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Abstract

Diffusion is the major short-range transport mechanism in living cells. Within individual compartments
of a eukaryotic cell, such as the nucleus, mitochondria or the cytosol, biological macromolecules find
their targets mostly by thermally driven random motion. For instance, specific access of DNA-binding
proteins to their target sequences in the genome occurs through a sequence of three-dimensional diffusion,
DNA-binding and one-dimensional search events on the DNA. The DNA/chromatin network in the cell
nucleus thus has two effects on protein diffusion: obstruction due to crowding and accelerated association
to specific sequences through guided diffusion along the DNA chain. The problem of target finding of
proteins in the cell nucleus is only one example of diffusion-controlled reactions in a dense polymer
network. Outside the direct relevance for molecular and cellular biology, the study of diffusing particles
in viscoelastic media has important applications in many fields of physics. By recording fast image series
of two-dimensional sections of live cells, we monitor these diffusion processes in real time and gain
better understanding of the underlying physics. The method used is light sheet fluorescence microscopy
followed by auto (-cross) correlation analysis. We particularly studied the random motion of chromatin
and its interconnection with nucleoplasmic A-type lamins. Utilizing this method, we find that

1. Nucleoplasmic lamin As and chromatin show significant co-mobility, indicating that their motions
are interconnected in the nucleus.

2. The random motion of histones H2A within the chromatin network is subdiffusive, i. e. the effective
diffusion coefficient decreases for slow timescales. Knocking out lamin A changes the diffusion
back to normal. Thus, lamin A influences the dynamics of the entire chromatin network.

3. A-type lamins affect the spatial organisation of chromatin inside the cellular interior

We have also attempted to develop a modelling framework that describes chromatin dynamics within the
cell nucleus in the presence and absence of nucleoplasmic A-type lamins. Our conclusion is that lamin A
plays a central role in determining the viscoelasticity of the chromatin network and helping to maintain
local ordering of interphase chromosomes. These findings enabled us to derive a qualitative description
of diffusion based on the viscoelasticity of the cellular environment.



Zusammenfassung

Diffusion ist der wichtigste kurzstreckige Transportmechanismus in lebenden Zellen. In einzelnen Kom-
partimenten einer eukaryotischen Zelle, wie dem Kern, den Mitochondrien oder dem Zytosol, finden
biologische Makromoleküle ihre Ziele meist durch thermisch angetriebene Zufallsbewegung. Zum
Beispiel erfolgt der spezifische Zugriff von DNA-bindenden Proteinen an ihre Zielsequenzen im Genom
durch eine Abfolge von dreidimensionaler Diffusion, DNA-Bindung und eindimensionaler Suche auf der
DNA. Das Problem der Zielfindung von Proteinen im Zellkern ist nur ein Beispiel für diffusionskontrol-
lierte Reaktionen in einem dichten Polymernetzwerk. Außerhalb der Relevanz für die Molekular- und
Zellbiologie hat die Untersuchung von diffundierenden Partikeln in viskoelastischen Medien wichtige
Anwendungen in vielen Bereichen der Physik.

Indem wir schnelle Bildserien von zweidimensionalen Abschnitten lebender Zellen aufzeichnen, können
wir diese Diffusionsprozesse in Echtzeit überwachen und gewinnen ein besseres Verständnis der ihnen
zugrunde liegenden Physik. Die hier verwendete Methode ist die Lichtscheiben-Fluoreszenzmikroskopie,
gefolgt von einer Auto- (Kreuz-) Korrelationsanalyse. Wir untersuchten insbesondere die zufällige
Bewegung von Chromatin und dessen Verknüpfung mit nukleoplasmatischen Typ A Laminen. Mithilfe
dieser Methode fanden wir, dass:

1. Nucleoplasmische Typ A Lamine und Chromatin zeigten signifikante Co-Mobilität, was darauf
hinweist, dass ihre Bewegungen im Kern miteinander verbunden sind.

2. Die ungeordnete Bewegung der H2A Histone innerhalb des Chromatin-Netzwerks ist subdiffusiv.
Durch Ausschalten des Lamin A Gens wird die Diffusion wieder normalisiert. Somit beeinflusst
Lamin A die Dynamik des gesamten Chromatin-Netzwerks.

3. Typ A Lamine beeinflussen die räumliche Organisation des Chromatins im Zellinneren.

Zusätzlich haben wir angestrebt, ein Modell-Framework zu entwickeln, das die Chromatindynamik
innerhalb des Zellkerns in Gegenwart und in Abwesenheit von nukleoplasmatischen Typ A Laminen
beschreibt. In diesen Modellierungen zeigte sich, dass Lamin A eine zentrale Rolle bei der Bestimmung der
Viskoelastizität des Chromatin-Netzwerks spielt und dabei hilft, die lokale Anordnung der Interphasen-
Chromosomen aufrechtzuerhalten. Diese Ergebnisse ermöglichten es uns, eine qualitative Beschreibung
der Diffusion auf der Grundlage der Viskoelastizität der zellulären Umgebung abzuleiten.
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INTRODUCTION



1 Introduction

The mystery of random motion of particles has been one of the central focuses of natural and exact
scientists since the early 19th century. First observed by Dutch physician, Jan Ingenhausz, while studying
the movement of finely ground carbon particles in uncovered alcohol around 1785 [1], it was Robert
Brown ∗ , a Scottish botanist, who systematically reported a jittery irregular motion of pollen that fell
in dew drops [2]. In his account, he found that inorganic grains also demonstrated the same kind of
movements in suspension, disputing the prevalent idea at the time, which presumed a living origin of
the motions. This "peculiar" character in the motion of particles in suspension, as Brown called it, held
the key to many great advancements in modern condensed matter physics i. e. the confirmation of the
molecular nature of matter; the demonstration of the importance of thermal forces; and ultimately the
acceptance of statistical physics as a valid alternative to the conventional ’world-view’ at the time [3].
To understand the context, it is important to realise that many physical scientists of this pivotal period
did not assume the discontinuity of the matter which is beneath the visible reality. Therefore, the very
existence of molecules, ions and atoms was a subject of debate [4].

1.1 The story of a belated theory

It was not until the first decade of the 20th century that a robust mathematical description of this irregular,
seemingly inexhaustible motion was proposed. In his landmark paper entitled "On the motion of small
particles suspended in liquids at rest" from 1905 [5], Albert Einstein proposed a new way to quantify
and describe "Brownian molecular motion", a name also coined by him †. He assumed an equilibrium
between an imaginary force imposed on a particle in the form of a small sphere and the force of osmotic
pressure due to the diffusive current of particles. Therefore, he derived an expression for the so-called
diffusion coefficient of the suspended particles which, except for universal constants and the absolute
temperature, solely depends on the physical properties of the solvent (viscosity) and on the size of the
particles(equation 1.1).

D =
RT
N
·

1
6πηvisca

=
kBT

6πηvisca
, (1.1)

Where, according to the notations he used in [5], R is the universal gas constant, T is the absolute
temperature, N is the Avogadro’s number, ηvisc is the viscosity coefficient of the solvent, a is the radius of
the spheres and kB = R

N is Boltzman’s constant.

The difficulty then was to find a quantity that could describe the disordered motion of the particle in terms
of its diffusion coefficient. There had been many failed attempts to quantify this motion by considering the
average velocities of the particles in experiments. Einstein, though, appealed to a probabilistic description
of the diffusive motion by considering the mean squared displacements of particles in a given time. He
solved the celebrated Fick’s diffusion equation with D as the constant coefficient ( ∂ f (x,t)

∂t = D∇2 f (x, t) for
f (x, t) as the density of particles at position x at time t, assuming f (−x, t) = f (x, t) and 〈x〉 = 0). As a result
he showed that the mean squared displacement of particles (〈x2(t)〉) moving in a d-dimensional space is
growing linearly in time based on the equation 1.2 [6]:

x2 = 〈x2(t)〉 =
∫

x2(t) f (x, t)dx = 2dDt, (1.2)

∗ Adolphe-Thédore Brongniart had published similar observations in his memoir one year prior Brown. Brown mentioned his work
and made some critical comments about it in his letter
† Reportedly Einstein did not have access to Brown’s original work. [1]
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It is worth mentioning that an equivalent description of random motion was presented in the doctoral
thesis of the French mathematician, Louis Bachelier [7] in 1900, five years prior Einstein studies. He
applied the same approach, which later became known as the theory of random walks ∗, to explain the
fluctuation of stock prices. However, Einstein seemed not to be aware of Bachelier’s studies.

The publication of Einstein’s results, and later independent works of Marian Smoluchowski and Paul
Langevin, paved the way for further developments in the theory of stochastic motion in next decades. On
the other hand, before their theoretical works, experimentalists were quite confused in treating Brownian
motion. They simply did not know what to measure. But after 1905, the theory provided a clear clue for
precise and meaningful measurements. Especially after Paul Langevin called for more controlled measure-
ments with grains of known size, Jean Baptiste Perrin, a French experimental physicist and Langevin’s
close friend, designed a series of clever experiments to follow motion trajectories of small suspended
putty particles and he managed to estimate Avogadro’s number with surprising accuracy(70.5 × 1022).
More importantly, these simple reproducible experiments provided a firm observational ground for the
theorists’ predictions and consequently settled a century long dispute, against "the ambient scepticism" [8],
between high profile scientists over the existence of atoms†.

359

l’expérience, on aura deux moyens nouveaux et dis-
tincts de vétifier les hypothèses sur lesquelles elles se
fondent et d’obtenir les grandenrs moléculaires.

40. - La discussion des travaux antérieurs ren-
dait plus que douteuse la première de ces deux équa-
tions, et, en ce qui regarde la seconde, on n’avait

jamais même essayé de mesurer des rotations. Pour-
tant, comme j’avais des grains de ra-voii 1 bien connu, je
résolus de tenter une vérification précise.

Je m’occupai d’abord des translations. M. Chaude-
saigues voulut bien se charger des pointés relatifs aux
grains de gommc-gutte de rayon égal à 003BC,212. D’au-
tre part, avec l’aide de M. Dabrowski, je fis des poin-
tés analogues sur des grains de mastic de rayon égal
u 003BC,52.

Les rayons éclairants, issus d’un bec Auer, étaient
filtrés par une cuve pleine d’eau. La préparation était
noyée dans l’eau, et l’on observait it immersion,
notant avec soin la température. L’un des observateurs
faisait à la chambre claire les pointés, au commande-
ment de l’aufre, par exemple de 50 en 50 secondes.
L’examen de 5000 déplacements environ a montré sans
conteste que la formule d’Einstein est rigoureusement
exacte, donnant pour N la valeur -71,5 . 102B pres-
que égale a celle 70,5 . 1022 que j’avais obtenue par
la méthode si différente qui consiste à étudier non
l’agitation des grains, mais leur distribution. La

moyenne 71 - 1022 serait acceptable.
Le triomphe de la théorie cinétique, donnant le même

nombre par des routes différentes, est manifeste.

Fig.5.

11. - Sur la figure ci-jointe on voit, a un gros-
sisseu1cnt tel que 16 divisions du quadrillage rcpré-

sentent j0 l1litrons, trois dessins obtenus en traçant
les segments qui joignent les positions consécutives
d’un même grain de mastic, de rayon égal à 003BC,32.
pointé de trente en trente secondes. C’est le carré

moyen de la projection sur un axe de tels segillents
qui vérifie la formule d Einstein.

Ces dessins ne donnent qu’une idée très affaiblie
du prodigieux enchevètrement de la trajectoire réelle.
Si, en effet, on faisait des pointés de seconde en

seconde, chacun de ces segments rectilignes se trou-
vcrait remplacé par un contour polygonal de trente
côtés relativement aussi compliqué que le dessin ici

reproduit, et ainsi de suite.
Les mouvements ainsi observés sont l’image fidèle

des mouvements moléculaires, oit meiux ce son dejà
des mouvements moléculaires, au 111èlne titre quc
l’infra-rouge est déjà de la lumière.

12. - Pour varier les conditions, j’ai cherché, et
j’ai réussi à préparer des grains beaucoup plus gros
que ceux qui m’avaient servi jusqu’alors, dont les
diamètres s’éehelonnaient entre le quart de micron ct
micron. Pour cela, j’ai fait arriver lentement de l’ean,
par un entonnoir à pointe effilée, sous une solution

alcoolique de mastic. Les grains qui se forment alors
dans la zone de passage ont couramment un diamètre
d’une douzaine de microns, diamètre qui se mesure

directement à la chambre claire, et sont donc envi-
ron 100000 fois plus lourds que les plus petits de
ceux qui m avaient servi. Pour que ce poids ne les
maintienne pas sans cesse au contact immédiat du

fond, je les ai observés dans une solution d’urée a
27 pour 100 qui a presque leur densité, et dont la
viscosité vaut 1,28 fois celle de l’eau pure. J’ai ainsi
constaté que la formule d’Einstein s’applique cncorc,
ce rlui donne une vérification très étendue de

l’équipartition de l’énergie.
13. - Mais, de plus, en raisoii (IC la grosseur de

ces grains, et parce que certains d’entre eux coll-

tiennent heureusement de petits défauts (lui servent
de point de repère, j’ai pu constater el mesurer leu r
rota tion. 

Pour cela, je pointais à intervalles de temps égaux
la position de certains défauts, ce qui permet ensuite,
a loisir, de fixer quelle était l’orientation de la sphère
à chacun de ces installts, et de calculer approximati-
vement sa rotation d’un instant à l’autre. Leb cal-
culs numériques, appliqués a emiron 200 mesures

d’angle faites sur des sphères avant la,j- de diamètre.
m’ont donné pour N. par application de la formule
d*Eiiistein, la valseur 65. 1022, alors que la valeur pro-
hahlelnent exacte est 70,3. .1022. En d*autre., termes,
si l’on part de cette dernière valeur de oii prévoit,
en degrés, pour Vw2 par minute, la valeur

14°

et l’on trouve expérimentalement 14°.3. 

Figure 1.1: Typical Brownian motion trajectories recorded by Jean Perrin in 1909 [9]. The image is taken
from the original paper.

∗ The concept of random walk was introduced by Karl Pearson in a query sent to Nature in 1905 [Pearson1905a] and Lord Reyleigh
provided a solution in the same issue
† This was part of his work which ultimately landed him a Nobel prize in 1926.
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This experimental proof of random walk approach to Brownian motion also drew a direct link between
the microscopic dynamics of small particles in suspension, through their mean squared displacement,
and macroscopic quantities like the diffusion coefficient, or the Avogadro’s number; between discrete
random walks and continuous diffusion. It has been capable to effectively explain the transport processes
which have some element of randomness. Basically to derive the diffusion equation, the starting point
of nearly all analysis of transport lies in a random walk model. The true interdisciplinary nature of this
formalism can be seen in its vast applications in different scientific disciplines from polymer physics
to astrophysics and biology and from mathematics to finance and engineering. As a result, Brownian
motion has been extensively studied, particularly in the second half of the last century [10]. However,
many questions have emerged since dealing with complex systems within these disciplines, calling for
modern treatments.

1.2 Anomalous diffusion

The linear time dependence of the mean squared displacement in equation 1.2 is an immediate conse-
quence of the central limit theorem and stochastic nature of the underlying random processes. This main
characteristic of Brownian motion is not valid anymore, when the assumption of central limits theory
breaks down. In this case, random walks exhibit a different behaviour where this quantity is not linearly
dependent on time. To understand this behaviour, we need to recall that relaxation processes in dynamical
systems. Classically, they can be described in term of the exponential function [11]

φ(t) = e−
t
τ , t > 0, (1.3)

where τ is the time required for the system to reach equilibrium. This equation is often referred to
as the Maxwell-Debye relaxation [11–13]. It is derived from the solution of the relaxation equation
d
dt φ(t) = −τ

−1φ(t)with the normalised initial condition φ(0) = 1. Now let us consider normal diffusion as
a standard Markovian model, in which the spreading of random walkers are determined by the diffusion
equation with K as the diffusion constant

∂P
∂t
= K

∂2

∂x2 P(x, t), (1.4)

The solution of this equation would give us the probability density function (PDF) P(x, t) in the form of a
normalised Gaussian distribution

P(x, t) =
√

4πKt · exp(−
−x2

4Kt
), (1.5)

And by considering the Fourier transform of P (P∗(k, t)), a relaxation function can be then defined through

φ(t) = P∗(k, t) = eKk2t , t > 0, (1.6)

complying with Maxwell-Debye pattern. However, this relation is not always applicable when investi-
gating the dynamical properties of disordered complex systems. These systems which were accurately
described as "structures with variations" by Goldenfeld and Kadanoff [14], are highly sensitive to the point
of view of the observer i. e. the scale of observation. They consist of a diverse collection of elementary units
which are strongly interconnected. This correlated disorder of the medium affects the nature of diffusion
process, making it anomalously faster or slower. It can also induce memory effect to the transport process
and therefore, the evolution in time within these systems deviates from the corresponding standard
laws, such as Eq. 1.3 [1, 15]. As a result, the diffusion process in complex systems might not obey the
Gaussian statistics anymore, implying the breakdown of central limit theorem (CLT). Subsequently, the
mean squared displacement (MSD) would no longer be linear in time, giving rise to what is called an
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anomalous diffusion. In this study, we will focus on the case where CLT fails due to broad distributions
or long range temporal correlations (non-Markoffian processes). This is the most common anomalous
behaviour and can be defined by a power-law formulation

〈x2(t)〉 ∼ Kαtα, (1.7)

where α is a real positive number and Kα is the generalised diffusion coefficient with the dimension
[Kα] = m2/sα and inherently depends on anomalous diffusion exponent ∗ (α). As the mostly non-Gaussian
statistics of underlying microscopic processes in complex systems dictates, this type of anomalous
diffusion lies on the assumption of the Lévy-Gnedenko-Kolmogorov generalised limit theorem for the
sums of independent and identically distributed random variables without the hypothesis of finite
variance [16–20]. As a result of this treatment, we can obtain the exponent α, or anomaly parameter,
which characterises different domains of anomalous transport as summarised in Figure 1.2.

Figure 1.2: Mean squared displacement for different categories of anomalous diffusion.

Different modes of anomalous diffusion

On the macroscopic level enhanced diffusion i. e. superdiffusion where α > 1 has a more dominant role. In
particular, the domain 1 < α < 2 or the sub-ballistic category has been extensively studied and recognised
in different areas e.g. spreading of infectious diseases and parasites [21, 22], intracellular transport by
protein motors, cell migration on monolayers [23, 24] and internal vacuoles mobility in the cytoplasm of a
family of pathogens [25]. It is also commonly observed in the study of bulk-surface exchange in porous
media e.g. glasses [26], transport in turbulant plasma [27] as well as population’s mobility pattern [28].
Two interesting examples of the latter are the famed flight pattern of an albatross [29, 30] and spider
monkeys’ motion trajectories [31]. In a recent study, it was successfully shown that a superdiffusive
process almost at the ballistic limit (α = 2) governs the behaviour of the members of the parliament for
Brazilian Chambers of Deputies [32]. Ballistic diffusion can be described by the wave equation and active
transport [11, 33] and on average it behaves as a Newtonian motion with constant velocity. Processes with
an anomaly parameter greater than two (α > 2) are also prevalent in chaotic and far from equilibrium
systems. Historically it was the first type of anomalous diffusion that has been reported by Richardson in
his treaties on pair diffusion in fully developed turbulence in 1926 [1, 34, 35].

Another type of anomalous diffusion which is the main focus of our study is subdiffusion where α < 1.
Montroll and Scher theoretically examined this domain of anomalous diffusion for the first time, in
their study of the dispersive transport in amorphous semiconductors [1, 36]. Their continuous time
random walk approach provided an accurate description of observed phenomena in numerous exper-
iments [37–43]. It was the beginning for elaborated investigations of systems exhibiting subdiffusive
∗We refer to it as anomaly parameter in this monograph.
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dynamical behaviours. For example, the diffusion of hydrogen in metals [44], charge carrier transport in
semiconductor alloys [37, 41–43], the motion of bright spots on the Sun [45], the time-dependent transport
of cosmic rays [46–48], the dynamics of a bead in a polymeric network [49, 50], or protein transport in
cells and the crowding effect [21, 51–54]. The emergence of subdiffusion is prominently attributed to the
crowding-induced viscoelasticity of the environment [21] and therefore it can be used as a tool to extract
physical quantity of a complex medium and describe its heterogeneity [55].

1.3 Cell as a model system

Higher spatial and temporal resolution, brought on by the technical advancement of experimental setups,
significantly facilitated the exploration of structural and dynamical properties of complex systems. As a
result, random motions, which have been more widely observed in these systems, became a subject of
increased interest. In particular, the recent progress in light microscopy and labelling techniques have
given rise to numerous studies of different regimes of diffusion and transport mechanisms (Figure 1.3) in
biological systems and cellular interior.

Figure 1.3: Schematic of different types of diffusion in a cell

Despite being the subject of extensive research in life sciences, very little is known about many basic
aspects of cell as the main constituent of living organisms. For this reason, it is one of the most suitable
platforms for physicists to study a variety of phenomena prevalent in complex systems.

The interior of eukaryotic cells ∗, such as mammalian cells, which are typically between 10 µm and
100 µm [56], is filled with a concentrated aqueous solution called cytoplasm. Proteins, sugar molecules,
lipids, salt ions and other solvents are dissolved in this seemingly unstructured liquid. However, upon
closer examination, it becomes clear that cytoplasm is indeed structured in many length scales. From
organelles like the mitochondria, endosomes and Golgi apparatus in µm scale to 100 nm scale of endoplas-
mic reticulum (ER), microtubuli and actin filaments [53]. This collection of cellular compartments with
their specific functionalities, together with cytoskeleton, produce a dense viscoelastic network through
which interacting biomolecules must navigate [57, 58]. This crowded environment was revealed by
electron microscopy studies of cells (illustrated in Figure 1.4). [58, 59]

Cells are dynamically reorganising themselves during their normal functions such as division, adhesion
and motility, thanks to their adaptive cytoskeleton network. At the same time, all of these functions
affect intracellular compartments and, more specifically, cause structural reorganisation within the

∗ There are two categories of cell types: prokaryotic (bacteria and archaea) and eukaryotic. eukaryotes have a nucleus enclosed
within a membranes unlike prokaryotes which have no membrane-bound organelles
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Figure 1.4: A resolved electron microscopy image of a eukaryotic cell showcasing the shape of different
organelles

nucleus, which contains genomic material and is the largest organelle of a eukaryotic cell [57]. Still,
the mere existence of an architecture similar to the cytoskeleton in the nucleus was disputed for half a
century [60]. The first hint at finding a resolution was the discovery of nuclear intermediate filament
(IF) proteins, named lamins, in 1978 [61]. Later, biochemical studies of the nucleus showed its complex
mechanical properties and this, added to the evidence of mechanical coupling of intranuclear structures
and cytoskeleton, strongly suggested the existence of a complex viscoelastic network, rivalling that
of the cytoskeleton, albeit stiffer ∗[62, 64]. This nuclear matrix, or nucleoskeleton, forms a crowded
environment that is highly organised and complex and one which actively influences the movement of
macromolecules. These characteristics, and the fact that the functional role of most nuclear structures
remains unidentified [57], renders nucleoplasm an interesting model study, not only in cell biology, but
also in condensed and soft matter physics.

Intranuclear dynamics

Each single nucleus of a eukaryote contains its whole genetic information, its genome, in one or several
DNA (deoxyribonucleic acid) molecules. DNA is a long, double-stranded polymer which is compacted
in the very limited volume of the nucleus. Therefore, it has to be tightly packaged and forms a higher
order structure called chromatin. To understand the magnitude of the discrepancy between the length
of DNA and the size of the nucleus, consider a human DNA which is around 2 m fits into a nucleus
having a typical radius of few microns, and it is occupying only 10% of it. Expression of each gene of this
massive genetic material is controlled by transcription and repression factors as well as the accessibility
of the gene for the necessary molecules. The chromatin spatial organisation within the nucleus further
regulates the gene expression [65]. Moreover, the dynamic movements of chromatin and its interaction
with other macromolecules that are abundant inside the nucleus, play a crucial role in gene regulation [66,
67]. However, the mechanism of this mobility and interaction is not very well understood. In fact, it
was only over the past 10 years that the conventional view of chromatin as a static regular structure has
shifted to a dynamic and highly variable configuration [68]. The dynamics that are driven both by binding

∗ The measured stiffness of nucleoskeleton for animal cells is roughly fivefold to tenfold higher than that of the cytoskeleton, making
it the dominant skeletal element in mammalian cells [60, 62, 63]
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of protein complexes as well as the physical effects including macromolecular crowding and depletion
attraction [65, 69].

Nuclear structures appear to be self-organising, and unlike cytoplasmic organelles, they are not bounded
by a membrane [66, 67]. In the interphase nuclei for example, chromatin is arranged in the nucleus with
loose spatial specificity. It is segregated into distinct gene-rich, less densely packed regions called euchro-
matin and inactive and transcriptionally repressed, compact regions referred to as heterochromatin [70,
71]. Proteinaceous nuclear bodies are scattered amongst these chromatin domains. Their functionalities
are the subject of active research but recently it was shown that substantial fraction of the genome displays
preferential organisation with respect to these nuclear bodies [72]. Nuclear bodies can act as hubs that
shape the overall packaging of DNA in the nucleus. Other cellular factors that read, copy and maintain
the genome are also organised in a rather sophisticated manner. Transcription factors, structural chro-
matin proteins and RNA processing factors are localised in specific nuclear domains. In addition to the
heterogeneous distributions of chromatin condensation and protein concentrations, the interconnection
with the nuclear matrix (nucleoskeleton) builds an intricate and dynamic network within the nucleus
through which macromolecules such as proteins, transcriptional activators, polymerases, repressors and
also RNA molecules must find their targets [70]. Understanding the nature of intranuclear dynamics is
indispensable for understanding nuclear functions like gene expression, DNA replication, recombination
and repair and RNA splicing [73].

A-type lamins

Figure 1.5: A-type lamins in the cell nucleus. A schematic drawing of the cell nucleus. Beside the lamin
structure in the lamina at the nuclear envelope, smaller molecules of A-type lamin can be
recognised in the nucleoplasm.

The major components of nucleoskeleton are lamin filament networks. They are the most studied and
characterised element of nucleoskeleton. This is due to the fact that over twenty human diseases ∗,
including dilated cardiomyopathy with variable muscular dystrophy, Dunnigan-type familial partial
lipodystrophy (FPLD2), Hutchinson-Gilford progeria syndrome (accelerated ageing disease) and Emery
Dreifuss muscular dystrophy are linked to the mutations in the LMNA gene, which is the one encoding
A-type lamins [60, 74, 75]. Mammals express A-type (lamin A and C) and B-type lamins (lamin B1 and B2).
The lamins first characterised biochemically as prominent 60 to 80 kDa proteins and ultimately identified
as intermediate filament (IF) proteins by sequence homology [61, 76–81]. Intermediate filaments are
assembled fibres with an average diameter between 6 to 12 nm. On the molecular level, A-type lamins

∗ Laminopathies
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generally resemble B-type lamins over the amino-terminal head and central rod domain but have an
expanded carboxy-terminal tail domain containing 90 unique amino acids [76]. Lamin proteins are the
major components of the peripheral nuclear lamina. They form a dense meshwork of filaments near
the inner nuclear membrane, which interacts with a large number of binding partners. They ultimately
form the nuclear lamina together with these binding partners . In addition to maintaining the structural
integrity of nucleus, it has been shown that lamins are involved in several other cellular functions
including chromatin reorganisation, DNA repair and nuclear assembly among others [82, 83].

Although A-type and B-type lamins can interact in vitro [84], they form separate, functionally distinct
filament networks. Other than the lamina network where the lamins are mostly concentrated, they are
also distributed throughout the nucleoplasm (Figure. 1.5). A-type lamins, in particular, were shown
to exist in different states within nuclear compartments. The assembly state of nucleoplasmic lamins
remains elusive as different studies found them either in a rather unstructured veil of proteins or short
fibrous structures [85–91]. It has also been shown that nucleoplasmic lamin complexes are considerably
more mobile than peripheral lamins [89–91]. Current data shows that most of the A-type lamins in the
nuclear interior exist in a mobile low-assembly state and differs significantly from their structure at
the nuclear periphery [92]. There has been many speculations around the functions of nucleoplasmic
lamins. From nuclear house keeping functions to scaffolding the chromatin and affecting the transcription.
Nevertheless, the exact functions of nucleoplasmic A-type lamins are still unknown.

1.4 Motivation and outline of the thesis

In order to understand a complex system, we are required to extract meaningful physical quantities.
For that we need to focus on the right level of parametrisation of the system and refine our questions.
In this monograph we analysed the dynamics of chromatin in the viscoelastic environment of nuclear
interior and examined its co-mobility and interconnection with nucleoplasmic lamin A. For this reason,
we employed all three modes of investigations (experimental, computational and theoretical) [14] to
answer two fundamental questions regarding nucleoplasmic A-type lamins:

1. Do nucleoplasmic A-type lamins interact with chromatin in live mammalian cells?
2. How do these proteins affect the viscoelasticity of intracellular environment and the nature of

diffusion of macromolecules ?

Characterising the diffusion of particles requires following their motion. This can be done on labelled
molecules in an optical microscope by exciting their fluorescence and detecting the emitted photons.
Then, the motion of single molecules can be followed by two principal approaches: tracking of individual
particles and analysis of their trajectories, or the statistical analysis of the fluctuations of fluorescence
intensity at fixed positions in the sample. The latter approach is known as fluorescence correlation
spectroscopy (FCS). Using light sheet illumination with a fast two-dimensional detector then allows
one to do these statistical analyses on each single image pixel of an entire plane simultaneously. This
technique can be extended to fluorescence cross-correlation spectroscopy (FCCS) to identify the comobility
between two molecules tagged by different fluorophores as well as spatial cross-correlation spectroscopy
to pinpoint the spatial arrangement and conformation of the tagged particle. The principle of fluorescence
(cross-)correlation spectroscopy will be introduced in Chapter 2 and in Chapter 3 the results of our
measurements in different systems will be presented.

Chapter 4 is dedicated to a simulation framework to describe the observed effect. In this simulation,
chromatin is modelled as a chain polymer undergoing Brownian dynamics. The chain dynamics is
described by the Langevin equation taking into account the effect of interconnection with A-type lamins
on the mobility of the chain.

Finally we conclude the thesis in Chapter 5 by discussing the results and offering a possible outlook for
further studies. Parts of this thesis is already published in [54].



2 Principles of fluorescence (cross-)correlation
spectroscopy

(
F(C)CS

)
Initially invented by Magde et al. to measure chemical reaction rates and binding of ehidium bromide onto
DNA [93], fluorescence correlation spectroscopy (FCS) has been developed to study the kinetics processes
through statistical analysis of fluctuations in equilibrium. To detect the fluctuation, a fluorescence signal
is coupled to different states of the system so any spontaneous fluctuation would result in a change
in fluorescence. These random fluctuations can be translated into an autocorrelation function, which
carries information on the characteristic time scales and relative weight of different transition in the
system [94]. With an appropriate model of the system dynamics, different kinetic rates can be quantified.
In our particular example, the random motion of fluorescently tagged particles causes fluctuations in
fluorescence signal and processing these fluctuations can unravel the diffusion dynamics in the sampling
volume. Figure 2.1 summarises the main principle behind this technique.

Figure 2.1: Illustration of the statistical analysis of fluctuations in FCS. (a) The sampling volume with
tagged particles diffusing at different rates. (b) The fluorescence intensity traces as measured
from the sample at (a), showing the fluctuation δF around the mean intensity 〈F〉. (c) Autocor-
relation functions g(τ) for both tagged particles where the decay times τdecay are defined as
τ = g(0)/2. The figure is taken from [95]

Although the principal ideas behind FCS and its application were well established in the 70s, the technique
was not sensitive enough to detect the fluorescence effectively, requiring high concentration of fluorescent
molecules [94]. It was with the introduction of the confocal illumination scheme in FCS in 1993 by Rigler
et al. [96] boosting the detection sensitivity to a single molecule level, that it started to gain back the
attention of the scientific community. This renewed interest resulted in many publications and short
reviews of the applications of FCS in different fields of physics and biology in the years after [94, 97–99].
Coupling FCS with light sheet fluorescence microscopy brought a larger field of view and simultaneous
detection of the signal at spatially apart positions of the sample [95, 100–104]. This is the method of choice
to analyse the dynamics of diffusing particles in the viscoelastic media in this thesis.

Combining FCS with other super resolution nanoscopy techniques has already attracted interests in
recent years, promising an even better characterisation of the dynamics of small molecules in foreseeable
future.
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2.1 Basic definitions

Autocorrelation function

Let us assume our sample contains only a few fluorescent particles at any time (N(t)). The detected
fluorescence intensity in the observation volume (F(t)) is then proportional to this particle number. Due
to the diffusion of the particle and presumption of normal Brownian motion, N(t) is fluctuating (δN(t))
around its mean 〈N〉.

N(t) = 〈N〉 + δN(t) ⇒ F(t) = 〈F〉 + δF(t) (2.1)

〈δN(t)〉 = 〈δF(t)〉 = 0,

Accordingly, we define the autocorrelation function as follows

g(τ) =
〈δF(t) · δF(t + τ)〉

〈F(t)〉2
=
〈F(t) · F(t + τ)〉

〈F(t)〉2
− 1 , τ > 0, (2.2)

where τ is the time lag and the averaging operation 〈·〉 is a time average

〈x(t)〉 = lim
T→∞

1
T

T∫
0

x(t)dt, (2.3)

An interesting characteristic of g(τ) is that it will be equal to zero in case of random white noise because
then the correlation function would be proportional to the noise fluctuation and is 0 for all different time
lags τ > 0. As is clear from its definition, g(τ) measures the similarity of the signal x(t) to itself (hence
the term "auto" in autocorrelation) by a shift in time x(t + τ). In the case of random Brownian motion of
particles, this function is non-zero over a given time (τD). It is the characteristic time that the particles stay
in the observation volume, called the dwell time. In the case of normal diffusion, this time is inversely
dependent on the diffusion coefficient of the particles (Eq. 1.2).

τD ∝

3
√

V2
obs

D
, (2.4)

During the dwell time, the self-similarity in the fluctuations appears as a decay of autocorrelation function
from g(0) > 0 to g(∞) = 0. The half-life of this decay can also be approximated from Eq. 2.3.
Knowing the Poissonian nature of fluctuations, a relation can be drawn between the autocorrelation
function at τ = 0 and the averaged number of observed particle.

g(0) =
〈δF2(t)〉

〈F(t)〉2
∝
〈δN2(t)〉

〈N(t)〉2
=

1
〈N(t)〉

, (2.5)

since the mean and the variance of a Poissonian event are the same (〈δN2(t)〉 = 〈N(t)〉).

Point spread function

One of the limitations of any optical setup is the diffraction of light at the apertures of its objectives.
Therefore, a point in the object plane is seen as a blurred circle or an airy disc in the detection plane. The
three dimensional shape of this airy disc is defined by the point spread function (PSFfl). Therefore the
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intensity distribution of the signal detected in the optical system is described by a convolution of the
distribution of fluorophores in the object plane (c(®r , t)with the PSFfl(®r) of the optical setup

I(®r , t) = c(®r , t)~ PSFfl(®r), (2.6)

It is possible to analytically approximate the point spread function using the Debye diffraction theory [105].
For this reason the numerical aperture (NA) of the system should be considered, which is directly related
to the focal length ( fobj) and the aperture diameter (dobj) of the lens or objective and the diffraction index
of the medium (n).

NA := n ·
dobj

fobj
= n · sin(α) ⇒ NA 6 n, (2.7)

Here 2α is the opening angle of the objective. The numerical aperture is an indicator of the focusing
power of the lens. We can now introduce new coordinate based on the NA of the system,

u ≡ u(z) =
2πNA2

nλ
· z and v ≡ v(x, y) =

2πNA
λ
·

√
x2 + y2, (2.8)

where λ is the wavelength of fluorescent signal. (PSFfl) then can be numerically approximated as modulus
squared of electrical field distribution around the focus h(u,v).

PSFfl(u, v) = |h(u, v)|2 (2.9)

In the z-plane and xy-plane, (PSFfl) would get a simplified analytical forms [95, 105].

PSFfl(u, 0) ∝
(4 sin(u4 )

u

)2

, PSFfl(0, v) ∝
(

2J1(v)

v

)2

, (2.10)

where J1(·) is a Bessel function of the first kind. From Eq. 2.10, it is possible to calculate the size of the
focus as the 1/e2 half widths wxy and wz of the central maximum

wxy ≈ 0.82 ·
λ

NA
, wz ≈ 2.80 ·

nλ

NA2 , (2.11)

This definition of (PSFfl) is the standard definition that is usually used in literature on fluorescence
correlation spectroscopy. We use this definition to characterise the point spread function of the light sheet
microscope system in the next section.

2.2 Modeling fluorescent light in a microscope

We will now consider a simplified fluorescen microscope model presented in Figure 2.2 to establish the
theoretical framework of FCS. Let assume that there are Nχ number of species χ in the sampling volume
Vobs. We define ®ri as the trajectory vector of ith particle for i = 1 . . . Nχ. These trajectories are not known per
se but their statistical characters, assuming they are undergoing random motions, can be well recognised
with functions like mean squared displacement function (MSD). The relation for the local concentration
distribution of χ can be written as

cχ(®r , t) =
1

Vobs
·

Nχ∑
i=1

δ (®r − ®r(t)) , (2.12)
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The particles are illuminated with an intensity distribution Iγ where γ denotes the detection channel and
the resulting signals from their excited state are detected in a detection objective by a probability defined
with a detection efficiency distribution Ωγ(®r). These two distributions are not observable independently
and therefore they are usually combined into a single function called "Molecular Detection Efficiency"
function (MDE)

MDE(®r) := Iγ(®r) ·Ωγ(®r), (2.13)

This function is proportional to the rate of the photons expected from a fluorophore at position ®r . For a
given optical setup, it is calculated from its PSFs. The geometry of the detectors (e.g. square pixels of a
camera) also plays a role in its determination. For confocal setups, 3-dimensional symmetric Gaussian
function with width wγ and height zγ gives a reliable approximation of PSF f luo. Hence, MDE

MDEconfocal,γ(®r) = I0 · exp

(
2 ·

x2 + y2

w2
γ

− 2 ·
z2

z2
γ

)
, (2.14)

Figure 2.2: Schematic presentation of a simplified optics model for FCS theory. The illumination ob-
jective focuses the light into an intensity distribution Iγ. The resulting signals are detected
on a detection optic characterised by its detection efficiency ηdet,γ and its detection efficiency
distribution Ωγ(®r). In the sampling volumes particles of species χ are moving randomly in a
trajectory denoted by ®r and each have an absorption cross section σfluo,γ,χ and a fluorescence
quantum efficiency qfluo,γ,χ. The figure is taken from [95]

In a properly aligned single plane illumination microscopy (SPIM) setup the side lobes of the light sheet
are minimised by spatial filtering of the laser beam to resemble a Gaussian shape of an intensity profile in
the z-direction comparable to the confocal case [101, 103]. Assuming a good alignment and taking into
account the pixel width a of the camera, the final form of MDE for SPIM will be

MDESPIM,γ(®r) = I0 · (hpixel ~ PSFSPIM,γ)(®r) =

a/2∬
−a/2

PSFSPIM,γ(®r − ®r ′)dxdy, (2.15)

where hpixel(®r) is the characteristic function, describing the camera pixel.

hpixel(®r) = δ(z) ·

{
1 − a

2 6 x, y 6 a
2

0 otherwise
(2.16)
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The integral in Eq. 2.15 can be solved analytically, therefore

MDESPIM,γ(®r) = I0 ·

(
erf

(
a−2x√
2·wγ

)
+ erf

(
a+2x√
2·wγ

))
·

(
erf

(
a−2y
√

2·wγ

)
+ erf

(
a+2y
√

2·wγ

))
(
erf

(
a√

2·wγ

))2 · exp

(
−2 ·

z2

z2
γ

)
, (2.17)

where erf(·) is the error function, defined as

erf(x) =
2
√
π

∫ x

0
exp(−t2)dt (2.18)

Note that MDESPIM,γ given in Eq. 2.17, deviates significantly from Gaussian form if the pixel width of the
camera is much larger than the lateral width wγ of PSF. This is shown in Figure 2.3

5.2. Modeling �uorescence in a microscope

chapter 3). The geometry of the detectors (e.g. square pixels of a camera) also may need to be taken into
account. For confocal setups a 3-dimensional, rotationally symmetric Gaussian function with width w�

and height z� is a good approximation, as shown in section 3.2.3:

MDEconfocal,� (~r) = I0 · exp *,�2 · x2 + y2

w2
�

� 2 · z2

z2
�

+- . (5.2.3)

In Refs. [117, 130] and section 3.2.3 it is argued, that a properly designed and aligned SPIM has a PSF
with negligible sidelobe contributions. So the PSF can also be approximated by a Gaussian function. Still
the �nite size of the quadratic camera pixel has to be taken into account for the �nal form of the MDE:

MDESPIM,� (~r) = I0 · (hpixel ~ PSFSPIM,� )(~r) =

a/2
"

�a/2

PSFSPIM,� (~r � ~r 0) dx 0 dy0, (5.2.4)

where a is the width of the pixel in the object plane, ~ denotes convolution and hpixel(~r) is the charac-
teristic function, describing a camera pixel:

hpixel(~r) = ���(z) ·
8><>:

1 �a
2  x  a

2 ^ �a
2  y  a

2

0 else
. (5.2.5)

The convolution integral in Eq. (5.2.4) can be solved analytically:

MDESPIM,� (~r) = I0 ·


erf

✓
a�2xp

2·w�

◆
+ erf

✓
a+2xp

2·w�

◆�
·


erf

✓
a�2yp

2·w�

◆
+ erf

✓
a+2yp

2·w�

◆�

2 · erf

✓
ap

2·w�

◆�2 ·exp *,�2 · z2

z2
�

+- (5.2.6)

As shown in Fig. 5.4, this MDE deviates signi�cantly from a Gaussian function, if a is signi�cantly larger
than the size w� of the PSF.

Finally, the results of this section can be combined into the �uorescence time trace expected from a
�uorophore concentration c� (~r , t) (see Eq. 5.2.1):

F� (t) =

1
$

�1
MDE� (~r) ·

X

�2S
⌘det,� · �abs,�,� · q�uor,�,� · c� (~r , t) dV. (5.2.7)
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Figure 5.4. Plots of cuts through the MDE of a SPIM in Eq. (5.2.6) along one coordinate axis.
For all plots, the PSF width was w� = 500 nm.
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Figure 2.3: MDE of SPIM along one coordinate axis for different pixel width. The width of PSF for all
the plots is the same wγ = 500 nm. The figure is taken from [95]

Now we are equipped to calculate the autocorrelation function. The first step would be examining the
fluorescence intensity time trace Fγ(t) expected from a fluorophore concentration(cχ(®r, t)). We need to
assign an absorption cross section σdet,γ and a fluorescence quantum yield qfluo,γ,χ to each species for
quantifying the fluorescence emitted by a single fluorophore. Then, taking into account the detection
efficiency of our optical setup ηdet,γ, which is the representative for any signal loss due to the filters used in
the detection beam path or in general in optical surface, we are able to define a single detection efficiency
ηχ,γ for each particle χ in species space S in channel γ as

ηχ,γ ≡ ηdet,γ · σdet,γ · qfluo,γ,χ. (2.19)

Then Fγ(t)will be

Fγ(t) =

∞∭
−∞

MDEγ(®r) ·
∑
χ∈S

ηχ,γ · cχ(®r , t) dV . (2.20)

Since concentration is proportional to the detected fluorescent intensity, it can be defined as a fluctuation
of concentration around the average concentration of fluorophores in an analogous term with Eq. 2.1

cχ(®r , t) = 〈cχ〉 + δcχ(®r , t) (2.21)
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Because of the linearity of Eq. 2.20, we can find a relation for δFγ(t) .

δFγ(t) =

∞∭
−∞

MDEγ(®r) ·
∑
χ∈S

ηχ,γ · δcχ(®r , t) dV . (2.22)

The FCS autocorrelation function in Eq. 2.2 can be rewritten for a color channel γ, taking into account
Eq. 2.20 and Eq. 2.22 as

gγ(τ) =

∑
χ∈S

η2
χ,γ

∞∭
−∞

MDEγ(®r) ·
∞∭
−∞

MDEγ( ®r ′) · 〈δcχ(®r , t) · δcχ(®r , t)〉 dV dV ′( ∑
χ∈S

η2
χ,γ

∞∭
−∞

MDEγ(®r) · 〈cχ(®r , t)〉 dV
)2 (2.23)

This relation is derived from the linearity of integral, from which the linearity of averaging is also
deduced. Another important assumption for this relation to be true is the statistical independence of the
concentration fluctuations for two different species i. e. 〈δcχ(®r , t) · δcχ′(®r , t)〉 = 0.

Another quantity that would be helpful to determine the dynamics of the particle is the volume which is
efficiently observed. This volume is called the effective volume Veff,γ and can be defined with respect to
the number of fluorophores and their concentration in the focus

Veff,γ :=
〈Nχ〉

〈cχ〉
. (2.24)

This is an important optical characteristic that can be used to calculate the dwell time of our tagged
particle. To find a relation, we will again use Poisson distribution characteristic, but this time for the
concentration of the particles in the focus.

〈δcχ(®r , t) · δcχ(®r , t)〉 = 〈δc2
χ(®r , t)〉 · δ(®r − ®r ′) = 〈cχ(®r , t)〉 · δ(®r − ®r ′) (2.25)

Now, considering the amplitude of autocorrelation function at τ = 0 and assuming that the concentration
does not change significantly over the observation volume, an explicit relation can be derived based on
Eq. 2.5.

gγ(0) =
1
〈Nχ〉

=

∑
χ∈S

η2
χ,γ · 〈cχ〉 ·

∞∭
−∞

MDE2
γ(®r) dV( ∑

χ∈S
η2
χ,γ · 〈cχ〉 ·

∞∭
−∞

MDE2
γ(®r) dV

)2

=

∑
χ∈S

η2
χ,γ · 〈cχ〉( ∑

χ∈S
η2
χ,γ · 〈cχ〉

)2 ·

∞∭
−∞

MDE2
γ(®r) dV(

∞∭
−∞

MDE2
γ(®r) dV

)2 =
1
〈cχ〉

·

∞∭
−∞

MDE2
γ(®r) dV(

∞∭
−∞

MDE2
γ(®r) dV

)2

(2.26)

Combining Eq. 2.24 and Eq. 2.26 we will finally arrive at a formulation for Veff

Veff,γ =

(
∞∭
−∞

MDE2
γ(®r) dV

)2

∞∭
−∞

MDE2
γ(®r) dV

(2.27)
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It is possible to analytically approximate the effective volume for a light sheet from Eq. 2.17

Veff,γ =

√
π · a2 · zγ(

erf
(

a
wγ

)
+

wγ
√
π ·a

(
exp

(
− a2

w2
γ

)
− 1

))2 (2.28)

In order to find a relation for the dwell time τD,χ the effective lateral focal area need to be defined [102]. It
can be considered as a projection of effective volume in xy-plane

Aeff,γ =

(
∞∬
−∞

MDEγ(x, y, 0) dxdy
)2

∞∬
−∞

MDE2
γ(x, y, 0) dxdy

=
a2(

erf
(

a
wγ

)
+

wγ
√
π ·a

(
exp

(
− a2

w2
γ

)
− 1

))2 (2.29)

Thus, the dwell time of the fluorescence particle in a SPIM setup taking into account Eq. 2.4 can be
introduced as

τD,χ =
Aeff,γ

4Dχ
. (2.30)

2.3 FCS theory for different types of diffusion

The autocorrelation function can be rewritten on the basis of the diffusion nature of tracers. This will give
us an appropriate tool to analyse the experimental data and explore different theory for the observed
motions. As it is shown in Eq. 2.23, the particle dynamics can be described by concentration correlation
factor φχ(®r , ®r ′, τ)

φχ(®r , ®r ′, τ) ≡ φχ(®r − ®r ′, τ) := 〈δcχ(®r , t) · δcχ(®r ′, t + τ)〉 (2.31)

It quantifies the correlation between the concentrations at two different position within the lag time
The equivalence in the relation(φχ(®r, ®r ′, τ) ≡ φχ(®r − ®r ′, τ)) is on the assumption that the whole system is
shift-invariant and the correlation is only dependent on the positions difference ®r − ®r ′. If the system is
also isotropic, this self correlation function only depends on the length ‖®r − ®r ′‖. These assumptions are
acceptable on the small scales of FCS measurements.

The concentration correlation factor can also be defined with respect to the probability of finding a particle
at position r ′ at time τ if it was initially at position r . This probability distribution is called van-Hove self
correlation function (Pχ(r , r ′, t)) [106]. In an isotropic, invariant system a special case of this function in the
form Pχ(·, ·) can be calculated as a Green’s function. For the diffusion equation governing the dynamics of
cχ(®r , t) (Eq. 1.4, the Green’s function is the solution of the PDE for the initial condition cχ(r , 0) = δ(®r) [107].
It then can be used to calculate the general solution cχ(®r , t) for an arbitrary initial condition.

cχ(®r , τ) = cχ(®r , t)~ Pχ(®r , τ) =
∫
· · ·

∫
cχ(®r , t) · Pχ(®r , ®r ′, τ) ddr ′ (2.32)

where ~ is a convolution operator and d is the dimension of the system as in Eq. 1.2. The relation for
concentration correlation function can be rewritten in terms of Pχ

φχ(®r − ®r ′, τ) := 〈δcχ(®r , t) · δcχ(®r ′, t + τ)〉 = 〈cχ〉 · Pχ(r , r ′, t) (2.33)
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In order to incorporate φχ(®r − ®r ′, τ) in the autocorrelation function, first rewrite its definition

gγ(τ) =

∑
χ∈S

η2
χ,γGχ

γ (τ)( ∑
χ∈S

η2
χ,γ 〈cχ〉

)2 , (2.34)

where Gχ
γ is a general, non-normalised correlation function that is defined as follows

Gχ
γ (τ) = 〈cχ〉 ·

∞∭
−∞

MDEγ(®r) ·
∞∭
−∞

MDEγ( ®r ′) · φχ(®r , ®r ′, τ) dVdV ′(
∞∭
−∞

MDEγ(®r) · 〈cχ(®r , t)〉 dV
)2 (2.35)

As a result, a model is introduced with a direct relation to the solution of a PDE governing the dynamics
of the tracer. Now it is possible to derive the autocorrelation function for different diffusion domains.

Normal diffusion

Figure 2.4: Plots of SPIM-FCS autocorrelation function for normal diffusion. In (a) the function for
different diffusion coefficient is plotted and in (b) the average number of particles is varied. In
(a) the red lines are representing the dwell time τD,χ as defined in Eq. 2.30. MDE parameters:
a = 400nm, wγ = 500 nm, zγ = 1200 nm. The figure is taken from [95]

The most common form of dynamics in FCS is free Brownian motion, characterised by Eq. 1.2. As it
is discussed in Section 1.2, in normal diffusion, the spreading of random walker is determined by the
solution to the diffusion equation 1.4. This equation can be rewritten for cχ(®r, t) = 〈cχ〉 + δcχ(®r, t) in
3-dimensions.

∂
(
〈cχ〉 + δcχ(®r , t)

)
∂t

= Dχ
®∇2 (
〈cχ〉 + δcχ(®r , t)

)
⇒

∂(δcχ(®r , t))
∂t

= Dχ
®∇2δcχ(®r , t), (2.36)

where Dχ is the diffusion coefficient of species χ. The Green’s function of this PDE is given by

Pχ(®r , ®r ′, τ) =
1

(4πDχτ)3/2
· exp

(
−
−(®r − ®r ′)2

4Dχτ

)
, (2.37)
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Figure 2.5: Exemplary plots of SPIM-FCS autocorrelation model for a motion with two diffusion co-
efficient. In (a) we fixed of diffusion coefficient to D2 = 1 µm s−1 and D1 is varied. The black
line is a one-component model with 〈N1〉 = 10 and D1 = 1 µm s−1. The dotted lines represent
a 1-component fits to the 2-component curves. In (b) the diffusion coefficients are fixed to
D1 = 100 µm s−1, D2 = 1 µm s−1 in all curves, but the particle number fraction ρ1 := N1

(N1+N2
is

varied, keeping N1 + N2 = 10. MDE parameters: a = 400 nm, wγ = 500 nm, zγ = 1200 nm. The
figure is taken from [95]

Replacing this solution in 2.35 and taking into account the Eq. 2.17 for the light sheet, the autocorrelation
function for a normal diffusion in a light sheet fluorescence microscope can be calculated.

Gχ
γ (τ) =

〈cχ〉
√
πzγa2

·

{
erf

(
a√

4Dχτ + w
2
γ

)
+

√
4Dτ + w2

γ

a ·
√
π
·

[
exp

(
−

a2

4Dχτ + w
2
γ

)
− 1

]}2

·

(
1 +

4Dχτ

z2
γ

)−1/2

(2.38)

By considering Eq. 2.24 and Eq. 2.28 for MDE of a SPIM setup, we can replace the absolute concentration
with the number of fluorophores. As demonstrated in Figure 2.4(b), the autocorrelation function is
inversely proportional to the average number of fluorophores. Another important characteristics of
SPIM-FCS is the dwell time definition in Eq. 2.30. As it is evident in Figure 2.4(a), in this setup the dwell
time of a given tracer in the focus does not represent the time for the correlation function to reach its half
value g(τD) , g(0)/2, anymore.

The model can also be modified to account for the possibility of particles moving with different diffusion
constants. This is a relevant presumption if we are confident about the properties of our tracer and its
behaviour in a given medium. For example if they bind to another constituent of the system or form
larger complexes that affect their motions.

Assuming that all the species have the same molecular brightness, the multi-component diffusion model
would be written in terms of an overall concentration 〈call〉 where 〈call〉 = 〈Nχ〉/Ve f f ,γ and relative
concentration ρχ for each species:

〈call〉 B
∑
χ∈S

〈cχ〉 ρχ B
〈cχ〉
〈call〉

∑
χ∈S

ρχ = 1 (2.39)

In Figure 2.5 a two-component diffusion model can be seen for different combinations of diffusion
coefficients. It is visible that if the two diffusion constants are close to each other the one component
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model fit (dashed line) is not clearly distinguishable and therefore it can describe the diffusion behaviour
as well.

General mean squared displacement

For an abstract case of diffusion when the random motion follows an arbitrary MSD, on condition that it
retains its Gaussian shape, Pχ(®r , ®r ′, τ) can be generalised as follow [108–111]

Pχ(®r , ®r ′, τ) =
1(

2π ·MSDχ(τ)/3
)3/2
· exp

(
−
(®r − ®r ′)2

2MSDχ(τ)/3)

)
, (2.40)

where

MSDχ(τ) = 2d · D · fχ(τ) (2.41)

In this case, it is possible to prove that, for the special case of anomalous diffusion with a MSD following
a power law pattern, by replacing

MSDχ(τ) = 2 · d · Γχταχ (2.42)

in Eq. 2.40, we have

Pχ(®r , ®r ′, τ) =
1(

4πΓχταχ
)3/2
· exp

(
−
(®r − ®r ′)2

4Γχταχ

)
, (2.43)

with the anomaly parameter αχ and the generalised diffusion coefficient Γχ. This propagator can then
be used like before to calculate the autocorrelation function in the case of anomalous diffusion, which is
similar to Eq. 2.38, with τ replace by ταχ

Gγ(τ) =
1
N
·

{
erf

(
a√

4Γτα + w2
γ

)
+

√
4Γτα + w2

γ

a ·
√
π

·

[
exp−

a2

4Γτα + w2
γ

− 1
]}2

·

(
1 +

4Γτα

z2
γ

)−1/2

(2.44)

Figure 2.6 shows different plots calculated for various anomaly parameters. The curves representing
subdiffusive behaviour ((αχ < 1)) are flatter compared the normal diffusion case (αχ = 1) and they span
larger range in time whereas superdiffusion (αχ = 1.5) curve exhibits a sharper decay. This effect was
anticipated from the theory of anomalous diffusion and the resulting patters of motion.

It is now possible to extract important dynamical characteristics of the system from its experimentally
derived autocorrelation function in a light sheet microscopy setup. In this study, we have used the optical
setup designed and assembled in our lab. All the information regarding the setup is summarised in
Krieger et al. [95, 112].
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Figure 2.6: Sample curve calculated from SPIM-FCS autocorrelation function for anomalous diffu-
sion. The value for the generalised diffusion coefficient parameter Γχ = 10µm s−α is chosen for
the curves to coincide at a τ = 10 ms. MDE parameters: a = 400nm, wγ = 500 nm, zγ = 1200 nm.
The figure is taken from [95]

2.4 Fluorescence cross-correlation spectroscopy

The theory of fluorescence correlation spectroscopy has been further extended to measure the co-mobility
and possible binding reactions between two molecular species by tagging each of them with a different
fluorescent marker. Moreover, spatial correlations are integrated in the fluctuations of fluorescent signals
as these fluctuations are indicative of the motion in a certain time. Using this technique we can explore the
heterogeneities in the distribution, dynamics and interactions of our sample system. Both extensions can
be incorporated in an imaging setup with a fast detector as is capable of recording the intensity profiles
both in space and time. Analysis of these fast image series can be done by defining a cross correlation
function at two different points in space or between particles carrying spectrally distinct fluorophores.

For this reason, let us define a generalised cross-correlation function to account for the fluctuation of two
fluorescence signal at spatially apart positions:

gγ%( ®ξ, τ) =

〈
δFγ(®r , t) · δF%(®r + ®ξ, t + τ)

〉〈
Fγ(®r ; t)

〉
·
〈
F%(®r ; t)

〉 (2.45)

Note that autocorrelation function therefore is a special case of Eq. 2.45 when the indices are the same
(gγγ or g%%) and ®ξ = 0.

gγ%( ®ξ, τ) can be rewritten in an explicit generalised form for Gχ
γ%( ®ξ, τ)

gγ%( ®ξ, τ) =

∑
χ∈S

ηγ,χη%,χGχ
γ%( ®ξ, τ)( ∑

χ∈S
ηγ,χ

〈
cχ

〉)
·

( ∑
χ∈S

η%,χ
〈
cχ

〉) , (2.46)
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and accordingly we will define non-normalised correlation function

Gχ
γ%( ®ξ, τ) = 〈cχ〉 ·

∞∭
−∞

∞∭
−∞

MDEγ(®r) ·MDE%( ®r ′) · φχ(®r , ®r ′, τ) dVdV ′(
∞∭
−∞

MDEγ(®r) · 〈cχ(®r , t)〉 dV
)
·

(
∞∭
−∞

MDE%(®r) · 〈cχ(®r , t)〉 dV
) (2.47)

where ®r is a function of ®ξ. Now we can calculate the appropriate cross-correlation function for different
scenarios.

Spatial cross-correlation function

In this case, two observation volumes that are displaced by ®δ = (δx , δy , δz) are taken into account (see
Figure 2.7). Assuming, without loss of generality, that there is a flow from the first focal volume (left) to
the second one (right) with the flow velocity ‖®v‖. Then, the fluorescence intensity traces detected from
the left focus can be tracked in the right one after a delay. This delay is the time needed for the particle
to travel from the left focus to the right one by the flow and it can be characterised by τF = ‖ ®δ‖/‖®v‖.
This can be translated to a cross-correlation function based on Eq. 2.47 with certain assumptions. As the
same illumination intensity, detection filters and optical detectors are used for both foci, the molecular
brightnesses can be expected to be the same. So the MDEs have the same size with a shift ‖ ®δ‖. (Note that
the indices γ and % represent two foci, in this case)

ηγ,χ = η%,χ and MDEγ(®r) =MDE%(®r + ®δ) or MDE%(®r) =MDEγ(®r − ®δ) (2.48)

Hence, we can explicitly calculate the spatial cross-correlation function for a SPIM-FCS setup under these
assumptions. This function can be written in terms of three direction factors Gχ

γ%( ®ξ, τ) = 〈cχ〉 ·G
χ
γ%,x( ®ξ, τ) ·

Gχ
γ%,y( ®ξ, τ) ·Gχ

γ%,z( ®ξ, τ)where the factors along x- and y- direction are equal.

Gχ
γ%,x( ®ξ, τ) =

1
2a2 ·

{[
(a − vxτ + δx) · erf

©«
a − vxτ + δx√

4Dχτ + w
2
γ

ª®®¬ − 2(vxτ − δx) · erf
©«

vxτ − δx√
4Dχτ + w

2
γ

ª®®¬
+ (a2 + vxτ − δx) · erf

©«
a + vx − δx√
4Dχτ + w

2
γ

ª®®¬
]
+

√
4Dχτ + w

2
γ

√
π

·

[
exp

(
−
(a − vxτ + δx)2

4Dχτ + w
2
γ

)

− 2 · exp

(
−
(vxτ − δx)

2

4Dχτ + w
2
γ

)
+ exp

(
−
(a + vxτ − δx)2

4Dχτ + w
2
γ

)]}
,

(2.49)

and the expression in z- dircetion is

Gχ
γ%,z( ®ξ, τ) =

exp
(
−
(vzτ−δz )

2

4Dχτ+z
2
γ

)
√
π ·

√
4Dχτ + z2

γ

. (2.50)

As we are studying a system in equilibrium, we will be mostly concerned with the scenario where no
flow in the sample is present. In this case, as well, we will see a peak in the spatial cross correlation curve
if the distance between two foci is large enough. The peak is denoting the time that the particle requires
to cover the distance between two foci only through its random motion.
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-1

-1

Figure 2.7: Graphical explanation of spatial cross correlation between two foci. Particles moving from
left to right through two foci separated by a distance ®δ. The flow velocity is v. The intensity
traces are shifted by a time τFχ . The cross correlation function shows a pick at this time. The
figure is taken from [95]

Two-color cross-correlation function

To characterise the interaction between two particles, tagged with two spectrally appropriate fluorophores,
we should utilise another type of correlation analysis, termed two-color fluorescence cross-correlation
spectroscopy (FCCS). This type of cross-correlation analysis is performed between two different fluores-
cence intensities Fγ and F% at two overlapping focal planes. For the fluorescent dyes to be compatible for
this technique, they have to belong to two distinct spectral ranges. Otherwise, the detector is not able to
differentiate them.

Figure 2.8 shows a schematic of this technique for diffusers tagged with green fluorescence(Fg) and red (Fr )
fluorescence. If there is an interaction between these two kinds of particles, they are going to move together
(depicted as dimers in Figure 2.8). This co-mobility will cause a correlation between these two distinct
fluorescence signals. The amplitude of this correlation function gγ%(0) reveals the presence of an interaction.
As a result, if there is no co-mobility, the two signals are statistically independent from each other and the
cross-correlation amplitude is zero. Moreover, if we tag two types of molecules A and B then the gγ%(0)
depends on the concentration of the complex formed as a result of their interaction or CAB/(CA +CB).
Theoretically, in the case of full interaction, this relative concentration will be approximately the average
between the respective autocorrelation function amplitudes (gγγ(0) and g%%(0)).

It is once more possible to adapt the same approach as presented in spatial cross correlation analysis.
To do so, we need to reconsider our assumptions in 2.48. In this case, MDEs may be different. The shift
®δ is retained in the model though. This is due to chromatic aberrations and the possibility of optical
misalignment that will ultimately lead to an offset ®δ between the two foci.

The prior information on spectral properties of both fluorophores, as well as the expected interaction
between them help us to define new constraints for the molecular brightness of the species ξ ∈ {A, B, AB}.
Considering the simplest model of interaction between the species A+ B
 AB and assuming that A is
labeled by a fluorescence label (denoted by the index γ) with a lower wavelength compared to B (denoted
by the index %), we can formulate the following assumptions on the molecular brightness

ηγ,A ≡ ηγ ηγ,B = 0 ηγ,AB ≡ ηγ

η%,A = κγ%ηγ η%,B ≡ η% η%,AB = η% + κγ%ηγ
(2.51)

where the κγ% denotes the crosstalk between channel γ and % i. e. the fraction of γ fluorescence which is
detected in the % channel because of the broad emission spectra (Figure 2.9) and imperfect filters. It can
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Figure 2.8: Sketch of two-color fluorescence cross correlation spectroscopy. (a) Many double-labeled
particles are moving together and as a result there is a high cross-correlation amplitude. In
(b) most of the particles are moving independently from each other resulting in almost zero
cross-correlation amplitude. The figure is taken from [95]

be calculated as

κγ% =

∞∫
0
ηγ(λ) · h%(λ) dλ

∞∫
0
ηγ(λ) dλ

(2.52)

in which h%(λ) is the transmission spectrum of the % detection channel. Figure 2.9 shows the absorption
and emission spectra for three popular fluorescent proteins in multiple-channel microscopy techniques.
Crosstalk can be seen where there is an overlap between the excitation spectrum and the detection channel.
As an example, if the longpass filter in the red channel starts transmitting at 600 nm, the crosstalk for
eGFP at the red channel is κgr ≈ 0.38 [95].

mCherry	EM EGFP	EX EGFP	EM mRFP1	EM 491	laser 561	laser mRFP1	EX mCherry	EX

300 350 400 450 500 550 600 650 700 750 800
fpbase.org

Figure 2.9: Absorption and fluorescence spectra of typical fluorescence proteins used in FC(C)S. The
x-axis presents the wavelength (λ[nm] The figure is generated from the website introduced
at [113]
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The molecular brightness can be estimated from the average fluorescence intensities 〈Fγ〉 and 〈F%〉 and
the concentration of species χ in the focal volume.

ηγ =
〈Fγ〉

〈cA〉 + 〈cAB〉
and η% =

〈F%〉
〈cA〉 + 〈cAB〉

(2.53)

The cross-correlation function for two-colour FCCS can be calculated using the relation for the general
cross-corelation function (2.46) and the constraints introduced in Eq. 2.51 as follow

gγγ =
η2
γ GA

γγ(τ) + η
2
γ GAB

γγ (τ)

η2
γ · (〈cA〉 + 〈cAB〉)

2 (2.54)

g%% =
η2
% ·

(
GB
%%(τ) +GAB

%% (τ)
)
+ κ2

γ% η
2
γ

(
GA
γγ(τ) +GAB

γγ (τ)
)
+ 2κγ% η% ηγ GAB

γ% (τ)(
κγ% ηγ · 〈cA〉 + (η% + κγ% ηγ) · 〈cAB〉 + η% 〈cB〉

)2 (2.55)

gγ% =
ηγ η% GAB

γ% (τ) + κγ% ηγ η% GA
γ%(τ) + κγ% η

2
γ GAB

γγ (τ)(
ηγ 〈cA〉 + ηγ 〈cAB〉

)
·
(
κγ% ηγ · 〈cA〉 + (η% + κγ% ηγ) · 〈cAB〉 + η% 〈cB〉

) (2.56)

The non-normalised cross-correlation function has a similar form as the one in the previous section
(Eq. 2.49 and Eq. 2.50). The difference is in altered MDE parameters since the PSF is dependant on the
wavelength of the fluorescence signal i. e. we have two different widths wγ and w% and heights zγ and z% .
Therefore for two-colour SPIM-FCCS, the non-normalised cross correlation at each coordinate direction
(equal factors at x- and y-direction) can be written as
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and along z-direction, it will be
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In all the expressions for the cross-correlation function, it is possible to replace the normal diffusion
assumption with the anomalous diffusion following a power-law pattern. As in Section 2.3 (FCS theory
for different types of diffusion), it suffices to replace Dχτ by Γχτα. We can similarly introduce multi-
component diffusion by exploiting Eq. 2.39 for two or more cross-correlation functions.
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3 Chromatin and A-type lamins
interdependence

As it has been discussed in Chapter 1, the presence of nucleoplasmic lamins as a highly dynamic pool and
their function in the nucleus and nucleoskeleton has been a subject of interest for molecular biologists.
Especially since it was found that these non-lamina-binding lamins in the nucleus are not a transient
pool before their assembly into the lamina [114]. On the other hand, the view on the chromatin, its
rearrangement and its dynamics is constantly evolving and new findings emphasise the need for more
quantifiable, interdisciplinary studies. Besides biology, the very exotic nature of the cell nucleus for
physicists and its viscoelastic properties naturally engage the attention of exact scientists involved with
the study of complex systems. This is what we took into consideration in this thesis by investigating the
chromatin mobility and its dependence on A-type nucleoplasmic lamins.

In this chapter the results of our FC(C)S studies on the histone mobility will be presented. Histones
together with DNA wound around them at the first stage of compaction, make up the nucleosomes which
are the basic units of chromatin fibre. Therefore inspecting their random motion gives us an insight on
the chromatin dynamics. For this study we used the following cell lines:

I Mouse adult fibroblasts adherent cells (MAF) as wildtypes. They stably express H2A-eGFP
I Lamin A/C knockout mouse adult fibroblasts [115] (LMNA−/− MAF-H2A-mRFP) stably expressing

H2A-mRFP
I Lamin A/C knockout mouse adult fibroblasts (LMNA−/− MAF-H2A-eGFP) stably expressing

H2A-eGFP

First chromatin interconnections with intranuclear lamin As will be examined in Section 3.1 , then random
motions of chromatin in the presence and absence of nucleoplasmic A-type lamins in Section 3.2 will be
studied and finally we will consider the dependance of chromatin’s spatial rearrangements on A-type
lamins in the nuclear interior in the last section of this chapter.

3.1 Lamin A interconnections

We applied SPIM-FCCS to investigate how lamin A interacts with chromatin, using our lamin A knockout
mouse adult fibroblast cell line stably transfected with H2A-mRFP1 (LMNA−/− MAF-H2A-mRFP), then
transiently co-transfected with lamin A-eGFP. The replacement of endogenous lamin A proteins with
fluorescently labeled ones enables us to study the co-mobility between lamin A and histones. The
cells were either grown on small cover slides or embedded in 2% agarose gels in order to halt cellular
movement. Cells selected for measurements showed a healthy shape (no blebs, a recognisable nucleus,
typical flattened shape) and were not obviously in mitosis. For each condition, several cells were acquired
on different days. Cells that moved during the measurements, in which the bleach correction did not
succeed because of slow large-scale fluctuations, or that showed other unusual artefacts (e.g. large internal
rearrangements, aggregates) were excluded. This way ≈30% of the cells were removed from further
evaluations. To reduce cell movements, all measurements were performed at room temperature (24 ◦C).
The measurements on cover slides and in gels were cross-validated and prove to be mutually consistent
(see Table 3.1). For better statistics, 2 ∗ 2 pixel binning was used on the image series. For the sake of brevity,
we refer to 2 ∗ 2 binned pixels as pixel in this chapter unless otherwise is mentioned.

As negative control, we transiently transfected LMNA−/− MAF-H2A-mRFP with eGFP tetramer(eGFP-4x),
which does not interact with chromatin and should therefore show only negligible cross-correlation (CC).
Figure 3.1 displays auto- and cross-correlation curves for a sample cell (upper panel) and a control (lower
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Cover slips 2% agarose gel

control sample control sample

q 0.01 ± 0.07 0.36 ± 0.34 0.00 ± 0.06 0.31 ± 0.18

Table 3.1: Statistical overview of the relative cross correlation function amplitude q over measured
cells on cover slips and embedded in 2% agarose gel. The gels were made of phenol-red free
HBSS. Control cells are LMNA−/− MAFs transiently expressing eGFP4x and as sample cells,
we used LMNA−/− MAFs transintly expressing lamin A-eGFP.

panel). The amplitude of CC of the control is not larger than the crosstalk indicated by the horizontal
dashed line. In the sample cell, the nonzero ACF amplitude demonstrates that the dynamics of both
lamin A and histones have a stochastic character and the nonzero CC demonstrates that lamin A and
histones are diffusing together and indicates that there is a form of interconnection between the two
species. We also notice that the decay of the two autocorrelation functions is very similar, indicating a
similar diffusive motion of the two species.
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Figure 3.1: Examples of typical auto-(green/red) and cross-correlation(orange) curves (solid lines are
the averages and the shadowed polygons show the standard deviation of the correlation
function calculated at each pixel). The upper panel shows the average cross-correlation and
standard deviation of laminA-eGFP with H2A-mRFP together with their respective auto-
correlation functions corresponding to one non-binned pixel selected in a sample cell. The
lower panel reports the cross-correlation function and the standard deviation of eGFP4x with
H2A-mRFP next to auto-correlation functions of each of them at a selected single pixel (a
1 ∗ 1 pixel) of a control cell. Both sample cells and controls are LMNA−/−/MAF-H2A-mRFP
transiently transfected with lamin A-eGFP and GFP-4x respectively. The horizontal dashed
line indicates the cross-talk level between green and red channels.

To quantify the interaction between lamin A and histone proteins, the relative cross-correlation function
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(CCF) amplitude was calculated for all pixels of each acquisition. For this reason, first a 2-component
normal diffusion model was fitted to the auto-correlation curves of all different pixels in image series
for each channel. The quicker ones represent the freely moving histones or lamin A-s, whereas the
slower diffusion means binding to a larger structure e.g. chromatin. Then the cross-correlation curves
corresponding to each pixel were fitted with a single-component normal diffusion model where wγ and zγ
have been replaced, since the signals were collected over different spectral bands, with slightly different
optical resolution. Therefore, in order to fit the cross-correlation function with a single component model
and retrieve a diffusion coefficient, we assume an average value of the optical resolution. Since the dwell
time is linearly proportional to the square of the linear size of the observation volume, we recalculate the
resolution in the sample plane and along the optical axis as:

w =

√
w2
g + w

2
r

2
, z =

√
z2
g + z2

r

2
(3.1)

Finally the amplitude of each model (gγρ(0)) was extracted. Relative CCF amplitude then is defined as:

q =
ggr (0)

min(ggg(0), grr (0))
(3.2)

In this equation (eq. 3.2) we are considering on equal foot lamin A proteins and histones and evaluating
the number of less abundant objects that are co-diffusing with the more abundant ones. Figure 3.2 shows
a representative map of the relative CCF amplitude (q) obtained from a cell expressing laminA-eGFP and
H2A-mRFP.

2µm

q
1.4-2

2µm

Fg Fr [ADU] 
460130
560110

fluorescence intensity relative CCF amplitude

Figure 3.2: Parameter images of SPIM-FCCS measurement of lamin A-eGFP and H2A-mRFP. The dis-
tribution of the lamin A (green) and the H2A (red) fluorescence signals can be seen in the left
panel (Analogue-to-Digital converter unit [ADU] is the output unit of EMCCD camera). The
map of the relative CCF amplitude in the nucleus of LMNA−/− MAF-H2A-mRFP transiently
transfected with lamin A-eGFP is shown in the right panel.Negative values of q are originated
by the instrumental noise.

Figure 3.3 summaries the relative FCCS amplitude over all measured cells. These results demonstrate
that a considerable fraction (more than 30%) of lamin A is co-diffusing with histone proteins. A one-
component normal diffusion fit to the CCF, averaged over all pixels in the cell, yields a diffusion coefficient
DCCF = 0.33 ± 0.18µm2/s on cover slips and DCCF = 0.33 ± 0.2µm2/s for the cells embedded in agarose
gels, compatible with the slow component of the histone motion (Table 3.2). This suggests that lamin A is
associated to chromatin-bound histones only.
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Figure 3.3: Statistical summary of the relative FCCS amplitude in LMNA−/− MAF-H2A-mRFP ex-
pressing eGFP4x, as negative control, and Lamin A-eGFP using SPIM-FCCS. The medians
of the relative FCCS amplitudes for 31 negative control cells are pooled together and shown
by small filled circles. For 39 sample cells, the medians are displayed as small filled triangles.
The average and standard deviation of these medians can be found next to them as a filled
circle with error bars for negative control and filled triangle with error bars for sample.

3.2 Alterations in the diffusivity of histones

As we have shown in Section 3.1, there exists a form of comobility between A-type lamins and chromatin
that manifests itself in a non zero cross correlation amplitude. In this section we explored the possible
effects of this interaction on the diffusional behaviour of histones. For this reason, we employed SPIM-FCS
to characterise random motions of H2A in the presence and absence of A-type lamins.

Figure 3.4: Typical FCS auto-correlation functions taken at the single pixels, as indicated in the corre-
sponding SPIM images of the MAF wild type and lamin A knockout cells.
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MAF LMNA−/− MAF

α 0.83 ± 0.08 1.11 ± 0.10
τΓ [ms] 641 ± 170 1158 ± 238

D f ast [µm2/s] 24.5 ± 4.8 32.1 ± 8.3
Dslow [µm2/s] 0.28 ± 0.05 0.24 ± 0.04
ρslow 0.46 ± 0.09 0.66 ± 0.09

Table 3.2: Averages and standard deviation of the fit parameters over the whole sample of cells that
express H2A-eGFP (75 MAFs and 75 LMNA−/− MAF). The parameters in the first two rows are
the result of anomalous diffusion fit model and the rest are obtained from 2-component normal
diffusion fit model

Figure 3.4 shows the fluorescent intensity images of a wild type cell and a lamin A knockout cell, both
expressing H2A-eGFP, together with two typical auto-correlation curves at the single pixels (1 ∗ 1 pixels)
highlighted in the fluorescence images. A clear effect is evident by comparing the curves. Contrary to the
curve in the lamin A knockout cell, the auto-correlation curve in the wildtype demonstrates a shorter
correlation time and its overall shape is substantially different. To describe this effect two different SPIM-
FCS models were fitted to the auto-correlation curves (eq. 2.2): an anomalous diffusion model (Eq. 2.44)
assuming the diffusion is anomalous and the fraction of freely diffusing particles and internal chromatin
dynamics are negligible and a 2-component normal diffusion model (Eq. 2.38) in which the diffusion
is normal and we are expecting two different diffusing particles. The slower ones are assumed to be
chromatin-bound histones and the faster ones can account for either unbound histones or faster internal
dynamics of chromatin. Figure 3.5 shows typical fits for both models, which do not differ significantly in
fit quality. Thus, these are more or less equally valid ways to account for the crowded environment in live
cells.

Figure 3.5: FCS auto-correlation functions against different fit models and their corresponding resid-
uals. auto-correlation curves, two different fits and residuals calculated at non-binned pixels
in fluorescence image series acquired from MAF cells expressing H2A-eGFP as wild type
(upper panel) and LMNA−/− MAF cells expressing H2A-eGFP (lower panel)

The 2-component normal diffusion model has four fit parameters (number of particles in a focal volume
N , fast diffusion coefficient D f ast , slow diffusion coefficient Dslow and the fraction of particles diffusing
slowly ρslow), whereas the anomalous diffusion model has only three (number of particles in a focus N ,
anomaly parameter α and anomalous diffusion coefficient Γ). For the two-component normal diffusion
fit, the fast diffusion coefficient was fixed to ensure a better convergence of the algorithm. This fast
component is usually interpreted as the diffusion coefficient of free histones, and it is in the same range
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as those obtained for inert tracer proteins [116, 117]. The slow component corresponded to the motion of
chromatin-bound histones. For all pixels in each cell image series, a 2-component normal diffusion fit
with all parameters free is performed and the median of the D f ast distribution is calculated. Then this
value is fixed and the auto-correlation curve of each pixel is fitted again with the same model.

Figure 3.6: Maps of fluorescence intensity, diffusion anomaly and dwell time in a LMNA−/− MAF
(upper row) and MAF wildtype (lower row). (a) Fluorescence intensity images of a LMNA−/−

MAF and MAF wildtype expressing H2A-eGFP represented in Analogue-to-Digital converter
unit [ADU] which is the output unit of EMCCD camera. For each cell, (b) the map of anomaly
parameter α and (c) dwell time τΓ, obtained from the anomalous diffusion model, are shown
in their corresponding column.

Figure 3.5 show fluorescence images and fit results for a typical wild type and a lamin A knockout cell
expressing H2A-eGFP. The good result of the fitting procedure indicates that the fluctuations can be
described by a random motion statistics. Since a random motion in cell can be defined as the motion
whose correlation function (measured on a signal collected through a high numerical aperture objective
lens) is described by a hyperbolic decay. From the anomaly parameter maps (Figure 3.6), it is visually
apparent that histone diffusion is more anomalous in the wild type than in the lamin A knockout cells.
Moreover, the fraction of the slow component in the 2-component normal diffusion fit increases for the
knockout cells (Table 3.2).

In most cases, the histograms of the fit parameters over all the pixels of the same cell contain a certain
number of outliers and often feature broad distributions. Therefore, robust statistical estimators, such as
the median, are used for any further evaluation. Figure 3.7 summarizes the fit results for the anomaly
parameter and dwell time of all pixels in all measured cell nuclei (160 MAFs and 153 LMNA−/− MAFs).

The statistical averages over all pixels in all cells confirm that histone mobility in the wildtype fibroblasts
is well described by anomalous subdiffusion (α = 0.83 ± 0.08). In MAFs lacking A-type lamins, the
anomaly of this motion is no longer observed and a normal diffusion model is enough to explain the data
(α = 1.11 ± 0.10). These results agree with the recent findings about telomere motion [118]. Furthermore,
we detect a significant slowing down of histone mobility when lamin A is missing, indicated by an
increased dwell time. Similar conclusion can be reached from the two-component model as the fraction
of slow component increases when passing from the wild type cells (ρslow = 0.46 ± 0.09) to the lamin A
knockout ones (ρslow = 0.66 ± 0.09).
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(a) (b)

Figure 3.7: The distributions of fit parameters over all measured cells: (a) Fit results obtained with the
anomalous diffusion model. The distribution of anomaly parameters α (upper panel) shows
an apparent shift to the normal diffusion by knocking out lamin A protein. The distribution
of the dwell time τΓ (lower panel) obtained from all measured cells represents a longer time
to leave the observed volume in absence of lamin A protein. (b) Using 2-component normal
diffusion model we extracted the distribution of slow diffusion coefficient Dslow (upper panel)
and the fraction of slow component ρslow (lower panel). The bound histones are evidently
more dominant in the absence of lamin A. A statistical summary of the fit results is reported
in Table 3.2.

3.3 Dynamic spatial rearrangement of chromatin

Rearrangement of chromatin structure, as a result of the depletion of lamin A , can be recognised through
spatial correlation analysis of the image series. For this reason, utilising Eq. 2.49, auto-correlation function
and the spatial fluorescence cross-correlation between each single 1 ∗ 1 pixel and its neighbouring 5 pixels
was calculated (spanning up to 2000 nm vicinity of the reference pixels), assuming there had been no flow
throughout the data acquisition (‖®v‖ = 0).

MAF wt LMNA-/- MAF

Figure 3.8: 2D colour maps of spatial cross-correlation amplitude normalised by auto-correlation am-
plitude for a representative MAF and LMNA−/− MAF. The colours are arranged in the form
of heat map from dark blue denoting 0 (no correlation) to bright red (autocorrelation)

Appropriate 1 ∗ 1 pixel masking based on intensity thresholds and the visible periphery of the nucleus
for each cell had been done manually before the correlation, to avoid computing cross-correlation with
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dark single pixels. From the resulting cross-correlation functions, the amplitude of function at τ = 0 was
extracted and normalised by the zero-lag autocorrelation amplitude and then averaged for all unmasked
pixels. Figure 3.8 displays a 2D colormap matrices, in which the central square is the average value of
all the autocorrelation functions calculated at each unmasked 1 ∗ 1 pixel and each neighbouring square
represents the average value of spatial cross correlation amplitude at that pixel distance. It is evident
that higher correlations at longer spatial range can be tracked in the knockout cell. This result indicates a
looser arrangement of chromatin in the absence of nucleoplasmic lamins, whereas in the wildtype cell,
a more localised motion of histones is more probable. This can be explained by a possible crosslinking
functions of A-type lamins.

Additionally, radial average of the normalised cross-correlation values at each given distance was consid-
ered for better quantification. This procedure has been applied to the data from 26 cells (13 MAFs and
13 LMNA−/− MAFs) , imaged on different days to have a better statistics. In Figure 3.9 the mean value
of radial averages calculated from these cells is plotted against the distance. The faster decay of spatial
cross-correlation amplitude can be better recognised in this plot.
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Figure 3.9: Mean value of radial averages calculated from amplitude of cross-correlation functions for
MAF cells and LMNA−/− MAF cells. Each data point for a cell line shows the mean value of
radial averages at the given distance over 13 cells.

The same spatial cross-correlation analysis scheme was performed on the imaging data of 100 nm fluores-
cent microspheres diffusing in agarose gels of different concentrations to study the effect of viscoelasticity
on the spatial cross-correlation of diffusing particles. Figure 3.10 shows a comparison between the 2D
colormaps and indicates higher spatial co-mobility in denser systems compared to water. Figure 3.11
summarises this results for around 25 sample bags for each concentration of agarose gels.

On the first glance, this result seemed to contradict our findings in the cells. But it can be an evidence
that nucleoplasmic A-type lamins are not polymerising in the interior of the nucleus and instead they are
interacting with chromatin and other nuclear bodies. Therefore, the heterogenous gel like environment
might no be disrupted by their absence.
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Figure 3.10: 2D colour maps of spatial cross-correlation amplitude normalised by auto-correlation am-
plitude for different concentrations of agarose gels. The colours are arranged in the form
of heat map from dark blue denoting 0 (no correlation) to bright red (autocorrelation).

Figure 3.11: Mean value of cross correlation ampltitude radial averages for different concentrations of
agarose gels. Each data point shows the mean value of radial averages at the given distance
over around 25 sample bags.



4 Langevin dynamics simulation

4.1 The description of the model

To study polymer-nanoparticle mixtures, comparable to the case of chromatin in nucleoplasmic A-
type lamin pool, by computer simulation, both Monte-Carlo and molecular dynamics approaches were
conducted before. Crucial ingredients such as polymer compressibility, confinement and viscoelastic
effects on polymer looping were included in these simulations to deliver results, applicable to realistic
situations.

Our simulation framework to describe chromatin-lamins interconnection is based on a Langevin dynamics
model of a flexible polymer consisting of n monomers of diameter σ, in which each monomer is interacting
with direct neighbour through a nonlinear spring modelled by a finitely extensible nonlinear elastic
(FENE) potential,

UFENE(r) = −
k
2

r2
max log

(
1 − r2

/r2
max

)
, (4.1)

where, k is the spring constant, rmax is the maximum allowed separation between two monomers and r
is the distance between them. Excluded-volume interactions between polymer segments are given by a
standard truncated Lennard-Jones repulsive potential (Weeks-Chandler-Anderson potential [119])

ULJ(r , ε) =


4ε
(
(σ/ri, j )

12 − (σ/ri, j )
6
)
+ ε ri,j < rcut

0 otherwise
(4.2)

with rcut = 21/6σ. In this equation, ri,j = |ri − rj | is the inter-monomer distance, σ is the the diameter of a
chain monomer and ε is the strength of the potential. We measure the length in units of σ and the energy
in units of thermal energy kBT , in which kB is the Boltzmann constant and T is the absolute temperature.
The parameters for these two potentials are set to k = 30, rmax = 1.5 (to minimise bond crossings of the
chain), ε = 1 and σ = 1.

The bending energy of the chain is given by

Ub =
κ

2

n−1∑
i=2

θ2
i , (4.3)

here, κ is the bending stiffness and θi is the bending angle of the ith chain segment. The persistence
length of the chain for a given value of κ is then lp = 2κl30/kbT in two-dimensions. κ is set to 3 for a close
approximation of the persistence length of chromatin. The dynamics of the position ri(t) of the chain
monomer then is governed by the following overdamped Langevin equation

m
d2ri
dt2 = −∇

©«
n∑

j=1,j,i

ULJ (|ri − rj |) +UFENE(|ri − ri±1 |) +Ub(ri)
ª®¬ + ηi(t), (4.4)

here m is the mass of the monomer, ηi(t) is the white Gaussian noise with unit variance at each direction,
〈ηi(t) · ηj(t ′)〉 = 6kBTδi jδ(t − t ′), where δi j is the Kronecker symbol. This relation is satisfying the fluctuation-
dissipation theorem. For solving the Eq. 4.4 numerically, the stochastic Runge-Kutta algorithm [120] was
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implemented together utilising a Verlet list for the optimisation. The integration time step was set to
∆t = 10−4 to maintain the convergence of the numerical solver. Initially the system is equilibrated for
∼ 106 steps and run up to ∼ 108 steps. The desired quantities such as the number of loops and the radius
of gyration are evaluated at each 104 steps after the equilibration of the chain.

On the presumption that A-type lamins are binding to chromatin and rendering the loop formation
energetically profitable, another attractive potential is considered as well.This complies with the most
speculated role of nucleoplasmic lamin As as crosslinkers. The potential is defined via another LJ potential
with a larger cutoff distance and attraction strength εs , called the pairing energy

Uatt(r) = ULJ (r , εs) +CLJ, (4.5)

The constant CLJ is introduced along so that the attraction potential becomes continuous at r = rcutoff with
the zero-value branch of Eq. 4.2 at r > rcutoff. This attraction potential acts when the distance between two
given monomers is less than a critical distance characterised by the size of a lamin A protein ∼ 664aa. The
self-avoidance of chain monomers vanishes between the immediate neighbours of the two monomers
that are attracted to each other, for the loops to be formed effectively.

For this simulation, a polymer chain of 128 monomers was taken into account and the initial pairing
energy set to εs = 20ε ≡ 20kBT . We varied this paring energy 0 ≤ εs ≤ 1600kBT to examine the effect of
the pairing strength on the dynamics of the polymer chain. Figure 4.1 shows a snapshot of a simulated
polymer undergoing Langevin dynamics in the presence of looping agents after equilibration.

Figure 4.1: A snapshot, generated from the simulation showing a polymer chain in its compact con-
formation. The spheres are monomers connected by nonlinear springs

4.2 Loop formation and diffusion

First the diffusive motion of a polymer chain without the binding agents was considered. For this reason
the time-averaged MSD (tMSD) of the centre of the mass (COM) of the polymer was calculated from the
chain trajectory generated at each time step

tMSD(τ) = δ2
X (τ) =

1
T − τ

∫ T−τ

0
(X(t + τ) − X(t))2 dt, (4.6)
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Figure 4.2: Mean squared displacement in the absence of the loop forming agents. The thicker more
transparent line illustrate the simulation data and the brighter thiner line the fit model.
Simulation parameters: εs = 0, σ = 1, κ = 3.

where

X(t) =
1
n

n∑
i=1

xi (4.7)

is the COM of the polymer. Moreover, the tMSD is averaged over an ensemble of all independent traces
of each monomer during the time of the simulation

nMSD(τ) = 〈δ2
X (τ) =

1
N

n∑
i=1

δ2
X (τ) (4.8)

Then a power-law model for anomalous diffusion Eq. 2.42 was fitted to the resulting nMSD data. Figure
4.2 shows that the anomaly exponent is almost equal to one α = 0.96, indicating a normal diffusion. This
result is in line with our findings on the diffusion pattern in lamin A depleted cell line.

Figure 4.3: Mean squared displacement in the presence of the loop forming agents. The thicker more
transparent line illustrate the simulation data and the brighter thiner line the fit model.
Simulation parameters: εs = 800kBT , σ = 1, κ = 3.

The same treatment has been applied to the data from the simulation in which loop formation was
allowed. The resulting plot for the case of εs = 800kBT is sketched in Figure 4.3 representing a clear
hinderance in the motion of chromatin.
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Note that no other frictional forces was taken into account in our model, therefore it is possible to deduce
that formation of loops alone can render anomaly in the system. This suggests that lamins can be involved
in packing of DNA in the nucleoplasm and therefore they affect the arrangement of chromatin. More
rigorous analysis of parameters are needed for a more conclusive picture. But these results provides a
footing for further investigation on this regard.

Chromatin folding

To study the internal confinement of chromatin due to crowding, static quantities such as radius of
gyration are often considered. It can characterise the size of the polymers of any structure which can be
greatly beneficial for studying a dynamic polymer chain. The squared radius of gyration R2

g is defined as
the average squared distance between monomers in a given conformation and the polymer COM

R2
g =

1
N

N∑
i=1

(ri − rj)2. (4.9)

The value for radius of gyration at each 104 step was recorded for different values of pairing energy. The
results are summarised in Figure 4.4. As it is seen in this figure, with increase in the pairing energy the
mean value of gyration radii decreases, implying more compact spatial arrangement of the chromatin.
A broad distribution of gyration radii can be seen from the violinplot (Figure 4.4(a)) at weak paring
strengths, however at 2εs already a drop is recognisable. At ε > 100kBT the radii significantly shift to
shorter r values and at high strength. It is almost fluctuating around its mean.

Figure 4.4: A statistical overview of radii of gyration for different pairing strengths. (a) displays the
distribution of gyration radii at each pairing strength. In (b) a detailed boxplot of this quantity
is presented. the green triangles denote the mean value of radii at each pairing strength and
the horizontal line denotes the median. Simulation parameters: σ = 1, κ = 3.

These results are in a good compliance with our findings presented in Section 3.3 (Dynamic spatial rear-
rangement of chromatin) as it predicts the loose arrangement of polymers in the absence of crosslinkers.
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5 Conclusion and outlook

5.1 Restatement of the problem

The function of the genome in the cell depends strongly on its three-dimensional structure and dynamics
[121, 122]. Chromatin in the cell nucleus is highly ordered yet dynamic. The principles of its organization,
crucial for proper cell function, still remain unclear [123, 124]. Here, to get further insight into these
mechanisms, we focused on the effect of lamin A on chromatin dynamics.

Evidence is growing that nuclear lamins form a filamentous scaffold throughout the nucleus, which not
only determines its shape and mechanical properties, but also serves as a docking site for chromatin
and for many proteins that participate in chromatin organization[118]. Besides the extensive lamin
structures located within the nuclear lamina, smaller and more dynamic lamin polymers may form
protein complexes involved in a wide range of nuclear housekeeping functions such as DNA replication,
DNA repair[125–130] and RNA pol II transcription[131]. More specifically, single particle tracking of
telomers in live cells indicated that knockout of lamin A strikingly alters the dynamics, inducing a
transition from anomalous diffusion to normal diffusion. However, the depletion of LAP2α, a protein that
interacts with lamin A and chromatin, has no effect on the anomaly of diffusion [118, 132]. This suggested
the prominent role of lamin A mediated interconnections in chromatin in controlling its dynamics.

Dynamics of chromatin and proteins in the cell nucleus have been visualized by modern light microscopy
techniques. To characterize chromatin dynamics in live cells, we use fluorescence correlation and cross-
correlation spectroscopy in a single plane illumination microscope (SPIM-FCS/FCCS) to achieve parallel
acquisition of FCS data across entire lines or regions [101, 133]. FCS yields mobility parameters through an
auto-correlation analysis of fluorescence fluctuations measured inside a small observation volume. SPIM-
FCS allows such an auto-correlation analysis on fast image series for hundreds of thousands of contiguous
pixels, thereby providing 2-dimensional mobility and interaction maps in live cells [95]. Two-color cross-
correlation (FCCS) in addition provides information about the interactions and co-mobility between
differently labelled particles and 2-focus cross-correlation produces data on spatial arrangement of a
polymer network and the viscoelasticity of its surrounding environment. This method has been utilised
successfully before as an example, it has been shown that the mobility of a heterodimeric transcription
factor strongly correlated with the degree of dimerization, spatially localizing specific binding to DNA in
the dimer form exploiting SPIM-FC(C)S [104, 134, 135].

5.2 Summary of our findings

We applied SPIM-FC(S)S to study the influence of lamin A on the mobility of chromatin fluorescently
labelled with H2A-eGFP. Earlier experimental studies on transport processes inside the cells has demon-
strated that the intranuclear diffusion of particles is anomalous[21, 55, 136–138]. This is likely due to
macromolecular crowding and/or viscoelasticity of the nuclear micro-environment, that hinder the
random motions of particles. There are different polymer models to describe these anomalous dynamics.
Guigas et al. studied the diffusion of gold nanospheres in cells and found out that their anomalous diffu-
sion is in agreement with Rouse model for polymer dymanics [21]. This indicates that the intranuclear
environment resembles a polymeric sponge. However, Erdel et al. have shown that a more detailed model,
namely porous medium model, is needed to explain the subdiffusivity of chromatin. They summarised
different polymer models and deduced that a porous medium or random obstacle network for diffusing
particles can better characterise the interior of the nucleus [139]. Brownian dynamics simulations also
showed that the chromatin chain alone would not display anomalous diffusion; this requires in addition
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the presence of a viscoelastic matrix around the polymer [138]. We show that the diffusion anomaly
parameter α of chromatin-bound histones in mouse adult fibroblasts is α = 0.83 ± 0.08, indicating this
subdiffusion. This is in a good compliance with the results presented in Erdel et al. [139]. In a lamin A
knockout cell line, on the other hand, diffusion reverted to normal (α = 1.11 ± 0.10), but significantly
slowed down. This change in chromatin dynamics suggests that the lamin network is the source of the
nucleoplasmic viscoelasticity. In the absence of lamin A, the nucleoplasm loses its viscoelastic behavior,
reducing diffusion obstruction. Furthermore, the loss of the elastic lamin A interconnections reduces the
overall speed of chromatin motion, as indicated by the longer residence time in the focal volume. This
can be also seen from the two-component model since the fraction of slowly diffusing histones in lamin A
knockout cells increases. This agrees with theoretical predictions which showed that the loop closure time
for an elastic polymer chain is accelerated by viscoelasticity [140–143]. It is noteworthy that our findings
agree with recent findings by Garini’s group on telomere motion in the cells lacking lamin A proteins
[118].

To understand better how lamin A affects the viscoelasticity of the nuclear interior, we analyzed the
diffusion of an inert probe, eGFP tetramer((eGFP)-4x), with the same technique. In lamin A deficient
cells, the mobility of free eGFP-4x is significantly slowed down (from D f ast = 17.9 ± 2.2 µm2/s in the
wildtype cells to D f ast = 12.1 ± 1.8 µm2/s in the knockout ones). This result supports the view that lamin
A is responsible for the viscoelasticity of the nuclear interior.

We also examine the interactions between lamin A and chromatin, performing SPIM-FCCS measurements
on mouse cells where lamins and histones are labelled with different colors. The significant cross-
correlation amplitude (Figure 3.1) demonstrates that a relatively large fraction of lamin A is moving
together with histones. Since the decay time of the cross-correlation curves is comparable with the dwell
time of histones bound to chromatin, we can infer that lamin A and chromatin are co-diffusing.

Our spatial cross-correlation analysis of the data provided more insight on the spatial rearrangement
of chromatin after the depletion nucleoplasmic A-type lamins. Our studies demonstrate a more flexible
chromatin configuration and a looser positioning in the entire nucleus. This effect can be seen from
higher correlation values at longer spatial range. The same procedure applied to artificial system of
diffusing microspheres in gels showed the influence of viscoelastic dense network on the cross-correlation
amplitude. The loss of this spatial correlation in supposedly more crowded environment containing
nucleoplasmic lamins, hence, can be explained by their dynamic tendency to interconnect with chromatin
fibre, possibly as crosslinkers, as opposed to forming homo-dimers. This results can be improved by an
optical system with a better spatial resolution to probe the effect more accurately at defined distances.

A Langevin dynamics simulation on a polymer chain in three-dimensional model system has been
employed as a framework to mimic these interconnections. Different scenarios for the nature of the
interaction between nucleoplasmic lamin A and chromatin can be explored by these simulations. Here,
assuming that their bindings facilitates the polymer looping as suggested in [142], we managed to show
the extreme compaction of the polymer chain in the presence of these loop forming agents. A change
in the MSD of its constituting monomers, in addition, is an indicator of anomaly inducing effects of
crosslinkers in our model system. Both results are in line with our experimental findings on the chromatin
and lamin A interdependence.

5.3 Future outlook

As it is implied throughout this thesis, SPIM-FC(C)S provides a robust and reliable platform to study
the dynamics of macromolecules in viscoelastic media. One of the limitations of our system though, was
its time resolution. Employing faster detectors to reach µs resolutions for data acquisition will therefore
considerably enhance the system to study faster dynamics of smaller molecules. Moreover, it can offer a
possibility to explore the complex dynamics of diffusion in a system to validate theoretical speculations
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Figure 5.1: An inverted black and white STED image of the nucleus of a MAF, smoothed and pro-
cessed. Chromatin fibre is present in black regions and white regions represent the interchro-
matin space.

in shorter time ranges. On the other hand, new achievements in super resolution microscopy techniques,
termed as nanoscopy, provides a better spatial resolution at macromolecular scales. Combining one
of the methods called super-resolution stimulated emission depletion (STED) [144], with fluorescence
correlation spectroscopy has already shown promising results [145–147]. These enhancement can be
complimentary to SPIM-FC(C)S which will results in better profiling of dynamics both in time and space
and ultimately lead to much better quantification of underlying physical parameters of the system.

Studying the fluctuations in complex system has become an active field of research in theoretical physics,
especially in last two decades. The emergence of new theories on the nature of these fluctuations allows
us to gain better insight on the properties of the system. This together with new experimental discoveries
dictate a systematic modelling approach to examine their possible implications in real life. As an example
relevant to the scope of this thesis, new view on chromatin as a highly variable structure suggests that
chromatin is less physically constrained and more dynamic than expected in the regular static structure
model [68]. This can be explained and studied by considering the complex nature of the dynamics in short
time scales manifested in anomalous non Gaussian behaviour of the parameters. The need to incorporate
the realistic physical parameters and proper system scaling would therefore provides meaningful results
in future. This can be done by applying different types of diffusion model other than the ones assumed
throughout this thesis, both in the simulation framework and in the fit models. Altering the parameters
of the simulation such as the bending rigidity of the polymer either in time or based on its interactions
with other constituent of the system to build a more dynamic system can be suggested as a new path to
investigate in future.

Lastly, we need to acquire more relevant structural information on nuclear intermediate filaments in living
cells. Therefore employing novel image processing methods on static nanoscopic fluorescent images
can be beneficial. The image shown in Figure 5.1 is the result of our recent attempt on determining the
interchromatin domains in the nucleus of a MAF cell by STED imaging. It gives us more information on
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the arrangement of chromatin in an interphase nucleus. A simple study by image segmentation based
on the intensity profiles of this image and another image taken from LMNA− MAF yields interesting
information on chromatin conformation in the nucleus. Furthermore, a two-color STED image is able to
elucidate the positioning of nucleoplasmic A-type lamins with respect to chromatin fibre, which can be
later exploited both by modifying the simulation model and in space-time correlation analysis of dynamic
image series with lower spatial resolutions to ultimately unravel the function of these nucleoplasmic
intermediate filaments.
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[37] J Čermák and I Stloukal. ‘Diffusion and structural changes in Fe 91 y Mo 8 Cu 1 B y alloys’. In: J.
Phys. Condens. Matter 19.15 (Apr. 2007), p. 156219. DOI: 10.1088/0953-8984/19/15/156219 (cited
on pages 5, 6).

[38] G. Pfister and H. Scher. ‘Time-dependent electrical transport in amorphous solids: As2Se3’. In:
Phys. Rev. B 15.4 (Feb. 1977), pp. 2062–2083. DOI: 10.1103/PhysRevB.15.2062 (cited on page 5).

https://doi.org/10.1016/0370-1573(94)00055-7
https://doi.org/https://doi.org/10.1529/biophysj.107.117044
https://doi.org/https://doi.org/10.1529/biophysj.107.117044
https://doi.org/10.1073/pnas.0308344101
https://doi.org/10.1038/srep11745
https://doi.org/10.1039/c3sm50172h
https://doi.org/10.1063/1.5086269
https://doi.org/10.1103/PhysRevLett.74.1795
https://doi.org/10.1103/PhysRevE.51.4807
https://doi.org/10.1038/nature06958
https://doi.org/10.1038/381413a0
https://doi.org/10.1038/44831
https://doi.org/10.1007/s00265-003-0700-6
https://doi.org/10.1007/s00265-003-0700-6
https://doi.org/10.1103/PhysRevE.99.042141
https://doi.org/10.1021/jp076562n
https://doi.org/10.1098/rspa.1926.0043
https://doi.org/10.1088/0305-4470/37/31/R01
https://doi.org/10.1103/PhysRevB.12.2455
https://doi.org/10.1088/0953-8984/19/15/156219
https://doi.org/10.1103/PhysRevB.15.2062


[39] G. Pfister and H. Scher. ‘Dispersive (non-Gaussian) transient transport in disordered solids’. In:
Adv. Phys. 27.5 (Sept. 1978), pp. 747–798. DOI: 10.1080/00018737800101474 (cited on page 5).

[40] G. Zumofen, A. Blumen, and J. Klafter. ‘Current flow under anomalous-diffusion conditions: Lévy
walks’. In: Phys. Rev. A 41.8 (Apr. 1990), pp. 4558–4561. DOI: 10.1103/PhysRevA.41.4558 (cited on
page 5).

[41] Qing Gu et al. ‘Non-Gaussian transport measurements and the Einstein relation in amorphous
silicon’. In: Phys. Rev. Lett. 76.17 (Apr. 1996), pp. 3196–3199. DOI: 10.1103/PhysRevLett.76.3196
(cited on pages 5, 6).

[42] P. W.M. Blom and M. C.J.M. Vissenberg. ‘Dispersive hole transport in poly(p-phenylene vinylene)’.
In: Phys. Rev. Lett. 80.17 (Apr. 1998), pp. 3819–3822. DOI: 10.1103/PhysRevLett.80.3819 (cited on
pages 5, 6).

[43] Harvey Scher, Michael F. Shlesinger, and John T. Bendler. ‘Time-Scale Invariance in Transport and
Relaxation’. In: Phys. Today 44.1 (Jan. 1991), pp. 26–34. DOI: 10.1063/1.881289 (cited on pages 5,
6).

[44] Yuh Fukai and H. Sugimoto. ‘Hydrogen Diffusion in Metals - Unsolved Problems’. In: Defect Diffus.
Forum 83 (Jan. 1992), pp. 87–110. DOI: 10.4028/www.scientific.net/ddf.83.87 (cited on page 6).

[45] Aleksander Stanislavsky and Karina Weron. ‘Transport of magnetic bright points on the Sun.
Analysis of subdiffusion scenarios’. In: Astrophys. Space Sci. 323.4 (Oct. 2009), pp. 351–355. DOI:
10.1007/s10509-009-0083-x (cited on page 6).

[46] A. Shalchi. ‘Time-dependent transport and subdiffusion of cosmic rays’. In: J. Geophys. Res. Sp.
Phys. 110.A9 (Sept. 2005). DOI: 10.1029/2005JA011214 (cited on page 6).

[47] A. A. Lagutin and V. V. Uchaikin. ‘Anomalous diffusion equation: Application to cosmic ray
transport’. In: Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. Vol. 201.
1. North-Holland, Jan. 2003, pp. 212–216. DOI: 10.1016/S0168-583X(02)01362-9 (cited on page 6).

[48] J. Kota and J. R. Jokipii. ‘Velocity Correlation and the Spatial Diffusion Coefficients of Cosmic Rays:
Compound Diffusion’. In: Astrophys. J. 531.2 (Mar. 2000), pp. 1067–1070. DOI: 10.1086/308492
(cited on page 6).

[49] F Amblard et al. ‘Subdiffusion and anomalous local viscoelasticity in actin networks’. In: Phys.
Rev. Lett. 77.21 (1996), pp. 4470–4473. DOI: 10.1103/PhysRevLett.77.4470 (cited on page 6).

[50] Nicolas Fatin-Rouge, Konstantin Starchev, and Jacques Buffle. ‘Size Effects on Diffusion Processes
within Agarose Gels’. In: Biophys. J. 86.5 (May 2004), pp. 2710–2719. DOI: 10.1016/S0006-3495(04)
74325-8 (cited on page 6).

[51] Daniel S. Banks and Cécile Fradin. ‘Anomalous diffusion of proteins due to molecular crowding’.
In: Biophys. J. 89.5 (Nov. 2005), pp. 2960–2971. DOI: 10.1529/biophysj.104.051078 (cited on
page 6).

[52] Matthias Weiss, Hitoshi Hashimoto, and Tommy Nilsson. ‘Anomalous protein diffusion in living
cells as seen by fluorescence correlation spectroscopy’. In: Biophys. J. 84.6 (June 2003), pp. 4043–4052.
DOI: 10.1016/S0006-3495(03)75130-3 (cited on page 6).

[53] Matthias Weiss and Tommy Nilsson. ‘In a mirror dimly: tracing the movements of molecules in
living cells’. In: Trends Cell Biol. 14.5 (May 2004), pp. 267–273. DOI: 10.1016/J.TCB.2004.03.012
(cited on page 6).

[54] Fereydoon Taheri et al. ‘Random Motion of Chromatin Is Influenced by Lamin A Interconnections’.
In: Biophys. J. 114.10 (May 2018), pp. 2465–2472. DOI: 10.1016/j.bpj.2018.04.037 (cited on
pages 6, 9).

[55] Felix Höfling and Thomas Franosch. ‘Anomalous transport in the crowded world of biological
cells’. In: Reports Prog. Phys. 76.4 (Apr. 2013), p. 46602. DOI: 10.1088/0034-4885/76/4/046602
(cited on pages 6, 40).

https://doi.org/10.1080/00018737800101474
https://doi.org/10.1103/PhysRevA.41.4558
https://doi.org/10.1103/PhysRevLett.76.3196
https://doi.org/10.1103/PhysRevLett.80.3819
https://doi.org/10.1063/1.881289
https://doi.org/10.4028/www.scientific.net/ddf.83.87
https://doi.org/10.1007/s10509-009-0083-x
https://doi.org/10.1029/2005JA011214
https://doi.org/10.1016/S0168-583X(02)01362-9
https://doi.org/10.1086/308492
https://doi.org/10.1103/PhysRevLett.77.4470
https://doi.org/10.1016/S0006-3495(04)74325-8
https://doi.org/10.1016/S0006-3495(04)74325-8
https://doi.org/10.1529/biophysj.104.051078
https://doi.org/10.1016/S0006-3495(03)75130-3
https://doi.org/10.1016/J.TCB.2004.03.012
https://doi.org/10.1016/j.bpj.2018.04.037
https://doi.org/10.1088/0034-4885/76/4/046602


[56] Ron Milo et al. ‘BioNumbers The database of key numbers in molecular and cell biology’. In:
Nucleic Acids Res. 38.SUPPL.1 (Jan. 2009), pp. D750–3. DOI: 10.1093/nar/gkp889 (cited on page 6).

[57] Naama Gal, Diana Lechtman-Goldstein, and Daphne Weihs. Particle tracking in living cells: A review
of the mean square displacement method and beyond. 2013. DOI: 10.1007/s00397-013-0694-6 (cited
on pages 6, 7).

[58] Benjamin M Regner et al. ‘Anomalous diffusion of single particles in cytoplasm’. In: Biophys. J.
104.8 (2013), pp. 1652–1660. DOI: 10.1016/j.bpj.2013.01.049 (cited on page 6).

[59] Ohad Medalia et al. ‘Macromolecular architecture in eukaryotic cells visualized by cryoelectron
tomography’. In: Science (80-. ). 298.5596 (Nov. 2002), pp. 1209–1213. DOI: 10.1126/science.
1076184 (cited on page 6).

[60] Dan N. Simon and Katherine L. Wilson. The nucleoskeleton as a genome-associated dynamic ’network of
networks’. Nov. 2011. DOI: 10.1038/nrm3207 (cited on pages 7, 8).

[61] Larry Gerace, Andrea Blum, and Günter Blobel. ‘Immunocytochemical localization of the major
polypeptides of the nuclear pore complex-lamina fraction: Interphase and mitotic distribution’. In:
J. Cell Biol. 79.2 (Nov. 1978), pp. 546–566. DOI: 10.1083/jcb.79.2.546 (cited on pages 7, 8).

[62] Kris Noel Dahl et al. ‘The nuclear envelope lamina network has elasticity and a compressibility
limit suggestive of a molecular shock absorber’. In: J. Cell Sci. 117.20 (Oct. 2004), pp. 4779–4786.
DOI: 10.1242/jcs.01357 (cited on page 7).

[63] Farshid Guilak, John R. Tedrow, and Rainer Burgkart. ‘Viscoelastic properties of the cell nucleus’.
In: Biochem. Biophys. Res. Commun. 269.3 (Mar. 2000), pp. 781–786. DOI: 10.1006/bbrc.2000.2360
(cited on page 7).

[64] Pavel Hozák et al. ‘Visualization of replication factories attached to a nucleoskeleton’. In: Cell 73.2
(Apr. 1993), pp. 361–373. DOI: 10.1016/0092-8674(93)90235-I (cited on page 7).

[65] Stephen T Spagnol, Travis J Armiger, and Kris Noel Dahl. ‘Mechanobiology of Chromatin and
the Nuclear Interior’. In: Cell. Mol. Bioeng. 9.2 (June 2016), pp. 268–276. DOI: 10.1007/s12195-016-
0444-9 (cited on pages 7, 8).

[66] Michael R. Hübner and David L. Spector. ‘Chromatin Dynamics’. In: Annu. Rev. Biophys. 39.1 (Apr.
2010), pp. 471–489. DOI: 10.1146/annurev.biophys.093008.131348 (cited on pages 7, 8).

[67] Tom Misteli. Beyond the Sequence: Cellular Organization of Genome Function. Feb. 2007. DOI: 10.1016/
j.cell.2007.01.028 (cited on pages 7, 8).

[68] Kazuhiro Maeshima, Satoru Ide, and Michael Babokhov. Dynamic chromatin organization without
the 30-nm fiber. June 2019. DOI: 10.1016/j.ceb.2019.02.003 (cited on pages 7, 42).

[69] Benjamin Albert et al. Nuclear organization and chromatin dynamics in yeast: Biophysical models or
biologically driven interactions? June 2012. DOI: 10.1016/j.bbagrm.2011.12.010 (cited on page 8).

[70] Tom Misteli. Concepts in nuclear architecture. May 2005. DOI: 10.1002/bies.20226 (cited on page 8).

[71] Stanislaw A Gorski, Miroslav Dundr, and Tom Misteli. The road much traveled: trafficking in the cell
nucleus. June 2006. DOI: 10.1016/j.ceb.2006.03.002 (cited on page 8).

[72] Sofia A Quinodoz et al. ‘Higher-Order Inter-chromosomal Hubs Shape 3D Genome Organization
in the Nucleus’. In: Cell 174.3 (2018), 744–757.e24. DOI: 10.1016/j.cell.2018.05.024 (cited on
page 8).

[73] Thomas Cremer et al. Chromosome territories - a functional nuclear landscape. June 2006. DOI: 10.
1016/j.ceb.2006.04.007 (cited on page 8).

[74] Howard J Worman, Cecilia Ostlund, and Yuexia Wang. ‘Diseases of the nuclear envelope.’ In: Cold
Spring Harb. Perspect. Biol. 2.2 (Feb. 2010), a000760. DOI: 10.1101/cshperspect.a000760 (cited on
page 8).

[75] Nolwenn Briand et al. Lamin A, chromatin and FPLD2: Not just a peripheral Ménage-à-Trois. July 2018.
DOI: 10.3389/fcell.2018.00073 (cited on page 8).

https://doi.org/10.1093/nar/gkp889
https://doi.org/10.1007/s00397-013-0694-6
https://doi.org/10.1016/j.bpj.2013.01.049
https://doi.org/10.1126/science.1076184
https://doi.org/10.1126/science.1076184
https://doi.org/10.1038/nrm3207
https://doi.org/10.1083/jcb.79.2.546
https://doi.org/10.1242/jcs.01357
https://doi.org/10.1006/bbrc.2000.2360
https://doi.org/10.1016/0092-8674(93)90235-I
https://doi.org/10.1007/s12195-016-0444-9
https://doi.org/10.1007/s12195-016-0444-9
https://doi.org/10.1146/annurev.biophys.093008.131348
https://doi.org/10.1016/j.cell.2007.01.028
https://doi.org/10.1016/j.cell.2007.01.028
https://doi.org/10.1016/j.ceb.2019.02.003
https://doi.org/10.1016/j.bbagrm.2011.12.010
https://doi.org/10.1002/bies.20226
https://doi.org/10.1016/j.ceb.2006.03.002
https://doi.org/10.1016/j.cell.2018.05.024
https://doi.org/10.1016/j.ceb.2006.04.007
https://doi.org/10.1016/j.ceb.2006.04.007
https://doi.org/10.1101/cshperspect.a000760
https://doi.org/10.3389/fcell.2018.00073


[76] Travis A Dittmer and Tom Misteli. ‘The lamin protein family.’ In: Genome Biol. 12.5 (May 2011),
p. 222. DOI: 10.1186/gb-2011-12-5-222 (cited on pages 8, 9).

[77] R. P. Aaronson and G. Blobel. ‘Isolation of nuclear pore complexes in association with a lamina’.
In: Proc. Natl. Acad. Sci. U. S. A. 72.3 (Mar. 1975), pp. 1007–1011. DOI: 10.1073/pnas.72.3.1007
(cited on page 8).

[78] Frank D. Mckeon, Marc W. Kirschner, and Daniel Caput. ‘Homologies in both primary and
secondary structure between nuclear envelope and intermediate filament proteins’. In: Nature
319.6053 (Feb. 1986), pp. 463–468. DOI: 10.1038/319463a0 (cited on page 8).

[79] D. Z. Fisher, N. Chaudhary, and G. Blobel. ‘cDNA sequencing of nuclear lamins A and C reveals
primary and secondary structural homology to intermediate filament proteins’. In: Proc. Natl. Acad.
Sci. U. S. A. 83.17 (Sept. 1986), pp. 6450–6454. DOI: 10.1073/pnas.83.17.6450 (cited on page 8).

[80] F Lin and H J Worman. ‘Structural organization of the human gene encoding nuclear lamin A and
nuclear lamin C.’ In: J. Biol. Chem. 268.22 (Aug. 1993), pp. 16321–6 (cited on page 8).

[81] Feng Lin and Howard J. Worman. ‘Structural organization of the human gene (LMNB1) encoding
nuclear lamin B1’. In: Genomics 27.2 (May 1995), pp. 230–236. DOI: 10.1006/geno.1995.1036 (cited
on page 8).

[82] Brian Burke and Colin L. Stewart. The nuclear lamins: Flexibility in function. Jan. 2013. DOI: 10.1038/
nrm3488 (cited on page 9).

[83] Rebecca de Leeuw, Yosef Gruenbaum, and Ohad Medalia. Nuclear Lamins: Thin Filaments with
Major Functions. Jan. 2018. DOI: 10.1016/j.tcb.2017.08.004 (cited on page 9).

[84] Qian Ye and Howard J. Worman. ‘Protein-protein interactions between human nuclear lamins
expressed in yeast’. In: Exp. Cell Res. 219.1 (July 1995), pp. 292–298. DOI: 10.1006/excr.1995.1230
(cited on page 9).

[85] T Dechat et al. ‘Lamina-associated polypeptide 2alpha binds intranuclear A-type lamins.’ In: J.
Cell Sci. 113 Pt 19 (Oct. 2000), pp. 3473–84 (cited on page 9).

[86] J M Bridger et al. ‘Internal lamin structures within G1 nuclei of human dermal fibroblasts.’ In: J.
Cell Sci. 104 ( Pt 2 (Feb. 1993), pp. 297–306 (cited on page 9).

[87] B K Kennedy et al. ‘Nuclear organization of DNA replication in primary mammalian cells.’ In:
Genes Dev. 14.22 (Nov. 2000), pp. 2855–68. DOI: 10.1101/gad.842600 (cited on page 9).

[88] Nana Naetar et al. ‘Loss of nucleoplasmic LAP2α-lamin A complexes causes erythroid and
epidermal progenitor hyperproliferation’. In: Nat. Cell Biol. 10.11 (Nov. 2008), pp. 1341–1348. DOI:
10.1038/ncb1793 (cited on page 9).

[89] Takeshi Shimi et al. ‘The A- and B-type nuclear lamin networks: Microdomains involved in
chromatin organization and transcription’. In: Genes Dev. 22.24 (Dec. 2008), pp. 3409–3421. DOI:
10.1101/gad.1735208 (cited on page 9).

[90] Jos L.V. Broers et al. ‘Dynamics of the nuclear lamina as monitored by GFP-tagged A-type lamins’.
In: J. Cell Sci. 112.20 (Oct. 1999), pp. 3463–3475 (cited on page 9).

[91] Robert D. Moir et al. ‘Nuclear lamins A and B1: Different pathways of assembly during nuclear
envelope formation in living cells’. In: J. Cell Biol. 151.6 (Dec. 2000), pp. 1155–1168. DOI: 10.1083/
jcb.151.6.1155 (cited on page 9).

[92] Yagmur Turgay et al. ‘The molecular architecture of lamins in somatic cells’. In: Nature 543.7644
(Mar. 2017), pp. 261–264. DOI: 10.1038/nature21382 (cited on page 9).

[93] Douglas Magde, Elliot Elson, and W. W. Webb. ‘Thermodynamic fluctuations in a reacting system
measurement by fluorescence correlation spectroscopy’. In: Phys. Rev. Lett. 29.11 (Sept. 1972),
pp. 705–708. DOI: 10.1103/PhysRevLett.29.705 (cited on page 10).

[94] Oleg Krichevsky and Grégoire Bonnet. ‘Fluorescence correlation spectroscopy: The technique
and its applications’. In: Reports Prog. Phys. 65.2 (Feb. 2002), pp. 251–297. DOI: 10.1088/0034-
4885/65/2/203 (cited on page 10).

https://doi.org/10.1186/gb-2011-12-5-222
https://doi.org/10.1073/pnas.72.3.1007
https://doi.org/10.1038/319463a0
https://doi.org/10.1073/pnas.83.17.6450
https://doi.org/10.1006/geno.1995.1036
https://doi.org/10.1038/nrm3488
https://doi.org/10.1038/nrm3488
https://doi.org/10.1016/j.tcb.2017.08.004
https://doi.org/10.1006/excr.1995.1230
https://doi.org/10.1101/gad.842600
https://doi.org/10.1038/ncb1793
https://doi.org/10.1101/gad.1735208
https://doi.org/10.1083/jcb.151.6.1155
https://doi.org/10.1083/jcb.151.6.1155
https://doi.org/10.1038/nature21382
https://doi.org/10.1103/PhysRevLett.29.705
https://doi.org/10.1088/0034-4885/65/2/203
https://doi.org/10.1088/0034-4885/65/2/203


[95] Jan Wolfgang Krieger et al. ‘Dual-color fluorescence cross-correlation spectroscopy on a single
plane illumination microscope (SPIM-FCCS)’. In: Opt Express 22.3 (Feb. 2014), pp. 2358–2375. DOI:
10.1364/OE.22.002358 (cited on pages 10, 12–14, 17–20, 22, 23, 40).

[96] R. Rigler et al. ‘Fluorescence correlation spectroscopy with high count rate and low background:
analysis of translational diffusion’. In: Eur. Biophys. J. 22.3 (Aug. 1993), pp. 169–175. DOI: 10.1007/
BF00185777 (cited on page 10).

[97] M Eigen and R Rigler. Sorting single molecules: Application to diagnostics and evolutionary biotechnology.
June 1994. DOI: 10.1073/pnas.91.13.5740 (cited on page 10).

[98] K. M. Berland. Fluorescence correlation spectroscopy: new methods for detecting molecular associations.
Apr. 1997. DOI: 10.1016/S0006-3495(97)78796-4 (cited on page 10).

[99] Manfred Auer et al. Fluorescence correlation spectroscopy: Lead discovery by miniaturized HTS. Oct.
1999. DOI: 10.1016/S1359-6446(98)01240-9 (cited on page 10).

[100] Jagadish Sankaran et al. ‘ImFCS: A software for Imaging FCS data analysis and visualization’. In:
Opt. Express 18.25 (Dec. 2010), p. 25468. DOI: 10.1364/oe.18.025468 (cited on page 10).

[101] Thorsten Wohland et al. ‘Single Plane Illumination Fluorescence Correlation Spectroscopy (SPIM-
FCS) probes inhomogeneous three-dimensional environments’. In: Opt. Express 18.10 (May 2010),
p. 10627. DOI: 10.1364/oe.18.010627 (cited on pages 10, 13, 40).

[102] Jagadish Sankaran et al. ‘Accuracy and precision in camera-based fluorescence correlation spec-
troscopy measurements’. In: Anal. Chem. 85.8 (Apr. 2013), pp. 3948–3954. DOI: 10.1021/ac303485t
(cited on pages 10, 16).

[103] Anand Pratap Singh et al. ‘The performance of 2D array detectors for light sheet based fluorescence
correlation spectroscopy’. In: Opt. Express 21.7 (Apr. 2013), p. 8652. DOI: 10.1364/oe.21.008652
(cited on pages 10, 13).

[104] A Pernus et al. ‘Imaging Fos-Jun transcription factor mobility and interaction in live cells by single
plane illumination-fluorescence cross correlation spectroscopy’. In: PLoS One 10.4 (Apr. 2015).
Ed. by Jinxing Lin, e0123070. DOI: 10.1371/journal.pone.0123070 (cited on pages 10, 40).

[105] M. Born and E. Wolf. Principles of Optics 7th edition. 1999 (cited on page 12).

[106] Paul Hopkins et al. ‘The van Hove distribution function for Brownian hard spheres: Dynamical
test particle theory and computer simulations for bulk dynamics’. In: J. Chem. Phys. 133.22 (Dec.
2010), p. 224505. DOI: 10.1063/1.3511719 (cited on page 16).

[107] L. A. Pipes and Mary L. Boas. ‘Mathematical Methods in the Physical Sciences.’ In: Am. Math. Mon.
74.8 (1967), p. 1024. DOI: 10.2307/2315314 (cited on page 16).

[108] Tomasz Wocjan et al. ‘Dynamics of a fluorophore attached to superhelical DNA: FCS experiments
simulated by Brownian dynamics’. In: Phys. Chem. Chem. Phys. 11.45 (Nov. 2009), pp. 10671–10681.
DOI: 10.1039/b911857h (cited on page 19).

[109] Roman Shusterman et al. ‘Monomer Dynamics in Double- and Single-Stranded DNA Polymers’.
In: Phys. Rev. Lett. 92.4 (Jan. 2004), p. 4. DOI: 10.1103/PhysRevLett.92.048303 (cited on page 19).

[110] Roman Shusterman, Tatyana Gavrinyov, and Oleg Krichevsky. ‘Internal dynamics of superhelical
DNA’. In: Phys. Rev. Lett. 100.9 (Mar. 2008), p. 098102. DOI: 10.1103/PhysRevLett.100.098102
(cited on page 19).

[111] E. P. Petrov et al. ‘Diffusion and segmental dynamics of double-stranded DNA’. In: Phys. Rev. Lett.
97.25 (Dec. 2006), p. 258101. DOI: 10.1103/PhysRevLett.97.258101 (cited on page 19).

[112] Jan W Krieger et al. ‘Imaging fluorescence (cross-) correlation spectroscopy in live cells and
organisms’. In: Nat. Protoc. 10.12 (Dec. 2015), pp. 1948–1974. DOI: 10.1038/nprot.2015.100 (cited
on page 19).

[113] Talley J. Lambert. FPbase: a community-editable fluorescent protein database. Apr. 2019. DOI: 10.1038/
s41592-019-0352-8 (cited on page 23).

https://doi.org/10.1364/OE.22.002358
https://doi.org/10.1007/BF00185777
https://doi.org/10.1007/BF00185777
https://doi.org/10.1073/pnas.91.13.5740
https://doi.org/10.1016/S0006-3495(97)78796-4
https://doi.org/10.1016/S1359-6446(98)01240-9
https://doi.org/10.1364/oe.18.025468
https://doi.org/10.1364/oe.18.010627
https://doi.org/10.1021/ac303485t
https://doi.org/10.1364/oe.21.008652
https://doi.org/10.1371/journal.pone.0123070
https://doi.org/10.1063/1.3511719
https://doi.org/10.2307/2315314
https://doi.org/10.1039/b911857h
https://doi.org/10.1103/PhysRevLett.92.048303
https://doi.org/10.1103/PhysRevLett.100.098102
https://doi.org/10.1103/PhysRevLett.97.258101
https://doi.org/10.1038/nprot.2015.100
https://doi.org/10.1038/s41592-019-0352-8
https://doi.org/10.1038/s41592-019-0352-8


[114] Nana Naetar, Simona Ferraioli, and Roland Foisner. Lamins in the nuclear interior - Life outside the
lamina. 2017. DOI: 10.1242/jcs.203430 (cited on page 26).

[115] Teresa Sullivan et al. ‘Loss of A-type lamin expression compromises nuclear envelope integrity
leading to muscular dystrophy’. In: J. Cell Biol. 147.5 (Nov. 1999), pp. 913–919. DOI: 10.1083/jcb.
147.5.913 (cited on page 26).

[116] N Dross et al. ‘Mapping eGFP oligomer mobility in living cell nuclei’. In: PLoS One 4.4 (2009),
e5041. DOI: 10.1371/journal.pone.0005041 (cited on page 31).

[117] György Vámosi et al. ‘EGFP oligomers as natural fluorescence and hydrodynamic standards’. In:
Sci. Rep. 6 (Sept. 2016), 33022 EP –- (cited on page 31).

[118] I. Bronshtein et al. ‘Loss of lamin A function increases chromatin dynamics in the nuclear interior’.
In: Nat. Commun. 6.1 (Dec. 2015), p. 8044. DOI: 10.1038/ncomms9044 (cited on pages 31, 40, 41).

[119] John D. Weeks, David Chandler, and Hans C. Andersen. ‘Role of repulsive forces in determining
the equilibrium structure of simple liquids’. In: J. Chem. Phys. 54.12 (June 1971), pp. 5237–5247.
DOI: 10.1063/1.1674820 (cited on page 35).

[120] Rebecca L. Honeycutt. ‘Stochastic Runge-Kutta algorithms. I. White noise’. In: Phys. Rev. A 45.2
(Jan. 1992), pp. 600–603. DOI: 10.1103/PhysRevA.45.600 (cited on page 35).

[121] R Paul et al. ‘Propagation of mechanical stress through the actin cytoskeleton toward focal adhe-
sions: model and experiment’. In: Biophys J 94.4 (2008), pp. 1470–1482. DOI: 10.1529/biophysj.
107.108688 (cited on page 40).

[122] N Wang, J D Tytell, and D E Ingber. ‘Mechanotransduction at a distance: mechanically coupling
the extracellular matrix with the nucleus’. In: Nat Rev Mol Cell Biol 10.1 (2009), pp. 75–82. DOI:
10.1038/nrm2594 (cited on page 40).

[123] Peter Fraser and Wendy Bickmore. Nuclear organization of the genome and the potential for gene
regulation. May 2007. DOI: 10.1038/nature05916 (cited on page 40).

[124] Malte Wachsmuth, Mawen Caudron-Herger, and Karsten Rippe. ‘Genome organization: Balancing
stability and plasticity’. In: Biochim. Biophys. Acta - Mol. Cell Res. 1783.11 (2008), pp. 2061–2079. DOI:
https://doi.org/10.1016/j.bbamcr.2008.07.022 (cited on page 40).

[125] Ian Gibbs-Seymour et al. ‘Lamin A/C-dependent interaction with 53BP1 promotes cellular re-
sponses to DNA damage’. In: Aging Cell 14.2 (Apr. 2015), pp. 162–169. DOI: 10.1111/acel.12258
(cited on page 40).

[126] Robert Mahen et al. ‘A-Type Lamins Maintain the Positional Stability of DNA Damage Repair Foci
in Mammalian Nuclei’. In: PLoS One 8.5 (2013), pp. 1–9. DOI: 10.1371/journal.pone.0061893
(cited on page 40).

[127] Susana Gonzalo. ‘DNA Damage and Lamins’. In: Cancer Biol. Nucl. Envel. Recent Adv. May Elucidate
Past Parad. Ed. by Eric C Schirmer and Jose I de las Heras. New York, NY: Springer New York,
2014, pp. 377–399. DOI: 10.1007/978-1-4899-8032-8_17 (cited on page 40).

[128] Joe Swift et al. ‘Nuclear Lamin-A Scales with Tissue Stiffness and Enhances Matrix-Directed
Differentiation’. In: Science (80-. ). 341.6149 (Aug. 2013), p. 1240104. DOI: 10.1126/science.1240104
(cited on page 40).

[129] Jerome Irianto et al. ‘Nuclear lamins in cancer’. In: Cell Mol Bioeng 9.2 (June 2016), pp. 258–267.
DOI: 10.1007/s12195-016-0437-8 (cited on page 40).

[130] Sangkyun Cho, Jerome Irianto, and Dennis E Discher. ‘Mechanosensing by the nucleus: From
pathways to scaling relationships’. In: J Cell Biol 216.2 (Feb. 2017), pp. 305–315. DOI: 10.1083/jcb.
201610042 (cited on page 40).

[131] Yehuda Brody et al. ‘The In Vivo Kinetics of RNA Polymerase II Elongation during Co-Transcriptional
Splicing’. In: PLOS Biol. 9.1 (2011), pp. 1–18. DOI: 10.1371/journal.pbio.1000573 (cited on
page 40).

https://doi.org/10.1242/jcs.203430
https://doi.org/10.1083/jcb.147.5.913
https://doi.org/10.1083/jcb.147.5.913
https://doi.org/10.1371/journal.pone.0005041
https://doi.org/10.1038/ncomms9044
https://doi.org/10.1063/1.1674820
https://doi.org/10.1103/PhysRevA.45.600
https://doi.org/10.1529/biophysj.107.108688
https://doi.org/10.1529/biophysj.107.108688
https://doi.org/10.1038/nrm2594
https://doi.org/10.1038/nature05916
https://doi.org/https://doi.org/10.1016/j.bbamcr.2008.07.022
https://doi.org/10.1111/acel.12258
https://doi.org/10.1371/journal.pone.0061893
https://doi.org/10.1007/978-1-4899-8032-8_17
https://doi.org/10.1126/science.1240104
https://doi.org/10.1007/s12195-016-0437-8
https://doi.org/10.1083/jcb.201610042
https://doi.org/10.1083/jcb.201610042
https://doi.org/10.1371/journal.pbio.1000573


[132] Anat Vivante et al. ‘Genome organization in the nucleus: From dynamic measurements to a
functional model’. In: Methods 123 (July 2017), pp. 128–137. DOI: https://doi.org/10.1016/j.
ymeth.2017.01.008 (cited on page 40).

[133] Jérémie Capoulade et al. ‘Quantitative fluorescence imaging of protein diffusion and interaction
in living cells’. In: Nat Biotechnol 29.9 (Aug. 2011), pp. 835–839. DOI: 10.1038/nbt.1928 (cited on
page 40).

[134] Peter Brazda et al. ‘Ligand Binding Shifts Highly Mobile Retinoid X Receptor to the Chromatin-
Bound State in a Coactivator-Dependent Manner, as Revealed by Single-Cell Imaging’. In: Mol.
Cell. Biol. 34.7 (2014), pp. 1234–1245. DOI: 10.1128/MCB.01097-13 (cited on page 40).

[135] Nikoletta Szalóki et al. ‘Evidence for Homodimerization of the c-Fos Transcription Factor in Live
Cells Revealed by Fluorescence Microscopy and Computer Modeling’. In: Mol Cell Biol 35.21 (Nov.
2015), pp. 3785–3798. DOI: 10.1128/MCB.00346-15 (cited on page 40).

[136] Malte Wachsmuth, Waldemar Waldeck, and Jörg Langowski. ‘Anomalous diffusion of fluorescent
probes inside living cell investigated by spatially-resolved fluorescence correlation spectroscopy’.
In: J. Mol. Biol. 298.4 (2000), pp. 677–689. DOI: 10.1006/jmbi.2000.3692 (cited on page 40).

[137] Matthias Weiss et al. ‘Anomalous Subdiffusion Is a Measure for Cytoplasmic Crowding in Living
Cells’. In: Biophys. J. 87.5 (Nov. 2004), pp. 3518–3524. DOI: https://doi.org/10.1529/biophysj.
104.044263 (cited on page 40).

[138] C C Fritsch and J Langowski. ‘Chromosome dynamics, molecular crowding, and diffusion in the
interphase cell nucleus: a Monte Carlo lattice simulation study’. In: Chromosom. Res 19.1 (2011),
pp. 63–81. DOI: 10.1007/s10577-010-9168-1 (cited on pages 40, 41).

[139] Fabian Erdel, Michael Baum, and Karsten Rippe. ‘The viscoelastic properties of chromatin and the
nucleoplasm revealed by scale-dependent protein mobility’. In: J. Phys. Condens. Matter 27.6 (2015),
p. 64115 (cited on pages 40, 41).

[140] Rajarshi Chakrabarti. ‘Dynamics of end-to-end loop formation for an isolated chain in viscoelastic
fluid’. In: Phys. A Stat. Mech. its Appl. 391.22 (2012), pp. 5326–5331. DOI: http://dx.doi.org/10.
1016/j.physa.2012.06.025 (cited on page 41).

[141] Jaeoh Shin, Andrey G. Cherstvy, and Ralf Metzler. ‘Kinetics of polymer looping with macro-
molecular crowding: Effects of volume fraction and crowder size’. In: Soft Matter 11.3 (Dec. 2015),
pp. 472–488. DOI: 10.1039/c4sm02007c (cited on page 41).

[142] Jaeoh Shin et al. ‘Facilitation of polymer looping and giant polymer diffusivity in crowded
solutions of active particles’. In: New J. Phys. 17.11 (Oct. 2015), p. 113008. DOI: 10.1088/1367-
2630/17/11/113008 (cited on page 41).

[143] Jaeoh Shin and Anatoly B. Kolomeisky. ‘Facilitation of DNA loop formation by protein-DNA
non-specific interactions’. In: (Jan. 2019) (cited on page 41).

[144] Stefan W. Hell and Jan Wichmann. ‘Breaking the diffraction resolution limit by stimulated emission:
stimulated-emission-depletion fluorescence microscopy’. In: Opt. Lett. 19.11 (June 1994), p. 780.
DOI: 10.1364/ol.19.000780 (cited on page 42).

[145] Alf Honigmann et al. ‘Scanning STED-FcS reveals spatiotemporal heterogeneity of lipid interaction
in the plasma membrane of living cells’. In: Nat. Commun. 5.1 (Dec. 2014), p. 5412. DOI: 10.1038/
ncomms6412 (cited on page 42).

[146] Erdinc Sezgin et al. ‘Measuring nanoscale diffusion dynamics in cellular membranes with super-
resolution STED–FCS’. In: Nat. Protoc. 14.4 (Apr. 2019), pp. 1054–1083. DOI: 10.1038/s41596-019-
0127-9 (cited on page 42).

[147] Aurélien Barbotin et al. ‘Adaptive optics allows STED-FCS measurements in the cytoplasm of
living cells’. In: Opt. Express 27.16 (Aug. 2019), p. 23378. DOI: 10.1364/oe.27.023378 (cited on
page 42).

https://doi.org/https://doi.org/10.1016/j.ymeth.2017.01.008
https://doi.org/https://doi.org/10.1016/j.ymeth.2017.01.008
https://doi.org/10.1038/nbt.1928
https://doi.org/10.1128/MCB.01097-13
https://doi.org/10.1128/MCB.00346-15
https://doi.org/10.1006/jmbi.2000.3692
https://doi.org/https://doi.org/10.1529/biophysj.104.044263
https://doi.org/https://doi.org/10.1529/biophysj.104.044263
https://doi.org/10.1007/s10577-010-9168-1
https://doi.org/http://dx.doi.org/10.1016/j.physa.2012.06.025
https://doi.org/http://dx.doi.org/10.1016/j.physa.2012.06.025
https://doi.org/10.1039/c4sm02007c
https://doi.org/10.1088/1367-2630/17/11/113008
https://doi.org/10.1088/1367-2630/17/11/113008
https://doi.org/10.1364/ol.19.000780
https://doi.org/10.1038/ncomms6412
https://doi.org/10.1038/ncomms6412
https://doi.org/10.1038/s41596-019-0127-9
https://doi.org/10.1038/s41596-019-0127-9
https://doi.org/10.1364/oe.27.023378

	
	Acknowledgements
	Abstract
	Zusammenfassung
	Detailed Contents
	Introduction
	Introduction
	The story of a belated theory
	Anomalous diffusion
	Cell as a model system
	Motivation and outline of the thesis

	Principles of fluorescence (cross-)correlation spectroscopy (to.F(C)CS)to.
	Basic definitions
	Modeling fluorescent light in a microscope
	FCS theory for different types of diffusion
	Fluorescence cross-correlation spectroscopy


	Results
	Chromatin and A-type lamins interdependence
	Lamin A interconnections
	Alterations in the diffusivity of histones
	Dynamic spatial rearrangement of chromatin

	Langevin dynamics simulation
	The description of the model
	Loop formation and diffusion


	Discussion
	Conclusion and outlook
	Restatement of the problem
	Summary of our findings
	Future outlook


	Publication
	Bibliography

