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Abstract

S
tar formation cannot truly be understood from observational
data alone; only with simulations is it possible to assemble the
complete picture. Observations guide the physics we build into
our simulations, yet the impact of different star formation and
feedback models can only be investigated with simulations. Syn-

thetic observations allow us to make a realistic comparison to true observations
as well as teach us about the emission tracers we depend upon. Through
coupling the stellar population synthesis code slug2 to galaxy simulations, we
can generate synthetic star formation rate tracer maps. These maps assume
different stellar metallicities, star formation rate surface densities, and suffer
from varied amounts of extinction. This allows us to explore and constrain the
environmental effects on the characteristic emission lifetimes — the duration
for which a tracer is visible. With these emission lifetimes and in conjunction
with a new statistical method, the ‘uncertainty principle for star formation’,
constraints can be placed upon the durations of different evolutionary phases
of the star formation process, allowing us to better understand the physics of
star formation and feedback on sub-galactic scales. Studying the interstellar
medium can also reveal information about stellar feedback: the gas density
structure is altered as a result of the injected energy, momentum, and matter.
Surveys of the CO emission in galaxies can tell us how the properties of this
medium have evolved over cosmic time. Using despotic to model CO line
emission of gas found within the IllustrisTNG50 cosmological simulation, we
produce an equivalent synthetic survey. This synthetic survey can be used as a
basis for comparison and predictor of observational trends.
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Zusammenfassung

S
ternentstehung kann anhand von Beobachtungen nicht komplett
verstanden werden. Deshalb ist man auf Simulationen angewie-
sen, um dieses Bild zu vervollständigen. Beobachtungsdaten
diktieren die Physik, die in Simulationen eingebaut wird, aber
die Auswirkungen von verschiedener Sternentstehungs- und

Rückkopplungsmodelle können ausschließlich durch Simulationen erkundet
werden. Synthetische Beobachtungen erlauben einen realistischen Vergleich
von Simulationen zu echten Beobachtungen und geben Auskunft über die
Emission der Indikatoren von verschiedenen Evolutionsphasen des Sternent-
stehungprozesses. Durch die Kopplung des Sternpopulationssynthese-Codes
slug2 und Simulationen von Galaxien können wir synthetische Karten bilden,
welche die Emission der Indikatoren der Sternentstehungsrate anzeigen. Diese
Karten nehmen verschiedene Sternmetallizitäten und Oberflächendichten der
Sternentstehungsrate an. Außerdem erleiden sie unterschiedlich viel Extinktion.
Mit diesen Karten erforschen und beschränken wir die Umweltauswirkungen
auf die typische Lebensdauer der Emission — die Zeitspanne, während der
Emission messbar ist. Die Lebensdauern der Emission zusammen mit der
neuen statistischen Methode „uncertainty principle for star formation“1 kön-
nen die Dauer verschiedener Evolutionsphasen des Sternentstehungprozess
beschränken. Dadurch erreichen wir ein besseres Verständnis der Physik der
Sternentstehung und der Rückkopplung in den subgalaktischen Maßstäben.
Durch das Studium des interstellaren Mediums gewinnt man auch Informa-
tionen über Rückkopplung: Die Dichtestruktur des Gases wird durch den
Zustrom von Energie, Impuls und Materie verändert. Eine Durchmusterung
nach CO-Emissionslinien in Galaxien (d.h. eine CO-Karte von einem Teil des
Himmels) kann zeigen, wie die Eigenschaften des Mediums über die kosmische
Zeit entwickelt haben. Mit despotic modellieren wir CO-Emissionslinien von
Gas, das in der kosmologischen Simulation IllustrisTNG50 gefunden wird, und
herstellen entsprechende synthetische CO-Karten des Simulationsvolumens.
Diese synthetischen Karten können sowohl Vergleichsgrundlage als auch
Prädiktor für empirischen Tendenzen verwendet werden.

1„Unbestimmtheitsrelation für Sternentstehung“
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1Introduction
The aim of this thesis is to improve our understanding of star formation; while
we cannot claim to answer all the questions, we at least provide some bricks to
pave the path to a more complete understanding.

Star formation is a product of the environment and the evolutionary steps
which came before. Therefore, in the following three sections we describe the
background to our work starting from cosmological scales in Section 1.1, down
to galactic scales in Section 1.2[p. 11], and eventually the stars and star forming
regions themselves in Section 1.3[p. 19]. We finally describe the context for our
work in Section 1.4[p. 31].

1.1 Cosmology
Under the model of a homogeneous and isotropic Universe, in which the theory
of general relativity applies, the cosmological scale factor 𝑎 (parametrising
the relative expansion of the Universe) is related to the energy content of the
Universe through the Friedmann equation

Equation 1.1
(︃
1
𝑎

d𝑎
d𝑡

)︃2
=

8π𝐺
3

𝜌 − 𝐾𝑐2

𝑎2 ,

where 𝐺 is the gravitational constant; 𝑐 the speed of light in a vacuum;
𝐾 = {+1, 0, −1} specifies the geometry of the Universe as having positive,
no, or negative curvature; and 𝜌 is the total energy density in matter, radiation,
and dark energy. This equation can be simplified to

Equation 1.21 = Ω +Ω𝐾 ,

through the use of the following definitions

𝐻 ≡ 1
𝑎

d𝑎
d𝑡

; Ω ≡ 8π𝐺
3𝐻2 𝜌 ; ΩK ≡ − 𝐾𝑐2

𝑎2𝐻2 , Equation 1.3

where 𝐻 is the (time-dependent) Hubble parameter.
In the ΛCDM model, the Standard Model of Cosmology, the Universe is

taken to have a flat geometry (Ω𝐾 = 0) and contributions to the energy density
in the form of

1



1 Introduction

matter, Ω𝑚 baryonic matter, cold dark matter (CDM)

radiation, Ω𝑟 photons, three active neutrino species1

dark energy, ΩΛ as vacuum energy (often expressed through the cosmological
constant, Λ).

For use in Chapter 5[p. 125], we express Equation 1.1[p. 1] in terms of the present-
day (denoted by the subscript ‘0’) energy density components and Hubble
parameter

Equation 1.4 𝐻 = 𝐻0𝐸 (𝑎) ,
where we define the expansion factor, 𝐸 (𝑎), as

Equation 1.5 𝐸 (𝑎) =
√︂
Ωr,0𝑎−4 +Ωm,0𝑎−3 +ΩΛ,0𝑎−2 +ΩK,0 ,

which can also be expressed in terms of redshift, 𝑧, using

Equation 1.6 𝑎 =
1

1 + 𝑧 .

This model works under the Big Bang paradigm, where the Universe is
thought to have begun in an infinitely hot and infinitely dense state before
undergoing expansion and cooling. There are six free parameters in this model:
Ωbℎ

2, Ωcℎ
2, 𝐻0, 𝜏, 𝑛s, and 𝐴s, which we briefly describe here.

𝛀b𝒉
2, 𝛀c𝒉

2 The baryonic density, Ωb, and CDM density, Ωc, scaled by the
dimensionless Hubble parameter

Equation 1.7 ℎ ≡ 𝐻

100 km s−1 Mpc−1 ,

such that Ω𝑖ℎ2 ∝ 𝜌𝑖.

𝑯0 The present day Hubble parameter, 𝐻0, characterises the expansion rate
and age of the Universe.

𝝉 The optical depth to reionisation, 𝜏, is important for defining the early
Universe ionisation history and given as (Griffiths et al. 1999)

Equation 1.8 𝜏 =
∫ 𝑧reion

0
𝜎T 𝑛e(𝑧) 𝑐 d𝑧

(1 + 𝑧) 𝐻 (𝑧) ,

where 𝜎T the Thompson scattering cross-section, 𝑛e the electron number
volume density, and 𝑧reion the redshift of reionisation.

1Despite being massive particles, neutrinos behaved like radiation in the hot, early Universe.
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1.1 Cosmology

𝒏s, 𝑨s The primordial scalar density perturbations, P, are described by the
scalar spectral index, 𝑛s, and the scalar power spectrum amplitude, 𝐴s, (Planck
Collaboration 2014):

Equation 1.9P(𝑘) ∝ 𝐴s𝑘
𝑛s−1 ,

where 𝑘 is the wave number of the perturbation. These perturbations are
thought to be the seeds of the large scale structure we see in the Universe.
Sometimes this is expressed through the mass dispersion within a sphere of
radius 8 ℎ−1 Mpc, known as 𝜎8.

The Universe, over the past ∼14 Gyr, has evolved through several key stages
in order to reach its current state; however, only some of these stages have left
measurable signatures in the Universe. Anything that occurred within a Planck
time ∼10−44 s of the beginning of the Universe (Planck Epoch), cannot be
described by modern Physics and is speculated to require a quantum description
of gravity. It is theorised that between ∼10−33 and ∼10−32 s the Universe
underwent a phase of exponential expansion and rapid cooling (Inflationary
Epoch). By ∼10−6 s the four fundamental forces — gravity, strong nuclear
force, weak nuclear force, and electromagnetic force — have separated and
are now distinct. Within ∼1 s, the Universe has cooled sufficiently that quarks
remain bound as hadrons — the preferential creation of matter over antimatter
is still not understood (the matter-antimatter asymmetry problem).

We now reach the stage of big bang nucleosynthesis (BBN) lasting from
around ∼1 to 103 s. This is the epoch in which light element nuclei (beyond
Hydrogen) are synthesised, defining the chemical composition of the material
from which the first stars are created. The ability to form Deuterium (2H, also
D) is the critical step in forming heavier nuclei; this is made evident by the
chemical reaction network shown in Figure 1.1[p. 4]. Deuterium production is
also important in stopping the gradual decay of neutrons into protons (half life
10.61 ± 0.16 minutes, Christensen et al. 1972) but can only occur once the
Universe has cooled sufficiently that the photodissociation rate of Deuterium
is low. BBN produces Deuterium, Helium-3, Helium-4, and Lithium-7 in
sufficient quantities as to be detectable. In Figure 1.2[p. 5], we demonstrate
how abundance measurements and independent measurements of Ωbℎ

2 can
place constraints on our model of the Universe as well as test for consistency.
The expansion of the Universe eventually puts a halt to BBN, as the density
becomes so low that nuclei seldom interact.

From the end of BBN to the time of recombination (∼380 kyr), photons and
baryons are strongly coupled. This coupling is mediated by electrons through
Thompson and Coulomb scattering (Hu et al. 2002). Denser regions within the
plasma collapse under gravity, causing a rise in temperature. This in turn leads

3



1 Introduction

Figure 1.1

A reduced BBN chemical reaction network showing the key reactions for 2H, 3,4He and 7Li (in
blue), 6Li (in green), 9Be (in red), 10,11B (in yellow), and CNO production (in black). The two
X , define the additional (reactants, products) of the reaction indicated by the arrow style and

direction. It is clear that the possibility of forming elements beyond Hydrogen (1H). depends
on the crucial step of synthesising Deuterium (2H).

Image Credit: Coc et al. (2012, Figure2), reproduced with permission © AAS
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1.1 Cosmology

Figure 1.2

The predicted change in primordial abundances relative to Hydrogen, of top: Helium-4 (by
mass), middle: Deuterium and Helium-3 (by number), bottom: Lithium-7 (by number),
with the number ratio of baryons to photons, [. This ratio can also be used to calculate
Ωbℎ2 = 1010[/273.9 (Steigman 2006). The coloured bands indicate the 1𝜎 uncertainties in
the models. We have added the horizontal grey bands to indicate observational constraints:
Y = 0.2449 ± 0.0040 (Aver et al. 2015), measurements made from observations of Hydro-
gen and Helium emission lines in low-metallicity H ii regions; D/H = (2.53 ± 0.04) × 10−5

(Cooke et al. 2014), measurements made from absorption line spectra of high redshift quasars
(this is a lower limit as stars readily destroy Deuterium); 3He/H = (1.1 ± 0.2) × 10−5 (Bania
et al. 2002), measurements of H ii regions in the Milky Way; 7Li/H = (1.6 ± 0.3) × 10−10

(Cyburt et al. 2016), measurements made from the atmospheres of metal-poor stars. The
vertical grey band shows the (Planck Collaboration 2016) value Ωbℎ

2 = 0.02230 ± 0.00014.
The discrepancy between Lithium-7 models and observations is a known and unsolved problem
(Cyburt et al. 2008; Fields 2011).

Image Credit: Cyburt et al. (2016, Figure1), adapted with permission © American Physical So-
ciety
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1 Introduction

to an increase in the radiation pressure which eventually causes the plasma to
expand again. The result of this is a series of oscillatory modes in the density
of the plasma. Eventually, as a consequence of the expanding and cooling
Universe, electrons can no longer remain free and bind with atomic nuclei for
the first time to form neutral atoms (Epoch of Recombination). Photons, now
unable to interact with the bound electrons, are free to propagate throughout
the Universe — what we now observe as the cosmic microwave background
(CMB).

The CMB has a black body spectrum with the characteristic temperature
of 𝑇0 = 2.718 ± 0.021 K (Planck Collaboration 2016) but at the time of
recombination (redshift 𝑧re ≈ 103, Planck Collaboration 2016) the temperature
would be a factor of 1 + 𝑧re higher. In Figure 1.3[p. 7], we show the temperature
fluctuations of the CMB as seen by the Planck space telescope. These
temperature fluctuations reflect the underlying density fluctuations at the time
of recombination. Lower temperatures correspond to higher densities as a
result of the (non-integrated) Sachs–Wolfe effect (White et al. 1997), where
photons leaving denser regions at the time of recombination suffer a greater
gravitational redshift compared to those of less dense regions.

Figure 1.3[p. 7] can be decomposed into spherical harmonics,𝑌𝑚
𝓁

, allowing us
to describe the temperature fluctuations, Δ𝑇 , statistically through the angular
power spectrum, 𝐶𝓁, (Liddle 2003):

Equation 1.10 𝐶𝓁 ≡ 1
2𝓁 + 1

𝓁∑︂
𝑚=−𝓁

|𝑎𝓁𝑚 |2 ,

where the coefficients, 𝑎𝓁𝑚, are define through

Equation 1.11
Δ𝑇
𝑇0

=
∞∑︂
𝓁=0

𝓁∑︂
𝑚=−𝓁

𝑎𝓁𝑚𝑌
𝑚
𝓁 .

where the multipole number, 𝓁, is approximately related to the angular size
of the perturbation, 𝜓: 𝓁 ≈ 180◦/𝜓. We present the power spectrum in
Figure 1.4[p. 7].

The shape of the power spectrum is sensitive to many of the ΛCDM model
parameters, placing very tight observational constraints. Some peaks within
the spectrum have special significance, for example, the location of the first
peak at 𝓁 ≈ 200 indicates a Universe with a flat geometry (ΩK = 0.000 ± 0.005
Planck Collaboration 2016). These peaks are the result of the oscillating
density perturbations within the baryon-photon plasm, which we described
above, and form (approximately) a harmonic series. When recombination
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1.1 Cosmology

Figure 1.3

The temperature fluctuations in the CMB as measured by the Planck space telescope. These
fluctuations are of the order ±10−5 K and are a result of the underlying density fluctuations at
the time of recombination.

Image Credit: ESA / Planck Collaboration (2013, Figure1)

Figure 1.4

The top panel shows the scaled angular power spectrum, DTT
𝓁

, of the CMB, shown in
Figure 1.3. The scaled angular power spectrum is related to the power spectrum 𝐶𝓁 defined in
Equation 1.10[p. 6] by DTT

𝓁
≡ 𝓁 (𝓁 + 1) 𝐶𝓁/2π. The bottom panel shows the residuals of the

data (blue points) from the model (red curve). Error bars show 1𝜎 uncertainties. The dashed
line at 𝓁 = 30 marks a break in the horizontal axis and a change in the vertical scale used in
the lower panel. 𝓁 = 0 (the monopole — corresponding to the black body temperature) and
𝓁 = 1 (the dipole — corresponding to the Doppler shift in temperature due to our motion
relative to the CMB) are excluded because these are not related to the density perturbations of
the early Universe.

Image Credit: Planck Collaboration (2016, Figure 1), reproduced with permission © ESO
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Figure 1.5

The two-point correlation function, b (𝑠), based on SDSS Luminous Red Galaxies data. The
insert shows a zoom-in view, focusing on the Baryon Acoustic Peak at ∼100 Mpc h-1. Different
coloured curves refer to different parameter values for the ΛCDM model: Ωmℎ

2 = 0.12 (green,
top), Ωmℎ

2 = 0.13 (yellow), and Ωmℎ
2 = 0.14 (blue), all with Ωbℎ

2 = 0.024 and 𝑛s = 0.98.
The bottom red curve (Ωmℎ

2 = 0.105) is for a pure CDM model, which is discounted by these
observations. The existence of the Baryon Acoustic Peak shows that there is a preferred
separation scale between galaxies.

Image Credit: Eisenstein et al. (2005, Figure2), reproduced with permission © AAS
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1.1 Cosmology

occurred, all oscillations were halted;2 the most visible of the oscillatory modes
(i.e. the greatest density, and therefore temperature difference) are those at the
extrema of their oscillation. Since these modes were all in the same phase at the
same time, they must be described by some underlying fundamental frequency.
The wavelength of this fundamental frequency is the ‘sound horizon’: the
maximum distance an acoustic wave could travel within the plasma by the time
of recombination. These density perturbations seeded the observed structure
in our Universe and as a result have (some) recollection of the sound horizon.
In Figure 1.5[p. 8], we show the two-point correlation function calculated for a
large number of galaxies. This gives a measure of the probability of finding
two galaxies at a given separation length. The data reveal that there is indeed a
preferred separation length between galaxies, resulting in a bump within the
distribution known as the Baryon Acoustic Peak.

The large scale structure within the Universe becomes more pronounced with
time as over-densities gravitationally attract more material. This produces a
network of connected filaments known as the ‘cosmic web’. In Figure 1.6[p. 10],
we show an example of this cosmic web from the Illustris cosmological
simulation (Genel et al. 2014; Vogelsberger, Genel, Springel, Torrey, Sijacki,
Xu, Snyder, Bird et al. 2014; Vogelsberger, Genel, Springel, Torrey, Sijacki,
Xu, Snyder, Nelson et al. 2014; Sijacki et al. 2015). Since within cosmological
simulations we can view the dark matter, this network of filaments is clearly
visible. These filaments are also reproduced in baryonic matter; however, they
are somewhat more diffuse. In the real Universe, the vast majority of gas in the
intergalactic medium (IGM) — the material which exists between galaxies and
from which galaxies form — is thought to be within these filaments (Umehata
et al. 2019). Despite this, the first observations of gas filaments are only just
being made (see Umehata et al. 2019) since dark matter and diffuse gas emit
no/little detectable emission. However, the nodes (where filaments intersect)
are typically the locations at which galaxies form and evolve.

The oldest detected galaxy thus far is at 𝑧 = 11.1 (Oesch et al. 2016);
however, after the Epoch of Recombination, the neutral medium present within
the Universe became ionised again (Epoch of Reionisation). This is thought to
have begun as early as 𝑧 ≈ 14 (ending around 𝑧 ≈ 6) (Fan et al. 2006) and so
the first luminous objects must have existed by ∼1 Gyr. Once the Universe
became neutral again, the Universe entered its present day stage of evolution.

2We note that recombination was not instantaneous, which dampens the effect which we
describe here.
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Figure 1.6

A large scale projection of the Illustris volume at 𝑧 = 0 showing the filamentary structure
within the Universe. From left to right the image transitions from showing the dark matter
density to the gas density. The gas density at the site of nodes, where filaments intersect, is
higher and this is typically where galaxies form.

Image Credit: Illustris Collaboration (2018)
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1.2 Galaxies

1.2 Galaxies

Galaxies, often considered the building blocks of the Universe, are gravita-
tionally bound structures containing stars, gas, dust, dark matter (although
galaxies without have been found, Dokkum et al. 2018), and typically a central
supermassive black hole (for galaxies with a stellar mass ≳ 1010.3 M⊙, Naab
et al. 2017). In Figure 1.7[p. 12], we present a schematic showing the structure
of key components of the two main galaxy types: elliptical and disc. The
‘visible’ part of the galaxy (the part we typically refer to as the galaxy) is
where the majority of the galaxy’s stars lie. In elliptical galaxies, the visible
part is ellipsoidal and mostly featureless, whereas disc galaxies have two main
components: a disc and a central bulge. In some cases the disc is comprised of
multiple parts; our own galaxy is thought to have a ‘thin disc’ enveloped by a
‘thick disc’ (although this is still debated Hayden et al. 2017). For both galaxy
types this visible part is embedded within a stellar and dark matter halo. The
stellar halo contains a population of (typically) older, more metal-poor stars
with unordered, elliptical orbits. This region also contains globular clusters:
gravitational bound, spherical, and centrally concentrated collections of stars.
Globular clusters are long lived structures and sensitive to the properties of
their natal environment. This means that they can be used to construct the
assembly history of the galaxy in which they are now observed (Kruijssen,
Pfeffer et al. 2019).

Galaxies are usually categorised by there morphology based on their
appearance in the optical wavelength range. Many classification systems exist
(e.g. De Vaucouleurs); a common system is the Hubble Sequence depicted in
Figure 1.8[p. 12], which shows three galaxies types. This system does, however,
neglect irregular galaxy, which do not have any clear definable structure, and
other features such as rings or an active galactic nucleus (AGN). We summarise
the galaxy types included in the Hubble Sequence here.

Elliptical, E𝒏 Ellipticals tend to have an older stellar population. These stars
have unordered motion and so there is no disc structure within the galaxy.
There is also little gas from which new stars can be produced. The classification
number 𝑛 is calculated as 𝑛 = 10 (1 − 𝑏/𝑎), where 𝑎 and 𝑏 are the observed
major and minor axis of the ellipsis, respectively. The higher the value of 𝑛
the more elliptical the galaxy appears. It is not too surprising that no physical
properties of elliptical galaxies correlate well with this classification number
(Kormendy et al. 1989): the galaxy’s apparent ellipticity from our perspective
has no bearing on the galaxy’s inherent properties. However, relations between
the galaxy’s luminosity, 𝐿, and stellar velocity dispersion, 𝜎, exist through the
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Figure 1.7

Schematic diagram showing the components of an elliptical (left) and disc (right) galaxy.
Both galaxy types are situated within a stellar halo and dark matter halo. The stellar halo
also contains globular clusters that orbit the galaxy. Elliptical galaxies have only one visible
component, whereas disc galaxies are comprised of a disc and bulge.

Figure 1.8

The ‘Hubble sequence’ galaxy classification scheme showing the three galaxy types: ellipticals,
E𝑛; lenticular, S0; and spirals, S(B) which are subdivided into without (with) a bar. Elliptical
galaxies become more oblate with increasing 𝑛. Spiral galaxies from ‘a’ to ‘c’ have more open
spiral arms and smaller bulges. This classification scheme excludes irregular galaxies and
other features such as rings.

Image Credit: NASA / ESA (1999), adapted by DTH
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empirical Faber-Jackson relation: 𝐿 ∝ 𝜎𝛾, where 𝛾 ≈ 4 (Faber et al. 1976).
This relation is considered to be a projection in mass-velocity space of the
Fundamental Plane which also includes a dependence on the half-light radius,
𝑅e: 𝜎 ∝ 𝐿a𝑅b

e , where 𝑎 ≈ 0.8 and 𝑏 ≈ −0.8 (Cappellari et al. 2013; Desmond
et al. 2017). The surface brightness of elliptical galaxies is described by a
Sérsic profile characterised through 𝑅e (Blanton et al. 2009).

Lenticular, S0 Lenticular galaxies are something of a transition state between
elliptical and spiral galaxies. They have an old stellar population like ellipticals;
however, there is a disc, within which their motion is confined. Despite having
a disc, there are no visible spiral arms.

Spiral, S Spiral galaxies are subdivided into those with a bar (SB) and those
without (S, or sometimes SA). They have a young stellar population with
ordered orbits confined to the disc. However, in the bulge the orbits are more
disordered. The sub-classifications from ‘a’ to ‘c’ indicate more open spiral
arms and a decreasing bulge size. In analogy with the Faber-Jackson relation,
there is also a relation between the spiral galaxy’s luminosity and rotational
velocity, 𝑉rot. This empirical relation, known as the Tully-Fisher relation, is
𝐿 ∝ 𝑉rot

𝛼, where 𝛼 = 3.64 (Tully et al. 1977; Torres-Flores et al. 2011). The
fact that lenticular galaxies also follow the Tully-Fisher relation (although offset
from spirals) supports the idea that they are evolved spiral galaxies (Bedregal
et al. 2006). Typically spirals have a surface brightness with an exponential
profile for the disc and Sérsic profile for the bulge (Blanton et al. 2009). The
disc profile is characterised by the ‘scale height’ (ℎz), which is related to the
vertical velocity dispersion of the stars (Kruit et al. 2011). The disc is also
where the majority of the galaxy’s dust is found. Spiral arms are complicated
and long-lived structures found in the galaxy disc; they are often understood
through density waves (Shu 2016), with an angular velocity characterised by
the pattern speed, Ωp. In the density wave model, material moves in and out
of the spiral arms; however, there is a build up in the high density region. Gas
entering this high density region can be triggered to form stars, resulting in a
region of young stars at the leading edge of the arm (Martínez-García et al.
2009) and perpetuating the spiral arm’s existence. This model explains the
appearance of ‘grand design’ spirals, where the spiral arms are clearly defined.
For ‘flocculent’ galaxies, where spiral arm structure is less well defined, the
appearance is better described by self-propagating star formation (Gerola et al.
1978). In this case, the star formation can trigger further star formation in the
local region as a result of feedback. Two example galaxies with flocculent and
grand design spiral arms are shown in Figure 1.9[p. 15]. One of these galaxies
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also shows a prominent bar, from which the spiral arms emerge. Bars are
thought to be short-lived structures and formed as a result of density waves
(Bournaud et al. 2002).

In order to study large populations of galaxies in a statistical way, we need
to define distributions based on observable quantities. The distribution of
galaxy luminosity (without regard for morphology) is often used. The number
of galaxies, 𝑛, for a given luminosity, 𝐿, is often described by the Schechter
luminosity function (Schechter 1976):

Equation 1.12
d𝑛
d𝐿

=
𝑛★
𝐿★

(︃
𝐿

𝐿★

)︃𝛼
exp

(︃
− 𝐿

𝐿★

)︃
,

where 𝑛★ is a normalising factor giving the mean number density of bright
galaxies, 𝐿★ is the characteristic galaxy luminosity, and 𝛼 is the slope of the
faint end of the distribution. Galaxies with luminosities ≲ 𝐿★/100 are usually
considered dwarf galaxies. Since luminosity is affected by distance, it is often
more convenient to express Equation 1.12 in terms of magnitudes, 𝑀:

Equation 1.13 𝑀 − 𝑀★ = −2.5 log10

(︃
𝐿

𝐿★

)︃
,

which gives

Equation 1.14
d𝑛
d𝑀

= 0.4 ln (10) 𝑛★
(︂
100.4(𝑀★−𝑀)

)︂𝛼+1
exp

(︂
−100.4(𝑀★−𝑀)

)︂
.

The values of the free parameters in this distribution, as found by Driver
et al. (2003), are 𝑀★ − 5 log10 (ℎ0.68) = −20.47 ± 0.2 mag, 𝛼 = −1.1 ± 0.1,
and 𝑛★ = 0.006 ± 0.001 ℎ3

0.68 Mpc3, where ℎ0.68 ≡ 𝐻0/68 km s−1 Mpc−1 (cf.
Equation 1.7[p. 2]).

Comparisons of the observed luminosity function can be made with cosmo-
logical simulations. In cosmological simulations the number of galaxies can
be predicted based on the number of dark matter halos. The predictions overes-
timate the number of galaxies at both low (the ‘missing satellite problem’) and
high luminosities. However, the inclusion of baryonic physics and feedback
mechanisms is thought to alleviate if not solve the discrepancy (Benson et al.
2003; Bower et al. 2006; Dashyan et al. 2019).

The exact sequence of events which form a galaxy are still unknown.
The original model for galaxy formation was the gravitational collapse of
a primordial gas cloud into a single galaxy, known as monolithic collapse.
This was the case for both elliptical galaxies (Larson 1975) and disc galaxies
(Eggen et al. 1962); the differentiation into the two types was a matter of
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Figure 1.9

Top: An image of NGC1300, a barred grand-design spiral galaxy, which is classified as SBbc in
the Hubble sequence (Vaucouleurs et al. 1991). Bottom: An image of NGC4414, a flocculant
spiral galaxy, which is classified as Sc in the Hubble sequence (Vaucouleurs et al. 1991).

Image Credit: top — Hubble Heritage Team / ESA / NASA (2016)
bottom — NASA / ESA / Freedman, W. / Hubble Heritage Team / SDSS (2016)
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rotation (Sandage et al. 1970). If the system was rotating, this rotation would
prevent collapse in the radial direction but not in the vertical, resulting in a disc.
However, it was later suggested that elliptical galaxies could be the product
of galaxy interactions or mergers (Toomre et al. 1972). Under the ΛCDM
model, a popular galaxy formation scenario is the hierarchical growth of
structure, where structure builds up from the gradual accumulation of objects
into progressively larger units (e.g. small dark matter clumps into dark matter
halos). In this scenario, it is believed that discs are formed first; elliptical
galaxies and the bulges of spirals form through subsequent mergers of these
discs (Baugh et al. 1996). This is supported by the idea that elliptical galaxies
usually have an old stellar population.

The evolutionary state of a galaxy is typically based on its stellar population
and categorised through its location in colour-mass diagrams. An example of
such a diagram is shown in Figure 1.10[p. 17]. It is clear from galaxy surveys that
the distribution in this space is bimodal (Baldry et al. 2006; Alatalo et al. 2014;
Schawinski et al. 2014): ‘blue’ galaxies have a young stellar population and are
actively star forming, whereas ‘red’ (and dead) galaxies have an old population
of stars and are no longer actively forming new ones. This bimodality aligns
itself closely with galaxy type; as indicated by the contours in Figure 1.10[p. 17].
As galaxies evolve, they transition between these two states through what is
known as the ‘green value’. We indicate this in Figure 1.10[p. 17] with the
shaded green band. The passage through the green valley does not necessarily
occur at the same speed for all galaxies and is thought to primarily go in
the direction of blue to red; however, in some instances galaxies can ‘come
back from the dead’ (Schawinski et al. 2014; Wright et al. 2019); that is, start
forming stars again. How ‘alive’ a galaxy is depends on the galaxy’s ability to
form stars and therefore the availability of the raw material, gas.

The gas cycle in galaxies is complex. We present an illustration of this cycle
in Figure 1.11[p. 18]. Gas can be brought into the galaxy through filamentary
accretion from the IGM and removed through galactic outflows as a result of
AGN activity. Some of this outflowing material can be recaptured and brought
back into the galaxy. This material becomes part of the interstellar medium
(ISM). Of course, stars forming from the ISM are a means of locking away
gas; although, some of this is eventually returned during a star’s life cycle.
The quenching of star formation (where the transition through the green valley
begins) can be the result of many mechanisms and is still uncertain (Darvish
et al. 2018). Quenching could be a result of the active removal of gas (e.g.
stripping, Poggianti et al. 2017) or the prevention of new material entering
the system (e.g. strangulation, Peng et al. 2015). These mechanisms might
initially enhance star formation but ultimately bring about the demise of the
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Figure 1.10

A dust corrected 𝑢–𝑟 colour-mass diagram for WISE-detected Galaxy Zoo galaxies (Schawinski
et al. 2014). The red contours (top) show the location of elliptical galaxies and the blue
contours (bottom) of disc galaxies. The green band shows the ‘green valley’ which divides
the bimodal distribution of galaxies (shown in grey scale). This region of the parameter space
is where galaxies in transition between the two states are located.

Image Credit: Alatalo et al. (2014, Figure 1), reproduced with permission © AAS
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Figure 1.11

A visual representation of the gas cycle in a spiral galaxy. New gas is brought into the galaxy
from the IGM through filamentary accretion (blue). This material once in the galaxy becomes
part of the ISM, from which stars are born and into which they return material through
feedback processes (see Section 1.3[p. 19]). Outflows from the galaxy, as a result of AGN
activity remove this gas from the galaxy (orange). Some of this outflowing material does
not escape from the galaxy and is recycled (pink). Over time, the diffuse gas halo (purple)
becomes a mix of all these sources.

Image Credit: Tumlinson et al. (2017, Figure 1), reproduced with permission © Annual Reviews
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galaxy as the gas reservoir is rapidly drained. For example, galaxy mergers
can bring in new material (Boselli et al. 2006; Schawinski et al. 2014) and
the stripping of gas can cause its compression and subsequent star formation
(Bekki et al. 2003). Feedback from AGN (Fabian 2012) as well as stars
themselves (Hopkins et al. 2014), can also halt further star formation.

Galaxies do not always evolve in isolation and can be part of a group of
galaxies (typically ∼50 members) or cluster of galaxies (typically hundreds to
thousands of members). The distinction between a group and clusters is not
always clear cut: they are both collections of gravitationally bound galaxies.
However, clusters are more massive and cover a much larger volume than
groups. Work by Paul et al. (2017), using cosmological hydrodynamic +
N-body simulations, found a break point at a cluster mass of ∼8 × 1013 M⊙ in
the relation for all studied quantities including X-ray luminosity and baryon
fraction; this suggests a formal distinction between the two.

It has been observed that galaxies within clusters are more likely to be
elliptical; the reverse holds true for isolated galaxies. In fact, the fraction
of spiral galaxies decreases with increasing increasing local galaxy density
(Dressler 1980; Houghton 2015) . This relation is known as the morphology-
density relation. It is still unclear if this relation is governed by initial conditions
or later environmental effects. The local environment does not just affect
galaxies; it has also been shown that star formation, although occurring on
scales much smaller than that of the galaxy, is also sensitive to the galaxy’s
local environment (Kauffmann et al. 2004) .

1.3 Stars
Star formation begins in giant molecular clouds (GMCs) typically located
in the discs of spiral galaxies. These GMCs are formed out of the material
found in the galaxies ISM. In Figure 1.12[p. 20], we present a schematic of the
steps from gas cloud, to protostar, to pre-main-sequence star, and finally (if
sufficiently massive) to main-sequence star; we give further details here. Labels
(e.g. a, b) in the following text refer to those in Figure 1.12[p. 20]. Protostars
and pre-main-sequence stars are collectively known as young stellar objects
(YSOs). A classification of YSOs based on the spectral index of their infrared
(IR) spectral energy distribution (SED) was introduced by Lada (1987):

Equation 1.15𝛼 =
d log10 (_𝐹_)

d_
,

where _ is the wavelength, and 𝐹_ the flux density. The value range of 𝛼 for
each of the classes (0–3), depends on the specifics of the scheme being used.
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Figure 1.12

A schematic showing the sequence of events that turn molecular clouds into stars. Over-
densities within the molecular cloud (prestellar cores) are where the star formation process
begins (a). These prestellar cores begin to collapse under their own gravity (b). The in-falling
material produces a protostellar disc surrounding the protostar (c). Outflows perpendicular to
the disc start to remove the envelope in which the protostar is embedded, which eventually
reveals the protostar (d). By the time the gas is removed, a pre-main-sequence star remains;
however, still surrounded by a protoplanetary disc (e). Eventually the disc is cleared and a
main-sequence star (possibly) with a planetary system is what remains.

Image Credit: Klessen et al. (2016, Figure 23), reproduced with permission © Springer Nature
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For mid-IR, Greene et al. (1994) give the ranges Class 0, no detection; Class 1
(protostar), 𝛼 > 0.3; Class 2 (‘classic’ T Tauri), −0.3 > 𝛼 ≥ −1.6; and Class
3 (‘weak’ T Tauri), 𝛼 < −1.6.

The internal structure of a GMC is not uniform. Substructures form within
the GMC as a result of turbulence, producing regions of higher density known
as prestellar cores (a). The subsequent collapse of these cores due to gravity
into protostars is subject to various supportive mechanisms (b). The turbulent
motion of the gas itself is also a supportive mechanism. The first theoretical
approach to the criteria for collapse was introduced by Jeans (1902, 1928).
The Jeans mass, 𝑀J, gives the mass of a gas cloud with uniform density 𝜌
and temperature 𝑇 that can no long be supported by internal gas pressure
(Bodenheimer 2011):

Equation 1.16𝑀J =

(︃
4
3
π𝜌

)︃−1/2 (︃5
2
𝑅𝑇

`𝐺

)︃3/2

where 𝑅 is the gas constant, and ` is the mean molecular mass of the gas.
However, internal gas pressure is not the only means to prevent collapse.
Approximately spherical regions within a rotating disc can gain additional
support against collapse from sheering force. This has been characterised by
the Toore 𝑄 parameter (Toomre 1964):

Equation 1.17𝑄 =
^𝑐s

π𝐺Σgas
,

where ^ is epicyclic frequency, 𝑐s the sound speed, and Σgas the gas surface
density. Regions are stable against collapse if𝑄 > 1. Another source of support
is from magnetic fields, but this is highly directional. That is, collapse could
still be possible in the direction parallel to the magnetic field lines. Analogous
to the Jeans mass, 𝑀J, the critical mass 𝑀𝜙 is given as (Mouschovias et al.
1976):

Equation 1.18𝑀𝜙 =
0.53
3π

𝜙

√︃
5
𝐺
,

where 𝜙 is the magnetic field flux. Nevertheless, even intrinsically stable
cores can be triggered to collapse by external events such as shock waves or
cloud-cloud collisions.

Once star formation is triggered, the protostar starts to remove the surround-
ing envelope of material through outflows, whilst also accreting mass from
the protostellar disc (c). The protostar becomes detectable in the IR and has
a ‘Class 1’ SED. Accretion onto the protostar continues (as well as outflows)
revealing more of the protostellar disc and causing a shift in the shape of the
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SED, now Class 2 SED (d). Emission lines, particularly H𝛼 as well as a high
abundance of rare, light elements such as Lithium, which are easily destroyed,
are key signatures of these protostars (Bodenheimer 2011) — often called
(classic) T Tauri stars named after the prototype star T Tauri (discovered by
Hind 1864). With further evolution these features become less pronounced as
the rate of accretion decreases the pre-main sequence star is now classed as
weak T Tauri/Class 3 SED (e). The star only enters the main sequence once
the core begins Hydrogen burning within its core (f).

The study of the gas from which stars form (i.e. the ISM) is an important
part of understanding star formation. The gas within galaxies is predominately
Hydrogen; however, this is not easily observed. This is because high temperat-
ures are required to excite the rotational energy transitions as a result of the
molecule’s low mass (Kennicutt et al. 2012). Instead other molecules must
be used to trace the cloud structure and dynamics. The effectiveness of these
different tracers depends on the properties of the gas — chiefly the density and
temperature. The amount of emission from these different tracers can therefore
inform us about the conditions of the gas present. In Figure 1.13[p. 23], we show
the range in density and temperature for which different tracers operate best.

A commonly used tracer for observing molecular gas is CO, as it has strong
and easily observable emission lines in the millimetre wavelength regime. The
molecule can only survive in dense gas regions, where it is protected from
photodissociation. However, these are the regions which are typically suited
to star formation. The emission from different transitions in energy state are
denoted by the initial and final total angular momentum, 𝐽, which is related to
the total angular momentum quantum number, 𝑗 :

Equation 1.19 𝐽2 = ℏ2 𝑗 ( 𝑗 + 1) ,

where ℏ is the Plank constant. To get a measure of the amount of molecular
Hydrogen, work has been done to measure the CO-to-H2 conversion factor,
𝑋CO.3 This conversion factor has been estimated for the Milky Way to be
𝑋CO = 2 × 102 cm−2 (︁

K km s−1)︁−1 but there is still uncertainty in how 𝑋CO
changes with environment (Bolatto et al. 2013).

The ISM, from which stars form, is often modelled as having distinct phases.
We summarise these phases here in order of decreasing temperature, 𝑇 , and
increasing Hydrogen number density, 𝑛H. We also include the fraction of
the volume occupied by gas in this phase, 𝑓v, and the predominant ‘state’ of
Hydrogen. Further details can be found in Draine (2011), amongst other texts.

3This conversion factor is sometimes referred to as 𝛼CO which is usually given in units of
M⊙

(︁
K km s−1 pc2)︁−1.
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1.3 Stars

Figure 1.13

The emission tracers that are commonly used to observe gas cloud structure and dynamics.
Regions of the figure mark the temperature and density ranges of the gas, for which different
molecules are best suited. CO is of particular use as its emission is suitable for gas densities
and temperatures associated with star forming gas.

Image Credit: Klessen et al. (2016, Figure 8), reproduced with permission © Springer Nature
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Hot ionised medium (𝑇 ≳ 105.5 K, 𝑛H ≈ 4 × 10−3 cm−3, 𝑓v ≈ 0.5, H ii)
Gas shock-heated and collisionally ionised by blast waves from supernova
explosions. Typically filling the volume above and below the disc. This gas
cools on ∼Myr timescale through adiabatic expansion and X-ray emission.

Warm ionised medium (𝑇 ≈ 104 K, 𝑛H ≈ 0.3–104 cm−3, 𝑓v ≈ 0.1, H ii)
Gas ionised by ultraviolet (UV) photons from young massive stars and cools
through line emission. This gas can be observed by optical line emission (such
as H𝛼 emission) and falls in the mid-plane of disc. This gas phase is also
associated with recent star formation (H ii region) and the ejected material
from Red Giants (planetary nebular).

Warm neutral medium (𝑇 ≈ 5 × 103 K, 𝑛H ≈ 0.6 cm−3, 𝑓v ≈ 0.4, H i)
Gas heated by photoelectrons from dust grains. This gas occupies a large
fraction of the disc’s volume and can be observed by the 21 cm line.

Cold neutral medium (𝑇 ≈ 100 K, 𝑛H ≈ 30 cm−3, 𝑓v ≈ 0.01, H i)
Gas heated by photoelectrons from dust grains and cooled through fine structure
line emission. Usually observed by the 21 cm line and is typically associated
with clouds within the disc.

Diffuse molecular gas (𝑇 ≈ 50 K, 𝑛H ≈ 100 cm−3, 𝑓v ≈ 10−3, H2)
Similar to the cold neutral medium; however, now of sufficient density to
shield the interior of the cloud from ionisation (referred to as self-shielding).
These densities are also sufficient to allow for the existence of CO (and its
associated emission).

Dense molecular gas (𝑇 ≈ 10–50 K, 𝑛H ≈ 103–106 cm−3, 𝑓v ≈ 10−4, H2)
This gas is found in gravitationally bound clouds and still emitting in CO. This
gas can also be traced through far-IR emission from dust. This is also the site
of star formation.

Once a star has formed, its evolution is determined predominately by its
mass; that is, the sequence of phases as well as the speed at which the star
evolves. More massive stars are much shorter lived than less massive ones: a
greater outward pressure is required to support the star against collapse and so
the consumption of Hydrogen is faster. The luminosity of a star, 𝐿, is tightly
related to the mass, 𝑀, of the star (known as the Mass–luminosity relation):
𝐿 ∝ 𝑀𝛼 (Kuiper 1938). The means of internal energy transportation is also
mass dependent, shown in Figure 1.14[p. 25].
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1.3 Stars

Figure 1.14

The cross section of a star for different masses,𝑀: 𝑀 < 0.5 M⊙ in red, 0.5 M⊙ < 𝑀 < 1.5 M⊙
in yellow, and 𝑀 > 1.5 M⊙ in blue. The central region (in grey) is the core, where nuclear
fusion of Hydrogen occurs. In low mass stars (red) the transportation of energy is primarily
conducted through convection. As the mass of the star increases a radiative zone forms in the
central region and the convective envelope moves outwards (yellow). Eventually the convective
envelope is removed completely and a convective core begins to grow (blue). Unlike radiative
zones, convective zones allow the mixing of material, which can aid the fusion process by
bringing new fuel into the core. Convection typically occurs when the temperature gradient is
sufficiently large; this could be as a result of high energy production or having a high opacity.
This is more formally given by the Schwarzschild criterion for stability against convection
(Schwarzschild 1958). (The schematic is not to scale.)
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Figure 1.15

The evolutionary stages of a star are primarily dependent on the mass of the star. The black
‘rings’ indicate the evolutionary sequence, where outer rings are for higher mass stars. The
grey arrows indicate stages which return material back to the ISM. Bars mark the end of a
sequence and the material that is locked away. See text for further details.
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1.3 Stars

We present a schematic of the possible evolutionary sequences of a star in
Figure 1.15[p. 26] and give details here. The labels we use in the following text
refer to those in Figure 1.15[p. 26]. As described above, gas clouds form in the
ISM (1) and evolve into protostars (2).

Stars with a mass < 0.08 M⊙ are typically referred to as Brown Dwarfs (A3).
Brown Dwarfs are of insufficient mass to begin Hydrogen burning and so do
not enter the main sequence. However, they are though to sustain Deuterium
and Lithium burning.

With a mass < 0.20 M⊙ (Laughlin et al. 1997), the star is referred to as
a Red Dwarf (B3). This is the smallest star (by mass) that enters the main
sequence, fusing Hydrogen into Helium through the Proton-Proton chain. With
such a low mass, the life span of a Red Dwarf is calculated to be longer than
the current age of the Universe. However, it is thought that they will slowly
collapse into a White Dwarf (B4). Little to no fusion processes take place
within the White Dwarf and the emission seen is that from the stored thermal
energy. This White Dwarf will eventually cool into a Black Dwarf (B5).

Stellar masses < 8 M⊙ result in Low-Mass (or Sun-Like) stars (C3). In
lower mass stars, Hydrogen burning is conducted primarily through the Proton-
Proton Chain. Higher mass stars use the CNO-cycle, where Carbon, Nitrogen
and Oxygen are used as catalysts to ultimately perform the same conversion
of Hydrogen into Helium. High-Mass stars > 8 M⊙, undergo much the same
process; however, they leave the main sequence more quickly (D3). These
are stars with an OB spectral class. As the Hydrogen becomes depleted the
outward radiation pressure decreases and the core succumbs to gravity. The
contraction releases energy and ‘shell-burning’ — Hydrogen fusion in a shell
around the core — begins. This new release of energy causes an expansion of
the outer layers. The star has left the main sequence to be become a Red Giant
(C4) or Red Supergiant (D4). Stars remain in this phase as long as they are
able to produce sufficient energy to counteract gravitational collapse. More
massive stars are able to burn heavier elements (up to Iron) in order to release
energy; however, these are also the stars which require greater support against
gravitational collapse and so consume fuel more quickly.

Low-Mass stars will blow out the outer layers of the star to produce a
metal-rich planetary nebula (C5) and central White Dwarf (C6), which will
cool into a Black Dwarf (C7). The ejected material is recycled back into the
ISM.

High-Mass stars which can no longer support themselves against gravity
through nuclear fusion, will undergo core collapse. It is thought that the inner
core is compressed into neutrons by means of electron capture. The innermost
regions, once maximally compressed, are thought to rebound. This produces
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an outward flowing shock wave, which is supported by the energy release
from the collapse and escaping electron neutrinos. This ultimately results in a
Type II supernova (D5). The ejected material, containing metals (even some
more massive than Iron), is again recycled back into the the ISM. If the star
had an initial mass of < 40 M⊙, the remnant of the explosion will be a Neutron
Star supported by neutron degeneracy pressure (D6a); otherwise, the core will
collapse below the Schwarzschild radius to form a Black Hole (D6b).

Stars are usually categorised by their location within the Hertzsprung–Russell
diagram (stellar luminosity against its temperature) or equivalently Colour-
Magnitude diagram (apparent magnitude against its colour). An example
Hertzsprung–Russell diagram is shown in Figure 1.16[p. 29]. The path a star
takes within the Hertzsprung–Russell diagram as it evolves is referred to as the
(stellar) evolutionary track. The evolution of stars is understood sufficiently
that model evolutionary tracks can be produced. In Figure 1.17[p. 30], we show
the theoretical evolutionary tracks from the Geneva solar metallicity models.
These models can be used to age an observed stellar population and play an
important role in stellar population synthesis (SPS) modelling (e.g. in the
slug2 and starburst99 codes which we use in Chapters 3 and 4[pp. 47 & 99]).
However, for SPS modelling one additional component is required: the stellar
initial mass function (IMF). The IMF is an empirical relation that describes the
number of stars, 𝑛, of mass 𝑚 (upon entering the main sequence) for a given
population of stars. Since stellar mass governs many aspects of a star, the IMF
is an important diagnostic tool. Observations generally support the notion that
the IMF is universal: that is, independent of environment and unchanging over
cosmic time (Bastian et al. 2010). This relation was first quantified by Salpeter
(1955) through the power law relation:

Equation 1.20
d𝑛

d log10 (𝑚)
= 0.03

(︃
𝑚

M⊙

)︃−1.35
.

Other IMFs have since been defined but this is to change the behaviour of the
distribution for low stellar masses < 1 M⊙. For example the Chabrier (2005)
ISM is given as

Equation 1.21
d𝑛

d log10 (𝑚)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.093 exp

[︄
− log2

10 (𝑚/0.2)
2 × 0.552

]︄
𝑚 ≤ 1 M⊙

0.041𝑚−1.35±0.3 𝑚 ≥ 1 M⊙

.

With these two components it is possible to model the evolution of a stellar
population; this includes, for example, the emission that would be observed
and the expected number of Type II supernovae.
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1.3 Stars

Figure 1.16

A schematic Hertzsprung-Russell Diagram, showing the location of different stellar types in
the parameter space. The diagonal region marks the main sequence, where stars are producing
energy through Hydrogen fusion. Stars evolve off (not along) the main sequence into Giants,
Supergiants and/or White Dwarfs (see text for details). The location of the Sun has been
marked, as well as AB Doradus C. AB Doradus C is one of the lowest mass stars observed
thus far: 𝑀 = 0.090 ± 0.003 M⊙ (Nielsen et al. 2005).

Image Credit: ESO (2007)
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Figure 1.17

The Geneva stellar evolutionary tracks for solar metallicity stars, 𝑍 = 0.020, with initial
Helium mass fraction 𝑌 = 0.300. The black lines are the theoretical models of how a star of
the indicated mass moves within the Hertzsprung–Russell diagram. The left vertical axis is
the luminosity (in units of solar luminosity L⊙) and on the right is the bolometric magnitude.
The inner horizontal axis marks the spectral class and the outer axis the temperature.

Image Credit: Schaller et al. (1992, Figure 1), reproduced with permission © ESO
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Stellar emission and evolution is predictable enough, that some emission
is directly linked to the star formation rate (SFR) (Kennicutt et al. 2012).
For example, massive stars are ideal for measuring the instantaneous SFR as
they are short lived. These massive stars produce far-ultraviolet (FUV) and
near-ultraviolet (NUV) emission, which are common SFR tracers. This UV
emission can also ionise the surrounding gas to produce H𝛼 emission or heat
surrounding dust which re-radiates as 24 µm emission (useful for detecting
embedded star formation). Since these stars are short lived there are tight
constraints on the duration for which this emission can be observed (Hao et al.
2011; Kennicutt et al. 2012).

1.4 This work

For many years, the SFR surface density, ΣSFR, of a galaxy has been related to
the gas surface density, Σgas, through the Kennicutt-Schmidt relation (Schmidt
1959; Kennicutt 1998)

Equation 1.22ΣSFR ∝ Σ𝑁gas .

This relation is shown in Figure 1.18[p. 32], with the power-law index 𝑁 = 1.40
(Kennicutt 1998). This is a purely empirical relation, meaning that (although
observed) nothing about the nature of the interaction between the SFR and
ISM is actually described. For example, star formation recipes used within
simulations that do not recover this relation are most likely incorrect; of the
many recipes that do, this relation has no means of distinguishing which are
correct. Even quantities that must factor into this relation are lost to us: the
efficiency of star formation (i.e. how much of the gas is converted into stars)
and how quickly it proceeds are degenerate quantities that this relation cannot
disentangle.

The Kennicutt-Schmidt relation is based on measurements of whole galaxies
or large components thereof. More recent observations, with improved spatial
resolution, are able to recreate this Kennicutt-Schmidt relation based on the
measurements of a single galaxy. Work by Bigiel et al. (2008) (amongst
others) shows that as the spatial resolution improves the scatter around this
relation increases dramatically (see Figure 1.19[p. 33]). This is because small
scale observations start to capture the different evolutionary stages of the star
formation process, whereas galactic scale measurements give an ensemble
average. That is, the small scale observations detect the spatial decorrelation
of the gas and stars which occurs as a result of star formation. The study of
this decorrelation can lead to an improved understanding of the star formation
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Figure 1.18

The relation between the SFR surface density, ΣSFR, and gas surface density, Σgas. The solid
black line marks the Kennicutt-Schmidt relation with a power-law index of 𝑁 = 1.4. The
filled squares are measurements of starburst galaxies, filled circles the discs of normal spiral
galaxies, and open circles the centres of normal spiral galaxies.

Image Credit: Kennicutt (1998, Figure 6), reproduced with permission © AAS
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Figure 1.19

Re-creation of the Kennicutt-Schmidt relation based on observations of NGC5194 at four
different spatial resolutions: 250, 500, 750, 1000 pc. Although the trend remains largely the
same for the four different resolutions, the scatter (𝜎) increases dramatically with improved
resolution. The proportionality constant, 𝐴, and power-law index, 𝑁 , for the Kennicutt-Schmidt
relation are indicated in each panel and shown as the dashed line. Dotted lines indicate the
level of SFR needed to consume 1, 10, and 100 per cent of the gas reservoir in 108 yr.

Image Credit: Bigiel et al. (2008, Figure 6), reproduced with permission © AAS
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process. Tamburro et al. (2008) looked at 21 cm emission (tracing neutral
Hydrogen) and 24 µm emission (tracing embedded star formation) within
spiral arms. Knowing the pattern speed of the spiral arms and the galaxy’s
rotation curve, the angular offset between emission peaks in the two tracers
was used to place a time constraint of 1–4 Myr on the evolutionary sequence.
Kawamura et al. (2009) used catalogues of GMCs and young stellar clusters
in the Large Magellanic Cloud to determine the number of clouds with and
without signs of star formation. Assuming that the number of clouds falling
into each category is proportional to the duration in that phase (as well as
adopting a duration of 10 Myr for the young stellar clusters), a GMC lifetime
of about 20–30 Myr was found. A refinement of this method has been
introduced by Kruijssen et al. (2014, 2018). This new statistical method,
the ‘uncertainty principle for star formation’ (which we abbreviate to ‘KL14
principle’), constrains evolutionary timescales without the need of spiral arms
or catalogues of clouds and stellar clusters. In fact, this method has the benefit
of being agnostic to the definition of ‘cloud’ and ‘cluster’. We use this method
extensively in Chapters 3 and 4[pp. 47 & 99] and so we leave a detailed description
of the method and associated code, heisenberg, for Chapter 2[p. 39]. However,
to summarise, the KL14 principle can operate on arbitrary emission maps
tracing different phases of the evolutionary process to constrain the duration
of each phase. This is the intent of all these methods: to address one of the
fundamental challenges in studying star formation, characterising the durations
of the underlying physical processes and as a result constrain the likely active
mechanisms driving the evolution.

The KL14 principle does have one key requirement: the need of a ‘reference
timescale’. As was the case for Kawamura et al. (2009), who used a reference
of 10 Myr, without a reference timescale the KL14 principle can only provide
relative durations of evolutionary phases. Gas clouds do not possess an inherent
property from which to measure their lifetime. In fact the measurements of
cloud lifetimes that have been made vary by up to two orders of magnitude.
Work by Scoville et al. (1979) and Koda et al. (2009), looking at interarm
molecular clouds in the Milky Way and M51, concluded that GMCs must have
lifetimes comparable to the interarm-crossing time ∼100 Myr. Looking at
star forming regions that still contained molecular gas, Elmegreen (2000) and
Hartmann et al. (2001) concluded that the absence of post-T-Tauri stars suggests
that molecular clouds cannot be long lived, at most ∼10 Myr. Kruijssen et al.
(2015) placed constraints on cloud lifetimes based on the orbital dynamics of
molecular clouds in the Central Molecular Zone of the Milky Way, finding
lifetimes of the order ∼1 Myr. Jeffreson et al. (2018) took a theoretical
approach, considering the effectiveness of various supportive and destructive
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mechanisms of molecular clouds, showing that there exists a strong dependence
on galactocentric radius but lifetimes are typically between 10–50 Myr. On
the other hand, as hinted at in previous sections and as has been done before,
the emission lifetime of SFR tracers can be used as a reference timescale.
This is because of the predictable and consistent nature of stellar emission.
Although, the emission lifetime of a SFR tracer is not always clearly defined. In
Chapter 3[p. 47], we present our work on measuring the emission lifetime of H𝛼
emission as well as 12 UV filters (from GALEX, Swift, and HST). We also test
the dependence of metallicity and the impact of low-mass star forming regions
(resulting in a stochastically sampled IMF) on these emission lifetimes. In
Chapter 4[p. 99], we place constraints on the amount by which extinction can act
to alter these emission lifetimes. This would allow observational applications
of the KL14 principle in instances were extinction cannot be corrected for.
With these reference timescales in hand, applications of the KL14 principle
can inform us about the next generation of star formation and feedback models,
by constraining (amongst other quantities) molecular cloud lifetimes and the
time it takes feedback to clear out the surrounding gas.

Another, complementary, approach to understanding star formation is
through the use of simulations. It has been shown that different star formation
and feedback recipes can drastically alter the appearance and gas density of
simulated galaxies. Hopkins et al. (2013) explored the effects of different
star formation criteria using isolated disc galaxy simulations. These criteria
determine when gas within the simulation is permitted to form stars; this
includes density and temperature thresholds as well as requiring the cloud to
be locally self-gravitating, Jeans unstable, or molecular gas. The results show
that comparing total SFR or star formation efficiency cannot distinguish these
models; however, the spatial distribution of star formation within a galaxy can.
The impact of different stellar feedback models has also been investigated. For
example, Haas et al. (2013) compared galaxies in cosmological simulations
from the OWLS project. Each simulation ran with a different feedback model.
These models include changes in the type of feedback from supernovae (kinetic,
thermal, or none), the wind velocity for kinetic feedback models, and the
wind mass loading. Additional factors, such as the cooling of gas through
metal-lines and AGN feedback were also considered. In Figure 1.20[p. 36] we
present results from Haas et al. (2013) showing how these different feedback
models impact the galaxy morphology and gas distribution.

Simulation projects that focus specifically on the interaction between stars
and gas within galaxies have existed for some time. For example, the FIRE
project has a suite of cosmological zoom-in simulations. These zoom-in
simulations, allow the study of galaxy formation within the context of a
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Figure 1.20

A sample of galaxies in a 1012.5 M⊙ halo from 16 different simulations from the OWLS
project at redshift 𝑧 = 2. Each simulation has a different implemented stellar feedback model
(the name of the model is given in the top left of each panel). Details of the models can be
found in Haas et al. (2013, Table 1), but include changes to the supernova feedback, the wind
velocity of kinetic feedback models and wind mass loading.

Image Credit: Haas et al. (2013, Figure 2), reproduced with permission © OUP
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cosmological environment but at a higher resolution than standard cosmological
simulations. Although, only for a selection of galaxies, rather than a full
galaxy population. The simulations can resolve the formation of GMCs and
the multi-phase ISM. The energy, momentum, mass, and metals that stellar
feedback returns to the ISM are specifically tracked. Results presented in
Hopkins et al. (2012) from these simulations, with a range of different feedback
models, indicate that ISM structure is more sensitive to the physics of stellar
feedback than of the global disc. With such simulations, there is always a
trade-off between simulation resolution and the size of the simulated volume.
The SLICC project takes a different approach by looking at a vertical slice
through the disc of a galaxy, rather than simulating the galaxy as a whole (i.e.
choosing to reduce the simulated volume and so gain on the resolution). The
aim of this project differs somewhat from FIRE, in that it studies the small-scale
structure of the ISM and the life cycle of molecular clouds; however, it still
investigates the effects of feedback. Results show that feedback mechanisms
can compound on one another: early feedback mechanisms such as stellar winds
and ionising radiation can disperse molecular clouds, leading to environments
more susceptible to the effects of supernovae. On the opposite end of the scale
is the new and unique IllustrisTNG50 simulation (Nelson et al. 2019; Pillepich
et al. 2019). A full cosmological simulation of a 51.73 cMpc3 volume4 with
a median spatial resolution of around ∼100–140 pc (over cosmic time). The
benefit of this is a representative cosmological volume with a resolution
comparable to that of some zoom-in simulations. This means that detailed
studies of galactic properties can be conducted on a statistically representative
sample.

In Chapter 5[p. 125], we use the IllustrisTNG50 simulation to produce synthetic
observations of the gas within these galaxies. With the properties of the gas,
including chemical abundance information, we model the expected CO line
emission using the despotic code. These synthetic CO observations capture
galaxies that fall within a 2.5′ × 2.5′ field of view over the redshift range 1–4.
With these observations we can study, for example, the redshift dependence of
CO emission. Such synthetic observations can be used in comparisons with
real observations as well as predictors of expected trends. In comparing to
real observations, these synthetic observations can also function as tests of the
simulations’ ability to reproduce appropriate ISM densities and indirectly the
effectiveness of the implemented star formation and feedback models.

4cMpc = comoving megaparsec
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2
Uncertainty principle for star
formation

This text in this chapter is based on sections from

D. T. Haydon et al. (Oct. 2018). ‘An uncertainty principle
for star formation – III. The characteristic emission
time-scales of star formation rate tracers’. MNRAS
Submitted. arXiv: 1810.10897 [astro-ph.GA]

D. T. Haydon et al. (Aug. 2019). ‘An uncertainty principle
for star formation – V. The influence of dust extinction on

star formation rate tracer lifetimes’. MNRAS Submitted

The method described here has been developed by
Kruijssen et al. (2014, 2018)

The work presented in Chapters 3 and 4[pp. 47 & 99] relies heavily on the KL14
principle and the code based on this method, heisenberg. It would therefore
be informative to summarise this method here.

The goal of the KL14 principle is to constrain the cloud-scale physics of star
formation and feedback using images of galaxies mapped in tracers that track
different stages of the star formation process. By determining the duration
of successive phases of an evolutionary process, it is possible to constrain
the physical processes involved. The method was illustrated in Kruijssen
et al. (2014, 2018) using the example of a molecular gas phase followed
by a young stellar phase; we also adopt this example here. If we provide
heisenberg with a galaxy mapped in an appropriate gas tracer (e.g. CO) and
SFR tracer (e.g. H𝛼), heisenberg can determine, among other quantities, the
lifetime of molecular clouds within the observed galaxy. Measuring these
timescales helps constrain the pertinent physical processes driving the cloud
life cycle. For instance, a comparison of the molecular cloud lifetime to
their free-fall time may indicate whether clouds are dynamic entities or exist
in a quasi-equilibrium state. Furthermore, a comparison of the coexistence
timescale of molecular gas and SFR tracer emission may indicate whether
clouds are destroyed by supernova feedback or if early feedback mechanisms
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are needed. The power of this approach is obvious: the first applications of the
method (Chevance and author 2019; Chevance, Kruijssen et al. 2019; Hygate
et al. 2019; Kruijssen, Schruba, Chevance et al. 2019) demonstrate that clouds
are highly dynamic and are dispersed on timescales too short for supernovae,
requiring early feedback by photoionisation. However, the applicability of the
method is not restricted to maps of molecular gas or young stellar emission.
Depending on the combination of tracers one uses, heisenberg can constrain
the durations of different stages of the star formation timeline.

In basic terms, the KL14 principle represents the galaxy as a collection
of independent regions, where each region is evolving along its timeline
independently of the neighbouring regions. The number of regions that are
emitting in each of the two tracers (with the possibility that the region is in a
transition phase and so is emitting in both) is related to the duration of that
phase: the shorter the duration of a phase, the less likely that a region would
be observed in that phase. The heisenberg code quantifies statistically how
this behaviour sets the flux ratio of the two phases as a function of position
and spatial scale within a galaxy. The goal of heisenberg is to determine the
duration of the evolutionary phases.

Most importantly in the context of our work, the method can only return
relative durations of the evolutionary phases. Unless the duration of one of the
two phases is known a priori, the relative timescales cannot be converted into
an absolute evolutionary timeline. If, however, the duration of an evolutionary
phase is known, this can be used as a ‘reference timescale’ to calibrate the
timeline. Fortunately, this reference timescale can be associated with the SFR
tracer owing to the absolute clock provided by stellar evolution (e.g. Leitherer
et al. 1999, 2014). The aim of the work in Chapters 3 and 4[pp. 47 & 99] is to
measure the emission lifetime of SFR tracers under different environmental
conditions; this then provides a reference timescale and a means to calibrate
the evolutionary timeline. Throughout the work, we use the terms ‘reference
map’ and ‘reference timescale’ to refer to the emission map associated to the
phase of known duration and its duration, respectively.

We outline here the procedure used by heisenberg and refer the reader
to Kruijssen et al. (2018) for the specific details. The method relies on the
findings of Kruijssen et al. (2014), where it is shown that the flux ratio of the
two phases changes relative to the galactic average when focusing apertures on
gas or young stellar emission peaks. It also shows that this relative change is a
direct function of the underlying evolutionary timeline describing how gas is
converted into stars on the cloud scale. The procedure is as follows.

1. The user provides heisenberg with an input file and two emission maps
of the same galaxy capturing two successive phases of an evolutionary
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Figure 2.1

In each panel, we show the different steps used by the heisenberg code to analyse input
emission maps. The emission maps shown here are created from the simulated galaxy which
we use in Chapter 3[p. 47]. Further details are given in the text. Top left: Two input emission
maps provided by the user, which capture two stages of an evolutionary process. Middle
left: A mask is applied to both emission maps to exclude the centre and outskirts of the
galaxy. Bottom left: Emission peaks in each map are identified (red and blue crosses). Right:
Emission maps are convolved on different scales.

Image Credit: Kruijssen et al. (2018, Figure 4–7), reproduced with permission © OUP
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Figure 2.2

Example tuning fork diagram produced by the heisenberg code for the galaxy shown in
Figure 2.1[p. 41]. The data points show the relation between the Phase-1-to-Phase-2 flux ratio
(𝐹12) relative to the galactic-scale Phase-1-to-Phase-2 flux ratio (𝐹12, gal) as a function of
aperture size, 𝑙ap. The two branches are a result of placing apertures at the location of Phase 1
(gas) emission peaks (top branch) or of Phase 2 (star) emission peaks (bottom branch). The
model is indicated by the solid black curves. The error bars indicate the 1𝜎 uncertainty on
each individual data point, whereas the shaded areas indicate the effective 1𝜎 uncertainty
range that accounts for the covariance between the data points. The grey arrow marks _,
the typical separation length between identified peaks. As the aperture size increases, the
calculated flux ratio tends to the galactic average (i.e. 𝐹12/𝐹12, gal tends to unity).

Image Credit: Kruijssen et al. (2018, Figure 12), adapted with permission © OUP
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process. In keeping with the example above, this could be a CO and H𝛼
emission map to trace the gas and stellar phases, respectively. See the
top left panel of Figure 2.1[p. 41]. We note here that heisenberg always
uses the second phase emission map as the reference map: this is usually
the SFR tracer map, for which a reference timescale can be defined, 𝑡star.

2. Regions of the galaxy that the user wishes to exclude from the analysis,
such as the centre or outskirts of the galaxy, are masked. See the middle
left panel of Figure 2.1[p. 41].

3. The heisenberg code identifies the location of all the emission peaks
present in both input maps within the range

[︂
10(𝐸max

𝑖
−Δ log10 F𝑖) , 10𝐸max

𝑖

]︂
,

where 𝑖 = {gas, star}, 𝐸max
𝑖 is the decadic logarithm of the maximum

emission in map 𝑖, and Δ log10 F𝑖 defines the depth of the range in
map 𝑖 (a parameter specified by the user in the input file). This depth
(approximately) corresponds to the dynamic range of the map, from the
brightest emission peak to the noise floor. See the bottom left panel of
Figure 2.1[p. 41].

4. Each map is convolved using a top hat kernel for a range of aperture sizes
(as specified in the input file). See the right-hand panel of Figure 2.1[p. 41].

5. For each pair of convolved maps, heisenberg places apertures — with
diameters equal to the convolution scale — centred on these identified
emission peaks. The total flux across all apertures located at gas, and
then stellar emission peaks is calculated for both emission maps. This
gives four measurements, 𝐹 𝑝𝑒 : the total gas/stellar flux (𝑒 = {gas, star})
at the location of gas/stellar peaks (𝑝 = {gas, star}).

6. The Phase-1-to-Phase-2 flux ratios 𝐹 𝑝12 ≡ 𝐹 𝑝gas/𝐹 𝑝star, in units of the
galactic average Phase-1-to-Phase-2 flux ratio (𝐹12, gal), are calculated
as a function of aperture size. This produces a ‘tuning fork diagram’
(see Figure 2.2[p. 42]), where each branch corresponds to the flux ratio
when focusing on the locations of emission peaks in the gas (𝑝 = gas)
and stellar (𝑝 = star) maps.

7. The models which describe the shapes of the two branches (see Kruijssen
et al. 2018, Equations 81 and 82) have three free parameters: the typical
separation length between independent regions (_, defining the aperture
size at which the branches separate), the relative temporal overlap
between the two phases (𝑡over/𝑡star, setting the convergence points at
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2 Uncertainty principle for star formation

small aperture sizes), and the relative duration of the gas phase (𝑡gas/𝑡star,
setting the vertical degree of asymmetry of the diagram).1

8. To find the model parameters that best describe the data, heisenberg
carries out a reduced-𝜒2 fit.

9. The reference timescale specified in the input file (𝑡star) is used to recover
𝑡over and 𝑡gas as absolute timescales.

The procedure described above assumes that the reference timescale (i.e. 𝑡star)
is known; however, this is not true without calibrating the timescale. Without
this reference timescale, heisenberg can only determine relative lifetimes (i.e.
𝑡over/𝑡star and 𝑡gas/𝑡star).

In Chapter 3[p. 47], we use the above method to constrain the emission
lifetime (𝑡E) for a variety of SFR tracers such that they can be used as
reference timescales in observational applications of heisenberg. The use
of heisenberg to measure the SFR tracer lifetime contrasts with normal
observational applications (as described above), in which the SFR tracer
lifetime is used as a reference timescale to calibrate the timeline. The fact
that we now seek to measure the SFR tracer lifetime requires us to find a new
independent way of defining a reference timescale. Using simulated galaxies,
we can create reference maps from stars particles within a known age bin;
the width of this age bin defines the reference timescale (𝑡R), which can be
used to calibrate the emission lifetime of the synthetic SFR tracer maps. For
Chapter 3[p. 47], we make notational transformations from the example used
here to reflect the new role of the SFR tracer map: ‘gas’ → ‘E’ (e.g. 𝑡gas → 𝑡E)
and ‘star’ → ‘R’ (e.g. 𝑡star → 𝑡R).

In Chapter 4[p. 99] we ascertain the affects of extinction on the emission
lifetimes we measure in Chapter 3[p. 47]. We do this using the above method
to measure 𝑅G#: the factor by which the duration associated to an SFR tracer
emission map without extinction (𝑡#) changes when including extinction (𝑡 ).

1These quantities represent flux-weighted averages across the population of emission
peaks (see Kruijssen et al. 2018; Kruijssen, Schruba, Chevance et al. 2019, Sec-
tion 3.2.9 and 3.2.11, Equation 1). In addition, we note that the region separation
length, _, marks the size scale on which a temporal de-correlation arises between the two
tracers, reflecting that they represent different evolutionary phases of the same process.
As a result, this length scale is a local quantity that is similar (but not equal) to the nearest
neighbour distance and describes the typical separation length in the vicinity of peaks, not
the area-averaged value across an entire galaxy. This is important because the degree of
clustering may vary strongly across a galaxy (e.g. due to morphological features such as
spiral arms). Since _ is a local quantity, it is relatively insensitive to such features (see
discussions in Kruijssen et al. 2018; Chevance, Kruijssen et al. 2019; Kruijssen, Schruba,
Chevance et al. 2019).
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This again requires the use of simulated galaxies; however, this is in order to
produce emission maps both with and without extinction and not to create
reference maps. For Chapter 4[p. 99], we again make notational transformations
from the example used here: ‘gas’ → ‘ ’ (e.g. 𝑡gas → 𝑡 ) and ‘star’ → ‘#’
(e.g. 𝑡star → 𝑡#). After this transformation, it can be seen that one of the free
quantities of the model, namely 𝑡gas/𝑡star, is in fact 𝑅G#.
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3
The emission lifetime of star
formation rate tracers

This chapter is based on

D. T. Haydon et al. (Oct. 2018). ‘An uncertainty principle
for star formation – III. The characteristic emission
time-scales of star formation rate tracers’. MNRAS
Submitted. arXiv: 1810.10897 [astro-ph.GA]

In Chapter 2[p. 39], we described the KL14 principle: a statistical method to
constrain the physics of star formation and feedback on the cloud scale by
reconstructing the underlying evolutionary timeline. However, this method
is reliant on a ‘reference timescale’ in order to recover absolute durations of
the different evolutionary phases. This reference timescale is necessary for
observational applications of the method: without it, the method cannot be
used to obtain meaningful constraints on, for example, the molecular cloud
lifetime, the timescale for cloud destruction by feedback, the separation length
between independent star-forming regions, the integrated cloud-scale star
formation efficiency, the cloud-scale mass loading factor, and the feedback
outflow velocity. Following the example of previous work in this area, the
most direct way of providing a reference timescale is though the emission
lifetime of SFR tracers. This is because stellar populations provide a natural
clock dictated by the physics of stellar evolution. For example, only high mass
stars are capable of radiating ionising photons of sufficient energy to produce
H𝛼 emission. Since these stars have typical lifetimes < 10 Myr (Leitherer
et al. 1999; Murphy et al. 2011), the H𝛼 emission itself should fade on a
timescale that is of a similar magnitude. Different starts dominate the emission
in different wavebands and so different wavebands will have emission lifetimes,
which reflect the lifetime of the dominate stars (Hao et al. 2011; Kennicutt
et al. 2012).

Previous work attempting to derive emission lifetimes for different SFR
tracers has revealed that the major problem obstructing a conclusive meas-
urement is that there is no obvious definition of the timescale which we
should adopt. Instead, there exists a range of possible definitions, such as a
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3 Emission lifetimes of SFR tracers

luminosity-weighted mean, a percentage intensity change, or a percentage of
the cumulative emission. The choice of definition can result in differences
of up to an order of magnitude in timescale (Kennicutt et al. 2012; Leroy
et al. 2012). In view of this strong dependence on the precise definition of the
reference timescale, we opt to use a self-consistent approach for determining
the SFR tracer timescale; that is, we measure the emission timescales of SFR
tracers by applying the KL14 principle itself. Since the amount of observable
emission is likely to fade out gradually rather than halt abruptly, the ‘correct’
definition of the emission lifetime depends on the physical context for which
the timescale is intended. By using the KL14 principle to define the timescale,
we will constrain the emission lifetime in a way that is meaningful in the
context of the KL14 principle.

Even though it is the goal of this work to define the emission lifetime of SFR
tracers within the context of the KL14 principle, measuring this lifetime is also
important in other contexts. For instance, this emission lifetime constrains the
duration for which photoionising feedback can act on the surrounding ISM.
Deriving absolute SFRs from observed line or broadband emission flux also
requires the lifetime for which a young stellar population emits at that given
wavelength.

In this chapter, we constrain emission lifetimes for H𝛼 emission (with and
without continuum subtraction) as well as 12 UV filters (from GALEX, Swift,
and HST), which cover a wavelength range 150–350 nm. We do so using
heisenberg; however, this requires a controlled experiment, in which the
absolute duration of one phase is known exactly in order to determine the
absolute duration of the emission lifetimes. This therefore necessitates the
use of galaxy simulations rather than real galaxies. Since the simulations
do not have information about SFR tracer emission, we generate synthetic
emission maps by combining the output from the hydrodynamical disc galaxy
simulation with the SPS model slug2. This also allows us to test the impact
of environmental factors, such as metallicity and the sampling of the stellar
IMF, upon which the emission lifetimes will likely depend, and not just the
different tracers.

The structure of this chapter is as follows. We outline our approach for
constraining the emission lifetime of different SFR tracers with a well-sampled
IMF in Section 3.1[p. 49]. In Section 3.2[p. 59] we present the results for solar
metallicity environments (and well-sampled IMF). In Section 3.3[p. 69], we
demonstrate how the timescales depend on metallicity. In Section 3.4[p. 79],
we demonstrate the effects of incomplete IMF sampling, which is expected
to change the results in environments of low SFR surface density. In Sec-
tion 3.5[p. 89], we carry out a brief test of the obtained timescales, by comparing
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3.1 Measuring the emission lifetime of SFR tracers

them to observations of H𝛼 and FUV emission in NGC300. This is the nearby
flocculent spiral galaxy upon which the first observational application of KL14
principle was performed and the timescales derived in this chapter used (for
details see Kruijssen, Schruba, Chevance et al. 2019). Finally, we summarise
the results and present our conclusions in Section 3.6[p. 92].

3.1 Measuring the emission lifetime of SFR
tracers

We present here the steps we take to find the emission lifetime for H𝛼 and
UV SFR tracers (see Table 3.1[p. 50] for details) using synthetic emission maps
and the heisenberg code. As we described in Chapter 2[p. 39], heisenberg
can determine the duration of the first input map from the second by using
the latter as a reference map (i.e. the map showing the evolutionary phase of
known duration). This means that if we provide heisenberg with a galaxy map
of one of the SFR tracers (e.g. H𝛼) along with a reference map, heisenberg
can provide us with the emission lifetime associated with that SFR tracer.
This approach to measure the SFR tracer lifetimes ensures that the obtained
reference timescales are self-consistent within the context of our method. After
all, in future observational applications of heisenberg, the SFR tracer map
will be used as a reference map.

We generate both the SFR tracer maps and the reference maps using a
numerical simulation of a flocculent spiral galaxy. Fundamentally, we only
require some (preferably physically-motivated) correlation of positions and
ages of star particles to carry out the experiments we perform in this chapter,
implying that we could have used any (e.g. randomly-generated) distribution
of points or Gaussian-like regions. However, the use of a galaxy simulation is
more physically appropriate, as it contains some imprint of galactic morphology
and the positional correlation of star formation events as a result of self-gravity
and stellar feedback. Using a galaxy simulation still carries the advantage that
we have complete control over the duration of the reference map — created
by using stellar particles of a specified age range. The SFR tracer maps
are generated using a SPS model. This approach allows us to additionally
quantify the effects of metallicity (see Section 3.3[p. 69]) and IMF sampling
(see Section 3.4[p. 79]) on the SFR tracer lifetimes. In turn, this will facilitate
observational applications of heisenberg for a variety of galactic environments.

We discuss the adopted galaxy simulation in Section 3.1.1[p. 51], the method
for generating the reference maps in Section 3.1.2[p. 53], and the method for
generating the synthetic SFR tracer maps in Section 3.1.3[p. 56].
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3 Emission lifetimes of SFR tracers

Table 3.1 We derive emission lifetimes for the SFR tracers listed here.

a: The UV filters we consider. _w is the response-weighted mean wavelength of the filter.
The normalised filter response curves are presented in Figure 3.6[p. 66].

Telescope Instrument Filter _w [nm]
GALEX FUV 153.9
GALEX NUV 231.6
Swift UVOT M2 225.6
Swift UVOT W1 261.7
Swift UVOT W2 208.4
HST WFC3 UVIS1 F218W 223.3
HST WFC3 UVIS1 F225W 238.0
HST WFC3 UVIS1 F275W 271.5
HST WFC3 UVIS1 F336W 335.8
HST WFPC2 F255W 259.5
HST WFPC2 F300W 297.4
HST WFPC2 F336W 335.0

b: The H𝛼 filters we consider.

Filter Details

H𝛼− H𝛼 emission with continuum subtraction. This is not a true
filter but a direct measurement of the Hydrogen-ionizing
photon emission, see Section 3.1.3[p. 56] for details.

H𝛼+𝑊 A narrow band filter including H𝛼 and the continuum as
defined in Equation 3.3[p. 58]. The total filter width is indic-
ated by𝑊 ; we consider𝑊 = {10, 20, 40, 80, 160} Å.
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3.1 Measuring the emission lifetime of SFR tracers

3.1.1 Galaxy simulation

The results in this chapter are based on the ‘high-resolution’ simulated galaxy
from Kruijssen et al. (2018). We set up the initial conditions for this galaxy
using the methods described in Springel et al. (2005). The simulation has
a total of 4.95 × 106 particles: 1 × 106 in the dark matter halo, 2.31 × 106

in the stellar disc, 1.54 × 106 in the gas disc, and 1 × 105 in the bulge. The
dark matter halo particles have a mass of 9 × 105 M⊙ and both the star and
gas particle types have a mass of 2.7 × 103 M⊙. This gives us a 9 × 1011 M⊙
halo, 1.05 × 1010 M⊙ disc (60 per cent in stars and 40 per cent in gas), and
2.7 × 108 M⊙ bulge.

We then evolve the initial conditions for 2.2 Gyr using the SPS code P-
Gadget-3 (last described by Springel 2005), which makes use of the SPHGal
hydrodynamics solver. SPHGal was implemented by Hu et al. (2014) in
order to overcome many of the numerical issues associated with traditional
smoothed-particle hydrodynamics (SPH). To be considered for star formation,
gas particles require temperatures less than 1.2 × 104 K and Hydrogen particle
densities more than 0.5 cm−3. Stars are formed from eligible gas particles
stochastically according to the method described in Katz (1992). Supernova
explosions return mass, momentum, and thermal energy back to the ISM;
these are distributed using a kernel weighting to the 10 nearest gas particles.
The result of the simulation is a near-𝐿★ isolated, flocculent spiral galaxy,
forming stars at a rate of roughly 0.3 M⊙ yr−1. Figure 3.1[p. 52] places the
macroscopic properties of the galaxy in the context of the observed nearby
galaxy population. This shows that the simulated galaxy resides on the main
sequence and has a normal total gas depletion time. In addition, Figure 3.2[p. 54]

shows a stellar reference map (see Section 3.1.2[p. 53]) and a synthetic H𝛼−
map (see Section 3.1.3[p. 56]) of this galaxy, demonstrating that its morphology
is similar to that of nearby flocculent spirals like M33 and NGC300.

The star formation and feedback prescriptions used in the simulation
are certainly inadequate to describe the cloud-scale physics governing the
evolutionary cycling between molecular gas, star formation, and feedback
within galaxies (see e.g. Hopkins et al. 2018; Kruijssen, Schruba, Chevance
et al. 2019). However, this is not a concern in the context of the problem
at hand. The goal of this work is not to accurately model cloud-scale star
formation and feedback. Instead, we aim to determine how quickly SFR
tracer emission fades after the formation of a young stellar population, and
to do so self-consistently in the context of the KL14 principle. This can
be achieved with any simulation in which the birth sites of star particles
approximately conform to a galaxy-like morphology. As shown by the images
in Figure 3.2[p. 54], this is indeed achieved by the simulation used here. This
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3 Emission lifetimes of SFR tracers

Figure 3.1

Properties of the simulated galaxy in the context of the nearby galaxy population. The panels
show the SFR as a function of stellar mass (top) and total gas mass (bottom), both for the
simulated galaxy and nearby galaxies from the xCOLDGASS and xGASS surveys. In the
bottom panel, the arrows indicate upper limits for galaxies that are non-detections in either or
both of xCOLDGASS and xGASS. For the non-detections of molecular and atomic gas, we
use 3𝜎 and 5𝜎 upper limits, respectively. The solid lines represent the star-forming galaxy
main sequence (top panel), the mean total gas depletion time of the detections (bottom panel),
with the 1𝜎 scatter shown in grey.
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3.1 Measuring the emission lifetime of SFR tracers

enables the necessary SFR tracer lifetimes to be derived and therefore the
reference timescales. These in turn, will enable observational applications of
our method that themselves will motivate a future generation of star formation
and feedback models that are capable of describing cloud-scale evolutionary
cycling in galaxy simulations (for further discussion see Kruijssen et al. 2018;
Fujimoto et al. 2019).

3.1.2 Generation of reference maps
The role the reference map plays in the heisenberg code is to calibrate the
absolute evolutionary timeline of the star formation process. In the context of
this chapter, it is used to calibrate the emission lifetime of SFR tracer emission.

In our experiments aimed at measuring the SFR tracer lifetimes, we need
to know the reference timescale exactly. For this reason, we use simulated
rather than real galaxies. We produce reference maps from the simulation by
generating mass surface density maps of the star particles in a specific age
range. The width of this age range acts as the reference timescale, 𝑡R. We
smooth the selected star particles using a Wendland 𝐶4 kernel (Dehnen et al.
2012) (the same kernel SPHGal introduces into P-Gadget-3) over the 200
nearest neighbouring particles; this produces a realistic reference map (i.e. not
a map of point particles).

In principle, we have a free choice over the age range we use. However, for
the best results and the most realistic set-up there are a few restrictions. In
Chapter 2[p. 39], we note that heisenberg is designed such that the reference
map corresponds to the second phase of the evolutionary timeline. To avoid
any overlap between the evolutionary phases, the minimum age of the star
particles used in the reference map (𝑡M) must therefore be at least the duration
of the first (SFR tracer emission) phase (𝑡E, 0, we include the subscript ‘0’ to
indicate that this is for a well sampled IMF: this distinction is necessary in
Section 3.4[p. 79]) of the evolutionary timeline. This defines the lower limit of
the stellar age range used to generate the reference map:

Equation 3.1𝑡M ≳ 𝑡E, 0 .

At the same time, it is undesirable to select a value of 𝑡M much larger than the
galactic dynamical time because groups of star particles formed in the same
clouds may have dispersed. We therefore prefer using 𝑡M ≈ 𝑡E, 0.

It was show by Kruijssen et al. (2018) that heisenberg provides the most
accurate measurement of the underlying timescales if the duration associated to
both of the input maps is of a similar order of magnitude (i.e. within a factor of
10, but ideally within a factor of 4). When the durations are similar, the tuning
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Figure 3.2

Example maps we use as input for the heisenberg code. Top: A reference map generated using
the mass surface density of star particles in the age range 10–15 Myr, implying a reference
timescale of 5 Myr in this example. See Section 3.1.2[p. 53] for details. Bottom: A synthetic H𝛼
emission map without the continuum (H𝛼−) generated by performing SPS on the simulated
galaxy. See Section 3.1.3[p. 56] for details.
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3.1 Measuring the emission lifetime of SFR tracers

Figure 3.3

Schematic diagram showing how the different timescales we define within this chapter are
related. Time starts at the birth of the star particle. The emission map shows the particles
formed within a timescale 𝑡E, 0 prior to the simulation snapshot, where 𝑡E, 0 represents the
emission lifetime of the SFR tracer. The time over which the reference map runs is defined by
𝑡M and 𝑡R, where 𝑡M sets the minimum age of the star particles used to create the reference
map and 𝑡R defines the width of the age range and therefore the reference timescale. The
structure of the heisenberg code is such that, the duration of second evolutionary phase is
used to calibrate the duration of the first. This means that to calibrate the SFR tracer lifetime
(𝑡E, 0), the SFR tracer map must be the first evolutionary phase (i.e. 𝑡E, 0 ≤ 𝑡M); this is unlike
observational applications, where it is usually the second.
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3 Emission lifetimes of SFR tracers

fork diagram (Figure 2.2[p. 42]) becomes more symmetrical and the method can
retrieve the underlying timescales with a precision of about 30 per cent. This
finding sets the preferred width of the age range:

Equation 3.2 𝑡R ≈ 𝑡E, 0 .

In Figure 3.3[p. 55], we show a schematic timeline of how 𝑡M, 𝑡R, and 𝑡E, 0 are
related.

To quantify (and avoid) any systematic biases of the measured SFR tracer
lifetimes, we investigate the dependence on the choice of stellar age range used
to generate the reference map. In practice, this means we vary the values of 𝑡M
and 𝑡R. We present the range of values we use for 𝑡M and 𝑡R in Table 3.2[p. 57].
These are guided by the range of possible emission lifetimes for H𝛼 and FUV
emission found in Leroy et al. (2012). Using the results of starburst99
calculations, Leroy et al. (2012) determine an emission lifetime using several
methods: a luminosity-weighted average time, as well as the times at which
the tracer emission reaches a particular limit in terms of the total cumulative
emission or its instantaneous intensity.

3.1.3 Generation of synthetic emission maps
In order to perform our analysis, we need to produce synthetic emission
maps of each SFR tracer. The simulation that we base this work on (see
Section 3.1.1[p. 51]) contains no information about the expected emission
spectrum. We therefore use slug2, a stochastic SPS code, to take the age and
mass of the star particles and predict the associated emission for the filters
specified in Table 3.1[p. 50].

With the slug2 model, we predict the expected rest-frame emission spectrum
for every star particle within the simulation.1 The code first samples an IMF
to construct a simple stellar population of total mass matching that of the star
particle and then uses stellar evolution tracks along with the age of the star
particle to determine the combined emission of this simple stellar population.
The slug2 code then converts the full combined emission spectrum into a
single luminosity value for each of the SFR tracers in Table 3.1[p. 50] using
filter response curves. These single luminosity values are what we assign to
our star particles when we produce our synthetic emission maps. We use the
same smoothing procedure as we described in Section 3.1.2[p. 53]. This means
that, even though our star particles are treated as simple stellar populations, the
star-forming regions themselves, which are a collection of multiple particles,

1We note that the age selection process described in Section 3.1.2[p. 53] is not used for the
emission maps.
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3.1 Measuring the emission lifetime of SFR tracers

Table 3.2

We create input reference maps from the star particles that fall within a particular age range.
The age range, for a given reference map, is defined through 𝑡M ≤ Age ≤ 𝑡M + 𝑡R. We show
here all the values used in this chapter for 𝑡M and 𝑡R when defining these age ranges. This
results in a 9 × 9 array of reference maps (for example Figure 3.4[p. 62]). See Section 3.1.2[p. 53]

for more details.

Emission Type 𝑡M and 𝑡R [Myr]
H𝛼 1 3 5 7 10 15 20 25 30
UV 5 10 15 20 25 30 50 70 100
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3 Emission lifetimes of SFR tracers

will have an age spread. An example of a synthetic H𝛼− map is shown in
Figure 3.2[p. 54].

The adopted UV response filters are all included by default in slug2 (for
more details see Krumholz et al. 2015). The H𝛼 SFR tracers, however, require
different steps. For H𝛼− we use the Hydrogen-ionizing photon emission,
𝑄

(︁
H0)︁ , directly2 and for H𝛼+𝑊 we define the narrow band filter, FH𝛼+𝑊 , as

Equation 3.3 FH𝛼+𝑊 =

⎧⎪⎪⎨
⎪⎪⎩

1 6562 − 𝑊
2

Å ≤ _ ≤ 6562 + 𝑊
2

Å

0 Otherwise
,

where _ here is the wavelength of the emission. The emission spectrum
produced by slug2, includes the H𝛼 emission line but does not calculate the
underlying absorption feature from the stellar continuum. In Section 3.A[p. 94]

we use starburst99 simulations to investigate when the absorption can no
longer be neglected. We find that, for the timescales we are considering, the
absorption is negligible.

For the analysis in Section 3.2[p. 59], we use a Chabrier (2005) IMF
with Geneva solar-metallicity evolutionary tracks (Schaller et al. 1992) and
starburst99 spectral synthesis. The slug2 model samples the IMF non-
stochastically3 (i.e. we use a well sampled IMF) and no foreground extinction is
applied. The surrounding material has a Hydrogen number density of 102 cm−3.
We assume that only 73 per cent of the ionising photons are reprocessed into
nebular emission, which is consistent with the estimate from McKee et al.
(1997); this could be because those photons are absorbed by circumstellar dust,
or because they escape outside the observational aperture (the observational
effects of these two possibilities are indistinguishable).

We choose to produce our synthetic emission maps without extinction for a
number of reasons. In observational applications of the KL14 principle, there
is often some overlap between the first and second phases of the evolutionary
timeline. For instance, when applying the method to a molecular gas map (e.g.
CO) and an ionised emission map (e.g. H𝛼), there will be some non-zero time
for which both tracers coexist. When a region resides in this ‘overlap’ phase,
the star-forming region may be partially embedded in dust and gas; during this
phase the region suffers the most from extinction. We can therefore define the
duration of this second phase, 𝑡2, as

Equation 3.4 𝑡2 = 𝑡o + 𝑡i ,
2A true H𝛼 luminosity can be calculated from 𝑄

(︁
H0)︁ using (Silva et al. 2014, Equation 2);

however, using the required scaling factor will not change the results we recover here (see
Kruijssen et al. 2018) and so the conversion is unnecessary.

3In Section 3.4[p. 79], we will use the stochastic IMF sampling mode of slug2 to investigate
its effect on the inferred SFR tracer lifetimes.
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where 𝑡o is the duration of the second phase that overlaps with the first, and
𝑡i the duration that is independent. The emission lifetimes we define in this
chapter are for this independent part, 𝑡i, of the second phase. This is where
the region is no longer embedded in dust and gas and therefore not suffering
from significant extinction. We motivate this by the notion that molecular
gas correlates with star formation: as long as CO emission is present, star
formation is likely to be ongoing. The ‘clock’ defined by the SFR tracer
lifetime only starts when the last massive stars have formed. This does mean
that the application of heisenberg to tracers other than CO may require a
different definition of the reference timescale. To facilitate this, the heisenberg
code enables the user to specify if the reference timescale includes or excludes
this overlap phase (see Kruijssen et al. 2018, Section 3.2.1).

In addition, it is desirable to exclude extinction for two further reasons.
Firstly, the effects of extinction can, in most cases, be significantly reduced if
not completely corrected for (e.g. James et al. 2005), meaning in practice the
input maps provided to heisenberg can be corrected for extinction. Secondly,
if we perform our analysis with extincted maps, the results would no longer
be generally applicable and would only apply to galaxies that suffer from
the same amount of extinction. Our current approach therefore enables
constructing a ‘universal’ baseline of extinction-corrected SFR tracer lifetimes.
In Chapter 4[p. 99], we consider the effects of extinction using galaxy simulations
covering a range of gas surface densities.

3.2 Measuring the emission lifetime of SFR
tracers for a fully sampled IMF at solar
metallicity

We constrain the emission lifetime for several SFR tracers using the heisenberg
code. As input to the code, we use synthetic SFR tracer maps and reference
maps as described in Section 3.1[p. 49]. The reference maps are characterised
by the ages of the star particles included within them. We investigate how
the chosen age range affects the emission lifetime measured by changing the
values of 𝑡M and 𝑡R which define the age range: 𝑡M ≤ Age ≤ 𝑡M + 𝑡R. This
approach does not (initially) result in a single emission lifetime for each SFR
tracer, but an array spanned by 𝑡M and 𝑡R.

The reason we choose to measure the emission lifetime for the an array
of 𝑡M and 𝑡R rather than just a single pair is for accuracy. As already
noted in Section 3.1.2[p. 53], the accuracy of the measurement heisenberg
makes depends on temporal range and offset of the reference map. The best
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measurements are made when the duration of the evolutionary phases (i.e. 𝑡E, 0
and 𝑡R) are similar. We also prefer the temporal offset between the reference
and SFR tracer maps to not be too large, so as to mimic close evolutionary
phases (such as between molecular gas and massive star formation). Since we
do not know 𝑡E, 0 in advance (this is the quantity which we aim to constrain
with this work), it is not possible to choose an optimal pair of 𝑡M and 𝑡R.
We therefore resort to systematically measuring the emission lifetime using
reference maps generated for all combinations of 𝑡M and 𝑡R to produce an array
of emission lifetimes. However, we do find that the typical standard deviation
of all calculated SFR tracer lifetimes is of the order 0.15 dex (in logarithmic
space), despite the fact that both 𝑡M and 𝑡R vary by 1.5 dex. This demonstrates
that the inferred lifetimes are not extremely sensitive to the choice of reference
map, but using the full array of reference maps does allow us to optimise the
accuracy of the SFR tracer lifetimes.

In what follows, we describe how we reduce these ‘lifetime arrays’ (see
Figure 3.4[p. 62] for examples) into a single emission lifetime for each SFR
tracer. However, we first note that heisenberg not only outputs the measured
lifetime but also its probability density function (PDF). This means that each
element of the lifetime array has an associated PDF, which we make use of in
the process of defining a single emission lifetime.

To define a emission lifetime for each SFR tracer from the array of lifetimes,
we produce 106 realisations of the lifetime array, where the value of each
element of each realisation of the lifetime array has been randomly sampled
from its associated PDF. For each of the 106 realisations of the lifetime array
we calculate the weighted mean of the array. The weighting scheme we use is
one that favours solutions where the uncertainties are small and 𝑡M, 𝑡R, and 𝑡E, 0
are the most similar. The weighting for an element in the array with lifetime
𝑡𝑖 𝑗 is given by W𝑖 𝑗 :

Equation 3.5 W𝑖 𝑗 =
Wd

𝑖 𝑗Wu
𝑖 𝑗∑︁

𝑖 𝑗 Wd
𝑖 𝑗Wu

𝑖 𝑗

,

where the summation is a normalisation factor. The Wd weighting favours
more strongly elements that satisfy the criteria we describe in Equations 3.1
and 3.2[pp. 53 & 56] (i.e. the closer 𝑡𝑖 𝑗 is to 𝑡M, 𝑖 and 𝑡R, 𝑗 the better):

Equation 3.6 Wd
𝑖 𝑗 =

{︄[︃
log10

(︃
𝑡𝑖 𝑗

𝑡M, 𝑖

)︃]︃2
+

[︃
log10

(︃
𝑡𝑖 𝑗

𝑡R, 𝑗

)︃]︃2
}︄− 1

2

,

which is simply the geometric distance in logarithmic space. TheWu weighting
takes the lower and upper uncertainty (𝜎−

𝑖 𝑗 and 𝜎+
𝑖 𝑗 respectively) on the lifetime
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3.2 A well sampled IMF at solar metallicity

𝑡𝑖 𝑗 (as calculated by heisenberg) into consideration:4

Equation 3.7Wu
𝑖 𝑗 =

(︄
𝜎−
𝑖 𝑗 + 𝜎+

𝑖 𝑗

2

)︄−2

.

This process results in 106 emission lifetimes, from which we can produce
a PDF. We define the emission lifetime from the median of the PDF and
the uncertainties from the 16th and 84th percentiles (see Figure 3.5[p. 63] for
examples).

With the above procedure, we condense the array of lifetimes into a single
number that most strongly reflects the most accurate measurements (based
on Kruijssen et al. 2018) and those that have the smallest measurement
uncertainties. The uncertainties on this single emission lifetime are calculated
using the PDF of the complete set of 106 values and so they contain both the
uncertainties on the individual measurements and the systematic uncertainty
associated with choosing a combination of 𝑡M and 𝑡R.

When applying heisenberg to the pairs of reference and SFR tracer
maps, we use the default input parameters specified in Kruijssen et al. (2018,
Tables 1 and 2). The only exceptions are as follows. We set tstar_incl
= 1, to indicate that the reference timescale (i.e. the width of the age range)
also includes the overlapping phase.5 As we are not making any cuts in
galactocentric radius, we also set cut_radius = 0. Finally, we define the
range of aperture sizes using a minimum aperture size of 𝑙ap, min = 25 pc and a
number of 𝑁ap = 17 apertures, to produce 17 logarithmically-spaced aperture
diameters from 25–6400 pc.

In Figure 3.4[p. 62], we present, as examples, two lifetime arrays obtained
for H𝛼− and WFC3 UVIS F225W SFR tracers. These lifetime arrays only
serve as examples, since the elements show the best-fitting values returned
by heisenberg and are not from the 106 realisations. We also show, in
Figure 3.5[p. 63], the PDFs associated to 106 realisations, which we use to
defined the emission lifetimes for H𝛼− and WFC3 UVIS F225W.

4Using the average of the lower and upper uncertainty is not technically correct; however,
the methods as suggested by Barlow (2003) to account for asymmetric uncertainties would
have little impact on the final result and so are neglected.

5This is not in contradiction with what we discuss in Section 3.1.3[p. 56]. In Section 3.1.3[p. 56],
we explain that the emission lifetimes of the SFR tracers we define do not include the
overlap phase; and so, when using the emission lifetimes we present here, one should
use tstar_incl = 0. The analysis we perform to define the emission lifetimes, uses a
reference map produced from star particles in a specific age range. The width of this age
range is used as the reference timescale and is the total duration of that phase: this includes
any overlap.

61



3 Emission lifetimes of SFR tracers

0.02

0.04

0.06

0.08

0.10

0.12

0.14

W
ei

gh
tin

g

CR : 1 CR : 3 CR : 5 CR : 7 CR : 10 CR : 15 CR : 20 CR : 25 CR : 30

CM : 1 2.88 +0.52
−0.34 2.98 +0.20

−0.24 3.09 +0.27
−0.19 3.78 +0.34

−0.43 3.41 +0.42
−0.19 3.52 +0.18

−0.18 4.22 +0.12
−0.23 4.71 +0.16

−0.24 4.79 +0.14
−0.30

CM : 3 2.83 +0.41
−0.26 3.39 +0.34

−0.29 4.19 +0.22
−0.21 4.50 +0.24

−0.25 3.82 +0.25
−0.19 4.20 +0.24

−0.23 4.70 +0.29
−0.23 5.76 +0.33

−0.27 6.29 +0.37
−0.33

CM : 5 2.58 +1.09
−0.26 4.74 +1.08

−0.36 6.09 +1.46
−0.76 4.81 +0.72

−0.36 4.79 +0.83
−0.36 5.40 +1.00

−0.59 4.66 +0.78
−0.26 7.22 +1.13

−0.83 7.42 +1.02
−0.81

CM : 7 13.41 +7.69
−3.34 10.50 +3.42

−1.78 4.74 +0.96
−0.71 4.24 +0.78

−0.47 6.30 +0.89
−0.79 6.82 +0.83

−0.86 7.30 +1.07
−0.86 6.87 +1.07

−0.76 6.12 +1.08
−0.67

CM : 10 1.95 +0.33
−0.30 2.35 +0.49

−0.26 4.19 +0.55
−0.60 4.69 +0.40

−0.67 5.56 +0.47
−0.72 5.99 +0.69

−0.73 6.58 +0.81
−0.82 5.98 +0.91

−0.71 6.32 +1.02
−0.76

CM : 15 2.55 +0.38
−0.34 3.23 +0.39

−0.35 4.48 +0.49
−0.49 4.97 +0.50

−0.51 6.17 +0.61
−0.74 9.07 +0.83

−1.11 7.26 +0.76
−0.86 7.84 +0.86

−0.92 9.68 +1.06
−1.22

CM : 20 3.62 +0.77
−0.62 4.25 +0.63

−0.54 5.66 +0.85
−0.77 6.01 +0.74

−0.80 7.49 +0.92
−0.99 6.32 +0.96

−0.89 7.01 +1.07
−0.92 7.29 +1.21

−1.03 5.53 +1.03
−0.59

CM : 25 3.88 +1.27
−0.70 6.21 +0.93

−1.10 6.44 +0.68
−1.00 7.14 +1.16

−1.03 6.52 +0.85
−0.82 7.35 +0.83

−0.90 8.13 +0.98
−1.05 6.58 +1.09

−0.77 5.60 +0.92
−0.61

CM : 30 4.01 +1.82
−0.69 5.18 +1.27

−0.77 5.30 +0.94
−0.75 5.11 +0.66

−0.67 6.33 +0.88
−0.74 6.59 +0.83

−0.83 7.35 +1.00
−0.85 5.78 +0.77

−0.65 5.41 +0.79
−0.62

HU−

0.1

0.2

0.3

0.4

0.5

W
ei

gh
tin

g

CR : 5 CR : 10 CR : 15 CR : 20 CR : 25 CR : 30 CR : 50 CR : 70 CR : 100

CM : 5 24.22 +2.52
−2.24 19.37 +1.15

−0.97 20.14 +0.83
−0.89 21.64 +0.91

−0.65 24.05 +0.98
−0.93 24.45 +1.19

−0.86 28.22 +1.46
−1.44 29.97 +2.48

−1.76 38.16 +2.17
−1.71

CM : 10 11.60 +0.90
−0.67 15.30 +0.76

−0.78 19.26 +0.79
−0.99 21.74 +0.67

−1.09 20.93 +0.74
−0.85 20.54 +0.87

−0.86 26.11 +1.40
−1.20 28.87 +1.90

−1.81 38.53 +2.29
−1.93

CM : 15 15.79 +1.45
−1.27 18.73 +1.21

−1.18 21.20 +1.39
−1.17 20.46 +1.15

−1.12 21.64 +1.15
−1.23 23.47 +1.33

−1.33 25.22 +1.56
−1.25 30.74 +2.75

−2.17 34.87 +2.78
−2.35

CM : 20 17.51 +1.66
−1.84 18.56 +1.65

−1.12 18.15 +1.07
−1.12 19.90 +1.15

−1.24 20.88 +1.50
−1.13 20.26 +1.23

−1.09 25.88 +1.60
−1.41 30.21 +2.06

−2.21 39.64 +2.50
−2.48

CM : 25 15.73 +1.56
−1.95 15.64 +1.70

−1.02 17.48 +1.41
−1.09 18.98 +1.50

−1.16 18.82 +1.34
−1.06 19.23 +1.14

−1.17 24.37 +1.90
−1.21 28.61 +1.99

−1.76 30.85 +2.63
−1.47

CM : 30 13.79 +2.30
−1.49 16.24 +1.74

−1.07 17.46 +1.47
−1.26 19.40 +1.28

−1.47 18.15 +1.07
−1.07 18.60 +1.02

−0.92 24.41 +1.34
−1.32 25.28 +1.60

−1.34 33.00 +3.08
−1.60

CM : 50 13.64 +1.16
−2.31 10.64 +1.02

−0.82 11.87 +1.11
−0.67 13.61 +0.94

−0.74 15.42 +0.96
−0.69 16.74 +0.81

−0.88 21.61 +1.14
−1.00 28.30 +1.45

−1.62 32.11 +1.97
−1.73

CM : 70 10.16 +1.45
−0.85 13.56 +1.45

−1.36 12.70 +1.30
−0.79 13.53 +0.97

−0.85 13.44 +0.94
−0.70 14.81 +0.98

−0.70 19.94 +0.94
−0.99 25.60 +1.54

−1.39 31.75 +1.77
−1.68

CM : 100 12.69 +1.52
−1.47 15.45 +1.97

−1.29 16.20 +1.67
−1.21 18.38 +1.61

−1.52 19.25 +1.64
−1.20 19.24 +1.30

−1.23 20.89 +1.27
−1.19 29.35 +1.50

−1.49 34.04 +2.38
−1.95

WFC3
UVIS1 F225W

Figure 3.4

Two examples showing the range of emission lifetimes (and associated uncertainties) as
determined using heisenberg for different reference maps. Top: H𝛼 emission excluding
the continuum (H𝛼−). Bottom: UV emission (WFC3 UVIS F225W). The reference maps
are characterised by the age range used to select the star particles which are included in the
reference map. 𝑡M denotes the minimum age of the star particles and 𝑡R the width of the age
range. The colour-coding is based on the weighting, W, used when calculating the weighted
average (see Equation 3.5[p. 60]). All values within the tables are given in Myr.
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Figure 3.5

Two examples showing the PDFs associated to the defined emission lifetimes. Top: H𝛼
emission excluding the continuum (H𝛼−). Bottom: UV emission (WFC3 UVIS F225W). The
vertical line shows the selected lifetime (the median of the distribution); the shaded region,
the uncertainty defined by the 16th and 84th percentiles.
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We can use the defined emission lifetimes, 𝑡E, 0, to specify the age range we
use for creating our reference maps in later sections of this chapter:

Equation 3.8 𝑡E, 0 ≤ Age ≤ 2𝑡E, 0 ,

which complies with the conditions specified in Equations 3.1 and 3.2[pp. 53 & 56].
In Table 3.3[p. 65], we present the emission lifetimes and associated uncer-

tainties we constrain for each of the different SFR tracer filters. We also include
the age ranges that we will use for the reference maps in later sections of this
chapter; we calculated these using the expression given in Equation 3.8.

In the upper panel of Figure 3.6[p. 66], we show the response curves for the UV
filters and also mark the response-weighted mean wavelength, _w. Visualising
the response curves helps to explain the range of measured emission lifetimes.
In the lower panel of Figure 3.6[p. 66], we show _w against the emission lifetime
of the young stellar emission in each filter. The figure shows that similar
response-weighted mean wavelengths give similar emission lifetimes. In
addition, we see that there is a tight relation between the SFR tracer lifetime
and wavelength. We describe this relationship between _w and the UV emission
lifetime, 𝑡UV

E, 0, by

Equation 3.9 𝑡UV
E, 0 [Myr] =

(︂
3.00+0.29

−0.31

)︂ (︄
_w

225 nm

)︄ (4.34+0.24
−0.20)

+
(︂
16.42+0.36

−0.31

)︂
.

This relation is obtained by performing a weighted least-squares minimisation.
The uncertainties on the parameter values are calculated using a Monte Carlo
approach. With this relationship it is possible to find the emission lifetimes for
UV filters that we have not explicitly considered here.

Similarly, we derive a relation between the H𝛼+ emission lifetime and filter
width,𝑊 , to make it possible to find emission lifetimes for intermediate𝑊 :

Equation 3.10 𝑡H𝛼+E, 0 [Myr] =
(︂
4.8+1.3

−1.3

)︂ (︃
𝑊

40 Å

)︃ (0.65+0.20
−0.13)

+
(︂
3.8+1.1

−1.1

)︂
.

We present this relation in Figure 3.7[p. 67]. We note that the increase in
emission lifetime with filter width is not due to a change in the H𝛼 emission
but the result of including more of the long-lived continuum emission.

The UV emission lifetimes that we recover (17.1–33.3 Myr) are within the
ranges often quoted in the literature Kennicutt et al. (10–100 Myr, 2012) and
Leroy et al. (2012)). The large variation in literature values is due to the fact
that there is no single method or distinct set of criteria which one should use
in order to constrain the emission lifetime of an SFR tracer. With the approach
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Table 3.3

The emission lifetimes, 𝑡E, 0, obtained for the different SFR tracers (see Table 3.1[p. 50] for
details) and the corresponding age ranges (𝑡E, 0 ≤ Age ≤ 2𝑡E, 0) for producing reference maps
in later sections of this chapter. These results are for a well sampled IMF at solar metallicity.
The filter order is in increasing filter width (𝑊) for H𝛼+ and increasing response-weighted
mean wavelength (_w) for UV. This table is an extract of Table 3.5[p. 74], which includes the
emission lifetimes and age ranges for different stellar metallicities (𝑍/Z⊙ = 0.05–2).

𝑡E, 0 [Myr] Age range [Myr]
H𝛼− 4.3+0.1

−0.3 4.3–8.6
H𝛼+ 10 Å 5.6+0.2

−0.1 5.6–11.1
H𝛼+ 20 Å 7.3+0.4

−0.2 7.3–14.6
H𝛼+ 40 Å 9.3+0.2

−0.3 9.3–18.6
H𝛼+ 80 Å 10.7+0.2

−0.2 10.7–21.4
H𝛼+ 160 Å 16.4+0.6

−0.3 16.4–32.7
GALEX FUV 17.1+0.4

−0.2 17.1–34.2
UVOT W2 19.0+0.3

−0.2 19.0–38.0
WFC3 UVIS1 F218W 19.4+0.2

−0.2 19.4–38.9
UVOT M2 19.5+0.2

−0.2 19.5–39.0
GALEX NUV 19.6+0.2

−0.2 19.6–39.1
WFC3 UVIS1 F225W 19.6+0.2

−0.2 19.6–39.3
WFPC2 F255W 22.4+0.2

−0.2 22.4–44.7
UVOT W1 21.8+0.2

−0.2 21.8–43.5
WFC3 UVIS1 F275W 23.5+0.2

−0.2 23.5–47.0
WFPC2 F300W 27.7+0.6

−0.3 27.7–55.4
WFPC2 F336W 33.1+0.4

−0.3 33.1–66.3
WFC3 UVIS1 F336W 33.3+0.4

−0.4 33.3–66.6

Table 3.4
Percentages of the emission intensity relative to its instantaneous value at 1 Myr and of
its cumulative value over 100 Myr, evaluated at the emission lifetimes of the SFR tracers
presented in Table 3.3, based on Figure 3.8[p. 68].

H𝛼− [%] FUVa [%]
% of intensity at 1 Myr 19.4+2.8

−0.7 8.6+0.1
−0.2

% of cumulative emission 92.4+0.6
−1.5 76.5+0.3

−0.2
a GALEX FUV
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Figure 3.6

Top: The normalised response curves of the UV filters considered in this chapter (also see
Table 3.1a[p. 50]). The vertical lines indicate the response-weighted mean wavelengths, _w.
Bottom: emission lifetimes for UV filters as a function of response-weighted mean wavelength.
The grey curve shows the fit described in Equation 3.9[p. 64] and the shaded regions indicates
the associated uncertainty.
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Figure 3.7
Emission lifetimes for H𝛼+ filters as a function of the filter width. The grey curve shows the
fit described in Equation 3.10[p. 64] and the shaded region indicates the associated uncertainty.
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Figure 3.8

The two panels show how the cumulative emission (left) and instantaneous intensity (right) of
H𝛼 and FUV emission changes with time, as calculated using starburst99 for an instantaneous
burst of star formation. Horizontal, dashed lines mark possible (and arbitrarily selected)
percentage limits which could be used to define an emission lifetime. It is clear, especially
for FUV emission, that the choice in limit could change the lifetime by up to an order of
magnitude. Using these results and the lifetimes in Table 3.3[p. 65], we reverse the process (i.e.
find percentage limits from timescales) to determine if a percentage limit can defined. The
results are presented in Table 3.4[p. 65].

Image Credit: Leroy et al. (2012, Figure 1), reproduced with permission © AAS
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taken in this chapter, we have remedied this problem for future observational
applications of the KL14 principle.

A table of emission lifetimes is presented in Leroy et al. (2012) for H𝛼 and
FUV (at 150 nm). Multiple lifetimes are listed for each SFR tracer; these
lifetimes are defined by the duration required to reach a given percentage
limit of the cumulative emission or of the emission intensity relative to the
intensity at 1 Myr. We take Leroy et al. (2012, Figure 1) (reproduced here in
Figure 3.8[p. 68]) and reverse the process to find the percentage that corresponds
to the emission lifetimes we determine for H𝛼− and GALEX FUV. We list
these percentage limits in Table 3.4[p. 65].

The percentage limits used in Leroy et al. (2012) are arbitrarily chosen and
so we make this conversion into percentage limits to determine if a single
percentage of the 1 Myr intensity or cumulative emission can be defined that
would correspond to SFR tracer lifetimes that we measure. From the results in
Table 3.4[p. 65], we can see that no single percentage limit can be defined.6 As
there is no consistent limit, the emission lifetime for each SFR tracer must be
determined individually.

In summary, we see that the emission lifetimes fall in the range of commonly
reported literature values. By comparing these measurements to the time-
evolution of the SFR tracer intensities, we find that no fixed percentage of the
initial or cumulative emission is capable of matching the obtained emission
lifetimes. For this reason, each SFR tracer lifetime must be determined
individually using the presented method. However, we do find empirical
functions (see Equations 3.9 and 3.10[p. 64]) relating the emission lifetimes
for UV and H𝛼+ filters to their filter properties. These relations predict the
emission lifetimes for UV and H𝛼+ filters we have not considered here.

3.3 The effects of metallicity
So far, we have only considered stellar populations of solar metallicity; however,
it is well-known that the metallicity affects stellar lifetimes (e.g. Leitherer
et al. 1999) and thus the emission lifetimes of SFR tracers. In order to
facilitate observational applications of the KL14 principle for the broadest
possible range of galaxies, we therefore quantify how the SFR tracer lifetimes
depend on metallicity. In this section, we repeat the experiments performed
in Section 3.2[p. 59] but this time we produce synthetic SFR tracer emission
maps using evolutionary tracks of metallicities 𝑍/Z⊙ = 0.05, 0.20, 0.40, 2.00

6This also holds when we perform the analysis for the other metallicities considered:
𝑍/Z⊙ = 0.05, 0.20, 0.40, 2.00 (see Section 3.3 for more details). There is also no
consistent percentage for a single tracer across the metallicity range.
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(Schaller et al. 1992; Charbonnel et al. 1993; Schaerer, Meynet et al. 1993;
Schaerer, Charbonnel et al. 1993).

In Table 3.5[p. 74], we list the emission lifetimes for a well sampled IMF for
all metallicities (also including the solar metallicity results from Table 3.3[p. 65])
and the age ranges we select for producing reference maps. We see that as the
metallicity increases, the emission lifetime decreases; we show this 𝑍 − 𝑡E, 0
relation in Figure 3.9[p. 71] for H𝛼−, Figure 3.10[p. 72] for H𝛼+ filters, and in
Figure 3.11[p. 73] for the UV filters. We also include empirical fits described
respectively by

Equation 3.11 𝑡H𝛼−E, 0 [Myr] =
(︂
4.32+0.09

−0.23

)︂ (︃
𝑍

Z⊙

)︃ (−0.086+0.010
−0.023)

,

𝑡H𝛼+E, 0 [Myr] =
(︂
8.98+0.40

−0.50

)︂
𝑊0

(0.265+0.028
−0.051)

+
(︂
0.23+0.15

−0.11

)︂
𝑍0𝑊0

−
(︂
0.66+0.12

−0.19

)︂
𝑍0 +

(︂
0.55+0.46

−0.29

)︂
𝑊0 ,

Equation 3.12

and

𝑡UV
E, 0 [Myr] = −

(︂
0.40+0.11

−0.16

)︂
𝑍1_1

+
(︂
4.5+1.3

−0.9

)︂
𝑍1 +

(︂
0.70+0.26

−0.18

)︂
_1

−
(︂
3.11+0.14

−0.13

)︂
𝑍0 +

(︂
10.98+0.46

−0.48

)︂
_0

+
(︂
7.6+1.2

−1.6

)︂
,

Equation 3.13

where

Equation 3.14
𝑍0 ≡ 𝑍

Z⊙
; _0 ≡ _w

225 nm
; 𝑊0 ≡ 𝑊

40 Å
;

𝑍1 ≡ 𝑍 (−0.313+0.051
−0.048)

0 ; _1 ≡ _(6.52+0.73
−0.71)

0 .

As before, we determine the free parameters using a weighted least-squares
minimisation and the uncertainties through Monte Carlo methods. With these
relations, it is straight forward to recover the emission lifetime given the
metallicity and filter properties without having to repeat the analysis performed
here.

Figure 3.9[p. 71] shows that the emission lifetime of H𝛼− changes by less
than 2 Myr over the metallicity range [0.05 𝑍⊙, 2 𝑍⊙]. The ranges of emission
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Figure 3.9
The relation between metallicity and emission lifetime for a well-sampled IMF for H𝛼− filters.
The grey curve gives the fits described by Equation 3.11[p. 70]. The shaded region indicates the
associated uncertainty.
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Figure 3.10

Emission lifetimes of H𝛼+ filters as a function of metallicity (left) and filter width (right). The
symbols show the results of applying the heisenberg code to synthetic H𝛼+ maps. The grey
curve shows the fit from Equation 3.12[p. 70] and the shaded region indicates the associated
uncertainty. The symbols and colours in the right-hand panels correspond to those used on
the left.
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Figure 3.11

Emission lifetimes of UV SFR tracers as a function of metallicity (left) and wavelength (right).
The symbols show the results of applying the heisenberg code to synthetic UV maps. The
grey curve shows the fit from Equation 3.13[p. 70] and the shaded region indicates the associated
uncertainty. The symbols and colours in the right-hand panels correspond to those used on
the left.
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3 Emission lifetimes of SFR tracers

Table 3.5

A summary of all the emission lifetimes and corresponding age ranges (for producing reference
maps in later sections of this chapter), for the different SFR tracers (see Table 3.1[p. 50] for
details). These results are for a well sampled IMF. The filter order is in increasing filter width
(𝑊) for H𝛼+ and increasing response-weighted mean wavelength (_w) for UV. Table 3.3[p. 65]

is included in these tables under the 1.00 Z⊙ heading.

a: Emission lifetimes, 𝑡E, 0.

0.05 Z⊙ 0.20 Z⊙ 0.40 Z⊙ 1.00 Z⊙ 2.00 Z⊙

H𝛼− 5.5+0.2
−0.1 5.1+0.1

−0.2 4.8+0.1
−0.3 4.3+0.1

−0.3 3.9+0.1
−0.3

H𝛼+ 10 Å 6.2+0.3
−0.1 6.3+0.3

−0.1 5.9+0.3
−0.1 5.6+0.2

−0.1 5.1+0.1
−0.1

H𝛼+ 20 Å 8.0+0.5
−0.3 8.0+0.4

−0.2 7.7+0.4
−0.2 7.3+0.4

−0.2 7.3+0.4
−0.2

H𝛼+ 40 Å 9.0+0.2
−0.2 10.2+0.2

−0.2 9.6+0.2
−0.2 9.3+0.2

−0.3 9.1+0.4
−0.5

H𝛼+ 80 Å 12.1+0.2
−0.2 11.7+0.2

−0.2 11.9+0.2
−0.2 10.7+0.2

−0.2 10.7+0.4
−0.5

H𝛼+ 160 Å 15.1+0.5
−0.2 15.0+0.4

−0.2 15.5+0.5
−0.2 16.4+0.6

−0.3 16.2+0.9
−0.3

GALEX FUV 26.7+0.4
−0.3 21.4+0.2

−0.2 19.7+0.2
−0.2 17.1+0.4

−0.2 14.5+0.3
−0.8

UVOT W2 29.3+0.3
−0.4 24.8+0.2

−0.2 22.2+0.2
−0.2 19.0+0.3

−0.2 16.5+0.3
−0.2

WFC3 UVIS1 F218W 29.5+0.3
−0.4 26.0+0.3

−0.3 23.3+0.2
−0.2 19.4+0.2

−0.2 16.9+0.3
−0.2

UVOT M2 29.5+0.3
−0.4 26.1+0.3

−0.3 23.3+0.2
−0.2 19.5+0.2

−0.2 16.8+0.3
−0.2

GALEX NUV 29.5+0.3
−0.3 26.3+0.4

−0.3 23.6+0.3
−0.2 19.6+0.2

−0.2 17.1+0.3
−0.2

WFC3 UVIS1 F225W 29.8+0.2
−0.3 26.5+0.4

−0.3 24.7+0.3
−0.2 19.6+0.2

−0.2 17.2+0.3
−0.2

WFPC2 F255W 30.1+0.3
−0.3 27.4+0.7

−0.3 26.3+0.5
−0.3 22.4+0.2

−0.2 18.4+0.4
−0.3

UVOT W1 30.4+0.3
−0.3 28.0+0.6

−0.4 26.5+0.7
−0.3 21.8+0.2

−0.2 18.6+0.4
−0.3

WFC3 UVIS1 F275W 30.7+0.3
−0.3 27.9+0.6

−0.4 28.3+0.6
−0.4 23.5+0.2

−0.2 19.1+0.2
−0.2

WFPC2 F300W 31.6+0.3
−0.4 28.0+0.2

−0.3 30.0+0.2
−0.3 27.7+0.6

−0.3 21.2+0.2
−0.2

WFPC2 F336W 31.2+0.3
−0.3 30.2+0.3

−0.2 30.3+0.3
−0.2 33.1+0.4

−0.3 25.3+0.3
−0.2

WFC3 UVIS1 F336W 31.4+0.3
−0.3 29.7+0.2

−0.2 30.6+0.4
−0.3 33.3+0.4

−0.4 25.3+0.2
−0.2
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3.3 The effects of metallicity

b: Age ranges, 𝑡E, 0 ≤ Age ≤ 2𝑡E, 0.

0.05 Z⊙ 0.20 Z⊙ 0.40 Z⊙ 1.00 Z⊙ 2.00 Z⊙

H𝛼− 5.5–11.0 5.1–10.1 4.8–9.5 4.3–8.6 3.9–7.9
H𝛼+ 10 Å 6.2–12.3 6.3–12.7 5.9–11.7 5.6–11.1 5.1–10.2
H𝛼+ 20 Å 8.0–16.1 8.0–16.1 7.7–15.5 7.3–14.6 7.3–14.6
H𝛼+ 40 Å 9.0–17.9 10.2–20.3 9.6–19.3 9.3–18.6 9.1–18.2
H𝛼+ 80 Å 12.1–24.1 11.7–23.4 11.9–23.7 10.7–21.4 10.7–21.3
H𝛼+ 160 Å 15.1–30.1 15.0–30.0 15.5–31.1 16.4–32.7 16.2–32.4
GALEX FUV 26.7–53.5 21.4–42.9 19.7–39.4 17.1–34.2 14.5–29.0
UVOT W2 29.3–58.7 24.8–49.5 22.2–44.3 19.0–38.0 16.5–33.0
WFC3 UVIS1 F218W 29.5–59.0 26.0–52.0 23.3–46.7 19.4–38.9 16.9–33.9
UVOT M2 29.5–58.9 26.1–52.2 23.3–46.7 19.5–39.0 16.8–33.5
GALEX NUV 29.5–59.1 26.3–52.5 23.6–47.3 19.6–39.1 17.1–34.1
WFC3 UVIS1 F225W 29.8–59.5 26.5–53.0 24.7–49.3 19.6–39.3 17.2–34.5
WFPC2 F255W 30.1–60.3 27.4–54.8 26.3–52.6 22.4–44.7 18.4–36.8
UVOT W1 30.4–60.8 28.0–56.0 26.5–53.1 21.8–43.5 18.6–37.2
WFC3 UVIS1 F275W 30.7–61.3 27.9–55.8 28.3–56.5 23.5–47.0 19.1–38.3
WFPC2 F300W 31.6–63.1 28.0–55.9 30.0–60.0 27.7–55.4 21.2–42.5
WFPC2 F336W 31.2–62.3 30.2–60.4 30.3–60.7 33.1–66.3 25.3–50.6
WFC3 UVIS1 F336W 31.4–62.8 29.7–59.5 30.6–61.2 33.3–66.6 25.3–50.6
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Figure 3.12

The surface described by Equation 3.12[p. 70], which relates the metallicity and filter width,𝑊 ,
of a H𝛼+ filter to the associated emission lifetime for a well sampled IMF. The data points
show the measurements coloured using the same colour bar. The surface fits best when it
matches the colour of the data points.
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3.3 The effects of metallicity

lifetimes (3.9–5.5 Myr for H𝛼−) fall within the range of literature values
(1.7–10 Myr, Kennicutt et al. 2012; Leroy et al. 2012).

In Section 3.2[p. 59], we describe a curve which relates the filter width,
𝑊 , to the emission lifetime of H𝛼+ filters, 𝑡H𝛼+E, 0 , at solar metallicity. Equa-
tion 3.12[p. 70], now extends this relation to include different metallicities to
produce a surface in (𝑡H𝛼+E, 0 , 𝑊, 𝑍) space. As mentioned in Section 3.2[p. 59],
the H𝛼+ emission lifetimes are at the higher end of the literature range (if
not exceeding), which is due to including more of the long-lived continuum
emission. In Figure 3.10[p. 72], we show the data for constant metallicity and
constant width along with the fit described by the (𝑡H𝛼+E, 0 , 𝑊, 𝑍) surface given
in Equation 3.12[p. 70] and shown in Figure 3.12[p. 76]. These figures enable a
direct assessment of how well the surface describes the emission lifetimes as a
function of the metallicity and wavelength.

As we did for 𝑡H𝛼+E, 0 , we can extend the relation given by Equation 3.9[p. 64],
which describes 𝑡UV

E, 0 as a function of response-weighted mean wavelength,
_w, to also include metallicity. In Figure 3.11[p. 73], we show the data for
constant metallicity and constant wavelength along with the fit described by the
(𝑡UV

E, 0, _w, 𝑍) surface given in Equation 3.13[p. 70] and shown in Figure 3.13[p. 78].
The strongest deviations from the fit arise at long (_w > 290 nm) wavelengths.
For UV filters at these wavelengths, we recommend interpolating the data
points (provided in Table 3.5[p. 74]) rather than adopting Equation 3.13[p. 70].
The range of emission lifetimes found for the UV filters (14.5–33.3 Myr) again
fall within the range quoted in literature (10–100 Myr, Kennicutt et al. 2012;
Leroy et al. 2012); however, they are towards the low end of this range. This
is a direct result of the fact that the UV emission from star-forming regions
fades with time, and the measured lifetimes are naturally biased to the ages of
regions from which most UV photons emerge.

In summary, we see that the emission lifetimes decrease with increasing
metallicity. Observational applications of heisenberg should therefore use
an SFR tracer lifetime appropriate for the metallicity of the observed region.
We define empirical relations between the SFR tracer emission lifetime and
the metallicity (for H𝛼−, Equation 3.11[p. 70]) and (for H𝛼+ and UV filters,
Equations 3.12 and 3.13[p. 70]) the filter properties. For H𝛼+ and UV SFR
tracers, these relations enable the definition of emission lifetimes even for
filters that are not explicitly considered here.
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Figure 3.13

The surface described by Equation 3.13[p. 70], which relates the metallicity and response-
weighted mean wavelength, _w, of a UV SFR tracer to the associated emission lifetimes for a
well sampled IMF. The data points show the measurements coloured using the same colour
bar. The surface fits best when it matches the colour of the data points.
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3.4 The effects of IMF sampling
In the previous sections, we determine the emission lifetimes of SFR tracers
using synthetic emission maps where slug2 fully samples the IMF. In observa-
tional applications of the KL14 principle, there is no guarantee (or requirement
from heisenberg) that the regions under consideration have a well sampled
IMF. It is therefore important to investigate the impacts of incomplete sampling
of the IMF (i.e. a stochastically sampled IMF) on the emission lifetimes of the
SFR tracers, in particular for low-mass star forming regions.

We describe in Chapter 2[p. 39] how the abundance of identified regions
in each input map reflects the duration associated to that map. Since star
formation is traced using emission from massive stars, an SFR tracer emission
map consisting of star-forming regions where the IMF is not well sampled
will contain fewer identifiable regions than one with a well sampled IMF. This
apparent decrease in the number of star-forming regions is due to the fact that
not every region will be able to form stars of sufficient mass to produce the
SFR tracer emission. This effect will be particularly important for the H𝛼±
filters, as H𝛼 emission requires high-mass stars (> 8 M⊙) and is dominated by
stars of even higher masses. We therefore expect that as the sampling of the
IMF becomes more incomplete, the effective emission lifetime of the various
tracers will decrease, most strongly affecting H𝛼.

In Section 3.4.1, we explain how we expect the emission lifetimes to
change as a result of incomplete IMF sampling based on purely analytical
considerations. In Section 3.4.2[p. 84], we show how these expectations can be
tested experimentally and present the results of these tests.

3.4.1 Theoretical expectation
We quantify the relationship between how well the IMF is sampled and
the emission lifetime of the SFR tracer. This is related to the number of
star-forming regions that heisenberg can identify in the emission map. We
therefore estimate the relative change of the effective SFR tracer lifetime
as the fraction of star-forming regions that do contain sufficiently massive
stars to emit in the tracer of interest. This approach will be tested below. In
practice, this means we need to estimate how many stars, Nmin, of at least some
minimum mass, 𝑀min, are expected to form within a star-forming region of
mass 𝑀r. We consider 𝑀min to characterise the stellar mass at which the SFR
emission becomes noticeable and not the mass contributing the most. The
mass of the star-forming region, 𝑀r, can then act as a proxy for how well the
IMF is sampled: smaller values of 𝑀r will result in a region with an IMF that
is less well sampled.
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3 Emission lifetimes of SFR tracers

We can calculate the probability of producing a minimum number of stars
Nmin of at least some minimum mass 𝑀min in a given star-forming region
through a Bernoulli (i.e. binomial) trial. If the region can produce a sufficient
number of stars of sufficient mass, then the region is identifiable in the SFR
tracer. Therefore, in our binomial trial, we define a ‘success’ as producing a star
of mass 𝑀 which satisfies the condition of 𝑀min ≤ 𝑀 ≤ 𝑀r. The probability
of success is given by 𝑝, N★ is the total number of stars within the star-forming
region, and N counts the number of ‘successful’ stars.

The binomial distribution gives the probability of 𝑘 successful stars as

Equation 3.15 𝑃(N = 𝑘) = N★!
𝑘! (N★ − 𝑘)! 𝑝

𝑘 (1 − 𝑝)N★−𝑘 .

The probability that we wish to calculate (at least Nmin stars of a mass of 𝑀min
or higher) is given by

Equation 3.16

𝑃(N ≥ Nmin) = 1 − 𝑃(N < Nmin)

= 1 −
Nmin−1∑︂
𝑘=0

𝑃(N = 𝑘) .

The IMF, d𝑛/d𝑚, describes the distribution of mass amongst the stars within a
star-forming region; this means we can use the IMF to determine the values
of 𝑝 and N★ and therefore to calculate 𝑃(N = 𝑘). In a star-forming region
with a well-sampled IMF, 𝑝 is the fraction of stars that satisfy the condition
𝑀min ≤ 𝑀 ≤ 𝑀r and N★ is the total number of stars within the region:

𝑝 = a
∫ 𝑀r

𝑀min

d𝑛
d𝑚

d𝑚 ; N★ = `
∫ 𝑀r

0

d𝑛
d𝑚

d𝑚 .Equation 3.17

The normalisation constants a and ` are evaluated through

1 = a
∫ 𝑀r

0

d𝑛
d𝑚

d𝑚 ; 𝑀r = `
∫ 𝑀r

0
𝑚

d𝑛
d𝑚

d𝑚 .Equation 3.18

In order to convert the probability value, 𝑃(N ≥ Nmin), into an estimate for the
emission lifetime, 𝑡E, we assume a Chabrier (2005) IMF and use the emission
lifetimes we find for a fully sampled IMF, 𝑡E, 0, (see Table 3.5[p. 74]) in the
following equation

Equation 3.19 𝑡E = 𝑡E,0 × 𝑃(N ≥ Nmin) .

In Figure 3.14[p. 81], we show how the form of the probability curve
𝑃(N ≥ Nmin) changes for different values of Nmin and 𝑀min. Increasing
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Figure 3.14

Curves showing how the probability of forming at least Nmin stars of mass 𝑀min or higher
changes with star-forming region mass, 𝑀r. The grey dashed lines indicate the approximate fit
to the full calculation. See Section 3.4.1[p. 79] for details and Table 3.6[p. 83] for fit parameter
values. Top: Constant Nmin. Bottom: Constant 𝑀min.
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the value of 𝑀min increases the star-forming region mass required to reach a
given probability of forming enough sufficiently massive stars (set by Nmin
and 𝑀min); the same effect is observed for Nmin but less pronounced. Higher
Nmin also affects the probability of forming enough sufficiently massive stars
by increasing the rate of change of probability with changing star-forming
region mass.

The curves in Figure 3.14[p. 81] have a complex analytical form, therefore
we provide a four parameter function that approximates these curves. These
approximations are also included in Figure 3.14[p. 81] as dotted grey lines. The
following set of equations describe the form of the approximation,

Equation 3.20 𝑀0 = Nmin × 𝑀min ,

𝑓 (𝑀r) = 1 + 𝑎1 exp
(︃
𝑏1

[︃
𝑀r
𝑀0

]︃ )︃

+ 𝑎2 exp

(︄
𝑏2

[︃
𝑀r
𝑀0

]︃2
)︄
,

Equation 3.21

Equation 3.22 𝑃(N ≥ Nmin) ≈
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 𝑓 (𝑀r) ≤ 0
𝑓 (𝑀r) 0 < 𝑓 (𝑀r) < 1
1 𝑓 (𝑀r) ≥ 1

,

where 𝑎𝑖, 𝑏𝑖 for 𝑖 = {1, 2} are four parameters that we determine through
least-squares minimisation.

We present the parameter values for all the approximate curves displayed
in Figure 3.14[p. 81] in Table 3.6[p. 83]. For intermediate values of 𝑀min, these
best-fitting parameters can be interpolated as a function of log10 (𝑀min). The
approximate expression gives an almost identical fit in the cases whereNmin = 1
(see Figure 3.14[p. 81]) but for higher values of Nmin the approximation does
not perform as well. Fortunately, as we will show below, we only need to
consider the case of Nmin = 1.

We now have a description of how the emission lifetime of SFR tracers
in a star-forming region with a stochastically sampled IMF, 𝑡E, is related to
the emission lifetime determined when the IMF is well sampled, 𝑡E, 0; that is,
through the probability distribution function, 𝑃(N ≥ Nmin). The IMF and two
free parameters, Nmin and 𝑀min, characterise the form of 𝑃(N ≥ Nmin). We
note that the analytical expression for the correction factor 𝑃(N ≥ Nmin) does
not carry an explicit metallicity dependence. We therefore apply the same
theoretical framework for all metallicities, allowing us to combine the effects
of both metallicity and IMF sampling on the SFR tracer emission lifetime.
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3.4 The effects of IMF sampling

Table 3.6Values for the free parameters, 𝑎𝑖 and 𝑏𝑖 , in the analytical models presented in Figure 3.14[p. 81]

and described by Equations 3.20 to 3.22[p. 82]

Nmin 𝑀min 𝑎1 𝑏1 𝑎2 𝑏2

1.000 1.000 -1.001 -0.251 -0.384 -0.632
1.000 3.162 -1.016 -0.137 -0.146 -0.338
1.000 10.000 -1.021 -0.085 -0.071 -0.235
1.000 31.623 -1.000 -0.048 -0.056 -0.233
1.000 100.000 -1.000 -0.008 -2.393 -5.405

1.000 7.000 -1.020 -0.098 -0.088 -0.257
3.162 7.000 -1.930 -0.118 -0.966 -1.555
10.000 7.000 -4.816 -0.235 -0.987 -1.638
31.623 7.000 -38.108 -0.426 -1.016 -0.891
100.000 7.000 -1000.000 -0.743 -1.016 -0.889
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3 Emission lifetimes of SFR tracers

3.4.2 Measuring the emission lifetime of SFR tracers for a
stochastically sampled IMF

We adapt the method we present in Section 3.1[p. 49] to investigate the effects
of a stochastically sampled IMF and thus test experimentally if we recover the
same behaviour as described in Section 3.4.1[p. 79]. We create the reference
maps in the same way as before: the reference maps are mass surface density
maps of the star particles within the age ranges specified in Table 3.5[p. 74].
The emission maps, however, undergo one additional step. As mentioned
previously, we can use the mass of the star-forming region, 𝑀r, as a proxy for
how well the IMF is sampled; in this case 𝑀r is the mass of the star particles.
We therefore scale these star particle masses by some mass scaling factor, 𝐹m,
before slug2 predicts the expected emission, this time using its stochastic
IMF sampling module. The values of 𝐹m range from 0.01–100, where a
lower mass scaling factor means the IMF will be less well sampled. We then
use heisenberg to determine the emission lifetime, as in Section 3.2[p. 59].
The emission lifetime we associate to each mass scaling factor is the average
of three lifetimes determined from three independently generated stochastic
realisations of the synthetic emission maps. This accounts for the spread
in lifetimes that results due to the stochastic nature in which the synthetic
emission maps are produced.

To relate the relative change of the SFR tracer lifetime due to IMF sampling
to observables, we define an average star-forming region mass, 𝑀 r, as

Equation 3.23 𝑀 r = ΣSFR × 𝜏 × π

(︃
_

2

)︃2
,

which uses the SFR surface density, ΣSFR, and quantities that heisenberg
measures: the total duration of the evolutionary timeline, 𝜏, and the typical
separation length of independent star-forming regions, _, (for details see
Kruijssen et al. 2018).

At a fixed total duration of the evolutionary timeline and region separation
length, the degree of IMF sampling is controlled by ΣSFR. We calculate the
value of ΣSFR as

Equation 3.24 ΣSFR =
∑︁
𝑖 𝑚𝑖

𝑡E, 0π𝑟2 × 𝐹m ,

where
∑︁
𝑖 𝑚𝑖 is the total mass of all the star particles that fall within the age

range appropriate for the filter, i.e. 0 ≤ Age ≤ 𝑡E, 0 (see Table 3.5[p. 74] for the
values of 𝑡E, 0), which is then scaled by the mass scaling factor 𝐹m, 𝑡E, 0 is the
width of that age range, and 𝑟 is the radius of the galaxy being studied (for our
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3.4 The effects of IMF sampling

simulated galaxy 𝑟 = 10 kpc, as determined from a visual inspection of the
synthetic emission maps).

In Equation 3.24[p. 84], we consider ΣSFR as the galaxy average SFR surface
density. If there are no strong large-scale morphological features, as is the
case here, this galaxy average SFR surface density is appropriate to use in the
calculation of 𝑀 r. Otherwise, the expression in Equation 3.24[p. 84] should
be updated to include a factor of Estar, glob. This factor is the ratio of the
mass surface density7 on a size scale of _ to the (reference) map average
value; therefore, it accounts for a non-uniform spatial distribution of star-
forming regions across the galaxy (for more details see Kruijssen et al. 2018,
Section 3.2.9).

By introducing a ‘mass scaling factor’, 𝐹m, we are able to test experimentally
how the lifetime of different SFR tracers change when the IMF becomes less
well sampled. We will use the experimental results to see if we observe the
behaviour predicted in Section 3.4.1[p. 79].

In Figure 3.15[p. 86], we present the solar-metallicity results for H𝛼− and
WFC3 UVIS F225W as examples of how the emission lifetimes change as a
function of the average mass of an independent star-forming region, 𝑀 r, where
lower values of 𝑀 r correspond to a more stochastically sampled IMF. Each
data point8 in the two left-hand panels of Figure 3.15[p. 86] corresponds to a
different mass scaling factor, 𝐹m, where the emission lifetime is calculated
from the average of the three emission lifetimes determined from the three
independently generated synthetic emission maps. The quantity shown on the
vertical axis, 𝑡E/𝑡E, 0, is the factor by which the measured emission lifetime
is reduced, compared to the emission lifetime for a well sampled IMF (see
Table 3.5[p. 74] for 𝑡E, 0 values). This is due to incomplete IMF sampling at
small region masses or low SFR surface densities. We describe the relation
between this conversion factor, 𝑡E/𝑡E, 0, and 𝑀 r through 𝑃(N ≥ Nmin) as in
Equation 3.19[p. 80] (see Section 3.4.1[p. 79]).

The red curves in Figure 3.15[p. 86] indicate the best-fitting form of the
model 𝑃(N ≥ Nmin). The analytical form that describes 𝑃(N ≥ Nmin) has
two free parameters Nmin and 𝑀min. We constrain the values for these two free
parameters using a brute-force approach: we calculate the value of 𝜒2

red for a
range of Nmin and 𝑀min and use the minimum 𝜒2

red to indicate the best-fitting
parameter values. We use the method described in Orear (1982) to determine
𝜒2 when uncertainties are present on both the abscissa and the ordinate. We

7The quantity Estar, glob represents a mass surface density ratio because the reference maps
are mass surface density maps. In typical observational applications, Estar, glob would be a
flux density ratio.

8For details of the error calculation on 𝑀 r, see Section 3.B[p. 97].
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Figure 3.15

Top row: H𝛼 emission excluding the continuum (H𝛼−). Bottom row: UV emission (WFC3
UVIS F225W). Left column: Change of the emission lifetime of SFR tracers, relative to
the emission lifetime we determine from a well sampled IMF, as a function of the average
independent star-forming region mass, 𝑀 r. The data points show the results of the experiments
in which we apply heisenberg to synthetic SFR tracer maps with a stochastically sampled
IMF at solar metallicity. For comparison, the red curve shows the best-fitting analytical model
from Section 3.4.1[p. 79]. At low region masses, the emission lifetimes decrease due to the
incomplete sampling of the IMF. Right column: Change of 𝜒2

red with minimum stellar mass,
𝑀min, and the minimum number of stars of that mass, Nmin. The minimum 𝜒2

red found is
indicated in the bottom right with the best-fitting model parameters (Nmin × 𝑀min).
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3.4 The effects of IMF sampling

Table 3.7
The functional form of the conversion factor, 𝑃(N ≥ Nmin), between the emission lifetime
measured for a well-sampled IMF and a stochastically sampled IMF has two parameters, Nmin

and 𝑀min. We use Nmin = 1 and show here the best fitting values of 𝑀min.

0.05 Z⊙ 0.20 Z⊙ 0.40 Z⊙ 1.00 Z⊙ 2.00 Z⊙

H𝛼− 11.50 11.95 13.00 11.55 10.45
H𝛼+ 10 Å 10.75 10.05 12.25 13.90 12.00
H𝛼+ 20 Å 12.10 12.05 12.40 10.35 9.95
H𝛼+ 40 Å 9.65 9.45 7.95 8.35 10.45
H𝛼+ 80 Å 9.20 8.70 8.85 6.25 8.00
H𝛼+ 160 Å 10.20 5.20 7.80 8.60 9.35
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3 Emission lifetimes of SFR tracers

consider Nmin values ranging from 1 to 4 in integer steps and 𝑀min, from 0
to 120 M⊙ in steps of 0.05 M⊙. In the right-hand panels of Figure 3.15[p. 86],
we show the dependence of 𝜒2

red on Nmin and 𝑀min for the two example filters.
Table 3.7[p. 87] lists the best-fitting values of 𝑀min (Nmin = 1 in all cases) for
the full range of metallicities (𝑍/Z⊙ = 0.05, 0.20, 0.40, 1.00, 2.00) for the
H𝛼 filters.

The data points used in the fitting process (and included in Figure 3.15[p. 86])
are those that survive a selection cut: we rejected data points for which the
calculated emission lifetime exceeds the lifetime for a well sampled IMF by
more than 1𝜎 (i.e. 𝑡E/𝑡E, 0 > 1). We choose to remove the data that do not satisfy
this criterion because they indicate contamination by the continuum emission
from (low-mass) stars. For low mass scaling factors (typically 𝐹m ≈ 0.01),
the emission from the continuum dominates over the SFR tracer. This results
in emission lifetimes that describe the long-lived continuum emission and
therefore can be orders of magnitude higher than 𝑡𝐸, 0.

For the UV filters, we find that data points associated with low mass scaling
factors (𝐹m ≈ 0.01) are excluded by our data selection criterion. This results in
the turn off from 𝑡E/𝑡E, 0 = 1 being very poorly sampled (see Figure 3.15[p. 86]

for an example). This means that we cannot reliably distinguish between
different Nmin and 𝑀min; therefore, we conclude that UV emission is not
significantly affected by IMF sampling and exclude the UV 𝑀min values from
Table 3.7[p. 87].

Table 3.7[p. 87] shows that there is no clear relation between 𝑀min and metal-
licity or filter width, but generally speaking, smaller filter widths have higher
𝑀min. Higher values of 𝑀min imply higher star-forming region masses below
which IMF sampling cannot be neglected (i.e. where 𝑃(N ≥ Nmin) < 1). For
H𝛼− (+), 𝑀min ranges from 10.45–13.00 (5.20–13.90) M⊙. From these𝑀min
ranges, we obtain region masses below which incomplete IMF sampling affects
the SFR tracer lifetimes, that is, these are the lowest region masses according
to Equation 3.23[p. 84] for which IMF sampling can be neglected. For H𝛼− (+),
this range is 𝑀 r ≳ 600–800 (200–900) M⊙. For a region separation length
of _ = 200 pc and a total timeline duration of 𝜏 = 30 Myr, these character-
istic region mass limits correspond to ΣSFR ≳ (6–9) × 10−4 M⊙ yr−1 kpc−2

for H𝛼− and ΣSFR ≳ (2–10) × 10−4 M⊙ yr−1 kpc−2 for H𝛼+.
Figure 3.15[p. 86] demonstrates that it is important to consider the effects of

IMF sampling at low SFR surface densities, when constraining the emission
lifetime for the H𝛼± filters. This is because at low SFR surface densities, the
massive stars required to produce H𝛼 emission are not always present. If we
ignore this fact, the H𝛼± emission lifetime will be overestimated; as a result, the
evolutionary timeline would be incorrectly calibrated and the lifetimes obtained
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with heisenberg would also be overestimated. The agreement between the
results of these experiments and the theoretical model also demonstrate that
the IMF sampling theory presented in Section 3.4.1[p. 79] accurately describes
how the emission lifetime of H𝛼± changes due to incomplete IMF sampling.
This means that observational applications of the KL14 principle can use the
expressions provided in Equations 3.19 to 3.23[pp. 80, 82 & 84] to derive an SFR
emission lifetime corrected for IMF sampling. For the UV tracers, however,
the emission lifetimes are mostly insensitive to the effects of incomplete IMF
sampling and so these effects can be largely ignored. The constancy of the UV
emission lifetime over the range of 𝑀 r is a result of stars being able to produce
UV emission at low masses. This means that the emission will almost always
be present in star-forming regions.

In summary, we have shown that the effects of IMF sampling can have a
considerable impact on the measured lifetimes of the H𝛼± filters. The change
of emission lifetime with star-forming region mass 𝑀 r is well-described by
the analytical description of IMF sampling from Section 3.4.1[p. 79]. This
analytical description provides the correction factors the SFR tracer lifetimes
require to enable applications of heisenberg in regions of low SFR surface
densities. By contrast, the emission lifetime of UV tracers is found to be largely
insensitive to IMF sampling, implying that no such correction factor is needed.
We reiterate that all SFR tracers do still carry an important dependence on the
metallicity that should always be accounted for.

3.5 Comparison to observations9

Thus far, we have made predictions of the emission lifetime for SFR tracer using
galaxy simulations. This was necessary because the KL14 principle method
requires a reference map as input, for which the duration of the emission is
known exactly. Constructing a reference map for a simulation is straightforward:
we produce a map populated by the star particles within a known age range and
so the reference timescale is known. For observed galaxies, this is not possible.
However, it is possible to test whether the observed ratio between the emission
lifetimes of two different SFR tracers is consistent with our predictions. In
Kruijssen, Schruba, Chevance et al. (2019), we used our predicted H𝛼 emission
lifetime at the half-solar metallicity of NGC300 (𝑡H𝛼E, 0 = 4.59 ± 0.14 Myr) to
measure a CO cloud lifetime of 10.8+2.1

−1.7 Myr. We can now use this CO cloud
lifetime as a reference timescale in an experiment combining the CO map (now
acting as the reference map) with a FUV emission map. This allows us to test

9This section was contributed by collaborators Mélanie Chevance and Diederik Kruijssen
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if the resulting FUV emission lifetime is consistent with our prediction for the
FUV emission lifetime.

We conduct the first test for the accuracy of our inferred lifetime as follows.
We combine a GALEX FUV map of NGC300 with the CO data presented
in Kruijssen, Schruba, Chevance et al. (2019). For the CO map, we use the
identical experiment setup as in Kruijssen, Schruba, Chevance et al. (2019): we
adopting the same set of identified emission peaks and remove diffuse emission
in the same way. For the FUV map, the emission peaks are identified over a
flux range of 1.3 dex below the brightest peak in the map, using flux contours
at intervals of 0.35 dex to separate adjacent peaks. In addition, we remove
the DC offset from the FUV map by filtering it with a high-pass Gaussian
filter in Fourier space on a size scale > 1000_. Other than these details, we
apply the default analysis described in Kruijssen et al. (2018) and Kruijssen,
Schruba, Chevance et al. (2019). The resulting tuning fork diagram (also see
Figure 2.2[p. 42]) is shown in Figure 3.16[p. 91]. We obtain a good fit, with a FUV
emission lifetime of 𝑡FUV

obs = 23.1+5.9
−3.5 Myr. Given the half-solar metallicity

of NGC300, this should be compared to the emission lifetime predicted by
Equation 3.13[p. 70] for 𝑍 = 0.5 Z⊙, which is 𝑡UV

E, 0 = 19.2 ± 2.0 Myr.
Fundamentally, this experiment expresses the lifetime for GALEX FUV

emission in units of the reference timescale of continuum-subtracted H𝛼
emission (using CO as an intermediate step). This is the case because in both
the CO-H𝛼 experiment (Kruijssen, Schruba, Chevance et al. 2019) and the
CO-FUV experiment carried out here, we have only measured the ratio of
the emission lifetimes. We should thus compare the observed and predicted
𝑡FUV/𝑡H𝛼 ratio. We measure 𝑡FUV

obs /𝑡H𝛼obs = 5.0+1.3
−0.8, whereas the calibration of

this chapter predicts 𝑡FUV
E, 0 /𝑡H𝛼E, 0 = 4.2 ± 0.5. These values agree to within the

uncertainties (at 0.9𝜎, or ∼20 per cent), which acts as a first demonstration that
the emission lifetimes derived in this work are consistent with observations.

Our method yields a measurement of the FUV-to-H𝛼 emission lifetime ratio.
This means that an arbitrary scaling of both the H𝛼 and FUV emission lifetimes,
for either the predicted or observed ratios, would also result in agreement.
However, the absolute lifetimes individually must also still be physical. A
comparison of the above numbers to other measurements in the literature
shows that they fall within the range of expected values. For instance, Leroy
et al. (2012) find that a young stellar population has emitted 50 per cent of its
H𝛼 emission after 1.7 Myr, and 95 per cent after 4.7 Myr. Our characteristic
H𝛼 emission lifetime at solar metallicity of 4.3 Myr falls within this range.
The same applies for our GALEX FUV emission lifetime of 17.1 Myr, which
falls within the time interval at which 50–95 per cent of the cumulative flux
has been emitted (4.8–65 Myr, see Leroy et al. 2012). Future work combining
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Figure 3.16

Tuning fork diagram obtained for the combination of CO (1 → 0) (Phase 2) and GALEX
FUV (Phase 1) emission of NGC300 (see Kruijssen, Schruba, Chevance et al. 2019). The
data points show the relation between the Phase-1-to-Phase-2 flux ratio (𝐹12) calculated at the
locations of the emission peaks, relative to the galactic-scale Phase-1-to-Phase-2 flux ratio
(𝐹12, gal) as a function of aperture size, 𝑙ap. The error bars indicate the 1𝜎 uncertainty on each
individual data point, whereas the shaded areas indicate the effective 1𝜎 uncertainty range
that accounts for the covariance between the data points. The best-fitting model is indicated
by the two dotted curves.
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H𝛼 and UV observations of nearby galaxies will enable a more comprehensive
test of the presented lifetimes.

3.6 Conclusions
In this chapter, we have used the heisenberg code to constrain the emission
lifetimes of SFR tracers, i.e. the durations over which H𝛼 and UV emission
emerges from coeval stellar populations. We expect these lifetimes to be
critical in a variety of future studies. Firstly, observational applications of
heisenberg will enable the empirical characterisation of the cloud life cycle
across a wide range of galactic environments, by measuring e.g. the molecular
cloud lifetime and the timescale for cloud destruction by feedback. However,
in order to lead to physically meaningful constraints, these applications require
the use of a known ‘reference timescale’ for turning the measured relative
timescales into absolute ones. This reference timescale is provided by the
SFR tracer lifetimes obtained in this chapter. Secondly, the emission lifetimes
obtained here and their dependence on metallicity and filter properties provide
a helpful point of reference for studies of photoionisation feedback and UV
heating.

To obtain the SFR tracer lifetimes, we generate synthetic SFR tracer
emission maps of a simulated near-𝐿★, isolated flocculent spiral galaxy using
the stochastic SPS code slug2. We then apply heisenberg to combinations
of these synthetic emission maps and an independent set of ‘reference maps’,
which is populated with the star particles from the simulation in specific, known
age ranges. With this approach, we self-consistently measure the emission
lifetimes for H𝛼 emission (with and without continuum subtraction), as well
as 12 different UV filters.

For stellar populations at solar metallicity and with a fully sampled IMF
we find the emission lifetimes for H𝛼− (+) to be 4.3+0.1

−0.3 Myr (5.6–16.4 Myr).
For the UV filters, the emission lifetime falls in the range 17.1–33.3 Myr, and
nearly monotonically increases with wavelength. When considering stellar pop-
ulations with different metallicities (𝑍/Z⊙ = {0.05, 0.20, 0.40, 1.00, 2.00})
the range of emission lifetimes increases, to 3.9–5.5 Myr (5.1–16.4 Myr)
for H𝛼− (+) and 14.5–33.3 Myr for the UV filters. We define empirical
power-law relations that provide the emission lifetime as a function of metal-
licity (Equations 3.11 to 3.13[p. 70]). These empirical relations include the
response-weighted mean wavelength, _w, for UV filters and the filter width,𝑊 ,
for the H𝛼+ filters. These dependences enable the use of a single expression
to determine the emission lifetime for all UV and H𝛼± SFR filters for a given
combination of filter properties and the metallicity of the environment.
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We also investigate the effects of a stochastically sampled IMF on the
emission lifetimes. Incomplete IMF sampling is found to affect the obtained
emission lifetimes in low-ΣSFR galaxies. We first predict, then demonstrate,
that 𝑡E/𝑡E, 0, the factor by which the emission lifetime changes as a result of
IMF sampling effects, is given by the probability of forming at least Nmin stars
of mass 𝑀min or higher in a given a star-forming region of mass 𝑀 r. Given
an SFR surface density (from which the characteristic region mass can be
derived), this relation quantifies the relative change of the SFR tracer lifetime
due to IMF sampling as a function of the galactic environment.

For UV tracers, the impact of IMF sampling on the emission lifetime is
minimal (< 30 per cent) and can therefore be ignored (this applies to all
metallicities). However, incomplete IMF sampling has a significant effect on
the lifetime of H𝛼 emission. Depending on the metallicity and on whether
the continuum emission has been subtracted, the emission lifetime for a well
sampled IMF can be used for𝑀 r ≳ 200–900 M⊙, which for a region separation
length of _ = 200 pc and a total timeline duration of 𝜏 = 30 Myr corresponds
to ΣSFR ≳ (2–10) × 10−4 M⊙ yr−1 kpc−2. However, for lower region masses
(SFR surface densities), the H𝛼 emission lifetime must be corrected to account
for the effects of IMF sampling.

We have arrived at the above emission lifetimes by carrying out a set of
numerical experiments using galaxy simulations and so one could argue that
the results are model-dependent. We reiterate that the results are not expected
to be sensitive to the details of the baryonic physics in the simulations (see
discussion in Section 3.1[p. 49]). In principle, these measurements could have
been performed using maps of randomly-generated distributions of regions:
fundamentally, we have only characterised how quickly young stellar emission
fades in the adopted SPS model. However, the main advantage of using a galaxy
simulation is that it generates a distribution with a physically reasonable imprint
of galactic morphology and the positional correlation of star formation events by
self-gravity and stellar feedback. The critical goal of the work in this chapter is
to measure the emission lifetimes self-consistently within the framework of our
method and thus enabling its future observational applications. The accuracy
of the results is demonstrated by a first comparison to observations of H𝛼
and GALEX FUV emission in the nearby galaxy NGC300 (Section 3.5[p. 89]),
which shows that the emission lifetime predicted by this work are consistent
with the observed lifetimes.

In summary, we have measured the emission lifetimes of SFR tracers as a
function of metallicity and (for UV and H𝛼+) filter properties, as well as their
sensitivity to IMF sampling, which effectively expresses their dependence on
the SFR surface density. This spans the range of key environmental factors that
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affect the lifetimes of H𝛼 and UV emission, and provides important constraints
on the duration of photoionisation feedback and UV heating. The emission
lifetimes derived in this work enable observational applications of the KL14
principle, in which they are used to turn the relative durations of evolutionary
phases into an absolute timeline. The first applications of this method have
already used the results we find here to infer the durations associated to cloud
evolution, star formation, and feedback (Chevance and author 2019; Chevance,
Kruijssen et al. 2019; Hygate et al. 2019; Kruijssen, Schruba, Chevance
et al. 2019; Ward et al. 2019, as well as Section 3.5[p. 89] of this paper). In
view of the variety of upcoming applications of this method, the emission
lifetimes presented in this work thus represent an essential ingredient towards
empirically constraining the physics driving molecular cloud life cycle.

3.A H𝜶 Absorption and Emission Features
We produce synthetic emission maps by passing the age and mass information
of all the star particles from our simulation to slug2. The slug2 code then
calculates the predicted emission spectrum for each particle, to which we
apply UV and H𝛼+ filters (H𝛼− comes directly from the Hydrogen-ionizing
photon emission). However, the emission spectrum that slug2 produces does
not include the underlying H𝛼 absorption from the stellar continuum. In this
section, we use starburst99 to investigate when the H𝛼 absorption feature
can no longer be neglected.

We ran starburst99 for an instantaneous burst of star formation for the five
standard Geneva evolutionary tracks using a Kroupa (2001) IMF and output
the data in 0.1 Myr time steps for 20 Myr. We otherwise used the default
settings.

The equivalent width of the H𝛼 emission is taken directly from the star-
burst99 output files. To determine the equivalent width of the absorption
feature, we model the continuum (straight line) and the absorption feature
(Voigt profile, Olver et al. 2010) of the high resolution spectral data in the
wavelength range 6482 Å ≤ _ ≤ 6642 Å.

In Figure 3.17[p. 96], we show the change in the equivalent width of the
absorption and emission feature over time; the change in the difference between
the two equivalent widths is also included. We see that the emission feature is
dominant up to at least 10 Myr and longer for the lower metallicities; this is
at least 5 Myr longer than the H𝛼− lifetimes we measure (see Table 3.5[p. 74])
which are also marked in Figure 3.17[p. 96].

We can see from Figure 3.17[p. 96] that the H𝛼 lifetimes we are considering
fall comfortably within the emission-dominant regime and conclude that the
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absorption feature can safely be neglected for our analysis.
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Figure 3.17

The results of starburst99 simulations for an instantaneous burst of star formation at 0 Myr.
We show the change in equivalent width of the H𝛼 absorption and emission feature. We also
include the difference between the two equivalent widths (H𝛼 Observed). The H𝛼− emission
lifetime is marked for comparison (see Table 3.5[p. 74]).
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3.B Error Propagation

3.B Error Propagation
In Section 3.4.2[p. 84], we calculate the characteristic mass on an independent
star-forming region as

Equation 3.25𝑀 r = ΣSFR × (𝑡E + 𝑡R − 𝑡O) × π

(︃
_

2

)︃2
.

This equation uses the SFR surface density, ΣSFR, and the duration of the
reference map, 𝑡R, along with quantities that the heisenberg code measures: the
typical separation length of independent star-forming regions, _; the duration
of the emission map, 𝑡E; and the duration of the overlap between the emission
and reference phases, 𝑡O. We note that Equation 3.25 and Equation 3.23[p. 84]

are equivalent through the definition

Equation 3.26𝜏 ≡ 𝑡E + 𝑡R − 𝑡O .
Here we describe how we propagate the uncertainties on these quantities into
an uncertainty on the characteristic region mass 𝑀 r.

To calculate the uncertainty on 𝑀 r we start with the general expression:
the uncertainty on a quantity 𝑓 , 𝜎 𝑓 , which is a function of 𝑁 variables i.e.
𝑓 (𝑥1, . . . , 𝑥𝑁 ) is given by (Hughes et al. 2010)

Equation 3.27𝜎2
𝑓 =

𝑁∑︂
𝑖=1

𝑁∑︂
𝑗=1

𝜕 𝑓

𝜕𝑥𝑖

𝜕 𝑓

𝜕𝑥 𝑗
𝜌𝑖 𝑗𝜎𝑖𝜎𝑗 ,

where 𝜎𝑖 represents the uncertainty on variable 𝑥𝑖 and 𝜌𝑖 𝑗 represents correlation
coefficients between variable 𝑥𝑖 and 𝑥 𝑗 (where 𝜌𝑖𝑖 = 1 and 𝜌𝑖 𝑗 = 𝜌 𝑗𝑖). In order
to simplify our expressions and to use the same notation as in Equation 3.27,
we define the following

^ ≡ ΣSFR
π

4
; 𝑥1 ≡ _ ; 𝑥2 ≡ 𝑡E ; 𝑥3 ≡ 𝑡O Equation 3.28

and Equation 3.25 becomes

Equation 3.29
𝑀 r = ^𝜏𝑥1

2

= ^ (𝑥2 + 𝑡R − 𝑥3) 𝑥1
2 .

We note that ΣSFR and 𝑡R are considered to be without error and do not need to
be included as variables. The derivatives we need in order to calculate 𝜎𝑀 r

are

𝜕

𝜕𝑥1
𝑀 r = 2^𝜏𝑥1 ;

𝜕

𝜕𝑥2
𝑀 r = ^𝑥1

2 ;
𝜕

𝜕𝑥3
𝑀 r = −^𝑥1

2 . Equation 3.30

97



3 Emission lifetimes of SFR tracers

Combining Equation 3.30[p. 97] with Equation 3.27[p. 97] we find the expression
for the uncertainty on 𝑀 r, 𝜎𝑀 r

:

[︃
𝜎𝑀 r

𝑀 r

]︃2
=

4𝜎1
2

𝑥12

+
(︁
𝜎2

2 + 𝜎3
2 − 2𝜌23𝜎2𝜎3

)︁
𝜏2

+ 4 (𝜌12𝜎1𝜎2 − 𝜌13𝜎1𝜎3)
𝜏𝑥1

.

Equation 3.31

With this expression, we can take into account the associated uncertainty on the
value of 𝑀 r as part of our error analysis and 𝜒2 calculations when investigating
the effects of incomplete IMF sampling on the emission lifetimes of SFR
tracers (see Section 3.4[p. 79]).
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4
The influence of dust extinction on
the lifetime of star formation rate
tracers

This chapter is based on

D. T. Haydon et al. (Aug. 2019). ‘An uncertainty principle
for star formation – V. The influence of dust extinction on

star formation rate tracer lifetimes’. MNRAS Submitted

In the previous chapter, we constrained the emission lifetimes over which
different SFR tracers emit their light as a function of the SFR surface density
and metallicity. We obtained these emission lifetimes for several tracers of
recent star formation: 12 UV filters (from GALEX, Swift, and HST) covering
a wavelength range 150–350 nm, as well as H𝛼 with and without continuum
subtraction. However, in Chapter 3[p. 47] we omitted the effects of extinction on
SFR tracer lifetimes. This was partially for the sake of convenience, but also
because the effects of extinction can, in most cases, be significantly reduced if
not completely corrected for (e.g. James et al. 2005). However, correcting for
extinction is not always possible or practical. In particular, for many galaxies
we have access to only a single H𝛼 image or a single UV band, and thus
common extinction correction methods such as the Balmer decrement (Berman
1936) or the UV spectral slope (Calzetti et al. 1994) may not be available.
For this reason, it is helpful to have an alternative approach available, which
we investigate in this chapter. Since understanding the affects of extinction
would allow us to make estimates for gas evolution timescales from gas maps
combined with maps of star formation tracers, even when we are not able to
make an explicit extinction correction to the tracer maps.

The central idea of our work is that extinction does not fundamentally
change the underlying emission lifetime, but it does act to reduce the amount of
observed emission; this results in a different (effective) emission lifetime. We
can calibrate the emission lifetimes associated with extincted tracers using much
the same approach that we used in Chapter 3[p. 47] to calibrate the unextincted
ones. That is, using the KL14 principle with synthetic emission maps. We
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4 The influence of dust extinction on SFR tracer lifetimes

generate the synthetic emission maps from a high-resolution hydrodynamical
simulation of an isolated, Milky-Way-like disc galaxy (a different simulation
to that described in Section 3.1.1[p. 51]). The stellar feedback included in this
simulation is inefficient compared to observations, implying that it represents
a limiting case in which the duration of embedded star formation (and the
corresponding effect of extinction) is overestimated.

The structure of this chapter is as follows. In Section 4.1, we summarise
the key input quantities for the heisenberg code, describe the details of the
simulations, and the procedure followed to generate synthetic emission maps.
In Section 4.2[p. 110], we investigate and discuss how reference timescales are
affected as a result of extinction and in Section 4.3[p. 117], how this can be
altered further by changing sensitivity limits. We summarise our findings in
Section 4.4[p. 121].

4.1 Measuring the effects of extinction
In Chapter 3[p. 47], we presented measurements of the emission lifetimes for 18
SFR tracer filters. These measurements were, however, based on extinction-free
emission maps, giving us the extinction-free emission lifetime. In this chapter
we want to understand how extinction can alter the measured emission lifetime.
Here we outline the method we use to constrain 𝑅G#: the factor by which the
duration associated to an SFR tracer emission map without extinction (𝑡#)
changes when including extinction (𝑡 ). We state this more explicitly:

Equation 4.1 𝑅G# =
𝑡 
𝑡#
.

We constrain 𝑅G# for the same 18 SFR filters we previously considered and
summarised in Table 3.1[p. 50].

In Section 4.1.1, we give an overview of key input quantities for the
heisenberg code, which we use to measure 𝑅G# directly. Our measurements
of 𝑅G# are based on the simulated galaxy we describe in Section 4.1.2[p. 101].
From this simulated galaxy, we produce two groups of synthetic emission
maps: emission maps with extinction and emission maps without (detailed in
Section 4.1.3[p. 104]). The pair of synthetic SFR tracer maps (i.e. extincted and
unextincted) are used as input for heisenberg.

4.1.1 Analysis framework
The analysis we perform here makes use of the heisenberg code, which we
describe in detail in Chapter 2[p. 39]. In this section, we highlight the key
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4.1 Measuring the effects of extinction

aspects of heisenberg that are relevant to this chapter, along with the input
values that differ from the default.

We noted in Chapter 2[p. 39] that heisenberg constrains three quantities,
one of which is 𝑡gas/𝑡star. Where the value of 𝑡star would be used as reference
timescale to recover 𝑡gas in absolute terms. However, using the notational
transformations described at the end of Chapter 2[p. 39] (‘gas’ → ‘ ’ and
‘star’ → ‘#’), we can see that this quantity is in fact 𝑅G# (cf. Equation 4.1[p. 100]).
This means we do not need to create reference maps or concern ourselves with
reference timescales as was necessary in Chapter 3[p. 47]: we want to measure
relative durations.

When using heisenberg we use the default input parameters that are listed
in Kruijssen et al. (2018, Tables 1 and 2); with the following exceptions. The
set-up of the galaxy simulation necessitates the use of cuts in galactocentric
radius: we use 𝑅min = 3 kpc and 𝑅max = 11 kpc (and set the cut_radius
flag to 1). We also change the range of aperture sizes: we use a minimum
aperture size of 𝑙ap, min = 25 pc and have 𝑁ap = 17 apertures. This results
in 17 logarithmically spaced aperture diameters from 25–6400 pc. We
set parameters which allows use to measure 𝑅G# directly (tstariso = 1,
tstar_incl = 1). We also use Δ log10 Fstar = Δ log10 Fgas ≡ Δ = 2.1 The
Δ log10 F𝑖 are introduced in Chapter 2[p. 39] and describe (approximately) the
dynamic range of the emission in map 𝑖 starting from the brightest emission
peak and going down to the noise floor. While Δ = 2 dex is often appropriate
for observational applications (e.g. Chevance, Kruijssen et al. 2019; Kruijssen,
Schruba, Chevance et al. 2019), as well as for the simulation here, we would
like to emphasis that this is not always the case.

4.1.2 Galaxy simulation

The work presented in this chapter uses the high-resolution hydrodynamical
simulation of an isolated Milky-Way-like disc galaxy described in Fujimoto
et al. (2018). We use the adaptive mesh refinement code enzo (Bryan et al.
2014) to simulate a 128 kpc box with cell sizes ranging from 7.8125 pc
to 31.25 pc over seven levels of refinement during the initial stages of the
simulation. The initial conditions of the simulation match those of Tasker et al.
(2009). We have a gas disc in a static background potential which accounts for
both dark matter and the stellar disc. The axisymmetric background potential
has a logarithmic form with a constant circular velocity of 200 km s−1 at
large galactocentric radii (𝑟 > 2 kpc). The gas disc has an initial mass of

1This is the default value, as given in Kruijssen et al. (2018, Table 2); however, Δ plays a
role in Sections 4.2 and 4.3[pp. 110 & 117] and so we explicitly state it here.
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4 The influence of dust extinction on SFR tracer lifetimes

8.6 × 109 M⊙ and a density profile divided into three regions defined by a
constant value of the Toomre 𝑄 parameter (Toomre 1964): 𝑄 = 1 between
galactic radii of 2–13 kpc, 𝑄 = 20 for 0–2 kpc and 13–14 kpc, and beyond
14 kpc is a static, very low density medium. The stellar bulge is not modelled
and its effects are included implicitly through the potential. The simulation
initially evolves over 730 Myr, wherein the allowed maximum resolution is
gradually increased up to the highest resolution of 7.5 pc, and the galaxy settles
into an equilibrium state (for details of our refinement strategy, see Fujimoto
et al. 2018). We then evolve the simulation further; for the analysis here, we
take the 850 Myr snapshot.

Star particles, always with an initial mass of 300 M⊙, form probabilistically
according to a gas density threshold; however, this is only permitted between
galactocentric radii of 2–14 kpc. Each star particle represents a simple stellar
population, which we model using the slug2 stochastic SPS code. The stellar
population associated to the star particle is created by sampling a Chabrier
(2005) IMF continuously up to a mass of 9 M⊙ and then stochastically for more
massive stars using the POISSON sampling method described in Krumholz et al.
(2015, Appendix A). The stellar population evolves during the simulation in
accordance with the Padova stellar evolution tracks at solar metallicity (Girardi
et al. 2000). Stellar atmospheres are calculated with starburst99 spectral
synthesis models. The stellar populations associated to the star particles are
important for the implemented stellar feedback models, as they determine the
ionising luminosity (for photoionisation calculations) as well as the timing of
supernova explosions. In order to conserve memory, these stellar populations
only remain with the star particle up to the stellar age of 40 Myr.

In Fujimoto et al. (2019), we show that the simulation is consistent with most
observational constraints on scales ≳ 100 pc (e.g. the simulation reproduces
the global- and kpc-scale Kennicutt-Schmidt relations for both molecular
and total gas; and matches the observed decomposition of the interstellar
medium into warm neutral, cold neutral, and molecular phases). However,
on smaller (≲ 100 pc) scales, it can be seen that the implemented feedback
mechanisms are insufficient to disperse the surrounding gas. When comparing
the synthetic SFR tracer (H𝛼) and dense gas (CO 𝐽 = 1 → 0) emission maps
of the simulated galaxy, it is clear that most (if not all) H𝛼 emitting regions
are co-spatial with CO emission. This is demonstrated in Figure 4.1[p. 103].
Observationally, this would result in a galaxy with a high amount of extinction
and a long (overlap) phase where H𝛼 and CO are co-spatial. This simulation
therefore gives us the opportunity to constrain the emission lifetime of SFR
tracers in a system with a high amount of extinction; this complements the
work from Chapter 3[p. 47], which excluded the effects of extinction. This
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4.1 Measuring the effects of extinction

Figure 4.1

A zoom-in of the simulated galaxy described in Section 4.1.2[p. 101], showing how SFR tracer
emission is always associated with CO emission. The colour map shows the SFR surface
density, ΣSFR. The contours show the CO (1 → 0) line emission converted into a molecular
gas surface density, Σmol. The maps used to produce this image where convolved using a
Gaussian kernel with a FWHM of 50 pc (shown in the top right).

Image Credit: Fujimoto et al. (2019, Figure 10), reproduced with permission © OUP
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4 The influence of dust extinction on SFR tracer lifetimes

also means that the results we find here should be considered as bounding
limits. We expect that real observations would not be subjected to this level of
extinction as typically the stellar feedback disrupts the parent cloud in a few
Myr (as suggested by the decorrelation of H𝛼 and CO on the cloud scale, see
Chevance, Kruijssen et al. 2019; Kruijssen, Schruba, Chevance et al. 2019).
Therefore, real observations would have 𝑅G# values that fall somewhere within
the range spanned by the results presented here and 𝑅G# = 1.

4.1.3 Generation of synthetic emission maps

We describe here how we create the synthetic SFR tracer emission maps of the
simulated galaxy. In principle, the synthetic emission maps could be created
using the SPS associated to each of the star particles within the simulation. For
two reasons, we instead choose to run the slug2 model as a post-production
process. Firstly, for consistency with Chapter 3[p. 47], we wish to use the
Geneva solar-metallicity evolutionary tracks (Schaller et al. 1992) instead
of the Padova tracks used within the simulation. Secondly, as described in
Section 4.1.2[p. 101], only star particles up to 40 Myr have an associated stellar
population; this would impose an age cut in the emission maps at 40 Myr.
The artificial age cut in the emission map would have little impact on the
H𝛼± filters since their emission lifetimes are short; however, for the WFC3
UVIS1 F336W filter, with 𝑡E,0 = 33.3 Myr (Table 3.3[p. 65]), this age cut could
be problematic.

For the post-production slug2 simulations, we use Geneva solar-metallicity
evolutionary tracks (Schaller et al. 1992) and starburst99 spectral synthesis.
For the emission spectrum, we also include the contributions of the surrounding
nebular material, which has a Hydrogen number density of 102 cm−3 and
reprocesses 73 per cent of the ionising photons into nebular emission. The
27 per cent ‘loss’ of ionising photons (either absorbed by circumstellar dust,
or scattered outside the observational aperture) is consistent with the estimate
from McKee et al. (1997). When calculating the extinction, we use the Milky
Way extinction curve that comes included with slug2.

For consistency, we use the same population that was generated in the
simulation, instead of creating a new stellar population for each star particle.
This is achieved by extracting the stellar population from the snapshot file in
which the star particle first appears (this is always before the stellar population
reaches the age of 1 kyr). We do this for all the star particles present in the
850 Myr snapshot which first appear in or after the 730 Myr snapshot. This
will introduce a new 120 Myr age cut into the emission map; however, this is
sufficiently long as to not impact the results we present here.
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4.1 Measuring the effects of extinction

We assign to each star particle a visual extinction (in magnitudes), 𝐴𝑉 ,
which slug2 uses to compute an extincted emission spectrum. To calculate
𝐴𝑉 for each star particle we use the ray tracing feature in the Python library
yt (Turk et al. 2011). The ‘ray’ passes between the star particle located at
(𝑥★, 𝑦★, 𝑧★) and the edge of the simulated box (𝑥★, 𝑦★, 𝑧edge); that is, we are
looking at the galaxy face on. For a given cell in the simulation that the ray
passes through, 𝑖, we recover the gas mass density, 𝜌g,i, as well as the distance
travelled through the cell, 𝑑i. From this information we calculate the Hydrogen
nuclei number column density, 𝑁H, as

Equation 4.2𝑁H =
𝑓H

∑︁
𝑖 𝜌g,i 𝑑i

𝑚H
,

where 𝑚H is the mass of a Hydrogen nucleus, and 𝑓H = 0.76 is the primordial
Hydrogen mass fraction. We calculate 𝐴𝑉 from 𝑁H as (Safranek-Shrader et al.
2017)

Equation 4.3𝐴𝑉 = 𝑁H𝜎d,V ,

where𝜎d,V = 5.3 × 10−22 cm2 (Draine et al. 1996) is the total dust cross-section
in the V-band per Hydrogen nucleus.

The full combined photometric spectrum of the stellar population (with
and without extinction) is passed through the response profile of the filters
of interest (see Table 3.1[p. 50]) to recover a single luminosity for each of
filters; this value is what we assign to the star particle. As before, we use the
UV response filters that are included by default in slug2 (Krumholz et al.
2015, for more details see). We define the narrow band H𝛼 filters that are
without continuum subtraction (H𝛼+𝑊) in the same way as in Chapter 3[p. 47]

(Equation 3.3[p. 58]). For H𝛼 with continuum subtraction (H𝛼−), we convert
the Hydrogen-ionizing photon emission into a true H𝛼 luminosity using Silva
et al. (2014, Equation 2).2

In Figure 4.2[p. 106] we show the distribution of column densities (and visual
extinction) that is associated to the star particles used in creating the synthetic
emission maps (i.e. stars surviving the 120 Myr age cut). In the figure, we also
mark a ‘galactic column density’ found to be 16.7 M⊙ pc−2 (corresponding to
𝐴𝑉 = 0.84 mag). This is calculated from the average gas surface density of
the 850 Myr snapshot (without an age cut), Σg, between the galactocentric
radii 3–11 kpc by using Equation 4.2 with Σg in place of the summation term.

2In Chapter 3[p. 47], we (correctly) commented that this conversion was not necessary;
however, in order to calculate extincted H𝛼 emission we must explicitly calculate the H𝛼
luminosity.

105



4 The influence of dust extinction on SFR tracer lifetimes

−2 −1 0 1 2 3 4
log10

(
Column density

[
M⊙ pc−2] )0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ob

ab
ili

ty
de

ns
ity

Galactic

−3 −2 −1 0 1 2
log10 (AV [mag])

Figure 4.2

A histogram showing the distribution of column densities and visual extinctions (calculated
using Equations 4.2 and 4.3[p. 105]) associated to the star particles used in creating the synthetic
emission maps. The vertical line indicates the galactic average column density (16.7 M⊙ pc−2)
/ visual extinction (0.84 mag). This is calculated from the average gas surface density between
the galactocentric radii 3–11 kpc (as marked in Figure 4.3[p. 107]).
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Figure 4.3
A comparison between synthetic emission maps without (top) and with (bottom) extinction
for continuum subtracted H𝛼 emission (H𝛼−). The blue dashed annuli, with inner radius of
3 kpc and outer radius of 11 kpc, indicate the region of the galaxy we use for our analysis.
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4 The influence of dust extinction on SFR tracer lifetimes

In Figure 4.3[p. 107], we present example synthetic H𝛼− emission maps of
the simulated galaxy, which are used in our analysis. The two presented maps
allow us to see how extinction reduces the amount of emission present in the
image. The total emission in the extincted map is 2.1 per cent of the emission
in the unextincted map. The figure also indicates the region of the galaxy we
will use in our analysis with the heisenberg code. We exclude the inner 3 kpc
and beyond 11 kpc of the galaxy due to the way in which the galaxy simulation
was set-up (see Section 4.1.2[p. 101]).

The two groups of emission maps we produce here are related to each other.
Excluding the effects of extinction, they are in fact identical; that is, all emitting
regions are present in both maps. This violates the first requirement listed
in Kruijssen et al. (2018, Section 4.4), which details the conditions under
which heisenberg should be used. The heisenberg code assumes that the
pair of maps analysed traces two different phases of an underlying evolutionary
process. With this assumption, it is expected that within the galaxy many
emission peaks in one emission map will be independent of the other and only
some regions will be present in both maps (the ‘overlap’ phase). We circumvent
this aspect of the method by spatially transforming (through rotation and/or
reflection) one emission map relative to the other. This transformation will
spatially offset the emitting regions and give the impression of an evolutionary
sequence. In performing the transformation, we forfeit information about two
quantities constrained by heisenberg (the spatial separation of regions and
the duration of the overlap phase) whilst retaining the ability to measure the
relative duration of one phase to the other: this is unaffected by the relative
positions of regions (Kruijssen et al. 2014, 2018, see the discussion in).

Relying on the fact that the relative duration of an emission map to itself
is always unity, we can test to find which transformation works best given
the specific structure and morphology of the adopted galaxy simulation.
Specifically, we test for which transformation heisenberg returns a relative
duration consistent with unity and a good model fit, with reduced-𝜒2 ≈ 1,
when applied to a given map and the spatially transformation version of itself.
We consider either no reflection ‘F0’ or a left-right reflection ‘F1’ and four
rotations {0◦, 90◦, 180◦, 270◦} denoted as ‘R𝑋’, where 𝑋 is the angle of
rotation. This gives the seven possible unique transformations (excluding no
transformation, ‘F0 R0’).

Figure 4.4[p. 109] shows the relative durations we measure using heisenberg
when applying each of the seven spatial transformations to the H𝛼− emission
maps. For all of the SFR tracers we consider, we find that using a left-right
reflection always gives the expected relative duration of unity. Of the ‘F1’
series, the best reduced-𝜒2 is for zero rotation. By contrast, a purely rotational
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Figure 4.4

Results showing the measured relative duration of an emission map when compared to a
spatially transformed version of itself. Left: H𝛼− emission map without extinction. Right:
H𝛼− emission map with extinction. The vertical axis labels, ‘F𝑋 R𝑌 ’, indicate the spatial
transformation applied to one of the two input maps: 𝑋 indicates if a left-right reflection was
used, and 𝑌 gives the angle of rotation. Note that ‘F0 R0’ (no transformation) is excluded as it
violates the conditions given in Kruijssen et al. (2018, Section 4.4). The relative duration of
an emission map to itself should be unity and so we have marked this value with a vertical
grey line. The reduced-𝜒2 value of the model fit is also reported alongside each measurement
of the relative duration. The optimal reduced-𝜒2 value is unity. The error bars indicate the
uncertainties on the measurements derived from the 𝜒2 fit carried out by heisenberg.
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4 The influence of dust extinction on SFR tracer lifetimes

transformation without reflection (‘F0’) does not always return a relative
duration of unity. This is likely caused by the symmetric nature of the spiral
arms, which causes large parts of them to overlap at rotations of 90◦ and
270◦. In all the experiments that follow, we will always apply the ‘F1 R0’
transformation to the extincted emission map.

4.2 Extinction
By using the heisenberg code on two emission maps, we quantify the relative
duration of one map to the other. For example, if we have a gas tracer map (e.g.
CO) and an SFR tracer map (e.g. H𝛼), we can measure the relative duration of
the CO map to the H𝛼 map. With the known lifetime of H𝛼 emission, we can
then recover an absolute duration for the CO emission. However, extinction
reduces the overall emission within an emission map and possibly reduces
the number of identifiable star-forming regions. The relative duration of the
same CO emission map to an extincted H𝛼 map will differ and so should the
emission lifetime we associate to the extincted H𝛼 emission map. Here we
quantify by how much the emission lifetimes we associate to various SFR
tracers differ when dealing with extincted emission. As previously mentioned,
the galaxy we are using for this analysis has heavily extincted emission due
to inefficient feedback (Fujimoto et al. 2019): most, if not all, star forming
regions are still embedded in gas. This means that the differences in emission
lifetimes we would expect for real galaxies would be less extreme than those we
find here: the results here represent a limiting case, illustrating the maximum
effect induced by extinction.

We provide the heisenberg code with an emission map and a spatially
transformed (‘F1 R0’) extincted emission map and recover 𝑅G#, the relative
duration of the extincted emission map compared to the unextincted map.
This is the factor by which the emission lifetime of the SFR tracer changes
as a result of extinction. In order to see how the emission lifetimes change
as a function of extinction we repeat the experiment with different extincted
emission maps. We produce these different extincted emission maps by
modifying Equation 4.2[p. 105] to include a density scaling factor, 𝐹d, such that
𝑁′

H ≡ 𝐹d𝑁H. This scaling factor multiplies the gas density used to calculate the
𝐴𝑉 associated to the star particle, which slug2 subsequently uses to calculate
the extincted emission. We choose scaling factors in the range

[︁
10−3, 101]︁ in

0.25 logarithmic steps. The native simulation column density is at 𝐹d = 1.
In this work, we only consider solar metallicity. Any change in metallicity

is expected to linearly translate into an analogous change of the dust column
density, such that the metallicity change can be absorbed into the column

110



4.2 Extinction

density scaling factor, 𝐹d, defined here. As such, the dependence on column
density quantified here also reflects the expected dependence on metallicity at
fixed gas surface density.

Likewise, our analysis of the synthetic emission maps always assumes a
face-on orientation. However, our results can still be extended to observations
of galaxies that are not face on. The observed average gas column density
increases as the inclination angle at which a galaxy is viewed increases. In
order to correct for an inclination angle 𝑖, this means that the column density
scaling factor 𝐹d should be scaled by a factor of (cos 𝑖)−1/2. In doing so, we
note that there are limits on the inclination angle for which heisenberg still
provides reliable measurements (ideally 𝑖 ≲ 70◦, see Kruijssen et al. 2018,
Section 4.3.7)).

In Figures 4.5 to 4.7[pp. 112–114] we show how 𝑅G# changes with density
scaling factor, 𝐹d, for the H𝛼−, H𝛼+, and UV filters. Most importantly, we
find that extinction does not affect the H𝛼 tracer emission lifetimes at gas
surface densities Σgas ≲ 20 M⊙ pc−2. The UV tracer emission lifetimes start to
become affected at gas surface densities 1 M⊙ pc−2 ≲ Σgas ≲ 10 M⊙ pc−2. At
the extremes of 𝐹d (or equivalently, column density), the observed behaviour is
as expected. As the column density tends towards zero, 𝑅G# tends towards unity.
This is because, as the column density decreases, the amount of extinction is
reduced, which results in an extincted emission map more like the emission
map without extinction. As the column density increases, the amount of
extinction increases and 𝑅G# tends towards zero as more emission is removed
from the map. In practice, the results from heisenberg become unreliable
once fewer than 35 regions are identified and so 𝑅G# will instead tend towards
some small non-zero value. The grey-shaded data points in Figure 4.7[p. 114]

(not present in Figures 4.5 and 4.6[pp. 112 & 113]) indicate these unreliable results,
which are typically found for 𝐹d ≳ 10 (or Σgas ≳ 200 M⊙ pc−2).

One might expect that the value of 𝑅G# should always be in the range [0, 1]
(i.e. a shorter emission lifetime), as extinction removes emission from the
image. However, the results in Figures 4.5 to 4.7[pp. 112–114] show that for
𝐹d ≲ 1 (or Σgas ≲ 10 M⊙ pc−2), 𝑅G# typically falls in the range [1, 1.5]. We
use the results in Figure 4.8[p. 115] to explain this behaviour. In the top panel of
Figure 4.8[p. 115], we show the upper end of the emission PDF. The area under
this curve gives the probability of any point in the emission map having a given
amount of emission. We can see that as 𝐹d increases the distribution moves
towards the left, i.e. lower emission values become more likely. This shows
that extinction removes emission from the map as a whole. The overall shift in
the emission distribution has minimal effect on the results from heisenberg:
absolute emission values are not relevant to the measurement of 𝑅G#. The
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Figure 4.5

Relative amount by which the continuum-subtracted H𝛼 (H𝛼−) emission lifetime changes
due to extinction. Shown is the relative duration associated to the extincted compared to the
unextincted SFR tracer emission map, 𝑅G#, as a function of the column density scaling factor,
𝐹d. A scale factor of unity indicates column densities taken directly from the simulation. The
horizontal grey line (at 𝑅G# = 1) indicates the point where the duration associated to each of the
two emission maps is the same. The vertical red line indicates the approximate location where
we expect 𝑅G# to transition from 𝑅G# > 1 to 𝑅G# < 1 based on the flux density distribution of
the maps (see the text and Figure 4.8[p. 115] for details). The top grey axis converts 𝐹d into
a column density and visual extinction 𝐴𝑉 based on a column density equal to the average
gas surface density, Σg = 16.7 M⊙ pc−2. Since our experiments probe the maximum effects
of extinction, we expect to find 𝑅G# for real galaxies to lie within the grey-shaded region (i.e.
between the unity line and the data points shown).
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Figure 4.6Same as Figure 4.5[p. 112] for H𝛼 filters without continuum subtraction (H𝛼+). The filter width
is indicated in the bottom left corner of each panel.
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Figure 4.7

Same as Figure 4.5[p. 112] for UV emission filters. The panels are ordered from left to right,
top to bottom, by the response-weighted mean wavelength. The filter name is indicated in the
bottom left corner of each panel. The grey-shaded data points have fewer than 35 identified
emission peaks in the extincted emission image and are therefore unreliable (see Kruijssen
et al. 2018, Section 4.4).
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Figure 4.8

Top: The high-emission end of the H𝛼− PDF of emission in emission maps with different levels
of extinction. The colour of the line indicates the density scaling factor, 𝐹d, used in creating the
emission map. Higher values of 𝐹d correspond to a higher amount of extinction. The native
amount of extinction occurs at 𝐹d = 1 (or Σgas = 16.7 M⊙ pc−2). The red line indicates the
results for the emission map without extinction. The non-transparent line segments indicate
the range of the distribution that is within Δ = 2 dex (see Section 4.1.1[p. 100]) of the maximum.
Bottom: The probability (or fraction) of emission falling within Δ of the maximum (i.e. area
under the non-transparent line segments in the top panel). The vertical grey line indicates
the approximate 𝐹d value for the transition between 𝑃 > 𝑃# and 𝑃 < 𝑃#, where 𝑃 is the
probability of finding emission within Δ of the maximum in the emission map with extinction
and 𝑃# without (shown as the horizontal red line). We see that, at low levels of extinction
(𝐹d ≲ 1), a larger fraction of the emission resides in the top Δ of the distribution, as a result
of only the brightest emission peaks being affected; that is, those peaks which formed at the
highest gas column densities. By contrast, at high levels of extinction (𝐹d ≳ 1), all emission
peaks are affected (resulting in the suppression of the ‘knee’ in the distribution in the top
panel) and a smaller fraction of emission resides in the top Δ of the distribution.
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4 The influence of dust extinction on SFR tracer lifetimes

heisenberg code identifies emission peaks based on contours that start from
the maximum emission value in the image and go down for a certain maximal
range, Δ = 2 dex (see Section 4.1.1[p. 100] for details). This means that the
fraction of the total emission contained in this interval Δ is what impacts 𝑅G#
the most.

The non-transparent line segments in Figure 4.8[p. 115] show the part of the
distribution within Δ of the maximum emission value present in the emission
map. It is clear that extinction alters the shape of the emission PDF, but what is
of particular note is the gradients of these Δ line segments. When extinction is
initially introduced (small 𝐹d), the gradients of these segments become steeper
than that without extinction. This shows that extinction has preferentially
removed emission from the highest emission peaks, because the brightest
emission peaks form at the highest gas column densities. Since the gradients
are steeper, the area under the curve is larger (for the same change in emission,
i.e. Δ) and, as shown in the bottom panel of Figure 4.8[p. 115], the probability
of finding emission within Δ of the maximum for the extincted emission map
(𝑃 ) is higher than for the unextincted emission map (𝑃#). In constraining 𝑅G#,
heisenberg will then detect more emission peaks within Δ of the maximum
compared to the unextincted image. As a result, the duration associated with
the extincted emission map is likely to be longer, thus causing 𝑅G# > 1. Using
linear interpolation, we find the 𝐹d that corresponds to 𝑃 = 𝑃# for each of the
SFR tracers and mark this transition point in Figures 4.5 to 4.7[pp. 112–114] (with
a vertical red line). Indeed, we see that for the vast majority of SFR tracers, and
within the uncertainties of the measurements, 𝑅G# ≳ 1 before this transition
line and 𝑅G# ≲ 1 after, confirming our understanding of the behaviour seen in
Figures 4.5 to 4.7[pp. 112–114].

In relation to observational applications, the results presented here represent
the maximum extent by which the SFR reference timescale can be altered
by extinction. With future simulations, that have feedback mechanisms to
remove gas more effectively from the stellar birth environments, the values
of 𝑅G# that we measure will become more representative of real observations.
However, different galaxies suffer from different levels of extinction, implying
that deriving a single, uniform calibration of the reference timescale under
the influence of extinction remains challenging. If observed SFR tracer maps
cannot be corrected for extinction, our results provide the extreme factor relative
to unity by which the SFR tracer emission timescale should be corrected.

For our simulated galaxy, we find that 𝑅G# and extinction do not have a simple
monotonic relation. Extinction can both increase and decrease the duration
of the SFR tracer emission timescale. When comparing the results for the
H𝛼 filters Figures 4.5 and 4.6[pp. 112 & 113] and UV filters Figure 4.7[p. 114], we
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can see that the extremes in 𝑅G# are greater for UV than they are for H𝛼. This
means that UV filters are affected by extinction more strongly than H𝛼. For
real galaxies, which suffer from less extinction than permitted by the inefficient
feedback model used in the simulation, not all star forming regions are still
embedded in gas and 𝑅G# must deviate from unity less than what we find here.

4.3 Sensitivity limit

Real-Universe observations are affected by sensitivity limits, which result
from a combination of the telescope’s intrinsic sensitivity and as part of the
post-processing pipeline. The emission maps we have created so far recover
all emission and do not have a sensitivity limit. Since extinction reduces the
overall emission in an emission map, a sensitivity limit will more greatly affect
the extincted emission maps compared to the unextincted emission maps. This
will likely lead to lower SFR tracer emission lifetimes (or values of 𝑅G#).

To investigate how 𝑅G# changes with the sensitivity limit, we create new
emission maps (both extincted and unextincted) by applying a flux density
cut to our existing (𝐹d = 1) emission maps. The flux density cut is applied
by setting to zero all the pixels in the emission map that are below the
sensitivity limit. For each emission filter, the sensitivity limits are chosen
as

[︂
10(𝐸max

# −5) , 10(𝐸max
# −2) ]︂ in 0.25 logarithmic steps, where 𝐸max

# is the
decadic logarithm of the maximum emission in the unextincted emission map.
Choosing more extreme limits would be of little use. A larger upper limit
would reduce the amount of emission within the extincted map to the extent
that we could no longer use heisenberg reliably, due to fewer than 35 regions
being identified (see Kruijssen et al. 2018, Section 4.4). A smaller lower limit
would not add any new information, since 𝑅G# will saturate at the values seen
at 𝐹d = 1 in Figures 4.5 to 4.7[pp. 112–114]. When running these experiments,
we adopt the same sensitivity limits for both the extincted and unextincted
emission maps.

In Figures 4.9 to 4.11[pp. 118–120], we show how 𝑅G# changes with sensitivity
limit, for the H𝛼−, H𝛼+, and UV filters. The figures show the behaviour that
we expected: with a high sensitivity limit the value of 𝑅G# is low (∼0.1–0.2)
and increases (up to the saturation level) as the sensitivity limit decreases. The
saturation level (the 𝑅G# values seen for 𝐹d = 1 in Section 4.2[p. 110]) is recovered
for sensitivity limits up to the flux level down to which heisenberg identifies
emission peaks (about 1033 erg s−1 pc−2 for H𝛼− at the native column density
of the simulation, i.e. 𝐹d = 1). We also see that sensitivity limits which are
too high (≳ 1034 erg s−1 pc−2 for H𝛼−) remove too much emission and leave
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Figure 4.9

Relative amount by which the continuum-subtracted H𝛼 (H𝛼−) emission lifetime changes due
to extinction and a non-zero sensitivity limit. Shown is the relative duration associated to the
extincted (𝐹d = 1, see Section 4.2[p. 110]) compared to the unextincted SFR tracer emission
map, 𝑅G#, as a function of the sensitivity limit. The solid horizontal grey line (at 𝑅G# = 1)
indicates the point where the timescale associated to each of the two emission maps is the
same. The dashed horizontal grey line indicates the value of 𝑅G# without a sensitivity limit
applied (see Figure 4.5[p. 112]), representing the expected saturation level. The grey-shaded
region marks the uncertainty on this value. The vertical red line indicates the lowest contour
level used by heisenberg to identify emission peaks. The grey-shaded data points have fewer
than 35 identified emission peaks in the extincted emission image and are therefore unreliable
(see Kruijssen et al. 2018, Section 4.4).
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Figure 4.10Same as Figure 4.9[p. 118] for H𝛼 filters without continuum subtraction (H𝛼+). The filter width
is indicated in the bottom left corner of each panel.
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Figure 4.11
Same as Figure 4.9[p. 118] for UV emission filters. The panels are ordered from left to right,
top to bottom, by the filter-weighted mean wavelength. The filter name is indicated in the
bottom left corner of each panel.
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an insufficient number of peaks for the application of our analysis (grey data
points).

The reported values of 𝑅G#, as a function of the sensitivity limit, are dependent
on the results in the previous section, where we varied the column density
scaling factor. If we had chosen to use a different density scaling factor,
𝐹d, these changes would also manifest themselves here. The most obvious
way in which 𝐹d affects the behaviour of 𝑅G# as a function of the sensitivity
limit is the value at which the measurements would saturate, because this
simply matches the corresponding 𝐹d measurement in Section 4.2[p. 110]. The
sensitivity limit at which the saturation level is reached is less obvious. In
Figures 4.9 to 4.11[pp. 118–120], we have included a line marking 10(𝐸max

 −Δ)
where 𝐸max

 is the decadic logarithm of the maximum emission in the extincted
emission map, and Δ = 2 (see Section 4.1.1[p. 100] for details). This line is
the lowest contour level used in our experiments by heisenberg to identify
emission peaks (across both input maps). The lowest contour level will become
lower as 𝐹d becomes higher (corresponding to more extinction). We expect,
and observe, that 𝑅G# saturates if the sensitivity limit is lower than the lowest
contour level used by heisenberg, allowing the same number of peaks to be
identified. Above this level, emission is being removed that could be identified
as emission peaks by heisenberg and so reduces the apparent duration of the
emission map.

In summary, the results of this section show that if the sensitivity limit
of the observations is lower than the lowest flux level that would be used
by heisenberg to identify emission peaks (typically chosen to be Δ = 2 dex
below the maximum; although, this is not always the case: for example values
used in observations see Chevance, Kruijssen et al. 2019; Hygate et al. 2019;
Kruijssen, Schruba, Chevance et al. 2019), 𝑅G# will be unchanged relative to
what would be measured without a sensitivity limit. Above this limit, the
measured SFR tracer emission timescale is reduced: the sensitivity limit
further compounds the effects of extinction.

4.4 Conclusions
Using a KL14 principle, we determine how the apparent emission lifetime
of SFR tracers changes as a result of dust extinction. In the previous chapter,
Chapter 3[p. 47], we characterised how the durations over which H𝛼 and UV
emission emerges from coeval stellar populations changes as a function of
the metallicity and the SFR surface density (to emulate incomplete IMF
sampling); however, we excluded the effects of extinction. In this chapter, we
include the effects of extinction. Extinction does not change the underlying
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4 The influence of dust extinction on SFR tracer lifetimes

emission lifetime of the emission, but we demonstrate that it changes the
flux density distribution of the observed emission. As a result, the apparent
duration of the emission timescale measured with the heisenberg code is
changed and therefore the reference timescale required for calibrating the
evolutionary timeline of observational applications of the heisenberg code.
We quantify this change through 𝑅G#, the relative duration associated to a SFR
tracer emission map affected by extinction relative to the duration associated
to the SFR tracer emission map without extinction.

For the analysis in this chapter, we used a Milky-Way-like disc galaxy
simulation (Fujimoto et al. 2018, 2019) from which we generate synthetic
SFR tracer emission maps. This enzo simulation has the advantage that
on large scales (≳ 100 pc) it agrees with observational constraints (e.g. the
global- and kpc-scale Kennicutt-Schmidt relations and the phases of the
interstellar medium); however, as we demonstrate in Fujimoto et al. (2019), the
implemented feedback mechanisms are insufficient to disperse molecular clouds
surrounding sites of star formation, in clear contradiction with observations
(e.g. Chevance, Kruijssen et al. 2019; Kruijssen, Schruba, Chevance et al.
2019). This means that this simulation acts as a limiting case of the effects
of extinction: the magnitude of the effects we find in this chapter represent
the most extreme case. In real-Universe observational studies, the effects
of extinction must be less. We are therefore able to use the results here
to indicate when extinction could have an impact on our measurements for
real observations and the maximum extent that they could be affected. For
conditions where we find that extinction does not affect the SFR tracer reference
timescale, observational applications are firmly ruled out to be affected by
extinction.

We produce synthetic emission maps of 18 SFR tracer filters: 12 different
UV filters, 5 H𝛼 filters with continuum (H𝛼+) and a continuum subtracted H𝛼
filter (H𝛼−). To generate our synthetic emission maps, we use the properties
of the stars within the simulation along with the stochastic SPS code slug2 to
determine the emission spectrum associated to each of the stars present. The
amount of extinction affecting each star comes from the properties of the gas
present within the simulation that falls within the line of sight of the star. This
information, along with a Milky Way extinction curve, is used by slug2 to
produce the extincted synthetic emission maps. In this work we only consider
solar metallicity and a fully sampled IMF (see below).

Our experiments show that extinction affects 𝑅G# non-monotonically. At
low levels of extinction, corresponding to mean galactic surface densities
Σgas ≲ 20 M⊙ pc−2, 𝑅G# is close to but slightly larger than unity. This is
because only light from the brightest star-forming regions, which are in
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the regions of highest extinction, suffers any significant attenuation. This
compresses the range of fluxes present in the extincted map relative to the
unextincted one, increasing the total number of distinct regions within a fixed
dynamic range. This effect is interpreted by heisenberg’s statistical analysis
as a slight increase in the duration of the extincted map compared to the
unextincted one. As the extinction increases and most star-forming regions
begin to suffer significant attenuation, the effect reverses and 𝑅G# becomes
smaller than unity by as much as a factor of ten in the most extreme case.

We also investigate how a sensitivity limit on our observations could impact
𝑅G#. The critical value at which the sensitivity limit has an impact on 𝑅G#
depends on the lowest flux level used by heisenberg to identify emission
peaks, which is typically chosen to be 2 dex below the maximum flux level in
the emission map (see e.g. Kruijssen et al. 2018; Chevance, Kruijssen et al.
2019; Kruijssen, Schruba, Chevance et al. 2019). If the sensitivity limit is
lower than this threshold, 𝑅G# is unchanged from the results we recover if there
was no sensitivity limit. For sensitivity limits above the threshold, 𝑅G# can
decrease to as low as ∼0.1–0.2.

In summary, we have measured the relative change in the emission lifetime
for SFR tracers (H𝛼 and UV) as a result of extinction and how this might
be compounded by the non-zero sensitivity limits of observational data. We
find that extinction does not affect the SFR tracer emission timescales at gas
surface densities Σgas ≲ 20 M⊙ pc−2. At higher surface densities, the SFR
tracer emission timescales may be reduced (relative to the values presented in
Chapter 3[p. 47]) by a factor as low as 𝑅G# = 0.1. However, the values presented
in this work represent extreme limits. The ineffectiveness of stellar feedback
at dispersing molecular clouds in the simulation used here has enabled us to
set limits on the impact of feedback on SFR tracer timescales. The resulting
correction factors are critical for informing observational efforts characterising
the molecular cloud life cycle using the heisenberg code. Future calibrations
using simulations with improved feedback physics will be able to further
improve the limits provided here.
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5
The synthetic ALMA ultra-deep
field
In this chapter, we change our focus away from SFR tracer emission and
towards CO emission. However, our aim to improve our understanding of
the processes governing star formation has not altered. Instead of looking at
the emission produced by stars, we consider the emission that traces dense
molecular gas in the ISM. The ISM plays a fundamental role in star formation,
as this is the material from which stars are born. Through the life cycle of a
star, the star returns material and energy back to the ISM through feedback
mechanisms such as photoionisation, stellar winds, and supernovae. This
exchange of material and energy acts to link cloud scale physics to the galactic
scales.

Typically the study of the ISM is performed galaxy by galaxy, meaning
that there are few sky surveys tracing the gas content of a population of
galaxies. With such surveys, it would be possible to quantify the molecular
gas over cosmic time. The results would also be free from the biases imparted
by pre-selection criteria (as is the case for targeted observations). Now
that observational facilities such as ALMA are available, sky surveys of the
molecular gas are now possible. One such survey is ASPECS: an ALMA
survey focusing on the Hubble ultra-deep field (UDF). One of the goals of
ASPECS is the study of the molecular Hydrogen content of galaxies, using CO
emission as a proxy. The pilot phase, covering a region of ∼1 arcmin2, has
now been completed (Decarli et al. 2016; Walter et al. 2016). The ASPECS
Large Program extends this region to cover ∼4.6 arcmin2, encompassing most
of the Hubble extreme deep field (XDF) (Decarli et al. 2019; González-López
et al. 2019).

In this chapter, we aim to create a synthetic equivalent of ASPECS, that is a
synthetic ALMA UDF. Synthetic observations have many uses, such as testing
the effectiveness of the simulations and implemented theoretical models as well
as highlighting limitations in the observations (e.g. the impact of sensitivity
limits, or cosmic variance) and ultimately to improve our understanding of the
relevant physics. To create these observations, we require two key components:
a cosmological simulation and the means to predict the CO line emission from
the simulated gas properties (CO line emission is rarely calculated during the
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simulation).
The simulation required for this project should have both a cosmologically

representative volume (to produce a realistic galaxy population) and a high
spatial resolution (to recover ISM structure). There is, however, always a
compromise between these two requirements. Simulations typically fall into
one of two regimes: ‘zoom’ or ‘box’. In the ‘box’ regime (e.g. Illustris, EAGLE
(Schaye et al. 2015)), the focus is on large scale properties. There is a large
galaxy population but the resolution is coarse. In the ‘zoom’ regime (e.g. FIRE,
Auriga (Grand et al. 2017)), the focus is on a single galaxy within the context of
a local cosmological environment. The selected galaxy is simulated at a high
resolution while the surrounding region is left at a much coarser resolution.
The IllustrisTNG50 simulation is the first of a new class of cosmological
simulations, which aim to overcome the compromise between volume and
resolution; with a simulated volume of 51.73 cMpc3 and a median radius of
∼100–140 pc for star-forming gas cells (over cosmic time).1 The IllustrisTNG
simulations are a series of gravity+magnetohydrodynamical simulations based
on the moving mesh code AREPO (Springel 2010). The simulations, starting
from a redshift of 127 and evolved until the present day, track the coupled
dynamics of dark and baryonic matter. The key goals of the simulations are to
study the physical processes that drive galaxy formation and evolution; this
also necessitates effective star formation, evolution, and feedback models.

When it comes to predicting CO line emission from gas properties, there are
many available options and each with its own strengths and weaknesses. Some
codes, such as RADMC-3D (Dullemond et al. 2012), perform exact radiative
transfer in 3D and can be used on arbitrarily defined gas density distributions.
However, this comes at the expense of computational time. We choose to use
despotic. This code predicts line emission in cool atomic and molecular gas
environments using an escape probability formalism. It is also limited to 1D
problems. With these restrictions, despotic is much faster than RADMC-3D
and much more appropriate when working with a large parameter space. We
would also benefit little from the detailed calculations of RADMC-3D, since
the gas within the simulation will lack detailed internal structure.

The synthetic CO observations we produce are for a 2.5′ × 2.5′ field of view
over the redshift range 1–4. In order to produce these observations from the
IllustrisTNG50 simulation, we must first construct a synthetic light cone. That
is, we must select the galaxies (more accurately the gas) that fall within a
volume corresponding to the field of view and redshift range. This volume is

1IllustrisTNG50 is in fact the name for a series of simulations each with a different resolution.
We will use ‘IllustrisTNG50’ to refer to what is officially IllustrisTNG50–1, which has the
highest resolution of the series.
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5.1 Cosmological simulation

distributed over the simulation snapshots and care must be taken to ensure that
inherent redshift of the galaxy agrees with the galaxy’s ‘placement’ within the
light cone. For this purpose we have developed the code lightcone. With
the contents of the light cone selected, despotic can convert gas properties
into CO emission. These synthetic observations, can then be used to construct
diagnostics such as a CO luminosity function.

The structure of this chapter is a follows. In Section 5.1 we describe the
simulation upon which we base our synthetic observations. We describe the
process of extracting data from the simulation to form synthetic light cones
in Section 5.2[p. 128]. In Section 5.3[p. 138] we give details on how we use the
properties of the gas in the simulation to predict the CO emission. The synthetic
CO observations we construct are discussed in Section 5.4[p. 156]. Finally, in
Section 5.5[p. 165], we summarise the results and present our conclusions.

5.1 Cosmological simulation
In this chapter we make use of the IllustrisTNG50 simulation. This is a
51.73 cMpc3 cosmological volume simulated with the code AREPO. Illus-
trisTNG50 is one of a set of simulations, with companions IllustrisTNG100
and IllustrisTNG300 which have the volumes ∼1003 cMpc3 and ∼3003 cMpc3,
respectively (Marinacci et al. 2018; Naiman et al. 2018; Nelson et al. 2018;
Pillepich, Nelson, Hernquist et al. 2018; Springel et al. 2018). Unlike Il-
lustrisTNG50, which has unprecedented spatial resolution given the volume
simulated, these two larger volumes fall within the standard ‘box’ regime.
These simulations are designed to complement each other, allowing the study
of different aspects of galaxy formation and evolution. All of the IllustrisTNG
simulations, barring resolution, are in effect the same. That is, the physical
aspects of the model, both parameter values and code, are the same across all
three volumes. The standard ΛCDM is used; the cosmological parameters
are consistent with Planck Collaboration (2016): Ωm = 0.31, Ωb = 0.0486
ΩΛ = 0.69, h0 = 0.677, 𝜎8 = 0.8159, 𝑛s = 0.97.

Despite the relatively small volume, IllustrisTNG50 has a representative
galaxy population. At 𝑧 = 0, the population includes one object of mass
exceeding 1.82 × 1014 M⊙, ∼60 massive galaxies residing in halo masses
of 𝑀 > 1012.5 M⊙, ∼130 Milky-Way-mass galaxies, and thousands of dwarf
galaxies. The simulation itself started with 21603 gas particles and an equal
number of dark matter particles. The target mass resolution in star particles and
gas particles/cells is 5.7 × 104 M⊙ ℎ−1 and 3.1 × 105 M⊙ ℎ−1 in dark matter
particles. At 𝑧 = 0, the minimum gas radius was just 6 pc, with a mean of
6.2 kpc. The mean radius in star forming gas was 140 pc.
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5 The synthetic ALMA UDF

The IllustrisTNG simulations build upon its predecessor, Illustris. Along
with numerical improvements, the most notable change is the inclusion of
magnetic fields: the evolution of CDM and gas is governed by the coupled
equation of gravity and magnetohydrodynamics. In addition to this, there
have been improvements in the galaxy formation model. These improvements
focused on the formation, growth, and feedback of black holes; star-formation
driven galactic winds; and stellar evolution and the chemical enrichment of
gas.

Gas cooling occurs radiatively in the presence of a UV background radiation
field, which is redshift dependent and spatially uniform; corrections for
self-shielding are also taken into account. Following the Springel et al.
(2003) model, gas within the simulation is eligible for star formation once
reaching a Hydrogen number density threshold of 𝑛H ≃ 0.1 cm−3. The stars
form stochastically following the Kennicutt-Schmidt relation and assuming a
Chabrier (2003) IMF. The two-phase ISM model is not resolved but is assumed.
Stars return mass and metals to the ambient ISM via supernovae (type Ia and
II) and asymptotic giant branch. Nine elements are traced in the simulation (H,
He, C, N, O, Ne, Mg, Si, and Fe); although their state (e.g. ionised, molecular)
is not.

Accompanying each snapshot is a group catalogue. Halos are identified
using the friends-of-friends (FoF) algorithm (Davis et al. 1985), with linking
length of 𝑏 = 0.2. The algorithm is performed on dark matter particles, other
particle types belong to the same group as their nearest dark matter particle.
Subhalos (i.e. galaxies) are found within the FoF halo using the subfind
algorithm (Springel et al. 2001).

5.2 Building a synthetic light cone

In this section, we describe how we generate synthetic light cones from the
IllustrisTNG50 simulation using the code lightcone, which we have developed
for this purpose. We briefly describe the implementation of the code but we
dedicate most of the text to the logic and procedure used.

The lightcone code uses a command line interface to run the key steps
required to produce a synthetic light cone from a cosmological simulation;
these steps we describe in the following paragraphs. The code is developed
for Python (Rossum et al. 1991) (version 3.72), with the majority of the code
written in Python. The exceptions to this are the two Python classes that
handle cosmological calculations and the selection process of simulation data

2https://docs.python.org/3.7/index.html
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(the most important and used aspects of the code), which are written entirely
in C (Kernighan et al. 1988) using the C API for Python (CPython). These
classes also make use of the GNU Scientific Library3 (gsl) (Galassi et al.
2009) for integration and root-finding. For array handling, we use NumPy4

(Oliphant 2006) through both its Python and C APIs. Where possible the
code can run in parallel using MPI5 implemented through the Python library
mpi4py6 (Dalcín et al. 2005, 2008, 2011). The light cone data is written
out in the HDF57 file format using the Python library h5py8 (Collette 2013);
more specifically version 2.9, which introduced ‘Virtual Datasets’. The way
in which we construct a complete light cone from its parts (described below)
was influenced by the implementation of virtual datasets — a single dataset
constructed out of multiple existing datasets through links and so avoiding the
need to copy data.

We now describe the steps involved to construct a synthetic light cone. It is
first necessary to determine the properties of the simulation from which we build
the light cone: the cosmology used, the volume simulated, and the redshifts of
the available snapshots all play vital roles in what follows. The cosmology
implemented in the simulation is used in all cosmological calculations, such as
(and most importantly) distance calculations. The available snapshots inform
us about the redshift range, 𝑧range

𝓁
=

[︁
𝑧min
𝓁
, 𝑧max

𝓁

]︁
, for which we can build a

light cone, 𝓁, and also determine how far we must deviate from the snapshot’s
inherent redshift when constructing a light cone. The width, ˜︁𝑊 , and height,˜︁𝐻, of the simulated volume limits the field of view: the field of view cannot
exceed ˜︁𝑊 or ˜︁𝐻 over the entire redshift range of the light cone. The depth, ˜︁𝐷,
of the simulated volume determines how many times a single snapshot must
be used to cover its assigned redshift range, which is again determined by the
redshifts of available snapshots. We clarify here, that for the light cone (and
its parts), we refer to the three spatial axes as width, height, and depth: this is
more intuitive than the standard (𝑥, 𝑦, 𝑧), which we reserve for describing the
location of objects within the simulated volume.

We produce light cones from the IllustrisTNG50 simulation (discussed in
Section 5.1[p. 127]) and summarise again the key properties of the simulation
when building a light cone. The cosmology used by IllustrisTNG50 is
the standard ΛCDM model with the values of cosmological parameters
taken from Planck Collaboration (2016). The simulated comoving-volume is

3http://www.gnu.org/software/gsl
4https://numpy.org
5https://www.mpi-forum.org
6https://mpi4py.readthedocs.io
7http://www.hdfgroup.org/HDF5
8http://www.h5py.org
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5 The synthetic ALMA UDF

˜︁𝑉 = 51.73 cMpc3. There are 100 snapshots with redshift range 0.0–20.0; 30
of which are in the redshift range 1.0–4.0.

The choice of redshift range and field of view we make for all our light cones
conform (approximately) to the specifications of the ASPECS survey (more
specifically Decarli et al. 2016). That is, we use a redshift range 𝑧range

𝓁
= [1, 4]

and field of view 𝜙 = (𝜙w, 𝜙h) = (2.5′, 2.5′).
Now that the properties of the simulation and light cone have been defined,

we describe the steps we take to produce a synthetic light cone. We first, assign
the redshift range, 𝑧range

𝓈 , for which a given snapshot, 𝓈, can be used. We aim
to minimise how much we deviate from the snapshot’s inherent redshift by
assigning redshift ranges that are the midpoints between consecutive snapshots:

Equation 5.1
𝑧

range
𝓈 =

[︁
𝑧min
𝓈 , 𝑧max

𝓈

]︁
=

[︂ 𝑧𝓈 + 𝑧𝓈−1
2

,
𝑧𝓈 + 𝑧𝓈+1

2

]︂
.

We now need to define the volumes we must extract from the snapshots that
together form a single light cone; we refer to an extracted volume as a ‘cut-out’.
The total depth required of a given snapshot, ˜︁𝑑𝓈, to get from 𝑧min

𝓈 to 𝑧max
𝓈 is

given by

Equation 5.2 ˜︁𝑑𝓈 = 𝑐

H0

∫ 𝑧max
𝓈

𝑧min
𝓈

1
𝐸 (𝑧) d𝑧 ,

where 𝐸 (𝑧) is the expansion factor as defined in Equation 1.5[p. 2]. It is often
the case that ˜︁𝑑𝓈 exceeds the depth of the simulated volume, ˜︁𝐷, and so the
recurrence of a given snapshot, 𝑅𝓈, is:

Equation 5.3 𝑅𝓈 =

⌈︄ ˜︁𝑑𝓈˜︁𝐷
⌉︄
.

This means that for snapshot 𝓈, we require 𝑅𝓈 cut-outs. We define the depth of
a given cut-out for a given snapshot, ˜︁𝑑𝓈,𝒸, as

Equation 5.4 ˜︁𝑑𝓈,𝒸 =
˜︁𝑑𝓈
𝑅𝓈

.

It is also important to calculate what redshift range, 𝑧range
𝓈,𝒸 , is associated with

the cut-out:

Equation 5.5 ˜︁𝑑𝓈,𝒸 =
𝑐

H0

∫ 𝑧max
𝓈, 𝒸

𝑧min
𝓈, 𝒸

1
𝐸 (𝑧) d𝑧 ,
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which is subject to the conditions

˜︁𝑑𝓈 !
=

𝑅𝓈∑︂
𝒸=1

˜︁𝑑𝓈,𝒸 ; 𝑧min
𝓈,𝒸=𝑖 ≡ 𝑧max

𝓈,𝒸=𝑖−1 ; 𝑧min
𝓈,𝒸=1 ≡ 𝑧min

𝓈 ; 𝑧max
𝓈,𝒸=𝑅𝓈 ≡ 𝑧max

𝓈 . Equation 5.6

The width, ˜︁𝑤𝓈,𝒸, and height, ˜︁ℎ𝓈,𝒸, of the cut-out are both calculated using
the same method and depend on the redshift and field of view. Since the width
and height are redshift dependent, at present we concern ourselves only with
the maximum width, ˜︁𝑤max

𝓈,𝒸 , and height, ˜︁ℎmax
𝓈,𝒸 ; we account for the variation with

redshift in later steps. The maximum comoving width and height occur at
the upper limit of the cut-out redshift range (i.e. 𝑧 = 𝑧max

𝓈,𝒸 ) and so this is the
redshift we use in the calculations below.

We start off in the general case, which we illustrate in Figure 5.1[p. 132]. The
observer, at Point O, is at redshift 𝑧O = 0, Point A is at redshift 𝑧A, and Point
B is at redshift 𝑧B. On the sky, the angle between Point A and Point B is \.
The distances to Point A and to Point B from Point O are given by

˜︁𝑟A =
𝑐

H0

∫ 𝑧A

𝑧O

1
𝐸 (𝑧) d𝑧 ; ˜︁𝑟B =

𝑐

H0

∫ 𝑧B

𝑧O

1
𝐸 (𝑧) d𝑧 . Equation 5.7

The distance between Point A and Point B, ˜︁𝑟AB, is calculated using (Peacock
1999):

𝑆2
K(˜︁𝑟AB) = 𝑆K

2(˜︁𝑟A) 𝐶K
2(˜︁𝑟B)2

+ 𝑆K
2(˜︁𝑟B)2𝐶K

2(˜︁𝑟A)
+ 𝐾𝑆K

2(˜︁𝑟A) 𝑆K
2(˜︁𝑟B) sin2 (\)

− 2𝑆K(˜︁𝑟A) 𝑆K(˜︁𝑟B) 𝐶K(˜︁𝑟A) 𝐶K(˜︁𝑟B) cos (\) ,

Equation 5.8

where 𝐾 is the curvature introduced in Equation 1.1[p. 1], 𝑆K is defined as

Equation 5.9𝑆K(˜︁𝑢) =
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|𝐾 |− 1
2 sin

(︂˜︁𝑢 |𝐾 | 1
2

)︂
𝐾 > 0

˜︁𝑢 𝐾 = 0

|𝐾 |− 1
2 sinh

(︂˜︁𝑢 |𝐾 | 1
2

)︂
𝐾 < 0

,

and the cosine-like equivalent (Peacock 1999), 𝐶K, as

Equation 5.10

𝐶K(˜︁𝑢) ≡ √︂
1 − sgn (𝐾) |𝐾 | 𝑆K

2(˜︁𝑢)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cos
(︂˜︁𝑢 |𝐾 | 1

2

)︂
𝐾 > 0

1 𝐾 = 0

cosh
(︂˜︁𝑢 |𝐾 | 1

2

)︂
𝐾 < 0

.
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Figure 5.1

A schematic diagram of the setup described in Section 5.2[p. 128], showing the location of the
observer O relative to two distant points A and B. The two points A and B are, from the
observer’s perspective, separated by an angle \ on the sky. The points are, however, at different
redshifts and therefore distances from the observer (˜︁𝑟A and ˜︁𝑟B). The comoving separation
between the two points is calculated from ˜︁𝑟A, ˜︁𝑟B, and \ using Equation 5.8[p. 131].
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When calculating ˜︁𝑤max
𝓈,𝒸 and ˜︁ℎmax

𝓈,𝒸 , the Points A and B are the edges of our field
of view. This means that the two points are at the same redshift 𝑧A = 𝑧B ≡ 𝑧max

𝓈,𝒸

and therefore at the same distance ˜︁𝑟A = ˜︁𝑟B ≡ ˜︁𝑟max
𝓈,𝒸 . With this simplification,

Equation 5.8[p. 131] becomes

𝑆K
2
(︂˜︁𝑙max
𝓈,𝒸

)︂
= 2𝑆K

2 (︁˜︁𝑟max
𝓈,𝒸

)︁
𝐶K

2 (︁˜︁𝑟max
𝓈,𝒸

)︁
+ 𝐾𝑆K

4 (︁˜︁𝑟max
𝓈,𝒸

)︁
sin2 (\)

− 2𝑆K
2 (︁˜︁𝑟max

𝓈,𝒸

)︁
𝐶K

2 (︁˜︁𝑟max
𝓈,𝒸

)︁
cos (\) ,

Equation 5.11

where (˜︁𝑙max
𝓈,𝒸 , \) are stand-in variables for (˜︁𝑤max

𝓈,𝒸 , 𝜙w) and (˜︁ℎmax
𝓈,𝒸 , 𝜙h). We now

have the defining properties of the light cone. In Figure 5.2[p. 134], we show
the structure of the light cone as formed from individual cut-outs.

With the structure of the light cone defined, we describe the steps we take
to extract the data from the simulation. A given cut-out is governed by the
properties represented in Figure 5.2[p. 134] but is defined by two additional
quantities: the location of its centre, 𝐶′

𝓈,𝒸, and the arbitrary rotation of the
simulated volume, 𝑅′

𝓈,𝒸, (the necessity of this quantity is described below).
We mark these with a ‘prime’, to indicate this is just one realisation of a cut-out:
for any given cut-out with ˜︁𝑤max

𝓈,𝒸 , ˜︁ℎmax
𝓈,𝒸 , and 𝑧range

𝓈,𝒸 (or equivalently ˜︁𝑑𝓈,𝒸), there
are innumerable unique combinations of 𝐶′

𝓈,𝒸 and 𝑅′
𝓈,𝒸. The centre of the

cut-out is randomly selected from a uniform distribution U(𝑎, 𝑏), which is
defined such that all values are equally probable within the range [𝑎, 𝑏). We
explicitly define 𝐶′

𝓈,𝒸 as
Equation 5.12

𝐶 ′
𝓈, 𝒸 =

(︂
𝐶 ′
𝓈, 𝒸, w, 𝐶

′
𝓈, 𝒸, h, 𝐶

′
𝓈, 𝒸, d

)︂

=

(︄
U

(︃ ˜︁𝑤max
𝓈, 𝒸

2
, ˜︁𝑊 − ˜︁𝑤max

𝓈, 𝒸

2

)︃
, U

(︄˜︁ℎmax
𝓈, 𝒸

2
, ˜︁𝐻 −

˜︁ℎmax
𝓈, 𝒸

2

)︄
, U

(︄ ˜︁𝑑𝓈, 𝒸
2
, ˜︁𝐷 −

˜︁𝑑𝓈, 𝒸
2

)︄)︄
,

where the factors of a half are to ensure that the entire cut-out falls within the
simulated volume. The second quantity, 𝑅′

𝓈,𝒸, defines the random rotation
of the simulated volume along each axis. For practical reasons, the rotation
along a given axis 𝑖 is randomly selected from a choice of rotations that are
multiples of 90◦: 𝜓𝑖 ∈ {0◦, 90◦, 180◦, 270◦}. We therefore define 𝑅′

𝓈,𝒸 as

Equation 5.13𝑅′
𝓈,𝒸 =

(︁
𝜓𝑥 , 𝜓𝑦, 𝜓𝑧

)︁
.

Rotating the volume and randomly selecting the location of the cut-out centre
are a means to counteract the fact that we are repeatedly viewing the same
volume at different times of its evolution. This can result in the appearance
of the same objects and structures within a light cone at different redshifts.
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Figure 5.2

In terms of simulation snapshots and individual cut-outs, we illustrate how the synthetic light
cone is structured. The horizontal axis is the physical width from the centre of the light cone
(half the total width). The vertical axis is the distance from the front of the light cone in units
of the depth of the simulated volume (51.7 cMpc). The curve, coloured by redshift, shows
how the physical width changes with distance. The fact that this width does not monotonically
increase with distance is a result of living in an expanding Universe. At greater distances,
we see the Universe when it was younger and therefore smaller. To the left of the curve, we
indicate the distance (or equivalently, redshift) that is covered by each of the 30 snapshots.
We also indicate (dashed grey lines) the divisions between the different cut-outs of the same
snapshot. This makes it clear to see the depth of each cut-out and also how many cut-outs are
required of a given snapshot to cover the assigned redshift range.
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In the worst case, where snapshots are simply stacked, this can result in a
streaming effect; this has been demonstrated in Blaizot et al. (2005, Figure
1 — reproduced in Figure 5.3[p. 136]). Through this randomisation, we should
reduce the chance of the same objects appearing multiple times within a light
cone. This would ideally mean no repeated objects but, at the very least, should
obfuscate any repetitions that do occur.

With the cut-outs fully defined, the next step is to select the data from the
simulation. That is to say, we identify all the objects (in our case, gas cells)
that are within the defined cut-out and store their angular position and redshift,
both of which must be calculated. We use Figure 5.4[p. 137] to help illustrate
this two-step process.

For each gas cell we first determine if its position (once rotated by 𝑅′
𝓈,𝒸)

falls within the cuboid of width, ˜︁𝑤max
𝓈,𝒸 , height, ˜︁ℎmax

𝓈,𝒸 , and depth, ˜︁𝑑𝓈,𝒸, with
its centre at 𝐶′

𝓈,𝒸 (grey dashed cuboid). If not within this volume, the cell is
excluded and we move to the next cell. If the gas cell is within this volume
(green circle), we calculate the more computational expensive quantities: the
cell redshift, 𝑧cell, and the angular position (𝜔w, 𝜔h). The redshift is given by

Equation 5.14Δ ˜︁𝑑 =
𝑐

H0

∫ 𝑧cell

𝑧min
𝓈, 𝒸

1
𝐸 (𝑧) d𝑧 ,

where Δ ˜︁𝑑 is the distance to the cell from the front of the cut-out volume.
The angular position of the cell, which we calculate using its distance from

the centre (Δ˜︁𝑤, Δ˜︁ℎ) and the cell redshift, 𝑧cell, is given as follows. Starting
with Equation 5.11[p. 133] and using the identity cos2 (\) + sin2 (\) = 1, we get
the following equation

0 =
[︁
𝐾𝑆K

4(˜︁𝑟cell)
]︁

cos2 (\)
+ [︁

2𝑆K
2(˜︁𝑟cell) 𝐶K

2(˜︁𝑟cell)
]︁

cos (\)
+

[︂
𝑆K

2
(︂
Δ˜︁𝑙)︂ − 2𝑆K

2(˜︁𝑟cell) 𝐶K
2(˜︁𝑟cell) − 𝐾𝑆K

4(˜︁𝑟cell)
]︂
,

Equation 5.15

where

Equation 5.16˜︁𝑟cell =
𝑐

H0

∫ 𝑧cell

0

1
𝐸 (𝑧) d𝑧 ,

and (Δ˜︁𝑙, \) are stand-in variables for (Δ˜︁𝑤, 𝜔w) and (Δ˜︁ℎ, 𝜔h). Temporarily
re-writing Equation 5.15 as 0 = 𝐴 cos2 (\) + 𝐵 cos (\) + 𝐶, we can solve for
cos (\) using the positive solution of quadratic formula or through simple
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5 The synthetic ALMA UDF

Figure 5.3

Two projections of the same mock galaxy catalogue for a 5◦ × 5◦ field of view. These
projections highlight how poor light cone construction can produce an unrealistic results. Top:
The streaming effect that occurs when snapshots are stacked without randomisation. This is
the result of the same objects appearing multiple times in the very similar configurations and
at very similar locations. Bottom: Randomisation of the snapshot orientation removes the
streaming effect to produce a more realistic image.

Image Credit: Blaizot et al. (2005, Figure 1), reproduced with permission © OUP
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5.2 Building a synthetic light cone

Figure 5.4

We illustrate here the two steps taken to identify if an object in the simulation snapshot falls
within the light cone’s field of view. The first selection cut is defined by the grey dashed
cuboid. This cuboid has the dimensions given by the maximum width (˜︁𝑤max

𝓈, 𝒸), maximum
height (˜︁ℎmax

𝓈, 𝒸), and depth (˜︁𝑑𝓈, 𝒸) of the cut-out. Objects from the simulation that fall outside
the cuboid do not fall in light cone’s field of view. The second selection cut accounts for the
change in width and height with distance (over the redshift range

[︁
𝑧min
𝓈, 𝒸, 𝑧

max
𝓈, 𝒸

]︁
). The black

square frustum gives the true shape of the cut-out. Objects that fall within the cone are in the
field of view. The green circle is one of the simulation objects that falls within the field of
view. The two steps are taken because calculating the object’s redshift from the distance to the
front of the cut-out, Δ ˜︁𝑑, and its angular position from the horizontal and vertical offset from
the centre, respectively Δ˜︁𝑤 and Δ˜︁ℎ, is computationally expensive.
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rearrangement:

Equation 5.17 cos (\) =
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
− 𝐵 +

√
𝐵2 − 4𝐴𝐶
2𝐴

𝐴 ≠ 0

− 𝐶
𝐵

𝐴 = 0
.

The angular positions can now be used to perform the final cut, which accounts
for the variation of ˜︁𝑤𝓈,𝒸 and ˜︁ℎ𝓈,𝒸 with redshift. This is shown as the black
square frustum in Figure 5.4[p. 137]. If both the conditions

𝜔w ≤ 𝜙w
2

; 𝜔h ≤ 𝜙h
2

Equation 5.18

are satisfied the location (𝜔w, 𝜔h, z) of the gas cell is saved, otherwise the cell
is excluded. These saved gas cell locations form the cut-out data.

The final step to construct a light cone is to piece the cut-outs together.
Given the light cone specifications and simulation properties, we require∑︁30

𝓈=1 𝑅𝓈 = 91 cut-outs to form a complete light cone (see Figure 5.2[p. 134]).
We also define ten realisations (i.e. ten 𝐶′

𝓈,𝒸 and 𝑅′
𝓈,𝒸) for each of the required

cut-outs. This means that when constructing a light cone, we can select one
cut-out of ten for each of the required redshift ranges. We therefore have the
data to form 1091 unique, but not independent, light cones. For the light cones
we produce, the selection of cut-outs is done randomly. This is also where
we utilise the ‘Virtual Datasets’ feature of HDF5 files: a complete light cone
is simply a concatenation of selected cut-outs. Instead of copying the data
we can link to the exiting cut-out datasets. The result is that we can produce
hundreds of light cones very cheaply as the required data already exists and no
copy is required.

5.3 Synthetic CO emission
The simulation we use for our synthetic CO observations does not contain
emission information. We therefore model the gas cells in the simulation
as individual GMCs using despotic. In Section 5.3.1[p. 139], we describe
how despotic models these clouds in order to predict the CO emission.
We also include the input quantities that we use to describe the cloud and
its environment. We explain in Section 5.3.2[p. 142] how simulation-based
quantities are calculated for use with despotic. The key steps taken by
despotic are outlined in Section 5.3.3[p. 143]. For particle purposes, it is not
possible to run despotic on all the gas cell data; in Section 5.3.4[p. 146] we
describe the steps to produce a lookup table allowing us to interpolate CO
emission from gas cell properties.
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5.3 Synthetic CO emission

5.3.1 Model cloud

In order to produce synthetic ALMA UDF maps we need to convert the
properties of gas cells present in the light cone into CO emission data. For
this purpose, we use despotic (a chemical, thermal, and statistical equilibrium
code), which calculates the state of interstellar clouds and predicts the (CO)
line emission that would be observed. Through describing the inputs we give
to despotic, as well as an overview of the code, the caveats of the model
will be made apparent. In the description that follows (and Table 5.1[p. 140]),
the value of quantities marked by † come from the simulation: we describe
explicitly how we recover these values once their use has been described. A
summary of despotic input quantities, along with their initial values and a
brief description, are provided in Table 5.1[p. 140] with further details given
below. The values in Table 5.1[p. 140] follow those seen in Krumholz (2014,
Table 1 — MilkyWayGMC) with the exception of Z where we use the more
conservative value used in Narayanan et al. (2017, Table 1).

Physical In despotic a single cloud is modelled as 𝑁zone independent, nested
spheres (zones); the properties of each zone are uniform across the zone. Each
zone 𝑖, where 𝑖 = [0, 𝑁zone), is characterised by its column density of Hydrogen
nuclei 𝑁H, 𝑖:

Equation 5.19𝑁H, 𝑖 =
𝑖 + 0.5
𝑁zone

(︃
3
4
𝑁H

)︃
,

where 𝑁H is the mean Hydrogen number column density†. We use 𝑁zone = 16,
this was shown by Narayanan et al. (2017, Appendix A) to be sufficient for
convergence. We note that for all other properties the same initial values are
used for all the zones of a single cloud.

Gas The gas (and dust) temperature is set to an initial value of 10 K. This is a
typical temperature for the dense molecular gas phase of the ISM and the phase
that would be detected with CO emission (Draine 2011). Ideally the temperature
information would come from the simulation; however, gas temperatures within
cosmological simulations are usually significantly greater (∼104 K) than what
is required for dense molecular gas to exist. The IllustrisTNG50 simulation
has an effective cooling floor of ∼104 K due a lack of metal fine-structure line
cooling (Nelson et al. 2019).

†This quantity is derived from simulation data.
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Table 5.1

The input parameter we use to run despotic for predicting CO emission. We include a brief
description of each of the quantities and give further details in the text (Section 5.3.1[p. 139]).
Some quantities cannot be fully specified as their value comes from the simulation and are
marked with †.

Quantity Value Unit Description

Physical
𝑁zone 16 — Number of radial zones

Gas
𝑇g 10 K Gas temperature

Dust
𝑇d 10 K Dust temperature
𝛽d 2 — IR spectra index
𝑍d 1 × 𝑍′† — Normalised dust abundance
𝛼gd 3.2 × 10−34 × 𝑍′† erg cm3 K-3/2 Gas-dust collision coupling coefficient

𝜎d, 10 2 × 10−26 × 𝑍′† cm2 H-1 Cross section to 10 K thermal radiation
𝜎d, PE 1 × 10−21 × 𝑍′† cm2 H-1 Cross section to 8–13.6 eV photons

𝜎d, ISRF 3 × 10−21 × 𝑍′† cm2 H-1 Cross section to average ISRF

Radiation
𝑇rad, dust 0 K IR radiation temperature
𝑇CMB 2.73 × (︁

1 + 𝑧†)︁ K CMB temperature
Z 0.1 × 10−16 × Σ′

SFR
† s-1 H-1 Ionisation rate

𝜒 1 × Σ′
SFR

† — Normalised ISRF strength

Chemistry
𝑁H

† cm-2 Hydrogen number column density
𝑛H

† cm-3 Hydrogen number volume density
𝑟op 0.25 — Ortho-to-para-H2 ratio
𝑥H2 0.5 — Molecular Hydrogen abundance
𝑥H i 0 — Atomic Hydrogen abundance
𝑥H ii 0 — Ionised Hydrogen abundance
𝑥e− 0 — Free electrons abundance
𝑥He

† — Helium abundance
𝑥C

† — Carbon abundance
𝑥O

† — Oxygen abundance
𝑥M 2 × 10−7 × 𝑍′† — Other metals abundance
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5.3 Synthetic CO emission

Dust We scale most dust quantities linearly with metallicity†, 𝑍 ; this scaling
is expressed through 𝑍′, the normalised metallicity:

Equation 5.20𝑍′ =
𝑍

1 Z⊙
.

Scaled quantities include 𝑍d, the total dust abundance normalised to the Milky
Way value; dust cross-sections per Hydrogen nucleus, 𝜎d, 𝑖, used in calculating
heating and cooling rates for different mechanisms of both dust and gas; and
𝛼gd, which characterises the collision rate between dust and gas. The quantities
that are not scaled with metallicity are the dust temperature, 𝑇d, set equal to
the gas temperature 𝑇g; and 𝛽d, the spectral index for IR radiation.

Radiation The clouds experience a background radiation field. This radiation
field includes the IR radiation experienced by dust, characterised by the
temperature 𝑇rad, dust; and the CMB, characterised by the temperature 𝑇CMB,
which is scaled according to the redshift†, 𝑧, of the cloud. There are two
quantities which we scale with the SFR surface density†, ΣSFR, expressed
through the normalised SFR surface density, Σ′

SFR:

Equation 5.21Σ′
SFR =

ΣSFR
ΣSFR,MW

,

where ΣSFR,MW = 0.001 M⊙ yr−1 pc−2 (Bonatto et al. 2011). These quantities
are the ionisation rate per Hydrogen nucleus caused by interactions with cosmic
rays and hard x-rays, Z ; and the interstellar radiation field (ISRF) accounting
for FUV radiation normalised to the Milky Way value, 𝜒. The procedure of
scaling with SFR surface density follows that used by Popping et al. (2019),
which found better agreement with observations when scaling with surface
density than the galactic SFR.

Chemistry The chemical composition of the cloud is specified in terms of
abundance relative to Hydrogen nuclei, 𝑥𝑖. We only use a scaling relation for
one of the abundances: the collective abundance of all other remaining metals,
𝑥M, where we scale the default value (2 × 10−7) by the (normalised) metallicity.
For molecular Hydrogen it is also important (for specific heat calculations,
see Krumholz 2014, Appendix A) to specify 𝑟op, the ratio of ortho-Hydrogen
(nuclei spinning in the same direction) to para-Hydrogen (nuclei spinning in
opposite directions).
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5.3.2 Simulation input
In Section 5.3.1[p. 139] we listed the quantities used as input for despotic to
predict CO emission; however, not all values can be specified explicitly as they
originate from the properties of the gas cells within the simulation (marked
with †). The base quantities that we use from the simulation to calculate input
values are the gas mass, 𝑀g; (comoving) gas density, ˜︁𝜌g; SFR; gas metallicity,
𝑍; and gas metal fractions, 𝑓𝑖 ≡ 𝑀𝑖/𝑀g for 𝑖 = {H, He, C, O}, where 𝑀𝑖 is
the mass in species 𝑖.

Not all of the listed quantities are in a form required by despotic and so
have to be expressed in a more useful manner. Before we can calculate the
quantities we need, we must make decisions regarding the shape and density
structure of the gas cell (treated as a single cloud). In the simulation, the shape
of a gas cell is irregular since it is simply the shape of the moving mesh cell.
The gas cells also lack any internal density structure. We therefore model the
cloud as a uniform-density sphere. The radius of the cloud, 𝑅c, is calculated
from (proper gas density) 𝜌g and 𝑀g:

Equation 5.22 𝑅c =
3

√︄
3𝑀g

4π𝜌g
.

We use this radius to define the area 𝐴c and volume 𝑉c of the cloud:

𝐴c = π𝑅c
2 ; 𝑉c =

4
3
π𝑅c

3 .Equation 5.23

With the shape of the cloud defined we can now calculate the Hydrogen
number column density, 𝑁H, and the Hydrogen number volume density, 𝑛H.
First, we calculate the Hydrogen surface density, ΣH, and Hydrogen volume
density, 𝜌H,

ΣH =
𝑀g 𝑓H

𝐴c
; 𝜌H =

𝑀g 𝑓H

𝑉c
≡ 𝜌g 𝑓H ,Equation 5.24

where 𝑀g 𝑓H gives the total mass in Hydrogen. We then determine the two
number densities using

𝑁H =
ΣH
𝑚H

; 𝑛H =
𝜌H
𝑚H

,Equation 5.25

where 𝑚H is the atomic mass of Hydrogen.
Since we now have an expression for the area of the cloud, we can also

convert SFR into a SFR surface density, ΣSFR,

Equation 5.26 ΣSFR =
𝑆𝐹𝑅

𝐴c
.
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The abundance information despotic requires, 𝑥𝑖, is the abundance of nuclei
relative to Hydrogen nuclei, more formally given as,

Equation 5.27𝑥𝑖 =
N𝑖

NH
,

where N𝑖 is the number of species 𝑖 nuclei, and NH the number of Hydrogen
nuclei. We can define N𝑖 in terms of 𝑓𝑖 as follows,

Equation 5.28N𝑖 =
𝑀𝑖

𝑚𝑖
=

(︃
𝑀𝑖

𝑀g

)︃
𝑀g

𝑚𝑖
= 𝑓𝑖

𝑀g

𝑚𝑖
,

where 𝑚𝑖 is the atomic mass of species 𝑖. Following these definitions, we can
now write 𝑥𝑖 in terms of 𝑓𝑖:

Equation 5.29𝑥𝑖 =
𝑓𝑖
𝑚𝑖

𝑚H
𝑓H

.

The gas metal fraction data is unlike the other quantities we use from the
simulation: not every snapshot stores abundance data. Each IllustrisTNG
snapshot is one of two types: ‘full’ or ‘mini’. The mini snapshots only store a
subset of the particle field data compared to full snapshots. Of the 30 snapshots
required to produce a light cone covering 𝑧 = 1–4, only five are full snapshots
and so only these five snapshots contain abundance data. As mentioned in
Section 5.1[p. 127], each snapshot also comes with a group catalogue, this
contains the properties of halos and subhalos found within the current snapshot.
The properties stored include the gas metal fraction of the halo/subhalo as
a whole. This means that even for the mini snapshots we can still recover
abundance data. We use the following procedure to assign abundance data to
a given gas cell. If the gas cell is a member of a subhalo, then the subhalo
abundances are assigned to the gas cell. If the gas cell is not a member of a
subhalo but is a member of a halo, then the halo abundances are assigned to
the gas cell. If the gas cell is neither a member of a subhalo nor halo then the
gas cell is excluded. Since our aim is to study the ISM through synthetic CO
emission, any gas cell that does not belong to a subhalo/halo is most probably
not part of the ISM and so can be safely excluded.

We finally note here that in the above list of ‘base quantities’ we have
excluded redshift, 𝑧. This is because the redshift of a gas cell does not come
from the simulation; instead it is determined by its position in the light cone.

5.3.3 Predicting CO emission with despotic
There are three main stages taken by despotic, for each zone within a cloud,
in order to calculate line emission: chemical, thermal, and statistical. Firstly,
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the chemical network is run to convergence at constant temperature. Then the
temperature is calculated with fixed level population of each species. Finally,
statistical equilibrium within the level population is achieved. These three
stages must be iterated until there is no change (within a tolerance threshold)
of the chemical abundance, temperature or level populations.

Chemical The chemical network we select is NL99_SG: a reduced Carbon-
Oxygen network developed by Nelson et al. (1999) extended with a non-
equilibrium Hydrogen chemical network and additional Carbon and Oxygen
chemistry from Glover et al. (2007, 2012). Hydrogen self-shielding is calcu-
lated using an approximate analytical function given by Draine et al. (1996).
The reactions and rates used by this network are given in Narayanan et al.
(2017, Table 2).

Thermal In order to calculate the thermal state of a zone, we need to consider
the relevant heating Γ𝑖, cooling Λ𝑖, and energy exchange Ψ𝑖 mechanisms of
both gas and dust. The rate of change of the energy in gas per Hydrogen
nucleus, 𝑒g, is

d𝑒g

d𝑡
= Γion

(︁
Z, 𝑛H, 𝑟op, 𝑥H2 , 𝑥H i, 𝑥e−

)︁
+ ΓPE

(︁
𝑍d, 𝜎d, PE, 𝜒, 𝑁H

)︁
− Λline

(︁
𝑇g, 𝑇CMB, 𝑛H, 𝑥𝑝

)︁
+ Ψgd

(︁
𝑇g, 𝑇d, 𝛼gd, 𝑛H

)︁
,

Equation 5.30

and in dust, 𝑒d,

d𝑒d
d𝑡

= ΓISRF
(︁
𝑍d, 𝜎d, ISRF, 𝜒, 𝑁H

)︁
+ Γd,CMB

(︁
𝛽d, 𝜎d, 10, 𝑇CMB

)︁
+ Γd, IR

(︁
𝛽d, 𝜎d, 10, 𝑇rad, dust

)︁
+ Γd, line

(︁
Λline, 𝛽d, 𝜎d, 10, 𝑁H

)︁
− Λd

(︁
𝑇d, 𝛽d, 𝜎d, 10, 𝑁H

)︁
− Ψgd

(︁
𝑇g, 𝑇d, 𝛼gd, 𝑛H

)︁
.

Equation 5.31

The full expression used for each term along with any assumptions or simpli-
fications is provided in Krumholz (2014, Appendix B1 and B2); here we give
a brief description of each term and have indicated which of the quantities
given in Table 5.1[p. 140] the mechanism depends on.
Heating terms:

144



5.3 Synthetic CO emission

• Γion — Ionisation heating occurs when cosmic rays or hard x-rays ionise
gas and the resulting free electrons then thermalise with the gas

• ΓPE — Photoelectric heating occurs when FUV photons (8–13.6 eV)
eject electrons from dust grains (the photoelectric effect) which then
thermalise with the gas

• ΓISRF — ISRF heating results when dust absorbs radiation from the
ISRF

• Γd,CMB — CMB heating results when dust absorbs radiation from the
CMB

• Γd, IR — IR heating results when dust absorbs radiation from the back-
ground IR field.

• Γd, line — Line heating occurs when dust reabsorbs line emission.

Cooling terms:

• Λline — Line cooling occurs when the gas emits emission line photons
which then escape the cloud

• Λd — IR cooling occurs when the dust emits thermal continuum radiation.

Energy transfer terms:

• Ψgd — Dust-gas energy exchange results as a collision between the gas
and dust grains (using the sign convention that positive values correspond
to heating of the gas).

Statistical Calculating the level population of each species is important for
determining the amount of line cooling, Λline, and more critically the amount of
emission expected from a given species for a given transition line. The fraction
of a species in a given quantum state depends on the properties of the cloud/zone,
background CMB radiation, and the abundance of collision partners, 𝑥𝑝 (e.g.
𝑥H2 , 𝑥He, etc.). Atomic and molecular data is downloaded automatically by
despotic from the Leiden Atomic and Molecular Database (Schöier et al.
2005). This data includes information regarding transition energies, Einstein
𝐴 coefficients (rates of spontaneous radiation), and collisional rate coefficients.
There are two regimes under which level populations are calculated: optically
thin and optically thick clouds. In both cases, it is under the condition of a
state of statistical equilibrium. When optically thin, there is a balance between
transitions into and out of each level. When optically thick, the effects of
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the emitted radiation — now trapped inside the cloud — also need to be
taken into account. This is handled by despotic using the escape probability
approximation. In which, a volume-averaged probability of the radiation
escaping the cloud can be calculated. This approximation requires additional
terms when calculating the balance between transitions into and out of each
level; full details are given in Krumholz (2014, Appendix B3).

5.3.4 Lookup table

In principle it would be possible to run despotic on each gas cell that is present
within a given light cone; however, in practice this would be prohibitively
slow. Instead we choose to produce a lookup table: a pre-calculated table
of CO luminosity for a given range of input values, which we then use for
interpolation. Once the lookup table is produced, this will dramatically speed
up the production of synthetic CO emission maps but at the expense of accuracy.
How accurate the interpolated CO predictions are will depend on the choice
and number of input values (i.e. the coordinates in parameter space for which
we explicitly calculate the CO luminosity). In what follows, we describe how
the lookup table we produce can be optimised for our data.

We first make clear to what we are referring when talking about ‘our data’.
We consider only IllustrisTNG50 snapshots that are required to produce a light
cone spanning the redshifts 1–4: these are the 30 snapshots that have a redshift
from 1.0 to 4.0, inclusive. As already discussed in Section 5.3.2[p. 142], we
use the data of gas cells (that are members of a halo or subhalo) required to
calculate the seven input quantities: ΣH, 𝜌H, ΣSFR, 𝑍 , 𝑥C, 𝑥O, and 𝑥He. The
use of 𝑍 and ΣSFR as scaling quantities (and only as scaling quantities) means
that a value of zero would be problematic. In the process of optimising the
lookup table, we ignore instances of 𝑍 = 0 and ΣSFR = 0 but not the gas cell
itself (i.e. we still retain the remaining quantities). When using the lookup
table for interpolation, gas cells with 𝑍 = 0 or ΣSFR = 0, will be capped to the
lowest value of 𝑍 or ΣSFR rather than being excluded.

As we have already noted in Section 5.2[p. 128], snapshots are often used
multiple times in order to span the required redshift range; in the description
that follows, each time a snapshot is used we consider this as a new snapshot.
This means we effectively have 91 snapshots (see Section 5.2[p. 128] for details).
These 91 snapshots are all treated in the same way, resulting in some data
being counted or sampled multiple times. In the following text, ‘snapshot’
refers to one of the 91 and not of the 30 unique snapshots.

To produce an optimised lookup table we must know the distribution of each
quantity so that we can preferentially sample the parameter space where most
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of the data lies. Ideally we would produce a distribution of each quantity for
all of the data; however, the amount of data we are using makes this infeasible.
Instead we take the following steps.

We first find the global limits of all our data for the each of the seven input
quantities. The quantities that are calculated from the gas density (ΣH, 𝜌H, and
ΣSFR) also need to be converted from comoving to proper lengths and so when
finding the minimum and maximum of these quantities we need to consider
the minimum and maximum redshift for which the gas cell could be placed
within the light cone. These global limits define the bounds of the parameter
space for which we can interpolate CO emission data.

We then use kernel density estimation to produce an estimated PDF for
each of the seven input quantities for each snapshot file (in IllustrisTNG50
a single snapshot is made up of 680 files), which are then combined to give
an estimated PDF for all the data. The limits of the input quantities span
several order of magnitude and so we construct the estimated PDF in decadic
logarithmic space. For comoving quantities, we use the midpoint-redshift of
the associated snapshot redshift range to convert into proper units. With kernel
density estimation, we have the means to estimate the PDF of a quantity in
a non-parametric way. The kernel density estimator, ˆ︁ℱ, of the 𝑛 data points,
𝑥𝑖, with an unknown underlying distribution, ℱ, is formally given as (Parzen
1962)

Equation 5.32ˆ︁ℱ(𝑥) = 1
𝑛ℎ

𝑛∑︂
𝑖=1

𝐾
(︂𝑥 − 𝑥𝑖

ℎ

)︂
,

where 𝐾 is the kernel, and ℎ the bandwidth. The kernel is a smooth function
that gives the shape to each data point, which when combined produce the
overall distribution of the data. See Figure 5.5[p. 148] for an example of how ˆ︁ℱ
is constructed. We select a Gaussian kernel

Equation 5.33𝐾 (𝑢) = 1√
2π

exp
(︃
−𝑢

2

2

)︃
.

The bandwidth determines by how much the final distribution is smoothed
and plays a strong role in the appearance of the final distribution (see Fig-
ure 5.5[p. 148]). There are standard methods for estimating an appropriate
bandwidth; these tend to result in an over- rather than under-smoothed distri-
bution but this is sufficient for our purpose. We select the bandwidth, ℎ, based
on Scott’s rule (Scott 1992):

Equation 5.34ℎ = 𝑛
−1
𝑑+4 ,
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Figure 5.5

A demonstration of how kernel density estimation is used to convert data points into a
distribution. Along the horizontal axis, we indicate with yellow crosses the six data points
from which we wish to create a distribution. This is an unrealistically low number of data
points but sufficient for demonstrating the kernel density estimation process. We use a
Gaussian kernel (Equation 5.33[p. 147]) to construct a distribution for each data point (grey
dashed curves). By summing these individual distributions, we can construct the overall
distribution of the data points (black curve). The appearance of the kernel depends on its
functional form and the bandwidth. If the bandwidth is too small, the individual distributions
become highly peaked and the final distribution can contain features that do not represent the
data. This results in an under-smoothed distribution (blue curve). If, however, the bandwidth is
too large, the individual distributions become very broad and the final distribution obfuscates
features in the data. This results in an over-smoothed distribution (green curve).
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where 𝑑 is the number of dimensions of the distribution (𝑑 = 1), and as before
𝑛 the number of data points. Since creating a distribution for each of the input
quantities using all the data from just a single snapshot file is still impractical,
we instead randomly sample 105 gas cells for each input quantity. This sample
size is typically less than 1 per cent of the total number of available gas cells for
any given snapshot file. With the sample size defined, 𝑛 = 105, we calculate
the bandwidth using Equation 5.34[p. 147] to be ℎ = 0.1.

The final estimated distribution, ˆ︁ℱ𝑞, for a given quantity 𝑞 is calculated by
performing a weighted sum of all the estimated distributions, ˆ︁ℱ𝑞, 𝑓 , for each
file, 𝑓 :

Equation 5.35ˆ︁ℱ𝑞 (𝑥) =
∑︂
𝑓

[︄
^ 𝑓

(︃∫ max(𝑞)

min(𝑞)
ˆ︁ℱ𝑞, 𝑓 (𝑢) d𝑢

)︃−1]︄ ˆ︁ℱ𝑞, 𝑓 (𝑥) ,

where the integration over the global limits of the quantity 𝑞 normalises ˆ︁ℱ𝑞, 𝑓

and ^ 𝑓 weights the contribution of ˆ︁ℱ𝑞, 𝑓 to the sum. This weighting, ^ 𝑓 , is
the fraction of the total number of available gas cells across all snapshots
and all files that are present in the current file, 𝑓 . We use this weighting so
that an estimated distribution representing more of the population of gas cells
contributes more strongly to the final estimated distribution.

Now that we have the PDF for each of our input quantities, we can use
them to define the coordinates in our parameter space for which we explicitly
calculate the CO luminosity. That is to say, we define the ‘rows’ and ‘columns’
of our 8D (seven above mentioned input quantities and redshift) lookup table.
We choose to select 20 values for each quantity that span the global limits
of that quantity; this results in a lookup table with 208 elements. Without
knowledge of the input quantity PDFs, these 20 values would have been
uniformly distributed (in logarithmic space) between the global limits; the
parameter space would have been sampled by a uniform grid. This would mean
that the distance between interpolation points would be uniform and that all the
data would be subject to the same inaccuracies as a result of interpolation. We
instead use the quantity PDFs to sample more frequently where more of the
data lies; the parameter space is sampled by a non-uniform grid. Now that the
spacing of interpolation points depends on the number of data in that region of
parameter space, the popular regions have a higher number of interpolation
points and so are subject to smaller inaccuracies as a result of interpolation
when compared to less-popular regions. That is, we minimise the impact of
interpolation for where the majority of data lie. The above discussion excludes
redshift, which is uniformly sampled (in linear-space), since the gas cells do
not have an inherent redshift: this depends on their location within the light
cone.
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Figure 5.6

We demonstrate here, how using inverse transformation sampling can result in poor coordinate
selection at the edges of the distribution. To specify coordinates for the lookup table (e.g. values
of ΣH) using inverse transformation sampling, we select 20 uniformly-spaced points in the
range [0, 1] (vertical grey dashed lines) and pass them through the inverse of the CDF (black
solid curve). The corresponding values of ΣH (horizontal grey dashed lines) are the selected
coordinates. The coordinates are distributed such that they are closer together in regions
where many parameter values lie, as intended. However, at the tails of the distribution (vertical
line segments at zero and one) the selection is poor because several orders of magnitude are
covered by just two points (marked in yellow). This would likely produce inaccurate results
when interpolating between these two values.
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5.3 Synthetic CO emission

Figure 5.7

We show the coordinate selection for the seven simulation-based quantities used in the lookup
table. The remaining quantity, redshift, is excluded as this is not an inherent property of the
gas cells and therefore a distribution cannot be created. The coordinates are selected based on
uniformly spaced points along the inverse of the CDFs. The top left panel is the same as that
seen in Figure 5.6[p. 150]; however, the coordinate choice is now improved.
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We initially intended to use inverse transformation sampling to sample the
quantity PDFs to select the coordinates of the lookup table. This is performed
by first selecting 20 uniformly-spaced points in the range [0, 1]. These points
are then passed through the inverse of the cumulative distribution functions
(CDFs) (which also span the range [0, 1]). The result is 20 coordinate values
for each quantity that are spaced such that the coordinates are concentrated in
regions where more of the data lies. Using inverse transformation sampling
fulfils our aims; however, coordinate selection is poor in the tails of the PDF
and could result in a difference between consecutive coordinates of several
orders of magnitude. In Figure 5.6[p. 150], we demonstrate how this method
results in poor coordinate selection for ΣH. We instead chose to select points
that are equally spaced along the CDFs, which alleviates the problem of poor
coordinate selection and still retains a higher sampling frequency in regions
where more of the data lies. We show the coordinate selection for the input
quantities (excluding redshift) in Figure 5.7[p. 151].

In principle, the above process would be sufficient to produce a useable
lookup table; however, it is wasteful since there are many regions of the
parameter space that are unphysical and many of the quantities are correlated.
For example, it would be very improbable that a region would have a high
metallicity but low Carbon, Oxygen, or Helium abundance. The density
quantities are also strongly correlated, since they are derived from the same
quantities. We instead make an effort to find the regions of the lookup table
that would be used and only calculate CO luminosities for these regions.

In Figure 5.8[p. 153], we illustrate the process we take to find the required
regions of the lookup table for a simplified 2D version. In the figure, Table 1
lists all the available gas cells that could possibly be used within a light cone.
The first column, listing quantity-A values, represents quantities like 𝑍 and
𝑥𝑖: these are quantities that have a fixed value. The second column, listing
quantity-B values, represents the comoving quantities (ΣH, 𝜌H, and ΣSFR):
these quantities could have a range of possible values which is bounded by the
minimum and maximum redshift the gas cell could be placed in a light cone.
It is therefore necessary to consider B-like quantities as spanning a range.

The second table, Table 2, illustrates the simplified 2D ‘selection’ table.
The selection table has the same shape as the lookup table but its purpose
is to count the number of gas cells that are in this region of the parameter
space. The rows give the quantity-A coordinates and the columns the quantity-B
coordinates. These coordinates are like those selected in Figure 5.7[p. 151].

Starting with the first gas cell in Table 1, we take the following steps. The
quantity A has a single value (21.4) and so we find the two coordinates between
which the value falls (21–22). These are the two coordinates which would be
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Figure 5.8

A schematic showing the construction of a selection table, described in Section 5.3.4[p. 146].
In Table 1 is listed all the available gas cells. In this example, gas cells have two relevant
quantities, A and B. Quantity A is redshift independent; however, quantity B is not and so there
is a minimum and maximum value. The selection table is shown in Table 2. The colours
of the regions within Table 2 correspond to the colours of the rows in Table 1. These
coloured regions are the regions of the parameter space in which a given gas cell falls. These
cells are incremented by one (‘+1’). Regions that overlap result in a higher count (e.g. ‘+2’).
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used when interpolating along the A axis. The quantity B has a minimum (11.7)
and maximum (13.3) value and so the process we use for A must be performed
twice: (11–12) and (13–14), respectively. However, B depends on redshift
and could take any value between the minimum and maximum; the required
lookup table elements must therefore span the full range (11–14), since all the
coordinates in this range could be required when interpolating along the B axis.
We can now specify the corners of the rectangle that define the region of the
lookup table that could be required for interpolation when considering this gas
cell: (21,11), (21,14), (22,11), (22,14). We add one to all the elements within
this region of the selection table. This process is repeated for every possible
gas cell within the data. In the unlikely event that a quantity value matches the
coordinate, we simply select that coordinate (as demonstrated in the third row
of Table 1).

Of course, our lookup table has to account for eight quantities and so the
region of the lookup table required by any given gas cell is an 8D cuboid with 28

corners. In Figure 5.9[p. 155], we show a ‘triangle plot’ (an array of normalised
1D and 2D projections) of our 8D selection table. The 1D distributions along
the diagonal show an approximate PDF of each quantity calculated for all
the data. The most peculiar of these distributions is seen for the SFR surface
density, ΣSFR, where most of the gas cells are at ∼10−10 M⊙ yr−1 pc−2. This
is the effect of having previously excluded ΣSFR = 0 M⊙ yr−1 pc−2 and now
being capped to the lowest value, which we discussed at the beginning of
Section 5.3.4[p. 146]. The 2D projections demonstrate the correlations between
quantities as well as highlighting regions of the parameter space where no
gas cells lie. Another feature highlighted by the 2D plots are the varying
grid sizes, which is a result of the coordinate selection discussed above (see
Figure 5.7[p. 151]). After constructing this selection table, we find that of all the
208 elements within the lookup table, only 0.06 per cent of the table would be
used.
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Figure 5.9

The figures shows projections of the 8D selection table calculated from IllustrisTNG50 data.
This table is the true version of the schematic shown in Figure 5.8[p. 153]. The diagonal shows
the approximate PDF of each quantity based on all the data. Each of the 2D projection shows a
normalised distribution, in each plane of the 8D space. The projection plots reveal correlations
between related quantities (i.e. 𝜌H, ΣH,and ΣSFR and 𝑍 , and the 𝑥𝑖) and also show regions of
the parameter space that are not used (in white). The cell sizes in the 2D projections are not
uniform, which is a result of the coordinate selection shown in Figure 5.7[p. 151].
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5.4 Synthetic CO observations
We present here the results of our synthetic CO observations based on a
single synthetic light cone. This light cone contains the gas found within a
volume corresponding to a 2.5′ × 2.5′ field of view and redshift range 1–4.
This volume was pieced together from smaller volumes extracted from the
IllustrisTNG50 simulation snapshot files. We use the properties of the selected
gas to predict the expected CO emission through the interpolation of a lookup
table which we created using the code despotic.

In Figure 5.10[p. 158], we present a high angular resolution CO (1 → 0)
emission map of the light cone on which we focus our analysis. This image
was created at an angular resolution of 0.005′′ × 0.005′′ and smoothed using
a Gaussian filter with a FWHM of the target resolution 0.01′′ × 0.01′′. This
creates a detailed image showing the distribution of the CO emission in
the galaxy population but also within individual galaxies themselves. The
detail that we see in the galaxies is due to the high spatial resolution of the
IllustrisTNG50 simulation, showing that the simulation is indeed able to
recover galactic structure (e.g. spiral arms).

We calculate the CO emission shown in Figure 5.10[p. 158] by interpolating
a lookup table whose construction we described in Section 5.3.4[p. 146]. This
interpolation is based on eight input quantities: redshift, 𝑧; Hydrogen surface
density, ΣH; Hydrogen volume density, 𝜌H; SFR surface density, ΣSFR;
metallicity, 𝑍; and the Carbon, Oxygen, and Helium abundances, 𝑥C, 𝑥O,
and 𝑥He. In Figure 5.11[p. 159], we present the line-of-sight average of these
quantities at the locations where we also observe CO (1 → 0) emission,
allowing one to make a direct comparison with Figure 5.10[p. 158]. The quantity
maps we present in Figure 5.11[p. 159] are created at the target resolution
(0.01′′ × 0.01′′) and do not go through the same smoothing process as we
described for the synthetic CO map. This prevents the introduction of numerical
artefacts when smoothing with zero-value pixels: these pixels do not have
a physical meaning in this context. Since we do not apply the smoothing
process, the maps (under close inspection) appear pixelated in a way not seen
in Figure 5.10[p. 158]. These property maps provide a better understanding
of the synthetic CO emission map. Using the redshift map, we can see if
neighbouring galaxies (in the 2D projection) have matching redshifts or not,
allowing us to determine if the galaxies are interacting or simply in the line
of sight. A detailed look at the ΣH, 𝜌H, ΣSFR, and 𝑍 maps, reveals variations
of these quantities within the individual galaxies. Visually, the variation is as
expected: in interarm regions these quantities have lower values than in the
spiral arms, conforming to our understanding that spiral arms have higher gas
densities and are the birth locations of most stars. The chemical abundance
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maps do not show variations within a galaxy. The uniformity of the chemical
composition within a galaxy is unrealistic and a direct consequence of the
procedure we use to assign chemical abundances to individual gas cells. We
describe this procedure in Section 5.3.2[p. 142], explaining that not all of the
IllustrisTNG50 simulation snapshots save chemical abundance information.
Therefore, gas cells inherit the chemical abundance of its parent galaxy, which
is saved in galaxy catalogues accompanying every snapshot. This also means
that these maps can effectively be used to locate individual galaxies identified
in the galaxy catalogues.

With current observational facilities, the angular resolution used to create
Figure 5.10[p. 158] is not possible. The ASPECS survey has an approximate
angular resolution of 1′′ × 1′′, and so we recreate Figure 5.10[p. 158] with a
more realistic resolution in Figure 5.12[p. 160] (these two figures are aligned
for easy comparison). We again use the smoothing process described above,
starting with an inherent resolution of 0.1′′ × 0.1′′ and smoothing to 1′′ × 1′′.
As expected, all detail of galaxy structure is lost and we are left with amorphous
spots; each spot corresponding, approximately, to an individual galaxy.

The synthetic CO emission map we present in Figure 5.12[p. 160] is informat-
ive, in that we can see the raw data, but unuseful for a basis of comparison. The
data contained within the image must be characterised in a statistical way. In
the following, we describe the initial results from our analysis of this synthetic
light cone.

In Figure 5.13[p. 163], we show how the total CO luminosity density changes
as a function of redshift for several CO transitions. This figure is constructed
in the following way. First, we define the redshift ranges into which we divide
the light cone. The limits of redshift range 𝑖, [𝑧min

𝑖 , 𝑧max
𝑖 ], are defined through

Equation 5.36Δ ˜︁𝐷 =
𝑐

H0

∫ 𝑧max
𝑖

𝑧min
𝑖

1
𝐸 (𝑧) d𝑧 ,

where we select the change in depth, Δ ˜︁𝐷, to be 500 cMpc. The measurement
made from this redshift range is assigned to the midpoint redshift, 𝑧mid

𝑖 , given
as

Equation 5.37𝑧mid
𝑖 =

𝑧max
𝑖 + 𝑧min

𝑖

2
.

The choice of Δ ˜︁𝐷 is a compromise between minimising the deviation from
𝑧mid
𝑖 and having a representative volume to avoid local fluctuations. The next

redshift range begins at 𝑧min
𝑖+1 calculated through

Equation 5.38Δ ˜︁𝑂 =
𝑐

H0

∫ 𝑧min
𝑖+1

𝑧min
𝑖

1
𝐸 (𝑧) d𝑧 ,
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Figure 5.10

A synthetic CO (1 → 0) emission map based on a light cone constructed from the Illus-
trisTNG50 simulation. We show the 2.5′ × 2.5′ field of view at 0.01′′ × 0.01′′ resolution.
At this resolution, we can see the distribution of CO emission (or equivalently molecular
Hydrogen) within galaxies and across the galaxy population. This image also demonstrates
the high spatial resolution that makes the IllustrisTNG50 simulation unique.
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Figure 5.11

Maps showing the line-of-sight average of the eight quantities used as input for interpolating
CO emission. These maps have an angular resolution of 0.01′′ × 0.01′′ and only show data
where there is CO (1 → 0) emission (as seen in Figure 5.10[p. 158]). The redshift map, 𝑧, allows
us to see which galaxies are interacting (i.e. at the same redshift) and which are at a similar
location on the sky. In the Hydrogen surface density (ΣH), Hydrogen volume density (𝜌H),
SFR surface density (ΣSFR), and metallicity (𝑍) maps we can see the distribution of these
quantities within the individual galaxies. As we described in Section 5.3.2[p. 142], the chemical
composition assigned to an individual gas cell is that of the subhalo; the consequence of this
can be seen in the chemical abundance maps, 𝑥𝑖 , where each galaxy appears as a uniform
colour.
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Figure 5.12
We present here the same image as shown in Figure 5.10[p. 158]; however, at the lower resolution
of 1′′ × 1′′. This resolution is comparable to that of real observations and the resolution we
use in our analysis.
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where the offset, Δ ˜︁𝑂, is selected to be 50 cMpc. The smaller Δ ˜︁𝑂 becomes the
greater the number of redshift ranges, 𝑛, we define and the more measurements
we make — starting at 𝑧min

1 = 1 and ending at 𝑧max
𝑛 = 4. Having Δ ˜︁𝑂 < Δ ˜︁𝐷

means that consecutive ranges are not independent and have an overlap of
Δ ˜︁𝐷 − Δ ˜︁𝑂 = 450 cMpc.

The CO luminosity density, 𝐽CO, in redshift range 𝑖 is calculated using

Equation 5.39𝐽CO

(︂
𝑧min
𝑖 , 𝑧max

𝑖 , 𝜙
)︂
=
𝐴p

(︁
𝑧mid
𝑖

)︁ × ∑︁
𝑖, 𝑗 𝐸𝑖 𝑗

𝑉
(︁
𝑧min
𝑖 , 𝑧max

𝑖 , 𝜙
)︁ .

The summation term gives the total amount of CO emission found within
the volume 𝑉 ; however, this is not the sum of individual gas cells but of
pixels in the emission map, 𝐸 . This emission map is the projection of the
contents of the light cone that falls within the redshift range onto a 0.1′′ × 0.1′′
resolution grid (with field of view 𝜙 = 2.5′ × 2.5′), which is then smoothed
using a Gaussian filter to a resolution of 1′′ × 1′′ — the same process used
to generate Figure 5.12[p. 160]. We perform this smoothing procedure, as it is
necessary to calculate the area over which this emission is emitted. The area is
calculated using the area per pixel, 𝐴p, which is determined for the midpoint
redshift.

Since the CO (1 → 0) emission can be converted in to a molecular Hydrogen
mass through a simple conversion factor, 𝛼CO = 3.6 M⊙

(︁
K km s−1 pc2)︁−1

(Daddi et al. 2010), we also include the change in molecular Hydrogen density
as a function of redshift in Figure 5.13[p. 163].

For this light cone the global maximum in CO (1 → 0) emission (and
equivalently 𝜌H2) occurs around redshift 1.5. Although a second peak in
emission occurs around 2.6, which is where higher CO transitions appear to
peak. There is a drop off in emission for all the presented CO transitions
at approximately redshift 3.0. The specific features of the relations shown
in Figure 5.13[p. 163] are particular to the light cone which we analyse. An
improved measure of the relation can be recovered by averaging the 𝐽CO–𝑧
relations calculated from hundreds of different light cones. This averaging
of the relation would also place constraints on the variation in the relation
which could be expected from real observations. A sufficient number of
real observations to quantify this variation in the relation is unlikely to ever
exist and so can only be characterised from synthetic observations. With
the expected variation in the 𝐽CO–𝑧 relation quantified, a more meaningful
comparison to the ASPECS results could be performed. However, from a
qualitative comparison with our single light cone, we can see that the ASPECS
measurements recover approximately two orders of magnitude less emission
for a given redshift from what we present. This discrepancy can be easily
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understood when one considers that our synthetic observations are without
extinction and sensitivity limits. The overall shape of the distribution does
broadly agree.

In Figure 5.14[p. 164] we present the CO luminosity function, ΦCO, for the
first four CO transitions and for a range of different redshifts. Again we
include the conversion of CO (1 → 0) emission into a molecular Hydrogen
mass, which gives us the distribution of molecular Hydrogen mass content. To
construct these luminosity functions, we first produce a galaxy catalogue for
our light cone containing the galaxy’s total CO emission (𝐿CO) and redshift.
The redshift of a given galaxy, 𝑖, is calculated as the mean redshift of all the
gas associated with that galaxy, 𝑧𝑖. The galaxy to which a given gas cell is
assigned is determined from the original IllustrisTNG50 galaxy catalogue.
The CO emission for galaxy 𝑖 is calculated as 𝐴p(𝑧𝑖) ×

∑︁
𝑖, 𝑗 𝐸𝑖 𝑗 . As before,

𝐸 is a 1′′ × 1′′ resolution emission map; however, this map contains just a
single galaxy. The way in which we define the redshift ranges (to produce
luminosity functions at different redshifts) is as before, using Equations 5.36
and 5.37[p. 157], but with Δ ˜︁𝐷 = 1000 cMpc and Δ ˜︁𝑂 = 250 cMpc. We made
these choices to ensure a sufficiently large population of galaxies within the
redshift range and to avoid overcrowding of the figure.

The figure shows that there is indeed a redshift dependence on the luminosity
function. The function changes in two key ways. The first way is in the number
density: we find that the luminosity function sits higher in the parameter space
for higher redshifts. This conforms with what we observed in Figure 5.13[p. 163],
where there is, overall, more CO emission at higher redshifts. The second
change is the point at which the sharp drop off in emission occurs. Although
this drop off is approximately between 𝐿CO = 1010–1011 K km s−1 pc2 for all
transitions and all redshifts, it is clear that lower redshifts are at the lower end
of this range.

When comparing with luminosity functions produced from the ASPECS
observations, we find that our light cone contains galaxies with a higher (up to an
order of magnitude) total CO luminosity than the brightest galaxies in ASPECS.
The inclusion of extinction and sensitivity limits would introduce a horizontal
shift of the luminosity functions to lower 𝐿CO, reducing this discrepancy. Only
through an ensemble average of light cones and the inclusion of emission-
reducing mechanisms could we perform a true comparison to the observations.
However, ASPECS finds a variation of ∼1 dex in the luminosity at which the
drop off occurs (as determined by the 𝐿★ parameter of the Schechter luminosity
functions they constrain); we also commented on this finding in the previous
paragraph.

From the results we present here we can conclude that we observe higher
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Figure 5.13

We show the redshift dependence of the total CO emission for the first ten CO emission
lines (indicated on the colour bar). This data is based on the synthetic light cone shown in
Figure 5.12[p. 160]. The vertical axis on the right-hand side converts the CO (1 → 0) emission
into a molecular Hydrogen mass through the conversion factor 𝛼CO = 3.6 M⊙

(︁
K km s−1 pc2)︁−1

(Daddi et al. 2010). We note that this conversion is only valid for the CO (1 → 0) curve. The
vertical grey lines indicate the redshift boundaries of the individual cut-out volumes, which
are also seen in Figure 5.2[p. 134].
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Figure 5.14

We show the luminosity function for the first four CO emission lines (indicated in each
panel) based on the synthetic light cone shown in Figure 5.12[p. 160]. The multiple curves
in each panel correspond to different redshift bins. The midpoint redshift of each bin has
been used to colour the curve and is explicitly marked on the colour bar. The CO (1 → 0)
emission can be converted into a molecular Hydrogen mass through the conversion factor
𝛼CO = 3.6 M⊙

(︁
K km s−1 pc2)︁−1 (Daddi et al. 2010). We have added an additional axis on the

CO (1 → 0) panel to show the molecular Hydrogen mass.
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levels of CO emission when compared to the observations of ASPECS. This
in turn leads to higher amounts of predicted molecular Hydrogen. The
results we present here can be improved upon in two ways. The first is to
produce statistical relations based on the ensemble average of hundreds of
light cones: this would smooth out any features that are specific to a given
light cone and also constrain the expected fluctuations in the relations as a
result of field-to-field variation. The second improvement is to include effects
experienced by observations. That is, to include the effects of extinction and
of sensitivity limits. These ‘observational corrections’, would give a better
basis for comparison but could also reveal the extent to which the ASPECS
survey is altered by these effects. With these improvements, comparisons to
the observations would reveal if the synthetic CO observations we produce
agree with real observations. Discrepancies between the two could stem from
many sources: the IllustrisTNG50 models could indeed produce incorrect gas
density distributions, the assumptions and scaling relations we use to predict
CO emission could be inadequate, or there are additional mechanisms effecting
the ASPECS observations that have not been corrected for. Future work from
both synthetic and true observations, will in time uncover the answers.

5.5 Conclusions
In this chapter we create and study synthetic CO observations. This emission
traces the dense gas of the ISM, the medium from which stars form and into
which stellar feedback injects energy, momentum and matter. This medium
is also sensitive to different stellar feedback models and so by studying the
CO emission of a cosmologically representative volume and over cosmic time,
we can come to learn more about the relevant physical mechanisms of stellar
feedback.

The synthetic observations we produce are based on the IllustrisTNG50
simulation — a gravity+magnetohydrodynamical cosmological simulation
based on the moving mesh code AREPO. This simulation is the first in a
new class of cosmological simulations, aiming to overcome the traditional
compromise between simulation volume and resolution. IllustrisTNG50
simulated a volume of 51.73 cMpc3 and has a median radius of ∼100–140 pc
in star-forming gas cells (over cosmic time). The resolution is sufficient to
recover detailed galaxy structure including spiral arms, bulges, and bars.

The observations we produce are designed to mimic those of ASPECS. This
is an ALMA sky survey studying the CO emission in the Hubble XDF, an area
covering ∼4.6 arcmin2. The redshift range captured by this survey is from 1 to
4. To construct observations with these specifications we must first construct a
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5 The synthetic ALMA UDF

synthetic light cone. We developed the code lightcone for this purpose. The
code pieces together volumes cut out of the simulation snapshots to produce
a complete volume corresponding to a 2.5′ × 2.5′ field of view and redshift
range 1–4. The code performs the following steps:

1. each snapshot is assigned a redshift range within the light cone which
minimises the deviation from the snapshots inherent redshift

2. the ‘cut-out volume’ is defined for each snapshot with the height and
width corresponding to the field of view for the given redshift range and
a depth that spans the redshift range (i.e. a square frustum in comoving
coordinates)

3. gas cells that fall within this cut-out volume are selected for use in the
light cone.

In the final step, care is taken to reduce possible artifices that result from
imaging the same volume at different stages of its evolution: the code randomly
rotates the simulation volume about its three axes and the cut-out volume is
randomly centred.

The CO emission expected from the selected gas cells is predicted using
despotic — a chemical, thermal, and statistical equilibrium code which
calculates the state of interstellar clouds and their observable emission. From
the simulation we provide despotic with the Hydrogen volume and surface
density; the local SFR surface density, for scaling an assumed background
radiation field; the abundance of Helium, Carbon, and Oxygen; and the
metallicity, for scaling assumed dust properties. The position within the light
cone provides the redshift. In principle, we could run despotic on all the
selected gas cells, but in practice this would be computationally prohibitive.
We instead produce an optimised lookup table. This lookup table is an 8D array,
one dimension for each of the properties listed above, with 20 coordinates
along each dimension. The choice in coordinates is such that they are closer
together in regions of the parameter space where more of the gas cells lie,
giving more accurate results for the majority of gas cells. A lookup table with
208 elements could not be generated in full; however, correlations between the
various quantities mean that many regions of the table would never be used
(e.g. low Hydrogen volume density with high Hydrogen surface density). In
fact, we find that at most only 0.06 per cent of the table would ever be used.
Using the properties of the gas cells that form the light cone, we interpolate
the lookup table to recover the CO emission.

We present the results based on a single synthetic light cone. A high
resolution image of the field of view reveals the detailed galaxy structure, as
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mapped out by CO emission. This detailed galaxy structure is visible because
of the high spatial resolution of the IllustrisTNG50 simulations. Unfortunately,
true observations would be unable to see this detail and all further analysis is
carried out on 1′′ × 1′′ resolution images: this is a resolution comparable to that
of ASPECS. We show both the variation of total CO emission as a function of
redshift (for different CO transitions) and CO luminosity functions (for different
CO transitions and at different redshifts). These relations were also converted
into molecular Hydrogen mass content through an 𝛼CO conversion factor.
The forms of these distributions are not unreasonable; however, qualitative
comparisons to the ASPECS observations show that we over predict the amount
of emission and therefore molecular Hydrogen content. This discrepancy could
be reduced by the inclusion of sensitivity limits and the effects of extinction.
The best comparisons will be made based on statistical relations calculated
from the average of an ensemble of light cones. The relations calculated in
this way would be free from the particular features of a given light cone and
give the range within which variation could be expected. Future work, based
on the improved statistical relations could highlight possible inadequacies in
the IllustrisTNG50 models, our assumptions in prediction CO emission, or in
the real observations themselves.
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6
Conclusion
The aim of this work was to improve our understanding of star formation. This
is, of course, a massive undertaking that cannot be achieved in a single thesis;
however, though a collective effort of many research groups and collaborations
across the world, for many decades past and for many decades to come, this is
a goal that will be achieved. Therefore, in this work we present our findings, if
not complete answers, that will in time help towards this objective.

In Chapter 3[p. 47] and Chapter 4[p. 99], we study the nature of SFR tracer
emission lifetimes, which in combination with the KL14 principle, can place
constraints on the evolutionary timeline of star formation. This includes
constraints on molecular cloud lifetimes, the duration of cloud destruction by
feedback, and the integrated cloud-scale star formation efficiency.

The KL14 principle (with associated code, heisenberg), is a new statistical
method which can measure the relative durations of different evolutionary
phases of the star formation process from emission maps tracing these phases.
This is achieved by quantifying the spatial decoration between the emission
tracers and the abundance of emission peaks in each tracer. The method is,
however, reliant on a reference timescale to convert these relative durations
into an absolute evolutionary timeline. Stellar emission is closely tied to
stellar mass, which also dictates stellar evolution. This means that SFR tracer
emission effectively has a built-in clock governed by the physics of stellar
evolution.

Although it is widely accepted that SFR tracer emission has a lifetime, a
concrete definition for the lifetime is not. The work we present in Chapter 3[p. 47]

uses the KL14 principle itself with synthetic SFR tracer maps and reference
maps (a map with a known age) to define these SFR tracer lifetimes. The
benefit of a method that uses the KL14 principle is that the lifetimes will be
self-consistent within the framework of the KL14 principle. That is, we will
provide reference timescales that are appropriate for observational applications
of the KL14 principle.

The synthetic SFR tracer maps we produce are based on a near-𝐿★, isolated,
flocculent spiral galaxy simulated using P-Gadget-3. Using the stochastic SPS
code slug2 and the properties of the star particles within the simulation, we
produce synthetic emission maps of H𝛼 emission (with and without continuum
subtraction) as well as 12 UV filters (from GALEX, Swift, and HST). With
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6 Conclusion

slug2, we have the freedom to choose the stellar evolutionary tracks which are
used in defining the SPS assigned to each star particle and therefore its emission.
This allows us to explore the effects of metallicity on the emission lifetimes.
We find that with decreasing metallicity the emission lifetime increases. For
convenience we also provide analytic functions that can be used to calculate
the emission lifetime based on the metallicity and properties of the emission
filter. Another important environmental factor we test is the effects of low SFR
surface densities. This results in a stochastically sampled IMF. We find that
only the emission lifetime of H𝛼 is altered, as this emission is only produced by
the most massive stars. The reduction in the measured emission lifetime with
decreasing SFR surface densities can be related to the probability of finding a
sufficiently massive star given the mass of the star forming region.

The emission lifetimes we provide here have already been used in the first
observational applications of the KL14 principle (Chevance and author 2019;
Chevance, Kruijssen et al. 2019; Hygate et al. 2019; Kruijssen, Schruba,
Chevance et al. 2019; Ward et al. 2019), demonstrating their usefulness and
effectiveness in constraining the physics driving molecular cloud life cycle.
However, one may have concerns regarding the accuracy of the lifetimes
we provide. Further work on emission lifetimes could be done to test the
possible impact of using different stellar evolutionary tracks. Repeating the
experiments on different types of galaxy simulations and of different galaxy
types, could also aid in the improved understanding of the lifetimes of SFR
tracer emission. The greatest benefit would, however, come from further
companions to observational data. In particular, observations where other
means of constraining a reference timescale exist. In Chapter 3[p. 47] we present
the first and (currently) only possible observational test of these emission
lifetimes and are encouraged by the results.

In Chapter 4[p. 99] we addressed the possible effects of dust extinction on
the emission lifetimes we found in Chapter 3[p. 47]. Although extinction does
not alter the underlying emission lifetime, it can act to alter the emission
lifetime that we measure. We use a similar approach to the method presented
in Chapter 3[p. 47], but perform the analysis on a Milky-Way-like disc galaxy
simulation. From previous work we found that, although on large scales the
simulation agrees with observational constraints, the implemented feedback
mechanisms are insufficient to disperse molecular clouds surrounding sites
of star formation. This means we can use the simulation as a limiting case;
this is the maximum extent in which emission lifetimes could be altered by
extinction.

At high levels of extinction, where the mean galactic surface density
is Σgas ≳ 20 M⊙ pc−2, we find (as expected) that with increasing levels of
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extinction the measured emission lifetimes decrease. However, low levels of
extinction can in fact act to increase the measured emission lifetime. Our
results show that with low levels of extinction, emission in the simulated galaxy
is preferentially removed from the brightest star-forming regions. This change
in the emission distribution, resulting in heisenberg’s statistical analysis to
interpret the extincted emission map as having an increased duration with
respect to the unextincted emission map. We also find that non-zero sensitivity
limits in the observational data can act to compound the effects of extinction,
reducing the measured emission lifetime further.

The work in Chapter 4[p. 99] constrains the extreme limits on the effects
of extinction on the emission lifetimes. This is important knowledge for
understanding the extent to which measurements made by KL14 principle
could be affected. However, performing a similar analysis based on simulations
with improved feedback physics would help to better constrain these limits.
Ideally observational tests based on galaxies that could be reliably corrected
for extinction would help to validate our findings.

In Chapter 5[p. 125] we create and study synthetic CO observations. The
ISM plays an important role when it comes to star formation and feedback.
Stars born from the dense molecular gas within the ISM later return energy,
mass and momentum back to the ISM through stellar feedback. The study
of the molecular gas within the ISM, through CO observations, is key to
understanding the physics of these processes.

Instead of studying a single galaxy, we create synthetic observations for
a 2.5′ × 2.5′ field of view and spanning a redshift range 1–4. This is to
mimic the real observations performed by the ASPECS project, an ALMA
survey of gas (though CO emission) in the Hubble UDF. To create our
synthetic counterpart, we use the cosmological simulation IllustrisTNG50.
IllustrisTNG50 is a gravity+magnetohydrodynamical cosmological simulation
based on the moving mesh code AREPO and a new class of simulations
designed to overcome the traditional compromise between simulation volume
and resolution. The simulation volume is 51.73 cMpc3 and has a median
radius of ∼100–140 pc in star-forming gas cells.

The simulation snapshots cannot be used directly to form our observations:
we must first produce a synthetic light cone. For this purpose we developed
the code lightcone. This code stitches together small volumes from the
simulation snapshot that together form a complete volume that has a (redshift
dependent) height and width corresponding to the field of view and a depth
that spans the required redshift range. The properties of the gas that fall
within these smaller volumes are used in combination with a lookup table to
interpolate the expected CO emission.
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We create the lookup table using despotic, a code developed to calculate
the state of interstellar clouds and their observable emission. The table is 8D,
one dimension for each of the key properties: Hydrogen volume and surface
density, SFR surface density, abundance of Helium, Carbon, and Oxygen,
metallicity, and redshift. This table is optimised for the IllustrisTNG50, by
selecting coordinates within the parameter space that reflect the distribution of
the properties and by ignoring unphysical regions of the parameter space.

Based on a single light cone, we present results of the 2.5′ × 2.5′ field of view
showing the distribution of CO emission within a galaxy population; the high
spatial resolution of IllustrisTNG50 also allows us to see the distribution of
CO emission within the galaxies themselves. However, the angular resolution
required to see this level of detail cannot be matched by observations and
so the analysis of our synthetic CO observations is carried out on 1′′ × 1′′
resolution images, which matches the angular resolution of ASPECS. Initial
results show that we over predict the amount of CO emission; although, the
inclusion of the effects of extinction and a sensitivity limit would decrease
this discrepancy. The statistical relations we present, showing the change in
the total CO emission with redshift and CO luminosity functions could be
improved by averaging the relations from hundreds of different light cones.
Through this averaging we would remove features specific to a given light
cone and would be able to characterise the limits within which we would
expect true observations to fall as a result of field-to-field variation. Through
these improved relations, we could conduct meaningful comparisons between
synthetic and real observations, informing us about the adequacy of the models
used within IllustrisTNG50 and our assumptions in modelling CO emission.

Through the study of synthetic SFR tracer observations we have provided
insight into the nature of the emission lifetimes of these tracers. These lifetimes
can help constrain the physics driving the molecular cloud life cycle. Through
the study of synthetic CO observations, we have quantified the distribution of
CO emission over cosmic time. These will inform us about ISM properties
and provide an understanding of the key stellar feedback mechanisms.
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