obtained from scaling

with the domain height and the convection-diffusion length 20

3.1 Concentration fields of NE1 for Rasim = 4,000 24
3.2 Space-time maps of NE1 . 25
3.3 Observed relation of the reciprocal critical wavelength and the Rayleigh

number of NE1 . 26
3.4 Concentration fields of NE2 for Rasim = 5,750 27
3.5 Space-time maps of NE2 . 28
3.6 Concentration fields of NE3 for Rasim = 9,000 29
3.7 Space-time maps of NE3 . 30

4.1 Illustration of the experimental setup . 34
4.2 Concentration fields of the laboratory experiment 37
4.3 Space-time map of the laboratory experiment 38
4.4 Spatial distribution of the initial fingers of the laboratory experiment . . 39

5.1 Illustration of the discrete convolution on 2-dimensional input 45
5.2 Illustration of the connectivity in the CNN 46
5.3 Illustration of a single convolution layer 47
5.4 Illustration of activation functions . 48
5.5 Computational graph of a discrete convolution 53
5.6 Architecture 1 . 66
5.7 Architecture 2 . 67

6.1 Estimated flow field for the ValidateNE1 example 72
6.2 Flow field divergence for the ValidateNE1 example 73
6.3 Estimated flow field for the TestNE2 example 74
6.4 Flow field divergence for the TestNE2 example 75
6.5 Error distributions of the mean endpoint error for ValidateNE1 and

TestNE2 . 76
6.6 Error measures for the ValidateNE1 example 77
6.7 Error measures for the TestNE2 example 78
6.8 Estimated flow field for the laboratory experiment 80
6.9 Concentration field propagation for the laboratory experiment 81
6.10 Normalized concentration errors for propagated concentration fields . . 82

119

B List of Figures

6.11 Estimated flow field for the ValidateNE1+3 example with represented
superscale convection . 84

6.12 Estimated flow field for the TestNE2 example with represented super-
scale convection . 85

6.13 Error distributions of the mean endpoint error for the validation dataset
(a) and the test dataset . 86

6.14 Error measures for the ValidateNE1+3 example with represented super-
scale convection . 87

6.15 Error measures for the TestNE2 example with represented superscale
convection . 88

6.16 Estimated flow field for the laboratory experiment with represented su-
perscale convection . 90

6.17 Comparison of the propagated concentration fields for the cases with and
without represented superscale convection (Detail of the three rightmost
density fingers) . 91

6.18 Comparison of the normalized concentration errors for the cases with
and without represented superscale convection 92

6.19 Comparison of the effects due to CNN architecture and represented
superscale convection in the training data 93

A.1 Concentration fields of NE1 for Rasim = 12,000 103
A.2 Concentration fields of NE1 for Rasim = 26,000 104
A.3 Concentration fields of NE2 for Rasim = 3,750 105
A.4 Concentration fields of NE2 for Rasim = 13,750 106
A.5 Concentration fields of NE3 for Rasim = 4,500 107
A.6 Concentration fields of NE3 for Rasim = 16,000 108
A.7 Details of Architecture 1 . 109
A.8 Details of Architecture 2 . 110
A.9 Detail of a skip connection . 111
A.10 Detail of an upsampling connection . 111
A.11 Illustration of the loss calculation . 112
A.12 Concentration field propagation by t̃p = 0.04, 0.08 , and 0.22 for TrainNE1113
A.13 Flow field divergence on the ValidateNE1+3 example with represented

superscale convection . 114
A.14 Flow field divergence on the TestNE2 example with represented super-

scale convection . 115
A.15 Comparison of the normalized concentration errors for the cases with

and without represented superscale convection using only Architecture 1.116
A.16 Concentration field propagation on the laboratory experiment with rep-

resented superscale convection . 117
A.17 Results of the parameter scans for the optimized dimensionless time step

and standard deviation of the Gaussian image filter 118

120

C LIST OF TABLES
4.1 Characterization of the laboratory experiment. 35

5.1 Network and training hyperparameters for Architecture 1. 60
5.2 Network hyperparameters for Architecture 2. 61
5.3 Training hyperparameters for Architecture 2. 62
5.4 Summary of the synthetic training, validation, and test datasets. 64

121

ACKNOWLEDGMENTS
I would like to thank all the people, without whom the work on the presented project
would not have been possible in the same way.

For giving me the opportunity to work on the project I would like to thank my
advisor Prof. Dr. Kurt Roth. Thank you for your inspiration and always being
present when discussion about the arising challenges was needed. Also I would like to
thank Prof. Dr. Werner Aeschbach for immediately agreeing to the role as referee of
this thesis. For providing the implementation of the numerical solver, I would like to
express my honest appreciation to Prof. Dr. Peter Bastian.
Although I didn’t have official mentors, there are people that I have definitely per-

ceived as such. Especially, I would like to thank Dr. Hannes Bauser, who was always
there to discuss the concepts and often provided smart ideas on how to approach the
challenges. Also I would like to thank Dr. Daniel Berg, who helped a lot to resolve
any computer related issues, and Dr. Lisa Hantschel for the discussions of preliminary
results at the different phases of the work, which helped to generate new ideas.
Furthermore, I would like to thank Angelika Gassama for all the help to make the

laboratory experiments possible and the creativity, when issues needed to be fixed
quickly. Also I want to thank Jule Thome, who was always there for discussions, when
I was not entirely sure on how to solve especially technical but also other general issues.
My thanks also go to all the members of the TS-CCEES group. It was a very nice

time with you and I will certainly keep the intense, but also fun retreats in memory.
Besides the work group there were also many other nice people around the institute.
Thank you all, it was very nice that you always were in for a chat.
For the discussions and your comments, when finishing this thesis, special thanks

go to Jule Thome, Dr. Lisa Hantschel, Dr. Hannes Bauser, Dr. Johannes Windschuh,
and Sabrina Ebenhoch.

I want to thank all of my friends and the people who were around in the last four
years. Thank you Vera, Silvan, Julian, Sarah, Lena, Robert, Jil, Dominik, Philipp,
Johnny, Therese, Jan, Marian, Christopher, and Maria for all the time we spend
together and the laughs we shared. Without you, this phase of my life would have
been a lot less enjoyable.
And then, I want to thank my mother and my father, who seem to have done a very

decent job in promoting my curiosity while they raised me. Thank you for that and
for just being there.

123

BIBLIOGRAPHY OF OWN PUBLICATIONS
In parts, the results presented in this dissertation have already been published in a
peer reviewed journal. The publication, which I wrote as first author, is listed below.
Identical figures, tables, and wording occur in this work.

Kreyenberg, P. J., H. H. Bauser, and K. Roth, Velocity field estimation on density-
driven solute transport with a convolutional neural network, Water Resources Re-
search, doi:10.1029/2019WR024833, 2019.

Parts of the datasets supporting this work have been made publicly available.

Kreyenberg, P. J., H. H. Bauser, and K. Roth, Velocity field estimation on density-
driven solute transport with a convolutional neural network [Dataset], heiDATA,
doi:10.11588/data/7NEEKF, 2019.

125

https://doi.org/10.1029/2019WR024833
https://doi.org/10.11588/data/7NEEKF

REFERENCES
Abadi, M., et al., TensorFlow: Large-scale machine learning on heterogeneous dis-
tributed systems, arXiv preprint arXiv:1603.04467, 2016.

Alexander, R., Diagonally implicit Runge–Kutta methods for stiff ODE’s, SIAM Jour-
nal on Numerical Analysis, 14 (6), 1006–1021, doi:10.1137/0714068, 1977.

Aris, R., On the dispersion of a solute in a fluid flowing through a tube, Proceed-
ings of the Royal Society of London. Series A. Mathematical and Physical Sciences,
235 (1200), 67–77, doi:10.1098/rspa.1956.0065, 1956.

Backhaus, S., K. Turitsyn, and R. E. Ecke, Convective instability and mass transport of
diffusion layers in a Hele-Shaw geometry, Physical Review Letters, 106 (10), 104,501,
doi:10.1103/PhysRevLett.106.104501, 2011.

Bastian, P., M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger, and
O. Sander, A generic grid interface for parallel and adaptive scientific computing.
Part I: Abstract framework, Computing, 82 (2), 103–119, doi:10.1007/s00607-008-
0003-x, 2008a.

Bastian, P., M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber,
M. Ohlberger, and O. Sander, A generic grid interface for parallel and adaptive
scientific computing. Part II: Implementation and tests in Dune, Computing, 82 (2),
121–138, doi:10.1007/s00607-008-0004-9, 2008b.

Bear, J., On the tensor form of dispersion in porous media, Journal of Geophysical
Research, 66 (4), 1185–1197, doi:10.1029/JZ066i004p01185, 1961.

Bénard, H., Les tourbillons cellulaire dans nappe liquide transportant de la chaleur
purconvections en regime permanent, Rev. Gen. Sci. Pures Appl. Bull. Assoc., 11,
1309–1328, 1900.

Bengio, Y., Learning deep architectures for AI, Foundations and trends® in Machine
Learning, 2 (1), 1–127, doi:10.1561/2200000006, 2009.

Bengio, Y., Practical recommendations for gradient-based training of deep ar-
chitectures, in Neural networks: Tricks of the trade, pp. 437–478, Springer,
doi:10.1007/978-3-642-35289-8_26, 2012.

Bengio, Y., P. Lamblin, D. Popovici, and H. Larochelle, Greedy layer-wise training of
deep networks, in Advances in neural information processing systems, pp. 153–160,
2007.

127

http://dx.doi.org/10.1137/0714068
http://dx.doi.org/10.1098/rspa.1956.0065
http://dx.doi.org/10.1103/PhysRevLett.106.104501
http://dx.doi.org/10.1007/s00607-008-0003-x
http://dx.doi.org/10.1007/s00607-008-0003-x
http://dx.doi.org/10.1007/s00607-008-0004-9
http://dx.doi.org/10.1029/JZ066i004p01185
http://dx.doi.org/10.1561/2200000006
http://dx.doi.org/10.1007/978-3-642-35289-8_26

References

Blatt, M., and P. Bastian, The iterative solver template library, in Applied parallel com-
puting. State of the art in scientific computing, vol. 4699, edited by B. Kågström,
E. Elmroth, J. Dongarra, and J. Waśniewski, pp. 666–675, Springer Berlin Heidel-
berg, Berlin, Heidelberg, doi:10.1007/978-3-540-75755-9_82, 2007.

Blatt, M., and P. Bastian, On the generic parallelisation of iterative solvers
for the finite element method, Int. J. Comput. Sci. Eng., 4 (1), 56–69,
doi:10.1504/IJCSE.2008.021112, 2008.

Blatt, M., et al., The distributed and unified numerics environment, version 2.4,
Archive of Numerical Software, 4 (100), 13–29, doi:10.11588/ans.2016.100.26526,
2016.

Boussinesq, J., Théorie analytique de la chaleur (analytic theory of heat). Tome, Paris,
Gauthier-Villars, 1903.

Carter, S., Z. Armstrong, L. Schubert, I. Johnson, and C. Olah, Exploring neural
networks with activation atlases, Distill, 4 (3), e15, doi:10.23915/distill.00015, 2019.

Cauchy, A., Méthode générale pour la résolution des systemes d’équations simultanées,
Comp. Rend. Sci. Paris, 25 (1847), 536–538, 1847.

Cireşan, D., U. Meier, J. Masci, and J. Schmidhuber, Multi-column deep
neural network for traffic sign classification, Neural networks, 32, 333–338,
doi:10.1016/j.neunet.2012.02.023, 2012.

de Bezenac, E., A. Pajot, and P. Gallinari, Deep learning for physical processes: In-
corporating prior scientific knowledge, arXiv:1711.07970 [cs, stat], 2017.

Diersch, H.-J., and O. Kolditz, Variable-density flow and transport in porous me-
dia: Approaches and challenges, Advances in Water Resources, 25 (8-12), 899–944,
doi:10.1016/S0309-1708(02)00063-5, 2002.

Dosovitskiy, A., P. Fischer, E. Ilg, P. Häusser, C. Hazirbaş, V. Golkov, P. Van
Der Smagt, D. Cremers, and T. Brox, FlowNet: Learning optical flow with convolu-
tional networks, in 2015 IEEE international conference on computer vision (ICCV),
pp. 2758–2766, IEEE, Santiago, doi:10.1109/ICCV.2015.316, 2015.

Ecke, R. E., and S. Backhaus, Plume dynamics in Hele-Shaw porous media convec-
tion, Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 374 (2078), 20150,420, doi:10.1098/rsta.2015.0420, 2016.

Ennis-King, J., and L. Paterson, Rate of dissolution due to convective mixing in the
underground storage of carbon dioxide, in Greenhouse gas control technologies - 6th
international conference, edited by J. Gale and Y. Kaya, pp. 1653–1656, Pergamon,
Oxford, doi:10.1016/B978-008044276-1/50268-3, 2003.

128

http://dx.doi.org/10.1007/978-3-540-75755-9_82
http://dx.doi.org/10.1504/IJCSE.2008.021112
http://dx.doi.org/10.11588/ans.2016.100.26526
http://dx.doi.org/10.23915/distill.00015
http://dx.doi.org/10.1016/j.neunet.2012.02.023
http://dx.doi.org/10.1016/S0309-1708(02)00063-5
http://dx.doi.org/10.1109/ICCV.2015.316
http://dx.doi.org/10.1098/rsta.2015.0420
http://dx.doi.org/10.1016/B978-008044276-1/50268-3

References

Ennis-King, J. P., and L. Paterson, Role of convective mixing in the long-term stor-
age of carbon dioxide in deep saline formations, SPE Journal, 10 (03), 349–356,
doi:10.2118/84344-PA, 2005.

Faisal, T. F., S. Chevalier, and M. Sassi, Experimental and numerical studies of density
driven natural convection in saturated porous media with application to CO2 ge-
ological storage, Energy Procedia, 37, 5323–5330, doi:10.1016/j.egypro.2013.06.450,
2013.

Faisal, T. F., S. Chevalier, Y. Bernabe, R. Juanes, and M. Sassi, Quantita-
tive and qualitative study of density driven CO2 mass transfer in a vertical
Hele-Shaw cell, International Journal of Heat and Mass Transfer, 81, 901–914,
doi:10.1016/j.ijheatmasstransfer.2014.11.017, 2015.

Farabet, C., C. Couprie, L. Najman, and Y. LeCun, Learning hierarchical features
for scene labeling, IEEE transactions on pattern analysis and machine intelligence,
35 (8), 1915–1929, doi:10.1109/TPAMI.2012.231, 2012.

Farajzadeh, R., H. Salimi, P. L. Zitha, and H. Bruining, Numerical simulation of
density-driven natural convection in porous media with application for CO2 injection
projects, International Journal of Heat and Mass Transfer, 50 (25-26), 5054–5064,
doi:10.1016/j.ijheatmasstransfer.2007.08.019, 2007.

Fernandez, J., P. Kurowski, P. Petitjeans, and E. Meiburg, Density-driven unsta-
ble flows of miscible fluids in a Hele-Shaw cell, Journal of Fluid Mechanics, 451,
doi:10.1017/S0022112001006504, 2002.

Fick, A., Über Diffusion, Annalen der Physik, 170 (1), 59–86,
doi:10.1002/andp.18551700105, 1855.

Glorot, X., and Y. Bengio, Understanding the difficulty of training deep feedforward
neural networks, in Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pp. 249–256, 2010.

Goodfellow, I., Y. Bengio, and A. Courville, Deep Learning, MIT Press, ISBN:
0262035618, http://www.deeplearningbook.org, 2016.

Graf, F., E. Meiburg, and C. Haertel, Density-driven instabilities of miscible fluids in
a Hele-Shaw cell: linear stability analysis of the three-dimensional Stokes equations,
Journal of Fluid Mechanics, 451, 261–282, doi:10.1017/S0022112001006516, 2002.

Guo, Y., Deep learning for visual understanding, Ph.D. thesis, Leiden University, the
Netherlands, 2017.

Hassanzadeh, H., M. Pooladi-Darvish, and D. W. Keith, Modelling of convec-
tive mixing in CO2 storage, Journal of Canadian Petroleum Technology, 44 (10),
doi:10.2118/05-10-04, 2005.

129

http://dx.doi.org/10.2118/84344-PA
http://dx.doi.org/10.1016/j.egypro.2013.06.450
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.11.017
http://dx.doi.org/10.1109/TPAMI.2012.231
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.08.019
http://dx.doi.org/10.1017/S0022112001006504
http://dx.doi.org/10.1002/andp.18551700105
http://www.deeplearningbook.org
http://dx.doi.org/10.1017/S0022112001006516
http://dx.doi.org/10.2118/05-10-04

References

He, K., X. Zhang, S. Ren, and J. Sun, Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification, in Proceedings of the IEEE interna-
tional conference on computer vision, pp. 1026–1034, 2015.

He, K., X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in
Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Hele-Shaw, H. S., Investigation of the nature of surface resistance of water and of
stream-line motion under certain experimental conditions, Trans. Instn Nav. Archit.,
Lond., 40, 21, 1898.

Hinton, G. E., N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov,
Improving neural networks by preventing co-adaptation of feature detectors, arXiv
preprint arXiv:1207.0580, 2012.

Hochreiter, S., and J. Schmidhuber, Long short-term memory, Neural computation,
9 (8), 1735–1780, doi:10.1162/neco.1997.9.8.1735, 1997.

Horton, C., and F. Rogers Jr, Convection currents in a porous medium, Journal of
Applied Physics, 16 (6), 367–370, doi:10.1063/1.1707601, 1945.

Ilg, E., N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox, FlowNet 2.0:
Evolution of optical flow estimation with deep networks, in 2017 IEEE conference on
computer vision and pattern recognition (CVPR), pp. 1647–1655, IEEE, Honolulu,
HI, doi:10.1109/CVPR.2017.179, 2017.

IPCC, IPCC special report on carbon dioxide capture and storage, UK: Cambridge
University Press, 2005.

Janai, J., F. Güney, A. Behl, and A. Geiger, Computer vision for autonomous vehicles:
Problems, datasets and state-of-the-art, arXiv:1704.05519 [cs], 2017.

Jia, Y., E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell, Caffe: Convolutional architecture for fast feature embedding,
arXiv:1408.5093 [cs], 2014.

Kingma, D. P., and J. Ba, Adam: A method for stochastic optimization,
arXiv:1412.6980 [cs], 2014.

Kneafsey, T. J., and K. Pruess, Laboratory flow experiments for visualizing carbon
dioxide-induced, density-driven brine convection, Transport in Porous Media, 82 (1),
123–139, doi:10.1007/s11242-009-9482-2, 2010.

Kneafsey, T. J., and K. Pruess, Laboratory experiments and numerical simulation
studies of convectively enhanced carbon dioxide dissolution, Energy Procedia, 4,
5114–5121, doi:10.1016/j.egypro.2011.02.487, 2011.

130

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1063/1.1707601
http://dx.doi.org/10.1109/CVPR.2017.179
http://dx.doi.org/10.1007/s11242-009-9482-2
http://dx.doi.org/10.1016/j.egypro.2011.02.487

References

Kolditz, O., R. Ratke, H.-J. G. Diersch, and W. Zielke, Coupled groundwater flow and
transport: 1. Verification of variable density flow and transport models, Advances
in Water Resources, 21 (1), 27–46, doi:10.1016/S0309-1708(96)00034-6, 1998.

Kreyenberg, P. J., Experimental studies on evapo-induced density-driven flow in Hele-
Shaw cells, Master’s thesis, Heidelberg University, Germany, 2015.

Kreyenberg, P. J., H. H. Bauser, and K. Roth, Velocity field estimation on density-
driven solute transport with a convolutional neural network, Water Resources Re-
search, doi:10.1029/2019WR024833, 2019.

Krizhevsky, A., I. Sutskever, and G. E. Hinton, Imagenet classification with deep
convolutional neural networks, in Advances in neural information processing systems,
pp. 1097–1105, 2012.

Lapwood, E., Convection of a fluid in a porous medium, in Mathematical proceedings
of the Cambridge Philosophical Society, vol. 44, pp. 508–521, Cambridge University
Press, doi:10.1017/S030500410002452X, 1948.

Lide, D. R., CRC handbook of chemistry and physics, vol. 85, CRC press, 2004.

Lindeberg, E., and D. Wessel-Berg, Vertical convection in an aquifer column un-
der a gas cap of CO2, Energy Conversion and Management, 38, S229–S234,
doi:10.1016/S0196-8904(96)00274-9, 1997.

Liu, Q., Stein variational gradient descent as gradient flow, in Advances in neural
information processing systems, pp. 3115–3123, 2017.

Liu, Q., and D. Wang, Stein variational gradient descent: A general purpose Bayesian
inference algorithm, in Advances in neural information processing systems, pp. 2378–
2386, 2016.

Maas, A. L., A. Y. Hannun, and A. Y. Ng, Rectifier nonlinearities improve neural
network acoustic models, in Proc. icml, vol. 30, p. 3, 2013.

Marçais, J., and J.-R. de Dreuzy, Prospective interest of deep learning for hydrological
inference, Groundwater, 55 (5), 688–692, doi:10.1111/gwat.12557, 2017.

Mo, S., Y. Zhu, N. Zabaras, X. Shi, and J. Wu, Deep convolutional encoder-decoder
networks for uncertainty quantification of dynamic multiphase flow in heterogeneous
media, Water Resources Research, 55 (1), 703–728, doi:10.1029/2018WR023528,
2019.

Nguyen, A., J. Clune, Y. Bengio, A. Dosovitskiy, and J. Yosinski, Plug & play gener-
ative networks: Conditional iterative generation of images in latent space, in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pp.
4467–4477, 2017.

131

http://dx.doi.org/10.1016/S0309-1708(96)00034-6
http://dx.doi.org/10.1029/2019WR024833
http://dx.doi.org/10.1017/S030500410002452X
http://dx.doi.org/10.1016/S0196-8904(96)00274-9
http://dx.doi.org/10.1111/gwat.12557
http://dx.doi.org/10.1029/2018WR023528

References

Nield, D. A., and A. Bejan, Convection in porous media, 3. ed, Springer, 2006.

Oberbeck, A., Über die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strö-
mungen infolge von Temperaturdifferenzen, Annalen der Physik, 243 (6), 271–292,
doi:10.1002/andp.18792430606, 1879.

Olah, C., A. Satyanarayan, I. Johnson, S. Carter, L. Schubert, K. Ye, and
A. Mordvintsev, The building blocks of interpretability, Distill, 3 (3), e10,
doi:10.23915/distill.00010, 2018.

Oltean, C., C. Felder, M. Panfilov, and M. A. Buès, Transport with a very low density
contrast in Hele-Shaw cell and porous medium: Evolution of the mixing zone, Trans-
port in Porous Media, 55 (3), 339–360, doi:10.1023/B:TIPM.0000013332.08029.af,
2004.

Paszke, A., et al., Automatic differentiation in PyTorch, in NIPS autodiff workshop,
2017.

Pau, G. S., J. B. Bell, K. Pruess, A. S. Almgren, M. J. Lijewski, and
K. Zhang, High-resolution simulation and characterization of density-driven flow
in CO2 storage in saline aquifers, Advances in Water Resources, 33 (4), 443–455,
doi:10.1016/j.advwatres.2010.01.009, 2010.

Petersen, P., and F. Voigtlaender, Equivalence of approximation by convolutional neu-
ral networks and fully-connected networks, arXiv preprint arXiv:1809.00973, 2018.

Pruess, K., and K. Zhang, Numerical modeling studies of the dissolution-diffusion-
convection process during CO2 storage in saline aquifers, (LBNL-1243E, 944124),
doi:10.2172/944124, 2008.

Rasmusson, M., F. Fagerlund, K. Rasmusson, Y. Tsang, and A. Niemi, Refractive-light-
transmission technique applied to density-driven convective mixing in porous media
with implications for geological CO2 storage, Water Resources Research, 53 (11),
8760–8780, doi:10.1002/2017WR020730, 2017.

Rayleigh, L., LIX. On convection currents in a horizontal layer of fluid, when
the higher temperature is on the under side, The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science, 32 (192), 529–546,
doi:10.1080/14786441608635602, 1916.

Riaz, A., M. Hesse, H. A. Tchelepi, and F. M. Orr, Onset of convection in a gravitation-
ally unstable diffusive boundary layer in porous media, Journal of Fluid Mechanics,
548, 87–111, doi:10.1017/S0022112005007494, 2006.

Ronneberger, O., P. Fischer, and T. Brox, U-net: Convolutional networks for biomed-
ical image segmentation, in International conference on medical image computing
and computer-assisted intervention, pp. 234–241, Springer, 2015.

132

http://dx.doi.org/10.1002/andp.18792430606
http://dx.doi.org/10.23915/distill.00010
http://dx.doi.org/10.1023/B:TIPM.0000013332.08029.af
http://dx.doi.org/10.1016/j.advwatres.2010.01.009
http://dx.doi.org/10.2172/944124
http://dx.doi.org/10.1002/2017WR020730
http://dx.doi.org/10.1080/14786441608635602
http://dx.doi.org/10.1017/S0022112005007494

References

Roth, K., Physics of terrestrial systems. Lecture notes, v0.2., Institure of Environmen-
tal Physics, Heidelberg University, 2017.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams, Learning representations by
back-propagating errors, Nature, 323, 533–536, doi:10.1038/323533a0, 1986.

Scheidegger, A. E., General theory of dispersion in porous media, Journal of Geophys-
ical Research, 66 (10), 3273–3278, doi:10.1029/JZ066i010p03273, 1961.

Sermanet, P., K. Kavukcuoglu, S. Chintala, and Y. LeCun, Pedestrian detection with
unsupervised multi-stage feature learning, in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 3626–3633, 2013.

Shen, C., A transdisciplinary review of deep learning research and its relevance
for water resources scientists, Water Resources Research, 54 (11), 8558–8593,
doi:10.1029/2018WR022643, 2018.

Shen, C., et al., Hess opinions: Incubating deep-learning-powered hydrologic sci-
ence advances as a community, Hydrology and Earth System Sciences, 22 (11),
doi:10.5194/hess-22-5639-2018, 2018.

Simonyan, K., and A. Zisserman, Very deep convolutional networks for large-scale
image recognition, arXiv preprint arXiv:1409.1556 [cs], 2014a.

Simonyan, K., and A. Zisserman, Two-stream convolutional networks for action recog-
nition in videos, arXiv:1406.2199 [cs], 2014b.

Simonyan, K., A. Vedaldi, and A. Zisserman, Deep inside convolutional net-
works: Visualising image classification models and saliency maps, arXiv preprint
arXiv:1312.6034, 2013.

Slim, A. C., Solutal-convection regimes in a two-dimensional porous medium, Journal
of Fluid Mechanics, 741, 461–491, doi:10.1017/jfm.2013.673, 2014.

Slim, A. C., and T. S. Ramakrishnan, Onset and cessation of time-dependent,
dissolution-driven convection in porous media, Physics of fluids, 22 (12), 124,103,
doi:10.1063/1.3528009, 2010.

Slim, A. C., M. M. Bandi, J. C. Miller, and L. Mahadevan, Dissolution-driven convec-
tion in a Hele-Shaw cell, Physics of Fluids, 25 (2), 024,101, doi:10.1063/1.4790511,
2013.

Springenberg, J. T., A. Dosovitskiy, T. Brox, and M. Riedmiller, Striving for simplicity:
The all convolutional net, arXiv preprint arXiv:1412.6806, 2014.

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, Dropout:
a simple way to prevent neural networks from overfitting, The Journal of Machine
Learning Research, 15 (1), 1929–1958, 2014.

133

http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1029/JZ066i010p03273
http://dx.doi.org/10.1029/2018WR022643
http://dx.doi.org/10.5194/hess-22-5639-2018
http://dx.doi.org/10.1017/jfm.2013.673
http://dx.doi.org/10.1063/1.3528009
http://dx.doi.org/10.1063/1.4790511

References

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, Going deeper with convolutions, in Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

Tang, Y., and C. Eliasmith, Deep networks for robust visual recognition, in Proceedings
of the 27th international conference on machine learning (ICML-10), pp. 1055–1062,
2010.

Taylor, G. I., Dispersion of soluble matter in solvent flowing slowly through a tube,
Proceedings of the Royal Society of London. Series A. Mathematical and Physical
Sciences, 219 (1137), 186–203, doi:10.1098/rspa.1953.0139, 1953.

Thomas, C., L. Lemaigre, A. Zalts, A. D’Onofrio, and A. De Wit, Experimental study
of CO2 convective dissolution: The effect of color indicators, International Journal
of Greenhouse Gas Control, 42, 525–533, doi:10.1016/j.ijggc.2015.09.002, 2015.

Thomas, C., S. Dehaeck, and A. De Wit, Convective dissolution of CO2 in water
and salt solutions, International Journal of Greenhouse Gas Control, 72, 105–116,
doi:10.1016/j.ijggc.2018.01.019, 2018.

Weir, G. J., S. P. White, and W. M. Kissling, Reservoir storage and contain-
ment of greenhouse gases, Energy Conversion and Management, 36 (6), 531–534,
doi:10.1016/0196-8904(95)00060-Q, 1995.

Wooding, R. A., S. W. Tyler, and I. White, Convection in groundwater below an
evaporating salt lake: 1. Onset of instability, Water Resources Research, 33 (6),
1199–1217, doi:10.1029/96WR03533, 1997a.

Wooding, R. A., S. W. Tyler, I. White, and P. A. Anderson, Convection in groundwater
below an evaporating salt lake: 2. Evolution of fingers or plumes, Water Resources
Research, 33 (6), 1219–1228, doi:10.1029/96WR03534, 1997b.

Yang, C., and Y. Gu, Accelerated mass transfer of CO2 in reservoir brine due to density-
driven natural convection at high pressures and elevated temperatures, Industrial &
Engineering Chemistry Research, 45 (8), 2430–2436, doi:10.1021/ie050497r, 2006.

Yarotsky, D., Universal approximations of invariant maps by neural networks, arXiv
preprint arXiv:1804.10306, 2018.

Zeiler, M. D., and R. Fergus, Visualizing and understanding convolutional networks,
in European conference on computer vision, pp. 818–833, Springer, 2014.

Zeiler, M. D., D. Krishnan, G. W. Taylor, and R. Fergus, Deconvolutional networks, in
2010 IEEE Computer Society conference on computer vision and pattern recognition,
pp. 2528–2535, doi:10.1109/CVPR.2010.5539957, 2010.

Zeiler, M. D., G. W. Taylor, R. Fergus, et al., Adaptive deconvolutional networks for
mid and high level feature learning., in ICCV, vol. 1, p. 6, 2011.

134

http://dx.doi.org/10.1098/rspa.1953.0139
http://dx.doi.org/10.1016/j.ijggc.2015.09.002
http://dx.doi.org/10.1016/j.ijggc.2018.01.019
http://dx.doi.org/10.1016/0196-8904(95)00060-Q
http://dx.doi.org/10.1029/96WR03533
http://dx.doi.org/10.1029/96WR03534
http://dx.doi.org/10.1021/ie050497r
http://dx.doi.org/10.1109/CVPR.2010.5539957

References

Zhou, D.-X., Universality of deep convolutional neural networks, arXiv preprint
arXiv:1805.10769, 2018.

Zhou, P., and J. Feng, Understanding generalization and optimization performance of
deep CNNs, in Proceedings of the 35th international conference on machine learning,
Proceedings of Machine Learning Research, vol. 80, edited by J. Dy and A. Krause,
pp. 5960–5969, PMLR, Stockholmsmässan, Stockholm Sweden, 2018.

Zhou, Y.-T., and R. Chellappa, Computation of optical flow using a neural network,
in IEEE International Conference on Neural Networks, vol. 1998, pp. 71–78, 1988.

Zhu, Y., and N. Zabaras, Bayesian deep convolutional encoder-decoder networks
for surrogate modeling and uncertainty quantification, Journal of Computational
Physics, 366, 415–447, doi:10.1016/j.jcp.2018.04.018, 2018.

135

http://dx.doi.org/10.1016/j.jcp.2018.04.018

	Introduction
	Active Solute Transport
	Fluid Dynamics in Porous Media
	Conservation of Mass
	Conservation of Momentum
	Hele-Shaw Cells as Models of Porous Media

	Solute Transport
	Molecular Diffusion
	Dispersion
	Conservation of Solute Mass

	Density-Driven Instabilities
	Dynamics
	Dimensionless Formulation

	Numerical Experiments
	Constant Concentration Boundary Condition (NE1)
	Modified Concentration Boundary Condition (NE2)
	Representation of Superscale Convection (NE3)

	Laboratory Experiment
	Experimental Setup
	Temporal Development

	Convolutional Neural Networks
	Conceptual Outline
	Model Components
	Convolution Layers
	Activation Functions
	Pooling and Strided Convolutions
	Transposed Convolutions

	Training Process
	Loss Functions and Regularization
	Backpropagation
	Stochastic Gradient Descent
	Weight Initialization

	Network Architectures for Flow Field Estimation
	Models
	Training Scheme
	Datasets

	Application
	Data Preprocessing
	Concentration Field Propagation
	Results on the Numerical Experiments
	Results on the Laboratory Experiment
	Representation of Superscale Convection
	Results on the Numerical Experiments
	Results on the Laboratory Experiment

	Summary & Discussion

	Conclusion & Outlook
	Appendix
	Additional Data: Numerical Experiments
	Network Architecture Details
	Additional Data: Application

	List of Figures
	List of Tables
	Acknowledgments
	Bibliography of Own Publications
	References

