
 

Dissertation 

 

Submitted to the 

Combined Faculty of Natural Sciences and Mathematics  

of the Ruperto Carola University Heidelberg, Germany  

for the degree of  

Doctor of Natural Sciences 

 

 

 

 

 

 

 

 

Presented by  

Rebekka Renate Weber (M. Sc.) 

born in Mannheim, Germany  

Oral examination: 20.01.2020  



 
 

 

 

 

Regulation of CCR5 expression and  

immunosuppressive phenotype of MDSC  

in melanoma 

 

 

 

 

 

 

 

 

 

 

Referees:  

apl. Prof. Dr. Viktor Umansky  

Prof. Dr. Adelheid Cerwenka  



Summary 

MDSC play a major role in immunosuppression and tumor progression in melanoma. Their 

recruitment to the tumor is mediated by chemokine receptors and their ligands, in particular 

by chemokine receptor CCR5. The aims of this thesis were to study the mechanisms of 

CCR5 upregulation on murine MDSC in melanoma and of the previously observed stronger 

immunosuppressive phenotype of CCR5+ MDSC as compared to their CCR5- counterparts. 

IL-6, GM-CSF and IFN- upregulated Ccr5 mRNA expression in murine myeloid cells, 

whereas the CCR5 ligands, tumor-derived extracellular vesicles, toll-like receptor ligands and 

IL-1 failed to affect Ccr5 expression. IL-6 and GM-CSF were able to induce CCR5 surface 

expression during MDSC in vitro differentiation for four days by a STAT3 dependent mecha-

nism. Importantly, we found four putative STAT3 binding sites in the murine Ccr5 promoters. 

In addition, the STAT3 inhibitor Stattic abrogated Ccr5 upregulation induced by IL-6 and 

GM-CSF. In the RET transgenic mouse model of malignant melanoma, IL-6 levels in the tu-

mors correlated with the frequency of tumor-infiltrating CCR5+ MDSC. CCR5+ MDSC showed 

increased phosphorylated STAT3 levels. In addition to the upregulation of CCR5, IL-6 was 

responsible for stimulation of Arginase (Arg)1 activity and ROS production upon MDSC in 

vitro differentiation, inducing increased capacity of MDSC to suppress CD8+ T cell prolifera-

tion in a co-culture assay. The upregulation of Arg1 by IL-6 was also STAT3 dependent. In 

contrast to IL-6, CCR5 ligands failed to induce increased immunosuppressive capacity of 

MDSC. Altogether, IL-6 upregulated CCR5 and immunosuppressive capacity of MDSC in 

vitro in parallel, which could explain the elevated expression of immunosuppressive factors 

Arg1 and ROS on CCR5+ MDSC and their increased ability to suppress CD8+ T cell prolifera-

tion. However, we found only a slight increase in tumor-infiltrating MDSC and no increase in 

CCR5 expression or immunosuppressive factors detectable upon s.c. injection of IL-6 over-

expressing Ret cells into wild type mice. In the same model, the tumor growth and mouse 

survival remained unaltered. Finally, we blocked IL-6 in vivo in RET transgenic melanoma-

bearing mice by an anti-IL-6 antibody to decrease CCR5+ MDSC recruitment to the tumor 

and to inhibit IL-6-induced increase in MDSC immunosuppressive capacity, thereby neutral-

izing the immunosuppression in the tumor and preventing melanoma progression. Unexpect-

edly, the anti-IL-6 therapy resulted in accelerated tumor progression and earlier death of 

mice, which was most likely due to the negative effect of anti-IL-6 on T cell activation which 

was reflected by decreased CD4+ conventional T cells in the tumor. Altogether, we found IL-6 

to upregulate CCR5 and immunosuppressive capacity of MDSC in vitro making this cytokine 

an interesting target for immunotherapy. However, further research should be performed to 

understand the delicate balance of IL-6 signaling in melanoma immunity in vivo and the chal-

lenges of IL-6 blocking immunotherapy for melanoma treatment.   



 
 

Zusammenfassung 

Myeloide suppressorische Zellen (MDSC) vermitteln Immunsuppression, die zum Tumorfort-

schreiten beim Melanom beiträgt. Diese Zellen werden durch die Aktivierung von Chemokin-

rezeptoren, darunter CCR5, zum Tumor rekrutiert. Ziel dieser Arbeit war es, die Mechanis-

men der CCR5-Hochregulation und den stärkeren immunsuppressiven Phänotyp von CCR5+ 

MDSC im murinen Melanom zu untersuchen. IL-6, GM-CSF und IFN- konnten die Ccr5-

mRNA-Expression in murinen myeloiden Zellen hochregulieren, wohingegen CCR5-

Liganden, extrazelluläre Vesikel des Tumors, Toll-like-Rezeptor-Liganden und IL-1 keine 

Wirkung auf die Ccr5-Expression zeigten. IL-6 und GM-CSF haben die CCR5-Oberflächen-

expression, während der MDSC in vitro Differenzierung für vier Tage, durch einen STAT3-

abhängigen Mechanismus induziert. Wir fanden vier mutmaßliche STAT3-Bindestellen in den 

murinen Ccr5-Promotoren, und der STAT3-Inhibitor Stattic verhinderte die IL-6 und GM-CSF 

induzierte Ccr5-Hochregulation. Im RET-transgenen Melanom-Mausmodell korrelierte die 

IL-6 Konzentration mit der Frequenz der Tumor-infiltrierenden CCR5+ MDSC, die außerdem 

mehr phosphoryliertes STAT3 zeigten. Zusätzlich zur Hochregulation von CCR5 konnte IL-6 

die Arginase (Arg)1-Aktivität und die Produktion von reaktiven Sauerstoffspezies (ROS) wäh-

rend der MDSC in vitro Differenzierung induzieren, wodurch die MDSC in der Lage waren, 

die Proliferation von CD8+ T-Zellen stärker zu unterdrücken. Die Hochregulation von Arg1 

durch IL-6 war ebenfalls STAT3-abhängig. Im Gegensatz zu IL-6 konnten die CCR5-

Liganden keine erhöhte Immunsuppression bei MDSC induzieren. IL-6 konnte sowohl CCR5 

als auch die immunsuppressive Kapazität von MDSC in vitro parallel stimulieren, was die 

erhöhte Expression der immunsuppressiven Faktoren Arg1 und ROS auf CCR5+ MDSC und 

deren erhöhte Fähigkeit zur Unterdrückung der CD8+ T-Zell-Proliferation erklären kann. Wir 

fanden jedoch nur einen geringen Anstieg der Tumor-infiltrierenden MDSC und keinen An-

stieg der CCR5-Expression oder der immunsuppressiven Faktoren auf MDSC in IL-6 über-

exprimierenden Tumoren. Im gleichen Modell blieben das Tumorwachstum und das Maus-

überleben unter IL-6 Überexpression unverändert. Schließlich haben wir IL-6 in vivo in Mela-

nom-tragenden RET-transgenen Mäusen mit einem anti-IL-6-Antikörper blockiert. Die anti-

IL-6-Therapie führte nicht zu einer Unterdrückung der immunsuppressiven MDSC im Tumor, 

sondern zu einem beschleunigten Tumorwachstum und einem früheren Tod der Mäuse, was 

auf den negativen Effekt von anti-IL-6 auf die T-Zell-Aktivierung zurückzuführen war. Zu-

sammenfassend konnte IL-6 sowohl CCR5 als auch die immunsuppressive Kapazität von 

MDSC in vitro hochregulieren, was dieses Zytokin zu einem interessanten Angriffspunkt für 

Immuntherapien macht. Weitere Nachforschungen müssen jedoch dazu beitragen, das emp-

findliche Gleichgewicht der IL-6-Signalübertragung im Melanom in vivo und die Herausforde-

rungen der IL-6-blockierenden Immuntherapie bei der Melanom Behandlung zu verstehen.  
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1 Introduction 

1.1 The immune system and cancer  

In 1909, Paul Ehrlich was the first to propose the idea that the immune system is controlling 

the development of cancer by recognizing and eliminating malignantly transformed cells 

(Ehrlich, 1909). In the 1950s, the first experiments with transplantable tumors in mice were 

performed that could confirm an involvement of the immune system in the recognition of tu-

mor cells (Green, 1954). Finally, Mac Farlane Burnet proposed the concept of immunological 

surveillance in cancer, where one major function of the immune system was suggested to be 

the elimination of cells that show foreign patterns due to somatic mutations (Burnet, 1970). 

Recently, the concept has changed from cancer immune surveillance to cancer immunoedit-

ing (Dunn et al., 2002). Moreover, “tumor-promoting inflammation” and “avoiding immune 

destruction” were added to the hallmarks of cancer (Hanahan and Weinberg, 2011). 

While the concept of cancer immune surveillance was only describing the protective actions 

of the immune system in the very early steps of cancer development, the new concept of 

cancer immunoediting suggests a more detailed view on the complex interplay between the 

tumor and the immune system from both sides (Dunn et al., 2002). The development of the 

tumor can activate the immune system and lead to a protective immune response; however, 

the activation of the immune system can lead to a shift in the immunogenicity of the cancer 

cells by selecting for non-immunogenic cells, thereby promoting tumor development. Fur-

thermore, the chronic inflammation in the tumor can in turn shift the immune system towards 

a more immunosuppressive state that finally leads to tumor escape from the immune re-

sponse. This concept of cancer immunoediting comprises three main steps: elimination, 

equilibrium and escape (Dunn et al., 2004). The concept of cancer immunoediting was visu-

alized by Robert Schreiber (Figure 1). 
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Figure 1. The phases of cancer immunoediting.  

Upon failure of intrinsic tumor suppressor mechanisms normal cells can transform and develop into 

tumor cells. The transformed cells can be recognized by the immune system due to the expression of 

tumor antigens and the production of cytokines that occurs during tissue remodeling. During the elimi-

nation phase innate and adaptive immune cells are recruited and activated to kill the tumor cells. If not 

all tumor cells are killed by the immune system, the remaining malignant cells can change during the 

equilibrium phase to be able to finally escape from the immune system, grow and become a clinically 

detectable tumor. The escape from the immune system can be mediated by antigen and major histo-

compatibility complex (MHC) expression loss and the generation of an immunosuppressive tumor 

microenvironment (TME), where immunosuppressive immune cells like regulatory T cells (Treg) and 

myeloid-derived suppressor cells (MDSC) play a major role. Figure taken from (Schreiber et al., 2011). 
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1.1.1 Cancer immune surveillance and elimination 

Already during the 20th century, a lot of evidence was collected that immune surveillance in 

tumors does exist, and in the immunoediting concept, this is described as the elimination 

phase. The cytokine interferon- (IFN-) was shown to play an important role in the protective 

immune response against tumors as the blockade of IFN- resulted in a decreased rejection 

of transplanted tumors in mice (Dighe et al., 1994). Furthermore, mice lacking parts of the 

IFN- signaling pathway or IFN- itself showed increased development of chemically-induced 

tumors by methylcholanthrene (MCA) (Kaplan et al., 1998; Street et al., 2001) and an in-

crease in the incidence of spontaneous lung adenocarcinoma (Street et al., 2002). IFN- was 

suggested to have an influence on both tumor and host cells. Tumor cells lacking the IFN- 

receptor were shown to grow more aggressively, were not rejected and failed to induce im-

munity (Dighe et al., 1993, 1994). It was proposed that IFN- could induce an upregulation of 

major histocompatibility complex (MHC) class I on tumor cells, thereby increasing immuno-

genicity, and it could have an anti-proliferative and pro-apoptotic impact on tumor cells (Dunn 

et al., 2004). Moreover, IFN- has important effects on host immune cells by polarizing T 

cells, and signal transducer and activator of transcription (STAT)1 knockout mice lacking this 

major transcription factor downstream of IFN- in host cells failed to reject even highly immu-

nogenic tumors (Fallarino and Gajewski, 1999).     

The importance of different immune cell subsets was also shown by various studies. The 

protein perforin is a component of the cytolytic granules of T and natural killer (NK) cells and 

is indispensable for lymphocyte-mediated killing of target cells (Russell and Ley, 2002). In-

terestingly, perforin knockout mice are more susceptible to MCA-induced as well as sponta-

neous carcinogenesis (Street et al., 2001, 2002). Moreover, recombination activating gene 

(RAG)2 knockout mice who cannot rearrange lymphocyte antigen receptors and are, there-

fore, deficient for T, B and NK cells (Shinkai et al., 1992) also developed MCA-induced and 

spontaneous tumors with increased frequency and progression speed (Shankaran et al., 

2001; Smyth et al., 2001).  and  T cells play an important role in tumor immune surveil-

lance supported by the observation that T cell receptor (TCR)  knockout and TCR  knock-

out mice showed an increased development of MCA-induced tumors (Girardi et al., 2001). 

The same is true for mice upon blockade of NK and NKT cells through injection of NK1.1 

murine antibody (Smyth et al., 2001) as well as blockade of tumor necrosis factor-related 

apoptosis-inducing ligand (TRAIL), which is important for tumor cell killing by myeloid and NK 

cells (Takeda et al., 2002). These findings suggest that innate and adaptive immune cells 

play a major role in the control of cancer.  
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To show that the immune system is also an important player in human cancer, various stud-

ies with cancer patients have been conducted. For example, transplant recipients that are 

under immunosuppressive medication were observed to display an increased risk of malig-

nancies, including malignant melanoma (Sheil, 1986; Penn, 1996). Moreover, specific anti-

bodies to tumor antigens (Carey et al., 1976; Ueda et al., 1979) and tumor specific cluster of 

differentiation (CD)8+ and CD4+ T cells (Knuth et al., 1984; Wang and Rosenberg, 1999) 

were shown in cancer patients. Furthermore, a strong correlation between the abundance of 

tumor-infiltrating leukocytes (TIL) and patient survival was observed for different cancer 

types, including malignant melanoma (Clark et al., 1989; Clemente et al., 1996; Mihm et al., 

1996).    

Altogether, these studies have shown the involvement of the immune system in cancer, and 

that there is immune surveillance and protective immunity described as elimination phase 

(Dunn et al., 2002, 2004). First, innate immune cells like NK, NKT and γδ T cells are recruit-

ed to the tumor microenvironment (TME) and activated by inflammatory cytokines secreted in 

the tumor due to the remodeling of the tissue. The activated innate immune cells can then 

produce cytokines like interleukin (IL)-12 and IFN-, which further promote the immune re-

sponse. Destruction of tumor cells by IFN- and NK cells leads to the release of tumor anti-

gens that can be presented by dendritic cells (DC) and macrophages as well as damage-

associated molecular pattern (DAMP) factors that further activate innate immune cells ex-

pressing pattern recognition receptors (PRR). Then, antigen-presenting cells (APC) activate 

naïve CD4+ and CD8+ T cells in the tumor draining lymph nodes inducing the adaptive im-

mune response. The mature T cells home to the tumor site where CD8+ T cells selectively kill 

the malignant cells supported by IL-2 production of CD4+ T cells and IFN- secretion. 

However, also immunocompetent individuals can develop cancer, suggesting mechanisms of 

tumors to avoid the protective immune response.   

1.1.2 Tumor immune escape 

If not all tumor cells have been eradicated by the immune system, it could come to the equi-

librium phase (Dunn et al., 2004). Tumor cells that are resistant to the immune system are 

present and can outgrow, which leads to the clinical detectability of the tumor. The equilibri-

um phase can last up to 20 years in humans (Loeb et al., 2003). The outgrowth of the tumor 

is called the immune escape phase in the concept of cancer immunoediting (Dunn et al., 

2004). The tumor cells have developed various resistance mechanisms to escape from the 

immune system in this phase. 

It is believed that the selective pressure of the immune system in combination with the high 

genomic instability of the tumor cells leads to the selection of tumor cells with reduced immu-
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nogenicity and increased escape mechanisms which makes the tumor progression possible 

(Dunn et al., 2004). This is supported by the fact that tumors grown in mice that have no in-

tact immune system get rejected when transplanted into immunocompetent mice because 

these tumors are highly immunogenic (Svane et al., 1996; Engel et al., 1997). Furthermore, 

tumor cells from immunocompetent mice are less sensitive to TRAIL-mediated killing com-

pared to tumor cells from mice in which the TRAIL-pathway was inhibited during tumor de-

velopment (Takeda et al., 2002). 

To date, several escape mechanisms of tumor cells have been described. Tumor cells, 

showing lower antigen expression and, therefore, less intrinsic immunogenicity are selected 

during the escape phase (Dunn et al., 2004). Furthermore, tumor cells can loose parts of the 

antigen presenting pathway (Campoli and Ferrone, 2008; Seliger and Ferrone, 2020). The 

loss of MHC class I proteins in human tumors is well known (Marincola et al., 2000; Garrido, 

2019).  

Tumor cells also frequently shed NKG2D ligands which interferes with the recognition and 

killing of tumor cells by NK cells, T cells and macrophages (Groh et al., 2002). By the over-

expression of proteinase inhibitor-9 tumor cells can escape from T cell-mediated killing by 

the perforin/granzyme pathway (Soriano et al., 2012). Tumor cells can become resistant to 

immune cell-mediated killing by defects in death receptor signaling pathways (Takeda et al., 

2002) or the expression of anti-apoptotic signals, e.g. by the constitutive activation of STAT3 

(Catlett-Falcone et al., 1999). Furthermore, IFN- insensitivity has been observed in tumor 

cell lines (Kaplan et al., 1998). 

Tumor cells can express the programmed death-ligand 1 (PD-L1) in response to IFN- 

(Taube et al., 2012) which leads to T cell anergy by the interaction with programmed cell 

death protein 1 (PD-1) receptor on T cells.  

Interestingly, the chronic inflammation in the TME leads to the accumulation of immunosup-

pressive immune cells, like regulatory T cells (Treg), tumor-associated macrophages (TAM) 

and myeloid-derived suppressor cells (MDSC) (Zamarron and Chen, 2011). Under physiolog-

ical conditions these cells prevent an excessive immune response, an auto-reaction of the 

immune system and tissue destruction. However, in cancer they can mediate tumor-

progression by inhibiting the anti-cancer immune response.  

CD4+ Treg are characterized by the expression of CD25 and the transcription factor forkhead 

box P3 (FoxP3); their physiological function is to mediate self-tolerance by suppressing self-

antigen reactive T cells (Lindau et al., 2013). Treg levels were described to be increased in 

patients with malignant melanoma and other malignancies where they contribute to the im-

munosuppressive TME by inhibiting T cells, B cells, DC and NK cells (Ouyang et al., 2016). 

Treg secrete immunosuppressive cytokines like transforming growth factor (TGF)- and 
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IL-10, and directly kill T cells and APC in a perforin/granzyme B-dependent manner, as well 

as compete for IL-2 by CD25 expression (Ouyang et al., 2016).      

TAM contribute to the immunosuppressive TME by producing the immunosuppressive fac-

tors IL-10, TGF-β and prostaglandin E2 (PGE2), recruiting Treg by secretion of CC chemo-

kine ligand (CCL)22 and down-regulating IL-12 production (Noy and Pollard, 2014). 

The third subset of immunosuppressive immune cells that plays a major role in tumor pro-

gression is MDSC, that will be described in detail below.   

1.2 Malignant melanoma 

Malignant melanoma is a form of skin cancer that arises from the melanin-producing cells, 

melanocytes that are localized in the basal layer of human epidermis (Gray-Schopfer et al., 

2007). It is characterized by its fast progression, invasiveness, high metastatic potential and 

resistance to conventional therapies like chemo- and radiotherapy (Eggermont et al., 2014).  

Early stage melanoma can be cured by surgical resection but as soon as it has metastasized 

prognoses are very poor (Gray-Schopfer et al., 2007; Tas, 2012). Even though only 5 % of all 

skin cancer cases can be attributed to malignant melanoma, it still is responsible for 90 % of 

skin cancer related deaths (Garbe et al., 2016).  

Importantly, melanoma incidence rates have increased in different populations over the last 

decades and were predicted to increase even more until the year 2031, which makes the 

development of strategies for melanoma control and therapy highly important (Whiteman et 

al., 2016).  

One main reason for the development of malignant melanoma is the accumulation of deoxy-

ribonucleic acid (DNA) mutations due to ultraviolet (UV) light exposure (Cust et al., 2018). 

The two most common mutations in malignant melanoma are in the genes for neuroblastoma 

RAS viral oncogene homolog (N-Ras) and B-rapidly accelerated fibrosarcoma (B-Raf). About 

15 to 20 % of melanoma patients show a mutation in the codons 12, 13 or 61 of the N-Ras 

gene leading to the constitutive activation of this guanosine triphosphatase (GTPase) 

(Johnson and Puzanov, 2015). More than 50 % of all melanoma patients have the B-RafV600E 

mutation that leads to constitutive activation of this serine/threonine-kinase downstream of N-

Ras (Cust et al., 2018). Both of these mutations induce an activation of the mitogen-activated 

protein kinase (MAPK) pathway, involving the kinases mitogen-activated protein kinase ki-

nase (MEK) and extracellular signal-regulated kinase (ERK) leading to aberrant cell prolifera-

tion (Shtivelman et al., 2014). Importantly, the discovery of these mutations has led to the 

development of inhibitors of this pathway for targeted therapy.  
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1.2.1 Targeted therapy for melanoma 

Two tyrosine kinase inhibitors that inhibit the active form of B-Raf with the V600E mutation 

are highly effective in B-RafV600E-mutant metastatic melanoma patients: vemurafenib and 

dabrafenib (Wong and Ribas, 2016). Clinical studies could report an overall response rate of 

50 % using the B-Raf inhibitor vemurafenib in advanced unresectable melanoma with a me-

dian progression-free survival (PFS) between 5.3 and 7.3 months (Young et al., 2012).  

However, resistance occurs in the majority of patients, and a combination with MEK inhibitors 

such as trametinib can delay the development of resistance (Wong and Ribas, 2016). Im-

proved clinical response rates were shown for the combination of B-Raf and MEK inhibitors 

(dabrafenib and trametinib) compared to monotherapy (Robert et al., 2015).  

1.2.2 Melanoma immunotherapy  

Immunotherapy of cancer has revolutionized the therapy options for cancer patients in the 

last couple of years (Farkona et al., 2016). Immune checkpoint inhibition was proved to be 

very promising (Domingues et al., 2018). Under physiological conditions, immune checkpoint 

pathways prevent an excessive immune response (Nirschl and Drake, 2013). Signals trans-

mitted to T cells via cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) or PD-1 receptors 

lead to T cell anergy and thereby diminish the immune response. In cancer, these pathways 

can be exploited in the TME to promote tumor progression, tumor cells themselves can ex-

press the inhibitory ligands PD-L1/PD-L2 or CD80/CD86 or they are expressed by immuno-

suppressive cells in the TME, both leading to a T cell arrest and immunosuppression (Nirschl 

and Drake, 2013). In 2011, a monoclonal antibody against CTLA-4, ipilimumab, was ap-

proved for melanoma therapy. Ipilimumab could increase the overall survival of patients to 

10.1 months in a clinical trial (Hodi et al., 2010).  

Furthermore, in 2014 nivolumab and pembrolizumab, that block PD-1, were approved. 

Nivolumab alone was able to achieve a PFS of 6.9 months in melanoma patients, which was 

increased to 11.4 months in combination with ipilimumab (Raedler, 2015). Pembrolizumab 

could even reach a PFS of over 24 months with a response rate of 33 % in a clinical trial, 

whereas ipilimumab alone had a response rate of 12 % in the same trial (Schachter et al., 

2017). 

In 2015, a drug consisting of a modified oncolytic herpes virus that only replicates in mela-

noma cells, called talimogen laherparevec (T-VEC), was approved for intratumoral injection 

in non-resectable skin melanoma lesions (Pol et al., 2015). The virus leads to the lysis of 

melanoma cells and in addition induces the expression and secretion of granulocyte-

macrophage colony-stimulating factor (GM-CSF) by melanoma cells to stimulate the host 
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immune system (Pol et al., 2015). The median overall survival could be increased to 23.3 

months by T-VEC with an overall response rate of 26.4 % in a clinical trial (Andtbacka et al., 

2015). 

1.2.3 The RET transgenic mouse model of malignant melanoma 

Different mouse models can be used to study malignant melanoma. Cell-line xenograft mod-

els and patient-derived xenograft models mimic the genetic heterogeneity of human cancer 

and can be used to predict the response of (human) tumor cells itself to drugs, however, 

these models lack the component of the immune system (Saleh, 2018). Induction of mela-

noma by UV irradiation or chemicals can be useful to study the carcinogenesis by these risk 

factors that are also true for human melanoma (Saleh, 2018). Orthotopic or ectopic trans-

plantation of syngeneic tumor cells into mice are fast and easy model systems; however, 

they are artificial as they do not reflect the human genetics, pathology and natural interaction 

with the immune system due to their extremely fast progression (Saleh, 2018). 

Genetically engineered mouse models of melanoma have the advantages that common hu-

man mutations can be introduced to mimic the pathogenesis of human melanoma, the initia-

tion and progression of the tumor can be studied with a time course that resembles more the 

clinical situation and the new therapies can be tested (Pérez-Guijarro et al., 2017). 

The RET transgenic mouse model belongs to the genetically engineered mouse models of 

melanoma and was established in 1998 (Kato et al., 1998). The mice overexpress the human 

RET oncogene under a metallothioneine-I promoter enhancer in melanocytes. The expres-

sion of the Ret tyrosine kinase stimulates the MAPK pathway by activating ERK2 as well as 

c-Jun and metalloproteinases, leading to the formation of skin melanomas that metastasize 

to the lymph nodes, the lung, the brain, the kidneys, the liver and the spleen and show high 

similarity to human melanomas with respect to histopathology and clinical development (Kato 

et al., 1998; Umansky et al., 2008). Although the activation of the Ret tyrosine kinase was not 

described in human melanomas the activation of the MAPK pathway is very common 

(Dantonio et al., 2018). 

Interestingly, it has been described that the melanoma lesions of RET transgenic mice show 

a characteristic melanoma morphology and that the melanoma-associated anti-

gens tyrosinase, tyrosinase-related protein (TRP)-1, TRP-2 and glycoprotein (gp)100 are 

expressed in these lesions (Abschuetz et al., 2012). Furthermore, a melanoma specific T cell 

response was described in this mouse model (Umansky et al., 2008; Abschuetz et al., 2012). 

Importantly, the accumulation of immunosuppressive cells like Treg and MDSC and their 

promoting effect on tumor progression plays a major role in the RET model (Kimpfler et al., 

2009; Meyer et al., 2011). The depletion of CD25+ FoxP3+ Treg in lymphoid organs could not 
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stop tumor development (Kimpfler et al., 2009), whereas the inhibition of MDSC had a bene-

ficial effect on mouse survival (Meyer et al., 2011; Sevko et al., 2013). 

These findings suggest the RET transgenic mouse model, which was used in the following 

study, as a suitable system to investigate melanoma immunity, especially immunosuppres-

sion in the TME, and to test new immunotherapeutic strategies.      

1.3 Myeloid-derived suppressor cells (MDSC)  

MDSC are a heterogeneous population of myeloid cells that are absent under physiological 

conditions in adults but accumulate upon chronic inflammation, i.e. chronic infection, trauma 

or cancer and exhibit strong immunosuppression on T and NK cells (Gabrilovich and 

Nagaraj, 2009; Gabrilovich et al., 2012). 

In 1978, natural suppressor cells were first described to inhibit the formation of cell-mediated 

immunity in a co-culture of splenocytes and tumor cells and their suppressive effect was 

even increased upon systemic administration of Bacillus Calmette-Guerin (BCG) to the donor 

mice (Bennett et al., 1978). Later, it was reported that transplantation of mammary carcinoma 

into mice resulted in an accumulation of cells devoid of mature leukocyte antigens and 

granulocytic cells, and that this accumulation was associated with a deletion of effector lym-

phocytes (Lee and Rosse, 1982). In the following years, two more studies have identified 

immunosuppressive myeloid cells in murine cancer models (Buessow et al., 1984; Young et 

al., 1987). In recent years, the term MDSC was introduced (Talmadge and Gabrilovich, 2013; 

Bronte et al., 2016). 

MDSC have been identified to expand and play an important role in the immunosuppressive 

TME and the clinical outcome of patients with malignant melanoma (Poschke et al., 2010; 

Jordan et al., 2013; Weide et al., 2014; Jiang et al., 2015; Martens et al., 2016). Furthermore, 

MDSC have also been described in various other cancer types, such as multiple myeloma 

(Brimnes et al., 2010), hepatocellular carcinoma (Hoechst et al., 2008), non-small cell lung 

cancer (NSCLC) (Liu et al., 2010), renal cell carcinoma (van Cruijsen et al., 2008), breast 

cancer (Danilin et al., 2012), prostate cancer (Vuk-Pavlović et al., 2010) and colorectal can-

cer (Chun et al., 2015).  

However, MDSC play a role not only in cancer but also in various other pathological condi-

tions like chronic inflammation (reviewed in (Mira et al., 2017)), trauma (reviewed in (Marik 

and Flemmer, 2012)), infection (reviewed in (Medina and Hartl, 2018)), autoimmune diseas-

es (reviewed in (Ma and Xia, 2018)), organ transplantation (reviewed in (Nakamura and 

Ushigome, 2018)), pregnancy (reviewed in (Zhao et al., 2016)) and neonatal inflammation 

control (Liu et al., 2019). The following paragraphs will yet mainly focus on the phenotype, 

generation and role of MDSC in cancer.  
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1.3.1 MDSC phenotypic characterization 

In mice, MDSC were characterized by the expression of CD11b, alias integrin -M, and the 

myeloid differentiation antigen Gr1. However, two subpopulations exist that show differential 

expression of Ly6G and Ly6C, the components of Gr1. In mice, polymorphonuclear 

(PMN-)MDSC are CD11b+Ly6GhighLy6Clow and monocytic (M-)MDSC are CD11b+Ly6G–

Ly6Chigh (Bronte et al., 2016). In humans, M-MDSC are defined as Lin–CD11b+CD14+CD15–

HLA-DR–/low and PMN-MDSC as Lin–CD11b+CD14–CD15+HLA-DR– or Lin–CD11b+CD14–

CD66b+ (Solito et al., 2014; Bronte et al., 2016). Furthermore, lectin-type oxidized LDL recep-

tor-1 (LOX-1) has been proposed as a new marker to distinguish human immunosuppressive 

PMN-MDSC from non-immunosuppressive neutrophils (Condamine et al., 2016). A third sub-

type of human MDSC, composed of more immature HLA-DR–CD33+CD15–CD14– MDSC, 

has been recently proposed and was termed early stage MDSC (eMDSC) (Bronte et al., 

2016). 

1.3.2 MDSC accumulation and activation 

In chronic inflammation and cancer, instead of differentiation of myeloid precursors into neu-

trophils, monocytes and DC, MDSC are developed from these precursors (Figure 2). The 

accumulation and activation of MDSC is proposed to be a two-step process, which is medi-

ated by an altered cytokine, growth factor and chemokine environment (Condamine and 

Gabrilovich, 2011). The chronic production and enrichment of IL-6, IFN-, IL-1, GM-CSF, 

IL-10, M-CSF, G-CSF and vascular endothelial growth factor (VEGF) as well as Toll-like re-

ceptor (TLR) ligands, that belong to DAMP, leads to the accumulation of immature myeloid 

precursors and their development and activation to become MDSC (Condamine and 

Gabrilovich, 2011).  
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GM-CSF, G-CSF, M-CSF, IL-6 and VEGF signaling, through Janus kinase/signal transducer 

and activator of transcription (JAK/STAT) and MAPK pathways, leads to the expression of 

anti-apoptotic factors like B cell lymphoma-extra large (Bcl-xL), Cyclin D1, Survivin and c-

Myc that lead to the accumulation of MDSC (Condamine and Gabrilovich, 2011). Whereas 

factors like IFN-, IL-1 and TLR ligands, mainly via JAK/STAT and myeloid differentiation 

primary response 88/nuclear factor 'kappa-light-chain-enhancer' of activated B-cells 

(MyD88/NF-B) signal transduction cascades, lead to the expression of immunosuppressive 

factors and activation of MDSC (Condamine and Gabrilovich, 2011). 

In addition, it has been reported that mature normal human monocytes could be converted 

into MDSC by tumor-derived extracellular vesicles (EV) (Valenti et al., 2006; Fleming et al., 

2019). It was also shown that microRNAs located in EV played an important role in this pro-

cess (Huber et al., 2018). Therefore, MDSC development seems to be also possible by 

pathological conversion of mature myeloid cells into MDSC in addition to their generation 

from immature myeloid precursors. 

Figure 2. MDSC development by alteration of myelopoiesis. 

Upon the chronic inflammation during tumor progression differentiation of hematopoietic progenitor 

cells (HPC) via common myeloid progenitors (CMP) and granulocyte-macrophage progenitors (GMP) 

into neutrophils and monocytes is altered. Under physiological conditions, neutrophil differentiation 

progresses through the precursor stages of myeloblasts (MB), myelocytes (MC), metamyelocytes 

(MM) and band forms (BF). Monocytes originate from monocyte/macrophage and dendritic cell pre-

cursors (MDP). With tumor progression, populations of immature myeloid cells (IMC) are expanded 

and converted into immunosuppressive MDSC. IMC that share markers with MDSC but have no im-

munosuppressive activity can be called MDSC-like cells. Immunosuppressive MDSC can be separat-

ed into polymorphonuclear (PMN-) and monocytic (M-) MDSC. Neutrophils, monocytes and pathologi-

cally activated MDSC are coexisting. In tumors, M-MDSC rapidly differentiate in tumor-associated 

macrophages (TAM) and inflammatory dendritic cells (infl DC). Figure taken from (Veglia et al., 2018). 
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1.3.3 MDSC recruitment 

The recruitment of MDSC to the tumor site is mainly mediated by chemokines secreted in the 

TME and chemokine receptors expressed on MDSC. 

M-MDSC have been shown to be CC chemokine receptor (CCR)2 positive in a B16 melano-

ma mouse model that was proved to be critical for the recruitment of these cells to the TME 

(Lesokhin et al., 2012). In colorectal cancer patients, high levels of CCL2 are produced in the 

TME, and its deletion in a colorectal cancer mouse model lead to the decrease in numbers 

and immunosuppressive capacity of PMN-MDSC (Chun et al., 2015). In a glioblastoma 

mouse model, M-MDSC and Treg were recruited by CCL2 that negatively correlated with 

glioblastoma patients’ outcome (Chang et al., 2016).  

In our lab, it was shown that M- and PMN-MDSC from melanoma bearing RET transgenic 

mice were recruited to the tumor by a CCR5-CCR5 ligand dependent mechanism and that 

the MDSC of melanoma patients expressed higher levels of CCR5 compared to healthy do-

nor control cells (Blattner et al., 2018).  

In human ovarian cancer, MDSC could be recruited via the interaction between CXC chemo-

kine ligand (CXCL)12 and  the CXC chemokine receptor (CXCR)4 receptor (Obermajer et al., 

2011). Also IL-8 (CXCL8) was able to attract M- and PMN-MDSC from cancer patients ex 

vivo (Alfaro et al., 2016). MDSC expressing CX3CR1 were shown to be attracted by CCL26  

produced in hypoxic tumor regions by tumor cells in response to hypoxia-inducible factors 

(HIF) (Chiu et al., 2016).         

1.3.4 MDSC immunosuppressive mechanisms 

Activated MDSC can contribute in different ways to the establishment of an immuno-

suppressive TME (Groth et al., 2019). They can suppress anti-tumor functions of T and NK 

cells by depletion of essential metabolites, homing prevention and the expression of reactive 

species as well as immune checkpoint molecules; in addition, they can have promoting ef-

fects on other suppressive immune cells like Treg (Figure 3). 

Activated MDSC express elevated levels of arginase 1 (Arg1) (Rodriguez et al., 2007) and 

inducible nitric oxide synthase (iNOS, NOS2) (Raber et al., 2014), that can both lead to the 

depletion of L-arginine from the microenvironment, inducing a cell cycle arrest in T cells 

(Rodriguez et al., 2007) and  T cell anergy due to the downregulation of TCR -chain expres-

sion (Rodriguez et al., 2004). Moreover, by the expression of iNOS (Raber et al., 2014) and 

nicotinamide adenosine dinucleotide phosphate oxidases (NADPH oxidases, NOX) (Corzo et 

al., 2009) MDSC produce elevated levels of nitric oxide (NO) and reactive oxygen species 

(ROS), respectively. The reactive species lead to suppression of T cell proliferation (Corzo et 
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al., 2009) and TCR nitration (Nagaraj et al., 2007). In addition, NO  impairs the Fc receptor-

mediated functions of NK cells (Stiff et al., 2018).  

Furthermore, MDSC express indoleamine 2,3-dioxygenase (IDO) that degrades L-tryptophan 

into N-formylkynurenine (Yu et al., 2013). This leads to T cell arrest and anergy (Munn et al., 

2005). Another mechanism, promoting anergy in T cells, is the interaction of PD-L1 on 

MDSC with PD-1 receptor on T cells (Bardhan et al., 2016). PD-L1 has been shown to be 

expressed by MDSC in the hypoxic TME (Noman et al., 2014). 

MDSC were shown to be able to decrease the expression of the lymph node homing recep-

tor L-selectin on naïve T and B cells even outside of the TME, which severely restricts anti-

gen driven expansion of T and B cells in lymph nodes (Ku et al., 2016).  

It was demonstrated in tumor-bearing mice that MDSC induce T cell tolerance and Treg ac-

cumulation by expressing CD40 (Pan et al., 2010). Furthermore, by the secretion of IL-10 

and IFN-, MDSC could lead to the development of Treg from CD4+ T cells (Huang et al., 

2006). In addition to their stimulating effects on Treg, MDSC could induce an M2-like macro-

phage phenotype with decreased IL-12 production and tumor-promoting effects (Beury et al., 

2014). 

It is known that extracellular adenosine exerts suppressive effects on T and NK cells (Hoskin 

et al., 2008). Adenosine was shown to inhibit CD8+ T cell priming by interfering with mem-

brane-proximal TCR signaling (Linnemann et al., 2009). Tumor-derived TGF- was de-

scribed to induce the expression of ectonucleoside triphosphate diphosphohydrolase 1 (E-

NTPDase1, CD39) and ecto-5’-nucleotidase (Ecto5’NTase, CD73) on MDSC that catalyze 

the dephosphorylation from adenosine triphosphate (ATP) to adenosine monophosphate 

(AMP) and thereafter to adenosine (Li et al., 2017). Therefore, MDSC contribute to the gen-

eration of extracellular adenosine that inhibits the anti-tumor immune response.     

In addition to the immunosuppressive effects, MDSC exert also tumor promoting functions. In 

particular, they secrete VEGF (Shen et al., 2014) that stimulates tumor angiogenesis. In ad-

dition, it was shown that MDSC were recruited to the pre-metastatic niche and suppressed 

NK cell functions there, creating a microenvironment facilitating metastasis (Sceneay et al., 

2012). 
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Figure 3. Main mechanisms of MDSC-mediated immunosuppression. 

MDSC can promote the generation of M2 macrophages and Treg by interleukin (IL-)10 and interferon 

(IFN-) secretion (a); they can impair lymphocyte adhesion to endothelial cells (EC) and extravasation 

through nitric oxide (NO-)mediated downregulation of adhesion molecules and tumor necrosis factor-

alpha-converting enzyme (TACE)-mediated cleavage of CD62 ligand (L-Selectin) (b); reactive oxygen 

and reactive nitrogen species (ROS, RNS) are produced by MDSC via NADPH oxidase 2 (NOX2) and 

nitric oxide synthase 2 (NOS2), leading to increased cyclooxygenase 2 (COX-2), hypoxia-inducible 

factor 1-alpha (HIF-1) and arginase 1 (ARG1) inhibiting T cell function (c); MDSC deplete the micro-

environment from the amino acids L-arginine and cysteine which leads to a T cell arrest (d); the ecto-

enzymes CD39 and CD73 are expressed on MDSC under hypoxic conditions leading to adenosine 

production and thereby reduced T cell function (e); MDSC express the immune checkpoint ligands B7 

(CD80, CD86), programmed death-ligand 1 (PD-L1) and Fas ligand (FasL) causing T cell anergy and 

apoptosis via binding to their respective receptors (f). Figure taken from (Groth et al., 2019). 
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1.3.5 MDSC targeting for cancer immunotherapy  

As MDSC have strong immunosuppressive and tumor-promoting capacity, they are an im-

portant target for cancer immunotherapy (Fleming et al., 2018). There are three different 

strategies to target MDSC, namely blocking i.) MDSC accumulation, ii.) MDSC recruitment 

and iii.) MDSC-mediated immunosuppression.  

The blockade of MDSC accumulation can be achieved by a normalization of myelopoiesis, 

which was shown to happen under the therapy with some chemotherapeutic drugs (Fleming 

et al., 2018). In the RET transgenic mouse model of malignant melanoma, ultra-low doses of 

paclitaxel inhibited MDSC accumulation, inducing anti-tumor effects (Sevko et al., 2013). In 

patients with pancreatic cancer, gemcitabine led to a decrease in PMN-MDSC frequencies 

and a restoration of effector T cells (Eriksson et al., 2016). Furthermore, it was discovered 

that all-trans retinoic acid (ATRA), which blocks retinoic acid signal transduction, has a posi-

tive effect on myelopoiesis by promoting the differentiation of DC and macrophages and 

thereby preventing the accumulation of MDSC in murine and human samples (Nefedova et 

al., 2007). Therefore, ATRA was successfully used in two clinical trials with patients suffering 

from metastatic renal cell carcinoma and late stage small cell lung cancer. It was shown that 

ATRA improved patient survival by a reduction of the MDSC frequency (Mirza et al., 2006; 

Iclozan et al., 2013). ATRA was also used in combination with ipilimumab in a phase II clini-

cal trial in melanoma patients. It improved the clinical outcome of patients by decreasing 

MDSC frequencies and leading to an increased antigen-specific T cell response as com-

pared to ipilimumab alone (Tobin et al., 2017).  

The blockade of MDSC recruitment can be achieved by blocking the chemokine receptors 

and ligands that are important for MDSC trafficking to the tumor. In the RET transgenic 

mouse model of malignant melanoma, it could be shown that the blockade of the CCR5 lig-

ands by a murine CCR5-Ig fusion protein  prevented MDSC migration to the tumor, leading 

to an increase in tumor-infiltrating T cells and improved mouse survival (Blattner et al., 2018). 

Moreover, in a prostate cancer mouse model, MDSC recruitment could be blocked by a 

CXCR2 antagonist (Di Mitri et al., 2014). One clinical trial with melanoma patients is currently 

ongoing using SX-682, a small molecule inhibitor of CXCR1 and 2, to block MDSC recruit-

ment in combination with pembrolizumab (trial number NCT03161431). 

To neutralize MDSC-mediated immunosuppression phosphodiesterase-5 inhibitor, sildenafil 

was applied in different transplantable tumor mouse models. It decreased Arg1 and iNOS 

expression by MDSC, increased tumor-infiltrating T cells and the efficacy of adoptive T cell 

therapy (Serafini et al., 2006). Sildenafil could likewise prolong mouse survival of melanoma-

bearing RET transgenic mice by reducing MDSC frequency and activity and restoring CD8+ 

T cell infiltration and function (Meyer et al., 2011). Tadalafil was applied in clinical trials in 
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patients with head and neck squamous cell carcinoma and metastatic melanoma showing an 

improved clinical outcome correlated with the reduction of tumor-infiltrating and peripheral 

MDSC and increased anti-tumor immune responses (Califano et al., 2015; Weed et al., 2015; 

Hassel et al., 2017). In a murine model of pancreatic ductal adenocarcinoma, an IDO1 inhibi-

tor diminished MDSC immunosuppressive capacity and increased the efficacy of a cancer 

vaccine but not anti-PD-1/anti-PD-L1 therapy (Blair et al., 2019). In ovarian cancer patients, 

metformin reduced the frequency of circulating CD39+CD73+ MDSC, inducing thereby in-

creased anti-tumor activity of circulating CD8+ T cells and increased overall survival (L. Li et 

al., 2018).    

Altogether, there are various MDSC-targeting strategies that have shown beneficial effects in 

pre-clinical tumor models and in clinical trials. However, none of the MDSC-targeting ap-

proaches is routinely used in the cancer therapy (Weber et al., 2018). Therefore, more re-

search is needed to find the most promising therapeutic approach to really help cancer pa-

tients. 

1.4 Chemokines and their receptors 

Chemokines are small (8 to 17 kDa) chemotactic cytokines that are able to induce the di-

rected mobilization of cells that express the respective chemokine receptors (Lazennec and 

Richmond, 2010). They are classified by variations of the first two cysteines of a conserved 

cysteine motif in the mature sequence of the protein (Lazennec and Richmond, 2010). The 

CC subfamily has 28 and the CXC subfamily has 17 members. There are two more subfami-

lies with only one member each, the CX3C and the XC subfamiles (Lazennec and Richmond, 

2010). 

Chemokines are expressed by different cell types like leukocytes, endothelial cells, fibro-

blasts, epithelial cells and cancer cells and are mainly responsible to attract leukocytes to the 

site of inflammation and to mediate their homing to lymphatic organs (Thelen and Stein, 

2008).  

Chemokine receptors are class A G-protein coupled receptors also separated into the four 

subfamilies (Lazennec and Richmond, 2010). There are ten CCR family members and seven 

CXCR family members, in addition there are XCR1 and CX3CR1 (Lazennec and Richmond, 

2010). The signaling of chemokine receptors is mediated by heterotrimeric G-proteins that 

regulate a diversity of signal transduction pathways involved not only in migration but also in 

invasion, cell survival and proliferation (New and Wong, 2003).  

Chemokine receptors were first found to be expressed on immune cells to mediate their traf-

ficking through the body. However, they can be also expressed on other cell types, for ex-

ample cancer cells. In cancer cells, the expression of chemokine receptors can mediate their 
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survival, proliferation, invasiveness and metastasis formation (Lazennec and Richmond, 

2010). Since there are more chemokines than chemokine receptors, most receptors have 

more than one ligand (Lazennec and Richmond, 2010). 

1.4.1 Chemokine receptor CCR5 and its downstream signaling  

CCR5 is a seven-transmembrane domain G-protein coupled receptor (Oppermann, 2004) 

composed of 352 amino acids with a calculated molecular mass of 40.6 kDa (Samson et al., 

1996). CCR5 was first described in 1996 as a new chemokine receptor binding to the ligands 

macrophage inflammatory protein-1  (MIP-1/CCL3), macrophage inflammatory protein-1  

(MIP-1/CCL4) and regulated on activation, normal T cell expressed and secreted (RANTES, 

CCL5) (Combadiere et al., 1996; Raport et al., 1996; Samson et al., 1996). Later also mono-

cyte chemotactic protein-2 (MCP-2, CCL8) was found to be a ligand of CCR5 (Gong et al., 

1998). 

The chemokines bind to acidic and tyrosine residues in the N-terminal region of CCR5 and to 

regions vicinal to the second extracellular loop to initiate signaling by a conformational 

change (Samson et al., 1996; Blanpain et al., 1999). By the release of the  and  G-protein 

subunits, adenylyl cyclase and phospholipase C (PLC) get activated and lead to the for-

mation of inositol triphosphate (IP3) and the mobilization of intracellular calcium as well as 

the formation of diacylglycerol (DAG) and the activation of protein kinase C (PKC) 

(Oppermann, 2004). Furthermore, phosphatidylinositol 3-kinases (PI3K), inducing activation 

of the MAPK pathway (Oppermann, 2004). Therefore, CCR5 activates transcription, cell pro-

liferation and survival. In addition, the Rho GTPases, RhoA, Rac and Cdc42, are activated by 

CCR5 downstream signaling to coordinate the reorganization of the actin cytoskeleton and 

regulate cell polarity, adhesion, and motility (Oppermann, 2004).       

CCR5 was shown to be expressed on various cell types, including myeloid cells, dendritic 

cells, T cells, endothelium cells, epithelium cells, vascular smooth muscle cells and fibro-

blasts, as well as microglia, neurons, and astrocytes in the central nervous system (Rottman 

et al., 1997).  

Importantly, CCR5 was identified to be a co-receptor for the human immunodeficiency virus 

(HIV) mediating the entry of the virus into T cells and macrophages where they replicate and 

can cause the acquired immune deficiency syndrome (AIDS) (Deng et al., 1996; Dragic et 

al., 1996). 
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1.4.2 Regulation of CCR5 expression 

After ligand binding, CCR5 becomes a subject of desensitization, internalization and recy-

cling to the plasma membrane (Oppermann, 2004). The receptor gets phosphorylated by 

PKC or G-protein coupled receptor kinases (GRK) at C-terminal serine residues (Oppermann 

et al., 1999; Pollok-Kopp et al., 2003). The regulatory proteins -arrestin-1 and -2 bind to the 

phosphorylated C-terminal serine residues but can also bind phosphorylation-independent, 

leading to the internalization of CCR5 by clathrin-mediated endocytosis (Kraft et al., 2001; 

Huttenrauch et al., 2002). Then CCR5 accumulates in endosomes and is recycled to the 

plasma membrane in a dephosphorylated form (Pollok-Kopp et al., 2003). As CCR5 does not 

colocalize with late endosomal or lysosomal markers (Signoret et al., 2000), it is suggested 

that it is not degraded but undergoes several rounds of recycling until the ligand is dissociat-

ed and CCR5 is sensitive again (Oppermann, 2004). 

Chemokine receptors can either be constitutively expressed on several immune cell sub-

types or hematopoietic stem cells, which is important for their homing to lymphatic organs, or 

their expression is induced by cytokines under inflammatory conditions, to recruit the immune 

cells to the site of inflammation (Stone et al., 2017). It was shown that CCR5 is abundantly 

expressed on long-term activated, IL-2 stimulated human T cells ex vivo (Wu et al., 1997). In 

addition, a gradual increase of CCR5 was observed on human PBMC ex vivo after 12 days 

of stimulation with IL-2 (Bleul et al., 1997). Moreover, IL-2, IL-12, TNF- and IFN- led to 

CCR5 mRNA upregulation after 24 hours in human PBMC ex vivo; for IL-2 the upregulation 

was also confirmed on protein level on CD4+ and CD8+ T cells (Patterson et al., 1999). In the 

same study, IL-10 and IL-4 were shown to downregulate CCR5 mRNA expression (Patterson 

et al., 1999) on PBMC ex vivo.  

The upregulation of CCR5 on T cells upon IL-2 stimulation could be confirmed in another 

paper (Yang et al., 2001). However, the authors argued that prior anti-CD3/anti-CD28 activa-

tion was needed for the IL-12-induced CCR5 upregulation, as the TCR triggering led to up-

regulation of the IL-12 receptor. Furthermore, CCR5 could also be induced on CD4+ T cells 

by lipoarabinomannan, a cell wall component and virulence factor of Mycobacterium tubercu-

losis (Juffermans et al., 2001).  

IFN- was able to upregulate CCR5 surface expression and increase migration towards the 

CCR5 ligands in human mononuclear phagocytes isolated from peripheral blood and stimu-

lated ex vivo for 12 hours (Hariharan et al., 1999). Contrary to what was shown before for 

whole PBMC on mRNA level, IL-10 stimulated human monocytes showed an increased 

CCR5 surface expression and migration towards the CCR5 ligands after 16 hours of stimula-

tion (Sozzani et al., 1998). Moreover, IFN-, IL-10, IL-4 and lipopolysaccharide (LPS) could 

increase CCR5 expression at the mRNA and protein level in murine macrophages, whereas 
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hypoxia could decrease both constitutive and induced CCR5 expression in the same cells 

(Bosco et al., 2004). 

Altogether, these findings suggest that IL-2, IL-12, TNF- and IFN- upregulate CCR5 on T 

cells and that IL-4, IL-10, IFN- and LPS upregulate CCR5 on myeloid cells. However, differ-

ent times of stimulation were used in the different studies and not all of them have shown the 

functional relevance by studying the migration of the cells towards the CCR5 ligands. Moreo-

ver, it is not clear in these studies, which molecular mechanisms, signal transduction cas-

cades and transcription factors were responsible for the regulation of CCR5.  

As displayed in Figure 4, the human CCR5 gene consist of three exons and two introns; in 

the 5’ region before the first exon the upstream promoter Pu is located and the second more 

downstream promoter Pd composes the first intro and the second exon (Mummidi et al., 

1997). The CCR5 open reading frame is located in the third exon (Mummidi et al., 1997). 

Interestingly, many transcription factor binding sites were described in the two promoter re-

gions. The promoters contain consensus sequences for AP-1, OCT-1, GATA-1 and Sp-1 

(Mummidi et al., 1997). GATA-1 was shown to upregulate the CCR5 promoter activity 

(Moriuchi et al., 1999).  Another study showed consensus sequences for STAT, NF-B, AP-

1, NF-AT and CD28RE in the CCR5 promotor regions with the NF-B/Rel family member 

p65 (RelA) being a potent activator of the promoter activity (Liu et al., 1998). Furthermore, it 

was shown that C/EBP can bind to the CCR5 promotor (Rosati et al., 2001), whereas 

CREB-1 can activate the CCR5 promoter (Wierda and van den Elsen, 2012).  

 

1.4.3 CCR5 in cancer  

In recent years, evidence has been accumulated that CCR5 plays an important role in differ-

ent types of cancer. On the one hand, it is expressed on cancer cells, promoting their prolif-

eration, invasion and metastasis. On the other hand, it could be responsible for recruiting 

immunosuppressive immune cells like Treg and MDSC to the tumor.  

Figure 4. CCR5 gene structure.  

The human CCR5 gene consist of three exons and two introns with two identified promotor regions; in 

the 5’ region before the first exon the upstream promoter Pu is located and the second more down-

stream promoter Pd composes the first intro and the second exon. The CCR5 open reading frame is 

located in the third exon. The figure was taken from (Barmania and Pepper, 2013). 
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It was found that the treatment with the CCR5 and CCR1 antagonist Met-CCL5 was able to 

decrease primary tumor growth in a breast cancer mouse model by inhibiting the infiltration 

with immunosuppressive leukocytes (Robinson et al., 2003). Furthermore, the CCR5 inhibi-

tors maraviroc and vicriviroc could reduce in vitro invasiveness of murine breast cancer cell 

lines and pulmonary metastasis in a breast cancer mouse model (Velasco-Velázquez et al., 

2012). The expression of CCR5 and CCL5 in human breast cancer samples could also be 

shown by microarray in the same study, highlighting CCR5 blockade as a promising therapy 

for breast cancer patients. Another study showed that CCR5+ Treg are recruited to the prima-

ry tumor and the lungs of breast cancer-bearing mice, and that CCR5 blockade by maraviroc 

reduces the metastatic tumor burden in the lungs (Halvorsen et al., 2016). In addition, mara-

viroc was able to decrease proliferation, migration and colony formation of human metastatic 

breast cancer cells in vitro and significantly inhibited bone marrow metastasis in nude rats 

implanted with these tumor cells (Pervaiz et al., 2019).  

It was shown that B16 melanoma growth was decreased in CCR5-deficient mice, and that 

DC vaccination was more efficient in these mice (Ng-Cashin et al., 2003). In the same mouse 

model, CCR5 expression on stromal cells was proved to be necessary for the spread of mel-

anoma cells to the lung (van Deventer et al., 2005). The delay of primary melanoma growth 

in CCR5-deficient mice could also be confirmed by two other groups (Song et al., 2012; 

Aldinucci and Colombatti, 2014). In human melanoma samples, CCR5 mRNA was detected 

in primary melanomas as well as some cutaneous metastasis (Seidl et al., 2007).   

In the B16 and RET transgenic mouse models of malignant melanoma M-MDSC were shown 

to express the CCR5 ligands and thereby recruit CCR5+ Treg to the TME (Schlecker et al., 

2012).  

In a mouse model of pancreatic cancer, the CCR5 inhibitor TAL-779 blocked migration of 

Treg to the TME, reducing thereby tumor growth (Tan et al., 2009). In the CT26 murine colon 

cancer mouse model, CCR5+ CD103+ effector/memory Treg were observed to be highly im-

munosuppressive and CCR5-deficiency or CCL5 knockdown prevented the accumulation of 

these cells in the tumor and impaired their suppression capacity in vivo (Chang et al., 2012). 

However, in colorectal cancer patients, the inhibition of CCR5-CCR5 ligand interaction by 

maraviroc delayed the tumor growth without reducing Treg numbers (Ward et al., 2015). In a 

recent clinical trial, it was  demonstrated that maraviroc led to the reprogramming of the im-

mune system and thereby to a beneficial outcome in colorectal cancer patients (Halama et 

al., 2016). Moreover, it could be shown that patients with a functionally mutated CCR5 are 

resistant to prostate cancer (Balistreri et al., 2009).  

Altogether, these studies already suggest CCR5 as a promising target for cancer therapy.  
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1.4.4 CCR5 on MDSC 

In the RET transgenic mouse model of malignant melanoma, it was found that CCR5+ PMN- 

and M-MDSC accumulated in the tumors and metastatic lymph nodes, correlating with an 

increased concentration of the CCR5 ligands CCL3, -4 and -5 as well as tumor progression 

(Blattner et al., 2018). Interestingly, CCR5+ MDSC were found to be more immunosuppres-

sive, and the blockade of the CCR5 ligands by a murine CCR5-Ig fusion protein increased 

mouse survival by blocking MDSC migration to the tumor and thereby increasing tumor-

infiltrating T cell numbers (Blattner et al., 2018). Furthermore, the accumulation of CCR5+ 

MDSC in the tumor and the peripheral blood was demonstrated in melanoma patients indi-

cating that CCR5 targeting might be an interesting strategy for the therapy of these patients 

(Blattner et al., 2018). In addition, CCR5 and its ligands were described to be important for 

the mobilization of PMN-MDSC from the bone marrow to the peripheral blood and the CCR5 

ligands stimulated proliferation of PMN-MDSC and an upregulation of Arg1 expression in 

these cells (Hawila et al., 2017). 

In line with this, CCL5 was also shown to be important for the generation of MDSC in the 

bone marrow of breast cancer bearing mice, and the blockade of CCL5  inhibited tumor 

growth by decreasing MDSC generation and impairing their immunosuppressive function 

(Zhang et al., 2013). Moreover, in murine breast cancer, the autocrine CCR5-CCL5 interac-

tion was proved to be crucially important for the generation of immunosuppressive myeloid 

cells like PMN-MDSC and TAM (Ban et al., 2017). The same study showed an inverse corre-

lation between CCR5 expression and the maturation status of tumor-infiltrating neutrophils in 

breast cancer patient samples as well as the 5 year-survival rates of the breast cancer pa-

tients (Ban et al., 2017). 

The CCR5-CCL5 axis was also suggested to be responsible for the recruitment of MDSC to 

the tumor in a mouse model of gastric cancer (Yang et al., 2018). Moreover, the blockade of 

CCR5 by maraviroc was able to increase the efficacy of anti-PD-1 therapy by decreasing 

MDSC accumulation and increasing CD4+ and CD8+ T cell numbers in the tumor (Yang et al., 

2018).  

In patients with resectable non-small-cell lung cancer the frequency of CCR5+ M-MDSC was 

significantly higher in the circulation compared to healthy donors, and the frequency of 

CCR5+ M-MDSC in the peripheral blood correlated negatively with recurrence-free survival 

(Yamauchi et al., 2018).  
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1.5 IL-6 and its pleiotropic role in cancer   

IL-6 is a 25 kDa cytokine that was first discovered as a factor to induce B cell differentiation 

and maturation into antibody producing cells (Hirano et al., 1985). Meanwhile, it is known that 

IL-6 is playing a major role in the homeostasis of hepatocytes, hematopoietic progenitor 

cells, the skeleton, the placenta, the cardiovascular system and the endocrine as well as 

nervous systems, besides being an important regulator of the immune response (Kumari et 

al., 2016). There are two main ways of IL-6 signaling. For the classical signaling, the IL-6 

receptor (IL-6R) is expressed on hepatocytes, some epithelial cells and several types of leu-

kocytes. Upon binding of IL-6 to the IL-6R on the plasma membrane, the complex is associ-

ated with the signal transducing component gp130. The activated IL-6R complex then induc-

es the JAK/STAT signal transduction via the SHP-2 domain of gp130 (Wolf et al., 2014). The 

janus-kinase family members become activated and phosphorylate different transcription 

factors, among them STAT3 that gets phosphorylated at tyrosine 705 (pY705), dimerizes and 

translocates to the nucleus, inducing the expression of STAT3-target genes. There is also a 

soluble form of the IL-6R, that can form a complex with IL-6 in the extracellular space and 

then activate cells that do only express gp130 but not the IL-6R; this second mechanism is 

called trans-signaling (Wolf et al., 2014). A third form of IL-6-induced signaling was described 

for DC that trans-present the IL-6 to T cells, which is essential for the generation of TH17 

cells (Heink et al., 2017).         

IL-6 is known to have pro- as well as anti-inflammatory properties in infection and cancer 

(Kumari et al., 2016). During the acute phase of the inflammatory reaction, TNF and IL-1 

induce the expression of IL-6, which in turn leads to the upregulation of more acute phase 

response factors (Gruys et al., 2005). Moreover, IL-6 signaling leads to the expression of T 

cell-attracting chemokines (such as CCL4, CCL5, CCL17 and CXCL10), thereby promoting 

inflammation (McLoughlin et al., 2005). Furthermore, by the STAT3-dependent upregulation 

of anti-apoptotic factors (such as Bcl-2 and Bcl-xL) and the modulation of the surface ex-

pression of Fas receptor, IL-6 can prevent the apoptosis of T cells (Atreya et al., 2000; 

Curnow et al., 2004). When it comes to the switch between pro- and anti-inflammatory prop-

erties, the same pathways are generating negative feedback loops to control inflammation 

and restrict immune reactions. TNF and IL-1 then counteract pro-inflammatory IL-6 signal-

ing by enhancing the IL-6-induced expression of suppressor of cytokine signaling (SOCS3), 

which blocks the expression of pro-inflammatory IL-6 target genes (Bode et al., 1999). Fur-

thermore, IL-6 promotes an anti-inflammatory environment by regulating the differentiation of 

recruited T cells towards TH2 phenotype by inducing the expression of IL-4 (Krishnamoorthy 

et al., 2007). Importantly, IL-6 also plays a major role in the accumulation of MDSC, as de-

scribed above.  
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Besides its effects on immune cells, IL-6 exerts important effects on cancer cells. The activa-

tion of the IL-6/STAT3 signaling pathway in the cancer cells supports tumorigenesis by inhib-

iting apoptosis and promoting survival, proliferation, angiogenesis, invasiveness and metas-

tasis (Kumari et al., 2016). Importantly, IL-6 is upregulated in several different types of can-

cer, including melanoma, where its increased levels  correlated with worse patient outcome, 

progression of the disease and therapy resistance (Hoejberg et al., 2012). Therefore, IL-6 is 

considered to be an interesting target for cancer therapy (Q. Liu et al., 2017).  
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2 Aim of the study 

The upregulation of CCR5 expression on MDSC and the accumulation of CCR5 ligands in 

the melanoma microenvironment led to the recruitment of MDSC to melanoma tumor lesions. 

Importantly, CCR5+ tumor-infiltrating MDSC show increased expression of PD-L1 and Arg1, 

as well as increased production of ROS and NO as compared to their CCR5- counterparts 

(Blattner et al., 2018). Furthermore, the recruitment of MDSC could be successfully blocked 

by a CCR5-Ig fusion protein that neutralizes the CCR5 ligands, leading to prolongation of 

survival of melanoma bearing RET transgenic mice (Blattner et al., 2018). However, the 

mechanisms leading to CCR5 upregulation on MDSC and making CCR5-dependend MDSC 

recruitment possible were poorly studied. In addition, the mechanisms inducing an increased 

immunosuppressive phenotype in CCR5+ MDSC were not investigated.  

Therefore, the aims of this thesis were to study the molecular mechanisms of CCR5 upregu-

lation on MDSC in melanoma, to elucidate the link between CCR5 expression and immuno-

suppressive capacity of MDSC and to block the factors leading to CCR5 upregulation and 

increased immunosuppressive potential of MDSC in the RET transgenic mouse model of 

malignant melanoma.  

We studied the effect of factors, that are increased in the melanoma microenvironment and 

are involved in the MDSC differentiation, on CCR5 expression by qRT-PCR, Western blot 

and flow cytometry. Furthermore, we analyzed the molecular mechanisms of CCR5 upregu-

lation in vitro. We also evaluated the activity of these pathways in the RET transgenic mouse 

melanoma model ex vivo by flow cytometry and ELISA. We investigated the differences in 

immunosuppressive capacity between CCR5+ and CCR5- tumor-infiltrating MDSC using sup-

pression of T cell proliferation assay and microarray analysis and tested the capacity of the 

CCR5 ligands to stimulate increased immunosuppressive capacity of CCR5+ MDSC. Fur-

thermore, we studied the effect of IL-6 on immunosuppressive capacity of MDSC since IL-6 

was the main factor to upregulate CCR5 and to increase immunosuppression. Finally, we 

investigated the effects of IL-6 in vivo by subcutaneous (s.c) injection of IL-6 overexpressing 

(OE) Ret melanoma cells and by the application of anti-IL-6 monoclonal antibodies in the 

RET transgenic melanoma model.           
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3 Material 

3.1 Technical equipment 

Device       Manufacturer 

Balance BP 3100P      Sartorius  

Cell culture incubator Hera cell 150    Heraeus 

Centrifuge Biofuge primo R     Heraeus 

Centrifuge Labofuge 400R     Heraeus 

Centrifuge MEGAFUGE 40R     Heraeus 

Counting chamber Neubauer improoved    Brand  

Electrophoresis chamber Mini-PROTEAN 3 Cell  BioRad 

Flow cytometer BD FACSAriaTM IIU    Becton Dickinson 

Flow cytometer BD FACSLyricTM     Becton Dickinson 

Fluorescence microscope Eclipse Ti    Nikon 

Fridge        Liebherr 

Heating Block Thermomixer compact   Eppendorf 

Ice machine       Manitowoc 

Imaging System Fusion SL     Viber Lourmat 

Laminar flow hood Hera safe     Heraeus 

Light microscope DM IL     Leica 

Magnetic bead column holder MACS multistand  Miltenyi Biotec 

Microplate reader Tecan infinite M200   Tecan 

Mr. FrostyTM freezing container    Thermo Fisher 

N2 tank BIOSAFE      Cryotherm  

Pipettes Transferpette      Brand  

Power supply PAC HC     BioRad 

qPCR cycler MX3005      Stratagene 

Refrigerator (-20 °C)      Liebherr 

Refrigerator (-80 °C)      Heraeus 

Semi dry blotting chamber     BioRad    

Thermal Cycler DNA Engine Peltier     BioRad 

Vortexer REAX Top      Heidolph 
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3.2 Computer software 

Software     Manufacturer 

FACSuiteTM     Beckton Dickinson 

FIJI      SciJava (Schindelin et al., 2012) 

FlowJo  V10     Becton Dickinson 

GraphPad Prism    GraphPad Software 

iControl     Tecan 

Microsoft Office 365    Microsoft Corporation 

MxPro qPCR     Stratagene 

TFbind      (Tsunoda and Takagi, 1999) 

3.3 Consumables 

Consumable   Manufacturer   Order number 

15 ml tube   Sarstedt   62.554.502  

24-well plate   Sarstedt   83.3922.005 

5 ml test tube   Becton Dickinson  352053 

50 ml tube   Sarstedt   62.547.254  

6 well plate   Sarstedt    83.3920.005 

96 well TC plate R   Sarstedt   83.3925 

96-well PCR plate  Steinbrenner Laborsysteme SL-PP96-1  

96-well plate F  Sarstedt   82.1581 

96-well plate R  Sarstedt   82.1582 

Cell culture dish 10x2 cm Greiner Bio-One  664160  

Cell Scraper 25 cm  Sarstedt   83.1830  

Cell strainer 100 µm  Neolab    21008-950  

Cell strainer 40 µm  Neolab    21008-949  

Cryovial 1.8 ml, sterile Sarstedt   72.379 

MACS LS colums  Miltenyi Biotec  130-042-401 

MACS MS colums  Miltenyi Biotec  130-042-201 

Microscopy slides  VWR    48311-703 

Needles 27G ¾  Becton Dickinson  302200 

Needles 30G ½   Becton Dickinson  305106    
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Consumable   Manufacturer   Order number 

PCR stripes 0,2 ml   Sarstedt   72.991.992 

PCR tubes 0,2 ml  Sarstedt   72.737.992  

Pipette Filter Tips 10 µl Sarstedt   70.1116.210  

Pipette Filter Tips 1000 µl Sarstedt   70.762.211  

Pipette Filter Tips 200 µl Sarstedt   70.760.211  

Pipette tips 10 µl  Sarstedt   70.1130.600 

Pipette tips 1000 µl  Sarstedt   70.760.452 

Pipette tips 200 µl  Sarstedt   70.762.100 

PVDF Transfer membrane Thermo Fisher  88520 

Reaction tube 1.5 ml  Eppendorf   0030120086  

Reaction tube 2.0 ml  Eppendorf   0030120094  

Serological pipette 10 ml Sarstedt    86.1254.001 

Serological pipette 25 ml Sarstedt    86.1685.001 

Serological pipette 5 ml Sarstedt    86.1253.001  

Syringe 1 ml   Becton Dickinson   300013 

Syringe 10 ml   Becton Dickinson  309110 

T75 cell culture flask  Sarstedt    83.3911 

ThickBlot Filter Paper  BioRad   1703 

Transfer pipette  Sarstedt   86.1171 

Transwell inserts 8 µm Sarstedt    83.3932.800 

3.4 Chemicals, solvents and reagents 

Reagent      Manufacturer   Order no. 

2-propanol      Sigma-Aldrich   I9516 

2-β-mercaptoethanol (50 mM)   Thermo Fisher  31350-010 

4x Laemmli sample buffer    Bio-Rad   161-0747 

7AAD       Becton Dickinson  559925 

ACK Lysing Buffer     Thermo Fisher  A1049201 

Albumin      Carl Roth   3737.3 

Ammonium persulfate (APS)    Bio-Rad   1610700 

Carboxyfluorescein succinimidyl ester (CFSE) Biolegend   423801 

CellROXTM Deep Red reagent   Thermo Fisher  C10422 
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Reagent      Manufacturer   Order no. 

Collagenase      Sigma-Aldrich   C0130 

DAF-FM DA (NO detection reagent)   Cayman Chemical  18767 

DAPI       Thermo Fisher  D1306 

Dimethyl sulfoxide (DMSO)    Carl Roth   A994.1 

DMEM medium     Thermo Fisher  12491015 

DNase       Siga-Aldrich   D5025 

Dulbecco's phosphate-buffered saline (DPBS) Thermo Fisher  14190250 

Dynabeads™ Mouse T-Activator CD3/CD28 Thermo Fisher  11452D 

Ethanol      Carl Roth   9065.1 

Fetal bovine serum (FBS)    Merck    TMS-013-B 

Fixable viability stain 700    Becton Dickinson  564997 

Fluorescence mounting medium   Sigma-Aldrich   F4680 

Glycin       Carl Roth   3908.1 

Heparin-natrium-25000 units    Ratiopharm   N68542.04 

HEPES (1 M)      Thermo Fisher  15630080 

Histopaque 1119      Sigma Aldrich   11191 

MEM non-essential amino acids   Thermo Fisher  11140050 

Methanol      Carl Roth   4627.4 

NaCl       Carl Roth   9265.1 

NaN3       Carl Roth   K305.1 

Penicillin/streptomycin (P/S)    Thermo Fisher  15140-122 

Protease inhibitor cocktail 50x   Promega   G6521 

Puromycin      Thermo Fisher  A11138-03 

RIPA Lysis Buffer 10x    Merck    20-188 

RNase out       Thermo Fisher  10777019 

RPMI 1640 medium     Thermo Fisher  11875101 

Sodium dodecyl sulfate (SDS)   Carl Roth   3029.1 

Sodium pyruvate      Thermo Fisher  11360-03 

Stattic       Sigma-Aldrich   S7947 

TEMED      Bio-Rad   1610800 

Tris(hydroxymethyl)-aminomethan (Tris)  Carl Roth   0188.3 

Trypan blue solution     Sigma-Aldrich   T8154 
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Reagent      Manufacturer   Order no. 

Trypsin      Thermo Fisher  15400054 

Tween 20      Sigma-Aldrich   P9416 

UltraPure™ 0.5 M EDTA    Thermo Fisher  15575020 

X-tremeGENETM solution    Sigma-Aldrich   636624400 

3.5 Anti-mouse antibodies 

3.5.1 Unconjugated antibodies 

Specificity Clone  Manufacturer   Order no. Dilution 

CCR5  645807 RnD Systems   MAB6138 1:1000 

CD28  37.51  eBioscience   553294 1:10000 

CD3  17A2  eBioscience   100201 1:10000 

GAPDH 1D4  BioLegend   919501 1:2000 

pSTAT3 polyclonal Cell signaling technology 9131  1:500 

3.5.2 Conjugated antibodies 

Specificity Conjugate Clone  Manufacturer  Order no. Dilution 

Arg1  APC  polyclonal RnD Systems  IC5868A 1:100 

CCR5  Ax488  HM-CCR5 BioLegend  107008 1:100 

CCR5  BB515  C34-3448 Becton Dickinson 565093 1:100 

CCR5  BV605  C34-3448 Becton Dickinson 743697 1:100 

CD11b  APC-Cy™ 7 M1/70 BD Becton Dickinson 557657 1:200 

CD11c  APC  HL3  Becton Dickinson 561119 1:50 

CD25  BB515  PC61  Becton Dickinson 564458 1:50 

CD3  PerCP-Cy5.5 145-2C11 Becton Dickinson 551163 1:100 

CD4  PE-Cy™ 7 RM4-5  Becton Dickinson 552775 1:100 

CD45  V500  30-F11  Becton Dickinson 561487 1:100 

CD69  PE  H1.2F3 Becton Dickinson 561932 1:100 

CD8a  APC-Cy™ 7 53-6.7  Becton Dickinson 557654 1:100 

CD8a  eFluor450 53-6.7  Thermo Fisher 48-0081-82 1:100 

F4/80  APC-R700 T45-2342 Becton Dickinson 565787 1:50 

FoxP3  Ax647  MF23  Becton Dickinson 560402 1:100 
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Specificity Conjugate Clone  Manufacturer  Order no. Dilution 

gp130  PE  4H1B35 BioLegend  149403 1:50  

Gr1  PE-Cy™ 7 RB6-8C5 Becton Dickinson 565033 1:800 

IL-6R  APC  D7715A7 BioLegend  115811 1:50 

Ly6C  PE  AL-21  Becton Dickinson 560592 1:100 

Mouse IgG HRP  polyclonal Sigma-Aldrich  A9044  1:10000 

p-p38 MAPK PE  36/p38  Becton Dickinson  562065 1:30 

pCD247 PE  K25-407.69 Becton Dickinson 558448 1:100 

PD-1  BV421  EH12.1 Becton Dickinson 562584 1:100 

PD-L1  BV421  MIH5  Becton Dickinson  564716 1:100 

pNFᴋB  PE  K10-895.12.50 Becton Dickinson  558423 1:30 

pSTAT3 PE  4/P-STAT3 Becton Dickinson  562072 1:30 

Rat IgG Ax488  polyclonal Dianova  711545152 1:500 

Rat IgG HRP  polyclonal Sigma-Aldrich  919501 1:2000 

3.5.3 Therapeutic antibodies for mice  

Name  Clone  Company  Order no.  Concentration 

Anti-PD-1 RMP1-14 BioXcell BE0146 12,5 mg/kg 

Rat IgG2A 2A3  BioXcell BE0089 12,5 mg/kg  

Anti-IL-6 MP5-20F3 BioXcell BE0046 10 mg/kg 

Rat IgG1 HRPN  BioXcell BE088  10 mg/kg 

3.6 TLR ligands 

All TLR ligands were ordered at InvivoGen.   

Ligand  Order no. Final concentration 

LPS   tlrl-epelps 5 µg/ml 

Pam3CSK3  tlrl-pms 1 µg/ml 

R848   tlrl-r848 1 µg/ml 

3.7 Cytokines, chemokines and growth factors 

All cytokines, chemokines and growth factors were ordered at PeproTech and were murine 

recombinant proteins.  
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Factor   Order no.  Final concentration 

CCL3   250-09   20 ng/ml 

CCL4   250-32   20 ng/ml 

CCL5   250-07   20 ng/ml 

GM-CSF  315-03   40 ng/ml 

IFN-   315-05   10 ng/ml 

IL-1   211-11B  40 ng/ml 

IL-6   216-16   40 ng/ml 

3.8 Commercial kits 

Kit        Manufacturer  Order no. 

CD8a+ T cell isolation Kit, mouse    Miltenyi Biotec 130-104-075 

ELISA MAXTM Deluxe Set Mouse IL-6   BioLegend  431304 

FoxP3/Transcription Factor Fixation/Permeabilization Kit eBioscience  00-5512-00 

Myeloid-Derived Suppressor Cell Isolation Kit, mouse Miltenyi Biotec 130-094-538 

Pierce BCA Protein Assay Kit    Thermo Fisher 23225 

Pierce ECL Western Blotting Substrate   Thermo Fisher 32106 

RNase-Free DNase Set     QIAGEN  79254 

RNeasy Mini Kit      QIAGEN  74104 

SensiFASTTM cDNA Synthesis Kit     Bioline   BIO-65053 

SensiFASTTM SYBR No-ROX Kit    Bioline   BIO-98005 

Bio-Plex Cell Lysis Kit      BioRad   171-304011 

PierceTM BCA Protein Assay Kit    Thermo Fisher 23225 

Arginase Activity Assay Kit     Sigma-Aldrich  MAK112 

3.9 Buffers and media 

Buffer/medium    Composition 

10 x Running buffer    30 g Tris base 

144 g Glycine 

10 g SDS 

1 l H2O 
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Buffer/medium    Composition 

10 x Phosphate-buffered saline (PBS)  80 g NaCl 

2 g of KCl 

14.4 g Na2HPO4 

2.4 g KH2PO4 

1 l H2O 

Adjusted to pH 7.4. 

 

10 x Tris-buffered saline (TBS)  24 g Tris base 

88 g NaCl 

1 l H2O 

 

10 x Transfer buffer    30 g Tris base 

144 g Glycine 

1 l H2O 

 

10 % Polyacrylamide separating gel  21.3 ml H2O 

13.3 ml 30 % Acrylamide solution 

5.3 ml 3 M Tris/HCl 

400 µl 10 % SDS 

133 µl 10 % APS 

10 µl TEMED 

 

MSC medium     500 ml RPMI Medium 

10 % heat inactivated FBS 

1 % P/S 

10 mM Sodium Pyruvate 
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Buffer/medium    Composition 

MDSC medium    500 ml RPMI Medium 

10 % heat inactivated FBS 

1 % P/S 

10 mM HEPES 

1 mM Sodium Pyruvate 

50 µM β-mercaptoethanol 

1 mM MEM non-essential amino acids 

 

FACS buffer     1x PBS 

2 % heat inactivated FBS 

0.2 % NaN3 

 

MACS buffer     1x PBS 

0,5 % BSA 

2 mM EDTA 

 

Polyacrylamide stacking gel   6 ml H2O 

1.32 ml 30 % Acrylamide solution 

2.5 ml 0.5 M Tris/Hcl 

100 µl 10 % SDS 

100 µl 10 % APS 

10 µl TEMED 

 

TBS-T      100 ml 10 x TBS 

900 ml H2O 

1 ml Tween 20 

3.10 Mouse primers 

All primers were ordered as oligonucleotides from Metabion.  

Gene  Forward primer   Reverse Primer 

Arg1  GCTGTCTTCCCAAGAGTTGGG ATGGAAGAGACCTTCAGCTAC 

Ccr5  TGGGCTCACTATGCTGCAAA  TCACCCCAAAGTTGACCGTT 
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Gene  Forward primer   Reverse Primer 

Cox2  TCTGGAACATTGTGAACAACATC AAGCTCCTTATTTCCCTTCACAC 

Ido1  AGGATCCTTGAAGACCACCA  CCAATAGAGAGACGAGGAAG 

Il10  ATAACTGCACCCACTTCCCA  GGGCATCACTTCTACCAGGT 

Il6  TTCCATCCAGTTGCCTTCTTG GAAGGCCGTGGTTGTCACC 

Nos2  TTGGGTCTTGTTAGCCTAGTC TGTGCAGTCCCAGTGAGGAAC 

Pdl1  TGGACAAACAGTGACCACCAA CCCCTCTGTCCGGGAAGT 

Rn18s  CGCGGTTCTATTTTGTTGGT  AGTCGGCATCGTTTATGGTC 

S100a8 GGAAATCACCATGCCCTCTACAA ATGCCACACCCACTTTTATCACC 

S100a9 GGAGCGCAGCATAACCACCATC GCCATCAGCATCATACACTCCTCA 

Tgfb1  GGATACCAACTATTGCTTCAGCTCC AGGCTCCAAATATAGGGGCAGGGTC 

3.11 Plasmids 

pLenti-GIII-CMV-C-term-HA IL-6 overexpression (OE) plasmid 

pLenti-GIII-CMV-C-term-HA empty vector (EV) 

pCMV-VSV-G 

pCMV-dR 8.91 

 

  

Figure 5. Vector map of pLenti-GIII-CMV-C-term-HA used for IL-6 overexpression (OE). 

The gene insert (IL-6, accession number: NM_031168) is expressed under the CMV promoter and the 

vector contains a Kanamycin and a Puromycin resistance for selection of bacteria and mammalian 

cells (source: www.abmgood.com).   
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3.12 Mice and cell lines 

RET transgenic mice with C57BL/6 background were provided by Dr. I. Nakashima (Chubu 

University, Aichi, Japan) (Kato et al., 1998) and bred at the animal facility of the German 

Cancer Research Center (DKFZ) in Heidelberg. C57BL/6 wild type mice were provided by 

the DKFZ animal facility (non-transgenic litter mates) or Janvier Labs. Murine Ret melanoma 

cell line was established from skin melanomas isolated from RET transgenic mice (Zhao et 

al., 2009). Furthermore, immortalized myeloid suppressor cell line (MSC-)2 was kindly pro-

vided by Dr. S. Ugel (University of Verona, Verona, Italy) (Apolloni et al., 2000).  
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4 Methods 

4.1 In silico analysis of the Ccr5 and Arg1 promoters  

The murine Ccr5 and Arg1 gene sequences were extracted from the NCBI database (Gene-

ID: 12774 (Ccr5) and 11846 (Arg1)) and the TFbind online tool was used to search for 

STAT3 binding sites in the two Ccr5 promoters that are located upstream of the transcription 

start site and in the first intron (Mummidi et al., 1997), as well as in the Arg1 promot-

er/enhancer that is located upstream of the transcription start site (Pauleau et al., 2004). 

4.2 Cell counting  

For determination of the cell number, 10 µl of single cell suspension were diluted 1:10 in Try-

pan blue. Cells were counted after transferring 10 µl of the solution into a Neubauer cham-

ber. Only alive cells, that were Trypan blue negative, were counted. Total number of alive 

cells per ml was calculated by the following formula. 

𝑎𝑙𝑖𝑣𝑒 𝑐𝑒𝑙𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑝𝑒𝑟 𝑚𝑙

=
𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑦𝑝𝑎𝑛 𝑏𝑙𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑒𝑙𝑙𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑠𝑞𝑢𝑎𝑟𝑒𝑠
∗ 104 ∗ 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 

4.3 Expansion of cell lines 

MSC-2 and Ret cells were cultured in T75 flasks at 37 °C and 5 % CO2 in MSC medium or 

RPMI 1640 containing 10 % FBS and 1 % P/S, respectively. Before reaching 100 % conflu-

ency, cells were passaged. MSC-2 cells grow partly in suspension and partly adherent, re-

sembling the heterogeneous MDSC population. The cells growing in suspension were col-

lected in a 50 ml tube and adherent cells were detached with a cell scraper in 10 ml sterile 

PBS. Subsequently, both cell populations were combined again. After removing the culture 

medium, Ret cells were detached by incubating them for 5 min at 37 °C in 2 ml 1x Trypsin 

containing 5 mM EDTA. Trypsinization was stopped by addition of 10 ml RPMI 1640 medium 

and cells were transferred into a 50 ml tube. Cells were pelleted by centrifugation at 300 g for 

5 min, supernatant was discarded, and cells were resuspended in 10 ml of the respective 

medium. Cells were split 1:10 into a new T75 flask in 20 ml medium for further cultivation, 

while the rest of the cells was counted and used for stimulation and further downstream 

analysis. 
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4.4 Cell line freezing and thawing 

For cryopreservation of cell lines, cells from one 80 to 90 % confluent T75 flask were har-

vested and resuspended in 2.5 ml of the respective medium. 2.5 ml of freezing solution 

(20 % DMSO, 80 % FBS) were added to the cells and mixed gently. 1 ml each was immedi-

ately distributed to five freezing tubes and frozen to -80 °C in a Mr. FrostyTM freezing con-

tainer filled with isopropanol. After 24 h, cryovials were transferred to the liquid nitrogen tank 

for long term storage.  

Frozen cells were thawed quickly in the 37 °C water bath and immediately transferred into a 

T75 flask containing 20 ml of respective medium for culture at 37 °C and 5 % CO2. Cells 

were used for in vitro experiments between passage 2 and passage 10 after thawing and for 

in vivo experiments between passage 2 and 3 after thawing.     

4.5 Lentiviral transduction of Ret melanoma cells 

HEK293T cells were used for lentiviral particle production at the DKFZ Heidelberg by 

Dr. L. Hüser. For transfection, the OE plasmid containing the IL-6 sequence (11 µg) was in-

cubated with the packaging plasmids pCMV-VSV-G (5.5 µg) and pCMV-dR 8.91 (8.25 µg) in 

DMEM and X-tremeGENETM solution for 30 min and added to HEK293T producer cells. The 

respective EV, without the IL-6 sequence, was transfected as a control. After incubation for 

12 h, the supernatant was discarded. After further 12, 24 and 36 h the supernatant was col-

lected, and virus particles were concentrated by ultracentrifugation. Then, murine Ret mela-

noma cells were incubated with concentrated virus for 24 h. After the first infection, Ret cells 

were re-infected with the same virus in fresh medium. After 48 h of transduction, the cells 

were washed twice with PBS and cultured at 37 °C and 5 % CO2. To select transduced cells, 

2 µg/ml puromycin were added for 3 days. After 3 days, cells were expanded and cryo-

preserved. Furthermore, the overexpression of IL-6 was validated by qRT-PCR and ELISA.   

4.6 Isolation of primary murine cells 

4.6.1 Mouse breeding and keeping 

All mouse work was performed according to German legal and ethical standards and ap-

proved by or reported to the local authorities (Regierungspräsidium Karlsruhe). RET trans-

genic mice were bred at the animal facility of the DKFZ in Heidelberg under specified patho-

gen free (SPF) conditions (approval numbers G-4/14 and G-40/19). RET transgenic mice 

and wild type litter mates were then transported to and kept under SPF conditions at the an-

imal facility of the Zentrum für Medizinische Forschung (ZMF) Mannheim and monitored two 
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to three times per week. For organ preparation, mice were sacrificed by cervical dislocation 

or by asphyxiation with CO2 (internal approval number I-17/20). 

4.6.2 Bone marrow cell isolation 

Femur and tibiae were isolated by surgical cutlery, cleaned with an ethanol wetted tissue and 

cut at both ends under sterile conditions. Bone marrow was flushed out with PBS using a 

10 ml syringe with a 27G needle. Cells were filtered through a 100 μm cell strainer and 

washed with PBS at 300 g for 5 min. Red blood cells were lysed with 1 ml ACK lysis buffer 

for 4 min at room temperature (RT). PBS was used to stop the reaction and cells were 

washed at 300 g for 5 min. The pellet was resuspended in appropriate buffer for further anal-

ysis. 

4.6.3 Splenocyte isolation     

Mouse spleen was isolated by surgical cutlery and collected in a tube with PBS. Spleen was 

washed once with sterile PBS and single cell suspension was obtained by cutting the spleen 

in small pieces and smashing it with a plunger through a 100 μm cell strainer. Cells were 

washed with PBS at 300 g for 5 min. Red blood cells were lysed with 2 ml ACK lysis buffer 

for 4 min at RT. PBS was used to stop the reaction and cells were washed at 300 g for 5 min. 

The pellet was resuspended in appropriate buffer for further analysis. 

4.6.4 Metastatic lymph node preparation 

In RET transgenic mice all lymph nodes (LN) are black, contain melanin producing tumor 

cells and are therefore metastatic LN by definition. LN from the inguinal, axillary and head 

region were extracted and smashed with a plunger through a 100 μm cell strainer. The 

strainer was then washed with PBS to collect all cells. The cells were washed with PBS at 

300 g for 5 min and resuspended in appropriate buffer for further analysis. 

4.6.5 Skin tumor preparation 

Skin tumors from melanoma bearing mice were excised, weighed and smashed through a 

100 μm cell strainer by a plunger into a 50 ml falcon tube for FACS analysis. For FACS sort-

ing and intracellular pSTAT3 staining, the tumors were first digested for 30 min at 37 °C and 

5 % CO2 with 1 mg/ml collagenase and 10 µg/ml DNase in PBS before smashing them 

through a 100 µm cell strainer. After the depletion of the erythrocytes with 1 to 5 ml of ACK 

lysis buffer for 5 min at RT, cells were washed with PBS at 300 g for 5 min and resuspended 

in an appropriate buffer for further analysis. 
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4.6.6 Cryopreservation of murine tumor and serum  

Skin tumors from melanoma bearing mice were excised, weighed and an approximately 

0.5 cm big piece was put in a 1.5 ml tube, immediately snap frozen in liquid nitrogen and 

stored at -80 °C. Peripheral blood was obtained by cardiac puncture with a heparin-wetted 

syringe. Per mouse, 0.2 to 0.8 ml of blood was collected. Whole blood was centrifuged at 

1200 g for 10 min, serum was collected in a new 1.5 ml tube, immediately snap frozen in 

liquid nitrogen and stored at -80 °C.  

4.6.7 Lysis of murine tumor for protein analysis 

For the lysis of murine tumor samples for protein analysis the Bio-Plex cell lysis kit was 

used according to the manufacturer’s instructions. Briefly, 4 µl factor 1, 2 µl factor 2 and 4 µl 

phenylmethylsulfonylfluoride (PMSF, 500 mM stock) were added to 1 ml lysis buffer. 250 µl 

of lysis buffer were added to the tumor sample, which was thawed on ice before, and the 

tissue was disrupted with a pestel. After 5 min of incubation on ice and 10 min incubation at -

80 °C the sample was again thawed on ice and subsequently sonicated for 10 min. After cen-

trifugation at 4500 g for 4 min the supernatant was directly used for protein analysis or stored 

again at -80 °C.    

4.7 MDSC in vitro differentiation 

The protocol for MDSC in vitro differentiation was established as published (Marigo et al., 

2010). Briefly, bone marrow cells were isolated and 2.5x106 cells were cultured in 10 ml 

MDSC medium supplemented with 40 ng/ml GM-CSF plus 40 ng/ml IL-6 (for MDSC differen-

tiation) or 40 ng/ml GM-CSF only (as a control) for four days in a 10 cm cell culture dish at 

37 °C and 5 % CO2. At day 4, the cells were harvested. The in vitro differentiated MDSC 

grow partly in suspension and partly adherent, resembling the heterogeneous MDSC popula-

tion. The cells growing in suspension were collected in a 50 ml tube and adherent cells were 

detached in 10 ml sterile PBS using a cell scraper. Subsequently, the two cell populations 

were combined, washed once with PBS, centrifuged for 5 min at 300 g and resuspended in 

the respective medium or buffer for downstream analysis.      
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4.8 Magnetic-activated cell sorting (MACS) 

4.8.1 MACS of CD8+ splenic T cells  

Murine splenocytes were isolated and CD8+ T cells were isolated by the CD8a+ T cell isola-

tion Kit (mouse) from Miltenyi Biotec according to the manufacturer’s instructions. With this 

kit, the CD8+ T cells are isolated by negative selection.   

4.8.2 MACS of Gr1+ IMC  

Murine bone marrow cells were isolated and the Myeloid-Derived Suppressor Cell Isolation 

Kit (mouse) from Miltenyi Biotec was used according to the manufacturer’s instructions to 

isolate Gr1+ cells. With this kit, the immature myeloid cells (IMC) are isolated from wild type 

bone marrow by two rounds of positive selection, first for Ly6C+ and then for Gr1+. At the 

end, these monocytic and polymorphonuclear populations were combined to further analyze 

the mixed IMC population as a whole.     

4.9 Isolation of tumor-infiltrating MDSC 

4.9.1 Isolation of TIL 

Single cell suspension was obtained from murine melanoma tumor including the colla-

genase/DNase digest. Cells were resuspended in 6 ml of PBS per 200 mg tumor and put in a 

15 ml falcon. The 6 ml were underlaid with 4 ml of Histopaque 1119 and centrifuged at 400 

g for 30 min at RT without break. The leukocytes assembled as a white ring at the interface 

between Histopaque 1119 and PBS and were collected by a plastic Pasteur pipette, 

washed with PBS and resuspended in 50 µl FACS buffer per 1x106 cells. 

4.9.2 FACS sorting of tumor-infiltrating MDSC 

Cells were subjected to Fc block and FACS staining as described later and then resuspend-

ed in 1 ml of FACS buffer. CCR5+ and CCR5-CD45+CD11b+Gr1+ MDSC were sorted at the 

BD FACSAriaTM IIU cell sorter at the FlowCore Mannheim. Importantly, sorting was per-

formed at room temperature and cells were collected into 10 ml prewarmed MDSC medium 

supplied with 20 % FBS. Sorted cells were centrifuged at 300 g for 5 min and resuspended in 

medium or buffer for further analysis.      
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4.10 RNA isolation 

Total RNA was isolated from 2x106 (MSC-2, in vitro differentiated MDSC), 3x106 (IMC) or 

about 1x106 (FACS sorted tumor-infiltrating MDSC) cells using the RNeasy Mini kit from Qi-

agen. DNA digest was performed using the on-column RNase-free DNase set from Qiagen 

according to manufacturer’s instructions. RNA was eluted in 25 µl of RNase-free water. After 

RNA isolation, RNA concentration was determined with the microplate reader Tecan Infinite 

M200 using a Nanoquant plate. RNA was stored at -80 °C until further use. 

4.11 cDNA synthesis and qRT-PCR 

RNA concentrations were adjusted to be the same and up to 1 µg of RNA was used for 

cDNA synthesis using the SensiFAST cDNA synthesis kit from Bioline according to the man-

ufacturer’s instructions. A noRT control, containing RNA but no reverse transcriptase, and a 

H2O control, containing reverse transcriptase but no RNA, were included, to exclude genomic 

DNA contamination in the RNA preparation or contamination of the reagents. 

Working on ice, cDNA and controls were diluted 1:55 in RNase-free water. Forward and re-

verse primers (2 µM) were mixed in equal parts. A master mix was prepared, containing 10 µl 

diluted cDNA, 7 µl primer mix and 17 µl SensiFAST™ SYBR® Lo-ROX Kit from Bioline. 10 µl 

of this master mix were applied to three wells of a 96-well qPCR plate in triplicates. The plate 

was sealed, and samples were analyzed by the Stratagene MX3005P qPCR machine using 

the temperature conditions displayed in Table 1. To allow normalization, mRNA levels for the 

gene of interest and a house keeping gene were quantified for each sample. 

Step Temperature Time Cycles 

1 50 °C 2 min 1 

2 95 °C 10 min 1 

3 
95 °C 
59 °C 

30 s 
1 min 

42 

4 95 °C 1 min 1 

5 65 °C 30s 1 

6 95 °C 30 s 1 

4.12 Microarray 

RNA was isolated and 1 µl of RNAse out was added after elution in 25 µl RNase-free water. 

RNA was submitted to the genomics and proteomics core facility of the DKFZ Heidelberg for 

Table 1. Thermocycler program for qRT-PCR.  

During steps 1 to 3, the cDNA was amplified and SYBR green fluorescence was measured. After the 

additional denaturation step 4, the samples were heated from 65 °C to 95 °C in steps 5 and 6 and the 

denaturation curve for the respective primers was recorded.  
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microarray. The Affymetrix GeneChipTM Mouse Gene 2.0 ST Array from Thermo Fisher was 

used according to the manufacturer’s instructions. 

The data were submitted to Dr. Carsten Sticht (ZMF Mannheim) for bioinformatics and statis-

tics. A Custom CDF Version 22 with ENTREZ based gene definitions was used to annotate 

the arrays (Dai et al., 2005). The raw fluorescence intensity values were normalized applying 

quantile normalization and robust multiarray analysis (RMA) background correction. Before 

performing the ANOVA, a batch normalization was used to remove the individual mouse var-

iations. An ANOVA was performed to identify differentially expressed genes using a com-

mercial software package SAS JMP Genomics, version 7, from SAS (SAS Institute, Cary, 

NC, USA). A false positive rate of a=0.05 with false discovery rate (FDR) correction was tak-

en as the level of significance.  

Gene Set Enrichment Analysis (GSEA) was used to determine whether defined lists (or sets) 

of genes exhibit a statistically significant bias in their distribution within a ranked gene list 

using the software GSEA (Subramanian et al., 2005). Pathways belonging to various cell 

functions such as cell cycle or apoptosis were obtained from public external databases 

(KEGG, http://www.genome.jp/kegg). 

4.13 Protein isolation 

5x106 MSC-2 cells were seeded in 3 ml MSC medium into a 6-well plate and stimulated or 

left untreated. Cells were detached using a cell scraper and transferred to two 2 ml reaction 

tubes. Wells were washed with 1 ml sterile PBS. The cell suspension was centrifuged at 300 

g for 5 min. Afterwards, the cell pellet was resuspended in 300 µl RIPA buffer containing 1x 

protease inhibitor cocktail. Cells were lysed for 30 min at 4 °C under continuous rotation. 

Lysates were centrifuged at 16000 g for 10 min at 4 °C. The supernatant was transferred to 

new 1.5 ml reaction tubes and stored at -20 °C. 

4.14 Bicinchoninic acid (BCA) assay 

For determining protein concentration, the Pierce® BCA Protein Assay Kit was used. The 

albumin standard was diluted in PBS to final concentrations of 2000 µg/ml, 1500 µg/ml, 1000 

µg/ml, 750 µg/ml, 250 µg/ml, 125 µg/ml and 25 µg/ml protein. To measure protein concentra-

tion, 10 µl of each sample, each standard dilution and a blank was pipetted into a flat bottom 

96-well plate in duplicates. To each well 200 µl of a 1:50 dilution of BCA reagent B in BCA 

reagent A was added, and the plate was incubated in the dark for 30 min at 37 °C, shaking. 

After incubation, the absorbance at 562 nm was measured using the Tecan Infinite M200 

microplate reader. 
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4.15 Gel electrophoresis 

After determining the protein concentration, concentrations of samples were equalized and 

samples were mixed 1:4 with 4x Lämmli buffer and boiled at 95 °C for 5 min. Samples were 

loaded on a 10 % sodium dodecylsulphate-polyacrylamide gel electrophoresis (SDS-PAGE) 

gel, mounted in a gel electrophoresis tank containing 1x running buffer. Electrophoresis was 

performed at 70 V for approximately 15 min, until the proteins passed the stacking gel. Then, 

voltage was increased to 100 V and the gel was run until the solvent front reached the lower 

end of the gel. 

4.16 Western blot and immunostaining  

After SDS-PAGE, the separated proteins were transferred to a polyvinylidene-difluoride 

(PVDF) membrane via electroblotting. The membrane was cut to size and activated for 1 min 

in 100 % methanol. Electroblotting in a semi-dry blotting chamber was performed for 90 min 

at 60 mA with the gel put onto the membrane and surrounded by filter paper. To block un-

specific binding sites, the membrane was incubated for 30 min in 3 % BSA in TBS-T at RT, 

shaking. Subsequently, the membrane was incubated with the primary antibody diluted in 

10 ml 3 % BSA in TBS-T overnight at 4 °C. The membrane was washed three times for 10 

min in TBS-T before addition of the corresponding horseradish peroxidase (HRP)-conjugated 

secondary antibody diluted in 10 ml 3 % BSA in TBS-T. The membrane was incubated for 

1 h at RT, shaking. After washing for three times in TBS-T for 10 min, the membrane was 

incubated for 1 min in Pierce® ECL Western Blotting Substrate at RT. Chemiluminescence 

was detected using the Fusion SL detection device. 

4.17 Flow cytometry analysis  

4.17.1 Extracellular staining  

Between 2x105 and 2x106 cells were put per well into a 96 well plate with round bottom. Cells 

were washed (300 g, 5 min, 4 °C) with PBS and the pellet was resuspended in 50 µl PBS 

containing 1:100 7AAD, if cells were only extracellularly stained, or 1:200 fixable viability dye 

(FVD) 700, if subsequent intracellular staining was planned. Cells were incubated for 15 min 

at 4 °C in the dark before washing with 150 µl of PBS. The cell pellet was then resuspended 

in 50 µl FACS buffer containing 1:200 Fc block, to block unspecific binding of antibodies via 

the Fc receptors on cells. Fc block was incubated for 15 min at 4 °C in the dark. After wash-

ing, cells were resuspended in the master mix containing the conjugated antibodies for ex-

tracellular staining and incubated for 30 min at 4 °C in the dark. After washing, the pellet was 



Methods
 

44 
 

resuspended in 100 µl of FACS buffer for subsequent analysis on the BD FACSLyricTM flow 

cytometer or intracellular staining was performed.  

4.17.2 ROS and NO detection by flow cytometry 

For the detection of ROS, the CellROXTM Deep Red reagent was diluted 1:500 in PBS and 

for the detection of NO, the DAF-FM DA reagent was diluted 1:200 in PBS. The cell pellet 

was resuspended in 50 µl of this mix and incubated for 30 min at 4 °C in the dark. Afterwards 

the cells were washed with 150 µl of PBS and resuspended in 100 µl PBS. The staining of 

ROS and NO was always performed after the live/dead staining and the Fc block and in par-

allel to the extracellular antibody staining. After ROS and NO staining, cells were measured 

immediately, the latest within one hour, at the BD FACSLyricTM flow cytometer.   

4.17.3 Intracellular staining 

The FoxP3/Transcription Factor Fixation/Permeabilization kit was used for the fixation and 

permeabilization of cells for intracellular staining. After extracellular staining was completed, 

the cell pellet was resuspended in 50 µl of Fix/Perm solution (Fixation/Permeabilization Con-

centrate 1:4 diluted in Fixation/Permeabilization Diluent) and incubated for 30 min at 4 °C in 

the dark. After washing the cells with 150 µl of PermWash (10x Permeabilization Buffer dilut-

ed 1:10 in ddH2O), the pellet was resuspended in 50 µl of PermWash containing the antibod-

ies for intracellular staining and cells were incubated for 30 min at RT in the dark. Subse-

quently, cells were washed with 150 µl of PermWash and resuspended in 100 µl of Perm-

Wash for analysis at the BD FACSLyricTM flow cytometer. 

4.18 Enzyme-linked immunosorbent assay (ELISA)  

The ELISA MAXTM Deluxe Set Mouse IL-6 from BioLegend was used according to the manu-

facturer’s instructions, except for the fact, that all the volumes were divided by two. 50 µl of 

undiluted murine serum were used as samples, as well as 50 µl of lysate from tumor prepa-

ration or different dilutions of cell culture supernatant. For the lysate of the tumor preparation, 

protein concentration was measured by BCA assay in parallel, to calculate pg IL-6/mg pro-

tein.    

4.19 Arginase activity assay  

To determine arginase activity, 1x106 cells were used per sample and processed according 

to the manufacturer’s instructions of the Arginase Activity Assay Kit from Sigma-Aldrich. 
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Briefly, cells were washed with PBS and afterwards lysed with 100 µl of 10 mM Tris-HCl (pH 

7.4) containing 1x protease inhibitor cocktail. 40 µl of the lysate were incubated together with 

arginine and manganese in a 96 well flat bottom plate for 2 h at 37 °C and 5 % CO2, where 

the arginase in the sample catalyzes the conversion of arginine to urea and ornithine. The 

produced urea was then detected by the color development reagent that generates a colored 

product upon the reaction with urea, proportional to the arginase activity present. A urea 

standard with known concentration, as well as a H2O control and a blank for each sample 

were included. After measuring the absorbance at 430 nm at the Tecan Infinite M200 micro-

plate reader, the arginase activity was calculated according to the following formula. 

𝑎𝑟𝑔𝑖𝑛𝑎𝑠𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑢𝑛𝑖𝑡𝑠/𝑙) =
𝐴430 (𝑠𝑎𝑚𝑝𝑙𝑒)−𝐴430 (𝑏𝑙𝑎𝑛𝑘)

𝐴430 (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑)−𝐴430 (𝑤𝑎𝑡𝑒𝑟)
∗

1 𝑚𝑀∗50∗103

40 µ𝑙∗120 𝑚𝑖𝑛
  

4.20 Suppression of T cell proliferation assay  

CD8+ splenic T cells from normal mice were isolated by MACS. T cells from one spleen were 

resuspended in 2 ml PBS containing 2 nM of the cell proliferation dye CFSE and incubated 

for 5 min at 37 °C. T cells were washed with 10 ml MDSC medium at 300 g for 5 min and 

resuspended in MDSC medium for counting. 80000 T cells were subsequently co-cultured 

with 80000 stimulated or unstimulated IMC or in vitro differentiated MDSC for a 1:1 ratio and 

with 40000 stimulated or unstimulated IMC or in vitro differentiated MDSC for a 1:2 ratio. The 

co-culture was performed for 72 h at 37 °C and 5 % CO2 in 200 µl of MDSC medium in a 96 

well round bottom plate coated before for 3 h with anti-CD3 and anti-CD8 antibodies (both 

1:10000 diluted). After 72 h the cells were stained for CD8 and the proliferation of CD8+ 

T cells was assessed by measuring the dilution of CFSE staining at the BD FACSLyricTM flow 

cytometer.       

4.21 Migration assay 

A transwell assay was applied to determine chemotactic migration capacity of IMC and in 

vitro differentiated MDSC. The transwell system was composed of an insert for a 24-well cell 

culture plate and thereby creates two chambers separated by a permeable membrane with a 

pore size of 8 µm. The cells were resuspended in FBS-free MDSC medium and 0.75x106 

cells in 200 µl medium were seeded in the upper chamber of the transwell. The lower cham-

ber was filled with 500 µl of FBS-free MDSC medium containing CCL3, -4 and -5 (100 ng/ml 

each). In a control well, the lower chamber was filled with FBS-free MDSC medium without 

CCL. After 16 h of incubation at 37 °C and 5 % CO2, the transwell was removed and the cell 

number in the lower chamber was determined by the BD FACSLyricTM flow cytometer. 
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4.22 In vivo mouse experiments 

4.22.1 Mouse therapy  

All mouse work was performed according to German legal and ethical standards and ap-

proved by the local authorities (Regierungspräsidium Karlsruhe). RET transgenic mice were 

bred at the animal facility of the DKFZ in Heidelberg under SPF conditions (approval num-

bers G-4/14 and G-40/19). RET transgenic mice and wild type littermates were then trans-

ported to and kept under SPF conditions at the animal facility of the ZMF Mannheim and 

monitored two to three times per week. The first tumors started to develop in week 5 after 

birth. Upon the first signs of tumors mice were classified and separated into four equal 

groups containing equal numbers of male and female mice. One group was receiving the 

isotype control antibodies, the second group was receiving anti-PD-1 therapeutic antibodies, 

the third group was receiving anti-IL-6 therapeutic antibodies and the fourth group was re-

ceiving the combination therapy of anti-PD-1 and anti-IL-6 (approval number G-73/18). Anti-

bodies were injected intraperitoneally (i.p.) in 100 µl of PBS using a 1 ml syringe and a 30G 

½ needle. Mice were weighed once per week. Anti-PD-1 was given 12.5 mg/kg mouse and 

anti-IL-6 was given 10 mg/kg mouse for four weeks, twice per week. Mice were monitored 

two to three times per week until 100 days after therapy initiation. Mice who displayed one of 

the termination criteria were sacrificed and recorded as “died”. Survival curves of mice are 

therefore showing survival until reaching the termination criterion. A second cohort of mice 

was treated similar, but all mice were sacrificed after four weeks of therapy, and organs and 

tumors were taken for FACS analysis.      

4.22.2 Subcutaneous injection of melanoma cells in mice 

C57BL/6 wild type mice were subcutaneously (s.c.) injected with 5x105 Ret cells overex-

pressing IL-6 or not (approval number G-73/18), using a 1 ml syringe and a 27G ¾ needle. 

Tumor size of mice was measured by a caliper and recorded three times per week. Upon a 

tumor length or width of 1.5 cm or another termination criterion, mice were sacrificed and 

recorded as “died”. Here as well, survival curves of mice are showing survival until reaching 

the termination criterion. Tumor volume was calculated according to the following formula 

(Faustino-Rocha et al., 2013).  

𝑣𝑜𝑙𝑢𝑚𝑒 =
𝑤𝑖𝑑𝑡ℎ2∗𝑙𝑒𝑛𝑔𝑡ℎ

2
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4.23 Statistical analysis 

Statistical analysis of data was performed using the GraphPad Prism software on at least 

three biological replicates (different mice) or at least three independent experiments (cell 

lines). Two groups were compared with the paired or unpaired (depending on the data) two-

tailed Student’s t test assuming a Gaussian distribution of the data. Survival curves were 

generated using the Kaplan-Meier method and statistical comparison was done by the Log-

rank (Mantel-Cox) test. Bioinformatics and statistics for the microarray analysis were done as 

described in before (chapter 4.12). For qRT-PCR results, statistics were performed on the 

CT values and 2^-CT values are shown in the graphs.  
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5 Results 

5.1 Molecular mechanisms of CCR5 upregulation on MDSC 

5.1.1 Ccr5 regulation by inflammatory mediators in vitro  

We used inflammatory mediators, that are known to be increased in the melanoma microen-

vironment and to play an important role in MDSC development, to stimulate the MSC-2 cell 

line and CD11b+Gr1+ IMC isolated by MACS to test the effect on Ccr5 mRNA expression in 

vitro. We chose the CCR5 ligands CCL3, -4 and -5, the cytokines IFN-, IL-6 and IL-1 and 

the growth factor GM-CSF. In addition, we applied the synthetic TLR ligands LPS (TLR4 lig-

and), Pam3CSK4 (TLR1/2 ligand) and R848 (TLR7/8 ligand) and tumor-derived extracellular 

vesicles (EV) isolated from the murine Ret melanoma cell line.  

MSC-2 is a murine myeloid suppressor cell line that can be used as a model for MDSC. IMC 

are the primary cells that can be seen as a precursor of MDSC since the latter cells can de-

velop by pathologic accumulation and activation of IMC. 

We observed a significant upregulation of Ccr5 for MSC-2 stimulation with IFN-, GM-CSF 

and IL-6 (Figure 6A). However, using IL-1 and the CCR5 ligands, CCL3, -4 and -5, we did 

not detect an upregulation (Figure 6A). Furthermore, no significant upregulation was seen 

upon stimulation of MSC-2 cells with tumor-derived EV (Figure 6B) or TLR ligands (Figure 

6C). Importantly, we were able to reproduce the upregulation of Ccr5 seen with IFN-, IL-6 

and GM-CSF in primary IMC (Figure 6D).           

Taken together, we could show that Ccr5 expression can be induced in vitro in myeloid cells 

by stimulation with IL-6, GM-CSF and IFN-, which play an important role in MDSC develop-

ment in the melanoma microenvironment.   
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5.1.2 Mechanism of IL-6-induced Ccr5 upregulation  

Since IL-6 induced a strong and stable upregulation of Ccr5, we aimed at further investigat-

ing the molecular mechanism of IL-6-induced Ccr5 upregulation. As described above (chap-

ter 1.5), the IL-6 signaling is mediated by either soluble or membrane bound IL-6R that binds 

to IL-6 and forms a complex with homodimerized gp130, which initiates further downstream 

signaling. To test if the IL-6R and gp130 are expressed by the MSC-2 cell line, we performed 

a FACS analysis.  

After excluding doublets and debris, we gated on the alive cells, composing nearly 90 % of 

the population, and on CD11b+ cells to verify the myeloid character of the cell line (Figure 

7A). As expected, nearly all cells were CD11b+ (Figure 7A). Furthermore, we found a shift of 

the entire population in comparison to the fluorescence minus one control (FMO) when 
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Figure 6. Ccr5 regulation by factors from the melanoma microenvironment. 

MSC-2 cells or immature myeloid cells (IMC) were stimulated for 3 h and 16 h with the inflammatory 

factors indicated on the x-axis, including the CCR5 ligands, cytokines and growth factors (A. and D.), 

tumor derived extracellular vesicles (EV) (B.) as well as Toll-like receptor (TLR) ligands (C.) and Ccr5 

mRNA expression was measured by qRT-PCR. Relative expression calculated by the 2^-CT meth-

od, normalized to the housekeeping gene Rn18S and expressed as fold change towards the unstimu-

lated control is shown. Statistics were performed on CT values (mean with SEM, n=3-5, *p<0.05, 

**p<0.01, ***p<0.001).      
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stained for IL-6R (Figure 7B) or gp130 (Figure 7C), indicating that all cells express the recep-

tor and the signal transduction component of the IL-6 signaling pathway. 

The complex formed by IL-6, IL-6R and the gp130 homodimer, stimulates the activation of 

JAK family kinases that phosphorylate the transcription factor STAT3. Upon homodimeriza-

tion, STAT3 then translocates to the nucleus where it can activate target gene expression 

(Hillmer et al., 2016). Therefore, we hypothesized that the IL-6-induced Ccr5 upregulation is 

STAT3 dependent.   

 

To test this hypothesis, we performed in silico analysis for putative STAT3 binding sites in 

the two murine Ccr5 promoters located upstream of the transcription start site and in the first 

intron (Mummidi et al., 1997). Indeed, we found four predicted STAT3 binding sites in the 

Ccr5 gene promoters, suggesting that STAT3 could be responsible for IL-6-induced Ccr5 

upregulation (Figure 8A). Moreover, we performed a Western blot with lysates from MSC-2 

cells unstimulated or stimulated with IL-6 to analyze phosphorylation of STAT3 upon IL-6 

stimulation. We detected increased phosphorylation of STAT3 with IL-6 stimulation, whereas 

the CCR5 protein level remained unchanged until 24 h of stimulation (Figure 8B).     
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Figure 7. Expression of IL-6R and gp130 by MSC-2 cells. 

MSC-2 cells were stained with Fixable viability dye, as well as fluorescently labelled antibodies against 

CD11b, IL-6R and gp130 and analyzed by flow cytometry. The gating strategy for MSC-2 cells is 

shown (A.). The expression of IL-6R (B.) and gp130 (C.) are shown as representative histograms in 

comparison to the fluorescence minus one (FMO) control.  
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Next, we used the STAT3 inhibitor Stattic (Schust et al., 2006) to prove that IL-6-induced 

Ccr5 upregulation is STAT3 dependent. We stimulated MSC-2 cells and IMC with IL-6 and 

treated them in parallel with the STAT3 inhibitor. We found that STAT3 inhibition abrogated 

IL-6-induced Ccr5 upregulation in MSC-2 cells after 3 h (Figure 9A) and in IMC after 3 and 

16 h. In the MSC-2 cells, the abrogation of Ccr5 upregulation upon STAT3 inhibition was 

significant after 3 h of stimulation. However, after 16 h of stimulation the effect of the STAT3 

inhibitor was not observable anymore, since the metabolism of the immortalized cells might 

be too fast. For the IMC, we were able to detect significantly less Ccr5 expression upon 

STAT3 inhibition in parallel to IL-6 stimulation after 3 h. After 16 h of STAT3 inhibition in par-

allel to IL-6 stimulation, the expression of Ccr5 in IMC was even downregulated compared to 

the unstimulated control and in some cases not detectable anymore. There was no change in 

the expression of the housekeeping gene Rn18S, indicating that the cells are still alive but 

lost expression of Ccr5. Statistics could therefore not be performed since too few values 

were above the detection limit.  

This experiment clearly shows that IL-6-induced Ccr5 upregulation is dependent on STAT3 

activation in myeloid cells in vitro.  
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Figure 8. Potential role of STAT3 in IL-6-induced Ccr5 upregulation.  

A.) In silico analysis of putative STAT3 binding sites in the murine Ccr5 promoters was performed 

using the TFbind online tool. The predicted binding sites are shown in red with their respective position 

to the transcription start site (TSS). The black arrows represent the two Ccr5 promoters, exons (E) are 

orange, introns are blue. B.) Western blot for pSTAT3 and CCR5 of MSC-2 cells unstimulated or stim-

ulated with IL-6. 
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5.1.3 Effect of IL-6 on CCR5 surface expression 

So far, our investigations were focused on the upregulation of Ccr5 at the mRNA level. How-

ever, since CCR5 is a surface receptor, it is indispensable to study the protein level and its 

functional relevance. Therefore, we stimulated MSC-2 cells and IMC with IL-6 and analyzed 

CCR5 surface expression by flow cytometry. IMC were gated as CD11b+Gr1+ alive single 

cells (Figure 10A). Surprisingly, we did not detect any upregulation of CCR5 on the surface 

of IMC (Figure 10B) or MSC-2 cells (Figure 10C) after overnight stimulation with IL-6. Inde-

pendently from IL-6 stimulation, around 4 % of IMC and around 15 % of MSC-2 cells ex-

pressed CCR5. The same data were shown by using median fluorescence intensity (MFI) 

that correlates to the expression level of CCR5. These results go in line with the Western blot 

for CCR5 that showed no change in CCR5 expression upon IL-6 stimulation (Figure 8B), 

indicating the absence of changes not only in the surface expression but also in the overall 

expression.     

To check the possibility that the CCR5 upregulation might need longer time than 18 h, we 

applied the protocol for MDSC in vitro differentiation by IL-6 and GM-CSF for four days 

(Marigo et al., 2010). Since Ccr5 mRNA expression was upregulated by both IL-6 and GM-

CSF, we hypothesized that these two factors could upregulate CCR5 surface expression 

during the differentiation process of MDSC.        
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Figure 9. Effect of STAT3 inhibition on IL-6-induced Ccr5 upregulation.  

MSC-2 cells (A.) or IMC (B.) were stimulated for 3 h and 16 h with IL-6  DMSO (solvent control) or 

Stattic and Ccr5 mRNA expression was measured by qRT-PCR. Relative expression calculated by the 

2^-CT method, normalized to the housekeeping gene Rn18S and expressed as fold change to-

wards the unstimulated control is shown. (mean with SEM, n=3, *p<0.05) 



Results
 

53 
 

 

Using the MDSC in vitro differentiation 2.5x106 bone marrow cells seeded at day 0 were 

shown to proliferate indicated by a two-fold increase of the mean cell number at day 4 

(Figure 11A). In addition, we found a significant accumulation of CD11b+Gr1+ cells when 

comparing the differentiated MDSC (IL-6, GM-CSF) with the freshly isolated bone marrow 

cells (Figure 11B). Furthermore, we found that around 40 % of the MDSC (IL-6, GM-CSF) 

were PD-L1+ as compared to around 5 % PD-L1+CD11b+Gr1+ cells in the freshly isolated 

bone marrow samples (Figure 11C). In addition, MDSC (IL-6, GM-CSF) displayed an in-

creased production of ROS after the differentiation (Figure 11D).  

Finally, we performed a suppression of T cell proliferation assay to test the capacity of the 

MDSC (IL-6, GM-CSF) to inhibit CD8+ T cell proliferation. For this assay, CD8+ T cells were 

isolated from murine spleens by MACS, stained with CFSE and activated by anti-CD3 and 
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Figure 10. Regulation of CCR5 surface expression by IL-6 on IMC and MSC-2 cells.  

A.) Gating strategy for IMC isolated by MACS and incubated overnight (18 h). After gating on singlets 

and excluding debris and dead cells, IMC were defined by the expression of CD11b and Gr1. IMC 

were left untreated or incubated for 18 h with IL-6. Representative dot plots for CCR5 surface expres-

sion are shown (B.). MSC-2 cells were treated the same and gated as shown in Figure 7A. Repre-

sentative dot plots for CCR5 expression are shown (C.).   
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anti-CD28 antibodies. After 72 h of co-culture with MDSC or IMC, isolated by MACS from the 

fresh bone marrow as a control, proliferation of T cells was evaluated by measuring the dilu-

tion of CFSE staining by flow cytometry (Figure 11E). As expected, the MDSC were able to 

significantly suppress proliferation of CD8+ T cells in the 1:1 and 1:2 MDSC:T cell ratio as 

compared to the co-culture of T cells with IMC (Figure 11F). 

Next, we tested if CCR5 could be upregulated during the differentiation by IL-6 and GM-CSF. 

We measured the CCR5 level on CD11b+Gr1+ IMC found in freshly isolated bone marrow by 

flow cytometry (Figure 12A) and compared it to the expression level of CCR5 on in vitro dif-

ferentiated CD11b+Gr1+ MDSC (Figure 12B). Indeed, we demonstrated a significant upregu-

lation of the frequency of CCR5+ CD11b+Gr1+ (Figure 12C), whereas the MFI of CCR5 was 

not significantly changed (Figure 12D).  

Therefore, we showed that Ccr5 can be strongly upregulated at the mRNA level by IL-6 and 

to a lesser extent by GM-CSF and IFN- on MSC-2 cells and IMC. In addition, IL-6 and 

GM-CSF induced an upregulation of CCR5 at the protein level after four days of MDSC in 

vitro differentiation.  
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Figure 11. In vitro differentiation of MDSC by IL-6 and GM-CSF for four days.  

Murine bone marrow was analyzed after isolation or cultured for four days with IL-6 and GM-CSF for 

MDSC differentiation. Cells were counted by a Neubauer chamber (A., n=13) and analyzed by flow 

cytometry for the expression of CD11b and Gr1 (B., n=17), PD-L1 (C., n=11) and the production of 

ROS (D., n=6). For the suppression of T cell proliferation assay, splenic CD8+ T cells were labeled 

with CFSE, activated with anti-CD3 and anti-CD28 antibodies and co-cultured with IMC or MDSC at 

the indicated ratios for 72 h. Dilution of CFSE staining in proliferated CD8+ T cells was assessed by 

flow cytometry. Gating strategy (E.) and quantification of proliferated cells (F., n=5) are shown (mean 

with SD, *p<0.05, ***p<0.001).      
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5.1.4 Transwell migration assay 

Next, we investigated the functional relevance of the upregulation of CCR5 for the migration 

of the cells. For this, we compared the migration of IMC and in vitro differentiated MDSC 

(IL-6, GM-CSF) towards the CCR5 ligands in a transwell migration assay. We seeded IMC 

and MDSC into a transwell system with a pore size of 8 µm and measured the number of 
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Figure 12. Regulation of CCR5 surface expression during MDSC in vitro differentiation. 

Murine bone marrow was analyzed directly after isolation or cultured for four days with IL-6 and 

GM-CSF for MDSC differentiation. Gating strategy for bone marrow (A.) and differentiated MDSC (B.) 

is shown. Singlets were gated by FSC-A vs. FSC-H, subsequently debris and dead cells were exclud-

ed. After gating on CD11b+Gr1+ cells, CCR5 was gated according to the CCR5 FMO. Quantification of 

frequency of CCR5+CD11b+Gr1+ cells (C., n=8) and MFI of CCR5+CD11b+Gr1+ cells (D., n=6) are 

shown (mean with SD, *p<0.05).   
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migrated cells after 16 h by flow cytometry (Figure 13A). Importantly, the frequency of spon-

taneous migrated IMC towards FBS-free control medium without any chemokines was 

around 9 %, whereas the frequency of migration towards the chemokines CCL3, -4 and 5 

was significantly increased to around 18 %  (Figure 13B). Interestingly, for the MDSC, there 

was a frequency of spontaneous migration of around 28 %, which, however, remained the 

same for the migration towards the CCR5 ligands CCL3, -4 and -5 (Figure 13B). 

 

5.1.5 IL-6 accumulation and CCR5+ MDSC in melanoma bearing mice 

In the RET transgenic melanoma, it was previously shown that CCR5+ MDSC accumulated in 

skin tumors and metastatic lymph nodes via the CCR5-CCR5 ligand interaction (Blattner et 

al., 2018). Therefore, we investigated in this model the correlation of IL-6 concentrations and 

the expression of CCR5 and pSTAT3 in MDSC to validate that the mechanism of IL-6-

induced CCR5 upregulation via STAT3 could be also working in vivo. We measured IL-6 

levels in the tumors from RET transgenic mice by ELISA and CCR5 and pSTAT3 expression 

in tumor-infiltrating MDSC by flow cytometry. The gating strategy for pSTAT3 in tumor-

infiltrating MDSC can be found in the appendix (Supplementary Figure 1).  

Interestingly, we found a significant positive correlation between the IL-6 level in the tumor 

and the frequency of CCR5+ tumor-infiltrating MDSC (Figure 14A), suggesting that a higher 

IL-6 level in the TME could lead to increased expression of CCR5 on MDSC. This result goes 

in line with our in vitro data, showing that IL-6 upregulated CCR5 on myeloid cells.  
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Figure 13. Transwell migration assay of differentiated MDSC and IMC towards CCR5 ligands. 

0.75x106 cells were seeded in the upper chamber of a transwell with a pore size of 8 µm and incubat-

ed for 16 h with FBS-free medium supplemented or not with 100 ng/ml of the CCR5 ligands CCL3, -4  

and -5 in the lower chamber. A.) Representative dot plots with cell frequency and cell count of IMC 

(left) and MDSC (right) migrated towards the CCR5 ligands. B.) Frequency of migrated cells was cal-

culated by upscaling the count by the flow cytometer to the total volume in the lower well and then 

calculating the frequency to the number of total seeded cells (IMC: n=9, MDSC: n=6, mean with SD, 

*p<0.05).            
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Furthermore, we could detect an increased frequency of pSTAT3+ cells in CCR5+ MDSC 

compared to their CCR5- counterparts (Figure 14B). The average frequency of pSTAT3+ cells 

was increased by around 20 % in CCR5+ MDSC compared to CCR5- MDSC infiltrating the 

tumor of RET transgenic mice. In addition, we found an elevation in the MFI of pSTAT3 in 

pSTAT3+CCR5+ MDSC (Figure 14C), indicating that the pSTAT3+ cells do also show elevat-

ed levels of pSTAT3 per cell in the CCR5+ MDSC population. As IL-6 signaling is mediated 

via STAT3 and since we could show that the blockade of STAT3 can abrogate IL-6-induced 

CCR5 upregulation in vitro, the increase of STAT3 phosphorylation in CCR5+ MDSC sug-

gests a link between STAT3 and CCR5 expression in MDSC in the melanoma microenvi-

ronment.  

Altogether, the data from the RET transgenic mouse tumors showed a positive correlation 

between IL-6 in the tumor and CCR5 expression on MDSC, as well as a connection between 

increased STAT3 levels and CCR5 expression in these cells.                

   

5.1.6 Role of GM-CSF in CCR5 upregulation during MDSC differentiation 

To further elucidate the individual roles of IL-6 and GM-CSF in the CCR5 upregulation upon 

MDSC differentiation, we cultured the bone marrow cells with GM-CSF alone (referred to as 

MDSC (GM-CSF)) and compared them to the cells differentiated with IL-6 and GM-CSF for 

four days (referred to as MDSC (IL-6, GM-CSF). Unfortunately, it is not possible to use only 

IL-6 because the cells do not survive without the growth factor. Interestingly, we found that 
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Figure 14. IL-6, pSTAT3 and CCR5+ MDSC in RET transgenic mouse tumors ex vivo. 

IL-6 was measured in tumors of RET transgenic mice by ELISA, while CCR5 expression and pSTAT3 

in tumor-infiltrating MDSC was measured by flow cytometry. For the detection of pSTAT3 leukocytes 

were first enriched by a Histopaque gradient centrifugation. The correlation between IL-6 levels and 

CCR5+ tumor-infiltrating MDSC from the same mice is shown (A., n=21). Frequency (B., n=11) and 

MFI (C., n=11) of pSTAT3+ tumor-infiltrating CCR5+ MDSC vs. their CCR5- counterparts is shown 

(mean with SD, ***p<0.001).      



Results
 

59 
 

GM-CSF alone was also able to significantly upregulate the frequency of CCR5 expression 

on CD11b+Gr1+ cells after the four days of differentiation (Figure 15A).  

However, the frequency of CCR5+CD11b+Gr1+ cells upon differentiation with GM-CSF alone 

was significantly lower than that of MDSC (IL-6, GM-CSF) (Figure 15A). Therefore, GM-CSF 

alone can increase the CCR5 expression after four days of incubation, however, IL-6 is 

needed to exert the full CCR5 upregulation.  

As GM-CSF was also able to induce STAT3 signaling (Gu et al., 2007), we aimed at studying 

the STAT3 dependence of GM-CSF-induced Ccr5 upregulation. Therefore, we used the 

STAT3 inhibitor Stattic in parallel to stimulation with GM-CSF to block GM-CSF-induced 

STAT3 signaling and potentially abrogate CCR5 upregulation. Indeed, Stattic was able to 

significantly abrogate GM-CSF-induced Ccr5 upregulation at the mRNA level after 3 h of 

stimulation indicating that not only IL-6-mediated but also GM-CSF-induced Ccr5 upregula-

tion was STAT3-dependent (Figure 15B).    
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Figure 15. Role of GM-CSF in CCR5 upregulation and its STAT3 dependence.  

A.) Murine bone marrow cells were cultured for four days in the presence of IL-6 and GM-CSF or 

GM-CSF only. CCR5 expression on CD11b+Gr1+ cells was evaluated by flow cytometry and compared 

to freshly isolated bone marrow (mean with SD, n=3-4, *p<0.05, **p<0.01). B.) MSC-2 cells were stim-

ulated for 3 h and 16 h with GM-CSF  DMSO (solvent control) or Stattic and Ccr5 mRNA expression 

was measured by qRT-PCR. Relative expression was calculated by the 2^-CT method, normalized 

to the housekeeping gene Rn18S and expressed as fold change towards the unstimulated control 

(mean with SEM, n=3-6, *p<0.05). 



Results
 

60 
 

5.2 Mechanisms of increased immunosuppression mediat-

ed by CCR5+ MDSC 

5.2.1 FACS sorting of CCR5+ and CCR5- tumor-infiltrating MDSC 

Previous findings from our lab have demonstrated that CCR5+ tumor-infiltrating MDSC from 

RET transgenic melanoma bearing mice expressed more Arg1 and PD-L1 and produced 

more ROS and NO compared to their CCR5- counterparts (Blattner et al., 2018). To evaluate 

the differences in immunosuppressive capacity between CCR5+ and CCR5- tumor-infiltrating 

MDSC, we have established the FACS sorting of these two MDSC populations from the tu-

mors of mice injected s.c. with Ret melanoma cells. Tumors were digested with collagenase 

and DNAse, TIL were enriched by Histopaque gradient centrifugation and finally the latter 

cells were FACS sorted for CCR5+ or CCR5- MDSC, being CD45+CD11b+Gr1+ (Figure 16).  

 

By sorting into 37 °C warm medium containing high FBS, we were able to sort up to 

1x106 viable cells for each population, pooling the cells from two tumors with a diameter be-

tween 1 and 1.5 cm. These cells could then be used for the suppression of T cell proliferation 

assay and the isolation of RNA for microarray analysis.   
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Figure 16. Gating strategy for FACS sorting of CCR5+ and CCR5- tumor-infiltrating MDSC. 

Tumor-infiltrating leukocytes (TIL) were isolated from tumors of mice s.c. injected with Ret melanoma 

cells by a Histopaque gradient centrifugation after collagenase and DNAse digest. Then, the CCR5+ 

and CCR5- subpopulations of CD45+CD11b+Gr1+ tumor-infiltrating MDSC were sorted by FACS. A.) 

Alive cells were gated by the forward and side scatter and duplets were excluded by two different suc-

cessive strategies. To exclude tumor cells, CD45+ cells were gated. B.) In CD45+ cells, MDSC were 

defined as CD11b+Gr1+ and CCR5+ or CCR5- MDSC were gated and sorted. The CCR5 gate was set 

according to the FMO control (C.).       
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5.2.2 Immunosuppressive capacity of CCR5+ tumor-infiltrating MDSC 

We demonstrated that CCR5+ MDSC isolated by FACS sorting from the tumors of mice in-

jected with Ret cells displayed significantly higher capacity to inhibit proliferation of CD8+ T 

cells than that of CCR5- MDSC isolated from the same tumors (Figure 17, data were also 

published in (Blattner et al., 2018)). This result is in agreement with the fact that CCR5+ 

MDSC show increased expression of Arg1 and ROS. However, the mechanisms of higher 

immunosuppressive capacity of CCR5+ MDSC remained still elusive.     

 

  

5.2.3 Microarray analysis of CCR5+ and CCR5- tumor-infiltrating MDSC 

To further asses the differences between the CCR5+ and CCR5- tumor-infiltrating MDSC 

populations, we performed a microarray analysis with the RNA isolated from the FACS sort-

ed cell populations.  

A first assessment of the data and the quality of the array was done by a correlation 

heatmap, showing the correlations between the different samples (Figure 18A). When com-

paring each sample to itself the correlation is 1, which means identity, shown by the diagonal 

alignment of red squares. In addition, when comparing the replicates of each group (n1, n2, 

n3 and n4) to each other, there is still a positive correlation as seen in the upper left and low-

er right corner of the blot (shades of red). This shows the low difference between the repli-
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Figure 17. Stronger suppression of CD8+ T cell proliferation by CCR5+ tumor-infiltrating MDSC.  

Tumor-infiltrating CCR5+ and CCR5- MDSC populations were isolated by FACS sorting from tumors of 

mice s.c. injected with Ret cells. For the suppression of T cell proliferation assay, CD8+ T cells were 

labeled with CFSE, activated with anti-CD3 and anti-CD28 beads and co-cultured with CCR5+ or 

CCR5- MDSC at the indicated ratios for 72 h. The dilution of CFSE staining in proliferated CD8+ T cells 

was assessed by flow cytometry. Representative histograms (A.) and quantification of proliferated T 

cells (B.) are shown. Data were normalized to the proliferation of T cells only (mean with SD, n=6, 2 

independent experiments, *p<0.05, ***p<0.001). Raw data used for this graph were published in a 

different format by (Blattner et al., 2018). 
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cates of each group. However, when comparing the CCR5+ to the CCR5- group the correla-

tions are negative as seen in the upper right and lower left corner of the blot (shades of blue). 

This indicates the differences between the two experimental groups. Therefore, we found 

that our microarray data showed high differences between the experimental groups and low 

variances among different replicates. 

We next assessed the differentially regulated genes in more detail. The volcano plot showed 

in blue the genes that are significantly and strongly downregulated in the CCR5+ MDSC 

compared to their CCR5- counterparts and in red the genes that are significantly and strongly 

upregulated (Figure 18B). In total there were 154 genes differentially regulated with an ad-

justed p-value of below 0.05, among them 51 genes were significantly downregulated and 

103 were significantly upregulated in CCR5+ tumor-infiltrating MDSC compared to CCR5- 

tumor-infiltrating MDSC. A list of the top 50 upregulated and top 50 downregulated genes 

can be found in the appendix (Supplementary Table 1).  

The strongest downregulated gene in CCR5+ MDSC was found to be the gene for the adhe-

sion G-protein coupled receptor E4 (Adgre4) with a fold change of about 0.08. This receptor 

is expressed on myeloid cells and is thought to play a role in the interaction between myeloid 

cells and B cells (Stacey et al., 2002). Furthermore, the expression of the gene for the chem-

okine CCL22 and the genes for the chemokine receptors CCR7 and CCR2 were found to be 

downregulated in CCR5+ MDSC. In addition, the expression of the Il1b gene, the Stat4 gene 

and the gene coding for matrix metalloproteinase (MMP)25 were downregulated. 

The strongest upregulated gene in CCR5+ MDSC was the Fabp4 gene coding for the fatty 

acid binding protein 4 with a fold change of around 10.56. FABP4 is involved in the uptake, 

transport and metabolism of fatty acids. Importantly, the second strongest upregulated gene 

in the CCR5+ MDSC was the Ccl8 gene coding for the chemokine CCL8, a ligand for the 

CCR5 receptor. Moreover, the genes for other chemokines CCL12, CCL7 and CCL2 as well 

as the Mmp27 gene were also upregulated. 

Interestingly, we failed to find an upregulation of the genes associated to immunosuppres-

sion in CCR5+ tumor-infiltrating MDSC. For example, the Arg1 gene or genes playing a role 

in the increase of ROS were not found to be upregulated in CCR5+ MDSC by our microarray 

analysis. 

Altogether, we found many differences in genes playing a role in the migration of immune 

cells comparing the CCR5+ tumor-infiltrating MDSC to the CCR5- tumor-infiltrating MDSC 

and we got new hints for a role of MMP27 and fatty acid metabolism-induced immunosup-

pression specifically in CCR5+ MDSC. However, we did not find pathways or mechanisms for 

the induction of Arg1 expression or ROS production in CCR5+ MDSC. Therefore, the mecha-

nisms of induction of immunosuppressive factors in CCR5+ MDSC needed further study.         
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Figure 18. Microarray analysis of CCR5+ and CCR5- tumor-infiltrating MDSC. 

After FACS sorting of CCR5+ and CCR5- tumor-infiltrating MDSC from injected Ret melanoma tumors, 

a microarray analysis was performed. Correlation heatmap of sample values (A.) and volcano blot of 

analyzed data (B.) is shown. The red line in the volcano blot shows the adjusted significance cutoff 

calculated using the number of replicates and the variance upon consideration of the false discovery 

rate (FDR).   
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5.2.4 Effect of CCR5 ligands on MDSC immunosuppressive capacity 

Next, we investigated if the CCR5 ligands might stimulate the increased expression of immu-

nosuppressive factors in CCR5+ MDSC. To test this hypothesis, we used MSC-2 cells, IMC 

and in vitro differentiated MDSC and stimulated them with the CCR5 ligands CCL3, -4 and -

5. Then we analyzed the mRNA expression of various genes that are known to play an im-

portant role in MDSC-mediated immunosuppression. Around 15 % of MSC-2 cells are 

CCR5+, whereas only around 4 % of IMC are CCR5+ (Figure 10). Since the CCR5 ligand-

induced signaling will only be active in the cells expressing CCR5, we included the in vitro 

differentiated MDSC, to have a cell population with high CCR5 expression (Figure 12).  

However, we were not able to detect an upregulation of the expression of any of the tested 

genes coding for immunosuppressive factors, including Pdl1, Tgfb, Arg1, Nos2, Ido, Cox2, 

Ptges and Il10, on the tested cell types (Figure 19).  

These results indicate that the CCR5 downstream signaling induced by the CCR5 ligands is 

not capable of upregulating the expression of these immunosuppressive factors on mRNA 

level in myeloid cells.    

 

To evaluate a direct effect of CCR5 ligands on immunosuppressive functions of CCR5+ cells, 

we performed suppression of T cell proliferation assays. First, we stimulated IMC overnight 

with the CCR5 ligands CCL3, -4 and -5, removed the ligands and co-cultured IMC with acti-

vated T cells to assess T cell proliferation. As expected from our qRT-PCR data, the 
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Figure 19. Effect of CCR5 ligands on expression of immunosuppressive factors on mRNA level.  

MSC-2 cells (A., n=3), IMC (B., n=2) or in vitro differentiated MDSC (C., n=3) were stimulated for 3 h 

and 16 h with 20 ng/ml of the CCR5 ligands CCL3, -4 and -5 and mRNA expression of the immuno-

suppressive factors indicated on the X-axis was measured by qRT-PCR. Relative expression was 

calculated by the 2^-CT method, normalized to the housekeeping gene Rn18S and expressed as 

fold change towards the unstimulated control (mean with SEM). 
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CCL-stimulated IMC failed to suppress CD8+ T cell proliferation (Figure 20A). Second, to 

exclude that the time of chemokine stimulation was too short, we added the CCR5 ligands to 

the in vitro differentiation of MDSC for the entire four days. Importantly, the MDSC differenti-

ated in the presence of the CCR5 ligands were also not capable to suppress T cell prolifera-

tion stronger than normally differentiated MDSC (Figure 20B).  

In summary, we were not able to show upregulation of any of the tested genes coding for 

immunosuppressive factors (Pdl1, Tgfb, Arg1, Nos2, Ido, Cox2, Ptges and Il10) in the three 

different model cell types for MDSC, which have different expression levels of CCR5. Fur-

thermore, CCR5 ligand stimulation did not make IMC and in vitro differentiated MDSC more 

immunosuppressive in the suppression of T cell proliferation assay than corresponding cells 

incubated without these chemokines. Therefore, the CCR5-CCR5 ligand interaction does not 

seem to mediate higher immunosuppressive capacity of CCR5+ MDSC in our hands.          

 

5.2.5 Effect of IL-6 on MDSC immunosuppressive capacity 

Since the CCR5 ligands were not able to induce immunosuppressive capacity of MDSC, we 

hypothesized that IL-6 might lead to increased immunosuppression in parallel to upregulation 

of CCR5 on MDSC. We stimulated IMC and MSC-2 cells with IL-6 and tested the expression 

of the genes coding for immunosuppressive factors by qRT-PCR. Among the tested genes, 

we found a significant upregulation of Arg1 mRNA in MSC-2 cells after IL-6 stimulation for 

16 h (Figure 21A). In line with this, a significant upregulation of Arg1 mRNA could also be 

seen in primary IMC after 16 h of IL-6 stimulation (Figure 21B). Furthermore, we observed a 

tendency for upregulation of Nos2 and Ido mRNA after 16 h of IL-6 stimulation in IMC but not 

in MSC-2 cells (Figure 21).  

Figure 20. Effect of CCR5 ligands on immunosuppressive capacity of IMC and MDSC. 

IMC were stimulated overnight (18 h) with 20 ng/ml of the CCR5 ligands CCL3, -4 and -5. MDSC were 

in vitro differentiated with IL-6 and GM-CSF in the presence of the same CCR5 ligands for four days. 

For the suppression of T cell proliferation assay, CD8+ T cells were labeled with CFSE, activated with 

anti-CD3 and anti-CD28 beads and co-cultured with untreated or chemokine-treated IMC (A., n=3), or 

with in vitro differentiated MDSC in the presence or absence of CCR5 ligands (B., n=2, representative 

for two more experiments with the same tendency) at the indicated ratios for 72 h. Dilution of CFSE 

staining in proliferated CD8+ T cells was assessed by flow cytometry. Quantification of proliferated T 

cells is shown (mean with SD).     
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To test the potential of STAT3 to induce Arg1 gene expression, we first performed in silico 

analysis of the Arg1 promoter/enhancer for putative STAT3 binding sites. The murine Arg1 

gene sequence was extracted from the NCBI database (Gene-ID: 11846) and the TFbind 

online tool was used to search for STAT3 binding sites in the Arg1 promoter/enhancer that is 

located upstream of the transcription start site (Pauleau et al., 2004). Indeed, we found five 

putative STAT3 binding sites in the murine Arg1 promoter/enhancer (Figure 22A), where 

STAT3 could bind and induce Arg1 gene expression.  

To finally show that Arg1 mRNA expression induced by IL-6 is STAT3 dependent, we incu-

bated MSC-2 cells with IL-6 in the presence or absence of the STAT3 inhibitor Stattic and 

studied the Arg1 mRNA expression by qRT-PCR. Interestingly, Arg1 was upregulated by IL-6 

both after 3 and 16 h, whereas an addition of Stattic significantly decreased Arg1 expression 

after 3 h (Figure 22B).  

These findings indicated that IL-6 could indeed induce Arg1 upregulation in a STAT3-

dependent manner. It seems that the stimulation of Arg1 expression by IL-6 is induced via 

the IL-6/IL-6R/gp130 signaling complex activating JAK family kinases that phosphorylate 

STAT3. Phosphorylated STAT3 forms homodimers that are translocated to the nucleus and 

bind to the Arg1 promoter/enhancer to induce the gene expression of Arg1. 
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Figure 21. Effect of IL-6 on expression of genes coding for immunosuppressive factors. 

MSC-2 cells (A.) and IMC (B.) were stimulated for 3 h and 16 h with 40 ng/ml IL-6. mRNA expression 

of the immunosuppressive factors indicated on the X-axis was measured by qRT-PCR. Relative ex-

pression was calculated by the 2^-CT method, normalized to the housekeeping gene Rn18S and 

expressed as fold change towards the unstimulated control (n=3, mean with SEM, *p<0.05). 
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After having shown the upregulation of Arg1 mRNA by IL-6 via a STAT3-dependent mecha-

nism, we next investigated the effect of IL-6 on Arg1 at the functional level. We detected a 

significantly increased enzymatic activity of Arg1 in MSC-2 cells after overnight stimulation 

with IL-6 (Figure 23A). The upregulation of Arg1 activity could be reproduced after overnight 

stimulation with IL-6 of primary IMC (Figure 23B). To investigate if this elevation after IL-6 

stimulation has an effect on the immunosuppressive capacity of IMC, we performed a sup-

pression of T cell proliferation assay. However, no difference was observed comparing the 

suppressive capacity of IL-6-stimulated vs. non-stimulated IMC (Figure 23C). Therefore, this 

increase in Arg1 activity induced by IL-6 stimulation was not sufficient to convert IMC int im-

munosuppressive MDSC. 

To study whether IL-6 could induce immunosuppressive capacity of IMC after longer stimula-

tion, we applied the model of MDSC in vitro differentiation by IL-6 and GM-CSF, comparing 

MDSC differentiated in the presence of both IL-6 and GM-CSF, to the counterparts differenti-

ated only with GM-CSF for four days.  
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Figure 22. Role of STAT3 in IL-6-induced Arg1 upregulation.  

A.) In silico analysis of putative STAT3 binding sites in the murine Arg1 promoter/enhancer was per-

formed using the TFbind online tool. The predicted binding sites are shown in red with their respective 

position to the transcription start site (TSS). The black arrow represents the Arg1 promoter/enhancer, 

exon (E) is orange. B.) MSC-2 cells were stimulated for 3 h and 16 h with IL-6  DMSO (solvent con-

trol) or Stattic. Arg1 mRNA expression was measured by qRT-PCR. Relative expression was calculat-

ed by the 2^-CT method, normalized to the housekeeping gene Rn18S and expressed as fold 

change towards the unstimulated control (mean with SEM, n=3, *p<0.05).   
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Interestingly, we found that after four days of incubation with GM-CSF only, there was still a 

strong accumulation of around 80 % CD11b+Gr1+ cells, which is comparable to the accumu-

lation of around 90 % CD11b+Gr1+ cells with IL-6 and GM-CSF, even though there was a 

statistically significant difference between the two groups (Figure 24A). Importantly, there 

was also no difference in the frequency of PD-L1+ cells within these cell subsets (Figure 

24B). In contrast, we were able to detect a significant increase in ROS production by MDSC 

(IL-6, GM-CSF) as compared to MDSC (GM-CSF) (Figure 24C). Furthermore, we found a 

significantly higher Arg1 activity in MDSC differentiated with IL-6 and GM-CSF than that in 

cells differentiated only with GM-CSF (Figure 24D).  

Altogether, we found that ROS production and Arg1 activity was significantly increased by 

using IL-6 in addition to GM-CSF for the differentiation of MDSC.  

Finally, we also tested the ability of the both MDSC preparations to suppress CD8+ T cell 

proliferation. Interestingly, the MDSC differentiated with IL-6 and GM-CSF showed a signifi-

cantly stronger suppression of T cell proliferation compared to cells differentiated with GM-

CSF only (Figure 24E and F). This result confirms that the increase in ROS production and 

Arg1 activity induced by IL-6 during the differentiation of MDSC could make MDSC (IL-6, 

GM-CSF) more immunosuppressive than MDSC (GM-CSF).  

In conclusion, IL-6 can stimulate an increased suppressive activity of MDSC through upregu-

lation of Arg1 and ROS. However, the MDSC (GM-CSF) are still immunosuppressive and, 

therefore, could be defined as MDSC.   
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Figure 23. Upregulation of Arg1 activity by IL-6 and effect on immunosuppressive activity of 

IMC. 

MSC-2 cells (A., n=9) or IMC (B., n=3) were stimulated overnight (18 h) with 40 ng/ml IL-6. Arginase 

activity was measured using the arginase activity assay kit detecting urea by a colorimetric reaction. 

Arginase activity is shown in Units/L. IMC stimulated overnight with IL-6 were used for a suppression 

of T cell proliferation assay. Quantification of proliferated T cells is shown (C., n=3, mean with SD, 

**p<0.01).       
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Murine bone marrow cells were cultured for four days with IL-6 and GM-CSF or with GM-CSF only for 

MDSC differentiation and analyzed by flow cytometry for the expression of CD11b and Gr1 (A., 

n=9-17), PD-L1 (B., n=5-11) and the production of ROS (C., n=4-6). Arginase activity was measured 

by the arginase activity assay kit detecting urea by a colorimetric reaction (D., n=3). For the suppres-

sion of T cell proliferation assay CD8+ T cells were labeled with CFSE, activated with anti-CD3 and 

anti-CD28 antibodies and co-cultured with respective myeloid cells at the indicated ratios for 72 h. 

Dilution of CFSE staining in proliferated CD8+ T cells was assessed by flow cytometry. Representative 

histograms (E.) and quantification of proliferated cells (F., n=6) are shown (mean with SD, *p<0.05, 

**p<0.01, ***p<0.001).      

5.2.6 Microarray analysis of in vitro differentiated MDSC  

To decipher further the role of IL-6 in MDSC differentiation and activation, we performed a 

microarray analysis comparing MDSC differentiated with IL-6 and GM-CSF to cells differenti-

ated with GM-CSF only. We first assessed the quality of our data by the correlation heatmap, 

showing that there is a strong positive correlation between the data of the replicates from the 

groups, whereas the data comparing two different groups displayed a negative correlation 

(Figure 25A). This shows that the replicates are comparable in each group, but the differ-

ences observed are those between the two experimental groups. The volcano blot shows a 

strong and significant downregulation of various genes (shown in blue), whereas only some 

genes displayed a strong and significant upregulation (shown in red) in the MDSC differenti-
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Figure 24. Effect of IL-6 on phenotype and suppressive capacity of in vitro differentiated MDSC. 
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ated with IL-6 and GM-CSF as compared to the cells differentiated with GM-CSF only (Figure 

25B). In total, there were 1787 genes differentially regulated with an adjusted p-value below 

0.05 when comparing both groups. Of the significantly differentially regulated genes, 880 

were upregulated and 907 were downregulated. A list of the top 50 upregulated and top 50 

downregulated genes with p-values and fold change is presented in the appendix 

(Supplementary Table 2). 

The strongest downregulated gene in the cells differentiated with IL-6 and GM-CSF was the 

Cd207 gene with a fold change of about 0.09. This gene encodes for the C-type lectin do-

main family 4 member K. Furthermore, the Itgae gene coding for integrin  E (CD103) as 

well as the Cd209a and CD209c genes coding for C-type lectin domain receptors was down-

regulated. In addition, Adgre4 and Egfr expression was found to be downregulated in the 

MDSC differentiated with IL-6 and GM-CSF. 

The highest upregulated protein-coding gene in the MDSC differentiated with IL-6 and 

GM-CSF was the Ccl8 gene, with a fold change of about 23.22 compared to the MDSC dif-

ferentiated with GM-CSF only. Moreover, the expression of the Ccl7 gene and the MMP-

encoding genes Mmp13 and Mmp19 was also upregulated.  

In summary, we found that there might be a difference in adhesion of the MDSC differentiat-

ed with IL-6 and GM-CSF in comparison to the cells differentiated with GM-CSF only due to 

a downregulation of several genes implicated in cellular adhesion. Importantly, we failed to 

find an upregulation of Arg1, or any genes implicated in ROS production as observed by 

functional tests.       
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Figure 25. Microarray analysis of in vitro differentiated MDSC. 

After in vitro differentiation of MDSC with IL-6 and GM-CSF or GM-CSF only microarray analysis was 

performed, and data were assessed by bioinformatics. Correlation heatmap of sample values (A.) and 

volcano blot of analyzed data (B.) is shown for fold change of MDSC (IL-6, GM-CSF) compared to 

MDSC (GM-CSF). The red line in the volcano blot shows the adjusted significance cutoff calculated 

using the number of replicated and the variance upon consideration of the false discovery rate (FDR). 
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5.3 Investigation of effect of IL-6 OE in melanoma in vivo  

5.3.1 Generation and validation of IL-6 OE Ret melanoma cells 

To investigate the effect of IL-6 on tumor growth, mouse survival and the TME, especially on 

immune cells like MDSC and T cells, we generated IL-6 OE Ret melanoma cells by lentiviral 

transduction to inject them s.c. into wild type mice. 

After lentiviral transduction we observed a 900-fold upregulation of Il6 mRNA measured by 

qRT-PCR in the IL-6 OE Ret cells compared to the empty vector (EV) control Ret cells 

(Figure 26A). Notably, also the EV control Ret cells showed some basal expression and se-

cretion of IL-6, which was however significantly increased in IL-6 OE Ret cells.  

As we aimed to inject the IL-6 OE and EV control Ret cells s.c. into mice to follow up their 

growth in vivo, we first assessed their growth in vitro by MTT assay. IL-6 OE Ret cells and 

EV control Ret cells showed a similar growth behavior until 48 h of culture (Figure 26C). After 

72 h, we detected a slight increase in the EV control Ret cells compared to the IL-6 OE Ret 

cells as a result of the transduction and overexpression of IL-6. However, since the differ-

ence was not visible until 48 h and the biological relevance might be minor, we continued 

with the in vivo experiments with these cells. 
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Figure 26. Validation of IL-6 OE in Ret melanoma cells in vitro. 

The murine Ret melanoma cell line was lentivirally transduced with and IL-6 overexpression (OE) 

plasmid and the empty vector (EV) as a control. RNA was isolated from EV control and IL-6 OE Ret 

cells and Il6 mRNA expression was measured by qRT-PCR. Relative expression calculated by the 2^-

CT method, normalized to the housekeeping gene Rn18S and expressed as fold change towards 

the unstimulated control is shown (A., n=4). Supernatant of EV control and IL-6 OE Ret cells cultured 

overnight (18 h) was analyzed for IL-6 by ELISA (B., n=6). In vitro growth of EV control and IL-6 OE 

Ret cells was measured by MTT assay (C., n=6, mean with SD, **p<0.01, ***p<0.001). 
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5.3.2 Study of IL-6 OE Ret melanoma tumors in vivo and ex vivo  

We used the ectopic melanoma model injecting 5x105 Ret melanoma cells s.c. into C57BL/6 

wild type mice to analyze the effect of IL-6 overexpression in melanoma. Since we showed in 

vitro that IL-6 can increase CCR5 on MDSC and make MDSC more immunosuppressive 

through induction of increased Arg1 activity and ROS production, we expected an increased 

accumulation of MDSC (especially CCR5+ MDSC) and an increased immunosuppression in 

the TME of IL-6 OE Ret cells and therefore an acceleration in tumor growth and decrease in 

survival time of mice. 

However, we found no difference in the tumor volume in the two experimental mouse groups 

(Figure 27A). The IL-6 overexpressing tumors and the control tumors grew at the same rate. 

In addition, there was also no difference in the survival of mice (Figure 27B). We continued to 

investigate whether there were effects of IL-6 on the immune cells in the TME. Therefore, we 

studied the accumulation of MDSC, and the expression of immunosuppressive factors like 

PD-L1, ROS and Arg1 in these cells as well as the tumor-infiltrating T cells (Figure 28).        
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Figure 27. In vivo growth of IL-6 OE Ret cells and survival of tumor-bearing mice.  

C57BL/6 wild type mice were subcutaneously (s.c.) injected with 5x105 Ret melanoma cells (EV con-

trol or IL-6 OE) in 100 µl sterile PBS. Mice were monitored three times per week and sacrificed upon 

reaching one of the termination criteria. Tumor length and width was measured upon progression and 

the tumor volume was calculated according to the formula: 𝑣𝑜𝑙𝑢𝑚𝑒 =
𝑤𝑖𝑑𝑡ℎ2∗𝑙𝑒𝑛𝑔𝑡ℎ

2
  (B., n=14, mean 

with SD). Survival of mice is shown as time point when mouse was sacrificed due to termination crite-

ria (A., n=9). 
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Importantly, we found a more than 10-fold increase in IL-6 production in the tumors derived 

from IL-6 OE Ret cells, showing that the overexpression is not lost upon in vivo tumor pro-

gression (Figure 29A). We found no significant changes in the frequency of tumor-infiltrating 

immune cells in IL-6 OE and control tumors (Figure 29B). However, there was a tendency 

towards increased frequency of MDSC in the IL-6 OE tumors (Figure 29C). Regarding the 

frequency of CCR5+ MDSC (Figure 29D) and PD-L1-expressing MDSC (Figure 29E), we 

were not able to detect an increased accumulation of these cells in IL-6 OE Ret tumors as 

compared to EV control tumors. Interestingly, we found a slight increase in ROS production 

in MDSC from IL-6 OE Ret tumors compared to control tumors (Figure 29F). Yet, the fre-

quency of Arg1+ MDSC from IL-6 OE Ret tumors was not changed (Figure 29E). 
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Figure 28. Gating strategy for TIL in murine melanoma tumors. 

Single cell suspension from murine tumors was stained with fluorescently labeled antibodies and ana-

lyzed at the flow cytometer. We excluded duplets, debris and dead cells followed by the gating on 

CD45+ leukocytes (A.). For the MDSC panel, CD11b+Gr1+ MDSC were then gated (B.). CCR5-, ROS- 

and NO-positive gates were set according to the FMO control, whereas Arg1- and PD-L1-positive cells 

were gated according to the respective isotype control (not shown). T cells were analyzed according to 

CD3, CD4 and CD8 expression, and Treg were defined as CD4+FoxP3+ cells (C.).   
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Additionally, we analyzed the tumor-infiltrating T cell subpopulations by flow cytometry and 

found a slight increase in the frequency of CD3+ T cells in the IL-6 OE tumors compared to 

the EV control tumors (Figure 30A). However, there were no differences in frequencies of 

CD8+ and CD4+ T cells as well as Treg (Figure 30B-D).      
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Figure 29. Effect of IL-6 OE in Ret melanoma on tumor-infiltrating MDSC. 

14 days after s.c. injection of 5x105 Ret melanoma cells (EV control or IL-6 OE) into C57BL/6 wild type 

mice tumors were excised, IL-6 was measured by ELISA in tumor lysate (A., n=3) and immune cell 

populations were measured in single cell suspension from tumor by flow cytometry. Frequencies of 

CD45+ leukocytes (B.), total MDSC (C.), CCR5+ MDSC (D.), PD-L1+ MDSC (E.) and Arg1+ MDSC (G.) 

are shown. The MFI of ROS+ MDSC (F.) is shown (n=5-10, mean with SD, *p<0.05).      
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5.4 Investigation of the effect of IL-6 blockade in melanoma 

in vivo 

In parallel to the experiments with the IL-6 OE melanoma tumors, we were studying the ef-

fect of IL-6 blockade on the development of tumors in RET transgenic mice. As our in vitro 

experiments have demonstrated that IL-6 can lead to CCR5 upregulation responsible for 

increased MDSC recruitment and to increased MDSC-mediated immunosuppression, we 

were aiming to block IL-6 and thereby MDSC recruitment and acquisition of immunosuppres-

sive phenotype. Furthermore, we combined this therapy with PD-1 blockade to study poten-

tial synergistic effects.  

In contrast to our expectations, we detected a significantly shortened survival of mice receiv-

ing the anti-IL-6 therapeutic antibodies compared to the control group (Figure 31A). The 

combination of anti-IL-6 with anti-PD-1 seemed to rescue this to some extent. However, mice 

receiving the combination therapy still died earlier compared to the control group. As ex-

pected, mice receiving anti-PD-1 therapy did not show a significantly increased survival 

compared to the control group.  

In addition, the anti-IL-6 group showed a tendency to an increased tumor weight in compari-

son to the control group (Figure 31B). The tumor weights in RET transgenic mice are in gen-

eral highly heterogeneous and resemble the heterogeneous and non-synchronized tumor 

development in this transgenic mouse model. Still the mice receiving the anti-IL-6 therapy 

showed the worst survival and the highest tumor weights. 
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Figure 30. Effect of IL-6 OE in Ret melanoma on tumor-infiltrating T cells.  

14 days after s.c. injection of 5x105 Ret melanoma cells (EV control or IL-6 OE) into C57BL/6 wild type 

mice, tumors were excised and single cell suspension from tumor was analyzed by flow cytometry. 

Frequencies of total CD3+ T cells (A.), CD8+ T cells (B.), CD4+ T cells (C.) and T reg (D.) are shown 

(n=5, mean with SD).      
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Since the chronic inflammation plays a central role in the melanoma microenvironment and 

leads to the development and activation of immunosuppressive MDSC, we expected the ef-

fect of the IL-6 blockade to have a bigger influence on MDSC-mediated immunosuppression 

than on the anti-tumor immune response. Therefore, we studied tumor-infiltrating immune 

cells and their changes upon IL-6 blockade to find reasons for the absence of the expected 

effect on tumor growth and mouse survival. The different tumor-infiltrating immune cell popu-

lations were analyzed according to the gating strategy described earlier (see Figure 28). We 

found only subtle differences in the frequency of total CD45+ leukocytes. Notably, we saw a 

slight decrease in CD45+ leukocytes in the anti-IL-6 group compared to the control group 

(Figure 31C). 

 

The changes in the total MDSC frequency were rather minor, with a slight decrease of the 

tumor-infiltrating MDSC frequency in the anti-PD-1 and combi therapy groups (Figure 32A). 

We observed an increase in CCR5+ MDSC frequency in the anti-IL-6 therapy group com-

pared to the control group (Figure 32B). In addition, we found no differences in PD-L1+ and 

Arg1+ MDSC infiltrating tumors from different therapy groups (Figure 32C-D). However, there 

was a slight increase in NO production by MDSC for all the therapy groups compared to the 

control non-treated group (Figure 32E). Interestingly, we detected a decrease of ROS pro-

duction by MDSC in the anti-IL-6 and combi therapy groups compared to the control and 

anti-PD-1 groups (Figure 32F). In summary, the applied therapies displayed no significant 

effects on tumor-infiltrating MDSC frequency, or expression of the immunosuppressive fac-

tors like PD-L1 and Arg1 and production of NO. Remarkably, we observed a decrease of 

ROS production by MDSC after anti-IL-6 therapy. 
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Figure 31. Effect of anti-IL-6 and anti-PD-1 therapy on RET mouse survival and tumor weight.  

RET transgenic tumor-bearing mice were treated i.p. with anti-IL-6 or anti-PD-1 antibodies, or the 

combination of both (combi). Control mice received isotype control antibodies. Therapy was given for 

four weeks, twice per week. Mice were monitored three times per week and sacrificed upon reaching 

one of the termination criteria. Survival of mice is shown (B., n=15, **p<0.01). In another experiment, 

all mice were sacrificed after the four weeks of therapy. Tumor weight after resection of the tumors 

(C., n=4-7) and frequency of CD45+ leukocytes in the tumor measured by flow cytometry are shown 

(D., n=4-6, mean with SD).      
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Analyzing tumor-infiltrating T cells, we demonstrated a tendency of decrease in the frequen-

cy of total CD4+ T cells in the anti-IL-6 therapy group but a tendency of increase in the anti-

PD-1 and combi-therapy groups (Figure 33A). In contrast, the frequency of CD4+ Treg was 

unchanged (Figure 33B). Furthermore, there was also a tendency of increase in the frequen-

cy of CD8+ T cells in the anti-PD-1 and combi therapy groups (Figure 33C).   
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Figure 32. Effect of anti-IL6 and anti-PD-1 therapy on tumor-infiltrating MDSC in RET mice. 

After therapy of RET mice for four weeks, all mice were sacrificed, and single tumor cell suspension 

was analyzed by flow cytometry. Frequency of MDSC (A.), frequency of CCR5+ (B.), PD-L1+ (C.) and 

Arg1+ (D.) MDSC and production of NO (E.) and ROS (F.) by MDSC are shown (n=4-8, mean with 

SD).    
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Figure 33. Effect of anti-IL-6 and anti-PD-1 therapy on tumor-infiltrating T cells in RET mice. 

After therapy of RET mice for four weeks, all mice were sacrificed, and single tumor cell suspension 

was analyzed by flow cytometry. Frequency of total CD4+ T cells (A.), Treg (B.) and CD8+ T cells is 

shown (mean with SD, n=3-7).    
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6 Discussion 

6.1 Upregulation of CCR5 on MDSC 

6.1.1 IL-6, GM-CSF and IFN- induce Ccr5 upregulation 

The aim of this work was to study the molecular mechanisms of CCR5 upregulation on 

MDSC in melanoma that lead to increased migration by increasing CCR5 expression on 

MDSC and could potentially also stimulate immunosuppressive capacity of CCR5+ MDSC. 

Since it was shown before that CCR5+ MDSC accumulate in the tumors and metastatic 

lymph nodes of RET transgenic melanoma-bearing mice through CCR5-CCR5 ligand de-

pendent migration and that this migration can be inhibited in vivo by blocking the CCR5 lig-

ands (Blattner et al., 2018), we investigated the factors responsible for CCR5 upregulation on 

MDSC. Upon identification of the factors that upregulate CCR5, blockade of these factors 

could inhibit the upregulation of CCR5 and thereby migration of MDSC to the TME, where 

they inhibit activity of tumor-infiltrating T cells.  

In cancer, MDSC accumulation and activation is orchestrated by factors associated with 

chronic inflammation like G-CSF, M-CSF, GM-CSF, IL-6, VEGF, IFN-, IL-1 and TLR lig-

ands (Condamine and Gabrilovich, 2011). In RET transgenic melanoma bearing mice, VEGF 

levels in the tumors were shown to correlate with the tumor weight and increased levels of 

VEGF and IL-6 could be detected in the serum of tumor-bearing mice compared to wild type 

mice (Zhao et al., 2009). Furthermore, IL-1, IFN- and GM-CSF were observed to be in-

creased in fast growing murine melanomas (Meyer et al., 2011). Altogether, these factors 

can lead to MDSC generation in melanoma. In addition, the endogenous TLR ligand HSP86 

was found on melanoma-derived EV, that were able to convert myeloid cells into MDSC 

(Fleming et al., 2019).  

Different studies have shown that CCR5 can be upregulated on long-term activated T cells 

by IL-2 (Bleul et al., 1997; Wu et al., 1997; Yang et al., 2001). Furthermore, in human mono-

nuclear phagocytes, IFN- was able to upregulate CCR5 surface expression and increase 

migration towards the CCR5 ligands (Hariharan et al., 1999). Moreover, IFN-, IL-10, IL-4 

and LPS could increase CCR5 expression on mRNA and protein level in murine macrophag-

es (Bosco et al., 2004). 

Therefore, we have been testing the effect of a set of the described factors, known to play a 

role in MDSC development, on the expression of Ccr5 on MDSC. Interestingly, we found that 

IFN-, GM-CSF and IL-6 can significantly upregulate Ccr5 mRNA expression on MSC-2 cells 

in vitro. Whereas tumor-derived EV, IL-1 and the TLR ligands LPS, Pam3CSK4 and R848 
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failed to induce Ccr5 expression at the mRNA level. We could reproduce IFN--induced Ccr5 

upregulation, as seen by others before (Hariharan et al., 1999; Bosco et al., 2004). Although 

some publications indicate a potential upregulation of CCR5 on MDSC induced by the CCR5 

ligands (Karin and Razon, 2018), we failed to find an upregulation of Ccr5 upon stimulation of 

MSC-2 cells with the CCR5 ligands CCL3, -4 and -5. Therefore, no increased de novo syn-

thesis of CCR5 could be assumed. The rapid upregulation of CCR5 on PMN-MDSC by its 

ligands described before (Karin and Razon, 2018) could be due to a transport of the protein 

to the cell surface without induction of protein synthesis.        

6.1.2 CCR5 upregulation via IL-6/STAT3 during MDSC differentiation  

Interestingly, we found a strong significant upregulation of Ccr5 by IL-6 and to a lower extent 

by GM-CSF. These two factors are very important in MDSC development and are sufficient 

to differentiate MDSC from murine bone marrow cells in vitro (Marigo et al., 2010). Upon the 

MDSC in vitro differentiation with IL-6 and GM-CSF for four days, we were able to show that 

CCR5 is upregulated at the protein level on the cell surface of CD11b+Gr1+ cells. GM-CSF 

alone induced significant CCR5 upregulation after four days of incubation, yet the addition of 

IL-6 could significantly increase this upregulation. The frequency of CCR5+ MDSC in vitro 

differentiated with IL-6 and GM-CSF were similar to the levels seen for tumor infiltrating 

MDSC in the RET transgenic mice (Blattner et al., 2018).  

In addition, we found a positive correlation between the IL-6 level in the tumors of RET 

transgenic mice and the frequency of tumor-infiltrating CCR5+ MDSC, suggesting that IL-6-

induced CCR5 upregulation on MDSC could play a role in murine melanoma in vivo. A signif-

icant increase of CCR5+ IMC from about 2.5 % to 5 % frequency was already shown for short 

term IL-6 stimulation for 2 h (Blattner et al., 2018). However, similar to the rapid increase of 

CCR5 induced by the CCR5 ligands, this might rather be a result of transport of CCR5 to the 

cell surface than de novo synthesis. In our experiments, we could show for the first time, that 

Ccr5 mRNA expression is upregulated by IL-6 and GM-CSF and CCR5 on the cell surface is 

upregulated upon MDSC in vitro differentiation with these factors. 

Moreover, we determined a molecular mechanism of IL-6-induced CCR5 upregulation on 

MDSC in vitro. IL-6 signaling is mediated by a complex formed between IL-6, the IL-6R and a 

homodimer of the signal transduction molecule gp130 that leads to the activation of JAK fam-

ily kinases which phosphorylate STAT3 (Wolf et al., 2014). Phosphorylated STAT3 can form 

homodimers that translocate to the nucleus and induce target gene expression. Importantly, 

we showed that the MSC-2 cells are expressing the IL-6R and gp130, and that STAT3 is 

phosphorylated in these cells upon IL-6 stimulation. Moreover, we found by in silico analysis 

that the murine Ccr5 promoters have four putative STAT3 binding sites. Finally, we demon-
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strated that IL-6-induced Ccr5 upregulation could be abrogated by the STAT3 inhibitor Stat-

tic.  

Altogether, these results show that IL-6 can induce CCR5 upregulation via a STAT3 depend-

ent mechanism. Interestingly, we found an increase in the frequency of pSTAT3+CCR5+ tu-

mor-infiltrating MDSC in RET transgenic mice, as well as an increase in pSTAT3 intensity, as 

compared to their CCR5- counterparts from the same tumors. These results indicate that 

pSTAT3 plays an important role in CCR5 upregulation on MDSC in melanoma in vivo.  

6.1.3 CCR5 and migratory capacity of in vitro differentiated MDSC   

Interestingly, an increase in specific migration towards the CCR5 ligands for in vitro differen-

tiated MDSC expressing higher levels of CCR5 was not detected. We found a significantly 

higher migration of IMC towards the CCR5 ligands compared to the spontaneous migration 

with the control medium, which is an agreement with a previous publication (Blattner et al., 

2018). However, in case of the in vitro differentiated MDSC, the spontaneous migration was 

already increased and there were no additional changes under the influence of the CCR5 

ligands. This could be due to the fact that STAT3 activity, which is increased in the differenti-

ated MDSC, can promote cellular migration (Teng et al., 2009). Such unspecific effect, which 

could be induced by IL-6 and GM-CSF, might mask the CCR5 ligand-specific migration.  

However, there is already plenty of evidence that CCR5-CCR5 ligand dependent migration of 

MDSC is active and plays an important role in melanoma (Blattner et al., 2018) and in pros-

tate cancer (Hawila et al., 2017). Thus, Blattner et al. (2018) showed that in the RET trans-

genic melanoma model, the CCR5 ligands were enriched in the tumors of mice, and there-

fore CCR5+ MDSC migrated to the tumor. This migration could be inhibited by blocking the 

CCR5 ligands. Hawila et al. (2017) showed that an increase in CCR5 ligands in the peripher-

al blood of mice induced by CCR5 ligand injection, led to the mobilization of CCR5+ MDSC 

from the bone marrow to the blood. Furthermore, the CCR5-CCR5 ligand axis was also im-

plicated to play a role in NSCLC, where the frequency of CCR5+ MDSC was increased in the 

peripheral blood of patients, and the CCR5 ligands CCL3, -4 and -5 were strongly elevated in 

tumor tissue compared to the peripheral blood (Yamauchi et al., 2018). In a mouse model of 

gastric cancer, it has been reported  that MDSC could be recruited via the CCR5-CCR5 lig-

and axis (Yang et al., 2018). Besides, MDSC migration into the peritoneal cavity in endome-

triosis was  shown to be linked to the CCR5-CCR5 ligand axis (Guo et al., 2019).  

Our data show that CCR5 was upregulated by IL-6 and GM-CSF through STAT3 during 

MDSC differentiation in vitro, and that IL-6 and STAT3 played an important role in CCR5 

upregulation on MDSC in murine melanoma in vivo. Subsequently, CCR5+ MDSC can be 

recruited to the tumor by the CCR5 ligands. 
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There is already some basal expression of CCR5 with a frequency of about 5 % on 

CD11b+Gr1+ cells in the bone marrow of wild type mice, which is slightly increased in mela-

noma bearing mice up to 10 %. IL-6 and GM-CSF could be responsible for this increase of 

CCR5 on MDSC in the bone marrow and for the mobilization of MDSC from the bone marrow 

to the peripheral blood as described by Hawila et al.  (2017). However, in the tumor, the fre-

quency of CCR5+ MDSC was around 30 %, which might be an accumulation of CCR5+ 

MDSC combined with   the induction of CCR5 on MDSC by IL-6 reflected by a positive corre-

lation of the IL-6 level and the frequency of CCR5+ MDSC in the tumor.        

Since IFN- was described to be elevated in the TME (Meyer et al., 2011) and could upregu-

late Ccr5 in our study, an influence of this factor on CCR5 expression in addition to IL-6 and 

GM-CSF is highly likely but was not further studied in this work.  

In conclusion, we could show that IL-6, GM-CSF and IFN-  upregulated Ccr5 expression on 

MDSC. IL-6 and GM-CSF were also found to upregulate CCR5 on the cell surface during 

MDSC differentiation by a STAT3 dependent mechanism. We have collected evidence that 

IL-6 and STAT3 play an important role in CCR5+ MDSC in melanoma in vivo, highlighting this 

pathway as a potential new target to block CCR5 upregulation and thereby recruitment of 

MDSC to the tumor site.      

6.2 IL-6 but not the CCR5 ligands induced MDSC immuno-

suppressive activity  

6.2.1 CCR5+ MDSC are more immunosuppressive than CCR5- MDSC  

Melanoma-infiltrating CCR5+ MDSC were shown to express increased levels of the immuno-

suppressive markers PD-L1 and Arg1 and to produce elevated levels of ROS and NO com-

pared to their CCR5- counterparts (Blattner et al., 2018). As predicted by these results, we 

found that CCR5+ MDSC isolated from murine melanoma inhibited the proliferation of CD8+ 

T cells in vitro stronger than their CCR5- counterparts (results in this thesis and published by 

Blattner et al., 2018). In line with our findings, it was shown in an ectopic prostate cancer 

mouse model, that CCR5+ MDSC expressed more Arg1 and  stronger suppressed CD4+ T 

cell proliferation (Hawila et al., 2017). These authors have speculated that the CCR5 ligands 

can induce Arg1 expression on CCR5+ MDSC and thereby mediate the increased immuno-

suppressive capacity of these cells. However, their publication does not show any data on 

Arg1 induction by CCR5 ligands. Furthermore, another publication showed that MDSC from 

breast cancer-bearing CCL5 knockout mice were less suppressive as compared to MDSC 

from breast cancer-bearing wild type mice (Zhang et al., 2013). This indicates that CCL5 

could be involved in the induction of immunosuppressive capacity of MDSC. This is further 
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supported by data showing that MDSC from breast cancer-bearing CCL5 knockout mice ex-

press less NOS2 and S100A8/9 and have a rather immunostimulatory than immunosuppres-

sive phenotype (Ban et al., 2017). Taken together, there is evidence suggesting that the 

CCR5-CCR5 ligand axis does not only lead to recruitment of MDSC but also plays a role in 

MDSC-mediated immunosuppression.  

6.2.2 Transcriptional profiling of CCR5+ vs. CCR5- MDSC from tumors 

To get a deeper insight into the mechanisms behind the stronger immunosuppressive pheno-

type of CCR5+ MDSC, we performed a microarray analysis of the tumor-infiltrating CCR5+ 

and CCR5- MDSC subpopulations. Among the top downregulated genes in CCR5+ MDSC 

(compared to their CCR5- counterparts) were the chemokine CCL22 and the chemokine re-

ceptors CCR7 and CCR2. CCL22 is known to recruit Treg into the TME, and tumor as well 

as myeloid cells can produce this chemokine (Wiedemann et al., 2016). The downregulation 

of Ccl22 expression in CCR5+ MDSC suggests that this MDSC subpopulation might be less 

responsible for CCL22 dependent Treg recruitment compared to the CCR5- MDSC.  

The strongest upregulated gene in CCR5+ MDSC in our microarray assay was the Fabp4 

gene coding for the fatty acid binding protein 4. FABP4 is involved in the uptake, transport 

and metabolism of fatty acids (Hotamisligil and Bernlohr, 2015). Interestingly, fatty acid me-

tabolism was described to play a role in MDSC-mediated immunosuppression. The overex-

pression of FATP2 in PMN-MDSC was shown to lead to an increased uptake of arachidonic 

acid and, therefore, to the synthesis of PGE2 that had a suppressive effect on T cells (Veglia 

et al., 2019). FABP4 was also implicated in PGE2 accumulation (Hotamisligil and Bernlohr, 

2015). Therefore, the overexpression of FABP4 could be an additional mechanism of in-

creased immunosuppression mediated by CCR5+ MDSC. However, this mechanism of in-

creased immunosuppressive capacity of these cells will need further study. 

Importantly, the second strongest upregulated gene in the CCR5+ MDSC in our microarray 

was the Ccl8 gene coding for the chemokine CCL8 which is a ligand for the CCR5 receptor 

(Gong et al., 1998). The increased expression of Ccl8 by the CCR5+ MDSC suggests a posi-

tive feedback loop mediated by CCL8 binding to the CCR5 receptor. In response to CCL8, 

CCR5+ MDSC could produce more CCL8 to attract more CCR5+ MDSC to the TME. 

Moreover, the genes for the chemokines CCL12, CCL7 and CCL2 were among the upregu-

lated genes. CCL12 is a chemotactic factor for eosinophils, monocytes and lymphocytes and 

plays an important role in the allergic inflammation of the lungs (Jia et al., 1996). In addition, 

CCL12 was shown to play a role in the recruitment of M-MDSC into the premetastatic lung in 

a B16-F10 mouse model (Shi et al., 2017). CCL7 and CCL2 are ligands for the CCR2 recep-

tor (Lazennec and Richmond, 2010) and could, therefore,  be involved in M-MDSC recruit-
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ment. Altogether, CCR5+ MDSC showed increased expression of genes for chemokines that 

can attract more MDSC but also eosinophils, monocytes and lymphocytes. 

MDSC were shown to express MMP, especially MMP9, that promote a lower integrity of the 

extracellular matrix and the basal membrane and, thereby, enable tumor cells to enter the 

blood stream and form metastasis (Jacob and Prekeris, 2015; Baniyash, 2016). In our micro-

array assay, Mmp27 expression was found to be increased in the CCR5+ MDSC subpopula-

tion. However, the relevance of these data for MDSC function needs further validation. 

6.2.3 CCR5 ligands fail to increase immunosuppressive capacity of 

MDSC 

The microarray analysis did not give further directions for the pathways that lead to upregula-

tion of Arg1, PD-L1 or ROS and NO production in CCR5+ MDSC. However, since it was pub-

lished that the CCR5 ligands might induce increased immunosuppressive capacity of MDSC 

(Zhang et al., 2013; Ban et al., 2017; Hawila et al., 2017), we tested the effect of the CCR5 

ligands on the expression of genes coding for immunosuppressive factors in MDSC and on 

their capacity to inhibit T cell proliferation. Importantly, we did not find an upregulation of the 

tested genes like Pdl1, Tgfb, Arg1, Nos2, Ido, Cox2, Ptges and Il10 at the mRNA level upon 

stimulation of MSC-2 cells, IMC or in vitro differentiated MDSC with the CCR5 ligands. We 

have included these three model cell types with different expression levels of CCR5 to ex-

clude that the effect is too weak because of low basal CCR5 expression. Moreover, we could 

not find increased ability of MDSC to suppress T cell proliferation when stimulating IMC or in 

vitro differentiated MDSC with the CCR5 ligands. The association of the CCR5 ligands with 

increased immunosuppressive capacity of MDSC were shown so far only in mice in vivo 

(Zhang et al., 2013; Ban et al., 2017; Hawila et al., 2017), however, as shown by our experi-

ments, it seems not to be a direct upregulation of genes coding for immunosuppressive fac-

tors in MDSC upon CCR5 ligand stimulation.  

6.2.4 IL-6 can induce increased immunosuppressive capacity of MDSC  

Since we were not able to show that the increased immunosuppressive capacity of CCR5+ 

MDSC could be induced via the CCR5 ligands, we hypothesized that genes coding for im-

munosuppressive factors could be upregulated by IL-6 in parallel to CCR5 upregulation on 

MDSC. Therefore, we stimulated MSC-2 cells and IMC with IL-6 and measured the expres-

sion of the genes mentioned above. Interestingly, we found a significant increase in the ex-

pression of Arg1 induced by IL-6 in MSC-2 cells and IMC and could also confirm an in-

creased Arg1 activity upon the stimulation of MSC-2 cells with IL-6. Moreover, we demon-

strated five putative STAT3 binding sites in the murine Arg1 promoter/enhancer, and that the 
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Arg1 upregulation induced by IL-6 was STAT3 dependent since it was blocked by the STAT3 

inhibitor Stattic.  

Moreover, upon in vitro differentiation of MDSC by IL-6 and GM-CSF the Arg1 activity was 

significantly increased as compared to cells differentiated with GM-CSF only. The Arg1 in-

duction by overnight stimulation of IMC with IL-6 was not sufficient to increase suppressive 

capacity on T cells exerted by these cells. However, in vitro differentiated MDSC (IL-6, GM-

CSF) were significantly more suppressive as compared to cells differentiated with GM-CSF 

only. This increased inhibition of T cell proliferation could be attributed to the increased Arg1 

expression induced by IL-6. However, to finally prove that Arg1 is the most important factor 

induced by IL-6 and responsible for MDSC-mediated immunosuppression, it would be nec-

essary to include an arginase inhibitor in the co-culture of MDSC with T cells. Notably, the 

MDSC (IL-6, GM-CSF) produce also more ROS compared to the MDSC (GM-CSF).  

IL-6 was previously demonstrated to play a role in the accumulation and activation of MDSC 

and to correlate with increased MDSC frequency in different cancer types, among them 

hepatocellular carcinoma (Lin et al., 2017; Xu et al., 2017), ovarian cancer (Wu et al., 2017), 

bladder cancer (Yang et al., 2017), squamous cell carcinoma (Chen et al., 2014) and malig-

nant melanoma (Meyer et al., 2011; Bjoern et al., 2016). It was shown that IL-6 was able to 

induce Arg1 upregulation in murine CD11c+ DC in vitro at the mRNA and protein level and to 

downregulate expression of MHC class II in fibrosarcoma-bearing mice that correlated  with 

the increased serum IL-6 levels and accelerated tumor progression (Narita et al., 2013). Up-

on alternative activation of M-CSF differentiated murine macrophages in vitro with IL-4 and 

IL-13, the addition of IL-6 led to an increase in the expression of Arg1 as well as its activity in 

these F4/80+ cells (Fernando et al., 2014). In the same publication, it was shown that the 

IL-6-induced Arg1 upregulation in alternatively activated macrophages was STAT3 depend-

ent, and that the IL-6-treated alternatively activated macrophages suppressed the secretion 

of INF-, IL-4 and IL-2 by activated T cells. The serum IL-6 level in patients with esophageal 

squamous cell carcinoma was observed to positively correlate with the MDSC frequency in 

the peripheral blood (Chen et al., 2014). In the same publication, it was reported that the 

treatment of healthy donor PBMC with IL-6 for six days resulted in an increase of CD14+HLA-

DR- cells as well as in an increase in pSTAT3, ARG1 mRNA expression and ROS production 

in these cells. 

Interestingly, tumor-infiltrating and circulating M-MDSC from head and neck squamous cell 

carcinoma patients were found to display high pSTAT3 levels, that correlated with Arg1 ex-

pression and activity (Vasquez-Dunddel et al., 2013). In the same study, the STAT3 inhibitor 

Stattic and STAT3-targeted siRNA were able to decrease Arg1 activity and to abrogate 

MDSC immunosuppressive function. The authors demonstrated by chromatin immunoprecip-
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itation that the human ARG1 promoter had multiple STAT3-binding elements. Recently, it 

has been reported that immunosuppressive CD14+ M-MDSC from patients with pancreatic 

ductal adenocarcinoma were characterized as STAT3 and Arg1 expressing cells, whereas 

non-immunosuppressive CD14+ cells from the same patients were lacking the distinct 

STAT3/ARG1 transcriptomic gene signature (Trovato et al., 2019). Moreover, IL-6 produced 

by hepatocellular carcinoma cells was found to be responsible for the upregulation of Arg1, 

Cox2 and Nos2 in MDSC leading to an increase in Arg1 activity, nitrite and ROS production 

and, thereby, increased immunosuppressive capacity of MDSC (Xu et al., 2017).  

In line with these publications, we showed here that IL-6-induced Arg1 upregulation via 

STAT3 during murine MDSC in vitro differentiation, leading to the stimulation of immunosup-

pressive capacity. Furthermore, IL-6 was also shown to upregulate pSTAT3, ARG1 expres-

sion and ROS production in human monocytic cells (Chen et al., 2014). In addition, a strong 

correlation between pSTAT3, Arg1 expression in MDSC and immunosuppressive capacity of 

these cells was observed in  cancer patients (Vasquez-Dunddel et al., 2013; Trovato et al., 

2019).  

We found that IL-6 could induce ROS production in MDSC as it was also reported by others 

(Chen et al., 2014; Xu et al., 2017). The increased production of ROS by MDSC was report-

ed to be due to the overexpression of the NOX2 enzyme, which is controlled by STAT3 

(Corzo et al., 2009). Therefore, the increase in ROS production observed in MDSC upon in 

vitro differentiation with IL-6 could be mediated by a STAT3-dependent upregulation of 

NOX2. However, this needs to be further studied. 

Importantly, using the suppression of T cell proliferation assay, we could show that cells dif-

ferentiated in the presence of GM-CSF only had suppressive activity on the proliferation of 

CD8+ T cells that permits defining them as MDSC. Moreover, GM-CSF stimulated the upreg-

ulation of PD-L1 during in vitro differentiation of MDSC that was confirmed by another publi-

cation (Wang et al., 2017). Even though IL-6 was also shown to induce PD-L1 by a STAT3-

dependent mechanism in human tolerogenic APC generated by TLR ligand stimulation from 

CD14+ monocytes (Wölfle et al., 2011), we were not able to detect increased PD-L1 expres-

sion by the addition of IL-6 to the MDSC differentiation. This might be due to the fact that 

there was already a strong upregulation of PD-L1 induced by GM-CSF alone and IL-6 failed 

to further increase this upregulation. Moreover, we did not observe an increase in Pdl1 

mRNA expression in MSC-2 cells or IMC stimulated with IL-6, indicating that the IL-6-induced 

PD-L1 upregulation in the murine system might not be as strong as in the human settings 

used by Wölfle et al. (2011). 

Interestingly, GM-CSF was shown to play a crucial role in inducing PMN-MDSC immunosup-

pressive capacity by upregulating fatty acid transport protein 2 (FATP2) (Veglia et al., 2019). 
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FATP2 is involved in the uptake of arachidonic acid and the synthesis of PGE2. Therefore, 

GM-CSF led to increased expression of FATP2, which resulted in accumulation of PGE2 that 

suppresses T cell activity (Veglia et al., 2019). 

The GM-CSF-induced upregulation of PD-L1 and accumulation of PGE2 are two major 

mechanisms explaining why the cells differentiated only with GM-CSF are immunosuppres-

sive as well. However, IL-6 induces in addition the Arg1 upregulation and the increased ex-

pression of ROS.   

6.2.5 Transcriptional profiling of in vitro differentiated MDSC 

To further study the specific role of IL-6 during MDSC differentiation we performed a microar-

ray analysis of MDSC differentiated with IL-6 and GM-CSF in comparison to GM-CSF only. 

The strongest downregulated gene in the cells differentiated with IL-6 and GM-CSF was the 

Cd207 gene coding for the C-type lectin domain family 4 member K. Furthermore, the Itgae 

gene coding for integrin  E (CD103), as well as the Cd209a and CD209c genes coding for 

C-type lectin domain receptors were downregulated. The C-type lectin receptors are carbo-

hydrate-binding proteins that are involved in cellular adhesion and migration as well as in 

sensing and uptake of pathogens (Cambi and Figdor, 2003). Here, the selectins are more 

implicated in adhesion and migration, whereas the mannose receptor subfamily is special-

ized on pathogen binding. However, CD209 for example has both functions (Cambi and 

Figdor, 2003). Integrins are cell adhesion receptors that bind to the extracellular matrix 

(Takada et al., 2007). The downregulation of these genes involved in cellular adhesion sug-

gests that MDSC differentiated by IL-6 and GM-CSF were less adhesive and might show a 

worse pathogen recognition via C-type lectin receptors compared to cells differentiated with 

GM-CSF only.      

The highest upregulated protein-coding gene in the MDSC differentiated with IL-6 and 

GM-CSF was the Ccl8 gene. Moreover, the Ccl7 gene expression was also upregulated. 

CCL8 is a ligand for CCR5 and CCR2, while CCL7 is a ligand for CCR2, -3 and -4 (Lazennec 

and Richmond, 2010). Therefore, the MDSC differentiated with IL-6 and GM-CSF could re-

cruit more MDSC expressing CCR2 and CCR5 to the TME. However, also other immune 

cells expressing these receptors could be recruited via CCL7 and -8.    

Furthermore, the MMP-encoding genes Mmp13 and Mmp19 were upregulated. As described 

above, MDSC were shown to express MMP, in particular MMP9, that promote a lower integ-

rity of the extracellular matrix and the basal membrane and thereby enable tumor cells to 

enter the blood stream and form metastasis (Jacob and Prekeris, 2015; Baniyash, 2016). 

MMP13 has been also found in circulating MDSC from patients with hepatocellular carcino-

ma (Shen et al., 2014).   
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Altogether, we found that the addition of IL-6 to the MDSC in vitro differentiation could lead to 

decreased expression of C-type lectins and integrins involved in cellular adhesion, to an in-

creased expression of chemokines, stimulating  further MDSC recruitment, and to an in-

crease in MMP expression that might play a role in the pro-metastatic function of MDSC. 

However, there was no increase of Arg1 expression in the MDSC differentiated with IL-6 and 

GM-CSF compared to the cells differentiated with GM-CSF only. We found an increase in 

Arg1 expression after overnight IL-6 stimulation and an increase in Arg1 activity in the MDSC 

differentiated with IL-6 and GM-CSF compared to the cells differentiated with GM-CSF only. 

The expression kinetics of Arg1 mRNA might therefore be quite fast, and after the four days 

of differentiation, Arg1 is expressed at the protein level and shows increased enzymatic ac-

tivity but the mRNA expression is decreased to the basal level.         

6.3 Effect of IL-6 on melanoma growth in vivo  

6.3.1 IL-6 OE fails to affect in vivo growth of Ret melanoma cells 

Since we observed that IL-6 can upregulate CCR5 on MDSC and in addition led to increased 

immunosuppressive capacity of MDSC via Arg1 and ROS upregulation in vitro, we investi-

gated the role of IL-6 in vivo. We had provided evidence that IL-6 concentration correlated 

with pSTAT3 and CCR5 expression in MDSC in tumors and serum from RET transgenic 

melanoma bearing mice, and that CCR5+ MDSC isolated from murine melanomas were more 

immunosuppressive compared to CCR5- MDSC. To study directly an effect of IL-6 on mela-

noma tumor growth, mouse survival, MDSC and T cells, we lentivirally transduced the Ret 

melanoma cell line to stably overexpress IL-6 and injected the IL-6 OE cells and EV control 

Ret cells s.c. into wild type mice.  

Even though the IL-6 OE Ret cells expressed more IL-6 on the mRNA and secreted protein 

level in vitro and the IL-6 increase was still significantly detectable in tumors isolated from 

mice injected with IL-6 OE Ret cells compared to EV control Ret cells, there was no signifi-

cant differences in mouse survival and tumor growth. We found also no changes in the fre-

quency of total CD45+ tumor-infiltrating leukocytes and only a very slight increase in MDSC 

frequency in the IL-6 OE tumors. In addition, frequency of CCR5+, PD-L1+ and Arg1+ MDSC 

remained unchanged. However, we detected a tendency towards elevated ROS production 

by MDSC in the IL-6 OE tumors.  In addition, there was also a small increase in CD3+ T cells 

in the IL-6 OE tumors. Moreover, the Treg frequency showed a tendency to be decreased in 

the IL-6 OE tumors. 

The explanation for the lack of upregulation of immunosuppressive mediators in MDSC infil-

trating IL-6 OE tumors might be the very fast tumor growth upon Ret cell injection. Longer 
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time and a slower, more physiologic, tumor growth might be necessary to see the differences 

between the IL-6 OE tumors and the EV control tumors in terms of tumor growth, survival 

and the composition of immune cells. In addition, the potentially increased immunosuppres-

sive effect mediated by the slight upregulation of MDSC in IL-6 OE tumors could have been 

counteracted by the stimulation of T cells that can be mediated by the IL-6 OE.  

Importantly, IL-6 is known to have pro- as well as anti-inflammatory properties in cancer 

(Kumari et al., 2016). IL-6 signaling led to the expression of chemokines attracting T cells 

(such as CCL4, CCL5, CCL17 and CXCL10), thereby promoting T cell infiltration and in-

flammation at the site of IL-6 production (McLoughlin et al., 2005). Furthermore, by the 

STAT3-dependent upregulation of anti-apoptotic factors (such as Bcl-2 and Bcl-xL) and the 

modulation of the surface expression of Fas receptor, IL-6 can prevent the apoptosis of T 

cells (Atreya et al., 2000; Curnow et al., 2004). These pro-inflammatory effects of IL-6 on T 

cells could explain a slight increase in CD3+ T cell frequency found in the IL-6 OE tumors.  

Usually, when it comes to the switch between pro- and anti-inflammatory properties, the IL-6 

signaling is generating negative feedback loops to control inflammation and prevent too 

strong immune reaction, inducing also the accumulation and activation of MDSC. However, 

the limited time, that the fast tumor growth of injected Ret melanomas provides, might be 

insufficient for the switch towards the tolerogenic and immunosuppressive effects of IL-6. 

Therefore, more experiments are needed, including the injection of lower numbers of Ret 

melanoma cells or a slowly growing melanoma model, to elucidate the effect of increased IL-

6 levels in murine melanoma in vivo. 

6.3.2 Potential of IL-6 blockade as immunotherapy in melanoma 

Next, we applied the blocking of IL-6 with antibodies in the RET transgenic melanoma-

bearing mice to inhibit IL-6 mediated MDSC accumulation and immunosuppression in the 

TME. To observe potential sensitizing or synergistic effects of the therapy, we included the 

combination of anti-IL-6 with anti-PD-1 blocking antibodies. It was previously found that the 

anti-PD-1 therapy alone exerted only very limited effects in the RET transgenic mouse model 

(Grees et al., 2018), resembling non-responding melanoma patients.  

Unexpectedly, mice treated with anti-IL-6 antibodies developed tumors faster and died signif-

icantly earlier as compared to the control group. This effect was partly rescued when mice 

were treated with anti-PD-1 in addition to the anti-IL-6, suggesting that anti-IL-6 had a nega-

tive effect on T cells that was reversed by the T cell activating properties of anti-PD-1. Alt-

hough the mice from the combination therapy group survived longer than the mice treated 

with ani-IL-6 alone, they still died earlier than the mice from the control group. In line with the 
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significantly decreased survival of the anti-IL-6-treated mice, these mice showed the highest 

tumor weight among all groups after four weeks of therapy. 

Analyzing tumor-infiltrating immune cells, we did not observe any significant differences be-

tween the groups. There were no significant effects on tumor-infiltrating MDSC frequency, or 

expression of the immunosuppressive factors like PD-L1, Arg1 and production of NO. How-

ever, there was an unexpected increase in CCR5+ MDSC frequency and a decrease in ROS 

production by MDSC in the anti-IL-6 therapy group. The decrease of ROS production in the 

anti-IL-6 therapy group is in agreement with our in vitro experiments showing that IL-6 induc-

es an increase of ROS production in MDSC. Why IL-6 blockade leads to an increase in 

CCR5+ MDSC requires further investigation. There might be other factors that upregulate 

CCR5 on MDSC that are still present upon IL-6 blockade, for example GM-CSF and IFN-. 

Moreover, the accumulation of CCR5+ MDSC could be mediated by the CCR5 ligands that 

are not affected by the IL-6 blockade.    

Interestingly, we found that the frequency of CD4+ T cells was decreased in the anti-IL-6 

therapy group but increased in groups with anti-PD-1 alone and combination therapy groups 

with nearly unchanged CD4+ Treg frequency. This observation confirms the data generated 

in the IL-6 OE Ret melanoma model, that IL-6 plays an important role in T cell accumulation 

in the tumors. In the IL-6 OE melanomas we saw an increase in CD3+ T cells whereas upon 

IL-6 blockade we saw a decrease in CD4+ helper T cells. This decrease in T cells upon anti-

IL-6 therapy could explain the accelerated tumor growth and decreased survival time of the 

mice. Furthermore, there was also an increase in CD8+ T cells observed in the anti-PD-1 and 

combination therapy groups. Altogether, the IL-6 blocking therapy failed to improve the sur-

vival and tumor growth of RET transgenic melanoma-bearing mice. In contrast, it accelerated 

tumor growth associated with a decreased number of tumor-infiltrating T cells. 

However, several preclinical studies investigating the effect of IL-6 blockade on relieving im-

munosuppression were successful. Limited efficacy of immune checkpoint inhibitors in hepa-

tocellular carcinoma and pancreatic cancer led to further investigation of combination thera-

pies with IL-6 blockade. High IL-6 expression by cancer-associated fibroblasts was shown to 

increase immunosuppression in a mouse model for hepatocellular carcinoma by increasing 

MDSC infiltration (H. Liu et al., 2017). In addition, high IL-6 expression impaired tumor infil-

trating T-cell function via upregulation of inhibitory immune checkpoints in the same study. 

Therefore, using IL-6 blockade could reverse anti-PD-L1 therapy resistance and prolong 

mouse survival (H. Liu et al., 2017). Additionally, in ectopic, orthotopic and transgenic mouse 

models of pancreatic cancer the combination of IL-6 and PD-L1 blockade elicited efficacy, 

which was accompanied by increased infiltration of effector T lymphocytes (Mace et al., 

2018). Colorectal cancer patients with high IL-6 expression tended to have a shorter survival 
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as compared to patients with low IL-6 expression; in colorectal cancer mouse models, tumors 

with IL-6 OE tended to grow faster than tumors with IL-6 knockout (J. Li et al., 2018). In the 

same study, it was demonstrated that CD8+ and CD4+ T cells were decreased in IL-6 OE 

tumors whereas MDSC and Treg were increased. Importantly, IL-6 blockade reversed the 

anti-PD-L1 resistance and prolonged tumor-bearing mouse survival (J. Li et al., 2018). As 

described above, serum IL-6 levels in patients with esophageal squamous cell carcinoma 

were observed to positively correlate with the MDSC frequency in the peripheral blood (Chen 

et al., 2014). In the same study, blockade of IL-6 prevented induction of MDSC and the inci-

dence of chemically-induced invasive esophageal tumors in mice. In a carcinoma mouse 

model of intradermal (i.d.) CMC-1 cell injection, the administration of anti-IL-6R antibodies 

was able to downregulate the accumulation of MDSC, and the elimination of MDSC caused 

subsequent enhancement of antitumor T cell responses (Sumida et al., 2012). Here, the 

therapeutic effect of anti‐IL‐6R antibodies was further enhanced by combination with gem-

citabine.  

Moreover, the IL-6 blockade influences not only the immune system but also exerts direct 

effects on the tumor cell proliferation and metastasis, since aberrant IL-6 production plays an 

important role in the growth of malignant cells (Kumari et al., 2016).   

Maraviroc (CCR5 inhibitor) and tocilizumab (anti-IL-6R antibodies) were used to block the 

proliferation and migration of triple negative breast cancer cells in an athymic nude mouse 

model, achieving reduced tumor growth and reduced thoracic metastasis (Jin et al., 2018). In 

ovarian cancer cell lines, the treatment with siltuximab (anti-IL-6 antibodies) significantly de-

creased the levels of anti-apoptotic proteins expressed downstream of STAT3 (Guo et al., 

2010). Furthermore, siltuximab increased the cytotoxic effects of paclitaxel in a paclitaxel 

resistant ovarian cancer cell line (Guo et al., 2010). Tocilizumab as a single agent was able 

to inhibit the growth of human oral squamous cell carcinoma xenografts in mice by blockade 

of IL-6/STAT3 signaling and angiogenesis (Shinriki et al., 2009).  

Altogether, these preclinical studies highlighted IL-6 blockade as a promising approach for 

the therapy of cancer. However, we were not able to show similar effects in the RET trans-

genic mouse model of malignant melanoma. To date, there are several clinical trials com-

pleted and running that involved  IL-6 or IL-6R blockade, mainly in phase I/II (Kampan et al., 

2018). However, in various cancer entities, large randomized trials did not show significant 

activity of anti-IL-6 or anti-IL-6R as monotherapies. Yet, in combination with chemotherapy or 

other therapeutic agents IL-6 blockade enhanced efficacy of the treatment (Kampan et al., 

2018). 

As described above, IL-6 signaling leads to the expression of T cell-attracting chemokines 

(such as CCL4, CCL5, CCL17 and CXCL10) thereby promoting inflammation (McLoughlin et 
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al., 2005). Furthermore, by the STAT3-dependent upregulation of anti-apoptotic factors (such 

as Bcl-2 and Bcl-xL) and the modulation of the surface expression of Fas receptor, IL-6 can 

prevent the apoptosis of T cells (Atreya et al., 2000; Curnow et al., 2004). The inhibition of 

IL-6 signaling has even been described to be a strategy to induce immune tolerance, for ex-

ample in autoimmune diseases or transplant rejection (Zhang et al., 2014). It has been re-

cently described that IL-6R deficiency in patients could cause severe effects, like immunode-

ficiency and aberrant inflammatory responses, (Spencer et al., 2019).  

Since, IL-6 has pleiotropic effects in inflammation and cancer, it could be an interesting target 

to relief chronic inflammation and immunosuppression in the TME; however, it might be hard 

to compensate the loss of the immune stimulatory effects of IL-6.  

6.4 Conclusion 

MDSC play a major role in the immunosuppressive TME created by various cancer types, 

among them malignant melanoma (Umansky et al., 2014). This heterogeneous population of 

immunosuppressive myeloid cells can suppress the activity of anti-tumor immune cells, es-

pecially T cells, by depletion of metabolites, production of reactive oxygen and nitrogen spe-

cies, expression of immune-checkpoint molecules and secretion of anti-inflammatory cyto-

kines (Groth et al., 2019). The recruitment of MDSC to the TME was shown to be mediated 

by the interaction between chemokine receptor CCR5 expressed on MDSC and the accumu-

lation of the CCR5 ligands in the TME (Blattner et al., 2018). 

We could show that IL-6, GM-CSF and IFN- upregulated Ccr5 expression of MDSC and that 

IL-6 and GM-CSF led to increased CCR5 surface expression during MDSC differentiation. 

CCR5 upregulation induced by IL-6 and GM-CSF was STAT3 dependent, and in RET trans-

genic mice, IL-6 levels positively correlated with the frequency of CCR5+ tumor-infiltrating 

MDSC, that showed increased pSTAT3 levels. Moreover, IL-6 increased immunosuppressive 

capacity of MDSC by upregulating Arg1 via a STAT3-dependent mechanism and increasing 

ROS production in vitro. We conclude that IL-6 can upregulate CCR5 and immunosuppres-

sive capacity of MDSC in parallel, explaining the increased expression of immunosuppres-

sive factors Arg1 and ROS on CCR5+ MDSC and their strong ability to suppress CD8+ T cell 

proliferation. In addition, we showed that GM-CSF can also upregulate CCR5 and modulate 

immunosuppressive capacity of MDSC, potentially by upregulating FATP2 and PGE2 pro-

duction (Veglia et al., 2019).  

Although the IL-6 blockade for the treatment of RET transgenic melanoma bearing mice 

seemed promising based on the data obtained in vitro, we failed to observe a beneficial ef-

fect on tumor progression in vivo. Here the anti-IL-6 therapy resulted in accelerated tumor 
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progression and earlier death of mice, which was most likely due to the negative effect of 

anti-IL-6 on T cell activation.     

Further research could help to understand the challenges of IL-6 blocking immunotherapy 

and might identify particular combination therapies, cancer entities or patient subsets that 

benefit from anti-IL-6 or anti-IL-6R therapies.  
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GeneSymbol GeneName Fold change Adjusted p-value 

Adgre4 adhesion G protein-coupled receptor E4 0,079683971 0,00540123 

Serpinb10 serine (or cysteine) peptidase inhibitor, 
clade B (ovalbumin), member 10 

0,090871898 0,0117595 

Ccl22 chemokine (C-C motif) ligand 22 0,104365413 0,025414462 

Ccr7 chemokine (C-C motif) receptor 7 0,110651635 0,021196436 

I830127L07Rik RIKEN cDNA I830127L07 gene 0,115043312 0,030605857 

Gm9733 predicted gene 9733 0,124041227 0,030988196 

Ace angiotensin I converting enzyme (peptidyl-
dipeptidase A) 1 

0,124638276 0,0117595 

Hp haptoglobin 0,130277682 0,025414462 

Sell selectin, lymphocyte 0,139951066 0,036766063 

Stat4 signal transducer and activator of tran-
scription 4 

0,144857624 0,028343303 

Vcan versican 0,15086199 0,0117595 

Napsa napsin A aspartic peptidase 0,151726082 0,026009819 

Gpr141 G protein-coupled receptor 141 0,152860038 0,027138212 

Serpinb6b serine (or cysteine) peptidase inhibitor, 
clade B, member 6b 

0,167997733 0,038062925 

Itgal integrin alpha L 0,177169767 0,038574242 

Il1b interleukin 1 beta 0,216607013 0,030988196 

Fscn1 fascin actin-bundling protein 1 0,243404169 0,018760672 

Dpp4 dipeptidylpeptidase 4 0,246476619 0,028343303 

Ccr2 chemokine (C-C motif) receptor 2 0,24826094 0,016872873 

Lsp1 lymphocyte specific 1 0,255063906 0,016872873 

Fgr FGR proto-oncogene, Src family tyrosine 
kinase 

0,258529511 0,021249034 

Cd177 CD177 antigen 0,258748353 0,0117595 

Clec7a C-type lectin domain family 7, member a 0,262941714 0,030988196 

F10 coagulation factor X 0,265209632 0,040618105 

Mmp25 matrix metallopeptidase 25 0,270307023 0,033050761 

Ntng2 netrin G2 0,284962261 0,033050761 

Tarm1 T cell-interacting, activating receptor on 
myeloid cells 1 

0,313042919 0,017639116 

Sema7a sema domain, immunoglobulin domain (Ig), 
and GPI membrane anchor, (semaphorin) 
7A 

0,315983503 0,023439734 

Gm14548 predicted gene 14548 0,318345071 0,030988196 

Rhof ras homolog family member F (in filopodia) 0,32834748 0,019535229 

Cacnb3 calcium channel, voltage-dependent, beta 
3 subunit 

0,334697332 0,048979135 

Cd244 CD244 natural killer cell receptor 2B4 0,334753976 0,044527265 

Igkc immunoglobulin kappa constant 0,371187735 0,018343656 

Tnfsf4 tumor necrosis factor (ligand) superfamily, 
member 4 

0,433979883 0,023898309 
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Itgax integrin alpha X 0,439518367 0,048979135 

Gcnt2 glucosaminyl (N-acetyl) transferase 2, I-
branching enzyme 

0,44351564 0,038225306 

Il12b interleukin 12b 0,488706777 0,028169154 

Fn1 fibronectin 1 0,517474812 0,025414462 

Nr4a1 nuclear receptor subfamily 4, group A, 
member 1 

0,549491639 0,046927945 

Stk10 serine/threonine kinase 10 0,567074468 0,028343303 

Net1 neuroepithelial cell transforming gene 1 0,650054054 0,032456535 

Spag4 sperm associated antigen 4 0,666047184 0,033887565 

Npr1 natriuretic peptide receptor 1 0,720194626 0,033695221 

Gm14064 predicted gene 14064 0,733873916 0,03582816 

Klhl2 kelch-like 2, Mayven 0,770062194 0,045471667 

Tmem176a transmembrane protein 176A 0,771366438 0,040301076 

Stk4 serine/threonine kinase 4 0,771758142 0,048979135 

Add3 adducin 3 (gamma) 0,790929546 0,038225306 

Brd4 bromodomain containing 4 0,815185444 0,049323589 

Pitpnm2 phosphatidylinositol transfer protein, 
membrane-associated 2 

0,855681903 0,041492929 

Hk3 hexokinase 3 2,297173174 0,045551396 

Snx24 sorting nexing 24 2,304863633 0,021249034 

Lgmn legumain 2,306180399 0,017775424 

Rnf144b ring finger protein 144B 2,365869677 0,04117822 

Rapgef5 Rap guanine nucleotide exchange factor 
(GEF) 5 

2,380830385 0,03135116 

Pla2g15 phospholipase A2, group XV 2,38567006 0,026123477 

Rab7b RAB7B, member RAS oncogene family 2,400451295 0,040618105 

Scarf1 scavenger receptor class F, member 1 2,405483501 0,03582816 

Nr1h3 nuclear receptor subfamily 1, group H, 
member 3 

2,427874087 0,015032466 

Adgre1 adhesion G protein-coupled receptor E1 2,486028393 0,033050761 

Bcar3 breast cancer anti-estrogen resistance 3 2,495828915 0,033887565 

Cd22 CD22 antigen 2,561185102 0,022975643 

Cd93 CD93 antigen 2,616548127 0,041719809 

Ccl2 chemokine (C-C motif) ligand 2 2,633149713 0,042436496 

Adm adrenomedullin 2,724831451 0,0117595 

Ctsl cathepsin L 2,774854469 0,021249034 

C1qb complement component 1, q subcompo-
nent, beta polypeptide 

2,779319027 0,021249034 

Frmd4b FERM domain containing 4B 2,7990841 0,025414462 

Slc27a1 solute carrier family 27 (fatty acid trans-
porter), member 1 

2,890422755 0,028343303 

Flrt2 fibronectin leucine rich transmembrane 
protein 2 

2,893573264 0,03582816 

Anpep alanyl (membrane) aminopeptidase 2,922206448 0,041492929 

Plau plasminogen activator, urokinase 2,990745962 0,018343656 

Rab3il1 RAB3A interacting protein (rabin3)-like 1 3,031510083 0,03706519 
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Cd200r4 CD200 receptor 4 3,053197775 0,038574242 

Dhrs3 dehydrogenase/reductase (SDR family) 
member 3 

3,219618273 0,028343303 

Ccl7 chemokine (C-C motif) ligand 7 3,227801271 0,03743139 

Lpl lipoprotein lipase 3,35491649 0,045471667 

Cd36 CD36 molecule 3,489841758 0,017775424 

C1qc complement component 1, q subcompo-
nent, C chain 

3,653149069 0,0117595 

Ms4a7 membrane-spanning 4-domains, subfamily 
A, member 7 

3,820055901 0,025414462 

Blnk B cell linker 3,846896643 0,030988196 

Stab1 stabilin 1 3,848443061 0,025414462 

C1qa complement component 1, q subcompo-
nent, alpha polypeptide 

3,858550753 0,0117595 

Siglec1 sialic acid binding Ig-like lectin 1, siaload-
hesin 

3,898093119 0,018352399 

Abca1 ATP-binding cassette, sub-family A (ABC1), 
member 1 

3,98665351 0,026903907 

Trem2 triggering receptor expressed on myeloid 
cells 2 

4,037232575 0,041492929 

Rnase4 ribonuclease, RNase A family 4 4,173385707 0,036766063 

Ccl12 chemokine (C-C motif) ligand 12 4,887384132 0,015952644 

Peak1os pseudopodium-enriched atypical kinase 1, 
opposite strand 

4,920162807 0,017775424 

Pf4 platelet factor 4 4,975528765 0,021249034 

Ms4a14 membrane-spanning 4-domains, subfamily 
A, member 14 

5,098264078 0,022975643 

Vcam1 vascular cell adhesion molecule 1 5,27946092 0,0117595 

Ctla2b cytotoxic T lymphocyte-associated protein 
2 beta 

5,669912283 0,021249034 

Pdgfc platelet-derived growth factor, C polypep-
tide 

5,833173581 0,012702383 

Mmp27 matrix metallopeptidase 27 5,860134746 0,036766063 

Ang angiogenin, ribonuclease, RNase A family, 5 5,900685508 0,024630541 

Folr2 folate receptor 2 (fetal) 6,319678097 0,040555524 

Atp6v0d2 ATPase, H+ transporting, lysosomal V0 
subunit D2 

6,919704592 0,0117595 

Ccl8 chemokine (C-C motif) ligand 8 10,41671774 0,00540123 

Fabp4 fatty acid binding protein 4, adipocyte 10,55557205 0,012670317 

 

Supplementary Table 1. Differentially regulated genes between CCR5+ and CCR5- MDSC. 

The table shows the top 50 significantly down- and significantly upregulated genes (by fold change) in 

CCR5+ tumor-infiltrating MDSC compared to CCR5- tumor-infiltrating MDSC by microarray analysis.  
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Supplementary Figure 1. Gating strategy for pSTAT3 in tumor-infiltrating MDSC. 

Melanomas from RET transgenic mice were excised and single cell suspension was centrifuged over 

a Histopaque gradient for tumor-infiltrating leukocyte (TIL) enrichment. Enriched TIL were stained with 

fluorescently labelled antibodies and analyzed at the flow cytometer. A.) Duplets were excluded and 

alive cells were gated by excluding debris via FSC-A and SSC-A. As there was still contamination by 

tumor cells, CD45+ cells were gated and then CD11b+Gr1+ MDSC. B.) After gating on CCR5+ and 

CCR5- MDSC subpopulations, pSTAT3+ cells were gated. C.) FMO control for CCR5 and isotype con-

trol for pSTAT3 on the CD11b+Gr1+ MDSC are shown. Gates were set according to the FMO and iso-

type control for CCR5 and pSTAT3. 



Appendix
 

V 
 

GeneSymbol GeneName Fold change Adjusted p-value 

Cd207 CD207 antigen 0,09277142 0,0090757 

Klk1b9 kallikrein 1-related peptidase b9 0,10763408 0,03202498 

Itgae integrin alpha E, epithelial-associated 0,11300339 0,00721917 

Hepacam2 HEPACAM family member 2 0,11432416 0,0090757 

Cd209a CD209a antigen 0,1281702 0,00964232 

Adam23 a disintegrin and metallopeptidase domain 23 0,13081433 0,00318537 

Cd300e CD300E molecule 0,13844189 0,01613617 

Cd209c CD209c antigen 0,14838281 0,01977314 

Dscam DS cell adhesion molecule 0,16198307 0,00752719 

Sept3 septin 3 0,16684243 0,01157747 

Ifi205 interferon activated gene 205 0,1721969 0,01777354 

Trp53i11 transformation related protein 53 inducible 
protein 11 

0,19478763 0,00374991 

Adra2a adrenergic receptor, alpha 2a 0,19735352 0,01261075 

Rnase2a ribonuclease, RNase A family, 2A (liver, eosin-
ophil-derived neurotoxin) 

0,20322047 0,00976968 

Slc46a3 solute carrier family 46, member 3 0,20357997 0,00352665 

Il2ra interleukin 2 receptor, alpha chain 0,20374847 0,00721917 

Tcea3 transcription elongation factor A (SII), 3 0,20496268 0,0090757 

Hr hairless 0,20759234 0,01007381 

Aldh1a2 aldehyde dehydrogenase family 1, subfamily 
A2 

0,2152803 0,0388911 

Rtn1 reticulon 1 0,21884737 0,00721917 

Mras muscle and microspikes RAS 0,21991988 0,03604547 

Gnb4 guanine nucleotide binding protein (G pro-
tein), beta 4 

0,22323618 0,0117013 

Slc27a3 solute carrier family 27 (fatty acid trans-
porter), member 3 

0,22423742 0,01329064 

Adgrg6 adhesion G protein-coupled receptor G6 0,23082544 0,01407472 

Serpinb6b serine (or cysteine) peptidase inhibitor, clade 
B, member 6b 

0,23171253 0,01872154 

Fscn1 fascin actin-bundling protein 1 0,23283058 0,01729816 

Mir155hg Mir155 host gene (non-protein coding) 0,23613724 0,01129211 

Nudt17 nudix (nucleoside diphosphate linked moiety 
X)-type motif 17 

0,23910391 0,0303297 

Strip2 striatin interacting protein 2 0,24274602 0,00976968 

Gm11545 predicted gene 11545 0,24501129 0,00976968 

Gfra2 glial cell line derived neurotrophic factor fami-
ly receptor alpha 2 

0,2452233 0,00916323 

Aif1 allograft inflammatory factor 1 0,24562939 0,00981967 

H2-Eb2 histocompatibility 2, class II antigen E beta2 0,24614721 0,03214069 

Ciita class II transactivator 0,2464158 0,00425583 

Sema6d sema domain, transmembrane domain (TM), 
and cytoplasmic domain, (semaphorin) 6D 

0,2482481 0,00352665 

Plek2 pleckstrin 2 0,2510835 0,03348868 

Adgre4 adhesion G protein-coupled receptor E4 0,25452494 0,01389839 
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Dpp4 dipeptidylpeptidase 4 0,25699676 0,0090757 

Lad1 ladinin 0,25707408 0,01714619 

Tspan33 tetraspanin 33 0,25793593 0,01027859 

P2ry10 purinergic receptor P2Y, G-protein coupled 10 0,2646965 0,01168719 

Acot6 acyl-CoA thioesterase 6 0,26494547 0,010919 

Asgr2 asialoglycoprotein receptor 2 0,26736763 0,01168719 

Egfr epidermal growth factor receptor 0,26876887 0,02611038 

Nr4a3 nuclear receptor subfamily 4, group A, mem-
ber 3 

0,27076738 0,01060585 

Cdh17 cadherin 17 0,27130759 0,00721917 

Fndc5 fibronectin type III domain containing 5 0,27289362 0,02408874 

Grap2 GRB2-related adaptor protein 2 0,27323249 0,01939392 

Npr1 natriuretic peptide receptor 1 0,27655078 0,01977314 

Fam49a family with sequence similarity 49, member A 0,27779114 0,00932713 

Myb myeloblastosis oncogene 2,21957294 0,00880285 

Nkg7 natural killer cell group 7 sequence 2,24289889 0,03400097 

Aff2 AF4/FMR2 family, member 2 2,24467085 0,0181588 

Rnf128 ring finger protein 128 2,24678214 0,01700318 

Dnajc6 DnaJ heat shock protein family (Hsp40) mem-
ber C6 

2,24788081 0,02061768 

Rgcc regulator of cell cycle 2,2772347 0,02496048 

Mpo myeloperoxidase 2,28220706 0,00406529 

Kcnk12 potassium channel, subfamily K, member 12 2,28521287 0,03446803 

Mmp19 matrix metallopeptidase 19 2,30237846 0,03134275 

Ms4a7 membrane-spanning 4-domains, subfamily A, 
member 7 

2,31296578 0,00810542 

Slc6a8 solute carrier family 6 (neurotransmitter 
transporter, creatine), member 8 

2,32815002 0,0059042 

Ms4a3 membrane-spanning 4-domains, subfamily A, 
member 3 

2,33903177 0,0090757 

Tm4sf19 transmembrane 4 L six family member 19 2,3698433 0,02641549 

Prss57 protease, serine 57 2,38127809 0,04045276 

Tfpi2 tissue factor pathway inhibitor 2 2,39366804 0,03231939 

Igkc immunoglobulin kappa constant 2,4237405 0,03374499 

Ednrb endothelin receptor type B 2,50934563 0,01700318 

Plac8 placenta-specific 8 2,51340663 0,00976968 

Gfi1 growth factor independent 1 2,55764797 0,01782451 

Ada adenosine deaminase 2,56458246 0,01119518 

Eef1a2 eukaryotic translation elongation factor 1 
alpha 2 

2,58608237 0,0354977 

Gria3 glutamate receptor, ionotropic, AMPA3 (alpha 
3) 

2,65206853 0,01168719 

Prtn3 proteinase 3 2,67068385 0,01180423 

Nxpe5 neurexophilin and PC-esterase domain family, 
member 5 

2,69479547 0,0148192 

Ctsg cathepsin G 2,73450629 0,0121769 
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Ubash3a ubiquitin associated and SH3 domain contain-
ing, A 

2,73584345 0,02414497 

Timp3 tissue inhibitor of metalloproteinase 3 2,75577213 0,01546694 

Ctsl cathepsin L 2,76116629 0,0050103 

Gm5150 predicted gene 5150 2,76293206 0,03876117 

Flrt2 fibronectin leucine rich transmembrane pro-
tein 2 

2,78284875 0,04339092 

Serpinb2 serine (or cysteine) peptidase inhibitor, clade 
B, member 2 

2,79186329 0,02259377 

Igf1 insulin-like growth factor 1 2,89634597 0,01721547 

Serpina3b serine (or cysteine) peptidase inhibitor, clade 
A, member 3B 

2,9266742 0,04818576 

Plppr3 phospholipid phosphatase related 3 3,03027057 0,010919 

Ehd3 EH-domain containing 3 3,0967413 0,01427859 

Fos FBJ osteosarcoma oncogene 3,12458198 0,01811186 

Muc13 mucin 13, epithelial transmembrane 3,37295894 0,0043277 

Stfa2l1 stefin A2 like 1 3,53184149 0,0086817 

Ly6a lymphocyte antigen 6 complex, locus A 3,53556334 0,01977314 

Glp1r glucagon-like peptide 1 receptor 3,55142069 0,01237542 

Ccl7 chemokine (C-C motif) ligand 7 3,60728012 0,01714619 

BC117090 cDNA sequence BC1179090 4,05040566 0,0353952 

Selp selectin, platelet 4,57266064 0,00721917 

Saa3 serum amyloid A 3 5,43252634 0,00721917 

Pf4 platelet factor 4 5,60265676 0,00352665 

Mmp13 matrix metallopeptidase 13 9,31119938 0,00352665 

Stfa1 stefin A1 13,7955667 0,00721917 

Stfa3 stefin A3 22,3030122 0,01367478 

Ccl8 chemokine (C-C motif) ligand 8 23,2187417 0,01568624 

Gm5416 predicted gene 5416 30,6179635 0,00444886 

 

Supplementary Table 2. Differentially regulated genes between MDSC (IL-6, GM-CSF) and 

MDSC (GM-CSF). 

The table shows the top 50 significantly down- and significantly upregulated genes (by fold change) in 

in vitro differentiated MDSC with IL-6 and GM-CSF for four days compared to MDSC differentiated by 

GM-CSF only by microarray analysis. 


