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Abstract

 

The regulation of biological processes relies on a complex nucleotide code embedded in our 

DNA. Its decoding and interpretation is the main task of Transcription Factors (TFs), 

which altogether enable the recognition and modulation of gene expression. Whenever 

factors bind to DNA, a set of additional criteria and conditions need to be satisfied, such as 

TF concentration, DNA openness, and cooperativity with other binding factors. Such 

combinations of DNA-bound TFs, as well as their structural and functional cooperativity, 

allow a fine-grained control of gene expression due to subtle changes in specificity in both 

DNA recognition and functional outcomes. 

This thesis explores the prediction of structural TF cooperativity and its biological 

consequences. Through integration of publicly available TF binding data, we explore the 

prediction of determinants of TF-cooperativity across TF families, and validate our 

observations. By incorporating multi-omics data we set up a framework for annotation 

and scoring of ontologies associated to TF-TF binding, validating our findings using 

cancer expression data. Additionally, this thesis explores functional cooperativity between 

TFs in the context of neuronal activity, delineating rules that determine gene expression 

programs through up-regulation of specific TFs and their combinations. Finally, we 

investigate the TF-interactions in cell reprogramming, predicting and validating novel 

interactions between TF activators and repressors. Altogether, this dissertation provides 

an extensive set of insights to better understand the complex interplay between TFs 

cooperativity and phenotypes. 



 

Zusammenfassung 

 

Die Regulation biologischer Prozesse beruht auf einem komplexen Code aus Nukleotiden, 

der in unserer DNA eingebettet ist. Das Entschlüsseln sowie die Interpretation dieses 

Codes stellt die Hauptaufgabe der Transkriptionsfaktoren (Transcription Factors, TFs) 

dar, die insgesamt die Erkennung und Modulation der Genexpression ermöglichen. Wenn 

diese Faktoren an DNA binden, müssen allerdings eine Reihe zusätzlicher Bedingungen 

erfüllt sein, wie z.B. TF-Konzentration, DNA-Offenheit und Kooperativität mit anderen 

bindenden Faktoren. Solche Kombinationen von DNA-bindenden TFs, sowie deren 

strukturelle oder funktionelle Eigenschaften, ermöglichen eine genauere Kontrolle der 

Genexpression, aufgrund geringfügige Veränderungen in der Spezifität sowohl bei der 

DNA-Erkennung als auch in der funktionellen Auswirkung.  

Die vorliegende Dissertation untersucht Ansätze zur Vorhersage von struktureller TF-

Kooperatitvität und ihrer biologischen Folgen. Durch die Integration von öffentlich 

verfügbaren Daten, die TF-Interaktionen umfassen, untersuchen wir die Vorhersage von 

spezifischen Eigenschaften, die die Kooperativität zwischen TF-Familien begründen, und 

validieren unsere Beobachtungen in nachfolgenden Experimenten. Durch die 

Einbeziehung von Multi-Omics-Daten erstellen wir ein Framework für die Annotation 

und Bewertung von Ontologien für TF-TF Interaktionen und bestätigen unsere 

Beobachtung anhand von Expressionsdaten von Krebs-Patienten. Darüber hinaus 

untersucht die Dissertation die funktionelle Kooperativität zwischen 

Transkriptionsfaktoren im Kontext von neuronaler Aktivität und gibt Einblicke wie die 



Regulation spezifischer Faktoren und deren Kombination die Genexpression beeinflussen 

und bestimmen. Die vorliegende Arbeit nimmt ebenso die Wechselwirkungen von 

Transkriptionsfaktoren im Zusammenhang mit der Zellprogrammierung in Augenschein, 

sowie auch die Vorhersage und Validierung von spezifischen TF-Aktivatoren und -

Repressoren. Insgesamt stellt die Dissertation damit eine umfassende Studie dar, die mit 

neuen Einblicken und Ansätzen das komplexe Zusammenspiel  von 

Transkriptionsfaktoren, DNA-Erkennung und Phänotypen beschreibt.   
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Chapter 1 

 

Introduction

 

The development and maintenance of all biological events that constitute an organism 

requires a precise and robust control of all mechanistic steps involved to ensure the correct 

information flow. These control mechanisms are also pivotal to provide a dynamic yet 

precise response to environmental stimuli relevant for survival and reproduction. 

Evolution has allowed selection of millions of independent controlling strategies in 

different biological contexts, enabling the diversity in life we see in our world today. 

Concurrently, biological information flows and systems are also prone to defects that are 

associated with developmental failures and disease. 

The functional layers involved in sensing and responding to stimuli are important for 

translation of environmental signals into specific molecular mechanisms. Every complex 

and dynamic behavior, such as the fight-or-flight stress response or social behavior in 

bees [Bloch et al 2011], has an underlying molecular basis. At the same time, thousands of 

biochemical reactions take place in cells, ensuring homeostasis, survival and reproduction. 

Due to the importance of these reactions, a proper coordination is pivotal for ensuring 

specificity of the molecular control. 

The landscape of all possible reactions in an organism has been described over decades in 

Biochemistry research. Millions of these chemical steps dynamically occur at the same 

time. At the most rudimentary level these reactions rely on binary interactions between 
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metabolites and bio-molecules such as proteins, nucleic acids and lipids. The sum of all 

these interactions and their combinations define the molecular switches that allow signal 

transmission in the cell. 

1.1. Protein-DNA interactions and Transcription Factors  

Interactions between proteins and nucleic acids are important in a plethora of major 

biochemical processes, and arguably represent the most sensible regulatory control 

mechanism for genome readout. Such interactions maintain the tightness in genome 

architecture, DNA replication in cell division and control of gene expression. It is therefore 

pivotal that these biochemical reactions to remain efficient, precise and robust across 

generations. To date, different types of proteins DNA-interacting proteins are known 

[Rohs et al 2010] and their crucial functional roles manifest in their strong conservation 

levels in Prokaryotes [van Hijum et al 2009; Santos-Zabaleta et al 2018] and Eukaryotes 

[Nitta et al 2015; de Mendoza et al 2013]. 

Transcription factors (TFs) represent one of the most studied types of DNA-interacting 

proteins. These sequence-specific regulatory proteins exert control on gene expression by 

recruiting transcriptional complexes and chromatin modifiers, which effectively enhance 

or suppress transcription of nearby genes. Globally, TFs are classified based on the 

structural conservation of their DNA-binding domains (DBDs), which represent early 

determinants of gene expression control, and simultaneously evolved with specific roles in 

the three main kingdoms of life. Several of these DBDs have specialized through gene 

duplication and divergence in Eukarya, allowing functional diversification. For example, 

one family of TFs, the Zinc-Fingers (C2H2 ZF), contains approximately 800 members in 

humans. Current surveys estimate the number of TFs in humans to be around 2000 in total 
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[Lambert et al 2017]. Molecular processes such as splicing would mean that these numbers 

might be much higher with up to 8000 according to current estimates [Inukai et al 2017]. 

To understand how these regulatory factors recognize DNA, the protein-DNA interactions 

themselves need to be thoroughly investigated. Structural determination of TF-DNA 

complexes have revealed over-represented chemical interactions between TFs and DNA 

[Angarica et al 2008], restricting the number of biological features defining the protein-

DNA recognition code. These interactions have been classified as ‘Base-readout’ or 

‘Shape-readout’ according to how they bind the DNA molecule [Rohs et al 2010] (Fig 1.1). 

The first readout-mode is described by base interactions mediated by hydrogen bonds or 

Van der Waals contacts, while the second one is related to proteins ‘reading’ the overall 

structure of the DNA, including its electron density, electrostatic potential e.g. in the minor 

groove, and DNA-backbone. 
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Figure 1.1. Classification of protein-DNA interactions that confer specificity 

 (top) Protein-DNA complex between Transcription Factor FOXO1 (green) and its DNA binding site (gray). 
Interactions with the major groove bases (blue) indicate Base readout. The interactions between Forkhead 
wings and the neighboring DNA minor grooves are indicative of Shape readout. Visualization generated with 
PDIviz [Ribeiro et al 2015] (bottom) Classification of interactions types that determine recognition of DNA by 
proteins. Base readout is based on contacts residues and bases through hydrogen bonds, water mediated or 
hydrophobic contacts. Shape readout is based on the local and global structure of DNA, and it determines 
additional specificity. Adapted from [Rohs et al 2010]. 
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1.2. Methods to explore TF binding specificities 

Multiple experimental methods have been generated to study TF binding specificity. 

Techniques are primarily classified based on their readouts by microarray or deep-

sequencing methods. Microarray-based methods are prominently represented in the 

Protein Binding Microarray (PBM) technique [Berger et al 2006], in which a TF of interest 

is interrogated against a microarray containing DNA-oligos of known sequences. The TF is 

coupled to a Glutathione S-transferase (GST)-tagged domain, which is ultimately 

detectable with a fluorophore-tagged antibody (Fig 1.2). Binding efficiency can thereby be 

assessed by relative fluorescence across the array. This approach has been pioneered by 

the group of Martha Bulyk and has been used to systematically generate data for hundreds 

of Metazoan TFs. 
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Figure 1.2. Description of Universal Protein Binding Microarray experiment 
 (a) A single-stranded DNA microarray purchased from a provider is double-stranded using a low 
concentration of fluorescently labeled dUTP. (c) A GST-tagged TF is tested for binding to the DNA 
sequences in the microarray, using as a detection system a (d) fluorophore-conjugated antibody 
against GST. Adapted from [Berger and Bulyk 2009]. 
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Among deep-sequencing based methods, the systematic evolution of ligands by 

exponential enrichment (SELEX) is a practical way to generate TF-binding specificity 

readouts for TFs based on selection and sequencing of captured TF-specific DNA reads 

[Jolma et al 2010] (Fig 1.3). DNA reads are separated on a DNA gel (SELEX-seq; Spec-seq) 

[Riley et al 2014; Stormo et al 2015], or capture by column purification using the tagged 

TF of interest. Once reads are obtained, the experiment cycle can be repeated several times 

by re-amplifying the DNA-oligos and re-capturing with the TF, increasing the fraction of 

DNA sequences with high-affinity TF binding sites. Approaches based on SELEX for 

studying TF binding have been improved in recent years, allowing the high-throughput 

interrogation of hundreds of TFs in the same experiment (HT-SELEX) [Jolma et al 2013]. 

Additional adaptations of this experiment have allowed the interrogation of TF 

combinations (CAP-SELEX) [Jolma et al 2015], effects of methylation (methyl-SELEX) 

[Yin et al 2013], and addition of nucleosomes (NCAP-SELEX) [Zhu et al 2018]. One 

limitation of these studies is that the overall coverage per DNA-sequence is lower when 

multiple TFs are multiplexed in the same deep-sequencing run. To overcome this, 

conventional SELEX-seq with a higher sequencing deep has been adopted to explore the 

DNA-binding for longer DNA footprints [Zhang et al 2018]. Adaptations of SELEX-seq 

techniques that include DNA-modifications can be used to explore TF sensitivity to 

epigenetic variation (EpiSELEX-seq) [Kribelbauer et al 2017]. 
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Figure 1.3. Description of HT-SELEX experiment 
From a prepared DNA library with randomized DNA sequences of theoretically equimolar concentrations 
(Binding site library), a purified DNA-binding domain for a TF of interest (TF) is added and used for DNA 
selection based on protein-DNA interactions (Bound). Comparisons between Bound and the initial Binding 
Sites Library allow the assessment of features that confer protein-DNA specificity for the studied TF. Adapted 
from [Kinney et al 2019]. 

 

1.3. Modeling and prediction of TF-DNA binding interactions 

Research efforts in the field have tried to conceptualize interactions between TFs and DNA 

using a set of computational approaches that summarize TF-DNA interfaces and electron 

density at such interfaces into simplified and interpretable models. One of the earliest 

models proposed are the Position Weight Matrices (PWMs). These multinomial models 

were early described by Gary Stormo [Stormo et al 1982], and adapted by Thomas 

Schneider into a simplified visualization posited as Sequence Logos [Schneider et al 1990] 

(Fig 1.4). Due to its simplicity and fast interpretability such representations are 

commonplace in the field. However, they have been shown to not fully capture the 

complexity of protein-DNA experimental data [Weirauch et al 2011], highlighting the need 

of identifying the rules guiding these interactions, and ultimately introducing better 

models for community interpretation. 
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Figure 1.4. Additive models to display protein-DNA recognition. 
(a) Protein-DNA complex formed by the cAMP receptor protein (CRP) binding to its cognate binding site (PDB 
ID: 1CPG). Relative positions indicate DNA base pairs used for following visualizations. (b) Consensus binding 
site of CRP based on crystal structure (c) IUPAC motif based on DNA variants that are bound by CRP. (d) 
Energy matrix. Each weight represents the change in ΔG (-ΔΔG) expected when mutating the highest affinity 
DNA sequence in one position. (d) Weight matrix summarizing the relative increase or decrease in the 
expected probabilities for a selected set of binding sites with respect to a background distribution (e.g. 
genome-wide GC content). (f) Logo visualization for (d). Letter heights indicate -ΔΔG values. (g) Logo 
visualization for (e). Letter heights indicate weights increase or decrease. (h) Probability logo indicates the 
nucleotide probabilities for each position in the set of positive sequences. (i) Information logo summarizing 
the reduction of entropy in each position in (h) and highlighting the positions with the largest information 
values.  Adapted from [Kinney et al 2019]. 
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Historically, several such models for protein-DNA specificities in vitro have been proposed 

and made available [Weirauch et al 2011]. These models allow the quantification of DNA 

enrichment upon addition of a protein in sequencing data (“relative affinities” in SELEX 

data), or fluorescent signal for a DNA-oligo containing potential binding sites of interest 

in Protein Binding Microarray data. Proposed models are the ones with the highest held-

out performances, and summarize the most important DNA-recognition features as a set 

of mononucleotide and dinucleotide contributions (Fig 1.5). Recently, it has been proposed 

that models encompassing a full biophysical description of protein-DNA interactions are 

an adequate alternative to more complex Deep Learning based classifiers [Rastogi et al 

2018]. One of the main arguments for this is that Deep Learning models fail to consider the 

full spectrum of low affinity binding and ultimately fail in the prediction of those. To date, 

extended comparisons between traditional, biophysical and Deep Learning models for the 

prediction of DNA-binding sites in vivo would be required. However, the adoption and 

development of biophysical methods to score TF binding sites are delayed with respect to 

the vast amount of available tools and web services to obtain TF motifs from sequence data 

with PWMs [Bailey et al 2009].  

Simpler models describing protein-DNA interactions, on the other hand, are based on the 

collective grouping of sequence patterns enriched in in vitro experiments and their 

experimental readout as groups of k-mers [Mariani et al 2017]. These k-mers can be 

directly used to directly interrogate biological sequences with a higher signal-to-noise 

ratio due to the direct inclusion of patterns that are not necessarily robustly represented in 

Position Weight Matrices. 
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Figure 1.5. Commonly used features to describe TF-DNA interactions 
From a target sequence considered to be a putative binding site for a TF, the weights for features that are 
additively used to score the binding site relevance are scored using mononucleotides (additive features), 
proximal dinucleotides (neighbor features), non-local dinucleotides (pairwise features), and trinucleotide 
combinations (higher-order features).  Additionally, DNA pentamers can be assessed by their underlying DNA 
geometry (DNA shape features). Adapted from [Kinney et al 2019]. 
 

 

Altogether, the modeling of TF-DNA features allows the understanding of readout 

mechanisms contributing to TF binding. However, TFs do not act alone in vivo, and 

multiple biological features can affect their binding to DNA. The chromatin environment, 

methylation, coding and non-coding variation and interactions with other TFs are 

examples of such confounders (Fig 1.6) [Inukai et al 2017].  
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Figure 1.6. Features beyond binding primary TF motifs can modulate TF binding recognition. 
 (a) Various TFs can be in different binding modes, requiring additional models to describe all possible 
configurations. (b) Interactions with other TFs can confer additional cooperativity through protein-protein 
or DNA-mediated allostery. (c) Interactions with non-DNA interacting cofactors can modulate latent 
specificity TF-binding properties not activated in their presence. (d) Some TFs are specifically sensitive to 
methylation, and can increase or decrease their binding potential upon DNA-methylation. (e) The local DNA 
shape can determine TF binding specificity. (f) The genomic context can determine that some TFs will be 
preferably recruited to certain sites according to the chromatin state or nucleosome placement. (g) Coding 
(star) and non-coding (shown as X on binding site) variation adds additional complexity in TF binding. 
Adapted from [Inukai et al 2017]. 
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1.4. TF interactions and cooperativity as an additional regulatory layer of 

biological function 

As TFs can also form complexes with other TFs the spectrum of possible interactions and 

regulatory switches increases dramatically [Morgunova et al 2017] (Fig 1.7). 

Biophysically, most of these TF-TF complexes with DNA require few or no protein-protein 

interactions at all [Jolma et al 2015]. 

Several efforts have been made to formulate the systematic prediction of composite TF-TF 

binding sites in vivo [Guturu et al 2013; Jankowski et al 2014]. Recent experimental 

surveys have described these interactions to be promiscuous and widespread across TF 

families, and estimate the amount of interactions to be around 25000. In fact, 1 out of 100 

possible TF-TF pairs in the human genome are expected to form a cooperative pair. The 

implications of this kind of TF-TF interactions remain elusive but undoubtedly define yet 

another regulatory layer with functional consequences, as there are multiple cases in 

which TF-TF binding has been shown to be associated to downstream biological function. 

Examples are the homeodomain dimers in development [Slattery et al 2011], or the 

olfactory receptor regulation through Lhx2-Ebf binding [Monahan et al 2017]. 

Genetically, it has also been shown that Genome-Wide Association Studies (GWAS) 

variants affect immune function through disruption of IRF4-BATF complex binding 

[Iwata et al 2017]. 

As these interactions seem to be prevalent in particular configurations [Jolma et al 2015], 

they are limited to specific TF-family cooperative binding events. Interestingly, these 

complexes have been shown to bind similarly across members of the same TF-families, 

and to recognize low-affinity binding sites collectively across the whole family, such as in 

the SOX-PAX family pair [Narasimhan et al 2015]. This highlights the need of models that 
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take those families into account as well to provide better cooperative binding predictions 

in vivo. 

                                     a 

 
 

                                             b 

    

Figure 1.7. Types of interactions between TFs when bound to DNA. 
(a) (top) Depiction of protein-level TF-TF complex with DNA. (bottom) From left to right in both rows: 
lambda-repressor (PDB: 3BDN); NF-Y trimer (alpha/beta/gamma subunits in green, cyan and magenta, 
respectively) (PDB: 1CF7); p53 tetramer (PDB: 2AC0); HNF1 homodimer (PDB: 1IC8); E2F8 domains (PDB: 
4YO2); two GATA zinc-finger domains (PDB: 3DFV); three Zinc-finger domains of GLI (PDB: 2GLI). (b) (top) 
Depiction of DNA-facilitated or DNA-mediated TF-TF complex. (bottom) left to right in both rows: TBX3 
bound to palindromic site (PDB: 1H6F); SOX2:Oct1 complex (light yellow and dark yellow, respectively) (PDB: 
1O4X); HOXA9:PBX1 (green and dark blue, respectively); AML1:RUNX1 (green and yellow) (PDB: 1HJB); 
NKX2.5:TBX5 (pink and green) (PDB: 5FLV); IRF3:ATF-2:c-JUN (green, violet and magenta) (PDB: 1T2K). 
Adapted from [Morgunova et al 2017]. 



15 
 

1.5. Profiling the accessible genome 

To study such TF-DNA interactions it is necessary to profile genome-wide chromatin 

accessibility. Recently, a new methodology to quantify genome-wide chromatin 

accessibility called Assay for Transposase-Accessible Chromatin using sequencing (ATAC-

seq) has been introduced as a powerful and lower cost alternative to previous approaches 

[Buenrostro et al 2013] (Fig 1.8). The technique relies on the usage of a mutant Tn5 

transposase that is hyperactive and inserts adapters in the open regions of the genome, by 

tagmentation. These fragments are prepared for sequencing by DNA purification and PCR 

amplification. Processing of reads via mapping and comparison between treatments allow 

the overall annotation of regions with gained, closed or unchanged chromatin 

accessibility. Specific analyses of the DNA sequences that are cover regions with changed 

accessibility allows mapping TF motifs and footprints that describe overall physical 

properties of potential TF binding in such loci [Schep et al 2017]. 

1.6. TF combinations orchestrating the chromatin environment and gene 

expression 

The combinatorial role of TFs when binding to the accessible genome is understood as a 

collective recruitment of several factors in order to activate or repress a signal [Spitz et al 

2012]. As such, the very minimum amount of TFs is required to be recruited in order to 

modify the chromatin environment, increase or decrease gene expression of local genes 

and ultimately initiate a regulatory response. 

However, not all TFs can bind to nucleosome-occluded DNA without the prior binding of 

other factors that would open the chromatin structure. TFs with this capacity are known as 

“pioneers”, based on their ability to displace nucleosome and open chromatin regions 

where they become bound [Mayran et al 2018]. As the binding of TFs without this property 
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at nucleosome-occluded DNA relies on such TFs, the binding of pioneer TFs is usually 

followed by co-regulators that bind motifs at those sites but do not actively open the 

surrounding chromatin. Given that not all TFs have an associated pioneering activity, the 

interactions between pioneer and non-pioneer factors is pivotal for our understanding of 

recruitment events in the first place [Mayran et al 2019]. 

TF binding is highly dependent on these chromatin accessibility changes, with accessible 

regions being enriched for pioneer and co-regulator TF motifs in a positional way [Su et al 

2017] (Fig 1.9). Relating chromatin accessibility changes to regulatory mechanisms 

through the recruitment and interactions of those factors is therefore undoubtedly a 

contemporary challenge. These relationships are the main topic of Chapter 3, where 

connections between neuronal activity and chromatin accessibility are studied. 

 

 

 

Figure 1.8. Schematic illustration of the ATAC-seq protocol. 
 (left) Visualization of chromatin regions with closed or open conformations (middle) addition of hyperactive 
Tn5 transposase tags  open regions (right) purification, PCR amplification and deep-sequencing of tagged 
fragments and mapping indicates regions of high accessibility. Adapted from [Buenrostro et al 2017]. 
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Figure 1.9. Working model of neuronal activity based on pioneering and co-regulators recruitment to 
regulatory DNA sequences. 
Upon neuronal stimulation (e.g. with KCl), specific TFs with pioneering activity such as the ones with bZIP 
domains (cFos), bind to nucleosome-occluded regions and displace nucleosomes, increasing the overall DNA 
accessibility in those regions. Next, co-regulator TFs without pioneering activity (green, blue, brown) can 
bind to DNA and mediate gene response by enhancer remodeling and enhancer-promoter interactions. 
Finally, the pioneer factor is decreased in expression and its binding is not required anymore, but co-
regulators are maintained in activated regions. Adapted from [Su et al 2017]. 

1.7. Cooperative binding of TFs involved in differentiation and reprogramming 

It has generally been understood that TF combinations play a relevant role in determining 

cell differentiation, and conversion of cell types. One of the most important discoveries in 

the field of regenerative medicine has undoubtedly been the reprogramming of fibroblasts 

into induced pluripotent stem cells (iPSCs), using a specific combination of TFs known to 

be over-expressed in this type of cells (Sox2/Klf4/Oct4/Myc, or the Yamanaka Factors) 

[Takahashi et al 2006]. 

Most reprogramming experiments have been done in fibroblasts, and it is still unclear 

whether it is possible to trans-differentiate every single cell type into any other target cell 

type [Fu et al 2017]. Apart from identifying the activating TFs, other mechanistic rules 

need to be dissected. The epigenetic memory involves tagging specific chromatin regions, 

which would need to be chemically removed to allow robust differentiation [Ng et al 

2008]. Dissecting such interactions between TFs and epigenetic modifications has proven 
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useful to further understand how a cellular fate is maintained after reprogramming 

[Holmberg et al 2012; Hörmanseder et al 2017]. 

At the same time TFs with roles in repression of non-cell fate genes have also been 

suggested to be important. The first of its kind, described in neurons, is the Myelin 

transcription factor 1 like (Myt1l) [Vierbuchen et al 2010]. This factor is able to increase 

the reprogramming efficiency of Mouse Embryonic Fibroblast into induced neurons 

[Vierbuchen et al 2010], and has been linked to the active repression of genes related to 

non-neuronal pathways [Mall et al 2017]. Given that Myt1l is overexpressed in most 

neuronal subtypes but it is absent in almost all other tissues, this factor is deemed a 

“terminal repressor” of non-neuronal cell fates relevant for neuronal fate maintenance. 

This concept allows speculation about the possible existence of such terminal repressors in 

other cell types opening an exciting avenue to be explored further. Indeed, such unknown 

factors with terminal repressor potential in other cell types can prove valuable for 

redesigning current reprogramming protocols for the purpose of increasing specificity and 

efficiency. This topic is certainly of relevance given that most tools used for predicting 

reprogramming do not include this feature to date [Rackman et al 2016]. Ultimately, 

annotating such terminal repressors would give better insight into how cells require them 

for robust differentiation. Moreover, many neuronal diseases are related to mutations in 

Myt1l [Blanchet et al 2017], and it can thus be expected that potential terminal repressors 

are also related to disease in many other cell types. 
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1.8. Aims of the Thesis. 

Given the current state and recent efforts in the TF recognition field, several questions 

remain unanswered. In the following Chapters, we seek to precisely answer the following 

questions (Fig 1.10).  

Question 1: Can we identify TF-cooperativity and features allowing its prediction in 
published TF-binding data? 

Based on the idea that TF cooperativity is able to leverage low-affinity binding sites and 

confer additional specificity to certain TF-motifs, this dissertation explores the inference 

of TF cooperativity from in vitro data. Specifically, the first section of Chapter 2 describes 

the integration of publicly available CAP-SELEX, as well as biophysical and biochemical 

experiments that are used to explore this question. The data is effectively summarized into 

a framework for the unbiased assessment of DNA sites that are preferably bound by TFs in 

a cooperative manner.  

Question 2: What are the consequences of cooperative TF-binding in function and 
disease?  

Given that multiple TF-TF complexes are expected to bind DNA cooperatively, there is the 

possibility of numerous novel associations between TF interactions and downstream 

function to be identified and investigated. Approaches to address this question are 

introduced and applied in the second part of Chapter 2. Our framework associates specific 

TF-cooperative binding k-mers present in ChIP-seq data with downstream functional 

consequences. Our argument on deriving ontology connections leveraging cooperative TF-

binding was substantiated by recovery of functional ontologies linked to the individual 

TFs, and the validation of interesting cases in development and disease. 
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Question 3: What is the interplay between TFs and chromatin accessibility and how does 
it confer specific neuronal activity? 

This question is addressed in Chapter 3, which presents an integrative study of multi-

omics data in mouse cortical neurons. Chromatin accessibility profiled by ATAC-seq is 

used to assess immediate response by TFs and their associations to gene expression 

programs. The data demonstrates that particular TFs and their interactions drive specific 

responses in each condition, precisely modulating neuron function. 

Question 4: Can we systematically predict terminal repressors in different cell types? 

Based on the idea that the TF Myt1l improves reprogramming efficiency in the conversion 

from mouse embryonic fibroblasts to neurons through repression of non-neuronal genes, 

we addressed the question of classifying and predicting TFs with a similar role through 

integration of available gene expression and TF-binding data. In Chapter 4, we present a 

framework to score TFs as activators of cell fate genes or repressors of non-fate genes that 

can be used in the prioritization of TFs for specific reprogramming protocols. Two cases 

were predicted as terminal repressors in this approach and were validated in 

reprogramming experiments. 
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Figure 1.10. Visual overview of the main chapters of the dissertation. 
Relationships between TF-TF cooperativity and function are studied in Chapter 2. Functional coordination 
between TFs binding and gene expression in the context of neuronal activity is presented in Chapter 3. 
Finally, in Chapter 4 the relationship between combinations of activator TFs (blue, red) with Terminal 
repressor TFs (yellow, green) is explored and discussed is the context of cell reprogramming 
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Chapter 2 

 

Mechanistic insights into transcription factor 

cooperativity and its impact on protein-phenotype 

interactions 

 

In this chapter, I describe the analyses and results of a project exploring prediction of TF 

cooperative binding and their consequences. The methodology behind this work has been 

conceived by me, and I carried out all computational analyses, with support from other authors. 

The data underlying this analysis was obtained from published articles, as specified throughout 

this chapter. Additionally, biophysical and biochemical validations were generated by Nele M. 

Hollmann, Sandra A. Augsten, and Janosch Hennig. The work has been described in the 

following manuscript:

Ignacio L. Ibarra, Nele Merret Hollmann, Bernd Klaus, Sandra Augsten, Britta Velten, 

Janosch Hennig & Judith B. Zaugg (2019). Mechanistic insights into transcription factor 

cooperativity and its impact on protein-phenotype interactions. Submitted.
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2.1. Introduction 

Transcription factors (TFs) are essential for regulating cellular functions. This regulation 

is based on very specific protein-DNA interactions. For comprehending the regulation of 

biological processes it is therefore crucial to understand how TFs recognize their specific 

DNA binding sites [Spitz et al 2012; Stormo et al 2013]. 

The major determinants conferring TF binding specificity are the DNA sequence and DNA 

shape readouts [Rohs et al. 2010]. The former is guided by interactions between amino 

acids and DNA bases, whereas the latter is driven by the DNA structure preference of 

proteins mediated through DNA-backbone and DNA minor groove contacts. While 

sequence readout is a major driver of specific TF-DNA interactions, DNA-shape features 

improve the binding predictions for certain TF families both in vitro [Zhou et al 2015; Yang 

et al 2017] and in vivo [Mathelier et al 2016]. 

To date, over 1600 human TFs are annotated in the human genome [Lambert et al. 2017]. 

For many of them their DNA-binding preferences, summarized as TF motifs, have been 

determined either through in vitro assays [Badis et al. 2009; Jolma et al. 2013; Jolma et al. 

2015; Weirauch et al. 2014; Mariani et al. 2017] or in vivo through chromatin 

immunoprecipitation followed by sequencing (ChIP-seq). However, despite the wealth of 

data and a good agreement between in vivo and in vitro derived TF motifs [Orenstein et al 

2014] one of the long-standing challenges in the field is the high number of TF binding 

events that cannot be explained by the primary motif of the assayed TF. One of the 

proposed explanations for this phenomenon is that TFs can bind cooperatively and thereby 

strengthen their DNA binding affinity [Morgunova et al. 2017]. 

Recent studies leveraged high-throughput Systematic Evolution of Ligands by Exponential 

Enrichment coupled to Consecutive Affinity Purification (CAP-SELEX) [Jolma et al. 2015] 

to identify composite sites where cooperative TF-binding may occur. However, despite 
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these experimental advances, for most TFs the molecular mechanisms of cooperative 

binding and its distinction from co-binding remain elusive. Furthermore, even though it 

has been demonstrated that specific TF-TF interactions can alter sequence recognition 

through the formation of homo- or heterodimers, and are important for driving specific 

biological processes [Slattery et al 2011; Monahan et al 2017; Huang et al 2015], we lack a 

global understanding of the consequences of cooperative TF binding. This is mainly 

because we are missing the appropriate computational tools to systematically interrogate 

their functional associations. 

Here, we implemented a framework to determine cooperative TF-binding preferences 

from in vitro SELEX data. We identified DNA shape as an important feature to predict 

cooperative TF binding, in particular for pairs between Forkhead and E26 transformation 

specific (Ets) members. This particular prediction was validated using nuclear magnetic 

resonance (NMR) spectroscopy and isothermal titration calorimetry (ITC). Through site-

specific amino-acid mutagenesis we further showed that DNA shape readout likely 

contributes to the cooperativity mechanism. In vivo enrichment of these cooperative 

sequences indicates different prevalence across Forkhead-Ets pairs, suggesting an 

additional layer of regulatory complexity. Finally, through an extensive assessment of the 

biological consequences of TF-cooperativity in vivo we found that leveraging the 

knowledge of cooperative TF binding increases the power to discover functions regulated 

by TF pairs. Specifically, for the Forkhead-Ets families we showed that a joint upregulation 

of FOXO1-ETV6 in Chronic Lymphocytic Leukemia (CLL) patients was associated with 

significantly higher survival rates. 
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2.2. Results 

2.2.1. Quantitative modeling reveals contribution of higher order sequence 

features to TF-cooperativity 

In a recent study Jolma et al have reported hundreds of cooperatively bound TF pairs 

through CAP-SELEX experiments [Jolma et al. 2015]. Their study demonstrated that TF 

cooperativity is highly prevalent and proposed that a majority of TF pairs do not directly 

interact, but form complexes mediated by DNA. Here we wanted to gain more insight into 

the mechanisms and uncover general rules that drive cooperativity among the identified 

TF pairs. Specifically, we hypothesized that features encoded in the DNA may contribute to 

the observed cooperativity. To test this, we devised a framework to predict the relative 

affinity of TF pairs based on DNA features using CAP-SELEX data. By ranking the 

importance of each DNA feature we could then identify those that potentially drive 

cooperativity. 

CAP-SELEX data was obtained from Jolma et al [Jolma et al. 2015]. After reprocessing and 

quality control (Appendix A) we built models to predict the relative affinity of k-mers 

(DNA sequences of length k) bound to TF pairs in a procedure adapted from Riley et al 

[Riley et al. 2014], which was previously employed to identify DNA features that determine 

binding of mainly single TFs [Zhou et al 2015, Mathelier et al. 2016; Yang et al. 2017; Rube 

et al. 2018]. Relative affinity was defined as the enrichment of a k-mer in the last cycle of 

the SELEX experiment relative to its input abundance. We then compared the performance 

of a basic model, which predicted the relative TF affinities from the mononucleotide 

sequence (1mer) with models that included more complex features, such as dinucleotides, 

trinucleotides (2mer and 3mer) or DNA-shape (shape) [Zhou et al 2015]. The latter models 

may capture DNA stacking interactions, local-structure elements, and the overall DNA 
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structure, respectively (Fig 2.1a) [Rohs et al 2009; Zhou et al 2015]. The models were 

implemented as L2-regularized multiple linear regression (L2-MLR), and the impact of 

the features on TF-binding was assessed by calculating the relative improvements 

measured as R² differences on testing data (ΔR²) between the full model (1mer+shape/ 

1mer+2mer/ 1mer+2mer+3mer; 12, 20 and 84 features per position, respectively) and the 

reduced model (1mer - 4 features per position) using cross validation (Appendix A). 

For each TF pair, we used the reported consensus sequences [Jolma et al 2015] as 

references for k-mer selection, considering all sequences up to a defined number of 

mismatches, along with their relative affinity values (Appendix A). One challenge that 

arises when working with composite TF binding models, is that their DNA binding regions 

are often very long and require high k values, which leads to low coverage of k-mers and 

hampers relative affinity estimates. Therefore, we developed a “trim-and-summarize” 

approach where we generated sets of tiled k-mers for each original k-mer of lengths no 

shorter than ten nucleotides, and summarized their effect on the prediction as a median R² 

(Fig 2.1a, Fig S2.1a-b; Appendix A). This resulted in 507 composite motifs with relative 

affinity estimates, comprising 77 unique TFs in 280 unique TF pairs. We found that models 

including higher-order features (1mer+2mer, 1mer+2mer+3mer, or 1mer+shape) performed 

consistently better than sequence-only models (1mer) (mean P < 1.0 x 10-6; Wilcoxon rank-

sum test). 
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Figure 2.1. Addition of DNA-shape features improves combinatorial binding predictions in CAP-SELEX data. 

 (a) (1) Description of “trim-and-summarize” approach to obtain relative affinities for composite motifs (k-
mers): a reference k-mer from CAP-SELEX data is trimmed from either side into multiple tiled k-mers with 
lengths no shorter than ten (blue regions assigned to consensus sequence for FOXO1 in reported k-mer, green 
regions assigned to ELK3 consensus sequence in reported k-mer) (2) L2-regularized multiple regression 
model (L2-MLR) are generated using DNA features as predictors and relative affinities as response variables 
(Appendix A). DNA sequence features (1mer, 2mer, 3mer) and DNA shape features (MGW, ProT, HelT, Roll), are 
tested in different combinations to assess their prediction contributions (3) A consensus improvement for 
each reference k-mer and model is obtained by cross-validation in each tiled k-mer table (10-fold CV) and 
calculation of the median tiled k-mer R2 improvement for all cases. (b) Trim-and-summarize testing R2 
values are shown for each CAP-SELEX and reference k-mer combination, using tiled k-mers. Values above the 
diagonal indicate improvements in the testing set prediction performance when using mononucleotide and 
shape features together (1mer+shape, y-axis), with respect to models with only mononucleotide features 
(1mer, x-axis). Relevant TF family and TF family pairs are labeled by colors (Others = non-labeled families). 
(c) Trim-and-summarize ΔR2 differences between 1mer+shape versus 1mer, stratified by family, (P indicates 
Wilcoxon test adjusted P-values, corrected by Benjamini Hochberg’s procedure). 
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This indicates that higher-order features are important for predicting TF cooperative 

binding (Fig 2.1b). Notably, since the predictions were done on held-out data, the positive 

ΔR² is not due to overfitting. 

Overall, regardless of whether high-order sequence features are interpreted as “DNA 

shape” or as “dinucleotide dependencies”, our results point towards their important role 

in guiding co-operative TF binding. In the following, we will only use 1mer+shape models, 

which reasonably capture the improvements observed for the other models (Fig S2.1c-d). 

2.2.2. Forkhead-Ets cooperativity is driven by DNA shape features 

We next sought to assess whether DNA shape was important in driving cooperativity 

between particular TF families. To do so, we compared the ΔR² between full (1mer+shape) 

and basic (1mer) models across all TF pairs stratified by family. In agreement with previous 

studies we observed a moderate but significant increase in ΔR² for TF pairs involving 

homeodomain members [Slattery et al 2011; Abe et al 2015; Yang et al 2017]. (Fig 2.1c, 

median ΔR² = 0.07; P = 1.4 x 10-3, one-sided Wilcoxon rank-sum test; (Appendix A). The 

strongest effect of DNA shape, however, was observed for pairs between Forkhead and Ets 

members (median ΔR² = 0.09, P = 1.8 x 10-5). This shape-dependency was more 

pronounced than the ones obtained for each family alone (Forkhead and Ets median, both 

ΔR2=0.07) thus highlighting its specificity. This is particularly interesting because 

crystallographic studies have demonstrated that DNA shape varies across Forkhead 

members [Li et al 2017]. In addition, Ets binding predictions have shown improvements by 

DNA-shape features [Yang et al 2017]. 

Due to the known bi-specificity of Forkhead TFs [Nagakawa et al 2011], we performed the 

same analysis after discarding DNA sequences containing the bi-specific Forkhead motif, 
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and obtained comparable results (Fig S2.1d). Overall, these observations highlight that 

DNA shape (or high-order features captured by shape) are important for predicting 

composite binding in a subset of TF-families, and particularly so for Forkhead and Ets 

members. 

2.2.3. Prediction and validation of cooperativity between Forkhead and Ets 

We next wanted to gain more mechanistic insight into the specific sequences presumably 

driving cooperativity between members of the Forkhead and Ets families and that could 

potentially explain TF binding to non-canonical sites. For that purpose, we used FOXO1 

and ETS1 as a prototype Forkhead-Ets pair, and classified DNA sequences based on their 

level of cooperativity. Specifically, for each k-mer we compared the relative affinities for 

ETS1 and FOXO1 obtained from their respective High-Throughput SELEX (HT-SELEX) 

datasets (Fig 2.2a), and defined their cooperativity-potential as the ratio of predicted 

relative affinities between FOXO1:ELK3 (ETS1 paralogue) and the mean predicted relative 

affinity for FOXO1 and ETS1 (Appendix A). We found that the cooperativity potential 

dropped with increasing FOXO1 binding affinity, while the relative affinity of ETS1 had 

little effect on it (Fig 2.2b). This indicated that the FOXO1-binding strength determined the 

level of cooperativity, conclusion further corroborated by comparing representative DNA-

sequences classified as non-cooperative, cooperative and highly cooperative (ω-none, ω 

and ω-high, respectively Fig 2.2c), which only differed in their Forkhead binding region. 

Similarly, Universal Protein-Binding Microarray data [Berger et al. 2006] revealed higher 

affinity of Forkhead members for ω-none than for ω sequences, while weak binding was 

observed for ω-high (Fig S2.4a; Appendix B). These results suggest that Forkhead TFs can 

bind to ω-none sequences on their own by recognizing a strong Forkhead binding site 
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while they rely on allosteric interactions with their Ets partner for recognizing ω (and 

possibly ω-high) sequences by forming a cooperatively bound ternary complex. 

To validate the cooperativity predictions experimentally, we used isothermal titration 

calorimetry (ITC) to monitor changes in the dissociation constants (Kd) for the three DNA 

sequences with FOXO1 alone and in the presence of ETS1 (Appendix B). For FOXO1 alone we 

observed a 10-fold stronger binding for ω-none than for ω (Kd= 24 ± 3 nM and 352 ± 22 

nM, respectively; P < 0.01, two-sided t-test Fig 2.2d; Fig S2.2a) while no interpretable 

results were obtained for ω-high of ITC. To test the effect of cooperativity on FOXO1 

binding we titrated FOXO1 into a mixture of each DNA sequence and ETS1 and indeed 

observed a significant reduction in the Kd for ω (44 ± 11 nM; P < 0.01), but not for ω-none 

(26 ± 2 nM). This indicates cooperative binding between FOXO1 and ETS1 for ω but not for 

ω-none and thus validates our predictions. Since we were not able to measure ω-high 

using ITC, we resorted to measuring NMR chemical shift perturbations (Fig 2.2e; S2.3a), 

interpreted as weak, moderate or strong binding depending on the exchange regime (fast, 

medium, slow) to assess cooperativity between FOXO1 and ETS1. The results for ω and ω-

none were corroborated qualitatively by NMR, as chemical shift perturbations switched 

from intermediate- to slow-exchange regimes, indicating an increase in binding affinity 

for ω in presence of ETS1 (Fig 2.2e). Additional peaks also show a similar behavior (Fig 

S2.3b-c). For ω-none, we observed slow-exchange (stronger binding) for both FOXO1 

alone and in the presence of ETS1. Importantly, for FOXO1 on ω-high we observed 

chemical shift perturbations in the fast exchange regime, which enabled fitting and 

affinity determination. FOXO1 bound to ω-high three orders of magnitude weaker than ω-

none (Kd = 21 ± 40 µM; Fig 2.2f) and changed to the intermediate exchange regime in 

presence of ETS1, indicating stronger binding and consistent with a cooperative 

interaction. 
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To generalize our cooperativity prediction to other FOXO1-Ets pairs binding in an 

equivalent conformation, we assessed the relative affinities of FOXO1 for sequences 

containing the binding patterns present in ω-none and ω (5’-GTAAACA-3’ vs 5’-

AACAACA-3’) in single (HT-SELEX) and paired (CAP-SELEX) data. As expected, FOXO1 

showed significantly higher relative affinities for ω-none versus ω in HT-SELEX late 

rounds (Fig S2.3b, Appendix A). In CAP-SELEX, however, relative affinities for ω-none 

and ω were similar for the majority of datasets comprising FOXO1 paired with Ets, 

Homeodomain and GCM members. 

In summary, our framework to predict cooperativity for FOXO1-ETS1 pairs based on 

combining single-TF HT-SELEX and paired-TF CAP-SELEX data was experimentally 

validated by ITC and NMR. Our findings suggest a widespread mechanism whereby 

Forkhead TFs recognize non-optimal binding sites through cooperative interaction with 

specific partner TFs. 
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Figure 2.2. Prediction and validation of cooperative binding sites from SELEX data 

(a) Workflow describing the calculation of the cooperativity potential between k-mers from CAP-SELEX and 
matched HT-SELEX data. Predicted relative affinity values of k-mers from CAP-SELEX data are scaled by the 
mean value observed in HT-SELEX for the matched single TF datasets. (b) Comparison relative affinity 
predictions for ETS1 and FOXO1 for 15-mers using HT-SELEX. K-mers are weighted by their estimated 
cooperativity potential using CAP-SELEX of FOXO1:ELK1 and HT-SELEX datasets for FOXO1 and ETS1 (ELK1 
paralogue). Y- and X-axes indicate predicted relative affinities for ETS1 and FOXO1 datasets, respectively, 
using 1mer+shape models. (c) (top) Cartoon description of binding mode for the FOXO1-ETS1 ternary 
complex. (bottom) Sequences chosen for validation from regions of none (ω-none), moderate (ω) and high 
(ω-high) cooperativity are shown and aligned with Forkhead-Ets composite motif. Green and yellow 
highlighted regions indicate Forkhead and Ets binding regions, respectively. (d) Dissociation constant ITC 
measurements for FOXO1 with ω-none and ω DNA sequences in the absence and presence of ETS1 (ns = non-
significant, ** = t-test P < 0.01). (e) 1H–15N HSQC spectra focused on K192N-H NMR titration peak for FOXO1 
with increasing DNA concentration of ω-none, ω and ω-high. Colors indicate DNA to protein concentration 
ratios. Fast to intermediate regime change in titration peak for ω-high highlights cooperativity. (f) Titration 
curve of FOXO1 binding to ω-high using K192N-H peak, without (gray dots), and with ETS1 (red dots). Gray 
line indicates titration fit without ETS1. 
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2.2.4. Quantitative modeling reveals structural insights into DNA-ternary 

complexes 

Based on the above observations we wanted to gain more structural insights into the 

cooperative Forkhead-Ets interaction as well as other TF pairs. So far, we showed that 

DNA shape features are important to predict binding of TF pairs (Fig 2.1c), and that, in the 

case of FOXO1:ETS1, differences between high- and non-cooperative DNA sequences were 

locally restricted (Fig 2.2c). We therefore hypothesized that position-specific DNA shape 

features may determine the cooperativity potential of DNA sequences. To test this, we used 

our quantitative modeling framework to calculate the importance of DNA shape features at 

each position along the composite motifs for all TF pairs in the CAP-SELEX data. 

Specifically, we compared models with and without all DNA shape features at a given 

position, and reported the maximum ΔR² per position, adapting an approach developed by 

[Yang et al. 2017] (Appendix A). For each composite motif, we thereby obtained a “shape 

profile” that captures the importance of DNA shape at each position for predicting the 

relative affinities of a TF pair (Fig 2.3a; benchmark with HT-SELEX data in Fig S2.5). 

To globally explore the positional effects of shape profiles, we scaled them to the same 

length and grouped them into five groups using unsupervised clustering (Fig 2.3b; Fig 

S2.5a; Appendix A). All clusters are characterized by a single peak in the shape profile, 

indicating that the effect of DNA shape is localized to a specific region along the protein-

DNA interface. We observed a significant enrichment of TF pairs containing Forkhead 

members in cluster 1 (odds ratio=3.1, adjusted P value < 0.1, Fisher’s exact test). Other TF 

families and TFs were specifically enriched in other clusters (Fig S2.5b). This result 

indicates that some TF families have a conserved preference for shape or high-order 

features when interacting with other TFs. Interestingly, shape profiles for pairs that 

include Forkhead members in cluster 1 peaked at the Forkhead binding site (Fig 2.3c). 
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Together with the results from the previous section, this suggested that shape readout at 

the Forkhead region might guide the cooperative interaction between Forkhead and 

partner TFs. This mechanism was further supported by comparing the shape profiles of 

exemplary Forkhead-Ets TF pairs with the profiles of single Forkhead and Ets TFs, 

obtained from HT-SELEX: While FOXO1 by itself still showed a higher shape preference 

than its Ets partner, the maximum value of the profile was shifted by at least three 

positions relative to the one of the TF pair. Similarly discrepant patterns between single 

and composite profiles were observed for other Forkhead members such as FOXI1 with Ets 

TFs (Fig S2.3d-e). These results suggest that the shape profiles are likely related to 

Forkhead-Ets cooperative binding for many members of the respective families, and 

unlikely due to individual TF binding. 
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Figure 2.3. Clustering of shape improvements by position in CAP-SELEX data reveal combinatorial TF 
binding shape-recognition biases. 

(a) (top) Scheme describing shape profiles calculation. For a homo- or heterodimeric protein-DNA complex, shape 
features are individually added to assess their relative contribution to the global increase in performance. 
Averaged contributions are transformed by interpolation to a curve representation. (Appendix A) (b) (left) PAM 
clustering of shape profiles across all CAP-SELEX models analyzed. Each row shows a composite motif (N=438). 
Five representative clusters are separated by red lines. (right) Average shape profiles for each cluster. Blue shades 
indicate one standard deviation. Enrichments for TF families within clusters are labeled (OR=odds ratio). (c) (top) 
Forkhead-Ets FOXO1:ELK3 motif, (bottom) ΔR2p  changes (as percentages) in FOXO1:ELK3 CAP-SELEX data (blue 
line). Additional lines indicate equivalent values for FOXO1, and ETS1, an ELK3 paralogue (green and orange, 
respectively) calculated from HT-SELEX [Jolma et al. 2013]. Error bars indicate windowed average standard 
deviation, with window value of 4. (d) (top) ΔR2 per position changes are shown for selected CAP-SELEX data that 
contain FOXO1 in combination with other binding partners of similar binding topology. IUPAC DNA symbols in 
heatmap indicate aligned k-mers. (bottom) Column averages for heatmap values. Error bars indicate standard 
deviations in each position. (e) FOXO1-ETS1 ternary complex. ETS1 residue R409 interacting with DNA minor 
groove is highlighted in a red box (PDB ID: 4LG0). Visualization was enhanced by PDIviz [Ribeiro et al 2015]. (f) 
Dissociation constant measurements using ITC for FOXO1 binding to ω DNA sequence upon addition of ETS1 wild 
type and selected mutants (* indicate adjusted P values obtained using two sided t-test) 
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2.2.5. Site-directed mutagenesis reveals ETS residue R409 as driver of 

cooperativity 

Given that the shape profiles were highly conserved across many members of the Forkhead 

and Ets families (Fig 2.3d), we wanted to investigate whether protein-DNA interface 

properties at the peak of the profile may confer cooperativity. Through assessment of the 

available crystal structure for FOXO1:ETS1 bound to DNA, we observed an arginine residue 

(R409) of ETS1 interacting with the minor groove at the position with highest shape 

relevance of the FOXO1 binding site (Fig 2.3e; PDB ID: 4LG0) [Choy et al. 2014]. This agrees 

with the high relevance of Minor Groove Width features for binding prediction in our 

models (Fig S2.5c). Given the strong conservation of positively charged residues in this 

position across Ets family members (94%; Appendix A), we hypothesized that the DNA-

cooperativity between Forkhead and Ets is mediated by this residue. 

To test this, we performed site-directed mutagenesis of the ETS1-residue in question 

(R409) and monitored the changes in the dissociation constants of FOXO1 for one of our 

previously validated cooperative DNA sequences (ω) using ITC (Fig 2.3f; Appendix B). 

Replacement with alanine (R409A) significantly reduced the cooperative effect between 

ETS1 and FOXO1 with a significant drop in binding affinity of FOXO1 to ω relative to wild 

type ETS1 (Kd = 151 ± 11 nM in R409A vs 44 ± 11 nM in WT; P = 2.4 x 10-3). In contrast, 

replacing the arginine with another positively charged residue (Histidine; R409H), 

resulted in a FOXO1 binding affinity similar to wild type ETS1 (Kd = 67 ± 4 nM) thus 

retaining the cooperative interaction. To study whether this effect solely depends on that 

specific residue, we tested a neighboring residue (Y410A), and observed almost no changes 

in FOXO1 affinity (Kd = 313 nM; Fig S2.5f). We concluded from these analyses that the 

cooperativity between FOXO1 and ETS1 is indeed mediated by the interaction of R409 of 

ETS1 and the DNA minor groove opposite the FOXO1 binding site. As the affinity of FOXO1 



37 
 

in presence of the mutant ETS1 was still higher than for FOXO1 alone, we cannot exclude 

that other residues may also contribute to the cooperativity. 

2.2.6. Cooperativity between Ets and Forkhead determined in vitro is relevant in 

vivo 

Having demonstrated, mechanistically analyzed, and experimentally validated 

cooperativity between members of the Forkhead and Ets TF families in vitro, we next 

wanted to assess whether these findings can be translated to in vivo systems based on 

ChIP-Seq data and whether TF-TF interactions can aid in explaining TF binding events.  

We first tested whether DNA shape was equally important for predicting co-occupied 

ChIP-Seq regions as it was for predicting cooperative binding based on CAP-SELEX data. 

To do so we used a classification framework similar to [Mathelier et al 2016], to compare 

models based on motif match (PWM) only and motif match plus DNA-shape features 

(PWM+shape) for predicting co-occupied ChIP-Seq regions between pairs of TFs 

(Appendix A). Overall, we obtained similar results as for the in vitro data with 105 peak sets 

showing improved classification performance after addition of shape features in mapped 

TF cooperative sites (P < 0.0001; one-sided Wilcoxon rank-sum test) (Fig 2.4a). In 

agreement with the in vitro data analyses, TF pairs that include a Forkhead family member 

particularly benefited from DNA shape (P = 0.03; one-sided Wilcoxon rank-sum test) (Fig 

2.4b). 

When comparing the shape profiles obtained from the in vivo and the in vitro data 

(Appendix A), we observed a strong agreement for 40% of them (FDR = 10%) (Fig 2.4c); 

median spearman correlation = 0.25). This suggests that DNA shape plays a similar role in 

driving cooperativity in vivo for specific TF pairs. Among the correlated profiles were 

several Ets-Forkhead pairs e.g. FOXO1:ETV4 (Fig 2.4d). 
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We next wanted to assess to which extent Forkhead:Ets members bind cooperatively 

versus non-cooperatively in vivo. To do so, we calculated the enrichment of the ω and ω-

none motifs in co-occupied ChIP-Seq data for members of both Forkhead and Ets families 

- assuming that the FOXO1:ETS1 ω and ω-none k-mers are representative of other 

Forkhead-Ets members (Appendix A). We found both ω-none and ω enriched among the 

co-occupied regions of the 126 TF pairs using the single occupied regions as background 

(Fig 2.4e). 18 TF pairs showed enrichment for both the non-cooperative as well as 

cooperative sequences (ω-none and ω) confirming the co-existence of cooperative and 

non-cooperative binding patterns between the same pairs of TFs in vivo. Another 29 pairs 

were only enriched for either cooperative or non-cooperative sequences (5 and 24 

respectively). These results suggest variable degrees of cooperativity between Forkhead-

Ets TF pairs, thus hinting at a TF-pair specific cooperativity, which adds an additional 

layer of regulatory complexity in vivo. 
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Figure 2.4. Cooperative TF binding agreement between SELEX and in vivo data. 

 (a) Classification performance comparison between PWM+shape (y-axis) versus PWM models (x-axis) in regions 
that were selected for being co-bound by ChIP-seq for TF pairs present in CAP-SELEX data (N=105). Classification 
performance is measured by the Area Under The Receiver Operating Characteristic Curve (ROC-AUC). Blue points 
indicate TF pairs with Forkhead as one of its members. (b) ROC-AUC differences between classification models for 
datasets containing at least one Forkhead member (blue) and all other TF pairs (pink). P value obtained using 
Wilcoxon rank-sum test. (c) Spearman correlation distribution of performance changes per position in in vitro (R2), 
and in vivo (ROC-AUC) between matched TF pairs. Orange line indicates FDR 10% cutoff for positive correlations (d) 
(top) Forkhead-Ets composite motif model between FOXO1 and ETV4, (bottom) aligned performance changes per 
position observed in in vitro (CAP-SELEX; red line) and in vivo (ChIP-seq; blue line). ρ indicates effect size. (e) (top) 
Scheme illustrating co-enrichment calculations for ChIP-seq regions co-occupied between Forkhead and Ets 
versus single TF occupied. (middle) Dot plot showing ω-none and ω k-mer enrichments between co-occupied and 
single TF peaks (Adjusted P value obtained from a Fisher’s exact test between fraction of regions with motif in co-
occupied peaks versus fraction of region with motif in single TF occupied peaks) (bottom) Venn diagram indicating 
significant observation for tested k-mers, and number of datasets with enrichments for both. 
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2.2.7. Inference of TF-phenotype associations using TF-cooperativity k-mers 

Having shown that cooperativity is both prevalent and specific in vivo we further 

investigated its potential functional impact. We first wanted to assess whether certain 

biological processes are specifically regulated by cooperative TF binding. To do so, we 

assumed that genes regulated by a pair of TFs should reflect biological functions common 

to both TFs and that these functions should be captured by gene ontology terms. Further, 

we defined TF-pair-to-gene links by mapping regions co-occupied by both TFs (using 

ChIP-Seq from ReMap [Cheneby et al 2018]) to target genes (using GREAT [McLean et al 

2010]; Appendix A). 

With this, we devised an “Ontology Association Probability” that quantifies relationships 

between each TF pair and an ontology term using logistic regression. Briefly, for each TF 

pair we modeled their membership in a given ontology term based on the number of their 

target genes and regulatory elements (normalized as z-scores) mapped to it (Fig 2.5a; 

Appendix A). To test the effect of cooperativity on the ontology association probability we 

compared models with only ChIP-Seq data as features (“peaks”) to models with only 

cooperativity k-mers (“k-mers”) and models using both (“peaks+k-mers”). For all models, 

we observed higher association probabilities for ontology terms annotated to the TF pair 

(“TF1 and TF2”) than for random background terms (P < 0.001; Wilcoxon one-sided test) 

(Fig 2.5b). The highest associations were obtained for models considering genes regulated 

by cooperatively bound peaks (peaks+k-mers; P < 0.01), emphasizing the role of TF 

cooperativity in regulating specific processes. 
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Figure 2.5. Inference of TF-phenotype associations using TF-cooperative k-mers. 
 (a)  Scheme illustrating calculation of Ontology Association Probability values using TF-TF k-mers, ChIP-seq 
data and ontology databases. For each TF-pair and ontology combination, four metrics describing the numbers 
of genes and peaks proximal to the ontology-related genes are converted into Z-scores (Appendix A). From 
peaks assigned to for both TFs (TF1ՍTF2, gray oval), the sub-selection using the co-occupied peaks (TF1∩TF2, 
blue oval; features 1 and 2) allows calculating Ngene and Npeak, and co-occupied peaks with TF-TF k-mers allow 
calculating Ngene,k and Npeak,k (green oval; Features 3 and 4). Ontologies are labeled by the presence of both TFs 
(TF1 and TF2), one (TF1 or TF2), or none (background) in the ontology. Models with different combinations of 
features are tested (peaks = 1 and 2. (Blue); k-mers = 3 and 4. (Green); peaks+k-mers = 1, 2, 3 and 4. (Red)). (b) 
Distributions of association probabilities for Human Phenotypes Ontology (HPO) terms for terms labeled as “TF 
and TF2” versus background terms are shown (* indicate Wilcoxon rank-sum test P values). (c) Classification 
task performances in the assessment of “TF1 and TF2” versus “background” terms in three ontology databases. 
ROC-AUC and PR-AUC indicate areas under the ROC and Precision-Recall curves. P values are derived from 10-
fold cross validation metrics comparisons between peak+k-mers and reference approaches using an independent 
t-test, after Benjamini-Hochberg correction. 
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We next sought to use the derived metric for discovering biological functions of 

cooperatively bound TFs. In particular, the association probability can be used to predict 

ontology terms of all TF pair combinations (Appendix A). Using defined ontology terms 

common to both TFs as a gold standard, performance metrics indicated that predictions 

were on average better when using peaks+k-mers versus peaks or k-mers. This was the 

case in three tested ontology databases (GO; DISEASES; HPO) [Ashburner et al 2000; The 

Gene Ontology Consortium 2019; Köhler et al 2018; Pletscher-Frankild et al 2015] and 

irrespective of the performance metric (mean ROC-AUC = 0.70 (peaks+k-mers), 0.61 

(peaks), and 0.64 (k-mers) (P = 6.7 x 10-8); mean Area under the Precision-Recall Curve 

(PR-AUC)) = 0.18, 0.15 and 0.06 (P = 2.3 x 10-9)) (Fig 2.5c). Interestingly, the classification 

performance of ontologies related to both TFs is higher than the one where only one TF of 

the pair is associated to the ontology (“TF1 or TF2”; mean ROC-AUC = 0.66; mean PR-AUC 

= 0.14; Fig S16a). These results indicate that processes cooperatively regulated by two TFs 

can be distinguished from those regulated by each TF individually. 

To capture the strongest associations between TF pairs and terms across all used ontology 

databases, we defined a model-dependent signal-to-noise threshold on the association 

probabilities (Appendix A); this recovered 6600 strong associations with high 

probabilities and both TFs as members of the ontology (Fig S2.5b). We considered this 

number an underestimate limited by the availability of ChIP-Seq data since applying a 

variation of our model using only TSS k-mers identified cooperative TFs interacting with 

partner TFs in cell differentiation and disease (Fig S2.5c) that for which no ChIP-seq 

exists. Following up on our previous results we focused on Forkhead-Ets pairs and 

recovered strong associations between specific partners and ontology terms for 20 of them 

(Fig 2.6a). FOXO1 showed the highest number of associations with different TFs (nine), 
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suggesting a multifunctional role for this TF through cooperative interaction with multiple 

partners. FOXO1 was most strongly associated with sarcoma (DOID:1115, with ELF1), and 

squamous cell carcinoma (DOID:5520, with ELF3) (k-mer = WAAACAGGAAG for both 

terms; average k-mers z-score > 5). This is in agreement with previous reports proposing 

FOXO1 as a prognostic marker in sarcoma [Zhang et al 2009]. Moreover, ELF3 has been 

proposed as a marker in squamous cell carcinoma [AbdulMajeed et al 2013] and ELF 

members have been generally recognized to play a role in sarcomas [Ando et al 2016]. In 

light of these results and their strong agreement with the literature, we hypothesized that 

expression levels of FOXO1 together with predicted TF partners could be a potential 

readout to interrogate clinical cancer data. 

We examined this concept using available data on lymphoid leukemia patients to examine 

the effect of predicted associations with cooperative binding of FOXO1 and ETV6 

(DOID:0050745, k-mer GAAAACCGAANM; mean k-mers z-score = 3.2). Specifically, we 

stratified patients in a Chronic Lymphocytic Lymphomas (CLL) cohort [Dietrich et al. 

2018] into high/low expression levels for both TFs (Appendix A), to explore their usage as 

prognostic markers. Strikingly, we obtained a significant increase in overall survival when 

both TFs were highly expressed (Hazard Ratio (HR)=0.21, 95% CI 0.10-0.45; P = 6.5 x 10-5) 

(Fig 2.6b). This association was not found when considering each factor separately, and it 

was not confounded by p53 and IGHV mutation statuses (HR=0.19, 95% CI 0.07-0.48, P = 

5.0 x 10-4, Fig S2.5d). Importantly, this is the strongest association to survival among all 

FOXO1-Ets combinations, for which ChIP-seq data was available. Together with reports of 

FOXO1 and ETV6 as putative tumor suppressors in lymphomas [Xie et al. 2012; Peker et al. 

2013] this suggests an important role of this TF pair in lymphoid leukemia. 



44 
 

Overall, our results demonstrate the increased power of cooperative TF-binding models 

applied to in vivo data for an unbiased screening of novel TF pairs as potential drivers of 

function and disease. 

 
 

Figure 2.6. Forkhead-Ets cooperativity related association to function and disease 

(a) Strong associations networks between Forkhead-Ets families using HPO and DISEASES ontologies 
(Appendix A). Nodes indicate TFs and edges indicate ontologies names. Edge width indicates relevance of 
features 3 and 4 the final association probability value (COPD=Chronic obstructive pulmonary disease; 
T2D=Type 2 Diabetes) (b) (top) Cartoon describing association between Forkhead+Ets k-mer 
GAAAACCGAANM and lymphoma associated genes through intersected peaks. (middle) Kaplan-Meier plot of 
overall survival in CLL patients when using FOXO1 and ETV6 expression medians (“high/low” defined as 
above/below median, and labeled as + and -, respectively). P-values are derived from two-sided log-rank 
comparison with respect to -/- expression levels for both FOXO1 and ETV6 (data from [Dietrich et al. 2017]). 
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2.3. Discussion 

Here we provide a novel framework to study different types of TF binding data for single 

and co-binding TFs in vitro and in vivo, allowing to systematically gain structural insights 

into TF cooperative binding, and revealing their functional and disease-related relevance. 

Statistical learning proved to be an integral part to understand the contributions of DNA 

features to TF binding, such as in approximating positional relevance of nucleotide 

interactions and DNA-shape features in TF binding models. Thereby our models provide a 

platform for generating hypotheses about the possible consequences of disruptions in 

DNA-shape readout [Slattery et al. 2011; Yang et al 2017, Kribelbauer et al. 2017, Rube et 

al. 2018]. Importantly, applying those concepts to cooperative TF binding data, we derived 

specific and conserved binding preferences across TF families. Using FOXO1 and ETS1 as 

representative members of the Forkhead and Ets families, we demonstrated that such 

conserved TF-interactions are clearly linked to DNA-shape readout with stronger effect 

sizes than the ones for homeodomain pairs [Slattery et al 2011]. We reinforced this 

argument by identifying a conserved residue that mediates cooperativity in Ets family 

members. This particular arginine residue happens to harbor multiple DNA-binding 

domain polymorphisms [Barrera et al. 2016], suggesting that the extent of this particular 

cooperativity between Forkhead-Ets members can be prone to variation across healthy 

individuals. 

Our work presents a major methodological advance over recent studies on the quantitative 

assessment of DNA-shape readout and its contribution to TF binding, which are limited by 

data sparsity due to long binding (composite) motifs. To estimate feature preferences for 

such motifs, we introduced a “trim-and-summarize” approach allowing the reliable 

quantification and comparison between models considering motifs spanning a mean of 18 

base pairs in CAP-SELEX data from Jolma et al. (Appendix A). Given the reasonable 
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agreement of our results with in vivo data, this approach could prove useful in integrating 

low-coverage SELEX data with other studies of higher data quality [Zhang et al 2018; 

Rastogi et al 2018], as well as screening for novel cooperative TF binding sites in vivo. 

TF binding has been associated to chromatin regulation [Grubert et al 2016] and disease 

[Deplancke et al 2016], yet cooperative binding has not been systematically analyzed in 

such contexts. The knowledge of TF-TF allostery can be used to predict co-occupied TF 

regions and annotate cryptic binding sites [Narasimhan et al 2015]. As genetic disruptions 

in such TF-cooperativity regions are important to understand failures in developmental 

programs [Slattery et al 2011] and disease [Iwata et al 2017], there is a requirement for 

models that predict preferences for TFs acting in combination and the functional 

consequences of such events. Here, the integration of cooperative TF k-mers with ontology 

associations of TFs allowed us to thoroughly examine potential functional consequences 

stemming from genome loci targeted by cooperative TF-binding. Although other studies 

have associated composite motifs to specific cell types using in vivo data before [Jankowski 

et al. 2014; Guturu et al. 2013], we successfully demonstrate that incorporating a new layer 

of knowledge on the degree of cooperative binding gives a significant leverage in 

identifying biological processes specific to TF pair binding. In fact, the knowledge of 

cooperative k-mers translates into better TF-ontology predictions and could thus increase 

the extent of our functional knowledge on cooperative TF binding and its underlying 

biology (Fig 2.7). Importantly, we release our current predictions for community 

examination of new mechanistic interactions between TF pairs. 

Given the considerable amount of strong associations between TF pairs and disease, the 

clinical power of revealing such functional connections in a systematic manner is not to be 

underestimated. Our investigation of the TF pair FOXO1:ETV6 and its cooperativity-driven 

association with overall survival in CLL exemplifies this clearly and is reinforced by the 
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observation of a FOXO1/ETV6 gene fusion in leukemia patients [Stengel et al 2018]. Both 

FOXO1 and ETV6 have been described as putative tumor suppressors in lymphomas [Xie et 

al. 2012; Peker et al. 2013], yet the extent of the cooperativity-driven functional impact in 

Leukemia relative to other FOXO1-Ets combinations has not been understood nor 

quantified. Future work will be required to understand whether this particular mechanistic 

relationship occurs prior or after FOXO1 mutations [Trihn et al 2013] or whether it 

represents an independent event in cancer progression in the first place. Systematic 

modeling of such associations and their network interdependencies remains, however, an 

indispensable component in leveraging TF cooperativity for functional interrogation and 

prioritization of disease-related TF combinations. 
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Figure 2.7. Model to estimate cooperative TF-binding contribution to TF-ontology associations. 

(top) Illustration of different types of models that describe associations of TF with function and disease. The 
Standard model describes the contribution of single TF-DNA binding, which can be improved by the addition 
of TF-TF interactions for an enhanced understanding of function and disease. This is translated into an 
overall increased discovery of strong phenotypes associated to TFs when acting in combination. (bottom) 
Information used in this work to describe TF cooperativity and reveal TF-cooperativity linked processes 
(DNA-mediated cooperativity = TF-TF k-mers and prioritization of important binding modes; ChIP-seq = 
co-occupied peaks for TF pairs; ontologies and TF-gene pairs = associations between co-occupied regions by 
TF pairs and their associated genes, linked to function through ontology data).  
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Chapter 3 

 

BDNF promotes enhancer accessibility essential for gene 

activation and exon usage in neurons 

 

In this chapter, I describe the analyses and results of a collaboration project that explores the 

molecular response of mouse cortical neurons by multi-omics data integration. Methodologies 

and experimental data generation behind this work have been initially conceived by Vikram 

Ratnu, in a collaboration between the groups of Kyung Min Noh and Judith Zaugg at EMBL 

Heidelberg. I carried out all computational analyses and suggested further validation 

experiments that were part of the results sections. The work has been described in the following 

manuscript: 

Ignacio L. Ibarra*, Vikram S. Ratnu*. Lucia Gordillo, Luca Mariani, Katy Weinand, 

Martha L. Bulyk, Judith B. Zaugg & Kyung-Min Noh (2019). BDNF promotes enhancer 

accessibility essential for gene activation and exon usage in neurons. In preparation. 
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3.1. Introduction 

How neuronal activity is linked to function of the nervous system is a question of 

paramount importance in neuroscience. Molecular mechanisms regulating synaptic 

transmission and plasticity have been intensely studied for decades, and their relevance is 

acknowledged as their functional deficits can lead to neurogenetic disorders, linked to 

learning and behavior on many levels [de la Torre-Ubieta et al 2018]. 

It has been understood that neuronal activity is mainly determined by changes in gene 

expression patterns, which is tightly regulated at the genome level through epigenetic and 

accessibility markers [Peixoto et al 2012]. Multiple studies have assessed the impact of 

such markers on neuronal activity and their species-wide conservation as a way to 

prioritize regions related to developmental and intelligence disorders [Reilly et al 2015]. 

However, studies focusing on the link between genome-wide accessibility changes and 

gene expression programs at intermediate and late time points after neuronal stimulation 

are lacking. Nor has it been shown how different stimuli confer specific neuronal activity 

by differentially impacting the accessibility and gene expression landscape. 

Here we present a study that profiles both accessibility and gene expression changes in a 

genome-wide manner to identify features that determine mouse cortical neuron response 

to stimuli. Through joint temporal profiling of chromatin accessibility and gene expression 

upon three stimuli (BDNF, KCl and Forskolin) in mouse primary cortical neurons, we 

delineated molecular rules determining chromatin-to-expression programs. Our genome 

wide analysis pointed at regulatory factors mediating neuronal response to our stimuli in a 

shared and treatment-specific way, allowing us to identify the underlying mechanisms as 

well. Specifically, we found and validated an axis between co-regulators and co-repressors 

controlling the expression response in BDNF, whereas the neuronal response upon KCl 
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stimulation was mostly determined by an interplay between CTCF and accessibility-

mediated transcriptional changes.  

3.2. Results 

3.2.1. Stimulus specific biphasic transcription in response to neuronal activity 

We investigated how different neuronal stimuli (BDNF, KCl, Forskolin) impact gene 

expression programs in mouse primary cortical neurons. BDNF activates p75NTR and Trk 

receptor tyrosine kinases which trigger signaling pathways involved in neuronal plasticity 

[Chao et al 1995; Poo et al 1991]. KCl (55 mM) induces membrane depolarization, calcium 

influx [Greer et al 2008], and calcium-dependent signaling pathways leading to changes 

in gene expression. Forskolin increases secondary messenger cAMP by activation of 

adenylate cyclase [Seamon et al 1981]. As KCl is well characterized for neuronal activity in 

vitro [Bading et al 1993, Macias et al 2001], we compared it with concentrations of BDNF 

(5, 10 and 20 ng/mL) and Forskolin (5, 10 and 20 µM) by immunoblotting serine 10 

phosphorylation of histone H3 (H3S10P) (Appendix B), a marker for neuronal activity 

[Wittmann et al 2009]. H3S10P levels were higher in Forskolin than BDNF and KCl (Fig. 

3.1a), but concentrations of BDNF and Forskolin have a similar impact. Thus, we used an 

intermediate dose of Forskolin (10 µM) and BDNF (10 ng/mL) for further experiments. 

We analyzed the gene expression from RNA-sequencing (RNA-seq) at three time points (1, 

6, and 10 hours) and at each time the three stimuli (BDNF, KCl, Forskolin) were compared 

to matched controls (Fig. 3.1a; Appendix A and B). Hierarchical clustering of log2 fold-

changes of all differentially expressed genes (DE-genes) in all the conditions (FDR=10%) 

revealed that after 1h similar DE-genes are induced upon BDNF and Forskolin treatment. 

At later time points (6 and 10h), however, DE-genes are clustered by individual treatment 
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(Fig 3.1b; Appendix A). The total number of early DE-genes varied across treatments with 

a majority of them induced by KCl, followed by BDNF and Forskolin (Fig 3.1c). Treatment 

differences emerged when DE-genes were annotated by their first appearance (“new DE-

genes”). We observed a decreasing number of new DE-genes at each time point for BDNF 

(3201, 2597, 722) and KCl (5352, 4344, 905), whereas Forskolin showed a peak of new DE-

genes at 6h (458, 1570, 548). These results indicate that major transcriptional changes for 

all treatments occur at 1h and 6h, and BDNF and KCl share common transcriptional 

dynamics despite the higher similarity between BDNF and Forskolin at 1h (Fig 3.1b). As 

lower levels of H3S10P are observed in BDNF and KCl compared to Forskolin, these results 

also indicate that H3S10P levels alone do not fully capture the transcription response.  

Given the dynamics of gene expression at 1 and 6 h, we sought to assess the biphasic 

transcription, a key feature of neuronal activity-induced transcription which comprises 

immediate early genes (IEGs) e.g., transcription factors and delayed response genes 

(DRGs) involved in synaptic plasticity and neuronal function [Flavell et al 2008]. Using 

unsupervised clustering of the topmost 5000 significant DE-genes across treatments and 

time points (Appendix A), we observed that BDNF and KCl show distinct early and late 

gene clusters (Fig. 3.1d). For example, IEGs expression is divided for BDNF (cluster 1; Arc, 

Egr2) and KCl (cluster 3; Npas4, Fosb). At late time points (6h and 10h), upregulated genes 

are separated for BDNF (cluster 2) and KCl (cluster 4, 5 and 6). Cluster 2 includes known 

neuronal function related genes (Bdnf, Cebpb). Clusters 4, 5 and 6 contain many solute 

transporters and ion channel related genes (Slc43a2, Cacna1d, Slc25a25, Kcne4 etc.) 

[Tyssowski et al 2018]. In contrast to upregulation, early downregulated genes are 

prevalent in KCl (cluster 8), whereas several clusters of late down regulated genes appear 

in BDNF (cluster 7) and KCl (clusters 9 and 10). Gene ontology (GO) analysis for individual 

clusters (Fig. 3.1e) shows that early induced gene clusters for both up (1, 3) and down (8) 
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regulated genes are enriched with TFs, regulation of transcription, and DNA binding. Late 

clusters (2, 4, 5 and 6) showed enrichment for different types of ion channels and 

transporters for BDNF and KCl. The expression of different transporters may contribute to 

the electrical diversity in neurotransmission between treatments [O'Rourke et al 2012]. 

For BDNF, late downregulated genes (cluster 7) are also enriched for TF activity and DNA 

binding terms, whereas for KCl (clusters 9 and 10) are enriched for neurological and cell 

division related terms. 

Altogether, our results reveal cortical neuronal activity differences across stimuli, at the 

level of gene expression, both in dynamics and in terms of activated and repressed 

functions. 
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Figure 3.1. (legend on next page) 
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Figure 3.1 Differential expression dynamics in mouse cortical neurons upon neuronal activity. 

(a) (top) Experimental setup. Cultured cortical neurons are stimulated with different treatments and prepared at  
three specific time points for joint RNA-seq and ATAC-seq. (bottom) Histone mark phosphorylation H3S10P for 
Forskolin, KCl and BDNF (Con = no stimulation). Actin is shown as internal control. (b) Clustering of correlations 
calculated from log2 fold changes (versus control samples) of all DE-genes (differentially expressed genes). (c) Bar 
plots indicate the number of DE-genes at each time point and treatment combination (above X-axis = up-
regulated; below X-axis = down-regulated). For time points 6 and 10h the lined box indicates the number of newly 
acquired DE-genes that did not appear in a previous time point. (d) Unsupervised clustering of differential 
expression changes (FDR=10%, n=5000). 10 clusters resulted from the row mean Z-scores calculated from 
expression values. (e) Ontology term enrichments for clusters shown in (d). 

3.2.2. Stimulus specific chromatin accessibility upon neuronal activity  

Chromatin remodeling tightly controls gene expression [Gallegos et al 2018]. Using the 

Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq), we quantified the 

chromatin accessibility differences between stimuli at all the time-points (Fig.3.1a; 

Appendix A). Hierarchical clustering of the log2 fold changes of 15566 differentially 

accessible peaks obtained in all conditions with control comparisons (DA-peaks, 

FDR=10%) (Fig. 3.2a; Appendix B) revealed that, unlike DE-genes where samples did not 

cluster by treatment at early time, DA-peaks always clustered in a treatment specific 

manner (Fig. 3.2a). When we further classified DA-peaks into gained and closed peaks 

(log2 fold changes greater and lower than zero, respectively), we observed for BDNF the 

maximum number of DA-peaks at 1h, followed by KCl and Forskolin (9012, 3701 and 373 

respectively) (Fig. 3.2b) which is different to the RNA-seq result that shows a maximum of 

DE-genes at 1h KCl. This result implies that the genome response through accessibility 

changes is stronger in BDNF than KCl. Similar to DE-genes we annotated DA-peaks by 

being firstly observed as DA-peaks in specific time points (“new DA-peaks”) and found 

them consistently decreased for BDNF, but not for KCl. The high number of late DA-peaks 

in KCl is explained by a higher fraction of newly gained DA-peaks at both 6h (1551, 71.5%) 

and 10h (1025, 47.3%) relative to 1h (2168). In comparison, BDNF response displays a much 

smaller fraction of newly gained DA-peaks at 6h (446, 6.9%) and 10h (418, 6.5%) versus 

1h (6379). For closed DA-peaks, we observed a similar pattern for both BDNF and KCl, with 



56 
 

decreasing numbers from early to late time points, and comparable fractions of new closed 

DA-peaks (Fig. 3.2b). These results show that chromatin changes induced by BDNF are an 

early event, while KCl exhibits similar levels of chromatin response at late time points. As 

the low number of DA-peaks obtained for Forskolin limited analysis, we henceforth 

focused analyses on BDNF and KCl. 

To define the genome wide distribution of activity-induced accessible chromatin regions 

we annotated gained and closed DA-peaks to their genomic features using Homer [Heinz 

et al 2010] (Appendix A). The DA-peaks were distributed in the three topmost categories 

e.g., intergenic regions, introns, and gene promoters (Fig 3.2c; Fig S3.3a), but more 

intergenic DA-peaks observed in BDNF (45%) than KCl (40%), and more promoter DA-

peaks for KCl (20%) than BDNF (5%). Widespread intergenic DA-peaks for BDNF suggest 

that its main chromatin accessibility changes occur at distal regulatory elements (DREs). 

Increased promoter DA-peaks for KCl imply a rapid gene expression response, which is in 

agreement with the greater number of DE-genes found in KCl at 1 h (Fig 3.1c). We further 

defined the epigenomic states of the DA-peaks using a chromatin states model from adult 

mouse neurons generated with Chromatin Immunoprecipitation followed by Sequencing 

(ChIP-seq) data (Fig 3.2d; Fig S3.3b) [Su et al 2017]. In KCl, gained and-closed regions 

often appeared at active TSS and bivalent promoters and were co-marked by active histone 

marks H3K4me1, H3K27Ac and H3K4me3. Early closed DA-peaks showed a specific 

enrichment for CTCF (Fold Enrichment = 8.1) (Fig 3.2d). In BDNF, gained and closed DA-

peaks showed enrichment for active TSS, downstream of TSS and gained enhancers, co-

marked by active histone marks H3K27Ac and H3K4me3. Moreover, moderate enhancers 

and enhancers within a gene are enriched for BDNF closed and gained DA-peaks, 

respectively (Fig. 3.2d). Thus, accessibility changes in DREs are more prevalent in BDNF 

than KCl. Ontology analysis revealed a strong association to abnormal associative learning 
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in both BDNF and KCl DA-peaks. Additionally, peripheral nervous system and potassium 

channel activity terms were enriched more for BDNF gained DA-peaks, while abnormal 

peripheral nervous system synaptic transmission was enriched for KCl gained DA-peaks at 

1h (Fig. 3.2e). Altogether, our analyses show wide differences in chromatin response 

between BDNF and KCl, which connects activity-dependent gene expression to their 

signature responses. 
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Figure 3.2. (legend on next page) 
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Figure 3.2 Variation in chromatin accessibility shows early neuronal activity specificity in BDNF- and KCl-
treated samples.  

 (a) Clustering of correlations from log2 fold changes of all DA-peaks (differentially accessible peaks) versus 
control samples. (b) Bar plots indicate the number of DA-peaks at each time point and treatment combination 
(above X-axis = gained; below X-axis = closed). Newly gained and closed peaks at 6 and 10 h are highlighted 
by lined boxes. (c) Percentage of DA-peaks with HOMER genomic annotations at 1h (d) Log2 fold enrichments 
for ChromHMM neuron chromatin states. (left) Emission scores and state names; (middle) log2 fold 
enrichments of gained DA-peaks. Lined boxes indicate time point with greatest fold enrichment value. Bar 
plot compares BDNF versus KCl maximum values. (right) Log2 fold enrichments of closed DA-peaks. (e) Log2 
odd ratios for gained and closed DA-peaks related to ontology terms scored using GREAT. (f) Cumulative 
distributions for log2 fold changes next to TSS related genes. (g) (top) Association between DREs and gene 
expression at BDNF 1h. Each point indicates the log2 fold change of an ATAC-seq derived peak and its linked 
gene expression as log2 fold changes. Colors indicate whether none, only the peak, or both peak and gene 
(red) show significant changes (bottom). Enrichment for DA-peaks and DE-genes in the four quadrants are 
summarized for BDNF and KCl. Asterisks indicate adjusted P value obtained from Fisher’s exact test, and 
corrected by Benjamini Hochberg procedure. 

3.2.3. Coordination between expression and accessibility between proximal distal 

regulatory elements and their target genes 

We investigated the dependencies in changes between chromatin accessibility and gene 

expression upon neuronal activity by determining the global correlation between putative 

DRE associated peaks and their proximal genes for BDNF and KCl at all time-points 

(Appendix A). The highest coordination was observed between gained DA-peaks and 

upregulated DE-genes in BDNF at 1h (odds ratio = 5.8; P < 0.0001), without any 

significance in other comparisons and in KCl at 1h (odds ratio = 1.1; P > 0.05). At 6 and 10h 

we observed significant coordination between gained DA-peaks and gained DE-genes for 

both BDNF and KCl (Fig. 3.2f). These results indicate that for BDNF the chromatin DREs 

affect gene expression starting at 1h, while for KCl the coordination occurs later. 

Co-variation of DREs such as enhancers and their target promoters can occur due to their 

physical proximity and the formation of physical contacts [de la Torre-Ubieta 2018]. 

Using our ATAC-seq data, we calculated the correlations between accessible DREs and 

accessible promoter pairs located within 50 Kbp and obtained positive correlation 

distributions indicating peak co-variation (Fig S3.3c). These values were further increased 

when considering only pairs with at least one DA-peak. When we considered only peak 
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pairs that are annotated as part of Hi-C contacts [Bonev et al 2017], a significant increase 

in the correlation values distributions was observed in links that are part of Neural 

Progenitors Cells (NPCs) and Cortical Neurons (CNs) versus Embryonic Stem Cells (ESCs) 

(Fig S3.3c). These cell type differences are the highest when either none or one of the peaks 

is a DA-peak, implying that DA-peak co-variability can be used to describe contacts that 

are not necessarily captured by Hi-C. Remarkably, IEGs related to neuron function are 

associated to significantly co-varying ATAC-seq peaks (Fig S3.3d).  

Collectively, these results reveal a complex landscape of chromatin accessibility changes 

during neuronal activity, and a coordinated interplay between chromatin accessibility and 

gene expression across stimuli, associated through co-variation between distal and 

proximal accessible regions. 

3.2.4. Subset of transcription factors underlies stimulus-specific accessibility 

responses  

To determine whether changes in chromatin accessibility after stimuli are related to 

transcription factors (TF), we searched TF motifs within the DA-peaks using 8-mers of 

108 TF specificity groups [Mariani et al 2017] and a database of Position Weight Matrices 

(PWMs) [Weirauch et al 2011] (both are henceforth referred to as “motifs”). For gained 

and closed DA-peaks in each treatment, we quantified the relative frequencies in 

comparison with a control set of negative sequences, and ranked TF motifs according to 

Receiver Operating Characteristic Area Under The Curve (ROC-AUC) values (Fig 3.3a; 

Appendix A). The basic region leucine zipper (bZIP) domain was the most enriched motif 

in DA-gained peaks for both BDNF and KCl (mean ROC-AUC = 0.65; P < 0.0001; Wilcoxon 

rank sum test) consistent with activity-dependent changes in bZIP expression playing a 

role in synaptic plasticity, learning and memory [Kandel et al 2012]. The positional 
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centrality of bZIP motif in DA-gained peaks suggests a role of these TFs as pioneers [Su et 

al 2017] (Fig S3.4a). 8-mers related to Homeobox (Hbox-III), and POU domain (POU; 

POU-HMG) were also enriched in DA-gained peaks for both treatments (ROC-AUC > 0.55). 

Two distinctive Homeobox subgroups, Hbox and Hbox-II, were only enriched in BDNF, 

suggesting a role for a subset of Homeodomain TFs in this chromatin response. 

Furthermore, gained DA-peaks in BDNF exhibited ETS, TALE-zfC2H2 and EGR motifs 

while in KCl we observed E2F-zfC2H2 and KLF motifs. The Early Growth Response (EGR) 

motifs, a class of IEGs is related to regulation downstream target genes involved in 

neurobiological processes such as synaptic plasticity and memory formation [Beckmann 

et al 1997, Gallitano-Mendel et al 2007]. Closed DA-peaks in BDNF contained HIC1 and 

RFX motifs, while in KCl included CCCTC-binding factor (CTCF), E2F, KLF, and zfCXXC-

SAND motifs (Fig 3.3b). 

As TFs of the same family can have similar DNA target sequences due to the shared 

recognition specificities [Mariani et al 2017], we examined whether individual TF 

expression levels can further define the observed motif enrichments. The bZIP group 

encompasses ten members and among them Fos, Fosb, Fosl2 and Atf3 showed significant 

up-regulated expression in both BDNF and KCl across time points (Fig. 3.3c). For BDNF 

increased expression of most bZIP members except Fos and Xbp1 disappeared at 6h, but for 

KCl expression of many bZIP members were maintained up to 10h. The EGR module 

contains eight members and four (Egr-1/2/3/4) of them are strongly induced by both BDNF 

and KCl. Importantly, up-regulated Egr-1/2 levels were only observed in BDNF but not in 

KCl which showed late reduction. On the other hand, HIC1 motif enrichment in closed DA-

peaks is consistent with higher expression levels of Hic1 in BDNF compared to KCl. As HIC1 

has been described to act as a repressor [Pinte et al 2004; Ubaid et al 2018, Boulay et al 

2012], this result suggests a link between HIC1 upregulation and stimulus-induced 



62 
 

chromatin accessibility decrease in BDNF. Unlike Hic1, CTCF did not show significant 

expression changes, yet its motif is highly enriched in 1h KCl closed DA-peaks, suggesting 

a specific layer of regulatory control linked to CTCF. Overall, we revealed coordinated 

binding and expression of TFs explaining the stimulus-specific changes in chromatin 

accessibility (mean fraction of DA-peaks explained by enriched TF motif = 68.8%) (Fig 

S3.4b). 
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Figure 3.3 Transcription factors linked to gained and closed DA-peaks reveal stimulus specific regulation. 

(a) Scheme indicating how gained and closed DA-peaks for a treatment-time combination are prepared for 
motif enrichment analyses (PWMs and 8-mers). (i) For each set of peaks, a background set of sequences 
matching genomic features is generated with GENRE. (ii) Each combination of foreground and background 
sequences is scanned in the motif databases, and ROC AUC values are generated for each combination. (b) 
Enrichment of main regulatory TF-modules enriched in gained and closed DA-peaks. Circle size indicates 
ROC AUC value and color indicates significance (Wilcoxon adjusted P-value). Bar plot compares highest value 
obtained between BDNF (green) versus KCl (orange). ROC AUC values lower 0.5 are depicted in gray. (c) Co-
enrichment of motifs in DA-peaks for 1h in KCl and BDNF. Network edges indicate fold enrichment (edge 
thickness) and Benjamini-Hochberg adjusted P-value (color). (d) Expression values for genes related to bZIP, 
CTCF, HIC1 and EGR k-mer groups. Significant log2 fold changes versus control are displayed with asterisks 
(using DESeq2 [Anders et al 2010]). 
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3.2.5. TF combinations define stimulus-specific gene expression 

Interaction between TFs can lead to more stable binding and function of the regulatory 

element [Vandel et al 2019, Jolma et al 2015; Junion et al 2012]. We therefore examined 

pairs of TF motifs in 1h BDNF and KCl carrying most DA-peaks to assess their collaborative 

role in chromatin accessibility changes. By significance, the strongest combination of 

three motifs DA-peaks for both treatments was for between EGR, HIC1 and CTCF (FE = 2.3 

and 2.8 for BDNF and KCl respectively, adjusted P < 0.0001). Additionally, the combination 

of these factors with bZIP is also enriched, suggesting a coordination between bZIP 

pioneering activity and the interactions observed for these three factors (FE = 2.2 and 1.7 

for BDNF and KCl respectively; adjusted P < 0.01). Co-occurrence of TF motifs can define 

cell-type specific enhancers and be used to understand their response [van Bömmel et al 

2018]. Indeed, co-occurrence of EGR and bZIP motifs significantly increases chromatin 

accessibility compared to either bZIP or EGR alone in BDNF gained DA-peaks (Fig. S3.5c), 

suggesting an interaction between pioneer factor and co-regulator. Furthermore, co-

occurrence of bZIP and EGR motifs in gained DA-peaks associated with Transcription Start 

Sites (TSSs) (<5kb) lead to a significant upregulation of genes for 1h BDNF, but not for KCl, 

compared with either bZIP or EGR alone (Fig. 3.4b). Thus specific increase in chromatin 

accessibility consisting of the two TFs (e.g., bZIP and EGR) upon BDNF treatment 

contributes to gene expression synergy.  

Among the genes showing high correlation between accessibility in putative DREs and 

expression (Fig 3.2g) we found the Activity Regulated Cytoskeleton associated protein 

(Arc), which is a well-known IEG pivotal for learning and memory formation [Tzingounis 

et al 2006, Plath et al 2006]. Arc is induced by both BDNF and KCl but higher at 1h BDNF 

(Fig. 3.4c) consistent with a coinciding increased accessibility at both the promoter and 

putative DRE region. We considered this region an enhancer for Arc because of its 
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enhancer-related histone modifications present in neuronal epigenomes data (H3K27ac 

and H3K4me1) [Malek et al 2014]. Additionally, CTCF tracks [Sams et al 2016; Ren et al 

2017], and a Hi-C contact between Arc gene and this DRE region are observed [Bonev et al 

2017]. 

The Arc gene enhancer region contains the DA-peak specific to BDNF which carries four 

important TF motifs (bZIP, EGR, HIC1 and Hbox-II) (Fig 3.4c). As co-occurrence of bZIP 

and EGR motifs in DRE showed higher expression of the linked gene, we hypothesized that 

the accessibility increases at DRE could explain a higher Arc expression in BDNF compared 

to KCl. Also, HIC1 is present in the DRE. Like other IEGs, expression of Arc goes down after 

1h, therefore, HIC1 might contribute as a repressor in this downregulation by binding to 

the Arc enhancer region in a BDNF-specific manner.  

To validate the role of the Arc gene DRE in BDNF-mediated gene expression, we tested 

variants that remove sections of the Arc enhancer containing EGR and HIC1 motifs by 

means of CRISPR-Cas9. Indeed, significant reduction of BDNF-mediated Arc gene 

expression occurred in DRE deleted clones, but not in control (Fig. 3.4d) indicating that 

this DRE is involved in BDNF-specific Arc up-regulation. Altogether, our results show a 

complex interaction between TF combinations and DREs to control the expression of 

neuronal activity related genes in a stimulus-specific way. 
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Figure 3.4 Variability in BDNF gene expression is linked to bZIP+EGR combinations acting in promoters and 
enhancers. 

(a) Accessibility changes for BDNF and KCl peaks grouped by presence of k-mers for bZIP (green), EGR (blue), 
or their combination (bZIP+EGR, red). Lines in density plots indicate median value for distributions. (b) 
Expression of genes with TSS proximal to DA-peaks, subset by k-mers for bZIP (orange), EGR (green), or 
both (red). Asterisks indicate adjusted p-values derived from Wilcoxon test. (c) Chromatin tracks of Arc gene. 
Blue = 1h ATAC (counts per million); Green = 1h RNA-seq (counts per million); Brown = H3K27ac; Purple = 
H3K4me1 [Malek et al 2014]; Pink = CTCF [Sams et al 2016; Ren et al 2017]; Gray = Cortical neurons Hi-C data 
[Bonev et al 2017]. Red bars in ATAC-seq tracks indicate gained DA-peaks in BDNF, and red bars in RNA-seq 
tracks indicate differential expression in BDNF and KCl. The green block in Hi-C tracks represents the anchor 
point for calculation of scores, using Shaman. The curved line between ATAC-seq peaks indicates the 
Spearman correlation of the normalized counts. Motif names indicate presence of k-mers for enriched 
specificity groups in those peaks. (d) Arc expression in BDNF is reduced upon deletion of selected regions in 
enhancer (* = P < 0.05 using two-sided t-test). 
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3.2.6. CTCF at promoter-exon loops is linked to differential exon usage in 

neuronal genes.  

CTCF enrichment in KCl closed DA-peaks suggests a regulatory role of this TF in neuronal-

activity. CTCF controls genome organization by forming TADs [Hansen et al 2018], and 

intra-TAD contacts can direct enhancers to its target promoters by CTCF looping 

[Heintzmann et al 2007]. CTCF has also been associated through genetic variation [Li et al 

2016] and promoter-exon contacts [Ruiz-Velasco et al 2016] to splicing. As CTCF motifs 

are enriched in closed DA-peaks in 1h KCl (Fig. 3.3b), we sought to study further 

associations between CTCF and gene regulation (Appendix A). Interestingly, we found and 

enrichment of 1h KCl DA-closed peaks for CTCF promoter-exon loops (odds ratio= 3.5; 

adjusted P < 0.001; Fig. 3.5a), an enrichment of convergent CTCF motifs for those peaks, 

and a stronger enrichment in KCl than in BDNF for DA-peaks with CTCF binding sites in 

both intronic and exonic regions (Fig S3.6a-b). This result suggests that CTCF might 

regulate transcriptional events after transcription initiation in a treatment specific way 

[Stadhouders et al 2012] by hindering Pol II elongation and alternative mRNA splicing 

[Paredes et al 2013; Shukla et al 2012; Ruiz-Velasco et al 2017]. Thus, we assessed the 

levels of differential usage of exons (DUEs) between BDNF and KCl. Globally we found 7188 

exons differentially used within their genes between BDNF versus KCl (FDR = 10%). When 

filtering for DUEs with at least ≥2 fold change; the expression levels of 307 exons were 

repressed and 1246 exons showed increase in expression between BDNF and KCl (Fig 3.5b). 

To validate this, we selected three genes with important roles in neuronal function and 

activity, containing a significant differentially used exon and a CTCF loop between the DUE 

and promoter: Trio Rho Guanine Nucleotide Exchange Factor (Trio) [Fujita et al 1998], 

Syntaxin Binding Protein 5 (Stxbp-5) and Carboxypeptidase E (Cpe-201) [Woronowicz et al 

2010]. We used RT-qPCR assay to quantify relative exon usage - one exon was 
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differentially used based on our analysis and the other exon was from the same gene but 

remained unchanged between treatments, and was used for within-gene correction. We 

normalized the expression changes with Rpl13 as a reference gene and compared the exon 

ratio (fold change ratio between positive and control exon) for BDNF, KCl and untreated 

neurons.  

Haploinsufficiency in Trio causes severe deficits in behavior and neuronal structure and 

function [Goebbels et al 2006; Katrancha et al 2019]. Expression of Trio DUE exon 29 

located in the last exon of a transcript variant that carries an additional 3’UTR sequence 

showed a significantly higher exon ratio relative to the regular exon 29 (without 3’UTR) in 

BDNF versus KCl at 1 h (mean exon ratio = 1.4 and 0.9 for BDNF and KCl respectively; 

adjusted P < 0.001, two-sided t-test). Stxbp5 functions to regulate synaptic capturing and 

recycling of secretory vesicles with the presynaptic plasma membrane [Geerts et al 2017]. 

Murine Stxbp5 has at least 15 transcript variants and we revealed that DUE exon 1 compared 

to exon 5 showed a higher expression in BDNF than KCl at 1 h (mean ratio = 1.15 versus 1.1; 

adjusted P < 0.01, two-sided t-test). Cpe-201 acts as neurotrophic factor to promote 

neuronal survival [Cheng et al 2014] and can also function as a sorting receptor that can 

bind to BDNF [Lou et al 2005]. DUE number 9 of Cpe-201 versus exon 6 showed a higher 

exon ratio increase at 1h for neurons treated with BDNF in comparison to KCl (mean ratio = 

1.13 versus 1.03; adjusted P < 0.01, two-sided t-test). Taken together, our results 

demonstrate a stimulus-specific regulatory layer associated to alternative transcription in 

neuronal activity, likely mediated by CTCF. 
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Figure 3.5. (legend on next page) 
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Figure 3.5 Association between CTCF in DA-peaks and differential exon usage. 

(a) (left) Depiction of promoter-exon CTCF loops. CTCF peaks (pink) pairs contain one peak close to the gene 
promoter region, and another peak close to exons. These peaks contain CTCF motifs that can be in convergent 
orientation (green arrows).  (top heatmap) Odd ratios for enrichment of promoter-exon CTCF loops in gained 
and closed DA-peaks. Promoter-exon loops are defined in [Ruiz-Velasco et al 2017]. (bottom heatmap) 
enrichment of convergent CTCF motifs in promoter-exon regions overlapping gained or closed ATAC-seq 
peaks (b) Exon log2 fold changes between BDNF and KCl in 1h as quantified by DEXSeq [Anders et al 2012]. 
Orange dots indicate Differentially used exons (DUEs), and red dots indicate DUEs with promoter-exon CTCF 
loops in their genes. Genes highlighted in blue are selection for validation. (c) (top) Genome tracks for Trio, 
Stxbp5 and Cpe genes. (middle) Depiction of reference DUE exon (ref) and control exon (gray) used for 
comparison using RT-qPCR. (bottom) Fold change ratios between reference and control exons at 1h after 
treatment with BDNF (orange), KCl (green), and control (gray). Asterisk indicates significant change versus 
control (two sided t-test). Bottom plot shows log2 fold changes for gene expression values versus control (*= 
P < 0.1 in treatment versus control comparison of normalized counts using DESeq2 (Appendix A)). 

3.3. Discussion 

In this work we have performed a comprehensive temporal analysis of gene expression 

and chromatin accessibility changes to compare neuronal activity dynamics across 

multiple stimuli. The integration and dissection of involved regulatory elements allowed 

us to predict and validate principles that determine specificity among these stimuli and are 

especially relevant for neuron function. We identified functional expression profiles 

explaining early and late waves of gene expression separating KCl, BDNF and Forskolin 

responses. Despite the global agreement between early expression profiles, our results 

suggest a differential outcome in expression programs, likely mediated by specific TFs 

modulating the common early response into targeted functional outcomes. Further work 

would be required to identify TFs or additional factors affecting the expression of these 

induced early genes. 

The integration of our time-course chromatin accessibility data with other epigenomes 

and HiC-contacts data allowed us to pinpoint features that distinguish BDNF and KCl 

responses. Importantly, we found a strong coordination between distal regulatory 

elements and target genes as an early event in BDNF-induced neuronal activity, whereas 

for KCl the early expression response was mainly defined at the level of promoter regions, 

indicating that early neuronal expression events are associated to active TSS elements. 
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Additionally, the independent clustering of accessibility and expression data (Fig 3.1a, 

3.2a) and the observation of late coordination for accessibility and expression for both 

treatments (Fig 3.2f) suggest major rearrangements in the chromatin landscape affecting 

enhancers at late time points. 

Through an extensive analysis of TF motif signatures at differentially changing accessible 

regions we predicted TFs involved in regulating the chromatin landscape, and 

combinatorically controlling gene expression. The AP-1 complex acts a classical pioneer 

factor (bZIP module in our work) [Biddie SC et al 2011] and explains a major part of the 

gained chromatin regions across tested stimuli. Importantly, we identified multiple 

secondary TFs enriched along bZIP motifs such as Hbox/EGR/HIC1 and CTCF, and in the 

case of HIC1 and EGR found them to be specifically associated to the BDNF response 

through their expression levels, which is also in agreement with the prediction of bZIP-

related TFs such as cFos recruiting co-regulators that ultimately determine response 

specificity [Su et al 2017]. EGR motifs predominantly act as co-regulators and specifically 

increase gene expression of target genes upon BDNF treatment. HIC1 motifs, on the other 

hand, are usually associated with co-repressing specific subsets of binding regions opened 

by BDNF, and overall closing of early accessible regions. The co-enrichment of HIC1 and 

EGR motifs hinted at a further regulatory role through interaction of these factors, where 

HIC1 presumably acted as an early repressor of regions activated by bZIP and EGR. We 

mapped a distal regulatory element active in BDNF and identified the differentially 

increasing Arc gene expression to be controlled by a combination of these factors (bZIP-

EGR-HIC1). The reduced expression of Arc, concomitant to disruption of enhancer EGR 

and HIC1 motifs in the associated distal regulatory element highlights a precise activation 

of gene expression which is likely mediated by interactions between bZIP and EGR/HIC1. 

The role of these factors thus constitutes a functional triad that modulates the response 
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specificity in BDNF, and its additional functional roles and interactions with the repressor 

TF HIC1 remain to be understood.  

The enrichment of CTCF motifs on early closed KCl peaks and the recently reported CTCF 

role in alternative splicing to KCl response in closed peaks [Ruiz-Velasco et al 2017], 

suggests an association between CTCF and differential exon usage. We validated our 

hypothesis using three genes shown to be affected and involved in neuron function. These 

results highlight a formerly unexplored response mechanism in classical neuronal activity. 

Behavioral processes, including learning, have been related to genes and variants affecting 

the Trio gene in regions close to our reported DUE [Pengelly et al 2016]. Chromatin 

accessibility and promoter-exon loop contacts could therefore potentially mediate 

responses through treatment-specific exon usage. Finally, as Trio contains several Single 

Nucleotide Polymorphism associated to learning in targeted domains of this protein close 

to our studied exon [Pengelly et al 2016; Sadybekov et al 2017], the alternative splicing of 

these genes could potentially mediate functional outcomes. Further work requires finding 

how these CTCF associated chromatin changes are triggered and understanding their 

specific functional consequences. 
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Chapter 4 

 

Prediction and validation of terminal repressors of non-

lineage gene expression programs for cell reprogramming

 

In this chapter, I describe the analyses and results of a project aiming at systematically 

predicting transcription factor combinations for reprogramming using the concept of Terminal 

Repressors. This project was conceived as a collaboration between the groups of Moritz Mall 

(DKFZ) and Judith Zaugg (EMBL Heidelberg). All computational analyses were carried out by 

me. Experimental validations have been carried out by Dr. Juan Segarra, a postdoc in the group 

of Moritz Mall. The analyses in this work are described in the following manuscript: 

Ignacio L. Ibarra*, Segarra Juan*, Judith Zaugg and Moritz Mall. Systematic 

classification of terminal repressors in multiple cell lineages. In preparation.
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4.1. Introduction 

The understanding of how cell identities are defined is of relevance in developmental 

biology and regenerative medicine. Starting with the Yamanaka factors [Takahashi et al 

2006], progress in this field currently allows reprogramming cell types from fibroblasts 

to pluripotent cells, as well as other cell types, including macrophages, cardiomyocytes, 

neurons and dendritic cells [Feng et al 2008, Ieda et al 2006, Vierbuchen et al 2010, Rosa 

et al 2018]. 

The main determinants of cell types are transcription factors (TFs) [The Tabula Muris 

Consortium et al 2018]. Historically, TFs used in reprogramming experiments have been 

selected based on enrichment of putative TF binding sites along promoters of cell fate 

genes. Their overexpression or removal was concurrently associated to changes in 

expression of determinant genes related to a specific cell fate [Vierbuchen et al 2010]. 

Upregulation of marker genes is used as a predictor of cell type commitment and thus 

serves as a proxy for reprogramming efficiency. Nowadays, multiple caveats affecting 

reprogramming efficiency need to be taken into account as well, such as reversing 

epigenetic memory in pre-marked genes [Hörmanseder et al 2017] and maintaining low 

expression levels of non-cell fate genes [Battaglioli et al 2002]. 

The influence of a TF on its target genes is associated with its overall role as an activator 

or repressor [Wang et al 2013]. To date, classifying TFs as global activators or repressors 

is limited for many TFs given the lack of conclusive data [Han et al 2018]. Additionally, 

cofactors can be determinant in the final response, implying that TFs can possess a dual 

role according to their molecular context and partnering with co-factors [Remedy et al 

2004]. 

In recent years, the reprogramming of cell types has been studied by monitoring the 

consequences of the addition of TFs on gene expression and cell physiology. In Mouse 
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Embryonic Fibroblasts (MEFs), addition of the myelin transcription factor 1-like (Myt1l) 

improves reprogramming efficiency and cell commitment to induced Neurons (iNs) 

[Vierbuchen et al 2010].  An integration of ChIP-seq and gene expression profiling 

showed that this particular TF represses genes of negative neurogenesis pathways such as 

Wnt and Notch, as well as genes involved in mouse embryonic fibroblasts maintenance. 

Additionally, Myt1l motifs are over-represented in non-neuronal genes such as the ones 

in keratinocytes, the pancreas and hepatocytes, suggesting a specific repression of all 

these programs [Mall et al 2017]. From these observations and the almost exclusive up-

regulation of Myt1l in neuronal cell types [The GTEx Consortium 2013; Tabula Muris 

Consortium et al 2018], Myt1l has been proposed as a ‘terminal repressor’ required to 

maintain the neuronal state by repression of other cell type-programs. 

The role of Myt1l in neurons allows for speculation on the existence of additional TFs in 

other cell types that could be acting as terminal repressors during and after 

differentiation or reprogramming. Based on the idea that genomic features such as the 

ones observed for Myt1l can be recovered and systematically interrogated for other TFs in 

other cell types as well, terminal repressors can be predicted and benchmarked 

accordingly. In this Chapter, we describe an approach to obtain terminal repression 

signatures such as the ones obtained for Myt1l in neurons. Curation and selection of 

specific cases put forth novel terminal repressors in multiple cell types, such as Prospero 

homeobox protein 1 (Prox1) in liver reprogramming and T-box transcription factor 

(Tbx5) in cardiac cell reprogramming. Bioinformatics analyses indicate that these factors 

are related to the repression of non-cell fate genes. These two factors, similarly to Myt1l, 

specifically increased the expression of reprogramming markers and showed positive 

immunofluorescence patterns in reprogramming experiments. 
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4.2. Results 

4.2.1. Classification of terminal repressors across cell types. 

One of the signature features for Myt1l in neurons is that its TF binding model - 

summarized as a Position Weight Matrix (PWM)- reveals an enrichment for motifs in 

promoters related to non-neuronal genes versus neuronal genes (Fig S4.1a) [adapted 

from Mall et al 2017]. This result is opposite to transcriptional repressors such as REST 

that represses neuronal genes in non-neuronal cell types. We therefore hypothesized that 

comparing the enrichment of motifs in non-cell fate versus cell-fate genes across cell 

types could serve as an adequate feature to detect such terminal repressors. To explore 

this concept, we annotated expression data from the Genotype-Tissue Expression Project 

[The GTEx Consortium 2013] and the Tabula Muris [Tabula Muris Consortium et al 2018 

Tabula Muris Consortium et al 2018] for several human tissues and cell types to obtain a 

set of signature genes able to summarize each, and compare their promoters based on TF 

motifs (Appendix A). Mapping motifs for each TF using reference PWM models [Lambert 

et al 2018], allowed us to calculate enrichments and depletion estimates for each tissue by 

means of log2 fold changes between events in non-cell fate genes versus cell-fate genes. 

After normalizing these values to Z-scores, we obtained an estimate of how enriched a 

given motif is in promoters of non-cell fate genes (Fig 4.1a). As the majority of non-cell 

type genes are not expressed in the cell type of interest, we suggest that motif biases 

summarized by such Z-scores allow correlating gene repression in these genes to the TFs 

of interest. 

Additionally, another property of a putative terminal repressor is its exclusive up-

regulation in the cell type of interest as this suggests cell-type specific functional 

relevance. This behavior is different from TFs that are required during differentiation, as 
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their expression levels increase and decrease concomitantly with cell differentiation 

[Singh et al 2016]. The ubiquitous expression of Myt1l in all neuronal cell types, on the 

other hand, is in agreement with its relevance to maintain cell state regardless of the 

differentiation status. To explore this idea in other tissues as well, we used expression 

counts reported as Transcripts Per Million (TPMs) and normalized those as Z-scores to 

explore expression biases for each TF in every single tissue versus all other tissues (Fig 

4.1a). Together, both Z-scores derived from expression and motif bias provide a 

bidimensional score of activation/repression potential that is successful at classifying 

Myt1l as a repressor (Fig 4.1.b). This analysis is also able to recover Ascl1, a TF related to 

activation of neuron related genes [Raposo et al 2015], and relevant for neuronal 

reprogramming [Vierbuchen et al 2010] 

From this result, we sought to integrate these scores from across tissues and cell types in 

an unbiased way, to discover potential new terminal repressors. Both metrics for 

expression and motif bias are added into a score (𝑆𝑔) that describe the classification of TFs 

into activators of fate genes and repressors of non-fate genes in each tissue (Appendix A). 

When applied to GTEx data, this metric validates main activator TFs in multiple tissues, 

such as Hnfa1 in hepatocyte (Fig 4.2a), Myod1 in myocytes [Tapscott et al 2005] (Fig 

S4.2b), and Nkx2-5 in cardiac muscle cells (Fig 4.2b). Additionally, putative TF activators 

such as Meox1 in adipocytes and Arnt2 in oligodendrocytes are suggestive of new roles of 

these factors as main activators of fate-genes (Fig S4.2c-d). Globally, we observe an 

enrichment of TFs used as reprogramming factors in the top 𝑆𝑔 quantiles [odds ratio > 10; 

mean Fisher’s exact test adjusted P < 0.0001] (Fig S4.1). Altogether, our results indicate 

that a simple annotation based on the two Z-score metrics is able to recover 

differentiation related factors of reprogramming relevance. Given data for activators and 
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Myt1l in neurons, we can therefore attempt to classify TFs based on their global role as 

activators or repressors. 

 

Figure 4.1 Classification of terminal repressors through integration of expression and motif data. 

(a) (i) Scheme describing terminal repressors (blue) role in downregulating non-fate genes, whereas 
activators (red) are related to up-regulation of target genes. Specific TFs in cell types are predicted to repress 
a set of genes unrelated to the cell fate, thereby increasing cell fate maintenance. (ii) Through integration of 
TF motifs and expression data from public cohorts, TFs are classified according to their enrichment in fate 
versus non-fate genes and their expression values into activators and putative terminal repressors. (b) Motif 
enrichment in target genes versus expression for neuronal genes reveals Myt1l in Tabula Muris (database) as 
a terminal repressor (blue label). Additionally, related reprogramming factors such as Ascl1 (red) can also be 
observed (c) Heatmap of selected putative terminal repressors (𝑍𝑚 < 0) selected using Tabula Muris, based on 
Sg score (Appendix A). Among highlighted TFs, the ones used as reprogramming TFs are highlighted in bold. 
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4.2.2. Annotation of new terminal repressors in liver and cardiac muscle cells. 

Annotation of TFs based on our score revealed a shortlist of three candidates per tissue, 

on average, showing a putative terminal repressor-like signature (Fig S4.1b). 

Interestingly, for certain tissues such as muscle or esophagus, we are not able to select 

under a common threshold putative repressor TFs, suggesting that the concept of 

terminal repressors concept might not apply to all cell types. To narrow down the range of 

factors for validation, we focused only on those that have been suggested previously to be 

relevant for the cell reprogramming in those specific cell types (Table S4-I) [Tabula 

Muris Consortium et al 2018], or to have indications of a repressor potential [Han et al 

2018]. This gave us a shortlist of 21 factors out of which we selected two for validation. 

A first case for validation was the Prospero homeobox protein 1 (Prox1) in the context of 

liver differentiation (Fig 4.2a). This factor has been suggested to be relevant for 

differentiation of this tissue, and has been linked to liver cancer due to the impact of 

tumor progression on its expression levels [Dudas et al 2008]. We therefore hypothesized 

that this factor plays a relevant role in cell fate maintenance for hepatocytes through 

repression of non-hepatocyte genes. Another candidate predicted to act as a terminal 

repressor is the T-box transcription factor (Tbx5) in cardiac cells (Fig 4.2b). This factor 

has been reported to be important for cell fate commitment in mouse cardiac cells, and its 

functional repression has been related to dual effects in terms of gene expression 

[Waldron et al 2016], where joint analysis of ChIP-seq and RNA-seq expression upon 

knock-out of Tbx5 indicates an enrichment of occupied Tbx5 peaks in cardiac repressed 

genes. Further, its role in cardiac differentiation has been shown to be conditioned 

through interactions with the NuRD repressor complex. 
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Figure 4.2 Putative terminal repressors in liver and cardiac muscle cells. 

(a) TF motif and expression biases suggest Prox1 as a terminal repressor of non-hepatocytes genes. (b) TF 
motif versus expression bias based on scRNA-seq data from Tabula Muris suggests Tbx5 as a terminal 
repressor of non-cardiac genes in cardiomyocytes. 
 

4.2.3. Validation experiments for Prox1 and Tbx5 indicate specific 

reprogramming potential 

To validate the reprogramming potential of Prox1 and Tbx5 we set up a reprogramming 

scheme in which mouse embryonic fibroblasts (MEFs) cells were reprogrammed into 

neurons, hepatocytes and myocytes with the addition of differentiation-specific 

reprogramming TFs. Independent addition of Myt1l and each putative terminal repressor 

then provide a consistent way to assess differentiation improvements in a given 

reprogramming protocol, such as by assessing the extent of the activation or repression 

of marker genes. 

In agreement with previous data, the reprogramming of MEFs into neurons upon addition 

of Myt1l in a differentiation protocol with Ascl1 was increased, as deduced from the 

elevated expression levels of the neuronal marker gene Neuron-specific Class III β-

tubulin (TuJ1) [von Bohlen and Halbach 2007], and decreased levels of muscle marker 
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Desmin (Fig 4.3b). This effect also occurs in hepatocyte and myocyte reprogramming for 

both markers, suggesting that Myt1l exerts its influence towards repressing non-

neuronal fates regardless of neuronal induction. In contrast, addition of Prox1 reduced 

Tuj1 and Desmin expression in neuron reprogramming, suggesting that this TF is acting 

as a non-hepatocyte fate repressor. Additionally, Prox1 increased E-cadherin and 

Albumin expression in hepatocyte reprogramming. Tbx5, on the other hand, increased 

expression of Desmin, a muscle marker, specifically when added to neuron and 

hepatocyte reprogramming, but not in during myocyte reprogramming. We hypothesize 

the lack of Tbx5 to induce Desmin might be due to Desmin not being a proper marker for 

tracking cardiomyocyte reprogramming [Lindskog et al 2015]. 
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Figure 4.3 Reprogramming experiments to evaluate Prox1 and Tbx5 role as Terminal repressors. 

(a)  Depiction of reprogramming experiment. Known TFs to induce reprogramming to induced neurons (iNs), 
induced hepatocytes (iHep) and induced myocytes (iMyo) are added into MEFs, plus either of Prox1 (blue) Myt1l 
(orange), or Tbx5 (red). (b) Western blot for liver markers (ZO1, Albumin, E-cadherin), neurons (Tuj1), and 
myocytes (Desmin, MYH). Fold changes are obtained by relative comparison versus GFP abundances, corrected for 
β-actin (c) Fold changes for marker genes (N=3 replicates). Desmin quantification in hepatocytes conversion is 
shown as log2(FC + 1) units. *= adjusted P < 0.1, from two-sided t-test versus GFP, corrected by Benjamini-
Hochberg procedure. 
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On the morphological level, immunofluorescence demonstrates an increase of neuronal 

cells, and a decrease of alternative hepatic or muscular fates upon addition of Myt1l in the 

respective reprogramming protocol (Fig 4.4a). Similarly, introducing Prox1 into a MEF-

to-hepatocyte reprogramming setup decreased the expression on non-hepatocyte genes, 

and increased the amount of visible [Li et al 1990] hepatocyte positive cells in liver (Fig 

4.4b). It should be noted that these effects upon Prox1 addition were not observed other 

combination of cell type conversions (myocytes or neurons). We can thus assume that the 

underlying mechanism of Prox1 that contributes to cell fate determination is highly 

specific for hepatocyte reprogramming. Finally, the addition of Tbx5 in a cardiac muscle 

reprogramming setup did not increase the presence of myocytes which could arguably be 

due to low efficiency in repression of non-cell-fate genes, or its specific role in heart and 

not in skeletal muscle differentiation (Fig S4.2b). 

Taken together, our experimental results validate the in silico approach to discover 

repressor potential across TFs. The case-in-point is represented by Prox1 in hepatocyte 

conversion and the strong increase in reprogramming efficiency due to the addition of the 

repressor TF. 
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Figure 4.4. Prox1 improves reprogramming to hepatocytes and it does not induce neuronal reprogramming. 

Representative visualization of converted cells seven days after the induction of reprogramming factors, 
showing liver marker ZO1 (upper left), neuronal marker Tuj1 (upper right), muscle marker Desmin (lower 
left), and merged visualization with nuclear DAPI staining (lower right) (scale bar indicates 100 microns). (left 
panels) Addition of Myt1l (+Myt1l) in a neuronal reprogramming protocol with Ascl1 increased neuron 
morphology, but not in induced hepatocytes (4-in-1). Addition of Prox1 (+Prox1) in a hepatocytes 
reprogramming experiment (right panels) induces positive ZO1 cells, and it does not contribute to increase in 
neuronal morphology. 
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4.3. Discussion 

In this work we introduce a classification approach to quantify the enrichment or 

depletion of Terminal Repressors in multiple cell lines where expression data is available. 

This approach is based on learning features from Myt1l-containing expression sets and 

their extrapolation to other cell types for the identification of similar patterns. As new 

expression data from multiple consortia projects allow a fast annotation of cell-types and 

their subdivisions, we envision that this approach will be useful in predicting terminal 

repressors for those. 

Our reprogramming validation and the exclusive repression of non-cell type genes in 

particular cell types of interest reveal some promising directions for future 

reprogramming trials. Further efforts will need to ensure efficient binding of such 

repressors during reprogramming using ChIP-seq, and robust quantification of the 

impact on target genes. 

Consensus benchmarks in literature can be consulted to measure performance of 

reprogramming protocols. The authors of Mogrify [Rackham et al 2016] compare 

reprogramming TFs derived from integration of FANTOM expression [FANTOM 

Consortia] and GRNs datasets and report classification performance based on available 

benchmarks. A presented comparison of their method with other protocols indicate a 

higher recall and ranking of reprogramming TFs used to convert fibroblast into 

macrophages, heart, myocytes, iPSCs, and hepatocytes. Despite this, Mogrify (1) is not 

able to predict Myt1l as a reprogramming factor in neurons, and (2) use a limited set of 

available reprogramming protocols [Tabula Muris Consortia 2018]. With our approach, 

on the other hand, we have not only observed FOXQ1, one of their candidates predicted as 

a relevant TF for keratinocyte conversion, but specifically predict it to be a terminal 

repressor (Fig S4.2c). Further work and a comparison of these approaches in light of new 



86 
 

available data will clearly prove useful for the discovery and prediction of reprogramming 

TFs. 

As multiple expression and reprogramming data resources become available, their 

integration and comparison will help identify TFs that contribute positively and 

negatively to cell type conversions [Guerrero-Ramírez et al 2018]. Enabling community-

driven endeavors in defining common benchmarks and models will be relevant for the 

collective assessment of the usage of terminal repressors in cell reprogramming. 
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Chapter 5 

 

Conclusions & Outlook 

 

The rapid advent of sequencing technologies has allowed us in recent years to 

comprehensively describe the biological consequences of transcription factor (TF) 

binding at multiple levels. Various experimental techniques, their customized versions, 

and multi-omics data integration enable the tracking of changes in the regulatory 

genome concomitant to binding of TFs. Thus, it became possible to directly probe causal 

gene-regulatory networks and to connect them with downstream biological functions. 

This thesis has carefully explored the regulation of gene expression in this context and 

provided answers to the following questions: 
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Question 1: Can we predict TF-cooperativity and features allowing its prediction 

in published TF-binding data? 

The work presented in Chapter 2 describes the integration of publicly available SELEX 

data capturing TF-DNA binding in pairs and alone. The presented statistical framework 

for the assessment of features contributing to binding predictions allowed us to observe 

improvements for certain TF family combinations that had not been reported before, 

such as the one for Forkhead and Ets families. Our findings highlight the potential of 

describing these interactions across multiple TF pairs and their functional consequences 

more thoroughly. Importantly, the selection and experimental validation of specific cases 

of DNA sequences- classified as cooperative or non-cooperative for the FOXO1-ETS1 

pairs- substantiated the potential of our computational approach to predict cooperativity. 

Question 2: What are the consequences of cooperative TF-binding in function 

and disease?  

The second part of the work described in Chapter 2 integrates multiple ChIP-seq datasets 

and prior knowledge of protein-DNA interactions, allowing the interrogation of 

functional terms related to single TFs and their joint presence. Benchmarking across 

different databases indicates that these associations increase discovery of ontologies 

specifically related to TF-TF binding events where both members are part of the 

ontology. This proves more accurate than approaches where only co-occupied regions are 

considered without TF-TF binding information. We therefore conclude that knowledge of 

TF-TF binding combinations independently contributes to biological processes related to 

function and disease. 
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Question 3: What is the interplay between TFs and chromatin accessibility and 

how does it confer specific neuronal activity? 

In Chapter 3 the combined assessment of neuronal accessibility changes and gene 

expression in mouse cortical neurons for different treatments revealed common and 

specific features, with strong response-specific TF associations. Functional validation of 

specific cases through analysis of expression data allowed the dissection of specific 

response types and their consequences. Specifically, interactions between TFs from the 

groups bZIP, EGR, CTCF, HIC1 and Hox genes are related to chromatin accessibility and 

gene expression upon BDNF or KCl stimulations, with a predicted weaker role for HIC1 

and EGR in KCl. Strikingly, we also observed differences in exon usage between these 

treatments that are potentially due to the interaction between CTCF promoter exon-

loops, most likely triggered by EGR-related factors and HIC1. These results demonstrate 

that a well-established interplay of TF combinations have a direct functional impact on 

the onset of neuronal activity. 

Question 4: Can we systematically predict terminal repressors in different cell 

types? 

In Chapter 4 the combined scanning of differential motifs and expression levels of 

differentiation-associated TFs enables the identification of TFs related to repression of 

non-cell-fate genes. Features of terminal repressors such as Myt1l could indeed be 

systematically recovered for a number of previously unknown terminal repressors in 

non-neural cell types. Validation experiments highlighted the role of Prox1 in 

Hepatocytes as well as the potential role of Tbx5 in cardiomyocytes as terminal 

repressors. 
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5.1. Relevance of TF cooperativity in the understanding of Biology. 

In order to understand the biological consequences of a molecular readout, i.e. interpret 

the readout per se, we take the most explanatory variables in our models and try to predict 

the system output by perturbing those [Lazebnik 2002]. In the context of TF regulation in 

vivo, their contribution in maintaining a cell state seems to be hierarchical, as few TF 

motifs are able to explain the major changes in genomics data. This regulatory setup is in 

agreement with the observation of multiple TFs being expressed in multiple tissues, with 

just a few ones being differentially expressed or not at all in particular cell types [Wei et al 

2018]. Systematically adding TF-TF interactions into these predictive models as a 

component allows then to assess the contribution of combinatorial TF-binding to 

biological processes in general. However, quantifying and assessing the improvement in 

these types of models is beyond the scope of this dissertation. Further adaptations of the 

work presented in Chapter 2, with incorporation of additional data, could be promising to 

discover TFs related to function or disease, through interactions with another TF and TF-

TF cooperativity. 

The discussion on whether such alternative binding models or TF-TF combinations are 

relevant, arguably ensues a quantitative statement on the additional variance explained 

with respect to the additional number of features that would be included. In Chapter 2 and 

Chapter 3 we deliberated on the possibility of clustering specific genome regions in an 

unsupervised way to systematically interrogate the contribution of TF-TF binding to TF-

regulatory models. Our results indicate that such TF-cooperative binding events are 

involved in function and disease. However, the number of such TF-TF binding events is 

considerably lower than the number of events that involves primary TF-binding. 

Ultimately, cooperative TF-TF interactions together with single TF binding contribute to 
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the eventual biological output, and it is the quantitative estimation of the contribution for 

each TF-TF interaction, on top of single TF binding, that would require further work. 

As explained in the Introduction, interactions that are not mediated by direct TF-TF 

binding (DNA-mediated or DNA-cooperative interactions), can also translate into 

cooperative interactions, i.e. when TFs bind to proximal or same regulatory loci of 

identical or complementary genes. In the case of neuronal activity, TFs with the pioneer 

bZIP domain and TFs of the groups Homeobox/EGR/HIC1 and CTCF functionally 

cooperate to bind similar regions upon stimulation. These interactions modes mediate 

very specific downstream responses in cortical neurons that cannot be observed for all 

neuronal activity stimuli. It is the target of further research to determine which and why 

EGR-related factors and HIC1 partners are acting specifically upon BDNF treatment and 

not upon KCl stimulation (Chapter 3). 

Given that cell differentiation and fate maintenance heavily rely on a tight control by TFs, 

it is an open question whether TF combinations affect differentiation and to what extent 

those combinations can be identified (Chapter 4). From our results in Chapter 2 we can 

conclude that specific TF pairs are linked to genes regulating neuron differentiation and 

keratinization (Fig S2.7). This sheds light on DNA-facilitated TF-binding determining the 

activation and repression of target pathways related to cell fate in a TF-TF specific 

manner. Ultimately, leveraging such additional knowledge on TF-TF binding and their 

functional consequences in prediction models could allow a rational prioritization of TFs 

for cell reprogramming. 

  



92 
 

5.2. Integration of TF binding data with other -omics datasets 
The vast amounts of TF binding data, along with the remarkable improvements in the 

computational methods for analysis and integration will undoubtedly spur an upcoming 

progress in the active interpretation of the genome and its regulation. Combined models 

that take into account genomic data across studies is a priority in bioinformatics 

methods. Preliminary solutions such as the UniBind database [Gheorghe et al 2019] allow 

for a comparison of TF binding models, but lack a systematic integration with other 

omics layers. New tools such as Virtual ChIP-seq [Karimzadeh et al 2019], for example, 

attempt to predict TF binding from expression and ATAC-seq data, but have implemented 

their TF binding priors based on PWMs scores only (see Introduction 1.2). Considering all 

the caveats of PWM-based models discussed previously by others [Ruan et al 2017] and in 

this work, models for such resources need to be adjusted accordingly. It will take a 

community effort and large-scale coordination for methodologies to shift from mere 

PWMs to inclusion of k-mers [Guo et al 2018], biophysical models [Rastogi et al 2019], 

and TF-TF cooperativity. Such a change in the methodological paradigm in the TF-

modeling promises to have a big impact in the upcoming years, allowing the description 

of wider binding affinity spectrum for protein-DNA interactions. 

Moreover, the rules guiding cooperativity, as presented in this work, do not just apply to 

TF-DNA interactions, but to nucleic acids in general, including interactions between 

proteins and RNA. It is widely assumed that RNA-recognition properties of proteins are 

comparable to sequence-specific TFs [Jolma et al 2019], but with higher degrees of 

freedom of the RNA-molecule during the formation of tertiary structures. This work 

hence gives some directions on potential assessment of RNA-binding protein 

cooperativity from available data [Ray et al 2017], and their association to biological 

processes. 
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Consortia efforts have associated human genetic variation to molecular phenotypes at the 

level of Single Nucleotide Polymorphisms (SNPs). A fraction of those SNPs has been 

associated to TF binding, either at the level of allele-specific binding or at the level of 

chromatin marks affected by such [Shi et al 2016]. As 15-20% of all SNPs seem to be 

associated to a TF binding model [Grubert et al 2015; 1000 Genomes Project 

Consortium], an unanswered question is to what extent TF-TF interactions cooperativity 

binding can increase the unexplained fraction, and ultimately bridge the gap between 

genetic variation and phenotypes. As GWAS variants are linked to biologically relevant 

phenotypes through TF-cooperative binding [Iwata et al 2017], it is expected that more 

variants associated to low-affinity TF-binding sites and TF-TF interactions will be 

discovered in the next years. Approaches such as the one developed in Chapter 2 will be 

helpful to readily mine public genetic data for this purpose. 

Expression data has been proven useful to assess TF combinations and their enrichment 

in ChIP-seq data as co-regulators [Mariani et al 2017]. As TF-cooperative binding events 

are promiscuous but limited to certain TFs families, the results described in all chapters 

indicate novel ways of reducing the search space by using TF expression levels, and 

monitoring cooperativity events between TFs in context of certain molecular phenotypes. 

The future incorporation of known or predicted TF-interactions, their expression and any 

additional data will be useful for the assessment of how specific TF-pairs are linked to 

function or disease. 

The findings and discussions presented in this dissertation should ultimately shed light 

on TF cooperativity as an important contributor to the precise regulation of a biological 

system. With TFs being prime determinants of cellular programs, the further study of the 

molecular interplay between TFs and their functional consequences is crucial to the 

overall understanding of biology.  
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Appendix A 

 

Computational Materials and Methods 

 

Related to Chapter 2 

Transcription factor binding datasets 

Transcription factor (TF) binding data analyzed in this work was collected from in vitro 

and in vivo studies. Specifically, CAP-SELEX and HT-SELEX sequencing reads are 

retrieved from the European Nucleotide Archive, under accession entries PRJEB7934, 

PRJEB7934, and PRJEB20112, respectively. Protein Binding Microarray (PBM) data was 

downloaded from the UniProbe database [Newburger et al 2013]. ChIP-seq peak datasets 

are collected from the ReMap2 database [Chèneby et al. 2018]. 

In vitro data preparation 

The first step in the computational processing of SELEX data is the generation of count 

tables for k-mers (sequence patterns of length k), for each experiment where a TF or a TF 

pair was processed. CAP-SELEX sequencing data used to generate count tables always 

comes from a fixed selection round (positive) and is compared against an input library 

(background, or round zero). For each TF pair we select the positive round where a 

binding motif targeted by the two TFs is overrepresented in the reads for a given topology 

versus all other possible topologies [Jolma et al. 2015]. From this, the initial value of k is 

http://www.ebi.ac.uk/ena/data/view/PRJEB7934
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the length of the reported reference k-mers, trimming out ambiguous nucleotides in the 

flanking (N). For example, the reference k-mer GAAAACCGAANM has a length of 12, and 

thus k = 12. If more than one reference k-mer is enriched in one dataset, those are 

processed independently.  

Once k-mer tables are defined, relative affinity estimates for each k-mer can be obtained 

from the counts of each k-mer observed in the positive round, versus the amount 

estimated in the input data (round zero) using a fifth-order Markov Model. This 

correction takes into account sequencing biases [Riley et al. 2014]. Given this 

information, for a k-mer 𝑘 in selection round 𝑟, its relative affinity or 𝑆(𝑘, 𝑟) is calculated 

as 

𝑆(𝑘, 𝑟)  =  1+𝑟�𝑃𝑜𝑏𝑠(𝑘, 𝑟)/𝑃𝑒𝑥𝑝(𝑘, 𝑟 ) 

 
Where 𝑃𝑜𝑏𝑠(𝑘, 𝑟) is the fraction of counts for 𝑘 in 𝑟, and 𝑃𝑒𝑥𝑝(𝑘, 𝑟) is the expected fraction of 

counts for 𝑘 in round 𝑟. The derivation of the formula has been extensively described in 

previous work [Riley et al 2014].  

From the k-mer tables and their relative affinity estimates, we further subset this table 

for k-mers with high similarity between those and the reference k-mers indicated to be 

enriched, allowing up m mismatches [Yang et al. 2017]. The m value threshold is 

proportional to the consensus sequence length and the information content of each of its 

nucleotides, using the proposed formula 

𝑚 = ⌊(𝐿 −  4)/2⌋  +  1  
where 𝐿 is the length of the consensus sequence, corrected by the ambiguity of each 

nucleotide. E.g. GAGCA has an 𝐿 value of 5, but RRGCA has an 𝐿 value of 4, as R can 

represent either G or A.  
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Tiled k-mer tables 

There is an exponential decrease in the counts recovered per k-mer and the value of k, 

which prevents the calculation of robust k-mer tables and robust relative affinity 

estimates for high k values. To overcome this, we trimmed nucleotides from both flanking 

regions of each consensus sequence in the list derived from the CAP-SELEX data. We 

thereby obtain tiled k-mer tables with sufficient counts for further analyses. To avoid 

lower complexity of DNA sequences, tiled k-mer tables of length lower than 10 are not 

considered for further analyses. Our trimming approach was benchmarked through a 

comparison of the effect of shorter k-mers in the final performance metrics (see section 

“Trim-and-summarize coefficient of determination” and Fig S1a-b and S4). To avoid 

relative affinity estimates with low support, minimum threshold of counts per k-mer are 

defined [Riley et al 2014; Yang et al 2017]. In this work, k-mers derived from CAP-SELEX 

data are discarded if the number of counts is lower than 20 counts. 

Regression models and features describing SELEX relative affinities  

To relate binding affinities with sequence and/or shape features we used L2-regularized 

Multiple Linear Regression (L2-MLR), in the form: 

𝑦 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2+. . . +𝛽𝑛𝑋𝑛 
 

where 𝑦 is the vector of relative affinities for each k-mer in the k-mer table, whereas 𝑋 

represents a concatenated set of features that encode their respective DNA sequences, 𝛽𝑖 

(i=1,…,n) represent the regression coefficients, and 𝛽0represents the intercept. To prevent 

overfitting, L2-regularization employs an additional penalty term on the coefficients in 

the loss function 𝐿(𝛽), i.e. coefficients are obtained by minimizing 

𝐿(𝛽)  = �(𝑦𝑖 −  �𝛽𝑗𝑋𝑖𝑗

𝑝

𝑗=1

)2
𝑛

𝑖=1

+ 𝜆�𝛽2𝑗

𝑝

𝑗=1

 

with 𝜆 set to one. 
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For regression models based on DNA sequence features, the baseline models are named 

1mer and are defined by mononucleotide representations of each k-mer. At any k-mer 

position 𝑖, four features 4𝑖 to 4𝑖 + 𝑗 with 𝑗 < 4 are defined based on the nucleotide identity 

of 𝑘𝑖: 

𝑤𝑖𝑡ℎ 𝑁0 = 𝐴,𝑁1 = 𝐶,𝑁2 = 𝐺,𝑁3 = 𝑇 
 

In total, 1mer models require 4𝑘 features for each sequence of length k to fully encode its 

sequence in numbers. For 2mer or 3mer models, dinucleotide or trinucleotides are also 

converted into coefficients, thus requiring more features per position. For 2mer models 

features, 16 coefficients between 16𝑖 to 16𝑖 + 𝑗 with 𝑗 < 15 features are necessary to 

describe the dinucleotide identity of each k-mer position and its immediate right-

nucleotide 

 

𝑤𝑖𝑡ℎ 𝑁0 = 𝐴𝐴,𝑁1 = 𝐴𝐶,𝑁2 = 𝐴𝐶,𝑁3 = 𝐴𝐺, . . . ,𝑁15 = 𝑇𝑇 
 

Similarly, for 3mer models 64 features representing all the possibilities for trinucleotides 

are required. In general, for a Nmer model where 𝑁 ∈  𝑍+, 4N would be required per k-mer 

position. Combinations of these models require the sum of features for each individual 

model, per position. For example, 1mer+2mer models require 41 +42 = 20 coefficients per 

position. Equivalences between some of these models are further described in [Yang et al 

2017].  

Models that include DNA-shape features are labeled with the keyword shape (e.g. 

1mer+shape), and consider DNA structure estimated for each tested DNA-sequence in all 

datasets, defined as descriptors of the overall DNA structure for that sequence. These 
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values are listed in a DNA pentamers table, and are obtained from the DNAShapeR 

package [Chiu et al 2016] centering each feature value on the middle nucleotide. In this 

work, we considered the four main features provided in the original version of this table: 

Propeller twist (ProT), Roll, Helical Twist (HelT), and Minor Groove Width (MGW). In 

addition to these values, second order shape values are obtained by calculating the 

product of features in two consecutive positions, as a way to describe longer structure 

features. For that reason, 4 main shape and 4 second order shape features are required 

per position, allowing for 8 features per position to be described in shape models. 

Additively, 1mer+shape models require 4 + 8 = 12 features per position where a centered 

DNA pentamers exists. 

Flanking positions cannot be described by shape features as these miss one or two 

nucleotides to successfully map a DNA pentamers. Solutions such as describing the flanks 

as 3mer features have been proposed (1mer+3merE2, where E2 symbolizes using 3mer 

features in the two end positions) [Yang et al 2017]. In this work, we extended the shape 

model features to include flanking regions as well by including the average feature value 

of all pentamers that contain a common tetramer or trimer as found in the flanking 

region. Briefly, whenever a shape feature in the flanking regions is required, we average 

pentamers shape features that contain a fixed trimer (16 options) or tetramer (4 options). 

This is done with similar rules and upstream or downstream of the k-mer flank, 

according to the 5’ to 3’ directionality (left flank = upstream trimming, right flank = 

downstream trimming), respectively. We calculated errors for each DNA-pentamers to 

estimate the amount of uncertainty for each calculation using all trimers and tetramers 

available in the dataset in comparison with all DNA-pentamers. Shape features based on 

averaging across trimers and tetramers are closer to real pentamers DNA-shape features 

than the global mean generated by using all 1024 DNA pentamers or scrambled versions 
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of it. In this work, we refer to shape features as models that include these flanking 

features. 

Trim-and-summarize coefficient of determination 

For each tiled k-mer table in each dataset, we use a 10-fold cross validation scheme to 

randomly separate the table into 10 fixed groups of equal size, iteratively fitting L2-MLR 

models with 9 out of ten groups, and then assessing coefficient of determination (R²) in 

the held-out group. This is done using scikit-learn [Pedregosa et al. 2011]. As a summary 

statistic for each tiled k-mer table, we report the median R² of all held-out groups. As a 

quality control and to remove datasets with low variability and enrichment for mapped k-

mers, at this stage we filter out datasets whose minimum testing R² value across all 

models for all tiled k-mer tables is lower than zero (i.e. fitting is worse than using the 

mean of all values as a single feature). 

To generate a global R² for each dataset and model combination, we calculate the median 

of all median 10-fold CV R² values in each tiled k-mer table when using a reference k-

mer. We refer to this as the ‘trim-and-summarize’ R² performance, and use this number 

for global performance comparison across models and datasets (Fig S2.1a). To validate 

that this metric is a robust approach to obtain global R² values without major information 

loss, we tested whether this approach provides similar R² statistics to the ones reported 

by Yang et al in HT-SELEX data [Yang et al 2017], comparing reference k-mers and tiled 

k-mers. Globally, R² statistics are in strong agreement, defined as a difference of less 

than 3 nucleotides between models for reference and tiled k-mers. Hence we conclude 

that R² values obtained through trim-and-summarize are indicative of longer k-mer R² 

values as long as the length difference with respect to used tiled k-mers is three or less 

(Fig S2b). 
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TF family shape-specific improvements in combinatorial binding 

We assessed the relationship between our trim-and-summarize R² improvements by 

DNA-shape features and specific TF family membership of each studied pair of TFs. 

Briefly, each annotation for a TF to a particular protein structure family is retrieved by the 

JASPAR database [Mathelier et al. 2014]. Significant increases in R² are assessed using a 

Wilcoxon rank sum test (wilcox.test in R), with p-values being corrected using a 

Benjamini Hochberg procedure (p.adjust in R) [Benjamini et al. 1995]. 

To discard bispecificity in the Forkhead+Ets datasets as a feature explaining the R² 

improvements, we repeated the calculation for these datasets discarding all k-mers 

containing the pattern GACGC up to one mismatch (Fig S1d). 

Cooperativity estimations in matched CAP-SELEX and HT-SELEX data 

To estimate TF cooperativity we used relative affinities obtained from CAP-SELEX and 

HT-SELEX data, and their predicted scores from 1mer+shape models. We defined the ratio 

between predicted relative affinities for a TF pair and matched single TF datasets, to 

estimate how close a CAP-SELEX score is to the average score in matched HT-SELEX data 

that would be expected for non-cooperative binding. Hence, the cooperativity for a k-mer 

𝑘 is defined as  

𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑆𝑎𝑏(𝑘) / 𝑚𝑒𝑎𝑛(𝑆𝑎(𝑘𝑎),𝑆𝑏(𝑘𝑏)) 
 

where 𝑆𝑎𝑏(𝑘) is the predicted relative affinity in CAP-SELEX for TFs a and b, and 𝑆𝑎(𝑘𝑎) and 

𝑆𝑏(𝑘𝑏) are the predicted relative affinity estimates obtained for TFs a and b in HT-SELEX 

data for subsequences 𝑘𝑎 and 𝑘b that are contained in 𝑘. Lengths for 𝑘𝑎 and 𝑘𝑏 are selected 

based on [Yang et al 2017]. This score can be used to calculate the relative cooperativity 

for specific DNA sequences within a TF pair given the three experiments that are 

available. In this study we limited calculations to DNA sequences that contain motifs 
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associated to at least one TF, to prevent calculation of cooperativity estimates on DNA 

sequences that are linked to amplification and sequencing biases rather than TF binding 

specificity. 

Since no HT-SELEX data was available for ETS1 we used the FOXO1:ELK3 CAP-SELEX 

dataset to estimate cooperativity factors for the TF pair FOXO1:ETS1, as it contains one 

common member, FOXO1, and ELK3 is a paralog to ETS1. To generate k-mer tables, we 

used k=13 for FOXO1:ELK3 (reference k-mer: RTMAACAGGAAGT), k=12 for ETS1 

(NNNNGGAANNNN), and k=8 for FOXO1 (RTAAACAW). This setup allows to measure 

cooperativity estimates using 1mer+shape models that contain the Forkhead-Ets 13-mer 

binding pattern, plus two 3’ flanking positions to align the ETS1 binding model 

(minimum k = 15). 

PBM data analysis 

To examine the DNA binding affinity of Forkhead TFs for ω-none, ω and ω-high, we used 

PBM data from the UniProbe database to compare E-scores for all 8-mers containing the 

patterns GTAAACA, AACAACA, and ACGCACC across all available Forkhead family 

members. The E-score threshold of 0.35 is used to define high-affinity sites.  

Shape profiles calculation 

To quantify the contribution of DNA-shape in each TF binding position, we adapted an 

approach based on a conservative estimation of the performance change in R2 after adding 

or removing a given shape feature in a given position [Yang et al 2017]. Briefly, for each 

position i in the TF binding model based on a consensus k-mer of length k, we calculated 

the minimum absolute change in the R2 value (ΔR2) between two schemes: (i) increase after 

adding shape features in a sequence-only model (1mer+shapei) and (ii) decrease after 

removing a shape feature in a shape-only model (shape-shapei) 
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(i) a = max(ΔR2(1mer,1mer +shapei), 0) 

(ii) b = max(-ΔR2(shapei, shapei -shapei), 0) 

From these two values, then the ΔR2 per position (ΔR2
p) is defined as  

(iii) ΔR2
p = min(a, b)  

We considered tiled k-mers for the calculation of this value in CAP-SELEX data, so as the 

improvements are summarized by the median across all aligned positions in tiled k-mers. 

Similar to the trim-and-summarize R2 comparisons in HT-SELEX data, we tested whether this 

scheme produces reliable agreements between ΔR2
p profiles obtained between reference k-mers 

and their shorter tiled k-mers. For a number of trimmed positions equal to three, we have 

obtained a positive correlation distribution between k-mers and trim-and-summarize 

using shorter, tiled k-mers, which validates this approach for small trimming values 

(three or less) (Fig S2.1a-b).  

Clustering of shape profiles across SELEX datasets 

Comparing the similarity of ΔR2
p values between all SELEX datasets requires alignment 

and assessment of similarity between binding models generated by k-mer tables of 

different length. To align such cases we introduced an unbiased clustering scheme. 

Briefly, we applied a cubic spline interpolation to all shape profiles of a TF binding model 

to normalize them to 1000 points (function interp1d, from scikit-learn). Sometimes shape 

profiles can be mirrored and maximum ΔR2
p values can be recovered in opposite positions 

across binding models (e.g. a TF binding model of length 10 with maximum ΔR2
p value at 

position 3 contains its complementary model with maximum ΔR2
p at position 7). To 

account for these cases we inverted the shape profile if the improvement in maximum 

performance was located at positions after the respective profile mean (position 500). 
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Using these shape profiles with common length, we clustered them using a partitioning 

around medoids (PAM) routine implemented by the pam function (package cluster in R) 

with a defined number of clusters between 2 and 10. For each cluster, we calculated a 

cluster-specific TF family and TF enrichment as the odds ratio between the number of 

datasets for a TF family or a TF associated to this cluster versus the number of datasets 

for that same TF family or TF in all others clusters (Fisher’s exact test, using function 

fisher_exact, from scipy). Significance p-values were corrected using the Benjamini 

Hochberg procedure. To select the reported number of clusters (five), we iteratively 

assessed the total number of TF and TFs families reported as enriched, stopping at the 

minimum clustering value that maximizes the number of raw p-values lower than 0.05 

(Fig S1.5a). 

Analysis of Forkhead-Ets members using shape profiles 

To compare shape profiles of double and matched single TF datasets that have a common Forkhead TF 

member, we studied the ΔR2
p values for FOXO1 and FOXI1, as the corresponding CAP-SELEX 

datasets are enriched in cluster 1 and most of their TF-pair combinations have an 

equivalent topology. To align TF binding models generated from CAP-SELEX and HT-

SELEX, we used the consensus sequence motif of the Forkhead TF (listed in the reference 

k-mer) as an anchor point. Then, we maximized the number of matches between the 

Forkhead motif region and the reference consensus sequence across all composite motifs 

(FOXO1: RWMAAAC;FOXI1: RTMAAC). For ETS1, we used the GGAA pattern for alignment. 

HT-SELEX data for comparison was retrieved for FOXO1, FOXI1 and ETS1 using the 

available IDs in each case. Since these datasets capture short motifs, shape profiles can be 

generated using a single k-mer representing the consensus binding motif. Reference k-

mers were used as in the CIS-BP database [Weirauch et al. 2014]. For aligning and 
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comparing the profiles with the respective profiles for FOXO1, FOXI1 and ETS members we 

matched HT-SELEX k-mers to the respective composite k-mers reported for FOXO1 and 

ELK3 (ETS1 paralog), using the individual core motif for alignment, respectively. 

FOXO1:ETS1 crystal structure is visualized in PyMOL [DeLano et al. 2009] from PDB 

ID:4LG0, and enhanced with the PDIviz software [Ribeiro et al. 2016]. Conservation of 

positive charge in the ETS1 residue 409 is calculated from the Pfam ID PF00178 (Ets-

domain). 

TF-TF motif enrichments in co-occupied ChIP-seq peaks 

ChIP-seq peaks used to assess TF-TF motifs in vivo were retrieved from the ReMap2 

database [Cheneby et al 2018]. Matched TF pairs from CAP-SELEX data were associated to 

ChIP-seq data when peaks for both TFs were available. For obtaining common summit 

regions, we intersected the respective peak ranges centered around the peak summit with 

fixed length of 200 bp using bedtools (function intersect). These co-occupied regions 

are defined as the foreground set of peaks for each TF-TF pair. We discarded TF pair 

datasets that had less than 50 co-occupied peaks, recovering a total of 105 datasets. The 

background set, was defined as follows: For each foreground set, an equal number of 200 

bp-long sequences with similar %GC content distribution was obtained from mappable 

hg19 regions (wgEncodeCrgMapabilityAlign36mer, downloaded from 

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeMapability), using the BiasAway 

software package [Worsley-Hunt et al. 2014]. 

To map motifs in these sequences, we prepared Position Weight Matrices (PWMs) from 

the Position Frequency Matrix provided in the CAP-SELEX dataset [Jolma et al. 2015]. In 

both foreground and background sequences we scored the best PWM motif hit per 

sequence, as the sequence that generates the highest score. These scores are used to 

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeMapability
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define single feature models, labeled as PWM. Additionally, to define PWM+shape models 

[Mathelier et al 2015], we extracted the DNA-shape features obtained for genomic 

regions aligned to all positions where a motif hit was obtained, using bwtool. 

The ability of these features to separate foreground from background regions in each 

dataset was assessed as a classification task using Gradient boosting tree classifiers 

(XGBClassifier library [Chen et al 2016]). Predictive features were independently centered 

and scaled. In a 10-fold cross validation scheme, the overall classification performance 

for each model and dataset was summarized as the median Area Under The Receiver 

Operating Characteristic Curve (ROC-AUC). 

To assess the improvement of TF families in in vivo datasets when using 1mer+shape vs 

1mer models, we used their JASPAR family assignments, equivalently to the in vitro data 

analyses. For each TF family we specifically compared whether the ROC-AUC value 

differences between PWM+shape and PWM models (ΔROC-AUC) were significantly higher relative 

to all other datasets. Significance of the comparisons was assessed by a Wilcoxon rank sum test, and p-

values were corrected using the Benjamini Hochberg procedure. 

in vitro and in vivo positional improvement correlations 

Similar to the ΔR2
p calculation in SELEX data, we generated ΔROC-AUC values per position for in vivo 

data, calculating changes in classification performance after addition and removal of 

shape features in each position i on in vivo models. 

(i) a = max(ΔROC-AUC(PWM,PWM +shapei), 0) 

(ii) b = max(-ΔROC-AUC(shapei, shapei -shapei), 0) 

(iii) ΔROC-AUC per position = min(a, b)  

In each matched TF-TF dataset with CAP-SELEX and ChIP-seq data, we aligned and compared ΔR2
p values 

obtained from in vitro 1mer+shape models and ΔROC-AUC per position values obtained from in vivo 
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PWM+shape models using Spearman correlation. To estimate a False Discovery Rate (FDR) 

threshold for these correlation values, we scrambled correlation values in each model 

once and recalculated correlations. 

Enrichment of cooperative and non-cooperative k-mers in Forkhead-Ets ChIP-

seq data 

Selected sequences from our structural validation were mapped into co-occupied peaks to 

assess their enrichment versus single TF occupied peaks across TF pairs from the 

Forkhead and Ets families. Briefly, we mapped consensus sequences representing ω-none 

and ω motifs (GTAAACAGGAA and AACAACAGGAA, respectively), against Forkhead and 

Ets ChIP-seq in pairs, allowing up to one mismatch in each reported match. This 

threshold is chosen as it increases the recovery of sequences similar to each pattern, with 

a minimum overlap between hits in both categories. To compare the number of hits 

between co-occupied and single TF occupied peaks in each TF pair combination, we 

calculated the odds ratio of the number of sequences that do or do not containing either of 

these patterns in co-occupied versus single TF occupied regions: 

OR = [a / b] / [c / d] 

a is the number of co-occupied peaks with the motif; b is the number of co-occupied 

peaks without the motif; c is the number of single TF occupied peaks with the motif, and d 

is the number of single TF occupied peaks without the motif. We used a Fisher’s exact 

Test to assess the significance of these effect sizes across all assessed TF pairs, correcting 

p-values for multiple testing with the Benjamini Hochberg procedure. 
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TF pairs and ontology association analyses 

Similar to the previous section, we prepared co-occupied and single TF occupied ChIP-

seq regions for all TF pairs in the ReMap2 database, with full or partial match to CAP-

SELEX data. Full match indicates that both TFs in the ChIP-seq data are the same as in the 

CAP-SELEX data. Partial matches are two TFs that belong to the same TF family, and are 

annotated based on the idea that TF pair share composite motifs that are conserved 

within paralogs of the same family [Narasimhan et al 2015]. This knowledge can be used 

to extend the search to TFs of the same family for which no CAP-SELEX data is available. 

An example of this is provided with the TF pair FOXO1:ETV4: Both TFs are present in a 

CAP-SELEX dataset, and there are ReMap2 ChIP-seq peaks available for FOXO1, ETV1, 

ETV4 and ETV6. Thus, the TF-TF k-mers for FOXO1:ETV4 are used to scan co-occupied 

ChIP-seq regions of FOXO1:ETV4 (full match), FOXO1:ETV1 (partial match) and 

FOXO1:ETV6 (partial match). To assign co-occupied and single TF occupied ChIP-seq 

peaks to biological processes, we first used the software GREAT [CY McLean et al 2010] 

with default parameters to map peaks to genes: Peaks are selected if located upstream of a 

Transcription Start Site (TSS) up to 5000 bp, downstream of a TSS up to 1000 bp, or 

nearby genes up to 1000 Kbp away from a TSS and in absence of other nearby genes. We 

then assigned genes to ontologies if they are listed in any of the three following 

ontologies: Gene Ontology Consortium (GO), Human Phenotypes Ontologies (HPO), and 

DISEASES database. We only considered terms with at least 10 and no more than 1000 

genes, to focus our analysis on terms with an amount of associated genes that allows 

interpretation. 

Using this information, we sought to predict the membership of one or two TFs in a given 

ontology term, and use this as a proxy for their joint binding being associated to a 

biological function. This prediction is calculated using co-occupied TF peaks and 
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counting the number of peak-gene pairs that are part of the ontology term in question. 

Co-occupied peaks are further stratified as cooperative (using the cooperativity k-mers) 

and non-cooperative.. We assumed that a TF pair (A,B) is more likely involved in an 

ontology term (ont) based on the number of genes (𝑁𝑔𝑒𝑛𝑒) and peaks (𝑁𝑝𝑒𝑎𝑘) reported as 

part of that ontology term when using co-occupied (A∩B) peaks and their peak-gene 

pairs. For any ont and (A,B) combination, 𝑁𝑔𝑒𝑛𝑒is lower or equal than 𝑁𝑝𝑒𝑎𝑘, as multiple 

peaks can be mapped to the same gene (𝑁𝑔𝑒𝑛𝑒 ≤ 𝑁𝑝𝑒𝑎𝑘). 

The probability of a TF pair (A,B) to be associated with any ont 𝑃(𝑜𝑛𝑡 = 1 | 𝐴,𝐵),  is directly 

proportional to 𝑁𝑔𝑒𝑛𝑒  and 𝑁𝑝𝑒𝑎𝑘. 

𝑃(𝑜𝑛𝑡 = 1 | 𝐴,𝐵)  ∝  𝑁𝑔𝑒𝑛𝑒(𝑜𝑛𝑡 | 𝐴 ∩ 𝐵) 
 

𝑃(𝑜𝑛𝑡 = 1 | 𝐴,𝐵)  ∝  𝑁𝑝𝑒𝑎𝑘(𝑜𝑛𝑡 | 𝐴 ∩ 𝐵) 
To normalize 𝑁𝑝𝑒𝑎𝑘 and 𝑁𝑔𝑒𝑛𝑒 across all ontology terms and (A,B) combinations tested, we 

randomly sampled 200 times a number of unique regions equal to the observed number of 

𝐴 ∩ 𝐵 from the original union of regions belonging to A and B (𝐴 ∪ 𝐵), and recalculated 

decoy 𝑁𝑝𝑒𝑎𝑘 and 𝑁𝑔𝑒𝑛𝑒 values. From those we obtained mean (𝜇 ) and standard deviation 

(𝜎 ) estimates for the expected 𝑁𝑔𝑒𝑛𝑒 and 𝑁𝑝𝑒𝑎𝑘 associated to that ontology in case of a 

false association. This is used to convert 𝑁𝑝𝑒𝑎𝑘 and 𝑁𝑔𝑒𝑛𝑒 into z-scores 

𝑍𝑔𝑒𝑛𝑒 = (𝑁𝑔𝑒𝑛𝑒(𝑜𝑛𝑡|𝐴 ∩ 𝐵)  − 𝜇𝑔𝑒𝑛𝑒) / 𝜎𝑔𝑒𝑛𝑒 
 

𝑍𝑔𝑒𝑛𝑒 = (𝑁𝑝𝑒𝑎𝑘(𝑜𝑛𝑡|𝐴 ∩ 𝐵)  − 𝜇𝑝𝑒𝑎𝑘) / 𝜎𝑝𝑒𝑎𝑘 
 

Equivalently, when using TF-TF k-mers the association between ont and (A,B) is 

proportional to the number of peaks and genes obtained when using A∩B peaks, with a 

selection for the presence of TF-TF k-mers in those peaks. This is indicated as 𝑁𝑔𝑒𝑛𝑒,𝑘and 

𝑁𝑝𝑒𝑎𝑘,𝑘,where k refers to the specific k-mer used 

𝑃(𝑜𝑛𝑡 = 1 | 𝐴,𝐵,𝑘)  ∝  𝑁𝑔𝑒𝑛𝑒,𝑘(𝑜𝑛𝑡 | 𝐴 ∩ 𝐵,𝑘) 
 

𝑃(𝑜𝑛𝑡 = 1 | 𝐴,𝐵,𝑘)  ∝  𝑁𝑝𝑒𝑎𝑘,𝑘(𝑜𝑛𝑡 | 𝐴 ∩ 𝐵,𝑘) 
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Similar to the previous z-scores, we also normalize 𝑁𝑝𝑒𝑎𝑘,𝑘 and 𝑁𝑔𝑒𝑛𝑒,𝑘 into z-scores using 

200 random samplings 

𝑍𝑔𝑒𝑛𝑒,𝑘 = (𝑁𝑔𝑒𝑛𝑒,𝑘(𝑜𝑛𝑡|𝐴 ∩ 𝐵,𝑘)  − 𝜇𝑔𝑒𝑛𝑒,𝑘) / 𝜎𝑔𝑒𝑛𝑒,𝑘 
 

𝑍𝑝𝑒𝑎𝑘,𝑘 = (𝑁𝑝𝑒𝑎𝑘,𝑘(𝑜𝑛𝑡|𝐴 ∩ 𝐵,𝑘)  − 𝜇𝑝𝑒𝑎𝑘,𝑘) / 𝜎𝑝𝑒𝑎𝑘,𝑘 
 

K-mer mismatch thresholds for each 𝐴 ∩ 𝐵, ont  k combination were defined so that they 

maximize 𝑍𝑔𝑒𝑛𝑒,𝑘 and 𝑍𝑝𝑒𝑎𝑘,𝑘 values. To do this, we allowed up to three mismatches in each 

k-mer to be mapped into a co-occupied peak, and recalculated the observed 𝑍𝑔𝑒𝑛𝑒,𝑘 or 

𝑍𝑝𝑒𝑎𝑘,𝑘 values. When multiple k-mers for a pair (A, B) are available, we selected the one 

that gives the highest 𝑍𝑔𝑒𝑛𝑒,𝑘 and 𝑍𝑝𝑒𝑎𝑘,𝑘values. 

Integrating the resulting four z-scores together, we defined an Ontology Association 

Probability (OAP) as the probability of an ontology term associated to a TF-pair (A,B) 

𝑂𝐴𝑃 = 𝑃(𝑜𝑛𝑡 = 1 | 𝑍𝑝𝑒𝑎𝑘,𝑍𝑔𝑒𝑛𝑒 ,𝑍𝑔𝑒𝑛𝑒,𝑘,𝑍𝑝𝑒𝑎𝑘.𝑘)  

This probability is modeled based on the four Z-scores obtained above using a Logistic 

Regression 

𝑂𝐴𝑃 =  1 /(1 +  𝑒  −(𝛽0+𝛽1𝑍𝑝𝑒𝑎𝑘+𝛽2𝑍𝑔𝑒𝑛𝑒+𝛽3𝑍𝑔𝑒𝑛𝑒,𝑘+𝛽4𝑍𝑝𝑒𝑎𝑘.𝑘)) 
 

where 𝛽0 defines the intercept and 𝛽1 to 𝛽4 the Logistic Regression coefficients for each Z-

score. This model is limited by the availability of ChIP-seq data, and can be potentially 

extended as new information is included. If no ChIP-seq data is available, then TSS k-mer 

information can be considered, and Z-score calculations can be obtained using down 

sampling from all genes (Fig S2.7c). 
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Classification benchmark and selection of strong associations between 

ontologies and TF pairs. 

To benchmark this modeling scheme, we tested its ability to distinguish ontology terms 

deemed as positive if one or both TFs in (A, B) are listed as genes of the term: “TF1 or 

TF2” are TF-ontology relationships where one of the TFs is a gene member of that 

ontology term, whereas “TF2 and TF2” contain both TFs as members of that ontology 

term. Note these two examples: (i) the HPO term HP:0002488 (Acute leukemia) includes 

the TF ETV6, but not the TF FOXO1, thereby the TF pair FOXO1:ETV6 has a “TF1 or TF2” 

relationship to that particular ontology term (ii) The term HP:0002088 (Abnormal lung 

morphology) lists  both MITF1 and FLI1 as gene members, and thereby the pair MITF:FLI1 

has a “TF1 and TF2” relationship to that term. “background” terms are all ontology 

terms of which neither A nor B are members. 

We assessed the predictive performance of the Logistic Regression using a full model with 

all z-scores together (“peaks+kmers” = 𝑍𝑝𝑒𝑎𝑘 ,𝑍𝑔𝑒𝑛𝑒 ,𝑍𝑔𝑒𝑛𝑒,𝑘 ,𝑍𝑝𝑒𝑎𝑘.𝑘) and variants with only 

the peaks or k-mer z-scores (peaks = only 𝑍𝑝𝑒𝑎𝑘and 𝑍𝑔𝑒𝑛𝑒; k-mers = only 𝑍𝑝𝑒𝑎𝑘,𝑘 and 𝑍𝑔𝑒𝑛𝑒,𝑘). 

Performance metrics were defined by classification of “TF1 and TF2” terms versus 

“background” terms, or “TF1 or TF2” versus background terms, independently. Positive 

to negative ratios for between “TF1 and TF2” and “TF1 or TF2” versus background and 

total entries benchmarked in each ontology database are: HPO = 0.001 (N=99828) and 

0.05 (N=1715112); DISEASES = 0.001 (N=102420) and 0.04 (N=2808801), and GO = 0.004 

(N=166104) and 0.06 (N=906524). Using a 10-fold Cross Validation approach, we trained 

models on 9 portions of data and assessed the testing performance in the held-out 

portion, reporting the median ROC-AUC and Area Under the Precision Recall Curve (PR-

AUC) values using the trapezoidal rule. We compared significant improvement using an 
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independent t-test between the 10 testing performance metrics obtained in each model, 

correcting p-values using the Benjamini Hochberg procedure. 

To define strong and weak TF pairs and ontologies, we shuffled the ontology labels ten 

times to assess the OAP mean score that falsely labeled positive (decoy) terms when 

fitting a model with those. We observed that the majority of mean decoys OAP values are 

no bigger than 0.1, with slight variations across ontologies and models. Assuming that 

OAP values 0.1 units higher than this empirical mean threshold are unlikely false 

associations, we used this threshold to separate signal from noise: Any TF pair (A, B) and 

ontology association labeled as a “TF1 or TF2” or “TF1 and TF2” with a OAP value 0.1 

units greater than the mean of its decoys cases is considered a strong association. If 

multiple ontology terms for a TF pair satisfy this criteria, we visualize and discuss only 

the association with the highest OAP score (Fig S2.7b). For generating the Forkhead-Ets 

network, we additionally restrict all four Z-scores to be greater than zero. 

Overall survival calculations 

We compared overall survival metadata and RNA expression levels from Chronic 

Lymphocytic Leukemia patients (N=184) from a Blood Cancer cohort [Dietrich et al 2018]. 

Groups were separated using high and low expression levels for any TF pair of interest 

using the normalized counts median of given TFs. We compared between basic models 

where both TFs have low expression (low/low), versus models in which both genes have 

high levels (high/high), or models of the configuration high/low or low/high. Hazard ratios 

and confidence intervals are calculated using the survival package in R [TM Therneau et 

al 2018]. To correct for the immunoglobulin heavy chain variable gene (IGHV) and p53 

mutation statuses we assessed an additional model that indicates if the patient has either 

of those factors reported as positive, as a single category (N=88) (Fig S2.7d). Models with 
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patients with just one of the four combinations of these statuses are not reliable due to 

low sample numbers. 

Related to Chapter 3 

RNA-seq computational analysis 

We mapped RNA-seq reads in each sample to the M. musculus mm10 genome with 

TopHat2 [Kim et al 2013], defining the Gencode v10 transcriptome as a reference. We used 

mapped reads to call differentially expressed genes using DESeq2 [Love et al 2014]. We 

compared each treatment and time point against its matched control samples using all 

samples together to estimate dispersions, and calling for differentially expressed genes 

(DE-genes, with a false discovery rate (FDR) of 10%). 

We used unsupervised clustering to study the behavior of DE-peaks across conditions. 

Briefly, we selected genes with differential expression in at least one treatment and 

sorted them by significance and variance across conditions, selecting the top 5000 genes. 

We clustered the mean-corrected expression changes in each gene using partitioning 

around medoids (PAM) clustering, setting the number of clusters to ten. We compared the 

enrichment of gene ontology terms in each cluster versus other clusters using topGO 

[Alexa et al 2006], defining the whole genome as background. 

Chromatin accessibility data analysis 

We mapped ATAC-seq reads in each sample to the M. musculus genome build mm10 using 

bowtie [Langmead et al 2010] and with the following parameters. We used mapped reads 

to call peaks in each treatment and time point with MACS2 [Zhang et al 2008], 

considering pooled control samples as a background for all queries. The following 

parameters were defined to call peaks: “—nomodel –shift -75 –extsize 150”. Then, 
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we jointly analyzed resulting peaks and ATAC-seq reads to call differentially accessible 

peaks using the R package DiffBind [Ross-Innes et al 2010]. To correct counts per peak in 

all conditions we applied LOESS normalization. We conducted comparisons between 

experimental conditions and matched controls, obtaining a set of differentially accessible 

peaks at FDR=10% (DA-peaks), which are labeled as gained or closed based on their 

positive or negative log2 fold changes versus controls in each time point, respectively. 

We performed general genomic annotations for gained and closed DA-peaks in each 

treatment-time point pair using HOMER [Heinz et al 2010]. To assess the enrichment of 

neuron specific chromatin features, we applied a Hidden Markov Model generated from 

multiple chromatin marks and ChIP-seq data for mouse neurons, using ChromHMM 

[Ernst et al 2012]. This model considers 15 states in mm9. To interrogate our DA-peaks 

we converted ranges between mm10 and mm9 genome versions using liftOver [Hinrichs 

et al 2006]. We report the log2 fold enrichment between the number of nucleotides in one 

of the 15 states, versus the number of nucleotides overlapping with other states, using the 

function OverlapEnrichment. 

We used DA-peak enrichments for gene ontologies using binomial and hypergeometric 

tests as implemented in the GREAT server [CY McLean et al 2010], with default 

parameters to map peaks to genes. Peaks were selected if located upstream of a 

Transcription Start Site (TSS) up to 5000 bp, downstream of a TSS up to 1000 bp, or 

nearby genes up to 1000 Kbp away from a TSS and in the absence of other nearby genes. 

We used unchanged peaks as a background, to control for unspecific neuronal terms.  

Motif enrichment analysis 

We defined summit-centered 200-bp regions from all DA-peaks as foreground regions, 

and retrieved background regions for each one using GENRE [Mariani et al. 2017], and a 
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custom mm10 background. Briefly, a representative background sequence is retrieved 

from a mouse-specific database of reference regions, with equivalent GC-content and 

CpG frequency, promoter overlap (extent of the sequence located within 2 kb upstream of 

a TSS), and repeat overlap. Further details are provided in [Mariani et al 2017]. 

We used foreground and background sequences to map motifs using (i) 8-mers listed in a 

set of 108 transcription factor specificity groups generated from Protein Binding 

Microarray (PBM) data, and (ii) a library of Position Weight Matrices (PWMs) models 

(CIS-BP database [Weirauch et al 2011; Lambert et al 2018]). For 8-mers, we defined the 

best 8-mer score per sequence as the best E-score greater than 0.35, or -1 otherwise. For 

PWM motif hits we used the best motif score in each sequence as reported by FIMO [CE 

Grant et al  2011]. We used these scores to assess sensitivity and specificity using a 

Receiver Operating Characteristic (ROC) analysis, with foreground and background 

sequences in each treatment and time point as positive and negative groups, respectively. 

We used the Area Under the Curve (ROC-AUC), to define significantly enriched TF 

specificity modules and motifs. We used a Wilcoxon one-sided test, adjusted with a 

Benjamini Hochberg procedure, to assess enriched modules (FDR = 10% and ROC-AUC 

greater than 0.55). 

TF modules co-enrichment analyses 

We prioritized enriched TF-specificity modules (ROC AUC > 0.55) to assess their co-

enrichment in DA-peaks for specific combinations. Briefly, we compared the abundance 

of peaks with 8-mers for two of more modules. The enrichment of a specific combination 

of TFs together is DA-peaks is calculated using fold enrichment. The calculation of the 

exact probability for that fold enrichmentis calculated using the R package 
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SuperExactTest [Wang et al 2015], and P values are corrected using a Benjamini 

Hochberg procedure. 

In addition to this, we compared DA-peaks log2 fold changes distributions between peaks 

with two TF modules versus only one of both modules, using a Wilcoxon two-sided test. 

Genomic data co-variation and loop data analysis 

Peak pair correlations between called peaks from the processed ATAC-data were 

generated using all peak-pairs that had a maximum distance of 50 Kbp. Peaks were 

further analyzed with Hi-C to assess changes in correlation distributions, filtering for 

peaks with one Hi-C loop reported in cortical neurons, embryonic stem cells and neuron 

progenitor cells. We defined true loops as peak-peak pairs where both peaks are less than 

10 Kbp away from the coordinates of a Hi-C genomic peak. 

We studied the effects of DA-peaks on DE-genes assessing the enrichment of up-

regulated DE-genes proximal to gained DA-peaks. Briefly, we compared the amount of up 

DE-genes associated to a non-promoter gained DA-peak (peak-TSS distance greater 

than 2000 bp), and their log2 fold changes in each time point. When two DA-peaks are 

linked to one DE-gene, the one with the lowest p-adjusted value is selected. Then, we 

compared up-gained events (up-regulated DE-gene; gained DA-peak) with up-closed, 

down-gained and down-closed pairs using a 2 x 2 contingency table and Fisher’s exact 

test for assessment of enrichment. 

CTCF specific analyses at differentially accessible peaks 

To assess the enrichment of DA-peaks for CTCF promoter-exon loops we used a 

previously released dataset of promoter-exon contacts [Ruiz-Velasco et al 2017] to 

compare the odds ratio between DA-peaks in these loops versus unchanged peaks. We 
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used Fisher’s exact test to assess the overrepresentation of DA-peaks in those regions, 

versus unchanged peaks in those regions. We corrected p-values using the Benjamini 

Hochberg procedure [Benjamini et al 1995]. 

We assessed the enrichment of a convergent or divergent CTCF topology for motif hits in 

DA-peaks connected to promoter-exon loops. Briefly, gained and closed DA-peaks were 

that contain at least one CTCF motif hit (CIS-BP ID M06483_1.94d) [Weirauch et al 2011] 

were assessed for enrichment of promoter-exon loop pairs previously reported in [Ruiz-

Velasco et al 2017].  We quantified Odds Ratios (OR) using the formula 

OR = [a / b] / [c / d] 

Where a is the number of DA-peaks with a CTCF motif and part of promoter-exon; b is the 

number DA-peaks without a CTCF motif and in a promoter-exon look; c is the number of 

non-DA peaks with a CTCF motif and in a promoter-exon loop, and d is the number of 

non-DA peaks without a CTCF motif and in a promoter-exon loop. We used a Fisher’s 

exact Test to assess the significance of these effect sizes across treatments (BDNF and 

KCl) and directions (gained and closed peaks), correcting p-values for multiple testing 

with the Benjamini Hochberg procedure. 

 

Differentially used exons analyses 

To call differentially used exons we used mapped RNA-seq reads to obtain count tables 

for all listed exons in Gencode (v10). We used genes with non-zero counts in at least one 

treatment and time point to perform comparisons between BDNF and KCl matched time 

points, using DEXSeq [Anders et al 2012] to call differentially used exons (FDR=10%). To 

filter for cases related to CTCF promoter-exon loops, we selected genes containing 

differentially used exons and CTCF promoter-exon loops from [Ruiz-Velasco et al 2017]. 
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Related to Chapter 4 

Expression datasets of tissue and cell type gene classification 

Using RNA-seq expression data from GTEx and Tabula Muris, as well as their tissue and 

cell type annotations, we classified genes as part of one specific tissue or cell type using a 

Z-score normalization. The top 1000 genes belonging to one specific tissue were selected 

for further analysis. For GTEx data, we averaged the TPM values for each gene in each and 

tissue across multiple samples, and then calculated Z-scores across tissues using those 

mean values per tissue. For scRNA-seq data from Tabula Muris, we used normalized CPM 

units provided by Seurat, and used the mean value per cell type for comparison across cell 

types. 

Motif bias calculations 

Calculation of motif biases is based on enrichment of TF-specific motifs in target genes 

versus non-target genes. We compared the motif fold change in TSS regions surrounding 

target genes versus non-target genes. To calculate a consensus value for all possible 

pairwise comparisons between target versus non-target cell types, this comparison was 

done multiple times for each target-specific gene versus each non-target gene. We 

removed common genes in each pairwise comparison, focusing only on disjoint genes sets. 

To summarize all motif fold changes across all comparisons into a single value, we 

calculated the median of those. This final value is re-scaled into a Z-score metric for each 

cell type or tissue across all motifs, for comparison of motifs with higher or lower 

abundance in their target genes versus all other non-target gene groups. 
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Scoring and prioritization of activators and repressors 

Using the expression and motif bias values defined as 𝑍𝑒,𝑔 and 𝑍𝑚,𝑔, respectively, the final 

score for prioritization of each gene 𝑆g as an activator or repressor is defined as the sum of 

their absolute values. 

𝑆g = � 𝑍𝑚,𝑔
2 + 𝑍𝑒,𝑔

2  

 

The higher the 𝑆g value, the higher a TF is to be a cell-specific activator or a repressor. The 

specific classification into activator or repressor is based on the sign of 𝑍𝑚,𝑔
2  (greater than 

zero = activator, lower than zero = repressor) 
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Appendix B 

 

Experimental Materials and Methods 

 

Related to Chapter 2 

Protein cloning, expression and Purification 

 
The ETS1 (331-440) and FOXO1 (143-270) sequences were purchased using Geneart 

(ThermoFisher). These were amplified and cloned using restriction free cloning into a 

pETM-22 vector, which comprises a cleavable N-terminal His6- and Trx-tag. The single 

mutations were inserted in the pETM-22-ETS1 (331-440) vector using site directed 

mutagenesis. 

Both proteins were expressed and purified from E. coli BL21 (DE3), grown in LB medium. 

The cultures were induced with 0.2 mM IPTG at an OD600 of 0.8 and grown overnight at 

18°C. 

After resuspension of the cells in a buffer containing 50 mM Tris (pH 7.5), 300 mM NaCl, 

0.5 mg/ml lysozyme, EDTA free protease inhibitor (Roche) and benzonase, the cells were 

lysed using a french press. The cleared lysate was applied to a first Ni-NTA column and 

after washing eluted with an imidazole gradient from 0 to 300 mM. The eluted protein 

fractions were then cleaved with 3C-protease overnight at 4°C to remove the His6-tag and 

simultaneously dialyzed against 0 mM imidazole, 50 mM Bis-Tris (pH 6.5) and 150 mM 

NaCl. After a second Ni-NTA purification FOXO1 was applied to a S75 gel-filtration 
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column (GE) equilibrated at 50 mM Bis-Tris and 150 mM NaCl. ETS1 purification involved 

an additional purification step using a Heparin column to remove DNA. The protein was 

eluted using a salt gradient from 50 mM to 2 mM NaCl. For NMR titration and backbone 

assignment experiments of FOXO1 the same purification steps were performed but 

Minimal medium M9 has been used to isotopically enrich the protein. For 15N- and 15N, 

13C-labeled protein expression, 15NH4Cl or 15NH4Cl and 13C-Glucose were used as sole 

nitrogen and carbon sources, respectively. The final NMR and ITC buffer was 50 mM Bis-

Tris, 150 mM NaCl, pH 6.5. 

Isothermal Titration Calorimetry 

Titrations were carried out using either a MicroCal PEAQ-ITC or a MicroCal iTC200 

calorimeter at 25ºC. All protein and DNA samples were dialyzed overnight at 4ºC against 

the same buffer containing 50 mM Bis-Tris, pH 6.5 and 150 mM NaCl. For each titration 

20 injections of 2 µl of titrant were made at 120 s intervals, while stirring at 750 rpm. Data 

were reduced with heat spikes from control and baseline corrected. The raw data 

integration, normalization and titration curve fitting was done using the MicroCal PEAQ-

ITC analysis software provided by Malvern. 

NMR 
All NMR measurements were performed at 298 K on an Avance III Bruker NMR 

spectrometer with a magnetic field strength, corresponding to a proton Larmor frequency 

of 600 MHz, equipped with a cryogenic triple resonance gradient probe head. Backbone 

resonance assignment of FOXO1 was achieved to a completion of 85 % (excluding 

prolines) using 1H,15N-HSQC, HNCA, CBCA(CO)NH and HNCACB triple resonance 

experiments [Sattler et al 1999] analyzed with CARA (http://cara.nmr.ch ). 

For all NMR titration experiments a series of 1H,15N-HSQC spectra were recorded of 15N-

labeled FOXO1 in absence or presence of equimolar unlabeled ETS1. Different DNAs 

http://cara.nmr.ch/
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(labeled as ω-none, ω and ω-high) were titrated always with the same series of molar 

equivalents (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.2) to protein concentration (100 µM). 

As the DNA stock solution was highly concentrated (10 mM), the dilution effect was 

negligible but still taken into account. All spectra were processed using NMRPipe 

[Delaglio et al 1995] and data analysis was performed using the program Sparky [Lee et al 

2015] for chemical shift perturbation analysis and CCPN for determining dissociation 

constants by fitting the fast exchange chemical shift perturbations vs. DNA concentration 

using 𝐴(𝐵 + 𝑥 − �(((𝐵 + 𝑥)2 − 4𝑥))  as a fitting function [Vranken et al 2005]. 

 

Related to Chapter 3 

Primary cortical neuron culture 

Prenatal embryos of CD-1 mouse at embryonic day 15 (E15) were used for the isolation of 

cortical neurons. Embryonic cortex was isolated and dissociated by chopping with scalpel 

followed by digestion in Accutase (ThermoFisher, A1110501) for 12 mins at 37°C. During 

digestion we treated the tissue with 250 unit/µL of Benzonase (Millipore, 71206-3) to 

prevent neuronal clumping due to genomic DNA released from dead cells. Following 

digestion, neurons were triturated gently and passed through the 40µm cell strainer (BD 

Falcon, 352340) before plating them onto 6 well plate at a density of 1x106 cells per well. 

Tissue culture plates were coated with 0.1 mg/mL of Poly-D-Lysine (Sigma, P0899) and 

2.5 μg/mL of laminin (Sigma, 11243217001). Primary neuronal cultures were maintained 

in Neurobasal medium (ThermoFisher, 21103) containing 1% penicillin/streptomycin 

(ThermoFisher, 15140122), 1% GlutaMAX (ThermoFisher, 35050), and 2% B27 

supplement (ThermoFisher, 12587) at 37°C with 5% carbon dioxide in the incubator. 
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Post-seeding after 1 day in vitro (DIV1), half of the media was replaced with fresh pre-

warmed Neurobasal media with all the supplements.  

Stimulation with BDNF, KCl and forskolin. 

Prior to every stimulation on DIV7, neurons were made quiescent for 2 hours with 100 μM 

DL-2-amino-5-phosphonopentanoic acid (DL-AP5; Fisher) and 1 μM tetrodotoxin (TTX; 

Tocris). KCl (55mM) depolarization was performed by adding warmed KCl depolarization 

buffer (170 mM KCl, 2 mM CaCl2, 1 mM MgCl2and 10 mM 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES)) to a final concentration of 31% directly into the 

neuronal culture medium and incubated for 1, 6, and 10 hour For the BDNF and forskolin 

stimulations, neurons were incubated with BDNF (10 ng/ml) and forskolin (10 μM) on 

DIV7 for 1, 6, and 10 hour. 

RNA-seq sample preparation and analysis 

Mouse cortical neurons were collected at 1, 6, and 10 hours after each stimulation for RNA 

isolation. The RNAeasy kit (Qiagen) was used to extract RNA and genomic DNA was 

digested using the Turbo DNAse kit (Ambion). To assess the quality of RNA all samples 

were analyzed using Bioanalyser (Agilent Genomics). Only samples with a RIN (RNA 

integrity number) score above 9 were used for library preparation. To prepare libraries we 

used the oligo-dT capture kit (NEB) in combination with the NEBNext Ultra II kit. We 

pooled 24 samples with each sample carrying a distinct barcode and sequenced on 

NextSeq 500 at EMBL, Heidelberg Gene Core facility.  

Differentially used exons analyses 
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Exon differential exon usage quantification with qPCR 

For experimental validation, exons were selected based on the presence of a differential 

DUE and a promoter-exon CTCF loop. Primary cortical neuron cultures on DIV 7 were 

stimulated and RNA was isolated for expression analysis of the DUEs. Primers for exons of 

three gene examples were selected, in addition to neighboring exons for internal control. 

The exon 29 with additional 3’UTR sequence is a DUE for Trio. Two primers were designed 

to differentiate exon 29 (DUE) from constitutive exon 28. A forward primer lies within the 

coding region of exon 29 with a reverse primer in the immediately downstream 3’UTR 

region. Both forward and reverse primer lies in the coding region of exon 28. For Stxbp5 

again primers were designed to allow selective amplification of DUE which is exon 1 

against a constitutive exon 5. Similarly for Cpe-201 two set of primers were designed, one 

for exon 6 which is a DUE and another for constitutive exon 9. The primer sequences used 

to perform qPCR analysis for DUE are following. Trio: Exon 29+3’UTR Forward (5’ 

CTCAGAGCAACGGGGTAAGAG 3’) and Reverse (5’ GTGCTGGAGAGCTGGAGTTAG 3’); Exon 

28 Forward (5’ TGAGTTGCCTCTGCTTGGAG 3’) Reverse (5’ GGACGCTTGGACTGGATGAA 

3’). Stxbp5: Exon 1 Forward (5’ CAACATCAGGAAGGTGCTGG 3’) Reverse (5’ 

GAAGTGTTCGGACTGGAGCG 3’); Exon 5 Forward (5’ TGCCATCTGCCTTTCCAGAG 3’) 

Reverse (5’ TGACATAGCCTGAGAGTGTGA 3’). Cpe-201: Exon 6 Forward (5’ 

TGCTTCGAGATCACTGTGGAG 3’) Reverse (5’ CTGCTCCAGGTAGCTGATGA 3’); Exon 9 

Forward (5’ TGTCTGGATCTACTTCATTCTTACA 3’) Reverse (5’ 

CGCAGTACAGGGTTCACAGA 3’). Following stimulation with BDNF and KCl, the fold 

change of each exon was quantified using qPCR and comparison against Rpl13 as a 

reference gene at 1 and 6 hours. Fold change values were used to calculate the exon ratio 

between each tested exon and their internal exon as a reference. 
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Related to Chapter 4 

Reprogramming experiments with Myt1l/Prox1/Tbx5 

Lentiviruses carrying the coding sequences for rtTA, GFP, MyoD, Ascl1, the four 

hepatocyte reprogramming factors (Foxa3, Gata4, Hnf1a and Hnf4a), Myt1l, Prox1 and 

Tbx5 were generated in HEK293T cells. Briefly, 3rd generation lentiviral packaging 

vectors were combined with plasmids containing the sequence of each gene of interest 

under control of a tetracycline-dependent promoter, complexed to polyethylenimine and 

transfected into 293T cells. After 48 hours the cell supernatant was harvested, 

concentrated 100-fold by ultracentrifugation and stored at -80°C. 

 

Mouse embryonic fibroblasts (MEFs) were isolated from limbs of E13.5-E15.5 C57BL/6 

mice and grown in DMEM media supplemented with 10% serum, penicillin-

streptomycin, MEM non-essential amino acids, sodium pyruvate, glutaMAX-I and ß-

mercaptoethanol. Prior to reprogramming cells were plated in 12-well plates (collagen-

coated for hepatocyte reprogramming), and infected the next day by the addition of the 

different lentiviral combinations in the presence of 4 µg/mL polybrene. 

After 24 hours the medium was replaced by MEF growth medium with 2 µg/mL of 

doxycycline, and 72 hours after infection by hepatocyte complete medium (Lonza) + 5% 

fetal bovine serum + doxycycline for hepatocyte reprogramming, or DMEM/F12 with N2 

and B27 supplements, insulin, penicillin-streptomycin and doxycycline for 

neuronal/muscle reprogramming. From this point onwards, medium was replaced 

(hepatocytes) or half-exchanged (neuron/muscle) every other day for the duration of the 

experiment. 
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Western blotting 

Cells were harvested in RIPA buffer (25 mM Tris, 150 mM NaCl, 1% nonidet P-40, 0.5% 

sodium deoxycholate, 0.1% sodium dodecyl sulfate (SDS)) and sonicated with a Bioruptor 

Plus before protein quantification using bicinchoninic acid assay and a Multiskan FC 

microplate photometer. Samples were then diluted to equal concentrations with 5xSDS 

sample buffer (10% SDS, 50% glycerol, 0.5M dithiothreitol, 0.25% bromophenol blue) 

and boiled at 98°C. 

Protein electrophoresis was achieved by loading samples into 4-12% SDS-PAGE gels and 

subjecting them to a 100-160V electric current. Proteins were then transferred to 

nitrocellulose membranes, and total protein was detected using a REVERT total protein 

stain kit and a Licor Odyssey CLx infrared imager. Membranes were then blocked in 2% 

bovine serum albumin (BSA), incubated with primary and fluorescent-conjugated 

secondary antibodies and fluorescence detected with a Licor Odyssey CLx. 

Marker gene quantification 

Band intensities were obtained by using ImageStudioLite and normalized to total protein 

loaded in the well. These values were further normalized to the control (GFP-

overexpression) sample in each reprogramming set, and the resulting fold-change values 

along with standard errors of the mean were plotted in R. 

Immunofluorescence 

Cells were fixed in 4% paraformaldehyde (PFA), permeabilized with 0.5% Triton X-100 

and blocked in 2% BSA. Samples were then incubated with the indicated primary 

antibodies followed by their corresponding fluorescent-conjugated secondary antibodies, 

fixed again in 4% PFA and counterstained with DAPI before imaging in a Leica DM IL LED 

fluorescent microscope. Images were processed using the software Fiji [Schindelin et al 

2012] 
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Appendix C 

 

Supplementary Material

 

Related to Chapter 2 

 
Figure S2.1. Selection of tiled k-mers cutoff using HT-SELEX data. 

(a) Depiction of tiled k-mer approach applied to HT-SELEX data analyzed by Yang et al [Yang et al 2017]. 
Briefly, reference k-mers defined in this work are tiled increasingly, and the correlation between ΔR2 estimates 
from 1mer+shape versus 1mer models is calculated. (b) Spearman correlation between tiled k-mers and 
reference k-mers. Red line indicates rho = 0.5, and threshold for selection of tiled k-mers in CAP-SELEX data. 
(c) Fraction of maximum variance per R2 dataset using different model configurations. 1mer+shape model have 
higher performances than 1mer+2mer and lower than 1mer+2mer+3mer, which require more features (d) 
Comparison between 1mer+2mer+3mer and 1mer models. Forkhead+Ets datasets show similar improvements 
and trends as in Fig 1b. (e) ΔR2 values observed for Forkhead+Ets datasets after removing k-mers containing 
bi-specificity related pentamers (GACGC) from Forkhead datasets (Appendix A). Asterisks as defined in Fig 1c. 
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Figure S2.2. FOXO1:ETS1 binding against cooperative and non-cooperative DNA sequences measured with 
ITC. 

ITC calorimetric titration data. Upper plots represent raw data, and lower plots indicate integrated heat of 
binding reaction. Line in scatter plots represent best fit to the data. Values in lower-right box indicate 
thermodynamic parameter estimates and their standard deviation (N=2 in each case). Lower panels indicate 
ΔG parameters (red) for FOXO1 and FOXO1:ETS1 when tested against DNA sequences predicted to have high 
binding affinity (ω-none) and lower affinity and cooperativity upon addition of ETS1 (ω)  
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Figure S2.3. FOXO1:ETS1 binding against cooperative and non-cooperative DNA sequences measured with 
NMR. 

 (a) Full 1H–15N HSQC spectra for FOXO1:ETS1 protein interacting with ω-high. Colors indicate DNA to protein 
concentration ratios. Highlighted peak residue indicate titration peak for FOXO1 residue K192H-H (b) Titrated 
peak G230N-H from FOXO1 and behavior for three DNA sequences for FOXO1 and FOXO1+ETS1. Titration color 
scale as in Fig 2.2e 
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Figure S2.4. Protein Binding Microarray and SELEX comparison for k-mers containing cooperative and 
non-cooperative Forkhead-Ets sequences. 

 (a) Protein Binding Microarray E-scores distributions for Forkhead family members. Each boxplot shows a 
group of 8-mers containing the 7-mer in Forkhead region (ω-none = GTAAACA; ω = AACAACA; ω-high = 
ACGCACC). Red line indicates 0.35, threshold that defines high affinity sites (b) (left) Relative affinity values 
for 10-mers containing patterns related to ω-none and ω. X-axis indicates increasing HT-SELEX selection 
rounds. The distribution of relative affinities for k-mers containing the high affinity FOXO1 site is inverted at 
round 3 and 4 with respect to initial rounds. (right) Relative affinities for 10-mers obtained from CAP-SELEX 
data from FOXO1 and TF partners. X-axis indicates experiment ID, including TF1, TF2, selection round and 
barcode ID. 6 out of 9 comparisons show no differences in relative affinities distributions. Statistical 
comparisons were done using independent t-test, with Benjamini Hochberg correction procedure. 
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Figure S2.5. Benchmark of improvements per position consistency in HT-SELEX data. 

Related to Figure 3 (a) tiled k-mers defined as shorter versions of the core motifs in HT-SELEX data analyses 
are used to study agreements observed in positional improvements by addition and removal of DNA-shape 
features. The estimated positional effect of all k-mers is compared with the effect observed with the model 
that uses the longest k-mer, using correlations (b) Distribution of correlations for all observed datasets 
(median Spearman correlation=0.31). (c) (upper) POU2F2 motif generated from top 100 k-mers by relative 
affinity (reference k-mer = NNNNWAATNNNN) (middle) Comparison between improvements per position 
generated using reference k-mer (blue line) and tiled k-mers (orange line) (Spearman correlation = 0.85) 
(bottom) Heatmap depicting ΔR2p values obtained for each tiled k-mer. Stronger biases are consistently 
obtained between positions one and five (d) Comparison of L2-coefficients for Minor Groove Width Features 
in CEBPB binding model obtained from HT-SELEX data, tiling 3 positions from reference k-mer. (top) CEBPB 
motif generated as in S4c. (middle) L2-coefficients for tiled k-mer aligned to that region of the reference k-
mer. (bottom) Number of times coefficients are in agreement for the same sign in each position. 
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Figure S2.6. Positional improvements in CAP-SELEX data and Forkhead+Ets interactions 

(a) Analysis of TF families enriched during PAM clustering of shape profiles for increasing number of clusters. 
Plateau is reached at five (three TFs families and two TFs. (b) Related to Fig 3b. (upper) Distribution of CAP-
SELEX datasets by TF family (lower) enrichment values (* = p-value < 0.05. Black box = Adjusted P < 0.1) (c) 
Absolute changes in R2 for CAP-SELEX models containing FOXO1, using individual DNA-shape properties. (d) 
Related to Fig 2.3c. (right) Comparison between relative R2 FOXI1 in CAP-SELEX (blue) and values obtained 
from HT-SELEX data (orange line) (e) Related to Fig 2.3d. Reference k-mers of FOXI1 datasets aligned, and 
comparison of positional improvements after alignment (f) Related to Fig 2.3f. Dissociation constant 
measurements for FOXO1 to ω-medium alone (N=2) upon addition of ETS1 (N=2) or mutant Y410A (N=1). 
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Figure S2.7. TF-TF associations to phenotypes using Ontology Association Probability. 
Related to Figure 5 (a) “TF1 or TF2” benchmark results, when using OAPs to recover those associations with 
respect to background terms. Labels and p-values equivalent to Figure 5c. (b) Five strongest associations by 
ontology database using the category “TF1 and TF2” to assign TF pairs to ontologies. Red line indicates mean 
OAP for decoy terms (c) Related to Figure 6 (top) Ontologies related to differentiation and disease show a 
strong association to specific TF-TF pairs where at least one TF is known be related to that particular process. 
(bottom) Motifs related to each column are highlighted and grouped by their TF-TF names. When more than 
one topology exists, the motif with the highest score is highlighted in a black rectangle. (d) Kaplan-Meier plot 
of overall survival in CLL patients subsetted by IGHV and p53 mutation statuses (N=88). Data, P values and 
expression groups for FOXO1 and ETV6 are defined equivalently to Fig 6b. 
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Related to Chapter 3 
 

 

Figure S3.1 RNA-seq computational data processing 

(a) (top) Mean of two replicates for mapped reads per chromosome in each time point and treatment 
combination (bottom) Total number of reads mapped in each biological replicate, in each condition and time 
point (b) Principal component analysis visualization for treatment and time points according to DESeq2 
normalized counts. (c) Pearson correlation between mapped reads across treatments. (d) Correlation between 
log2 fold changes obtained in our analysis with matches DE-genes reported mouse neurons stimulated with KCl 
[Ataman et al 2016] 
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Figure S3.2 ATAC-seq computational data processing 

 (a) (top) Mean of two replicates for mapped reads per chromosome in each time point and treatment combination 
(bottom) Total number of reads mapped in each biological replicate, in each condition and time point (b) Principal 
component analysis visualization for treatment and time points using normalized counts generated with DiffBind 
(c) Differentially accessible peaks (DA-peaks) obtained when comparing 1h ATAC-seq samples versus controls for 
KCl (left), BDNF (middle) and Forskolin (right). Red points indicate a peak with accessibility levels higher (log fold 
change > 0) or lower (log fold change < 0) than matched controls (FDR=10%). 
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Figure S3.3 Genomic features of ATAC-seq peaks 

Related to Figure 3.2c (a) Percentage distribution of DA-peaks for BDNF and KCl 1h in peak annotations 
(HOMER) (b) Chromatin states enrichments in DA-peaks for neuronal marks, based on ChromHMM 15-states 
model. Labels and descriptions as in Figure 3.2.  (c) Correlation distributions for normalized counts of 
proximal peak pairs (CN=cortical neurons; NPC=neural progenitor cells; ES=Embryonic stem cells) (Appendix 
A). (d) Example of correlation between ATAC-seq peak in Arc gene and a DRE upstream of it  
 

 
 



136 
 

 
 

 

Figure S3.4 Features of 8-mers for known TFs in ATAC-seq DA-peaks 

(a) For DA-gained peaks, 8-mers modules are visualized by its overall enrichment (Area Under the Receiver 
Operating Characteristic Curve, AUROC) versus the median relative distance to the peak summit for all 
observations. bZIP has the highest enrichment and additionally the lowest median distance to summit for 
BDNF 1 and 6h. (b) Percentage of DA-peaks explained by enriched TF motifs (ROC AUC > 0.55). 
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Figure S3.5. k-mers co-enrichments in BDNF vs KCl data 

 (a) Co-enrichments for selected TF specificity models in BDNF and KCl for gained DA-peaks (b) Similar to (a) 
for closed DA-closed peaks. KCl terms are sorted similar to BDNF for visual comparison. Fold Enrichments for 
five first terms are highlighted in parenthesis (P indicates p-values calculated hypergeometric [Wang et al 
2015] (Appendix A). (c) Relationship between accessibility changes in ATAC-seq and presence of HIC1, EGR, 
and bZIP motifs in BDNF at 1h. Asterisks indicate P < 0.1 using one sided Wilcoxon’s test, after Benjamini 
Hochberg procedure. 
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Figure S3.6. Enrichment of ATAC-seq peaks with CTCF motifs in introns and exons  

(a) Enrichment scores for CTCF motifs in gained, closed and unchanged ATAC-seq associated to introns, and 
(b) exons. * indicates Fisher’s one sided exact test, with P values adjusted by Benjamini Hochberg procedure 
*, **, *** = P < 0.05, 0.01 and 0.001, respectively (Fisher’s exact test). 
 

 
 



139 
 

Related to Chapter 4 

 

Figure S4.1 Enrichment and depletion of PWMs motifs in gene sets 

(a) (left) Enrichment of Myt1l SELEX motif using top-1000 genes based on expression levels in Mouse 
Embryonic Fibroblasts, Myocytes, Keratinocytes, Hepatocytes and Neurons. (right) equivalent bar plot for  
REST motifs. * indicated P < 0.05 based on two-sided t-test  between Neuron versus all other cell types. 
Adapted from [Mall et al 2017] (b) Number of significant PWMs reported as enriched or depleted based on 
comparison between signature genes in GTEx tissues versus all other tissues. 
 

 
 
 
 
 



140 
 

 

Figure S4.2 Enrichment and depletion of reprogramming TFs using Sg score 

(top) Comparison between Sg scores obtained for known reprogramming TFs versus unknown cases, for (left) 
all, (middle) only putative activator TFs, and (right) only repressor TFs. (bottom) enrichment of 
reprogramming TFs using a moving threshold for Sg score (step=0.1). Maximum odds ratio is observed at 0.2, 
0.4 and 0.2 for all TFs, only activator TFs and only repressor TFs, respectively. 
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Supplementary Table S4-I. Known reprogramming TFs with high 𝑺𝒈 scores 
 (Score threshold defined as 0.4. Selected TFs for validation in bold) 

Cell type Gene name Sg Zm Ze predicted 
role 

hepatocyte Prox1 2.53 -1.85 1.73 repressor 

oligodendrocyte Olig2 4.16 -1.78 3.76 repressor 

neuron Myt1l 5.16 -1.68 4.88 repressor 

large intestine goblet cell Nr1i2 2.32 -1.31 1.91 repressor 

neuron Pou3f2 2.36 -1.19 2.04 repressor 

cardiac muscle cell Hand2 2.91 -1.00 2.74 repressor 

cardiac muscle cell Tbx5 6.86 -0.79 6.81 repressor 

skeletal muscle satellite cell Myod1 4.84 -0.61 4.80 repressor 
Slamf1-positive multipotent 
progenitor cell Gata2 2.00 -0.60 1.91 repressor 

hepatocyte Atf5 2.07 -0.48 2.02 repressor 

oligodendrocyte Sox10 4.27 -0.46 4.24 repressor 

cardiac muscle cell Gata4 3.06 -0.38 3.04 repressor 

hepatocyte Foxa3 2.94 -0.22 2.93 repressor 

epithelial cell of large intestine Foxa1 2.09 -0.16 2.09 repressor 

oligodendrocyte Runx2 0.49 -0.10 -0.48 repressor 

epithelial cell of large intestine Foxa3 1.89 -0.06 1.89 repressor 

large intestine goblet cell Cebpa 0.49 0.36 0.34 activator 

large intestine goblet cell Hnf4a 2.53 0.68 2.44 activator 

type B pancreatic cell Pdx1 5.82 0.73 5.77 activator 

type B pancreatic cell Mafa 7.61 0.77 7.57 activator 

type B pancreatic cell Neurog3 0.90 0.81 0.40 activator 

epithelial cell of large intestine Gata6 2.08 0.85 1.90 activator 

epithelial cell of large intestine Hnf4a 3.18 1.02 3.01 activator 

epithelial cell of large intestine Cdx2 4.94 1.04 4.83 activator 

hepatocyte Foxa2 1.71 1.41 0.98 activator 

hepatocyte Gata4 1.53 1.46 0.46 activator 

hepatocyte Hnf1a 3.06 1.79 2.48 activator 

neuron Ascl1 2.73 1.92 1.94 activator 

cardiac muscle cell Mef2c 2.37 2.34 0.37 activator 

hepatocyte Hnf4a 4.25 2.47 3.46 activator 
Slamf1-positive multipotent 
progenitor cell Erg 4.10 2.99 2.81 activator 
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Figure S4.3 Expression and motif biases classify TF activators and putative terminal repressors 

(a) Skin (keratinocytes) expression and motif biases highlight several TF activators and repressors. Among 
those, FOXQ1 has been validated to improve differentiation from MEFs to induced Keratinocytes [Rackham et 
al 2016]. (b) Skeletal muscle (myocytes) analysis highlights Myod1 as a known transcriptional activator of 
muscle genes [Tapscott et al 2005], is highlighted in the upper-right region. (c) Adipose tissue (adipocytes). 
Highlights Meox1 is predicted as a TF activator in adipocytes. (d) Oligodendrocytes analysis predicts Arnt2 as 
a strong activator, and Olig1/2 as terminal repressors. 
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