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Zusammenfassung

Diese Dissertation befasst sichmit der effizienten numerischen Lösung vonmitunter gleichzei-
tig explizit und implizit geschalteten Optimalsteuerungsproblemen. Dazu wird ein Framework
entwickelt, in welchem sich beide Problemklassen einheitlich in ein gemischt–ganzzahliges
Optimalsteuerungsproblemmit kombinatorischen Nebenbedingungen überführen lassen. Ak-
tuelle Forschungsergebnisse setzen diese Problemklasse in Beziehung zu einem kontinuierli-
chen Optimalsteuerungsproblem mit verschwindenden Nebenbedingungen, welches wieder-
um eine bedeutende Unterklasse eines Optimalsteuerungsproblemsmit Gleichgewichtsneben-
bedingungen darstellt. In der vorliegendenArbeit bildet dieser Zusammenhang das Fundament
für eine numerische Behandlung.
Die verwendeten numerischen Ansätze fußen auf einem direkten Kollokationsansatz und er-
fordern insbesondere eine möglichst präzise Bestimmung der Schaltstruktur des Ausgangs-
problems. Aufgrund der Tatsache, dass die Schaltstruktur im Allgemeinen a priori unbekannt
ist, wird diese sukzessive bestimmt. Während dieses Prozesses wird eine Folge von nichtlinea-
ren Programmen, welche von diskretisierten Optimalsteuerungsproblemen abgeleitet werden,
approximativ gelöst. Dabei wird nach jeder Iteration das Diskretisierungsgitter gemäß der ak-
tuell geschätzten Schaltstruktur adaptiert.
Neben einer genauen Bestimmung der Schaltstruktur ist es von zentraler Bedeutung den glo-
balen Fehler zu schätzen, der beim näherungsweisen Lösen von Optimalsteuerungsproblemen
durch das Kollokationsverfahrens auf den einzelnen Diskretisierungsintervallen ensteht. Dazu
werden diskrete Adjungierte benutzt, welche sich mit Hilfe der Lagrange–Multiplikatoren der
nichtlinearen Programme extrahieren lassen. Zu diesemZweckwirdmit Hilfe eines funktional
analytischen Frameworks die Brücke zwischen Kollokationsverfahren und Petrov–Galerkin
Finite–Elemente Verfahren geschlagen. In Analogie zu der imUmfeld von partiellen Differenti-
algleichungen etablierten Methodik der dual–gewichteten Residuen für Galerkin–Verfahren
werden im Anschluss zielorientierte globale Fehlerschätzer abgeleitet. Darauf aufbauend wer-
den Strategien angegeben, die es erlauben die Diskretisierung im Hinblick auf eine möglichst
effiziente Reduzierung des globalen Fehlers anzupassen. Dabei ist zu beachten, dass sich die
Gitteranpassung bezüglich des globalen Fehlers mit der Adaptierung hinsichtlich der Schalt-
struktur vereinbaren lässt und somit auf ein iteratives Lösungsframework führt.
Üblicherweise besitzen einzelne Zustands- und Steuerungskomponenten den gleichen Poly-
nomgrad, wenn sie von einer Kollokations–Diskretisierung stammen. Durch die spezielle Rol-
le, welche einigen Steuerungskomponenten in dem hier vorgeschlagenen Lösungsframework
zukommt, ist es wünschenswert, variierende Polynomgrade zu erlauben. Damit ergeben sich
hinsichtlich einer effizienten Implementierung Probleme, welche mittels geschickter Struk-
turausnutzung sowie einer passenden Permutation von Variablen und Gleichungen behoben
werden können. Der resultierende Algorithmus wurde parallel zu dieser Arbeit angefertigt
und in einer Software umgesetzt.
Die vorgestellten Methoden werden implementiert und anhand von Benchmark–Problemen
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wird ihre Anwendbarkeit und Effektivität demonstriert.
Im Hinblick auf eine zukünftige Einbettung der beschriebenen Verfahren in einen online Opti-
malsteuerungskontext und die damit verbunden Echtzeitanforderungen wird eine Erweitung
der bekannten Multilevel–Iterationsschemata vorgeschlagen. Diese basiert auf der Trapezre-
gel und reduziert den Rechenaufwand im Falle von dünnbesetzten Datenmatrizen gegenüber
einer vollständigen Bestimmung erheblich.
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Abstract

This dissertation deals with the efficient numerical solution of switched optimal control prob-
lems whose dynamics may coincidentally be affected by both explicit and implicit switches. A
framework is being developed for this purpose, in which both problem classes are uniformly
converted into a mixed–integer optimal control problem with combinatorial constraints. Re-
cent research results relate this problem class to a continuous optimal control problem with
vanishing constraints, which in turn represents a considerable subclass of an optimal control
problem with equilibrium constraints. In this thesis, this connection forms the foundation for
a numerical treatment.
We employ numerical algorithms that are based on a direct collocation approach and require,
in particular, a highly accurate determination of the switching structure of the original prob-
lem. Due to the fact that the switching structure is a priori unknown in general, our approach
aims to identify it successively. During this process, a sequence of nonlinear programs, which
are derived by applying discretization schemes to optimal control problems, is solved approx-
imatively. After each iteration, the discretization grid is updated according to the currently
estimated switching structure.
Besides a precise determination of the switching structure, it is of central importance to es-
timate the global error that occurs when optimal control problems are solved numerically.
Again, we focus on certain direct collocation discretization schemes and analyze error con-
tributions of individual discretization intervals. For this purpose, we exploit a relationship
between discrete adjoints and the Lagrange multipliers associated with those nonlinear pro-
grams that arise from the collocation transcription process. This relationship can be derived
with the help of a functional analytic framework and by interrelating collocation methods and
Petrov–Galerkin finite element methods. In analogy to the dual-weighted residual method-
ology for Galerkin methods, which is well–known in the partial differential equation com-
munity, we then derive goal–oriented global error estimators. Based on those error estimators,
we present mesh refinement strategies that allow for an equilibration and an efficient reduc-
tion of the global error. In doing so we note that the grid adaption processes with respect to
both switching structure detection and global error reduction get along with each other. This
allows us to distill an iterative solution framework.
Usually, individual state and control components have the same polynomial degree if they
originate from a collocation discretization scheme. Due to the special role which some control
components have in the proposed solution framework it is desirable to allow varying poly-
nomial degrees. This results in implementation problems, which can be solved by means of
clever structure exploitation techniques and a suitable permutation of variables and equations.
The resulting algorithm was developed in parallel to this work and implemented in a software
package.
The presented methods are implemented and evaluated on the basis of several benchmark
problems. Furthermore, their applicability and efficiency is demonstrated.
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With regard to a future embedding of the described methods in an online optimal control con-
text and the associated real-time requirements, an extension of the well–known multi–level
iteration schemes is proposed. This approach is based on the trapezoidal rule and, compared
to a full evaluation of the involved Jacobians, it significantly reduces the computational costs
in case of sparse data matrices.
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Introduction

Preface

Dynamic processes arise naturally or are specifically designed phenomena whose character-
istics vary in time. They are commonly described by algebraic equations, ordinary differential
equations, partial differential equations, or combinations thereof. Certain characteristics of
dynamic processes can be analyzed and often controlled by external impacts.
It seems natural to apply suitable external inputs in a way to achieve certain goals such as
the minimization of a selected cost function or maintaining certain physically motivated con-
straints. Over the years, there has been a rapid growth of scientific disciplines dealing with
increasingly complex dynamic processes. Natural sciences, economy, engineering, and even
humanities rank among the scientific fieldswhere researchers analyze dynamic processes. This
analytical process is commonly subsumed under the general heading “Modeling, Simulation
and Optimization”.
Certain aspects of dynamic processes make them more complicated to deal with both from a
mathematical point of view as well as from a computational point of view, for instance, abrupt
changes of the process dynamics triggered by particular in–process states. One may think of a
fire damper which is activated when sensors detect smoke particles or extraordinary heat and
prevents smoke or fire from spreading to other areas. Process dynamics can also be abruptly
affected by external controls that may attain one of just finitely many states which prevents
the system from smooth changes. Here, one can imagine a valve of a distillation column that
can either be opened or closed by an engineer at every instant.
Depending on whether non–smooth changes of the process dynamics are internally forced or
externally forced, we call the respective system implicitly or explicitly switched. One question
which arises is how to steer a system that potentially has both explicit and implicit switches
such that a prescribed goal is achieved without violating some predefined constraints.
From a mathematical point of view, dynamic processes are modeled by differential equations,
where the rate of change of the process state is expressed by a function of the process state
itself. Hence, the process state is a dependent variable determined by the differential equation,
whereas the time represents an independent variable. Complex differential equations must
likely be solved numerically. The continuous time interval is discretized using a finite number
of points in time and approximations of states and controls are determined at the resulting
temporal grid. Typical algorithms pursue the aim to modify the temporal grid adaptively in
a way to balance the inversely affected goals of keeping the approximation error small and
limiting the computational effort. In the following, with the help of an illustrative example,
we demonstrate that the same error magnitude at different time instants can have different
effects on the evolution of the process state.
Imagine first a car driving along a straight road duringwintertime. If there were a short section
where the car would slip and slide on ice, it would have almost no impact on the arrival time of
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the car. If, however, the samewould happen when the car is driving along a curvy road, the car
would swerve and slow down significantly. As a consequence, this could mean a tremendous
delay in arrival. From a mathematical point of view, the effect of small intermediate changes
on the final state, such as the impact of short icy road sections on the arrival time, is measured
by means of adjoint sensitivities. To obtain adjoint sensitivities, one has to solve a particular
adjoint problem. In the first case of our example the adjoint sensitivity is small resulting in
minor consequences on the arrival time. In contrast, the adjoint sensitivity is large in the
second case resulting in a considerable impact on the arrival time.
The same phenomenon happens when solving differential equations numerically: small local
errors caused by a discretization may be propagated differently. Most numerical algorithms
deal with estimation and control of local errors exclusively. However, the global error is the
crucial quantity that should be investigated.
This doctoral thesis provides a novel step towards a unified treatment of two extremely chal-
lenging problem classes, namely explicitly and implicitly switched systems. Furthermore,
we contribute an interpretation of adjoint information obtained by a specific discretization
scheme. This is achieved by interrelating that adjoint information with costate information
coming from a suitable Petrov–Galerkin discretization of a variational formulation of the
Hamilton Boundary–Value Problem (HBVP) equations. As a consequence, we are empow-
ered to introduce novel global error estimators based on the Dual Weighted Residual (DWR)
methodology. This allows us to control the computational efficiency and accuracy of the nu-
merical solution process. The combination of both aspects, namely the unified framework
for switched systems and the error estimation, may even open up new possibilities towards
real–time optimal control of switched dynamic processes in the future.
In the remainder of this section, we briefly survey the current state of the art of the issues
addressed in this thesis. This allows us to point out the significance and relevance of our
research for the field of applied mathematics.

Optimal Control

In this contribution, dynamic processes are described by systems of Ordinary Differential
Equations. The optimization of dynamic processes is then referred to as optimal control. Nu-
merical algorithms to solve Optimal Control Problems (OCPs) fall into the category of indirect
and direct methods, cf. von Stryk and Bulirsch [442], Betts [62].
Indirect methods deal with approximations to the continuous necessary optimality conditions.
Well–known algorithms to determine those approximations are multiple shooting (see Os-
borne [344], Bulirsch [90]) and collocation (see Bock [72], Ascher et al. [17]). A major
advantage of indirect methods is their high and guaranteed accuracy. However, they suffer
from severe drawbacks such as the necessity to calculate the necessary optimality conditions
by hand. This can be an error–prone task, in particular for complex dynamic systems. Further-
more, the region of convergence of the resulting nonlinear systems can be rather small such
that accurate initial values are required to initialize the algorithm. This may be cumbersome
especially for adjoint variables since their values are in general not physically motivated. Fi-
nally, for systems involving path constraints, the switching structure must be known a priori.
Due to the aforementioned disadvantages of indirect methods, direct methods have emerged as
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the method of choice for complicated problems. Bymeans of a state or control parametrization
the OCP is transcribed into a Nonlinear Programming Problem (NLP). Notable representatives
for direct methods are given by direct collocation methods (see Bär [29] and Biegler [68]) and
direct multiple shooting methods (see Bock and Plitt [75]). Direct shooting methods param-
eterize the infinite dimensional control space by a finite number of control parameters and
the differential constraints are ensured by explicit numerical integration. In direct colloca-
tion methods, both the states and controls are parameterized and piecewise polynomials (see
Kraft [279], Hargraves and Paris [223], or von Stryk [440]) or global polynomials (see
Vlassenbroeck and Dooren [439]) are used in order to achieve that the differential equa-
tion holds at the collocation points. Direct shooting and direct collocation methods transcribe
the OCP into a structured and large–scale Nonlinear Programming Problem. After a possible
condensing step (see Bock [73] and Cervantes and Biegler [103]), which exploits the spe-
cial NLP structure and results in a small–scale NLP, numerical algorithms such as active set
SQP methods (see Han [221] and Powell [361]) or interior–point methods (see Karmarkar
[267], Mehrotra [323], and Wächter and Biegler [444]) can be applied to solve the NLPs.
Since the original problem is transferred into the well–known and well–researched NLP prob-
lem class, some disadvantages of indirect methods can be overcome by using direct methods
instead: the necessary optimality conditions do not need to be derived, they do not suffer from
a small region of convergence, no guess for the adjoint states is required, and the switching
structure does not need to be known in advance. However, direct methods are not as accurate
as indirect methods and most of them do not provide costate guesses.

Switched Optimal Control

There exist numerous real–world applications whose underlying process dynamics can be de-
scribed by a system of differential equations involving binary or integer control variables, i.e.,
controls that can only take values from a finite admissible set. The mathematical discipline
dealing with optimization problems constrained by systems of the latter type is commonly
known as switched or Mixed–Integer Optimal Control (MIOC), and by several authors also re-
ferred to asMixed–Logic/Mixed–Integer Dynamic Optimization (see Oldenburg et al. [343]) or
hybrid optimal control (see Buss et al. [93]).
As one of the first, Bock and Longman [74] deal with MIOCPs: under the assumption of a
finite set of admissible accelerations they consider the problem of choosing accelerations of
a subway train in an energy–minimizing way. More descriptive examples are given in the
following: one can imagine complex chemical plants that allow for design alternatives such
as the location of feed trays in distillation columns, or for activating and deactivating specific
components such as compressors or heating elements depending on the current state of the
plant. Valves, which can be either opened or closed, and buttons, which can be either switched
on or off, represent prototypical examples for binary process controls and can be found in
various process types. Transmissions, as they are used in many vehicles, allow for selecting
one of several discrete gear transmission ratios and can therefore be modeled by means of
integer control variables. MIOC applications in the field of chemical engineering and biology
can be found in [83, 380, 382, 33] and in [285, 380, 402], respectively. Further applications
of practical relevance arise from traffic light optimization (see Göttlich et al. [205]), from
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power network topology optimization (see Göttlich et al. [204]), from thermodynamics (see
Gräber et al. [209]), or from automotive control (see [187, 383, 273]).
In switched optimal control, we distinguish between explicit switches, i.e., explicitly control-
lable switches, and implicit switches, i.e., state dependent switches. For the first class the
switchings are degrees of freedom, while for the latter class, the model switching is triggered
by the state of the optimization problem. Here, the ground contact of a robot leg or the weir
overflow in a distillation column may serve as vivid examples.
In order to illustrate the increased complexity of the MIOC problem class compared to the
one of continuous OCPs, we have a short look at both problems after a discretization step.
As we have pointed out, OCPs are transcribed into NLPs. In contrast, the finite dimensional
counterpart for Mixed Integer Optimal Control Problems (MIOCPs) is given by Mixed Integer
Nonlinear Programming Problems (MINLPs), cf. Belotti et al. [43]. This problem class has
been proven to be NP–hard, cf. Kannan and Monma [264]. Consequently, MINLPs are at
least as hard as the hardest problems inNP and under the assumption P ̸=NP deterministic
machines are unable to solve certain MINLP instances in polynomial time.
The key challenge in solving MIOCPs is to deal with their combinatorial nature, which, as a
consequence, leads to a vast number of possible operation modes. A common way to bypass
this difficulty in some chemical engineering applications is to assume the process to be in a
phase equilibrium and to solve a static optimization problem (see Duran and Grossmann
[144]) or a system with time–dependent dynamic subproblems (see Schweiger and Floudas
[400]). Indirect methods to MIOCPs are based on hybrid maximum principles (see [18, 403])
or, by means of a time transformation, on a reformulation into an equivalent continuous OCP
(see [142, 143]). By an application of local minimum principles to the continuous OCP one can
then derive necessary optimality conditions.
There exists a variety of solution algorithms for switched OCPs in the literature. While we
give a rather detailed overview on existing methods in Chapter 11, we just point to a consid-
erable subset for now: approaches that deal with implicitly switched systems can use direct
simultaneous methods based on direct multiple shooting and incorporating a switch detecting
integrator (see [83, 271]), multi–stage OCP formulations (see [328]), and variational formula-
tions in terms of switching time instants (see [457]). Some algorithms considering systems
with explicit switches base on problem specific continuous reformulations of discrete valued
controls (see [91]), rounding heuristics (see [424]), switching time optimization techniques (see
[188]), branch and bound as well as sparse direct collocation (see [443]), or dynamic program-
ming (see [89]).
In recent years considerable progress has been achieved towards an efficient solution of
MIOCPs employing a convexification and a subsequent relaxation step, cf. [380, 381]. This
approach yields a lower bound for the MIOCP objective, which is obtained by the solution of
a convexified and relaxed control problem. The lower bound can be approximated arbitrary
close by MIOCP feasible points. The authors propose an algorithm to find suchlike points for a
given tolerance. One can find solutions for manyMIOCPs instances with just sub–exponential
running time. Kirches [272] extended the approach to systems with path constraints that di-
rectly depend on integer control functions. Discretized OCPs of the latter type lead to a special
form of NLPs, namely Mathematical Programs with Vanishing Constraints (MPVCs). Among
others, the lack of constraint qualification and ill–conditioning make MPVCs a rather chal-
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lenging problem class, cf. [3, 238]. MPVCs represent an important subclass of Mathematical
Programs with Equilibrium Constraints (MPECs). Problems of the latter type stand out due to
their high degree of lack of convexity and smoothness.
All solution approaches to OCPs with explicit or implicit switches, which have been presented
so far and will be presented in later chapters, are limited to a particular problem class and do
not provide the possibility to solve explicitly and implicitly switched systems in a unified way.

Collocation Methods

A particular class of direct methods discretizing states and controls simultaneously is given by
pseudospectral (see Elnagar et al. [145] and Canuto et al. [99]) or orthogonal (see Cuthrell
and Biegler [121]) collocationmethods. In pseudospectral methods, states and controls are ap-
proximated by a finite basis of global interpolating polynomials and the differential equation is
ensured to hold at so–called collocation points by employing respective algebraic constraints.
The set of collocation points can be chosen arbitrarily but usually orthogonal collocation is ap-
plied. This means that the collocation points are given as roots of linear combinations of cer-
tain orthogonal polynomials and their derivatives. Since pseudospectral methods are usually
implemented as orthogonal collocationmethods – depending on themathematical community
– the terms pseudospectral and orthogonal collocation are used interchangeably.
Pseudospectral collocation methods applied to smooth OCPs typically converge faster than
other methods. This is due to the so–called spectral accuracy property (see Trefethen [428])
which guarantees an exponential convergence rate, provided the solution is smooth. Regard-
ing non–smooth problems or problems comprising different model stages the time horizon is
split into different finite elements and global orthogonal collocation is applied to each of them.
There exist numerous examples in the literature where orthogonal collocation was applied to
non–smooth OCPs, cf. Cuthrell and Biegler [120] or Ross and Fahroo [376].
Pseudospectral collocation methods are based on spectral methods. These have been success-
fully used for the numerical solution of Partial Differential Equations since the 1970’s and
were derived from the method of weighted residuals (see Finlayson [164]). Early ideas of
using spectral representations date back to Fourier [170]. The spectral collocation method
was first used by Slater [413] and Kantorovich [265]. Lanczos [283] stressed the necessity
of a proper choice for trial functions and the location of collocation points. Gottlieb and
Orszag [206] later established a unifying theory for spectral methods. The term pseudospec-
tral method for spectral collocation methods goes back to Orszag. The application of spectral
methods to OCPs involving Chebyshev polynomials was first done by Vlassenbroeck and
Dooren [439]. A pseudospectral method using Legendre polynomials was developed by El-
nagar et al. [145]. Since then, several variations of the Chebyshev pseudospectral method
and the Legendre pseudospectral method have been developed, where the sets of collocation
points are electively chosen from Gauss–type, Gauss–Radau–type, or Gauss–Lobatto–type
nodes. Exemplarily, we refer the reader to [439, 438, 152, 153, 261, 262] and cited references
therein.
There exist several implementations employing collocation methods. A list of considerable
software packages, which is far from complete, is given by SOCS [64], DIDO [377], DIRCOL
[441], GPOPS-II [351].
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The discretization granularity of collocation methods directly impacts the size of the resulting
NLP. The finer the discretization grid and the higher the polynomial degrees the larger the NLP
gets. There are reasonable arguments to use distinct polynomial degrees for single components
of the state and control approximations. A control modeling a gear shift, which can only have
states from a finite set, can naturally be represented by piecewise constant functions, while a
control modeling a gas pedal would be represented by higher degree polynomials. Moreover,
an error control procedure could also suggest different polynomial degrees for distinct state
and control components. To our knowledge, there are no implementations available which
allow for individually adjustable polynomial degrees within a finite element.

Pontryagin’s Maximum Principle

Necessary optimality conditions for Optimal Control Problems are known as maximum prin-
ciples or minimum principles. As mentioned earlier, they form the core of indirect methods.
Starting from the 1950s with early results by Pontryagin [357] and Hestenes [231] they have
been intensively studied since then. Necessary optimality conditions involving pure state con-
straints are stated, for example, in [251, 256, 314, 315]. References studying mixed control–state
path constrained OCPs are [140, 466, 308, 338]. Contributions dealing with sufficient condi-
tions are [316, 309].
An excellent survey paper on the maximum principle for OCPs is provided by Hartl et al.
[224]. They summarize some issues in context of the maximum principle as follows: “[…]
since there exist various forms of the necessary and sufficient optimality conditions. Because
the literature on this subject is not comprehensive and is, at times, incorrect or incomplete,
it has been hard to understand, especially for people working in applied areas.” Later they
formulate an informal theorem of the maximum principle “[…] that is used often as a recipe
while dealing with optimal control problems with state constraints in an applied setting”.
Beigel [41] develops a new functional analytic framework which provides a well–posed vari-
ational formulation of IVPs in a Banach space setting which is tailored to common discretiza-
tion schemes for ODEs. The framework exploits the duality pairing between continuous func-
tions and normalized functions of bounded variation and enables Beigel to defineweak adjoint
solutions of adjoint IVPs. To our knowledge, nobody has investigated Beigel’s framework in
an OCP context yet. In particular, it would be appealing to analyze the consequences for OCP
and path constraint adjoints in the respective Banach space setting. One could also establish
Pontryagin’s Maximum Principle (PMP) for functions spaces of practical relevance.

Costate Estimation

Whenever one solves an OCP numerically the question arises under which circumstances –
assuming a continuously refined grid – the resulting sequence of approximate solutions con-
verges towards a local minimum of the original continuous–time OCP, cf. [137, 200, 262]. The
answer to this question is by no means trivial: Hager [215] could show that a discretization
schemewhich converges when applied to a certain dynamics fails to converge when applied to
an OCP constrained to this dynamics. On the contrary, Betts et al. [67] deal with discretiza-
tion schemes whose approximate solutions converge towards a local solution when applied to
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an OCP but do not converge when used as an integrator on the constrained dynamics.
If onewants to verify the optimality of approximate solutions, the adjoint states play an impor-
tant role. Moreover, the adjoints can be very helpful for other reasons such as the development
of grid refinement strategies (see [62]), or an OCP sensitivity analysis, i.e., investigating the
behavior of OCP solutions with respect to disturbance parameters, cf. [310, 92]. Finally, sen-
sitivity differentials of OCPs with respect to disturbance parameters, which can be used for
real–time optimal control approximations of perturbed solutions (see [353, 320]), depend on
knowing the adjoints as well.
As we have pointed out, adjoint states are not required to constitute consistent discretization
schemes of direct methods. Yet several approaches have been developed to retain approxima-
tions. In [312, 230], the authors use state and control approximations obtained by the direct
approach to solve an adjoint problem providing an adjoint approximation. An approach based
on a sensitivity analysis is presented in Seywald and Kumar [401]. Here, a relation between
the adjoint states and certain cost function sensitivities is exploited. This is complemented
by the fact that the same relation also holds for Lagrange multipliers from a direct approach
and the sensitivities of the corresponding discretized cost function. The idea of establish-
ing relationships – based on algebraic mappings – between the continuous adjoints and the
Karush–Kuhn–Tucker (KKT) multipliers coming from a direct approach was described, e.g.,
in Hager [214] for one–step and multistep integration schemes and in von Stryk [440] for
collocation schemes. There exist several papers applying the latter approach to pseudospec-
tral methods (see e.g. [154, 375] for Lobatto methods, [262, 179, 172] for Radau methods, and
[52, 53, 245] for Gauss methods). Their basic idea can be sketched as follows: the HBVP equa-
tions coming from PMP are discretized with the same discretization scheme that is used for
the direct approach. Comparing variables from the resulting discretized system with the KKT
system variables from the direct method provides a suitable algebraic mapping.
Beigel [41] proposes a different approach for BDF integration schemes and their adjoint IND
schemes. Beigel develops a new functional analytic framework which provides a well–posed
variational formulation of IVPs in function spaces that are tailored to common integration
schemes. Using the framework leads naturally to a definition of weak adjoint solutions of ad-
joint IVPs. By means of a Petrov–Galerkin discretization approach the new variational for-
mulation with weak adjoints is transcribed into a finite dimensional equation system. Beigel
verifies that this system of equations is equivalent to the BDF method together with their
discrete adjoint IND schemes, cf. [41, 42].

Error Estimation and Mesh Refinement in Direct Transcription Methods

Error estimates for shooting type transcription methods typically assume the control to be
optimal and estimate the error of the integration scheme only, cf. Betts [62]. By varying the
step size or other adaptive components, common ODE integrators control just the local error,
cf. Shampine [406]. However, good approximations are quantified by the global error and
involve the stability of the nominal problem, which can be described by adjoint sensitivity
information. The calculation of adjoint sensitivities requires, e.g., the solution of the adjoint
IVP, cf. [150, 330, 101, 284, 427]. Early approaches to determine the stability of the nominal
problem are based on determining a single global stability constant (see [148, 150]). Later ad-
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vancements make use of distributed stability factors (see [37, 38]) given by the adjoint solution.
The latter approach, commonly known as the DWR method, has been extended to control the
error with respect to a given functional. The respective method is known as the DWR method
for goal–oriented error estimation, cf. [39].
Mesh refinement strategies for pseudospectral methods either increase the degree of respective
state and control approximating polynomials (p methods) or the number of finite elements (h
methods). In general, p methods try to increase the number of collocation points close to
domain sections undergoing abrupt changes of the trajectories, cf. e.g. Gong et al. [201].
Criteria to refine the finite element grid in h methods are often based on evaluating certain
residua at inner element points, cf. e.g. Darby et al. [122, 124]. Latest results (cf. Liu et al.
[299]) imply that it is not only necessary to combine h and p refinement strategies but also to
allow for a coarsening of the grid.

Model Predictive Control and Mixed–Integer Nonlinear Model Predictive Control

So far we have considered off–line OCPs where the optimal control is determined before the
actual process operation begins. However, for most real–world processes there exists no per-
fect mathematical model and the process most likely undergoes disturbances such that off-line
solutions are only of limited applicability. This justifies the use of real–time optimization ap-
proaches of which Model Predictive Control (MPC) is an important representative.
The fundamentals of MPC can be summarized as follows: at a certain time instant t0 one
solves an OCP on a prediction horizon [t0, t0 + T]. The obtained optimal control is fed back
to the real process for a short time δ. Hereafter a new OCP is solved on an updated horizon
[t0+δ, t0+δ+T] and the scheme is repeated. The optimization problems are initialized with
repeatedly updated data from the real process allowing to react on disturbances.
Linear MPC has intensively been studied and employed to numerous industrial process. Liter-
ature on linearMPC can be found, for example, in [178, 286]. There exist many processes whose
system behavior is not captured adequately by linear models. In a natural way, this leads to
Nonlinear Model Predictive Control (NMPC) where nonlinear models are investigated. Sur-
veys on the theoretical foundations of NMPC can be found in [369, 321, 11]. NMPC applications
are investigated in [362, 363, 12].
A crucial aspect for the practicability of NMPC algorithms is the numerical solution of the
arising OCPs in real–time. Considerable effort has been put into this task. We refer the reader
to [465, 464] for major algorithmic achievements in interior–point based methods and to [131,
132, 451] for SQP based methods.
While MPC is a well–researched field in the linear case and major steps towards maturity are
done in the nonlinear case, mixed–integer NMPC is still in its very early stage. In this contri-
bution, we subsume real–time optimization subject to process controls with a finite number of
admissible values under the term mixed–integer NMPC. Early approaches to mixed–integer
NMPC are based on solving mixed–integer QPs, cf. Allgöwer and Zheng [11]. Literature ap-
plying this strategy can be found in [48, 342]. Kirches [272] developed a new approach which
can be seen as a combination of Bock’s direct multiple shooting method (see [75]), the real–
time iteration scheme (see [131, 132]), and a partial outer convexification with a subsequent
relaxation step (see [380]) in order to deal with the integer–valued controls.
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Contributions and Results of this Thesis

The aim of this thesis is to develop a unified framework for the efficient solution of Optimal
Control Problems with explicit and implicit switches. To this end, proceeding from a tailored
collocation discretization scheme, we develop a sequential nonlinear programming approach
which incorporates an adaptive grid refinement strategy according to the a priori unknown
switching structure and controls the homotopy to solve the underlying MPVC instance. Fur-
thermore, we contribute a global goal–oriented a posteriori error estimation approach for
OCPs that is based on the DWRmethodology and can be used within our sequential approach
but also independently of it. We justify the proposed algorithms by means of the underly-
ing theory on the one hand and by sound numerical results on the other hand. Since this
thesis covers several areas and describes novel methods as well as advances over previously
established results, we outline our contributions in the following.

Literature Survey

In this thesis, we deal with several complex facets of optimal control theory, including switched
OCPs, local minimum principles, covector mapping principles, and global error estimation.
Those different fields require particular fundamentals. The first part of this thesis is therefore
devoted to two tasks, namely to save the reader from looking up the theoretical principles
in numerous papers and reference books, and to enable the reader to classify our contribu-
tions in literature. Our literature survey involves the fundamentals of switched optimal con-
trol theory such as a classification of switching types, Filippov theory, well–known available
mathematical representations, and possible convexification approaches. Apart from standard
function spaces in optimal control theory, we also introduce some less common ones such
as step functions and functions of bounded variation. We provide results on finite and infi-
nite optimization problems: while we rely on finite dimensional KKT conditions in order to
derive our covector mapping result, we exploit necessary optimality conditions from infinite
optimization theory to establish local minimum principles in a specific Banach space setting.
We present elementary results on MPVC theory and algorithms as MPVCs naturally arise in
our novel numerical approach to switched optimal control. We also give an introduction to
continuous optimal control theory. We motivate this decision by the fact that we deal with
both common solution approaches, namely direct and indirect methods. In particular, we de-
scribe the direct multiple shooting method since we use it to contribute an extension to the
Multi–Level Iteration Scheme (MLI). Moreover, we explain specific pseudospectral collocation
as well as Petrov–Galerkin discretization schemes as we use them for discretizing OCPs and
necessary optimality conditions in our covector mapping result.

A Multi–Degree Collocation Approach

As we have pointed out before, collocation methods and particularly pseudospectral methods
are established in the literature with state and control approximating polynomials all of them
having the same polynomial degree on a single finite element. Since the polynomial degrees
are directly correlated with the dimension of the resulting collocation NLP instance it is de-
sirable to keep them small. However, different components may require disparate polynomial

9



Contents

degrees. For instance, our novel switched optimal control solution algorithm incorporates
dedicated control variables indicating the binary state of a switch and consequently the re-
spective polynomial should be constant on a finite element. We propose a pseudospectral
method that enables us to to choose distinct numbers of collocation points for single state
and control components. Here, the difficulties do arise from carrying out an efficient numer-
ical realization since a naive implementation of the single–degree version would cause too
many right–hand side evaluations and destroy the structure of the NLP Jacobian and Hessian.
We develop strategies based on tailored data structures and permutations of NLP variables
and constraints to overcome the indicated issues and incorporate them into our multi–degree
pseudospectral method software.

A Discrete Local Minimum Principle

Beigel [41] investigates the relation between the discrete adjoints of variable–order variable–
step size BDF methods and the costates defined by the adjoint differential equation. To this
end, she constructs a Constrained Variational Problem (CVP) in a Banach space setting which
is tailored to most common discretization schemes: for a prescribed fixed discretization grid
differential states have continuous and piecewise continuously differentiable approximations.
Exploiting the duality pairing between the space of continuous functions and the space of
normalized functions of bounded variation, Beigel identifies the adjoint of a stationary point
of the CVP to be an element of the latter function space as well as the integral of the solu-
tion of the adjoint equation. We transfer Beigel’s setting from the CVP to the more difficult
OCP case: we assume a fixed discretization grid and consider states to be of continuous and
piecewise continuously differentiable type and controls to be of piecewise continuous type.
Within this function space setting, we derive necessary optimality conditions in terms of local
minimum principles of OCPs subject to both boundary constraints and mixed control–state
path constraints. Therefore, we adopt a proof technique which was also used by Gerdts [189]
in his habilitation thesis within a different function space setting and in a DAE OCP context.
First, the OCP is rewritten as an infinite dimensional optimization problem. Then, the prereq-
uisites of Fritz John type necessary conditions for optimality are checked. They are applied
and result in a system of variational equalities and inequalities involving multipliers in terms
of functionals that are elements of unhandy function spaces. Subsequently, explicit represen-
tations of state and path constraint adjoints are derived. In comparison with Beigel, who
employs Hahn–Banach’s extension theorem and finds adjoints to be functions of bounded
variation, we show that the adjoints have even higher regularity.

Covector Mapping for a Collocation Method

Thediscrete local minimum principle of the previous section provides us with a variational for-
mulation of first–order necessary optimality conditions for a rather general OCP with bound-
ary and path constraints. The solution space of local pseudospectral methods is covered by
the function space setting of the local minimum principle. Thus, the question arises if the OCP
discretization with a specific local pseudospectral method (“discretize–then–optimize”) com-
mutes with a suitable discretization of the necessary optimality conditions (“optimize–then–
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discretize”). To this end, we apply Petrov–Galerkin finite element techniques to discretize
the infinite dimensional optimality conditions: in terms of appropriately chosen finite dimen-
sional basis functions we replace trial and test functions with finite dimensional functions and
derive a system of equations and inequalities from the resulting finite dimensional variational
system. We prove the equivalence of the latter system with the KKT system coming from
the pseudospectral discretization approach. For this reason, we show the commutation of
the “discretize–then–optimize” and the “optimize–then–discretize” approach in our Banach
space functional analytic framework. In particular, we obtain the Petrov–Galerkin finite el-
ement formulation of the local pseudospectral optimality system including ODE, adjoint, and
stationarity discretization schemes.

Goal–Oriented Global Error Estimation

In this thesis, we contribute novel goal–oriented global error estimators for numerical so-
lutions of boundary and path constrained optimal control problems obtained by local pseu-
dospectral methods. As adjoint information describes the correct propagation of the nominal
local error onto the global error, it is highly recommended to incorporate discrete adjoint infor-
mation given in terms of corresponding Lagrange multipliers of the pseudospectral optimal-
ity system. However, in order to be able to expect reliable convergence results, the Lagrange
multipliers need to approximate ODE and path constraint multipliers of the local minimum
principle conditions. Indeed, with the novel Petrov–Galerkin finite element representation
of the pseudospectral KKT system, in particular nominal and adjoint conditions, we provide
an appropriate framework. Using the dual weighted residual methodology of finite element
methods, we derive goal–oriented global error representations incorporating aforementioned
Lagrange multipliers. Notably, our novel approach overcomes the need for solving an extra
dual problem. Local error quantities turn out to be given in the form of defect integrals of the
nominal approximation. For the sake of feasibility, in implementations, we establish approx-
imations of those integrals and describe procedures to use the error estimator for adaptive
mesh refinement.

Framework for the Solution of OCPs with Explicit and Implicit Switches

As mentioned above, a majority of algorithms to solve implicitly switched OCPs suffers from
the drawback that the switching sequence must be known in advance. Hence, in case there
exists no reasonable knowledge about the switching sequence, it must be determined in an up-
stream step. As a consequence, the approach is of low practicability when applied to closed–
loop systems. Moreover, one seldom finds methods that can handle both explicitly and implic-
itly switched systems. In this contribution, we provide a novel approach that deals with the
numerical solution of OCPs subject to ODEs with both implicit and explicit switches as well
as a priori unknown switching sequence. In particular, we are able to cover systems under-
going consistent as well as the more difficult inconsistent switches, where the latter type is
interpreted in the sense of Filippov. To this end, we exploit techniques from generalized dis-
junctive programming and transcribe the implicitly switched problem part into a counterpart
problem where discontinuities do not appear implicitly anymore. Instead, one obtains a prob-
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lem containing discrete control variables and vanishing constraints. The explicitly switched
problem part in association with the reformulated implicitly switched problem part fits into
the well–established mixed–integer optimal control theory which was developed in Bock’s
group (see Sager [380], Kirches [272]) and complements it.

Sequential Nonlinear Programming Framework

Recent results in mixed–integer optimal control theory (see Lenders [292]) enable us to drop
integrality constraints on integer variables within the previously described unified framework
for explicitly and implicitly switched systems. Consequently, we end up with a continuous
OCP with the particularity that, according to our construction, we expect certain control vari-
ables to attain only discrete values indicating the active switching modes at certain time in-
tervals. Taking this into account, we use a “first discretize, then optimize” approach where
we apply our local multi–degree collocation discretization with element wise constant switch
mode indication control approximations. The discretization leads to a MPVC. Due to the
a priori unknown switching sequence on the one hand and for the purpose of dealing with
the MPVC on the other hand, we propose a novel Sequential Nonlinear Programming (SNLP)
framework. More specifically, starting from an initial discretization, we approximately solve a
sequence of relaxed finite dimensional optimization problems where the respective sequence
of solutions is supposed to converge towards a solution of the original problem. We develop
algorithms which iteratively adapt the discretization grid according to the switching struc-
ture. We furthermore propose strategies to follow the relaxation homotopy path in such a
way that infeasible problems are avoided but, at the same time, the relaxation parameter is
continuously driven to zero. Our SNLP approach can naturally be extended to include further
grid adaption methods, for example methods, based on a posteriori error estimation such as
the one developed in this thesis.

Fast Nonlinear Model Predictive Control

In the future, we plan to embed our switched optimal control algorithm into a NMPC context.
There exist first ideas for mixed–integer NMPC algorithms based on the real–time iteration
scheme, which in turn fits into the more general Multi–Level Iteration Schemes (see [451]).
In this work, we contribute a new level to MLI. The new level is in line with the ideas of
parareal (see [26, 177]): in direct shooting methods, the Jacobian may be determined by solving
a particular matrix–valued differential equation, the so–called Variational Differential Equa-
tions (VDEs). It may be favorable to solve the VDEs on a coarser grid than the corresponding
shooting equations. To this end, the trapezoidal rule is applied on each shooting interval. Even
tough using an implicit scheme, we are capable to avoid solving a nonlinear equation system
bymeans of suitable algebraic reformulations. As a result, the Jacobian approximation is given
as the product of a matrix inverse and a matrix. A constraint space transformation of the MLI
inexact Newton–type equation system makes the matrix inverse calculation dispensable and
our method efficient. Local convergence of the proposed MLI level relies on contractivity
conditions for inexact Newton–type methods and can be proven similarly to MLI optimality
(level–C) iterations.
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Implementations

We implemented the new MLI level in the software package MLI [451]. All other developed
algorithms are implemented in our software package grc which allows for the generic and
fast solution of continuous as well as explicitly and implicitly switched optimal control prob-
lems. It realizes our Sequential Nonlinear Programming framework including the local multi–
degree pseudospectral discretization scheme and the option to choose between automatic and
user–driven modes for adaptive mesh refinement and MPVC homotopy strategies. In total,
the kernel of grc has roughly 25,000 lines of Matlab code and 6,000 lines of C code for
the mex interface. The software provides interfaces to the software packages SolvIND [9],
Ipopt [444], and SNOPT [197]. The last two allow the user to solve occurring NLP instances
with state of the art interior–point and SQP methods. SolvIND was developed in Bock’s
research group and contributes a powerful suite of ODE/DAE solvers with IND. Moreover,
it enables the user to set up OCP instances in a very comfortable way and saves him from
providing function derivatives since this is achieved by an automatic differentiation interface
to the software ADOL-C [445].

Case Studies

We demonstrate the main theoretical contributions of this thesis at the examples of appro-
priately chosen continuous and switched optimal control problem instances. In particular,
we present examples substantiating the reliability of our local multi–degree pseudospectral
method. Furthermore, we show results on adjoint approximations obtained from NLP La-
grangemultipliers of our collocation approach. UsingOCP exampleswith different constraint
types (boundary constraints, mixed control–state constraints, and pure state constraints), we
demonstrate the efficacy of our proposed goal–oriented global error estimation approach.

Publications

During the work on this thesis, we contributed the following publications:
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Thesis Outline

This thesis is organized in three parts: current state of the art, our contributions, and finally
applications and numerical results. The thesis is laid out in fourteen chapters and three ap-
pendices as follows.

Chapter 1 is the first chapter of Part I and introduces the problem class of switched Optimal
Control Problems (OCPs), classifies the different switching types and analyzes their properties.
In particular, we provide the theoretical foundations of switched systems including existence
and uniqueness theory, Filippov’s theory to handle inconsistent switches, and a classification
of the different sliding modes from a geometrical point of view. Finally, we survey several
convexification approaches to switched OCPs leading to the mixed–integer optimal control
theory, which was developed in Bock’s research group and incorporates partial outer con-
vexification as well as vanishing and complementarity constraint reformulations. In Chap-
ter 2 we summarize the fundamentals of real and functional analysis that are used throughout
the thesis. We highlight important results about Banach space theory and several function
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spaces such as Lebesgue and Sobolev spaces as well as step functions, monotone functions,
and functions of bounded variation. The chapter also sketches the Lebesgue–Stieltjes in-
tegral and some variational equalities and inequalities. Chapter 3 reviews the elements of
finite and infinite optimization theory within a Banach space context. Optimality conditions
are provided in terms of Fritz–John type conditions for infinite dimensional optimization
problems. In form of KKT conditions we carry over the necessary conditions to the finite di-
mensional case and describe the Lagrange–Newton as well as the SQP method as common
numerical solution algorithms and how they are related. Chapter 4 provides the definition of
Mathematical Programs with Equilibrium Constraints and their important subclass of Mathe-
matical Programs with Vanishing Constraints. We establish well–known tailored stationarity
concepts and present common numerical solution approaches. In Chapter 5 we introduce
Optimal Control Problems (OCPs) subject to dynamic processes encoded by Ordinary Differ-
ential Equations (ODEs) in a standard Banach space setting, embed the problem class into
the infinite dimensional optimization theory of Chapter 3 which naturally allows us to de-
rive first–order necessary conditions in terms of local minimum principles. The chapter also
gives some insight into the solution structure of OCPs and particularly how it is related to
switching functions. We present the general solution concepts of OCPs, namely indirect and
direct methods, and sketch advantages and drawbacks of each. Chapter 6 concludes Part I
and gives a deeper insight into the broad range of direct approaches to OCP. After reviewing
some fundamentals about computer–aided derivative generation, numerical calculation of IVP
sensitivities including the important IND principles, and common control discretization ap-
proaches we distill well–known direct shooting type methods. Last but not least we deal with
full discretization approaches, where polynomial parametrizations are used for both states and
controls. Based on the weighted residual principles, which are of great importance since they
include Galerkin and collocation type methods, we highlight the need for a carefully consid-
ered choice of collocation points and the advantages of expanding the approximate solution
in a series involving orthogonal polynomials.

Part II, which contains the author’s contributions to different fields in applied mathematics,
starts with Chapter 7 and the presentation of a particular global pseudospectral collocation
method based on Gauss–Radau collocation points. In the further course of the chapter we
extend the aforementioned discretization to the multi–degree case which is implemented in
our new software package grc and goes beyond the functionality of currently available im-
plementations since polynomial order values can be assigned to single components of state
and control trajectory approximations without the need for adding additional constraints and
an overhead of artificial variables in the problem discretization. However, for an efficient
implementation our new approach requires some structure exploitation techniques based on
variable and constraint permutations and the use of tailored data structures. This is explained
briefly, followed by an embedding of the global method into a local element–wise context
as subsequent chapters rely on local discretization formulations. Chapter 8 formulates OCPs
within a Banach space setting, motivated by semi–discrete function spaces as they arise from
numerical solvers, and considers them as infinite dimensional optimization problems of type

F(x , u)→min s.t. G(x , u) ∈ K, H(x , u) = Θ,
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with a cone set K and mappings F , G and H between appropriate Banach spaces. Based on
first–order necessary conditions for optimization problems of the latter type we then derive
necessary conditions in terms of local minimum principles for OCPs subject to ODEs, bound-
ary constraints, and mixed control–state path constraints. During the proof we exploit the
special structure of the considered OCP and this enables us to find an explicit representa-
tion for the involved multipliers. Contrary to an alternative approach, which makes use of a
function space duality pairing argument and an application of the Hahn–Banach Extension
Theorem, the multipliers are more regular. By means of optimality conditions from Chapter 8
we set up a finite dimensional system of equalities and inequalities in Chapter 9 and proof
their equivalence with the KKT system of a particular local pseudospectral method. We find
the aforementioned system by specifying tailor–made finite element spaces and subsequently
applying a corresponding Petrov–Galerkin finite element discretization to a variational for-
mulation of the infinite dimensional optimality conditions. The previous results allow us to
show that the “discretize–then–optimize” approach and the “optimize–then–discretize” ap-
proach commute in our functional analytic setting. Moreover, we are empowered to distill
costate approximations from Lagrange multiplier values coming from the pseudospectral
NLP. Chapter 10 is devoted to the derivation of novel goal–oriented global error estimators for
local pseudospectral methods. To this end we develop a novel error representation for the spe-
cific Petrov–Galerkin finite element discretization of Chapter 9. By incorporating the DWR
methodology and by approximating the unknown exact dual weights with suitable values we
are able to determine global error approximations in a criterion of interest. Dual weights
approximations involve discrete costate information provided by pseudospectral NLP multi-
pliers. To our knowledge we are the first to involve those pseudospectral multipliers in DWR a
posteriori error estimators for the goal–oriented global error. By means of the DWR method-
ologywe find error representations summating element–wise nominal local error quantities of
ODEs and constraints multiplied by respective adjoint values describing the sensitivity of the
quantity of interest on intermediate disturbances. The local error quantities comprise defect
integral values of ODEs and constraint nominal approximations. Approximating those defect
integrals enables us to derive evaluable global error estimators of practical relevance. The
final Chapter 11 of Part II first specifies a broad class of OCPs subject to explicitly and implic-
itly switched dynamic systems. Hereafter we transcribe implicitly switched system parts into
explicit counterparts subject to additional constraints and binary control variables. Here we
make use of concepts from generalized disjunctive programming. We establish a connection
between the transcribed problem and MIOCPs such that we are enabled to relax integrality
constraints. Due to recent results the relaxed problem yields an objective value that can be
reached by binary controls up to any prescribed accuracy threshold. We discretize the relaxed
problem with the help of a suitable discretization approach taking account of the particular
meaning of certain controls. We show that the proposed discretization approach fits into our
local multi–degree collocation framework and that the resulting finite dimensional problem
is of MPVC type. This motivates us to propose a SNLP approach in which the homotopy pa-
rameter of the relaxed MPVC is driven to zero. Moreover, the discretization grid is adaptively
refined according to the gradually revealed switching structure. We propose strategies for
detecting explicit switches and switches of Filippov type. We briefly outline how our global
error estimators may be incorporated into our SNLP framework.
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Part III demonstrates the main theoretical contributions of this thesis at the example of several
benchmark problems including OCPs of continuous as well as switched type. The numerical
results cover the multi–degree pseudospectral method in Chapter 12, the interpretation of ad-
joint NLP variables in Chapter 13, the global goal–oriented error estimation in Chapter 14, and
finally the unified framework for explicitly and implicitly switched OCPs in Chapter 15. Se-
lected examples demonstrate the functionality of our software package grc.

The final chapter briefly summarizes the results of this thesis and provides several ideas for
future research. In particular, this includes the extension of our new framework for switched
OCPs such that it can be used within a closed–loop environment. In this context we also
introduce a novel level for the Multi–Level Iteration Schemes that is based on the trapezoidal
rule.
This thesis is closed by three appendix chapters. Appendix A states proofs of several auxiliary
results for the reader’s convenience. In Appendix B, we provide elements of numerical anal-
ysis including orthogonal polynomials, polynomial interpolation, and numerical integration.
Appendix C deals with the fundamentals of closed–loop systems and outlines the principles
of NMPC as a state–of–the–art feedback control approach. In particular, we demonstrate the
ideas of tangential predictors and initial value embedding which motivate the Real–Time Iter-
ation Scheme (RTI) as an efficient approach to real–time optimization. We generalize the RTI
approach which then leads to the Multi–Level Iteration Scheme.

Computational Environment

All computational results and run times presented in this thesis have been obtained on a 64–
bit Ubuntu© Linux™ 16.04 system powered by an Intel© Core™ i7-3820 CPU at 3.60 GHz, with
15.6 GB main memory available. A single core of the available eight physical cores of the CPU
has been used. All source code is written inMATLAB 9.2 (release name: R2017a) and ANSI C99
which is compiled using version 5.4.0 of the GNU C/C++ compiler collection, with applicable
machine–specific optimization flags enabled.

Preliminary Notation

From Chapter 2 on, we give a profound overview of thesis relevant concepts about finite and
infinite dimensional optimization as well as their fundamentals. This includes the associated
notation as well. However, the first chapter is supposed to stress the importance of the topic
covered in this thesis. We present some preliminary notation at this point of the dissertation
in the hope to facilitate reading the first chapter.
The symbolN denotes the set of natural numbers excluding zero. The set of all integer numbers
is denoted with Z. For the set of real numbers we use the symbol R.
Closed, open, and half–open intervals are usually denoted with I where start and endpoint
points are given by the letters a and b. Horizon intervals in the context of differential equations
or optimal control problems are usually denoted with T . They are compact intervals [ts, tf]
with starting point ts and end point tf. For switching time instants we use the symbol tσ.
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We use capital letters X , Y for sets. For integer valued sets we use the Greek letter Ω. The
cardinality of Ω is denoted with |Ω|. Functions are denoted with bold letters such as F , G,
f , g , x , u . The i–th component of a vector–valued function f : Rn −→ Rm is written as
fi , i.e., we have f = [ f1, . . . , fm]

T . In the same way x i denotes the i–th component of a
real vector x ∈ Rn. For gradient and subdifferential (generalized derivative) of a function
f at point x we write ∇ f (x) and ∂ f (x), respectively. The partial derivatives of a function
f : Rnx ×Rny −→ Rnf , (x , y) 7→ f (x , y) at (x , y) are denoted with f ′x(x , y) and f ′y(x , y).
We use the symbol id for the identity function. The sign function sgn(·) is defined as

sgn(x)
def
=


−1, if x < 0,

0, if x = 0,

+1, if x > 0.

For a set X we denote its convex hull with conv(X ). We use the notation Ur(x) for the open
ball of radius r > 0 centered at a point x . For N ∈ N we denote the set {1, . . . , N} with [N].
This thesis deals with time dependent processes described by Ordinary Differential Equations.
The independent variable of a trajectory x : T −→ Rnx with T ⊂ R is denoted by t and it can be
associated with time. The derivative of x with respect to time t is denoted by ẋ (t)

def
= d

dt x (t).
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Chapter 1

Optimal Control Problems with Switches

A broad class of real–world problems deals with systems which operate by switching between
different subsystems or modes. Such systems are called hybrid systems. For instance, a valve
or the opening and closing of a power switch give rise to hybrid behavior. A Thermostat
adjusting the heat naturally leads to hybrid behavior, too. Further examples of hybrid systems
can be found e.g. in growing and dividing biological cells, space shuttles which enter, cross or
leave atmosphere layers, or in vehicles changing their dynamics abruptly due to locking and
unlocking wheels on ice. The literature does not provide a unified and precise definition of
the hybrid system problem class. Among others, this results from its high level of generality
and the fact that it is an interdisciplinary problem class which is influenced by concepts from
engineering, computer science and mathematics. For a comprehensive introduction to hybrid
systems we refer the interested reader to the excellent survey paper of Goebel et al. [198] as
well as to the textbooks of Lunze and Lamnabhi-Lagarrigue [304], van der Schaft and
Schumacher [432], and Liberzon [297].
In this contribution, we consider a particular but rather general class of hybrid systems, namely
discontinuous or switched systems. Starting in the late 1940s switched systems have been stud-
ied intensively in the former Soviet Union and other Eastern European countries. A consider-
able amount of theory has been developed in the field of switched systems. Meanwhile, there
is a broad range of textbooks available considering the results of this research, for instance,
the ones by Andronov et al. [14], Filippov [163], or Utkin [430].
The investigation of switched systems was to a substantial part motivated by research in con-
trol theory, where systems are manipulated by varying certain input variables. In this thesis,
we deal with switched system optimal control problems in which input variables of a switched
system are chosen properly such that some measure of system performance is optimized. Re-
garding the theory of this topic, there is plenty of literature available, cf. Branicky et al.
[84], Brandt-Pollmann [83], Bengea and DeCarlo [49], Sager [380], Kirches [271], or
Kamgarpour and Tomlin [263]. However, most researchers deal only with certain aspects
or types of switched systems. The challenge and strength of our approach is it to present a
unified framework for the numerical solution of optimal control problems with switches.
In general, different types of switched systems are distinguished: proceeding from the clas-
sic Initial Value Problems with Ordinary Differential Equations, we start our investigations in
Section 1.1 by presenting the most relevant switching types, including state jumps as well as ex-
plicit and implicit switches. The literature usually provides solution strategies for systems with
a single switching type. The strength of the approach proposed later in this work (see Chap-
ter 11) is that it enables us to readily solve systems which contain different switching types
in a unified way. To implement this idea, it is necessary to synthesize the relevant switching
types in a unified framework, as this is realized in Section 1.1.
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For mathematical problems, especially problems motivated by physical phenomena, it is a
crucial factor to determine if they arewell–posed or ill–conditioned in the sense of Hadamard.
For this reason Section 1.2 is dedicated to deal with the existence and uniqueness of all relevant
problem types that are introduced in Section 1.1. Thereby, it is required to introduce tailored
solution concepts for certain problems in order to achieve their well–posedness.
One of these solution concepts is based on a differential inclusion setting and leads to Filippov’s
first–order theory. Due to its importance and complexity, there is a detailed investigation of
the solution concept according to Filippov in Section 1.3. Here, one seeks for a solution of an
Initial Value Problem in Ordinary Differential Equations in which the right–hand–side varies
discontinuously as the solution trajectory reaches one or more surfaces, often called switching
surfaces or zero manifolds, but is smooth otherwise.
In general, there are several possible outcomes as the solution reaches a zeromanifold. Loosely
speaking, the solution can either cross the zero manifold or may stay on it. In the latter case, a
description of themotion on the surface is required. Section 1.4 describes all possibly occurring
cases according to Filippov’s theory in detail.
Finally, in Section 1.5, we introduce a broad class of switched Optimal Control Problems, i.e.,
infinite dimensional optimization problems that minimize a quantity of interest subject to
switched dynamical systems and possibly additional constraints. Our new solution approach,
which is presented in Chapter 11, is based on two central steps. First, the switched system is
embedded into a larger family of systems and the optimal control problem is formulated for
this larger family. In a second step, the embedded problem is relaxed and the relationship be-
tween solutions of the switched optimal control problem and the (relaxed) embedded optimal
control problem are investigated. This idea is not new as it has been successfully applied to a
simpler class of switched optimal control problems. All relevant previous results are reviewed
in Section 1.5 as well.

1.1 Switched Systems and Classification of Switches

1.1.1 Initial Value Problems in Ordinary Differential Equations

Commonly, researchers in applied mathematics deal with systems arising from real–world
problems. Systems that can be modeled by nonlinear differential equations are called nonlin-
ear dynamical systems. One particular class of differential equations describing a dynamical
system is given by systems of ODEs. Here, we speak of an ODE if one seeks a differentiable
function x = x (t) of one real variable t , whose derivative ẋ has to satisfy an equation of the
form

ẋ (t) = f (t, x (t)). (1.1)

Since there occur only first order derivatives of the unknown function x , the ODE is said to
be of first–order. In general, there exist infinitely many different functions x which satisfy
(1.1). In order to obtain a single solution from the set of all solutions, one has to pose addi-
tional requirements such as initial conditions. The resulting problem is then called Initial Value
Problem in ODEs.
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Definition 1.1 (Initial Value Problem in ODEs)
Let T def

= [ts, tf] ⊂ R be a compact interval with ts < tf. An Initial Value Problem (IVP) in ODEs is given
as a system of n ∈ N first–order ODEs and n initial conditions

ẋ (t) = f (t, x (t)), t ∈ T , (1.2a)
x (ts) = xs, (1.2b)

where the right–hand–side f : T ×X −→ Rn and the unknown dynamic state x : T −→ X are vector–
valued functions. The set X ⊆ Rn denotes the range of the states. We call t ∈ T the independent variable
and xs ∈ Rn the initial state vector or initial value. The component–wise derivative of the dynamic state
with respect to time t is denoted by ẋ . △

The solution to the IVP from Definition 1.1, provided that it exists, constitutes one or more
solution curves in the state space through the initial point xs. Such a solution curve is called
a trajectory in the state space.
Here and in the remainder of this chapter, T is used with the samemeaning as in Definition 1.1,
i.e., it denotes the horizon interval of an ODE. Repeated definitions of T are avoided and
therefore often omitted. A special case of ODE systems, namely linear ODE systems, is defined
separately.
Definition 1.2 (Linear ODE System)
Let A : T −→ Rn×n be a matrix–valued function and b : T −→ Rn a vector–valued function. Then, an
ODE system of the form

ẋ (t) = A(t) x (t) + b(t)

is called a system of linear ODEs. △

1.1.2 Initial Value Problems in Switched Dynamical Systems

A discontinuity in the right–hand–side function f (·) or in the state vector x (·) of an ODE
is called switch. State discontinuities are called jumps in this work. We introduce switched
dynamical systems involving jumps for the sake of completeness on the one hand and since
our unified framework might be augmented for this problem type in the future on the other
hand. For right–hand–side discontinuities, we distinguish different types of switches, namely
explicit and implicit switches.
To explore switched systems not only from an ODE perspective but additionally from a more
descriptive point of view, may be helpful for subsequent investigations. Switched dynamical
systems consist of a set of dynamical subsystems representing the so–calledmodes of the sys-
tem and a switching lawwhich determines the active subsystem at each time instant. A switch
from one subsystem to another is triggered by a so–called event signal. Either external signals
or internal signals cause such an event signal. Here, an internal signal means that the state
satisfies an internal condition. Depending on whether signals are generated externally or in-
ternally, the respective switches are either called Externally Forced Switches (EFSs) or Internally
Forced Switches (IFSs). EFSs are also known as controllable or explicit switches, whereas IFSs
are often called implicit switches.
Switched systems inherently involve discrete decision variables. For this reason, we are con-
tinuously confronted with integer or binary valued functions and variables in the following.
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Definition 1.3 (Integer/Binary Control Functions and Variables)
Let v : T −→ Rnv be a function and v ∈ Rnv a vector. We call the component functions vi(·) integer
control functions and vi integer variables, if their values are restricted to the set Z. If their values are
even restricted to the set {0, 1}, then vi(·) and vi are called binary control functions and binary variables,
respectively. △

Now, we introduce common formulations for ODEs with explicit and implicit switches sepa-
rately. One can easily see the similarities with Definition 1.1. Afterwards, we give a definition
of switched dynamical systems in a unified form.

Initial Value Problems in Ordinary Differential Equations with Explicit Switches

The following definition provides a first representation of an explicitly switched ODE. Other
common formulations are traceable to this one.
Definition 1.4 (IVP in ODEs with Explicit Switches)
Let T def

= [ts, tf] ⊂ R be a compact interval with ts < tf. An IVP in ODEs with explicitly defined switches
is given as a system of n ∈ N first–order ODEs and n initial conditions as

ẋ (t) = f (t, x (t), v(t)), t ∈ T , (1.3a)
x (ts) = xs, (1.3b)

where the right–hand–side f : T ×X ×Ω→ Rn and the unknown dynamic state x : T → X are vector–
valued functions. The system is affected by another vector–valued function v : T → Ω, which attains
only values from a finite discrete set Ω def

= {v1, v2, . . . , vnω} ⊆ Rnv with cardinality |Ω| = nω <∞. The
initial condition is defined analogously to Definition 1.1. △

Compared to the problem from Definition 1.1, the addition of integrality caused by the discrete
valued function v(·) usually means that the system can run in different operation modes. An-
other common approach of formulating ODE (1.3a) results from the following considerations:
let functions f i : T ×Rn→ Rn be defined as

f i(t, x (t))
def
= f (t, x (t), v i), i ∈ [nω].

Then ODE (1.3a) can be expressed as

ẋ (t) = f i(t, x (t)), t ∈Mi def
= {τ ∈ T : v(τ) = v i}, i ∈ [nω]. (1.4)

One can say that an explicitly switched system of the form (1.4) is in mode i if t ∈Mi . In a
similar fashion, we can write (1.4) by means of an indexed set of differential equations as

ẋ (t) = f i(t)(t, x (t)), t ∈ T , (1.5)

where the integer control function i : T −→ [nω] indicates the index of the current mode.
Hence, using the sets Mi defined in (1.4) the function i(·) is given as

i(t) = i, t ∈Mi , i ∈ [nω].

24



Optimal Control Problems with Switches
�� Chapter 1

Another way to express explicitly switched ODEs makes use of boolean–valued control func-
tionsωi : T −→ {0, 1}. Theωi(·) are defined such that they are equal to 1 whenever v(t) = v i

and zero otherwise. The switched ODE (1.3a) then can be reformulated as

ẋ (t) =
nω∑
i=1

ωi(t) · f (t, x (t), v i), t ∈ T , (1.6)

ωi(t) =

¨
1 t ∈Mi

0 t ̸∈Mi , i ∈ [nω].

Initial Value Problems in Ordinary Differential Equations with Implicit Switches

The activation time tσ ∈ T of an implicit switch i ∈ [nσ] is implicitly given by a zero–crossing
of the corresponding component of a switching function σ : X −→ Rnσ . More concrete, for a
given state trajectory x = x (t) the sign structure of the time–dependent and vector–valued
function

t 7→ σ(x (t)) (1.7)

uniquely identifies the activation state of any switch at any time t of the horizon interval T .
Thus, at any time instant t ∈ T the i–th switch can take exactly one of three activation states
given by σi(t)< 0, σi(t)> 0, and σi(t) = 0. We assume σ(·) to be sufficiently smooth in its
state component. The implicit function theorem therefore enables us to consider the switching
point tσ as a function of (ts, xs). By means of σ(·) we set up ODEs with implicitly defined
switches.
Definition 1.5 (IVP in ODEs with Implicit Switches)
Let T def

= [ts, tf] ⊂ R be a compact interval with ts < tf. An IVP in ODEs with implicitly defined switches
is given as a system of n ∈ N first–order ODEs and n initial conditions as

ẋ (t) = f (t, x (t), sgn(σ(x (t)))), t ∈ T , (1.8a)
x (ts) = xs, (1.8b)

where the right–hand–side f : T × X × {0,±1}nσ → Rn and the unknown dynamic state x : T → X
are vector–valued functions. The system is affected by the sign structure of the switching function σ(·).
The initial condition is defined analogously to Definition 1.1. △

Similarly to the case of explicitly switched systems, the third component of function f (·) in
Definition 1.5 introduces different operationmodes by its integrality. The only difference is that
in implicitly switched systems the current mode of the system is implicitly determined by the
state trajectory, whereas it depends just on the definition of v(·) in explicitly switched systems.
In order to emphasize the close relationship of explicitly and implicitly switched systems, we
establish alternative representations of implicitly switched systems in the following.
Alternatively to the form used in Definition 1.5, one could represent implicitly switched dy-
namic systems by an indexed set of differential equations as

ẋ (t) = f i(t)(t, x (t)), t ∈ T . (1.9)
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The current mode of the system is identified by the sign structure of σ(·). Hence, we distin-
guish |{0,±1}|nσ = 3nσ modes and define the index set of switchingmodes asΩ def

= {1, . . . , 3nσ}.
At any time instant on the horizon interval T , the function i : T −→ Ω in (1.9) indicates the
index of the applicable dynamic right–hand–side. In other words, at any instant the function
i(·) specifies the active subsystem.

Assuming that only a finite number of switching events occurs, the function i(·)may be iden-
tified with a finite set of tuples S

def
= {(τ0, i0), (τ1, i1), . . . , (τN , iN )} with 0 ⩽ N <∞. The

τ j ∈ T where ts = τ0 ⩽ τ1 ⩽ . . . ⩽ τN ⩽ tf, denote all switching points of the system and
the i j ∈ Ω denote the respective subsystem indices for all j = 0, . . . , N . Hence, the switch-
ing structure is uniquely identified by the switching sequence σ def

= {i j}Nj=0 and the associated
switching instants τ def

= {τ j}Nj=0. One can also write Problem (1.9) as

ẋ (t) = f i(t, x (t)), t ∈Mi def
= {τ ∈ T : i(τ) = i}, i ∈ Ω.

In order to point out that ODEs (1.8a) and (1.9) can be converted into each other, we define a
bijective function p : Ω −→ {0,±1}nσ which maps the index set Ω= {1, . . . , 3nσ} of switching
modes to the sign structure induced by the switching function σ(·), i.e., we have p(i(t)) =
sgn(σ(x (t))) for all t in T . ODE (1.9) in terms of f (·) therefore reads as

ẋ (t) = f i(t)(t, x (t)) = f (t, x (t), p(i(t))).

The following example illustrates a possible realization of functions p(·), i(·) and f i(t)(·) for
IVP (1.8a)–(1.8b) if we investigate the easiest case nσ = 1 .

Example 1.6
Let us assume nσ = 1 for IVP (1.8a)–(1.8b). Then we have 3 modes with Ω = {1, 2, 3} and define the
bijective function p : Ω −→ {0,±1} as

p(1)
def
= −1, p(2)

def
= 0, p(3)

def
= +1.

According to the definition of p the functions f i : T ×Rn −→ Rn are given as

f 1(t, x)
def
= f (t, x ,−1), f 2(t, x)

def
= f (t, x , 0), f 3(t, x)

def
= f (t, x ,+1),

and the index function i : T −→ Ω implicitly as

i(t)
def
=


1, if σ(x (t))< 0,

2, if σ(x (t)) = 0,

3, if σ(x (t))> 0.

The IVP then reads as

ẋ (t)
def
=


f 1(t, x (t)), if σ(x (t))< 0,

f 2(t, x (t)), if σ(x (t)) = 0,

f 3(t, x (t)), if σ(x (t))> 0,

t ∈ T , x (ts) = xs.
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Unified Framework for IVPs in ODEs with Explicit and Implicit Switches

Next, we aim to combine the switched system types of Definition 1.4 and Definition 1.5 result-
ing in a system that involves both explicit as well as implicit switches. The new system type
will be embedded in an Optimal Control Problem context in the subsequent Section 1.5.
For the reader’s convenience, we augment the explicitly and implicitly switched system by
so–called state jumps, i.e., differential state components may undergo discontinuities. In order
to define the respective IVP, it is necessary to introduce some notations. For the sake of
simplicity we assume for a moment that only a single switch is present in the problem. The
left–hand–side limit of the state vector x at switch time tσ is denoted by x−, whereas the
right–hand–side limit is denoted by x+, i.e.,

x−(tσ; ts, xs)
def
= lim
ϵ↗0

x (tσ + ϵ; ts, xs), (1.10)

x+(tσ; x−,∆)
def
= lim
ϵ↘0

x (tσ + ϵ; tσ, x−,∆). (1.11)

First, it can be stated that the one sided continuity of x (·) at tσ must hold. Analogously to
the case of implicit switches, the parameters (ts, xs) of the state vector x (·) in (1.10) express
that the switching point tσ may be considered as a function of (ts, xs) by virtue of the implicit
function theorem. The right–hand–side limit in (1.11) depends implicitly on x− and additionally
on the jump function of the differential states which has the form

∆ : T ×X −→ X , (t, x−(t)) 7→ x+(t). (1.12)

The jump function becomes effective when the switch is activated. Analogously to our no-
tation of state discontinuities, we proceed with right–hand–side discontinuities. The right–
hand–side in (tσ, x−) and (tσ, x+) is denoted with f − and f +, respectively, i.e.,

f −(tσ, x−) def
= lim
ϵ↗0

f (tσ + ϵ, x−), (1.13)

f +(tσ, x+)
def
= lim
ϵ↘0

f (tσ + ϵ, x+). (1.14)

Finally, we are able to combine the switched system types fromDefinition 1.4 and Definition 1.5
and additionally augment them with implicitly defined state jumps.

Definition 1.7 (IVP in ODEs with Explicit and Implicit Switches and State Jumps)
Let T def

= [ts, tf] ⊂ R be a compact interval with ts < tf. An IVP in ODEs with explicitly and implicitly
defined switches and state jumps is given as a system of n ∈ N first–order ODEs, n initial conditions and
state jump conditions as

ẋ (t) = f (t, x (t), v(t), sgn(σ(x (t)))), t ∈ T , (1.15a)
x (ts) = xs, (1.15b)

x+(tσ) =∆σ(tσ, x−(tσ)), ∀ tσ ∈ T : ∃ i ∈ {1, 2, . . . , nσ} : σi(tσ) = 0, (1.15c)

where the right–hand–side f : T ×X×Ω×{0,±1}nσ −→ Rn and the unknown dynamic state x : T −→ X
are vector–valued functions. The system is affected by the sign structure of the switching function σ
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and another vector–valued function v : T → Ω, which attains only values from a finite discrete set
Ω

def
= {v1, v2, . . . , vnω} ⊆ Rnv with cardinality |Ω|= nω <∞. The initial condition is defined analogously

to Definition 1.1. The notations of σ, x−, x+ and ∆σ follow the ones in (1.7), (1.10), (1.11) and (1.12) △
In order to avoid the risk of ill–posed problemswe assume at most a finite number of switching
times tσ in Problem 1.15. In the case of switched systems without state jumps we will discuss
switches where the zero manifold σ(x) = 0 is crossed infinitely often in finite time, where
the limits f − or f + do not exist, or where state trajectories are sliding along the zero manifold
σ(x) = 0. We will do this in Sections 1.2 and 1.3 and show how we deal with it.
It is quite appealing to solve the problem fromDefinition 1.7. Most existing algorithms can only
deal with a single switching type. In contrast, the methods developed in this contribution deal
with discontinuities in the right–hand–side in a unified framework, i.e., systems with explicit
and implicit switches but not with state jumps. For this reason, we assume all jump conditions
in (1.15c) to be equal to zero from now on, i.e.,∆σ ≡ id. However, the author believes that the
new framework can be extended with state jumps, but this task is left to future research.
Now, we give an alternative definition (see e.g. Xu and Antsaklis [459] or Lunze and
Lamnabhi-Lagarrigue [304]) for switched systems which enables us to point out some is-
sues that arise in the following Section 1.2 when it comes to finding solution concepts for the
problem from Definition 1.7. A switched system can be regarded as a 3–tuple S = (D,F ,L),
where

• D = (I , E) is a direct graph. This graph represents the discrete mode structure of the
system. I = {1,2, . . . , M} is the set of indices for all M subsystems. E is a subset of
I× I \{(i, i) : i ∈ I}which contains the admissible events between different subsystems,
i.e., the system switches from i1 ∈ I to i2 ∈ I if the event e = (i1, i2) takes place. The
event sets EE and EI denote the admissible events for EFSs and IFSs such that E = EE∪EI .

• F = { f i : T ×Xi −→ Rn : i ∈ I}, and f i is the vector field for the i–th subsystem. The
Xi ⊆ Rn denote the state constraint sets for the i–th subsystem.

• L = LE ∪LI provides logic constraints relating the continuous state and mode switch-
ings. LE is defined as LE

def
= {Λe : Λe ⊆ Rn, ; ̸= Λe = Xi1 ∩Xi2 , e = (i1, i2) ∈ EE} and

corresponds to the external events. This means that an explicit switch from system i1 to
i2 is only admissible if x ∈ Λe with e = (i1, i2). In a similar way to LE , we define LI as
LI

def
= {Γe : Γe ⊆ Rn, ; ̸= Γe = Xi1 ∩Xi2 , e = (i1, i2) ∈ EI} for the internal events. When

subsystem i1 is active and the state trajectory hits Γe with e = (i1, i2) ∈ EI , the event e
might be triggered and the system could switch to subsystem i2.

A switched system can be characterized by the evolution of continuous as well as discrete
states. As a consequence thereof, we get a timed sequence of active subsystems which can be
encoded by a so–called switching sequence. We were facing switching sequences already in
the section about systems with implicit switches. We will see that the same concept can also
be applied to systems with both explicit and implicit switches.
Definition 1.8 (Switching Sequence)
A switching sequence σ in T is a timed sequence of active modes combined with its activation time
instants, i.e., σ = {(t0, i0), (t1, i1), . . . , (tN , iN )}, where 0 ⩽ N <∞, ts = t0 ⩽ t1 ⩽ . . . ⩽ tN ⩽ tf, and
in ∈ I for 0⩽ n⩽ N . △
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Starting from subsystem i0 at t0, the switching sequence from Definition 1.8 indicates a switch
from subsystem in−1 to in at tn for 1 ⩽ n ⩽ N and subsystem in stays active in [tn, tn+1]. For
the switched system to be well–behaved, it is generally assumed that there occur only finitely
many switchings in finite amount of time. The case with infinitely many switchings is known
as chattering or Zeno phenomenon.
The switching pairs (tn, in) from σ either originate from explicit switches or from implicit
switches. The switching sequence denoted by σE = {(t0, i0), (tE

1 , iE
1 ), . . . , (tE

N1
, iE

N1
)} cor-

responds to the explicit switches and σI = {(t0, i0), (t I
1, i I

1), . . . , (t I
N2

, i I
N2
)} to the implicit

switches. One obtains the overall switching sequence as the combination of σE and σI as
σ = σE ∪σI .
A switched system is exogenously affected by σE , whereas, along with the evolution of the
state trajectory x , σI is generated implicitly. σE together with σI then lead to the overall σ.
An exogenous control σE is said to be valid if for given initial conditions (xs, i0) the evolution
of the system generates a non–blocking state trajectory and a non–chattering σ.
The non–blocking property plays an important role in the well–posedness of a switched sys-
tem. Roughly speaking, we call a switched system non–blocking if there exist infinite execu-
tions for all initial values (existence property). Another ingredient of well–posedness is the
determinism, i.e., infinite executions are unique in case of existence (uniqueness property).
Well–posed problems usually have the property that their solution changes continuously with
the input data. However, certain boundaries in the state space of switched systems may sep-
arate regions of initial states leading to broadly distinct trajectories across those boundaries.
For this reason, continuous dependence of solutions on input data may be a requirement that
is too strong for switched systems. Certain aspects of well–posedness that are of relevance for
this thesis are discussed in the following Section 1.2. The interested reader finds an extensive
discussion e.g. in Lunze and Lamnabhi-Lagarrigue [304].
For the reader’s convenience, we specify the switched system type under consideration in this
work:
Definition 1.9 (IVP in ODEs with Explicit and Implicit Switches)
Let T def

= [ts, tf] ⊂ R be a compact interval with ts < tf. An IVP in ODEs with explicitly and implicitly
defined switches is given as a system of n ∈ N first–order ODEs and n initial conditions as

ẋ (t) = f (t, x (t), v(t), sgn(σ(x (t)))), t ∈ T , (1.16a)
x (ts) = xs, (1.16b)

where the right–hand–side f : T ×X ×Ω×{0,±1}nσ → Rn and the unknown dynamic state x : T → X
are vector–valued functions. The system is affected by the sign structure of the switching function σ(·)
and another vector–valued function v : T → Ω, which attains only values from a finite discrete set
Ω

def
= {v1, v2, . . . , vnω} ⊆ Rnv with cardinality |Ω|= nω <∞. The initial condition is defined analogously

to Definition 1.1. △

1.2 Towards Solutions of Switched Systems

We start our investigations on well–posedness of dynamical systems by dealing with smooth
systems.
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1.2.1 Theory of Smooth Initial Value Problems

We briefly investigate the well–posedness of the IVP (1.2). Following the definition of Ha-
damard, a problem is well–posed if a solution exists, the solution is unique and the solution
depends continuously on the input data. The following result guarantees the existence of so-
lutions to IVP (1.2).

Theorem 1.10 (Peano)
Let f (·) be continuous on the region R def

= {(t, x) : ts ⩽ t ⩽ ts + a, ∥x − xs∥ ⩽ b} ⊂ R×Rn and let M
denote the maximum of ∥ f (·)∥ on R. Then there exists at least one solution x (·) of the IVP

ẋ (t) = f (t, x (t)), x (ts) = xs,

for t ∈ [ts, ts +α], where α=min{a, b/M}. The solution remains in the set {x : ∥x − xs∥⩽ b}. △

Proof See Teschl [425, Theorem 2.19]. □

To show the uniqueness of IVP (1.2), we need Lipschitz continuity of the function f (·).
Definition 1.11 (Lipschitz Continuity)
Let the function f (·) be defined on D ⊂ R×Rn. We call f (·) Lipschitz continuous on D with respect
to x , if a Lipschitz constant L > 0 exists such that

∥ f (t, x1)− f (t, x2)∥⩽ L · ∥x1 − x2∥ , ∀ (t, x1), (t, x2) ∈D. △

Theorem 1.12 (Picard–Lindelöf)
Let f (·) be continuous on an open subset D ⊂ R×Rn and let R ⊂ D where the region R is defined as
R def
= {(t, x) : ts ⩽ t ⩽ ts + a, ∥x − xs∥⩽ b}. If f (·) is additionally Lipschitz continuous with respect

to x , and bounded on R with ∥ f (·)∥⩽ M , then

ẋ (t) = f (t, x (t)), x (ts) = xs,

has a unique solution x (·) on [ts, ts +α], where α=min{a, b/M}. △

Proof See Teschl [425, Theorem 2.2]. □

A sufficient condition for Lipschitz continuity, as it is required in Theorem 1.12, is the differ-
entiability of f (·) with respect to x and the boundedness of f ′x(·) on R. In this case, one can
choose L to be a bound on f ′x(·) using any matrix norm, i.e., L = sup(t,x)∈R



 f ′x(t, x)


. The

proof of Theorem 1.12 also reveals that the solution x (·) is continuously differentiable.
What remains to show for Hadamard well–posedness of Problem (1.2) is the continuous de-
pendency of the input data. The input data for IVP (1.2) is given by the initial value xs and the
right–hand–side function f (·).
Theorem 1.13 (Shampine and Gordon [407])
Let f (·), g (·) be continuous on the open set D ⊂ R × Rn and f (·) Lipschitz continuous in x with
Lipschitz constant L. Let us assume that

∥ f (t, x)− g (t, x)∥⩽ ϵ
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holds for all (t, x) ∈D. If x (·) is a solution of the ODE (1.2a) and y(·) a solution of

ẏ(t) = g (t, y(t)), t ∈ T ,

and (t, x (t)) as well as (t, y(t)) lie in D, then it holds

∥x (t)− y(t)∥⩽ {∥x (ts)− y(ts)∥+ a ϵ} · exp(L(t − ts)). △

1.2.2 Theory of Initial Value Problems with Switches

Because of the possibly discontinuous right–hand–side functions of IVPs with implicit switch-
es there is no way to apply the standard theory for existence and uniqueness of solutions
of differential equations, cf. Theorem 1.12. Indeed, it is easy to come up with examples of
implicitly switched IVPs that have no solution in the classic sense. Here, a classical solution
means a function that is continuously differentiable and satisfies the differential equation, i.e.,
it is a solution in the sense of the Picard–Lindelöf Theorem. In the following example, we
provide a problem instance whose solution is no solution in the classic sense.

Example 1.14
Let us consider the following implicitly switched ODE

ẋ (t) = f (x (t)) = 2− sgn(x (t)) =


3, x (t)< 0,
2, x (t) = 0,
1, x (t)> 0.

For any initial condition x (ts) ̸= 0 we obtain a solution of the respective IVP

x (t) =

�
3t + C1, x (t)< 0,

t + C2, x (t)> 0,

where C1 and C2 are constants that are determined by the initial condition. Each solution reaches x (tσ) =
0 for a finite tσ if the initial condition is chosen such that x (ts) < 0. Since ẋ (t) > 0 the solution
trajectory hits x = 0 at a single instant tσ. The solution cannot be a solution in the classical sense (ẋ is
discontinuous at tσ) as limϵ↗0 ẋ (tσ + ϵ) ̸= limϵ↘0 ẋ (tσ + ϵ) ̸= 2− sgn(0).

In the remainder of the current as well as in the following section, we present different solution
concepts of switched IVPs and discuss conditions of the respective concepts that guarantee
existence and uniqueness of solutions.

Towards Consistent Switches

In order to facilitate notation, we concentrate on the case of a system with a single switch,
cf. Example 1.6. If a solution trajectory would fulfill either σ(x (t)) > 0 or σ(x (t)) < 0 over
the complete horizon, we encounter the case of a standard IVP and therefore existence and
uniqueness of a solutionwere guaranteed byTheorem 1.12. For now, sincewe are not interested
in this case we focus our attention to the case where a solution satisfies σ(x (tσ)) = 0 at a
certain time instance tσ of the horizon. At first, we deal with the case where σ(x (t)) ̸= 0 for
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any time instant t in a vicinity of tσ and call the respective switches consistent switches. For
this reason, we consider an IVP of the form

ẋ (t) = f (t, x (t))
def
=

¨
f −(t, x (t)) if σ(x (t))< 0

f +(t, x (t)) if σ(x (t))> 0
, t ∈ T \ {tσ}, x (ts) = xs, (1.17)

in the following and analyze it. Note, that the differential equation in (1.17) is not defined at
the switching time instant tσ. However, this is in accordance with our first solution concept
as the ODE is solely not defined on a set of Lebesgue measure zero.
AGeometrical Interpretation Before we start with an analysis of the first solution concept,
we have a look at the system defined in (1.17) from a geometrical point of view: under mild as-
sumptions on the smoothness of the switching functionσ : Rn −→ R, an (n−1)–dimensional
differentiable manifold in Rn is given by

Σ
def
= {x ∈ Rn : σ(x) = 0}.

Σ is defined as the null set of a smooth real–valued function on Rn. Likewise, subspaces S−
and S+ can be implicitly defined by means of the switching function σ(·) as

S− def
= {x ∈ Rn : σ(x)< 0} and S+ def

= {x ∈ Rn : σ(x)> 0}.
The space Rn can therefore be split into the two subspaces S− and S+ by the hypersurface Σ
such that Rn = S− ∪̇Σ ∪̇S+.
A First Solution Concept It is obvious that the dynamics of IVP (1.17) might change abruptly
when the state trajectory hits the zero manifold Σ (see e.g. Example 1.14). For this reason, one
cannot expect solution trajectories to be differentiable at those points. We present a solution
concept that provides solutions under rather mild assumptions. To this end, we investigate
the integral equation

x (t) = xs +

∫ t

ts

f (τ, x (τ)) dτ. (1.18)

It is a well–known fact that the problem formulations given in (1.17) and (1.18) are equivalent
if f (·) is continuous in some (t, x)–domain D. Beyond that, the integral in (1.18) makes also
sense for functions f (·) undergoing discontinuities. We use this fact as a leverage point in
order to relax the continuity restriction on f (·).
We consider a function x (·) to be a solution of IVP (1.17) in the extended sense if x (·) is abso-
lutely continuous (see Definition 2.30), satisfies the ODE almost everywhere on T , and satisfies
the initial condition. Note that the second condition makes sense due to the fact that x (·) is
assumed to be absolutely continuous and absolute continuity implies the existence of ẋ (·)
almost everywhere on T .
Differential equations that are interpreted in this way are sometimes called Carathéodory
equations. A solution of IVP (1.17) in the extended sense is also called Carathéodory solution.
This solution concept has the advantage that it supersedes the need of specifying the value of
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f (·) on the zero manifold Σ, if the solution trajectory hits Σ from one side and immediately
leaves it on the other side. One can easily show that the extended solution concept coincides
with the ordinary one when f (·) is a continuous functions. The following result provides
criteria that guarantee the existence of Carathéodory solutions.

Theorem 1.15 (Carathéodory)
Let f (·) be defined on the region R def

= {(t, x) : |t − ts| ⩽ a, ∥x − xs∥ ⩽ b}. Let f (t, x) be continuous
in x for each fixed t and measurable in t for each fixed x . Let a Lebesgue–integrable function m(·) be
defined on the interval |t − ts|⩽ a such that

∥ f (t, x)∥⩽m(t), (t, x) ∈R.

Then IVP (1.17) has a solution in the sense of Carathéodory on some interval |t − ts|⩽ α with α > 0.△

Proof See e.g. Coddington and Levinson [114, Theorem 1.1]. □

For further information on generalized ODE solution concepts we refer the reader to the text-
books of Coddington and Levinson [114] and Hale [220]. In particular, Hale [220, Theorem
5.3] provides a uniqueness result for Carathéodory solutions.

Beyond Consistent Switches

Dependent on the vector fields determined by f −(·) and f +(·) solution trajectories cross the
zero manifoldΣ instantaneously or not. Let us therefore suppose that xσ is a point on the zero
manifold Σ. If we consider the vectors f −(xσ) and f +(xσ) and their relation to the tangent
space of the hypersurface Σ at xσ, we distinguish the following four cases:

(i) Both vectors point inside S+. A solution trajectory can only come from S− and will
continue in S+. This case is covered by the solution concept of Carathéodory.

(ii) Both vectors point inside S−. In the same way as in the previous case a state trajectory
comes from S+ and will continue in S−.

(iii) The vector f +(xσ) points into S+ and f −(xσ) into S−. This case cannot occur for so-
lution trajectories arriving from S+ or S−. If xσ is taken as initial condition there is
no unique solution to (1.18). Switches where solution trajectories may leave Σ in both
directions are often called bifurcations. Switches of this type are beyond the scope of
this thesis.

(iv) The vector f +(xσ) points into S− and f −(xσ) into S+. In this case solutions in the sense
of Carathéodory do not exist since the set {t : σ(x (t)) = 0} is not of Lebesgue–
measure zero. Hence, there is the need for different solution concepts.

The Filippov solution concept, presented in the following Section 1.3, mainly deals with case
(iv). There are two obvious ways to approach this case, both being physically motivated.
The first interpretation assumes the right–hand–side as a simplified version of another func-
tion ef (·)which is not discontinuous across the zeromanifoldΣ, but changes in a steep gradient
from f +(·) on one side to f −(·) on the other side of Σ. In case (iv), a solution of the system
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ẋ (t) = ef (t, x (t)) will have the tendency to slide along the zero manifold since it is pushed
towards it from the vector field in a vicinity.
For the second interpretation, we assume that there is a switching controller monitoring the
sign of σ(x (·)), which is responsible for the transition from the regime described by f +(·) to
the one described by f −(·). For instance, caused by physical limitations, the switching cannot
exactly occur when σ(x (·)) crosses the zero value, but at some nearby instant of time. In case
(iv), this would result in a chattering behavior of a solution trajectory. This means that the
dynamics would quickly switch from one dynamics to the other and back again. Just as in the
first interpretation, a motion more or less along the zero manifold would take place.
The presented two interpretations illustrate that there are good reasons to allow for solutions
along Σ in cases of type (iv). However, due to different physical mechanisms, the situation
may be not completely specified by the two functions f +(·) on S+ and f −(·) on S−.
Example 1.16
Let us consider the following implicitly switched ODE:

ẋ (t) = f (x (t)) = 2− 3 sgn(x (t)) =


5, x (t)< 0,
2, x (t) = 0,
−1, x (t)> 0.

For any initial condition x (ts) ̸= 0 we obtain a solution of the respective IVP

x (t) =

�
5t + C1, x (t)< 0,
−t + C2, x (t)> 0,

where C1 and C2 are constants that are determined by the initial condition. Each solution reaches x (tσ) =
0 for a finite tσ. Since ẋ (t) > 0 for x (t) < 0 and ẋ (t) < 0 for x (t) > 0 the solution trajectory can not
leave x = 0 when it arrives at it. Hence, the solution will stay at x = 0, which implies ẋ = 0. This
cannot be a solution in the classical sense since 0 ̸= 2− 3sgn(0).

1.3 Filippov Theory

For Example 1.16 neither the classic solution concept nor solutions in the sense of Carathéo-
dory are applicable. The theory of Filippov provides a generalized definition of the solution
of switched systems in the sense that the definition holds for a larger class of differential
equations, cf. Filippov [162, 163]. Solutions in the sense of Filippov are continuous in time.
Jump conditions are not described by the theory of Filippov.
Before we investigate Filippov’s theory for the general case, we convey its idea based on
Example 1.16. A natural idea to extend the classic solution concept is to replace the right–
hand–side f (·) with a set–valued function F(·) such that f (·) and F(·) are identical at points
where f (·) is continuous in x . At points for which f (·) is discontinuous in x there is a suitable
choice for F(·) required. The differential equation is then replaced by the differential inclusion

ẋ (t) ∈ F(t, x (t)).

The definition of F(·) at points of discontinuity happens by means of the generalized differ-
ential. For a detailed introduction to the subdifferential calculus the reader is referred to the
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excellent textbook of Clarke [112]. Here, the generalized derivative of a function x : R −→ X
at a point t is defined as any value ẋα(t) included between its left and right derivatives, cf.
Curnier [117] and Clarke et al. [113]. Such a representative can be obtained by means of a
convex combination of the left and right derivatives as

ẋα(t) = α · ẋ−(t) + (1−α) · ẋ+(t), 0⩽ α⩽ 1.

The values ẋ−(t) and ẋ+(t) are given as f −(t, x (t)) and f +(t, x (t)), respectively. The gener-
alized differential of x (·) at t , which is denoted by ∂ x (t), is then the set of all the generalized
derivatives of x (·) at t . More concrete, it is the convex hull of the derivative extremes, i.e.,

∂ x (t) = conv
�
ẋ−(t), ẋ+(t)

	
=
�
ẋα(t) ∈ Rn : ẋα(t) = α · ẋ−(t) + (1−α) · ẋ+(t), α ∈ [0,1]

	
, (1.19)

where conv(A) denotes the smallest closed convex set containingA. We define the set–valued
sign function as the generalized differential of |x | such that

Sgn(x)
def
= ∂ |x |=

 {−1}, x < 0,
[−1,1], x = 0,
{1}, x > 0.

The differential inclusion formulation of the ODE from Example 1.16 is then given as

ẋ (t) ∈ 2− 3Sgn(x (t)). (1.20)

If we solve the problem forward in time with the initial condition x (0) = 0, we see that x (t)≡
0 is a unique solution. However, the solutions of (1.20) with initial condition x (−1) = 1 and
initial condition x (−1) = −5 evolve both to x (0) = 0. This shows the non–uniqueness of the
solution of (1.20) if it is solved backward in time.
In the following, the idea of replacing a switched ODE with a differential inclusion is trans-
ferred from one dimension to dimension n. For the sake of simplicity, we assume the case
with a single switch, cf. Example 1.6. As we have done earlier, we split the space Rn into two
subspaces S− and S+ by a hypersurface Σ such that Rn = S− ∪̇Σ ∪̇S+. The subspaces S− and
S+ are implicitly defined by means of the switching function σ : Rn −→ R as

S− def
= {x ∈ Rn : σ(x)< 0}, S+ def

= {x ∈ Rn : σ(x)> 0},
and the hypersurface Σ as

Σ
def
= {x ∈ Rn : σ(x) = 0}.

We consider the nonlinear system with discontinuous right–hand–side

ẋ (t) = f (t, x (t))
def
=

¨
f −(t, x (t)), if x (t) ∈ S−,

f +(t, x (t)), if x (t) ∈ S+,
t ∈ T \Σ, x (ts) = xs. (1.21)
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We assume that f (·) fulfills all assumptions fromTheorem 1.12 inRn\Σ, such that the solution
x (·) within S− and S+ exists and is unique. Moreover, we assume that the smooth functions
f −(·) and f +(·) uniquely extend to smooth functions on S− ∪ Σ and S+ ∪ Σ, respectively.
However, the values ẋ−(tσ) and ẋ+(tσ) at any tσ ∈ Σ do not necessarily coincide leading to
discontinuities across Σ.
Function f (·), as defined in Problem (1.21), is not defined for t with x (t) ∈ Σ. This means that
there is some freedom on how to extend the vector field on Σ. To this end, we investigate the
set–valued extension F : T ×X −→ Rn of f (·) for xσ ∈ Σ, which is given as

F(t, xσ)
def
= conv

�
y ∈ Rn : y = lim

x→xσ
f (t, x), x ∈ Rn \Σ	. (1.22)

Due to the assumptions on the function f (·) all the limits exist. The convexification of the
switched IVP (1.21) into the convex differential inclusion

ẋ (t) ∈ F(t, x (t))
def
=


f −(t, x (t)), if x (t) ∈ S−,

conv
�

f −(t, x (t)), f +(t, x (t))
	
, if x (t) ∈ Σ,

f +(t, x (t)), if x (t) ∈ S+,

(1.23a)

x (ts) = xs, (1.23b)

where the convex set from (1.22) can be expressed on Σ by means of the two right–hand–sides
f −(·) and f +(·) and

conv{ f −, f +}= � f ∈ Rn : f = α · f − + (1−α) · f +, α ∈ [0,1]
	

(1.24)

is known as Filippov’s convex method. Considering the IVP (1.21) as a mathematical model of a
physical system, it is crucial that we deal with a solution concept which guarantees existence
of solutions. Hence, the choice of the set valued extension F(·) of f (·) should be suitable in
the sense that the existence of a solution can be guaranteed. The existence of solutions of a
differential inclusion can be ensured with the notion of upper semi–continuity of set–valued
functions.

Definition 1.17 (Upper Semi–Continuity of Set–Valued Functions)
A set–valued function F(·) is called upper semi–continuous in x if

lim
y→x

�
sup

a∈F(y)
inf

b∈F(x)
∥a− b∥

�
−→ 0. △

This condition is equivalent to the condition that for all ϵ > 0 there exists a δ > 0 such that
∥x − y∥ < δ implies F(y) ⊂ F(x) + Uϵ(0). As with Carathéodory solutions the following
result guarantees the existence of differential inclusion solution trajectories that are absolutely
continuous (see Definition 2.30).

Theorem 1.18 (Existence of Solution of a Differential Inclusion)
Let F(·) be a set valued function. Assuming F(·) to be upper semi–continuous and F(t, x) to be closed,
convex, and bounded for all t ∈ R and x ∈ Rn, then for each xs ∈ Rn there exists a τ > 0 and an
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absolutely continuous function x (·) defined on [ts, ts +τ], which is a solution of the IVP

ẋ (t) ∈ F(t, x (t)), x (ts) = xs. △

Proof See Aubin and Cellina [19]. □

For Example 1.16, we check the conditions of the theorem for the differential inclusion

ẋ (t) ∈ 2− a Sgn(x (t)), |a|> 2.

It must hold 0 ∈ 2 − a Sgn(0) to allow for the solution x (t) = 0. This is true since |a| > 2.
Hence, Sgn(0) must be defined to be the set [−1,+1] in order to guarantee the existence of
a solution. Together with the values of sgn(x) = ±1 for x ̸= 0, the set [−1,+1] is upper
semi–continuous, closed, convex, and bounded. Therefore, the conditions of Theorem 1.18 are
satisfied.
A solution in the sense of Filippov for an implicitly switched system of type (1.21) can be defined
by means of Filippov’s convex method and the existence result from Theorem 1.18.
Definition 1.19 (Solution in the Sense of Filippov)
We call an absolute continuous function x : [ts, ts + τ] −→ Rn a solution of IVP (1.21) in the sense of
Filippov if for almost all t ∈ [ts, ts +τ] it holds that

ẋ (t) ∈ F(t, x (t)),

where F(t, x (t)) is defined as in (1.23). △

For solutions x (·) in the sense of Filippov, we review some properties. In a region where
x (·) is smooth, i.e., x (t) ∈ S− ∪ S+, it must hold f (t, x (t)) = F(t, x (t)). If x (·) slides along
a switching boundary, i.e., x (t) ∈ Σ, then ẋ (t) ∈ F(t, x (t)). However, at time instances tσ
where the solution x (·) enters the switching manifold Σ or leaves from Σ, the state derivative
ẋ (tσ) is not defined. Here, a solution trajectory x (·) enters or leaves Σ if for any ϵ > 0 there
exists a t∗ ∈ tσ + Uϵ(0) \ {0} such that x (tσ) ∈ Σ and x (t∗) ̸∈ Σ. The set of t for which the
solution trajectory x (t) enters or leaves Σ is of Lebesgue measure zero.
Theorem 1.18 guarantees the existence of a solution on an interval [ts, ts + τ] with τ > 0. In
order to achieve existence over the whole horizon, we need further assumptions: let f (t, x)
be linearly bounded for x ̸∈ Σ, i.e., there exist positive constants c1 and c2 such that for all
t ∈ [0,∞) and x ∈ S− ∪ S+ it holds

∥ f (t, x)∥⩽ c1 ∥x∥+ c2.

If additionally F(·) is bounded at values (t, x) for which F is set–valued, then a solution x (·)
of IVP (1.23) exists on [ts,∞), cf. Aubin and Cellina [19] and Clarke et al. [113]. These
assumptions are not sufficient to guarantee the uniqueness of a solution.

1.4 Sliding Modes

The previous section was dedicated to introduce Filippov systems and to answer the question
if solutions of this system type exist. Now, we examine the uniqueness of solutions. Let us
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consider a solution of IVP (1.23) and suppose that xs ̸∈ Σ. Since f −(·) and f +(·) are assumed
to be smooth such a solution is locally unique.
For this reason, we have to consider the case that xs ∈ Σ or that the solution trajectory x (·)
enters the switching manifold Σ at a finite time instant tσ. Informally speaking, there are the
following two cases that have to be distinguished:

(i) The solution trajectory leaves Σ and enters either S− or S+.

(ii) The solution trajectory remains in Σ.

In order to decide which of these cases may occur and possibly if the resulting solution trajec-
tory can be uniquely determined, we have to characterize the vector field in a vicinity of Σ.
Based on the vector field characterization, we will identify three different modes for solution
trajectories, namely the transversal intersection mode, the attracting sliding mode, and finally
the repulsive sliding mode.
Prior to that, there is some notation required. All switching functions σ(·) that we consider
are supposed to be at least continuous. It can be easily seen that a switching manifold Σ is not
determined by a unique switching function σ(·). Different switching functions can define the
same Σ. We assume that the switching function σ(·) is chosen such that it holds

0 ̸∈ ∂σ(x) ∀x ∈ Σ.

In the case of a locally smooth Σ, the unit normal vector to Σ at a point x ∈ Σ is denoted by
n : Σ −→ Rn. The vector n(x), which is perpendicular to the tangent plane at x , is given as

n(x) =
∇σ(x)
∥∇σ(x)∥ . (1.25)

In contrast, we make use of the generalized differential for locally non–smooth Σ and choose
n(x) such that

n(x) ∈
§

y
∥y∥ : y ∈ ∂σ(x)

ª
, (1.26)

where ∂σ(x) is assumed to be bounded. Note that the projections of f −(t, x) and f +(t, x)
onto the normal of the zero manifold Σ at (t, x) ∈ T ×Σ can be expressed by means of n(x)
as nT (x) f −(t, x) and nT (x) f +(t, x), respectively. These notations enable us to characterize
the vector field in a vicinity of Σ.

Transversal Intersection Mode

A large class of switched dynamic systems satisfies the transversality condition. We say that
the transversality condition holds at a point (t, x) ∈ T ×Σ if�

nT (x) f −(t, x)
� · �nT (x) f +(t, x)

�
> 0. (1.27)
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Let us assume that a solution of IVP (1.23) is given by x (·) and that there is a finite time instant
tσ such that x (tσ) ∈ Σ. If the transversality condition (1.27) holds at (tσ, x (tσ)), then Σ will
be left by the solution trajectory.
More precisely, if nT (x (tσ)) f −(tσ, x (tσ)) < 0 the solution trajectory will enter S− and the
ODE in (1.23) holds with f = f −. Conversely, if nT (x (tσ)) f −(tσ, x (tσ)) > 0 the solution
trajectory will enter S+ and the ODE in (1.23) holds with f = f +. Note, that n(xσ) points into
S+ since it points into the direction of steepest ascent of σ(·) at xσ.
Any solution of IVP (1.23) with an initial condition starting in S− that hits Σ at a finite time
instance where the transversality condition is satisfied will cross it transversally and proceed
in S+. Here, the word transversal does not refer to the vector field f but to the solution which
is transversal to Σ. Hence, any solution of IVP (1.23) which has an initial value in S− and
exposes a transversal intersection at Σ exists and is unique. An analogous statement holds for
solutions with an initial value in S+.
The following example shows that the choice of the set in (1.23a) is crucial for the uniqueness
of IVP (1.23).
Example 1.20
Let us consider the differential inclusion

ẋ (t) ∈ F(x (t)) =

�
3+ sgn(x (t)), x (t) ̸= 0,
[−1, 5], x (t) = 0,

with initial condition x (0) = 0. Since F(·) is upper semi–continuous, non–empty, closed, convex and
bounded for all (t, x), Theorem 1.18 guarantees the existence of solutions. Even though the transversality
condition (1.27) holds at the initial point, the solution is not unique. This is due to the fact that 0 ∈ F(0)
which allows the solution trajectory to stay on Σ. A second admissible solution is given by x (t) = 4t .
Note that F(x) is not the smallest convex set containing 3+ sgn(x). It holds 0 ̸∈ F(0) for the smallest
convex set, which is given as 3+ Sgn(x), and the resulting problem therefore has a unique solution in
forward time.

Solutions satisfying the transversality condition are often referred to as “classical”, and the
switching behavior is often called “consistent”. For classical solutions, the solution concept of
Carathéodory is sufficient and one can skip the case (1.23a) of IVP (1.23). Consequently, the
resulting problem becomes easier to formulate and to solve numerically.
In order to obtain a valid switching sequence, it was required in Section 1.1.2 that Zeno’s
phenomenon does not occur, i.e., there are not infinitely many switchings in finite amount
of time. Unfortunately, Zeno’s phenomenon exists for Filippov systems in form of accu-
mulation points, cf. Filippov [163], Heemels [228], or Utkin [430]. A point τ ∈ T is a
right–accumulation point if there exist switching points τi , i ∈ N, with τi < τ such that
τ = limi→∞ τi . A left-accumulation point is defined by changing “<” into “>”. The following
example describes a time reversed version of a system studied by Filippov which contains a
right–accumulation point.
Example 1.21
Let us consider the differential inclusion

ẋ (t) ∈ F(x (t)) =

�−Sgn(x1(t)) + 2Sgn(x2(t))−2Sgn(x1(t))− Sgn(x2(t))

�
,

39



Chapter 1
�� Optimal Control Problems with Switches

Figure 1.1: The figure depicts several trajectories of the differential inclusion system defined
in Example 1.21 with different initial values. All trajectories tend towards the accumulation
point at point [0,0]T .

where x (t)
def
= [x1(t), x2(t)]

T . The piecewise constant system, which is characterized by the zero mani-
foldsΣ1 = {x1 = 0} andΣ2 = {x2 = 0}, is spiraling to the origin, where it has its only equilibrium, i.e., it
holds 0 ∈ F(0). The origin is located at the only intersection point of the zero manifolds. It can be easily
checked that a transversal intersection occurs at Σ1,2 \ {0} at any time a solution trajectory hits one of
the zero manifolds Σ1,2. Several trajectories of the system with different initial values are depicted in
Figure 1.1. Now, we aim to find a strict Lyapunov function for the system, i.e., a scalar and continuous
function V : R2 −→ R that is positive definite (V(0) = 0, V(x) > 0 for x ̸= 0), has continuous first par-
tial derivatives, and whose derivative with respect to time along a trajectory of the system is negative
(V̇(x (t))< 0). As a candidate we choose the positive definite function V : R2 −→ R, which is defined as
the L1–norm V(x1, x2)

def
= |x1|+ |x2|. Its derivative along a solution x (·) of the system can be calculated

as

d
dt

V(x (t)) = V ′x1
(x (t)) ẋ1(t) + V ′x2

(x (t)) ẋ2(t) = −Sgn(x1(t))
2 − Sgn(x2(t))

2,

and thus becomes set–valued when x1(·) or x2(·) vanishes. It follows that d
dt V(x (t)) = −2 for x (t) ∈

R2\{Σ1∪Σ2} and d
dt V(x (t)) = [−2,−1] for x (t) ∈ {Σ1∪Σ2}\{0}. Since the zero manifolds are crossed

transversally outside the origin, it holds d
dt V(x (t)) = −2 for almost all t as long as x (t) ∈ R2 \ {0}. By

construction of V(·) it has the function value |x1(ts)|+ |x2(ts)| at initial time ts and ( d
dt V(x (t)) = −2)

zero at time 1
2 V(x (ts)). If V(x1, x2) = 0 it holds x1 = x2 = 0 such that the system has an equilibrium

point. Hence, solutions reach the equilibrium in finite time ∆T with

∆T =
1
2

� |x1(ts)|+ |x2(ts)|
�
.
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However, these solutions cannot arrive at the origin without going through an infinite number of mode
switches and consequently the event times contain a right–accumulation point.

If we have�
nT (x) f −(t, x)

� · �nT (x) f +(t, x)
�
⩽ 0,

at some point (t, x) ∈ T ×Σ, then the transversality condition is violated and one distinguishes
several so–called “non–classical” cases.

Figure 1.2: The figure illustrates the attracting sliding mode by reference to the system from
Example 1.22. Some trajectories are depicted for different initial values. All trajectories coming
from either S− or S+ tend towards the zero manifold Σ. When the trajectories hit Σ they slide
along the zero manifold. The sliding direction fF is calculated as convex combination of the
vectors f + = [2,4]T and f − = [4,−2]T as fF =

2
3 f − + 1

3 f + = [10/3,0]T .

Sliding Mode

We encounter the so–called sliding mode through (t, x) ∈ T ×Σ if�
nT (x) f −(t, x)

� · �nT (x) f +(t, x)
�
< 0. (1.28)

This case is decomposed into two sub–cases, namely the attracting sliding mode and the repul-
sive sliding mode.

(i) Attracting Sliding Mode. Alternatively, switches of this type are often called “incon-
sistent” switches. A solution being in attracting sliding mode will hit Σ but cannot leave
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Figure 1.3: The figure illustrates the repulsive sliding mode by reference to the system from
Example 1.23. Some trajectories with initial values at the zero manifold Σ are depicted. The
trajectories tend either towards S− with direction f − or towards S+ with direction f +. Al-
ternatively, the trajectories slide along Σ with direction fF being a convex combination of the
vectors f + = [−2,−4]T and f − = [−4,+2]T , where fF =

2
3 f − + 1

3 f + = [−10/3,0]T .

it and will consequently slide along the zero manifold Σ. An attracting sliding mode at
(t, x) occurs if

nT (x) f −(t, x)> 0 and nT (x) f +(t, x)< 0. (1.29)

An extension to the vector field on Σ is provided by Filippov’s theory, which is consis-
tent with the interpretation in (1.19) and gives rise to sliding motion. The time derivative
fF : T ×Σ −→ Rn of the solution during the sliding motion along Σ is given as

fF(t, x) = α(t, x) f −(t, x) + (1−α(t, x)) f +(t, x). (1.30)

Here, α : T ×Σ −→ [0,1] is defined such that for any (t, x) ∈ T ×Σ the vector fF(t, x)
lies in the tangent plane of σ(x), i.e., α(t, x) is chosen as the value which implies
nT (x) fF(t, x) = 0. A simple calculation therefore gives

α(t, x) =
nT (x) f +(t, x)

nT (x) ( f +(t, x)− f −(t, x))
. (1.31)

For any time instant t ∈ T , the scalar α(t, x (t)) can be regarded as the value α in (1.24)
that chooses fF(t, x (t)) such that it lies along Σ and the trajectory x (t) slides along
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Σ. Note that a solution having an attracting sliding mode exists and is unique. The
attracting sliding mode is illustrated in the following example.

Example 1.22
Let us consider the differential inclusion

ẋ (t) ∈ F(x (t)) =

�
3+ 1 · Sgn(x2(t)− c)
1− 3 · Sgn(x2(t)− c)

�
, (1.32)

where x (t) = [x1(t), x2(t)]
T . The only zero manifold is Σ = {x2 = c} and we can choose

σ(x) = c − x2 as one admissible switching function. Then the normal n(x) to Σ at any point
x ∈ Σ is given by n(x) = [0,−1]T . Some trajectories for different initial conditions are depicted
in Figure 1.2. One can see that all trajectories starting from S− = {x2 > c} and from S+ = {x2 < c}
are pushed to Σ by the vector field. At points where trajectories hit Σ they slide along Σ with
time derivative determined as in (1.30). For our system we obtain

f − =
�

4
−2

�
, f + =

�
2
4

�
, α=

2
3

, fF =

�
10/3

0

�
.

(ii) Repulsive Sliding Mode. Switches of this type indicate a bifurcation location. If a
solution in repulsive sliding mode starts close to Σ then it will move away from it, but
if it starts right on Σ then it can either stay while it obeys Filippov’s solution, or it can
leave Σ by entering either S− or S+. A repulsive sliding occurs at (t, x) ∈ T ×Σ if

nT (x) f −(t, x)< 0 and nT (x) f +(t, x)> 0.

Since a solution may leave Σ at any instance of time with f −(·) or f +(·), it can not
be unique. In this contribution, we do not consider models involving repulsive sliding
mode. Nevertheless, we present it for the sake of completeness. The lack of uniqueness
of solutions may vanish if one considers systems in the context of optimal control prob-
lems, cf. Section 1.5. Moreover, in the author’s opinion, the methods developed later in
this thesis (see Chapter 11) can also be applied to systems with repulsive sliding mode.
The repulsive sliding mode is illustrated in the following example.

Example 1.23
Let us consider the differential inclusion

ẋ (t) ∈ F(x (t)) =

�−3− 1 · Sgn(x2(t)− c)
−1+ 3 · Sgn(x2(t)− c)

�
, (1.33)

where x (t) = [x1(t), x2(t)]
T . Note that the vector field of this system is the vector field of (1.32)

in reverse time. With the same definitions of the zero manifold Σ, the switching function σ(·),
and the normal n(·) to Σ as in Example 1.22 several admissible trajectories for system (1.33) are
depicted in Figure 1.3. For the Filippov solution one has

f − =
�−4

2

�
, f + =

�−2
−4

�
, α=

2
3

, fF =

�−10/3
0

�
.

43



Chapter 1
�� Optimal Control Problems with Switches

Higher Order Conditions

In all cases that are not subsumed above, a more careful analysis is required. They are not
covered by the first order theory presented. Another case one could imagine is the one where
the solution is in attracting sliding mode, but for some time instant tσ and the associated
solution value xσ = x (tσ) condition (1.29) is no longer satisfied. According to Filippov’s
theory it can be assumed that one of the following cases has occurred:

nT (xσ) f
−(tσ, xσ) = 0 or nT (xσ) f

+(tσ, xσ) = 0. (1.34)

This means that one of the two vector fields lies already in the tangent space of the zero
manifold Σ. According to (1.31) the first case in (1.34) yields α(tσ, xσ) = 1 and therefore
fF = f −, and the latter case yields α(tσ, xσ) = 0 and fF = f +, respectively. One would expect
that a solution enters S− in case of α = 1 and in the same way it enters S+ if α = 0. To
decide this, one has to analyze higher order conditions. We touch on this topic briefly in the
following and point out the central ideas.
An elementary geometric consideration will help us to get the central ideas of higher order
conditions. Let g−, g+ and g be defined as

g−(t, x)
def
=∇σ(x)T f −(t, x), g+(t, x)

def
=∇σ(x)T f +(t, x),

and

g (t, x) = g−(t, x) · g+(t, x).

Note that we assumeσ(·) to be sufficiently smooth. The sets of transversality points and sliding
points are defined as

ΣT
def
= {(t, x) ∈ T ×Σ : g (t, x)> 0} and ΣS

def
= {(t, x) ∈ T ×Σ : g (t, x)< 0},

respectively. These definitions obviously coincide with the ones from (1.27) and (1.28). By
definition, ΣT and ΣS are open and disjoint sets. We define so–called exit sets as

E− def
= {(t, x) ∈ T ×Σ : g−(t, x) = 0}, E+ def

= {(t, x) ∈ T ×Σ : g+(t, x) = 0},
and

E def
= E− ∪ E+ = {(t, x) ∈ T ×Σ : g (t, x) = 0}

Note that these definitions coincide with the cases in (1.34). From a geometrical point of view,
x ∈ Σ lies on an (n− 1)–dimensional manifold of points in Σ since we assumed ∇σ(x) ̸= 0.
If a point x belongs to E− or E+, it will usually lie on an (n − 1)–dimensional manifold of
such points in Σ. This is, for example, the case under the mild assumptions that∇σ(x) is not
parallel to∇g− and∇g+, respectively. This means that one can expect that a smooth solution
trajectory in Σ may encounter E− or E+ but not E− ∩ E+. However, a trajectory in E− or E+
may encounter E− ∩ E+.
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Let us assume that we have a trajectory on Σ which is denoted by x (·) and let x (·) reach E at
some time instant t . Without loss of generality we can assume t = 0. For this time we have
to decide if the trajectory stays on Σ in sliding mode and we have to determine the associated
vector field, or if the trajectory leaves Σ. Also in the latter case, the vector field has to be
determined.
No matter if the trajectory stays on Σ or leaves it, the trajectory starts with the value x (0).
The basic idea how to continue the trajectory is the following: one looks at the left and right
limit expansions of the functions g−(t, x (t)) and g+(t, x (t)) and enforces smoothness of the
solution. Details on how to do this and the resulting multiple cases can be found in the article
of Dieci and Lopez [130].

1.5 OCPs with Explicit and Implicit Switches

In this section, we embed the ODEs with explicit and implicit switches from Definition 1.9 into
an OCP context. This means that we consider a system that is affected by nonlinear control
functions and for which we have to determine a control law such that a certain optimality cri-
terion is achieved. Apart from a switched ODE, the system may include additional constraints
for states and controls.

1.5.1 Problem Formulation

We start the section with a formal problem definition of a rather general OCP involving a
dynamic system with explicit and implicit switches.

Definition 1.24 (Optimal Control Problem with Explicit and Implicit Switches)
An OCP with explicit and implicit switches is a constrained infinite–dimensional optimization problem of
the form

min
x (·),u(·),v(·) φ(ts, x (ts), tf, x (tf)) (1.35a)

s. t. ẋ (t) = f (t, x (t), u(t), v(t), sgn(σ(x (t)))), t ∈ T , (1.35b)
0nc ⩾ c(t, x (t), u(t), v(t)), t ∈ T , (1.35c)
0nd ⩾ d(t, x (t), u(t)), t ∈ T , (1.35d)
0nr = r (ts, x (ts), tf, x (tf)), (1.35e)

v(t) ∈ Ω ⊂ Rnv , t ∈ T , |Ω|= nω <∞, (1.35f)

where a dynamic process x : T −→ Rnx on the time horizon T def
= [ts, tf] ⊂ R is determined. A solution

x (·) is described by a system of ODEs, where f : T ×Rnx ×Rnu ×Rnv × {0,±1}nσ −→ Rnx acts as the
right–hand–side function. This system is affected by a continuous and vector–valued control function
u : T −→ Rnu as well as another vector–valued control function v : T −→ Ω, which attains only values
from a finite discrete set Ω def

= {v1, v2, . . . , vnω} ⊆ Rnv with cardinality |Ω| = nω <∞. Moreover, the
system is affected by an implicit switch given by the sign structure of a switching function σ : Rnx −→
Rnσ . The controls are to be determined such that a performance index φ : T × Rnx × T × Rnx −→ R
is minimized. Additionally, mode–dependent and mode–independent mixed control–state constraints
c : T × Rnx × Rnu × Rnv −→ Rnc and d : T × Rnx × Rnu −→ Rnd as well as boundary constraints
r : T ×Rnx × T ×Rnx −→ Rnr must be satisfied. △
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Note that the function u(·) enters OCP (1.35) as a real and vector–valued control function.
Contrary to Definition 1.9, the function v(·), whose values must be chosen from a finite dis-
crete set, is up to optimization now and therefore a control function as well. To emphasize
the special character of v(·) compared to u(·) and due to its special status in this thesis, we
introduce a new term for this type of control functions.
Definition 1.25 (Integer Control and Binary Control)
The term integer control for function v(·) in Definition 1.24 is used for control functions whose image
space is a finite discrete set, i.e.,

v(t) ∈ Ω def
= {v1, v2, . . . , vnω},

with ∃ϵ > 0, ∀i ̸= j :


v i − v j



> ϵ. The term binary control is used for the special case

v(t) ∈ {0, 1}nω . △

We use the term relaxed, whenever the condition v(·) ∈ Ω is relaxed to a superset of Ω. This
holds in particular for the case that Ω is replaced with its convex hull conv(Ω). For instance,
relaxing the condition v(t) ∈ {0,1}nω with the convex hull of {0,1}nω would result in the
relaxed condition v(t) ∈ conv ({0,1}nω) = [0,1]nω .
One major goal of this thesis is to solve the explicitly and implicitly switched OCP from Def-
inition 1.24. In Chapter 11, we present a new method to solve the problem. This new method
is based on an approach which was developed to solve pure explicitly switched OCPs. In the
following, we sketch this approach. For this reason, we replace the ODE in Equation (1.35a)
with the explicitly switched ODE

ẋ (t) = f (t, x (t), u(t), v(t)). (1.36)

Definition 1.26 (Optimal Control Problem with Explicit Switches)
An OCP with explicit switches is defined as

min
x (·),u(·),v(·) φ(ts, x (ts), tf, x (tf)) (1.37a)

s. t. ẋ (t) = f (t, x (t), u(t), v(t)), t ∈ T , (1.37b)
0nc ⩾ c(t, x (t), u(t), v(t)), t ∈ T , (1.37c)
0nd ⩾ d(t, x (t), u(t)), t ∈ T , (1.37d)
0nr = r (ts, x (ts), tf, x (tf)), (1.37e)

v(t) ∈ Ω ⊂ Rnv , t ∈ T , |Ω|= nω <∞, (1.37f)

where the meaning of all variables and functions is the same as in Definition 1.24. △

Thediscrete character of the explicitly switchedOCP (1.37) introducesmajor difficulties in solv-
ing the problem. For this reason, we pursue the plan to replace OCP (1.37) with an equivalent
auxiliary problem which allows for a subsequent relaxation step. Thereby, one can overcome
the discrete character of OCP (1.37) and come up with a problem that might become easier to
solve. As wewill see, the solution of the relaxed problem can be used to find good approximate
solutions for the problem that we actually aim to solve.
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All approaches are based on the same considerations: it would be desirable to find reformu-
lations which enable us to express the logical mode choices by means of logical variables that
can be relaxed. The resulting problem is then a so–called relaxed OCP.
A relaxed OCP is a purely continuous control problem whose fundamentals are reviewed in
Chapter 5. A lot of research has been done on continuous OCPs and powerful numerical solu-
tion methods exist to solve this problem type in an efficient way. Chapter 6 presents several
well–established methods, whereas Chapter 7 introduces a tailored algorithm for switched
OCPs.
The idea of convexification and subsequent relaxation is similar to the notion of generalized
curveswhichwere introduced by Young [461] to investigate existence questions in the calculus
of variations. Cesari and Berkovitz used relaxed controls, which are also similar in notion, to
study existence results for OCPs, cf. Cesari [105], Berkovitz [57], or Berkovitz and Medhin
[58].

1.5.2 Inner and Outer Convexification in OCPs with Explicit Switches

For the moment, we deal only with mixed control–state constraints (1.37d) which do not ex-
plicitly depend on v(·), but not with mode–dependent constraints (1.37c). Convexification
techniques in this setting were studied by Sager in his doctoral thesis, cf. Sager [380], Sager
et al. [384]. The task of dealing with switches in path constraints is postponed to the subse-
quent Section 1.5.3.
There are several options how the logical mode choice defining function v(·) in (1.37b) can
be reformulated. Depending on how v(·) is substituted we distinguish between the Inner
Convexification (IC), the (Partial) Outer Convexification (OC) and the Perspective Formulation
approaches. In this contribution, we present IC and OC. The perspective formulation was
carefully analyzed in the publications of Jung et al. [260] and Jung [259].

Inner Convexification

For the IC approach the function v(·), which expresses the time–dependent mode switches, is
replaced by means of function w : T −→ [nω] as well as function g : [1, nω] −→ Rnv , where
g (·) has the property g (i) = v i for i ∈ [nω]. OCP (1.37) with explicit switches and without
mode–specific constraints c(·) after IC reformulation reads as

min
x (·),u(·),w (·) φ(ts, x (ts), tf, x (tf)) (1.38a)

s. t. ẋ (t) = f (t, x (t), u(t), g (w (t))), t ∈ T , (1.38b)
0nd
⩾ d(t, x (t), u(t)), t ∈ T ,

0nr
= r (ts, x (ts), tf, x (tf)),

w (t) ∈ [nω], t ∈ T .

By construction, Problem (1.38) can be relaxed towards w (t) ∈ [1, nω]. There are several
possibilities to choose the function g (·). Two common realizations are
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(i) piecewise linear representations of the form

g (i + ξi+1) = ξi v
i + ξi+1v i+1

with Special Ordered Sets of type 2 (SOS–2) variables:

ξi ∈ [0,1],
∑

i

ξi = 1,ξi ̸= 0=⇒ ξ j = 0 ∀ j ̸= i, i + 1.

(ii) a convex combination

g

� nω∑
i=1

ξi i

�
=

nω∑
i=1

ξi v
i

with Special Ordered Sets of type 1 (SOS–1) variables ξi ∈ [0,1],
∑

i ξi = 1.

A third realization uses fitted smooth convex functions g (·), as suggested by Gerdts [187].

(Partial) Outer Convexification

The OC approach has been investigated in the context of OCPs by Sager [380], Sager et al.
[381], and Sager et al. [384]. The term partial is due to the exclusive convexification of the
integer controls, but not to the rest of the control problem. To realize the OC approach the
integer controls v(·) are lifted into a higher dimensional space by introducing binary controls
ωi : T −→ {0, 1}, i ∈ [nω]. The value ωi(t) indicates if mode i is active (ωi(t) = 1) or
not (ωi(t) = 0) at time instant t ∈ T . We have used the same idea in (1.6) to reformulate
IVP (1.3). The OC approach consists of an evaluation of all possible right–hand–sides, their
multiplication with convex multipliers, and the summation of the products. ODE (1.36) then
reads as

ẋ (t) =
nω∑
i=1

ωi(t) · f (t, x (t), u(t), v i).

In IVP (1.3) themode sequencewas given in advance, whereas it is up to optimization in anOCP
context. To ensure that exactly one mode is active at any time instant t ∈ T one additionally
imposes the SOS–1 constraint

nω∑
i=1

ωi(t) = 1.

OCP (1.37) with explicit switches and without mode–specific constraints c(·) after OC refor-
mulation reads as

min
x (·),u(·),ω(·) φ(ts, x (ts), tf, x (tf))
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s. t. ẋ (t) =
nω∑
i=1

ωi(t) · f (t, x (t), u(t), v i), t ∈ T , (1.39a)

0nd
⩾ d(t, x (t), u(t)), t ∈ T ,

0nr
= r (ts, x (ts), tf, x (tf)),

1=
nω∑
i=1

ωi(t), ω(t) ∈ {0,1}nω , t ∈ T , (1.39b)

where we define as usual ω(·) def
= [ω1(·), . . . ,ωnω(·)]T . By construction, Problem (1.39) can

be relaxed towards ω(t) ∈ [0,1]nω . In later chapters we use the notation α(t) ∈ [0,1]nω
to highlight the difference between the original and the relaxed problem. For the sake of
completeness, we state the relaxed counterpart problem of OCP (1.39) in the following:

min
x (·),u(·),α(·) φ(ts, x (ts), tf, x (tf)) (1.40a)

s. t. ẋ (t) =
nω∑
i=1

αi(t) · f (t, x (t), u(t), v i), t ∈ T ,

0nd
⩾ d(t, x (t), u(t)), t ∈ T ,

0nr
= r (ts, x (ts), tf, x (tf)),

1=
nω∑
i=1

αi(t), α(t) ∈ [0,1]nω , t ∈ T .

Analogously to ω(·), the components of α(·) are denoted by αi(·), i ∈ [nω]. The follow-
ing remark illustrates a common way to reduce the problem dimensions of OCP (1.39) and
OCP (1.40).

Remark 1.27 (Elimination Using the SOS–1 Constraint)
The SOS–1 constraint in (1.39b) allows for an elimination of one binary control function ω j(·), j ∈ [nω],
which is then replaced by

ω j(t) = 1−
nω∑
i=1
i ̸= j

ωi(t), t ∈ T .

The same holds for its relaxed counterparts α j(·).

Inner versus Outer Convexification

In Problem (1.38), only a function w : T −→ [1, nω] enters the control problem after relax-
ation, whereas nω functions αi : T −→ [0,1] enter the relaxed Problem (1.40). For this reason,
relaxations of reformulation (1.38) may be faster to solve compared to (1.40): after a discretiza-
tion step, which transcribes the OCP to a Nonlinear Programming Problem, the number of
derivatives to be computed is smaller, and subproblems to be solved in iterations of interior–
point or SQP methods are cheaper to solve. Furthermore, the aggregated right–hand–side
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∑
i f (·, v i) in Problem (1.40) may become more expensive to evaluate. The number of explicit

switching modes is reflected by nω and may get large.
The number of admissible choices nω can be reduced in many cases. For instance, certain
separability properties of the right–hand–side function f (·) often decouple integer controls,
cf. Gräber et al. [209].
Example 1.28 (Outer Convexification and Separability)
Let an ODE be defined as

ẋ (t) = f1(·, v1(t)) + f2(·, v2(t)), v1(t) ∈ Ω1, v2(t) ∈ Ω2.

Instead of nω = nω1 · nω2 controls by enumerating all possible modes in Ω1 ×Ω2, which would result in
the problem

ẋ (t) =
nω1∑
i=1

nω2∑
j=1

ωi, j(t) ·
�
f1(·, v i

1) + f2(·, v j
2)
�

1=
nω1∑
i=1

nω2∑
j=1

ωi, j(t), ωi, j(t) ∈ {0, 1},

for all t ∈ T , we obtain an equivalent OC reformulation, which is given by

ẋ (t) =
nω1∑
i=1

ω1,i(t) · f1(·, v i
1) +

nω2∑
i=1

ω2,i(t) · f2(·, v i
2)

1=
nω1∑
i=1

ω1,i(t), ω1(t) ∈ {0, 1}nω1 , 1=
nω2∑
i=1

ω2,i(t), ω2(t) ∈ {0, 1}nω2

for t ∈ T , and combines modes from Ω1 and Ω2 independently and requires only nω = nω1 + nω2

controls.

In most real–world applications, nω increases linearly with the number of choices, or the
integer controls decouple, or the binary control functions enter the problem linearly. For this
reason, a modest increase in the number of control functions can be expected, and this increase
provides crucial advantages of OC reformulation (1.39) over IC reformulation (1.38):

• It is often impossible to find meaningful IC functions g (·). Black–box simulators can
often be evaluated only for values from the domain Ω, but not for values in between.
IC reformulations may furthermore lead to numerical issues such as divisions by zero.
Since an OC reformulation evaluates the model only for vectors from the admissible set
Ω, the aforementioned problems can be overcome.

• The integer gap between optimal solutions of OCP (1.38) and its relaxation may be-
come arbitrary large, cf. Sager [380], whereas the corresponding integer gap for Prob-
lem (1.39) is bounded by a multiple of the control discretization grid size, cf. Sager et al.
[384].

In order to solve the original problem, it is very important to find a tight relaxation of
OCP (1.39). The explicitly switched OCP can be decoupled into a continuous OCP and amixed–
integer linear programming problem, which allows for computational savings and a posteriori
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bounds on the gap to the best possible solution, cf. Sager et al. [384]. Compared to a branch
& bound approach to solve OCP (1.38), solutions of the relaxed Problem (1.39) are often inte-
gral. Based on a benchmark problem posed by Gerdts [187], the two approaches have been
compared by Kirches et al. [273] for the first time. Both approaches identify identical solu-
tions, but the OC approach obtains the solution with a speedup of several orders of magnitude
compared to the IC approach.
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a) Inner Convexification of f (x , v).
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b) (Partial) Outer Convexification of f (x , v).

Figure 1.4: IC and OC approach applied to the example f (x , v) = −(x − v)2 + 16. (—) shows
the function’s graph gr f (x; v i), i = 1,2 for the integer–valued parameter choices v1 = 0 and
v2 = 4. For the IC approach (—) shows the function’s graph gr f (x;ξv1 + (1− ξ)v2) for the
choices ξ ∈

§
1
4

,
1
2

,
3
4

ª
. Analogously, for the OC approach (—) shows the function’s graph

grα f (x; v1) + (1−α) f (x; v2) for the choices α ∈
§

1
4

,
1
2

,
3
4

ª
.

Example 1.29 (Inner and Outer Convexification)
To visualize the differences between the IC and the OC approach for nonlinear functions, we exemplarily
investigate the function f (x , v)

def
= −(x − v)2 + 16 with the continuous variable x ∈ R and the integer

variable v ∈ Z. The set of admissible values for v is chosen as Ω = {v1, v2} with v1 = 0 and v2 = 4.
Figure 1.4 depicts gr f (x; v) for v ∈ Ω as well as function graphs of IC and OC reformulations of f (·)
with relaxed choices of v. In case of using the convex combination approach, a subsequent relaxation
step and the elimination of one convex multiplier (see Remark 1.27) IC of f (x , v) with respect to the
integer variable v yields

f IC(x ,ξ)
def
= f (x;ξv1 + (1− ξ)v2),

ξ ∈ [0, 1].

OC including a relaxation step and elimination of one control function (see Remark 1.27) results in

f OC(x ,α)
def
= α f (x; v1) + (1−α) f (x; v2),

α ∈ [0, 1].
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1.5.3 Constraint Formulations

In the previous Section 1.5.2, we excluded the occurrence of logically implied constraints

0nc
⩾ c(t, x (t), u(t), v(t)) (1.41)

in the explicitly switched OCP (1.37). In this section, we seek for reformulations of this con-
straint type that allow for an additional relaxation step. This setting was discussed by Kirches
[272] in his dissertation for the first time. Jung [259], in turn, compared different convexifica-
tion strategies and interrelated them in his dissertation.
Apart from the aforementioned IC and OC reformulations we describe the so–called Vanishing
Constraint (VC) approach. For all of them, we investigate their tightness properties and con-
sider their benefits and drawbacks. Descriptions of further reformulations such as Big–M and
Perspective Formulation can be found in the publications of Jung et al. [260] and Jung [259].
To visualize the different formulations and to demonstrate their effects, we use the following
example disjunction of two constraints.

Example 1.30
We consider a disjunction of two quadratic constraints that are given as follows:�

c(x , v1) = a1(v
1)x2 + a2(v

1)x + a3(v
1)⩾ 0

�
(1.42a)

∨ �c(x , v2) = a1(v
2)x2 + a2(v

2)x + a3(v
2)⩾ 0

�
, (1.42b)

x ∈ [−1, 4]. (1.42c)

The functions ai(·), i = 1, 2, 3 are defined as

a1(v)
def
= −(v − 4)2, a2(v)

def
= 3(v − 4), a3(v)

def
= 4.

Note that the constraints are convex since a1(v)⩽ 0 holds for arbitrary chosen v. The admissible set for
the integral variable v is chosen to be Ω def

= {v1, v2} with v1 = 5 and v2 = 6.

Inner Convexification

The IC reformulation approach for constraints of type (1.41) works in a similar way as for
ODE (1.36). Again, occurrences of the discrete control v(·) are replaced by a convex function
g (w (·)) of the newly introduced integer control w (·), which attains the values v ∈ Ω for inte-
gral choices of w (·). If IC is applied to OCPs, one usually chooses the same g (·) for constraints
and ODE. Summarizing, the IC reformulation of constraint (1.41) reads as

0nc
⩾ c(t, x (t), u(t), g (w (t))).

Note that for w (t) ∈ {1,2, . . . , nω} there exists 1⩽ i ⩽ nω such that g (w (t)) = v i .
Similar to the arguments from Section 1.5.2, we conclude that evaluating convex combina-
tions within nonlinear functions may result in optimality of feasible fractional values, whereas
neighboring integer values may not be optimal. Hence, relaxations obtained from an IC ap-
proach can be expected to be weak.
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a) Inner Convexification of c(x , v). b) Feasible set of IC of c(x , v).

Figure 1.5: IC applied to the two sided disjunction (1.42a)–(1.42c) from Example 1.30. The left
figure shows the function’s graph gr cIC(x ,ξ) for ξ ∈ [0,1], where cIC(x ,ξ) = c(x ,ξv1+(1−
ξ)v2). The right figure depicts the feasible set

�
(x ,ξ) : cIC(x ,ξ)⩾ 0

	
.

In case of using the convex combination approach, a subsequent relaxation step and the elim-
ination of one convex multiplier (see Remark 1.27), the IC of c(x , v) from Example 1.30 with
respect to the integer variable v yields

0⩽ cIC(x ,ξ)
def
= c(x;ξv1 + (1− ξ)v2),

ξ ∈ [0,1].

Figure 1.5 depicts the function graph gr cIC(x ,ξ) and the feasible set
�
(x ,ξ) : cIC(x ,ξ)⩾ 0

	
.

By means of the feasible set, one can see that the convexity is not retained by the chosen IC
reformulation.

(Partial) Outer Convexification

We can apply the OC reformulation from (1.39a)+(1.39b) to the constraint c(·) as well. A convex
combination of residuals c(·, v i) for all admissible modes v i ∈ Ω is imposed resulting in the
formulation

0nc
⩾

nω∑
i=1

ωi(t) · c(t, x (t), u(t), v i) (1.43)

1=
nω∑
i=1

ωi(t), ωi(t) ∈ {0,1}. (1.44)

The OC reformulation does not require to evaluate the constraint c(·, v) for fractional choices
v, and all feasible integer points are guaranteed to be feasible for the original formulation.
Often, constraints may be just active for a subset of available modes. This has to be taken into
account and one has to ensure that the respective constraints are inactive while these modes
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are not active. In general, just constraints of the same type should be combined in the convex
combination (1.43).
The relaxed formulation replaces ω(t) ∈ {0,1}nω with ω(t) ∈ [0,1]nω in (1.44). As it was
demonstrated in Example 1.28, one should exploit separability properties of the constraints for
the purpose of a reduced number of binary control variables.
Kirches [272] has shown that aggregating the constraint residuals c(·, v i) into a single con-
straint as this is done in the OC reformulation approach give rise to compensatory effects and
may lead to feasible residuals for fractional values of the complex multipliers.
The following result states that the feasible set of the relaxed OC reformulation (1.43) and (1.44)
projected onto the (x , u)–space coincides with the union of all feasible sets of the disjunction
∨nω

i=1[0nc
⩾ c(·, v i)].

Proposition 1.31 (Feasible Region)
There exists ω(t) such that (x (t), u(t),ω(t)) is feasible for the relaxed version of the OC formulation
(1.43)+(1.44) if and only if there exists an index 1⩽ i ⩽ nω such that 0nc ⩾ c(t, x (t), u(t), v i). △
Proof See Jung [259]. □

a) (Partial) Outer Convexification of c(x , v). b) Feasible set of OC of c(x , v).

Figure 1.6: OC applied to the two sided disjunction (1.42a)–(1.42c) from Example 1.30. The left
figure shows the function’s graph gr cOC(x ,α) for α ∈ [0,1], where cOC(x ,α) = α · c(x , v1)+
(1−α) · c(x , v2). The right figure depicts the feasible set

�
(x ,α) : cOC(x ,α)⩾ 0

	
.

OC applied to c(x , v) from Example 1.30 with respect to the integer variable v, a subsequent
relaxation step, and the elimination of one convex multiplier (see Remark 1.27) yields

0⩽ cOC(x ,α)
def
= α · c(x , v1) + (1−α) · c(x , v2),

α ∈ [0,1].

Figure 1.6 depicts the function graph gr cOC(x ,α) and the feasible set
�
(x ,α) : cOC(x ,α)⩾ 0

	
.

As in case of the IC approach, the convexity is not retained by the OC reformulation. Further-
more, Proposition 1.31 guarantees that the feasible set after OC is not connected in the (x ,α)–
space if the two feasible sets of the disjunction are disjoint in the x–space. The question if the
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feasible set is connected or not is crucial when one wants to solve the problem numerically.
Local methods are not suited for problems with disconnected feasible sets. Note, however,
that the feasible set remains convex for a fixed α, which usually leads to a good convergence
of local methods.

Vanishing and Complementarity Constraints

As opposed to the IC and OC approaches, reformulations with vanishing and complementarity
constraints avoid aggregating the constraints of the different modes. Instead, one constraint
set per mode is added and the constraint (1.41) is replaced with

0nc
⩾ωi(t) · c(t, x (t), u(t), v i), 1⩽ i ⩽ nω, (1.45)

1=
nω∑
i=1

ωi(t), ωi(t) ∈ {0,1}.

It can easily be seen that the constraint of eachmode is enforced if the correspondingmultiplier
is nonzero.
Remark 1.32 (Tightness of Complementarity Constraint Approach)
Any value ωi(t)> 0 in (1.45) makes the corresponding vanishing constraint

0⩾ c(·, v i)

being satisfied.

Due to Remark 1.32, vanishing constraints are either fully active (if ωi(t) > 0) or inactive (if
ωi(t) = 0), but nothing in between. Hence, relaxationsω(t) ∈ [0,1]nω are much tighter than
the respective ones for OC or IC reformulations.
OC applied to c(x , v) from Example 1.30 with respect to the integer variable v, a subsequent
relaxation step, and the elimination of one convex multiplier (see Remark 1.27) yields

0⩽ cVC1(x ,α)
def
= α · c(x , v1),

0⩽ cVC2(x ,α)
def
= (1−α) · c(x , v2),

α ∈ [0,1].

Figure 1.7 depicts the function graphs gr cVC1(x ,α) and gr cVC2(x ,α), and the feasible set�
(x ,α) : cVC1(x ,α)⩾ 0∧ cVC2(x ,α)⩾ 0

	
.

The VC formulation produces non–convex feasible sets. Moreover, implied by its special struc-
ture, tailored algorithms are required to handle weak stationarity. Alternatively, one can apply
smoothing and regularization techniques, accompanied with a homotopy approach to drive
the smoothing and regularization parameters to zero. More details about weak stationarity
and numerical issues coming along with mathematical problems, which involve Vanishing
Constraints, are addressed in Chapter 4.
If the feasible sets resulting from the disjuncts of the original disjunctions are disjoint, then,
analogously to the OC formulation, the VC formulation may produce a disconnected feasible
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a) Vanishing Constraint of c(x ,α). b) Feasible set of VC of c(x , v).

Figure 1.7: VC applied to the two sided disjunction (1.42a)–(1.42c) from Example 1.30. The
left figure shows the function’s graphs gr cVC1(x ,α) and gr cVC2(x ,α) for α ∈ [0,1], where
cVC1(x ,α) = α · c(x , v1) and cVC2(x ,α) = (1 − α) · c(x , v2). The right figure depicts the
feasible set

�
(x ,α) : cVC1(x ,α)⩾ 0∧ cVC2(x ,α)⩾ 0

	
.

set. In this case, if local methods are used to solve the problem, they would only minimize
over the connected component in which the first feasible point was found.
Any solutionω(·), which is constructed from a fractional and relaxed solution α(·) and where
every 0–value is not rounded up, remains feasible for the VCs, given that the states are ap-
proximated closely enough. This behavior allows for primal rounding heuristics, which are
easily accessible, cf. Jung [259].

1.5.4 Bounds on the Objective Function and Rounding Scheme

Relation Between OCP with Explicit Switches and Relaxed Problem

Based on the Sections 1.5.2 and 1.5.3, we introduce a convexified problem which is associated
to the explicitly switched OCP (1.37) and allows for a subsequent relaxation step. We con-
vexify ODE (1.37b) with OC since it yields tighter relaxations than IC and does not require
f (t, x (t), u(t), ·) to be defined on the convex hull of Ω. Similar reasons motivate us to use the
VC approach to convexify constraint (1.37c).

Definition 1.33 (Convexification and Relaxation)
The (Partial) Outer Convexification of OCP (1.37) is given by

min
x (·),u(·),ω(·) φ(ts, x (ts), tf, x (tf)) (1.46a)

s. t. ẋ (t) =
nω∑
i=1

ωi(t) · f (t, x (t), u(t), v i), t ∈ T ,

0nc ⩾ωi(t) · c(t, x (t), u(t), v i), 1⩽ i ⩽ nω, t ∈ T ,

0nd ⩾ d(t, x (t), u(t)), t ∈ T ,
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0nr = r (ts, x (ts), tf, x (tf)),

1=
nω∑
i=1

ωi(t), ω(t) ∈ {0, 1}nω , t ∈ T .

The relaxed (Partial) Outer Convexification of OCP (1.37) is given by

min
x (·),u(·),α(·) φ(ts, x (ts), tf, x (tf)) (1.47a)

s. t. ẋ (t) =
nω∑
i=1

αi(t) · f (t, x (t), u(t), v i), t ∈ T ,

0nc ⩾ αi(t) · c(t, x (t), u(t), v i), 1⩽ i ⩽ nω, t ∈ T ,

0nd ⩾ d(t, x (t), u(t)), t ∈ T ,

0nr = r (ts, x (ts), tf, x (tf)),

1=
nω∑
i=1

αi(t), α(t) ∈ [0, 1]nω t ∈ T . △

The binary convexified OCP (1.46) is equivalent to OCP (1.37) in the following sense:
Proposition 1.34
The binary convexified OCP (1.46) has a solution if and only if the explicitly switched OCP (1.37) has a
solution. Let (x ∗B , u∗B ,ω∗B) be a solution of OCP (1.46). Then (x ∗, u∗, v∗) with x ∗ = x ∗B , u∗ = u∗B and

v∗(t) def
=

nω∑
i=1

ωi(t)v
i

is a solution of OCP (1.37). △

Proof See Lenders [292, Proposition 6.6]. □

Proposition 1.34 especially states that a solution of the convexified OCP (1.46) provides us with
a solution of the explicitly switched OCP (1.37) that we actually want to solve.
In previous sections, we argued that it would be desirable to solve the purely continuous
OCP (1.47). But this makes just sense if we could show that for a feasible point of OCP (1.47)
there is an essentially feasible point of OCP (1.46) which has essentially the same objective
value. The following theorem yields such a result. Note that the arising Lebesgue and Sobolev
spaces L∞(T ,R) and W 1,∞(T ,R) are introduced in Section 2.4.2 and 2.4.3, respectively.
Theorem 1.35 (Zero Integrality Gap in Function Space)
Let (x , u,α) be feasible for OCP (1.47) and suppose that t 7→ f (t, x (t), u(t), v i), i ∈ [nω], are functions
of type W 1,∞(T ,Rnx). Let ϵ > 0.
Then there exist functions x ϵ ∈W 1,∞(T ,Rnx) and ωϵ ∈ L∞(T , {0, 1}nω) such that

|φ(ts, x ϵ(ts), tf, x ϵ(tf))−φ(ts, x (ts), tf, x (tf))|< ϵ
and

ẋ ϵ(t) =
nω∑
i=1

ωϵi (t) · f (t, x ϵ(t), u(t), v i), t ∈ T ,
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ϵnc ⩾ω
ϵ
i (t) · c(t, x ϵ(t), u(t), v i), 1⩽ i ⩽ nω, t ∈ T ,

ϵnd ⩾ d(t, x ϵ(t), u(t)), t ∈ T ,

0nr = r (ts, x ϵ(ts), tf, x ϵ(tf)),

1=
nω∑
i=1

ωϵi (t), t ∈ T . △

Proof See Lenders [292, Theorem 6.7]. □

Given any feasible point of the relaxed OCP (1.47), Theorem 1.35 guarantees that this point
can be approximated arbitrary well by a binary feasible point. The prescribed accuracy ϵ > 0
impacts on the binary feasible point.

Rounding Scheme

What remains is to find a way how we can construct a binary solution from a relaxed solu-
tion. Early results in the setting without mode–dependent constraints c(·) were published by
Sager [380]. He established a reconstruction algorithm (Sum–Up Rounding) which has linear
complexity in the size of the temporal grid. Jung [259] developed an algorithm (Next–Forced
Rounding) with improved approximation properties but quadratic complexity in the size of the
temporal grid. Recently, Lenders extended Sager’s Sum–Up Rounding algorithm such that
it also addresses the case of mode–dependent constraints. This algorithm is called Vanishing
Constraint SOS–Sum–Up Rounding and sketched in the following definition.
Definition 1.36 (Vanishing Constraint SOS–Sum–Up Rounding Scheme)
Given a temporal grid ts = t0 < t1 < . . . < tN = tf, the Vanishing Constraint SOS–Sum–Up Rounding
(VC–SOS–SUR) Scheme is defined recursively by ωVC ↾(ti ,ti+1)

def
=
�
ωi

j

�nω

j=1
with

ωi
j

def
=

 j = argmax
1⩽k⩽nω∫ ti+1

ti
αk(t)dt>0

∫ ti+1

0

αk(t)dt −
∫ ti

0

ωVC
k (t)dt

 . (1.48)

In case the maximum in (1.48) is attained for more than one index k, exactly one must be selected by
argmax. △

Compared to Sager’s Sum–Up Rounding scheme, the rounding scheme (1.48) adds the term∫ t i+1

t i
αk(t)dt > 0 when selecting the index. This term plays the role of an additional feasibility

requirement that guarantees solutions to stay feasible even after rounding. To specify this
more detailed, we introduce the notion of ϵ–feasible grids.
Definition 1.37 (ϵ–feasible Grid)
Let (x , u,α) be feasible for the relaxed OCP (1.47) and ϵ > 0 an acceptable constraint violation. A
temporal grid ts = t0 < t1 < . . . < tN = tf is called ϵ–feasible, if for every ξ ∈ L∞(T ,Rnx) with

ξ(t)− x (t)



< ϵ, t ∈ T the following implication holds:∫ t j+1

t j

αi(t)dt > 0 =⇒ c(t,ξ(t), u(t), v i)⩽ ϵ, t ∈ [t j , t j+1]. (1.49)
△
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The Lipschitz continuity of the constraint function c(·) implies the existence of an ϵ–feasible
grid. This result is summarized in the following lemma:

Lemma 1.38
Let (x , u,α) be feasible for the relaxed OCP (1.47) and ϵ > 0 an acceptable constraint violation. Then
there exists an ϵ–feasible grid. △

The VC–SOS–SUR Scheme applied to an ϵ–feasible grid therefore fulfills the feasibility re-
quirement (1.49). Moreover, it maintains other favorable properties of the Sum–Up Rounding
such as preserving the Special Ordered Set (SOS) property and being computational cheap:

Proposition 1.39
Let (x , u,α) be feasible for the relaxed OCP (1.47) and let ts = t0 < t1 < . . . < tN = tf be a ϵ–feasible
grid for an acceptable constraint violation ϵ > 0. Then the VC–SOS–SUR constructed ωVC(·) has the
following properties:

(i)
∫ ti+1

ti
α j(t)dt = 0 =⇒ ωVC

j (t) = 0, t ∈ (t i , t i+1).

(ii) the Special Ordered Set Property
∑nω

j=1ω
VC
j (t) = 1, t ∈ T holds.

(iii) the computational complexity to evaluate ωVC(·) is O (N). △

Proof See Lenders [292, Proposition 6.22]. □

An estimate which relates the distance of the relaxed α(·) and the VC–SOS–SUR generated
ωVC(·) to the granularity of the temporal grid has not been proven yet. However, based on
numerical experiments there is strong evidence for the following conjecture:

Conjecture 1.40
The VC–SOS–SUR Scheme satisfies

sup
t∈T







∫ t

ts

�
α(τ)−ωVC(τ)

�
dτ






∞ ⩽ 1
2
(nω − 1)hmax, hmax

def
=max(t i+1 − t i). △

Under Conjecture 1.40 VC–SOS–SUR is a Vanishing Constraint convergent algorithm.

Definition 1.41 (Vanishing Constraint Convergent Algorithm)
A Vanishing Constraint convergent algorithm is an algorithm that accepts

• functions α j ∈ L∞(T , [0, 1]) such that
∑nω

j=1α j(t) = 1, t ∈ T

• a temporal grid ts = t0 < t1 < . . .< tN = tf

as inputs and provides functions ω j ∈ L∞(T , {0, 1}) such that
∑nω

j=1ω j(t) = 1, t ∈ T as outputs.
Moreover, there exists a constant C > 0 such that∫ ti+1

ti

α j(t)dt = 0 =⇒ ω j(t) = 0, t ∈ (t i , t i+1),

sup
t∈T







∫ t

ts

(α(τ)−ω(τ)) dτ






∞ ⩽ C · hmax. △
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Finally, the following result states that we retrieve an essentially feasible point of OCP (1.46)
with essentially the same objective function value if we apply VC–SOS–SUR to a feasible point
of the relaxed OCP (1.47).
Proposition 1.42
Let (x , u,α) be feasible for the relaxed OCP (1.47) and ϵ > 0 an acceptable constraint violation. Under the
assumption that a Vanishing Constraint convergent algorithm exists, there exists a ϵ–feasible temporal
grid ts = t0 < t1 < . . . < tN = tf such that the algorithm returns a point (x ϵ, u,ωϵ), which fulfills the
conclusion of Theorem 1.35, if the input is chosen to be α(·) and t0, t1, . . . , tN . △

Proof See Lenders [292, Proposition 6.19]. □
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Chapter 2

Elements of Real and Functional Analysis

This thesis is intended to be self–contained. Hence, the chapter reviews some fundamental
concepts of real and functional analysis that are of significance in the remainder of this thesis.
The single sections are based on relevant literature and we mainly concentrate on presenting
definitions and results. Proofs are dropped for the most part and the interested reader is re-
ferred to secondary literature. Readers already familiar with the topic can skip the chapter
and just use it as a reference if required.

2.1 Vector Spaces

This section is based on Gerdts [190, Sec. 2.1]. Let X be a set and K= R or K= C. Algebraic
operations + : X × X → X and · : K× X → X are called addition and scalar multiplication,
respectively.
Definition 2.1 (Abelian Group)
Let X be a set and + : X ×X → X an addition. The tuple (X ,+) is called an Abelian group, if

(i) (x + y) + z = x + (y + z) ∀x , y, z ∈ X (associative law);
(ii) ∃ΘX ∈ X : ΘX + x = x ∀x ∈ X (existence of null-element);
(iii) ∀x ∈ X ∃ x ′ ∈ X : x + x ′ = ΘX (existence of inverse);
(iv) x + y = y + x ∀x , y ∈ X (commutative law). △

We call ΘX the null–element of (X ,+). If there is no confusion about the set X we will omit
it and simply write Θ instead of ΘX .
Definition 2.2 (Vector Space)
Let (X ,+) be an Abelian group and · : K×X → X a scalar multiplication. The tuple (X ,+, ·) is called
a vector space or linear space over K, if the following computational rules hold:

(i) (s · t) · x = s · (t · x) ∀s, t ∈K, x ∈ X ;
(ii) s · (x + y) = s · x + s · y ∀s ∈K, x , y ∈ X ;
(iii) (s+ t) · x = s · x + t · x ∀s, t ∈K, x ∈ X ;
(iv) 1 · x = x ∀x ∈ X . △

Null–elements of the special vector spaces X = Rn and X = R (together with the usual addi-
tion and scalar multiplication) are denoted by 0n and 0, respectively. In case there is no doubt
about the value of n we just drop it and write 0 instead.
Definition 2.3 (Topology)
A topology τ on a set X is a subset of the power set of X with the following properties:
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(i) ;, X belong to τ.
(ii) The union of arbitrary many elements of τ belongs to τ.
(iii) The intersection of finitely many elements of τ belongs to τ. △

The elements of a topology τ are called open sets. The complement of an open set is called
closed set.
The topological product of two topological spaces (X ,τX ) and (Y,τY ) is the topological space
(X ×Y,τ). Here X ×Y = {(x , y) : x ∈ X , y ∈ Y} is the Cartesian product of the sets X and
Y , and τ consists of arbitrary unions of sets of the form {U × V : U ∈ τX ,V ∈ τY }.
Definition 2.4 (Continuity)
Let (X ,τX ) and (Y,τY ) be topological vector spaces. A mapping F : X −→ Y is called continuous at
x ∈ X , if for all open sets V ∈ τY containing y = F(x) ∈ Y there exists an open set U ∈ τX such that
x ∈ U and F(U) ⊆ V . △

The mapping F in Definition 2.4 is called continuous on X , if F is continuous at every point
x ∈ X .
Definition 2.5 (Topological Vector Space)
We call a tuple (X ,τ) a topological vector space over K, if

(i) X is a vector space over K.
(ii) X is equipped with a topology τ.
(iii) addition and scalar multiplication are continuous functions in the given topology. △

Definition 2.6 (Interior Point, Closure, Boundary Point, Dense Set)
Let V be a subset of a topological vector space (X ,τ). Then

• a point x ∈ V is called interior point of V , if there exists an open set U ∈ τ such that x ∈ U and
U ⊆ V . We denote the set of all interior points of V by int(V ).

• the set of all points x satisfying U ∩ V ̸= ; for all open sets U containing x is called closure of V
and denoted by cl(V ).

• a point x is called boundary point of V , x ∈ ∂ V , if x ∈ cl(V ) and x /∈ int(V ).
• V is called dense in X , if cl(V ) = X . △

Definition 2.7 (Metric Space)
A metric space is a tuple (X , d), where X is a set and d : X × X −→ R is a mapping such that for every
x , y, z ∈ X it holds

• d(x , y)⩾ 0 (non-negativity) and d(x , y) = 0⇔ x = y (identity of indiscernibles);
• d(x , y) = d(y, x) (symmetry);
• d(x , y)⩽ d(x , z) + d(z, y) (triangle inequality).

We call d a metric on X . △

A sequence {xn}n∈N in a metric space (X , d) is said to converge to a point x ∈ X , that is xn→ x ,
if limn→∞ d(xn, x) = 0.
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Definition 2.8 (Cauchy Sequence)
Let (X , d) be a metric space. The sequence {xn}n∈N is called a Cauchy sequence, if

∀ϵ > 0 ∃N(ϵ) ∈ N : d(xn, xm)< ϵ ∀n, m> N(ϵ). △

Definition 2.9 (Complete Metric Space)
A metric space (X , d) is called complete, if every Cauchy sequence in X converges to some point of X .△

Definition 2.10 (Normed Vector Space)
Let X be a vector space over K. We call the tuple (X ,∥·∥X ) a normed vector space, if ∥·∥X : X → R fulfills
for all x , y ∈ X and s ∈K the following conditions:

(i) ∥x∥X ⩾ 0 and ∥x∥X = 0⇔ x = 0 (positive-definiteness);
(ii) ∥s · x∥X = |s| · ∥x∥X (homogeneity);
(iii) ∥x + y∥X ⩽ ∥x∥X + ∥y∥X (triangle inequality). △

We call the mapping ∥·∥X : X → R a norm on X . Every norm induces a metric by defining
d(x , y)

def
= ∥x − y∥X . Hence the terminologies ’convergence’, ’Cauchy sequence’ and ’com-

plete’ can be translated to normed vector spaces (X ,∥·∥X ).
Definition 2.11 (Banach Space)
A complete normed vector space is called Banach space. △

Definition 2.12 (Scalar Product)
Let X be a vector space overK. We call the mapping 〈·, ·〉X : X ×X →K a scalar product or inner product,
if the following conditions are fulfilled for all x , y, z ∈ X and s ∈K:

(i) 〈x , y〉X = 〈y, x〉X ;
(ii) 〈x + y, z〉X = 〈x , z〉X + 〈y, z〉X ;
(iii) 〈x , s · y〉X = s · 〈x , y〉X ;
(iv) 〈x , x〉X ⩾ 0 and 〈x , x〉X = 0⇔ x = ΘX . △

In Definition 2.12, the complex conjugate of a complex number z is denoted by z. Notice, that
∥x∥X =

p〈x , x〉X induces a norm on a pre–Hilbert space X .
Definition 2.13 (pre–Hilbert Space, Hilbert Space)
Let X be a vector space over K and 〈·, ·〉X : X × X → K a scalar product. The tuple (X , 〈·, ·〉X ) is called
pre–Hilbert space. A pre–Hilbert space (X , 〈·, ·〉X ) is called Hilbertspace, if it is complete with respect
to the induced norm ∥·∥X =

p〈·, ·〉X . △

The tangent cone plays an important role in the context of infinite and finite dimensional
optimization. In particular, certain regularity conditions are expressed bymeans of the tangent
cone.
Definition 2.14 (Tangent Cone – Banach Space Version)
For a non–empty subset Σ ⊂ X of a Banach space X the tangent cone to Σ at x ∈ Σ is defined as follows:

T (Σ, x)
def
=
§

d ∈ X : ∃ (xn)n∈N in Σ with xn→ x and ∃ (tn)n∈N with tn↘ 0,
xn − x

tn
→ d

ª
. △

If the set Σ becomes clear from the context we often drop it and just write T (x) instead.
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2.2 Mappings and Dual Spaces

In this section (X ,∥·∥X ), (Y,∥·∥Y ) and (Z ,∥·∥Z) denote real Banach spaces.

Definition 2.15 (Image, Kernel, Preimage)
Let F : X −→ Y be a mapping from a Banach space (X ,∥·∥X ) into Banach space (Y,∥·∥Y ).

(i) The image of F is defined as im(F)
def
= {F(x) : x ∈ X }.

(ii) The kernel of F is defined as ker (F)
def
= {x ∈ X : F(x) = ΘY }.

(iii) The preimage of S ⊆ Y under F is defined as F−1(S)
def
= {x ∈ X : F(x) ∈ S} △

The mapping F : X −→ Y is called linear, if

F(x1 + x2) = F(x1) + F(x2) and F(λx1) = λF(x1)

holds for all x1, x2 ∈ X ,λ ∈ R. F is called bounded, if

∥F(x)∥Y ⩽ C ∥x∥X ∀x ∈ X (2.1)

and some C ⩾ 0. If Y = R, then F is called a functional. The space L (X , Y ) consists of all
continuous linear operators L from X to Y . The space is equipped with the norm

∥L∥L (X ,Y )
def
= sup

x ̸=ΘX

∥L(x)∥Y

∥x∥X
= sup
∥x∥X⩽1

∥L(x)∥Y = sup
∥x∥X=1

∥L(x)∥Y . (2.2)

Note that the definition makes sense due to the fact that a linear operator L from X to Y is con-
tinuous if and only if L is bounded (see e.g. Yosida [460, Corollary 2, p. 43]). If L ∈ L (X , Y )
is bijective, then L−1 ∈ L (Y, X ) and L is said to be an isomorphism. We call L ∈ L (X , Y )
an isometry, if ∥L(x)∥Y = ∥x∥X for all x ∈ X . We call the spaces X and Y isometrically iso-
morphic, if there exists an isometric isomorphism between X and Y . In this case we write
X ∼= Y .
Definition 2.16 (Upper and Lower Semi–continuity)
A functional F : X −→ R is called upper semi–continuous at x , if for every sequence {x i} with x i → x it
holds

limsup
i→∞

F(x i)⩽ F(x).

A functional F : X −→ R is called lower semi–continuous at x , if for every sequence {x i} with x i → x it
holds

lim inf
i→∞ F(x i)⩾ F(x). △

Definition 2.17 (Dual Space, Adjoint Operator)
The set of all linear continuous functionals on X equipped with the norm

∥F∥X ∗ = sup
∥x∥X⩽1

|F(x)| (2.3)
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is called dual space of X and is denoted by X ∗ i.e., X ∗ =L (X ,R). Let F : X −→ Y be linear. The adjoint
operator F ∗ : Y ∗ −→ X ∗ is a linear operator defined by

F ∗(y∗)(x) = y∗(F(x)) ∀y∗ ∈ Y ∗, x ∈ X . △

Theorem 2.18
Let X1, X2, . . . , Xn be Banach spaces endowed with the norms ∥·∥1 ,∥·∥2 , . . . ,∥·∥n. Then the product
space

X = X1 × X2 × . . .× Xn (2.4)

equipped with the norm ∥x∥X = max1⩽ j⩽n ∥x i∥X i
is also a Banach space. The dual space of X is given

by

X ∗ =
�

x∗ = (x∗1, x∗2, . . . , x∗n) : x∗i ∈ X ∗i , i ∈ [n]	 , where x∗(x) =
n∑

i=1

x∗i (x i). (2.5)
△

Proof See Wloka [455]. □

Theorem 2.19 (Hahn–Banach ExtensionTheorem)
Let (X ,∥·∥X ) be a normed space and U ⊂ X be a closed linear subspace of X endowed with the same norm
∥·∥X . Then a linear functional L ∈ U∗ on U can be extended to a linear functional L̂ on X preserving the
norm, i.e. L̂ ↾U= L and



 L̂




X ∗ = ∥L∥U∗ <∞. △

Proof See Wloka [455]. □

Definition 2.20 (Duality Pairing)
For a normed space X , the mapping (·, ·)X ∗ ,X : X ∗ × X −→ R given by

(x∗, x)X ∗ ,X
def
= L(x)

is called duality pairing of X ∗ and X . △

Definition 2.21 (Cone and Dual Cone)
Let X be a vector space and K ⊂ X . If k ∈ K implies αk ∈ K for all scalar values α ⩾ 0, then K is called
a cone with vertex at ΘX . For a subset K ⊆ X of a Banach space X we define the positive dual cone of K
as the set K+

def
= {x∗ ∈ X ∗ : x∗(k) ⩾ 0 ∀ k ∈ K}. For the negative dual cone K− we just replace ‘⩾’ with

‘⩽’. △

Note that the tangent cone of Definition 2.14 is indeed a cone.

2.3 Differentiability in Banach Spaces

In this section (X ,∥·∥X ), (Y,∥·∥Y ), (Z ,∥·∥Z), . . . denote Banach spaces over K.
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Directional, Gateaux and Fréchet Derivatives
Definition 2.22 (Directional Derivative)
The directional derivative of a function F : X → Y at x in direction h ∈ X refers to the limit

F ′(x; h)
def
= lim

t↘0

1
t

�
F(x + th)− F(x)

�
,

if it exists. F ′(x; h) is then called directional derivative of F at x in direction h. Furthermore, the mapping
h 7→ F ′(x; h) is called first variation of F at x . F is called directionally differentiable at x if the limit exists
for all h ∈ X . △

Definition 2.23 (Gateaux–Differentiability)
A directionally differentiable mapping F : X → Y is called Gateaux differentiable at x, if there exists a
continuous and linear operator δF(x) : X → Y with

lim
t↘0

F(x + th)− F(x)− tδF(x)(h)
t

= ΘY

for all h ∈ X . The operator δF(x) is called Gateaux differential of F at x . △

If F : X → Y is Gateaux–differentiable at x , then F is directionally differentiable and the
directional derivative and Gateaux–derivative coincide, i.e. we then have

F ′(x; h) = δF(x)(h).

The Gateaux derivative of a functional F : X −→ R is an element of the dual space X ∗ =
L (X ,R), i.e.

δF(x)(h) = (δF(x), h)X ∗,X . (2.6)

Definition 2.24 (Fréchet–Differentiability)
We call the function F : X −→ Y Fréchet–differentiable at x ∈ X or differentiable at x ∈ X , if there
exists a continuous and linear operator F ′(x) : X −→ Y with

lim∥h∥X→0

F(x + h)− F(x)− F ′(x)(h)
∥h∥X

= ΘY

for all h ∈ X . △

If F : X → Y is Fréchet–differentiable at x , then F is continuous and Gateaux differentiable
and the Fréchet–derivative and the Gateaux–derivative coincide, i.e. it holds

F ′(x)(h) = δF(x)(h). (2.7)

Definition 2.25 (Partial Fréchet–Differentiability)
Let F : X × Y −→ Z a mapping. We call F (partially) Fréchet–differentiable with respect to x at
(x∗, y∗) ∈ X × Y , if F(·, y∗) is Fréchet–differentiable at x∗. The partial derivative of F with respect to
x at (x∗, y∗) is denoted by F ′x (x

∗, y∗). △

In a similar way we define the partial differential with respect to y .
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Higher–Order Derivatives

The definition of higher–order Fréchet–derivatives is constructed recursively: let k ⩾ 2 and
F : X −→ Y . F is called k–times Fréchet differentiable, if F ′ is (k − 1)–times Fréchet
differentiable. In particular, F is twice Fréchet–differentiable at x̂ , if the mapping

F ′(·) : X −→L (X , Y ), x 7→ F ′(x),

is Fréchet–differentiable at x̂ . Hence, F ′′( x̂) is a continuous linear operator from X into
L (X , Y ):

F ′′( x̂) ∈ L (X ,L (X , Y ))

F ′′(·) : X −→L (X ,L (X , Y ))

Thus, for every d1, d2 ∈ X it holds

F ′′( x̂)(d1)(·) ∈ L (X , Y ),

F ′′( x̂)(d1)(d2) ∈ Y.

Definition 2.26 (Bilinear Mapping)
Let X and Y be vector spaces. A mapping B : X ×Y −→ Z is called bilinear, if the partial mappings given
by

x 7→ B(x , y) and y 7→ B(x , y)

are linear for any y ∈ Y and x ∈ X , respectively. △

F ′′( x̂)(d1)(·) and F ′′( x̂)(·)(d2) are linear for every d1 ∈ X and d2 ∈ X , respectively. According
to Definition 2.26 F ′′( x̂) is a bilinear mapping.

Basic Theorems of Differential Calculus
Lemma 2.27
If F : X ×Y −→ Z is Fréchet–differentiable at (x∗, y∗), then the partial Fréchet–derivatives F ′x (x

∗, y∗)
and F ′y(x

∗, y∗) exist at (x∗, y∗). Furthermore, it holds for all x ∈ X and y ∈ Y that

F ′(x∗, y∗)(x , y) = F ′x (x
∗, y∗)(x) + F ′y(x

∗, y∗)(y). △

Proof See Zeidler [467]. □

Theorem 2.28 (Mean–Value Theorem)
Let X and Y be linear topological spaces and let U ⊂ X be open. Furthermore, let F : U −→ Y be
Gateaux–differentiable at every point of the interval [x , x + h] ⊂ U .

(i) If x 7→ δF(x)(h) is a continuous mapping for all points in [x , x + h], then

F(x + h)− F(x) =

1∫
0

δF(x +τ · h)(h) dτ.
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(ii) If X and Y are Banach spaces, it holds

∥F(x + h)− F(x)∥Y ⩽ sup
0⩽τ⩽1

∥δF(x +τ · h)∥L (X ,Y ) · ∥h∥X ,

and, for any L ∈ L (X , Y )

∥F(x + h)− F(x)− L(h)∥Y ⩽ sup
0⩽τ⩽1

∥δF(x +τ · h)− L∥L (X ,Y ) · ∥h∥X . △

Proof See Ioffe and Tikhomirov [251, p. 27]. □

2.4 Function Spaces

This section reviews some basic function spaces. We summarize properties of these function
spaces and specify norms and scalar products to end up with concrete Banach and Hilbert
spaces that will find a use in the remainder of this thesis.
However, we assume readers to be familiar with Lebesgue measure and integration. This is
especially important to introduce Lebesgue spaces (see Section 2.4.2) and Sobolev spaces (see
Section 2.4.3). Furthermore, it is essential for the definition of the Lebesgue–Stieltjes integral
in Section 2.5. For a brief discussion of that theory we refer the reader to Adams and Fournier
[6]. Comprehensive surveys can be found in the monographs of Wloka [455], Yosida [460]
and Clarke [111].
Distributions (see Schwartz [398, 399]) which is a concept that generalizes the classic notation
of a function are not formally introduced in this thesis as well. This is due to the fact that we
need distributions just in one single aspect, where we can sketch the idea behind even without
a rigorous discussion of distributions. Excellent sources covering the topic of distributions
are the monographs of Zeidler [468], Yosida [460], Berezansky et al. [56] and Dret and
Lucqin [139].
In the following sections we consider intervals I with endpoints a, b ∈ R (unless particularly
restricted to finite values) with a ⩽ b. The interval I can be open, half–open or closed. Ω
denotes an open subset of Rn, n⩾ 1.
Let f : R −→ R be a function and t ∈ R. The limit from the left and the limit from the right is
denoted by f (t−) = lims↗t f (s) and f (t+) = lims↘t f (s), respectively. Furthermore, we use
the abbreviations f (∞−) and f ((−∞)+) for the limits of f to∞ and −∞.
For functions f : Rn −→ R we use the multiindex notation for partial derivatives. Let α =
[α1, . . . ,αn]

T ∈ Nn be a multiindex. We call the integer |α|=∑n
i=1αi the length of α and set

∂ α f =
∂ |α| f

∂ xα1
1 ∂ xα2

2 · · ·∂ xαn
n

.

The support of a function f : Ω −→ R, supp f , is defined as the complement of the largest open
subset of Ω on which f (·) vanishes. Hence, it is a closed subset of Ω. Informally speaking, a
subset K of Ω is compact if and only if it is a closed and bounded subset that does not touch
the boundary in the sense that the distance between K and Rn \ Ω is greater than zero, i.e.,
there is a safety gap between K and ∂Ω.
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2.4.1 Spaces of Continuous Functions

Definition 2.29 (k–Times Continuously Differentiable Functions)
Let I be any interval and k ∈ N. The space of k–times continuously differentiable functions Ck(I,R)
is denoted by the vector space consisting of all functions f : I −→ R which, together with all their
derivatives f ( j)(·) of order j ⩽ k, are continuous on I . We use the abbreviation C(I,R) = C0(I,R). △

Compact Domain Let I = [a, b] be any compact interval and k ∈ N. The space Ck(I,R) of
all k–times continuous differentiable functions f : I −→ R equipped with the norm

∥ f ∥Ck(I)
def
=

k∑
j=0

max
t∈I

�� f ( j)(t)�� ,
is a Banach space, cf. Gajewski et al. [176]. The space

Ck(I,Rn)
def
= Ck(I,R)× . . .× Ck(I,R)︸ ︷︷ ︸

n times

of k–times continuously differentiable vector–valued functions f : I −→ Rn with the product
norm is a Banach space, cf. Gajewski et al. [176].

Half–Open Domain Let I = (a, b] any half–open interval and k ∈ N. Since I is half–
open, functions in Ck(I,R) need not be bounded on I . We define Cb(I,R) to consist of those
functions f : I −→ R for which f ( j)(·) is bounded on I for 0 ⩽ j ⩽ k. Endowed with the
norm

∥ f ∥Ck
b(I)

def
=

k∑
j=0

sup
t∈I



 f ( j)(t)


 ,

Ck
b(I,R) is a Banach space, cf. Adams and Fournier [6]. The space

Ck
b(I,Rn)

def
= Ck

b(I,R)× . . .× Ck
b(I,R)︸ ︷︷ ︸

n times

of k–times continuously differentiable vector–valued functions f : I −→ Rn with bounded
derivatives equipped with the product norm is a Banach space, cf. Adams and Fournier [6].

Extensions Due to their important role functions with compact support deserve their own
notation:

Ck
c (I,R) def

= { f ∈ Ck(I,R) : supp f is compact}.
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The space of infinitely differentiable functions on I is defined by

C∞(I,Rn)
def
=
∩
k∈N

Ck(I,Rn).

Likewise we define the function spaces C∞b (I,Rn) and C∞c (I,Rn).

2.4.2 Lebesgue Spaces

Let Ω be a domain in Rn and let p be a positive real number. The space Lp(Ω,R) denotes the
function space of all measurable functions f : Ω −→ R with∫

Ω

| f (x)|p dx <∞, (2.8)

where the integral denotes the Lebesgue integral. In Lp(Ω,R) we identify functions that
are equal almost everywhere in Ω. Hence, elements of Lp(Ω,R) are equivalence classes of
measurable functions that satisfy (2.8), where two functions are equivalent if they are equal
almost everywhere in Ω. For convenience this distinction is ignored in this thesis, and write
f ∈ Lp(Ω,R) if f (·) satisfies (2.8), and f = 0 in Lp(Ω,R) if f (x) = 0 almost everywhere in Ω.
The spaces Lp(Ω,R), endowed with the norm

∥ f ∥p
def
=

�∫
Ω

| f (x)|p dx

�1/p

are Banach spaces for 1⩽ p <∞, cf. Kufner et al. [280, Theorems 2.8.2].
A measurable function f : Ω −→ R is said to be essentially bounded on Ω if there exists a
constant K such that f (x)⩽ K almost everywhere on Ω. We call the greatest lower bound of
such constants K the essential supremum of | f | on Ω and denote it by ess supx∈Ω | f (x)|.
The space L∞(Ω,R) consists of all essentially bounded functions f : Ω −→ R. As we have
done before functions in L∞(Ω,R) are identified if they are equal almost everywhere on Ω.
The space L∞(Ω,R), equipped with the norm

∥ f ∥∞ def
= ess sup

x∈Ω
| f (x)|

is a Banach space, cf. Kufner et al. [280, Theorem 2.11.7].
For 1⩽ p ⩽∞ the space Lp(Ω,Rn) is defined as the product space

Lp(Ω,Rn)
def
= Lp(Ω,R)× . . .× Lp(Ω,R)︸ ︷︷ ︸

n times

.

Hence, the space Lp(Ω,Rn), equippedwith the product norm is a Banach space. The Lebesgue
spaces admit local versions

Lp
loc(Ω,Rn)

def
= { f : f ↾K∈ Lp(K,Rn) for all compact K ⊂ Ω}.
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2.4.3 Sobolev Spaces

The spaces of this section are defined over an arbitrary open set Ω ⊆ Rn. They are vector
subspaces of Lebesgue spaces Lp(Ω,R). For 1 ⩽ p, q ⩽∞ the space W q,p(Ω,R) consists of
all functions of Lp(Ω,R) that admit all weak derivatives of order at most q:

W q,p(Ω,R) def
= { f ∈ Lp(Ω,R) : ∂ α f ∈ Lp(Ω,R) for all 0⩽ |α|⩽ q}.

If we equip the spaces W q,p(Ω,R) with the appropriate Sobolev–norm from

∥ f ∥q,p
def
=

 ∑
0⩽|α|⩽q

∥∂ α f ∥p
p

!1/p

, 1⩽ p <∞,

∥ f ∥q,∞
def
= max

0⩽|α|⩽q
∥∂ α f ∥∞ ,

they are called Sobolev spaces overΩ. For 1⩽ p, q ⩽∞ the space W q,p(Ω,R), endowed with
the norm ∥·∥q,p is a Banach space, cf. Kufner et al. [280, Theorem 5.2.2]. Alternatively, we
could also define the Sobolev space W q,p(Ω,R) as the completion of { f ∈ Cq(Ω,R) : ∥ f ∥q,p <

+∞} with respect to the Sobolev–norm ∥·∥q,p , cf. Meyers and Serrin [324].
For 1⩽ p, q ⩽∞ the space W q,p(Ω,Rn) is defined as the product space

W q,p(Ω,Rn)
def
=W q,p(Ω,R)× . . .×W q,p(Ω,R)︸ ︷︷ ︸

n times

.

Hence, the space W q,p(Ω,Rn), equipped with the product norm is a Banach space.

2.4.4 Absolutely Continuous Functions

In the context of ODEs and OCPs in particular the function space W 1,p(I,Rn) with non–
empty intervals I is of relevance. Following Rudin [378] we will characterize this space using
absolutely continuous functions.
Definition 2.30 (Absolutely Continuous Functions)
Let I be an interval in R. We call a function f : I −→ R absolutely continuous, if f (·) is continuous in
the following sense: for every ϵ > 0 there exists a δ(ϵ)> 0 such that

N∑
j=1

(b j − a j)< δ(ϵ) =⇒
N∑

j=1

�� f (b j)− f (a j)
��< ϵ,

where N ∈ N is arbitrary and (a j , b j) ⊂ I , 1 ⩽ j ⩽ N , are disjoint intervals. The space of all absolutely
continuous functions on interval I is denoted by AC(I,R). △

From Definition 2.30 it is obvious that absolutely continuous functions are in particular con-
tinuous as one can simply take N = 1. AC(I,Rn) denotes the product space

AC(I,Rn)
def
=AC(I,R)× . . .×AC(I,R)︸ ︷︷ ︸

n times

.
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Differentiability The following result states that for any function f ∈ W 1,p(I,Rn) there
exists a function f̂ ∈AC(I,Rn) such that f = f̂ almost everywhere and that the derivative of
f̂ exists almost everywhere.

Theorem 2.31
Suppose f ∈ Lp(I,Rn). Then f ∈W 1,p(I,Rn), p ⩾ 1, if and only if f (·) has a representative f̂ (·) that is
absolutely continuous on almost all segments J in I ( f̂ ∈AC(J ,Rn)) and whose (classical) derivative
belongs to Lp(I,Rn). △

Proof See e.g. Ziemer [472, Theorem 2.1.4]. □

Due to this result we can identify the space W 1,p(I,Rn) for an open non–empty interval I ⊆ R
with absolutely continuous functions f ∈AC(I,Rn) such that ḟ ∈ Lp(I,Rn). Using this iden-
tification we find the following generalized definition of W 1,p(I,Rn) for arbitrary bounded
non–empty intervals I ⊆ R.
Definition 2.32 (Absolutely Continuous Functions W 1,p(I,Rn))
Let I ⊆ R be a non–empty bounded interval and 1 ⩽ p ⩽∞. The space W 1,p(I,Rn) consists of all
absolutely continuous functions f : I −→ Rn such that ḟ ∈ Lp(I,Rn) and ∥ f ∥1,p < +∞, where the
norm is given by the Sobolev norm

∥ f ∥1,p =

(�∥ f ∥p
p +



 ḟ


p

p

�1/p
, 1⩽ p <∞,

max
�∥ f ∥∞ ,



 ḟ


∞	 , p =∞.

△

FundamentalTheoremofCalculus Nowwe investigate the relation between absolute con-
tinuity and the indefinite Lebesgue integral.

Theorem 2.33
Let f : I −→ R be summable, i.e., we have f ∈ L1(I,R). Then the indefinite integral

F(t) =

∫ t

a

f (τ) dτ

is absolutely continuous. △

Proof See e.g. Kolmogorov and Fomin [278]. □

In a next step we show that the reverse direction of Theorem 2.33 is valid as well.

Theorem 2.34 (Lebesgue)
Let F : I −→ R be absolutely continuous. Then the derivative F ′(·) is summable on I and

F(t) = F(a) +

∫ t

a

F ′(τ) dτ. △

Proof See e.g. Kolmogorov and Fomin [278]. □
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According to Theorems 2.33 and 2.34 the absolutely continuous functions can be identified as
precisely those functions for which the fundamental theorem of calculus is valid, i.e., a function
F : I −→ Rn is absolutely continuous if and only if there exists a function f ∈ L1(I,Rn) such
that ∫ t

a

f (τ) dτ= F(t)− F(a), t ∈ I,

and F ′ = f almost everywhere on I . Consequently, absolutely continuous functions are well
behaved in the sense that they coincide with the integral of their derivative. For this reason,
they are a natural choice for the components of the differential state inODE andOCP problems.

2.4.5 The Function Spaces Yk(I,R)

In this section we investigate function spaces that are tailored to ODE and OCP solution ap-
proximations arising from numerical discretization schemes. In particular, state and control
trajectory approximations that are generated by pseudospectral collocation methods fall into
this algorithm class. The function spaces will allow us to gain some insight into the structure
of OCP costates, cf. Chapter 8. They enabled Beigel [41] to shed light on the relationship be-
tween the discrete adjoints of BDF methods and the solution of the adjoint ODE. To a certain
extent we lift her results from an ODE to an OCP context in Chapter 9.
Let I = [ts, t f ] be a compact non–empty interval, where I usually denotes the optimization
horizon T in the context of OCPs. Given a natural number N we can form a temporal grid

ts = t0 < t1 < . . .< tN = t f (2.9)

of N+1 disjoint points t0, t1, . . . , tN ∈ I . The tn make up a partition of size N and the horizon
interval I is split into intervals as

I = I1 ∪ . . .∪ IN , (2.10)

where the intervals In are given by open intervals In
def
= (tn−1, tn) for n ∈ [N]. The interval

length of interval In is denoted by hn = tn − tn−1, n ∈ [N]
Generalized Derivatives Numerical OCP solvers usually provide state approximations that
are continuous and piecewise continuously differentiable with respect to a grid as defined in
(2.10) whereas control approximations are often chosen to be piecewise continuous. We call a
function piecewise continuous on an interval if the interval can be split into a finite number
of subintervals such that the function is continuous on each subinterval (subinterval without
endpoints) and has a finite limit at the endpoints of each subinterval. Notice that we always
consider a fixed grid in the subsequent discussion.
Anticipating our later definition we denote the state function space as Y1(I,R) and the con-
trol function space as Y0(I,R). Intuitively we would expect that differentiating a function
from Y1(I,R) would result in a function from Y0(I,R). However, to achieve this we need
generalized derivatives.
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In order to motivate generalized derivatives we recall the classical integration by parts formula∫ b

a

f (x) g (k)(x) dx = (−1)k
∫ b

a

f (k)(x) g (x) dx (2.11)

for fixed f ∈ Ck((a, b),R) and all g ∈ C∞c ((a, b),R). Note that no boundary integrals appear
in the integration by parts formula due to the choice g ∈ C∞c ((a, b),R). If we substitute
h = f (k) in formula (2.11) then we obtain the key formula∫ b

a

f (x) g (k)(x) dx = (−1)k
∫ b

a

h(x) g (x) dx ∀g ∈ C∞c ((a, b),R). (2.12)

The following definition is based on the idea that (2.12) remains true for certain non–smooth
functions f (·) and h(·).
Definition 2.35 (Generalized Derivative)
Let J = (a, b) be a non–empty open interval and let f , h ∈ L1

loc(J ,R). We call h(·) a generalized
derivative of f (·) of order k iff (2.12) holds. In this case we write h(·) = f (k)(·). △

Note that the definition is well posed since classic and generalized derivatives coincide and
each generalized derivative is unique up to a change of the values of h(·) on a set of mea-
sure zero, cf. Zeidler [469, Proposition 21.2]. Now it is easy to show that the (generalized)
derivative of a function f ∈ Y1(I,R) is given by

h(x) =

¨
f ′(x) if x ∈ ∪n∈[N] In,

arbitrary otherwise,

and therefore h ∈ Y0(I,R), cf. Zeidler [469, Example 21.5]. In order to obtain unique deriva-
tives of Y1(I,R) we define functions from Y0(I,R) to be continuous from the left. For conve-
nience we assume piecewise continuous functions to be continuous from the left as well and
denote the function space as C−1(I,R).

Function SpaceDefinition Given a temporal grid (2.9) and an non–negative natural number
k we define the function space

Yk(I,R) def
=
�

f ∈ Ck−1(I,R) : f ↾In
∈ Ck

b(In,R), n ∈ [N]	 (2.13)

such that single–component state trajectory approximations X(·) are chosen from Y1(I,R)
and single–component control trajectory approximations U(·) from Y (I,R) def

= Y0(I,R).
Analogously to previous sections we realize the extension of Yk(I,R) for vector–valued func-
tions f : I −→ Rn by means of product spaces and denote them as Yk(I,Rn). In order to make
Yk(I,R) into a normed vector space we equip it with the norm

∥ f ∥Yk(I)
def
= max

n=1,...,N
∥ f ∥Ck

b(In) . (2.14)

74



Elements of Real and Functional Analysis
�� Chapter 2

For later chapters, it is necessary that Y1(I,R) and Y0(I,R) are Banach spaces. Exemplarily
this is shown for Y0(I,R) in the following lemma.

Lemma 2.36
The function space Y0(I,R) endowed with the norm

∥ f ∥Y (I) = max
n∈[N]∥ f ∥Cb(In)

is a Banach space. △

Proof To prove the completeness of the space Y0(I,R) let ( fk)k∈N be a Cauchy sequence in Y0(I,R).
By definition there exists for all ϵ > 0 a natural number M such that for natural numbers k, l > M it holds
that ∥ fk − fl∥Y (I) < ϵ. By definition of the norm ∥·∥Y (I) in (2.14) this means that ∥ fk − fl∥Cb(In) < ϵ for
all n ∈ [N]. Hence, ( fk)k∈N restricted to all intervals In and equipped with the norm ∥·∥Cb(In) are Cauchy
sequences. Since these spaces are Banach spaces they have a limit in the space. The limit candidate f
for Y0(I,R) is constructed from the limits on the intervals In by concatenation. We get

∥ f − fk∥Y (I) = max
n∈[N]∥ f − fk∥Cb(In) −→ 0, for k→∞,

where the convergence to 0 when k tends to infinity follows because of the interval wise construction
of f . Thus Y0(I,R) is complete. □

The proof that Y1(I,R) is a Banach space looks very similar to the one of Lemma 2.36 and is
omitted here. If we choose (x , u) ∈ Y1(I,R)×Y (I,R) then the ODE constraint function

F(x (·), u(·)) def
= ẋ (·)− f (·, x (·), u(·))

maps Y1(I,R)×Y (I,R) to the space Y (I,R). Thus F(x (·), u(·)) is continuous from the left
on I .

2.4.6 Step Functions

Step functions act as a central element in the definition of the Lebesgue integral. Even though
we assumed the Lebesgue integral to be well knownwewill need step functions for the defini-
tion of the Lebesgue–Stieltjes integral in Section 2.5 and for some other reasons. Generally
speaking, a step function is a function from the real numbers to themselves which is constant
everywhere except at a finite number of points. There are several ways to write step functions
mathematically.

Definition 2.37 (Step Function)
Let I be any interval and {I1,I2, . . . ,IN} a finite collection of pairwise disjoint intervals such that I
contains the interval union J def

= I1 ∪ I2 ∪ . . .∪ IN , i.e. J ⊆ I . Let {a1, a2, . . . , aN} be a set of finite
non–zero real numbers. Then a function θ : I −→ R, given as

θ (t) =

¨
an, if t ∈ In, n ∈ [N],
0, if t ∈ I \J ,

is called step function. △
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It can be easily seen from Definition 2.37 that the zero function is also a step function. We call
the set J on which θ is nonzero the support of θ . We show two ways how to express step
functions alternatively.

Characteristic Function The first alternative makes use of characteristic functions.

Definition 2.38 (Characteristic Function)
Let I be any interval and let J be a subinterval of I , i.e. J ⊆ I . A characteristic function is an indicator
function XJ : I→ {0, 1}, that is defined as

XJ (t) =

¨
1, if t ∈ J ,

0, if t ∈ I \J . △

It can be easily seen from Definition 2.38 that a characteristic function is a step function. By
means of characteristic functions any step function θ : I −→ R can be written as

θ (t) =
N∑

n=1

an ·XIn
(t),

where the same assumptions and notations are assumed to hold as in Definition 2.37.

Heaviside Function The second alternative to write step functions uses linear combina-
tions of translations of the Heaviside function.

Definition 2.39 (Heaviside Function)
The Heaviside function is the indicator function H : R→ {0, 1}

H(t) =

¨
0, if t < 0,

1, if t ⩾ 0. △

It can be seen from the definition of the Heaviside function that it is a step function. Specif-
ically the function H(·) is sometimes called the Heaviside step function. According to Defi-
nition 2.39 the Heaviside function is continuous from the right. Alternatively one could also
define it as continuous from the left or even discontinuous in 0. For reasons that become
clearer in later chapters we prefer the chosen definition. Now we extend the Heaviside func-
tion to be defined not on the whole real line but on subsets and to have a discontinuity in other
points than 0. Let therefore I be any interval and let s be a point in I . The Heaviside function
with jump in s is the indicator function Hs : I → {0,1}, that is defined as

Hs(t)
def
=H(t − s) =

¨
0, if t < s,

1, if t ⩾ s.

Let M be a positive natural number and let θ1,θ2, . . . ,θM be step functions on the same interval
I . Moreover, we assume the θm to have supports of finite total length. It can be easily seen
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that for finite real numbers h1, h2, . . . , hM the function θ : I −→ R given as

θ (t) =
M∑

m=1

hm · θm(t) (2.15)

is also a step function on I and that the support of θ has finite length. If we choose Heaviside
functions Htm

for the θm in (2.15) then we end up with a step function that is continuous from
the right and has a jump of height hm at points tm.

Dirac Delta Distribution We are interested to find a derivative of Hs(·). But there does
not exist any function which is the (generalized) derivative of Hs(·) on R. However, using the
so–called Dirac δ–distribution at t = s enables us to define a derivative in the sense of the
theory of distributions. A rigorous definition of distributions is beyond the scope of this thesis
and we only sketch the idea behind it.
The key to understanding the relation between classical functions f and distributions F is the
following formula:

F(g ) =

∫ b

a

f (x) g (x) dx ∀g ∈ C∞c ((a, b),R). (2.16)

The theory of distributions is based on the principle to express properties of functions f in
terms of distributions F via (2.16). By means of this approach distributions can be regarded
as generalized functions. For instance, let us consider the function f (·) with classic derivative
h = f (k) such that h(·) corresponds to the distribution

H(g ) =

∫ b

a

f (k)(x) g (x) dx ∀g ∈ C∞c ((a, b),R).

Integration by parts yields∫ b

a

f (k)(x) g (x) dx = (−1)k
∫ b

a

f (x) g (k)(x) dx ,

and thus

H(g ) = (−1)k F(g (k)).

In a natural way this motivates us defining the derivative F (k) of F as F (k)
def
= H such that

F (k)(g ) = (−1)k F(g (k)) ∀g ∈ C∞c ((a, b),R). (2.17)

Now we come back to the δ–distribution and its motivation: the so–called δ–“function” de-
scribes the density of a mass point with mass m = 1 at t = s. Following this physical inter-
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pretation one would like to set

δ(t − s) =

¨
0 if t ̸= s,

+∞ if t = s,

and ∫ +∞

−∞
δ(t − s)φ(t) dt = φ(s) ∀φ ∈ C∞c (I,R).

Since there is no function satisfying these two properties this definition make no sense from
a mathematical point of view. However, it is possible with the help of distributions: for fixed
s ∈ R, we define

δs(φ)
def
= φ(s) ∀φ ∈ C∞c (I,R).

A nice property of distributions is that they possess derivatives of arbitrary order. This allows
us to identify the derivative of the Heaviside function Hs(·) in the sense of the theory of
distributions as the δ–distribution δs: set

Ts(φ) =

∫ b

a

Hs(t)φ(t) dt ∀φ ∈ C∞c (I,R).

By definition (see (2.17)), we have T ′s (φ) = −Ts(φ′) for all φ ∈ C∞c (I,R) and thus we state

T ′s (φ) = −
∫ b

s

φ′(t) dt = φ(s)

such that T ′s (φ) = δs(φ).
Example 2.40
Let a = t0 < t1 < . . .< tN = b be a fixed partition of the compact interval I = [a, b]. The derivative (in
the sense of distributions) of the step function

Λh(t) =
N∑

n=1

λn hn ·Htn
(t), hn = tn − tn−1, (2.18)

is then given by the Dirac measures at {tn}Nn=1 with heights {λn hn}Nn=1.

Area of a Step Function If the support of a step function θ has finite total length, then we
associate with θ the area A(θ ) between the graph of θ and the x–axis. Here we use the usual
convention that areas below the x–axis have a negative sign. Due to linearity of A(·) we get
for the step function in (2.15) the area

A(θ ) =
M∑

m=1

hm · A(θm).
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Example 2.41
Let us consider the same environment as in Example 2.40 with a partition a = t0 < t1 < . . .< tN = b of
the compact interval I = [a, b]. Let a step function in terms of characteristic functions be given as

λh(t) = θN (t) =
N∑

n=1

λn XIn
(t), In = [tn−1, tn). (2.19)

Furthermore, let us consider the functional f 7→ F( f ) that integrates a function over the interval (−∞, t]

F( f ) =

∫ t

−∞
f (t) dt

Then it holds

F(λh)(tm) =

∫ tm

−∞
λh(t) dt =

m∑
n=1

λn hn, hn = tn − tn−1,

such that the area of λh(·) is given by A(λh) = F(λh)(tN ). Moreover, we see that the values F(λh)(tm),
0 ⩽ m ⩽ N represent the areas of the step functions θm(·) such that F(λh)(·) acts as a sort of discrete
antiderivative of λh(·). Another form of this discrete antiderivative is given by Λh(·) in (2.18) since
Λh(tm) = F(λh)(tm), 0⩽ m⩽ N .

2.4.7 Monotone Functions
Definition 2.42 (Monotone (Increasing/Decreasing) Function)
Let f : R −→ R be a function. We call f a monotone increasing function if f (t1)⩽ f (t2) for any t1 < t2.
The function f is called a monotone decreasing function, if f (t1) ⩾ f (t2) whenever t1 < t2. We call f a
monotone function, if it is either monotone increasing or monotone decreasing. △

A function f may be monotone increasing or monotone decreasing on a particular interval
I rather than on the entire real line. In this case we say that f is monotone increasing or
monotone decreasing on I . The following theorem summarizes some important properties of
monotone functions.
Theorem 2.43
Let f : R −→ R be a monotone function. Then f (t+) and f (t−) exist and are finite for all t ∈ R.
Moreover, for all t ∈ R, it holds that

(i) f (t−)⩽ f (t)⩽ f (t+), if f is monotone increasing;
(ii) f (t−)⩾ f (t)⩾ f (t+), if f is monotone decreasing.

The limits f (∞−) and f ((−∞)+) also exist, but are not necessarily finite. △

Proof See van Brunt and Carter [431]. □

Corollary 2.44
Let f : R −→ R be a monotone function. Then

(i) f (a+)⩽ f (b−), if f is monotone increasing and a, b ∈ R with a < b.
(ii) f (a+)⩾ f (b−), if f is monotone decreasing and a, b ∈ R with a < b. △
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Proof See van Brunt and Carter [431]. □

The following result, due to Lebesgue, reveals differentiability properties of monotone func-
tions.
Theorem 2.45 (Lebesgue)
A monotone function f : [a, b] −→ R has a finite derivative almost everywhere on [a, b]. △

Proof See e.g. Kolmogorov and Fomin [278, Theorem 6, p. 321]. □

Discontinuity Points of Monotone Functions According to Theorem 2.43 the values
f (t−), f (t) f (t+) all exist for any real t , if f is a monotone function. Hence, the only discon-
tinuities that a monotone function can have are jump discontinuities.

Definition 2.46 (Jump Discontinuity)
A function f : R −→ R is said to have a jump discontinuity at t if

(i) the values f (t−), f (t) and f (t+) all exist and are finite; and

(ii) f (t−), f (t) and f (t+) are not all equal. △

Functions may fail to be continuous at a point t , for example, because the limit is not finite or
f (t) has not been defined. The following theorem specifies the number of discontinuities that
a monotone function can have.
Theorem 2.47
Let f : R −→ R be a monotone function. The set of points at which f is discontinuous is either empty,
finite, or countably infinite. △

Proof See van Brunt and Carter [431]. □

Definition 2.48 (Jump of a Function)
Let f : R −→ R be a monotone function. The jump of function f at t ∈ R is defined as

△ f (t)
def
= f (t+)− f (t−). △

Jump Function Now we consider a monotone function f : [a, b] −→ R and we assume f (·)
to be normed by the condition of its continuity from the right such that

f (t) = f (t+) ∀t ∈ [a, b]. (2.20)

In case this condition does not hold its validity can always be guaranteed by changing the
values of f (·) at all points of discontinuity, i.e., we set f (tn) = f (t+n ) for all (possibly infinitely
many) discontinuity points tn. From condition (2.20) we conclude

△ f (t) = f (t)− f (t−) ∀t ∈ [a, b].
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Definition 2.49 (Jump Function)
Let f : [a, b] −→ R be a monotone function that is continuous from the right and let the t1, t2, . . . denote
its discontinuity points. The jump function of f (·) is a function fd : [a, b] −→ R given by the relations

fd(t) =
∑

n:tn⩽t

△ f (tn), t ∈ [a, b]. △

It can be shown that the jump function of a right–continuous nondecreasing (nonincreasing)
function that is defined on an interval [a, b] is also a right–continuous nondecreasing (nonin-
creasing), cf. Berezansky et al. [56, Theorem 13.3]. Note that we assumed monotone functions
and their jump functions to be continuous from the right, a fact whose importance becomes
clear later on. However, analogous considerations would also hold under the assumption of a
continuity from the left.
Remark 2.50
If it is possible to enumerate the points of discontinuity of f (·) either in increasing or decreasing order,
then this would imply that its jump function fd(·) is constant between adjacent discontinuity points.
Consequently, fd(·) is a step function, cf. Section 2.4.6. But in general jump functions may have a more
complicated structure.

The following example demonstrates that jump functions may not have any interval of con-
stancy.
Example 2.51
Let an enumeration of the rational numbers be given byQ= {qn : n ∈ N}, and let a function f : R −→ R
be defined as

f (t) =
∑

n:qn⩽t

1
2n

.

The definition of f (·) is well–defined since
∑

n⩾0
1

2n is absolutely convergent. For any u < v there is
some qn ∈ (u, v) such that f (·) is monotone increasing because we have f (v) ⩾ f (u) + 1

2n . But f (·) is
continuous at the irrational points, and discontinuous at every rational:

f (q−n ) =
∑

k:qk<qn

1
2k
<

∑
k:qk⩽qn

1
2k
= f (qn).

Continuous Part of a Monotone Function The following definition helps in specifying
some characteristics of monotone functions.
Definition 2.52 (Continuous Part of Monotone Functions)
Let f : [a, b] −→ R be a monotone function and fd(·) the associate jump function. Then we call the
function fc = f − fd the continuous part of f (·). △
The term “continuous part” in Definition 2.52 is justified by the fact that fc(·) is a monotone
and continuous function on the interval [a, b], cf. Berezansky et al. [56, Theorem 13.4].

2.4.8 Functions of Bounded Variation

In this section, we introduce the theory of an important class of functions, namely the func-
tions of bounded variation. These are strictly related to monotone functions. We begin with
some definitions.
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Definition 2.53 (Interval Partition)
A partition of the closed interval I = [a, b] of size N ∈ N is a finite sequence τ0,τ1, . . . ,τN ∈ I of N +1
real numbers such that

a = τ0 < τ1 < . . .τN = b.

The set of all partitions of I of size N is denoted by

PN (I)
def
=
�
τ= {τn}Nn=0 : a = τ0 < τ1 < . . .τN = b

	
.

The norm ormesh of τ ∈ PN (I) is defined as h(τ)
def
=max1⩽n⩽N (τn−τn−1) and the size N of τ is denoted

by |τ|. The set of all partitions on I is denoted by

P(I) def
=

∪
1⩽N<∞

PN (I). △

Definition 2.54 (Variation)
Let I be a closed interval. The variation of a function f : I −→ R with respect to a partition τ ∈ P(I)
is defined as

V ( f ,τ,I) def
=
|τ|∑

n=1

| f (τn)− f (τn−1)| . △

Definition 2.55 (Total Variation)
The total variation of a function f : I −→ R, where I is a closed interval, is given by

T V ( f ,I) def
= sup
τ∈P(I)

V ( f ,τ,I). △

Function Space Definition With these definitions in hand we can define the functions of
bounded variation.
Definition 2.56 (Function of Bounded Variation)
Let I = [a, b] be any closed interval. A function f : I −→ R is said to be of bounded variation, if there
exists a constant K > 0 such that for any partition τ ∈ P(I) it holds

V ( f ,τ,I) =
|τ|∑
j=n

| f (τn)− f (τn−1)|⩽ K . △

We denote the space of all functions of bounded variation on I with BV(I,R). The space
BV(I,R) can be endowed with the norm ∥ f ∥BV(I)

def
= | f (a)|+ T V ( f ,I). The space BV(I,R)

with the norm ∥·∥BV(I) is a Banach space, c.f. Adams [5].
As usual we lift the case of single–valued functions to the one of vector–valued functions
f : I −→ Rn by using product spaces such that BV(I,Rn) denotes the product space

BV(I,Rn)
def
= BV(I,R)× . . .×BV(I,R)︸ ︷︷ ︸

n times

. (2.21)
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Relation to Monotone Functions The following result sheds light on the relation between
monotone functions and functions of bounded variation.
Theorem 2.57
A monotone function on the closed interval I has bounded variation on I △

Proof See e.g. Natanson [337]. □

Next, we investigate a very important connection between functions of bounded variation
and monotone functions. Slightly varying the appropriate part of the proof of Theorem 2.43
shows that if f (·) is monotone on I , where I is an interval with endpoints a, b, then f (t−)
and f (t+) exist and are finite for all t such that a < t < b, and also f (a+) and f (b−) exist
(but are not necessarily finite). Furthermore, f (a+) and f (b−) are both finite if and only if
sup{ f (t) : t ∈ I} and inf{ f (t) : t ∈ I} are both finite.
Theorem 2.58
Let I be any interval. Then a function f : I −→ R has bounded variation on I if and only if f can be
expressed as a difference

f = h1 − h2,

where the functions h1, h2 : I −→ R are both monotone increasing on I , and sup{h1(t) : t ∈ I},
inf{h1(t) : t ∈ I}, sup{h2(t) : t ∈ I} and inf{h2(t) : t ∈ I} are all finite. △

Proof See van Brunt and Carter [431]. □

Corollary 2.59
Let I be an interval with endpoints a, b and let f : I −→ R be a function with bounded variation on I .
Then f (t−) and f (t+) exist and are finite for all t such that a < t < b, and also f (a+) and f (b−) exist
and are finite. △

Proof See van Brunt and Carter [431]. □

Note that the expression of a particular function of bounded variation as a difference of mono-
tone increasing functions is by no means unique. For instance, just replacing h1 and h2 by
h1 + k and h2 + k, where k is a constant, gives an infinite number of different expressions of
this kind.
Corollary 2.60
Every function of bounded variation has a finite derivative almost everywhere. △

Proof Follows as an immediate consequence of Theorems 2.45 and 2.58. □

Corollary 2.61
For every function f ∈ L1(I,R), where I = [a, b] is a closed interval, the indefinite integral

F(t) =

∫ t

a

f (τ) dτ

is a function of bounded variation. △

Proof See e.g. Kolmogorov and Fomin [278]. □
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Relation to Absolutely Continuous Functions The following result states that the func-
tion space of absolutely continuous functions is a subspace of the one of functions of bounded
variation.
Theorem 2.62
Let I be an interval with finite endpoints a, b and let f : I −→ R be absolutely continuous on I , then f
has bounded variation on I . △

Proof See van Brunt and Carter [431]. □

In Section 2.4.4 we stated that absolutely continuous functions are exactly the functions for
which the fundamental theorem of calculus holds, cf. Theorems 2.33+2.34. However, Corol-
lary 2.61 might suggest that the fundamental theorem can be generalized to functions of
bounded variation as well. But if one takes for instance the famous Cantor function as an
example it can be easily verified (see e.g. Berezansky et al. [56]) that this is not the case.
Another basic example is presented in the following.
Example 2.63
Let us consider the function f : [0, 1] −→ Rwhich is defined as f (t) =H1(t). Since f (·) is nondecreas-
ing it is of bounded variation and it holds f (t) = 0 almost everywhere. But the fundamental theorem of
calculus does not hold since

0=

∫ 1

0

f ′(t) dt ̸= f (1)− f (0) = 1.

The Lebesgue Decomposition By using Definition 2.52 and the discussion afterwards in
combination with Theorem 2.58 any function f ∈ BV(I,R) can be represented as a sum

f (t) = fc(t) + fd(t), (2.22)

where fc(t) is a continuous function of bounded variation and fd is a jump function. Now let
functions fa(·) and fs(·) be defined in terms of fc(·) as

fa(t)
def
=

∫ t

a

f ′c (τ) dτ, (2.23)

fs(t)
def
= fc(t)− fa(t) (2.24)

such that fa(·) is an absolutely continuous function and fs(·) is a function of bounded variation
whose derivative vanishes almost everywhere since it holds

f ′s (t) = f ′c (t)− d
dt

∫ t

a

f ′c (τ) dτ= 0.

Functions of the same type as fs(·) have their own name:
Definition 2.64 (Singular Function)
We call a continuous function of bounded variation a singular function if its derivative vanishes almost
everywhere. △
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Combining Equations (2.22)–(2.24) provides the so–called Lebesgue decomposition which
gives a deeper insight into the relation of BV(I,R) and AC(I,R):
Theorem 2.65 (Lebesgue Decomposition)
Every function f ∈ BV(I,R) can be represented as

f (t) = fa(t) + fd(t) + fs(t), (2.25)

where fa(·) is absolutely continuous, fd(·) is a jump function and fs(·) is singular. △

Corollary 2.66
Let I be any interval. Any step function θ : I −→ R is a function of bounded variation on I . △

Remark 2.67
Note that differentiating (2.25) yields

f ′(t) = f ′a(t)

almost everywhere. For this reason we do not recover a function of bounded variation from an inte-
gration of its derivative, but only its absolutely continuous part. The other two parts, namely the jump
function and the singular function, simply disappear when they are differentiated.

Normalization An important subspace of the function space of functions of bounded vari-
ation is presented in the following definition.

Definition 2.68 (Normalized Function of Bounded Variation)
Let I = [a, b] be any closed interval. The space of normalized functions of bounded variation consists
of all functions f ∈ BV(I,R), which satisfy f (a) = 0 and are continuous from the right on (a, b). It is
denoted by NBV(I,R). △

Definition 2.68 requires functions fromNBV(I,R) to be continuous from the right. In general
we could also assume continuity from the left. For reasons that become clear later continuity
from the right is more convenient in this thesis. The space NBV(I,Rn) is defined in a similar
way as described in (2.21) for BV(I,Rn). A norm on NBV(I,R) is given by

∥ f ∥NBV(I)
def
= T V ( f ,I).

The space NBV(I,R) with the norm ∥·∥NBV(I) is a Banach space, cf. Kolmogorov and
Fomin [278].

2.5 The Lebesgue–Stieltjes Integral

We assume the reader to be familiar with the concepts of Riemann- and Lebesgue–Integrals.
To refresh those topics we recommend reading the monographs of Adams and Fournier
[6], Rudin [378], or Kolmogorov and Fomin [278]. Essential parts of this section about the
Lebesgue–Stieltjes integral follow van Brunt and Carter [431]. For most results of this
section we omit the proofs and refer instead to the literature cited in [431]. Note that we intro-
duce the Lebesgue–Stieltjes integral in a function space setting where the measure function
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is monotone increasing and the integrand function of bounded type. The monotone increas-
ing restriction is then relaxed to functions of bounded variation. The function space setting
assumed in this contribution fits into this one.
Let µ : R −→ R be a monotone increasing function, and let I be an interval with endpoints
a, b. The µ–measure of I , denoted by µµ(I), is given by

µµ([a, b]) = µ(b+)−µ(a−),
µµ((a, b]) = µ(b+)−µ(a+),
µµ([a, b)) = µ(b−)−µ(a−),

(2.26)

and if a < b

µµ((a, b)) = µ(b−)−µ(a+).
For the open interval (a, a), which is of course the empty set, we have the convention
µµ((a, a)) = 0.

Definition 2.69 (Simple Set)
A simple set is a subset ofR that can be expressed as the union of a finite collection of disjoint intervals.△

Let G be a simple set, where G =
∪N

n=1 In with disjoint intervals I1, . . . ,IN and µ : R −→ R
be a monotone increasing function. Then the µ–measure of G is defined as

µµ(G)
def
=

N∑
n=1

µµ(In).

Let µ : R −→ R be a monotone increasing function, and let I be any interval. It is clear from
the relevant definitions that the support of a step function θ : I −→ R is a simple set. We call
θ µ–summable if the support of θ is µ–finite. In that case we associate with θ a real number
Aµ(θ ) defined by

Aµ(θ ) =
N∑

n=1

hnµµ(In).

Definition of the Integral

In this section we assume I to be a given interval with endpoints a, b and µ : R −→ R be a
monotone increasing function. Let f : I −→ R be a function that is non–negative on I . We
call a sequence θ1,θ2,θ3, . . . admissible for f , if the following conditions are fulfilled:

(i) θn is an µ–summable step function on I for n= 1,2, 3, . . .;

(ii) θn(t)⩾ 0 for t ∈ I and for n= 1,2, 3, . . .;

(iii) 0⩽ f (t)⩽
∑∞

n=1 θn(t) for t ∈ I .
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Theorem 2.70
For any non–negative function f : I −→ R there exists an admissible sequence. △

Proof See van Brunt and Carter [431]. □

For any non–negative function f : I −→ Rwe associate an extended real number Lµ( f ) given
by

Lµ( f )
def
= inf

¨∞∑
n=1

Aµ(θn)

«
,

where the greatest lower bound is taken over all sequences θ1,θ2,θ3, . . . that are admissible
for f . According to Theorem 2.70 the set

�∑∞
n=1 Aµ(θn)

	
is non–empty and has 0 as lower

bound. Hence, Lµ( f ) exists and Lµ( f )⩾ 0 for any non–negative function f : I −→ R.
Theorem 2.71
For any function f : I −→ R we have:

(i) Lµ( f +)⩽ Lµ(| f |) and Lµ(− f −)⩽ Lµ(| f |);
(ii) Lµ(|s · f |) = |s| · Lµ(| f |) for any finite nonzero real number s (and for s = 0, provided that Lµ(| f |)

is finite). △

Proof See van Brunt and Carter [431]. □

In Theorem 2.71 and the remainder of this section, f + and f − denote the positive and neg-
ative part of the real–valued function f , i.e., it holds f +(t) = max( f (t), 0) and f −(t) =
max(− f (t), 0). In later chapters f + and f − appear with a different meaning. However, the
reader can easily infer the actual meaning from the context.

Theorem 2.72
Let f1, f2, f3, . . . be a sequence of functions such that fn : I −→ R and Lµ(| fn|) is finite for each n ∈ N.
Let f : I −→ R be such that Lµ(| f − fn|)→ 0 as n→∞. Then it holds:

(i) Lµ(| f |), Lµ( f +) and Lµ(− f −) are all finite;

(ii) Lµ(
�� f + − f +n

��)→ 0, Lµ(
�� f − − f −n

��)→ 0 and Lµ(
��| f | − | fn|

��)→ 0;

(iii) Lµ(| fn|)→ Lµ(| f |), Lµ( f +n )→ Lµ( f +) and Lµ(− f −n )→ Lµ(− f −). △

Proof See van Brunt and Carter [431]. □

Definition 2.73 (Lebesgue–Stieltjes Integral)
Let µ : R −→ R be a monotone increasing function and let f : I −→ R be a function with the
property that there is a sequence θ1,θ2,θ3, . . . of µ–summable step functions defined on I such that
Lµ(| f − fn|)→ 0. The Lebesgue–Stieltjes integral of f over I with respect to µ is defined as∫

I
f (t) dµ(t)

def
= Lµ( f

+)− Lµ(− f −). △
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Note that under the assumptions of Definition 2.73 Lµ( f +), Lµ(− f −) and Lµ(| f |) are all finite
according to part (i) of Theorem 2.72.
It is important to ensure that

∫
I θ (t) dµ(t) = Aµ(θ ) for any µ–summable step function θ :

I −→ R, because only then the integral can justifiably be regarded as an extension of the
concept of the area under a graph as defined for step functions. The following Theorem gives
a positive answer to this question.

Theorem 2.74
For any µ–summable step function θ : I −→ R, we have

∫
I θ (t) dµ(t) = Aµ(θ ). △

The case of vector–valued functions f ,µ : I −→ Rn is reduced to the single–valued case by
the definition∫

I
f (t)T dµ(t)

def
=

n∑
i=1

∫
I

fi(t) dµi(t).

Properties of the Lebesgue–Stieltjes Integral

Measure Functions of Bounded Variation Suppose µ : I −→ R is a function of bounded
variation. According to Corollary 2.59 the one sided limits µ(a+) and µ(b−) exist and are
finite, if a and b are endpoints of a proper subset of R. The function µ can be extended to a
function of bounded variation on R as follows: if a is finite and a ∈ I , then define µ(t) to be
equal to µ(a+) for t < a. If a is finite and a /∈ I , then define µ(t) to be equal to µ(a+) for
t ⩽ a. Analogously, we deal with the interval to the right of I . If b is finite and b ∈ I , then
define µ(t) to be equal to µ(b−) for t > b. If b is finite and b /∈ I , then define µ(t) to be equal
to µ(b−) for t ⩾ b. Theorem 2.58 allows us to express µ as a difference

µ= µ1 −µ2,

where µ1,µ2 : R −→ R are both monotone increasing. Those considerations enable us to
define the Lebesgue–Stieltjes integral with respect to a measure that is affiliated with any
function of bounded variation.
To this end, let J be any subinterval of I . Then we call a function f : J −→ R integrable
over J with respect to µ, if f is integrable over J with respect to both µ1 and µ2. We define
naturally∫

J
f (t) dµ(t)

def
=

∫
J

f (t) dµ1(t)−
∫
J

f (t) dµ2(t).

It can be proven that the value of
∫
J f (t) dµ(t) does not depend on the particular way in

which µ is expressed as a difference of monotone increasing functions.

Elementary Results The following fundamental properties of the Lebesgue–Stieltjes are
given without proof. Instead, we refer the reader to the publication of Francis [171] and the
monograph of van Brunt and Carter [431] as well as the literature cited therein.
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Theorem 2.75 (Linearity of the Integral)
Let fn : I −→ R be integrable over I with respect to µ for n ∈ [N], N ∈ N, and let the sn be finite real
numbers. Then the sum

∑N
n=1 sn fn is integrable over I with respect to µ, and it holds∫

I

�
N∑

n=1

sn fn(t)

�
dµ(t) =

N∑
n=1

sn

∫
I

fn(t) dµ(t). △

Theorem 2.76
Let I be a finite number of N pairwise disjoint intervals

I = I1 ∪ . . .∪ IN .

Then it holds∫
I

f (t) dµ(t) =
N∑

n=1

∫
In

f (t) dµ(t)

in the sense that if one side exists, then so does the other, and the two are equal. △

Theorem 2.77
Let µ=

∑N
n=1 sn µn, where each µn : R −→ R is a monotone increasing function and the sn, n ∈ [N], are

non–negative finite real numbers. If a function f : I −→ R is integrable over I with respect to each of
the µ1, . . . ,µn, then it is integrable over I with respect to µ, and it holds∫

I
f (t) dµ(t) =

N∑
n=1

sn

∫
I

f (t) dµn(t). △

Theorem 2.78
(i) Let µ be continuous at a. Then it holds∫

[a,b]

f (t) dµ(t) =

∫
(a,b]

f (t) dµ(t) and
∫
[a,b)

f (t) dµ(t) =

∫
(a,b)

f (t) dµ(t)

in the sense that if one side of the equation exists, then so does the other, and both are equal.
(ii) Let µ be continuous at b. Then it holds∫

[a,b]

f (t) dµ(t) =

∫
[a,b)

f (t) dµ(t) and
∫
(a,b]

f (t) dµ(t) =

∫
(a,b)

f (t) dµ(t)

in the sense that if one side of the equation exists, then so does the other, and both are equal. △

Theorem 2.79
For any function f (·) that is defined at a point c it holds∫

[c,c]

f (t) dµ(t) = f (c) (µ(c+)−µ(c−)). △

Proof See e.g. van Brunt and Carter [431, Theorem 6.1.6]. □
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We just state at this point that the well–known convergence theorems (Monotone Conver-
gence, Dominated Convergence, Fatou’s Lemma) of the Lebesgue theory also hold in a
Lebesgue–Stieltjes setting.

Theorem 2.80 (Partial Integration Rule)
Let f , g : I −→ R be functions of bounded variation, and let G be the set of common points of disconti-
nuity. Then it holds∫

I
f (t)dg (t) +

∫
I

g (t)d f (t) = µ f g (I) +
∑
t∈G

A(t),

where

A(t) =
�

f (t)− 1
2
( f (t+) + f (t−))

�
µg ({t}) +

�
g (t)− 1

2
(g (t+) + g (t−))

�
µ f ({t}).

In particular,

(i) if G is empty, or if f (t) = 1
2 ( f (t

+) + f (t−)) and g (t) = 1
2 (g (t

+) + g (t−)) for all t ∈ G, then∫
I

f (t)dg (t) +

∫
I

g (t)d f (t) = µ f g (I).

(ii) if f and g are continuous on the right at all points of G, then∫
I

f (t)dg (t) +

∫
I

g (t)d f (t) = µ f g (I) +
∑
t∈G
µ f ({t})µg ({t}).

(iii) if f and g are continuous on the left at all points of G, then∫
I

f (t)dg (t) +

∫
I

g (t)d f (t) = µ f g (I)−
∑
t∈G
µ f ({t})µg ({t}). △

Theorem 2.81 (Change of Variables)
Let I be any interval. Let u : R −→ R be a function that is continuous and strictly increasing on the
interval I . Then∫

I
( f ◦ u)(t)du(t) =

∫
u(I)

f (t)dt,

where f ◦ u denotes the composition of f and u , i.e. ( f ◦ u)(t)
def
= f (u(t)) for all t ∈ I . Additionally, if

u is differentiable on I , then we get∫
I
( f ◦ u)(t)u̇(t)dt =

∫
u(I)

f (t)dt.

Furthermore, if µ : R −→ R is monotone increasing, then∫
I
( f ◦ u)(t)d(µ ◦ u)(t) =

∫
u(I)

f (t)dµ(t).
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All three results hold in the sense that if one side exists, then so does the other, and both are equal. △

The condition in Theorem 2.81 that u should be strictly increasing on I is just a theoretical
matter. If u is not strictly increasing on I the interval of integration can usually be split up
into subintervals on which u is either strictly increasing or strictly decreasing, or constant,
and each of these cases can be dealt with separately. Note that if u is strictly decreasing then
−u is strictly increasing and the theorem can still be used with the obvious modifications.

Lemma 2.82
Let µ : I −→ R be a jump function and let f be a µ–summable function. Then the Lebesgue–Stieltjes
integral reduces to a sum given by∫

I
f (t) dµ(t) =

∑
n

hn f (tn). (2.27)
△

Theorem 2.83
If µ is differentiable at all points in an open interval I , then∫

I
f (t) dµ(t) =

∫
I

f (t)µ̇(t) dt

in the sense that if one side of the equation exists, then so does the other, and both are equal. △

As Kolmogorov and Fomin [278, p. 364f.] point out, Theorem 2.83 also holds for absolutely
continuous µ. In later chapters of this contribution we often deal with functions of bounded
variations as measure functions. By means of the Lebesgue decomposition (seeTheorem 2.65)
applied to the measure function µ ∈ BV(I,R), where µ(t) = µa(t)+µd(t)+µs(t), and under
the assumption of a non–existent singular function part µs(·), we can combine the results of
Lemma 2.82 and Theorem 2.83 such that it holds∫

I
f (t) dµ(t) =

∫
I

f (t)µ̇a(t) dt +
∑

n

hn f (tn).

Francis [171, p. 949] states the existence of the integrals in Theorem 2.83 for bounded and
measurable f . In particular, this holds true for f ∈ BV(I,R).

Towards the Riemann–Stieltjes Integral

Since our research has some links to the one of Beigel [41] and since she works within a Rie-
mann–Stieltjes setting, we review some results on this integral type. For an introduction to
Riemann–Stieltjes integral theory the reader is referred to the monographs of Kolmogorov
and Fomin [278] and Natanson [337].

Duality pairing ofNBV(I,R) and C(I,R) Since Riemann–Stieltjes integrals are defined
on compact intervals I = [a, b]we assume I to be of this kind in the remainder of this section.
The following theorem characterizes the dual space of the space of continuous functions.
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Theorem 2.84 (Riesz RepresentationTheorem)
Let L : C(I,R) −→ R be a linear and continuous functional. Then there exists a µ ∈ BV(I,R) such that
for every f ∈ C(I,R) it holds

L( f ) =

∫ b

a

f (t) dµ(t). (2.28)

Furthermore we get ∥L∥L (C (I,R),R) = ∥µ∥NBV(I). △

Proof See Luenberger [303]. □

µ is defined almost everywhere in I with exception of an additive constant, cf. Luenberger
[303]. The uniqueness of µ in Theorem 2.84 only holds if the normalized space NBV(I,R)
of BV(I,R) is used. Thus, the dual of C(I,R) is isometrically isomorphic to the normalized
space of all function of bounded variation, i.e. (C(I,R))∗ =L (C(I,R),R)∼=NBV(I,R). The
duality pairing (Definition 2.20) is given as

(µ, f )NBV(I,R),C (I,R) =

∫ b

a

f (t) dµ(t).

Duality pairing of NBV(I,R) and Y (I,R) In order to find the appropriate duality pairing
between NBV(I,R) and Y (I,R), Beigel [41] extended the linear functional given in Equa-
tion (2.28) from C(I,R) to

∪N
n=1 Cb(In,R) by generalizing the definition of the Riemann–

Stieltjes integral to allow for integrands that are continuous from the left.
The existence of an extension L̂ of the linear functional L defined in (2.28) from C(I,R) to
Y (I,R) is guaranteed by the Hahn–Banach Extension Theorem (Theorem 2.19). A suitable
extension is provided by

L̂( f )
def
=

N∑
n=1

∫
In

f (t) dµ(t) (2.29)

using the extended Riemann–Stieltjes integral. This extension L̂, restricted to the continuous
functions f ∈ C(I,R), coincides with L given by (2.28). The extended Riemann–Stieltjes in-
tegral was introduced by Beigel [41, Section 5.3.1] and splits the standard Riemann–Stieltjes
integral into a sum whose parts have continuous integrands.

2.6 Variational Equalities and Inequalities

In this section, we present some fundamental results in the calculus of variations. We formu-
late them employing the function spaces Yk(I,R) as they are relevant in this thesis.

Lemma 2.85 (Variational Lemma)
Let f , g ∈ Y (I,R). The relation∫ b

a

�
f (t)h(t) + g (t) ḣ(t)

	
dt = 0 (2.30)
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holds for all h ∈ Y1(I,R) with h(a) = h(b) = 0 if, and only if, there exists a constant C ∈ R such that

g (t) = −
∫ b

t

f (τ) dτ− C . (2.31)
△

Proof First, let condition (2.30) hold for all h ∈ Y1(I,R)with h(a) = h(b) = 0 and let et ∈ I\{b} not be
a point of discontinuity of g (·), i.e., it is et ∈ I \{t i}Ni=0. Now, we choose an ϵ such that 0< ϵ < (b−et)/2.
We define

h(t) = 0 (a ⩽ t ⩽ et),
h(t) =

1
ϵ
(t −et) (et ⩽ t ⩽ et + ϵ),

h(t) = 1 (et + ϵ ⩽ t ⩽ b− ϵ),
h(t) =

1
ϵ
(b− t) b− ϵ ⩽ t ⩽ b.

The function h(·) is in Y1(I,R) and it holds h(a) = h(b) = 0. Furthermore, it holds

0=

∫ b

a

�
f (t)h(t) + g (t) ḣ(t)

	
dt =

∫ b

et f (t)h(t) dt +
1
ϵ

∫ et+ϵ
et g (t) dt − 1

ϵ

∫ b

b−ϵ
g (t) dt.

Taking the limit ϵ→ 0 yields

0=

∫ b

et f (t) dt + g (et)− g (b).

Hence, (2.31) holds with C = −g (b). For continuity reasons the statement holds for all t . Let us now
assume that (2.31) is satisfied such that it holds ġ = f . We calculate∫ b

a

�
f (t)h(t) + g (t) ḣ(t)

	
dt =

∫ b

a

d
dt
{g (t)h(t)} dt = g (t)h(t)|ba = 0

since h(a) = h(b) = 0. □

A result involving variational inequalities is presented in the following lemma.
Lemma 2.86
Let f ∈ Y (I,R). If the inequality∫ b

a

f (t)h(t) dt ⩾ 0

holds for all h ∈ Y (I,R) with h(t) ⩾ 0 almost everywhere in I , then f (t) ⩾ 0 almost everywhere in
I . △
Proof We prove the lemma by contradiction and assume f (t) < 0 on an interval I0 ⊂ I with positive
measure whose interval boundaries we denote with a0 and b0. By choosing c0

def
= (a0 + b0)/2 and δ def

=
(b0 − a0)/2 we define a function

h(t) = 0 (a ⩽ t ⩽ a0),
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h(t) =
1
δ
(t − a0) (a0 ⩽ t ⩽ c0),

h(t) =
1
δ
(b0 − t) (c0 ⩽ t ⩽ b0),

h(t) = 0 b0 ⩽ t ⩽ b.

Since h ∈ Y (I,R) and 0⩽ h(t)⩽ 1 on I we calculate∫ b

a

f (t)h(t) dt =

∫
I0

f (t)h(t) dt ⩽
∫

I0

f (t) dt < 0,

which is contradictory to the assumption. □
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Optimization in Banach Spaces

This chapter deals with some basic optimization theory. We review the general Banach space
setting as well as the special case of finite dimensional nonlinear problems. In our presenta-
tion of the material we refer mainly to Gerdts [190] and Nocedal and Wright [341]. We
present several important necessary optimality conditions and relevant regularity conditions
which guarantee that a solution satisfies those conditions. This is more or less the topic from
Section 3.1 to Section 3.5. In Section 3.6, we illustrate how finite dimensional optimization
problems are commonly solved numerically.
In this chapter (X ,∥·∥X ), (Y,∥·∥Y ), (Z ,∥·∥Z), . . . denote Banach spaces over R.

3.1 Problem Formulation

We start with a rather general formulation of an optimization problem:

Definition 3.1 (General Minimization Problem)
Let f : X → R be a functional and ; ̸= Σ ⊆ X a set. A general minimization problem is an optimization
problem of the form

min
x

f (x) (3.1)

s. t. x ∈ Σ.

f is called objective function and a vector x is called admissible or feasible for problem (3.1), if x ∈ Σ. We
call Σ the admissible set or feasible set for problem (3.1). Problem (3.1) is called unconstrained, if Σ = X
holds. Finally, we call problem (3.1) convex, if f and Σ are convex. △

We consider minimization problems exclusively. But this is no restriction, since maximization
problems can be transformed into equivalentminimization problems. In problem (3.1) we differ
the types of minima given in Definition 3.2.

Definition 3.2 ((Strict) Global Minimum, (Strict) Local Minimum)
The following minimum types for general minimization problems are considered:

(i) x∗ ∈ Σ is called global minimum of problem (3.1), if

f (x∗)⩽ f (x) ∀x ∈ Σ. (3.2)

x∗ ∈ Σ is called strict global minimum of problem (3.1), if ’<’ holds in (3.2) for all x ∈ Σ, x ̸= x∗.
(ii) x∗ ∈ Σ is called local minimum of problem (3.1), if there exists a ϵ > 0 such that

f (x∗)⩽ f (x) ∀x ∈ Σ∩ Uϵ(x
∗). (3.3)
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x∗ ∈ Σ is called strict local minimum of problem (3.1), if ’<’ holds in (3.3) for all x ∈ Σ∩ Uϵ(x∗),
x ̸= x∗. △

Definition 3.3 (Standard Nonlinear Minimization Problem)
Let f : X → R be a functional, g : X → Y , h : X → Z operators, S ⊆ X a closed, convex set, and K ⊆ Y
a closed convex cone with vertex at ΘY . A standard nonlinear minimization problem is an optimization
problem of the form

min
x

f (x) (3.4)

s. t. g(x) ∈ K ,

h(x) = ΘZ ,

x ∈ S. △

Notice, that problem (3.4) is a special case of problem (3.1) with

Σ= g−1(K)∩ h−1(ΘZ)∩ S, (3.5)

where g−1(K)
def
= {x ∈ X | x ∈ K} is the preimage of K under g and h−1(K)

def
= {x ∈ X | h(x) =

ΘZ} denotes the preimage of ΘZ under h.

3.2 Existence of a Solution

Theorem 3.4 (Weierstrass)
LetΣ be a compact subset of a normed linear space X and f : Σ→ R a lower semi–continuous functional.
Then, f achieves its minimum on Σ. △

Proof See e.g. Luenberger [303, p. 40]. □

The following theorem can be found in Alt [13] and provides a generalization of Weier-
strass’s extreme value theorem.
Theorem 3.5
Let Σ be a subset of a normed linear space X and f : Σ→ R lower semi–continuous. Let the set

lev( f , f (y))∩Σ= {x ∈ Σ | f (x)⩽ f (y)} (3.6)

be a nonempty and compact set for some y ∈ Σ. Then, f achieves its minimum on Σ. △

3.3 First–Order Necessary Conditions of Fritz–John Type

Theorem 3.6
Let f : X → R be Fréchet-differentiable at x∗ and let x∗ be a local minimum of problem (3.1). Then

f ′(x∗)(d)⩾ 0 ∀d ∈ T (Σ, x∗). (3.7)
△

Proof See e.g. Clarke [111, Proposition 1.39]. □
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Theorem 3.7 (First–Order Necessary Conditions)
Let f : X → R and g : X → Y be Fréchet-differentiable and h : X → Z continuously Fréchet-
differentiable. Let x∗ be a local minimum of problem (3.4), S ⊆ X a closed convex set, where int(S) ̸= ;,
and K ⊆ Y a closed convex cone with vertex at ΘY , where int(K) ̸= ;. Assume that im(h′(x∗)) is not a
proper dense subset of Z . Then there exist nontrivial multipliers (l0,λ∗,µ∗) ̸= (0,ΘY ∗ ,ΘZ∗) such that

l0 ⩾ 0, (3.8a)
λ∗ ∈ K+, (3.8b)

λ∗(g(x∗)) = 0, (3.8c)
l0 f ′(x∗)(d)−λ∗(g ′(x∗)(d))−µ∗(h′(x∗)(d))⩾ 0, ∀d ∈ S \ {x∗}. (3.8d)

△

Proof See e.g. Gerdts [190, Theorem 2.3.24.]. □

Every point (x , l0,λ∗,µ∗) ∈ X × R × Y ∗ × Z∗, (l0,λ∗,µ∗) ̸= Θ satisfying the Fritz–John
conditions (3.8) is called Fritz–John point of problem (3.4). We call l0, λ∗ and µ∗ Lagrange
multipliers or simply multipliers.
Notice, that multipliers (l0,λ∗,µ∗) = Θ trivially fulfill the Fritz–John conditions. Hence,
the main statement of Theorem 3.7 is that there exist nontrivial multipliers (l0,λ∗,µ∗) ̸= Θ.
Unfortunately, the case l0 = 0 cannot be excluded. In this case the objective function f does
not enter into the Fritz–John conditions. If l0 ̸= 0 we call a Fritz–John point (x , l0,λ∗,µ∗)
KKT point. The following section provides regularity conditions that guarantee a nonzero
multiplier l0.
Note that the conditions in Theorem 3.7 can equivalently be modified such that λ∗ ∈ K−. As
a consequence, the sign that belongs to λ∗ in (3.8d) switches. Sometimes, in particular for the
finite dimensional special case, we will use this alternative formulation of Theorem 3.7.

3.4 ConstraintQualifications

Conditions ensuring Fritz–John points to be KKT points are called regularity conditions or
ConstraintQualifications (CQs). In this case, l0 can be normalized to one, since the multipliers
enter (3.8d) linearly.
Robinson [373] postulated the following CQ in the context of stability analysis for generalized
inequalities.

Definition 3.8 (ConstraintQualification of Robinson [373])
The Robinson constraint qualification holds at x∗ if�

ΘY

ΘZ

�
∈ int

��
g(x∗) + g ′(x∗)(x − x∗)− k

h′(x∗)(x − x∗)

�
: x ∈ S, k ∈ K

�
. (3.9)

△

The validity of CQ (3.9) ensures a nonzero multiplier l0.

Theorem 3.9 (KKT–Conditions, Gerdts [190])
Let the assumptions of Theorem 3.7 be satisfied. If the constraint qualifications of Robinson are satisfied
at x∗ then the assertions of Theorem 3.7 hold with l0 = 1. △
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Corollary 3.10 (Linear Independence Constraint Qualification, Gerdts [190])
Let x∗ ∈ int(S) and let the operator

T : X → Y × Z , T
def
= (g ′(x∗), h′(x∗)) (3.10)

be surjective. Then the Robinson constraint qualification (3.9) is fulfilled. △

The following result provides another sufficient condition for the Robinson constraint quali-
fication.
Corollary 3.11 (Mangasarian–Fromowitz ConstraintQualification, Gerdts [190])
Let g : X → Y and h : X → Z be Fréchet-differentiable at x∗, K ⊆ Y a closed convex cone with vertex at
zero and int(K) ̸= ;, g(x∗) ∈ K , h(x∗) = ΘZ . Furthermore, let the following conditions be fulfilled:

1. Let h′(x∗) be surjective.
2. Let there exist some d∗ ∈ int(S \ {x∗}) with

h′(x∗)(d∗) = ΘZ , (3.11)
g ′(x∗)(d∗) ∈ int(K \ {g(x∗)}). (3.12)

Then the Robinson constraint qualification (3.9) holds. △

One can show that the Mangasarian–Fromowitz constraint qualification is identical with
the Robinson constraint qualifications for problems of type (3.4).

3.5 Optimality Conditions for Finite Dimensional Problems

In this sectionwe address an important special case of Problem (3.4), namely the onewith finite
dimensional spaces X , Y and Z . Let therefore n be a natural number and let E and I be two
disjoint finite sets of indices such that X = Rn, Y = R|I|, Z = R|E| and S ⊆ Rn. Furthermore,
let

f : Rn −→ R,

c : Rn −→ R|E∪I|,
be continuously differentiable functions. The resulting special case of Problem (3.4) is called
Nonlinear Programming Problem and is explicitly stated in the following definition.
Definition 3.12 (Nonlinear Programming Problem)
A Nonlinear Programming Problem (NLP) is an optimization problem of the form

min
x∈Rn

f (x) (3.13)

s. t. ci(x) = 0, i ∈ E ,

ci(x)⩽ 0, i ∈ I,

x ∈ S,

where f is called objective function, whereas ci , i ∈ E , are the equality constraints and ci , i ∈ I , are the
inequality constraints. △
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The feasible set Σ of Problem (3.13) is the set of points satisfying all of its constraints, i.e.,

Σ
def
=
�

x ∈ S : ci(x) = 0, i ∈ E , ci(x)⩽ 0, i ∈ I
	

so that Problem (3.13) can be rewritten more compactly as

min
x∈Σ f (x).

To characterize solutions of constrained optimization problems we introduce important items
of terminology. We start by defining the active set of a NLP.
Definition 3.13 (Active Set)
Let x ∈ Σ be feasible for problem (3.13). The active set A(x) at point x is then given as the equality
constraint indices E together with the inequality constraint indices i for which ci(x) = 0, i.e.,

A(x) def
= E ∪ {i ∈ I : ci(x) = 0} . △

We call an inequality constraint i ∈ I active at a feasible point x if ci(x) = 0 and inactive if
the strict inequality ci(x)< 0 is satisfied.

ConstraintQualifications for NLPs

We start this section by introducing the tangent cone T (Σ, x) to the closed convex set Σ at a
point x ∈ Σ and the linearized feasibility cone F(Σ, x) of first–order feasible directions at x .
Definition 3.14 (Tangent Cone – Finite Dimensional Version)
Let x ∈ Σ be feasible for Problem (3.13). Then the tangent cone of Σ at x is given as

T (Σ, x)
def
=
§

d ∈ Rn : ∃ (xn)n∈N in Σ and ∃ (tn)n∈N with tn↘ 0,
xn − x

tn
→ d

ª
. △

Definition 3.15 (Linearized Feasibility Cone)
Let x ∈ Σ be feasible for Problem (3.13). Then the linearized feasibility cone of Σ at x is given as

F(Σ, x)
def
=
∩
i∈E

�
d : dT∇ci(x) = 0

	 ∩ ∩
i∈A(x)∩I

�
d : dT∇ci(x)⩽ 0

	
. △

It is easy to verify that T (Σ, x) and F(Σ, x) are indeed cones. Note that the definition of the
tangent cone does not rely on the algebraic specification of the feasible set Σ, but only on its
geometry. However, the linearized feasibility cone depends on the concrete representation of
Σ, given by ci , i ∈ E ∪ I . It holds the inclusion T (Σ, x) ⊆ F(Σ, x).
Constraint Qualifications in the finite dimensional case are conditions under which T (Σ, x)
and F(Σ, x) are similar or even identical. This ensures that the linearized feasibility cone
F(Σ, x), which is constructed by the algebraic representation c of the feasible set Σ, captures
the geometric features of Σ, as represented by the tangent cone T (Σ, x), in the vicinity of x .
With the aid of CQs we will be able to formulate first–order optimality conditions for Prob-
lem (3.13). The following definitions summarize some common CQs. However, there are CQs
that are unsuited to be checked in algorithms and therefore just relevant from a theoretical
perspective.
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Definition 3.16 (ConstraintQualifications, Finite Case)
Let x ∈ Σ be feasible for Problem (3.13).

• GCQ: Guignard Constraint Qualification, [212] holds at x if T (Σ, x)− = F(Σ, x)−.
• ACQ: Abadie Constraint Qualification, [1] holds at x if T (Σ, x) = F(Σ, x). △

The Abadie Constraint Qualification can be found in most textbooks like, for example, No-
cedal andWright [341], whereas the GuignardConstraintQualification can hardly be found
in standard textbooks. However, it was noted by Gould and Tolle [207] that it is the weakest
CQ which guarantees that, at a local minimum of an optimization problem, there exist La-
grange multipliers such that the KKT conditions (see Theorem 3.9) are first–order optimality
conditions.
Definition 3.17 (Linear Independence Constraint Qualification, Finite Case)
Let x ∈ Σ be feasible for Problem (3.13). The Linear Independence Constraint Qualification (LICQ), [231]
holds at x , if the following conditions are fulfilled:

(i) x ∈ int(S).
(ii) The set of active constraint gradients {∇ci(x), i ∈A(x)} is linearly independent. △

A useful generalization of the LICQ is the Mangasarian–Fromowitz Constraint Qualifica-
tion (MFCQ).
Definition 3.18 (Mangasarian–Fromowitz ConstraintQualification, Finite Case)
Let x ∈ Σ be feasible for Problem (3.13). The Mangasarian–Fromowitz Constraint Qualification
(MFCQ), [311] holds at x , if the following conditions are satisfied:

(i) The gradients ∇ci(x), i ∈ E , are linearly independent.
(ii) There exists a vector d ∈ int(S \ {x}) with

dT∇ci(x) = 0, i ∈ E and dT∇ci(x)< 0, i ∈A(x)∩ I. △

It can be easily shown that MFCQ is a weaker condition than LICQ. In Peterson [354] several
CQs are reviewed and their relationship is analyzed. For the aforementionedCQs the following
implications hold:

LICQ =⇒ MFCQ =⇒ ACQ =⇒ GCQ.

First–Order Optimality Conditions

In this section, we state first–order necessary conditions for x∗ to be a local minimizer for
the NLP (3.13). To facilitate the formulation of the necessary conditions we introduce the
Lagrange function. The Lagrange function associated to Problem (3.13) is the function L :
Rn ×R×R|E| ×R|I| −→ R defined by

L(x , l0,λ,µ)
def
= l0 f (x)−∑

i∈E
λi ci(x)−

∑
i∈I
µi ci(x).

A first necessary condition can be provided by Fritz–John type conditions as introduced for
Banach spaces in Theorem 3.7. Now we apply the theorem to the NLP (3.13).
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Theorem 3.19 (First–Order Necessary Conditions of Fritz–John Type, Finite Case)
Let x∗ be a local minimum of Problem (3.13) and S closed and convex with int(S) ̸= ;. Then there exist
multipliers l0 ⩾ 0, λ ∈ R|E| and µ ∈ R|I| not all zero such that

L′x (x
∗, l0,λ,µ)(x − x∗)⩾ 0 ∀x ∈ S, (3.14a)

µi · ci(x
∗) = 0, i ∈ I, (3.14b)
µi ⩽ 0, i ∈ I. (3.14c)

△

Note that (l0,λ,µ) = 0 trivially satisfies the Fritz–John conditions (3.14a)–(3.14c). However,
Theorem 3.19 guarantees the existence of a nontrivial vector (l0,λ,µ) ̸= 0 to fulfill the Fritz–
John conditions. Unfortunately, the case l0 = 0 may occur and this implies that the objective
function f does not enter into the Fritz–John conditions.
To overcome the issue of a potential vanishing l0 one requires additionally the validity of a
CQ. Then a Fritz–John point becomes a KKT point and due to the linearity of Lagrange
multipliers in the Lagrange function l0 can be normalized.
Theorem 3.20 (KKT Conditions with MFCQ, Finite Case)
Let the assumptions of Theorem 3.19 be satisfied and let the MFCQ be fulfilled at x∗. Then, the assertions
of Theorem 3.19 hold with l0 = 1. △

Theorem 3.21 (KKT Conditions with LICQ, Finite Case)
Let the assumptions of Theorem 3.19 be satisfied and let the LICQ be fulfilled at x∗. Then, the assertions
of Theorem 3.19 hold with l0 = 1 and in particular

∇xL(x∗, l0,λ,µ) = 0.

Furthermore, the multipliers λ and µ are unique. △

The condition ∇xL(x∗, l0,λ,µ) = 0 in Theorem 3.21 holds due to the condition x∗ ∈ int(S)
which is required for LICQ to hold. The condition x∗ ∈ int(S) is trivially satisfied for the
choice S = Rn. This important special case is particularly convenient for the design of nu-
merical methods. Hence, we restrict our discussion to this case from now on. We state the
KKT conditions assuming the Guignard Constraint Qualification (GCQ) holds and investi-
gate simpler CQs that imply GCQ afterwards. Furthermore, we will discuss the influence of
CQs on the multiplier properties.
Theorem 3.22 (KKT Conditions, Finite Case, Karush [268], Kuhn and Tucker [281])
Let x∗ ∈ Σ be a local minimizer of Problem (3.13) with S = Rn such that the GCQ is satisfied in x∗. Then
there exist multipliers λ ∈ R|E| and µ ∈ R|I| such that

∇xL(x∗,λ,µ) = 0, (3.15a)
µi · ci(x

∗) = 0, i ∈ I, (3.15b)
µi ⩽ 0, i ∈ I. (3.15c)

△

For a fixed local minimizer x∗ ∈ Σ, multipliers λ and µ satisfying the KKT conditions (3.15a)–
(3.15c) need not necessarily be unique. The following result reveals the relationship between
different CQs and the resulting multiplier uniqueness.

101



Chapter 3
�� Optimization in Banach Spaces

Theorem 3.23 (ConstraintQualifications and Uniqueness of Multipliers)
Let x∗ ∈ Σ a local minimizer of Problem (3.13). Let Λ def

=
�
(λ,µ) : (x∗,λ,µ) is KKT point

	
. Then Λ is

(i) closed and convex.
(ii) not the empty set, if GCQ holds.
(iii) a compact set if and only if MFCQ holds.
(iv) a singleton if LICQ holds. △

Second–Order Conditions

The previous section introduced criteria that characterize the relationship of the objective
function gradient and the active constraints at a solution point x∗ of Problem (3.13). Roughly
speaking, the first–order approximation to the objective function along any vector x from
F(x∗) either increases (i.e., x T∇ f (x∗)> 0), or keeps this value the same (i.e., x T∇ f (x∗) = 0).
For the directions x ∈ F(x∗) for which x T∇ f (x∗) = 0 we cannot determine from first–order
information alone whether the objective function value increases or decreases if we move
along x . Hence, it is necessary to take second–order information into account.
An important quantity in the second–order conditions is the critical cone C(Σ, x∗,λ,µ). This
is the cone of directions d in the linearized feasible set F(Σ, x∗) for which the KKT conditions
alone do not tell us whether the objective function increases along d .
Definition 3.24 (Critical Cone)
Let (x∗,λ,µ) be a KKT point for Problem (3.13). Then the critical cone is defined as follows:

C(Σ, x∗,λ,µ)
def
=
�

d ∈ F(Σ, x∗) : ∇ci(x
∗)T d = 0, i ∈A(x∗)∩ I with µi < 0

	
. △

From the KKT conditions we have for d ∈ C(Σ, x∗,λ,µ) that

dT∇ f (x∗) =
∑
i∈E
λi · dT∇ci(x

∗) +
∑
i∈I
µi · dT∇ci(x

∗) = 0.

The following theorem gives a second–order necessary condition. It states that that the Hes-
sian of the Lagrangian has non–negative curvature along critical directions at a local solution
x∗.
Theorem 3.25 (Second–Order Necessary Conditions)
Let f and ci , i ∈ E ∪ I be twice continuously differentiable and let S = Rn. Suppose that x∗ is a local
solution of NLP (3.13) and that the LICQ is satisfied at x∗. Let furthermore (λ,µ) be Lagrangemultipliers
such that (x∗,λ,µ) is a KKT point. Then

dT∇2
x xL(x

∗,λ,µ)d ⩾ 0, ∀d ∈ C(Σ, x∗,λ,µ). (3.16)
△

Proof See Nocedal and Wright [341, Theorem 12.5]. □

Sufficient conditions are conditions on f and ci , i ∈ E ∪ I , that guarantee that x∗ is a local
solution of Problem (3.13). The following result provides a sufficient condition which is similar
to the previous introduced necessary condition, but it differs in that the CQ is not required,
and the inequality in (3.16) is replaced by a strict inequality.
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Theorem 3.26 (Second–Order Sufficient Conditions)
Let f and ci , i ∈ E ∪I be twice continuously differentiable. Let S = Rn and let (x∗,λ,µ) be a KKT point
of Problem (3.13) with

dT∇2
x xL(x

∗,λ,µ)d > 0 ∀d ∈ C(Σ, x∗,λ,µ). (3.17)

Then there exists a neighborhood U of x∗ and some α > 0 such that

f (x)⩾ f (x∗) +α ∥x − x∗∥2 ∀x ∈ Σ∩U . △

Proof See Nocedal and Wright [341, Theorem 12.6]. □

The conditions (3.16) and (3.17) are unhandy for most problems since they involve the critical
cone. Thus,Theorem 3.25 andTheorem 3.26 are often stated in a weaker form: if the strict com-
plementarity condition holds and the KKT multipliers λ and µ are unique, then C(Σ, x∗,λ,µ)
can be expressed as the kernel of the matrix whose rows are built of active constraint gradients
at x∗, i.e., it holds C(Σ, x∗,λ,µ) = ker (A(x∗)) for the matrix

A(x∗) def
=
�∇ci(x

∗)T
�

i∈A(x∗) .

If LICQ holds at x∗ the matrix A(x∗) has full row rank. Let Z be a matrix with full column
rank and let the columns of Z build a basis for ker (A(x∗)), i.e., it holds A(x∗) Z = 0. Hence,
we can write the critical cone as

C(Σ, x∗,λ,µ) =
�

Z d : d ∈ R|A(x∗)|	 .

We conclude that the conditions (3.16) and (3.17) are fulfilled if

dT Z T ∇2
x xL(x

∗,λ,µ) Z d ⩾ 0 ∀d resp. dT Z T ∇2
x xL(x

∗,λ,µ) Z d > 0 ∀d

holds, i.e., the Hessian ∇2
x xL(x

∗,λ,µ) is positive semidefinite/positive definite on the null
space of the active constraint Jacobian matrix.
In order to determine the matrix Z one usually calculates a QR factorization (see e.g. Stoer
et al. [419, Section 6.6.4]) to the matrix A(x∗): we find a square upper triangle matrix R and an
orthogonal matrix Q = [Q1 Q2] such that the transpose of A(x∗) can be expressed as follows:

A(x∗)T = [Q1 Q2]
�
R
0

�
=Q1 R.

In case of a regular matrix R one can choose Z =Q2. Otherwise, one needs to apply a column
pivoting procedure during the QR factorization process.

3.6 Numerical Methods

In this section we give a brief introduction how NLPs can be solved numerically. Well
known methods are Sequential Quadratic Programming (SQP), interior–point methods and
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multiplier–penalty methods. Most textbooks in nonlinear optimization address those meth-
ods, see e.g. Fiacco and McCormick [161], Fletcher [166], Geiger and Kanzow [186], Gill
et al. [196], or Nocedal and Wright [341].
To achieve convergence from arbitrary starting points the aforementioned methods are usu-
ally expanded by globalization strategies such as line–search methods, trust–region methods,
or filter methods. All of them have been investigated for many years and assuming certain
requirements most of them show at least global convergence to KKT points and locally super-
linear convergence.
No method can be taken over any other per se from a purely mathematical point of view. The
decision to use one method rather depends on its concrete implementation and in particular
on the strategies, how it deals with numerical difficulties such as ill–conditioned problems,
bad scaling, sparsity, or warm–start handling.
In this thesis we focus on the Lagrange–Newton method and the SQP method. More ex-
tended reference literature for SQP methods is provided by Han [222], Powell [360], Gill
et al. [196], Stoer [418], Schittkowski [387, 388]. There exist several implementations of the
SQP method, e.g. Schittkowski [389], Philip et al. [355], Gill et al. [197].

3.6.1 Lagrange–Newton Method

In this section we restrict the discussion to purely equality constrained NLPs

min
x∈Rn

f (x) (3.18)

s. t. ci(x) = 0, i ∈ E ,

wherewemake the same assumptions for the objective function f and the constraint functions
ci , i ∈ E as for our standard NLP problem (3.13). Let us assume that x∗ is a local minimum of
Problem (3.18) and that the LICQ is satisfied at x∗, i.e., the gradients∇ci(x∗), i ∈ E , are linearly
independent. According to Theorem 3.22 and Theorem 3.23 there exist unique multipliers
λ∗i ∈ R, i ∈ E , such that

0=∇xL(x∗,λ∗) =∇ f (x∗)−∑
i∈E
λ∗i ∇ci(x

∗),

0= ci(x
∗), i ∈ E .

This is a nonlinear equation for x∗ and λ∗ and can be rewritten as F(x∗,λ∗) = 0, where the
function F : Rn ×R|E| −→ Rn+|E| is defined as

F(x ,λ)
def
=
� ∇xL(x ,λ)

c(x)

�
. (3.19)

The Lagrange–Newtonmethod solves this nonlinear equationwith thewell knownNewton
method. In fact, the Lagrange–Newton method tries to find a KKT point of Problem (3.18).
For the sake of completeness we review the well–known convergence results for Newton’s
method (see e.g. Nocedal and Wright [341, Theorem 11.2]) in terms of the linear equation
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Algorithm 1 Lagrange–Newton Method

1: Choose x (0) ∈ Rn and λ(0) ∈ R|E|, k← 0
2: while F(x (k),λ(k)) ̸= 0 do
3: Solve the linear equation�∇2

x xL(x
(k),λ(k)) c′(x (k))T

c′(x (k)) 0

�
·
�
δx
δλ

�
= −

�∇xL(x (k),λ(k))
c(x (k))

�
(3.20)

4: x (k+1)← x (k) +δx , λ(k+1)← λ(k) +δλ
5: k← k+ 1
6: end while

(3.20).

Theorem 3.27 (Local Convergence of Lagrange–Newton Method)
Let (x∗,λ∗) be a KKT point and let f and ci , i ∈ E be twice continuously differentiable with Lipschitz
continuous second derivatives. Furthermore, let the matrix�∇2

x xL(x
(k),λ(k)) c′(x (k))T

c′(x (k)) 0

�
(3.21)

be non–singular. Then there exists ϵ > 0 such that the Lagrange–Newton method converges for all
(x (0),λ(0)) ∈ Uϵ(x∗,λ∗). The algorithm has a quadratic convergence rate, i.e., there exists a constant
C ⩾ 0 such that

(x (k+1),λ(k+1))− (x∗,λ∗)

⩽ C · 

(x (k),λ(k))− (x∗,λ∗)

2

for all k sufficiently large. △

Thematrix (3.21) is called Karush–Kuhn–Tucker–matrix. A sufficient condition for the non–
singularity of the KKT–matrix is provided if the gradients ci , i ∈ E , are linearly independent
and it holds

dT∇2
x xL(x

∗,λ∗)d > 0

for all 0 ̸= d ∈ Rn with

c′(x∗) d = 0.

3.6.2 SequentialQuadratic Programming Method

Sequential Quadratic Programming algorithms solve a sequence of quadratic subproblems to
generate iterates. Those subproblems are composed of a quadratic model of the objective
subject to constraint linearizations of the NLP at the actual iterate. The following section is
dedicated to this particular class of optimization problems.
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Quadratic Programs

In a Quadratic Program a quadratic function is minimized over a polyhedron. A formal defi-
nition of what a Quadratic Program is, is provided below.
Definition 3.28 (Quadratic Program)
Let a ∈ Rnx , b ∈ Rnb and c ∈ Rnc be vectors and let A∈ Rnx×nx , B ∈ Rnb×nx and C ∈ Rnc×nx be matrices. A
Quadratic Program (QP) is a NLP having a quadratic objective function and affine constraint functions,
i.e., problems of the following type:

min
x∈Rnx

1
2

x T Ax + aT x (3.22)

s. t. 0nb = Bx + b,

0nc ⩾ C x + c. △

A standard characterization of QPs is based on the Hessian matrix A: QP (3.22) is called a
convex QP if A is positive semidefinite. In case of positive definite A it is called a strictly convex
QP and for an indefinite matrix A it is called a non–convex QP.
In case of affine objective (A ≡ 0nx×nx

) and affine constraint functions we call the problem a
Linear Program (LP). Applying KKT conditions to the QP (3.22) a point (x∗,λ∗,µ∗) is a KKT if
the following equations hold:

0nx
= Ax∗ + a+ BT λ∗ + C T µ∗,

0nb
= Bx∗ + b,

0nc
⩾ C x∗ + c,

0nc
⩽ µ∗,

0= µ∗i (Ci,· x∗ + ci), i ∈ [nc].

Hence, the KKT conditions for pure equality constrained QPs are given by the linear system�
A BT

B 0

��
x∗
λ∗
�
= −

�
a
b

�
.

The block matrix on the left side is called the KKT matrix. Note that the equality constrained
QP has a unique KKT point if the KKT matrix is invertible. The following lemma specifies
conditions assuring a nonsingular KKT matrix.
Lemma 3.29 (Invertibility of the KKT Matrix)
Let A∈ Rnx×nx be a symmetric matrix and let B ∈ Rnb×nx be a matrix such that it has full rank and it holds
nb ⩽ nx. Let furthermore A be positive definite on the null space of B. Then the matrix�

A BT

B 0

�
is invertible. △

Proof See Nocedal and Wright [341, Lemma 16.1]. □
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According to Lemma 3.29 the KKT matrix is regular if B has full rank nb and A is positive
definite on the null space of B. Under those assumptions it can be easily verified that the
second–order sufficient conditions (see Theorem 3.26) hold at (x∗,λ∗). Hence, x∗ is a strict
local minimizer of the equality constrained QP.
Similar results towards existence and uniqueness of a KKT point can also be shown for in-
equality constrained QPs, e.g. under the additional assumptions of a non–empty feasible set
and that the combined constraint matrix [BT , C T ] has full rank nb + nc. Sufficient conditions
for x∗ to be a local minimizer are satisfied if (x∗,λ∗,µ∗) is a KKT point and if A is positive
definite on the null space of the active constraint Jacobian matrix, i.e., the matrix whose rows
comprises the active constraint gradients at x∗. A sufficient condition for x∗ to be a global
solution of QP (3.22) the point (x∗,λ∗,µ∗) needs to be a KKT point and A needs to be positive
semidefinite, cf. Nocedal and Wright [341, Theorem 16.4].
A presentation of the general theory about solution approaches to QPs lies beyond the scope
of this thesis and we refer the reader to the textbook of Nocedal and Wright [341, Chapter
16] and the cited references therein. In general, however, the following can be stated: QP so-
lutions can be determined in a finite number of computational steps or the infeasibility of the
QP can be shown. The numerical effort to find solutions depends on the number of inequality
constraints and the QP type. In case of convex or strictly convex QPs the computational com-
plexity is comparable to the one that is required to solve LPs (see Nocedal and Wright [341,
Chapter 13+14]). In case of non–convex QPs the solution process becomes more challenging
due to the possible existence of several stationary points, cf. Gould et al. [208]. For non–
convex QPs it was even shown that it is NP–hard to decide whether a given feasible point is
a global minimizer, cf. Murty and Kabadi [335]. Likewise, it is NP–hard to decide if a given
point is a local minimizer, Vavasis [433].
Well–established QP solvers are Gurobi [213], CPLEX [248], and qpOASES [160].

The Full Step Exact Hessian SQP Method

The Sequential Quadratic Programming (SQP) method can be interpreted as an extension of
the Lagrange–Newton method to general nonlinear optimization problems with inequality
constraints. To make this clear, we derive the Lagrange–Newton method in a second way.
To this end, we consider again the purely equality constrained NLP (3.18) and approximate the
problem at some point (x (k),λ(k)) by the QP

min
d∈Rn

1
2

dT∇2
x xL(x

(k),λ(k))d +∇ f (x (k))
T

d (3.23)

s. t. 0= c(x (k)) + c′(x (k))d.

The Lagrange function for QP (3.23) is given by

1
2

dT∇2
x xL(x

(k),λ(k))d + f ′(x (k))d −ηT
�
c(x (k)) + c′(x (k))d

�
.
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The KKT conditions from Theorem 3.22 applied to the QP leads to�∇2
x xL(x

(k),λ(k)) c′(x (k))T

c′(x (k)) 0

�
·
�

d
η

�
= −

�∇ f (x (k))
c(x (k))

�
. (3.24)

Subtracting c′(x (k))Tλ(k) on both sides of the first equation in (3.24) yields�∇2
x xL(x

(k),λ(k)) c′(x (k))T

c′(x (k)) 0

�
·
�

d
η−λ(k)

�
= −

�∇xL(x (k),λ(k))
c(x (k))

�
. (3.25)

A comparison of linear equations (3.20) and (3.25) reveals that they are equivalent if we identify
δx

def
= d and δλ

def
= η−λ(k). If we update the states according to line 4 of Algorithm 1 we get

x (k+1) = x (k) +δx = x (k) + d, λ(k+1) = λ(k) +δλ = η.

We have seen that for purely equality constrained NLPs the Lagrange–Newton method co-
incides with the just presented method of repeatedly solving QPs, if we use the Lagrange
multiplier η of the QP subproblem as new approximation for the multiplier λ.
This observation suggests an obvious extension for NLP (3.13) with S = Rn: the QP (3.23) is
augmented with an additional quadratic approximation term for the inequality constraints.
The resulting algorithm is summarized in Algorithm 2.

Algorithm 2 Local SQP Method

1: Choose (x (0),λ(0),µ(0)) ∈ Rn ×R|E| ×R|I|, k← 0
2: while (x (k),λ(k),µ(k)) is not a KKT point of NLP (3.13) with S = Rn do
3: Compute a KKT point (d(k),λ(k+1),µ(k+1)) ∈ Rn ×R|E| ×R|I| of the QP

min
d∈Rn

1
2

dT∇2
x xL(x

(k),λ(k),µ(k))d +∇ f (x (k))
T

d (3.26)

s. t. 0= ci(x
(k)) + c′i(x (k))d, i ∈ E ,

0⩾ ci(x
(k)) + c′i(x (k))d, i ∈ I.

4: x (k+1)← x (k) + d(k)

5: k← k+ 1
6: end while

Similar to the Lagrange–Newton method we provide a convergence result for the local SQP
method as proposed in Algorithm 2.

Theorem 3.30 (Local Convergence of SQP Method)
Let the following conditions hold:

(i) The point x∗ is a local minimum of NLP (3.13) with S = Rn.
(ii) The functions f and ci , i ∈ E ∪I are twice continuously differentiable with Lipschitz continuous

second derivatives.
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(iii) The LICQ is satisfied at x∗, i.e., the gradients ∇ci(x∗), i ∈A(x∗) are linearly independent.
(iv) The strict complementarity condition µ∗i − ci(x∗)> 0 holds for all i ∈A(x∗)∩ I .
(v) The inequality

dT∇2
x xL(x

∗,λ∗,µ∗)d > 0

holds for all 0 ̸= d ∈ Rn with

c′i (x
∗) d = 0, i ∈A(x∗).

Then there exists ϵ > 0 such that all QPs (3.26) have a locally unique solution d(k) with unique multipli-
ers λ(k) and µ(k) for arbitrary (x (0),λ(0),µ(0)) ∈ Uϵ(x∗,λ∗,µ∗). Moreover, the sequence (x (k),λ(k),µ(k))
converges quadratically to (x∗,λ∗,µ∗). △

The proof of the Theorem 3.30 follows from Theorem 3.27 and the results of the following
section.

Active Set Determination

In general, there are two established approaches to put SQP methods for a general NLP (3.13)
into practice.

IQP Approach The first approach is called IQP (inequality–constrained QP) approach and is
presented in Algorithm 2, i.e., in each iteration the inequality constrained QP (3.26) is solved
to determine new iterates. The multipliers obtained from the QP solver are used to come up
with a guess of the optimal active set. To make this clear we assume that (x∗,λ∗,µ∗) denotes
a KKT point of NLP (3.13) such that the KKT conditions can be stated as

0=∇ f (x∗) + [∇ci(x
∗)]i∈E λ∗ + [∇ci(x

∗)]i∈I µ∗,
0= ci(x

∗), i ∈ E ,

0⩾ ci(x
∗), i ∈ I,

0⩽ µ∗i , i ∈ I,

0= µ∗i · ci(x
∗), i ∈ I.

Let us assume that QP (3.26) is initialized at the primal KKT point x∗ of NLP (3.13) with a
Hessian matrix A0. Denoting the KKT point of the QP by (d0,λ0,µ0), we can write its KKT
conditions as

0= A0 d0 +∇ f (x∗) + [∇ci(x
∗)]i∈E λ0 + [∇ci(x

∗)]i∈I µ0,

0= ci(x
∗) +∇ci(x

∗)T d0, i ∈ E ,

0⩾ ci(x
∗) +∇ci(x

∗)T d0, i ∈ I,

0⩽ µ0,i , i ∈ I,

0= µ0,i ·
�
ci(x

∗) +∇ci(x
∗)T d0

�
, i ∈ I.
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It is obvious that those conditions hold if we choose (d0,λ0,µ0) = (0,λ∗,µ∗). If we assume
additionally that A0 is positive definite on the null space of the active constraint Jacobian
matrix, that point is even a unique local minimizer. Thus, the active constraint set and the
multipliers can be determined from just knowing the primal KKT point x∗.
Onemight expect that Algorithm 2 not just identifies active set andmultipliers when initialized
at (x∗,λ∗,µ∗) but also in a vicinity thereof. Moreover, if the active set does not change near the
KKT point thenAlgorithm 2 acts like a Newtonmethod for equality–constrained optimization
(Newton method applied to (3.19)). In this case the proof of Theorem 3.30 would follow from
Theorem 3.27. Indeed, the following theorem provides such a result.

Theorem 3.31 (Robinson [372])
Let the assumptions (i)–(v) ofTheorem 3.30 be satisfied. Then it holds that the active setA(xk) associated
with iterates (xk,λk,µk) of Algorithm 2 sufficiently close to (x∗,λ∗,µ∗) coincidewith the active setA(x∗)
of NLP (3.13) at x∗. △

The practicability of the IQP approach depends strongly on the computational cost to find a
solution for QP (3.26) which can be high, in particular, for large–scale problem instances. It is
crucial to constitute warm–start strategies, i.e., to initialize the current QP with solution data
obtained from the previous QP.

EQP Approach The second SQP based approach is called EQP (equality–constrained QP)
approach and is based on the idea to split the active set determination and the calculation of
iterates into two separate tasks. One possible realization can be sketched as follows: one sets
up a LP by omitting the quadratic term 1

2 dT ∇2
x xL(x

(k),λ(k),µ(k)) d in QP (3.26) and augments
the problem with a trust–region constraint ∥d∥∞ ⩽ ∆k . The active set of the resulting LP is
used as the working set for the current iteration. The SQP step is then calculated by solving
an equality constrained QP with that working set.
For further details about both the IQP and the EQP approachwe refer the reader to the textbook
of Nocedal and Wright [341, Chapter 18] and the references therein.

Approximation of Hessian

Due to numerical aspects there are severe reasons to replace the exact Hessian of the La-
grangian ∇2

x xL(x
(k),λ(k),µ(k)) in QP (3.26) by an approximation: one reason is that the Hes-

sian is not known explicitly in most practical applications and the computation of the Hessian
by finite differences can be very expensive (see Section 6.1 about numerical derivate genera-
tion). Another reasonmay be a possibly indefinite Hessianwhat causes issues to find a solution
of the QP numerically.
Hence, the Hessian of the Lagrangian in iteration k is replaced by a suitable matrix Bk . The
modified BFGS–update formula

Bk+1 = Bk +
q(k)q(k)

T

q(k)T s(k)
− Bks(k)s(k)

T
Bk

s(k)T Bks(k)
, (3.27)
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where

s(k) = x (k+1) − x (k),

q(k) = θk ·η(k) + (1− θk) · Bks(k), (3.28)
η(k) =∇xL(x (k+1),λ(k),µ(k))−∇xL(x (k),λ(k),µ(k)),

θk =

(
1, if s(k)

T
η(k) ⩾ 0.2 · s(k)T Bks(k),

0.8·s(k)T Bks(k)

s(k)T Bks(k)−s(k)Tη(k)
, otherwise.

was suggested by Powell [360] and is a well established choice for Bk . This update for-
mula ensures a symmetric and positive definite matrix Bk+1 if Bk was symmetric and positive
definite. If we choose θk = 1 we retrieve the well–known Broyden–Fletcher–Goldfarb–
Shanno (BFGS) update formula which is used in quasi–Newton methods for unconstrained
optimization problems, see Broyden [87], Fletcher [165], Goldfarb [199], Shanno [408].
Using the exact Hessian Theorem 3.30 guarantees a quadratic convergence rate for the SQP
algorithm. On the other hand we only achieve a super–linear convergence for the modified
BFGS update formula, cf. Nocedal and Wright [341].
If NLP (3.13) is large–scale and sparse then themodified BFGS update formula is not themethod
of choice since it tends to generate dense matrices. We sketch a few alternatives for this case:

• Set Bk
def
= In for k ⩾ 0, what results in a Sequential Linear Programming (SLP) method

and a linear convergence rate.

• Use the regularized exact Hessian

Bk
def
=∇2

x xL(x
(k),λ(k),µ(k)) + κk · In

with a positive real κk such that Bk is guaranteed to be positive definite. This is achieved
if κk is larger than the modulus of the smallest negative eigenvalue of the Hessian ma-
trix. For more information about how to estimate the sparse Hessian matrix and their
eigenvalues the reader is referred to the publications of Betts [62], Coleman et al. [115]
and Gerschgorin [193].

• The L–BFGS updating formula (see Nocedal [340]) is based on the BFGS updating for-
mula and the Hessian matrix is constructed from only recent data by means of curvature
information. For the sake of saving data storage previous curvature information is omit-
ted.

Globalization of the Local SQP Method

The presented convergence results for the Lagrange–Newton method in Theorem 3.27 and
the SQPmethod inTheorem 3.30were of local type, i.e., both algorithms converge if the chosen
starting values arewithin some neighborhood of a localminimum. In practice, neither the local
minimum nor its neighborhood is known a priori in most cases. We therefore describe one
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approach that guarantees the convergence of the methods to a local minimum for any starting
value under suitable conditions.
The idea is to determine an appropriate step length tk > 0 in iteration k such that the new
iterate x (k+1) is given by the formula

x (k+1) = x (k) + tk · d(k).
Compared to the local SQP method the step length is now obtained by a so–called line search
in the direction d(k). The line search is performed with the aid of a suitable penalty function or
merit function. These act as a sort of measure function for “improvement” of iteration x (k+1).
An iterate improves if either a sufficient decrease of the objective function value or of the total
constraint violation is achieved while the respective other value is not substantially declined.
Often used merit functions are given by

• the non–differentiable l1–penalty function (see e.g. Powell [360])

l1(x;α)
def
= f (x) +α ·∑

i∈E
|ci(x)|+α ·

∑
i∈I

max {0, ci(x)} .

• the differentiable augmented Lagrange function (see e.g. Schittkowski [387, 388])

La(x ,λ,µ;α)
def
= f (x) +

∑
i∈E

�
λi · ci(x) +

α

2
· ci(x)

2
�

+
∑
i∈I

¨
µi · ci(x) +

α
2 · ci(x)2, if µi +α · ci(x)⩾ 0,

− µ2
i

2α , otherwise.

Under suitable assumptions both functions are exact penalty functions, i.e., there exists a finite
positive parameter α∗ such that every local minimum x∗ of NLP (3.13) with S = Rn is also a
local minimum of the penalty function for all α > α∗.

Algorithm 3 Global SQP Method

1: Choose (x (0),λ(0),µ(0)) ∈ Rn × R|E| × R|I|, B0 ∈ Rn×n symmetric and positive definite,
α > 0, β ∈ (0,1), σ ∈ (0,1), k← 0

2: while (x (k),λ(k),µ(k)) is not a KKT point of NLP (3.13) with S = Rn do
3: Compute a KKT point (d(k),λ(k+1),µ(k+1)) ∈ Rn × R|E| × R|I| of the QP (3.26), with
∇2

x xL(x
(k),λ(k),µ(k)) replaced by Bk .

4: Determine a step size tk =max{β j : j ⩾ 0} such that

l1(x
(k) + tk · d(k);α)⩽ l1(x

(k);α) +σ tk · l ′1(x (k); d(k);α).

5: Compute Bk+1 according to (3.27), x (k+1)← x (k) + tk · d(k)
6: k← k+ 1
7: end while
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3.6.3 Other Approaches

Interior–Point Methods

Interior–Point methods are also known as barrier methods and represent a common and efficient
way to solve NLPs. For an extensive introduction to these algorithms we refer to the textbook
of Nocedal and Wright [341, Chapter 19]. In our software package grc we also integrated
the state–of–the–art interior–point Ipopt [444] as numerical NLP solver.
As a first step to interior–Point methods we reformulate the NLP problem by introducing a
slack variable s = [si]i∈I :

min
x ,s

f (x) (3.29)

s. t. ci(x) = 0, i ∈ E ,

ci(x) + si = 0, i ∈ I.

s ⩾ 0.

Interior–Point methods exploit the KKT conditions of Theorem 3.19 (we have S ∈ Rn):

0=∇ f (x)− JE
T (x) y − JI

T (x) z,

0= S Z −µ1,

0= ci(x), i ∈ E ,

0= ci(x) + si , i ∈ I,

0⩽ s, 0⩽ z, 0= µ.

Here, JE(x) and JI (x) denote the Jacobian matrices of the equality and inequality constraint
functions. The matrices S and Z denote the diagonal matrices with diagonal entries s and z,
respectively.
The condition S Z = µ1 with µ = 0 makes the condition hard to solve since combinatorial
aspects are introduced (determination of the optimal active set). Interior–point methods cir-
cumvent this issue by a parametrization of the equation system with µ as a parameter. Then
they solve a sequence of equation systems with strictly positive assignments to µ and drive
the parameter iteratively to zero. This explains the word “interior” in the name since s, z > 0 is
guaranteed throughout the whole solution process. Hence, the iterates are kept in the interior
of the admissible area. In the described homotopy, we solve perturbed KKT equation systems.

Penalty Methods

In the penalty approach to NLP, we remove the constraints from the NLP and augment the
objective function with a penalization term which penalizes constraint violations. Taking the
NLP

min
x

f (x) (3.30)

s. t. ci(x) = 0, i ∈ E ,
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and a special quadratic penalization approach we define the penalty function

p(x;µ)
def
= f (x) +

µ

2

∑
i∈E

c2
i (x)

with the penalization parameter µ > 0. If we drive µ to infinity, the degree of the constraint
violation penalization is steadily increased. Penalty methods start with a small value for µ and
employ handy µ–adaption–strategies to solve the constrained optimization problem. Further
details on penalty methods can be found in the textbook of Nocedal andWright [341, Chap-
ter 17].
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Mathematical Programs with Vanishing Constraints

In this chapter Mathematical Programs with Vanishing Constraints (MPVCs), a challenging
class of NLPs, are investigated. We provide a definition of the problem class as well as a
review of the most important properties, in particular stationarity conditions and the lack of
CQs. We present existing solution strategies for the problem class. Furthermore we analyze
the cohesion between MPVCs and the even more challenging class of MPECs. In fact, it is
easy to show that MPVC is a subclass of MPEC. In later chapters we will show that certain
discretization strategies of OCPs with explicit as well as implicit switches lead to MPVCs.
A wide range of real–world problems can be naturally modeled by MPVCs. For this reason
the problem class has attracted a lot of research interest both theoretically and algorithmi-
cally in recent years. The presentation of MPVCs in this chapter is based on the theses of
Kirches [272] and Lenders [292] and the references they cited (see Scheel and Scholtes
[386], Scholtes [392, 393], Outrata [347, 348], Izmailov and Solodov [252], Achtziger and
Kanzow [3], Hoheisel and Kanzow [239, 240, 241], Hoheisel [238], Hoheisel et al. [242],
Kanzow and Schwartz [266], Luo et al. [307], Pang and Fukushima [350], Gfrerer [194]).
These references provide an excellent overview of MPVCs and MPECs.

4.1 Problem Formulation

In this thesis MPVCs arise after a discretization step of OCPs with explicit and implicit
switches. Numerical methods to solve NLPs usually rely on the satisfaction of CQs such as
e.g. MFCQ or LICQ. Due to a non–convex feasible set and violation of CQs the problem class
of MPVCs is challenging.

Definition 4.1 (MPVC)
Let E and I be disjoint index sets with nc

def
= |E |+|I| andw.l.o.g. E∪I = {1, . . . , nc}. Let f : Rnx×Rns → R,

c : Rnx ×Rns −→ Rnc and g : Rnx ×Rns −→ Rns be continuously differentiable functions. An NLP of the
form

min
x∈Rnx ,s∈Rns

f (x , s) (4.1)

s. t. 0= ci(x , s), i ∈ E ,

0⩾ ci(x , s), i ∈ I,

0⩾ si · gi(x , s), i ∈ [ns],

0ns ⩾ s,

is called a Mathematical Program with Vanishing Constraints. △
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By introducing slack variables, problems with two–sided general constraints of the form

min
x∈Rnx

f (x) (4.2)

s. t. 0= ci(x), i ∈ E ,

0⩾ ci(x), i ∈ I,

0⩾ gi(x) · hi(x), i ∈ [ns],

0⩾ hi(x), i ∈ [ns],

as used e.g. in Hoheisel [238] can be equivalently reformulated as a problem of type (4.1).
To point out the meaning of a vanishing constraint we have a closer look at the constraint
0 ⩾ si · gi(x , s) in problem (4.1): if si = 0, the constraint 0 ⩾ si · gi(x , s) ”vanishes“ since it is
fulfilled regardless of gi(x , s). Hence, problem (4.1) can be equivalently written as

min
x∈Rnx ,s∈Rns

f (x , s)

s. t. 0= ci(x , s), i ∈ E ,

0⩾ ci(x , s), i ∈ I,

0ns
⩾ s,

0> si ⇒ 0⩾ gi(x , s), i ∈ [ns]. (4.3a)

The concept of vanishing constraints can also be found in the context of Mixed Integer Linear
Programmings (MILPs). Depending on the value of a binary variable ω ∈ {0,1} a linear
constraint α · x ⩽ β is either active or inactive. These constraints are also known as Indicator
Constraints and can be studied in detail e.g. in Belotti et al. [44].
A mathematical program with logical constraints as (4.3a) is a special case of a so called
Constraint Programming (CP). CPs in the context of MILPs are investigated by Achterberg
[2].
Due to the product terms 0 ⩾ si · gi(x , s), i ∈ [ns], MPVCs are non–convex regardless of the
curvature types of constraint functions c and g . Furthermore, standard CQs like LICQ, MFCQ
or even the Abadie Constraint Qualification (ACQ) are not guaranteed to hold.

Lemma 4.2 (Violation of LICQ and MFCQ for MPVCs)
Let x ∈ Rnx and s ∈ Rns be feasible for problem (4.1). Then

(i) LICQ is violated in (x , s), if {i : si = 0} is not the empty set.

(ii) MFCQ is violated in (x , s), if {i : si = 0 and 0⩾ gi(x , s)} is not the empty set. △

Proof See Achtziger and Kanzow [3]. □

Achtziger and Kanzow [3] show that the assumption {i : si = 0 and 0⩾ gi(x , s)} ̸= ; is
quite reasonable for MPVCs and satisfied for a big class of applications of truss topology op-
timization. Hence, LICQ and MFCQ are too strong assumptions for MPVCs.
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4.2 Comparison with MPECs

In this section another class of optimization problems which is closely related to MPVCs is
investigated, namely Mathematical Programs with Equilibrium Constraints (MPECs).

Definition 4.3 (MPEC)
Let E and I be disjoint index sets with nc

def
= |E |+ |I| and w.l.o.g. E ∪ I = {1, . . . , nc}. Let the functions

f : Rnx ×Rns ×Rns −→ R and c : Rnx ×Rns× −→ Rnc be continuously differentiable. An NLP of the form

min
x∈Rnx ,s∈Rns ,t∈Rns

f (x , s, t) (4.4)

s. t. 0= ci(x , s, t), i ∈ E ,

0⩾ ci(x , s, t), i ∈ I,

0⩾ s ⊥ t ⩽ 0,

is called a Mathematical Program with Equilibrium Constraints or Mathematical Program with Comple-
mentarity Constraints. We use the notation “0⩾ s ⊥ t ⩽ 0” for 0⩾ s, 0⩾ t, sT t = 0. △

Combinatorial structures on the characteristic constraints imply a non–convexity in the sense
of Scholtes [393] for MPECs. As it has already been done for MPVCs in Lemma 4.2, the
following result states that for MPECs LICQ and MFCQ are always violated at any feasible
point.

Lemma 4.4 (Violation of Standard Constraint Qualifications for MPEC)
Let (x , s, t) be a feasible point for (4.4). Then MFCQ is violated for the NLP formulation of (4.4):

min
x∈Rnx ,s∈Rns ,t∈Rns

f (x , s, t) (4.5)

s. t. 0= ci(x , s, t), i ∈ E ,

0⩾ ci(x , s, t), i ∈ I,

0⩾ s, 0⩾ t, sT t = 0. △

Proof See Chen et al. [107], Scheel and Scholtes [386]. □

If we compare MPVCs and MPECs regarding CQs the situation is even worse for MPECs. Due
to the non–convexity and the violation of standard CQs it is in general more challenging to
find MPEC solutions than MPVC solutions.
In principle, an MPVC can be reformulated as an MPEC by introducing slack variables: the
problem (4.1) has a solution if and only if the problem

min
x∈Rnx ,s∈Rns ,t∈Rns

f (x , s) (4.6)

s. t. 0= ci(x , s), i ∈ E ,

0⩾ ci(x , s), i ∈ I,

0⩾ g (x , s) + t,

0⩾ s ⊥ t ⩽ 0,
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has a solution. One could have the idea to reformulate an MPVC as an MPEC and use a
numerical solver from the MPEC machinery.
There are severe reasons not to use this reformulation strategy: First of all, it has been shown
e.g. by Achtziger and Kanzow [3] and Achtziger et al. [4] that an MPEC is even more
difficult to tackle than an MPVC in many situations. Moreover, the reformulation with slack
variables increases the problem dimension. Note also the non–uniqueness of the slack vari-
ables, which illustrates that MPVCs are truly a different class of problems than MPECs.

4.3 Towards CQs and Necessary Optimality Conditions

In Section 4.1 we pointed out the violation of standard NLP CQs such as LICQ and MFCQ for
MPVCs. This section is dedicated to introduce some MPVC–tailored CQs. With the aid of
these CQs we derive necessary optimality conditions for MPVCs.

4.3.1 Tools for MPVC Analysis

We start with a list of index sets, that will be intensively used in the remainder of this chapter.
For feasible points x∗ of MPVC (4.2) we define the index sets

Ig
def
= {i ∈ I : ci(x

∗) = 0} ,
I+

def
= {i : hi(x

∗)> 0} ,
I0

def
= {i : hi(x

∗) = 0} .
(4.7)

The index set I+ is split into two subsets as

I+0
def
= {i : hi(x

∗)> 0, gi(x
∗) = 0} ,

I+−
def
= {i : hi(x

∗)> 0, gi(x
∗)< 0} , (4.8)

and in the same fashion the index set I0 is split up as

I0+
def
= {i : hi(x

∗) = 0, gi(x
∗)> 0} ,

I00
def
= {i : hi(x

∗) = 0, gi(x
∗) = 0} ,

I0−
def
= {i : hi(x

∗) = 0, gi(x
∗)< 0} .

(4.9)

The subscript in (4.7) and the first subscript in (4.8) and (4.9) indicates the sign of hi(x∗)
whereas the second subscript in (4.8) and (4.9) indicates the sign of gi(x∗). Note furthermore
that the index sets in (4.7)–(4.9) depend on the chosen feasible point x∗. For our purposes the
value for x∗ will be clear from the particular context.

Definition 4.5 (TNLP(x ∗))
Let x∗ be feasible for MPVC (4.2). The Tightened Nonlinear Program (TNLP(x∗)) at x∗ is defined as

min
x∈Rnx

f (x) (TNLP(x∗))
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s. t. 0= ci(x), i ∈ E ,

0⩾ ci(x), i ∈ I,

0= hi(x), i ∈ I0+ ∪ I00,

0⩽ hi(x), i ∈ I0− ∪ I+,

0⩾ gi(x), i = 1, . . . , ns. △

The reason why problem (TNLP(x∗)) is called tightened is that its feasible set is obviously
contained in the feasible set of the original problem. We will use TNLP(x∗) in the following
sections to identify MPVC–tailored CQs. For the same purpose one can use a similar tightened
NLP in the context of MPECs. The interested reader can find details in the article of Scheel
and Scholtes [386].

4.3.2 MPVC–Tailored CQs

We start the section with a definition of the LICQ counterpart for MPVCs and denote it with
MPVC Linear Independence Constraint Qualification (MPVC–LICQ).
Definition 4.6 (MPVC–LICQ)
If the gradients

∇ci(x
∗), i ∈ E ,

∇ci(x
∗), i ∈ Ig ,

∇hi(x
∗), i ∈ I0,

∇gi(x
∗), i ∈ I00 ∪ I+0,

are linearly independent at a feasible point x∗ of MPVC (4.2) then MPVC–LICQ is fulfilled at x∗. △

The following result, which follows immediately from the definitions of LICQ, MPVC–LICQ
and TNLP(x∗), shows that MPVC–LICQ is standard LICQ of the problem TNLP(x∗).
Lemma 4.7
Let x∗ be feasible for problem (4.2). Then MPVC–LICQ is fulfilled at point x∗ if and only if LICQ holds
at point x∗ for TNLP(x∗). △

Proof Follows from Definitions 3.17, 4.5, and 4.6. □

Lemma 4.7 motivates the following definition of MPVC–MFCQ, which acts as an MPVC ana-
logue of MFCQ.
Definition 4.8 (MPVC–MFCQ)
Let x∗ be feasible for problem (4.2). We say that MPVC Mangasarian–Fromowitz Constraint Qualifi-
cation (MPVC–MFCQ) is fulfilled at point x∗ if MFCQ is fulfilled at point x∗ for TNLP(x∗). △

The definition of MPVC–MFCQ implies immediately that if MPVC–LICQ holds at a feasible
point x∗ for (4.2) then MPVC–MFCQ holds at x∗. Now we state an explicit characterization
of MPVC–MFCQ. For this reason let x∗ be feasible for (4.2). Then MPVC–MFCQ holds at x∗
if and only if

∇ci(x
∗), i ∈ E and ∇hi(x

∗), i ∈ I0+ ∪ I00
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are linearly independent, and if there exists a vector d such that

0>∇ci(x
∗)T d, i ∈ Ig ,

0<∇hi(x
∗)T d, i ∈ I0−,

0>∇gi(x
∗)T d, i ∈ I+0 ∪ I00,

0=∇ci(x
∗)T d, i ∈ E ,

0=∇hi(x
∗)T d, i ∈ I0+ ∪ I00.

If GCQ holds, then the KKT conditions are necessary optimality conditions for a point to
be a local minimizer of a standard NLP. Hence, it is desirable to derive conditions which
imply GCQ. Hoheisel [238, Theorem 4.3.2] shows, that MPVC–LICQ implies GCQ. For the
definition of the remaining CQs we need to introduce the MPVC–linearized feasibility cone

FM PV C(x
∗) def
= {d ∈ Rn : 0⩾∇ci(x

∗)T d, i ∈ Ig ,

0=∇ci(x
∗)T d, i ∈ E ,

0=∇hi(x
∗)T d, i ∈ I0+,

0⩽∇hi(x
∗)T d, i ∈ I00 ∪ I0−,

0⩾∇gi(x
∗)T d, i ∈ I+0,

0⩾ (∇hi(x
∗)T d)(∇gi(x

∗)T d), i ∈ I00}.
Note that the only difference between the standard linearized feasibility cone (see Defini-
tion 3.15) and FM PV C(x∗) is adding the quadratic term in the last line of the definition of
FM PV C(x∗). The definition of MPVC Abadie Constraint Qualification (MPVC–ACQ) and
MPVC Guignard Constraint Qualification (MPVC–GCQ) is then straightforward.

Definition 4.9
For a feasible point x∗ of MPVC (4.1), we say that

(i) MPVC–GCQ holds at x∗ if T (x∗)− = FM PV C (x∗)−.

(ii) MPVC–ACQ holds at x∗ if T (x∗) = FM PV C (x∗). △

One can show (see Hoheisel [238, p. 38]) that the following implications hold:

GCQ⇐=MPVC–LICQ=⇒MPVC–MFCQ=⇒MPVC–ACQ=⇒MPVC–GCQ. (4.10)

4.3.3 First–Order Necessary Optimality Conditions

In this section we investigate first–order optimality conditions for MPVCs. We focus on op-
timality conditions that involve two different types of stationarity: the first one, called strong
stationarity, will be seen to be equivalent to the KKT conditions. The second one is called
M–stationarity, which is a weaker condition and holds under milder assumptions such as all
MPVC–tailored CQs introduced in the previous section.

120



Mathematical Programs with Vanishing Constraints
�� Chapter 4

Strong Stationarity

We start with the definition of strong stationarity.
Definition 4.10 (Strong Stationarity)
Let x∗ be a feasible point for problem (4.2). We call x∗ strongly stationary if there exist Lagrange mul-
tipliers (λ,µ,ηg ,ηh) ∈ R|I| ×R|E| ×Rns ×Rns such that

0=∇ f (x∗) +
∑
i∈I
λi∇ci(x

∗) +
∑
i∈E
µi∇ci(x

∗)−
ns∑

i=1

ηh
i ∇hi(x

∗) +
ns∑

i=1

η
g
i ∇gi(x

∗) (4.11)

and

0= hi(x
∗), i∈ E , (4.12)

0⩾ gi(x
∗), i∈ I, λi ⩾ 0, λigi(x

∗) = 0, i ∈ I,

ηh
i = 0 (i ∈ I+), η

h
i ⩾ 0 (i ∈ I00 ∪ I0−), ηh

i free (i ∈ I0+),

η
g
i = 0 (i ∈ I0 ∪ I+−), η

g
i ⩾ 0 (i ∈ I+0). △

Strong stationarity is derived from the KKT conditions of the MPVC (4.2). Achtziger and
Kanzow [3] have shown that a feasible point x∗ of problem (4.2) is strongly stationary if and
only if it is a KKT point. Due to the equivalence of KKT conditions and strong stationarity
we conclude that strong stationarity is a necessary optimality criterion for an MPVC, if there
holds a CQ which implies GCQ.
Theorem 4.11
Let x∗ be a local minimizer of MPVC (4.2) such that GCQ is fulfilled at x∗. Then x∗ is a strongly stationary
point for (4.2). △
Proof See e.g. Hoheisel [238, Proposition 6.1.3]. □

From the previous section, where we reviewed the result that MPVC–LICQ implies GCQ, we
conclude immediately:
Corollary 4.12
Let x∗ be a local minimizer of MPVC (4.2) such that MPVC–LICQ is fulfilled at x∗. Then x∗ is a strongly
stationary point for problem (4.2) with unique multipliers (λ,µ,ηg ,ηh) such that (4.11) and (4.12) hold.△

M–Stationarity

Since most standard CQs, apart from GCQ, are too strong for MPVCs, the tailored MPVC–
CQs were introduced. However, apart from MPVC–LICQ none of these implies GCQ. Con-
sequently, the conditions from Definition 4.10 cannot be expected to be necessary optimality
conditions if one of those holds. Thus, it is important to find necessary optimality conditions
that hold under MPVC–GCQ.
Theorem 4.13
Let x∗ be a local minimizer for problem (4.2) such that MPVC–GCQ is fulfilled. Then there exist multi-
pliers (λ,µ,ηg ,ηh) such that

0=∇ f (x∗) +
∑
i∈I
λi∇ci(x

∗) +
∑
i∈E
µi∇ci(x

∗)−
ns∑

i=1

ηh
i ∇hi(x

∗) +
ns∑

i=1

η
g
i ∇gi(x

∗) (4.13)
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and

0⩾ gi(x
∗), i∈ I, 0⩽ λi , λigi(x

∗) = 0, i ∈ I, (4.14)
0= ηh

i (i ∈ I+), η
h
i ⩾ 0 (i ∈ I0−), ηh

i free (i ∈ I0+),

0= ηg
i (i ∈ I+− ∪ I0− ∪ I0+), η

g
i ⩾ 0 (i ∈ I+0 ∪ I00),

0= ηh
i ·ηg

i (i ∈ I00). △

Proof See Hoheisel [238]. □

We call the conditions (4.13) and (4.14)M–stationarity conditions of an MPVC. This is due to an
analogous terminology for MPECs that was introduced by Scholtes [391]. They are slightly
weaker than the strong stationarity conditions (4.11) and (4.12) fromDefinition 4.10. This can be
easily seen since for strong stationarity it is required to hold ηh

i ⩾ 0 and ηg
i = 0 for all i ∈ I00

whereas we just have ηg
i ⩾ 0 and ηh

i ·ηg
i = 0 for all i ∈ I00 in the case of M–stationarity. Note

that M– and strong stationary are identical as soon as I00 is the empty set.

Definition 4.14 (M–Stationarity)
Let x∗ be feasible for problem (4.2). Then we say that x∗ is M–stationary if there exist multipliers
(λ,µ,ηg ,ηh) such that

0=∇ f (x∗) +
∑
i∈I
λi∇ci(x

∗) +
∑
i∈E
µi∇ci(x

∗)−
ns∑

i=1

ηh
i ∇hi(x

∗) +
ns∑

i=1

η
g
i ∇gi(x

∗)

and

0= hi(x
∗), i∈ E , (4.15)

0⩾ gi(x
∗), i∈ I, 0⩽ λi , λigi(x

∗) = 0, i ∈ I,

0= ηh
i (i ∈ I+), η

h
i ⩾ 0 (i ∈ I0−), ηh

i free (i ∈ I0+),

0= ηg
i (i ∈ I+− ∪ I0− ∪ I0+), η

g
i ⩾ 0 (i ∈ I+0 ∪ I00),

0= ηh
i ·ηg

i (i ∈ I00). △

Since MPVC–GCQ is the weakest (see (4.10)) of the MPVC–tailored constraint qualifications,
M–stationarity becomes a necessary optimality condition in the presence of any of these CQs.

Corollary 4.15
Let x∗ be a local minimizer of MPVC (4.2) such that either MPVC–ACQ or MPVC–MFCQ is fulfilled.
Then x∗ is M–stationary. △

4.4 Numerical Approaches

MPECs arise in various branches of applied sciences with applications in chemical engineering
(see Baumrucker et al. [34]), optimal shape design (see Haslinger and Neittaanmäki [225]),
economics (see Murphy et al. [334]), automotive engineering (see Kirches et al. [273]), or
medicine (see Hatz [227]). Their importance is also backed by the growing number of problem
instance suites, cf. Leyffer [293], Dirkse [135].
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In the literature there have been developed a vast number of algorithms to solve MPECs. The
referenced algorithms are taken from survey [129], monographs [305, 346], and theses written
in our group [272, 227, 292]. These algorithms fall into certain categories whose principles are
briefly reviewed in the following.

4.4.1 Structural Constraint Approach

Most approaches to solveMPECs numerically rely on reformulating the complementarity con-
straint as a nonlinear equation. However, the structural constraint approach considers the
complementarity constraint of a MPEC as a structural constraint.
Scholtes [393] suggests a problem formulation that decouples the two intrinsic aspects of
a MPEC, namely the nonlinear aspect and the combinatorial aspect. Both aspects are then
treated separately by a suitable generalization of the well–established Lagrangian framework.
He proposes a SQPEC method where the complementarity constraint is passed to the quadra-
tic subproblem as a structural constraint. However, Leyffer and Munson [295] point out that
Scholtes’s method can also converge to spurious stationary points. That is why they propose
a Filter SLPEC method that converges globally to B–stationary points (see Luo et al. [306]). In
order to obtain an active set estimate they first solve a linear program with complementarity
constraints inside a trust region. With fixed active constraints they then solve an equality–
constrained QP. A three–dimensional filter separating constraint violations into complemen-
tarity constraint contributions and general constraint contributions is used to achieve global
convergence. A method similar in fashion was proposed by Lenders [292] who carries over
the SLEQP method of Nocedal and Waltz [94, 95] to MPEC. Under certain assumptions he
could establish global convergence to B–stationary points.
Kirches [272, 275] introduces a SQPVCmethodwhere he uses a non–convex parametric active
set method to solve the arising QPVC subproblem. Assuming MPVC–LICQ convergence to
strong stationary points of this subproblem can be ensured. Benko andGfrerer [50] present a
SQPECmethodwhere a QPwith linear complementarity constraints is solved in each iteration.
An active set method is proposed that finds at least a strongly M–stationary point of this
subproblem. The sequence of iterates is obtained by reducing a merit function. Under certain
boundedness assumptions it can be ensured that limit points of the method are at least M–
stationary. A similar approach (see Benko and Gfrerer [51]) was analyzed in aMPVC context.
Under additional assumptions it provides limit points that are stationary in an even stronger
sense than M–stationary points.

4.4.2 Nonlinear Equation Approach

In general, the nonlinear equation approach, does not handle the complementarity constraint
0 ⩾ s ⊥ t ⩽ 0 as a structural constraint but as nonlinear equation, i.e., it is reformulated e.g.
as 0⩾ s, 0⩾ t, sT t ⩽ 0.
In the following, we sketch several solution techniques. Bard [30] reformulated a bilevel op-
timization problem as a problem subject to complementarity constraints and applied a branch
and bound scheme to solve it. A branch and bound method seeking the global minimum of a
MPEC is described inMuu and Oettli [336]. Izmailov et al. [253] present a lifting approach to
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MPEC resulting in a semi–smooth equation system that can be solved by suitable non–smooth
methods. Since certain subclasses of the nonlinear equation approach have an importance of
their own we dedicate separate sections to them.

NLP Approach

As a first guess one might think to find solutions to NLPs arising from the nonlinear equation
approach by an application of a standard NLP solver. However, constraint qualifications such
as LICQ or MFCQ are not satisfied by the NLP, cf. Chen and Florian [109]. Since conver-
gence proofs for NLP algorithms usually ensure convergence only if constraint qualifications
hold one cannot expect iterates to converge towards a local optimum. Indeed, a violation of
MFCQ causes unbounded multiplier sets, nonexistence of central paths, or inconsistent NLP
linearizations arbitrary close to the solution leading to ill–conditioned or unbounded subprob-
lems. Accordingly, early experiments (see Bard [30]) showed a poor performance. By con-
trast, Fletcher and Leyffer [167] could solve a large class of MPECs in a reliable and efficient
way by employing a SQP solver. The theoretical justification for this benevolent behavior was
provided by Fletcher et al. [168] who could show a local superlinear convergence to strongly
stationary points of SQP methods under certain assumptions.
Benson et al. [54] suggest a filter–based interior–point method. Numerical test prompt that
this approach seems to be superior to approaches based on the usage of merit functions.

Piecewise SQP Approach

Piecewise SQP methods can be considered as canonic extensions of the standard SQP method
for NLPs to solve MPECs. Hence, a QP with linear complementarity constraints is solved per
iteration.
In case of multiplier uniqueness but without requiring the strict complementarity condition,
Luo et al. [307] could show local superlinear convergence for a piecewise SQP method. For
the sake of enhancing the piecewise SQP approach, Zhang and Liu [470] use an extreme point
technique to find better search directions.

Bundle Approach

The bundle approach to solve MPECs makes use of the non–smooth calculus to derive opti-
mality conditions, i.e., the mixed complementarity problem is considered as a semi–smooth
system of equations that is solved by suitable algorithms.
Dirkse and Ferris [136] employ aNewton typemethod to the non–smooth equations, present
tailored path–following and pathsearch damping techniques for the method, and derive a
global convergence result. Arising linear complementarity problems are solved by simplex–
like pivotal algorithms requiring a direct factorization and rank–1 updates. Hence, they are of
low practicability when applied to general large–scale problems. In contrast, Munson et al.
[333] use a semi–smooth algorithm in which a single linear system must be evaluated per
iteration in terms of the Newton system. An approach applying a semi–smooth Newton
method to MPECs with equilibria defined by implicit complementarity problems can be found
in Outrata et al. [346].
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Penalty Function Approach

Penalty function methods rely on the nonlinear equation form of a MPEC. In the style of com-
mon penalization techniques the complementarity constraints are dropped from the MPEC.
Instead, the MPEC objective function is augmented with them multiplied by a penalty coeffi-
cient, i.e., the complementarity constraints become soft constraints.
Luo et al. [305, Chapter 6.1] describe a penalty interior–point algorithm. The method com-
bines interior–point and SQP aspects in the sense that it calculates iterates such that 0 > s,
0> t and solves a quadratic direction–finding problem. The step size is determined by a back-
tracking line–search approach. A sufficient reduction in a quadratic penalty function enforces
global convergence. Under considerable assumptions the authors obtained a convergence re-
sult. Leyffer [294] provides a simple example where the algorithm does not converge to a
stationary point. Leyffer et al. [296] propose an interior–penalty method whose global con-
vergence to strongly stationary points is established under common assumptions.
Hu and Ralph [244] employ the convergence analysis of a smoothing approach and a regular-
ization approach in order to derive convergence of iterates, which are generated by a penalty
framework forMPECs, to B–stationary points. Scholtes and Stöhr [394] investigate an exact
penalization approach to MPECs. Then, they derive a global convergence result for a trust re-
gion optimization algorithm applied to a function space that includes exact penalty functions
arising from MPECs.
Benson et al. [55] combine an interior–point NLP method and a penalty approach in order
to bound the optimal multipliers. The penalty method is realized with a ℓ1 as well as a ℓ∞
penalty function. Under certain regularity assumptions Anitescu et al. [15] show convergence
to C–stationary points of iterates generated by an approach penalizing the complementarity
constraints. Arising QP subproblems are constructed in a way to make them feasible by re-
laxing certain constraints.

Smoothing–Regularization Approach

For smoothing–regularization methods one incorporates Nonlinear Complementarity Prob-
lem (NCP) functions, i.e., (non–smooth) functions ϕ: R2 → R satisfying ϕ (s, t) = 0 if and
only if 0⩽ s, 0⩽ t , s · t = 0. MPEC complementarity constraints are replaced with NCP func-
tion formulations. The resulting problem is embedded into a parameterized family of smooth
NLPs in the sense that ϕ (·) is replaced with smooth parametric functions ϕτ: R2→ R. They
are constructed such that ϕτ→ϕ as τ → 0 aiming to end up with a set of NLPs that sat-
isfy constraint qualifications. Hence, in order to determine MPEC solution approximations
one generates iterates either by solving a single NLP while driving τ to zero or by solving a
sequence of NLPs and a reduction of τ in between NLP solution steps.
Facchinei et al. [151] could show convergence to a global stationary point of the MPEC prob-
lem if the iterates are comprised of global stationary points of the smooth problems. Scholtes
[391] establishes convergence to C–stationary points underMPEC–LICQ. Under the additional
assumption of second order necessary conditions he could show M–stationarity of accumu-
lation points. Finally, adding a certain nondegeneracy assumption, namely the lower–level
strict complementarity, ensures B–stationarity. Convergence to B–stationary could also be
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established by Fukushima et al. [175] without the need for the aforementioned strict comple-
mentarity conditions but under a certain weak nondegeneracy assumption.
As opposed to the aforementioned results, where the considered algorithms are conceptual and
global convergence is not established for an implementable method, Fukushima and Tseng
[174] propose an implementable ϵ–active set algorithm. If uniform LICQ holds for the ϵ–
feasible they show global convergence to B–stationary points.
Hoheisel et al. [242] compare several state of the art relaxation methods for MPECs in terms
of satisfaction of constraint qualifications and their numerical performance when applied to a
common test problem suite. Moreover, convergence results of some algorithms are improved.
Hoheisel [238] analyzes an algorithm very similar in nature to the one of Fukushima et al.
[175] within aMPVC setting. However, convergence to a B–stationary point can be established
without the need for the second–order condition and under a weaker LICQ type assumption.
Likewise, comparing the results with the ones of Scholtes [391] there is also no need for the
lower–level strict complementarity assumption. Regarding convergence results of numerical
approaches to MPVC problems as a particular class of MPEC problems Hoheisel concludes
that stronger results hold under weaker assumptions.
An interior–point method in which τ is driven to zero in conjunction with the barrier pa-
rameter is described in Raghunathan and Biegler [365]. An approach relaxing both the
complementarity and the nonnegativity constraints is described by DeMiguel et al. [128]. The
relaxation parameter is driven to zero in such a way that the arising problems have a strictly
feasible interior what makes interior–point point methods applicable.
Stein [416] considers a slightly different setting involving a smooth function ϕ (·) such as
ϕ2

FB (·) where ϕFB (s, t)
def
= s+ t −ps2 + t2 denotes the well–known Fischer–Burmeister

function. The resulting lack of LICQ at the origin is then overcome by lifting the set {(s, t) ∈
R2 :ϕ (s, t) = 0} into a higher dimension. This is achieved by reformulating it in terms of
an orthogonal projection of a certain smooth set in R3. Another lifting method applicable
to bilevel optimization problems was proposed by Hatz [227]. Inequality constraints of the
lower–level problem are lifted which results in a MPEC fulfilling MPEC–LICQ. Algorithms
applied to those problems are expect to show good convergence behavior.
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Theory of Optimal Control Problems

This chapter addresses a class of continuous OCPs, interprets it as an infinite dimensional
optimization problem and derives first–order optimality conditions. Finally, an overview of
common solution strategies for the problem class is presented.
The first section introduces a sufficiently general class of OCPs such that we have recourse
to this problem class in the remainder of this thesis. Besides giving some notations we show
potential extensions that fit into the aforementioned problem class.
The next section is dedicated to the interpretation of the OCP class as an optimization problem
in Banach spaces.
Based on results presented in Section 3.3 about first–order necessary conditions in the Banach
space context the third section derives necessary optimality conditions for our OCP class.
The two final sections sketch the two main solution approaches for OCPs, namely the indirect
approach and the direct approach. Moreover, we balance pros and cons of both approaches
and give an outline of the strategies pursued in this thesis.

5.1 Continuous OCPs

Let T = [ts, tf] ⊂ R be a compact and non–empty time interval with ts < tf. For the most part
of the thesis both ts and tf are assumed to be fix. In case ts or tf are variable this is emphasized
in the particular context. Let

φ : R×Rnx ×R×Rnx −→ R,

ψ : T ×Rnx ×Rnu −→ R,

f : T ×Rnx ×Rnu −→ Rnx ,

c : T ×Rnx ×Rnu −→ Rnc ,

r : R×Rnx ×R×Rnx −→ Rnr

be sufficiently smooth functions.

Definition 5.1 (Continuous Optimal Control Problem in Standard Form)
A continuous optimal control problem is a constrained infinite–dimensional optimization problem which
minimizes a cost functional (5.1a) with the dynamic process x ∈ W 1,∞(T ,Rnx), described by a system
of ODEs (5.1b) with right–hand side function f and affected by a control u ∈ L∞(T ,Rnu) over the
horizon interval T such that the mixed control–state constraints (5.1c) and the boundary conditions (5.1d)
are satisfied:

min
x (·),u(·) J(x (·), u(·)) def

= φ(ts, x (ts), tf, x (tf)) +

∫ tf

ts

ψ(t, x (t), u(t)) dt (5.1a)
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s. t. ẋ (t) = f (t, x (t), u(t)), t ∈ T , (5.1b)
0nc ⩾ c(t, x (t), u(t)), t ∈ T , (5.1c)
0nr = r (ts, x (ts), tf, x (tf)). (5.1d)

△

Due to the unknowns, namely the control trajectory u(·) and the controlled state trajectory
x (·), the OCP (5.1) is an infinite dimensional problem. Note, that the path constraint formula-
tion (5.1c) covers pure state and pure control path constraints as well as those of mixed type.

There is the possibility to transfer constraints to the objective as an additional penalization
term. These constraints are then called soft constraints. This does not guarantee that they are
satisfied in the solution but usually they hold with little violation. One normally implements
this for constraints that are not crucial for the process dynamics but prevent undesirable be-
havior.

A pair (x , u) ∈W 1,∞(T ,Rnx)× L∞(T ,Rnu) is called admissible or feasible for the OCP (5.1),
if it fulfills the constraints (5.1b)–(5.1d). An admissible pair

(x ∗, u∗) ∈W 1,∞(T ,Rnx)× L∞(T ,Rnu) (5.2)

is called a weak local minimum of problem (5.1), if there exists an ϵ > 0 such that

J(x ∗, u∗)⩽ J(x , u) (5.3)

holds for all (x , u) with ∥x − x ∗∥1,∞ < ϵ and ∥u − u∗∥∞ < ϵ. An admissible pair (5.2) is
called strong local minimum of problem (5.1), if there exists an ϵ > 0 such that (5.3) holds for
all admissible (x , u) with ∥x − x ∗∥∞ < ϵ. Note that all strong local minima are also weak
local minima, but the converse is not true.

The horizon endpoints ts and tf in Problem (5.1) can either be fixed or unknown. In the latter
case they are additional optimization variables. If ts is not fixed, then ts is called free initial
time and Problem (5.1) is an OCP with free initial time. If tf is not fixed, then tf is called free
final time and Problem (5.1) is an OCP with free final time.

Problem (5.1) is called autonomous if the functions φ, ψ, f , c and r do not explicitly depend
on the time, otherwise it is called non–autonomous.

In the remainder of this section we will present some transformation techniques. On the one
hand they possibly allow us to write Problem (5.1) even more compactly. For example, it is
shown that every non–autonomous OCP can be transformed into an equivalent autonomous
one by augmenting the state vector. On the other hand ostensibly more complex problems
such as OCPs with global parameters can be equivalently written in standard form (5.1).

Such a transformation technique is possibly accompanied with an increased problem size or
may introduce additional nonlinearities. Hence, tailored numerical solution methods for the
original problem may be the preferred choice.
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Transformation to Autonomous Problem

A non–autonomous Problem (5.1) can be transformed into an equivalent autonomous problem
by introducing an additional state t (·) according to the IVP

ṫ (t) = 1, t (ts) = ts. (5.4)

By replacing the function argument t inψ, f and c with t (t) and adding (5.4) to Problem (5.1)
we end up with the autonomous problem

min
x (·),u(·) φ(ts, x (ts), tf, x (tf)) +

∫ tf

ts

ψ(t (t), x (t), u(t)) dt

s. t. ẋ (t) = f (t (t), x (t), u(t)), t ∈ T ,

ṫ (t) = 1, t ∈ T ,

0nc
⩾ c(t (t), x (t), u(t)), t ∈ T ,

0nr
= r (ts, x (ts), tf, x (tf)),

t (ts) = ts.

Objective Functions

The performance index

φ(ts, x (ts), tf, x (tf)) +

∫ tf

ts

ψ(t, x (t), u(t)) dt

in (5.1a) is given in the so called Bolza form of an objective functional. The Bolza form is a
combination of

• the Mayer type form objective φ(ts, x (ts), tf, x (tf)), which is a mixed start– and end–
point contribution, and

• the Lagrange type form objective, which is an integral contribution of the states and
controls with integrandψ(t, x (t), u(t)) evaluated on the time horizon T .

By introducing additional states, differentiation and integration Bolza, Mayer and Lagrange
type functionals can be transformed into each other.

Global Parameters

A vector of model parameters p ∈ Rnp may enter the objective function ψ, the ODE func-
tion f or the constraint function c in problem (5.1) asψ(·, x (·), u(·), p), f (·, x (·), u(·), p) and
c(·, x (·), u(·), p). Model parameters can be handled in different ways: we can either treat
them as additional controls which are constant over the complete time horizon T , or we can
handle them similar to (5.4) by introducing the ODE equations

ṗ(t) = 0, p(ts) = p,
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and add them to problem (5.1). This results then in the problem

min
x (·),u(·),p φ(ts, x (ts), tf, x (tf)) +

∫ tf

ts

ψ(t, x (t), u(t), p(t)) dt

s. t. ẋ (t) = f (t, x (t), u(t), p(t)), t ∈ T ,

ṗ(t) = 0, t ∈ T ,

0nc
⩾ c(t, x (t), u(t), p(t)), t ∈ T ,

0nr
= r (ts, x (ts), tf, x (tf)),

p(ts) = p.

Depending on the numerical method to solve an OCP, either formulation may be more effi-
cient. For performance reasons parameters that may attain only one constant value should
rather be considered as part of the model equations.

Transformation to Fixed Time Interval

When we introduced the OCP in standard form (Problem (5.1)) we assumed the initial and final
time of the horizon to be fixed. Now we show that this assumption can be made without loss
of generality.
We demonstrate that an OCP can be transformed into an equivalent one by a linear time
transformation of the horizon interval, which is unknown in advance, to a normalized interval.
As a result the free initial or final time enter the OCP as additional optimization variables.
For reasons that become clear later we use [−1,+1] as the normalized interval in this thesis,
whereas often the interval [0,1] is chosen in the literature. The linear time transformation of
the horizon is realized as follows: one defines a linear mapping t : [−1,1] −→ T as

t (τ)
def
=

t f + ts

2
+τ · t f − ts

2
,

where t (·) maps a point from the normalized interval [−1,+1] into the original horizon in-
terval [ts, tf]. Let furthermore ex : [−1,+1] −→ Rnx and eu : [−1,+1] −→ Rnu be defined
as

ex (τ) def
= x (t (τ)) and eu(τ) def

= u(t (τ)).

Now we express the ODE (5.1b) in terms of the new states ex (·) and controls eu(·) as
d

dτ
ex (τ) = ẋ (t (τ)) · d

dτ
t (τ) =

t f − ts

2
· f (t (τ), x (t (τ)), u(t (τ)))

=
t f − ts

2
· f (t (τ), ex (τ), eu(τ)).

The constraints (5.1c) and (5.1d) are handled in a similar way. In general there are two ways
how free initial and final time can enter the transformed OCP: ts and t f can either be viewed
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as additional constant states ts (·) and t f (·), where

d
dτ

ts (τ) = 0, ts (−1) free,

d
dτ

t f (τ) = 0, t f (−1) free,

or more efficiently as additional scalar optimization variables. Problem (5.1) with initial time
ts and final time t f as optimization variables then reads as

minex (·),eu(·),ts,tf φ(ts, ex (−1), tf, ex (+1)) +

∫ +1

−1

t f − ts

2
·ψ(t (τ), ex (τ), eu(τ)) dτ (5.5)

s. t.
d

dτ
ex (τ) = t f − ts

2
· f (t (τ), ex (τ), eu(τ)), τ ∈ [−1,1],

0nc
⩾ c(t (τ), ex (τ), eu(τ)), τ ∈ [−1,1],

0nr
= r (ts, ex (−1), tf, ex (+1)).

Whenever OCPs of the form (5.5) appear in this thesis we drop the tilde and simply use x (·)
and u(·) for state and control variables on the normalized interval to avoid notational clutter.

Differential Algebraic Equations

The standard OCP form may even cover optimization subject to Differential Algebraic Equa-
tion (DAE) systems. We restrict our discussion to semi–explicit DAEs, i.e., a DAE of type

ẋ (t) = f (t, x (t), y(t), u(t)), t ∈ T ,

0= g (t, x (t), y(t), u(t)), t ∈ T , (5.6)

where x (·) and u(·) have the previous meaning and y : T −→ Rny are called algebraic states.
More general DAEs such as F(t, z(t), ż(t), u(t)) = 0 can be transformed formally into a semi–
explicit DAE by introducing an artificial algebraic variable. The index of a DAE measures its
singularity when compared to an ODE. Today a number of definitions with different emphasis
exist.
One common example is the differential index, which measures how often the algebraic
equation (5.6) has to be differentiated at least until one obtains an ODE. We illustrate this
for a specific case: let us assume that g and u are continuously differentiable. Let fur-
thermore g ′y(t, x , y, u) be non–singular and g ′y(t, x , y, u)−1 be bounded for all (t, x , y, u) ∈
T ×Rnx ×Rny ×Rnu . When we apply the well known implicit function theorem we obtain a
function y(·, x (·), u(·)) that solves (5.6). We get an explicit ODE system through one differ-
entiation of (5.6) as

0= g ′t [t] + g ′x[t]ẋ (t) + g ′y[t] ẏ(t) + g ′u[t]u̇(t)
=⇒ ẏ(t) = −g ′y[t]

−1 �g ′t [t] + g ′x[t] f [t] + g ′u[t]u̇(t)
�

,
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where, e.g. g ′t [t] is an abbreviation for g ′t (t, x (t), y(t), u(t)). Since it was necessary to dif-
ferentiate (5.6) once in order to obtain an ODE the differentiation index is one.

Multistage Systems

For many practical problems a system cannot be described by a single set of model equations.
Transitions as well as changes in the dynamics may occur. In case the sequence of the different
dynamics is unknown in advance we deal with a switched OCP which is the main topic of this
thesis. However, if the sequence of the dynamics is known in advance - this is the easier case
- we can handle it by using so called multistage OCPs.
To formulate such a multistage system we introduce a finite number N which determines the
number of model stages. Moreover, an ordered set {t0, t1, . . . , tN} of time points tn ∈ T is
defined, where

ts = t0 ⩽ t1 ⩽ . . .⩽ tN = tf.

The tn indicate the time points, when a new model stage occurs. A multistage OCP is a con-
strained optimization problem of the form:

min
xn(·),un(·)

N∑
n=1

Jn(xn(·), un(·))
s. t. ẋn(t) = fn(t, xn(t), un(t)), t ∈ [tn−1, tn],

0⩾ cn(t, xn(t), un(t)), t ∈ [tn−1, tn],

0= r (ts, x1(ts), tf, xN (tf)),

xn(tn−1) = jn(xn−1(tn−1)), 2⩽ n⩽ N .

The objective Bolza functionals

Jn(xn(·), un(·)) def
= φn(tn−1, xn(tn−1), tn, xn(tn)) +

∫ tn

tn−1

ψn(t, xn(t), un(t)) dt

as well as the designators φn, ψn, fn, cn, r , xn, un and t correspond to those in Definition 5.1
without the index n. The dimensions of state and control vectors change towards nxn

and nun

respectively. Their values may change from one model stage to another.

5.2 OCPs as Infinite Dimensional Optimization Problems

This section is dedicated to provide the connection between ODE optimal control and infinite
dimensional optimization problems, cf. Chapter 3. We restrict our analysis to OCPs in standard
form (5.1) on a fixed horizon interval T . Transformation techniques in Section 5.1 show that
this can be done without loss of generality.
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Transformation

In order to derive first–order necessary optimality conditions for Problem (5.1), as this will be
done in the following Section 5.3, it is convenient to rewrite the OCP as an infinite dimensional
optimization problem in appropriate Banach spaces. To this end, the vector z

def
= (x , u) of

optimization variables in problem (5.1) is an element of the Banach space (Z ,∥·∥Z), where

Z
def
=W 1,∞(T ,Rnx)× L∞(T ,Rnu),

∥(x , u)∥Z
def
=max

�∥x∥1,∞ ,∥u∥∞
	

. (5.8)

The Bolza type objective functional in Problem (5.1) defines a mapping J : Z −→ R. The
equality constraints (5.1b) and (5.1d) of the OCP define the operator equation

H(x , u) = ΘV , (5.9)

where H = (H1, H2) : Z −→ V is defined by

H1(x , u)
def
= f (·, x (·), u(·))− ẋ (·), (5.10)

H2(x , u)
def
= −r (ts, x (ts), tf, x (tf)), (5.11)

and the Banach space (V,∥·∥V ) is given as

V
def
= L∞(T ,Rnx)×Rnr ,

∥(v1, v2)∥V
def
=max

�∥v1∥∞ ,∥v2∥2

	
.

The set

K def
=
�

k ∈ L∞(T ,Rnc) : k(t)⩾ 0nc
a.e. in T

	
is a convex cone with non–empty interior in the Banach space (W,∥·∥W ), where W is given
as

W
def
= L∞(T ,Rnc),

∥w∥W
def
= ∥w∥∞ .

The inequality constraint (5.1c) of the OCP defines the cone constraint

G(x , u) ∈ K, (5.12)

where G : Z −→W is given by

G(x , u)
def
= −c(·, x (·), u(·)). (5.13)

Summarizing, the OCP (5.1) is equivalent to the infinite dimensional optimization problem
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min
(x ,u)∈Z

J(x , u) (5.14)

s. t. G(x , u) ∈ K ,

H(x , u) = ΘV .

Differentiability Properties and Notation

We conclude this section by investigating differentiability properties of the functionals J , G
and H on the one hand and introduce some notations on the other hand which allow us to
write formulas more compactly in the remainder of this thesis. Assumption 5.2 summarizes
the smoothness requirements that we put on the functions in Problem (5.1).
Assumption 5.2
Let the functions φ,ψ, f , c and r in Problem (5.1) satisfy the following smoothness conditions:

1. φ and r are continuously differentiable with respect to all arguments.
2. Let (x̂ , û) ∈W 1,∞(T ,Rnx)×L∞(T ,Rnu) be given and let M be a sufficiently large convex compact

neighborhood of�
(x̂ (t), û(t)) ∈ Rnx+nu : t ∈ T

	
.

a) The mappings t 7→ψ(t, x , u) and

t 7→ f (t, x , u), t 7→ c(t, x , u)

are measurable for every (x , u) ∈ M .
b) The mappings (x , u) 7→ψ(t, x , u) and

(x , u) 7→ f (t, x , u), (x , u) 7→ c(t, x , u)

are continuously differentiable in M uniformly for t ∈ T .
c) The derivatives

ψ′(x ,u), f ′(x ,u), c′(x ,u)

are bounded in T ×M .

Fréchet–differentiability of functions J , G and H in problem (5.14) can be obtained under As-
sumption 5.2. The following result illustrates this for a simplified setting.
Theorem 5.3 (see Gerdts [190], Theorem 2.2.9)
Let x̂ ∈W 1,∞(T ,Rnx) be given and let f : T ×Rnx −→ Rnx , (t, x) 7→ f (t, x) be a function satisfying the
conditions in Assumptions 5.2 with

M
def
= {x ∈ Rnx : ∃t ∈ T ,∥x − x̂ (t)∥⩽ r} , r > 0.

Then the mapping T : W 1,∞(T ,Rnx) −→ L∞(T ,Rnx) defined by

T (x (·)) def
= ẋ (·)− f (·, x (·))
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is continuously Fréchet–differentiable in x̂ with derivative

T ′(x̂ )(x ) = ẋ (·)− f ′x (·, x̂ (·))x (·). △

By using similar arguments one can show Fréchet–differentiability for J , G and H . The deriva-
tives are given as

J ′(x̂ , û)(x , u) = φ′xs
x (ts) +φ

′
xf

x (tf) +

∫ tf

ts

ψ′x[t]x (t) +ψ′u[t]u(t)dt

for the Bolza type objective functional,

H ′1(x̂ , û)(x , u) = f ′x[·]x (·) + f ′u[·]u(·)− ẋ (·)
H ′1(x̂ , û)(x , u) = −r ′xs

x (ts)− r ′x f
x (t f )

for the equality constraint functional and

G′(x̂ , û)(x , u) = −c′x[·]x (·) + c′u[·]u(·).
for the inequality constraint functional. For notational convenience we used the abbreviations

φ′xs

def
= φ′xs

(ts, x̂ (ts), tf, x̂ (tf)), ψ′x[t]
def
=ψ′x(t, x̂ (t), û(t)).

In a similar fashion are φ′xf
, ψ′u[t], f ′x[t], f ′u[t], c′x[t], c′u[t], r ′xs

and r ′xf
defined for the re-

spective derivatives. These abbreviations together with

ψ[t]
def
=ψ(t, x̂ (t), û(t))

and analogously f [t], c[t] are used for particular cases in the remaining chapters.

5.3 Local Minimum Principle

First–order necessary optimality conditions in terms of a local minimum principle are often
expressed by means of the Hamilton Function resp. the augmented Hamilton Function.

Definition 5.4 (Hamilton Function)
The Hamilton function H : T ×Rnx ×Rnu ×Rnx ×R −→ R for OCP (5.1) is defined by

H(t, x , u,λ, l0)
def
= l0ψ(t, x , u) +λT f (t, x , u). △

Definition 5.5 (Augmented Hamilton Function)
The augmented Hamilton function Ĥ : T ×Rnx ×Rnu ×Rnx ×Rnc ×R −→ R for OCP (5.1) is defined by

Ĥ(t, x , u,λ,µ, l0)
def
=H(t, x , u,λ, l0)−µT c(t, x , u). △

In order to formulate the local minimum principle we need the following assumption:
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Assumption 5.6
We assume that rank(c′u[t]) = nc holds almost everywhere in T and that the pseudo–inverse of c′u[t],�

c′u[t]
�+ def
= c′u[t]

T �c′u[t]c′u[t]T �−1
,

is essentially bounded in T .

Theorem 5.7 (Local Minimum Principle)
Let the Assumptions 5.2 and 5.6 hold and let (x ∗, u∗) be a local minimum of Problem (5.1). Then there
exist multipliers

l0 ⩾ 0, ν∈ Rnr , λ ∈ BV(T ,Rnx), µ ∈ L∞(T ,Rnc)

such that the following conditions hold:
(i) l0 ⩾ 0, (l0,ν,λ,µ) ̸= Θ
(ii) Adjoint equations:

λ(t) = λ(tf) +

∫ tf

t

Ĥ′x (τ, x ∗(τ), u∗(τ),λ(τ),µ(τ), l0)
T

dτ a.e. t ∈ T

(iii) Transversality conditions:

λ(ts) = −l0φ
′
xs
(x ∗(ts), x ∗(tf))

T − r ′xs(x
∗(ts), x ∗(tf))

T
ν

λ(tf) = +l0φ
′
xf
(x ∗(ts), x ∗(tf))

T + r ′xf(x
∗(ts), x ∗(tf))

T
ν

(iv) Stationarity of augmented Hamilton function:

Ĥ′u(t, x ∗(t), u∗(t),λ(t),µ(t), l0) = 0T a.e. t ∈ T (5.15)

(v) Complementarity conditions:

µ(t)T c(t, x ∗(t), u∗(t)) = 0, µ(t)⩽ 0 a.e. t ∈ T △

Proof See e.g. Gerdts [190, Theorem 3.4.4]. □

Note, that λ(·) is differentiable almost everywhere in T and thus it holds

λ̇(t) = −Ĥ′x(t, x ∗(t), u∗(t),λ(t),µ(t), l0)
T a.e. t ∈ T . (5.16)

In order to conclude the section we need to state conditions which guarantee that we can set
l0 = 1 in Theorem 5.7. A first step towards this goal is provided by the following lemma.
Lemma 5.8
Let

rank(r ′xsΦ(ts) + r ′xfΦ(tf)) = nr,

with Φ(·) being the fundamental solution of the homogeneous linear differential equation

Φ̇(t) = f ′x[t]Φ(t), Φ(ts) = Inx , t ∈ T .
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Then H ′(x ∗, u∗) with H in (5.10)–(5.11) is surjective. △

Proof See e.g. Gerdts [189, Lemma 3.1.12]. □

The Mangasarian–Fromowitz Constraint Qualification as stated in Corollary 3.11 together
with Lemma 5.8 can be translated as follows for Problem (5.1), since the interior of

K =
�
k ∈ L∞(T ,Rnc) : k(t)⩾ 0nc

a.e. in T
	

is given by

int(K) = {k ∈ L∞(T ,Rnc) : ∃ϵ > 0 with Uϵ(k) ⊆ K}
= {k ∈ L∞(T ,Rnc) : ∃ϵ > 0 with ki(t)⩾ ϵ a.e. in T , i ∈ [nc]}

Lemma 5.9
Let the assumptions of Theorem 5.7 and Lemma 5.8 hold and let there exist x ∈ W 1,∞(T ,Rnx) and
u ∈ L∞(T ,Rnu) with

−ϵ · 1⩾ c[t] + c′x[t]x (t) + c′u[t]u(t) a.e. in T ,

0= f ′x[t]x (t) + f ′u[t]u(t)− ẋ (t) a.e. in T ,

0= r ′xs x (ts) + r ′xf x (tf).

Then the Mangasarian–Fromowitz Constraint Qualification holds for Problem (5.1) and l0 = 1 can be
chosen in Theorem 5.7. △

In later chapters, we extensively work with the local minimum principle. Usually, we assume
– without explicitly mentioning – constraint qualifications to be satisfied. In this case we can
omit the l0 in the (augmented) Hamilton function.

5.4 Solution Structure

In this section we outline how the structure of an optimal control u∗(·) can be determined.
To this end, we start by introducing some notation. In this section we assume the OCP under
investigation to be autonomous and with Mayer term objective. This enables us to write
occurring formulas and equations in a compact form. Due to the transformation techniques
presented in Section 5.1 this is possible without loss of generality.
The set of all admissible control functions u(·) such that the mixed control–state constraints
(5.1c) hold evaluated at time t with state x (t) is called admissible region and denoted by
R(t, x (t)). The boundary ∂R(t, x (t)) is the set of all controls u(·) such that c(t, x (t), u(t)) =
0whereas the interior int(R(t, x (t))) is the union of all controls u(·)with c(t, x (t), u(t))< 0.
A constraint ci with ci = 0 is called active and inactive at time t if ci < 0, i ∈ [nc].

General Nonlinear Case

To learn more about the structure of an optimal control u∗(·) of Problem (5.1) we can use the
first–order optimality conditions. A question that has to be investigated is if a control lies in
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the interior or on the boundary of the admissible region. Hence, it has to be investigated if a
constraint ci is active or not.
Let us assume we have an optimal control u(·), corresponding Lagrange multipliers λ(·),
µ(·), ν and state x (·). Therefore it holds (5.15) but also point– and componentwise

0= Ĥ′ui
[t] = λT (t) f ′ui

[t]−µT (t)c′ui
[t], i ∈ [nu].

For each control ui two cases can be distinguished: either it is

λT (t) f ′ui
[t] ̸= 0 or λT (t) f ′ui

[t] = 0. (5.17)

In order to take account its importance for the rest of this section we call the term λT (t) f ′u[t],
which is identical with the derivative of the Hamilton function with respect to the control
component, switching function.
Definition 5.10 (Switching Function)
The nu–dimensional switching function is given by

σT [t]
def
=H′u[t] = λ

T (t) f ′u[t] △

We start by investigating the first case in (5.17) which means that the i–th entry of the switch-
ing function is not equal to zero at time t . This implies µ(t)T c′ui

[t] ̸= 0. Since µ(t) ⩽ 0, at
least one entry of µ(t) has to be strictly negative. Due to the complementarity conditions,
this implies that one constraint must be active and also explicitly depends on ui since c′ui

[t]
is not equal to zero per assumption. Accordingly, this constraint can be adduced to determine
an analytic expression for ui(t) by means of the implicit function theorem. In literature ui(t)
is often called constraint–seeking, cf. Srinivasan et al. [415]. For numerical methods it plays
an important role if t lies on a boundary arc or if it is a touch point.
Definition 5.11 (Boundary Arc, Junction Points, Contact Point, Touch Point)
Let (x (t), u(t)) be feasible for Problem (5.1).

(i) A compact interval [t1, t2] ⊆ T with t1 < t2 is called boundary arc of ci if ci is active on [t1, t2].
[t1, t2] is called free arc of ci if ci is inactive on [t1, t2]. The point t1 is called junction point of the
boundary arc [t1, t2] of ci if there is a δ > 0 such that ci is inactive for all t ∈ [t1 −δ, t1).

(ii) A point t1 ∈ T is called contact point of ci if ci is active at t1 and there is a δ > 0 such that ci is
inactive for all t ∈ [t1 −δ, t1 +δ] \ {t1}.

(iii) A contact point t1 of ci is called touch point if d
dt ci is continuous at t1. △

We continue by investigating the second case in (5.17) which means that the i–th entry of the
switching function is equal to zero at time t . Now we have to distinguish two more cases:
if λT (t) f ′ui

[t] does explicitly depend on ui the control can be determined from the equation
λT (t) f ′ui

[t] = 0. Otherwise we differentiate Ĥ′ui
[t]with respect to time. The resulting deriva-

tives must vanish since it is Ĥ′ui
[t] = 0 for all t . We get

d
dt

Ĥ′ui
[t] = λ̇T (t) f ′ui

[t] +λT (t)

�
∂ fui

∂ x
[t]ẋ (t) +

∂ fui

∂ u
[t]u̇(t)

�
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− µ̇T (t)c′ui
[t]−µT (t)

�
d
dt

c′ui
[t]
�

= λ̇T (t) f ′ui
[t] +λT (t)

�
∂ fui

∂ x
[t]ẋ (t) +

∂ fui

∂ u
[t]u̇(t)

�
.

The latter equality holds as µT (t)c′ui
[t] = 0 and the complementarity conditions. Now we

replace ẋ (t) and λ̇(t) with the respective expressions in (5.1b) and (5.16) and obtain

d
dt

Ĥ′ui
[t] = λT (t)

�
∂ fui

∂ x
[t] f [t]− ∂ f

∂ x
[t] fui

[t] +
∂ fui

∂ u
[t]u̇(t)

�
+µT (t)

∂ c
∂ x
[t] fui

[t]

= λT (t)∆1 fui
[t] +µT (t)

∂ c
∂ x
[t] fui

[t], (5.18)

where the operator ∆1 is defined as

∆1F
def
=
∂ F
∂ x
[t] f [t]− ∂ f

∂ x
[t]F[t] +

∂ F
∂ u
[t]u̇(t),

and represents the time differentiation of a vector field F along the trajectories of the OCP
dynamic system. This operator is studied in the literature by means of Lie algebra tools. If we
repeat differentiation (5.18) j − 1 more times this leads to an expression which consists of a
system dependent part and a constraint dependent one as

d j

dt j
Ĥ′ui
[t] = λT (t)∆ j fui

[t] +µT (t)
∂ c
∂ x
[t]∆ j−1 fui

[t], (5.19)

where the operator ∆ j is defined recursively as ∆ j def
= ∆1(∆ j−1) with ∆0 def

= id . The dif-
ferentiation with respect to t in (5.19) is repeated until one of two cases occurs: if we have
λT (t)∆ j fui

[t] ̸= 0 then we conclude with a similar argumentation as above that the control
is constraint–seeking. In the second case, where the control is called sensitivity–seeking, we
have λT (t)∆ j fui

[t] = 0 and ui appears explicitly in the expression.

Control–Affine Systems

Now we have a short look at the important case of control–affine systems. In these systems
the control u(·) enters linearly in the system dynamics and mixed control–state constraints,
i.e., f and c have the form

f (x , u) = f 1(x ) + f 2(x ) · u,

c(x , u) = c1(x ) + c2(x ) · u.

Definition 5.12 (Singularity)
We call a control function u(·) singular of rank r over a non–zero time interval [t1, t2] with t1 < t2, if r
components of u(·) cannot be determined from the condition σ[t] = 0 over this interval. We call u(·)
to be non–singular if r = 0. A control input ui(·) has a degree of singularity r if ui(·) appears for the
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first time in the (r + 1)–th time derivative of σ(·). △

As a result of second–order necessary optimality conditions one can show that in the singular
case ui(·) first appears in an even derivative of σ(·). The control ui(·) is called bang–bang
control in an interval [t1, t2] ⊆ T if it is non–singular and determined by a bound constraint,
i.e., ui(t) = umax

i or ui(t) = umin
i for t ∈ [t1, t2]. Let us consider the case where c consists of

bounds on the controls only, i.e.,

c(u) =
�
u − umax

umin − u

�
.

The switching function of control ui(·) is given as

σi[t] = λ
T (t) f 2·i [t],

where f 2·i denotes the i–th column of f 2. If it is strictly positive, the pointwise minimizer of
the Hamilton function ui(·) must be as small as possible and therefore at its lower bound,
i.e., ui(t) = umin. Conversely, if it is strictly negative it holds with the same argumentation
that ui(t) = umax. In both cases we obtain a bang–bang control.
If the switching function vanishes we cannot determine ui(·) from this expression since it is
H′′uu[t] = 0. In the singular case σi[t] has to be differentiated with respect to time until the
degree of singularity of ui(·) is reached if we assume that it is finite. Apart from pathological
cases singular controls lie in the interior of the admissible region.

5.5 Solution Approaches

We distinguish the discretization approach and the function space approach to solve an OCP.
In the discretization approach the infinite dimensional problem is approximated by a finite
dimensional one i.e., applying a suitable discretization scheme to transform the OCP into a
finite dimensional optimization problem. The discretization approach is also known as direct
approach or as ‘first discretize, then optimize approach’. A detailed investigation of the direct
approach is done in Chapter 6.
On the other hand, the function space approach considers the OCP as an infinite dimensional
optimization problem, usually in a suitable Banach space setting. The function space approach
is also known as indirect approach or as ‘first optimize, then discretize approach’. An indirect
approach setting is investigated in the Section 5.2.

5.5.1 Indirect Methods

The classical indirect approach for OCPs is a subbranch of the function space approach and
can be considered a semi–analytical method. In indirect methods the first–order necessary
optimality conditions, that were introduced in Section 5.3, are exploited to setup a nonlinear
multipoint boundary value problem which has to be satisfied by a minimizer necessarily. The
boundary value problem is solved, e.g. by multiple shooting, cf. Bulirsch [90] and Bock [69].

140



Theory of Optimal Control Problems
�� Chapter 5

The aforementioned exploitation of the minimum principle can usually not be executed au-
tomatically by an algorithm but must be user provided. Especially in the presence of mixed
control–state constraints an optimal solution consists of several arcs. As discussed earlier in
this chapter there are either constraint–seeking or sensitivity–seeking arcs, cf. Section 5.4.
The transition from one arc type to another is modeled as follows: one introduces switch-
ing times t i which act as additional variables. The necessary optimality conditions are ex-
panded by so called switching conditions s(x (t i), u(t i)) = 0 that determine the switching
time variables resulting in a multipoint boundary value problem. It is a challenging task to
determine correct and numerically stable switching conditions. Special cases that have to be
distinguished are listed in Section 5.4. Especially mixed control–state constraints are accom-
panied by an a priori unknown switching structure. Tailored numerical solutionmethods have
to deal with constraints becoming active or inactive, the distinction between touch points and
boundary arcs for active constraints as well as jumps in the adjoint variables. The interested
reader can find some related material in the works of Bock [70] or Hartl et al. [224].

5.5.2 Direct Methods

Compared to indirect methods, the direct methods do not rely on the application of minimum
principles but on a suitable discretization of the infinite dimensional OCP. The discretization
process results in a finite dimensional optimization problem, namely in a NLP as this was in-
troduced in Section 3.5. These NLPs have often a special structure and can be solved efficiently
by tailored numerical methods such as SQP or interior–point methods, cf. Section 3.6.
Direct methods for OCPs are classified according to the discretization strategy that they use.
Based on this strategy the resulting NLPs differ in their problem dimensions and one receives
more or less numerically stable systems. In the succeeding Chapter 6 we will present a deep
insight into commonOCP discretization techniques with a focus on those that are in particular
relevant for the remainder of this thesis.
Directmethods excel especially in solving large–scale OCPs and problems, where one is unable
to setup minimum principles. They enable users without deep knowledge in optimal control
theory to solve OCPs. Moreover, numerical experiments evidently identify direct methods to
be numerically robust and sufficiently accurate.

5.5.3 Direct versus Indirect Methods

The preceding sections suggested different approaches to solve OCPs numerically. Now we
aggregate the strengths and weaknesses of the different approaches and based on this analysis
we derive a methodology that we can follow in this thesis.

Advantages of Indirect Approach

The state and control trajectories that one obtains when using indirect methods to solve OCPs
are very accurate. This is due to the fact that the infinite–dimensional problem has been
solved. In particular, compared with direct methods there is no need for an approximation of
the controls. The high accuracy of the obtained solutions is the main advantage of indirect
methods.
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The boundary value problems that arise from indirect methods have only a dimension 2nx. As
optimal controls are calculated analytically their degrees of freedom vanish and therefore it is
worth using indirect methods in case of a high number of control functions when compared
to direct methods. In contrast, it is advantageous to use direct methods if the number of states
significantly exceeds the number of controls.

Disadvantages of Indirect Approach

First of all the user has to compute derivatives of the Hamilton function to obtain first order
optimality conditions. Even if the user is able to get over this error–prone task it is sometimes
impossible or at least very difficult to construct these expressions for complicated black box
systems. Furthermore, it is impossible to develop a general–purpose solver since the afore-
mentioned derivatives have to be derived each time a new problem is posed.
Problems involving path constraints result in the necessity of finding a good guess of the
constrained–arc sequence. Unfortunately, this can be quite cumbersome without prior knowl-
edge of the system. An unknown number of the constrained subarcs results in an unknown
number of iteration variables. Furthermore, an unknown sequence of constrained and uncon-
strained arcs makes it very difficult to find the arc boundaries.
In order to ensure convergence of Newton’s method the switching times t i have to stay in the
multiple shooting intervals. We are just able to transform the problem onto fixed switching
times if the switching sequence is guessed correctly in advance and if it does not change during
iterations of the multiple shooting algorithm.
The third issue with indirect methods is their lack of robustness. To start the routine the user
needs a guess for the adjoint variables. This is a very difficult task since adjoint variables are
no physical quantities. But even with a reasonable initialization of the adjoint variables, the
numerical solution of the adjoint equations can be very ill–conditioned.

Synthesis

Finally, we want to point out why direct methods that will be introduced in detail in the
following Chapter 6 are usually superior over indirect methods in practice and outline our
procedure.
One major advantage of direct methods is their numerical robustness. Moreover, there is
the possibility to derive approximations for adjoint variables by employing multipliers of the
discretized problem. This can be achieved by comparing the necessary optimality conditions
of the discretized problem and of the original problem.
For this reason it could be one reasonable approach to combine direct and indirect methods.
At first one could solve the OCP with a direct method and then use the obtained solution to
initialize an indirect method. This includes an initial guess for the switching structure as well
as the adjoint variables.
For different reasons such as aforementioned complicated black box and large–scale systems
we are often unable to setup the necessary optimality conditions which makes it impossible
to apply indirect methods. Hence, we propose a different way which is sketched briefly. It-
eratively we solve a sequence of finite dimensional optimization problems arising from OCP
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discretizations. The process is initialized with a coarse discretization grid and is continuously
adapted. The grid refinements are conducted according to a global error estimation with re-
spect to a predefined quantity of interest. The error estimation algorithm involves the men-
tioned approximation of the adjoint variables. The algorithm terminates when the global error
is smaller than a certain threshold.
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Direct Approach: Problem Discretization

Direct Methods

Full DiscretizationReduced Discretization

Figure 6.1: Direct Methods Overview

In Section 5.5.3 we discussed some severe difficulties of using the indirect approach for solving
OCPs. In this chapter we present the direct approach, which has become very popular in
recent years, as an alternative. Direct Methods do not formulate optimality conditions but
transcribe the original infinite–dimensional optimization problem into a finite dimensional
NLP with algebraic constraints and solve the resulting system. For this reason, direct methods
are often called direct transcription methods. Another well known notion is “first discretize,
then optimize” approach. More concrete, direct methods consist of repeatedly iterating three
fundamental steps:

(i) Problem Discretization: Transcribe the OCP into an NLP by discretizing the
OCP.

(ii) Solve NLP: Solve the structured NLP resulting from the OCP discretization.

(iii) Mesh Refinement: If necessary adapt the discretization by either refining or
coarsening the mesh based on an error estimation.

The direct approach can therefore be seen as a SNLP algorithm. This chapter addresses the first
step of the SNLP algorithm. Another discretization approach that is based on techniques de-
veloped in this chapter will be presented in Chapter 7. Aside from describing the discretization
algorithm itself wewill motivate it and point out the challenges that arise for implementations.
NLPs as they arise in the second step have already been extensively analyzed: corresponding
optimality conditions have been derived in Section 3.5. The numerical solution of NLPs is
discussed in Section 3.6.
In direct transcription methods we omit forming necessary optimality conditions explicitly.
But this results in a lack of values for the adjoint variables, and as a consequence we cannot
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asses the accuracy of the solution because we have no clue about the adjoint equation. Hence,
we need good strategies to deal with the mesh refinement step of the SNLP algorithm. There is
awhole bunch of approaches available in the literature. In this thesis we develop a strategy that
is based on two central steps: first we describe a way how to retrieve discrete representations
of the adjoint variables in Chapter 9. Then we use them in a second step to derive a global
goal–oriented error estimation in Chapter 10.
Direct methods finitely parametrize the states and/or controls of the original infinite dimen-
sional OCP to approximate them in some appropriate manner. We call a method control
parametrization method if just the controls are approximated. If a method approximates states
and controls at the same time we call it state and control parametrization method. In either
a control parametrization method or a state and control parametrization method the OCP is
transcribed to a NLP.

6.1 Derivative Generation

No matter if the control parametrization or the state and control parametrization approach is
used to transcribe an OCP into a NLP at least first–order derivative information is required by
NLP solvers. We just sketch an overview about how derivatives can be calculated. For further
information and details about the topic the reader is referred to e.g. Albersmeyer [8] and the
excellent textbook of Griewank and Walther [210].
Fully discretized systems, i.e., if states and controls are parametrized, require derivatives of all
occurring functions. There are three well–established ways to do this.

• Analytic Differentiation calculates all derivatives by hand and implements them as func-
tions. This includes also the so–called Symbolic Differentiation, where computer algebra
systems like Maple [329] and Mathematica [250] are used to derive a symbolic ex-
pression for the desired derivative and translates the symbolic derivative expression into
e.g. Fortran or C source code. It is obvious that derivatives are exact up to machine
precision. But calculating derivatives by hand is error–prone and symbolic expressions
may not always be available. Moreover, symbolic expressions for the derivative may be
inefficient in terms of evaluation time, cf. Speelpenning [414].

• Finite Differences uses the principle of central difference scheme to approximate direc-
tional derivatives and requires only multiple evaluations of the model function in per-
turbed evaluation points. However, it potentially suffers from limited accuracy and high
computational effort.

• Automatic Differentiation (AD) just as Symbolic Differentiation decomposes the func-
tion to be differentiated into a concatenation of certain elemental functions. Systematic
application of the chain rule yields the derivative. As opposed to Symbolic Differentia-
tion, where this process is applied to the symbolic expression tree, in AD it takes place
while the function is evaluated in a given point. Early results on AD are published by
Wengert [448] and Kedem [269]. A comprehensive reference about AD is provided by
Griewank and Walther [210].
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6.1.1 Automatic Differentiation

AD is based on factorable programming formulation where all functions are factorable func-
tions, cf. McCormick [322], Shayan [409], and Jackson [255]. Factorable functions are de-
fined by a recursive composition of elemental operators such as addition, subtraction, multipli-
cation, division on the one hand and a given library of elemental functions such as exponential
or trigonometric functions on the other hand. Every elemental function is locally an analytic
function.
Evaluating a factorable function f (·) in a point x to get y = f (x) requires subsequently
calculating the composition of all elemental operations. This process can be interpreted de-
scriptively as an evaluation graph where intermediate results appear as vertices and elemental
operations as edges.
The computation of derivatives with this approach is based on the idea that all elemental func-
tions are analytical functions. Analytical functions have by definition a convergent power
series expansion. Likewise, compositions of convergent power series expansions yield a con-
vergent power series expansion. For this reason the composition of power series expansions
of analytical functions yields the power series expansion of their composition. Hence, the
aforementioned evaluation graph can be extended to a lifted computational graph where the
edges are given by compositions of power series and the nodes by intermediate power series.
One obtains the original evaluation graph by projecting onto the constant coefficient.

Forward Mode In forward mode of AD the lifted computational graph is used and the power
series expansion is truncated up to a certain order k. The evaluation of f (·) in point x +
td yields

∑k
i=0

f (i)(x)d i

i! t i where f (i)(x)d i denotes the i–fold contraction of f (i) with d . The
forward mode traverses the computational graph from independent to dependent variables
while accumulating derivative information.

Forward/Reverse Mode The application of the reverse mode requires one forward sweep
where the forward mode is used with truncation order k and input x + td . All intermediate
results are stored on a tape. The reverse mode requires a direction y of dependent values
as additional input and allows for the calculation of d

dx

∑k+1
i=0

y T f (i)(x)d i

i! t i by transversing the
computational graph backwards from dependent to independent variables.
Both forward and forward/reverse mode only require a small multiple of the computational
cost of evaluating f (x). The forward/reverse mode may additionally require significant
amount of storage to store the tape. Using the AD approach allows for calculating the Taylor
coefficients f (i)(x)d i

i! and d
dx

y T f (i)(x)d i

i! up to machine precision.

First–Order Derivatives In order to calculate Jacobians d f
dx we use the forward mode with

k = 1 and d = ei for all basis vectors ei . The extraction of the first Taylor coefficient yields
d f
dx ei . There are n evaluations of forward directional derivatives required if f (·) is just defined
on a subset of Rn.
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Second–Order Derivatives In order to calculate Hessian–vector products d2

dx2λ
T f v we use

the forward/reverse mode with k = 1, d = v and y = λ. The extraction of the first Taylor
coefficient yields the desired vector product.
For our implementations we use the AD–software package ADOL-C [445] to calculate first–
and second–order derivatives. ADOL-C uses operator overloading techniques to provide Tay-
lor coefficient propagation. It can be applied to functions defined in C++ that are composed
from a collection of smooth elemental functions. It allows for the calculation of function
derivatives up to machine precision.

6.1.2 IVPs and Sensitivity Generation

Direct transcription methods based on the control parametrization approach (see Section 6.2)
require the solution xn( · ; sn, qn) of IVPs

ẋ (t) = f (t, x (t), qn), x (tn) = sn, t ∈ [tn, tn+1], (6.1)

evaluated at tn+1, where qn denotes a time–independent nq–dimensional parameter vector
and sn the nx–dimensional initial state. Hence, the solution to IVP (6.1) evaluated at a point
t ∈ [tn, tn+1] is a function of the nx + nq variables [sn, qn]

T and we denote it by xn(sn, qn; t).
The special case t = tn+1 is denoted by xn(sn, qn).
In order to solveNLPs arising from aforementioned direct transcriptionmethods it is necessary
to compute first– and second–order derivatives of the ODE solution xn(sn, qn) with respect to
the initial values sn and parameters qn.

Adaptive Discretization Schemes for ODE IVPs

We obtain numerical solutions of IVP (6.1) by using an (adaptive) discretization scheme for
ODEs. Most schemes can be classified as one–step methods or multistep methods. As a rep-
resentative for a class of one–step methods we will introduce Runge–Kutta methods. BDF
methods will be discussed to show the principle of multistep methods.
No matter which discretization approach is used to determine approximate solutions of the
IVP (6.1) they have in common a discretization of the time interval T = [tn, tn+1] by a partition
or grid

GK
def
= {tn = τ

0 < τ1 < . . .< τK = tn+1}
with grid points τk , k = 0,1, . . . , K , K ∈ N, and step sizes hk def

= τk+1 − τk , k = 0,1, . . . , K − 1.
An equidistant grid, i.e., a grid with step size hk def

= h
def
= (tn+1 − tn)/N for k = 0,1, . . . , K − 1,

seems to be a natural choice. However, adaptive grids may be a lot more efficient for practical
applications.
A discretization scheme produces a grid function xK :GK −→ Rnx with τ 7→ xK(τ) for τ ∈GK
that approximates the solution x (·) of IVP (6.1) on the grid GK , i.e., we have

xK(τ
k)≃ x (τk), k = 0, . . . , K .
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Since the grid function is only defined on the K + 1 grid points in GK we introduce values ηk

such that

ηk def
= xK(τ

k), k = 0, . . . , K .

Most discretization schemes only use the ηk notation for their definitions. Nonetheless, the
interpretation in terms of a grid function may be useful to analyze convergence of discretiza-
tion methods. In particular it might be of some interest, whether the sequence {xK(·)}K∈N of
grid functions converges to a solution x (·) of IVP (6.1) if K tends to infinity, i.e., the grid size
tends to zero. This requires the grid size

h
def
= max

k=0,...,K−1
hk

to tend to zero. Since we use numerical integration methods only like a tool from a toolbox
in this thesis we just outline the basics about them in the following. In order to gain a deeper
insight into this topic we refer the reader to Gear [183], Gear and Petzold [184], Hairer et al.
[219], Shampine [405], Stoer et al. [419] and the references therein. Specific details about
one–step methods can be found in Brenan and Petzold [86], Hairer et al. [218]. Curtiss
and Hirschfelder [119], Geart and Watanabe [185], Lötstedt and Petzold [301], Brenan
and Engqist [85], Beigel et al. [42] deal in particular with multistep methods.

One–Step Methods For the definition of one–step methods and the subsequent definition
of Runge–Kutta methods we suppress the parameter qn in the ODE of IVP (6.1) in favor of
an increased readability.

Definition 6.1 (One–Step Method)
Let (tn, sn) be an initial time and value for IVP (6.1) and let {τk}Kk=0 define a discretization grid. Given a
function Φ(t, h, x), a one–step method defines a sequence of approximations {ηk} to the exact solutions
{xn(τk; sn)} of IVP (6.1) recursively as

ηk+1 def
= ηk + hkΦ(τk, hk,ηk), hk def

= τk+1 −τk, k = 0, . . . , K − 1.

The one–step method is started with (τ0,η0)
def
= (tn, sn). △

One–step methods differ in the choice of their generating function Φ(·). A popular family of
one–step methods is called the s–stage Runge–Kutta scheme.

Definition 6.2 (Runge–Kutta Method)
A one–step method is called Runge–Kutta method with s ∈ N stages if its generating function has the
form

Φ(t, h, x)
def
=

s∑
i=1

ci ki , ki
def
= f

�
t +αih, x + h

s∑
j=1

Bi, jk j

�
,

where coefficients c = [c1, . . . , cs]
T ∈ Rs , α = [α1, . . . ,αs]

T ∈ Rs and B =
�
Bi, j

�
i, j
∈ Rs×s are chosen

suitably. △
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A Runge–Kutta scheme is called explicit if Bi, j = 0 for j ⩾ i and implicit otherwise. Three
common examples of s–stage Runge–Kutta schemes are

• Euler Method (explicit, s = 1)

ηk+1 = ηk + hk f (τk,ηk)

• Trapezoidal Method (implicit, s = 2)

ηk+1 = ηk +
hk

2

�
f (τk,ηk) + f (τk+1,ηk+1)

�
(6.2)

• Classical Runge–Kutta Method (explicit, s = 4)

k1 = hk f (τk,ηk)

k2 = hk f (τk +
hk

2
,ηk +

1
2

k1)

k3 = hk f (τk +
hk

2
,ηk +

1
2

k2)

k4 = hk f (τk+1,ηk + k3)

ηk+1 = ηk +
1
6

�
k1 + 2k2 + 2k3 + k4

�
Multistep Methods The following definition states the general form of Linear Multistep
Methods with variable order and variable step size.

Definition 6.3 (Linear Multistep Method)
Let {τk}Kk=0 define a discretization grid. For given start values η1, . . . ,ηm with a fixed m the Linear Multi-
step Method (LMM) calculates a sequence of approximations {ηk}Kk=m+1 to the exact solution {xn(τk; sn)}
of IVP (6.1) as

lk∑
i=0

α
(k)
i η

k+1−i = hk
lk∑

i=0

β
(k)
i f (τk+1−i ,ηk+1−i), k = m, . . . , K − 1

with α(k)0 ̸= 0 and
���α(k)i

���+ ���α(k)i

���> 0. We call the LMM explicit if β k
0 = 0 and implicit if β k

0 ̸= 0. △

Well–established members of the multistep class are given by the Adams schemes whose basic
idea rest on approximating f (·) by interpolating polynomials (see Appendix B.2). An explicit
representative is given by the Adams–Bashforth method (see Bashforth and Adams [31]),
whereas an implicit one can be found in the Adams–Moulton method (see Moulton [331]).
BDF methods were invented by Curtiss and Hirschfelder [119] and belong to the class of
implicit LMMs. Particularly with regard to their effectiveness in solving stiff IVPs they be-
came very popular with the work of Gear [183] in 1971. The basic idea of BDF methods can
be described as follows: an interpolating polynomial that is constructed from past approxima-
tions and an unknown new approximation has to be determined such that it satisfies the ODE
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in the new time point. The method requires information at previous points and this implies
that some method has to be used to launch the process. The application of several steps with a
one–step method is a common approach. A respective strategy using a Runge–Kuttamethod
is then called Runge–Kutta starter, cf. Bauer [32].

Definition 6.4 (Backward Differentiation Formula Method)
Let {τk}Kk=0 define a discretization grid and let a starting procedure determine start values η1, . . . ,ηm.
The Backward Differentiation Formula (BDF) method calculates approximations {ηk}Kk=m+1 to the exact
solution {xn(τk; sn)} of IVP (6.1) as

lk∑
i=0

α
(k)
i η

k+1−i = hk f (τk+1,ηk+1), k = m, . . . , K − 1 (6.3)

with step sizes hk = τk+1 −τk and orders lk . By means of the Lagrange polynomials

L(k)i (τ)
def
=

lk∏
j=0
j ̸=i

τ−τk+1− j

τk+1−i −τk+1− j

the coefficients α(k)i are determined by

α
(k)
i = hk L̇(k)i (τ

k+1). (6.4)
△

Due to their definition BDF methods are implicit LMMs since β (k)0 = 1 and β (k)i = 0 for
i = 1, . . . , lk . In our definition of BDF methods the step size and order may vary. Thus, it is
necessary for implementations to take care for both efficient and well–conditioned coefficient
calculations.
Alternatively to Runge–Kutta starters one could also choose a so–called self–starting proce-
dure in Definition 6.4: it begins with setting l0 = 1 in (6.3) and posing additionally the initial
constraint x (τ0) = sn what results in an implicit Euler step. Then the integration step order
lk is successively increased until the maximum order is reached.
Due to the fact that the BDF method is implicit and the function f (·) is nonlinear a system of
nonlinear equations has to be solved in each iteration step (6.3). If step size hk and order lk
are chosen in (6.3) such that��� hk

αk
0

��� · 

 f ′x(τk+1,ηk+1)


< 1

holds then (6.3) possesses a unique solution ηk+1, cf. Henrici [229]. Approximations of ηk+1

are usually obtained by applying Newton–type methods.

Automatic Step Size Selection Regardless of using either a one–step or multistep method
the accuracy of the solution has to be addressed, i.e., how well is the real solution {xn(τk; sn)}
approximated by the discrete solution {ηk}. This topic has undergone intensive research and
produced some mechanism for adjusting the integration step size and order to control the
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integration error, see e.g. Dormand and Prince [138], Fehlberg [156, 157], Verner [435],
Shampine and Gordon [407], Gear [183].
In order to evaluate the solution trajectory x (·) approximately at points independent of the
discretization grid {τk} a continuous representation of the discrete values {ηk} is required.
This issue is usually addressed by using interpolation polynomials (Appendix B.2). Further
details can be found in Enright [147], Owren and Zennaro [349], Shampine [404] and the
references therein.

Sensitivities of Initial Value Problems

Now we deal with numerical approaches for the computation of IVP sensitivities, i.e., we ap-
proximate the derivative of xn(sn, qn) with respect to the initial value sn and parameters qn.
More precisely we are interested in constructing the matrix Xn =

�
X s

n, X q
n

�
with

X s
n

def
=

�
∂

∂ (sn) j
(xn)i(sn, qn)

�
i, j∈[nx]

, X q
n

def
=

�
∂

∂ (qn) j
(xn)i(sn, qn)

�
i∈[nx], j∈[nq]

For the sake of simplicity we describe approaches based on finite differences in the following
but mention extensions to AD if applicable. If we define perturbation vectors

ds
k

T def
= [0, . . . , 0,δs

k, 0, . . . , 0]T , dq
l

T def
= [0, . . . , 0,δq

l , 0, . . . , 0]T

for k ∈ [nx] and l ∈ [nq], then a forward difference approximation to column k of X s
n and

column l of X q
n is of the form�

X s
n

�
·,k ≃ 1

δs
k

�
xn(sn + ds

k, qn)− xn(sn, qn)
�

, (6.5)�
X q

n

�
·,l ≃ 1

δ
q
l

�
xn(sn, qn + dq

l )− xn(sn, qn)
�

. (6.6)

There are several ways how approximations ηn(sn, qn) of the nominal point xn(sn, qn) and its
perturbations ηn(sn + ds

k, qn) ≃ xn(sn + ds
k, qn) and ηn(sn, qn + dq

l ) ≃ xn(sn, qn + dq
l ) can be

calculated using adaptive discretization schemes as introduced in the previous section. We
pick three of them, discuss their basic ideas and present respective benefits and drawbacks.

External Numerical Differentiation External Numerical Differentiation (END) calculates
all required values ηn(sn, qn), ηn(sn + ds

k, qn) and ηn(sn, qn + dq
l ) separately and applies the

forward difference rules (6.5)+(6.6) afterwards. The approximation of X s
n using END can be

described as follows:
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• Nominal Point
Compute ηn(sn, qn): integrate ODE (6.1) from tn to tn+1 with
initial conditions sn

• Perturbations For k = 1, . . . , nx
Set s = sn + ds

k
Compute ηn(s, qn): integrate ODE (6.1) from tn to tn+1 with
initial conditions s

• Derivative Evaluation For k = 1, . . . , nx
Construct

�
X s

n

�
·,k according to (6.5)

While varying the IVP initial conditions the END approach treats the IVP solution method
as “black box” to which finite differences are applied externally. If the discretization scheme,
which generates the approximation ηn(·), would be a composition of smooth functions one
could also consider applying AD techniques to the composed function in order to calculate
sensitivities. However, for most numerical codes this assumption is not satisfied.
It is a well–known fact that adaptive discretization schemes result in composed functions that
are in general non–smooth with respect to initial values sn and parameters qn. If they are
varied there are jumps of the order of the integrator tolerance possible in the output. The
discrete character of the step size and order selection strategy introduces the non–smoothness
in a natural way: a change in the input parameters (sn, qn) may cause the algorithm to follow
a different path of execution, e.g. there are possibly different choices of the discretization
grid {τk}. In particular this holds for nominal initial values (sn, qn) and its perturbed values
(sn + ds

k, qn), (sn, qn + dq
k ).

The END approach is easy to implement, but it has the disadvantage that END computed
derivatives are not consistent in the sense that increasing the integrator accuracy does not
necessarily result in a convergence to the exact derivatives. Furthermore the non–smooth
behavior of ηn+1(·) induces inaccuracies of the finite difference approximations (6.5)+(6.6),
unless the integrations are performed with extraordinary high accuracy.

InternalNumerical Differentiation We identified the non–smooth output caused by adap-
tive discretization schemes as one main issue of END. This can be overcome by the Internal
Numerical Differentiation (IND) approach whose idea is presented in the following.
The basic concept of IND is to compute the derivative of the adaptive discretization scheme
itself and not by trying to differentiate the integrator output. The original idea of IND was
proposed by Bock [71, 72], where an adaptive discretization scheme is applied to the nominal
trajectory. Then the discretization scheme is “frozen” for the integration of the perturbed
trajectories. As a consequence the output becomes a differentiable function of the inputs. In
contrast to END the discretization scheme can not exist as a “black box” but one needs some
insights to control the sequence of orders and step sizes.
Another possible way to realize the IND principle, that allows for reusing many matrix eval-
uations and factorizations, is not to integrate the nominal and perturbed trajectories one at
a time, but all of them at the same time. The numerical integration method usually just con-
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trols the error with respect to the nominal trajectory but not with respect to the perturbed
trajectories. Analogously to the description of END we direct our attention to the case of
approximating X s

n since the extension to X q
n is straightforward.

We define an augmented system of ODEs by making 1+ nx copies of (6.1)

ẏ k(t) = f (t, y k(t), qn), k = 0,1, . . . , nx. (6.7)

By construction the augmented system (6.7) involves nx(1+nx) differential variables, i.e., yn(·)
is the nx(1 + nx)–dimensional vector yn

T def
= [y0

n
T , . . . , ynx

n
T ] = [xn

T , . . . , xn
T ]. The initial

conditions for the augmented system then read as

yn
T (tn) = [sn

T , (sn + ds
1)

T , . . . , (sn + ds
nx
)T ]. (6.8)

Note that there is the following relationship between the original and the augmented system:

[y0
n

T
, y1

n
T
, . . . , ynx

n
T ]

T
(tn+1) = [xn(sn, qn)

T , xn(sn + ds
1, qn)

T , . . . , xn(sn + ds
nx

, qn)
T ]

T
.

Similar to END we obtain approximations of xn(sn, qn) and the xn(sn + ds
k, qn) by applying

numerical integration methods and finally we can state the following IND algorithm:

• Propagation Compute ηn(sn, qn), ηn(sn + ds
1, qn), . . . ,ηn(sn + ds

nx
, qn):

integrate the augmented ODE (6.7) from tn to tn+1 with initial
conditions (6.8)

• Derivative Evaluation For k = 1, . . . , nx
Construct

�
X s

n

�
·,k according to (6.5)

Derivatives generated according to the IND principle are consistent with the discretization
scheme. Since IND delivers the “exact” derivative of an adaptive discretization scheme, it
is stable even for low integration accuracies. The accuracy of the numerical integration can
therefore be chosen to be of the same order of magnitude as the one required for the sensitiv-
ities. This is opposed to our respective comments about END.
The IND principle does not rely on a specific discretization scheme and has especially been im-
plemented for one–step and multistep methods. It can also be applied in an AD context. More
details about arbitrary–order forward and forward/reverse mode sensitivity generation using
IND involving a variable order and variable step size BDF method as discretization scheme can
be found in Albersmeyer [8]. An implementation thereof is DAESOL-II which is part of
the C++ package SolvIND. SolvIND is an ODE/DAE solver suite that allows for gener-
ating forward and forward/reverse mode sensitivity information of the solutions using IND.
The generation of derivatives of the model functions is done via built–in ADOL-C support.

Variational Differential Equation The sensitivity equation approach or VDE approach rep-
resents another way how X s

n and X q
n can be calculated. Let us consider the time dependent

matrix–valued functions
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X s
n(t)

def
=

�
∂

∂ (sn) j
(xn)i(sn, qn; t)

�
i, j∈[nx]

, Xq
n(t)

def
=

�
∂

∂ (qn) j
(xn)i(sn, qn; t)

�
i∈[nx], j∈[nq]

,

describing the derivatives of the state at time instant t with respect to sn and qn. By construc-
tion we have X s

n(tn+1) = X s
n and Xq

n(tn+1) = X q
n . Differentiating X s

n(·) and Xq
n(·) leads to the

VDEs

Ẋ s
n(t) = f

′
x(t, xn(sn, qn; t), qn) X s

n(t), (6.9)

Ẋq
n(t) = f

′
x(t, xn(sn, qn; t), qn) Xq

n(t) + f
′

q(t, xn(sn, qn; t), qn). (6.10)

The initial conditions for the VDEs are

X s
n(tn) = I , Xq

n(tn) = 0.

By defining the block matrix

Xn(t)
def
=
�
X s

n(t) Xq
n(t)

0 I

�
(6.11)

we can write the IVP (6.9)+(6.10)+(6.11) as linear ODE

Ẋn(t) =

�
f
′
x(t, xn(sn, qn; t), qn) f

′
q(t, xn(sn, qn; t), qn)

0 0

�
Xn(t), (6.12)

together with initial conditions

Xn(tn) =
�

I 0
0 I

�
. (6.13)

It is obvious that the principle of IND can be applied using the VDE: it is possible to set up
the VDE and solve it along with the nominal system, i.e., we can use the order and step size
sequence of the nominal solution.

6.2 Reduced Discretization Approach

We start our investigations about direct transcription methods with methods that discretize
the controls exclusively, and propagate the dynamics across the horizon using the control
approximation. The process of choosing an initial value for the ODE such that the dynamics
satisfies the boundary conditions after propagating the dynamics reminds vaguely of aiming a
cannon such that the cannonball hits its target. That is why these methods are called “shooting
methods”.
Figure 6.2 shows that two types of shooting methods are distinguished. In this thesis we just
deal with the multiple shooting method. But since the single shooting method forms the basis
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for the multiple shooting method we present both of them.

Reduced Discretization

Multiple ShootingSingle Shooting

Figure 6.2: Overview: Direct Methods based on control discretization.

All shootingmethods have in common that they use an embedded ODE solver in order to elim-
inate the continuous time dynamics. Relevant results, which includes references and further
reading, have been presented in the previous section.
The control parametrization approach is presented by reference to the OCP

min
x (·),u(·) φ(tf, x (tf)) +

∫ tf

ts

ψ(t, x (t), u(t)) dt (6.14a)

s. t. ẋ (t) = f (t, x (t), u(t)), t ∈ T , (6.14b)
x (ts) = xs, (6.14c)

0nc
⩾ c(t, x (t), u(t)), t ∈ T , (6.14d)

0nr
⩾ r (tf, x (tf)). (6.14e)

6.2.1 Control Discretization

The aim of this section is to introduce ways how the (infinite dimensional) space of feasible
control functions u(·) can be approximated by a finite dimensional subspace. We start by
partitioning the control horizon T into N (not necessarily equidistant) intervals

ts = t0 < t1 < . . .< tN = tf

such that the {tn} define a so–called shooting grid. For each component 1 ⩽ i ⩽ nu of the
control trajectory u(·) and on each interval [tn, tn+1], 0 ⩽ n ⩽ N − 1, we choose a vector
of base functions ξn(t, qn) =

��
ξn

�
1 (t, q1

n), . . . ,
�
ξn

�
nu
(t, qnu

n )
�T

with qn
def
=
�
q1

n
T , . . . , qnu

n
T
�T

and
�
ξn

�
i : T ×Rnni

q −→ R. It is often desirable to guarantee separability (see page 161) of the
discretization over shooting grid intervals. For this reason the

�
ξn

�
i (·) are chosen to have local

support and they are parameterized by a vector of finitely many control parameters qi
n ∈ Rnni

q .
Popular choices for base functions are

• piecewise constant controls (nni
q = 1):�

ξn

�
i : [tn, tn+1]×Rnni

q −→ R, (t, qi
n) 7→ qi

n
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• piecewise linear controls (nni
q = 2):

�
ξn

�
i : [tn, tn+1]×Rnni

q −→ R, (t, qi
n) 7→ tn+1 − t

tn+1 − tn

�
qi

n

�
1 +

t − tn

tn+1 − tn

�
qi

n

�
2

• piecewise cubic spline controls (nni
q = 4):

�
ξn

�
i : [tn, tn+1]×Rnni

q −→ R, (t, qi
n) 7→

4∑
k=1

�
qi

n

�
k βk

�
t − tn

tn+1 − tn

�k−1

,

where the spline function coefficients βk are chosen appropriately.

For each of the nu control trajectory components there may be chosen different discretization
types. For certain control discretization choices such as piecewise linear controls it can be
desired that the discretized control trajectory is continuous over the complete control horizon.
This can be realized for the control trajectory component ui(·) by imposing additional control
continuity conditions

0=
�
ξn

�
i (tn+1, qi

n)−
�
ξn+1

�
i (tn+1, qi

n+1)

for all points of the control discretization grid {tn}, n ∈ [N−1]. As it is shown e.g. by Kirches
et al. [273] the control discretization choice may have some impact on the approximation
quality of the discretized OCP.

6.2.2 Direct Single Shooting

The direct single shooting method, earliest presented by Hicks and Ray [236], Sargent and
Sullivan [385], first parametrizes the control function u(·) with techniques as presented in
Section 6.2.1. We denote the control parametrization by ξ( · ; q), where q denotes the parameter
to be determined by the optimization.
For convenience we introduce the single shooting method for the choice of piecewise constant
controls. For the temporal grid ts = t0 < t1 < . . . < tN = tf we define parameters qn ∈ Rnu ,
n ∈ [N]. Then we set the control parametrization as

ξ(t; q)
def
= qn, if t ∈ [tn, tn+1), 0⩽ n⩽ N − 1.

Hence, the dimension of the parameter vector q
def
= [q1

T , . . . , qN
T ]T is N · nu. For complete-

ness, the control at the final time is defined as ξ(ts;q)
def
= qN

def
= qN−1, where the vector qN

is introduced for notational convenience exclusively and will not regarded as an additional
parameter, but just as another name for qN−1.
In direct single shooting the states x (·) are regarded as dependent variables of the controls
u(·) respectively their parametrization ξ( · ; q) together with the initial state s0, i.e., the states
are obtained by a forward integration of the IVP
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ẋ (t) = f (t, x (t),ξ(t;q)), t ∈ T , (6.15a)
x (ts) = s0. (6.15b)

The objective function as well as control and path constraints are usually discretized and en-
forced only on the control discretization grid {tn}.
With this approach we obtain a NLP in the nx+N ·nu unknowns [s0

T , q0
T , . . . , qN−1

T ]T which
can be solved e.g. by SQP techniques as introduced in Section 3.6. It is obvious that IVP (6.15)
has the form as IVP (6.1) and thus sensitivities as required by NLP solvers can be determined
with techniques from Section 6.1.2.

Figure 6.3: Illustration of the direct single shooting discretization applied to the optimal con-
trol problem.

The direct single shootingmethods has some advantages over other methods: the initialization
of the NLP variables is restricted to the initial state s0 and the control parameters q. If e.g. the
END approach is used for the sensitivity generation any state–of–the–art ODE solver can be
used for the forward integration and derivative calculations of the arising IVPs. Even for large
ODE systems the resulting NLP has few degrees of freedom.
But the direct single shooting method also suffers from several severe drawbacks: since the
NLP variables are restricted to the control parameters the initialization of the state trajectory
- based on prior knowledge about the dynamic process - is impossible. The main drawback of
the single shooting method is the potential infeasibility of the numerical integration, which
might break down in the course of the integration. This can happen due to a very stiff or
unstable set of differential equations or induced by a singularity in time. Usually the existence
of a numerical solution of highly nonlinear and unstable OCPs can only be guaranteed for a
parameter initialization that is already very close to the optimal solution. The ODE solution
x ( · ; s0, q) can depend very nonlinearly on s0 and q. Finally, the convergence of the NLP solver
is effectively influenced by the nonlinearity of the underlying ODE system.
Nevertheless, the direct single shooting method is often used in practice.

6.2.3 Direct Multiple Shooting

The direct multiple shooting method was originally developed by Bock and Plitt [75] and
Plitt [356] and can be seen as an extension of the direct single shooting method as introduced
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in the previous section. The optimal control package MUSCOD-II, which was implemented
by Leineweber [291], is based on the multiple shooting method.
Roughly speaking, in a direct multiple shooting approach the horizon interval T is split into N
subintervals and then the single shootingmethod is applied on each subinterval independently.
Here the continuity of the state trajectories is guaranteed by augmenting the resulting NLP
with additional continuity constraints.

OCP Discretization

Let a multiple shooting grid be defined by ts = t0 < t1 < . . .< tN = tf.

Control Discretization The control discretization is performed in the same way as in the
single shooting method. The control approximation is defined with local support as

ξ(t; q)
def
= ξn(t; qn), if t ∈ [tn, tn+1), 0⩽ n⩽ N − 1.

For completeness, we introduce an additional discretized control ξN (t;qN ) for the final point
tf. It is defined to have the final control value of the previous shooting interval,

ξN (tf; qN )
def
= ξN−1(tf; qN−1).

State Parametrization In contrast to the single shooting method the ODE system is not
solved over the complete horizon T but on each subinterval [tn, tn+1] separately. This can be
realized by introducing artificial initial values sn ∈ Rnx and solving the N IVPs

ẋn(t) = f (t, xn(t),ξn(t; qn)), t ∈ [tn, tn+1], 0⩽ n⩽ N − 1, (6.16a)
xn(tn) = sn, (6.16b)

The solutions of IVPs (6.16) are N independent trajectories xn(·) on [tn, tn+1], which are func-
tions of sn and qn exclusively. For this reason we denote the solution trajectories of IVP (6.16)
on [tn, tn+1] often with xn( · ; sn, qn).
If we substitute the independent trajectories xn(·) into the Lagrange termψ(·) in (6.14a) the
interval wise integral objective contributionsψn(sn, qn), defined by

ψn(sn, qn)
def
=

∫ tn+1

tn

ψ(t, xn(t; sn, qn),ξn(t; qn)) dt, 0⩽ n⩽ N − 1,

can be calculated simultaneously.
By introducing the values sn we added non–physical degrees of freedom that have to be re-
moved by adding appropriate constraints: continuity of the state trajectories can be enforced
by introducing so–called matching conditions, i.e., each node value sn should be equal to the
final value of the preceding trajectory xn( · ; sn, qn):

0= xn(tn+1; sn, qn)− sn+1, 0⩽ n⩽ N − 1. (6.17)
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Figure 6.4: Illustration of the direct multiple shooting discretization applied to the optimal
control problem. All shooting nodes were initialized identically and the solution of the N
IVPs violates the matching conditions.

For the initial condition (6.14c) we require that the first node s0 is equal to the initial value xs:

s0 = xs. (6.18)

The additionally introduced degrees of freedom represented by the parameters sn, 0⩽ n⩽ N ,
are therefore removed by the constraints (6.17)+(6.18). It is not required that these constraints
must be fulfilled during the optimization process, but rather it is one crucial strength of the
direct multiple shooting method that infeasible initial guesses of the variables sn can be han-
dled.

Discretization of Path Constraints The infinite–dimensional mixed control–state inequal-
ity constraints (6.14d) are enforced to hold at the multiple shooting grid points {tn} which
results in the N + 1 inequality constraints

0⩾ c(tn, sn,ξn(tn; qn)), 0⩽ n⩽ N .

Since the path constraints must hold only at shooting grid points and not over the full horizon
the feasible set of the discretized OCP is usually enlarged compared to that of the continuous
one. The multiple shooting method applied to real world problems shows in general at most
mild violations of path constraints in the interior of shooting intervals. If strict violations are
observed one could either restart the optimization process with an adapted and possibly finer
shooting grid, or could use a semi–infinite programming approach which tracks constraint
violations in the interior of shooting intervals. The interested reader can find a detailed de-
scription of this approach in the contributions of Potschka [358] and Potschka et al. [359].

Structured NLP

Multiple Shooting NLP The multiple shooting parametrized OCP (6.14) reads as

min
sn,qn

N∑
n=0

ψn(sn, qn) (6.19a)
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s. t. 0nx
= xs − s0, (6.19b)

0nx
= xn(tn+1; sn, qn)− sn+1, 0⩽ n⩽ N − 1, (6.19c)

0nc
⩾ c(tn, sn,ξn(tn;qn)), 0⩽ n⩽ N , (6.19d)

0nr
⩾ r (tN , sN ), (6.19e)

where the Mayer term φ(tN , sN ) is written as final termψN (sN , qN ). By defining the vectors
wn

def
= [sn

T , qn
T ]T and w

def
= [w0

T , . . . , wN
T ]T we can write NLP (6.19) in a compact form as

min
w

F(w) (6.20)

s. t. 0= G(w) + [Inx
0 . . .0]T xs,

0⩾ H(w),

where F(w)
def
=
∑N

n=0ψn(sn, qn) denotes the objective function.

NLP Constraints The equality constraints (6.19b)+(6.19c) are collected into a function

G(w)
def
=


−s0

x0(t1; s0, q0)− s1
...

xN−1(tN ; sN−1, qN−1)− sN

 ,

and the inequality constraints (6.19d) into a function

H(w)
def
=


c(t0, s0,ξ0(t0;q0))

...
c(tN , sN ,ξN (tN ; qN ))

r (tN , sN )

 .

Theevaluation ofG(·) requires the integration of the dynamic system equations and thismakes
it computationally expensive. However, evaluating the n–th matching condition only involves
wn−1 nonlinearly and sn linearly for n ∈ [N], and is therefore separable. We call a function
of NLP (6.20) separable if unknowns wn are decoupled from unknowns wm, 0 ⩽ n, m ⩽ N ,
n ̸= m in the sense that for function components depending on wn the wm are either absent
or appear linearly. As we will see in the following a block structure of the Jacobian of the
respective function with respect to w is a consequence. Tailored algorithms can be used to
exploit the separability efficiently, cf. Kirches [272].
When we introduced the control discretization for shooting methods in Section 6.2.1 we
stressed the importance of base functions with local support. This choice of the control dis-
cretization and similarly the state parametrization implies the objective function F(·) as well
as the inequality constraint function H(·) to be separable with respect to wn.
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NLP Constraint Jacobian The Jacobians of G(·) and H(·) are

d
dw

G(w) =


−Inx
X s

0 X q
0 −Inx

X s
1 X q

1 −Inx
. . .

X s
N−1 X q

N−1 −Inx

 (6.21)

and

d
dw

H(w) =


Y s

0 Y q
0

Y s
1 Y q

1
. . .

Y s
N Y q

N
Z s

N


with

X s
n =

∂

∂ sn
xn(tn+1; sn, qn), X q

n =
∂

∂ qn
xn(tn+1; sn, qn), 0⩽ n⩽ N − 1,

Y s
n =

∂

∂ sn
c(tn+1, sn, qn), Y q

n =
∂

∂ qn
c(tn+1, sn, qn), 0⩽ n⩽ N ,

Z s
N =

∂

∂ sN
r (tN , sn).

NLP Hessian of the Lagrangian In order to define the Lagrangian function of NLP (6.19)
we introduce multipliers λ def

= [(λs)T , (λm)T ]
T for the equality constraints G(·) with λs and

λm def
= [(λm

0 )
T , . . . , (λm

N−1
T )]

T being the multipliers for the initial conditions and the match-
ing conditions, respectively. Multipliers for the inequality constraints H(·) are denoted by
µ

def
= [(µc)T , (µr)T ]

T with µc def
= [(µc

0)
T , . . . , (µc

N )
T ]

T and µr being the multipliers for the mixed
control–state constraints c(·) and the terminal point constraints r (·), respectively. The La-
grangian function of NLP (6.19) then reads as:

L(w,λ,µ)
def
=

N∑
n=0

ψn(wn)− (λs)T (xs − s0)−
N−1∑
n=0

(λm
n )

T (xn(tn+1; wn)− sn+1)

−
N∑

n=0

(µc
n)

T c[wn]− (µr)T r [wN ]

=
N∑

n=0

Ln(wn,λ,µ) (6.22)
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with

L0(w0,λ,µ) =ψ0(w0)− (λs)T (xs − s0)− (λm
0 )

T x0(t1; w0)− (µc
0)

T c[w0],

Ln(wn,λ,µ) =ψn(wn)− (λm
n )

T xn(tn+1; wn) + (λ
m
n−1)

T sn − (µc
n)

T c[wn], n ∈ [N − 1],

LN (wN ,λ,µ) =ψN (wN ) + (λ
m
N−1)

T sN − (µc
N )

T c[wN ]− (µr)T r [wN ].

With notation (6.22) it is obvious that the Lagrangian function is separable with respect to wn,
i.e., ∂ 2

∂ wn∂ wm
L(w,λ,µ) = 0, n ̸= m. Similar to the Jacobians of equality constraint function G(·)

and inequality constraint function H(·) this separability yields the following block–diagonal
structure of the Hessian matrix with respect to w of the Lagrangian function:

∇2
wL(w,λ,µ) =

∇
2
w0
L0(w0,λ,µ)

. . .
∇2

wN
LN (wN ,λ,µ)


with

∇2
wn
Ln(wn,λ,µ) =

 ∂ 2

∂ s2
n
Ln(wn,λ,µ) ∂ 2

∂ qn∂ sn
Ln(wn,λ,µ)

∂ 2

∂ sn∂ qn
Ln(wn,λ,µ) ∂ 2

∂ q2
n
Ln(wn,λ,µ)

 , 0⩽ n⩽ N .

An application of the BFGS update formula (3.27) at wk = [wk
0

T
, . . . , wk

N
T ]

T
might result in an

approximation of the Hessian of the Lagrangian

Bk ≃ diag
�∇2

wn
Ln(w

k
n,λk,µk)

�
that has a destroyed sparsity pattern which was imposed by the separability of the Lagrangian
function. One possible way to overcome this problem was proposed by Bock and Plitt [75]
and Plitt [356] and is called high rank BFGS updating. Here the initial approximation of the
Hessian is chosen to be

B0 =

B0
0

. . .
B0

N

 ,

where the B0
n , 0 ⩽ n ⩽ N are initial approximations of ∇2

wn
Ln(w0

n,λ0,µ0). The step part and
the Lagrangian gradient difference part are chosen to be

θ k
n = α∆wk

n and ηk
n =∇wn

Ln(w
k+1
n ,λk+1,µk+1)−∇wn

Ln(w
k
n,λk+1,µk+1).

The BFGS update formula (3.27) is then applied to each of the submatrices B0
n , 0 ⩽ n ⩽ N ,

separately. High rank BFGS updates can be interpreted as a rank 2N +2 approximation of the
matrix Bk , cf. Bock and Plitt [75], Plitt [356], Leineweber [290], and Leineweber [291].
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QP Subproblem of the SQP Method The QP of the k–th SQP iteration (see Algorithm 2 in
Section 3.6.2) has the form

min
∆w

1
2
∆wT Bk∆w+∇F(wk)

T
∆w

s. t. 0=
d

dw
G(wk)∆w+G(wk) + [Inx

0 . . .0]T xs,

0⩾ d
dw

H(wk)∆w+H(wk).

It plays a central role in the sections about real–time optimization for Nonlinear Model Pre-
dictive Control, cf. Appendix C and Appendix D.

6.3 Full Discretization Approach

Full Discretization

Global

CollocationGalerkinTau

Local

MultistepOne–Step

Figure 6.5: Direct Methods with state and control discretization Overview

The OCP that we adduce to discuss the full discretization approach is the continuous OCP in
standard form which was introduced in Definition 5.1. We assume the OCP to be given with a
Mayer term objective functional for the local approach.

6.3.1 Local Approach

For a local approach to solve anOCP the horizon interval T = [ts, tf] is divided into N intervals

GN
def
= {ts = t0 < t1 < . . .< tN = tf},

where N is a natural number. We use the term Finite Element (FE) for each of the intervals
[tn, tn+1]. The FE boundaries are referred to as nodes, mesh or grid points.
To transcribe the OCP into a NLP we use w as a set of NLP variables which arise from dis-
cretizations of states and controls. The optimal control constraints are replaced by the NLP
constraints

cl ⩽ c(w)⩽ cu,
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where

c(w) = [d1, d2, . . . , dN , c0, c1, . . . , cN , r]T

and

cl = [0, . . . ,0,−∞, . . . ,−∞,0]T , cu = [0, . . . ,0,0, . . . ,0,0]T .

The first N · nx constraints require the defect vectors arising from an ODE discretization to
be equal to zero. The nonlinear path constraints are imposed at the grid points and results
therefore in (N +1) ·nc additional constraints. The boundary conditions are enforced directly
by the constraints r . Simple bounds on states x (·) or controls u(·) can be directly translated
to simple bounds on the corresponding NLP variables.

Control Discretization

The control discretization for the full discretization approach can be done in the same way as
we have done for the reduced discretization approach in Section 6.2.1. This means in par-
ticular that different control discretizations are possible for each control component. For
the sake of simplicity this is not done in the following considerations. We rather assume
{B1(·), . . . ,BM (·)} to span an M–dimensional subspace UM of the control space, where M
usually depends on the number N of intervals in GN . Then every ξM ∈ Unu

M can be expressed
by means of coefficients q

def
= [q1

T , . . . , qM
T ]T ∈ RM ·nu as

ξM (t)
def
=

M∑
m=1

qm Bm(t).

As we have done before we indicate the dependence on the vector q by using the notation

ξM (t)
def
= ξM (t; q)

def
= ξM (t; q1, . . . , qM ).

Sometimes we may even identify ξM (·) and q.

State Discretization

Local methods mainly differ in the way how they discretize the ODE equations. Depending on
the discretization approach (see Section 6.1.2) they are categorized into one–step methods and
multistep methods. We survey both approaches briefly but refer the reader to the literature for
a deeper insight.
For the state discretization we use the grid function notation again which we introduced for
discretization schemes in Section 6.2.1. For this reason we try to determine a grid function xN :
GN −→ Rnx such that tn 7→ xN (tn) and ηn

def
= xN (tn). Consequently, the NLP variables from

a local approach consist of the control parametrization coefficients q and state discretization
function values {ηn}Nn=0. We summarize them in the NLP variable w.
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Local Approach using One–Step Methods For this approach we apply the general one–
step discretization scheme for ODE IVPs from Definition 6.1 to discretize the ODE from the
OCP under consideration such that for a given control approximation ξM (·) the ηn are deter-
mined according to the equation

ηn+1 = ηn + hnΦ(tn, hn,ηn,ξM (tn;q)), hn
def
= tn+1 − tn, n= 0, . . . , N − 1.

Notice that the generating function Φ(·) depends on the control coefficients q. The fully dis-
cretized OCP (5.1) with Mayer term objective functional is given as

min
w

φ(t0,η0, tN ,ηN ) (6.23a)

s. t. 0nx
= ηn + hnΦ(tn, hn,ηn, q)−ηn+1, n= 0, . . . , N − 1, (6.23b)

0nc
⩾ c(tn,ηn, q), n= 0, . . . , N − 1, (6.23c)

0nr
= r (t0,η0, tN ,ηN ). (6.23d)

A notation similarly to NLP (6.20) for the Direct Multiple Shooting approach can be found
easily. This includes respective definitions for the functions F(·), G(·) and H(·). For details
we refer the reader to Gerdts [189, Section 5.1.2].
NLP (6.23) is large–scale, but using tailored numerical optimization algorithms which allow
for exploiting the sparse structure of gradient F ′(w) and Jacobians G′(w), H ′(w) it can be
solved very efficiently, cf. Betts and Huffman [63, 66] and Betts [62].

Local Approach using Multistep Methods We illustrate this approach by reference to the
BDF method (see Definition 6.4) with self–starting procedure. Given some control approxi-
mation function ξM (·) the BDF method finds state approximations ηn by solving the system
of equations

ln∑
i=0

α
(n)
i ηn+1−i = hn f (tn+1,ηn+1,ξM (tn+1; q)), hn

def
= tn+1 − tn, n= 0, . . . , N − 1,

where the definition of coefficients α(n)i follows the one from (6.4) in Definition 6.4. The inte-
gration step orders ln are set according to its self–starting character, i.e., the procedure starts
with l0 = 1, which makes the first equation an implicit Euler step, and then gradually in-
creases the order until the maximum order is reached.
Putting everything together the fully discretized OCP (5.1) with Mayer term objective func-
tional and an BDF based ODE discretization is given as

min
w

φ(t0,η0, tN ,ηN ) (6.24a)

s. t. 0nx
=

ln∑
i=0

α
(n)
i ηn+1−i − hn f (tn+1,ηn+1, q), n= 0, . . . , N − 1, (6.24b)
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0nc
⩾ c(tn,ηn, q), n= 0, . . . , N − 1, (6.24c)

0nr
= r (t0,η0, tN ,ηN ). (6.24d)

6.3.2 Global Approach

Global methods are also known as spectral methods or Discrete Variable Representation (DVR)
methods and are a class of numerical methods that are extensively used for solving Partial
Differential Equations (PDEs) numerically. Analytic studies of differential equations by means
of spectral representations have been used since the days of Fourier [170]. Early applications
of spectral methods to the numerical solutions of ODEs go back at least to Lanczos [283].
Spectral methods approximate the differential state x (·) by a polynomial of order N = Np − 1

x (t)≃ XN (t)
def
=

Np∑
n=1

anψn(t), (6.25)

where the ψn(·) are smooth basis functions and the an act as parameters. The ψn(·) are
usually called trial functions or expansion functions. This is due to the fact that they function
as truncated series expansion of the solution. For this reason the an are also called expansion
coefficients. The control u(·) is approximated in a similar way as x (·).

Numerical Analysis In order to do some numerical analysis theory in this section we intro-
duce weighted Sobolev spaces of Hilbert type over the open interval I def

= (−1,+1). Sobolev
spaces have been presented in Section 2.4.3. Given a weight function ω(·) on I that fulfills
ω ∈ L1(I,R) and ω(t)> 0 for t ∈ I we define the function space

L2
ω(I,R) def

= {ϕ: I −→ R :ϕ (·) is measurable and 〈ϕ,ϕ〉ω < +∞},
where the scalar product is given as

〈ϕ,ψ〉ω def
=

∫
I
ω(t) ϕ (t)ψ(t) dt.

For any q ∈ N we define the function space

Hq
ω(I,R) def

= {ϕ∈ L2
ω(I,R) : ∥ϕ∥Hq

ω
< +∞}

with

∥ϕ∥2
Hq
ω
=

q∑
i=0

∫
I
ω(t)

��ϕ(i) (t)��2 dt. (6.26)
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Finally, we need the semi–norms (see e.g. Canuto et al. [100])

|ϕ|2Hq
ω
=

∫
I
ω(t)

��ϕ(q) (t)��2 dt, |ϕ|2
Hq;N
ω
=

q∑
i=min(q,N+1)

∫
I
ω(t)

��ϕ(i) (t)��2 dt. (6.27)

Note that for the choice ω ≡ 1 we systematically drop the subscript ω. For this case one
can easily verify that L2

ω(I,R) is identical with L2(I,R). Moreover, the spaces Hq
ω(I,R) and

W q,2(I,R) coincide and whenever N ⩾ q− 1, one has

|ϕ|Hq
ω
=


ϕ(q)

2 = |ϕ|Hq;N

ω
. (6.28)

For a domain I of finite width (as we assumed) it can be shown that the above norm (6.26) and
semi–norms (6.27) are equivalent:
Lemma 6.5
For I of finite length |·|Hq;N

ω
is a norm on Hq

ω(I,R) which is equivalent to the standard norm ∥·∥Hq
ω
, i.e.,

there exists a pair of real numbers 0< C1 ⩽ C2 such that

C1 |ϕ|Hq;N
ω
⩽ ∥ϕ∥Hq

ω
⩽ C2 |ϕ|Hq;N

ω
∀ ϕ∈ Hq

ω(I,R). △

Proof See e.g. Adams and Fournier [6, Corollary 6.31]. □

For now let us consider the system {ψn}∞n=0 –with deg (ψn) = n – of the orthonormal polyno-
mials in L2

ω(I,R). Choosing ω(t) = (1− t2)−1/2 the associated orthonormal system is given
by means of Chebyshev polynomials of first kind Tn as {γn Tn}∞n=0 (with γ0 = π−1/2 and
γn = (2/π)1/2 for n⩾ 1), cf. Canuto and Quarteroni [98]. For the choiceω(t) = 1 we will
identify the according orthonormal system to be scaled Legendre polynomials that we denote
by {ePn}∞n=0, cf. (6.36)+(6.36). Since algorithms presented in this contribution are based on the
choice ω(t) = 1 we concentrate on this case in the remainder of this section for the most
part. Nevertheless the reader should keep in mind that convergence properties as presented
subsequently can be found for Chebyshev systems as well, cf. Canuto andQuarteroni [98].
Moreover, the theory introduced in this work might be investigated in a Chebyshev context
in future contributions.
It is well–known that the aforementioned orthonormal systems are complete in L2

ω(I,R), cf.
Szegö [421]; any x ∈ L2

ω(I,R) can be written as

x (t) =
∞∑
n=0

exnψn(t), exn = 〈x ,ψn〉ω =
∫ +1

−1

ω(t) x (t)ψn(t) dt (6.29)

with

∥x∥2
0,ω =

∞∑
n=0

|exn|2 ,

i.e., the exn are the orthogonal projections of x (·) onto the ψn(·) with respect to the scalar
product 〈·, ·〉ω. Depending on the concrete choice ofω(·) the series (6.29) have different names
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such as Chebyshev series forω(t) = (1−t2)−1/2 and Legendre series forω(t) = 1. Bymeans
of the set of all polynomials of degree less than or equal to N , namely

SN
def
= SN (I)

def
= {ψn : 0⩽ n⩽ N} ,

we denote by PN : L2
ω(I,R) −→ SN the orthogonal projection on SN in L2

ω(I,R) such that

PN (x ) =
N∑

n=0

〈x ,ψn〉ω ψn(t).

In accordance with respective designators for (6.29) we call the series truncated Chebyshev
series ω(t) = (1− t2)−1/2 and truncated Legendre series for ω(t) = 1.

Rates of Convergence For the upcoming polynomial approximation theory a precise clas-
sification of the rate of convergence seems to be helpful, cf. Boyd [81, 82]. Note that all
definitions must be understood asymptotically, i.e., they are based on series coefficient behav-
ior for large N . The rate of convergence of a series of type (6.29) is usually defined in terms of
a so–called algebraic index of convergence:

Definition 6.6 (Algebraic Index of Convergence)
A series of type (6.29) with coefficients {an} has an algebraic index of convergence k if k is the largest
number such that

lim
n→∞nk |an|<∞.

Alternatively, k is the algebraic index if an =O
�
1/nk

�
. △

Definition 6.7 (Exponential/Spectral Convergence)
A series of type (6.29) with coefficients {an} converges exponentially or spectrally if the algebraic index
k is unbounded, i.e., an decreases faster than 1/nk for any finite k. △

Nowwe come back to the spectral method approach and formulate the following crucial ques-
tions that arise if one wants to determine state and control approximations XN (·) and UN (·)
of form (6.25):

(i) How should the expansion coefficients an be determined?

(ii) From which function class should theψn(·) be chosen?

The Weighted Residual Method

We start by answering the first question. A necessary condition for x (·) and u(·) to be admis-
sible for the OCP requires the residual ẋ (·)− f (·, x (·), u(·)) to be equal to zero on the horizon
interval T (w.l.o.g. T can be assumed to be the interval [−1,+1]). This usually does not hold
for the residual

ϱN (t) = ẊN (t)− f (t, XN (t),UN (t))
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with (finite dimensional) approximations XN (t)≃ x (t) and UN (t)≃ u(t). For this reason it is
the goal to make the residual ϱN (·) small. To do so we define a space of so called test functions,
{ϕ1, . . . ,ϕNp

}, and require that the residual is orthogonal to all test functions in this space, i.e.,

〈ϱN ,ϕn〉=
∫ +1

−1

ϱN (t) ϕn (t) dt = 0, n= 1, . . . , Np.

If N is increased then the obtained solution is close to the real one. According to the choice
of the test function space spectral methods can be classified. Here we present three of them,
namely Tau method, Galerkin method and collocation method.

TauMethod The tau method (see Lanczos [283]) chooses the test function space to be equiv-
alent to the trial function space, i.e., one chooses ϕn= ψn. The orthogonality conditions for
the residual become

〈ϱN ,ψn〉= 0, n ∈ [Np].

Boundary conditions are enforced by additional constraints.

Galerkin Method The Galerkinmethod combines the original basis functions into a new
set, eψn, n ∈ [Np], in which all the functions satisfy the boundary conditions. The expansion
coefficients are then determined as


ϱN , eψn

�
= 0, n ∈ [Np],

meaning that the residual is orthogonal to the new basis functions.

Collocation Method The collocation method is often called pseudospectral method. In this
method, we imagine the test functions to be zero everywhere but at one collocation point, i.e.,
we have ϕn= δ(t − tn), where δ(·) denotes the δ–function that has been investigated in
Section 2.4.6 on page 77. Using the collocation approach yields the equations

〈ϱN ,ϕn〉= ẊN (tn)− f (tn, XN (tn),UN (tn)) = 0, n ∈ [Np]. (6.30)

If the collocation points are chosen to be roots of orthogonal polynomials or combinations
thereof the resulting method is also called orthogonal collocation method.
Note that global methods based on the collocation approach are often applied to solve OCPs.
In (6.29) we have indicated the common strategy to approximate functions with orthogonal
projections. Due to their construction collocation methods suggest a second way of approx-
imation: in fact equations (6.30) require the ODE residual to vanish at collocation points tn
which gives XN (·) and UN (·) an interpolatory character. For this reason our later convergence
analysis not only comprises the projection operator PN but also an interpolation operator IN
which will be introduced soon.
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Function classes

Now we address the second question that arises when it comes to find proper approximations
XN (·) ≃ x (·) and UN (·) ≃ u(·), namely how the basis functions ψn(·) in (6.25) should be
chosen. We establish some criteria that have to be fulfilled by a proper choice for the ψn(·).
We do this in the form of a wish list:

(i) There should exist a fast and numerically stable way to convert between expansion co-
efficients an and the approximate function values xn

def
= XN (tn) at distinct nodes tn,

n ∈ [Np].

(ii) For given coefficients {an}Np

n=1 it should be easy to calculate coefficients {bn}Np

n=1 such
that

d
dt

 Np∑
n=1

anψn(t)

!
=

Np∑
n=1

bnψn(t). (6.31)

(iii) For sufficiently smooth functions x (·) their approximation XN (·) =∑Np

n=1 anψn(·)must
converge fast towards x (·).

Expansion Coefficient Transformation As an obvious choice for functionsψn(·) in (6.25)
one could consider the monomial basis (ψn(t) = tn−1) such that XN (·) becomes a truncated
Taylor expansion

XN (t) =
Np∑

n=1

exn tn−1.

For this choice one could determine coefficients exn by an L2–projection such that

〈x ,ψm〉=
Np∑

n=1

exn 〈ψn,ψm〉 (6.32)

must hold for all Np basis functions ψm(·). Note that we do not use an to denote expansion
coefficients but exn which is done to express that the coefficients are related to projections.
With the definitions

Mi, j =


ψi ,ψ j

�
, x i = 〈x ,ψi〉 , ex = [ex1, . . . , exN ]

T , x = [x1, . . . , xN ]
T (6.33)

we can rewrite (6.32) as the linear equation

M ex = x (6.34)
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with Np equations for the Np unknown expansion coefficients, exn. The so called mass matrix
M , where

Mi, j =
1

i + j − 1

�
1+ (−1)i+ j

�
, (6.35)

is reminiscent of a Hilbert matrix which is known to be very poorly conditioned. Table 6.1
depicts the condition number, κ(M), of mass matrix M for increasing order of approxima-
tion, N , and one can observe a rapid growth of condition number values that is caused by an
increasing close to linear dependence of the basis for increasing (i, j) due to the coefficient
(i + j − 1)−1 in (6.35). Hence, even at moderately high order it is hard to recover ex accurately.
This implies that XN (·) is not a good polynomial representation of x (·).

N 2 4 8 16

κ(M) 1.4 × 101 3.6 × 102 3.1 × 105 3.0 × 1011

Table 6.1: Condition number of mass matrix M based on the monomial basis for different
values N .

To overcome the problem of an ill–conditioned mass matrix one could consider an orthonor-
mal basis. We obtain such an orthonormal basis if we apply an L2–based Gram–Schmidt
orthogonalization approach to the monomial basis, tn. The resulting basis is given as

ψn(t) = ePn−1(t) =
Pn−1(t)p
γn−1

, (6.36)

where Pn(·) is the Legendre polynomial of order n (see Appendix B.1) and

γn =
2

2n+ 1
(6.37)

is the normalization. The new basis can be obtained by the three term recursion

tePn(t) = anePn−1(t) + an+1ePn+1(t), eP0(t) =
1p
2

, eP1(t) =

√√3
2

t,

where

an =

√√√ n2

(2n+ 1)(2n− 1)
.

With the chosen basis the conditioning problem is solved since the mass matrix M is the
identity matrix. Then (6.34) becomes ex = x and we need to recover exn which is given as

exn = 〈x ,ψn〉=


x , ePn−1

�
. (6.38)
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In general, there exists no closed formula to evaluate the scalar product such that this has to be
done numerically. Appendix B.3 shows some approaches for numerical integration. Applying
the Legendre–Gauss quadrature from Appendix B.3.2 to (6.38) leads to an approximation

exn ≃ x̂n =
Np∑

i=1

ωi x (τi) ePn−1(τi), (6.39)

where theτi andωi denote the quadrature points andweights, respectively. Gauss quadrature
of this type has the important property that polynomials of degree up to 2Np−1 are integrated
exactly.
Due to their nature the expansion coefficients exn are also known as continuous expansion coef-
ficients in the literature. In comparison the x̂n are often called discrete expansion coefficients.
Replacing the continuous expansion coefficients exn with Gauss quadrature based expansion
coefficients allows us to deduce a crucial relation between the projection operator PN which
is constructed with coefficients exn and the interpolation operator IN : L2(I,R) −→ SN which
is defined by means of the x̂n as

IN (x )(t) =
Np∑

n=1

x̂n ePn−1(t), x̂n =
Np∑

i=1

ωi x (τi) ePn−1(τi). (6.40)

The fact that we call IN interpolation operator can be justified by the following result:

Theorem 6.8
Let x : I −→ R be defined for all points in the interval I , and let the discrete expansion coefficients be
given by (6.39). Then IN (x ) interpolates x (·) at all Gauss quadrature points τn, i.e., it holds

IN (x )(τn) = x (τn), n ∈ [Np]. △

Proof See Hesthaven et al. [234, Theorem 5.3]. □

Our previous considerations regarding collocation methods advise that function approxima-
tions which are interpolatory might be more suitable than a projection based approach. Thus,
we assume functions Xn(·) to be of type (6.40) from now on.
One major goal of this section is it to establish an easy way to convert coefficients x̂n into
approximations xn = XN (tn) and vice versa computationally cheap. The strategy to do so is
that we define x̂n such that the approximation is interpolatory (see Appendix B.2); that is

x (t i) =
Np∑
j=1

x̂ j eP j−1(t i),

where the t i form a set of N distinct grid nodes. The modes or modal values, x̂ i , and the
associated nodal values, x i = x (t i), are connected via the linear equation

V x̂ = x , (6.41)
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where

Vi, j = eP j−1(t i), x̂ = [ x̂1, . . . , x̂N ]
T , x = [x1, . . . , xN ]

T . (6.42)

Thematrix V is recognized as a generalized Vandermondematrix and for reasons that become
clear later it is important that it is well conditioned.

We have already established that ePn(·) is a reasonable basis. To define the Vandermonde
matrix we need to determine the grid points t i . There is some freedom to do so and we want
to find reasonable criteria.

With the Lagrange interpolating polynomials {Ln(·)}Np

n=1 we can express XN (·) in two differ-
ent ways:

XN (t) =
Np∑

n=1

x̂nePn−1(t) =
Np∑

n=1

xnLn(t). (6.43)

By defining the Lebesgue constant ΛN as

ΛN
def
= max−1⩽t⩽+1

Np∑
n=1

|Ln(t)|

we find – apart from (B.5) – a second upper bound for the interpolation error which is given
by

∥x − XN∥∞ ⩽ (1+ΛN )


x − X∗N



∞ , (6.44)

where ∥·∥∞ denotes the maximum norm and X∗N (·) the best polynomial approximation of or-
der N to x (·) on the interval [−1,+1]. Hence,ΛN quantifies howmuch larger the interpolation
error ∥x − XN∥∞ is compared to the smallest possible error, which is given by



x − X∗N


∞,

in the worst case. In literature this error formula is known as Lebesgue inequality. We derive
(6.44) as follows: from the uniqueness of interpolating polynomials we know that

XN (t) =
Np∑

n=1

x (tn)Ln(t), X∗N (t) =
Np∑

n=1

X∗N (tn)Ln(t),

and calculate by subtracting XN (t) from X∗N (t)

��X∗N (t)− XN (t)
��= �����

Np∑
n=1

�
X∗N (tn)− x (tn)

�
Ln(t)

�����
⩽

Np∑
n=1

|Ln(t)| · max
1⩽n⩽Np

��X∗N (tn)− x (tn)
�� .
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Therefore we conclude

X∗N − XN



∞ ⩽ ΛN



x − X∗N


∞ .

We retrieve (6.44) as

∥x − XN∥∞ =


x − X∗N + X∗N − XN



∞ ⩽ 

x − X∗N


∞ + 

X∗N − XN



∞
⩽ (1+ΛN )



x − X∗N


∞ .

As a consequence of the Lebesgue inequality we state that the interpolating polynomial XN (·)
tends to x (·) as (1+ΛN )



x − X∗N


∞ tends to zero. Hence, convergence can just be expected

if – for increasing polynomial order N – the quantity


x − X∗N



∞ decreases faster than the
Lebesgue constant ΛN increases. Here, the value of



x − X∗N


∞ quantifies how well x (·)

can be approximated in the chosen polynomial basis. Relevant convergence properties will be
addressed in the associated section. Note however that it does not depend on the grid point
selection. On the contrary ΛN is determined by the grid points exclusively. For this reason we
have to identify grid points such that the Lebesgue constant is minimized.
One could consider equidistant points as an obvious choice. But for this set of grid points,
namely E =

¦
tn : tn = −1+ 2(n−1)

N , n ∈ [Np]
©
the associated Lebesgue constantΛN (E) grows

exponentially fast with asymptotic estimate (see Turetskii [429], Schönhage [395])

ΛN (E)≃ 2N+1

en(log N + γ)
, N →∞, γ= lim

N→∞

�
N∑

n=1

1
n
− log N

�
= 0.577 . . . ,

which implies that better choices for the grid point selection are necessary. A similar ob-
servation can be made for polynomial interpolation at equidistant grids: a poorly behaved
interpolation results from an exponentially fast growth of Ln(·) between the support points.
This is caused by nearly singular Vandermonde matrix for just moderate number of support
points. This problem, which is known as Runge phenomenon (see the relevant discussion in
Appendix B.2) in literature, can be resolved by using support points based on roots of Jacobi
polynomials Pn(x;α,β)whose most important representatives can be found in Legendre and
Chebyshev polynomials. In a similar spirit, we will introduce grid points that show a benev-
olent asymptotic behavior of the Lebesgue constant.
Minimizing the Lebesgue constant is strictly related to the conditioning of the generalized
Vandermonde matrix V , which can be concluded from uniqueness of the polynomial inter-
polation: setting x̂ = ei in (6.43) and (6.41) we have V·,i T L(t) = ePi−1(t), where the vector
L(t) ∈ RNp is given as L(t) = [L1(t), . . . , LNp

(t)]T and V·,i denotes the i–th column of V .
Varying x̂ = ei for i ∈ [Np] then yields the linear system

V T L(t) = eP(t)
with eP(t) = [eP0(t), . . . , ePN (t)]

T . We seek a solution L(t) in order to be able to determine rea-
sonable ways how ΛN can be minimized. Recalling Cramer’s rule for solving linear equation

175



Chapter 6
�� Direct Approach: Problem Discretization

systems we get

Li(t) =
Det

�
(V T )·,1, . . . , (V T )·,i−1, eP(t), (V T )·,i+1, . . . , (V T )·,Np

�
Det(V T )

,

which suggests to calculate the grid points tn such that the denominator (i.e., the determinant
of V ) is maximized. The associated node set is given in a simple form (see Hesthaven [232]
and Hesthaven et al. [234]) as the Np zeros of function

(1− t2) eP ′N (t)
or, in other words the interval endpoints −1 and +1 together with the candidates for extrema
of the N–th order (normalized) Legendre polynomials. This grid point set F is known as
the Fekete node set and coincides with Legendre–Gauss–Lobatto quadrature points (see
Appendix B.3.2). According to Sündermann [420] an upper bound for ΛN (F) is given by

ΛN (F)⩽ C log(N + 1)

with a positive (undetermined) constant C . Based on numerical experiments Hesthaven [232]
conjectures the upper bound

ΛN (F)⩽
2
π

log(N + 1) + 0.685.

So far, we found that the Lebesgue constant grows like 2N for the equidistant nodes and
like log N in case of Fekete grid points. Deeper investigations (see e.g. Hesthaven [233])
have shown that a merely logarithmic growth of the Lebesgue constant similar to the one
of Fekete type can be found for other families of points. These include Gauss–Lobatto
points for the symmetric Jacobi polynomials Pn(x;α,α) with Legendre polynomials (α= 0)
and Chebyshev polynomials (α = − 1

2 ) as special cases. Lebesgue constants ΛLG
N and ΛCG

N
of Legendre–Gauss resp. Chebyshev–Gauss quadrature points are O

�p
N
�
and O (log N),

respectively, cf. Szegö [421, p. 336] and Rivlin [371, p. 90]. Vértesi [437] could show that
ΛCG

N is very close to the smallest possible Lebesgue constant Λ∗N , where

ΛCG
N =

2
π

�
log N + γ+ log

8
π

�
+ o (1) and Λ∗N =

2
π

�
log N + γ+ log

4
π

�
+ o (1) .

In 1981 Vértesi [436] found a bound for the Lebesgue constants of Gauss quadrature points
– based on the roots of a Jacobi polynomial – augmented by either t = −1 or t = +1. This
bound is O

�
log(N) · pN

�
and coincides with the one for (flipped) Radau quadrature points,

cf. Vértesi [436, Theorem 2.1]. Recently this bound was sharpened by Hager et al. [216] to
O
�p

N
�
. Moreover, it was shown that the Lebesgue constants of (flipped) Radau quadrature

points augmented by the missing interval endpoint are even O (log N), and therefore are of
the same order of magnitude as Fekete/Lobatto points, cf. Hager et al. [216, Theorem 6.1].
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Derivatives Expansion Coefficient Transformation So far we have discussed the advan-
tages of using orthogonal polynomials to construct a modal basis. By applying an orthog-
onalization approach to the monomial basis we found the Legendre polynomials ePn(·) as a
representative of an orthogonal basis. Chebyshev polynomials of first kind represent another
well–known orthogonal basis, cf. Appendix B.1. They are orthogonal with respect to the scalar
product 〈·, ·〉ω with ω(t) = 1p

1−t2 .
Regarding Equation (6.31) we require that expansion coefficients { x̂n}Nn=0 can be transferred
to derivative expansion coefficients { ŷn}Nn=0 computationally cheap. Both, Legendre polyno-
mials and Chebyshev polynomials meet this requirement: formulae (see e.g. Gottlieb and
Orszag [206, Appendix]) relating expansion coefficients x̂n in the approximation series

XN (t) =
N∑

n=0

x̂nψn(t)

to expansion coefficients ŷn of

ẊN (t) =
N∑

n=0

ŷnψn(t)

are given as follows:

(i) Legendre polynomials (ψn = Pn):

ŷn = (2n+ 1)
N∑

m=n+1
m+n odd

x̂m, n= 0, . . . , N .

(ii) Chebyshev polynomials (ψn = Tn):

ŷn = pn

N∑
m=n+1
m+n odd

m · x̂m, n= 0, . . . , N , pn =

¨
1, n= 0,

2 otherwise.

Convergence Properties Now we discuss how well functions and their derivatives can be
approximated by polynomials. The associated theory is called polynomial approximation the-
ory and one has to distinguish between approximations of smooth functions and approxima-
tions of functions involving discontinuities. Theory regarding the former case was developed
mainly by Canuto and Quarteroni (see e.g. [97, 98]), and by Bernardi and Maday (see
e.g. [59, 60, 61]). Excellent surveys dealing with polynomial approximation theory for smooth
functions are provided by the overview paper of Bernardi and Maday [61] and the texts of
Canuto [96] and Canuto et al. [100].
Fundamentals of polynomial approximation are mandatory in order to be able to to analyze
our global approach, where we replace functions x (·) by global polynomials XN (·) of order
N : we found the estimate (6.44) which shows that the approximation quality measured in the
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maximum norm is bounded by the product of the Lebesgue constant ΛN and


x − X∗N



∞,
namely the error between the function x (·) and its best polynomial approximation of order
N that we denote by X∗N . The analysis of ΛN which is strictly related to the choice of the grid
points has been done in previous sections. It is still left to deal with the approximability of
functions by polynomials.
On page 173 we argued that it is reasonable to deal with interpolations of x (·). However,
before analyzing polynomial approximations which are interpolatory we start our discussion
by deriving estimates which are related to projections.
We consider the question how well a function x ∈ L2(I,R) can be represented by the poly-
nomial function

eXN (t)
def
= PN (x ) =

N∑
n=0

exn ePn(t), exn =


x , ePn

�
=

∫ +1

−1

x (t) ePn(t) dt. (6.45)

Note that – compared to previous representation (6.38)+(6.43) – the sum index is now running
from 0 to N rather than from 1 to Np = N +1. This is due to simplicity of notation and to use
conventional terms. As an immediate consequence of the representations (6.29) and (6.45) we
find 

x − eXN



2

0 =
∞∑

n=N+1

|exn|2 ,

which can be recognized as Parseval’s identity. Since (6.45) coincide with the first N + 1
addends of the infinite sum in (6.29) we call x − eXN truncation error.

Exponential Convergence for Smooth Functions A fundamental result quantifying the
truncation error (with respect to the L2–norm) is provided by the following result:
Theorem 6.9
For any real p ⩾ 0 there exists a constant C such that

x − eXN




0 ⩽ C N−p |x |Hp;N ∀x ∈ H p(I,R). (6.46)

△

Proof See Canuto and Quarteroni [98, Theorem 2.3]. □

Note that Theorem 6.9 was proven in Canuto and Quarteroni [98] for the full norm ∥·∥H p

on the right–hand side. However, according to Lemma 6.5 the norm is equivalent to the semi–
norm |·|H p;N in our setting such that Theorem 6.9 holds true. Trivially it holds |x |H p;N ⩽ ∥x∥H p

such that for all x ∈ H p(I,R) we have

x − eXN




0 ⩽ C N−p ∥x∥H p .

with the same constant C as (6.46).
Using the estimate by means of the semi–norm enables us to show that the projection operator
PN is exact for polynomials in SN : if we choose p = N +1 in (6.46) then this yields (see (6.28))
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that the condition |x |HN+1;N =


x (N+1)




2 = 0 is equivalent to x (N+1) vanishing identically in

I . The latter condition in turn is equivalent to x (·) being a polynomial of degree ⩽ N . Hence,
estimate (6.46) states that for x ∈ SN (for which |x |HN+1;N = 0 holds) it holds x − PN (x ) = 0,
i.e., PN (x ) = x .
The next result extendsTheorem 6.9 to higher order Sobolev norms and therefore investigates
those cases, where the truncation error of the derivatives must be considered. Similar to (6.46)
we present the estimate with respect to the semi–normwhereas the original result was proven
using the full norm.

Theorem 6.10
For any real q and p fulfilling 0⩽ q ⩽ p it holds for a constant C that

x − eXN




Hq ⩽ C N e(q)−p |x |Hp;N ∀x ∈ H p(I,R),

where e(q) is given by

e(q) =

¨
3
2 q, 0⩽ q ⩽ 1,

2q− 1
2 , q ⩾ 1. △

Proof See Canuto and Quarteroni [98, Theorem 2.4]. □

In particular we conclude from Theorem 6.10 that convergence is very fast for smooth func-
tions x (·) (this means x ∈ H p(I,R) for a p large), and even exponential for analytic functions,
cf. Tadmor [422]. An exponentially fast error decay for increasing N is also one of the ap-
pealing trademarks of classic spectral methods, cf. Hesthaven et al. [234].
Since first order derivatives are involved in our OCPs we try to get a deeper insight into func-
tion approximation theory. Schwab [396] provides the estimate



x − eXN




0 ⩽

�
(N + 1− s)!
(N + 1+ s)!

� 1
2 

x (s)




L2

s
with



x (s)


2

L2
s

def
=

∫ +1

−1

��x (s)(t)��2 �1− t2
�s

dt,

which holds for all 0 ⩽ s ⩽ min(p, N + 1). It was also shown by Schwab [396] that for
x ∈ H p(I,R), p ⩾ 1, which can be expressed in the form (6.45), it holds∫ +1

−1

��x (s)(t)��2 �1− t2
�s

dt =
∑
n⩾s

|exn|2 (n+ s)!
(n− s)!

⩽ |x |2Hs , 0⩽ s ⩽ p.

This yields the estimate



x − eXN




0 ⩽

�
(N + 1− s)!
(N + 1+ s)!

� 1
2 |x |H s , s =min(p, N + 1),

which is generalized in the following result.
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Lemma 6.11
For x ∈ H p(I,R) with p ⩾ 1 it holds




x (q) − eX (q)N





0
⩽
�
(N + 1− s)!

(N + 1+ s− 4q)!

� 1
2 |x |Hs (6.47)

with s =min(N + 1, p) and q ⩽ p. △

Proof See Hesthaven [233, Lemma 4.4]. □

When applying the well–known Stirling formula to inequality (6.47) we can state that


x (q) − eX (q)N





0
⩽ N2q−p |x |H p

in the limit of N ≫ p.
Inequality (6.44) shows the importance of quantifying the best approximation error X∗N (·). The
best approximation polynomial of x (·) with respect to the L2–norm is given by the truncated
Legendre polynomial eXN (·). This can be generalized as follows: let X any normed vector space
and x ∈ X arbitrary. Then it is a well–known fact that there exists a polynomial X∗ ∈ SN such
that

∥x − X∗∥X = inf
X∈SN

∥x − X∥X ,

and we call X∗(·) the best approximation polynomial of x (·) in the norm of X . In particular
we are interested in the cases X = Lp(I,R), 2 < p ⩽ ∞, for which X∗(·) is unique (see
Nikol’skii [339, Theorem 1.3.6] if 1< p <∞, and Timan [426, p. 35–40] if p = 1 or p =∞).
The following result, which was proven in Jackson [254] for p =∞ and in its full generality
in Quarteroni [364], provides estimates for the best approximation error in any Lp–norm
and verifies a decay of this error as in the L2–norm.

Theorem 6.12
Let x ∈W q,p(I,R) for some q ⩾ 0 and 2⩽ p ⩽∞. Then for any N ⩾ 0 there exists a positive C which
is independent of N and x (·) such that

inf
X∈SN

∥x − X∥p ⩽ CN−q

 q∑
i=min(q,N+1)



x (i)


p

p

1/p

. (6.48)
△

Proof See Quarteroni [364, Theorem 3]. □

Note, however, that the truncation error in Lp–norms, p > 2, converges not as fast as the best
approximation does. If we consider for example a function x (·) whose q–th derivative is of
bounded variation, one can show (see Jackson [254, Theorem XV]) that

x − eXN



∞ ⩽ C N1/2−q T V (x (q),I) (6.49)
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holds. Comparing estimates (6.49) and (6.48) for p =∞ shows a rate of convergence of the
best approximation which is faster by at least a factor of

p
N .

Up to nowwe have concentrated on convergence results thatwere related to projections. In the
next step we deal with the interpolation operator. First we recall the transformation between
modal values x̂ and nodal values x that are interrelated (see (6.41)+(6.42)) via the equation

x = V x̂ .

In order to distinguish between polynomial representations arising from interpolation and
projection we use the notations

X̂N (t) = IN (x ) =
N∑

n=0

x̂nePn(t), eXN (t) = PN (x ) =
N∑

n=0

exnePn(t).

Exploiting the interpolation property we calculate

(V x̂)i = X̂N (t i) = x (t i) =
∞∑
n=0

exnePn(t i) =
N∑

n=0

exnePn(t i) +
∞∑

n=N+1

exnePn(t i)

such that it holds

V x̂ = V ex + ∞∑
n=N+1

exnePn(t), t = [t0, . . . , tN ]
T .

A reformulation of the previous equation yields

X̂N (t) = eXN (t) + ePT (t)V−1
∞∑

n=N+1

exnePn(t), eP = [eP0, . . . , ePN ]
T
. (6.50)

The difference between X̂N (·) and eXN (·) is known as the aliasing error :

AN (x )
def
= IN (x )− PN (x ) = X̂N (t)− eXN (t).

Under the assumption x ∈ H p(I,R) with p > 1
2 (see Schwab [396]) and using (6.50) we find

the following expression for the aliasing error:

AN (x ) = ePT (t)V−1
∞∑

n=N+1

exnePn(t) =
∞∑

n=N+1

exn

�ePT (t)V−1ePn(t)
�

, (6.51)

where the expression in brackets can be written in terms of the first N +1 polynomials ePm(·),
0⩽ m⩽ N as

ePT (t)V−1 ePn(t) =
N∑

m=0

eymePm(t), V ey = ePn(t). (6.52)
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Hence, the aliasing error can be interpreted as those higher–order contributions (n > N) that
look like lower order modes on the grid. The aliasing error AN (x ) contains the modes with
numbers n⩽ N , while the reminder term x− eXN contains only the modes with n> N . For this
reason they are orthogonal and the Pythagoras theorem can be applied such that we obtain

x − X̂N



2
2 =



x − eXN − AN (x )


2

2 =


x − eXN



2

2 + ∥AN (x )∥2
2 .

Combining (6.51) and (6.52) we identify the representation

AN (x ) =
∞∑

n=N+1

�
IN

�ePn

�� exn

such that the aliasing error can be also interpreted as the error which is introduced by using
the interpolation of the basis, rather than the basis itself to represent the higher order modes.
The fact that it cannot be distinguished between lower and higher order modes on a finite grid
justifies the term aliasing error.
Next we give some estimates for the interpolation error x − X̂N . Analogously to Theorem 6.9,
which quantifies the truncation error, the following result holds:
Theorem 6.13
For any real p ⩾ 1 there exists a constant C such that

x − X̂N




2 ⩽ C N−p |x |Hp;N ∀x ∈ H p(I,R). (6.53)

△

Proof See Bernardi and Maday [60]. □

Considering Theorems 6.9 and 6.13 one can see that truncation and interpolation error behave
asymptotically equivalent with respect to the L2–norm. In accordance with Theorem 6.10 for
the truncation error the generalization of (6.53) is presented in the following result:
Theorem 6.14
For any real q and p fulfilling 1⩽ q ⩽ p it holds for a constant C that

x − X̂N




Hq ⩽ C N 2q−1/2−p |x |Hp;N ∀x ∈ H p(I,R), △

Proof See Bernardi and Maday [60]. □

Since first–order derivatives of state trajectory functions x (·) enter the ODEs in our OCPs we
need to know how well they are approximated if we apply a global approach. It is clear that
those derivatives are usually approximated by the Legendre projection derivative, PN (x )′ =
d
dt
eXN (t), or by the Legendre interpolation derivative, IN (x )′ = d

dt X̂N (t), where projection
and interpolation are different from each other in general. We can estimate (see Bernardi
and Maday [60]) the error between ẋ (·) and the Legendre interpolation derivative of x (·) in
terms of N and the regularity of x (·) as



ẋ − d

dt
X̂N






2

⩽ C N1−p |x |H p;N .
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So far we have considered the polynomial approximation of smooth functions and have shown
that convergence is very fast and even exponential (spectral convergence) for analytic func-
tions. In the final section of this chapter we briefly investigate the case of approximating
non–smooth functions by polynomials.

Gibbs Phenomenon We have seen that the global approach is suitable for problems that
have smooth solutions. Since we are dealing with OCPs, that are subject to explicit and im-
plicit switches, we expect at least discontinuities of certain differential state trajectory deriva-
tives and even jumps of control trajectories (e.g. bang–bang controls) indicating explicit or
implicit switching modes. For this reason we investigate the polynomial approximation of
non–smooth functions in this section.
Based on the example of the sign function, which can be seen as a prototypical jump func-
tion, the polynomial approximation of non–smooth functions is analyzed. To this end let us
consider the Legendre polynomial expansion of the sign function which is given as

sgn(t) =
∞∑
n=0

(−1)n(4n+ 3)(2n)!
22n+1(n+ 1)!n!

P2n+1(t). (6.54)

The partial sums, PN (sgn), for some N are plotted in Figure 6.6. The overshoot, which can be
observed around t = 0 in Figure 6.6, occurs whenever functions having discontinuities are
expanded in or interpolated with smooth functions.
Nowadays this observation, which was noted byWilbraham [449] for the first time, is known
as Gibbs phenomenon. Literature failed to noticeWilbraham’s discovery. In 1898Michelson
and Stratten, who developed a mechanical Fourier analyzer, detected overshoots in output
plots of their analyzer, cf. Michelson and Stratton [325]. As a consequenceMichelson sent
a letter to Nature in which he inquired convergence properties of Fourier series for discon-
tinuous functions. In reply, Gibbs published a paper where he could describe the overshoot
at the point of discontinuity, cf. Gibbs [195]. For more historical background information we
refer the reader to Hewitt and Hewitt [235].
Coming back to our example we observe three features:

(i) The Gibbs phenomenon near t = 0 in Figure 6.6 shows the same structural behavior as
that for the Fourier series in Michelson and Stratton [325].

(ii) For |t|< 1, t ̸= 0 the approximation error behaves like 1
N after N terms: for the (2n+1)-

st Legendre coefficient, an, in (6.54) it holds

an =
(−1)n(4n+ 3)(2n)!

22n+1(n+ 1)!n!
=O

�
1p
n

�
, n→∞,

and for fixed |t|< 1 we have (see (B.2) in Appendix B.1)

Pn(t) =O
�

1p
n

�
, n→∞.
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Figure 6.6: A plot depicting several partial sums of the Legendre series expansion for sgn(·)
(see (6.54)). More specifically we plot PN (sgn) for N = 10,20, 40. Moreover, the function
sgn(·) itself is plotted. Note that the Gibbs phenomenon occurs around t = 0. Note further-
more that for fixed t with t ̸= 0,±1 the series converges like 1

N . Around t = ±1 the series
converges like 1p

N
.

For fixed t ̸= 0 the series (6.54) is alternating such that the error after N terms is at most
of order aN PN =O

�
1
N

�
.

(iii) For t = ±1 the series (6.54) converges only like 1p
N

since Pn(±1) = (±1)n for all n.
From this insight we can conclude that the Gibbs phenomenon arising from interval–
interior function discontinuities has a sweeping impact on the rate of convergence even
at the interval endpoints t = ±1. Contrary, the error of the Chebyshev expansion of
sgn(·) decays like 1

N at t = ±1, cf. Gottlieb and Orszag [206]. For this reason, the
boundary errors of Chebyshev expansions decay to zero roughly a factor 1p

N
faster

than Legendre expansion boundary errors.

The results that we found for the Legendre series expansion of the sgn(·) function can be
generalized. Table 6.2, which can be found in Fornberg [169, p. 13], shows the order of
the maximum norm of errors away from function irregularities (discontinuities of the n–th
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order derivative f (n)(·), n ⩾ 0). They coincide with the decay rates of Legendre expansion
coefficients.

Max–norm of errors (order)
Function Near irregularity Away from irregularity

f discontinuous 1 1/N
f ′ discontinuous 1/N 1/N2

f ′′ discontinuous 1/N2 1/N3

...
...

...
f analytic exp(−C · N), C > 0

Table 6.2: Order of max–norm error for Gibbs phenomenon depending on the order of func-
tion irregularities.

6.3.3 Conclusion

In this section we draw some conclusions fromwhat we found out about both the local and the
global approach such that we are able to develop a numerical solution algorithm that would be
most suitable for solving OCPs with explicit and implicit switches within our new framework
(see Chapter 11).
Local approach algorithms are employed as h methods where states and controls are ap-
proximated by fixed low–degree polynomials (depends on the chosen numerical integration
method), and the problem is divided into segments (finite elements). Convergence of the dis-
cretization is then achieved by increasing the number of finite elements. This is usually done
in such a way that grid refinement takes place in regions of the horizon where errors are the
largest, cf. Betts and Huffman [65], Jain and Tsiotras [257], Betts [62], Zhao and Tsio-
tras [471]. A novel strategy, which allows for a goal–oriented error estimation, is presented
in this thesis (see Chapter 10).
In recent years, global approach algorithms and in particular pseudospectral collocation meth-
ods have gained in popularity, cf. Elnagar et al. [145], Benson [52], Huntington [245],
Kameswaran and Biegler [262], Garg [179], Francolin [172]. Here, the collocation points
are chosen to be quadrature points of accurate quadrature rules (Gauss quadrature). Basis
functions are usually of Chebyshev or Legendre type. Contrary to h methods pseudospec-
tral collocation methods are usually employed as p methods, where there exists just a single
segment, and convergence of the discretization scheme is achieved by increasing the degree p
of the polynomial. Under the assumption of well–behaved and smooth problems p methods –
in accordance with our analysis about approximation theory of smooth functions – converge
exponentially, cf. Fornberg [169], Canuto et al. [99]. Representatives of p methods can
be found in the Gauss Pseudospectral Method (GPM) (see [52, 53]), the Radau Pseudospectral
Method (RPM) (see [262, 181]), and the Lobatto Pseudospectral Method (LPM) (see [145]).
Pseudospectral methods applied as p methods suffer from several drawbacks. For smooth
problems accurate solutions can often be just achieved if the polynomial degrees are chosen
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very large. Furthermore, our problem formulation of OCPs with explicit and implicit switches
results in non–smooth state and control trajectories such that convergence rates of p meth-
ods may be rather poor. Using high degree polynomials in p methods makes NLP constraint
Jacobians and Hessians growing a lot faster in both size and density than the number of col-
location points. Even though convergence of p methods could be obtained we would advise
against this approach since the number of non–zeros in NLP derivatives wouldmake a solution
computationally intractable and inefficient.
As a solution of the aforementioned problems we propose a discretization approach that uses
elements from both h methods and p methods: the horizon is split into finite elements and a
p method is applied to each of these elements. We obtain a full horizon solution by interlink-
ing the single finite elements solutions by enforcing matching conditions – a technique that
we have already seen when we were describing the transition from direct single shooting to
direct multiple shooting. The resulting approach is then called a hp pseudospectral collocation
method where convergence can be achieved by increasing both the number of finite elements
and the polynomial degree in single elements. Here we pursue the following strategy: we ap-
ply our novel goal–oriented error estimation and a switch detection algorithm to a fixed prob-
lem discretization. Switches indicate bang–bang controls and as a consequence non–smooth
solutions. We therefore modify the finite element grid in regions containing switches. In re-
gions, that are presumably smooth, the polynomial degree is increased in order to exploit the
spectral convergence of smooth solutions. The element–wise error contributions provided by
our a posteriori error estimation allow for an equidistribution of the local discretization error.
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Chapter 7

A Local Multi-Degree Pseudospectral Method

Based on the concluding remarks of the previous chapter we present a local pseudospectral
method for a rather general OCP formulation. The continuous OCP under consideration is
introduced in Section 7.1. In order to end up with a proper formulated OCP and for the sake
of convenience the original OCP formulation with free start and final time is transformed into
an OCP on a fixed interval.
In Section 7.2 we apply a global orthogonal collocation approach to our OCP formulation. The
collocation points are chosen to be flipped LGR quadrature points. This approach, namely
the Flipped Radau Pseudospectral Method (FRPM), has proven to be successful and numeri-
cally stable, cf. Huntington et al. [246] and Garg et al. [180]. Garg et al. [181] could show
that the FRPM defines an implicit integration scheme, and therefore it provides the ability to
obtain highly accurate solution approximations particularly in the presence of stiff ODE sys-
tems (L–stable, see Huynh [247]). Moreover, the scheme is also algebraically stable, cf. As-
cher and Petzold [16]. For some OCPs the FRPM is superior to GPM since the latter method
leads to oscillatory trajectories while the former one produces much smoother trajectories, cf.
Bausa and Tsatsaronis [35]. Also for inherent stability reasons we prefer the FRPM rather
than the GPM approach. FRPM has been used to solve challenging problems in the fields of
chemical process control and optimal control of aerospace systems, cf. Cervantes-Peredo
[104], Raghunathan et al. [366].
In the literature, pseudospectral methods are direct discretization approaches where the poly-
nomial degrees of state approximating polynomials are identical for all state components. The
same holds for polynomials approximating the controls. In fact, even the polynomial degrees
of differential states and controls coincide. Numerous ODE models arising from real world
problems have state trajectories where some components require a rather high polynomial
degree to obtain a sufficiently accurate approximation whereas for other components a low
polynomial degree is already sufficient. Similarly, the switch–mode indicating control com-
ponents in our novel framework are naturally chosen to be constant while other components
might require higher degree polynomials. Section 7.3 addresses the question how a global
collocation approach can be constructed where components of state and control approxima-
tions using global polynomials are of different polynomial degree. Difficulties arise especially
with respect to efficient numerical implementations. Parallel to the research presented in this
thesis we implemented a software that overcomes these difficulties by applying new tailored
techniques.
Due to the nature of an OCP incorporating switches, the solutions are non–smooth in general.
That is why a global collocation approachmight show a poor convergence rate. For this reason
we equip the global approach with elements from a local approach in the sense that the FRPM
is applied segmentwise. By combining the resulting solutions from single horizon segments
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via continuity constraints, we then obtain a full horizon solution. The details of this process
are explained in Section 7.4.

7.1 Problem Formulation

This section introduces the continuous OCP formulation which is considered in this chapter.
Note that – in the context of this thesis – the concrete choice of function spaces for states and
controls in our OCP formulation does not affect subsequent discretization approaches. We
therefore omit them.

Continuous–Time Bolza Optimal Control Problem In this chapter we investigate a
rather general form of an OCP with free start and final time. We start this section with a
naive and mathematically improper but coherent formulation of the problem. Let

φ : R×Rnx ×R×Rnx −→ R,

ψ : T ×Rnx ×Rnu −→ R,

f : T ×Rnx ×Rnu −→ Rnx ,

c : T ×Rnx ×Rnu −→ Rnc ,

r : R×Rnx ×R×Rnx −→ Rnr

bemappings. In this contributionwe only consider OCPswith finite horizon. In order to define
an OCP with free start and final time we introduce scalar variables ts and tf and require them
to be bounded, i.e., we have ts ∈ [ts,l , ts,u] and tf ∈ [t f ,l , t f ,u]. With the additional condition
ts < tf a compact non–empty horizon interval is given by T def

= [ts, tf] ⊂ R. We consider the
free–time continuous Bolza OCP

min
ts,tf,x ,u

φ(ts, x (ts), tf, x (tf)) +

∫ tf

ts

ψ(t, x (t), u(t)) dt (7.1)

s. t. ẋ (t) = f (t, x (t), u(t)), t ∈ T ,

0nc
⩾ c(t, x (t), u(t)), t ∈ T ,

0nr
= r (ts, x (ts), tf, x (tf)).

For OCP (7.1) we determine the control u : T −→ Rnu , the state x : T −→ Rnx , the start time
ts, and the final time tf, that minimizes a Bolza objective functional subject to an ODE system,
mixed control–state path constraints, and boundary constraints. Since ts and tf are variables
of OCP (7.1) this is not a well–posed formulation. A time transformation to a fixed interval,
such as [−1,+1], will help us to overcome this problem.

Scaled Continuous–Time Optimal Control Problem – Global Approach An idea that
we described in Section 5.1 enables us to transform OCP (7.1) into an equivalent OCP on a fixed
time interval. The variable time domain T = [ts, tf] is mapped to the fixed interval [−1,+1]
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by using the linear mapping t : [−1,+1] −→ T which is defined as

t (τ; ts, tf)
def
=

t f + ts

2
+τ · t f − ts

2
, (7.2)

and whose derivatives (including partial derivatives with respect to ts and tf) are given by

t ′(τ; ts, tf) =
t f − ts

2
,
∂

∂ ts
t (τ; ts, tf) =

1
2
(1−τ) , ∂

∂ tf
t (τ; ts, tf) =

1
2
(1+τ) . (7.3)

Note that the mapping t (·; ts, tf) is still valid for free start and final times. We use the linear
mapping to convert OCP (7.1) to the time domain [−1,+1]: reparametrizations of x (·) and
u(·) are then given by the functions ex : [−1,+1] −→ Rnx and eu : [−1,+1] −→ Rnu whereex (τ) def

= x (t (τ)) and eu(τ) def
= u(t (τ)). Using the definition

f (τ, x (τ), u(τ); ts, tf)
def
= f (t (τ; ts, tf), ex (τ), eu(τ)) (7.4)

and in a similar fashion for ψ(·) and c(·) we can rewrite OCP (7.1) as follows: minimize the
objective functional

J(ex (·), eu(·)) = φ(ts, ex (−1), tf, ex (+1)) +
t f − ts

2

∫ +1

−1

ψ(τ, ex (τ), eu(τ); ts, tf) dτ,

subject to the system dynamic constraints

d
dτ
ex (τ) = t f − ts

2
· f (τ, ex (τ), eu(τ); ts, tf),

the mixed control–state constraints

0nc
⩾ c(τ, ex (τ), eu(τ); ts, tf),

and the boundary conditions

0nr
= r (ts, ex (−1), tf, ex (+1)).

Without using the tilde notation the transformed OCP in a compact form reads as

min
ts,tf,x ,u

φ(ts, x (−1), tf, x (+1)) +
h
2

∫ +1

−1

ψ(τ, x (τ), u(τ); ts, tf) dτ (7.5a)

s. t.
d

dτ
x (τ) =

h
2
· f (τ, x (τ), u(τ); ts, tf), τ ∈ [−1,1], (7.5b)

0nc
⩾ c(τ, x (τ), u(τ); ts, tf), τ ∈ [−1,1], (7.5c)

0nr
= r (ts, x (−1), tf, x (+1)), (7.5d)
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where we established the notation h = tf − ts. For later use we finally provide the partial
derivatives of f (τ, x (τ), u(τ); ts, tf) with respect to ts and tf. Exploiting the definition (7.4)
and (7.3) we find

∂

∂ ts
f (τ, x (τ), u(τ); ts, tf) =

1
2
(1−τ) · f ′t (τ, x (τ), u(τ); ts, tf) ,

∂

∂ tf
f (τ, x (τ), u(τ); ts, tf) =

1
2
(1+τ) · f ′t (τ, x (τ), u(τ); ts, tf) .

Scaled Continuous–Time Optimal Control Problem – Local Approach Proceeding
from OCP (7.5) we introduce a temporal grid in a next step, i.e., given any natural number
N let −1 = t0 < t1 < . . . < tN = +1 define a fixed temporal grid. Single segments of the grid
are denoted by In = [tn−1, tn], 1 ⩽ n ⩽ N . By introducing segment–wise defined functions
x (n) : In −→ Rnx for states, and u(n) : In −→ Rnu for controls such that

x (n) = x ↾In
, u(n) = u ↾In

, 1⩽ n⩽ N ,

holds we can rewrite OCP (7.5) in the form

min
ts,tf,x ,u

φ(ts, x (1)(−1), tf, x (N)(+1)) +
h
2

N∑
n=1

∫
In

ψ(t, x (n)(t), u(n)(t); ts, tf) dt (7.6)

s. t. ẋ (n)(t) =
h
2
· f (t, x (n)(t), u(n)(t); ts, tf), n ∈ [N], t ∈ In,

0nc
⩾ c(t, x (n)(t), u(n)(t); ts, tf), n ∈ [N], t ∈ In,

0nr
= r (ts, x (1)(−1), tf, x (N)(+1)),

0nx
= x (n+1)(tn)− x (n)(tn), n ∈ [N − 1],

where we put additional matching conditions to ensure continuous trajectories over the
full time horizon. In a next step, we transform the single intervals In to the unit interval
[−1,+1]. Similarly to (7.2) this can be achieved by means of linear time transformations
tn : [−1,+1] −→ In which are defined as

tn(τ)
def
=

tn + tn−1

2
+τ · tn − tn−1

2
, 1⩽ n⩽ N .

As opposed to t (·), we do not write tn−1 or tn as function arguments in tn(·) since we assume
the temporal grid {tn} to be fixed. This is due to the fact that our approach to solve OCPs
numerically is based on the idea to refine the discretization grid adaptively after solving the
NLP. This assorts well with the tailored function spaces Yk(T ,R) (see Section 2.4.5). They
play a central role in Chapter 8. Note that other approaches use the finite element locations
as additional optimization variables.
Now we use the linear mappings tn(·) to transform the domains of all functions x (n)(·) and
u(n)(·) to the unitary domain [−1,+1]: their reparametrizations are given by the functions
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ex (n) : [−1,+1] −→ Rnx and eu(n) : [−1,+1] −→ Rnu where ex (n)(τ) def
= x (n)(tn(τ)) andeu(n)(τ) def

= u(n)(tn(τ)). Furthermore, we employ the notation

fn (τ, x (τ), u(τ); ts, tf)
def
= f (tn(τ), x (τ), u(τ); ts, tf) ,

and in a similar fashion notations for the functions ψ(·) and c(·). As a result we can rewrite
OCP (7.6) as follows: minimize the objective functional

φ(ts, ex (1)(−1), tf, ex (N)(+1)) +
h
2

N∑
n=1

tn − tn−1

2

∫ +1

−1

ψn(τ, ex (n)(τ), eu(n)(τ); ts, tf) dτ,

subject to the system dynamic constraints

d
dτ
ex (n)(τ) = h

2
tn − tn−1

2
· fn(τ, ex (n)(τ), eu(n)(τ); ts, tf), n ∈ [N],

the mixed control–state constraints

0nc
⩾ cn(τ, ex (n)(τ), eu(n)(τ); ts, tf), n ∈ [N],

and boundary as well as matching conditions

0nr
= r (ts, ex (1)(−1), tf, ex (N)(+1)) and 0nx

= ex (n+1)(−1)− ex (n)(+1).

Without using the tilde notation, and by introducing the notation hn = tn−tn−1 we can rewrite
the transformed OCP in a compact form as

min
ts ,tf ,x ,u

φ(ts, x (1)(−1), tf, x (N)(+1)) +
h
2

N∑
n=1

hn

2

∫ +1

−1
ψn(τ, x (n)(τ), u(n)(τ); ts, tf) dτ (7.7a)

s. t. ẋ (n)(τ) =
h
2

hn

2
· fn(τ, x (n)(τ), u(n)(τ); ts, tf), 1⩽ n⩽ N , τ ∈ [−1,1], (7.7b)

0nc ⩾ cn(τ, x (n)(τ), u(n)(τ); ts, tf), 1⩽ n⩽ N , τ ∈ [−1,1], (7.7c)

0nr = r (ts, x (1)(−1), tf, x (N)(+1)), (7.7d)

0nx = x (n+1)(−1)− x (n)(+1), 1⩽ n⩽ N − 1.

7.2 Global Collocation

In this section we give details on one concrete realization of the global approach, which was
presented in Section 6.3.2, and apply it to the transformed continuous OCP (7.5). More specif-
ically, we introduce an orthogonal collocation method whose collocation points are based on
Flipped Legendre–Gauss–Radau (FLGR) quadrature points (see Section B.3). For an OCP, state
as well as control trajectories are approximated by means of a global interpolating polynomial
basis. Pseudospectral methods differ mainly in their choice of discretization points as well as
collocation points. Discretization points are used to discretize states and controls, and thus,
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to characterize variables that are fed into the NLP. On the other hand, collocation points are
points which are used to collocate the ODE, i.e., to guarantee that the system dynamics have
been met.
Specifically for the Flipped Radau Pseudospectral Method (FRPM) we consider the set of col-
location points, K = {τ1,τ2, . . . ,τK}, consisting of the K FLGR points which correspond to
the roots of the polynomial PK − PK−1 (see Appendix B.3.2). These FLGR points lie on the
half–open interval (−1,+1] such that τ1, . . . ,τK are strictly increasing, and τK = +1. Next,
by appending the point τ0 = −1 to the set K, we define the superset N = {τ0} ∪K such that
N contains K +1 points on the interval [−1,+1]. Concerning our pseudospectral method, N
defines the set of discretization points.

Direct Transcription Formulation

Let us suppose that x : [−1,+1] −→ Rnx denotes the state trajectory arising from our trans-
formed continuous OCP (7.5). Thenwe can form a (polynomial) approximation, X(·), bymeans
of a basis of |N |= K + 1 Lagrange interpolating polynomials Li(·), 0⩽ i ⩽ K :

x (τ)≃ X(τ) =
K∑

i=0

X(τi) Li(τ), (7.8)

where

Li(τ) =
K∏

j=0
j ̸=i

τ−τ j

τi −τ j
. (7.9)

We end up with a state approximation which is interpolatory at all points within N , i.e., it
holds x (τi) = X(τi), 0 ⩽ i ⩽ K . Our pseudospectral method requires the system dynamics
(7.5b) to be fulfilled exactly at the FLGR quadrature points. We approximate the left–hand side
of the system dynamics by the derivative of the state approximation in (7.8), i.e., for τ j ∈ K,
j ∈ [K] we obtain

ẋ (τ j)≃ Ẋ(τ j) =
K∑

i=0

X(τi) L̇i(τ j) =
K∑

i=0

X(τi)Dj,i . (7.10)

Note that the FLGR differentiation matrix, D = [Dj,i] ∈ RK×(K+1) is given as

Dj,i = L̇i(τ j) =


L̇(τ j)

L̇(τi) · (τ j −τi)
, if i ̸= j,

L̈(τi)
2 L̇(τi)

, if i = j,
(7.11)

where L(τ) = (1+ τ) · [PK(τ)− PK−1(τ)] and the τi ∈ N are the discretization points (see
Appendix B.2). Since collocation equations for system dynamics and path constraints involve
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the control solely at the set K of collocation points (control at starting point is simply ex-
trapolated), we approximate the control trajectory u : [−1,+1] −→ Rnu with the aid of K
Lagrange interpolating polynomials, Li(·), i ∈ [K], as

u(τ)≃ U(τ) =
K∑

i=1

U(τi) Li(τ), (7.12)

where

Li(τ) =
K∏

j=1
j ̸=i

τ−τ j

τi −τ j
. (7.13)

By means of Gauss quadrature (see Appendix B.3.2) with FLGR quadrature nodes {τi} and
associated weights {ωi} the objective functional (7.5a) is then transcribed to

φ(ts, X(τ0), tf, X(τK)) +
t f − ts

2

K∑
i=1

ωi ·ψ(τi , X(τi),U(τi); ts, tf),

the system dynamics (7.5b) to

0nx
=

K∑
i=0

X(τi)Dj,i − t f − ts

2
· f (τ j , X(τ j),U(τ j); ts, tf), j ∈ [K],

the mixed control–state path constraints (7.5c) to

0nc
⩾ c(τ j , X(τ j),U(τ j); ts, tf), j ∈ [K],

and finally the boundary constraints (7.5d) to

0nr
= r (ts, X(τ0), tf, X(τK)).

FRPM Discretization of an OCP

Based on the previous discussion, we are now able to set up an NLP arising from a FRPM
discretization of transformed continuous OCP (7.5). To this end, let us determine as NLP vari-
ables, the (scalar) variables ts (start time), and tf (final time), as well as the (vector–valued)
discretized state variables, x j ∈ Rnx , 0 ⩽ j ⩽ K , and as discretized control variables, u j ∈ Rnu ,
1⩽ j ⩽ K . Here we can bring together the approximations (7.8)+(7.12) and the x j resp. the u j
by identifying

x j ≡ X(τ j), 0⩽ j ⩽ K , u j ≡ U(τ j), 1⩽ j ⩽ K . (7.14)

By combining NLP variables corresponding to

(i) states, x = [x0
T , . . . , xK

T ]T ∈ R(K+1)nx ,
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(ii) controls, u= [u1
T , . . . , uK

T ]T ∈ RKnu

we define the overall NLP variable w= [x T , uT , ts, tf]
T ∈ Rnw with nw = (K+1)nx+Knu+2.

The NLP objective function Φ : Rnw −→ R is written as

Φ(w) = φ(ts, x0, tf, xK) +
t f − ts

2

K∑
i=1

ωi ·ψ(τi , x i , ui; ts, tf), (7.15)

the NLP constraint functions Fj : Rnw −→ Rnx corresponding to the system dynamics (7.5b) as

Fj(w) =
K∑

i=0

x i Dj,i − t f − ts

2
· f (τ j , x j , u j; ts, tf), j ∈ [K], (7.16)

the NLP constraint functions C j : Rnw −→ Rnc corresponding to the path constraints (7.5c) as

C j(w) = c(τ j , x j , u j; ts, tf), j ∈ [K], (7.17)

and finally the NLP constraint function R : Rnw −→ Rnr corresponding to the boundary con-
dition (7.5d) as

R(w) = r (ts, x0, tf, xK). (7.18)

Similarly to the NLP variables we combine the NLP constraint functions corresponding to

(i) system dynamics, F(w) = [F1(w)
T , . . . , FK(w)

T ]
T ∈ RKnx ,

(ii) path constraints, C(w) = [C1(w)
T , . . . ,CK(w)

T ]
T ∈ RKnc , and

(iii) boundary conditions, R(w) ∈ Rnr ,

and introduce an overall NLP equality constraint function G : Rnw −→ RnG , nG = Knx+ nr, as
well as an overall NLP inequality constraint function H : Rnw −→ RnH , nH = Knc, where

G(w) = [F(w)T ,R(w)T ]
T
, H(w) = C(w).

We finally obtain an NLP of the following form:

min
w

Φ(w) (7.19)

s. t. 0= G(w),

0⩾ H(w).

Implementation

In order to solve OCP instances numerically by means of the FRPM discretization approach,
one needs a reliable and efficient implementation. Our implementation employs optionally
the interior–point solver Ipopt [444] or the SQP solver SNOPT [197] to solve the FRPM
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NLP (7.19). There are several criteria affecting the running time of those software packages:
first, the arising data structures should be used in a cache efficient way. In particular, the arrays
holding the NLP variables w, the NLP constraint function evaluation [G(w)T , H(w)T ]

T , and
the NLP constraint Jacobian evaluation [∇G(w),∇H(w)]T should be ordered such that they
are accessed block–wise. Secondly, the sparse structure of the NLP constraint Jacobian and
the Lagrangian of the Hessian should be exploited. Finally, the NLP has to be well scaled.
We deal with those three aspects in the following. As a consequence thereof, we are enabled
to point out the differences between the single–degree collocation approach and the multi–
degree collocation approach described in the subsequent Section 7.3.

NLP Variable and Constraint Arrays An investigation of the NLP objective and con-
straint functions (7.15), (7.16), and (7.17) shows thatψ(·), f (·), and c(·) are evaluated at points
(τi , x i , ui)where the vectors x i and ui are state and control approximations evaluated at their
respective collocation point τi . This nice representation of the approximation evaluations is
due to their nodal representation (see (7.8), (7.12), and (7.14)). Hence,

x i = [x1,i , . . . , xnx,i]
T and u j = [u1, j , . . . , unx, j]

T

with 0 ⩽ i ⩽ K and 1 ⩽ j ⩽ K should be placed at one stretch in the variable array and we
identify the NLP variable vector w and the array holding the actual values of a NLP solver
iteration. Likewise, the equality and inequality constraint evaluation arrays are assembled in
accordance with G(·) and H(·). We use the notations

Fi = [F1,i , . . . , Fnx,i]
T and Ci = [C1,i , . . . , Cnx,i]

T , 1⩽ i ⩽ K ,

where Fi denotes the vector Fi(w), i.e., the function F(·) evaluated at the actual NLP solver
iterate w. Likewise, Ci denotes the vector Ci(w). The arrays F , C , R, G, and H are composed
in a canonical way.

NLP Constraint Jacobian As we will see, the NLP constraint Jacobian is rather sparse.
Sparse Jacobians can be exploited by modern NLP solvers. We investigate the sparsity pat-
tern by reference to a handy example which can be easily extended to the general case.

Example 7.1
We consider an ODE system with nx = 2 differential states and nu = 1 control. Assuming the case with
two collocation points, we obtain the NLP variable array

w= [x1,0, x2,0, x1,1, x2,1, x1,2, x2,2, u1,1, u1,2]
T

and the NLP constraint array

F = [F1,1, F2,1, F1,2, F2,2]
T .

If we furthermore assume that we have an autonomous system with fixed time horizon [−1,+1] then
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∗ 0 ∗ ∗ ∗ 0 ∗ 0

0 ∗ ∗ ∗ 0 ∗ ∗ 0

∗ 0 ∗ 0 ∗ ∗ 0 ∗

0 ∗ 0 ∗ ∗ ∗ 0 ∗





F1,1

F2,1

F1,2

F2,2

x1,0 x2,0 x1,1 x2,1 x1,2 x2,2 u1,1 u1,2

Figure 7.1:The figure depicts the NLP constraint Jacobian sparsity pattern of the system con-
sidered in Example 7.1. Blocks being independent of the right–hand–side function f (·) are
surrounded by dashed lines, dependent blocks by solid lines.

the entries Fk,l are calculated as

Fk,l =
2∑

i=0

xk,i Dl,i − f (x l , ul).

The sparsity pattern of the associated NLP constraint Jacobian is depicted in Figure 7.1. Note that the
diagonal blocks, surrounded by dashed lines, do not depend on the ODE system function f (·), but only
on differentiation matrix entries Dl,i . For instance, the entries (F1,1, x1,0) and (F2,1, x2,0) are given by
D1,0. Partial derivatives

∂ f
∂ x and ∂ f

∂ u enter the blocks surrounded by solid lines. As an example, we take
the blocks�

(F1,1, x1,1) (F1,1, x2,1)
(F2,1, x1,1) (F2,1, x2,1)

�
←- ∂
∂ x

f (x1, u1),

�
(F1,1, u1,1)
(F2,1, u1,1)

�
←- ∂
∂ u

f (x1, u1).

The array holding the non–zero entries should be ordered accordingly.

Similarly to the NLP constraint Jacobian, the NLP Lagrangian of the Hessian exhibits a specific
sparse structure that is exploited in our implementation. Further details are beyond the scope
of this thesis.

NLP Scaling Poor scaling may have tremendous effects on convergence rate, termination
criteria, and numerical conditioning. For instance, variables representing a product concen-
tration range in the interval [0,1], while variables that measure distances between cities may
range from 0 to 106 meters. Hence, an aspect of scaling comprises making the variable ranges
uniform. As an example, we consider a variable z ∈ [a, b] and apply a variable scaling such
that the range of the scaled variable ez is [0,1]. The scaling is realized by the affine transfor-
mation

ez = vz z + rz ,
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where the variable scale vz and the variable shift rz are defined as

vz =
1

b− a
and rz = − a

b− a
.

The generalization to our state and control vectors x and u is straightforward and given as�exeu�= �Vx 0
0 Vu

��
x
u

�
+
�

rx
ru

�
,

where the diagonal matrices Vx and Vu contain appropriately chosen state and control variable
scale weights. The associated shift vectors are given by the vectors rx and ru. Analogously, one
can scale the NLP constraints. Considering the case without path constraints C and boundary
constraints R, one obtains the scaled defect constraints eF =WF F , where the diagonal matrix
WF consists of suitable ODE constraint scale weights. If the associated Jacobian is denoted
with J then its scaled counterpart is given by

eJ =WF J
�
Vx 0
0 Vu

�−1

.

To set WF = Vx is a common choice. In general, there are several other approaches to end up
with a well–scaled problem. One can normalize the Jacobian rows and columns to be of the
same magnitude. Another approach is based on the idea to make the condition number of the
KKT matrix close to one by an appropriately chosen objective function scale weight. Here, a
guess for the condition number can be obtained by means of Gerschgorin estimates for the
smallest and largest eigenvalues of the Hessian.
The ideas presented in this section and realized in our implementation are by no means new
but can be found e.g. in the textbooks of Gill et al. [196] and Betts [62]. They are also realized
in other OCP software packages such as SOCS [64] and GPOPS-II [351]. For the sake of
completeness and to stress its importance, scaling is also mentioned in this thesis.
Note that, however, there is probably no one–size–fits–all approach to NLP scaling. Moreover,
even if there exists a good scaling at a certain point the same scaling might be poor at other
points.

NLP Function and Derivative Generation System functions for objective, ODE, and con-
straints are set up within the software framework SolvIND [9] that provides an interface to
the automatic differentiation tool ADOL-C [445]. The foundations of automatic differentia-
tion are briefly discussed in Section 6.1.1.

7.3 Multi–Degree Global Collocation

In this section, we provide our extension to the standard global collocation approach that was
introduced in the previous Section 7.2. We call our approach multi–degree global collocation
since single state and control approximation components may differ in terms of their poly-
nomial degree. We restrict our analysis to the case of systems without constraints since an
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extension is straightforward.

Direct Transcription Formulation

Now, state and control approximations are defined as

X(τ) = [X1(τ), . . . , Xnx
(τ)]T and U(τ) = [U1(τ), . . . ,Unu

(τ)]T ,

where

Xi(τ) =
K x

i∑
j=0

x i, j Li, j(τ), i ∈ [nx], and Ui(τ) =
Ku

i∑
j=1

ui, j Li, j(τ), i ∈ [nu]. (7.20)

The Lagrange interpolating polynomials are

Li, j(τ) =
K x

i∏
k=0
k ̸= j

τ−τx
i,k

τx
i, j −τx

i,k

and Li, j(τ) =
Ku

i∏
k=1
k ̸= j

τ−τu
i,k

τu
i, j −τu

i,k

.

Analogously to Section 7.2, the τx
i, j and the τu

i, j are chosen such that the sets

Kx
i =

¦
τx

i,1,τx
i,2, . . . ,τx

i,K x
i

©
and Ku

i =
¦
τu

i,1,τu
i,2, . . . ,τu

i,K x
i

©
consist of FLGR points. Theτx

i,0 are equal to−1. For the i–th component of the ODEwe choose
the set of collocation points, i.e., the time instants where the respective ODE component must
hold exactly for state and control approximations, to be identical with Kx

i . We denote evalu-
ation point sets for objective, ODE, and path constraints with Kψ, K f

i , and Kc
i , respectively.

According to our choice, it holds that Kx
i = K f

i . We use the canonic notations K x
i

def
=
��Kx

i

�� and
likewise for u, ψ, f , and c. With ωψi we denote the respective quadrature weight.

The NLP Formulation

While the direct transcription formulation stays unchanged compared to the one from Sec-
tion 7.2, this does not hold for the NLP formulation derived from the equations (7.15)–(7.18).
This is due to the fact that (7.14) cannot be transferred to the new setting.
Now, the overall NLP variable w= [x T , uT , ts, tf]

T ∈ Rnw is comprised of
(i) state variable, x = [x1,0, . . . , x1,K x

1
, · · · , xnx,0, . . . , xnx,K x

nx
]T , and

(ii) control variable, u= [u1,1, . . . , u1,Ku
1
, · · · , unu,1, . . . , unu,Ku

nu
]T ,

where nw =
∑nx

i=1

�
K x

i + 1
�
+
∑nu

i=1 Ku
i . We reuse the notation of Section 7.2 to assemble a

NLP of the same type as NLP 7.19. The NLP objective function Φ : Rnw −→ R is written as

Φ(w) = φ(ts, X(−1), tf, X(+1)) +
t f − ts

2

Kψ∑
i=1

ω
ψ
i ·ψ

�
τ
ψ
i , X(τψi ),U(τ

ψ
i ); ts, tf

�
,
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the NLP constraint functions Fi, j : Rnw −→ R corresponding to the system dynamics (7.5b) as

Fi, j(w) =
K x

i∑
k=0

x i,k L̇i,k(τ
x
i, j)−

t f − ts

2
· f �τx

i, j , X(τx
i, j),U(τ

x
i, j); ts, tf

�
,

with i ∈ [nx] and j ∈ �K x
i

�
, the NLP constraint functions Ci, j : Rnw −→ R corresponding to

the path constraints (7.5c) as

Ci, j(w) = c
�
τc

i, j , X(τc
i, j),U(τ

c
i, j); ts, tf

�
, i ∈ [nc], j ∈ �K c

i

�
,

and finally the NLP constraint function R : Rnw −→ Rnr corresponding to the boundary con-
dition (7.5d) as

R(w) = r (ts, X(−1), tf, X(+1)).

Implementation

From a theoretical point of view, there do not arise any difficulties for the multi–degree collo-
cation approach compared to the standard approach. However, there are some pitfalls when
it comes to an efficient implementation. In order to avoid more notational clutter, we restrict
our analysis to an example that catches important aspects and allows the reader to extend it
to the general case.

-1 -0.5 0 0.5 1

x4

x3

x2

x1

Figure 7.2:Thefigure depicts the discretization point distribution for the system considered in
Example 7.2. States x1 and x4 have the same discretization points, namely two FLGR colloca-
tion points augmented with −1. States x2 and x3 have the same discretization points, namely
three FLGR collocation points augmented with −1.
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Example 7.2
We consider the problem with nx = 4 differential states and the number of collocation points are given
as K x

1 = K x
4 = 2 and K x

2 = K x
3 = 3. For an autonomous system on the fixed time horizon [−1,+1] the

NLP constraint functions are

Fi, j(w) =
K x

i∑
k=0

x i,k L̇i,k(τ
x
i, j)− f

�
X(τx

i, j)
�

, i ∈ [4], j ∈ �K x
i

�
.

NLP Variable and Constraint Arrays Writing the NLP variables of Example 7.2 as they are
encoded in w yields the array

w= [x1,0, x1,1, x1,2, x2,0, x2,1, x2,2, x2,3, x3,0, x3,1, x3,2, x3,3, x4,0, x4,1, x4,2]
T .

The NLP constraint array is assembled as

F = [F1,1, F1,2, F2,1, F2,2, F2,3, F3,1, F3,2, F3,3, F4,1, F4,2]
T .

A naive implementation to evaluate the necessary values X(τx
i, j) and therewith the values in

array F would be inefficient. Instead, we increase the efficiency by an exploitation of similar-
ities in components one and four as well as two and three. As one can easily see in Figure 7.2,
the discretization grid of components x1 and x4 match. The same holds for components x2
and x3. We call the sets {x1, x4} and {x2, x3} cliques and denote their grids with τi, j , i.e., it
holds

τ1, j = τ
x
1, j = τ

x
4, j , 0⩽ j ⩽ 2, τ2, j = τ

x
2, j = τ

x
3, j , 0⩽ j ⩽ 3.

Based on the formulation of state approximation X(·) in (7.20) we find�
X1(τ1, j)
X4(τ1, j)

�
=
�

x1, j
x4, j

�
, 0⩽ j ⩽ 2,

�
X2(τ2, j)
X3(τ2, j)

�
=
�

x2, j
x3, j

�
, 0⩽ j ⩽ 3.

In order to obtain the remainder of the state approximation evaluations we introduce the ma-
trices

V1 =

L1,0(τ2,1) L1,0(τ2,2) L1,0(τ2,3)
L1,1(τ2,1) L1,1(τ2,2) L1,1(τ2,3)
L1,2(τ2,1) L1,2(τ2,2) L1,2(τ2,3)

 and V2 =

L2,0(τ1,1) L2,0(τ1,2)
L2,1(τ1,1) L2,1(τ1,2)
L2,2(τ1,1) L2,2(τ1,2)
L2,3(τ1,1) L2,3(τ1,2)

 .

Note that those matrices do not depend on the ODE system but only on the discretization grid.
Hence, they can be calculated before the NLP is initiated. In each NLP solver iteration, one
has to evaluate�

X1(τ1,0) X1(τ1,1) X1(τ1,2)
X4(τ1,0) X4(τ1,1) X4(τ1,2)

�
=
�

x1,0 x1,1 x1,2
x4,0 x4,1 x4,2

�
def
= X1,
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�
X1(τ2,1) X1(τ2,2) X1(τ2,3)
X4(τ2,1) X4(τ2,2) X4(τ2,3)

�
=
�

x1,0 x1,1 x1,2
x4,0 x4,1 x4,2

�
V1 = X1 V1

for clique one and�
X2(τ2,0) X2(τ2,1) X2(τ2,2) X2(τ2,3)
X3(τ2,0) X3(τ2,1) X3(τ2,2) X3(τ2,3)

�
=
�

x2,0 x2,1 x2,2 x2,3
x3,0 x3,1 x3,2 x3,3

�
def
= X2,�

X2(τ1,1) X2(τ1,2)
X3(τ1,1) X3(τ1,2)

�
=
�

x2,0 x2,1 x2,2 x2,3
x3,0 x3,1 x3,2 x3,3

�
V2 = X2 V2

for clique two. A fast access to the matrices X1 and X2 is mandatory. For this reason, their
entries should be stored as blocks. This also saves unnecessary copy operations. Assuming a
column–major order for storing multidimensional arrays we permute the NLP variable vector
according to

w= [x1,0, x4,0, x1,1, x4,1, x1,2, x4,2, x2,0, x3,0, x2,1, x3,1, x2,2, x3,2, x2,3, x3,3]
T

and

F = [F1,1, F4,1, F1,2, F4,2, F2,1, F3,1, F2,2, F3,2, F2,3, F3,3]
T .

∗ ∗ 0 ∗ 0

∗ ∗ 0 0 ∗

∗ ∗ 0 ∗ 0 0 ∗ ∗

0 0 ∗ 0

∗ ∗ 0 0 0 ∗ ∗ ∗

∗ ∗ 0 ∗ 0 0 ∗ ∗

0 0 ∗ 0

∗ ∗ 0 0 0 ∗ ∗ ∗

0 ∗ 0 ∗ ∗

0 0 ∗ ∗ ∗





F1,1

F1,2

F2,1

F2,2

F2,3

F3,1

F3,2

F3,3

F4,1

F4,2

x1,0 x1,1 x1,2 x2,0 x2,1 x2,2 x2,3 x3,0 x3,1 x3,2 x3,3 x4,0 x4,1 x4,2

Figure 7.3:The figure depicts the NLP constraint Jacobian sparsity pattern of the system from
Example 7.2 without a permutation of variables and constraints.

NLP Constraint Jacobian The arguments from the previous section also hold for the evalu-
ations of the NLP constraint Jacobian and the Hessian. In Figure 7.3 one can see the structure
of the constraint Jacobian without permutation of variables and constraints. In contrast, Fig-
ure 7.4 shows the constraint Jacobian after the permutation step. It is obvious that the structure
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∗ 0 ∗ ∗ ∗ 0 ∗ ∗

0 ∗ ∗ ∗ 0 ∗

∗ 0 ∗ 0 ∗ ∗

0 ∗ 0 ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ 0 ∗ ∗ ∗ 0 ∗ 0

0 ∗ ∗ ∗ 0 ∗ 0 ∗

∗ 0 ∗ 0 ∗ ∗ ∗ 0

0 ∗ 0 ∗ ∗ ∗ 0 ∗

∗ 0 ∗ 0 ∗ 0 ∗ ∗

∗ ∗ 0 ∗ 0 ∗ 0 ∗ ∗ ∗





F1,1

F4,1

F1,2

F4,2

F2,1

F3,1

F2,2

F3,2

F2,3

F3,3

x1,0 x4,0 x1,1 x4,1 x1,2 x4,2 x2,0 x3,0 x2,1 x3,1 x2,2 x3,2 x2,3 x3,3

Figure 7.4:The figure depicts the NLP constraint Jacobian sparsity pattern of the system from
Example 7.2. NLP variables and constraints are permuted. The upper–left and the lower–right
block have the same structure as NLP constraint Jacobians of a standard global collocation
discretization (see Figure 7.1).

of the uniform polynomial degree case (see Figure 7.1) is retained for the upper left and lower
right matrix blocks. The upper right and lower left matrix blocks are dense. For this reason,
the polynomial degrees have to be chosen carefully such that one does not end up with dense
Jacobians or Hessians. However, as our numerical experiments in Chapter 12 show there is the
potential for a significant speedup if applied carefully and under appropriate circumstances.
For instance, one can think of an ODE where the differential states fall into two categories.
The extremely volatile trajectories of the first category need a high degree polynomial to be
sufficiently well approximated. In contrast, the trajectories of the second category are almost
constant over the horizon and the approximating polynomial degree can be small. Then, the
savings of variables and the constraints may exceed the not fully sparse NLP constraint Jaco-
bians and Hessians.

7.4 Local Collocation

Next we describe a way how to employ a (global) pseudospectral method in order to end up
with a local OCP discretization algorithm. For that purpose, we basically apply the global
collocation approach from section 7.2 to all finite elements from OCP (7.7). This allows also
for using different polynomial orders on distinct finite elements.

Direct Transcription Formulation Let K (n) denote the number of collocation points on
the n–th finite element of transformed continuous OCP (7.7). Then the discretization grid Nn,
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which includes the collocation grid Kn, has the form

−1= τ(n)0 < τ
(n)
1 < . . .< τ(n)

K (n)
= +1.

In order to define the local approximation polynomials for states and controls, we need La-
grange interpolating polynomials in a similar way to how we have done it in (7.9) and (7.13):

L(n)i (τ)
def
=

K (n)∏
j=0
j ̸=i

τ−τ(n)j

τ
(n)
i −τ(n)j

, deg
�
L(n)i

�
= K (n), 1⩽ n⩽ N , 0⩽ i ⩽ K (n),

L
(n)
i (τ)

def
=

K (n)∏
j=1
j ̸=i

τ−τ(n)j

τ
(n)
i −τ(n)j

, deg
�
L
(n)
i

�
= K (n) − 1, 1⩽ n⩽ N , 1⩽ i ⩽ K (n).

Approximations of the functions x (n) : [−1,+1] −→ Rnx and u(n) : [−1,+1] −→ Rnu have
the form

X (n)(τ)
def
=

K (n)∑
i=0

X (n)(τi) L
(n)
i (τ), 1⩽ n⩽ N , τ ∈ [−1,+1],

U (n)(τ)
def
=

K (n)∑
i=1

U (n)(τi) L
(n)
i (τ), 1⩽ n⩽ N , τ ∈ [−1,+1].

TheFLGR differentiationmatrices D(n) = [D(n)j,i ] ∈ RK (n)×(K (n)+1) can be determined analogously
to (7.11) such that the derivative of X (n)(·) evaluated at the collocation points can be calculated
for 1⩽ n⩽ N according to

ẋ (n)(τ j)≃ Ẋ (n)(τ j) =
K (n)∑
i=0

X (n)(τi) L̇
(n)
i (τ j) =

K (n)∑
i=0

X (n)(τi)D
(n)
j,i , 1⩽ j ⩽ K (n).

We apply Gauss quadrature element–wise to the integrals occurring in OCP (7.7): for any 1⩽
n⩽ N let {τ(n)i }, 1⩽ i ⩽ K (n), denote the set of FLGR quadrature nodes, and let the associated
quadrature weights be denoted by {ω(n)i }. We then transcribe the objective functional (7.7a)
to

φ(ts, X (1)(−1), tf, X (N)(+1)) +
h
2

N∑
n=1

hn

2

K (n)∑
i=1

ω
(n)
i ψn(τ

(n)
i , X (n)(τ(n)i ),U

(n)(τ(n)i ); ts, tf),

the system dynamics (7.7b) for 1⩽ n⩽ N and 1⩽ j ⩽ K (n) to

0nx
=

K (n)∑
i=0

X (n)(τ(n)i )D
(n)
j,i − h

2
hn

2
· fn

�
τ
(n)
j , X (n)(τ(n)j ),U

(n)(τ(n)j ); ts, tf
�

,
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the mixed control–state path constraints (7.7c) to

0nc
⩾ cn

�
τ
(n)
j , X (n)(τ(n)j ),U

(n)(τ(n)j ); ts, tf
�

, 1⩽ n⩽ N , 1⩽ j ⩽ K (n),

and the boundary constraints (7.7d) to

0nr
= r (ts, X (1)(−1), tf, X (N)(+1)).

Unlike in Section 7.2 the state and control approximations are local polynomials now. State
trajectories as solutions of ODEs are usually chosen to be in certain function spaces such that
they are continuous over the full horizon. In order to take this into account we equip our
previous discretization approach additionally with continuity conditions,

0nx
= X (n+1)(−1)− X (n)(+1), 1⩽ n⩽ N − 1, (7.21)

a technique similar in fashion to the direct multiple shooting approach (see section 6.2.3).

FRPM Discretization of an OCP Now we determine the NLP arising from the previous
discretization approach. We define scalar variables for the start time, ts, and for the final time,
tf. Furthermore, we introduce vector–valued variables x (n)j ∈ Rnx and u(n)j ∈ Rnu representing
approximate values of state and control trajectories evaluated at discretization and collocation
points, respectively, i.e., for n ∈ [N] we have

x (n)j ≡ X (n)(τ(n)j ), 0⩽ j ⩽ K (n), u(n)j ≡ U (n)(τ(n)j ), 1⩽ j ⩽ K (n).

We obtain the overall NLP variable w = [x T , uT , ts, tf]
T ∈ Rnw by collecting NLP variables

corresponding to

(i) states, x =
�

x (n)
T�T

1⩽n⩽N
, x (n) =

h
x (n)0

T
, . . . , x (n)

K (n)
T
iT

, and

(ii) controls, u=
�
u(n)

T�T

1⩽n⩽N
, u(n) =

h
u(n)1

T
, . . . , u(n)

K (n)
T
iT

.

The dimension of x and u are denoted by ns and nq with

ns =
N∑

n=1

(K (n) + 1)nx, nq =
N∑

n=1

K (n) nu

such that nw = ns + nq + 2. The NLP objective function Φ : Rnw −→ R is written as

Φ(w) = φ(ts, x (1)0 , tf, x (N)
K (N)
) +

h
2

N∑
n=1

hn

2

K (n)∑
i=1

ω
(n)
i ψn(τ

(n)
i , x (n)i , u(n)i ; ts, tf),
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the NLP constraint functions F (n)j : Rnw −→ Rnx with 1⩽ n⩽ N and 1⩽ j ⩽ K (n) correspond-
ing to the system dynamics (7.7b) as

F (n)j (w) =
K (n)∑
i=0

x (n)i D(n)j,i − h
2

hn

2
· fn

�
τ
(n)
j , x (n)j , u(n)j ; ts, tf

�
,

the NLP constraint functions C (n)j : Rnw −→ Rnc corresponding to the path constraints (7.7c)
as

C (n)j (w) = cn

�
τ
(n)
j , x (n)j , u(n)j ; ts, tf

�
, 1⩽ n⩽ N , 1⩽ j ⩽ K (n),

and finally the NLP constraint function R : Rnw −→ Rnr corresponding to the boundary con-
dition (7.7d) as

R(w) = r (ts, x (1)0 , tf, x (N)
K (N)
).

The matching conditions (7.21) impose the constraint functions M (n) : Rnw −→ Rnx , where

M (n)(w) = x (n+1)
0 − x (n)

K (n)
, 1⩽ n⩽ N − 1.

Similarly to the NLP variables we combine the NLP constraint functions corresponding to

(i) system dynamics, F(w) =
�
F (n)(w)

T�T

1⩽n⩽N
, F (n)(w) =

h
F (n)1 (w)

T
, . . . , F (n)

K (n)
(w)

T
iT

,

(ii) path constraints, C(w) =
�
C (n)(w)

T�T

1⩽n⩽N
, C (n)(w) =

h
C (n)1 (w)

T
, . . . ,C (n)

K (n)
(w)

T
iT

,

(iii) boundary conditions, R(w), and

(iv) matching conditions, M(w) =
�
M (n)(w)

T�T

1⩽n⩽N−1
.

The dimensions of F(w), C(w), R(w), and M(w) are denoted by nF, nC, nR, and nM. It is easy
to check that

nF =
N∑

n=1

K (n) nx, nC =
N∑

n=1

K (n) nc, nR = nr, nM = (N − 1)nx.

By introducing an overall NLP equality constraint functionG : Rnw −→ RnG (nG = nF+nM+nR)
as well as an overall NLP inequality constraint function H : Rnw −→ RnH (nH = nC), where

G(w) = [F(w)T , M(w)T ,R(w)T ]
T
, H(w) = C(w),

we can write the NLP in the form of Problem (7.19). Since we make extensive use of the NLP
later in Chapter 9, we formulate its full version here:
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min
ts,tf,x ,u

φ(ts, x (1)0 , tf, x (N)
K (N)
) +

h
2

N∑
n=1

hn

2

K (n)∑
i=1

ω
(n)
i ψn(τ

(n)
i , x (n)i , u(n)i ; ts, tf) (7.22)

s. t. 0nx
=

K (n)∑
i=0

x (n)i D(n)j,i − h
2

hn

2
· fn

�
τ
(n)
j , x (n)j , u(n)j ; ts, tf

�
, n ∈ [N], j ∈ [K (n)],

0nc
⩾ cn

�
τ
(n)
j , x (n)j , u(n)j ; ts, tf

�
, n ∈ [N], j ∈ [K (n)],

0nr
= r (ts, x (1)0 , tf, x (N)

K (N)
),

0nx
= x (n+1)

0 − x (n)
K (n)

, n ∈ [N − 1].

Note that the local approach can be equipped with the multi–degree approach in a straightfor-
ward manner. Our software grc is based on the local multi–degree pseudospectral method.
The SolvIND model equations for Problem (12.1) look as follows:
template <typename T>
svLong f f c n _ s i n c o s ( TArgs_f fcn <T>& args , TDependency * depends )
{

const T lam = a rg s . p [ 0 ] ;

a r g s . rh s [0 ] = + a rg s . xd [ 1 ] ;
a r g s . rh s [ 1 ] = −a rg s . xd [ 0 ] ;
a r g s . rh s [ 2 ] = +lam * a rg s . xd [ 3 ] ;
a r g s . rh s [ 3 ] = −lam * a rg s . xd [ 2 ] ;

return 0 ;
}

The grc mesh – including the number of FEs and possibly distinct number of collocation
points per FE – is realized as follows:
function mesh = u s r _ i n i t _me sh

mesh = [ ] ;
n_ fe = 1 ;

% 1 − F i n i t e e l emen t f r a c t i o n
mesh . f e _ f r a c = ( 1 / n_ fe ) * ones ( 1 , n_ fe ) ;

% 2 − C o l l o c a t i o n p o i n t s
mesh . n_cp . x = [ 3 0 ; 3 0 ; 6 0 ; 6 0 ] * ones ( 1 , n_ fe ) ;

% 3 − I n i t i a l g u e s s
mesh . gues s . x = [ 0 ; 1 ; 0 ; 1 ] * ones ( 1 , n_ fe ) ;
mesh . gues s . p = 1 0 ;

end
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Chapter 8

A Discrete Local Minimum Principle

We consider this chapter as a first step in extending the functional analytic framework for
OCPs as it was introduced by Beigel [41]. In this work, the author investigates solutions of
IVPs in ODEs (see IVP (1.2) in Section 1.1) as well as solutions of associated adjoint IVPs. In
order to establish the framework Beigel embeds the problem class into the problem class of
CVPs, i.e., she considers problems of the form

min
x

φ(x (tf)) (8.1)

s. t. ẋ (t) = f (t, x (t)), t ∈ [ts, tf],

x (ts) = xs.

It is obvious that the feasible set of CVP (8.1) consists of a single element, namely the unique
solution of the nominal IVP (1.2). In Section 1.2 we discussed the theory of IVPs and pre-
sented the Picard–Lindelöf theorem (see Theorem 1.12) which guarantees that solutions are
continuously differentiable in a classic environment. For this reason, CVP (8.1) was also in-
vestigated in the function space of continuously differentiable functions by Beigel [41]. By
means of Riesz’s representation theorem (see Theorem 2.84) the Lagrange multiplier could
be identified to be an element of the space of normalized functions with bounded variation,
cf. Section 2.4.8.
From a practical point of view focusing on continuously differentiable functions means a re-
striction in the sense that most numerical integrators give approximations to the solution
of IVP (1.2) that are not continuously differentiable on the whole interval [ts, tf] but rather
continuous and piecewise continuously differentiable. Consequently, Beigel investigated so-
lutions of CVP (8.1) also in the function space Y1([ts, tf],Rn), cf. Section 2.4.5. The duality
pairing (see Section 2.5) of NBV([ts, tf],R) and Y ([ts, tf],R) enabled Beigel to characterize
the Lagrange multiplier in the new function space setting.
Even though Beigel used the derived functional analytic framework to analyze BDF methods
and their adjoint IND schemes it is by no means restricted to this case but rather allows for
analyzing integration methods that provide at least a continuous and piecewise continuously
differentiable approximation to the solution of IVP (1.2).
In this chapter we extend Beigel’s theory in two directions: on the one hand we treat OCPs
involving controls instead of CVP (8.1) and on the other hand we augment the problem class
with additional constraints such as boundary constraints and mixed control–state constraints.
Moreover, we show that the Lagrange multipliers have a higher regularity than actually pre-
dicted by Beigel’s theory.
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In Section 5.3 we have presented a local minimum principle (see Theorem 5.7) in the classic
function space setting (x , u) ∈ W 1,∞(T ,Rnx) × L∞(T ,Rnu). It provided us with a char-
acterization of the Lagrange multipliers. An elegant way to derive those results in a DAE
setting was proposed by Gerdts [189] in his habilitation thesis. We adapt his ideas while fo-
cusing on function spaces that are of particular practical relevance, namely state functions
x ∈ Y1(T ,Rnx) and control functions u ∈ Y (T ,Rnu). This enables us to derive a specific
semi–discrete local minimum principle and to complement Beigel’s work in the aforemen-
tioned sense.
In subsequent chapters we can make use of those results in the following sense: we analyze
numerical OCP solution methods such as pseudospectral collocation methods that generate
continuous and piecewise differentiable approximations of the solution. To put it more con-
cretely, we establish the interpretation of a particular orthogonal pseudospectral discretization
scheme as a Petrov–Galerkin discretization of the variational formulation of the local mini-
mum principle equations. As a consequence thereof, we establish a covector mapping theorem
that relates NLP multipliers and costates coming from the local minimum principle. Further-
more, we derive a novel global goal–oriented a posteriori error estimation approach based on
the DWR methodology.
In Section 8.1 we specify the OCP considered in this chapter and rewrite the problem as an
infinite dimensional optimization problem. Then we show that the image of the first order
derivative of the equality constraint operator is closed. For this reason solution formulas for
linear ODEs have to be exploited. By means of these auxiliary results we are able to apply the
first–order necessary optimality conditions of Fritz John type.
When applying necessary optimality conditions the arising multipliers appear as elements of
dual spaces. Section 8.2 deals with deducing explicit representations of the aforementioned
Lagrange multipliers.
Finally, in Section 8.3 we derive a local minimum principle for the OCP that was introduced
in Section 8.1.

8.1 Problem Formulation

In this chapter we investigate a special case of Problem (5.1). Let T def
= [ts, tf] ⊂ R be a compact

non-empty time interval with ts < tf. Let

φ : Rnx ×Rnx −→ R,

ψ : T ×Rnx ×Rnu −→ R,

f : T ×Rnx ×Rnu −→ Rnx ,

c : T ×Rnx ×Rnu −→ Rnc ,

r : Rnx ×Rnx −→ Rnr

be sufficiently smooth mappings (see later Assumption 8.1). The OCP under consideration is
given as follows:
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min
(x ,u)∈Z

φ(x (ts), x (tf)) +

∫ tf

ts

ψ(t, x (t), u(t)) d t (8.2)

s. t. ẋ (t) = f (t, x (t), u(t)), t ∈ T ,

0nc
⩾ c(t, x (t), u(t)), t ∈ T ,

0nr
= r (x (ts), x (tf)).

First, we choose function spaces for differential state variables x (·) and control variables u(·).
To this end, we define Z

def
= Y1(T ,Rnx)×Y (T ,Rnu). Next, it is our goal to apply the first order

necessary optimality conditions of Theorem 3.7 to OCP (8.2). For this reason, we proceed in
the same way as described in Section 5.2 and reformulate OCP (8.2) as an infinite dimensional
optimization problem

min
(x ,u)∈Z

J(x , u) (8.3)

s. t. G(x , u) ∈ K,

H(x , u) = ΘV ,

with convex cone

K =
�

k ∈ Y (T ,Rnc) : k(t)⩾ 0nc

	
, (8.4)

function spaces

Z = Y1(T ,Rnx)×Y (T ,Rnu),

V = Y (T ,Rnx)×Rnr ,

W = Y (T ,Rnc),

and mappings J : Z −→ R, H : Z −→ V , and G : Z −→W , given as

J(x , u) = φ(x (ts), x (tf)) +

∫ tf

ts

ψ(t, x (t), u(t)) d t,

H(x , u) =
�
H1(x , u)
H2(x , u)

�
=
�

f (·, x (·), u(·))− ẋ (·)
−r (x (ts), x (tf))

�
, (8.5)

G(x , u) = −c(·, x (·), u(·)).
In order to analyze differentiability properties of the mappings J , H and G we state the fol-
lowing smoothness conditions:
Assumption 8.1
Let the following smoothness conditions hold for the functions φ,ψ, f , c, r :

1. φ and r are continuously differentiable with respect to all arguments.
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2. Let (x̂ , û) ∈ Y1(T ,Rnx)× Y (T ,Rnu) be given and let M be a sufficiently large convex compact
neighborhood of�

(x̂ (t), û(t)) ∈ Rnx+nu : t ∈ T
	

.

a) The mappings t 7→ψ(t, x , u) and

t 7→ f (t, x , u), t 7→ c(t, x , u)

are measurable for every (x , u) ∈ M .
b) The mappings (x , u) 7→ψ(t, x , u) and

(x , u) 7→ f (t, x , u), (x , u) 7→ c(t, x , u)

are continuously differentiable in M uniformly for t ∈ T .
c) The derivatives

ψ′(x ,u), f ′(x ,u), c′(x ,u)

are bounded in T ×M .

The following theorem establishes Fréchet–differentiability under Assumption 8.1 for a sim-
plified mapping. However, Fréchet–differentiability of the mappings J , H and G can be
established in a similar way and is therefore not demonstrated explicitly.

Theorem 8.2
Let x̂ ∈ Y1(T ,Rnx) be given and let f : T ×Rnx −→ Rnx , (t, x ) 7→ f (t, x ) be a function satisfying the
conditions in Assumptions 8.1 with

M
def
= {x ∈ Rnx : ∃t ∈ T ,∥x − x̂ (t)∥⩽ r} , r > 0.

Then the mapping F : Y1(T ,Rnx) −→ Y (T ,Rnx) defined by

F(x (·)) def
= ẋ (·)− f (·, x (·))

is continuously Fréchet–differentiable in x̂ with derivative

F ′(x̂ )(x ) = ẋ (·)− f ′x (·, x̂ (·))x (·). △

Proof In a first step we show linearity and continuity of F ′(x̂ )(x )(·). The linearity of the operator is
obvious and it remains to show the continuity. Let 1 ⩽ n ⩽ N be arbitrary. Then it holds for almost
every t ∈ In and x ∈ Y1(T ,Rnx)

F ′(x̂ )(x )(t)



⩽ ∥ẋ (t)∥+ 

 f ′x (t, x̂ (t))


 · ∥x (t)∥

⩽ sup
t∈In

∥ẋ (t)∥+ CIn
· sup

t∈In

∥x (t)∥

⩽ (1+ CIn
) ·
�

sup
t∈In

∥x (t)∥+ sup
t∈In

∥ẋ (t)∥
�

= (1+ CIn
) · ∥x∥C1

b(In) . (8.6)
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Thus, it holds for almost every t ∈ T and x ∈ Y1(T ,Rnx)

F ′(x̂ )(x )(t)


⩽ max

n∈[N]
¦
(1+ CIn

) · ∥x∥C1
b(In)

©
⩽ (1+ C) ·max

n∈[N]∥x∥C1
b(In)

= (1+ C) · ∥x∥Y1(T ) .

Hence, F ′(x̂ )(x )(·) is continuous. The continuity of F ′(·) in M follows because f ′x is supposed to be
continuous with respect to x and bounded in M uniformly with respect to t ∈ T . In the second step of
this proof we show that

lim∥x∥Y1(T )→0

∥F(x̂ + x )− F(x̂ )− F ′(x̂ )(x )∥Y (T )
∥x∥Y1(T )

= 0.

With the mean–value theorem (see Theorem 2.28) we get for almost every t ∈ T

∆(x )(t)
def
=
�
F(x̂ + x )− F(x̂ )− F ′(x̂ )(x )

�
(t)

= − ( f (t, x̂ (t) + x (t))− f (t, x̂ (t))) + f ′x (t, x̂ (t))x (t)

= −
1∫

0

�
f ′x (t, x̂ (t) +τx (t))− f ′x (t, x̂ (t))

�
x (t)dτ

and conclude

∥∆(x )(t)∥⩽ sup
τ∈[0,1]



 f ′x (t, x̂ (t) +τx (t))− f ′x (t, x̂ (t))


 · ∥x∥Y1(T ) .

According to 2b in Assumption 8.1, f ′x (t, ·) is uniformly continuous on the compact set M . Hence, for
every ϵ > 0 there exists δ ∈ (0, r] with

 f ′x (t, x1)− f ′x (t, x2)



⩽ ϵ ∀x1, x2 ∈ M , t ∈ T , ∥x1 − x2∥⩽ δ.

Let ∥x∥Y1(T ) ⩽ δ and τ ∈ [0, 1]. Then,

x̂ (t), x̂ (t) +τ · x (t) ∈ M ∀t ∈ T

and

∥x̂ (t) +τ · x (t)− x̂ (t)∥= τ · ∥x (t)∥⩽ ∥x∥Y1(T ) ⩽ δ.

The choice of δ implies

∥∆(x )∥Y (T ) ⩽ ϵ · ∥x∥Y1(T ) ∀∥x∥Y1(T ) ⩽ δ,

and hence

lim∥x∥Y1(T )→0

∥F(x̂ + x )− F(x̂ )− F ′(x̂ )(x )∥Y (T )
∥x∥Y1(T )

= 0. □

In order to be able to apply Theorem 3.7 we have to ensure the non–density assumption of the
theorem. To this end, we prove the following auxiliary lemma which directly implies that the
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Fréchet–derivative H ′(x̂ , û) is surjective. The lemma involves the linear homogeneous IVP

Φ̇(t) = A(t)Φ(t), Φ(ts) = Inx
, (8.7)

with A ∈ Y (T ,Rnx×nx), i.e., A(·) is not continuous, but only piecewise continuous. Hence, it
makes no sense to expect the existence of a continuously differentiable function Φ : T −→
Rnx×nx that satisfies the IVP. Instead, we use a solution concept that is similar to the one of
Carathéodory solutions for switched systems with consistent switches, cf. Section 1.2.2. We
consider a function Φ : TΦ −→ Rnx×nx as a solution of IVP (8.7) if it satisfies

Φ(t) = Inx
+

∫ t

ts

A(s)Φ(s)ds ∀t ∈ TΦ,

where TΦ ⊂ T denotes an interval with ts ∈ TΦ. One can show (see Logemann and Ryan [300,
Theorems A.30+A.31]) that Φ : TΦ −→ Rnx×nx is a solution of IVP (8.7) if and only if Φ(·) is
piecewise continuously differentiable with

Φ̇(t) = A(t)Φ(t) ∀t ∈ TΦ \N , Φ(ts) = Inx
,

where N denotes the finite set (i.e., µ(N ) = 0) of discontinuities of A(·) in T . The existence
of a solution of IVP (8.7) is guaranteed (see Logemann and Ryan [300, Theorems 2.5]) and the
solution can be characterized by means of a transition matrix function.

Lemma 8.3
Let a vector b ∈ Rnr and matrices Es, Ef ∈ Rnr×nx be given and let the fundamental system Φ(t) ∈ Rnx×nx

be the solution of the IVP

Φ̇(t) = A(t)Φ(t), Φ(ts) = Inx , (8.8)

where A ∈ Y (T ,Rnx×nx) is a time dependent matrix function. Let the fundamental solution Φ(·) satisfy
the condition

rank(EsΦ(ts) + EfΦ(tf)) = nr. (8.9)

Let a boundary value problem be defined as

ẋ (t) = A(t) x (t) + h(t), (8.10)
b = Es x (ts) + Ef x (tf), (8.11)

where h ∈ Y (T ,Rnx) is a time dependent vector function. Then IVP (8.10)–(8.11) has a solution x ∈
Y1(T ,Rnx) for every h ∈ Y (T ,Rnx) and b ∈ Rnr . △

Proof We start by parameterizing the ODE (8.10) with the initial value condition x (ts) = xs, i.e., we
consider the IVP

ẋ (t) = A(t) x (t) + h(t), x (ts) = xs.
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It can be easily checked that its solution x (·) can be expressed by means of the solution of IVP (8.8) as

x (t) = Φ(t)

�
xs +

∫ t

ts

Φ−1(τ)h(τ) dτ

�
, t ∈ T .

The boundary condition (8.11) holds if

b = Es x (ts) + Ef x (tf)

= Es xs + EfΦ(tf)

�
xs +

∫ tf

ts

Φ−1(τ)h(τ) dτ

�
= (Es + EfΦ(tf)) xs + EfΦ(tf)

∫ tf

ts

Φ−1(τ)h(τ) dτ

If we reformulate terms and exploit Φ(ts) = Inx then we get

(EsΦ(ts) + EfΦ(tf)) xs = b− EfΦ(tf)

∫ tf

ts

Φ−1(τ)h(τ) dτ.

Due to the rank condition (8.9) the matrix EsΦ(ts)+ EfΦ(tf) has full rank, and therefore the equation is
solvable for every b ∈ Rnb which completes the proof. □

Thus, Assumption 8.1 ensures that Theorem 3.7 can be applied to OCP (8.2) and we can sum-
marize:
Theorem 8.4 (Necessary Optimality Conditions for OCP (8.2))
Let us suppose that the following assumptions hold for OCP (8.2):

(i) Assumption 8.1 holds.
(ii) (x ∗, u∗) is a local minimum of OCP (8.2).

Then there exist nontrivial multipliers l0 ⩾ 0, λ∗ ∈ V ∗ and µ∗ ∈W ∗ such that

µ∗ ∈ K+ and µ∗(G(x ∗, u∗)) = 0, (8.12)

and

0= l0 J ′(x ∗, u∗)(x , u)−λ∗(H ′(x ∗, u∗)(x , u))−µ∗(G′(x ∗, u∗)(x , u)) (8.13)

for all (x , u) ∈ Z . △

The multipliers λ∗ def
= (λ∗f ,ν), where ν∈ Rnr denotes the boundary value constraint multiplier,

and µ∗ are elements of the dual spaces

V ∗ = Y (T ,Rnx)∗ × (Rnr)∗ and W ∗ = Y (T ,Rnc)∗.

The following section deals with the problem to find an explicit representation of the multi-
pliers. The variational equation (8.13) states that

0=
�
φ′xs
+ νT r ′xs

�
x (ts) +

�
φ′x f
+ νT r ′x f

�
x (tf)
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+

∫ tf

ts

ψ′x[t]x (t) dt +λ∗f
�
ẋ (·)− f ′x[·]x (·)

�
+µ∗

�
c′x[·]x (·)

�
(8.14)

0=

∫ tf

ts

ψ′u[t]u(t) dt −λ∗f
�

f ′u[·]u(·)
�
+µ∗

�
c′u[·]u(·)

�
(8.15)

hold for every x ∈ Y1(T ,Rnx) and every u ∈ Y (T ,Rnu).

8.2 Representation of Multipliers

One could argue that the variational equations (8.14)+(8.15) are of little practical use because
the multipliers λ∗f and µ∗ appear as elements of the dual spaces Y (T ,Rnx)∗ and Y (T ,Rnc)∗.
However, in this sectionwe find explicit representations for themwhich enable us to formulate
a discrete local minimum principle in the following section.
According to the duality pairing of NBV(T ,R) and Y (T ,R) the functional λ∗f possesses the
explicit representation

λ∗f (h(·)) =
N∑

n=1

∫
In

h(t)T dΛ(t) (8.16)

for every vector function h ∈ Y (T ,Rnx). Herein, the components of Λ(·) are functions of
bounded variation. Likewise, the functional µ∗ possesses the explicit representation

µ∗(h(·)) =
N∑

n=1

∫
In

h(t)T dM(t) (8.17)

for every vector function h ∈ Y (T ,Rnc). Also in this case the components of M(·) are func-
tions of bounded variation. In order to make the representation unique we choose both Λ(·)
and M(·) to be normalized such that we have Λ ∈ NBV(T ,Rnx) and M ∈ NBV(T ,Rnc). In
the following Chapter 9 we employ the representations (8.16) and (8.17) to interrelate a direct
approach based on a pseudospectral method and an indirect approach based on a Petrov–
Galerkin discretization scheme.
Next, we intensify our analysis of the multipliers λ∗f and µ∗. We start with an exploitation of
Equation (8.14) to find a representation of the functional λ∗f . For arbitrary h ∈ Y (T ,Rnx) we
consider the IVP

ẋ (t) = f ′x[t] x (t) + h(t), t ∈ T ,

x (ts) = xs.

As we have seen in the proof of Lemma 8.3 its solution is given as

x (t) = Φ(t)

�
xs +

∫ t

ts

Φ−1(τ)h(τ) dτ

�
, t ∈ T , (8.18)
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where Φ(·) denotes the fundamental solution of the IVP

Φ̇(t) = f ′x[t]Φ(t), Φ(ts) = Inx
.

For an arbitrary h ∈ Y (T ,Rnx) Equation (8.14) reads as

0=
�
φ′xs
+ νT r ′xs

�
x (ts) +

�
φ′x f
+ νT r ′x f

�
x (tf)

+

∫ tf

ts

ψ′x[t] x (t) dt +λ∗f (h(·)) +µ∗
�
c′x[·] x (·)

�
. (8.19)

Now, we introduce the solution formula (8.18) into Equation (8.19) and rearrange terms as
follows:

0=
�
φ′xs
+ νT r ′xs

�
xs +

�
φ′x f
+ νT r ′x f

�
Φ(tf)xs

+

∫ tf

ts

ψ′x[t]Φ(t)xs dt +
�
φ′x f
+ νT r ′x f

�
Φ(tf)

∫ tf

ts

Φ−1(t)h(t) dt

+

∫ tf

ts

ψ′x[t]Φ(t)
�∫ t

ts

Φ−1(τ)h(τ) dτ

�
dt

+λ∗f (h(·)) +µ∗
�
c′x[·] x (·)

�
. (8.20)

For the reader’s convenience, we provide the following result:
Lemma 8.5
Let functions f : T −→ R and g : T −→ R (both piecewise continuous) be given. Then it holds∫ tf

ts

f (t)

�∫ t

ts

g (τ) dτ

�
dt =

∫ tf

ts

�∫ tf

t

f (τ) dτ

�
g (t) dt. △

Proof See Appendix A.1. □

Applying Lemma 8.5 to Equation (8.20) and rearranging terms yields

0=
�
φ′xs
+ νT r ′xs

�
xs +

�
φ′x f
+ νT r ′x f

�
Φ(tf)xs +

∫ tf

ts

ψ′x[t]Φ(t)xs dt

+

∫ tf

ts

��
φ′x f
+ νT r ′x f

�
Φ(tf) +

∫ tf

t

ψ′x[τ]Φ(τ) dτ

�
Φ−1(t)h(t) dt

+λ∗f (h(·)) +µ∗
�
c′x[·] x (·)

�
.

We can write the equation equivalently as

0= ζT xs +

∫ tf

ts

pf(t)
T h(t) dt +λ∗f (h(·)) +µ∗

�
c′x[·] x (·)

�
, (8.21)
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where

ζT def
=
�
φ′xs
+ νT r ′xs

�
+
�
φ′x f
+ νT r ′x f

�
Φ(tf) +

∫ tf

ts

ψ′x[t]Φ(t) dt

=
�
φ′xs
+ νT r ′xs

�
+ pf(ts),

pf(t)
T def
=

��
φ′x f
+ νT r ′x f

�
Φ(tf) +

∫ tf

t

ψ′x[τ]Φ(τ) dτ

�
Φ−1(t).

Exploiting (8.21) together with (8.15) provides us with an explicit representation of functionals
λ∗f and µ∗. In particular, we deduce the function spaces of the functions λ(·) and µ(·) that
characterize λ∗f and µ∗.

Corollary 8.6 (Explicit Representation of Multipliers)
Let the assumptions of Theorem 8.4 be satisfied and let

rank
�
c′u[t]

�
= nc (8.22)

be almost everywhere in T . Furthermore, let the pseudo–inverse of c′u[t]�
c′u[t]

�+ def
= c′u[t]

T �c′u[t]c′u[t]T �−1

be essentially bounded. Then there exist functions

λ ∈ Y1(T ,Rnx), µ ∈ Y (T ,Rnc),

with

λ∗f (h(·)) = −
∫ tf

ts

λ(t)T h(t) dt,

µ∗(k(·)) =
∫ tf

ts

µ(t)T k(t) dt

for every h ∈ Y (T ,Rnx) and every k ∈ Y (T ,Rnc). △

Proof Choosing h(·) = f ′u[·]u(·) and xs = 0 in (8.21) yields

−λ∗f (h(·)) =
∫ tf

ts

pf(t)
T h(t) dt +µ∗

�
c′x[·] x (·)

�
⇐⇒ −λ∗f

�
f ′u[·]u(·)

�
=

∫ tf

ts

pf(t)
T f ′u[t]u(t) dt +µ∗

�
c′x[·] x (·)

�
, (8.23)

where x (·) is the solution of the IVP

ẋ (t) = f ′x[t] x (t) + f ′u[t]u(t), x (ts) = 0. (8.24)
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Now we write (8.15) as

λ∗f
�

f ′u[·]u(·)
�
=

∫ tf

ts

ψ′u[t]u(t) dt +µ∗
�
c′u[·]u(·)

�
, (8.25)

sum up both (8.23) and (8.25), exploit the linearity of the functional µ∗, and write the result as

0=

∫ tf

ts

�
ψ′u[t] + pf(t)

T f ′u[t]
�

u(t) dt +µ∗
�
c′x[·] x (·) + c′u[·]u(·)

�
=

∫ tf

ts

H′u[t]u(t) dt +µ∗ (k(·)) , (8.26)

where

H′u[t]
def
=ψ′u[t] + pf(t)

T f ′u[t]

and

k(t)
def
= c′x[t] x (t) + c′u[t]u(t). (8.27)

The rank assumption (8.22) enables us to express u(·) in Equation (8.27) explicitly as

u(t) =
�
c′u[t]

�+ �
k(t)− c′x[t]x (t)

�
, (8.28)

where
�
c′u[t]

�+ denotes the pseudo–inverse of c′u[t]. Introducing (8.28) into Equation (8.26) results in

0=

∫ tf

ts

H′u[t]
�
c′u[t]

�+ �
k(t)− c′x[t]x (t)

�
dt +µ∗ (k(·)) . (8.29)

Likewise we introduce (8.28) into Equation (8.24) and get

ẋ (t) = f ′x[t] x (t) + f ′u[t]
�
c′u[t]

�+ �
k(t)− c′x[t] x (t)

�
, x (ts) = 0

⇐⇒ ẋ (t) = f̂x[t] x (t) + ĥ(t), x (ts) = 0 (8.30)

where

f̂x[t]
def
= f ′x[t]− f ′u[t]

�
c′u[t]

�+
c′x[t]

and

ĥ(t)
def
= f ′u[t]

�
c′u[t]

�+
k(t). (8.31)

We use the well known solution formula for Equation (8.30) and write its solution as

x (t) = Φ̂(t)

∫ t

ts

Φ̂
−1
(τ)ĥ(τ) dτ, (8.32)

where Φ̂(·) solves the IVP

˙̂Φ(t) = f̂x[t]Φ̂(t), Φ̂(ts) = Inx .
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Substituting (8.31) into the solution formula (8.32) yields

x (t) = Φ̂(t)

∫ t

ts

ω(τ)T k(τ) dτ (8.33)

with

ω(t)T
def
= Φ̂

−1
(t) f ′u[t]

�
c′u[t]

�+
.

Now we insert (8.33) into (8.29) and integrate by parts, which results in

−µ∗ (k(·)) =
∫ tf

ts

H′u[t]
�
c′u[t]

�+ �
k(t)− c′x[t] x (t)

�
dt

=

∫ tf

ts

H′u[t]
�
c′u[t]

�+
k(t) dt

−
∫ tf

ts

H′u[t]
�
c′u[t]

�+
c′x[t] Φ̂(t)

�∫ t

ts

ω(τ)T k(τ) dτ

�
dt

=

∫ tf

ts

H′u[t]
�
c′u[t]

�+
k(t) dt

−
∫ tf

ts

�∫ tf

t

H′u[τ]
�
c′u[τ]

�+
c′x[τ] Φ̂(τ) dτ

�
ω(t)T k(t) dt.

By introducing the function µ(·) as

µ(t)T
def
=

�∫ tf

t

H′u[τ]
�
c′u[τ]

�+
c′x[τ] Φ̂(τ) dτ

�
ω(t)T −H′u[t]

�
c′u[t]

�+
we find the representation

µ∗ (k(·)) =
∫ tf

ts

µ(t)T k(t) dt.

We substitute the representation into (8.21), integrate by parts, and exploit the solution formula (8.18)
which yields

−λ∗f (h(·)) = ζT xs +

∫ tf

ts

pf(t)
T h(t) dt +

∫ tf

ts

µ(t)T c′x[t] x (t) dt

= ζT xs +

∫ tf

ts

pf(t)
T h(t) dt +

∫ tf

ts

µ(t)T c′x[t]Φ(t)
�

xs +

∫ t

ts

Φ−1(τ)h(τ) dτ

�
dt

=

�
ζT +

∫ tf

ts

µ(t)T c′x[t]Φ(t) dt

�
xs +

∫ tf

ts

pf(t)
T h(t) dt

+

∫ tf

ts

�∫ tf

t

µ(τ)T c′x[τ]Φ(τ) dτ

�
Φ−1(t)h(t) dt.
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Alternatively we can write it as

−λ∗f (h(·)) = ζ̂T xs +

∫ tf

ts

λ(t)T h(t) dt

with

ζ̂T def
= ζT +

∫ tf

ts

µ(t)T c′x[t]Φ(t) dt

and

λ(t)T
def
= pf(t)

T +

�∫ tf

t

µ(τ)T c′x[τ]Φ(τ) dτ

�
Φ−1(t).

Setting xs = 0 yields

λ∗f (h(·)) = −
∫ tf

ts

λ(t)T h(t) dt. □

8.3 Local Minimum Principle

In this section we derive first–order necessary optimality conditions for OCP (8.2) in terms
of a local minimum principle. They are expressed by means of the associated augmented
Hamilton function.
Definition 8.7 (Hamilton Function for OCP (8.2))
Considering OCP (8.2) the Hamilton function H : T ×Rnx ×Rnu ×Rnx ×R −→ R is defined as

H(t, x , u,λ,µ, l0)
def
= l0ψ(t, x , u) +λT f (t, x , u). △

Now, the augmented Hamilton function for OCP (8.2) is presented.
Definition 8.8 (Augmented Hamilton Function for OCP (8.2))
Considering OCP (8.2) the augmented Hamilton function Ĥ : T ×Rnx ×Rnu ×Rnx ×Rnc ×R −→ R is
defined as

Ĥ(t, x , u,λ,µ, l0)
def
=H(t, x , u,λ,µ, l0) +µ

T c(t, x , u)

= l0ψ(t, x , u) +λT f (t, x , u) +µT c(t, x , u). △

Theorem 8.9 (Discrete Local Minimum Principle)
Let the following assumptions be satisfied by the OCP (8.2):

(i) Let the functions φ,ψ, f , c and r be continuous with respect to all arguments and continuously
differentiable with respect to x and u .

(ii) Let (x ∗, u∗) be a weak local minimum of the OCP.
(iii) Let

rank(c′u(t, x ∗(t), u∗(t))) = nc
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almost everywhere in T .

(iv) Let the pseudo–inverse of c′u[t]�
c′u[t]

�+
= c′u[t]

T �c′u[t]c′u[t]T �−1

be essentially bounded.

Then there exist multipliers ν∈ Rnr ,

λ ∈ Y1(T ,Rnx), µ ∈ Y (T ,Rnc)

such that the following conditions hold:

(i) (l0,λ,µ,ν) ̸= Θ
(ii) Adjoint equations: almost everywhere in T it holds

λ̇(t) = −H′x (t, x ∗(t), u∗(t),λ(t),µ(t))T .

(iii) Transversality conditions:

λ(ts)
T = −�φ′xs

(x ∗(ts), x ∗(tf)) + νT r ′xs
(x ∗(ts), x ∗(tf))

�
(8.34)

λ(tf)
T = φ′xf(x

∗(ts), x ∗(tf)) + νT r ′xf(x
∗(ts), x ∗(tf)) (8.35)

(iv) Stationarity of Hamilton function: almost everywhere in T it holds

0nu =H′u(t, x ∗(t), u∗(t),λ(t),µ(t))T .

(v) Complementarity condition: almost everywhere in T it holds

0nc ⩽ µ(t) and µ(t)T c(t, x ∗(t), u∗(t)) = 0. (8.36)
△

Proof Under the assumptions of this theorem Corollary 8.6 ensures that there exist Lagrange multi-
pliers λ ∈ Y1(T ,Rnx) and µ ∈ Y (T ,Rnc) such that the dual functionals λ∗f and µ∗ can be expressed
as

λ∗f (h(·)) = −
∫ tf

ts

λ(t)T h(t) dt,

µ∗(k(·)) =
∫ tf

ts

µ(t)T k(t) dt

for every h ∈ Y (T ,Rnx) and every k ∈ Y (T ,Rnc). Equation (8.14) is therefore equivalent to

0=
�
φ′xs
+ νT r ′xs

�
x (ts) +

�
φ′x f
+ νT r ′x f

�
x (tf)

+

∫ tf

ts

ψ′x[t]x (t) dt −
∫ tf

ts

λ(t)T
�
ẋ (t)− f ′x[t]x (t)

�
dt +

∫ tf

ts

µ(t)T c′x[t]x (t) dt
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for all x ∈ Y1(T ,Rnx). Using the definition of the Hamilton function it can be written as

0=
�
φ′xs
+ νT r ′xs

�
x (ts) +

�
φ′x f
+ νT r ′x f

�
x (tf)

+

∫ tf

ts

H′x[t] x (t) dt −
∫ tf

ts

λ(t)T ẋ (t) dt

for all x ∈ Y1(T ,Rnx). Applying Lemma 2.85 it holds for some constant vector C and for all t that

C = λ(t)−
∫ tf

t

H′x[τ]
T dτ.

Evaluating this equation at t = tf yields C = λ(tf) and

λ(t) = λ(tf) +

∫ tf

t

H′x[τ]
T dτ. (8.37)

This shows the validity of the adjoint equation. If we apply properties of the Stieltjes integral (see
Theorem 2.83) we have

0=
�
φ′xs
+ νT r ′xs

�
x (ts) +

�
φ′x f
+ νT r ′x f

�
x (tf)

+

∫ tf

ts

H′x[t] x (t) dt −
∫ tf

ts

λ(t)T dx (t).

Integration by parts yields

0=
�
φ′xs
+ νT r ′xs

+λ(ts)
T
�

x (ts) +
�
φ′x f
+ νT r ′x f

−λ(tf)T
�

x (tf)

+

∫ tf

ts

H′x[t] x (t) dt +

∫ tf

ts

x (t)T dλ(t)

for all x ∈ Y1(T ,Rnx). This can be equivalently written as

0=
�
φ′xs
+ νT r ′xs

+λ(ts)
T
�

x (ts) +
�
φ′x f
+ νT r ′x f

−λ(tf)T
�

x (tf)

+

∫ tf

ts

x (t)T d
�
λ(t)−

∫ tf

t

H′x[τ]
T dτ

�
.

for all x ∈ Y1(T ,Rnx). By a substitution of (8.37) into the last equation we get

0=
�
φ′xs
+ νT r ′xs

+λ(ts)
T
�

x (ts) +
�
φ′x f
+ νT r ′x f

−λ(tf)T
�

x (tf).

Since this holds for all variations of x (·)we obtain the transversality conditions (8.34) and (8.35). We can
write (8.15) as

0=

∫ tf

ts

ψ′u[t]u(t) dt +

∫ tf

ts

λ(t)T f ′u[t]u(t) dt +

∫ tf

ts

µ(t)T c′u[t]u(t) dt

=

∫ tf

ts

H′u[t]u(t) dt
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for all u ∈ Y (T ,Rnu). An application of the variational Lemma 2.85 with g ≡ 0 yields

0=

∫ tf

t

H′u[τ]
T dτ,

showing the validity of the Hamilton function stationarity. Next, we investigate the conditions (8.12).
It holds

µ∗ ∈ K+ ⇐⇒
∫ tf

ts

µ(t)T k(t) dt ⩾ 0 for k ∈ Y (T ,Rnc), k(t)⩾ 0 a.e. in T .

The application of Lemma 2.86 shows that µ(t)⩾ 0 almost everywhere in T . Thus, the first part of (8.36)
holds. The complementarity condition can be written as

µ∗(G(x ∗, u∗)) = 0 ⇐⇒
∫ tf

ts

µ(t)T c(t, x ∗(t), u∗(t)) dt = 0,

showing the validity of the second part of (8.36). □

8.4 Regularity Conditions

It is the goal of this section to state conditions such that l0 ̸= 0 is satisfied. Before, we formulate
a result that follows from Lemma 8.3 and does therefore not require a proof.

Corollary 8.10 (Surjectivity of H ′(x̂ , û))
Let the rank condition

rank(r ′xs Φ(ts) + r ′xf Φ(tf)) = nr

be satisfied for the fundamental solution Φ(·) of the IVP

Φ̇(t) = f ′x[t]Φ(t), t ∈ T , Φ(ts) = Inx .

Then H ′(x̂ , û) with the functional H from (8.5) is surjective. △

The Mangasarian–Fromowitz constraint qualifications given in Corollary 3.11 provide us
with constraint qualifications for OCP 8.2. We exploit the fact that the interior of the cone K
from (8.4) can be written as

int(K) =
�

k ∈ Y (T ,Rnc) : k(t)> 0nc
, t ∈ T

	
.

Lemma 8.11
Let the assumptions of Corollary 8.10 and Theorem 8.9 be fulfilled. Let functions x ∈ Y1(T ,Rnx) and
u ∈ Y (T ,Rnu) exist such that

0nx = f ′x[t] x (t) + f ′u[t]u(t)− ẋ (t) t ∈ T ,

0nr = r ′xs Φ(ts) + r ′xf Φ(tf),

0nc > c[t] + c′x[t] x (t) + c′u[t]u(t) t ∈ T .
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Then the Mangasarian–Fromowitz constraint qualification is satisfied and one can choose l0 = 1 in
Theorem 8.9. △
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Chapter 9

An Interpretation for Discrete Adjoints of Collocation
Methods

In Section 5.5.3 we analyzed benefits and drawbacks of both indirect and direct solution meth-
ods. As we have seen, one major advantage of using indirect methods is that obtained solution
approximations have a high accuracy. Indirect methods do not only include state and control
approximations but also costate approximations. Having a good costate approximation helps
in verifying the optimality of solutions or in generating meaningful mesh refinement strate-
gies.
Since direct methods do not include equations of the local minimum principle they usually do
not approximate the costates. Recently there has been put much effort to estimate costates
for many direct methods. There have been developed different approaches: some costate
approximation approaches are based on a post–processing step, cf. Martell and Lawton
[312], Herman and Conway [230]. As can be seen e.g. in the work of Seywald and Kumar
[401], a further approach for approximating costate variables is based on an interpretation
of the costate variables as sensitivities connected to the gradient of the cost function. En-
right and Conway [146] proposed a method to estimate costates in combination with direct
collocation methods, where they used multipliers in the discretized problem associated with
the boundary conditions in order to estimate the costate evaluated at the terminal point. A
backward integration of the adjoint differential equations with this initial value estimate then
provides the costate approximation. Other authors relate the continuous costate dynamics
and the KKT conditions associated with the NLP arising from the direct transcription. Here
KKT multipliers can be algebraically mapped via a simple calculation to the discrete costates,
which result from a certain discretization of the PMP. In the followingwe briefly provide refer-
ences for this approach applied with different discretization strategies: Euler discretizations
were used by Gerdts [190, Section 5.4], whereas different one–step and multistep integration
schemes were investigated by Hager [214]. Cubic collocation at Lobatto points was exam-
ined by von Stryk [440]. Recently, strategies have been established involving global orthog-
onal collocation methods to discretize both the OCP and the PMP. Here, one can use meth-
ods based on Legendre–Gauss (LG) collocation points (see e.g. Benson [52], Benson et al.
[53]), on Legendre–Gauss–Radau (LGR) collocation points (see e.g. Garg et al. [182]), or on
Legendre–Gauss–Lobatto (LGL) collocation points (see e.g. Fahroo and Ross [154], Gong
et al. [200]). Local orthogonal collocation methods were used by Kameswaran and Biegler
[261, 262], Darby et al. [123] to estimate costates.
The approach we propose in this contribution interrelates the KKT multipliers obtained by
a local orthogonal collocation discretization method with associated costates arising from a
PMP discretization. Thereby the discretization approach for the PMP equations takes some
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insights into account which stem from the novel functional analytic framework that has been
developed in the previous chapter. A Petrov–Galerkin approximation is applied to the PMP
to transfer the infinite dimensional conditions into a finite dimensional system of equations.
The choice of function spaces for test functions and solution functions is motivated by the
minimum principle in the function space Y (T ,R), cf. Section 8.3. Afterwards, we show the
equivalence of the equations arising from the Petrov–Galerkin approach and the KKT con-
ditions resulting from the collocation methods. Our approach adopts and extends an idea
presented by Beigel [41, Chapter 6]. She could show for the case of ODE IVPs that a certain
Petrov–Galerkin approximation of necessary conditions is equivalent to the BDF method
and its discrete adjoint IND scheme.
The structure of this chapter looks as follows: the first section introduces a rather general OCP
formulation that will be investigated in the remainder of the chapter. In order to facilitate the
subsequent analysis the problemwith free time is transformed into an equivalent problemwith
fixed time horizon by means of standard reformulations as they were presented in Section 5.1.
Furthermore, Section 9.1 contains some required auxiliary results.
In Section 9.2 we first reformulate the OCP and apply a time transformation rule. Afterwards
the problem is discretized using a pseudospectral discretization approach involving Flipped
Legendre–Gauss–Radau collocation points. Finally, we derive the KKT conditions of the
resulting NLP.
Section 9.3 provides a detailed description of the discretized equations which result from a
Petrov–Galerkin transcription of the minimum principle conditions that we found in Chap-
ter 8.
The final section of this chapter deals with the extraction of a mapping between the KKT con-
ditions from Section 9.2 and the discretized first–order necessary conditions from Section 9.3.

9.1 Problem Formulation

Continuous–Time Bolza Optimal Control Problem In this chapter we investigate the
OCPwith free start and final time fromChapter 7. To this end let sufficiently smoothmappings
be given as follows:

φ : R×Rnx ×R×Rnx −→ R,

ψ : T ×Rnx ×Rnu −→ R,

f : T ×Rnx ×Rnu −→ Rnx ,

c : T ×Rnx ×Rnu −→ Rnc ,

r : R×Rnx ×R×Rnx −→ Rnr .

As usual T denotes the horizon interval. Based on our reasoning of previous chapters we
would like to solve our OCP with state function x (·) and control function u(·) to be chosen
in the function spaces x ∈ Y1(T ,Rnx) and u ∈ Y (T ,Rnu), respectively. We consider the
free–time OCP
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min
ts,tf,x ,u

φ(ts, x (ts), tf, x (tf)) +

∫ tf

ts

ψ(t, x (t), u(t)) dt (9.1)

s. t. ẋ (t) = f (t, x (t), u(t)), t ∈ T ,

0nc
⩾ c(t, x (t), u(t)), t ∈ T ,

0nr
= r (ts, x (ts), tf, x (tf)).

In the following, we describe briefly the way to go in order to be able to interrelate KKT
multipliers arising from a local pseudospectral discretization approachwith discretized adjoint
variables from the local minimum principle. The goal is achieved by applying a direct method
on the one hand, and an indirect method on the other hand.
The direct approach is described in Section 9.1.1 and Section 9.2: in Section 9.1.1 we recall the
equivalent reformulation of OCP (9.1) to a scaledOCP (see Section 7.1) taking into consideration
the special structure of the function spaces Y1 and Y . Section 9.2 recalls the NLP arising from
a local pseudospectral discretization of the scaled OCP (see Section 7.4) and derives its KKT
system.
We investigate the indirect approach in Section 9.1.2 and Section 9.3: first we apply the local
minimum principle, which was derived in Chapter 8, to a scaled form of OCP (9.1) in Sec-
tion 9.1.2. Afterwards, we derive a weak formulation, a well–established technique in the
PDE community. This leads to an infinite dimensional variational inequality problem. A dis-
cretization of the problem with a Petrov–Galerkin approach in Section 9.3 results in a finite
dimensional variational inequality problem, which can be transferred to a nonlinear system
of equalities and inequalities.
Section 9.4 is dedicated to assembling the direct and indirect approach: to this endwe show the
equivalence of the direct approach KKT system and the indirect approach nonlinear system
in the following sense: given a solution of one system there exists a mapping such that the
mapped solution results in a solution to the other system.

9.1.1 First Discretize, Then Optimize

For the direct approach we consider the following reformulation of OCP (9.1):

min
ts ,tf ,x ,u

φ(ts, x (1)(−1), tf, x (N)(+1)) +
h
2

N∑
n=1

hn

2

∫ +1

−1
ψn(τ, x (n)(τ), u(n)(τ); ts, tf) dτ (9.2)

s. t. ẋ (n)(τ) =
h
2

hn

2
· fn(τ, x (n)(τ), u(n)(τ); ts, tf), 1⩽ n⩽ N , τ ∈ [−1,1],

0nc ⩾ cn(τ, x (n)(τ), u(n)(τ); ts, tf), 1⩽ n⩽ N , τ ∈ [−1,1],

0nr = r (ts, x (1)(−1), tf, x (N)(+1)),

0nx = x (n+1)(−1)− x (n)(+1), 1⩽ n⩽ N − 1.

The terms are defined in accordance with the ones from OCP (7.7). Note that the fixed ’hidden’
temporal grid −1 = t0 < t1 < . . . < tN = +1 in OCP (9.2) is crucial since the interval
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boundaries of T are variables by definition. Hence, it is improper to seek x ∈ Y1(T ,Rnx) and
u ∈ Y (T ,Rnu). In OCP (9.2) we have overcome the problem and with the aforementioned
temporal grid we search solutions with x ∈ Y1([−1,+1],Rnx) and u ∈ Y ([−1,+1],Rnu).
Finally, by applying an additional scaling step we assemble the full horizon trajectories x (·)
and u(·) from pieces x (n) ∈ C1

b([−1,+1],Rnx) and u(n) ∈ C0
b([−1,+1],Rnu). Continuity of the

state trajectories is enforced by additionally employing matching conditions in OCP (9.2).

9.1.2 First Optimize, Then Discretize

For the indirect approach we consider the following reformulation of OCP (9.1):

min
ts,tf,x ,u

φ(ts, x (−1), tf, x (+1)) +
h
2

∫ +1

−1

ψ(τ, x (τ), u(τ); ts, tf) dτ (9.3)

s. t. ẋ (τ) =
h
2
· f (τ, x (τ), u(τ); ts, tf), τ ∈ [−1,1],

0nc
⩾ c(τ, x (τ), u(τ); ts, tf), τ ∈ [−1,1],

0nr
= r (ts, x (−1), tf, x (+1)),

The terms are defined in accordance with the ones from OCP (7.5). In contrast, the direct
approach we employ x ∈ Y1([−1,+1],Rnx) and u ∈ Y ([−1,+1],Rnu) without an additional
scaling step.

The Local Minimum Principle

For OCP (9.3) we set up the necessary optimality conditions, which have been derived in
Chapter 8: to this end, let us consider the associated Hamilton function H : R×Rnx ×Rnu ×
Rnx ×R×R −→ R with

H(t, x , u,λ; ts, tf) =ψ(t, x , u; ts, tf) +λ
T f (t, x , u; ts, tf)

and the augmented Hamilton function Ĥ : R×Rnx ×Rnu ×Rnx ×Rnc ×R×R −→ R with

Ĥ(t, x , u,λ,µ; ts, tf) =H(t, x , u,λ; ts, tf) +µ
T c(t, x , u; ts, tf)

=ψ(t, x , u; ts, tf) +λ
T f (t, x , u; ts, tf) +µ

T c(t, x , u; ts, tf). (9.4)

The PMP can be expressed in terms of Ĥ(·) and it states that the following conditions hold:

(i) Adjoint equations: almost everywhere in [−1,+1] it holds

0nx
= λ̇(t) +

h
2
· Ĥ′x(t, x (t), u(t),λ(t),µ(t); ts, tf)

T

= λ̇(t) +
h
2
· �ψ′x[t] + f ′x[t]λ(t) + c′x[t]µ(t)

	
. (9.5)
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(ii) Transversality conditions: it holds

0nx
= λ(−1) + r ′xs

ν +φ′xs
, (9.6)

0nx
= λ(+1)− r ′x f

ν −φ′x f
, (9.7)

0= Ĥ[−1]− r ′ts
ν −φ′ts

, (9.8)

0= Ĥ[+1] + r ′t f
ν +φ′t f

. (9.9)

(iii) Stationarity of augmented Hamilton function: almost everywhere in [−1,+1] it holds

0nu
= Ĥ′u(t, x (t), u(t),λ(t),µ(t); ts, tf)

T

=ψ′u[t] + f ′u[t]λ(t) + c′u[t]µ(t). (9.10)

(iv) Complementarity condition: almost everywhere in [−1,+1] it holds

0nc
⩽ µ(t) and 0= µ(t)T c(t, x (t), u(t); ts, tf). (9.11)

Additionally, the constraints of OCP (9.3) have to be satisfied:

0nx
= ẋ (t)− h

2
Ĥ′λ(t, x (t), u(t),λ(t),µ(t); ts, tf)

T

= ẋ (t)− h
2

f (t, x (t), u(t); ts, tf), (9.12)

0nc
⩾ c(t, x (t), u(t); ts, tf), (9.13)

0nr
= r (ts, x (−1), tf, x (+1)). (9.14)

Weak Formulation

Now we formulate variational equalities and inequalities from the PMP conditions. We have
described a similar concept involving trial and test functions in Section 6.3.2, namely the
weighted residual method.

Weak Form [(9.5)+ (9.6)+ (9.7)] The variational formulation for the adjoint equation (9.5) is
given as

0=

∫ +1

−1

φx
T (t)

§
λ̇(t) +

h
2
Ĥ′x(t, x (t), u(t),λ(t),µ(t); ts, tf)

T
ª

dt

=
h
2

∫ +1

−1

φx
T (t)ψ′x[t] dt +

∫ +1

−1

φx
T (t)

§
λ̇(t) +

h
2

f ′x[t]λ(t)
ª

dt

+
h
2

∫ +1

−1

φx
T (t) c′x[t]µ(t) dt, ∀φx ∈ Y1([−1,+1],Rnx). (9.15)
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Using partial integration we reformulate Equation (9.15) as

0=
h
2

∫ +1

−1

φx
T (t)ψ′x[t] dt +

∫ +1

−1

φx
T (t) λ̇(t) dt +

h
2

∫ +1

−1

φx
T (t) f ′x[t]λ(t) dt

+
h
2

∫ +1

−1

φx
T (t) c′x[t]µ(t) dt

=
h
2

∫ +1

−1

φx
T (t)ψ′x[t] dt +

∫ +1

−1

λT (t)
§

h
2

f ′x[t]φx(t)− φ̇x(t)
ª

dt

+
h
2

∫ +1

−1

φx
T (t) c′x[t]µ(t) dt

+φx
T (+1)λ(+1)−φx

T (−1)λ(−1), ∀φx ∈ Y1([−1,+1],Rnx).

By means of the identity function id : [−1,+1] −→ [−1,+1], t 7→ id(t) = t and the
Lebesgue–Stieltjes integral we write this equation as

0=
h
2

∫ +1

−1

ψ′x[t]φx(t) d id(t) +

∫ +1

−1

h
2

f ′x[t]φx(t)− φ̇x(t) dΛ(t)

+
h
2

∫ +1

−1

c′x[t]φx(t) dM(t)

+φx
T (+1)λ(+1)−φx

T (−1)λ(−1), ∀φx ∈ Y1([−1,+1],Rnx).

Here Λ(·) ∈ NBV([−1,+1],Rnx) and M(·) ∈ NBV([−1,+1],Rnc) are given in terms of the
adjoint solutions λ(·) and µ(·) as

Λ(t) =

∫ t

−1

λ(τ) dτ and M(t) =

∫ t

−1

µ(τ) dτ, (9.16)

with componentwise integration. We introduce the half–open intervals In
def
= (tn−1, tn] for

1 ⩽ n ⩽ N such that we can split the interval [−1,+1] according to the partition encoded in
the Yk , k = 1,2, function spaces as

[−1,+1] = {ts} ∪ I1 ∪ . . .∪ IN .

Hence, we can write the necessary condition as

0=
N∑

n=1

¨
h
2

∫
In

ψ′x[t]φx(t) d id(t) +

∫
In

h
2

f ′x[t]φx(t)− φ̇x(t) dΛ(t)

+
h
2

∫
In

c′x[t]φx(t) dM(t)
«

+φx
T (+1)λ(+1)−φx

T (−1)λ(−1), ∀φx ∈ Y1([−1,+1],Rnx). (9.17)
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In order to transform the occurring integral boundaries In in (9.17) to the normalized interval
(−1,1] we apply the following auxiliary result:
Lemma 9.1 (Substitution Rule for Stieltjes Integrals)
Let φ : [a, b] −→ R and f : [φ(a),φ(b)] −→ R be continuous and let g : [φ(a),φ(b)] −→ R be of
bounded variation. Then it holds∫ b

a

f (φ(t)) dg (φ(t)) =

∫ φ(b)

φ(a)

f (t) dg (t). △

Proof See e.g. Falkner and Teschl [155]. □

Let us consider the linear time transformation mappings tn : [−1,1] −→ In, 1 ⩽ n ⩽ N ,
which are defined as

tn(t)
def
=

tn + tn−1

2
+ t · tn − tn−1

2
.

Integration by substitution for the Lebesgue–Stieltjes integral allows us to normalize the
integration boundaries of (9.17). Together with employing (9.6) and (9.7) this yields

0=
N∑

n=1

¨
h
2

∫
(−1,1]

ψ′x [tn(t)]φx (tn(t)) d tn(t) +

∫
(−1,1]

h
2

f ′x [tn(t)]φx (tn(t))− φ̇x (tn(t)) dΛ(tn(t))

+
h
2

∫
(−1,1]

c′x [tn(t)]φx (tn(t)) dM(tn(t))

«
+φx

T (+1)
�

r ′x f
ν +φ′x f

�
+φx

T (−1)
�
r ′xs
ν +φ′xs

�
, ∀φx ∈ Y1([−1,+1],Rnx ). (9.18)

Weak Form [(9.8)+ (9.9)] The following auxiliary result provides us with an alternative rep-
resentation for the transversality conditions (9.8)+(9.9).
Lemma 9.2
Let the augmented Hamilton function Ĥ(·) be defined according to (9.4). Then Ĥ[−1] and Ĥ[+1] can
be expressed as

Ĥ[−1] = − tf − ts
2

∫ +1

−1

Ĥ′ts[τ] dτ+
1
2

∫ +1

−1

Ĥ[τ] dτ,

Ĥ[+1] = +
tf − ts

2

∫ +1

−1

Ĥ′tf[τ] dτ+
1
2

∫ +1

−1

Ĥ[τ] dτ. △

Proof See Appendix A.2. □

Using this lemma the transversality conditions (9.8) and (9.9) can be alternatively written as

0= −1
2

∫ +1

−1

Ĥ[t] dt +
h
2

∫ +1

−1

Ĥ′ts[t] dt +φ′ts + r ′ts ν, (9.19)

0= −1
2

∫ +1

−1

Ĥ[t] dt − h
2

∫ +1

−1

Ĥ′tf[t] dt −φ′tf − r ′tf ν . (9.20)
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The weak formulations of (9.19)+(9.20) are obtained as

0= φts
T

¨
−1

2

∫ +1

−1

Ĥ[t] dt +
h
2

∫ +1

−1

Ĥ′ts[t] dt +φ′ts + r ′ts ν
«

, ∀φts ∈ R, (9.21)

0= φtf
T

¨
−1

2

∫ +1

−1

Ĥ[t] dt − h
2

∫ +1

−1

Ĥ′tf[t] dt −φ′tf − r ′tf ν
«

, ∀φtf ∈ R. (9.22)

Similarly to the variational formulation for the adjoint equation we introduce the Lebesgue–
Stieltjes integral and apply an interval transformation step to (9.21) which yields

0=φts
T

¨
−1

2

N∑
n=1

�∫
In

ψ[t] d id(t) +

∫
In

f [t] dΛ(t) +

∫
In

c[t] dM(t)
�

+
h
2

N∑
n=1

�∫
In

ψ′ts[t] d id(t) +

∫
In

f ′ts[t] dΛ(t) +

∫
In

c′ts[t] dM(t)
�

+φ′ts + r ′ts ν
©

=φts
T

¨
−1

2

N∑
n=1

�∫
(−1,1]

ψ[tn(t)] d id(tn(t)) +

∫
(−1,1]

f [tn(t)] dΛ(tn(t))

�
+

h
2

N∑
n=1

�∫
(−1,1]

ψ′ts[tn(t)] d id(tn(t)) +

∫
(−1,1]

f ′ts[tn(t)] dΛ(tn(t))

+

∫
(−1,1]

c′ts[tn(t)] dM(tn(t))

�
+φ′ts + r ′ts ν

«
, ∀φts ∈ R. (9.23)

Note that we exploited the complementarity condition applied to the term
∫
In

c[t] dM(t)
which vanishes. Repeating the same step with (9.22) leads to

0=φtf
T

¨
1
2

N∑
n=1

�∫
In

ψ[t] d id(t) +

∫
In

f [t] dΛ(t) +

∫
In

c[t] dM(t)
�

+
h
2

N∑
n=1

�∫
In

ψ′tf[t] d id(t) +

∫
In

f ′tf[t] dΛ(t) +

∫
In

c′tf[t] dM(t)
�

+φ′tf + r ′tf ν
©

=φtf
T

¨
1
2

N∑
n=1

�∫
(−1,1]

ψ[tn(t)] d id(tn(t)) +

∫
(−1,1]

f [tn(t)] dΛ(tn(t))

�
+

h
2

N∑
n=1

�∫
(−1,1]

ψ′tf[tn(t)] d id(tn(t)) +

∫
(−1,1]

f ′tf[tn(t)] dΛ(tn(t))
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+

∫
(−1,1]

c′tf[tn(t)] dM(tn(t))

�
+φ′tf + r ′tf ν

«
, ∀φtf ∈ R. (9.24)

Weak Form [(9.10)] The variational approach for the Hamilton stationarity condition (9.10)
reads as

0=

∫ +1

−1

φu
T (t)ψ′u[t] dt +

∫ +1

−1

φu
T (t) f ′u[t]λ(t) dt

+

∫ +1

−1

φu
T (t) c′u[t]µ(t) dt, ∀φu ∈ Y ([−1,+1],Rnu),

such that introducing the Lebesgue–Stieltjes integral results in the formulation

0=

∫ +1

−1

ψ′u[t]φu(t) d id(t) +

∫ +1

−1

f ′u[t]φu(t) dΛ(t)

−
∫ +1

−1

c′u[t]φu(t) dM(t), ∀φu ∈ Y ([−1,+1],Rnu).

By splitting the horizon interval according to the Y function space we can write the equation
as

0=
N∑

n=1

¨∫
In

ψ′u[t]φu(t) d id(t) +

∫
In

f ′u[t]φu(t) dΛ(t)

+

∫
In

c′u[t]φu(t) dM(t)
«

, ∀φu ∈ Y ([−1,+1],Rnu).

Finally, by applying a normalization of the interval length we end up with

0=
N∑

n=1

¨∫
(−1,1]

ψ′u[tn(t)]φu(tn(t)) d tn(t) +

∫
(−1,1]

f ′u[tn(t)]φu(tn(t)) dΛ(tn(t))

+

∫
(−1,1]

c′u[tn(t)]φu(tn(t)) dM(tn(t))

«
, ∀φu ∈ Y ([−1,+1],Rnu). (9.25)

Weak Form [(9.11)+ (9.13)] We start with the weak formulation for the inequality in (9.11)
and find

0⩽
∫ +1

−1

φµ
T (t)µ(t) dt, ∀φµ ∈ Y ([−1,+1],Rnc), φµ ⩾ 0nc

. (9.26)
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Thus we can calculate

0⩽
∫ +1

−1

φµ(t) dM(t) =
N∑

n=1

∫
In

φµ(t) dM(t)

=
N∑

n=1

∫
(−1,1]

φµ(tn(t)) dM(tn(t)), ∀φµ ∈ Y ([−1,+1],Rnc), φµ ⩾ 0nc
. (9.27)

The weak formulation of the equality in (9.11) can be expressed as

0=

∫ +1

−1

φM (t) c(t, x (t), u(t); ts, tf) dM(t), ∀φM ∈ Y ([−1,+1],R).

Splitting the horizon interval and normalizing the single interval leads to

0=
N∑

n=1

∫
In

φM (t) c(t, x (t), u(t); ts, tf) dM(t)

=
N∑

n=1

∫
(−1,+1]

φM (tn(t)) c[tn(t)] dM(tn(t)) ∀φM ∈ Y ([−1,+1],R) (9.28)

Likewise we proceed with (9.13):

0⩾
∫ +1

−1

c(t, x (t), u(t); ts, tf) dφc(t), ∀φc ∈NBV([−1,+1],Rnc), φc ⩾ 0nc
.

Hence, we end up with

0⩾
N∑

n=1

∫
In

c(t, x (t), u(t); ts, tf) dφc(t)

=
N∑

n=1

∫
(−1,1]

c[tn(t)] dφc(tn(t)), ∀φc ∈NBV([−1,+1],Rnc), φc ⩾ 0nc
. (9.29)

Weak Form [(9.12)] The weak formulation of differential equation (9.12) looks as follows:

0=

∫ +1

−1

φλ
T (t)

§
ẋ (t)− h

2
f (t, x (t), u(t); ts, tf)

ª
dt, ∀φλ ∈NBV([−1,+1],Rnx). (9.30)

By means of the Lebesgue–Stieltjes integral we write (9.30) as

0=

∫ +1

−1

ẋ (t)− h
2

f (t, x (t), u(t); ts, tf) dφΛ(t), ∀φΛ ∈NBV([−1,+1],Rnx).
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Splitting the integral and normalizing the integral bounds reads as

0=
N∑

n=1

∫
In

ẋ (t)− h
2

f (t, x (t), u(t)) dφΛ(t)

=
N∑

n=1

∫
(−1,1]

ẋ (tn(t))− h
2

f [tn(t)] dφΛ(tn(t)), ∀φΛ ∈NBV([−1,+1],Rnx). (9.31)

Weak Form [(9.14)] The weak formulation of (9.14) is given by

0= φr
T r (ts, x (−1), tf, x (+1)), ∀φr ∈ Rnr . (9.32)

The Mapping Theorem

Optimal Control
Problem

Infinite Dimensional
Optimality System

NLP

Finite Dimensional
Optimality System

differentiate

discretize

discretize

differentiate

Figure 9.1: In the figure there are the two ways depicted how we discretize the OCP (9.1). In
the first way, we employ a collocation method which results in a NLP (arrow to the right)
whose KKT form a finite dimensional equation system. For the second way, we determine
the weak formulation of the local minimum principle equations (arrow to the bottom) and
discretize them with a Petrov–Galerkin method leading to another finite dimensional equa-
tion system. Both equation systems are equivalent in the sense described in Theorem 9.3.

We state the main result of this chapter in terms of the following theorem.
Theorem 9.3
Let OCP (9.1) be discretized by means of a local collocation method (see Section 7.4) and let the KKT
system of the resulting NLP be given as F1(w1) = 0. Let the weak formulation (Equations (9.18), (9.23),
(9.24), (9.25), (9.28), (9.29), (9.31), and (9.32)) of the optimality system (Equations (9.5)–(9.14)) to OCP (9.1)
be discretized with the help of a tailored Petrov–Galerkin discretization approach (see Section 9.3) and
let the resulting equation system be given as F2(w2) = 0. Then both systems are equivalent in the sense
that for a solution w∗1 of the first system (i.e., it holds F1(w∗1) = 0) there exists a mapping T12(·) such that
F2(T12(w∗1)) = 0, i.e., T12(·) maps w∗1 to a solution of the second system. The same statement holds also
for the other direction. △

The proof of Theorem 9.3 follows straight from the calculations of Section 9.2 and Section 9.3.
Moreover, we are even able to specify the mappings which transform a solution of one system
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to a solution of the other. Figure 9.1 illustrates how the collocation approach and the Petrov–
Galerkin approach work starting from the OCP.

9.1.3 Auxiliary Results

In order to be able to prove the mapping theorem we need some supplementary material. To
this end let us consider the two Lagrange polynomials

L j(t)
def
=

K∏
i=0
i ̸= j

t − t i

t j − t i
, deg

�
L j

�
= K , deg

�
L̇ j

�
= K − 1, 0⩽ j ⩽ K , (9.33)

L j(t)
def
=

K∏
i=1
i ̸= j

t − t i

t j − t i
, deg

�
L j

�
= K − 1, deg

�
L̇ j

�
= K − 2, 1⩽ j ⩽ K . (9.34)

We also introduce the first–order differentiation matrices D and D whose entries are deter-
mined according to

Dj,i = L̇i(t j), D j,i = L̇i(t j). (9.35)

If the {ω j}1⩽ j⩽K denote quadrature weights belonging to FLGR quadrature we can prove the
following lemma:

Lemma 9.4
Let the Lagrange polynomials L j(·), 0⩽ j ⩽ K , and L j(·), 1⩽ j ⩽ K , be defined according to (9.33) and
(9.34) with t0 = −1 and FLGR points {t j}1⩽ j⩽K . Then it holds

Dj,i = −ωi

ω j
Di, j , i, j ∈ [K], i ̸= j,

Dj, j = −D j, j , j ∈ [K − 1],

DK ,K = −DK ,K +
1
ωK

, j = K . △

Proof Let P : [−1,+1] −→ R be a polynomial of degree K and let Q : [−1,+1] −→ R be a polynomial
of degree K − 1. Then they have representations

P(t) =
K∑

j=0

P(t j) L j(t), Q(t) =
K∑

j=1

Q(t j) L j(t),

Ṗ(t) =
K∑

j=0

P(t j) L̇ j(t), Q̇(t) =
K∑

j=1

Q(t j) L̇ j(t).

Furthermore it holds

Ṗ(t)Q(t) =
K∑

j=0

K∑
i=1

P(t j)Q(t i) L̇ j(t) Li(t),
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P(t) Q̇(t) =
K∑

j=0

K∑
i=1

P(t j)Q(t i) L j(t) L̇i(t).

Both, ṖQ and PQ̇ are polynomials of degree 2K − 2. Hence, the Gauss–Radau quadrature is exact for
these polynomials. We calculate∫ +1

−1

Ṗ(t)Q(t)dt =
K∑

k=1

ωk

K∑
l=0

K∑
i=1

P(t l)Q(t i) L̇l(tk) Li(tk) =
K∑

k=1

K∑
l=0

ωkP(t l)Q(tk) L̇l(tk)

=
K−1∑
k=1

K∑
l=0

ωkP(t l)Q(tk)Dk,l +ωKQ(1)
K∑

l=0

P(t l)DK ,l , (9.36)

and similarly∫ +1

−1

P(t) Q̇(t)dt =
K∑

k=1

ωk

K∑
j=0

K∑
l=1

P(t j)Q(t l) L j(tk) L̇l(tk) =
K∑

k=1

K∑
l=1

ωkP(tk)Q(t l) L̇l(tk)

=
K−1∑
k=1

K∑
l=1

ωkP(tk)Q(t l)Dk,l +ωK P(1)
K∑

l=1

Q(t l)DK ,l . (9.37)

By means of the partial integration rule we find

P(t)Q(t)|+1
−1 =

∫ +1

−1

Ṗ(t)Q(t)dt +

∫ +1

−1

P(t) Q̇(t)dt. (9.38)

Combining (9.36), (9.37) and (9.38) yields

P(1)Q(1)− P(−1)Q(−1) =
K−1∑
k=1

K∑
l=0

ωkP(t l)Q(tk)Dk,l +ωKQ(1)
K∑

l=0

P(t l)DK ,l

+
K−1∑
k=1

K∑
l=1

ωkP(tk)Q(t l)Dk,l +ωK P(1)
K∑

l=1

Q(t l)DK ,l .

(9.39)

According to our assumptions P(·) is any polynomial of degree K and Q(·) is any polynomial of degree
K − 1. In particular, we can choose P = Li and Q = L j , i.e., (9.39) looks as follows:

Li(1) L j(1)− Li(−1) L j(−1) =
K−1∑
k=1

K∑
l=0

ωkLi(t l) L j(tk)Dk,l +ωK L j(1)
K∑

l=0

Li(t l)DK ,l

+
K−1∑
k=1

K∑
l=1

ωkLi(tk) L j(t l)Dk,l +ωK Li(1)
K∑

l=1

L j(t l)DK ,l .

Choosing j ≡ K we have

Li(1)− Li(−1) LK(−1) =ωK

K∑
l=0

Li(t l)DK ,l +
K−1∑
k=1

ωkLi(tk)Dk,K +ωK Li(1)DK ,K .

For i ≡ K it holds

1=ωK DK ,K +ωK DK ,K .
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If we choose i ∈ [K − 1] this yields

0=ωK DK ,i +ωi Di,K .

With j ∈ [K − 1] and i ∈ [K − 1] we calculate

0=
K−1∑
k=1

K∑
l=0

ωkLi(t l) L j(tk)Dk,l +
K−1∑
k=1

K∑
l=1

ωkLi(tk) L j(t l)Dk,l

=ω j Dj,i +ωi Di, j

If we summarize the previous results we have for

• i, j ∈ [K], i ̸= j:

Dj,i = −ωi

ω j
Di, j .

• j ∈ [K − 1]:

Dj, j = −D j, j .

• j = K :

DK ,K = −DK ,K +
1
ωK

.

This completes the proof. □

The relationship between Dj,0 and D j,i is caught in the subsequent result.

Lemma 9.5
Taking the notations from Lemma 9.4 it holds

Di,0 =
K−1∑
j=1

ω j

ωK
D j,K + DK ,K − 1

ωK
, i ∈ [K − 1],

DK ,0 =
K∑

j=1

ω j

ωK
D j,K − 1

ωK
. △

Proof Let P ≡ C ̸= 0 for a constant C . Then we calculate for i ∈ [K]

0= Ṗ(t i) =
K∑

j=0

P(t j) L̇ j(t i) = C
K∑

j=0

Di, j .

We conclude for i ∈ [K − 1]

Di,0 = −
K∑

j=1

Di, j =
K∑

j=1

ω j

ωi
D j,i .
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Likewise we find for i = K :

DK ,0 = −
K∑

j=1

DK , j = −
K−1∑
j=1

DK , j − DK ,K =
K−1∑
j=1

ω j

ωK
D j,K + DK ,K − 1

ωK

=
K∑

j=1

ω j

ωK
D j,K − 1

ωK
. □

9.2 First Discretize, Then Optimize: Local Collocation Approach

Recall NLP (7.22), which was derived by a local pseudospectral collocation approach in Sec-
tion 7.4:

min
ts,tf,x ,u

φ(ts, x (1)0 , tf, x (N)
K (N)
) +

h
2

N∑
n=1

hn

2

K (n)∑
i=1

ω
(n)
i ψn(τ

(n)
i , x (n)i , u(n)i ; ts, tf)

s. t. 0nx
=

h
2

hn

2
· fn

�
τ
(n)
j , x (n)j , u(n)j ; ts, tf

�− K (n)∑
i=0

x (n)i D(n)j,i , n ∈ [N], j ∈ [K (n)],

0nc
⩾ cn

�
τ
(n)
j , x (n)j , u(n)j ; ts, tf

�
, n ∈ [N], j ∈ [K (n)],

0nr
= r (ts, x (1)0 , tf, x (N)

K (N)
),

0nx
= x (n+1)

0 − x (n)
K (n)

, n ∈ [N − 1].

Some Notations

We determine the KKT system (see Theorem 3.22) for this NLP. To this end we introduce
Lagrange multipliers corresponding to

(i) system dynamics, λ= [λ(n)T ]
T

1⩽n⩽N , λ
(n) = [λ(n)1

T
, . . . ,λ(n)

K (n)
T
]

T
,

(ii) path constraints, µ= [µ(n)T ]
T

1⩽n⩽N , µ
(n) = [µ(n)1

T
, . . . ,µ(n)

K (n)
T
]

T
,

(iii) boundary conditions, ν(0), and

(iv) matching conditions, [ν(1)T , . . . ,ν(N−1)T ]
T
,

wherewe use the notationν= [ν(0)T , . . . ,ν(N−1)T ]
T
. The dimensions ofλ,µ, andν are denoted

by nλ, nµ, and nν such that

nλ =
N∑

n=1

K (n) nx, nµ =
N∑

n=1

K (n) nc, nν = nr + (N − 1)nx.
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As in Section 7.4 we keep the terms for state variables, x , and for control variables, u. We also
define a variable, η, holding all equality constraint multipliers, i.e., we have η = [λT ,νT ]T .
The dimension of η is denoted by nη. For convenience we introduce the terms

r ′ts
def
=∇ts r (ts, x (1)0 , tf, x (N)

K (N)
), r ′xs

def
=∇xs

r (ts, x (1)0 , tf, x (N)
K (N)
),

r ′tf
def
=∇tf r (ts, x (1)0 , tf, x (N)

K (N)
), r ′x f

def
=∇x f

r (ts, x (1)0 , tf, x (N)
K (N)
).

We do likewise for the function φ(·). In a similar way we use the notations

f
�
τ
(n)
i

�
def
= fn(τ

(n)
i , x (n)i , u(n)i ; ts, tf)

T
, f ′t

�
τ
(n)
i

�
def
=∇t fn(τ

(n)
i , x (n)i , u(n)i ; ts, tf),

f ′x
�
τ
(n)
i

�
def
=∇x fn(τ

(n)
i , x (n)i , u(n)i ; ts, tf), f ′u

�
τ
(n)
i

�
def
=∇u fn(τ

(n)
i , x (n)i , u(n)i ; ts, tf).

Analogous terms are employed for the functionsψ(·) and c(·).

Lagrange Function and its Derivatives

The Lagrange function L : Rnw ×Rnη ×Rnµ −→ R for NLP (7.22) is then defined as follows:

L(w,η,µ) = Φ(w) +
N∑

n=1

K (n)∑
i=1

λ
(n)
i

T
F (n)i (w) +

N∑
n=1

K (n)∑
i=1

µ
(n)
i

T
C (n)i (w)

+ ν(0)
T
R(w) +

N−1∑
n=1

ν(n)
T
M (n)(w).

The multipliers λ(n)i and µ(n)i are reparameterized according to the formula

λ
(n)
i =ω

(n)
i
eλ(n)i , µ

(n)
i =

h
2

hn

2
ω
(n)
i eµ(n)i . (9.40)

Forming the Lagrange function by means of eλ and eµ (both built in a canonical way) yields

L(w, eη, eµ) = φ(ts, x (1)0 , tf, x (N)
K (N)
) +

h
2

N∑
n=1

hn

2

K (n)∑
i=1

ω
(n)
i ψn(τ

(n)
i , x (n)i , u(n)i ; ts, tf)

+
N∑

n=1

K (n)∑
i=1

ω
(n)
i

�eλ(n)i

�T

(
h
2

hn

2
· fn

�
τ
(n)
i , x (n)i , u(n)i ; ts, tf

�− K (n)∑
j=0

x (n)j D(n)i, j

)

+
N∑

n=1

K (n)∑
i=1

h
2

hn

2
ω
(n)
i

�eµ(n)i

�T
cn

�
τ
(n)
i , x (n)i , u(n)i ; ts, tf

�
+ ν(0)

T
r (ts, x (1)0 , tf, x (N)

K (N)
) +

N−1∑
n=1

ν(n)
T ¦

x (n+1)
0 − x (n)

K (n)

©
.

242



An Interpretation for Discrete Adjoints of Collocation Methods
�� Chapter 9

Let us consider the function Ξ : Rnw ×Rnη ×Rnµ −→ Rns which is defined as

Ξ(w, eη, eµ) = �∇x (1)0
LT , . . . ,∇x (1)

K(1)
LT , . . . ,∇x (N)0

LT , . . . ,∇x (N)
K(N)

LT
�T

(w, eη, eµ),
where the single components are calculated as

Ξ(1)0 (w, eη, eµ) =− K (1)∑
i=1

ω
(1)
i D(1)i,0

eλ(1)i + r ′xs
ν(0) +φ′xs

,

Ξ(n)0 (w, eη, eµ) =− K (n)∑
i=1

ω
(n)
i D(n)i,0

eλ(n)i + ν
(n−1), n ∈ [N] \ {1},

Ξ(n)i (w, eη, eµ) =− K (n)∑
j=1

ω
(n)
j D(n)j,i

eλ(n)j +
h
2

hn

2
ω
(n)
i ψ

′
x

�
τ
(n)
i

�
+

h
2

hn

2
ω
(n)
i f ′x

�
τ
(n)
i

� eλ(n)i

+
h
2

hn

2
ω
(n)
i c′x

�
τ
(n)
i

� eµ(n)i , n ∈ [N], i ∈ [K (n) − 1],

Ξ(n)
K (n)
(w, eη, eµ) =− K (n)∑

j=1

ω
(n)
j D(n)

j,K (n)
eλ(n)j +

h
2

hn

2
ω
(n)
K (n)
ψ′x

�
τ
(n)
K (n)

�
+

h
2

hn

2
ω
(n)
K (n)

f ′x
�
τ
(n)
K (n)

� eλ(n)
K (n)

+
h
2

hn

2
ω
(n)
K (n)

c′x
�
τ
(n)
K (n)

� eµ(n)
K (n)
− ν(n), n ∈ [N − 1],

Ξ(N)
K (N)
(w, eη, eµ) =− K (N)∑

j=1

ω
(N)
j D(N)

j,K (N)
eλ(N)j +

h
2

hN

2
ω
(N)
K (N)
ψ′x

�
τ
(N)
K (N)

�
+

h
2

hN

2
ω
(N)
K (N)

f ′x
�
τ
(N)
K (N)

� eλ(N)
K (N)

+
h
2

hN

2
ω
(N)
K (N)

c′x
�
τ
(N)
K (N)

� eµ(N)
K (N)
+ r ′x f

ν(0) +φ′x f
.

Likewise we introduce the function Y : Rnw ×Rnη ×Rnµ −→ Rnq which is defined as

Y (w, eη, eµ) = �∇u(1)1
LT , . . . ,∇u(1)

K(1)
LT , . . . ,∇u(N)1

LT , . . . ,∇u(N)
K(N)

LT
�T

(w, eη, eµ),
where the single components are calculated as

Y (n)i (w, eη, eµ) =+ h
2

hn

2
ω
(n)
i ψ

′
u

�
τ
(n)
i

�
+

h
2

hn

2
ω
(n)
i f ′u

�
τ
(n)
i

� eλ(n)i

+
h
2

hn

2
ω
(n)
i c′u

�
τ
(n)
i

� eµ(n)i , n ∈ [N], i ∈ [K (n)].

The Lagrange gradient with respect to eλ can be expressed by means of the function F(·) as

∇eλ(n)i
L(w, eη, eµ) = −ω(n)i F (n)i (w) = −

K (n)∑
j=0

ω
(n)
i D(n)i, j x (n)j +

h
2

hn

2
ω
(n)
i fn(τ

(n)
i , x (n)i , u(n)i ),
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where n ∈ [N], i ∈ [K (n)]. Employing the function C(·) we can write the Lagrange gradient
with respect to eµ as

∇eµ(n)i
L(w, eη, eµ) = h

2
hn

2
ω
(n)
i C (n)i (w) =

h
2

hn

2
ω
(n)
i cn(τ

(n)
i , x (n)i , u(n)i ), n ∈ [N], i ∈ [K (n)].

In a similar way the Lagrange gradient with respect ν can be written with the aid of R(·)
and M(·) as

∇ν(0)L(w, eη, eµ) = R(w) = r (ts, x (1)0 , tf, x (N)
K (N)
)

and

∇ν(n)L(w, eη, eµ) = M (n)(w) = x (n+1)
0 − x (n)

K (n)
, n ∈ [N − 1].

Finally, we need the gradient of the Lagrangian with respect to ts and tf. Let the function
Tts : Rnw ×Rnη ×Rnµ −→ R be the Lagrange gradient with respect to ts, i.e., we have

Tts (w, eη, eµ) =− 1
2

N∑
n=1

hn

2

K(n)∑
i=1

ω
(n)
i

§
ψ
�
τ
(n)
i

�− h
2

�
1− tn

�
τ
(n)
i

��
ψ′t
�
τ
(n)
i

�ª

− 1
2

N∑
n=1

hn

2

K(n)∑
i=1

ω
(n)
i

§
f
�
τ
(n)
i

�− h
2

�
1− tn

�
τ
(n)
i

��
f ′t
�
τ
(n)
i

�ª eλ(n)i

+
1
2

N∑
n=1

hn

2

K(n)∑
i=1

ω
(n)
i

h
2

�
1− tn

�
τ
(n)
i

��
c′t
�
τ
(n)
i

� eµ(n)i + r ′ts ν
(0) +φ′ts

=− 1
2

N∑
n=1

hn

2

K(n)∑
i=1

ω
(n)
i

¦
ψ
�
τ
(n)
i

�
+ f

�
τ
(n)
i

� eλ(n)i

©
+ r ′ts ν

(0) +φ′ts

+
1
2

h
2

N∑
n=1

hn

2

K(n)∑
i=1

ω
(n)
i

�
1− tn

�
τ
(n)
i

�� ¦
ψ′t
�
τ
(n)
i

�
+ f ′t

�
τ
(n)
i

� eλ(n)i + c′t
�
τ
(n)
i

� eµ(n)i

©
.

Likewise, let Ttf : Rnw ×Rnη ×Rnµ −→ R be the Lagrange gradient with respect to tf, i.e., we
have

Ttf (w, eη, eµ) =+ 1
2

N∑
n=1

hn

2

K(n)∑
i=1

ω
(n)
i

§
ψ
�
τ
(n)
i

�
+

h
2

�
1+ tn

�
τ
(n)
i

��
ψ′t
�
τ
(n)
i

�ª

+
1
2

N∑
n=1

hn

2

K(n)∑
i=1

ω
(n)
i

§
f
�
τ
(n)
i

�
+

h
2

�
1+ tn

�
τ
(n)
i

��
f ′t
�
τ
(n)
i

�ª eλ(n)i

+
1
2

N∑
n=1

hn

2

K(n)∑
i=1

ω
(n)
i

h
2

�
1+ tn

�
τ
(n)
i

��
c′t
�
τ
(n)
i

� eµ(n)i + r ′tf ν
(0) +φ′tf

=+
1
2

N∑
n=1

hn

2

K(n)∑
i=1

ω
(n)
i

¦
ψ
�
τ
(n)
i

�
+ f

�
τ
(n)
i

� eλ(n)i

©
+ r ′tf ν

(0) +φ′tf

+
1
2

h
2

N∑
n=1

hn

2

K(n)∑
i=1

ω
(n)
i

�
1+ tn

�
τ
(n)
i

�� ¦
ψ′t
�
τ
(n)
i

�
+ f ′t

�
τ
(n)
i

� eλ(n)i + c′t
�
τ
(n)
i

� eµ(n)i

©
.
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The KKT System

In this section we formulate the KKT system for the collocation NLP. With the aid of the
notation of the previous section we can write it as follows:

0= Ξ(w, eη, eµ), 0= Tts(w, eη, eµ), 0= F(w), 0= R(w),

0= Y (w, eη, eµ), 0= Ttf(w, eη, eµ), 0= M(w), 0⩾ C(w),

0⩽ eµ, 0= eµT C(w).

For later use we reformulate the KKT system in some components. To this end, we define
variables

eλ(n)0
def
=

K (n)∑
j=1

ω
(n)
j D(n)j,0

eλ(n)j , n ∈ [N].

We calculate

eλ(n)0 =
K (n)∑
j=1

ω
(n)
j D(n)j,0

eλ(n)j =
K (n)−1∑

j=1

ω
(n)
j D(n)j,0

eλ(n)j +ω
(n)
K (n)

D(n)
K (n),0

eλ(n)
K (n)

=
K (n)−1∑

j=1

ω
(n)
j

K (n)∑
i=1

ω
(n)
i

ω
(n)
j

D
(n)
i, j

 eλ(n)j +ω
(n)
K (n)

K (n)∑
i=1

ω
(n)
i

ω
(n)
K (n)

D
(n)
i,K (n) − 1

ω
(n)
K (n)

 eλ(n)
K (n)

=
K (n)∑
j=1

K (n)∑
i=1

ω
(n)
i D

(n)
i, j

 eλ(n)j − eλ(n)K (n)
=

K (n)∑
i=1

ω
(n)
i

K (n)∑
j=1

D
(n)
i, j
eλ(n)j − eλ(n)K (n)

.

Hence, we can write Ξ(1)0 (w, eη, eµ) = 0 as

Ξ(1)0 (w, eη, eµ) =− K (1)∑
i=1

ω
(1)
i D(1)i,0

eλ(1)i + r ′xs
ν(0) +φ′xs

= −eλ(1)0 + r ′xs
ν(0) +φ′xs

=−
K (1)∑
i=1

ω
(1)
i

K (1)∑
j=1

D
(1)
i, j
eλ(1)j + eλ(1)K (1)

+ r ′xs
ν(0) +φ′xs

= 0

and for n ∈ [N − 1] we can write Ξ(n+1)
0 (w, eη, eµ) = 0 as

Ξ(n+1)
0 (w, eη, eµ) =− K (n+1)∑

i=1

ω
(n+1)
i D(n+1)

i,0
eλ(n+1)

i + ν(n)= −eλ(n+1)
0 + ν(n)

=−
K (n+1)∑
i=1

ω
(n+1)
i

K (n+1)∑
j=1

D
(n+1)
i, j

eλ(n+1)
j + eλ(n+1)

K (n+1)+ ν
(n)= 0.
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We can conclude that Ξ(n)
K (n)
(w, eη, eµ) = 0, n ∈ [N − 1], holds if and only if

Ξ(n)
K (n)
(w, eη, eµ)
ω
(n)
K (n)

=
h
2

hn

2

�
ψ′x

�
τ
(n)
K (n)

�
+ f ′x

�
τ
(n)
K (n)

� eλ(n)
K (n)
+ c′x

�
τ
(n)
K (n)

� eµ(n)
K (n)

�
−

K (n)∑
j=1

ω
(n)
j

ω
(n)
K (n)

D(n)
j,K (n)

eλ(n)j − 1

ω
(n)
K (n)

ν(n)

=
h
2

hn

2

�
ψ′x

�
τ
(n)
K (n)

�
+ f ′x

�
τ
(n)
K (n)

� eλ(n)
K (n)
+ c′x

�
τ
(n)
K (n)

� eµ(n)
K (n)

�
+

K (n)∑
j=1

D
(n)
K (n), j

eλ(n)j

−
eλ(n)

K (n)

ω
(n)
K (n)

− 1

ω
(n)
K (n)

K (n+1)∑
i=1

ω
(n+1)
i

K (n+1)∑
j=1

D
(n+1)
i, j

eλ(n+1)
j − eλ(n+1)

K (n+1)

 .

=
h
2

hn

2

�
ψ′x

�
τ
(n)
K (n)

�
+ f ′x

�
τ
(n)
K (n)

� eλ(n)
K (n)
+ c′x

�
τ
(n)
K (n)

� eµ(n)
K (n)

�
+

K (n)∑
j=1

D
(n)
K (n), j

eλ(n)j

− 1

ω
(n)
K (n)

eλ(n)
K (n)
− eλ(n+1)

K (n+1) +
K (n+1)∑
i=1

ω
(n+1)
i

K (n+1)∑
j=1

D
(n+1)
i, j

eλ(n+1)
j

= 0.

In a similar way we conclude that Ξ(N)
K (N)
(w, eη, eµ) = 0 holds if and only if

Ξ(N)
K (N)
(w, eη, eµ)
ω
(N)
K (N)

=
h
2

hN

2

�
ψ′x

�
τ
(N)
K (N)

�
+ f ′x

�
τ
(N)
K (N)

� eλ(N)
K (N)
+ c′x

�
τ
(N)
K (N)

� eµ(N)
K (N)

�
−

K (N)∑
j=1

ω
(N)
j

ω
(N)
K (N)

D(N)
j,K (N)

eλ(N)j +
1

ω
(N)
K (N)

�
r ′x f

ν(0) +φ′x f

�
=

h
2

hN

2

�
ψ′x

�
τ
(N)
K (N)

�
+ f ′x

�
τ
(N)
K (N)

� eλ(N)
K (N)
+ c′x

�
τ
(N)
K (N)

� eµ(N)
K (N)

�
+

K (N)∑
j=1

D
(N)
K (N), j

eλ(N)j −
eλ(N)

K (N)

ω
(N)
K (N)

+
1

ω
(N)
K (N)

�
r ′x f

ν(0) +φ′x f

�
=

h
2

hN

2

�
ψ′x

�
τ
(N)
K (N)

�
+ f ′x

�
τ
(N)
K (N)

� eλ(N)
K (N)
+ c′x

�
τ
(N)
K (N)

� eµ(N)
K (N)

�
+

K (N)∑
j=1

D
(N)
K (N), j

eλ(N)j − 1

ω
(N)
K (N)

�eλ(N)
K (N)
− r ′x f

ν −φ′x f

�
.
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Repeating the same approach with Ξ(n)i (w, eη, eµ) = 0 for n ∈ [N], i ∈ [K (n) − 1] yields

Ξ(n)i (w, eη, eµ)
ω
(n)
i

=
h
2

hn

2

�
ψ′x

�
τ
(n)
i

�
+ f ′x

�
τ
(n)
i

� eλ(n)i + c′x
�
τ
(n)
i

� eµ(n)i

�− K (n)∑
j=1

ω
(n)
j

ω
(n)
i

D(n)j,i
eλ(n)j

=
h
2

hn

2

�
ψ′x

�
τ
(n)
i

�
+ f ′x

�
τ
(n)
i

� eλ(n)i + c′x
�
τ
(n)
i

� eµ(n)i

�
+

K (n)∑
j=1

D
(n)
i, j
eλ(n)j .

Due to the matching conditions we can write the optimality conditions in F(w) = 0 also as
follows:

K (1)∑
j=0

x (1)j D(1)i, j − h1

2
h
2

f
�
τ
(1)
i

�
= 0,

K (n)∑
j=1

x (n)j D(n)i, j + x (n−1)
K (n−1)D

(n)
i,0 − hn

2
h
2

f
�
τ
(n)
i

�
= 0, 2⩽ n⩽ N , i ∈ [K (n)].

This step makes it easier to compare the equations with respective equations in Section 9.3.

9.3 First Optimize, Then Discretize: Petrov–Galerkin Approach

In order to solve the infinite dimensional optimality conditions, which were derived in Sec-
tion 9.1.2, numerically, we have to approximate the function spaces Y l([−1,+1],R) and
NBV([−1,+1],R) by finite dimensional subspaces. These subspaces are called Finite Ele-
ment (FE) spaces and the method, which transfers the infinite dimensional conditions into a fi-
nite dimensional variational system of equalities and inequalities, is called Petrov–Galerkin
approximation.
We start with a specification of the basis functions to span the finite dimensional subspaces.
Afterwards, applying the Petrov–Galerkin approach we derive a system of equalities and
inequalities.

9.3.1 Finite Element Spaces

First we discretize Y l([−1,+1],R), l ∈ {0,1}, as well as NBV([−1,+1],R) by choosing ap-
propriate sets of basis functions. This procedure is common to FE methods which are usually
used to solve PDEs.
It seems reasonable to choose spline functions in order to fully discretize the infinite dimen-
sional function spaces Y ([−1,+1],R) and Y1([−1,+1],R). Spline functions are functions
which are defined piecewise by polynomials and, in some circumstances, are glued together
in a smooth way.

Uniform Degree Splines We carry over the notation from the definition of the function
spaces Y l([−1,+1],R), i.e., we assume a fixed temporal grid ts = t0 < t1 < . . .< tN = tf and
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the In denote the single intervals of the grid. We define the set of break–points as those points
of the grid which separate the (piecewise defined) polynomials, i.e., we introduce the break–
point set ξ def

= {tn}N−1
n=1 . If the polynomial degree is denoted by k we can define the function

space of piecewise polynomials as

S(k,ξ)
def
=
�
x : T −→ R : x ↾In

∈ P(k)(In,R), 1⩽ n⩽ N
	

.

We find relevant subspaces of S(k,ξ) by imposing homogeneity conditions additionally. In our
case we consider homogeneous conditions which guarantee a certain number of continuous
derivatives globally. To this end, let us consider the N − 1–dimensional vector νdef

= (νn)N−1
n=1

of nonnegative integers counting the number of continuity conditions at the break–points. In
particular, νn= 0 means that no continuity conditions is imposed across the respective break–
point. In order to express the homogeneous conditions by mathematical tools we introduce
the notation

jmpt (x )
def
= x (t+)− x (t−), t ∈ ξ,

representing the jump of x (·) at any break–point t . Hence, the homogeneous conditions for
a function x ∈ S(k,ξ) with homogeneous conditions, expressed by ν, can be written in the
form

jmptn

�
x ( j−1)

�
= 0, n ∈ [N], j ∈ [νn].

Consequently, the function space of uniform degree splines (of degree k) is defined as

S(k,ξ,ν)
def
=
�
x : T → R : x ↾In

∈ P(k)(In,R), jmptn

�
x ( j−1)

�
= 0, n ∈ [N], j ∈ [νn]

	
.

In order to determine a basis for S(k,ξ,ν) one has to construct a linearly independent function
sequence φ1, φ2, . . . with as many entries as there are necessary to satisfy the interval–wise
polynomial degree conditions as well as all the homogeneous conditions. Our function is then
represented in the form∑

j

x j φ j .

Note that any function x ∈ S(k,ξ,ν) belongs to a certain subspace of S(k,ξ), namely the
one satisfying the homogeneous conditions. In order to derive a basis for the function space
S(k,ξ,ν) we define

(t −τ)+ def
=max{t −τ, 0}. (9.41)

With the aid of (9.41) we define the truncated power function

(t)s+
def
= (t+)

s, s = 0,1,2, . . . .
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The function x (t)
def
= (t − τ)s+ is a piecewise polynomial of order s+ 1. It has just one break–

point at τ and is continuous at τ for s > 0, whereas for s = 0 it has a jump at τ of size 1.
Since it holds d

dt (t − τ)s+ = s · (t − τ)s−1
+ one can see that that (· − τ)s+ has s − 1 continuous

derivatives and a jump in the s–th derivative of size s!.

We define linear functionals Λn j(·) and corresponding functions φn j(·) according to

Λn j(x )
def
=

¨
x ( j)(t0), n= 0,

jmptn

�
x ( j)

�
, n ∈ [N − 1],

φn j(t)
def
=

¨
(t − t0) j/ j!, n= 0,

(t − tn)
j
+/ j!, n ∈ [N − 1],

(9.42)

with j = 0, 1, . . . , k − 1. It is obvious that each φn j(·) is in S(k,ξ). Furthermore, from the
previous discussion about derivatives of the truncated power functions we conclude that

Λn j(φmi) = δnm δ ji =

¨
1, if n= m and j = i,

0, otherwise,
(9.43)

showing the linear independence of the double sequence (φn j). It is a simple exercise to show
that S(k,ξ) has dimension kN and that (φn j) is a basis of S(k,ξ). Consequently, every x ∈
S(k,ξ) can be uniquely represented in the form

x =
∑
n j

Λn j(x )φn j .

By means of (9.42) and (9.43) we can write this representation explicitly as

x (t) =
∑
j<k

x ( j)(t0) (t − t0)
j/ j!+

N−1∑
n=1

∑
j<k

jmptn

�
x ( j)

�
(t − tn)

j
+/ j!.

This representation is quite beneficial since all jumps of the derivatives of function x (·) across
the break–points t ∈ ξ appear explicitly as coefficients. The enforcement of all homogeneous
conditions

jmptn

�
x ( j−1)

�
= 0, n ∈ [N − 1], j ∈ [νn],

can be achieved in a rather straightforward way, namely by a restriction to those functions
where respective coefficients vanish. Hence, every function x (·) in S(k,ξ,ν) can be written
uniquely as

x =
N−1∑
n=0

k−1∑
j=νn

xn j φn j ,

where we set ν0= 0. Even though we have found a basis for the function space of piece-
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wise polynomials it suffers from several drawbacks, for our specific purposes as well as for a
numerical realization:

(i) Since the basis functions have no local support the function x (·) evaluated at a certain
point of the domain interval may involve a considerable amount of coefficients for large
N .

(ii) The basis functions (φn j) may become nearly linear dependent for rather nonuniform
chosen grid points resulting in bad conditioning (compare also the discussion about the
monomial basis in Section 6.3.2).

(iii) The lack of local support of the (φn j) implies that it can be just used for piecewise
polynomials with the same degree k on every single interval.

The common way to overcome the lack of local support and the bad conditioning is to use
so–called basis splines or B–splines, originally proposed by Schoenberg [390] and Curry and
Schoenberg [118]. A good introduction about B–splines including their most relevant prop-
erties and efficient implementations is given by de Boor [127]. A B–spline is a spline having
minimal support with respect to a certain degree, smoothness, and grid. By a linear combi-
nation of B–splines of a certain degree one can express any spline of that degree. B–splines,
constructed from truncated power functions in combination with a divided differences ap-
proach, suffer from numerical instabilities. A recurrence relation allowing for the evaluation
of B–splines in an efficient and numerically stable way was developed independently from
each other by de Boor [126] and Cox [116].
For our purposes, we need an extension to the standard concept of splines allowing for piece-
wise polynomials of different degrees which are glued together with certain smoothness. This
is done in the following.

Multi–Degree Splines As we have just pointed out, conventional splines are intended as
function spaces where every piece is spanned by polynomials of the same degree. By way
of contrast, we need so–called Multi–Degree Splines (MD–Splines), i.e., piecewise polynomial
functions comprised of distinct degrees. To construct MD–Splines, we propose the following
setting: for the grid ts = t0 < t1 < . . . < tN = tf we define the set of break–points as
ξ

def
= {tn}N−1

n=1 . The vector K
def
= [K (1), . . . , K (N)]

T holds the polynomial degrees for the pieces In.
Two adjacent polynomials defined respectively on In and In+1 join at the break point tn with
continuity Cνn . The νn are chosen according to

0⩽νn⩽
¨

min(K (n), K (n+1)), if K (n) ̸= K (n+1),

K (n+1) − 1, if K (n) = K (n+1).

The degree of smoothness is then determined by the vector νdef
= [ν1, . . . ,νN−1]

T . The set of
MD–Splines S(K ,ξ,ν) is defined as follows:
Definition 9.6 (Multi–Degree Splines)
Let ξ denote the inner grid points of a partition of the compact interval T = [ts, tf], and let ν be the asso-
ciated degrees of smoothness. Let furthermore K denote the sequence of polynomial degrees associated
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with the partition intervals In. Then the set of Multi–Degree Splines (MD–Splines) is given by

S(K ,ξ,ν)
def
=
§

x : T −→ R : ∃Pn ∈ PK(n) , n ∈ [N], such that:

i) x (t) = Pn(t) for t ∈ In, n ∈ [N],
ii) jmptn

�
x ( j−1)

�
= 0, n ∈ [N − 1], j ∈ [νn]

ª
. △

The dimension of the spline space S(K ,ξ,ν), which we denote with S, can be derived from
standard arguments and can be expressed in two different ways:

S =

¨
K (1) + 1+ Ks, Ks

def
=
∑N−1

n=1

�
K (n+1)− νn

�
,

K (N) + 1+ Ke, Ke
def
=
∑N−1

n=1

�
K (n)− νn

�
.

In order to construct the B–spline basis for the MD–Spline function space S(K ,ξ,ν)we intro-
duce two grid point sets ξs = {s j}Sj=1 and ξe = {e j}Sj=1. These two sets are constructed such
that the i–th B–spline basis function Ni,M , where M

def
=maxn{K (n)}, has support supp(Ni,M ) =

[si , ei]. For this reason, we define:
Definition 9.7 (Extended Partition)
The left extended partition associated with S(K ,ξ,ν) is defined as the set of grid points ξs = {s j}Sj=1,
where

(i) s1 ⩽ s2 ⩽ . . .⩽ sS ;
(ii) sK(1)+1 ≡ ts;
(iii) {sK(1)+2, . . . , sS} ≡ { t1, . . . , t1︸ ︷︷ ︸

K(2)−ν1 times

, . . . , tN−1, . . . , tN−1︸ ︷︷ ︸
K(N)−νN−1 times

}.

In a similar way the right extended partition associated with S(K ,ξ,ν) is defined as the set of grid points
ξe = {e j}Sj=1, where

(i) e1 ⩽ e2 ⩽ . . .⩽ eS ;
(ii) eS−K(N) ≡ tf;
(iii) {e1, . . . , eS−K(N)−1} ≡ { t1, . . . , t1︸ ︷︷ ︸

K(1)−ν1 times

, . . . , tN−1, . . . , tN−1︸ ︷︷ ︸
K(N−1)−νN−1 times

}. △

We restrict our discussion to the case of so–called clamped partitions where all elements from
{s j}K (1)+1

j=1 are chosen to be ts and all elements from {e j}Sj=S−K (N) are chosen to be tf. The integral
recurrence relation described in the following definition derives the set {Ni,M}Si=1 of multi–
degree B–spline functions.
Definition 9.8 (Multi–Degree B–Spline Functions)
Let M

def
=maxn{K (n)}. For each m= 0, . . . , M , the function sequence {Ni,m}, i = M +1−m, . . . , S, which

is defined on each break–point interval In ⊂ [si , ei−M+m] with si < ei−M+m, has support supp(Ni,m) =
[si , ei−M+m], and is recursively generated according to

Ni,m(t)
def
=


0, K (n) < M −m,¨

1, t ∈ In

0, otherwise
, K (n) = M −m,∫ t

−∞
�
δi,m−1 Ni,m−1(τ)−δi+1,m−1 Ni+1,m−1(τ)

	
dτ, K (n) > M −m,
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where

δi,m
def
=

�∫ +∞

−∞
Ni,m(t) dt

�−1

. △

In Definition 9.8 we regard undefined functions Ni,m(·) as the zero function. Additionally, in
case of Ni,m = 0 we define δi,m Ni,m

def
= 0. However, in order to be able to obtain the parti-

tion of unity, δi,m Ni,m(·) should fulfill the formula
∫ +∞
−∞ δi,m Ni,m(t) dt = 1. For this reason,

whenever Ni,m = 0, we define∫ t

−∞
δi,m Ni,m(τ) dτ

def
=

¨
0, t < si ,

1, t ⩾ ei .

In the following result we summarize the most important properties of the B–spline functions.

Theorem 9.9 (Properties of the B–spline Functions)
For the B–spline functions {Ni,M}Si=1 of the MD–Spline space S(K ,ξ,ν) the following properties hold:

(i) Linear Independence: the {Ni,M}i are linear independent;

(ii) Local Support: Ni,M (t) = 0 for t ̸∈ [si , ei];

(iii) Positivity: Ni,M (t)> 0 for t ∈ (si , ei);

(iv) Normalization:
∑

i Ni,M (t) = 1, ∀ t ∈ T . △

Proof See e.g. Beccari et al. [36] and Shen and Wang [410]. □

Taking into account that the dimension of the spline space is equal to the number of basis
functions {Ni,M}i we conclude from Theorem 9.9 that they represent a basis of S(K ,ξ,ν). For
this reason, we canwrite anyMD–Spline function x ∈ S(K ,ξ,ν) as a linear combination of B–
spline basis functions Ni,M , 1 ⩽ i ⩽ S, by means of associated coefficients x i in the following
way:

x (t) =
S∑

i=1

x i Ni,M (t), t ∈ T .

Discretization of Yk([−1,+1],R) The MD–Splines allow us to find reasonable discretiza-
tions of the function spaces Yk([−1,+1],R), k = 0,1. The space Y ([−1,+1],R) after dis-
cretization consists of the splines without homogeneous conditions and polynomial degrees
K (n) − 1, n ∈ [N]. Accordingly, we define the function space

YP(T ,R) def
=
�
x : T −→ R : x ↾In

∈ PK (n)−1(In,R), n ∈ [N]	 .
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In order to derive a tailored representation for our purposes we introduce the Lagrange poly-
nomials

L
(n)
j (τ)

def
=

K (n)∏
i=1
i ̸= j

τ−τ(n)i

τ
(n)
j −τ(n)i

, deg
�
L
(n)
j

�
= K (n) − 1, n ∈ [N], j ∈ [K (n)],

where the {τi} denote FLGR points. Furthermore, we need the time transformation functions
tn(·) as well as the characteristic functions

X (n)(t) =

¨
1, if t ∈ In,

0, otherwise.
(9.44)

Then any function X ∈ YP(T ,R) can be expressed by means of coefficients x (n)i as

X(t) =
N∑

n=1

X (n)(t)
K (n)∑
i=1

x (n)i L
(n)
i (t

−1
n (t)).

Due to construction it holds

X(tn(τ
(n)
i )) = x (n)i , 1⩽ n⩽ N , i ∈ [K (n)].

A discretization of the space Y1([−1,+1],R) results in the function space of all splines with
polynomial degrees K (n), n ∈ [N]. Additionally, continuity over the full horizon is imposed
such that we define the respective function space as

Y1
P(T ,R) def

=
�
x ∈ C(T ,R) : x ↾In

∈ PK (n)(In,R), n ∈ [N]	 .

For a tailored representation we introduce the Lagrange polynomials

L(n)j (τ)
def
=

K (n)∏
i=0
i ̸= j

τ−τ(n)i

τ
(n)
j −τ(n)i

, deg
�
L(n)j

�
= K (n), n ∈ [N], 0⩽ j ⩽ K (n),

where τ0 = −1 and the {τi}, i ∈ [K (n)], denote FLGR points. Using the characteristic func-
tions (9.44) as well as the time transformation functions tn(·) we can write any function
X ∈ Y1

P(T ,R) with the aid of coefficients x (n)i as follows:

X(t) = X (1)(t)
K(n)∑
i=0

x (1)i L(1)i (t
−1
1 (t)) +

N∑
n=2

X (n)(t)

x (n−1)
K(n−1) L(n)0 (t

−1
n (t)) +

K(n)∑
i=1

x (n)i L(n)i (t
−1
n (t))

 .

For later use we calculate:

X(tn(τ
(n)
i )) = x (n)i , 1⩽ n⩽ N , i ∈ [K (n)],
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X(tn(τ
(n)
0 )) = x (n−1)

K (n−1) , 2⩽ n⩽ N ,

X(t1(τ
(1)
0 )) = x (1)0 .

The derivative of X(·) is given as

Ẋ(t) = X (1)(t)
K(n)∑
i=0

2
h1

x (1)i L̇(1)i (t
−1
1 (t)) +

N∑
n=2

X (n)(t)
2
hn

x (n−1)
K(n−1) L̇(n)0 (t

−1
n (t)) +

K(n)∑
i=1

x (n)i L̇(n)i (t
−1
n (t))

 .

With the usual notation D(n)i, j
def
= L̇(n)j (τ

(n)
i ), we evaluate ẋ (·) at some relevant points:

Ẋ(t1(t
(1)
i )) =

K (1)∑
j=0

2
h1

x (1)j D(1)i, j , i ∈ [K (1)],

Ẋ(tn(t
(n)
i )) =

2
hn

x (n−1)
K (n−1) D(n)i,0 +

K (n)∑
j=1

2
hn

x (n)j D(n)i, j , 2⩽ n⩽ N , i ∈ [K (n)].

Note that the extension to the general case Yk(T ,R) for k > 1 is straightforward, leading to
finite dimensional function spaces Yk

P(T ,R). The differences in these function spaces is that
they have a certain number of continuous derivatives. However, imposing these homogeneous
conditions is fully covered by the earlier presented MD–Spline function spaces.

Discretization of NBV([−1,+1],R) We pursue the concept proposed by Beigel [41] and
Beigel et al. [42] in order to discretize the function space NBV(T ,R) whose discretization
we will denote with ZH(T ,R). We recall the temporal grid ts = t0 < t1 < . . . < tN = tf and
introduce a subgrid on every single interval In = [tn−1, tn] whose notation looks as follows:

tn−1 = t(n)0 < t(n)1 < . . .< t(n)
K (n)
= tn, n ∈ [N].

The t(n)0 and t(n)i , n ∈ [N], i ∈ [K (n)] are the images of τ(n)0 = −1 and FLGR points τ(n)i under
the time transformation function tn(·). The function space ZH(T ,R) consists of functions
being constant on intervals I(n)i

def
= [t(n)i−1, t(n)i ] (n ∈ [N], i ∈ [K (n)]), i.e., we define

ZH(T ,R) def
=
¦

x : T −→ R : x ↾I(n)i
∈ P0(I

(n)
i ,R), n ∈ [N], i ∈ [K (n)]© .

To express a function X ∈ ZH(T ,R) we make use of Heaviside functions

H(n)i (τ) =

¨
0, τ < τ

(n)
i

1, τ⩾ τ(n)i

, n ∈ [N], i ∈ [K (n)],
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as functions which are chosen to be continuous from the right with discontinuities in τ(n)i . By
means of coefficients x (n)i any X ∈ ZH(T ,R) can be expressed as a linear combination

X(t) =
N∑

n=1

K (n)∑
i=1

x (n)i H(n)i (t
−1
n (t)). (9.45)

Note that X(·) is a step function with initial value X(ts) = 0 and jumps of magnitude x (n)i at
t(n)i for n ∈ [N] and i ∈ [K (n)]. For this reason we conclude that X(t(n)i ) = X(t(n)i−1) + x (n)i at
the grid points and X(t) = X(t(n)i ) for inner points t ∈ (t(n)i , t(n)i+1), i ∈ [K (n)−1]. Furthermore,
we have X(t(n+1)

0 ) = X(t(n)
K (n)
) + x (n)

K (n)
, n ∈ [N − 1]. Here we recall that the classical derivative

of X(·) does not exist. However, X(·) is differentiable in a weak sense with weak derivatives
given by Dirac measures at {t(n)i } with heights {x (n)i } (see Example 2.40).

Discretization of Trial and Test Spaces Let us consider the trial functions first. The dis-
cretization of trial function x ∈ Y1([−1,+1],Rnx) is expressed in terms of coefficients x (n)ias

xh(t)
def
= X (1)(t)

K(n)∑
i=0

x (1)i L(1)i (t
−1
1 (t)) +

N∑
n=2

X (n)(t)

x (n−1)
K(n−1) L(n)0 (t

−1
n (t)) +

K(n)∑
i=1

x (n)i L(n)i (t
−1
n (t))

 ,

and the discretization of trial function u ∈ Y ([−1,+1],Rnx) is written with coefficients u(n)i
as

uh(t)
def
=

N∑
n=1

X (n)(t)
K (n)∑
i=1

u(n)i L
(n)
i (t

−1
n (t)).

The trial functions associated with dual states Λ ∈ NBV([−1,+1],Rnx) of the differential
equation and with dual states M ∈NBV([−1,+1],Rnc) of the mixed control–state path con-
straints are represented with coefficients Λ(n)i and M (n)

i as

Λh(t)
def
=

N∑
n=1

K (n)∑
i=1

Λ
(n)
i H(n)i (t

−1
n (t)), (9.46)

Mh(t)
def
=

N∑
n=1

K (n)∑
i=1

M (n)
i H(n)i (t

−1
n (t)). (9.47)

For later convenience and similarly to as we have done in Section 9.2 with coefficients of the
Lagrange function we parametrize Λ(n)i and M (n)

i according to the formula

Λ
(n)
i =

hn

2
ω
(n)
i
eλ(n)i , M (n)

i =
hn

2
ω
(n)
i eµ(n)i , (9.48)
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such that we have

Λh(t)
def
=

N∑
n=1

hn

2

K (n)∑
i=1

eλ(n)i ω
(n)
i H(n)i (t

−1
n (t)),

Mh(t)
def
=

N∑
n=1

hn

2

K (n)∑
i=1

eµ(n)i ω
(n)
i H(n)i (t

−1
n (t)).

Gaussian quadrature with FLGR quadrature points suggests the following step function ap-
proximation of the identity function id(·):

Th(t)
def
=

N∑
n=1

hn

2

K (n)∑
i=1

ω
(n)
i H(n)i (t

−1
n (t)). (9.49)

Now we deal with discretizations of the test functions. We introduce the notation φh
x(·) for

the discretized test functions φx ∈ Y1([−1,+1],Rnx) and define them as follows:

φh
x (t)

def
= X (1)(t)

K(n)∑
i=0

φx
(1)
i L(1)i (t

−1
1 (t)) +

N∑
n=2

X (n)(t)

φx
(n−1)
K(n−1) L(n)0 (t

−1
n (t)) +

K(n)∑
i=1

φx
(n)
i L(n)i (t

−1
n (t))

 .

In a similar way we deal with φu ∈ Y ([−1,+1],Rnx) and φµ ∈ Y ([−1,+1],Rnx) whose dis-
cretizations are given as

φh
u(t)

def
=

N∑
n=1

X (n)(t)
K (n)∑
i=1

φu
(n)
i L

(n)
i (t

−1
n (t))

and

φh
µ(t)

def
=

N∑
n=1

X (n)(t)
K (n)∑
i=1

φµ
(n)
i L

(n)
i (t

−1
n (t)).

9.3.2 Finite Dimensional Optimality Conditions

In the followingwe approximate the infinite dimensional functions of theweak formulations in
Section 9.1.2 with appropriately chosen finite dimensional functions. Evaluating the resulting
variational formulations provides us with optimality conditions.

Optimality Conditions [(9.5)+ (9.6)+ (9.7)] We start by an investigation of the variational
formulation (9.18) and replace the trial functions x (·) and u(·) with xh(·) and uh(·), respec-
tively. Likewise we replace id(·)with Th(·), Λ(·)with Λh(·), andM(·)withMh(·). Finally, the
test function φx(·) is substituted with the finite dimensional function φh

x(·) leading to

0=
N∑

n=1

¨
h
2

∫
(−1,1]

ψ′x [tn(t)]φ
h
x (tn(t)) d Th(tn(t)) +

∫
(−1,1]

h
2

f ′x [tn(t)]φ
h
x (tn(t))− φ̇h

x (tn(t)) dΛh(tn(t))
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+
h
2

∫
(−1,1]

c′x [tn(t)]φ
h
x (tn(t)) dMh(tn(t))

«
+
�
φh

x

�T
(+1)

�
r ′x f

ν +φ′x f

�
+
�
φh

x

�T
(−1)

�
r ′xs
ν +φ′xs

�
(9.50)

for all φh
x ∈ Y1

P([−1,+1],Rnx). We evaluate the integrals interval–wise (note the specific
evaluation for jump functions in Lemma 2.82) such that we have for

(i) interval n= 1:

h
2

(
K (1)∑
i=1

h1

2
ω
(1)
i ψ

′
x

T
�
τ
(1)
i

�
φx
(1)
i

)
+

h
2

(
K (1)∑
i=1

h1

2
ω
(1)
i

�eµ(1)i

�T
c′x

T
�
τ
(1)
i

�
φx
(1)
i

)

+

(
K (1)∑
i=1

h1

2
ω
(1)
i

�eλ(1)i

�T

(
h
2

f ′x
T
�
τ
(1)
i

�
φx
(1)
i −

K (1)∑
j=0

2
h1
φx
(1)
j D(1)i, j

))
.

(ii) intervals n ∈ [N] \ {1}:
h
2

(
K (n)∑
i=1

hn

2
ω
(n)
i ψ

′
x

T
�
τ
(n)
i

�
φx
(n)
i

)
+

h
2

(
K (n)∑
i=1

hn

2
ω
(n)
i

�eµ(n)i

�T
c′x

T
�
τ
(n)
i

�
φx
(n)
i

)

+

(
K (n)∑
i=1

hn

2
ω
(n)
i

�eλ(n)i

�T

(
h
2

f ′x
T
�
τ
(n)
i

�
φx
(n)
i −

K (n)∑
j=1

2
hn
φx
(n)
j D(n)i, j − 2

hn
φx
(n−1)
K (n−1) D(n)i,0

))
.

(iii) the rest:

φx
N
K (N)

T
�
r ′x f
ν +φ′x f

�
+φx

(1)
0

T �
r ′xs
ν +φ′xs

�
.

Rearranging the sums yields for

(i) interval n= 1:

K (1)∑
i=1

h
2

h1

2
ω
(1)
i ψ

′
x

T
�
τ
(1)
i

�
φx
(1)
i +

K (1)∑
i=1

h
2

h1

2
ω
(1)
i

�eµ(1)i

�T
c′x

T
�
τ
(1)
i

�
φx
(1)
i

−
K (1)∑
i=1

K (1)∑
j=0

ω
(1)
i

�eλ(1)i

�T
φx
(1)
j D(1)i, j +

K (1)∑
i=1

h
2

h1

2
ω
(1)
i

�eλ(1)i

�T
f ′x

T
�
τ
(1)
i

�
φx
(1)
i .

(ii) intervals n ∈ [N] \ {1}:
K (n)∑
i=1

h
2

hn

2
ω
(n)
i ψ

′
x

T
�
τ
(n)
i

�
φx
(n)
i +

K (n)∑
i=1

h
2

hn

2
ω
(n)
i

�eµ(n)i

�T
c′x

T
�
τ
(n)
i

�
φx
(n)
i
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−
K (n)∑
i=1

ω
(n)
i

�eλ(n)i

�T
φx
(n−1)
K (n−1) D(n)i,0 −

K (n)∑
i=1

K (n)∑
j=1

ω
(n)
i

�eλ(n)i

�T
φx
(n)
j D(n)i, j

+
K (n)∑
i=1

h
2

hn

2
ω
(n)
i

�eλ(n)i

�T
f ′x

T
�
τ
(n)
i

�
φx
(n)
i .

Another rearrangement step yields for

(i) interval n= 1:

K (1)∑
i=1

h
2

h1

2
ω
(1)
i ψ

′
x

T
�
τ
(1)
i

�
φx
(1)
i +

K (1)∑
i=1

h
2

h1

2
ω
(1)
i

�eµ(1)i

�T
c′x

T
�
τ
(1)
i

�
φx
(1)
i

−
K (1)∑
i=1

K (1)∑
j=1

ω
(1)
j

�eλ(1)j

�T
φx
(1)
i D(1)j,i −

K (1)∑
i=1

ω
(1)
i

�eλ(1)i

�T
φx
(1)
0 D(1)i,0

+
K (1)∑
i=1

h
2

h1

2
ω
(1)
i

�eλ(1)i

�T
f ′x

T
�
τ
(1)
i

�
φx
(1)
i .

(ii) intervals n ∈ [N] \ {1}:
K (n)∑
i=1

h
2

hn

2
ω
(n)
i ψ

′
x

T
�
τ
(n)
i

�
φx
(n)
i +

K (n)∑
i=1

h
2

hn

2
ω
(n)
i

�eµ(n)i

�T
c′x

T
�
τ
(n)
i

�
φx
(n)
i

−
K (n)∑
i=1

ω
(n)
i

�eλ(n)i

�T
φx
(n−1)
K (n−1) D(n)i,0 −

K (n)∑
i=1

K (n)∑
j=1

ω
(n)
j

�eλ(n)j

�T
φx
(n)
i D(n)j,i

+
K (n)∑
i=1

h
2

hn

2
ω
(n)
i

�eλ(n)i

�T
f ′x

T
�
τ
(n)
i

�
φx
(n)
i .

Gluing everything together we can write (9.50) as

0=
K (1)∑
i=1

h
2

h1

2
ω
(1)
i ψ

′
x

T
�
τ
(1)
i

�
φx
(1)
i +

K (1)∑
i=1

h
2

h1

2
ω
(1)
i

�eµ(1)i

�T
c′x

T
�
τ
(1)
i

�
φx
(1)
i

−
K (1)∑
i=1

K (1)∑
j=1

ω
(1)
j

�eλ(1)j

�T
φx
(1)
i D(1)j,i −

K (1)∑
i=1

ω
(1)
i

�eλ(1)i

�T
φx
(1)
0 D(1)i,0

+
K (1)∑
i=1

h
2

h1

2
ω
(1)
i

�eλ(1)i

�T
f ′x

T
�
τ
(1)
i

�
φx
(1)
i

+
N∑

n=2

K (n)∑
i=1

h
2

hn

2
ω
(n)
i ψ

′
x

T
�
τ
(n)
i

�
φx
(n)
i +

N∑
n=2

K (n)∑
i=1

h
2

hn

2
ω
(n)
i

�eµ(n)i

�T
c′x

T
�
τ
(n)
i

�
φx
(n)
i
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−
N−1∑
n=1

K (n+1)∑
i=1

ω
(n+1)
i

�eλ(n+1)
i

�T
φx
(n)
K (n)

D(n+1)
i,0 −

N∑
n=2

K (n)∑
i=1

K (n)∑
j=1

ω
(n)
j

�eλ(n)j

�T
φx
(n)
i D(n)j,i

+
N∑

n=2

K (n)∑
i=1

h
2

hn

2
ω
(n)
i

�eλ(n)i

�T
f ′x

T
�
τ
(n)
i

�
φx
(n)
i

+φx
N
K (N)

T
�
r ′x f
ν +φ′x f

�
+φx

(1)
0

T �
r ′xs
ν +φ′xs

� ∀φx
(n)
i .

Rearranging terms yields

0=
N∑

n=1

K (n)−1∑
i=1

h
2

hn

2
ω
(n)
i ψ

′
x

T
�
τ
(n)
i

�
φx
(n)
i +

N∑
n=1

K (n)−1∑
i=1

h
2

hn

2
ω
(n)
i

�eµ(n)i

�T
c′x

T
�
τ
(n)
i

�
φx
(n)
i

+
N∑

n=1

K (n)−1∑
i=1

h
2

hn

2
ω
(n)
i

�eλ(n)i

�T
f ′x

T
�
τ
(n)
i

�
φx
(n)
i −

N∑
n=1

K (n)−1∑
i=1

K (n)∑
j=1

ω
(n)
j

�eλ(n)j

�T
φx
(n)
i D(n)j,i

+
N∑

n=1

h
2

hn

2
ω
(n)
K (n)
ψ′x

T
�
τ
(n)
K (n)

�
φx
(n)
K (n)
+

N∑
n=1

h
2

hn

2
ω
(n)
K (n)

�eµ(n)
K (n)

�T
c′x

T
�
τ
(n)
K (n)

�
φx
(n)
K (n)

+
N∑

n=1

h
2

hn

2
ω
(n)
K (n)

�eλ(n)
K (n)

�T
f ′x

T
�
τ
(n)
K (n)

�
φx
(n)
K (n)
−

N∑
n=1

K (n)∑
j=1

ω
(n)
j

�eλ(n)j

�T
φx
(n)
K (n)

D(n)
j,K (n)

−
K (1)∑
i=1

ω
(1)
i

�eλ(1)i

�T
φx
(1)
0 D(1)i,0 −

N−1∑
n=1

K (n+1)∑
i=1

ω
(n+1)
i

�eλ(n+1)
i

�T
φx
(n)
K (n)

D(n+1)
i,0

+
�
φx

N
K (N)

�T �
r ′x f
ν +φ′x f

�
+
�
φx
(1)
0

�T �
r ′xs
ν +φ′xs

� ∀φx
(n)
i .

We solve the equation for the φx
(n)
i and obtain

0=φx
(1)
0

T

(
r ′xs
ν +φ′xs

−
K (1)∑
j=1

ω
(1)
j D(1)j,0

eλ(1)j

)

+
N∑

n=1

K (n)−1∑
i=1

φx
(n)
i

T
§

h
2

hn

2
ω
(n)
i

�
ψ′x

�
τ
(n)
i

�
+ f ′x

�
τ
(n)
i

� eλ(n)i + c′x
�
τ
(n)
i

� eµ(n)i

�
−

K (n)∑
j=1

ω
(n)
j D(n)j,i

eλ(n)j

)

+
N−1∑
n=1

φx
(n)
K (n)

T
§

h
2

hn

2
ω
(n)
K (n)

�
ψ′x

�
τ
(n)
K (n)

�
+ f ′x

�
τ
(n)
K (n)

� eλ(n)
K (n)
+ c′x

�
τ
(n)
K (n)

� eµ(n)
K (n)

�
−

K (n)∑
j=1

ω
(n)
j D(n)

j,K (n)
eλ(n)j −

K (n+1)∑
j=1

ω
(n+1)
j D(n+1)

j,0
eλ(n+1)

j

)
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+φx
(N)
K (N)

T
§

h
2

hN

2
ω
(N)
K (N)

�
ψ′x

�
τ
(N)
K (N)

�
+ f ′x

�
τ
(N)
K (N)

� eλ(N)
K (N)
+ c′x

�
τ
(N)
K (N)

� eµ(N)
K (N)

�
−

K (N)∑
j=1

ω
(N)
j D(N)

j,K (N)
eλ(N)j + r ′x f

ν +φ′x f

)
∀φx

(n)
i . (9.51)

The function eΞ : Rnw ×Rnη ×Rnµ −→ Rns reads as

Ξ(w, eη, eµ) = ��eΞ(1)0

�T
, . . . ,

�eΞ(1)K (1)

�T
, . . . ,

�eΞx (N)1

�T
, . . . ,

�eΞ(N)K (N)

�T
�T

(w, eη, eµ),
where the single components are described in the following. For n ∈ [N] and i ∈ [K (n) − 1]
we define

Ξ(n)i (w, eη, eµ) def
=

h
2

hn

2

¦
ψ′x

�
τ
(n)
i

�
+ f ′x

�
τ
(n)
i

� eλ(n)i + c′x
�
τ
(n)
i

� eµ(n)i

©
+

K (n)∑
j=1

D
(n)
i, j
eλ(n)j .

=
h
2

hn

2

¦
ψ′x

�
τ
(n)
i

�
+ f ′x

�
τ
(n)
i

� eλ(n)i + c′x
�
τ
(n)
i

� eµ(n)i

©− K (n)∑
j=1

ω
(n)
j

ω
(n)
i

D(n)j,i
eλ(n)j .

For this reason we have

ω
(n)
i Ξ

(n)
i (w, eη, eµ) =h

2
hn

2
ω
(n)
i

¦
ψ′x

�
τ
(n)
i

�
+ f ′x

�
τ
(n)
i

� eλ(n)i + c′x
�
τ
(n)
i

� eµ(n)i

©
−

K (n)∑
j=1

ω
(n)
j D(n)j,i

eλ(n)j , n ∈ [N], i ∈ [K (n) − 1].

For n= N and i = K (N) we define the respective component as

eΞ(N)K (N)(w, eη, eµ) def
=

h
2

hN

2

�
ψ′x

�
τ
(N)
K (N)

�
+ f ′x

�
τ
(N)
K (N)

� eλ(N)
K (N)
+ c′x

�
τ
(N)
K (N)

� eµ(N)
K (N)

�
+

K (N)∑
j=1

D
(N)
K (N), j

eλ(N)j − 1

ω
(N)
K (N)

�eλ(N)
K (N)
− r ′x f

ν −φ′x f

�
=

h
2

hN

2

�
ψ′x

�
τ
(N)
K (N)

�
+ f ′x

�
τ
(N)
K (N)

� eλ(N)
K (N)
+ c′x

�
τ
(N)
K (N)

� eµ(N)
K (N)

�
−

K (N)∑
j=1

ω
(N)
j

ω
(N)
K (N)

D(N)
j,K (N)

eλ(N)j +
1

ω
(N)
K (N)

�
r ′x f
ν +φ′x f

�
such that it holds

ω
(N)
K (N)

eΞ(N)K (N)(w, eη, eµ) =h
2

hN

2
ω
(N)
K (N)

�
ψ′x

�
τ
(N)
K (N)

�
+ f ′x

�
τ
(N)
K (N)

� eλ(N)
K (N)
+ c′x

�
τ
(N)
K (N)

� eµ(N)
K (N)

�
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−
K (N)∑
j=1

ω
(N)
j D(N)

j,K (N)
eλ(N)j + r ′x f

ν +φ′x f
.

For n= 1 and i = 0 the respective component is defined as

eΞ(1)0 (w, eη, eµ) def
=−

K (1)∑
i=1

ω
(1)
i

K (1)∑
j=1

D
(1)
i, j
eλ(1)j + eλ(1)K (1)

+ r ′xs
ν +φ′xs

=−
K (1)−1∑

i=1

ω
(1)
i

K (1)∑
j=1

ω
(1)
j

ω
(1)
i

D
(1)
j,i

 eλ(1)i −ω(1)K (1)

K (1)∑
j=1

ω
(1)
j

ω
(1)
K (1)

D
(1)
j,K (1)

 eλ(1)
K (1)

+
ω
(1)
K (1)

ω
(1)
K (1)

eλ(1)
K (1)
+ r ′xs

ν +φ′xs

=−
K (1)∑
i=1

ω
(1)
i D(1)i,0

eλ(1)i + r ′xs
ν +φ′xs

.

Finally, for n ∈ [N − 1] and i = K (n) we define the respective component as

eΞ(n)K (n)(w, eη, eµ) def
=

h
2

hn

2

�
ψ′x

�
τ
(n)
K (n)

�
+ f ′x

�
τ
(n)
K (n)

� eλ(n)
K (n)
+ c′x

�
τ
(n)
K (n)

� eµ(n)
K (n)

�
+

K (n)∑
j=1

D
(n)
K (n), j

eλ(n)j

− 1

ω
(n)
K (n)

eλ(n)
K (n)
− eλ(n+1)

K (n+1) +
K (n+1)∑
i=1

ω
(n+1)
i

K (n+1)∑
j=1

D
(n+1)
i, j

eλ(n+1)
j

 .

Taking the auxiliary calculation

K (n+1)∑
i=1

ω
(n+1)
i

K (n+1)∑
j=1

D
(n+1)
i, j

eλ(n+1)
j − eλ(n+1)

K (n+1)

=
K (n+1)−1∑

i=1

ω
(n+1)
i

K (n+1)∑
j=1

ω
(n+1)
j

ω
(n+1)
i

D
(n+1)
j,i

 eλ(n+1)
i

+ω(n+1)
K (n+1)

K (n+1)∑
j=1

ω
(n+1)
j

ω
(n+1)
K (n+1)

D
(n+1)
j,K (n+1) − 1

ω
(n+1)
K (n+1)

 eλ(n+1)
K (n+1)

=
K (n+1)−1∑

i=1

ω
(n+1)
i D(n+1)

i,0
eλ(n+1)

i +ω(n+1)
K (n+1) D(n+1)

K (n+1),0
eλ(n+1)

K (n+1) =
K (n+1)∑
i=1

ω
(n+1)
i D(n+1)

i,0
eλ(n+1)

i
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into consideration we deduce

eΞ(n)K (n)(w, eη, eµ) =h
2

hn

2

�
ψ′x

�
τ
(n)
K (n)

�
+ f ′x

�
τ
(n)
K (n)

� eλ(n)
K (n)
+ c′x

�
τ
(n)
K (n)

� eµ(n)
K (n)

�
+

K (n)∑
j=1

D
(n)
K (n), j

eλ(n)j − 1

ω
(n)
K (n)

eλ(n)
K (n)
+

K (n+1)∑
i=1

ω
(n+1)
i D(n+1)

i,0
eλ(n+1)

i


=

h
2

hn

2

�
ψ′x

�
τ
(n)
K (n)

�
+ f ′x

�
τ
(n)
K (n)

� eλ(n)
K (n)
+ c′x

�
τ
(n)
K (n)

� eµ(n)
K (n)

�
−

K (n)∑
j=1

ω
(n)
j

ω
(n)
K (n)

D(n)
j,K (n)

eλ(n)j −
K (n+1)∑

j=1

ω
(n+1)
j

ω
(n)
K (n)

D(n+1)
j,0

eλ(n+1)
j .

Then it holds

ω
(n)
K (n)

eΞ(n)K (n)(w, eη, eµ) =h
2

hn

2
ω
(n)
K (n)

�
ψ′x

�
τ
(n)
K (n)

�
+ f ′x

�
τ
(n)
K (n)

� eλ(n)
K (n)
+ c′x

�
τ
(n)
K (n)

� eµ(n)
K (n)

�
−

K (n)∑
j=1

ω
(n)
j D(n)

j,K (n)
eλ(n)j −

K (n+1)∑
j=1

ω
(n+1)
j D(n+1)

j,0
eλ(n+1)

j .

Now we define the vector

φx
def
=
��
φx
(1)
�T

, . . . ,
�
φx
(N)
�T�T

,

where the single components are given as

φx
(1) def
=
h
ω
(1)
0

�
φx
(1)
0

�T
, . . . ,ω(1)

K (1)

�
φx
(1)
K (1)

�TiT
, ω

(1)
0 ≡ 1,

φx
(n) def
=
h
ω
(n)
1

�
φx
(n)
1

�T
, . . . ,ω(n)

K (n)

�
φx
(n)
K (n)

�TiT
, n ∈ [N] \ {1}.

We can write (9.51) as the system of equations

φx
T eΞ(w, eη, eµ) = 0 ∀φx ∈ Rns .

Hence, the equation system holds if eΞ(·) vanishes. This is equivalent to vanishing componentseΞ(n)i (·) = 0 for all i.

Optimality Conditions [(9.8)+ (9.9)] We insert the trial functions into Equation (9.23) lead-
ing to

0=φts
T

¨
−1

2

N∑
n=1

�∫
(−1,1]

ψ[tn(t)] d Th(tn(t)) +

∫
(−1,1]

f [tn(t)] dΛh(tn(t))

�

+
h
2

N∑
n=1

�∫
(−1,1]

1
2
(1− tn(t)) ψ

′
t [tn(t)] d Th(tn(t)) +

∫
(−1,1]

1
2
(1− tn(t)) f ′t [tn(t)] dΛh(tn(t))
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+

∫
(−1,1]

1
2
(1− tn(t)) c′t [tn(t)] dMh(tn(t))

�
+φ′ts + r ′ts ν

«
, ∀φts ∈ R,

and evaluate the Lebesgue–Stieltjes integrals yielding for all φts ∈ R:

0=φts
T

(
−1

2

N∑
n=1

hn

2

K (n)∑
i=1

ω
(n)
i

�
ψ
�
τ
(n)
i

�
+ f

�
τ
(n)
i

� eλ(n)i

�
+ r ′ts

ν +φ′ts

+
1
2

h
2

N∑
n=1

hn

2

K (n)∑
i=1

ω
(n)
i

�
1− tn

�
τ
(n)
i

�� �
ψ′t
�
τ
(n)
i

�
+ f ′t

�
τ
(n)
i

� eλ(n)i + c′t
�
τ
(n)
i

� eµ(n)i

�)
.

We introduce the function eTts : Rnw ×Rnη ×Rnµ −→ R which is defined as

eTts (w, eη, eµ) =− 1
2

N∑
n=1

hn

2

K(n)∑
i=1

ω
(n)
i

¦
ψ
�
τ
(n)
i

�
+ f

�
τ
(n)
i

� eλ(n)i

©
+ r ′ts ν +φ

′
ts

+
1
2

h
2

N∑
n=1

hn

2

K(n)∑
i=1

ω
(n)
i

�
1− tn

�
τ
(n)
i

�� ¦
ψ′t
�
τ
(n)
i

�
+ f ′t

�
τ
(n)
i

� eλ(n)i + c′t
�
τ
(n)
i

� eµ(n)i

©
such that we can write the equation in terms of eTts(·) as

0= φts
T eTts(w, eη, eµ) ∀φts ∈ R.

We proceed in a similar way with Equation (9.24) and find

0=φtf
T

¨
1
2

N∑
n=1

�∫
(−1,1]

ψ[tn(t)] d Th(tn(t)) +

∫
(−1,1]

f [tn(t)] dΛh(tn(t))

�

+
h
2

N∑
n=1

�∫
(−1,1]

1
2
(1+ tn(t)) ψ

′
t [tn(t)] d Th(tn(t)) +

∫
(−1,1]

1
2
(1+ tn(t)) f ′t [tn(t)] dΛh(tn(t))

+

∫
(−1,1]

1
2
(1+ tn(t)) c′t [tn(t)] dMh(tn(t))

�
+φ′tf + r ′tf ν

«
, ∀φtf ∈ R.

Evaluating the Lebesgue–Stieltjes integrals yields for all φtf ∈ R:

0=φtf
T

(
1
2

N∑
n=1

hn

2

K (n)∑
i=1

ω
(n)
i

�
ψ
�
τ
(n)
i

�
+ f

�
τ
(n)
i

� eλ(n)i

�
+ r ′t f

ν +φ′t f

+
1
2

h
2

N∑
n=1

hn

2

K (n)∑
i=1

ω
(n)
i

�
1+ tn

�
τ
(n)
i

�� �
ψ′t
�
τ
(n)
i

�
+ f ′t

�
τ
(n)
i

� eλ(n)i + c′t
�
τ
(n)
i

� eµ(n)i

�)
.

By means of the function eTtf : Rnw ×Rnη ×Rnµ −→ R which is defined as

Ttf (w, eη, eµ) =+ 1
2

N∑
n=1

hn

2

K(n)∑
i=1

ω
(n)
i

¦
ψ
�
τ
(n)
i

�
+ f

�
τ
(n)
i

� eλ(n)i

©
+ r ′tf ν +φ

′
tf

263



Chapter 9
�� An Interpretation for Discrete Adjoints of Collocation Methods

+
1
2

h
2

N∑
n=1

hn

2

K(n)∑
i=1

ω
(n)
i

�
1+ tn

�
τ
(n)
i

�� ¦
ψ′t
�
τ
(n)
i

�
+ f ′t

�
τ
(n)
i

� eλ(n)i + c′t
�
τ
(n)
i

� eµ(n)i

©
we write the equation as

0= φtf
T eTtf(w, eη, eµ) ∀φtf ∈ R.

Optimality Conditions [(9.10)] We replace trial and test functions in (9.25) and use the fact
that the Lebesgue–Stieltjes integral can be easily evaluated for step functions. The resulting
equation reads as

0=
N∑

n=1

¨∫
(−1,1]

ψ′u[tn(t)]φ
h
u(tn(t)) d T h(tn(t)) +

∫
(−1,1]

f ′u[tn(t)]φ
h
u(tn(t)) dΛh(tn(t))

+

∫
(−1,1]

c′u[tn(t)]φ
h
u(tn(t)) dMh(tn(t))

«

=
N∑

n=1

(
K (n)∑
i=1

hn

2
ω
(n)
i ψ

′
u

�
τ
(n)
i

�
φu
(n)
i +

K (n)∑
i=1

hn

2
ω
(n)
i

�eλ(n)i

�T
f ′u
�
τ
(n)
i

�
φu
(n)
i

+
K (n)∑
i=1

hn

2
ω
(n)
i

�eµ(n)i

�T
c′u
�
τ
(n)
i

�
φu
(n)
i

)

=
N∑

n=1

K (n)∑
i=1

hn

2
ω
(n)
i

�
φu
(n)
i

�T ¦
ψ′u

T
�
τ
(n)
i

�
+ f ′u

T
�
τ
(n)
i

� eλ(n)i + c′u
T
�
τ
(n)
i

� eµ(n)i

©
. (9.52)

By introducing the vectors

φu
def
=
��
φu
(1)
�T

, . . . ,
�
φu
(N)
�T�T

, φu
(n) def
=
h�
φu
(n)
1

�T
, . . . ,

�
φu
(n)
K (n)

�TiT
, n ∈ [N],

and the vector–valued function eY : Rnw ×Rnη ×Rnµ −→ Rnq

eY (w, eη, eµ) = h�eY (1)1

�T
, . . . ,

�eY (1)
K (1)

�T
, . . . ,

�eY (N)1

�T
, . . . ,

�eY (N)
K (N)

�TiT
(w, eη, eµ),

with

eY (n)i
def
=

hn

2
ω
(n)
i

¦
ψ′u

T
�
τ
(n)
i

�
+ f ′u

T
�
τ
(n)
i

� eλ(n)i + c′u
T
�
τ
(n)
i

� eµ(n)i

©
, n ∈ [N], i ∈ [K (n)],

we can write (9.52) as the system of equations

φu
T eY (w, eη, eµ) = 0 ∀φu ∈ Rnq .
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Since we have hn
2 ω

(n)
i ̸= 0 the equation system holds if and only if

ψ′u
T
�
τ
(n)
i

�
+ f ′u

T
�
τ
(n)
i

� eλ(n)i + c′u
T
�
τ
(n)
i

� eµ(n)i = 0, n ∈ [N], i ∈ [K (n)].

Optimality Conditions [(9.11)+ (9.13)] Replacing trial and test functions in (9.27) yields

0⩽
N∑

n=1

∫
(−1,1]

φh
µ(tn(t)) dMh(tn(t)),

=
N∑

n=1

K (n)∑
i=1

hn

2
ω
(n)
i φµ

(n)
i

T eµ(n)i ∀φµ(n)i ⩾ 0.

The vector definitions

φµ
(n) def
=
h
φµ
(n)
1

T
, . . . ,φµ

(n)
K (n)

T
iT

, φµ
def
=
�
φµ
(1)T , . . . ,φµ

(N)T
�T

and

eµ(n) def
=
�

hn

2
ω
(n)
1

�eµ(n)1

�T
, . . . ,

hn

2
ω
(n)
K (n)

�eµ(n)
K (n)

�T
�T

, eµ def
=
��eµ(1)�T

, . . . ,
�eµ(N)�T�T

enable us to write the variational inequality as

0⩽ φµT eµ ∀φµ ⩾ 0.

This formulation is equivalent to eµ ⩾ 0 and since hn
2 ω

(n)
i ̸= 0 it is equivalent to eµ(n)i ⩾ 0 for

all n ∈ [N] and i ∈ [K (n)]. Now we continue with (9.28) and replace trial and test functions
with their finite dimensional counterparts such that we obtain

0=
N∑

n=1

∫
(−1,+1]

φh
M (tn(t)) c[tn(t)] dMh(tn(t))

=
N∑

n=1

K (n)∑
i=1

hn

2
ω
(n)
i φM

(n)
i

�eµ(n)i

�T
c[t(n)i ]

for all φM
(n)
i ∈ ZH([−1,+1],R). We define the vectors

φM
(n) def
=
�
φM

(n)
1 , . . . ,φM

(n)
K (n)

�T
and φM

def
=
�
φM

(1)T , . . . ,φM
(N)T

�T
,

as well as the vector–valued function eC : Rnw ×Rnη ×Rnµ −→ Rnq

eC(w, eη, eµ) = h�eC (1)1

�T
, . . . ,

�eC (1)
K (1)

�T
, . . . ,

�eC (N)1

�T
, . . . ,

�eC (N)
K (N)

�TiT
(w, eη, eµ),
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with

eC (n)i
def
=

hn

2
ω
(n)
i

�eµ(n)i

�T
c[t(n)i ], n ∈ [N], i ∈ [K (n)].

Hence, we can write the variational equality equivalently as

0= φM
T eC(w, eη, eµ) ∀φM ,

which is equivalent to
�eµ(n)i

�T
c[t(n)i ] = 0 for all n ∈ [N] and i ∈ [K (n)] since hn

2 ω
(n)
i ̸= 0.

Finally, we proceed with (9.29) in a similar way and obtain

0⩾
N∑

n=1

∫
(−1,1]

c[tn(t)] dφc(tn(t)) =
N∑

n=1

K (n)∑
i=1

φc
(n)
i

T
c[t(n)i ] ∀φc

(n)
i ⩾ 0.

By means of the vector

φc
(n) def
=
h
φc
(n)
1

T
, . . . ,φc

(n)
K (n)

T
iT

and φc
def
=
�
φc
(1)T , . . . ,φc

(N)T
�T

we can write the variational inequality as

0⩾ φc
T C(w) ∀φc ⩾ 0

which is equivalent to C(w)⩽ 0.

Optimality Conditions [(9.12)] We replace trial and test functions in (9.31) and evaluate the
Lebesgue–Stieltjes integral resulting in

0=
N∑

n=1

∫
(−1,1]

ẋh(tn(t))− h
2

f [tn(t)] dφh
Λ(tn(t))

=

(
K (1)∑
i=1

h1

2
ω
(1)
i φλ

(1)
i

T

(
K (1)∑
j=0

2
h1

x (1)j D(1)i, j − h
2

f
�
τ
(1)
i

�))

+
N∑

n=2

(
K (n)∑
i=1

hn

2
ω
(n)
i φλ

(n)
i

T

(
2
hn

x (n−1)
K (n−1)D

(n)
i,0 +

K (n)∑
j=1

2
hn

x (n)j D(n)i, j − h
2

f
�
τ
(n)
i

�))

=
K (1)∑
i=1

K (1)∑
j=0

ω
(1)
i x (1)j

T
D(1)i, j φλ

(1)
i −

K (1)∑
i=1

ω
(1)
i

h1

2
h
2

f
�
τ
(1)
i

�T
φλ
(1)
i +

N∑
n=2

K (n)∑
i=1

ω
(n)
i x (n−1)

K (n−1)

T
D(n)i,0 φλ

(n)
i

+
N∑

n=2

K (n)∑
i=1

K (n)∑
j=1

ω
(n)
i x (n)j

T
D(n)i, j φλ

(n)
i −

N∑
n=2

K (n)∑
i=1

ω
(n)
i

hn

2
h
2

f
�
τ
(n)
i

�T
φλ
(n)
i

266



An Interpretation for Discrete Adjoints of Collocation Methods
�� Chapter 9

=
K (1)∑
i=1

ω
(1)
i φλ

(1)
i

T

(
K (1)∑
j=0

x (1)j D(1)i, j − h1

2
h
2

f
�
τ
(1)
i

�)

+
N∑

n=2

K (n)∑
i=1

ω
(n)
i φλ

(n)
i

T

(
K (n)∑
j=1

x (n)j D(n)i, j + x (n−1)
K (n−1)D

(n)
i,0 − hn

2
h
2

f
�
τ
(n)
i

�)
. (9.53)

We then introduce the vectors

φλ
def
=
��
φλ
(1)
�T

, . . . ,
�
φλ
(N)
�T�T

, φλ
(n) def
=
h�
φλ
(n)
1

�T
, . . . ,

�
φλ
(n)
K (n)

�TiT
, n ∈ [N],

and the vector valued function eF : Rnw −→ RnF defined as

eF(w) = h�eF (1)1

�T
, . . . ,

�eF (1)
K (1)

�T
, . . . ,

�eF (N)1

�T
, . . . ,

�eF (N)
K (N)

�TiT
(w),

where

eF (1)i (w)
def
=ω(1)i

(
K (1)∑
j=0

x (1)j D(1)i, j − h1

2
h
2

f
�
τ
(1)
i

�)
, i ∈ [K (1)],

and

eF (n)i (w)
def
=ω(n)i

(
K (n)∑
j=1

x (n)j D(n)i, j + x (n−1)
K (n−1)D

(n)
i,0 − hn

2
h
2

f
�
τ
(n)
i

�)
, 2⩽ n⩽ N , i ∈ [K (n)],

such that we can write (9.53) as equation system

φλ
T eF(w) = 0 ∀φλ ∈ RnF .

Since it is ω(n)i ̸= 0 the system of equations holds if and only if

K (1)∑
j=0

x (1)j D(1)i, j − h1

2
h
2

f
�
τ
(1)
i

�
= 0,

K (n)∑
j=1

x (n)j D(n)i, j + x (n−1)
K (n−1)D

(n)
i,0 − hn

2
h
2

f
�
τ
(n)
i

�
= 0, 2⩽ n⩽ N , i ∈ [K (n)].

Optimality Conditions [(9.14)] Replacing the trial function x (·) in (9.32) with xh(·) and a
subsequent evaluation yields

0= φr
T r (ts, x (1)0 , tf, x (N)

K (N)
), ∀φr ∈ Rnr ,

which is equivalent to r (ts, x (1)0 , tf, x (N)
K (N)
) = 0.
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9.4 Synthesis

It can be easily checked by investigating the single equation components that the equation
systems from Sections 9.2 and 9.3 in the variables x (n)i , u(n)i , ν=ν(0), eλ(n)i , and eµ(n)i are equiv-
alent. This shows the statement of Theorem 9.3. The transformation from one system to the
other can be determined as follows: we can identify the x (n)i and u(n)i variables. In order to
map the λ(n)i and the Λ(n)i resp. the µ(n)i and the M (n)

i we use (9.40) and (9.48) and identify the
algebraic mapping formulas

Λ
(n)
i =

hn

2
λ
(n)
i and M (n)

i =
2
h
µ
(n)
i . (9.54)

These algebraic relations enable us to determine costate estimates from a solution of the col-
location system. The costate approximate solutions Λh(·) and Mh(·) are calculated by means
of the multipliers λ(n)i and µ(n)i coming from the NLP solver and (9.54).
In order to come up with approximations for the “derivatives” Λ̇h(·) and Ṁh(·), evaluated at
the collocation points t(n)i , we propose the following approach: since the step function (9.49)
is an approximation of the id–function we expect the slopes of the steps to be approximately
equal to one. This leads to the relation

hn
2 ω

(n)
i

h(n)i

= 1,

where h(n)i
def
= t(n)i − t(n)i−1. We use this formula to find the approximations

λh(t
(n)
i ) = Λ̇h(t

(n)
i )≈

Λ
(n)
i

h(n)i

=
hn
2 λ

(n)
i

hn
2 ω

(n)
i

=
λ
(n)
i

ω
(n)
i

and

µh(t
(n)
i ) = Ṁh(t

(n)
i )≈

M (n)
i

h(n)i

=
2
h µ
(n)
i

hn
2 ω

(n)
i

=
2
h

2
hn

µ
(n)
i

ω
(n)
i

.

We use these approximations for our numerical experiments in Chapter 13 and Chapter 14.

268



Chapter 10

A Goal–Oriented Global Error Estimation for Collocation
Methods

The introduction of the local pseudospectral method from Section 7.4 along with the novel
interpretation for its discrete adjoints in the previous Chapter 9 enables us now to derive novel
goal–oriented global error estimators for the aforesaid method. The error estimation approach
derived is based on concepts that are used for a posteriori error estimation in Galerkin–type
FE methods.
In this thesis we derive for the first time a posteriori global error estimators that use informa-
tion computed from adjoint NLP variables which arise from a local pseudospectral discretiza-
tion approach. For a criterion of interest J we estimate the difference

J(x , u)− J(xh, uh), (10.1)

where (x , u) is the unknown exact OCP solution and (xh, uh) the computed approxima-
tion. This difference in J is called the goal–oriented global error of (xh, uh). We point out
that we consider discretizations of rather generally formulated OCPs, i.e., in particular OCPs
with mixed control–state constraints. The functional J is supposed to be sufficiently smooth
throughout this chapter.
In general, we distinguish between so–called error representations and the aforementioned er-
ror estimators, which become relevant whenwe have to put error representations into practice.
Error representations still hold unknown exact quantities while error estimators only rely on
quantities that are available in practical implementations. Hence, error representations are
especially of relevance in terms of theoretical investigations such as the determination of the
asymptotic behavior of discretizations for decreasing step sizes. However, we need error es-
timators in order to be able to choose step sizes as large as possible while pushing the error
under a certain threshold.
Well–established counterparts in Galerkin–type FE methods for PDEs as well their transfer
to error estimations for multistep BDF methods in the thesis of Beigel [41] inspired our novel
goal–oriented error estimators. Section 10.1 is devoted to a literature review about commonly
used error estimators in the ODE and OCP context.
In Section 10.2 we derive an error representation for (10.1). It still includes the unknown adjoint
solutions for both systems dynamics, Λ(·), and mixed control–state path constraints, M(·).
Section 10.3 describes ways how the goal–oriented error representation can be approximated.
Finally, in Section 10.4 we derive goal–oriented error estimators.
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10.1 Literature Review of Global Error Estimation

Prior to analyzing error control in an OCP oriented context, we give a short literature review
of advanced error control techniques in the fields of ordinary and partial differential equations.
Carrying over some fundamental ideas to OCP error control enables us to derive a novel goal–
oriented global error estimator and associated mesh refinement strategies. As Section 10.1.2
reveals, our approach differs fundamentally from current approaches.

10.1.1 Error Estimation for Differential Equations

Before we deal with the PDE case we investigate the case of ODE error control.

ODE Error Estimation Error estimation of OCPs subject to ODEs is related to error estima-
tion of IVPs for ODEs in the sense that OCP solution methods such as direct multiple shooting
(see Section 6.2.3) rely on good IVP solution approximations. IVP error estimation represents
a research field in applied mathematics that has been investigated from the 1960s on.
Zadunaisky [462] proposes an error estimation approach in which one first determines a
continuous approximation of the solution obtained by a numerical integration scheme. This
continuous approximation is then used to construct a “neighboring” IVP with a known ex-
act solution. After this the new IVP is solved with the same discretization scheme that was
used for the original IVP and one obtains a global error by comparing the solution with the
exact one. Another approach similar in fashion as it relies on a related IVP was proposed
by Henrici [229] and involves the unknown local truncation error (see Zadunaisky [463]).
Stetter [417] uses Zadunaisky’s global error estimator in order to iteratively improve the
nominal approximation of IVPs. Skeel [411] provides an excellent survey about early IVP er-
ror estimation approaches. Those approaches were later applied to BDF methods as well, cf.
Skeel [412]. They all have in common that they suffer from severe drawbacks. In particular,
they are computationally expensive and require small and constant step sizes.
Later on, error control based on local techniques such as order and step size adaption accord-
ing to local error quantities became center of interest. For a comprehensive overview, we
recommend reading the textbooks of Hairer et al. [219] and Hairer and Wanner [217], or
the article of Shampine [406]. Even though most of these techniques work satisfactorily, bet-
ter performance can be expected by equipping them with adjoint information: in fact, one
is interested in determining the impact factors of the local error contributions on the target
quantity. Similarly to optimal control theory one seeks a sensitivity analysis with respect to
local disturbances of the model which naturally leads to the concept of an ’adjoint’ (or ’dual’)
problem.
Incorporating adjoint information into a posteriori global error estimation has been inten-
sively analyzed since the 2000s. Here, the global error with respect to a certain criterion of
interest is determined by solving the adjoint variational IVP and using it as weights for local
error quantities. Detailed information can be found in the articles of Moon et al. [330], Cao
and Petzold [101], and Lang and Verwer [284]. These approaches have in common that
they require an additional adaptive numerical integration in order to estimate the adjoint IVP
solution along a nominal solution approximation.
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PDE Error Estimation Modern PDE error control techniques rely on residual–based a pos-
teriori error estimation. In case of OCPs we have already encountered the term ’residual’ in
the context of the weighted residual method, cf. Section 6.3.2. The ODE defect or residual,
evaluated at an approximate solution xh(·), is calculated as

ϱ(xh)(·) = ẋh(·)− f (·, xh(·)).
A similar concept can be carried over to the PDEs case: to this end let us consider a continuous
and a related discrete model. The continuous and discrete model equations are given as

A(y) = f and Ah(yh) = fh.

Here, the continuous model is characterized by the functional A, representing a linear differ-
ential operator, and the function f (·) that acts as a force term. The discretization parameter
h ∈ R> of the discrete model components Ah and fh(·) indicates the approximation quality of
the associated mapping. The residual term is then defined as

ϱ(yh) = f − A(yh).

In the late 1970s residual–based error control was established in Galerkin FE methods for
PDEs. Traditional approaches such as the pioneering work of Babuška and Rheinboldt
[23, 24] result in estimates of the form

∥y − yh∥E ⩽ C ∥ϱ(yh)∥∗E ,

where ∥·∥E usually denotes a natural ’energy norm’ in a PDE context and ∥·∥∗E a suitable dual
norm. Energy error estimation directly involves the variational formulation of the problem
and allows for exploiting its natural coercivity properties which make it rather generic.
However, it does not provide error estimation with respect to physically motivated quantities
of interest. For this reason the approach was later extended in the sense that it can incorporate
certain duality information: for some quantity of interest, which is expressed by applying a
functional J(·) to the solution y(·), onewants to express the error J(y)−J(yh) in terms of local
residuals ϱIn

(yh). The approach was first applied to elliptic model problems, cf. Babuška and
Miller [20, 21, 22]. In a similar vein, error control is addressed by Eriksson et al. [148, 149]
for more general situations. The same authors transferred residual–based error control into
an ODE context, cf. Johnson [258], Estep [150], and Eriksson et al. [148]. In these methods
the stability of the nominal problem is expressed by a single (global) stability constant which
is derived from the associated adjoint problem. Those stability constants are usually derived
by analytical arguments. For more details we refer the reader to the textbooks of Ainsworth
and Oden [7], Babuška and Strouboulis [25] and Verfürth [434].
In general, it is quite cumbersome or even impossible to determine the aforementioned stability
constants. Rather, one would like to have a computation–based feedback method. The DWR
method, developed by Becker and Rannacher [37, 38], represents such amethod, and is briefly
described in the following: if we consider J(y) as quantity of physical interest, then it is our
goal to control the discretization error with respect to this functional output, i.e., we want
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to express the error E(yh)
def
= J(y) − J(yh) in terms of the computable residuals ϱK(yh). As

an example we consider the case of minimizing the local total error eK = (y − yh) ↾K on a
finite element K . In case of a linear problem A y = f , the error eK splits into two components
by superposition, namely the local truncation error eloc

K and the globally transported pollution
error epol

K such that it holds that eK = eloc
K + epol

K . The impact of the residualϱK(yh) = A(y−yh)
on the local error eK ′ of another element K ′ is basically controlled by a global Green function of
the continuous problem. In general, it is impossible to determine the complex error interaction
analytically. Thus, the DWRmethodology is about how those dependences can be captured by
numerical computations. By employing an auxiliary adjoint problem A∗ z = j , which is driven
by the target functional J(·) in terms of a density function j(·), one ends up with a posteriori
error information of the form

|J(y)− J(yh)|=
∑

K
ϱK(yh)ωh(z).

The adjoint solution z(·) can be seen as a generalized global Green function with respect
to the functional J(·). The weights ωh(z) quantify the impact of local variations (sensitivity
analysis) of the residuals ϱK(yh) on the error quantity E(yh).

10.1.2 Error Estimation for Optimal Control Problems

Once again we start by investigating the ODE case followed by the PDE case.

ODE Error Estimation There exist several approaches of ODE error estimation and mesh
refinement. In an collocation method context, one generally distinguishes h, p and hp direct
collocationmethods. A p collocation approach is usually applied to global collocationmethods
(see Section 7.2), i.e., one increases the polynomial degree of the approximating polynomials
to achieve convergence. Contrary, one often applies a h collocation approach to local collo-
cation methods (see Section 7.4), i.e., one increases the number of finite elements to achieve
convergence. However, in order to be able to exploit spectral convergence properties of a p
collocation approach it is highly recommended to combine p and h approach for local collo-
cation methods which is then called a hp approach. The general strategy should be to make
the grid finer in regions of discontinuities and to increase the polynomial degree in smooth
regions.
The methodology of our first mesh refinement approach, which is explained in detail e.g. in
the textbook of Betts [62], can be employed for Shooting Methods (see Section 6.2.2+6.2.3) as
well as local approach methods (see Section 6.3.1). Note that it is applied to Shooting Methods
in every NLP solver iteration. In contrast, local approach methods use it in every iteration of
the SNLP routine. The idea behind can be summarized as follows: let ex (·) and eu(·) denote an
approximation of state and control trajectories obtained in an NLP/SNLP iteration. Then it is
assumed that eu(·) is correct and optimal such that it remains to estimate the error between ex (·)
and the correct solution x ∗(·). This reduces the error estimation approach to an ODE error
estimation which was described in the previous section. The subsequent mesh refinement
process is then driven by equilibrating and reducing the calculated element–wise errors.
A typical p pseudospectral method is described by Gong et al. [201]: the general idea is to
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increase the number of collocation points near the points “at which control undergoes a sud-
den change”. This is realized by means of the pseudospectral differentiation matrix and by
detecting maximum derivatives of the control approximations.
Munos and Moore [332] and Grüne [211] describe refinement strategies for indirect dis-
cretization methods based on the Hamilton–Jacobi–Bellman equation. The refinement pro-
cess is based on detecting some specified local irregularities. In case an irregularity is detected
the grid is refined by splitting selected intervals.
Refinement strategies based on density functions can be found in Zhao and Tsiotras [471]:
for a grid containing Ni grid points in the i–th iteration one calculates a mesh size increment
∆Ni ⩾ 0 according to the approach of Betts and Huffman [65] such that the i+1–th grid has
Ni+1 = Ni +∆Ni grid points. These grid points are distributed according to a density function
which tries to regulate the integration error. For instance, one could consider a piecewise
constant density function whose value on each interval is equal to the corresponding principle
local truncation error (see Schwartz [397]).
Darby et al. [122] carry out an hp pseudospectral method where errors are measured accord-
ing to residual violations at points between collocation points. If these errors have roughly
the same order of magnitude they are called ’uniform–type’ errors and the polynomial de-
gree is increased. Otherwise they call the errors to be of ’nonuniform–type’. In this case the
respective finite element is split.
A similar refinement strategy is described by Darby et al. [124] where they use the same crite-
rion to measure the error. However, they decide according to guesses of trajectory curvatures
if the polynomial degree is increased or if a finite element is split. This strategy is in accordance
with a rapid convergence behavior of p methods for smooth solutions.
Another refinement technique can be found in the article of Patterson et al. [352]. Here, the
error estimation rests on estimating the error in the solution of the differential equation. This
is done by constructing an additional higher–order state approximation. Based on a–priori
error estimations of the used integration method the necessary polynomial degree N can be
determined for every finite element. If N exceeds a certain threshold Nmax the associated finite
element is divided into subintervals.
A combination of the aforementioned refinement strategies, which also allows for merging
existing finite elements, is described by Liu et al. [299].

PDE Error Estimation State of the art a–posteriori error estimation for PDE optimal control
is built upon the previously presented DWR methodology (see Section 10.1.1). To show its
principles in an optimal control context let us consider a PDE constrained OCP of the form

J(y ,q)→min!, A(y ,q) = 0, (10.2)

with state space V , control space Q, cost functional J(·, ·) : V ×Q −→ R, continuous model
A(·, ·) on V ×Q, states y , and controls q . Since the DWR methodology provides error estima-
tion techniques for finite element Galerkin approximations of general variational problems,
we consider the optimization problem

J(y ,q)→min!, a(y ,q)(ψ) = 0 ∀ψ ∈ V, (10.3)
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with the semi–linear form a(·, ·)(·) on V ×Q×V , coming from a variational formulation of the
model equation in (10.2). Assuming the existence of a unique local minimum (y ,q) ∈ V ×Q,
it can be characterized by means of the Lagrangian framework as a saddle point (y ,q ,λ) ∈
V ×Q× V of the Lagrangian functional

L(y ,q ,λ)
def
= J(y ,q) + a(y ,q)(λ)

with the costate variable λ. The saddle point is given as solution of the saddle point problem

a′y(y ,q)(φ,λ) = J ′y(y ,q)(φ) ∀φ ∈ V,

a′q(y ,q)(χ ,λ) = J ′q(y ,q)(χ) ∀χ ∈Q,

a(y ,q)(ψ) = Θ ∀ψ ∈ V.

A discretization of the variational problem (10.3) by a standard Galerkin approach employing
the finite dimensional spaces Vh ×Qh ⊂ V ×Q yields the problem

J(yh,qh)→min!, a(yh,qh)(ψh) = 0 ∀ψh ∈ Vh.

Under certain assumptions we can find solutions (yh,qh) ∈ Vh ×Qh to this finite dimensional
optimization problem by means of determining a saddle point (yh,qh,λh) ∈ Vh ×Qh × Vh of
the Lagrangian L(·, ·, ·). That is, we solve the discrete saddle–point problem

a′y(yh,qh)(φh,λh) = J ′y(yh,qh)(φh) ∀φh ∈ Vh,

a′q(yh,qh)(χh,λh) = J ′q(yh,qh)(χh) ∀χh ∈Qh,

a(yh,qh)(ψh) = Θ ∀ψh ∈ Vh.

It is the goal to control the discretization error that corresponds to the cost functional J(·, ·).
To do so, one can employ the DWRmethodology. Bymeans of the ‘primal’, ‘dual’, and ‘control’
residuals given by

ϱ y(·) def
= J ′y(yh,qh)(·)− a′y(yh,qh)(·,λh) (dual residual)

ϱq(·) def
= J ′q(yh,qh)(·)− a′q(yh,qh)(·,λh) (control residual)

ϱ(·) def
= −a(yh,qh)(·) (primal residual)

one can show (see Becker et al. [40, Theorem 1]) the a posteriori error representation

J(y ,q)− J(yh,qh) =
1
2 {ϱ y(y − ihy) +ϱq(q − ihq) +ϱ(λ− ihλ)}+Rh, (10.4)

where ihy , ihλ ∈ Vh, and ihq ∈ Qh are arbitrary approximations with suitable interpola-
tion operators ih. One finds the remainder term Rh to be cubic in the error e = (e y ,eq, eλ)
with e y def

= y − yh, eq def
= q − qh, and eλ

def
= λ−λh. The terms ϱ y(y − ihy), ϱq(q − ihq), and

ϱ(λ− ihλ) in (10.4) represent the discretization error. They need to be approximated by nu-
merically evaluating the interpolation errors y − ihy , q − ihq , and λ− ihλ. This can be done,
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for instance, by means of a local higher–order interpolation. By doing so and by ignoring the
cubic remainder term Rh, one can derive local cell–wise error indicators ηh,K that are associ-
ated with the mesh cells K and depend exclusively on the available values yh, qh, and λh, i.e.,
one has an error estimate of the form

|J(y ,q)− J(yh,qh)|⩽
∑

K
ηh,K(yh,qh,λh).

Based on this estimate one can apply several mesh adaption strategies, cf. Becker and Ran-
nacher [39].

10.2 Goal–Oriented Error Representation

In this section, we derive an error representation for the performance criterion

J(x (·), u(·)) def
= φ(x (tf)) +

∫ tf

ts

ψ(x (t), u(t)) dt

for the Petrov–Galerkin FE discretization developed in Chapter 9. Bymeans of a Taylor ex-
pansion of the performance criterion J(·) at the current solution approximation (xh(·), uh(·)),
we express the error J(x (·), u(·))− J(xh(·), uh(·)) as a sum of local error contributions. Our
contribution extends Beigel’s theory (see Beigel [41]) from CVP type problems to OCPs with
mixed control–state constraints.

Theorem 10.1 (Error Representation)
Let (x (·), u(·),Λ(·),M(·),λts) ∈ Y1(T ,Rnx)×Y0(T ,Rnu)×NBV(T ,Rnx)×NBV(T ,Rnc)×Rnx be the so-
lution of the weak formulation of the local minimum principle equations (9.5)–(9.14) and (xh(·), uh(·)) ∈
Y1

P(T ,Rnx) × Y0
P(T ,Rnu) the solution of the nominal Petrov–Galerkin FE discretization from Sec-

tion 9.3.2. Then, the global error in the criterion of interest has the following form:

J(xh(·), uh(·))− J(x (·), u(·)) =
N∑

n=1

∫
In

ẋh(t)− f (xh(t), uh(t)) d [Λ− ihΛ] (t)

+
N∑

n=1

∫
In

c(xh(t), uh(t)) d [M− ihM] (t)

+
�
λts − ih λts

�T {xh(ts)− xs}+Rh. (10.5)

Here, ih : NBV(T ,Rnx)×NBV(T ,Rnc)×Rnx −→ ZH(T ,Rnx)×ZH(T ,Rnc)×Rnx denotes an interpola-
tion operator and the remainderRh is quadratic in the global error function e(·) = [ex (·)T , eu(·)T ]T with
ex (·) = x (·)− xh(·) and eu(·) = u(·)− uh(·), and consists of three summands Rh =Rh

J +Rh
f +Rh

c with

Rh
J

def
= −

∫ 1

0

ex (·)T J ′′x x (xh(·) + s ex (·), uh(·) + s eu(·))ex (·) s ds

−
∫ 1

0

eu(·)T J ′′uu(xh(·) + s ex (t), uh(·) + s eu(·))eu(·) s ds
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−2

∫ 1

0

ex (·)T J ′′xu(xh(·) + s ex (·), uh(·) + s eu(·))eu(·) s ds,

Rh
f

def
= −

∫ 1

0

N∑
n=1

∫
In

ex (t)
T f ′′x x (xh(t) + s ex (t), uh(t) + s eu(t))ex (t) dΛ(t) s ds

−
∫ 1

0

N∑
n=1

∫
In

eu(t)
T f ′′uu(xh(t) + s ex (t), uh(t) + s eu(t))eu(t) dΛ(t) s ds

−2

∫ 1

0

N∑
n=1

∫
In

ex (t)
T f ′′xu(xh(t) + s ex (t), uh(t) + s eu(t))eu(t) dΛ(t) s ds, (10.6)

and

Rh
c

def
=

∫ 1

0

N∑
n=1

∫
In

ex (t)
T c′′x x (xh(t) + s ex (t), uh(t) + s eu(t))ex (t) dM(t) s ds

+

∫ 1

0

N∑
n=1

∫
In

eu(t)
T c′′uu(xh(t) + s ex (t), uh(t) + s eu(t))eu(t) dM(t) s ds

+2

∫ 1

0

N∑
n=1

∫
In

ex (t)
T c′′xu(xh(t) + s ex (t), uh(t) + s eu(t))eu(t) dM(t) s ds. (10.7)

△

Proof The proof of the theorem employs some results on the generalized Taylor’s Theorem which
can be found with our common notation for exact and approximate solutions in Appendix A.3 and Ap-
pendix A.4. Differentiating the performance criterion with respect to x and u yields

J ′x (x (·), u(·))ex (·) = φ′x (x (tf))ex (·) +
N∑

n=1

∫
In

ψ′x (x (t), u(t))ex (t) d id(t), (10.8)

J ′u(x (·), u(·))eu(·) =
N∑

n=1

∫
In

ψ′u(x (t), u(t))eu(t) d id(t). (10.9)

With the result from Appendix A.4 we find

J ′x (x (·), u(·))ex (·) + J ′u(x (·), u(·))eu(·)− {J(x (·), u(·))− J(xh(·), uh(·))}= −Rh
J (·), (10.10)

where

Rh
J (·) = −

∫ 1

0

ex (·)T J ′′x x (xh(·) + s ex (·), uh(·) + s eu(·))ex (·) s ds

−
∫ 1

0

eu(·)T J ′′uu(xh(·) + s ex (·), uh(·) + s eu(·))eu(·) s ds

−2

∫ 1

0

ex (·)T J ′′xu(xh(·) + s ex (·), uh(·) + s eu(·))eu(·) s ds.
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A substitution of (10.8) and (10.9) into (10.10) yields

−Rh
J (·) = φ′x (x (tf))ex (·) +

N∑
n=1

∫
In

ψ′x (x (t), u(t))ex (t) d id(t)

+
N∑

n=1

∫
In

ψ′u(x (t), u(t))eu(t) d id(t)− {J(x (·), u(·))− J(xh(·), uh(·))} .

We use again Appendix A.4 to write

N∑
n=1

∫
In

f ′x (x (t), u(t))ex (t) dΛ(t) +
N∑

n=1

∫
In

f ′u(x (t), u(t))eu(t) dΛ(t)

−
N∑

n=1

∫
In

{ f (x (t), u(t))− f (xh(t), uh(t))} dΛ(t) = −Rh
f

with the Rh
f from (10.6). We use the same approach for the mixed control–state constraint such that we

have
N∑

n=1

∫
In

c′x (x (t), u(t))ex (t) dM(t) +
N∑

n=1

∫
In

c′u(x (t), u(t))eu(t) dM(t)

−
N∑

n=1

∫
In

{c(x (t), u(t))− c(xh(t), uh(t))} dM(t) =Rh
c

with the Rh
c from (10.7). A summation of the remainder terms Rh

J , R
h
f and Rh

c yields

Rh
J +Rh

f +Rh
c = −φ′x (x (tf))ex (·)−

N∑
n=1

∫
In

ψ′x (x (t), u(t))ex (t) d id(t)

−
N∑

n=1

∫
In

ψ′u(x (t), u(t))eu(t) d id(t) + {J(x (·), u(·))− J(xh(·), uh(·))}

−
N∑

n=1

∫
In

f ′x (x (t), u(t))ex (t) dΛ(t)−
N∑

n=1

∫
In

f ′u(x (t), u(t))eu(t) dΛ(t)

+
N∑

n=1

∫
In

{ f (x (t), u(t))− f (xh(t), uh(t))} dΛ(t)

+
N∑

n=1

∫
In

c′x (x (t), u(t))ex (t) dM(t) +
N∑

n=1

∫
In

c′u(x (t), u(t))eu(t) dM(t)

−
N∑

n=1

∫
In

{c(x (t), u(t))− c(xh(t), uh(t))} dM(t). (10.11)

Now, we investigate (x (·), u(·)) and (xh(·), uh(·)) in ex (·) and eu(·) separately from each other on the
right side of (10.11). We start with (x (·), u(·)):

−φ′x (x (tf)) x (tf)−
N∑

n=1

∫
In

ψ′x (x (t), u(t)) x (t) d id(t)

277



Chapter 10
�� A Goal–Oriented Global Error Estimation for Collocation Methods

−
N∑

n=1

∫
In

ψ′u(x (t), u(t))u(t) d id(t)−
N∑

n=1

∫
In

f ′x (x (t), u(t)) x (t) dΛ(t)

−
N∑

n=1

∫
In

f ′u(x (t), u(t))u(t) dΛ(t) +
N∑

n=1

∫
In

c′x (x (t), u(t)) x (t) dM(t)

+
N∑

n=1

∫
In

c′u(x (t), u(t))u(t) dM(t).

A reformulation of the terms and an application of the local minimum principle equations (adjoint equa-
tion, stationarity of augmented Hamilton) and integration by parts yields

−φ′x (x (tf)) x (tf)−
N∑

n=1

¨∫
In

ψ′x (x (t), u(t)) x (t) d id(t) +

∫
In

f ′x (x (t), u(t)) x (t) dΛ(t)

−
∫

In

c′x (x (t), u(t)) x (t) dM(t)
«
−

N∑
n=1

¨∫
In

ψ′u(x (t), u(t))u(t) d id(t)

+

∫
In

f ′u(x (t), u(t))u(t) dΛ(t)−
∫

In

c′u(x (t), u(t))u(t) dM(t)
«

= −
N∑

n=1

∫
In

ẋ (t) dΛ(t)−λts
T xs.

Now, we focus on the terms in (10.11) containing ex (·) and eu(·), and pick the approximate solution parts
(xh(·), uh(·)):

φ′x (x (tf)) xh(tf) +
N∑

n=1

∫
In

ψ′x (x (t), u(t)) xh(t) d id(t)

+
N∑

n=1

∫
In

ψ′u(x (t), u(t))uh(t) d id(t) +
N∑

n=1

∫
In

f ′x (x (t), u(t)) xh(t) dΛ(t)

+
N∑

n=1

∫
In

f ′u(x (t), u(t))uh(t) dΛ(t)−
N∑

n=1

∫
In

c′x (x (t), u(t)) xh(t) dM(t)

−
N∑

n=1

∫
In

c′u(x (t), u(t))uh(t) dM(t).

We use again the equations of the local minimum principle and integrate by parts such that we end up
with

φ′x (x (tf)) xh(tf) +
N∑

n=1

¨∫
In

ψ′x (x (t), u(t)) xh(t) d id(t) +

∫
In

f ′x (x (t), u(t)) xh(t) dΛ(t)

−
∫

In

c′x (x (t), u(t)) xh(t) dM(t)
«
+

N∑
n=1

¨∫
In

ψ′u(x (t), u(t))uh(t) d id(t)

+

∫
In

f ′u(x (t), u(t))uh(t) dΛ(t)−
∫

In

c′u(x (t), u(t))uh(t) dM(t)
«
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=
N∑

n=1

∫
In

ẋh(t) dΛ(t) +λts
T xh(ts).

By putting everything together, we find

J(x (·), u(·))− J(xh(·), uh(·))−
N∑

n=1

∫
In

ẋ (t) dΛ(t)−λts
T xs

+
N∑

n=1

∫
In

ẋh(t) dΛ(t) +λts
T xh(ts) +

N∑
n=1

∫
In

{ f (x (t), u(t))− f (xh(t), uh(t))} dΛ(t)

−
N∑

n=1

∫
In

{c(x (t), u(t))− c(xh(t), uh(t))} dM(t) =Rh.

Rearranging terms yields

J(x (·), u(·))− J(xh(·), uh(·))−
N∑

n=1

∫
In

ẋ (t)− f (x (t), u(t)) dΛ(t)

+
N∑

n=1

∫
In

ẋh(t)− f (xh(t), uh(t)) dΛ(t)−
N∑

n=1

∫
In

c(x (t), u(t)) dM(t)

+
N∑

n=1

∫
In

c(xh(t), uh(t)) dM(t) +λts
T {xh(ts)− xs}=Rh.

The terms
∑N

n=1

∫
In

ẋ (t) − f (x (t), u(t)) dΛ(t) and
∑N

n=1

∫
In

c(x (t), u(t)) dM(t) vanish since the
differential equation and the complementarity condition of the local minimum principle holds for the
exact solution such that we end up with the error representation

J(xh(·), uh(·))− J(x (·), u(·)) =
N∑

n=1

∫
In

ẋh(t)− f (xh(t), uh(t)) dΛ(t)

+
N∑

n=1

∫
In

c(xh(t), uh(t)) dM(t) +λts
T {xh(ts)− xs}+Rh.

Since (xh(·), uh(·)) solves the FE Petrov–Galerkin equations and since ihΛ ∈ ZH(T ,Rnx) and ihM ∈
ZH(T ,Rnc) the error representation (10.5) holds true. □

Note that the stability of the continuous OCP in the error representation of Theorem 10.1 is
expressed by means of the weak adjoint solutions Λ(·) and M(·) but not by the approximate
adjoint functions Λh(·) and Mh(·) of the FE Petrov–Galerkin discretization. The weights
Λ− ihΛ andM− ihM in the error representation ofTheorem 10.1 particularly include the local
interpolation error of the exact weak adjoints in NBV(T ,Rnx) resp. NBV(T ,Rnc) by their
interpolants in ZH(T ,Rnx) resp. ZH(T ,Rnc). The problem how to find reasonable guesses for
the unknown functions Λ(·), M(·) and for λts is investigated in the following Section 10.3.
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10.3 Approximation of the Error Representation

In this section, we use the error representation (10.5) of Theorem 10.1 to derive an approxi-
mation of the error J(xh(·), uh(·))− J(x (·), u(·)). Due to the particular element–wise repre-
sentation of the global error, the approximation also provides information on the local error
contribution. This can be exploited for the development of adaptive mesh refinement algo-
rithms. We will illustrate this in the next section, where we will present one particular hp
approach.

In the evaluation of (10.5), we neglect the terms
�
λts − ihλts

�T {xh(ts)− xs} and the remainder
Rh. This is reasonable because xh(ts) = xs is part of the FE Petrov–Galerkin formulation
and because Rh is quadratic in the error e(·). In the literature, especially in the PDE DWR
literature, there exist several approaches, how the weights Λ − ihΛ resp. M − ihM can be
approximated. Usually, one uses a higher order interpolation based on the approximate adjoint
solutions Λh(·) and Mh(·). In this contribution, we present an approach that provides an easy
implementation and shows promising numerical results (see Chapter 14). However, there is
still much research to do in order to end up with more suitable results.

The first step towards an approximation of (10.5) is to pass over fromΛh(·) andMh(·), wherewe
take their representations (9.46) and (9.47), to their “derivatives”. Even thoughΛh(·) andMh(·)
are not differentiable in the classical sense there still exist weak derivatives, which we denote
with λh(·) and µh(·). The weak derivatives are given by the Dirac measures at the discretiza-
tion points

¦
t(n)i

©
with heights

¦
Λ
(n)
i

©
resp.

¦
M (n)

i

©
. Therefore, we set up λh(·) and µh(·) as

the interpolating polynomials with the interpolation points
¦�

t(n)i ,Λ(n)i

�©
and

¦�
t(n)i , M (n)

i

�©
.

We obtain the higher order approximations for λh(·) and µh(·) on FEs by employing neigh-
boring FEs. More specifically, for the m–th FE we use the data set

¦�
t(n)i ,Λ(n)i

�©
m−1⩽n⩽m+1

to construct an interpolating polynomial which acts as an approximation for λ(·). We can
do the same with µ(·). We denote the higher order polynomials with λho

h (·) and µho
h (·). The

first and last FE is handled by just taking the single neighboring FE into account. With these
considerations we can approximate the first two summands of (10.5) by integrals of the form∫

In

�
λho

h (t)−λh(t)
	T {ẋh(t)− f (xh(t), uh(t))} dt and (10.12)∫

In

�
µho

h (t)−µh(t)
	T

c(xh(t), uh(t)) dt. (10.13)

All the information necessary to compute these two integrals (λho
h , µho

h , λh, µh, xh, uh) is
available, the only thing remaining is to evaluate these integrals. If we would use a LGR
quadrature rule of the same order as the polynomial degree ofλh(·) andµh(·) on the respective
FE the integrals would always be evaluated to zero since λh(·) interpolates λho

h (·). The same
holds for µh(·) and µho

h (·). Therefore, we increase the order for the LGR quadrature.
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10.4 Towards an Adaptive Mesh Refinement

In this section, we distill an adaptivemesh refinement algorithm based on the error representa-
tion of Theorem 10.1 and its approximation which was described in the previous Section 10.3.
The presented method is an hp approach and makes use of local error contributions to the
global error with respect to the performance criterion as well as a curvature value to measure
the smoothness of approximate solution trajectories on FEs and to decide if the polynomial
degree should be increased on certain FEs or if an FE should be divided into at least two FEs.
Starting with an initial discretization scheme, we determine an approximate solution to the
OCPwe actually want to solve. Next, we determine the local element–wise error contributions
to the error J(xh(·), uh(·))− J(x (·), u(·)). FEs whose estimated errors exceed the predefined
termination tolerance are either subdivided into FEs of smaller size or the degree of the ap-
proximating polynomials is increased on the respective FE.
For the decision if either the FE grid or the polynomial degree should be adapted we rely on
the contributions of Liu et al. [299]. The smoothness of the solution on a FE mainly deter-
mines their adaptations of the discretization scheme. In accordance with our considerations
about spectral methods in Section 6.3.2 we know that they are mainly suitable for problems
with smooth solutions. In case of existing discontinuities one would prefer local methods
(Gibbs phenomenon). Thus, the FE grid is refined in case of non–smooth solutions while the
polynomial degree is increased for sufficiently smooth solutions.
The criterion if a solution is considered to be smooth or not is based on whether the ratio be-
tween the maximum second derivative of the solution in the current iteration and the one in
the previous iteration exceeds a certain predefined parameter value. This means that the algo-
rithm needs solution information of the current and the previous iteration. In our numerical
experiments, we just equally bisected all FEs after the first iteration.

Non–smoothness Detection In order to describe the procedure let X (K) = [X (K)1 , . . . , X (K)nx
]

T

denote the approximate solution in iteration K . Let furthermore t i, j denote the time in-
stants in the interior of FEs where |Ẍ (K)i (·)| has its local maxima. We introduce the notation
P(K)i, j

def
= |Ẍ (K)i (t i, j)|. In the same way, let P(K−1)

i, j denote the maximum value of the function
|Ẍ (K−1)

i (·)| in the interior of the FE ((K − 1)–th FE grid) that contains t i, j . For a given prede-
fined real parameter R> 0 we call a solution non–smooth on the FE In if

Ri, j =
P(K)i, j

P(K−1)
i, j

⩾ R (10.14)

holds for any t i, j ∈ In.

An A–Priori Error Estimation Result If the discretization on a FE must be updated ac-
cording to condition (10.14) there has to be determined the new number of FEs or the new
polynomial degree for the approximating polynomials. Similarly to standard refinement tech-
niques in the ODE numerics, we rely on a a–priori error estimation result of Hou [243] that
guarantees for the OCP solution (x (·), u(·)) and the approximate solution (X(·),U(·)) that the
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estimate

∥X − x∥∞ + ∥U − u∥∞ ⩽ c hq

N q−2.5
(10.15)

holds under suitable assumptions. In (10.15), c denotes a constant, N the number of the ap-
proximating polynomial degree, h the FE length, q the minimum of N and the number of
continuous derivatives in the solution, and ∥·∥∞ the uniform norm over the FE grid points.

Dividing a FE For dividing a FE In where the non–smoothness condition (10.14) indicates
a non–smooth solution, we use (10.15) with equality such that the error e(K)n in iteration K is
estimated as

e(K)n =
c
�
h(K)n

�q�
N (K)n

�q−2.5 . (10.16)

The error on the respective FE grid in iteration (K+1) should satisfy the predefined termination
tolerance ϵ such that we require

ϵ =
c
�
h(K+1)

n

�q�
N (K+1)

n

�q−2.5 . (10.17)

Since the approximating polynomial degree is not changed from iteration K to (K + 1), we
assume N (K)n = N (K+1)

n . The ratio h(K)n /h(K+1)
n indicating how many FEs must be created in FE

In from iteration K to (K + 1) follows straight from combining (10.16) and (10.17):

H
def
=

h(K)n

h(K+1)
n

=

�
e(K)n

ϵ

�1/q

.

Under the assumption that q does not change from iteration (K − 1) to K , we obtain a guess
for q by exploiting the a–priori error estimation for iteration (K − 1):

e(K−1)
n =

c
�
h(K−1)

n

�q�
N (K−1)

n

�q−2.5 . (10.18)

We can solve for q by combining (10.16) and (10.18) since c is eliminated. It may happen that
the number of newly created sub–FEs from one iteration to the other is disproportionately
high. Hence, there should exist an upper limit for that number. The limit should be reduced as
the actual error e(K)n approaches the termination tolerance ϵ. Liu et al. [299] propose the limit

Hmax =
 
logN (K)n

(e(K)n /ϵ)
£
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such that the number of sub–FEs of FE In becomes

S =min(⌈H⌉, Hmax).

Increasing the Approximating Polynomial Degree Updating the approximating polyno-
mial degree works pretty similar to the previous case. In case the condition (10.14) proposes a
smooth FE, we assume h(K)n = h(K+1)

n and calculate N (K+1)
n from (10.16) and (10.17) as

N (K+1)
n = N (K)n

�
e(K)n

ϵ

�1/(q−2.5)

,

where we use the same approach as before to find a guess for q. To end up with a natural
number for the new polynomial degree, we use

N (K+1)
n =

&
N (K)n

�
e(K)n

ϵ

�1/(q−2.5)'
.

In order to avoid extraordinary high polynomial degrees, we can set an upper limit Nmax. If this
upper limit would be exceeded one would keep the previous polynomial degree but equally
divide the FE into sub–FEs.

Concluding Remarks A major drawback of the described mesh refinement method is that
it does not allow for coarsening the FE grid and to reduce the degree of the approximating
polynomial. Hence, the algorithms may produce discretization schemes of unnecessarily high
resolution. Furthermore, there may be an accumulation of FE grid points in a vicinity of so-
lution discontinuities. For those reasons, it is highly recommended to augment the algorithm
with respective functionality. Liu et al. [299] propose some approaches to do so. One may
also think of other extensions such as an equilibration of the local error contributions over
the optimization horizon. In summary, one can say that there is still plenty of potential for
further research on our novel DWR approach to ODE OCP.
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Chapter 11

A Unified Framework for Optimal Control Problems with
Switches

This chapter is devoted to present a novel method to switched optimal control that we pub-
lished in Bock et al. [78] and which serves as basis for this chapter. The method solves ex-
plicitly and implicitly switched OCPs in a unified way by setting up an equivalent counterpart
problem with additional binary control functions. By means of techniques from generalized
disjunctive programming, mixed–integer optimal control, and a direct simultaneous approach
to optimal control the problem is processed further resulting in a MPVC. Aiming to deter-
mine approximations to the original switched OCP we construct a sequence of NLPs, whose
instances are based on gradually solving the MPVC instance and on a simultaneous adaption
of the discretization grid towards an identification of the OCP switching structure.
Section 11.1 reviews relevant literature about solution approaches to explicitly and implicitly
switched OCPs. In Section 11.2 we establish the problem which is investigated in this chapter.
In Sections 11.3, 11.4, and 11.5 we employ techniques from hybrid control, generalized disjunc-
tive programming and MIOCP to transform the switched OCP into a new problem with ad-
ditional constraints and boolean control functions. Recent results justify the additional step
to drop the integrality conditions. The approach to discretize the resulting continuous OCP is
outlined in Section 11.6 while the ideas to handle the MPVC that arises from the discretization
step are described in Section 11.7. Finally, in Section 11.8 we sketch the SNLP approach to solve
the MPVC and to detect the switching structure simultaneously.

11.1 Literature Review

A majority of algorithms that solve EFS systems can be assigned to two method types: two-
stage optimization and embedding transformation. Two-stage optimization algorithms work as
follows: the switching sequence σ is assumed to be fixed in stage 1. The switching times τ
and the optimal control input u is optimized. The switching sequence is updated in level stage
2. This process is repeated until it convergences. Several authors (see [313, 302, 202, 203, 456])
independently use a bi–level hierarchical algorithm to solve stage 1 and stage 2. In [327] a direct
simultaneous method is used to solve the stage 1 problem. A MINLP master problem updates
the switching sequence. Allgor and Barton [10] and Bansal et al. [28] employ a direct
single shooting approach for the stage 1 problem. Algorithms that use gradient projection as
well as constrained Newton’s method can be found in the publications of Xu and Antsaklis
[458, 459].
Embedding transformation methods do not use a switched dynamic system in the form of (1.5)
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but work with the relaxed formulation of (1.6), i.e., they consider continuous systems

ẋ (t) =
nω∑
i=1

αi(t) fi(t, x (t), u(t)), x (ts) = xs, (11.1)

where αi(t) ∈ [0, 1] and
∑nω

i=1αi(t) = 1. There is no assumption required about the number
of switches at the beginning of the optimization. The same holds for the switching sequenceσ
and the switching times τ. The approach has been developed independently by Sager [380]
and Bengea and DeCarlo [49] for EFS systems. Standard OCP algorithms such as direct
multiple shooting (see [381]) and direct collocation methods (see [447]) can be used to solve
the resulting continuous OCPs. Our approach rests on the idea of complementarity based
formulations for IFS systems developed by Baumrucker and Biegler [33] and combines them
with the idea of embedding transformation. As a result thereof we develop a unified approach
for systems undergoing explicit and implicit switches. Moreover, the discretized problems of
our approach belong to the subclass of MPVCs. As we had seen in Chapter 4 MPVCs allow
for tailored first–order optimality systems compared to the larger class of MPECs.
The literature, which deals with IFS problems, mostly focuses on Piecewise Affine (PWA) sys-
tems, cf. [46, 249, 270, 374]. A PWA system

x (t + 1) = Ai x (t) + Bi u(t) + fi , if (11.2)�
x (t)
u(t)

�
∈ Xi ≜

§�
x
u

�
: Gi x +Hi u⩽ Ki

ª
, (11.3)

partitions the state space into polyhedral regions {Xi}Mi=1. Each region Xi is associated with a
linear difference equation. The system can be augmented with constraints

I x (t) + J u(t)⩽ L, (11.4)

which are independent of the mode. Considered objectives are of type

J (u(0), . . . , u(T − 1), x (0))≜ ∥Px (T )∥p +
T−1∑
j=0

�∥Qx ( j)∥p + ∥Ru( j)∥p

�
. (11.5)

We can distinguish between two different types of approaches to solve optimization problems
subject to PWA systems. For the first approach, the problem is considered within a Mixed
Logical Dynamic (MLD) framework. The resulting problems are difference equations incor-
porating continuous as well as boolean variables. The interested reader can find more infor-
mation on MLD in the article of [45]. Embedding PWA problems into the MLD framework
results in either Mixed Integer Quadratic Programs (MIQPs) for the choice p = 2 (see [45])
in (11.5) or (if p ∈ {1,∞}) in MILPs (see [47]). Borrelli et al. [79] and Borrelli et al. [80]
proposed a second approach to solve PWA problems . It is based on a combination of dynamic
programming and multi–parametric programming techniques.
More general IFS OCPs can be solved by a combination of a simultaneous optimizationmethod
such as direct multiple shooting (see [75]) with a tailored switch detecting ODE solver (see
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[73, 83, 271]). The identification of switching times and the implementation of a sensitivity
update mechanism at state discontinuities is crucial for those switch detecting solvers, cf.
[83, 271, 379, 237, 289]. Multi–phase OCPs can be considered as themethod of choice formodels
with a priori known number of switching points as well as their sequence, cf. [328, 443]).
Implicit discontinuities do not have to be treated explicitly under these conditions.

11.2 Problem Formulation

We consider the OCP with explicit and implicit switches from Definition 1.24. In order to
shorten the notation we employ an autonomous OCP formulation and drop the d(·) con-
straints. Thus, we consider the OCP

min
x (·),u(·),v(·) φ(x (ts), x (tf)) (11.6a)

s. t. ẋ (t) = f (x (t), u(t), v(t), sgn(σ(x (t)))), t ∈ T , (11.6b)
0nc
⩾ c(x (t), u(t), v(t)), t ∈ T , (11.6c)

0nr
= r (x (ts), x (tf)), (11.6d)

v(t) ∈ Ω ⊂ Rnv , t ∈ T , |Ω|= nω <∞. (11.6e)

The meaning of all arising functions and sets does not change compared to Definition 1.24.

11.3 Optimal Control of Hybrid Systems

Similarly to Example 1.6 we reformulate OCP (11.6) in the sense of hybrid optimal control by
means of an indexed set of differential equations. We distinguish two separate cases, namely
the one where the transversality conditions holds (consistent switching) and the one of incon-
sistent switching. Bifurcation are not investigated in this thesis.

Consistent Switching

In the consistent case we can equivalently rewrite OCP (11.6) as

min
x (·),u(·),v(·) φ(x (ts), x (tf)) (11.7a)

s. t. ẋ (t) =

¨
f −(x (t), u(t), v(t)) if σ(x (t))< 0,

f +(x (t), u(t), v(t)) if σ(x (t))> 0,
t ∈ T , (11.7b)

0nc
⩾ c(x (t), u(t), v(t)), t ∈ T , (11.7c)

0nr
= r (x (ts), x (tf)), (11.7d)

v(t) ∈ Ω, t ∈ T , (11.7e)
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where the functions f − : X × U ×Ω −→ Rnx and f + : X × U ×Ω −→ Rnx are chosen appro-
priately as

f −(x (t), u(t), v(t)) = f (x (t), u(t), v(t),−1),

f +(x (t), u(t), v(t)) = f (x (t), u(t), v(t),+1).

Inconsistent Switching

If the transversality assumption is violated (inconsistent switching), we additionally have to
consider the Filippov (see Section 1.3) case of sliding on the zero manifold Σ:

min
x (·),u(·),v(·) φ(x (ts), x (tf)) (11.8a)

s. t. ẋ (t) =


f −(x (t), u(t), v(t)) if σ(x (t))< 0,

f 0(x (t), u(t), v(t)) if σ(x (t)) = 0,

f +(x (t), u(t), v(t)) if σ(x (t))> 0,

t ∈ T , (11.8b)

0nc
⩾ c(x (t), u(t), v(t)), t ∈ T , (11.8c)

0nr
= r (x (ts), x (tf)), (11.8d)

v(t) ∈ Ω, t ∈ T , (11.8e)

where the functions f − : X×U×Ω→ Rnx , f 0 : X×U×Ω→ Rnx aswell as f + : X×U×Ω→ Rnx

are chosen respectively as

f −(x (t), u(t), v(t)) = f (x (t), u(t), v(t),−1),

f 0(x (t), u(t), v(t)) = f (x (t), u(t), v(t), 0),

f +(x (t), u(t), v(t)) = f (x (t), u(t), v(t),+1).

The objective functionφ and the constraint functions c, r do not change in (11.7) and (11.8). For
nσ > 1 we would obtain 2nσ cases for consistent switches in the worst case. If the transversal-
ity assumption does not hold for any switch, there could be as many as 3nσ . Usually, however,
not all components of f depend on all switches, and a much better complexity is observed
during reformulation (see Example 1.28).
An approach very close in spirit was described by Baumrucker and Biegler [33]. Note, how-
ever, that our approach does not reformulate the original ordinary differential equation with
discontinuous right hand side into a differential algebraic equation on intervals with σ ≡ 0,
but rather leaves the resolution of the sliding mode right hand side to the choice of the convex
multipliers within the optimizer.

11.4 Generalized Disjunctive Programming

Optimization problems involving both continuous and discrete variables are often solved with
techniques from mixed–integer optimization. Disjunctive Programming (DP) is an alterna-
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tive approach to solve this kind of problems, see e.g. [27]. DP models consist of algebraic
constraints, logic disjunctions and logic propositions. A particular case of disjunctive pro-
gramming named Generalized Disjunctive Programming (GDP) was developed by Raman and
Grossmann [367]. A GDP problem reads as

min
x∈Rn,ωik∈{0,1} ψ(x) +

∑
k∈K

ck (11.9a)

s. t. 0⩾ g (x), (11.9b)⊕
i∈Dk

 ωik = 1
sik(x)⩽ 0
ck = γik

 , k ∈ K, (11.9c)

1= Ω(ω), (11.9d)
x ∈ [x l, xu], (11.9e)

where K def
= {1, . . . , K} and Dk

def
= {1, . . . , Dk}. The problem involves continuous variables x ∈

Rn in the bounds [x l, xu] and binary variables ω def
= {ωik}i,k , ωik ∈ {0,1}. The objective

function ψ : Rn −→ R and the global constraint function s : Rn −→ Rm are supposed to be
sufficiently smooth. K logical expression must hold. Each of these expressions is composed
of Dk terms that are connected by the EX-OR operator ⊕, indicating that exactly one of the
boolean variables ωik must be set to one. If that is the case for a particular variable ωik , the
associated constraint sik(x)⩽ 0 and the objective weight ck are enforced. They are ignored for
allωik = 0. The constraintΩ(ω) = 1 summarizes further constraints on the boolean variables
ωik .
By reformulating the different ODE equation branches together with the c–constraints of
Problem (11.8) in the GDP framework we can define

Y +v (t)
def
=

 ω+v (t) = 1
ẋ (t) = f +(x (t), u(t), v)

0nc
⩾ c(x (t), u(t), v)
σ(x (t))> 0

 , Y −v (t)
def
=

 ω−v (t) = 1
ẋ (t) = f −(x (t), u(t), v)

0nc
⩾ c(x (t), u(t), v)
σ(x (t))< 0

 ,

and

Y 0
v (t)

def
=

 ω0
v(t) = 1

ẋ (t) = f 0(x (t), u(t), v)
0nc
⩾ c(x (t), u(t), v)
σ(x (t)) = 0

 .

Consistent Switching

The full OCP with a consistent switch then reads as
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min
x (·),u(·),ω(·) φ(x (ts), x (tf)) (11.10a)

s. t.
⊕
v∈Ω

�
Y −v (t)⊕Y +v (t)

�
, t ∈ T , (11.10b)

0nr
= r (x (ts), x (tf)). (11.10c)

Inconsistent Switching

The full OCP with an inconsistent switch reads as

min
x (·),u(·),ω(·) φ(x (ts), x (tf)) (11.11a)

s. t.
⊕
v∈Ω

�
Y −v (t)⊕Y 0

v (t)⊕Y +v (t)
�

, t ∈ T (11.11b)

0nr
= r (x (ts), x (tf)). (11.11c)

For both the consistently and the inconsistently switched problem the disjunction over all
clauses in the brackets and all explicitly switchable modes in Ω must hold at any point t ∈
T and the objective function φ as well as the global constraints c and r do not depend on
the explicitly and implicitly switched mode. The equivalent reformulation of Problem (11.8)
to Problem (11.10) resp. (11.11) is crucial since an implicitly switched system is transformed
into an explicit one by introducing additional boolean control variables and constraints. As a
consequence thereof the treatment of explicit and implicit switches is unified.
Formulation (11.11) is ill-posed in a computational setting, as it is numerically difficult to dis-
tinguish between the equality and the two inequality cases. For consistently switched systems
we can set ϵ ≡ 0, introduce the tractable constraints σ(x (t)) ⩾ 0 and σ(x (t)) ⩽ 0 for the
first two modes, respectively, and dispose of the third mode. For inconsistently switched sys-
tems, one avenue to handling the arising numerical issues is to introduce an ϵ-tube for the
case ω0

v(t) = 1, as follows:

Y +v (t)
def
=

 ω+v (t) = 1
ẋ (t) = f +(x (t), u(t), v)

0nc
⩾ c(x (t), u(t), v)
σ(x (t))⩾ +ϵ

 , Y −v (t)
def
=

 ω−v (t) = 1
ẋ (t) = f −(x (t), u(t), v)

0nc
⩾ c(x (t), u(t), v)
σ(x (t))⩽ −ϵ

 ,

and

Y 0
v (t)

def
=

 ω0
v(t) = 1

ẋ (t) = f 0(x (t), u(t), v)
0nc
⩾ c(x (t), u(t), v)

−ϵ ⩽ σ(x (t))⩽ +ϵ

 ,
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min
x (·),u(·),ω(·) φ(x (ts), x (tf)) (11.12a)

s. t.
⊕
v∈Ω

�
Y −v (t)⊕Y 0

v (t)⊕Y +v (t)
�

, t ∈ T , (11.12b)

0nr
= r (x (ts), x (tf)). (11.12c)

In some practical problems, function f 0 may be a linear combination of f + and f −, leading to
redundancies in the constraint set formulation. Moreover, such a linear combination may be
state dependent and of Filippov type, and it will be desirable for a computational approach to
identify it automatically. To rid the formulation of constraint redundancy, we may then wish
to solve the following GDP problem instead of Problem (11.12):

Y +v (t)
def
=

 ω+v (t) = 1
ẋ (t) = f +(x (t), u(t), v)

0nc
⩾ c(x (t), u(t), v)
σ(x (t))⩾ −ϵ

 , Y −v (t)
def
=

 ω−v (t) = 1
ẋ (t) = f −(x (t), u(t), v)

0nc
⩾ c(x (t), u(t), v)
σ(x (t))⩽ +ϵ

 ,

min
x (·),u(·),ω(·) φ(x (ts), x (tf)) (11.13a)

s. t.
⊕
v∈Ω

�
Y −v (t)⊕Y 0

v (t)⊕Y +v (t)
�

, t ∈ T (11.13b)

0nr
= r (x (ts), x (tf)), (11.13c)

Here, the ϵ-tubes of either mode overlap, and both modes are feasible on subarcs showing
inconsistent switching behavior. We return to the advantages of this formulation when dis-
cussing a particular relaxation in the next section.

11.5 Mixed Integer Optimal Control Problems

In this section, we apply a technique of Kirches et al. [275], Jung [259], and Lenders [292]
that makes use of MPVCs to obtain a constraint formulation for the disjunction in the GDP
Problems (11.10), (11.11), (11.12) and (11.13) that is amenable to the direct approach to optimal
control. Problem (11.11) can be equivalently reformulated as a MIOCP

min
x (·),u(·),ω(·) φ(x (ts), x (tf)) (11.14a)

s. t. ẋ (t) =
∑
v∈Ω,

w∈{−,0,+}
ωw

v (t) · f w(x (t), u(t), v), t ∈ T , (11.14b)

0nc
⩾ c(x (t), u(t), v(t)), t ∈ T , (11.14c)

0nr
= r (x (ts), x (tf)), (11.14d)
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0⩾ −ω+v (t) · (σ(x (t))− ϵ), v ∈ Ω, t ∈ T , (11.14e)
0⩾ +ω−v (t) · (σ(x (t)) + ϵ), v ∈ Ω, t ∈ T , (11.14f)
0⩾ +ω0

v(t) · (σ(x (t))− ϵ), v ∈ Ω, t ∈ T , (11.14g)
0⩾ −ω0

v(t) · (σ(x (t)) + ϵ), v ∈ Ω, t ∈ T , (11.14h)
ω(t) ∈ S3nω . (11.14i)

To guarantee that exactly one term in the disjunction is active, we define the set

S3nω def
=
n
ωw

v ∈ {0,1}, v ∈ Ω, w ∈ {−, 0,+} :
∑

v∈Ω,w∈{−,0,+}ω
w
v = 1

o
of all vectors ω def

= [ω−1 ,ω0
1,ω+1 , . . . ,ω−nω ,ω0

nω
,ω+nω]

T with the SOS–1 property. We obtain a
relaxed counterpart problem for (11.14) by relaxing the binary constraint ω(t) ∈ S3nω to the
convex hull α(t) ∈ conv(S3nω ):

min
x (·),u(·),α(·) φ(x (ts), x (tf)) (11.15a)

s. t. ẋ (t) =
∑
v∈Ω,

w∈{−,0,+}
αw

v (t) · f w(x (t), u(t), v), t ∈ T , (11.15b)

0nc
⩾ c(x (t), u(t), v(t)), t ∈ T , (11.15c)

0nr
= r (x (ts), x (tf)), (11.15d)

0⩾ −α+v (t) · (σ(x (t))− ϵ), v ∈ Ω, t ∈ T , (11.15e)
0⩾ +α−v (t) · (σ(x (t)) + ϵ), v ∈ Ω, t ∈ T , (11.15f)
0⩾ +α0

v(t) · (σ(x (t))− ϵ), v ∈ Ω, t ∈ T , (11.15g)
0⩾ −α0

v(t) · (σ(x (t)) + ϵ), v ∈ Ω, t ∈ T , (11.15h)
α(t) ∈ conv(S3nω ). (11.15i)

Problem (11.15) is an OCPwith vanishing constraints. The terminology is due to the fact that the
implied constraint σ(x (t)) ⩾ ϵ in (11.15e) vanishes as soon as α+(t) = 0. Similar arguments
apply to constraints (11.15f)–11.15h.
Problem (11.15) has a larger feasible set than the original MIOCP (11.14) that we actually aim to
solve. Hence, lower optimal objective function values may be attained for Problem (11.15), and
the relation of both objective function values is of interest. An answer to this question was
already given inTheorem 1.35 which justifies the relaxation step. When applied to our specific
MIOCP (11.15) we can show the following result:

Theorem 11.1
Let x̂ : T −→ Rnx , û : T −→ Rnu and α̂ : T −→ R3nω be feasible for Problem (11.15). Then, for every
δ > 0 there is xδ : T −→ Rnx and ωδ : T −→ R3nω such that��φ(xδ(ts), xδ(tf))−φ(x̂ (ts), x̂ (tf))

��< δ
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and

ẋδ(t) = f (xδ(t), û(t),ωδ(t)), t ∈ T ,

δLc1⩾ c(xδ(t), û(t)), t ∈ T ,

δLr1= r (xδ(ts), xδ(tf)),

δLσ ⩾ −(ωδ)+v (t) (σ(x (t))− ϵ), v ∈ Ω, t ∈ T ,

δLσ ⩾ +(ωδ)−v (t) (σ(x (t)) + ϵ), v ∈ Ω, t ∈ T ,

δLσ ⩾ +(ωδ)0v(t) (σ(x (t))− ϵ), v ∈ Ω, t ∈ T ,

δLσ ⩾ −(ωδ)0v(t) (σ(x (t)) + ϵ), v ∈ Ω, t ∈ T ,

ωδ(t) ∈ S3nω , t ∈ T ,

where Lc, Lr, and Lσ are δ-independent Lipschitz constants of the corresponding functions with respect
to the state x .
That is, (xδ,ωδ) is feasible for Problem (11.14) with the exception of the (vanishing) constraints, which
are violated by less than δ times a constant. △

According to Theorem 11.1, every feasible point α of the relaxed MIOCP (11.15) can be approx-
imated arbitrarily well by a binary feasible point ω. In particular, this approximation result
also applies to optimal solutions of the relaxed counterpart problem. Note that the binary
feasible point (xδ,ωδ) obtained by Theorem 11.1 in general depends on the chosen tolerance
δ > 0. A constructive algorithm for retrieving binary feasible controls ωδ with guaranteed
approximation properties is given by the VC–SOS–SUR algorithm (see Section 1.5).

11.6 Discretization

For solving the infinite dimensional OCP (11.15) we apply a tailored pseudospectral collocation
method which is also covered by our multi–degree pseudospectral method, cf. Chapter 7. For
the reader’s convenience, we describe the single discretization steps.
We split up the horizon T = [ts, tf] into N ∈ N finite elements by choosing a time grid

ts = t0 < t1 < · · ·< tN = tf.

For each finite element we choose Lagrange basis polynomials
¦

L(n)j

©Kn

j=0
and

¦
L
(n)
j

©Kn

j=1
given

by

L(n)j (t)
def
=

Kn∏
i=0
i ̸= j

t − t(n)i

t(n)j − t(n)i

, L
(n)
j (t)

def
=

Kn∏
i=1
i ̸= j

t − t(n)i

t(n)j − t(n)i

, n ∈ [N].

We use FLGR points for the t(n)i , t(n)j ∈ R (i = 0, . . . , Kn, j ∈ [Kn], n ∈ [N]). The affine
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transformations

t(n)(τ)
def
=

tn + tn−1

2
+τ

tn − tn−1

2
, n ∈ [N],

map FLGR points to the finite element intervals Tn
def
= [tn−1, tn] and yield the collocation points

t(n)i , t(n)j . In addition we set t(n)0 = tn−1. The differential states are approximated element–wise
as

X(t)
def
=

Kn∑
j=0

x (n)j L(n)j (t), t ∈ Tn, n ∈ [N],

where Kn is the number of collocation points and x (n)j ∈ Rnx the nodal values. The derivative
with respect to the time of the differential state approximation is given by

Ẋ(t) =
Kn∑
j=0

x (n)j L̇(n)j (t), t ∈ Tn, n ∈ [N].

Analogously to the state approximations the controls u are approximated by

U(t)
def
=

Kn∑
j=1

u(n)j L
(n)
j (t), t ∈ Tn, n ∈ [N].

Here we have the nodal values u(n)j ∈ Rnu . We just consider the case with no explicit switches
(nω = 1) in order to avoid notational clutter. The extension to the case with explicit and
implicit switches is straight-forward. The controls α+, α0, α− are approximated by piecewise
constant functions

α̂(t)
def
= α(n) =

�
α
(n)
+ ,α(n)0 ,α(n)−

�T
, t ∈ Tn, n ∈ [N]. (11.16)

To end up with an NLP we discretize the Mayer type objective as φ(x (N)KN
) and the differential

equations by means of finite element wise collocation

0 = Ẋ
�

t(n)i

�− f
�
X
�

t(n)i

�
,U
�

t(n)i

�
, α̂
�

t(n)i

��
, i ∈ [Kn], n ∈ [N],

⇔ 0 =
Kn∑
j=0

x (n)j L̇(n)j

�
t(n)i

�− f
�

x (n)i ,U
�

t(n)i

�
,α(n)

�
, i ∈ [Kn], n ∈ [N].

We augment the system with matching conditions to enforce continuity of the differential
states:

x (n)Kn
= x (n+1)

0 , n ∈ [N − 1].
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Alternatively one could simply identify the variables x (n)Kn
and x (n+1)

0 . But this would couple the
variables over the finite element boundaries and this is usually not desired. The discretization
of the boundary constraints leads to the NLP constraints

0⩾ r
�

x (1)0 , x (N)KN

�
.

Path constraints are enforced to hold at collocation points and vanishing constraints are en-
forced to hold at finite element grid points

0⩾ c(x (n)i ,U(t(n)i )), i ∈ [Kn], n ∈ [N],
0⩾ −α(n)+ (σ(x (n)0 )− ϵ), n ∈ [N], (11.17a)

0⩾ +α(n)− (σ(x
(n)
0 ) + ϵ), n ∈ [N], (11.17b)

0⩾ +α(n)0 (σ(x
(n)
0 )− ϵ), n ∈ [N], (11.17c)

0⩾ −α(n)0 (σ(x
(n)
0 ) + ϵ), n ∈ [N]. (11.17d)

The relaxed SOS–1 constraint α(t) ∈ conv(S3) leads to the NLP constraints∑
j∈{−,0,+}

α
(n)
j = 1, α

(n)
i ∈ [0,+∞), i ∈ {−, 0,+}, n ∈ [N].

11.7 MPVC Handling

A common approach for solving MPVCs (see Section 4.4) using standard nonlinear program-
ming software originated in the field of MPECs by Scholtes [391] and is in particular advo-
cated for MPVCs by Hoheisel [238, Chapter 10]. The approach pursues the idea of embed-
ding (4.2) into a family of perturbed problems parameterized by a scalar perturbation τ > 0.
Problem (4.2) may be embedded into the problem family

min
x∈Rn

φ(x) (11.18)

s. t. 0= si(x), i ∈ E ,

0⩾ si(x), i ∈ I,

τ⩾ gi(x) · hi(x), i ∈ [ns]

0⩾ h(x),

where τ > 0 is the regularization parameter. The feasible set of (11.18) relaxes the one of (4.2).
For τ → 0+, the feasible set approaches the one of (4.2). Other relaxation formulations are
possible (see Section 4.4) but have not performed better than (11.18) on the numerical examples
provided in Chapter 15.
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11.8 Sequential Nonlinear Programming

In this section we describe in detail how we apply the method from the previous section to the
MPVCs arising from the OCP discretization described in Section 11.6. Our numerical experi-
ments have shown that it is important to couple the discretization accuracywith the homotopy
parameter to avoid infeasible NLPs along the homotopy path.
We denote the value of the relaxation parameter in the k-th iteration by τk . Starting with an
initial assignment for the relaxation parameter τ0 we solve a sequence of NLPs. The relaxation
parameter is driven to zero according to the rule

τk = γτk−1, k ⩾ 1, γ ∈ (0,1). (11.19)

The NLP solver is initialized in iteration k with the NLP solution of iteration k − 1. If the
NLP in iteration k is infeasible we refine the finite element grid adaptively and solve the NLP
again with the current relaxation parameter τk . In case the new NLP is feasible we continue
applying rule (11.19). Otherwise the finite element grid is refined again. After a refinement step
we initialize the NLP variables as follows: we take the NLP solver result from the previous
iteration even if the NLP was infeasible. Compared to other strategies this was the one that
worked the best in our experiments. Then we initialize all states and controls on the refined
grid by interpolation.
Due to lack of a priori knowledge about the switching structure we usually start with an
equidistant finite element grid. If NLP infeasibilities arise it is often because a switching point
is not well resolved by the grid points. Hence our refinement algorithm has to take this into
account.
We propose the following simple heuristic to refine the grid in order to resolve switching
points: To this end, we construct a cubic spline interpolant s(t) of each component of α(t)
in the element interface nodes t j , j = 0, . . . , N . We adaptively bisect a grid cell [t i , t i+1] into
two equally sized cells if either

���s ′ � t i−1 + t i

2

����> 1
4

max
j∈[N]

�����s ′ � t j−1 + t j

2

������ (11.20)

or |s ′′(t i)|> 1
4

max
j∈[N]{|s

′′(t j)|}. (11.21)

This heuristic detects high slopes of α through (11.20), which indicates that a switch should
happen at some place within the interval, and high curvature of α through (11.21), which indi-
cates that a Filippov arc should begin or end at some place within the interval.
Note that we implemented the full SNLP approach within our software package grc. The
software was used to make the numerical experiments in Chapter 15.
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Chapter 12

Multi–Degree Pseudospectral Collocation Numerics

In this chapter, we present numerical results on the multi–degree pseudospectral collocation
method that was introduced in Chapter 7. To this end we developed a software package in
Matlab implementing the method. The software employs several thirdparty software pack-
ages. Models are implemented with the help of the ODE/DAE solver suite SolvIND [9].
Evaluations of functions and respective derivative information are provided by the automatic
differentiation software tool ADOL-C [445] via an interface of SolvIND. Arising NLP in-
stances can either be solved by the interior–point solver Ipopt [444] in version 3.12.8 or by
the SQP solver SNOPT [197] in version 7.2-7.
We showed in Chapter 7 that a collocation approach with a uniform number of collocation
points results in well–structured and sparse NLP constraint Jacobians, cf. Figure 7.1. In con-
trast, sparsity might get lost when usingmultiple collocation point numbers, cf. Figure 7.4. We
aim to show that there exist cases where it is favorable to give up some structure but obtain-
ing faster results while maintaining the approximation quality. The two academic examples
studied in this chapter show possible application scenarios. However, more research has to be
done in the future.
The first problem, which is investigated in Section 12.1, is an academic ODE example with
known analytic solution. All four state components of this example are oscillating. While the
oscillation of two components has a low frequency the frequency of the other two components
is high. We observe in our numerical experiments that there is a lower bound for the number
of collocation points such that the oscillations are approximated sufficiently well. Moreover,
the higher the frequency is the more collocation points are required. We find out in our ex-
periments that it is faster to use an adaptive number of collocation points for each component
depending on its oscillation frequency, rather than to use the same high–resolution grid for
all components that is necessary to resolve the component with the fastest oscillations.
Section 12.2 deals with an OCP which is related with the ODE problem from Section 12.1. It
has two controls and a tracking objective functional where one control component tracks a
state having a low frequency oscillation while the other control component tracks a state with
a high frequency oscillation. Our experiments indicate – similar to the ODE case – lower
solution times if we use the “one–size–fits–all” approach instead of suitable collocation points
numbers.

12.1 An Academic ODE Example

We consider the following academic feasibility problem:

299



Chapter 12
��Multi–Degree Pseudospectral Collocation Numerics

find x (·) = [x1, x2, x3, x4]
T (·) (12.1)

s. t. ẋ1(t) = +x2(t),

ẋ2(t) = −x1(t),

ẋ3(t) = +λ · x4(t),

ẋ4(t) = −λ · x3(t),

x (0) = [0,1,0, 1]T , λ= 10.

The solution to this ODE problem is given as

x1(t) = sin(t), x3(t) = sin(10 t), (12.2)
x2(t) = cos(t), x4(t) = cos(10 t). (12.3)

The example was implemented in our OCP softwaregrc employing a LGR collocationmethod
as it was introduced in Chapter 7. The arising NLP instances were solved using the NLP
solverIpopt. TheHessian of the Lagrangianwas approximated by a limited–memory quasi–
Newton method (L–BFGS updates) and the (relative) convergence tolerance was chosen to be
equal to 1× 10−10. The initial guess for nodal values at collocation points was chosen to be
equal to [0,1, 0, 1]T , i.e., it coincides with x (0).
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Figure 12.1: The figure depicts the state approximations x1(·) and x2(·) for Problem (12.1) on
the interval [0, 2π]. The number of finite elements and number of collocation points were
chosen to be equal to one and six, respectively. The approximations are in accordance with
the exact solutions given by sin(t) and cos(t).
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Figure 12.2: The figure shows the state approximations x3(t) and x4(t) for Problem 12.1 with
one finite element and 30 collocation points on the interval [0,2π]. Furthermore, the ana-
lytic solutions sin(10 t) and cos(10 t) are depicted in order to highlight the poor accordance
between the exact and the approximated trajectories.

We solved Problem 12.1 with different discretization configurations. The first configuration
under consideration solves the feasibility problem with one finite element and six collocation
points for the components x1(·) and x2(·). The number of collocation points for components
x3(·) and x4(·) were chosen to be equal to 30. Figures 12.1 and 12.2 show the associated tra-
jectories. While components x1(·) and x2(·) approximate the real solutions sin(t) and cos(t)
rather well, components x3(·) and x4(·) are just poorly approximated. It took just one iteration
to solve the discretization NLP for the prescribed convergence tolerance. The total number of
NLP variables was 78 and the number of nonzeros in the constraint Jacobian was 3750.
In order to overcome the poor approximation properties for the components x3(·) and x4(·)we
used 60 collocation points for those components in our second configuration. The number of
collocation points was left unchanged for the components x1(·) and x2(·). Likewise, we used
one finite element. The resulting trajectories can be found in Figure 12.3. One can easily see
that the analytic solutions sin(10 t) and cos(10 t) for components x3(·) and x4(·) are approx-
imated quite well now. As expected, the trajectories for components x1(·) and x2(·) are not
affected compared to the first configuration. The convergence tolerance was achieved within
one iteration again. The number of NLP variables and nonzeros in the constraint Jacobian
increased to 138 and 10950, respectively.
In order to stress the benefits of our software over others we also considered the case where
all components are solved with the same number of collocation points. Obviously, we had to
choose 60 collocation points in order to be able to fulfill the approximation quality in the last
two components. Even though the resulting NLP has a nicer structure in terms of its constraint
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a) States x1(t) and x2(t).
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b) States x3(t) and x4(t).

Figure 12.3: The figure depicts the state approximations of Problem 12.1 where the discretiza-
tion was chosen such that there is one finite element, six collocation points for the first two
components as well as 60 collocation points for components three and four. The approxima-
tions agree well with the analytic solutions from (12.2)+(12.3).

Jacobian it has 246 NLP variables and 15846 nonzeros in the constraint Jacobian. The NLP
solver converges within one iteration. However, there is a speedup between the second and
the third configuration of 45%.

12.2 An Academic OCP Example

We consider the following OCP:

min
x (·),u(·)

∫ 2π

0

(x1(t)− u1(t))
2 + (x3(t)− u2(t))

2 dt (12.4)

s. t. ẋ1(t) = +x2(t),

ẋ2(t) = −x1(t),

ẋ3(t) = +λ · x4(t),

ẋ4(t) = −λ · x3(t),

x (0) = [0,1, 0,1]T , λ= 10.

It is obvious that this OCP is strongly related with Problem 12.1. Consequently, the analytic
solutions for the differential states x (·) = [x1, x2, x3, x4]

T (·) coincide with the ones given in
(12.2)+(12.3). The optimal control u(·) = [u1, u2](·)T is given as follows:

u1(t) = sin(t), u2(t) = sin(10 t). (12.5)

The implementation of OCP 12.4 was done by means of grc. As opposed to Section 12.1, we
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a) Differential states x1(t) and x2(t).
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b) Differential states x3(t) and x4(t).

Figure 12.4: The figure depicts the differential states of OCP 12.4. The problem is discretized
with one finite element, six collocation points for state components x1(t) and x2(t), and 60
collocation points for components x3(t) and x4(t).

used SNOPT with an optimality and feasibility convergence tolerance of 1×10−6. The initial
guess at collocation points was chosen as in Section 12.1 for the differential states and [0,0]T

for the controls.
The discretization of the differential states is based on the numerical experiments in the pre-
vious section, i.e., we chose six collocation points for components x1(·) and x2(·) and 60
collocation points for components x3(·) and x4(·). Choosing six collocation points for control
component u1(·) and 30 collocation points for u2(·) results in a NLP with 235 variables and
23393 nonzeros in the constraint Jacobian. It takes 54 iterations until convergence. The state
approximations are depicted in Figure 12.4 and the control approximations in Figure 12.5. Ex-
pectedly, Figure 12.4 and Figure 12.3 apparently coincide. While u1(·) shows a good tracking
behavior of state x1(·) this does not hold for control u2(·) and state x3(·).
In order to improve the quality of the tracking we changed the number of collocation points
for u2(·) to 60 in our second experiment. The state solution trajectories remain unchanged
compared to the first experiment. The control solution trajectories can be found in Figure 12.6.
Now u2(·) tracks x3(·) quite well. The associated NLP takes 41 iterations until convergence.
It has 256 variables but just 18533 nonzeros in the constraint Jacobian. This is due to the
improved structure compared to the first experiment.
In order to compare the previous results with common collocation implementations we also
considered the case with 60 collocation points for all state and control components. With 50
iterations it takes slightly more iterations to converge than in the previous experiment. The
arising NLP also comprises more variables and nonzeros in the constraint Jacobian, namely
427 and 20705. This is reflected in the speedup of 49% of the second compared to the third
experiment.
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a) Control u1(t) and exact solution sin(t).
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b) Control u2(t) and exact solution sin(10 t).

Figure 12.5: The figure contains control trajectories (solid lines) for OCP 12.4 where the dis-
cretization was chosen such that there is one finite element, six collocation points for u1(·)
and 30 collocation points for u2(·). Dashed lines show the associated analytic solutions from
(12.5).
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a) Control u1(t) and exact solution sin(t).
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b) Control u2(t) and exact solution sin(10 t).

Figure 12.6:The figure depicts control trajectories (solid lines) for OCP 12.4 with a discretiza-
tion having six collocation points for u1(·) and 60 for u2(·). The associated analytic solutions
(dashed lines) indicate a good approximation quality for both control components.
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Petrov–Galerkin Costate Estimation Numerics

In this chapter, we illustrate the results of Chapter 9 by reference to several OCP models, i.e.,
we investigate the correlation of NLP multipliers coming from an OCP discretization and ad-
joint states of the PMP. The models under consideration have different characteristics. First,
we study an example that has no path constraints at all. The second example is purely control
constrained while the third example has mixed control–state path constraints. The underly-
ing ODE model for the aforementioned three problems is a variant of the well–known van
der Pol oscillator. All variants under consideration were described and analyzed by Maurer
[317] who solved them with an indirect approach. Those solutions serve as a reference so-
lution for our analysis. The chapter is concluded with a purely state constrained OCP whose
analytic solution is known. We use this example to demonstrate the need for an efficient mesh
refinement strategy which will be the topic of the following Chapter 14.
Regarding the practical realization, we rely on our software grcwhich was mentioned earlier
in Chapter 12. In order to come up with a costate estimation according to the theory of Chap-
ter 9, we use the NLP multipliers that are provided by the NLP solvers Ipopt or SNOPT.
According to (9.16) the function Λ(·) is given in terms of the adjoint solution λ(·). The dis-
cretization of Λ(·) by means of the function space ZH(T ,R) leads to representations Λh(·) of
the form (9.45) where the coefficients are algebraically related to the NLP multipliers. In order
to compare the results of our costate estimation with results from other publications we need
to come up with adjoint state estimations, i.e., we need to determine derivatives of Λh(·). As
we had pointed out already, the classic derivative of Λh(·) does not exist but at least it is differ-
entiable in a weak form. We exploit the weak differentiability to find adjoint state estimations.
In case of purely state constrained problems there may occur discontinuous differential state
costates. However, those discontinuities can be avoided by employing the “indirect adjoining
approach with continuous adjoint functions” as described by Hartl et al. [224, Section 7] and
investigated by Francolin et al. [173] and Francolin [172] in a LGR collocation environment.
Hartl et al. [224, Remark 7.2] show how costates in the PMP and the indirect adjoining ap-
proach are interrelated. We use the representation of the indirect adjoining approach in order
to be able to apply the error estimation of the mixed control–state constrained case. Costate
jumps only appear for constraint costates. They have to be detected for an efficient error
estimation. Ideas about practical realizations are described in the following chapter.
In Section 13.1, we introduce the Rayleigh equation, which is a variant of the van der Pol
oscillator, in an optimal control context without path constraints. We determine numerical
solutions with the aid of grc and present the resulting trajectories. In particular, we present
costate estimates and compare them with the results found by Maurer [317].
Section 13.2 extends the model of Section 13.1 with additional control constraints. The trajec-
tories provided by grc are compared with the ones from Maurer [317].

305



Chapter 13
�� Petrov–Galerkin Costate Estimation Numerics

In Section 13.3, we add mixed control–state constraints to the Rayleigh equation of Sec-
tion 13.1. We compute state and control trajectories as well as state and constraint costates
by means of grc. Then we check if they match with the respective trajectories of Maurer
[317].
The final Section 13.4 of this chapter deals with a minimum–energy OCP that has a pure state
constraint and whose analytic solution is available. We solve the problem with grc where
we make use of an implemented pure state constraint detection routine. The resulting adjoint
trajectories coincide with the ones coming from the aforementioned PMP with continuous
differential costates. Based on two different discretization we outline issues that must be ad-
dressed by efficient error estimation routines.

13.1 Rayleigh ProblemWithout Constraints

By means of the Rayleigh equation one can model oscillations of the electric current in an
electric circuit. Augmenting the Rayleigh equation with a control–quadratic objective results
in the following OCP:

min
x (·),u(·)

∫ tf

0

�
x1(t)

2 + u(t)2
�

dt (13.1)

s. t. ẋ1(t) = +x2(t),

ẋ2(t) = −x1(t) + x2(t)
�
1.4− 0.14 · x2(t)

2
�
+ 4 u(t),

x (0) = [−5,−5]T , tf = 4.5.

The electric current at a time instant t in OCP (13.1) is denoted with x1(t). The voltage at the
generator acts as a control function and it enters the system in the form of the scalar con-
trol function u(·) after a suitable transformation. The optimal control of a control–quadratic
objective subject to the Rayleigh equation has been investigated several times in different
variations, cf. e.g. Maurer and Augustin [318], Chen and Gerdts [108], Osmolovskii and
Maurer [345], and Maurer and Osmolovskii [319]. The majority of those publications ana-
lyze the problem with indirect solution methods. In particular, adjoint information is gained
in this way.
We compare our numerical results with the ones of Maurer [317]. We implemented OCP (13.1)
in our software grc. The problem discretization is chosen as follows: we have an equidistant
FE–grid with 64 FEs. The number of collocation points on each FE and for all state and control
components is three. As NLP solver we used SNOPT where the optimality and feasibility
convergence tolerance was chosen to be 1× 10−6.
Figures 13.1 and 13.2 show the resulting trajectories for (adjoint) differential states and controls.
All of them are consistent with the respective results of Maurer [317].
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Figure 13.1:Thefigure depicts the differential states x (·) = [x1, x2]
T (·) of OCP (13.1) and their

phase portrait. The state plot illustrates the 64 equidistant FEs as ticks at the top.

13.2 Rayleigh ProblemWith Control Bounds

In this section, we augment OCP (13.1) with pure control constraints such that we consider the
following problem:

min
x (·),u(·)

∫ tf

0

�
x1(t)

2 + u(t)2
�

dt (13.2)

s. t. ẋ1(t) = +x2(t),

ẋ2(t) = −x1(t) + x2(t)
�
1.4− 0.14 · x2(t)

2
�
+ 4 u(t),

−1⩽ u(t)⩽ +1,

x (0) = [−5,−5]T , tf = 4.5.

Themeanings of the variables remain the same as for OCP (13.1). The implementationwas done
with grc where we used Ipopt with exact second–order information to solve the problem
after the discretization process. The convergence tolerance for Ipoptwas chosen to be equal
to 1× 10−10. The discretization was done such that there are 64 FEs and the unified number
of collocation points for states and controls is three.
Figures 13.3 and 13.4 show trajectories for differential states, control and differential costates.
If one compares those trajectories with the respective ones of Maurer [317] one can see that
they are in accordance with each other.

13.3 Rayleigh ProblemWith Mixed Control–State Constraint I

In this section, we augment the Rayleigh problem from Section 13.1 with amixed control–state
constraint. The resulting full problem then reads as:
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b) Adjoint differential states

Figure 13.2: The control as well as the adjoint differential states for OCP (13.1) are portrayed
in the figure. Furthermore, the 64 FEs of the employed discretization are shown at the top of
both plots.

min
x (·),u(·)

∫ tf

0

�
x1(t)

2 + u(t)2
�

dt (13.3)

s. t. ẋ1(t) = +x2(t),

ẋ2(t) = −x1(t) + x2(t)
�
1.4− 0.14 · x2(t)

2
�
+ 4 u(t),

−1⩽ u(t) +
x1(t)

6
⩽ 0,

x (0) = [−5,−5]T , tf = 4.5.

The notation of all variables is the same as in Sections 13.1 and 13.2. We solved OCP (13.3) by
means of a discretization having 64 equidistant FEs and three collocation points per state and
control component. The solution was computed with grc and Ipopt as NLP solver. The
convergence tolerance for Ipopt was chosen to be 1× 10−10.
Figures 13.5 and 13.6 show the resulting trajectories for differential states, control, mixed
control–state constraint and its costate. The results coincide with the ones of Maurer [317].

13.4 A Minimum Energy Double Integrator

In this section, we consider an energy minimization OCP subject to pure state constraint (see
Bryson and Ho [88, p. 120–123]). The full system reads as

min
x (·),u(·)

1
2

∫ 1

0

u(t)2 dt (13.4)
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Figure 13.3:The figure depicts both differential state trajectories for OCP (13.2) in the left plot
and the respective phase portrait in the right plot. The associated discretization uses 64 FEs
and three collocation points for states and control. The FEs are illustrated in the left plot by
means of ticks at the top.

s. t. ẋ1(t) = x2(t),

ẋ2(t) = u(t),

l ⩾ x1(t),

x (0) = [0,+1]T , x (1) = [0,−1]T , l = 1
12 .

Bryson and Ho [88] point out that OCP (13.4) is a system with a second–order state variable
inequality constraint, since the control variable u(·) does not enter the constraint c(t)

def
=

x1(t)− l and its derivative ċ(t) = x2(t) explicitly. In contrast, the second derivative c̈(t) =
u(t) explicitly contains the control variable.

The analytical solution to OCP (13.4) for the differential states are given as

x ∗1(t) =


l
�

1−
�

1− t
3 l

�3�
, t ∈ [0,3l],

l, t ∈ [3l, 1− 3l],

l

�
1−

�
1− 1− t

3 l

�3
�

, t ∈ [1− 3l, 1],

x ∗2(t) =


�

1− t
3 l

�2
, t ∈ [0,3l],

0, t ∈ [3l, 1− 3l],

−
�

1− 1− t
3 l

�2

, t ∈ [1− 3l, 1],

309



Chapter 13
�� Petrov–Galerkin Costate Estimation Numerics

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time t

co
n
tr
ol

u
(t
)

a) Control

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−14

−12

−10

−8

−6

−4

−2

0

2

time t

ad
jo
in
t
st
at
es

λ
(t
)

λ1(t)

λ2(t)

b) Adjoint differential states

Figure 13.4: The control trajectory for OCP (13.2) is shown in the left plot and the adjoint
differential states are shown in the right plot. Both plots indicate the 64 equidistant FEs with
ticks at the top. The number of collocation points for all components is three in the realized
numerical experiment.

for the control as

u(t)∗ =


− 2

3 l

�
1− t

3 l

�
, t ∈ [0,3l],

0, t ∈ [3l, 1− 3l],

− 2
3 l

�
1− 1− t

3 l

�
, t ∈ [1− 3l, 1],

for the differential state multipliers as

λ∗1(t) = − 2
9 l2

, t ∈ [0, 1],

λ∗2(t) =


2
3 l

�
1− t

3 l

�
, t ∈ [0,3l],

0, t ∈ [3l, 1− 3l],
2
3 l

�
1− 1− t

3 l

�
, t ∈ [1− 3l, 1],

and finally for the constraint multiplier as

ν∗ (t) =


− 4

9 l2
, t ∈ [0,3l],

− 2
9 l2

, t ∈ [3l, 1− 3l],

0, t ∈ [1− 3l, 1].

Note that the optimal costates λ∗1(·), λ∗2(·), and ν∗ (·) denote costates in the sense of the
indirect adjoining approach with continuous adjoints according to Hartl et al. [224], i.e.,
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Figure 13.5: The figure depicts the differential state trajectories and the control trajectory for
OCP (13.3). The discretization was done with 64 FEs and three collocation points per compo-
nent.

the differential costates are continuous. This seems desirable for us since we can handle the
differential costates in a unified way within systems subject to mixed control–state constraints
and pure state constraints in the context of our error control routines. It allows us to shift the
discontinuity treatment to the pure state constraint costates.
As Hartl et al. [224] point out, the necessary optimality conditions of the PMP and the re-
spective conditions of the indirect adjoining approach with continuous adjoints can be related
under suitable assumptions.
We implemented the model within our software grc and solved the problem with two differ-
ent discretization schemes. The coarser discretization employs 10 equidistant FEs and three
collocation points per FE and component. While the number of collocation points remains
unchanged for the finer discretization schemes, we increased the number of FEs to 20. The
FE grid is chosen equidistantly again for the fine discretization. We solved the resulting NLPs
with Ipopt where second–order derivative information was calculated with AD. The con-
vergence tolerance of Ipopt was chosen to be equal to 1× 10−10.
Figures 13.7–13.9 show the primal and dual solution approximations for the coarse discretiza-
tion scheme. Likewise, Figures 13.10–13.12 depict the primal and dual solution approximations
for the fine discretization scheme. The analytical solutions for the control and both differen-
tial costates in Figure 13.7 and 13.8 indicate a clear deviation of the associated approximations.
The pure state constraint costate approximation in Figure 13.9 shows that the jumps at time
instants t = 0.25 and t = 0.75 could not be resolved. Those jump time instants are not part
of the FE grid which could be an explanation for the unresolved jumps. In contrast, the fine
grid covers the jump time instants. The resulting costate approximation in Figure 13.12 shows
well resolved jumps. Control and differential costate approximations in Figure 13.10 and 13.11
also show a proper accordance with the analytical solutions.
Our numerical experiments show that the FE grid distribution has a crucial impact on the
fact if costates involving jumps can be resolved properly or not. In order to end up with well
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Figure 13.6:The mixed control–state constraint u(t)+ x1(t)
6 for OCP (13.3) is portrayed in the

left plot. The right plot shows the associated adjoint. The discretization was done with 64
equidistant FEs and three collocation points.

resolved jumps one needs to detect the jump time instants. An efficient a posteriori error
estimation needs to consider how the pure state constraint contribution involving a Stieltjes
integral should be approximated on the one hand and how jumps can be detected properly on
the other hand. We are far from a final and satisfactory solution but in the following Chapter 14
we present first considerations how a goal–oriented error estimation can be realized for OCPs
with pure state constraints.
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Figure 13.7: The figure depicts the differential state trajectories and the control trajectory for
OCP (13.4). The discretization was done with 10 FEs (indicated by ticks at the top of both plots)
and three collocation points per FE. The control plot also includes the analytical solution u∗(·).
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Figure 13.8: Differential costate trajectories for OCP (13.4) are depicted in this figure. The
number of FEs was chosen to be 20 and the number of collocation points is three. Both plots
depict the FEs marked by ticks at the top and the analytical solutions with dashed lines. Both
trajectories deviate significantly from the analytical solutions.
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Figure 13.9:The figure shows the costate trajectory for the pure state constraint of OCP (13.4).
The discretization has 10 FEs (indicated by ticks at the top) and three collocation points per FE.
The figure also includes the analytical solution ν∗ (·). The jumps at the jump points t = 0.25
and t = 0.75 are not resolved properly. The jump points are not part of the FE discretization.
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Figure 13.10: The figure depicts the differential state trajectories and the control trajectory
for OCP (13.4). The discretization was done with 20 FEs (indicated by ticks at the top of both
plots) and three collocation points per FE. Compared to the coarser discretization with 10 FEs
(see Figure 13.7) there is significantly less deviation from the analytical solution.
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Figure 13.11: The figure depicts differential costate trajectories for OCP (13.4). The number
of FEs is 20 and the number of collocation points is three. Both plots depict the FEs marked
by ticks at the top. If we compare both trajectories with their respective counterparts in Fig-
ure 13.8 we can see that, regarding the deviation from the analytical solution, the discretization
with 20 FEs is significantly better than the one with 10 FEs.
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Figure 13.12:Thefigure shows the costate trajectory for the pure state constraint of OCP (13.4).
The discretization has 20 equidistant FEs (indicated by ticks at the top) and three collocation
points per FE. In contrast to the discretization with 10 FEs (see Figure 13.9), the jump points
t = 0.25 and t = 0.75 are part of the FE discretization. The jumps are resolved properly now.
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Chapter 14

Goal–Oriented Error Estimation Numerics

In this chapter, we investigate an hp refinement strategy, which is based on a non–smoothness
detection step (see Liu et al. [299]) to control the polynomial degree for the discretization
scheme and on our novel goal–oriented error estimation (see Chapter 10) to update the FE
grid. The hp refinement strategy is then applied to several benchmark problems in order to
illustrate its excellent performance and practical applicability.

14.1 Hyper–Sensitive Problem I
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Figure 14.1: The figure depicts the differential state trajectories as well as the control tra-
jectory for OCP (14.1) after employing our adaptive mesh refinement routine based on the
goal–oriented error estimation of Chapter 10. The initial discretization was done with two
equidistant FEs and three collocation points per FE. It took 16 iterations until termination
where the termination tolerance for the estimated error was set to 1× 10−8. The ticks at the
top of the plots indicate the final FE grid. One can see a distinct accumulation of FE points at
the horizon borders. That is the grid is finer where the trajectories undergo abrupt changes
of the curvature. There is no fill–up of FE grid points where the trajectories show a nearly
constant behavior.

In this section, we investigate an OCP, which was originally introduced by Rao and Mease
[368], and whose adjoint equation of the PMP is completely hyper–sensitive for a sufficiently
large optimization horizon. The problem also acts as a benchmark problem of the well–
established OCP software GPOPS-II [351]. It has the specific characteristic that a state tra-
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Figure 14.2: The left plot shows the development of the estimated error corresponding to
the iteration for the numerical experiment which is described in Figure 14.1. On the right,
the development of the FE grid is depicted. The error estimation plot is a semi–log plot with
respect to the y–axis and the FE grid plot is an exponential plot with respect to the x–axis in
order to disperse the accumulation of grid points at the horizon borders.

jectory is divided into three phases, namely a “take–off” phase, followed by a “cruise” phase,
and finally a “landing” phase. While the trajectory is nearly constant in the “cruise” phase, all
the action takes place during the “take–off” and “landing” phase. Moreover, the longer the op-
timization horizon is chosen the more time is spent in the “cruise” phase and the more extreme
is the slope of the trajectory close to the horizon borders. The trajectory has an exponential
like behavior during the “take–off” and “landing” phase. In the following Section 14.2, we will
investigate a slightly modified version of this problem whose analytical solution is known.
Themodel equations together with the performance criterion and a boundary value constraint
look as follows:

min
x (·),u(·) x2(tf) (14.1)

s. t. ẋ1(t) = −x1(t)
3 + u(t),

ẋ2(t) =
1
2

�
x1(t)

2 + u(t)2
�

,

x (0) = [1,0]T , x1(tf) = 1.5, tf = 1000.

As Rao and Mease [368] could show by means of an indirect approach, there appear rapid
changes in the solution close to the borders of the optimization horizon [0, tf]. However, most
parts of the solution trajectories are nearly constant. We conducted a numerical experiment
with OCP (14.1) where we started with a rather coarse FE grid and employed amesh refinement
strategy in order to reduce the error with respect to the performance criterion. To this end
we used our goal–oriented error estimation which provides us with an element–wise error
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contribution. Depending on whether the required tolerance is fulfilled on a FE or not, the
discretization is updated. If the tolerance is satisfied, the discretization remains unchanged
otherwise it is checked if the trajectories are smooth or not with the smoothness check of Liu
et al. [299]. If the trajectories are smooth we increase the polynomial degree. If the trajectories
are not smooth we split the FE into several new FEs depending on non–smoothness of the
trajectories measured by a smoothness value.
We initiated the numerical experiment with two FEs and three collocation points. We used
Ipopt with exact second–order derivative information and its standard convergence toler-
ance to solve the arising NLPs. The termination tolerance for the adaptive mesh refinement
approach was set to 1×10−8. The maximal refinement parameter, i.e., the number of FEs that
can be created during the mesh refinement per iteration and FE, was set to two. Our algorithm
took 16 iterations until termination.
The differential state trajectories and the control trajectory after termination together with
the final FE grid are depicted in Figure 14.1. The left plot of Figure 14.2 shows the development
of the estimated error over the iteration process. The development of the FE grid over the
iteration process in an exponential scale around the midpoint of the optimization horizon
t = 500 is depicted in the right plot of Figure 14.2. Near the initial time and near the final time
one can observe an accumulation of grid points while the rest of the horizon does not undergo
a fill–up of grid points, i.e., the grid points are set where the interesting behavior takes place.

14.2 Hyper–Sensitive Problem II

In this section, we consider a slight modification of the OCP from the previous Section 14.1.
However, its analytical solution is known such that we can compare the estimated and the
exact error. This OCP has already been used to study other mesh refinement techniques, cf.
e.g. Patterson et al. [352] and Liu et al. [299]. The full OCP reads as

min
x (·),u(·) x2(tf) (14.2)

s. t. ẋ1(t) = −x1(t) + u(t),

ẋ2(t) =
1
2

�
x1(t)

2 + u(t)2
�

,

x (0) = [1.5,0]T , x1(tf) = 1, tf = 10.

The analytical solution to this OCP is given as�
x ∗1(t)
u(t)

�
=

�
1 1

1+
p

2 1−p2

� �
c1 exp(+t

p
2)

c2 exp(−t
p

2)

�
,

where the constants c1 and c2 are given as�
c1
c2

�
=

1

exp(−tf
p

2)− exp(+tf
p

2)

�
+1.5 exp(−tf

p
2)− 1

−1.5 exp(+tf
p

2) + 1

�
.
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Figure 14.3: The figure depicts the differential state trajectories as well as the control tra-
jectory for OCP (14.1) after employing our adaptive mesh refinement routine based on the
goal–oriented error estimation of Chapter 10. The initial discretization was done with two
equidistant FEs and three collocation points per FE. It took eight iterations until termination
where the termination tolerance for the estimated error was set to 1× 10−12. The ticks at the
top of the plots indicate the final FE grid. One can see a distinct accumulation of FE points at
the horizon borders. That is the grid is finer where the trajectories undergo abrupt changes
of the curvature. There is no fill–up of FE grid points where the trajectories show a nearly
constant behavior.

We used the same mesh refinement approach as described in the previous Section 14.1. The
SNLP type algorithm was initiated with a coarse grid just having two FEs and a polynomial
degree for differential states and control of three. Arising NLP instances were solved with
the help of Ipopt where we used the exact second–order derivative information option of
the software. The maximal refinement parameter was set to two. The SNLP mesh refinement
approach took eight iterations to fulfill the termination tolerance of 1× 10−12.

Figure 14.3 depicts the differential state trajectories and the control trajectory after eight it-
erations. Furthermore, the top of both plots in the figure show the FE grid marked by ticks.
One can see that the exponential decay and growth during the “take–off” and “landing” phase
are less distinct compared to OCP (14.1). However, this changes for larger values of tf. The
right plot of Figure 14.4 shows the FE grids for all SNLP iterations. The left plot of Figure 14.4
contains the estimated as well as the exact error with respect to the performance criterion of
OCP (14.2). One can see that both graphs show a very similar convergence behavior. An illus-
tration of the SNLP grids in combination with changes in the polynomial degrees is given by
the plot in Figure 14.5. Roughly speaking, the polynomial degree is gradually increased from
the middle of the horizon (“cruise” phase) to its borders (“take–off”/“landing” phase).
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Figure 14.4: The development of both the exact (dashed line) and the estimated (solid line)
error is depicted in the left plot of this figure for the numerical experiment described in Fig-
ure 14.3. The error is illustrated with an logarithmic scale (y–axis). Exact and estimated error
show a very similar behavior and show a convergence behavior as expected by our theoretical
investigations. The grid development for the experiment is shown in the right plot of the fig-
ure. We use an exponential scale for the time horizon (x–axis) to disperse the accumulation
of grid points at the horizon borders.

14.3 Rayleigh ProblemWith Mixed Control–State Constraint II

In this section, we slightly modify the Rayleigh problem that has been considered in Sec-
tion 13.3 such that the control appears only linearly in the objective functional, the differential
equation, and in the mixed control–state constraint. We consider the OCP

min
x (·),u(·)

∫ tf

0

�
x1(t)

2 + x2(t)
2
�

dt (14.3)

s. t. ẋ1(t) = +x2(t),

ẋ2(t) = −x1(t) + x2(t)
�
1.4− 0.14 · x2(t)

2
�
+ 4 u(t),

−2⩽ u(t) +
x1(t)

6
⩽ 0,

x (0) = [−5,−5]T , tf = 4.5.

The notation in OCP (14.3) remains the same as in Section 13.1–13.3. Maurer [317] solved the
problem with an indirect approach. We use his results as a reference solution. He detected
the mixed control–state constraint as “bang–singular–bang–singular” type constraint which
makes the problem rather challenging to solve.
We solved the problem with the mesh refinement approach that we developed in Chapter 10
and that was also applied in the previous sections. We initialized the discretization scheme
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Figure 14.5: The figure depicts the FE grid development and the polynomial degree develop-
ment for the numerical experiment described in Figure 14.3. Note that an exponential scale
for the time horizon axis (x–axis) around the horizon midpoint was used. One can see that
the algorithm works in accordance with the trajectories depicted in Figure 14.3, i.e., the poly-
nomial degree is increased where the trajectories show a nearly constant behavior. Near the
horizon borders the number of FEs is gradually increased. The darker shaded a “FE rectangle”
is, the higher is the polynomial degree.

with 10 FEs and three collocation points for both differential states and control approximat-
ing polynomials. The arising NLP instances were solved with Ipopt where we used exact
second–order information and the standard convergence tolerance. The termination tolerance
for the SNLP algorithmwas set to 1×10−8 and it terminated after seven iterations successfully.
The parameter defining maximum allowed refinement of a FE was set to three.
Figure 14.6 shows the differential state trajectories and the control trajectory after two iter-
ations. The mixed control–state and the scaled switching function (see Maurer [317]) are
depicted in the left plot of Figure 14.7. The right plot of Figure 14.7 contains the constraint
costate. One can observe that the transitions from the first “bang” to the first “singular arc”
phase and from the first “singular arc” to the second “bang” phase are not properly resolved af-
ter the second iteration. This is different from the approximate solution after seven iterations
as one can see in Figures 14.8 and 14.9. The FE grid indicated by ticks at the top of the plots is
rather fine where transitions from “bang” to “singular arc” phases take place and vice versa. In
contrast, the grid is not refined compared to the grid of the second iteration in regions where
the solution is smoother. The final trajectories coincide with the ones of Maurer [317]. The
decay of the estimated error over the iteration process is depicted in Figure 14.10 alongside
with the FE grid.

14.4 Problem with Tangential Path Constraint Exit

In this section, we investigate an OCP subject to a control box constraint and a pure state
constraint. The full problem reads as
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Figure 14.6:Thefigure shows the differential state trajectories as well as the control trajectory
for OCP (14.3) after the second iteration of the adaptive mesh refinement approach described
in Chapter 10. Ticks at the top of the plots indicate the actual (equidistant) FE grid. The arcs
of the control trajectory are not well resolved.

min
x (·),u(·)

∫ 3

0

e−r t u(t) dt (14.4)

s. t. ẋ (t) = u(t),

0⩽ u(t)⩽ 3,

0⩽ x (t)− 1+ (t − 2)2,

x (0) = 0, r = 1.

Hartl et al. [224, Example 9.2.] calculate the analytical solution to OCP (14.4): differential
state and control solutions x ∗(·) and u∗(·) are given as

x ∗(t) =


0,

1− (t − 2)2,

1,

u∗(t) =


0,

2 (2− t),
0,

t ∈

[0,1),
[1,2],
(2,3].

For the differential costates λ∗(·) and the pure state constraint costates ν∗ (·) (indirect adjoin-
ing with continuous multipliers) they derived the solutions

λ∗(t)≡ 0, t ∈ [0, 3], ν∗ (t) =


−e−1, t ∈ [0,1),
−e−t , t ∈ [1,2],
0, t ∈ (2,3].

323



Chapter 14
�� Goal–Oriented Error Estimation Numerics

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−2

−1.5

−1

−0.5

0

0.5

time t

p
at
h
co
n
st
ra
in
t
c
(x

(t
),
u
(t
))

an
d
(s
ca
le
d
)
sw

it
ch
in
g
fu
n
ct
io
n

c(x(t),u(t)) = u(t) + x1(t)/6

λ2(t)/5
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Figure 14.7: The left plot shows the mixed control–state constraint and the scaled switching
function for OCP (14.3) after the second iteration of the adaptive mesh refinement approach
described in Chapter 10. One can see that the “bang–singular–bang–singular” structure is not
properly resolved after this iteration. The right plot shows the constraint costate for the same
problem and the same iteration. Furthermore, the equidistant FE grid is illustrated by means
of ticks at the top.

We briefly analyze the pure state constraint structure in the solution. To this end, let the
function c∗(·) be defined as the constraint function in the solution c∗(t) def

= c(t, x ∗(t)) def
=

x ∗(t)− 1+ (t − 2)2. The derivative ċ∗(·) is given as ċ∗(t) = u(t)∗ + 2(t − 2) since ẋ ∗ = u∗.
Since u∗(·) is discontinuous at time instant t = 1 this also holds for ċ∗(·) which makes the
entry point non–tangential. In contrast, u∗(·) and therefore also ċ∗(·) is continuous at time
instant t = 2 which makes the exit point a tangential point.
We solved OCP (14.4) with our software package grc where we used the NLP solver SNOPT
with its standard configuration to determine solutions for the discretized problem instances.
We solved the problem with two different discretization schemes. The first configuration has
30 equidistant FEs and two collocation points for the approximating polynomials. For the
second configuration we used 90 equidistant FEs and three collocation points. The approxi-
mate trajectories for the first configuration are depicted in Figure 14.11 and Figure 14.12. They
match very well with the exact solutions x ∗, u∗, λ∗ and ν∗. The same holds for the second
configuration which is not depicted for this reason.
Note that for both configurations the FE grid contains both entry (t = 2) and exit point (t =
3). For this reason, we can avoid the unresolved jumps that we investigated in Section 13.4.
Nevertheless, an efficient mesh adaption requires a reliable jump detection algorithm. For our
numerical experiments we achieved already good results by implementing some first– and
second–order checking heuristics based on derivative information that we obtained from the
software package chebfun [141]. Recently, Miller et al. [326] proposed another approach to
jump function detection by means of a Fourier series approach approximation approach in an
OCP context. However, jump detection and efficient adaptive mesh refinement for pure state
constrained OCPs with our new goal–oriented error estimation is still up to future research.
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Figure 14.8: The figure shows the differential state trajectories and the control trajectory for
OCP (14.3) after seven iterations of the adaptive mesh refinement approach described in Chap-
ter 10. Ticks at the top of the plots indicate the actual FE grid. The arcs of the control trajectory
are well resolved.

As we had already done in Section 13.4, we employ the indirect adjoining approach with con-
tinuous adjoints to express the costates. Thus, we can handle the differential equation part in
the same way as (10.12) since no jumps appear in the differential state. However, it makes no
sense to use (10.13) in order to evaluate the path constraint part of the error estimation as jumps
may occur. Instead, we use the linearity of the Lebesgue–Stieltjes integral in the measure
function and split the error representation integral

∫
In

c(t, x (t))d[ν − νh](t) element–wise
into ∫

In

c(t, x (t))d ν (t)−
∫
In

c(t, x (t))d νh (t). (14.5)

Both integrals in (14.5) must be approximated. Cerone and Dragomir [102] proposed the
following rule to approximate a Stieltjes integral on an interval I = [a, b]:∫

I
f (t) dµ(t) =

µ(b)−µ(a)
b− a

∫
I

f (t) dt.

Weemployed the formula to approximate the integrals in (14.5) wherewe used the LGR quadra-
ture rule to approximate the Lebesgue integrals. For the jump handling in both integrals we
made use of Theorem 2.79. We approximate the second integral in (14.5) as

c(tn−1, xh(tn−1)) (νh (t
+
n−1)− νh (t−n−1)) +

νh (t−n )− νh (t+n−1)

|In|
∫
In

c(t, xh(t)) dt,

where the Lebesgue integral is approximated with a high–order LGR quadrature rule. It is
slightly more difficult to find a good approximation for the first integral in (14.5) since a high–
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Figure 14.9: The left plot shows the mixed control–state constraint and the scaled switch-
ing function for OCP (14.3) after seven iterations of the adaptive mesh refinement approach
described in Chapter 10. It is easy to see that the “bang–singular–bang–singular” structure
is well resolved after this iteration. The right plot shows the constraint costate for the same
problem and the same iteration. The FE grid, indicated by ticks at the top of the plot, is rather
fine near the “bang” and “singular arc” phase transitions.

order polynomial approximation involving jumps is of little use. Thus, we used our chebfun
jump detection algorithm and used just neighboring FEs for the high–order approximation
where no jump is involved. As a guess for the time instant of the jump we took the mid-
point of the interval [t(n)0 , t(n)1 ], i.e., the midpoint of the interval between tn−1 ≡ t(n)0 and the
first collocation point t(n)1 of the FE In. If we denote this point with tm,n, we can write the
approximation of the first integral in (14.5) as

c(tm,n, xh(tm,n)) (ν (t
+
m,n)− ν (t−m,n)) +

ν (t−m,n)− ν (t+n−1)

tm,n − tn−1

∫
[tn−1,tm,n]

c(t, xh(t)) dt

+
ν (t−n )− ν (t+m,n)

tn − tm,n

∫
[tm,n,tn]

c(t, xh(t)) dt,

where we approximate again the arising Lebesgue integrals by means of high–order LGR
quadrature rules.
We applied the error estimation just described to the two previouslymentioned discretizations.
Since we have the analytical solution to OCP (14.4) we can compare the estimated and the
exact errors in the performance criterion. For the first configuration we find an estimated
error 6.18× 10−5 compared to an exact error of 7.68× 10−6. For the second configurations
estimated and exact error have the values 1.5× 10−6 and 1.62× 10−6, respectively.
The proposed error approximation may serve as a good starting point to intensify the research
on error approximation for OCPs involving pure state constrains and to develop tailored grid
adaption routines.
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Figure 14.10: Depicted are the development of the estimated error and the FE grid of the
adaptive mesh refinement approach described in Chapter 10 when applied to OCP (14.3).
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Figure 14.11: The figure depicts the differential state as wells as the control trajectory for
OCP (14.4) where the discretization scheme has 30 FEs and an approximating polynomial de-
gree of two. Both trajectories coincide very well with the analytical solution.
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Figure 14.12: Depicted are the costates for the differential state and the pure state constraint
of OCP (14.4) where the discretization scheme has 30 FEs and the approximating polynomials
are of degree two. Both trajectories are in accordance with the analytical solutions for the
costates of OCP (14.4).
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Chapter 15

Switched Optimal Control Problem Numerics

In this section we demonstrate the applicability of our novel approach to switched OCPs (see
Chapter 11) on three different benchmark problems. The first problem is a time optimal control
problem and exhibits consistent switching behavior. Problem two and three are initial value
problemswith inconsistent switches. The results of this chapter are also part of our publication
Bock et al. [78].

15.1 A Coulombic Friction Model

We consider the model with consistent switches in Christiansen et al. [110] where a cop-
per coil is guided in the air gap on a slider. The coil and slider mass is denoted by m1. The
Coulombic friction force FR, which acts in the direction opposite to the velocity is produced by
the linear guide. A load mass m2 is mounted on the slider with a spring k that has negligible
damping. A coil current I induces the actuating force F(t) = KF I(t). The moving coil with
the velocity v1 generates a voltage U(t) = KS v1(t).
The system states are the motor mass position x1(t), the motor mass velocity v1(t), the load
mass position x2(t), the load mass velocity v2(t) and the electric current I(t). The control
variable of the motor is the voltage U(t). The piecewise linear model equation reads as

ẋ (t) = f (x (t),U(t)),

where the state vector is denoted by x (t) = [x1(t), v1(t), x2(t), v2(t), I(t)]T . The right hand
side function f (x (t),U(t)) = [ f1, f2, f3, f4, f5]

T (x (t),U(t)) is given as

f1(x (t),U(t)) = v1(t),

f2(x (t),U(t)) = (KF I(t)− k (x1(t)− x2(t))− FR sgn(v1(t)))/m1,

f3(x (t),U(t)) = v2(t),

f4(x (t),U(t)) = k (x1(t)− x2(t))/m2,

f5(x (t),U(t)) = (U(t)− R I(t)− KS v1(t))/L.

The time horizon of the system is given by the interval [0, tf]. We want to investigate the sys-
tem on the unified time horizon [0,1]. This can be achieved by the linear time transformation
t(τ) = τ tf, τ ∈ [0, 1], cf. Section 5.1. We choose tf as an additional variable to achieve a
system with free final time. Define

x (τ) = x (t(τ)), U(τ) = U(t(τ)).
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Then we obtain the equivalent transformed problem

d
dτ

x (τ) = tf f (x (τ),U(τ)).

For the sake of clarity we use x (t) and U(t) instead of x (τ) and U(τ) in the remainder of
this section. The model parameters are given in Table 15.1. There are control box constraints

−Umax ⩽ U(t)⩽ +Umax

and initial as well as terminal state constraints

x (0) = [0,0, 0,0, 0]T , x (1) = [0.01,0,0.01, 0,0]T .

We consider the minimal time cost functional

min tf,

and apply our approach to the resulting OCP. A switch is induced by the Coulombic friction
force −FR sgn(v1(t)). The right hand side discontinuity is a consistent switch. Therefore we
distinguish the two cases −FR, if v1(t) ⩾ 0 and +FR, if v1(t) ⩽ 0 for the Coulombic friction.
We model this by introducing additional controls ω(t) = [ω⩾(t),ω⩽(t)]T , ω⩾(t),ω⩽(t) ∈{0, 1}. Then the Coulombic friction force can be written as −FR (ω⩾(t) −ω⩽(t)) if the two
implications

[ω⩾(t) = 1 =⇒ v1(t)⩾ 0] ⇐⇒ [−v1(t)ω⩾(t)⩽ 0],

[ω⩽(t) = 1 =⇒ v1(t)⩽ 0] ⇐⇒ [+v1(t)ω⩽(t)⩽ 0],

and the SOS–1 constraint ω⩽(t) +ω⩾(t) = 1 hold. In the next step we replace the binary
variables ω⩾(t),ω⩽(t) by convexified control variables α⩾(t),α⩽(t) ∈ [0,1]. The resulting

Table 15.1: Parameters of the coulombic friction model
Physical quantity Identifier Value Unit
Coil resistance R 2 Ω
Coil inductivity L 2 mH
Force constant KF 12 N/A
Voltage constant KS 12 Vs/m
Motor mass (slider, guide, coil) m1 1.03 kg
Load mass m2 0.56 kg
Spring constant k 2.4 kN/m
Guide friction force FR 2.1 N
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b) Case: Umax = 3.

Figure 15.1: State trajectories of the coulombic friction model from Christiansen et al. [110]
with two different values for control bounds Umax andminimal time objective functional. Com-
pared to Christiansen et al. [110] all trajectories show structurally the same behavior.
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OCP now reads as

min
tf,x (·),U(·),α⩾(·),α⩽(·)

tf

s. t. ẋ1(t) = tf v1(t),

v̇1(t) = tf
�
KF I(t)− k (x1(t)− x2(t))− FR (α⩾(t)−α⩽(t))

�
/m1,

ẋ2(t) = tf v2(t),

v̇2(t) = tf k (x1(t)− x2(t))/m2,

İ(t) = tf (U(t)− R I(t)− KS v1(t))/L,

x (0) = [0,0, 0,0, 0]T , x (1) = [0.01,0, 0.01,0, 0]T ,

0⩾ −v1(t)α⩾(t),

0⩾ +v1(t)α⩽(t),

1= α⩾(t) +α⩽(t), α⩾(t),α⩽(t) ∈ [0,1]. (15.1a)

Finally we eliminate α⩽(t): due to equation (15.1a) this can easily be done by replacing α⩽(t)
with 1−α⩾(t) in all equations of problem (15.1). Equation (15.1a) then reduces toα⩾(t) ∈ [0,1].
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Figure 15.2: Control profiles for two different values of Umax of the coulombic friction model
from Christiansen et al. [110]. Compared to Christiansen et al. [110] we see the same struc-
tural behavior. Due to lack of refinement steps the bang-bang control in both plots is not fully
pronounced.

Then we discretize the OCP as described in Section 11.6 with 80 equidistant finite elements,
polynomial order 2 for states and polynomial order 0 for control U . The technique described
in Section 11.8 is applied to solve the resulting MPVC. We choose τ0 = 10−3 as the initial
regularization parameter. The regularization parameter is reduced in each iteration according
to the rule τk =

p
0.9τk−1, k ⩾ 1. The arising NLPs are solved with the sparse SQP solver

SNOPT [197] without adaptive mesh refinement. We apply the default settings of SNOPT.
Figure 15.1 shows the resulting state trajectories for chosen control bounds Umax = 2 and
Umax = 3 returned by SNOPT. One can see that the state trajectories show structurally the
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Figure 15.3: Mode switching profile for control bound choice Umax = 3 of the coulombic
friction model from Christiansen et al. [110]. One can see the chosen finite element grid
indicated by ticks on the upper axis of the plot. The grayscale colors associated with each
mode range from white (mode is not active) to black (mode is active). The plot shows that in
the beginning and in the end mode α⩾ is active. In between mode α⩽ is active. This result
coincides with the plot in Figure 15.1b where the sign of v1 matches with chosen modes in this
plot.

same behavior compared to the results of Christiansen et al. [110]. We cannot compare the
results in detail because the value for parameter KS is not specified in the article of Chris-
tiansen et al. [110]. In Figure 15.2 the control trajectory of U is depicted for both control
bound choices. Figure 15.3 provides for control bound Umax = 3 a view of the chosen modes
represented by the control trajectories of α⩽ and α⩾. For case Umax = 2 we are permanently
in mode α⩾ = 1 and α⩾ = 0. Therefore we do not show the corresponding plot.

15.2 A Stick-Slip Model with Known Switching Point

We consider the following inconsistently switched model

ẋ (t) =

 x2(t)

− k
m

x1(t) +
F (x1(t), vrel(t))

m

 , (15.2)

where x (t) = [x1(t), x2(t)]T and vrel(t) = x2(t)− vb . The friction force F is a function of the
relative velocity vrel in the slip phase and a function of the spring force kx in the stick phase:

F(x , vrel) =

¨
min(|kx |, Fs) sgn(kx), vrel = 0 stick,

−Fs vrel, vrel ̸= 0 slip
(15.3)

A simple calculation shows that starting from the initial value x (0) = [0,1]T , the first switch
from the sticking mode to the slipping mode occurs at time t = Fs/k.
We apply our approach to the initial value problem: first we replace the stick mode triggering
constraint vrel(t) = 0 by a relaxed constraint −ϵ ⩽ vrel(t) ⩽ ϵ. The stick-slip branches, the
sgn(·), min(·, ·) and the |·| functions in (15.3) induce state dependent switches. One identifies
five modes in the model if all switches are taken into account. Therefore we introduce controls
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α(t) = [α1(t), . . . ,α5(t)]
T , αi(t) ∈ [0,1], i = 1, . . . , 5. The five modes are characterized by

the following implications:

α1(t) = 1 =⇒ −ϵ ⩽ vrel(t)⩽ +ϵ ∧ |kx1(t)|⩽ Fs (15.4)
α2(t) = 1 =⇒ −ϵ ⩽ vrel(t)⩽ +ϵ ∧ kx1(t)⩽ −Fs (15.5)
α3(t) = 1 =⇒ −ϵ ⩽ vrel(t)⩽ +ϵ ∧ kx1(t)⩾ +Fs (15.6)
α4(t) = 1 =⇒ vrel(t)⩾ +ϵ (15.7)
α5(t) = 1 =⇒ vrel(t)⩽ −ϵ (15.8)

The reformulated model equations (15.2)-(15.3), the vanishing constraint formulations of impli-
cations (15.4)-(15.8) and the convexified SOS–1 constraint α(t) ∈ conv(S5) yield the following
feasibility problem:

find x (·), α(·)
s. t. ẋ1(t) = x2(t),

ẋ2(t) =
�
(α1(t)− 1) k x1(t) + Fs vrel(t) (α3(t)−α2(t))

�
/m,

x (0) = [0,1]T ,

(15.4)⇔ 0⩾ [−ϵ + vrel(t),−ϵ − vrel(t),−Fs + k x1(t),−Fs − k x1(t)]
T α1(t),

(15.5)⇔ 0⩾ [−ϵ + vrel(t),−ϵ − vrel(t),+Fs + k x1(t)]
T α2(t),

(15.6)⇔ 0⩾ [−ϵ + vrel(t),−ϵ − vrel(t),+Fs − k x1(t)]
T α3(t),

(15.7)⇔ 0⩾ [+ϵ − vrel(t)]α4(t),

(15.8)⇔ 0⩾ [+ϵ + vrel(t)]α5(t),

1=
∑5

j=1
α j(t), αi(t) ∈ [0,1], i = 1, . . . , 5.

The feasibility problem is discretized with the techniques from Section 11.6. We choose an
equidistant grid with 10 finite elements and a polynomial order 2 for the state approximation
polynomials. Model parameters and ϵ assignment are given in Table 15.2. One can see that we
choose two different values for parameter Fs . For Fs = 0.5 the switching point of the system
is a finite element grid point whereas for Fs = 0.45 the switching point is in the middle of the

Table 15.2: Parameters of the stick-slip model
Physical quantity Identifier Value Unit
Spring constant k 1.0 Nm
Mass m 1.0 kg
Relative belt vel. vb 1.0 m/s
Max. stat. friction force Fs 0.45,0.5 N
Relaxation parameter ϵ 10−15 -
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time t = 0.5 is part of the finite element grid.
Our approach detects the switch exactly, as in-
dicated by the kink of the x2 trajectory.
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Figure 15.4: State trajectories of the stick-slip model for two different assignments for param-
eter Fs . In both cases we choose 10 equidistant finite elements.

finite element interval [0.4,0.5]. The two discretized systems are then solved with SNOPT.
In both cases default options for SNOPT are chosen. SNOPT can solve the system without
the regularization approach to handle the vanishing constraints.

Figure 15.4 shows the resulting state trajectories for Fs = 0.45 and Fs = 0.5. Analogously
Figure 15.5 depicts the chosen modes for both cases.

As can be seen in Figure 15.4b, in the case Fs = 0.45 our approach detects a switch from the
stick to the slip mode at time t = 0.4 indicated by the kink of the x2 trajectory at time t = 0.4.
According to the analytical solution the switch actually occurs at time t = Fs/k = 0.45. In
this case we cannot expect the switching time to be detected at the analytically correct time,
because the time t = 0.45 is not part of the finite element grid. Figure 15.5b illustrates this:
apart from the switch point including finite element interval [0.4,0.5] there is either mode 1
(α1(t) = 1) or mode 5 (α5(t) = 1) active. In [0.4,0.5] fractions of mode 1, 4 and 5 are active.

In the case of Fs = 0.5 our approach detects the first switch at time t = 0.5. This can either be
seen in Figure 15.4a indicated by the kink of the x2 trajectory at time t = 0.5 or by the mode
switching event from finite element interval [0.4,0.5] to [0.5,0.6] illustrated in Figure 15.5a.
The formula t = Fs/k = 0.5 confirms the switching point for the analytical solution. The
accordance of predicted and analytical switching time could be explained by the fact that the
switching time is part of the finite element grid.

This example makes clear that it is indispensable for our approach to develop reliable refine-
ment strategies. Only if one can detect switching points up to a certain level of accuracy
reliable solutions can be expected. But our experiments also give rise to hopes that the values
of the mode controls α give good indications in which finite element intervals the switches
are located.
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a) Case: Fs = 0.5. The analytical switch-
ing point from mode 1 (α1(t) = 1) to mode 5
(α1(t) = 1) is at time t = 0.5. This can also be
seen in the plot.

0 0.2 0.4 0.6 0.8 1

α1(t)
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α4(t)
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b) Case: Fs = 0.45. The analytical switch-
ing point from mode 1 (α1(t) = 1) to mode
5 (α1(t) = 1) is at time t = 0.45. The
plot shows that in the finite element interval
[0.4,0.5] where the switch takes place, there are
three partially active modes.

Figure 15.5: Element-wise partitions indicating the active modes of the stick-slip model for
two different assignments of parameter Fs . In both cases we choose 10 equidistant finite ele-
ments indicated by ticks in both plots. The grayscale colors associated with each mode range
from white (mode is not active) to black (mode is active).

15.3 An Alternate Friction Model

We consider the inconsistently switched model in Leine et al. [288] and Leine et al. [289]
where a mass m is attached to an inertial space by a spring with spring constant k. The mass
is sliding on a driving belt. The belt is moving at constant velocity vb . Dry friction with a
friction force F occurs between mass and belt. The model equations read as

ẋ (t) =

�
x2(t)

− k
m x1(t) +

F(x1(t),vrel(t))
m

�
, (15.9)

where x (t) = [x1(t), x2(t)]T and vrel(t) = x2(t)− vb . The friction force F is a function of the
relative velocity vrel in the slip phase and a function of the spring force kx in the stick phase

F(x , vrel) =

¨
min(|kx | , Fs) sgn(kx), vrel = 0 stick,

− Fs sgn(vrel)
1+δ |vrel| , vrel ̸= 0 slip.

(15.10)

The model parameters are depicted in Table 15.3. We solve the initial value problem with
initial values x (0) = [1.133944669704,0]T on the horizon T = [0,12].
State dependent switches are induced by the stick-slip branches, sgn(·), min(·, ·) and |·| func-
tions in (15.10). In the following, we apply our approach: to this end we replace the stick mode
triggering constraint vrel(t) = 0 by a relaxed constraint −ϵ ⩽ vrel(t) ⩽ ϵ. We then identify
five modes in the model and introduce controls α(t) = [α1(t), . . . ,α5(t)]T , αi(t) ∈ [0,1].
The five modes are characterized by the implications

α1(t) = 1 =⇒ −ϵ ⩽ vrel(t)⩽ +ϵ ∧ |kx1(t)|⩽ Fs, (15.11)
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α2(t) = 1 =⇒ −ϵ ⩽ vrel(t)⩽ +ϵ ∧ kx1(t)⩽ −Fs, (15.12)
α3(t) = 1 =⇒ −ϵ ⩽ vrel(t)⩽ +ϵ ∧ kx1(t)⩾ +Fs, (15.13)
α4(t) = 1 =⇒ vrel(t)⩾ +ϵ, (15.14)
α5(t) = 1 =⇒ vrel(t)⩽ −ϵ. (15.15)

The new formulated model equations (15.9)-(15.10), the mode characterizing implications

0 1 2 3 4 5 6 7 8 9 10 11 12
−1

−0.5

0

0.5

1

1.5

time t

st
a
te
s
x
(t
)

x1(t)

x2(t)

Figure 15.6: State trajectories of the switched alternate friction model (see Leine et al. [288]
and Leine et al. [289]). The black tick marks on the lower axis indicate the element boundaries,
which accumulate at the switch points to accurately resolve the switching times.

(15.11)-(15.15) and the convexified SOS–1 constraint α(t) ∈ conv(S5) result in the following
feasibility problem:

find x (·), α(·)
s. t. ẋ1(t) = x2(t),

ẋ2(t) = f2(x (t),α(t)),

x (0) = [1.133944669704,0]T ,

Table 15.3: Parameters of the alternate friction model
Physical quantity Identifier Value Unit
Spring constant k 1.0 Nm
Mass m 1.0 kg
Relative belt vel. vb 0.2 m/s
Max. stat. friction force Fs 1.0 N
Phys. constant δ 3.0 s/m
Relaxation parameter ϵ 10−15 -
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0 1 2 3 4 5 6 7 8 9 10 11 12

α2(t)

α3(t)

α4(t)

α5(t)

time t

Figure 15.7: Element-wise partitions indicating the active modes in the alternate friction
model (see Leine et al. [288] and Leine et al. [289]). The grayscale colors associated with
each mode range from white (mode is not active) to black (mode is active). The plot shows
that in the beginning and in the end mode 5 is active. In between there is a Filippov solution
realized by convex combinations of modes 4 and 5. The black tick marks on the lower axis
indicate the element boundaries, which accumulate at the switch points to accurately resolve
the switching times.

(15.11)⇔ 0⩾ [−ϵ + vrel(t),−ϵ − vrel(t),−Fs + k x1(t),−Fs − k x1(t)]
T α1(t),

(15.12)⇔ 0⩾ [−ϵ + vrel(t),−ϵ − vrel(t),+Fs + k x1(t)]
T α2(t),

(15.13)⇔ 0⩾ [−ϵ + vrel(t),−ϵ − vrel(t),+Fs − k x1(t)]
T α3(t),

(15.14)⇔ 0⩾ [+ϵ − vrel(t)]α4(t),

(15.15)⇔ 0⩾ [+ϵ + vrel(t)]α5(t),

1=
∑5

j=1
α j(t), αi(t) ∈ [0, 1], i = 1, . . . , 5, (15.16a)

where

f2(x ,α) =
(α1 − 1) k x1 + Fs

�
α3 −α2 +

α5

1−δ vrel
− α4

1+δ vrel

�
m

. (15.17)

We apply the discretization strategy described in Section 11.6, where we choose an equidistant
finite element grid with 150 elements and polynomial order 3 to approximate the states. Be-
fore solving the arising MPVCs, we investigate the problem further for the case ϵ = 0: based
on physical insight, we expect that there is an interval with vrel(t) = 0. If we set vrel(t) = 0 in
(15.17) and assume that mode 1 is active (α1(t) = 1, α2(t), . . . ,α5(t) = 0) then f2(x (t),α(t))
is equal to zero. On the other hand if we set vrel(t) = 0 and assume |kx1(t)|⩽ Fs , we can use
(15.16a) to eliminate the explicit appearance of α1 to obtain

0=
−k x1(t) (α3(t) +α2(t) +α5(t) +α4(t)) + Fs

�
α3(t)−α2(t) +α5(t)−α4(t)

�
m

=
+Fs − k x1(t)

m
(α3(t) +α5(t)) +

−Fs − k x1(t)
m

(α2(t) +α4(t)), (15.18)

which is a linear combination of the right hand side terms corresponding to modes 4 and 5.
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This observation yields the link to Filippov solutions of the switched system (15.9)–(15.10). To
this end, we reformulate the system in the sense of Filippov by only describing the dynamics
of the two slip modes (vrel > 0 and vrel < 0). This can be achieved by replacing F with

F̂(x , vrel) =


− Fs

1+δvrel
, vrel ≥ 0,

+
Fs

1−δvrel
, vrel ≤ 0,

(15.19)

which is multi-valued in vrel = 0. We then construct Filippov solutions for the stick phase
(vrel = 0) by a convex combination of the right hand side traces −Fs and +Fs on the switch
manifold vrel = 0. Apparently, the Filippov approach coincides with our approach only if
the linear combination coefficients α3 +α5 and α2 +α4 in (15.18) add up to one. This implies
α1 ≡ 0. In fact, we can explicitly enforce Filippov solutions by bounding α1 ≤ τ→ 0 within
the homotopy approach to obtain satisfactory numerical solutions.
After discretization we apply the MPVC relaxation algorithm from Section 11.7 and the tech-
niques described in Section 11.8 to the resulting finite dimensional feasibility problem with
vanishing constraints. We choose τ0 = 10−3 as initial regularization parameter and update it
according to the rule τk =

p
0.9τk−1, k ⩾ 1. The arising NLPs are solved with the SQP solver

SNOPT.
Figure 15.6 depicts the state trajectories resulting from our calculations. As can be seen in
Figure 15.7 our approach detects a switch from the slipping mode to the sticking mode and
back. The refinement scheme is important to accurately determine the switching points.
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Conclusion and Outlook

In the following, we give an overview of the broad range of topics which have been covered in
this thesis. We discuss our achievements and shed some light on various aspects of our work
that offer the potential for further research.

Multi–Degree Collocation

In Chapter 7, we proposed a pseudospectral collocation method which, in contrast to previous
methods of this type, allows to set distinct polynomial degrees for the approximating poly-
nomials of all differential state and control components. We illustrated how to exploit the
specific structure of the resulting Jacobians and Hessians. We discussed the trade–off and val-
uation between a mostly uniform or a mostly distinct polynomial degree environment and the
consequences on the resulting problem size of the discretized problem as well as the running
time to solve the discretized problem.
The utility of the proposed approach could be demonstrated in two ways. First, we applied
it to tailored benchmark problems in Chapter 12, where the setting with distinct polynomial
degrees could outperform the uniform setting in terms of run–time while maintaining the
quality of the solution. Second, we could use the approach to realize our novel approach to
the numerical solution of explicitly and implicitly switched OCPs, cf. Chapter 11.
Opportunities for further research are to realize an efficient implementation of the approach, in
particular with respect to the potential to boost its performance by a parallelization of the code.
Furthermore, the approach has to prove its potential when it is applied to real–world problem
instances. One might also think of extending the theory for costate estimation (Chapter 9)
and error estimation (Chapter 10) to the multi–degree case. It would also be quite appealing
to develop heuristics for an efficient automatic choice of the polynomial degrees.

Costate Estimation

In Chapter 9, we have found that a specific pseudospectral collocation method, which is based
on Legendre–Gauss–Radau points as collocation points, can be interpreted as a tailored Fi-
nite Element Petrov–Galerkin approach when applied to the weak formulation of the equa-
tions of the local minimum principle. Demonstrating the equivalence of the “first discretize,
then optimize” approach on the one hand and the ‘first optimize, then discretize’ approach on
the other hand also enabled us to derive interpretations for the NLP multipliers coming from
the collocation approach as approximate solutions to the costates of the local minimum prin-
ciple. In particular, this includes estimates for the costates of the differential equations, the
boundary constraints, and mixed control–state constraints. The validity of our calculations
was confirmed by executing suitable numerical experiments as described in Chapter 13.
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Pseudospectral methods are generally considered to be very efficient and robust. Their equiva-
lencewith a FE Petrov–Galerkin approachmight introduce an untroddenway to solve OCPs
in the future. As Kunkel and Gerdts [282] and Gerdts and Kunkel [191] have done in the
past for a local one–step method (see Section 6.3.1) we could do with the Petrov–Galerkin
method. Here, the complementarity condition of the local minimum principle is replaced with
a NCP function formulation leading to a nonlinear and non–smooth equation. The research
on semismooth Newton methods has been strongly evolving recently and provides a broad
arsenal of powerful algorithms to solve this equation.
The same NCP function reformulation of the necessary optimality conditions might even be
helpful to show certain convergence results for LGR pseudospectral methods as Gerdts and
Kunkel [192] could analyze convergence properties of the Euler discretization when applied
to discretize OCPs with mixed control–state constraints.

Goal–Oriented Error Estimation

In Chapter 10, we derived a formula which allows to express the error between an approx-
imate OCP solution coming from a FE Petrov–Galerkin approach and the exact solution
with respect to the performance criterion. Based on this error estimation, we developed an
adaptive mesh refinement strategy where the discretization scheme can be updated with re-
gard to both FE grid and the degree of the approximating polynomials. We demonstrated its
good performance for several OCPs of different type in Chapter 14.
In the future, there is some need to extend the described mesh adaption algorithm for coarsen-
ing the FE grid. Furthermore, we should implement strategies to decrease the approximating
polynomial degrees. One might also think of fundamentally different ideas for grid refinement
such as strategies that are based on an equilibration of the error. This is possible due to the
error representation as element–wise contributions.
The error estimation should allow for general goals not just the error in the performance
criterion. There exist several strategies for that in the PDE literature which could act as a
good starting point. Furthermore, one has to take account for the difficulties to estimate the
error of pure state constrained OCP and develop suitable strategies.

Switched Optimal Control

We proposed an approach how explicitly and implicitly switched OCPs can be solved nu-
merically in a unified way in Chapter 11. In a first step, we described a technique based on
generalized disjunctive programming how to equivalently reformulate an implicitly switched
OCP into a counterpart problemwherein those switches loose their implicit character. Instead,
discrete decision variables and vanishing constraints enter the new problem. Recent results
justify to omit the integrality constraints which finally leads to the task to solve a continu-
ous OCP with vanishing constraints. We described some strategies to efficiently solve those
problems.
We have several ideas how our approach to switched optimal control can be enhanced or en-
riched. One could develop better heuristics to detect the different switching types (consistent
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switches, sliding mode). In case there is a sliding mode over a certain time interval one could
use the multi–degree availability of our collocation method (see Chapter 7) to switch from
piecewise constant to piecewise linear control approximations. From a theoretical perspec-
tive, it would be interesting to find out if the convex multiplier functions α̂(·) (see (11.16))
are related to the respective functions of the Filippov theory (see Section 1.3). Currently,
there is some ongoing research to augment the approach such that it can handle OCPs with
state jumps, cf. Kirches et al. [276, 277]. Applying the approach within a Multiple Shoot-
ing environment is an obvious idea. We would also like to combine the approach with our
goal–oriented error estimation since both SNLP approaches can be easily combined. A poten-
tial extension of our error estimation to arbitrary goals could allow us not to adapt the grid
with respect to the performance criterion but to the switching function. This could improve
the detection of the implicitly given switching structure. Finally, the homotopy parameter to
control the embedded MPVC algorithm should be driven to zero problem specifically and not
just with a constant decrease rate. Since the homotopy in our approach reminds of following
the central path in interior–point algorithms, one could think of borrowing some successful
techniques such as Mehrotra’s probing procedure or the Fiacco–McCormick approach.

Nonlinear Model Predictive Control

In this contribution, we have considered OCPs with explicit and implicit switches as offline
problems. This type of optimal control is called open–loop optimal control. In contrast to this,
there exists the closed–loop optimal control approach, where a sequence of related OCPs is
solved. For our future research we are planning to extend the theory developed in Chapter 11
to closed–loop problems, and in particular applied in an NMPC context.
The principles of NMPC are described in Appendix C. A promising approach to realize a con-
crete NMPC algorithm can be found in the RTI approach (see Appendix C.3), or more general
the MLI approach (see Appendix C.4). In Appendix D of this contribution we introduce the
theoretical foundations of a new level for MLI. Especially, this level is suitable for problems
whose right hand side derivatives have a sparse structure. On top of that, our unified frame-
work for switched OCPs can be linked to MLI in two different ways: either one could consider
to solve the resulting OCPs in a Multiple Shooting context, or one could apply the MLI idea to
collocation methods.
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Appendix A

Auxiliary Results

A.1 Proof of Lemma 8.5

We prove Lemma 8.5, i.e., we have to show that it holds

∫ tf

ts

f (t)

�∫ t

ts

g (τ) dτ

�
dt =

∫ tf

ts

�∫ tf

t

f (τ) dτ

�
g (t) dt.

We define the functions F(·) and G(·) as

F(t)
def
=

∫ t

tf

f (τ) dτ and G(t)
def
=

∫ t

ts

g (τ) dτ

and calculate (integration by parts) then∫ tf

ts

f (t)

�∫ t

ts

g (τ) dτ

�
dt +

∫ tf

ts

�∫ t

tf

f (τ) dτ

�
g (t) dt

=

∫ tf

ts

f (t)G(t) dt +

∫ tf

ts

F(t)g (t) dt = F(t)G(t)|tfts = 0.

This concludes the proof.

A.2 Proof of Lemma 9.2

We prove Lemma 9.2, i.e., with the augmented Hamilton function

Ĥ(t, x , u,λ,µ; ts, tf)
def
=ψ(t, x , u; ts, tf) +λ

T f (t, x , u; ts, tf) +µ
T c(t, x , u; ts, tf).

we have to show that

Ĥ[−1] = − tf − ts
2

∫ +1

−1

Ĥ′ts[τ] dτ+
1
2

∫ +1

−1

Ĥ[τ] dτ, (A.1)

Ĥ[+1] = +
tf − ts

2

∫ +1

−1

Ĥ′tf[τ] dτ+
1
2

∫ +1

−1

Ĥ[τ] dτ. (A.2)
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We introduce the time transformation function t : [−1;+1] −→ [ts, tf] as

t (τ; ts, tf)
def
=

tf + ts
2
+τ · tf − ts

2
,

and find

t ′(τ; ts, tf) =
tf − ts

2
,

∂ t
∂ ts
(τ; ts, tf) =

1
2
− 1

2
·τ,

∂ t
∂ tf
(τ; ts, tf) =

1
2
+

1
2
·τ.

Then (A.1) follows from

− tf − ts
2

∫ +1

−1

Ĥ′ts[τ] dτ+
1
2

∫ +1

−1

Ĥ[τ] dτ

=

∫ +1

−1

−t ′(τ; ts, tf) · Ĥ′t[τ]
�

1
2
− 1

2
·τ
�

dτ+
1
2

∫ +1

−1

Ĥ[τ] dτ

=
1
2

∫ +1

−1

d
dτ

Ĥ[τ]τ dτ− 1
2

∫ +1

−1

d
dτ

Ĥ[τ] dτ+
1
2

∫ +1

−1

Ĥ[τ] dτ

=
1
2
Ĥ[τ]τ

��+1
−1 − 1

2

∫ +1

−1

Ĥ[τ] dτ− 1
2
Ĥ[τ]

��+1
−1 +

1
2

∫ +1

−1

Ĥ[τ] dτ

=
1
2
Ĥ[1] +

1
2
Ĥ[−1]− 1

2
Ĥ[1] +

1
2
Ĥ[−1] = Ĥ[−1],

and (A.2) from

+
tf − ts

2

∫ +1

−1

Ĥ′ts[τ] dτ+
1
2

∫ +1

−1

Ĥ[τ] dτ

=

∫ +1

−1

t ′(τ; ts, tf) · Ĥ′t[τ]
�

1
2
+

1
2
·τ
�

dτ+
1
2

∫ +1

−1

Ĥ[τ] dτ

=
1
2

∫ +1

−1

d
dτ

Ĥ[τ]τ dτ+
1
2

∫ +1

−1

d
dτ

Ĥ[τ] dτ+
1
2

∫ +1

−1

Ĥ[τ] dτ

=
1
2
Ĥ[τ]τ

��+1
−1 − 1

2

∫ +1

−1

Ĥ[τ] dτ+
1
2
Ĥ[τ]

��+1
−1 +

1
2

∫ +1

−1

Ĥ[τ] dτ

=
1
2
Ĥ[1] +

1
2
Ĥ[−1] +

1
2
Ĥ[1]− 1

2
Ĥ[−1] = Ĥ[+1].
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A.3 Towards the Generalized Taylor’s Theorem I

Taylor’s Theorem in the calculus with integral type remainder reads as:

f (x0) = f (x) + f ′(x)(x0 − x) +

∫ x0

x

f ′′(t)(x0 − t) dt.

The remainder term can be rewritten by means of the substitution t (s) = x0 + s (x − x0),
t (0) = x0, t (1) = x , dt = (x − x0)ds as∫ x0

x

f ′′(t)(x0 − t) dt = −
∫ 0

1

f ′′(x0 + s (x − x0)) s (x − x0)
2 ds

=

∫ 1

0

f ′′(x0 + s (x − x0)) (x − x0)
2 s ds.

It is a well–known fact (see e.g. Zeidler [467, Theorem 4.A]) that Taylor’s Theorem also
holds in a Banach space setting. We make use of this fact and write for appropriate functions
x (·) and x0(·) and a mapping f (·) the Taylor series expansion as

f (x0(·))− f (x (·)) + f ′(x (·))(x (·)− x0(·))
=

∫ 1

0

f ′′(x0(·) + s (x (·)− x0(·))) (x (·)− x0(·))2 s ds. (A.3)

In order to put this formula into practice in Chapter 10we use its notation for the exact solution
function x (·), the approximate solution function xh(·) and the error function e(t) = x (t)−
xh(t) and substitute in (A.3) x0(·) = xh(·) which results in

f (xh(·))− f (x (·)) + f ′(x (·))(x (·)− xh(·))
=

∫ 1

0

(x (·)− xh(·))T f ′′ (xh(·) + s (x (·)− xh(·))) (x (·)− xh(·)) s ds.

An integration with a costate like function Λ(·) and integration over the horizon interval,
which is split into the intervals In, yields∑

n

∫
In

f ′(x (t))e(t) dΛ(t)−∑
n

∫
In

f (x (t))− f (xh(t)) dΛ(t)

=
∑

n

∫
In

∫ 1

0

e(t)T f ′′ (xh(t) + s e(t)) e(t) s ds dΛ(t),

which is exploited in Section 10.2.
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A.4 Towards the Generalized Taylor’s Theorem II

Similar to the calculations from Appendix A.3, we find a second result which is used in Sec-
tion 10.2. If we use again the notation (x (·), u(·)) for the exact OCP solution and (xh(·), uh(·))
for the approximate OCP solution and if we define the error terms ex(·), eu(·), and e(·) as

ex(·) def
= x (·)− xh(·), eu(·) def

= u(·)− uh(·), e(·) def
= [ex(·)T , eu(·)T ]T ,

then we find the Taylor series expansion

f (xh(·), uh(·)) = f (x (·), u(·))− f ′x(x (·), u(·))ex(·)− f ′u(x (·), u(·))eu(·)
+

∫ 1

0

ex(·)T f ′′x x(xh(·) + s ex(·), uh(·) + s eu(·))ex(·) s ds

+

∫ 1

0

eu(·)T f ′′uu(xh(·) + s ex(·), uh(·) + s eu(·)) eu(·) s ds

+ 2

∫ 1

0

ex(·)T f ′′xu(xh(·) + s ex(·), uh(·) + s eu(·)) eu(·) s ds.

An integration with a costate like function Λ(·) and integration over the horizon interval,
which is split into the intervals In, yields∑

n

∫
In

f ′x(x (t), u(t))ex(t) dΛ(t) +
∑

n

∫
In

f ′u(x (t), u(t))eu(t) dΛ(t)

−∑
n

∫
In

{ f (x (t), u(t))− f (xh(t), uh(t))} dΛ(t)

=
∑

n

∫
In

∫ 1

0

ex(t)
T f ′′x x(xh(t) + s ex(t), uh(t) + s eu(t))ex(t) s ds dΛ(t)

+
∑

n

∫
In

∫ 1

0

eu(t)
T f ′′uu(xh(t) + s ex(t), uh(t) + s eu(t))eu(t) s ds dΛ(t)

+2
∑

n

∫
In

∫ 1

0

ex(t)
T f ′′xu(xh(t) + s ex(t), uh(t) + s eu(t)) eu(t) s ds dΛ(t).
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B.1 Orthogonal Polynomials

Orthogonal polynomials play a crucial role in polynomial interpolation as well as numerical
integration which will be introduced in subsequent sections. A system of polynomials {Qn} is
called to be orthogonal if it satisfies the condition of orthogonality, i.e.,∫ +1

−1

w (t)Qn(t)Qm(t) dt = 0, n ̸= m, (B.1)

where the degree of every polynomial Qn(·) is equal to n, and the weight function w (t) ⩾ 0
on the interval [−1,+1]. If we define the scalar product

〈 f , g 〉 def
=

∫ +1

−1

w (t) f (t)g (t) dt

on the linear space L2([−1,+1],R) the condition of orthogonality can be formulated as
〈Qn,Qm〉= 0, n ̸= m. The following result answers the question if such systems of orthogonal
polynomials exist.

Theorem B.1
There exist uniquely defined polynomials Qn(·) of degree n, n= 0, 1, . . . , such that

〈Qn,Qm〉= 0, n ̸= m. △

Proof See Stoer et al. [419]. □

Since every polynomial P(·) of degree n can be represented as a linear combination of the
orthogonal polynomials Qm(·), m ⩽ n we have 〈P,Qn〉 = 0 for all P(·) up to degree n− 1. It
can be shown that the roots t i , i = 1, . . . , n of Qn(·) are real, simple and lie in the open interval
(−1,+1).
The class of Jacobi polynomials Pn(x;α,β) forms an important class of orthogonal polyno-
mials. They are the eigenfunctions of a singular Sturm–Liouville problem on the interval
[−1,+1] and fulfill the condition of orthogonality for the weights w (t) = (1− t)α(1+ t)β ,
α > −1, β > −1.
Well known representatives of the Jacobi polynomial class are given by Chebyshev polyno-
mials of first kind {Tn} (for which α = β = − 1

2 holds) and Legendre polynomials {Pn} (for
which α= β = 0 holds).
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Legendre polynomials

The Legendre polynomials {Pn} were introduced by Legendre [287] and are eigenfunctions
of the singular Sturm–Liouville problem

d
dt

�
(1− t2) · dPn

dt
(t)
�
+ n(n+ 1) · Pn(t) = 0,

with the normalization Pn(1) = 1. Legendre polynomials are orthogonal with respect to the
scalar product

〈 f , g 〉=
∫ +1

−1

f (t) · g (t) dt,

which means that w (t) = 1 in (B.1). They are defined by the formula

Pn(t) =
1

n!2n

dn

dtn
(t2 − 1)n, n= 0,1, . . . ,

and satisfy the three term recursion

(n+ 1) · Pn+1(t) = (2n+ 1) · t · Pn(t)− n · Pn−1(t), P0(t) = 1, P1(t) = t.

For fixed θ ̸= 0 it holds

Pn(cosθ ) =
�

2
nπ sinθ

� 1
2

sin
��

n+
1
2

�
θ +

π

4

�
+O

�
n−

3
2

�
, n→∞. (B.2)

Figure B.1 depicts the three Legendre polynomials P1(·), P3(·) and P5(·).

Chebyshev polynomials

Chebyshev polynomials of the first kind {Tn} were introduced by Chebyshev [106] in 1854
and are the eigenfunctions of the singular Sturm–Liouville problem

d
dt

�p
1− t2 · dTn

dt
(t)
�
+

n2

p
1− t2

· Tn(t) = 0,

with the normalization Pn(1) = 1. They are orthogonal with respect to the scalar product

〈 f , g 〉=
∫ +1

−1

f (t) · g (t)p
1− t2

dt,

which means that

w (t) =
1p

1− t2
, t ∈ (−1,+1),
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Figure B.1: The plot shows three different Legendre polynomials.

in (B.1). Chebyshev polynomials can be easily obtained by the formula

Tn(t) = cos(n · arccos(t)), t ∈ [−1,+1],

and satisfy the three term recursion

Tn+1(t) = 2t · Tn(t)− Tn−1(t), T0(t) = 1, T1(t) = t.

The roots of Chebyshev polynomial Tn(t) are often called Chebyshev nodes and can be found
to be

t(n)i = cos
�

2i − 1
2n

π

�
, i ∈ [n].

B.2 Polynomial Interpolation

Lagrange Interpolation Given an arbitrary dataset polynomial interpolation deals with the
task to interpolate the dataset by a polynomial of lowest possible degree. Often the dataset is
given by some abscissa values and the associated function values for a given function.
We consider a compact interval I def

= [a, b] with a < b, a function f : I −→ R and n ∈ N
distinct abscissa values t i as well as the associated function values fi , i.e.,

fi
def
= f (t i), i ∈ [n].
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It is the goal to interpolate the dataset {(t i , fi)}. The points t i are called support points. One
can show that there exists a unique polynomial P : I −→ R of degree n− 1 such that

P(t i) = fi , i ∈ [n].
The unique polynomial can be constructed by means of the so called Lagrange interpolation
formula, which was first discovered by Waring [446], as

P(t) =
n∑

i=1

fi · Li(t), (B.3)

where the Li(·) denote the Lagrange interpolation polynomials. These polynomials are given
as

Li(t)
def
=

n∏
j=1
j ̸=i

t − t j

t i − t j
. (B.4)

The i–th interpolation polynomial has the property that it is equal to one at the i–th support
point t i and vanishes at the remaining ones t j , j ̸= i, i.e.,

Li(t j) = δi j =

¨
1, j = i,

0, j ̸= i.

Figure B.2 depicts three interpolation polynomials for six support points on the interval
[−1,+1].

Choice of Support Points It is a crucial point how to choose the support points t i . Intu-
itively one could choose equidistant support points on the interval I . However, for polynomial
approximation, an equidistant grid has some undesirable properties. One would expect that
the error between the polynomial approximation and the true function continuously decreases
for an increasing number of support points. This is not the case for an equidistant grid. For
a finer equidistant grid one observes the so called Runge phenomenon (see e.g. Davis [125]),
meaning that the approximation error near the interval boundaries increases when the grid
becomes finer. This implies that polynomial interpolation using equally distributed points is
an extremely ill–conditioned problem, i.e., small changes in the input data might cause huge
changes in the interpolant.
In order to make polynomial interpolation to be a well–posed problem we have to dispense
with equally distributed support points. Approximation theory suggests to use support points
that are cumulated at the interval boundaries and having an asymptotic density which is pro-
portional to (1− t2)−1/2 as n→∞.

Towards Interpolation Error By a proper choice of the support points one can overcome
the Runge phenomenon and guarantee that the polynomial approximation error monotoni-
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Support points

Figure B.2:Three Lagrange interpolating polynomials for six arbitrary support points on the
compact interval [−1,+1].

cally decreases as the number of support points increases. Support points based on the roots
of Legendre and Chebyshev polynomials have this property. The roots of these polynomials
have the characteristic that they are cumulated at the interval boundaries.
The interpolation error f (t)− P(t) for functions f in which n derivatives exist is known to
be

f (t)− P(t) =
1
n!

dn f
dtn
(ξ)

n∏
i=1

(t − t i) (B.5)

for some ξ ∈ I . This equation shows, as the number of support points is increased, a rapid
convergence for functions whose derivatives are bounded.
According to the approximation error (B.5) it is obvious to choose support points that minimize

max
t∈[−1,+1]

����� n∏
i=1

(t − t i)

����� .
One can show that the maximum norm of any such polynomial is bounded from below by
21−n. This bound is attained by the scaled Chebyshev polynomials 21−n · Tn. Since it holds
|Tn(t)|⩽ 1 for t ∈ [−1,+1] we get an approximation error

| f (t)− P(t)|= 1
2n−1 n!

max
ξ∈[−1,+1]

����dn f
dtn
(ξ)

����
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if we choose the Chebyshev nodes as support points. Other point sets leading to well–
conditioned polynomial approximations are given by Legendre points that come from roots
or extrema of the Legendre polynomials.

An Improved Lagrange Formula Representation (B.3)+(B.4) of the Lagrange interpo-
lation suffers from several drawbacks in particular in terms of numerical aspects. Relevant
shortcomings for our purposes are the following:

(i) An evaluation of P(t) costs O
�
n2
�
additions and multiplications.

(ii) The evaluation is numerically unstable.

For this reason the Lagrange form of P(·) is mainly of theoretical relevance to prove theorems
but of less importance for numerical computations.
However, there is a way to rewrite the Lagrange formula such that it can be evaluated and
updated in O (n) operations. To this end, we remark that the numerator of Li(·) in (B.3) can
be written as

L(t) =
n∏

j=1

(t − t j) = (t − t1) · (t − t2) · . . . · (t − tn)

divided by t − t i . Recalling L’Hospital’s rule (see Taylor [423, p. 456]) we calculate the
quantity

L̇(t i) = lim
t→t i

L̇(t)
1
= lim

t→t i

L(t)
t − t i

= lim
t→t i

n∏
j=1
j ̸=i

(t − t j) =
n∏

j=1
j ̸=i

(t i − t j),

which can be identified as the denominator of Li(·) such that we have shown

Li(t)
def
=

L(t)
L̇(t i) · (t − t i)

. (B.6)

The Lagrange interpolation formula then reads as

P(t) =
n∑

i=1

fi · Li(t) = L(t)
n∑

i=1

fi

L̇(t i) · (t − t i)
.

Differentiation of Polynomial Interpolants For pseudospectral methods, which approx-
imate OCP states and controls by global polynomials, it is required to evaluate at least first–
order derivatives of interpolation polynomials, i.e., one needs to calculate

Ṗ(t) =
n∑

i=1

fi · L̇i(t),

evaluated at the support points t j , j ∈ [n].
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Representation (B.6) of the i–th Lagrange polynomial helps us to derive handy expressions:
multiplying both sides of (B.6) by t−t i to render them differentiable at t = t i , and a subsequent
differentiation yields

L̇i(t) · (t − t i) + Li(t) =
L̇(t)
L̇(t i)

. (B.7)

Differentiating one more time yields

L̈i(t) · (t − t i) + 2 L̇i(t) =
L̈(t)
L̇(t i)

. (B.8)

By inserting t = t j , i ̸= j, in (B.7) and t = t i in (B.8) we get

Dj,i = L̇i(t j) =


L̇(t j)

L̇(t i) · (t j − t i)
, if i ̸= j,

L̈(t i)
2 L̇(t i)

, if i = j.
(B.9)

The matrix D =
�
Dj,i

�
i, j=1,...,n is commonly known as (first–order) differentiation matrix. For a

grid {t i} of support points and an associated function value vector f = [ f1, . . . , fn]
T the vector

D f can be obtained by interpolating the data {(t i , fi)} and differentiating the interpolating
polynomial at the grid points.
Note that the representation (B.9) of the differentiation matrix in terms of L(·) and its first–
and second–order derivatives is rather convenient: as we have emphasized already the support
points are preferably chosen to be roots of specific orthogonal polynomials whose derivatives
(evaluated at the support points) can often be obtained in a numerically stable and computa-
tionally efficient way.

B.3 Numerical Integration

Given a function f : [−1,+1] −→ R numerical integration deals with methods that approxi-
mate the definite integral

I( f )
def
=

∫ +1

−1

f (t) dt (B.10)

numerically. Such techniques are typically referred to as quadrature formulas.
More concrete the approximation of definite integrals usually involves formulas of the type

I( f ) = In( f ) + en =
n∑

i=1

ωi · f (t i) + en, (B.11)

where theωi are called quadrature weights and the t i are called quadrature points or nodes. The
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approximation error between the exact integral I( f ) and its approximation In( f ) is denoted
by en.

B.3.1 Quadrature Using Interpolating Polynomials

Quadrature formulas In( f ) can be constructed bymeans of the polynomial interpolationwhich
was introduced in the previous section. Given n distinct and arbitrary support points the
integrand f (·) is approximated by Lagrange polynomials as∫ +1

−1

f (t) dt ≃
∫ +1

−1

n∑
i=1

Li(t) · f (t i) dt. (B.12)

Hence, the quadrature weights ωi in (B.11) can be easily determined as

ωi =

∫ +1

−1

Li(t) dt, i ∈ [n].

Quadrature rules of this type are exact for polynomials of degree n−1 or less. It is important
to note that the ωi are constants, independent of f (·).
We restrict our discussions about quadrature using interpolating polynomials to the linear
case since it is the only one employed in this thesis. Let t1 = −1 and t2 = +1. From equation
(B.12) it follows that

I2( f ) = f (−1)

∫ +1

−1

t + 1
2

dt + f (+1)

∫ +1

−1

t − 1
2

dt

= f (−1) + f (+1).

The case of linear interpolation is typically referred to as the trapezoidal rule.

B.3.2 GaussQuadrature

Compared to (B.10) we extend our investigations by considering a broader class of definite
integrals. They have the form

I( f )
def
=

∫ +1

−1

w (t) f (t) dt,

where w (·) is a given nonnegative weight function that has to satisfy some mild requirements,
cf. Stoer et al. [419]. As in (B.11) we want to retrieve integration rules of type

In( f ) =
n∑

i=1

ωi · f (t i).

In the previous section, we assumed the quadrature nodes to be fixed in advance. If we leave
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their location up to optimization we can gain more degrees of freedom and can therefore
expect a higher degree of precision for the integral approximation. This idea leads us to an
algorithm class which is called Gaussian quadrature.
The Gaussian quadrature is concerned to choose the quadrature nodes in an optimal man-
ner. In other words it determines for an arbitrary function f (·) quadrature nodes {t i} all in
[−1,+1] and quadrature weights {ωi} which would be expected to minimize the approxima-
tion error en

def
= I( f )− In( f ).

There are at most 2n parameters involved since the quadrature weights {ωi} are completely
arbitrary and those of the {t i} are restricted just in this sense that they have to be in the
interval [−1,+1] and that f (·) has to be defined at these points.
Considering the coefficients of a polynomial also as free parameters, the class of polynomials
up to degree 2n − 1 contains at most 2n parameters. Hence, this would be the polynomial
class for which equation (B.11) can be expected to hold with approximation error en equal to
zero.
By means of orthogonal polynomials the following result shows that the Gaussian integration
rules are unique and indeed of order 2n−1. Furthermore, it is shown that the weightsωi are
positive and the integration nodes x i are all in the interval [−1,+1].

Theorem B.2
(i) Let {t i} be the roots of the n–th orthogonal polynomial Qn(·) and let {ωi} be the solutions of the

equation system

n∑
i=1

ωi ·Q j(t i) =

¨〈Q0,Q0〉 , if j = 0,

0, if j ∈ [n− 1].
(B.13)

Then ωi > 0 for i ∈ [n], and∫ +1

−1

w (t)P(t) dt =
n∑

i=1

ωi · P(t i) (B.14)

holds for all polynomials P(·) up to degree 2n− 1.
(ii) Conversely, if (B.14) holds for all polynomials with degree equal to 2n− 1 or less, then the t i are

the roots of Qn(·) and the weights ωi satisfy the equation system (B.13). △

Proof See Stoer et al. [419]. □

The approximation error of Gaussian integration is estimated in the following theorem.

Theorem B.3
If f ∈ C2n([−1,+1],R), then∫ +1

−1

w (t) f (t) dt −
n∑

i=1

ωi · f (t i) =
1
(2n)!

d2n f
dt2n

(ξ) 〈Qn,Qn〉

for some ξ ∈ (−1,+1). △

Proof See Stoer et al. [419]. □

359



Chapter B
�� Numerical Analysis

In the following subsectionswe investigate the special case of theweighting function w (t) = 1
since it is the only one used in this thesis. We have seen in Section B.1 that the Legendre poly-
nomials are the associated orthogonal polynomials. Moreover, we examine the implications
of fixing either one or two integration nodes to interval boundaries.

Legendre–GaussQuadrature

The quadrature rule with the maximum degree of precision for weighting function w (t) = 1
is the LG quadrature rule. It is exact for polynomials up to degree 2n − 1. The quadrature
points and associated weights are determined such that∫ +1

−1

f (t) dt =
n∑

i=1

ωi · f (t i) + en,

and the error en is zero for polynomials f (·) of degree 2n− 1. The Gauss points t i are deter-
mined as the roots of the n–th degree Legendre polynomial and the weights are the integrals
of the associated Lagrange interpolation polynomials, i.e.,

ω j =

∫ +1

−1

n∏
i=0
i ̸= j

t − t i

t j − t i
dt =

2

(1− t2
i )
�
Ṗn(t i)

�2 , j ∈ [n],

where Ṗn(·) denotes the derivative of the n–th Legendre polynomial. The Gauss points are
all interior to the interval [−1,+1] and tend to be more piled close to the interval boundaries.
The approximation error en is proportional to the (2n)–th derivative of the integrand, so that
we can state for ξ ∈ [−1,+1]:

en =
1
(2n)!

d2n f
dt2n

(ξ)

∫ +1

−1

�
n∏

i=1

(t − t i)

�2

dt =
22n+1(n!)4

(2n+ 1)[(2n)!]3
d2n f
dt2n

(ξ).

Legendre–Gauss–RadauQuadrature

The second quadrature rule presented here is the LGR quadrature rule whose nodes lie on
the half–open interval [−1,+1). This means that we fix one integration node to start of the
integration interval. The quadrature nodes and the associated weights are then determined
such that∫ +1

−1

f (t) dt =ω1 · f (−1) +
n∑

i=2

ωi · f (t i) + en,

and the error en is zero for polynomials of highest possible degree.
Since one of the points is forced to lie at the interval boundary we loose one degree of freedom.
Hence, it is exact for polynomials up to at most degree 2n−2. The LGR nodes t i are determined
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as the roots of the polynomial

Pn(t) + Pn−1(t),

where Pn(·) denotes the n–th degree Legendre polynomial. The inner quadrature weights are
given as

ωi =
1− t i

n2[Pn−1(t i)]2
=

1

(1− t i)
�
Ṗn−1(t i)

�2 , i = 2, . . . , n,

and the endpoint weight is

ω1 =
2
n2

.

The approximation error en for the LGR quadrature nodes can be found to be

en =
n22n−1[(n− 1)!]4

[(2n− 1)!]3
d2n−1 f
dt2n−1

(ξ), ξ ∈ (−1,+1).

The standard variant of LGR quadrature includes the initial point but not the final point. Al-
ternatively one could also imagine a quadrature formula including the final point but not the
initial point of the interval. The resulting quadrature rule is called Flipped Legendre–Gauss–
Radau (FLGR) quadrature. The corresponding quadrature nodes are called FLGR nodes and can
be found from the roots of Pn(t)− Pn−1(t).

Legendre–Gauss–LobattoQuadrature

Compared to LGR quadrature, in LGL quadrature also the missing interval endpoint is in-
volved, i.e., the interval boundaries−1 and+1 act as quadrature nodes. Fixing two quadrature
nodes reduces the degree of freedom by two degrees as opposed to LG quadrature. Hence, this
quadrature scheme can be accurate up to degree at most 2n− 3.
The formula is constructed by choosing weights ωi and n− 2 additional nodes t i ∈ (−1,+1)
such that polynomials with the highest possible degree are integrated without approximation
error, i.e.,∫ +1

−1

f (t) dt =ω1 · f (−1) +
n−1∑
i=2

ωi · f (t i) +ωn · f (+1) + en.

The LGL quadrature rule is exact for polynomials up to degree 2n − 3. The LGL nodes are
determined to be the roots of the derivative of the Legendre polynomial of degree n − 1
together with the two boundary points ±1, i.e., the roots of the polynomial (1− t2) · Ṗn−1(t).
The inner quadrature weights are given as

ωi =
2

n(n− 1)[Pn−1(t i)]2
, i = 2, . . . , n− 1,
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and the endpoint weights are

ωi =
2

n(n− 1)
, i = 1, n.

The approximation error en for the LGL quadrature nodes can be found to be

en = −n(n− 1)322n+1[(n− 2)!]4

(2n− 1)[(2n− 2)!]3
d2n−2 f
dt2n−2

(ξ), ξ ∈ (−1,+1).
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Figure B.3: Comparison of LG, LGR and LGL quadrature nodes.
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Figure B.4: The figure depicts LG and LGL quadrature node distributions for several polyno-
mial degrees.
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Figure B.5:Thefigure depicts the distribution of LGR quadrature nodes for several polynomial
degrees.
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Appendix C

Nonlinear Model Predictive Control

C.1 Feedback Control

For the most part of this thesis we covered the topic of solving OCPs. Regarding real world
processes it is by no means judicious to apply the (numerically) computed optimal control
u∗(·) of an OCP to the full time horizon. The modeling of real processes may underlie several
deficiencies: restricted by the demand for computational power or due to the lack of knowl-
edge certain aspects of the process may be unmodeled. Moreover, the process environment
may be disturbed by peripheral influences or disturbances are caused by inexactly determined
parameters. In open–loop optimal control, after the solution of the OCP, the process is no
longer monitored anymore and the obtained solution is applied without further feedback of
the actual process. This makes open–loop control susceptible to disturbances which invalidate
the previously optimal solution.
In contrast to this, there exists the so–called closed–loop or feedback control approach where
the actual system behavior is taken into account and the controller is continuously fed with
the updated system state.

C.2 The Principle of NMPC

In this section we introduce the concept of MPC, a quite versatile and powerful state–of–
the–art feedback control approach. The MPC approach can be summarized as follows: one
repeatedly solves open–loop OCPs on a finite prediction horizon. At sampling times tk

s , where
k denotes the sample index, we retrieve the current real process state x k

s . Using x k
s as initial

state condition we solve an OCP on a prediction horizon [tk
s , tk

s + H] and obtain an optimal
control u∗k(·). The choice of the initial state conditions provides us with a coupling of the state
prediction and the real state. We apply the optimal control u∗k(·) only for the sampling time
period δ. At the subsequent sampling time tk+1

s = tk
s +δ we solve a new OCP on the horizon

[tk+1
s , tk+1

s + H] with updated initial state conditions x k+1
s and apply the obtained optimal

control u∗k+1(·).
Applied to OCP (6.14) the MPC feedback approach solves the following OCP for each sampling
time tk

s

min
x (·),u(·) φ(tk

s +H, x (tk
s +H)) +

∫ tk
s+H

tk
s

ψ(t, x (t), u(t)) dt (C.1a)

s. t. ẋ (t) = f (t, x (t), u(t)), t ∈ T , (C.1b)
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x (tk
s ) = x k

s , (C.1c)
0nc
⩾ c(t, x (t), u(t)), t ∈ T , (C.1d)

0nr
⩾ r (tk

s +H, x (tk
s +H)). (C.1e)

MPC subject to OCPs with quadratic objective function and affine–linear dynamic equations
and inequality constraints are referred to as Linear Model Predictive Control (LMPC). In case of
nonlinear dynamic equations or inequality constraints, or if the objective function is nonlinear
but not quadratic we call it NMPC.

As opposed to PID controllers, which consider the deviation to a desired reference value ex-
clusively, MPC is able to predict the process behavior by means of a (nonlinear) model and a
suitable chosen objective function. This allows for a notable improved feedback performance.
MPC also has a wider range of applications as it is not restricted to linear models and qua-
dratic objective functions like LQR controllers. Compared to other approaches the problem
formulation in the MPC approach can be augmented with equality and inequality constraints.
Furthermore, it allows for a broader spectrum of objective functions such as time–optimal and
economic feedback control.

For real world applications it is impossible to obtain the real process state x k
s exactly. Instead

one has to rely on measurements of some components or of quantities which can be used
to determine the remaining components. These measurements underlie measurement errors
which is why only an estimate of the real process state can be obtained. Algorithms dealing
with this kind of issues are subsumed as state estimation algorithms. Approaches to state
estimation are beyond the scope of this contribution and we refer the reader to the excellent
introduction presented by Wirsching [451] or the standard textbook by Rawlings et al. [370,
Chapter 4].

C.3 Real–Time Iteration Scheme for NMPC

State–of–the–art approaches applied to NMPC problems solve an OCP in each sample. Black
box OCP solvers based on discretization strategies as introduced in Chapter 6 are used to do
this task. Real–world applications such as processes from chemical engineering result very of-
ten in large–scale models and as a consequence thereof in large–scale NLPs. The calculation of
NLP solutions can be quite time–consuming. Therefore, especially for fast process dynamics,
the feedback control obtained from the NLP solver will most likely be outdated or sometimes
even infeasible.

To overcome the aforementioned issues it is crucial to reduce the time that is spent to compute
the feedback control. The RTI approachwhich is sketched in this and extended in the following
section avoids computing OCP solutions numerically up to a certain accuracy but uses the
fact that consecutive OCPs of a NMPC loop are closely related. Hence, it reutilizes gained
information from a NMPC step to the next one.
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C.3.1 Tangential Predictors

We have seen in Section 6.2 that a Multiple Shooting discretization of the k–th NMPC sam-
ple OCP (C.1) yields the NLP (6.20) where xs is equal to x k

s . For now we suppress the term
[Inx

0 . . .0]T x k
s , and express the fact that the equality constraints depend on the initial value

by adding x k
s as additional function argument:

min
wk

F(wk) (C.2)

s. t. 0= G(wk, x k
s ),

0⩾ H(wk).

Hence, these NLPs differ from sample k to sample k+1 only by an updated process state x k+1
s

compared to x k
s . To express the fact that the solution of NLP (C.2) depends on the choice of

the parameter x k
s we call it parametric programming.

In order to facilitate the subsequent considerations let us suppose that there are no inequality
constraints present in NLP (C.2). With Lagrange multipliers λk for the equality constraints
we can write the first–order KKT conditions of the resulting NLP as

K(wk,λk, x k
s )

def
=

�∇F(wk)−∇G(wk, x k
s )λ

k

G(wk, x k
s )

�
= 0.

The Implicit Function Theorem states under certain smoothness assumptions that in a neigh-
borhood of x k

s there exist functions w (·) and λ(·) such that w (x k
s ) = wk and λ(x k

s ) = λ
k , and

for all xs in this neighborhood of x k
s it holds K(w (xs),λ(xs), xs) = 0. Now consider the pro-

cess state x k
s in sample k and another point xs. Then Taylor’s theorem states for sufficiently

smooth w (·) that

w (xs) = w
�
x k
s
�
+

d
dx

w
�
x k
s
� �

xs − x k
s
�
+O

�

xs − x k
s



2�
.

For this reason a good first–order approximation of w (xs) for xs close to x k
s can be realized by

the tangential predictor t (xs)
def
= w

�
x k
s
�
+w ′

�
x k
s
� �

xs − x k
s
�
. One of our goals is it to reduce the

feedback time. For fast feedback we can assume process state x k+1
s to be close to the preceding

process state x k
s . Applying the tangential predictor results in

w
�
x k+1
s
�≃ t

�
x k+1
s
�
= w

�
x k
s
�
+

d
dx

w
�
x k
s
� �

x k+1
s − x k

s
�

.

By construction the value w
�
x k
s
�
is equal to wk , and w ′

�
x k
s
�
does not depend on x k+1

s . Thus
it can be computed before the new process state x k+1

s is available. Since w (·) is implicitly
defined we still have to answer the open question how w ′

�
x k
s
�
can be calculated. According
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to the Implicit Function Theorem the derivative of w (·) is given as

d
dx

�
w
�
x k
s
�

,λ
�
x k
s
��
= − ∂

∂ (w,λ)
K
�
wk,λk, x k

s
�−1 ∂

∂ xs
K
�
wk,λk, x k

s
�

,

where we assume ∂
∂ (w,λ) K

�
wk,λk, x k

s
�
to be invertible.

Till now we were dealing with equality constrained problems exclusively, but in case there are
inequality constraints H(·) present the first–order optimality conditions are no longer a set of
equations only. However, it was shown in Diehl [131] that it is also possible to determine a
tangential predictor for this problem type, but it is not given by solving a linear equation but
by solving a QP. In the presence of inequality constraints it arises the question how active
set changes are handled. In case of very close samples the active set of the solution does not
change and the determination of a tangential predictor is made in the same way as in the
equality constrained case. But even in case of active set changes these are taken into account
since QPs incorporate linearized inequality constraints.

C.3.2 Initial Value Embedding

By augmenting the variable yk with the initial value constraint, NLP (C.2) can be written in
the following form:

min
yk ,wk

F(wk) (C.3)

s. t. 0= yk − x k
s ,

0= G(wk, yk),

0⩾ H(wk).

Let yk , wk , λk and µk be a primal–dual solution of the corresponding KKT–conditions for the
initial value x k

s . One can show that the tangential predictor for the (k+ 1)–th sample x k+1
s is

provided by a QP of the form

min
∆y,∆w

1
2

�
∆w
∆y

�T

H(wk, yk,λk,µk)
�
∆w
∆y

�
+∇F(wk)

T
∆w (C.4)

s. t. 0=∆y + (yk − x k+1
s ),

0=
∂

∂ y
G(wk, yk)∆y +

∂

∂ w
G(wk, yk)∆w+G(wk, yk),

0⩾ d
dw

H(wk)∆w+H(wk),

whereH(·) denotes theHessian of the Lagrangianwith respect to w and y . The primal and dual
steps calculated from QP (C.4) are used to update the solution yk , wk , λk and µk from sample
k, and this is the tangential predictor step for sample k+1. If QP (C.4) is not initialized in the
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primal–dual solution but with approximations for the Hessian H(·), the constraint Jacobians
or constraint residuals, then its solution becomes an approximated tangential predictor step.
Augmenting NLP (C.2) with the constraint 0= yk− x k

s is called Initial Value Embedding (IVE).
The idea of IVE is to introduce the parameter x k

s as additional NLP variable, and in this way
derivative information with respect to the parameter can be gained for the QP.
Note that due to the initial value constraint (C.1c) NLPs arising from a Multiple Shooting
discretization of the NMPC feedback generating OCPs (C.1) automatically have the tailored
structure of NLP (C.3), see NLP (6.19) or NLP (6.20). Thus it is not necessary to introduce an
additional variable y and QP (C.4) is replaced with

min
∆w

1
2
∆wT Bk∆w+∇F(wk)

T
∆w (C.5)

s. t. 0=
d

dw
G(wk)∆w+G(wk) + [Inx

0 . . .0]T x k+1
s ,

0⩾ d
dw

H(wk)∆w+H(wk),

where Bk is an appropriately chosen approximation of the Hessian e.g. using BFGS updates.

C.3.3 RTI for MPC

Classic NMPC approaches are realized by waiting for the actual process state and solving
NLP (C.2) afterwards. It is impossible to find bounds for the number of iterations of the NLP
solver which guarantees a certain accuracy of the solution. Therefore one usually has to work
with worst–case guesses of the solution time. Moreover, while solving an NLP possibly out-
dated or even constraint violating controls have to be applied to the process.
In this section we use the results about Tangential Predictors (TPs) and IVE to adapt classic
NMPC feedback strategies in two different ways: on the one hand the sampling intervals
are reduced, and thus the controller does not need to work on outdated data. On the other
hand the delay between obtaining the system state and updating the process control, which
was calculated and is fed back, is diminished. An increased feedback frequency allows for
operating the system closer to its constraint bounds and improves the handling time–critical
processes.
Our considerations regarding TPs suggest for the k–th NMPC iteration to solve QP (C.5). Re-
spective remarks on IVE show that the initial value x k

s enters the QP only linearly. Conse-
quently, all derivatives and almost all constraint evaluations that are required to set upQP (C.5)
can be calculated without knowledge of the (k+1)–th sample x k+1

s . These considerations mo-
tivate the following three steps for a real–time optimization approach:

(i) Preparation Phase: Set up QP (C.5) as far as possible without knowledge of the next
sample x k+1

s , i.e., if wk , λk and µk denotes the primal–dual solution for current sample
x k
s , then the HessianH(wk, yk,λk,µk) or its approximation Bk , the constraint Jacobians

d
dw G(wk) and d

dw H(wk), the objective function gradient ∇F(wk), and the constraint
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residuals G(wk) and H(wk) can be evaluated. This step is computationally expensive
since dynamic equations and their sensitivities with respect to w have to be evaluated.

(ii) Feedback Phase: As soon as x k+1
s is available QP (C.5) is solved and one obtains the

primal solution step ∆w= [(∆s)T , (∆q)T ]
T as well as new multipliers. The control

feedback qk+1 = qk+∆q is immediately fed back to the process. Compared to solving an
NLP in classic NMPC approaches the feedback delay is reduced to solving one QP. The
fact that the parameter x k+1

s enters the QP affine–linearly can be exploited by tailored
parametric QP solvers, cf. Ferreau et al. [159], Ferreau [158].

(iii) Transition Phase: By applying the step ∆w we obtain the new set of NLP variables
(wk+1,λk+1,µk+1). Next, in case there is some time available we execute more SQP steps
in order to converge towards a local solution. Otherwise the preparation phase for the
next sample is performed.

We call this approach RTI and it has been proposed and investigated by Diehl [131] and Diehl
et al. [132]. Diehl et al. [133, 134] could also show the stability of RTI. Compared to classic
NMPC approaches, where one waits for the sample x k+1

s and cannot use free computational
capacities otherwise, the RTI approach decouples the computation step (Preparation Phase)
and the sampling step (Feedback Phase).

C.4 Multi–Level Iteration Scheme

In this section we present the Multi–Level Iteration Schemes (MLIs) as an extension to RTI in-
troduced in the previous section. We have stressed the need for fast feedback in NMPC and
have taken this fact into account in the RTI approach. The idea of MLI is to reduce the time
spent in the computationally expensive preparation phase of RTI, where functions and deriva-
tives have to be evaluated. The evaluation time in this phase depends among others on the
size of the discretization grid, the size and nonlinearity of the system, and on the chosen hori-
zon length. The MLI approach reduces the time spent in the preparation phase by introducing
several controller levels. The different controller levels differ in their information updated in
succeeding NMPC iterations. The levels range from a full RTI step on the highest level, i.e., all
information are updated, to no information update on the lowest level. In consecutive NMPC
iterations the chosen levels may vary. However, in this work we consider schemes with a
fixed level and refer the interested reader to the dissertation of Wirsching [451, Chapter 6].
MLI was first introduced by Bock et al. [77], and its applicability to problems frommechanical
and chemical engineering was shown in several publications, cf. Wirsching et al. [452, 453,
454]. An application ofMLI to NMPCwith long horizons can be found in the article of Kirches
et al. [274].

C.4.1 Description of the MLI Levels

Independent of the levelMLI splits its computational effort into a preparation phase, a feedback
phase and a transition phase. The meaning of each phase is comparable to the one from RTI.
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The feedback phase performs a single iteration per sample for feedback calculation. In the
feedback phase of sample k a QP of the form

min
∆w

1
2
∆wT Bk∆w+

�
f k
�T
∆w (C.6)

s. t. 0= Gk∆w+ gk + [Inx
0 . . .0]T x k+1

s ,

0⩾ Hk∆w+ hk,

is solved. The different levels differ in how they update the values for Bk , Gk , Hk , f k , gk

and hk . Consequently, the computation time spent in the preparation phase varies for the
different levels. The choice of the aforementioned matrices and vectors for the different levels
is described in the following.

RTI (Level–D) Level–D iterations are RTI iterations, i.e., for the set of primal–dual variables
(wk,D,λk,D,µk,D) in each iteration, the objective gradient f k =∇F(wk,D), the constraints gk =
G(wk,D), hk = H(wk,D), and the constraint Jacobians Gk = d

dw G(wk,D), Hk = d
dw H(wk,D) are

evaluated. Furthermore, a Hessian (approximation) Bk must be provided.
After solving QP (C.6) in the feedback phase (with primal–dual QP solution ∆wk,D, λk,QP,
µk,QP), the control feedback qk+1,D = qk,D +∆qk,D is returned to the process. In the transition
phase the primal and dual variables are updated as

wk+1,D = wk,D +∆wk,D, λk+1,D = λk,QP, µk+1,D = µk,QP.

The computationally most expensive steps in level–D iterations are the calculation of the Hes-
sian (approximation) as well as the constraint Jacobians, in particular the sensitivities of the
system dynamics.

Optimality Iterations (Level–C) Compared to level–D iterations optimality iterations omit
the evaluation of the constraint Jacobians, which avoids especially computations of the system
dynamics sensitivities. Level–C holds its ownNLP variables (wk,C,λk,C,µk,C), and additionally
matrices Bk , Gk and Hk filled with Hessian and constraint Jacobian approximations. They are
often provided by a previously executed level–D iteration. Each level–C iteration evaluates
the constraints gk = G(wk,C) and hk = H(wk,C). Instead of the standard objective gradient
there is a modified gradient which is given as

f k =∇F(wk,C) +
�

Gk T − d
dw

G(wk,C)
�
λk,C +

�
Hk T − d

dw
H(wk,C)

�
µk,C

=∇L(wk,C,λk,C,µk,C) + Gk T
λk,C +Hk T

µk,C.

Even though the exact constraint Jacobians enter the modified gradient it can be evaluated
efficiently by adjoint IND and the forward/reverse mode of automatic differentiation because
they are just involved by a matrix–vector product, cf. Griewank and Walther [210] and
Section 6.1. In level–C iterations the evaluation of the modified gradient or more specifically
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the Lagrange gradient ∇L(wk,C,λk,C,µk,C) takes the bulk of computational effort per sam-
ple with not more than five times the cost of evaluating both the objective function and the
constraints.
After solving QP (C.6) in the feedback phase (with primal–dual QP solution ∆wk,C, λk,QP,
µk,QP), the control feedback qk+1,C = qk,C +∆qk,C is returned to the process. In the transition
phase the primal and dual variables are updated according to

wk+1,C = wk,C +∆wk,C, λk+1,C = λk,QP, µk+1,C = µk,QP.

Feasibility Iterations (Level–B) Feasibility iterations omit any updates of derivative infor-
mation. Analogously to level–C iterations level–B iterations hold their own NLP variables
(wk,B,λk,B,µk,B), and matrices Bk , Gk and Hk . Furthermore, level–B holds a fixed reference
objective gradient f and a fixed reference primal variable w. Both of them are usually provided
by previously level–D or level–C iterations. The constraints gk = G(wk,B) and hk = H(wk,B)
are evaluated in each level–B iteration. An objective gradient approximation is given by

f k = f + Bk
�
wk,B −w

�
.

After solving QP (C.6) in the feedback phase (with primal–dual QP solution ∆wk,B, λk,QP,
µk,QP), the control feedback qk+1,B = qk,B +∆qk,B is returned to the process. In the transition
phase the primal and dual variables are updated as

wk+1,B = wk,B +∆wk,B, λk+1,B = λk,QP, µk+1,B = µk,QP.

The computational effort in level–B iterations is mostly spent in evaluating the constraints, in
particular the integration of the system dynamics. It can be shown that primal–dual iterates
of level–B iterations are driven towards a feasible but in general not to an optimal point.

Feedback Iterations (Level–A) In feedback iterations no QP data is updated at all. If a para-
metric QP solver is used for solving the NMPC QPs then there are no new matrix decom-
positions required, but it can be reused the one from a previous iteration. Level–A does not
hold its own variables, and requires approximations Bk , Gk and Hk of Hessian and constraint
Jacobians, as well as approximations f k , gk and hk of the objective gradient and constraint
residuals. There is also a fixed reference variable w necessary which is usually provided by
previously executed higher level iterations (level–B – level–D).
After solving QP (C.6) in the feedback phase (with primal QP solution ∆wk,A), the control
feedback q+∆qk,A is returned to the process.

C.4.2 Convergence Analysis

Convergence for the presented MLI levels is usually analyzed under the assumption that the
problem does not change (xs = x k

s , k ⩾ 1) during the NMPC loop. In this case it is obvious
that level–D iterations are standard full SQP steps and the corresponding local convergence
theory can be applied. Similarly we will see that level–B and level–C QPs can be interpreted
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as steps of inexact SQP methods. Local convergence can then be derived from relevant theory
about inexact SQP methods. This analysis will also explain the alternative notation of level–C
and level–B as optimality iterations and feasibility iterations, respectively.

Stability of the QP Active Set Now we compare the active set of the QP (C.6) in a vicinity
of the solution of NLP (C.2). Under rather mild assumptions the following result states that
they coincide.
Theorem C.1 (Stability of the QP Active Set near NLP Solution)
Let (w∗,λ∗,µ∗) be a KKT point of NLP (C.2), and let assume that w∗ is a regular point and the strict
complementarity conditions holds at (w∗,λ∗,µ∗). Then for any constants α, β > 0 there exists a neigh-
borhood N =N (α,β) of (w∗,λ∗,µ∗) and a constant γ > 0 such that for all (w,λ,µ) ∈N the following
statement holds: for any matrices B ∈ Rnw×nw , G ∈ Rng×nw and H ∈ Rnh×nw , where B is positive semidef-
inite, ∥G∥F, ∥H∥F ⩽ α, and such that the matrix

J = J(B, G, H)
def
=

B −GT − eHT

G 0 0eH 0 0

 , eH def
=
�
H j,·

�
j∈A(w∗) , (C.7)

is invertible and it holds


J−1




F ⩽ β , the QP

min
∆w

1
2
∆wT B∆w+ f T∆w (C.8)

s. t. 0= G∆w+ g,

0⩾ H∆w+ h,

with themodified objective gradient f =∇wL(w,λ,µ)+GTλ+HTµ has a unique solution (∆w,λQP,µQP)
that satisfies

(∆w,λQP,µQP)− (0,λ∗,µ∗)



⩽ γ · ∥(w∗,λ∗,µ∗)− (w,λ,µ)∥ .

Furthermore, the QP solution has the same active set A as the NLP solution w∗. △

Proof See Wirsching [450, Theorem 4.1]. □

Local Convergence
Lemma C.2 (Local Convergence for Inexact Newton Methods)
Let D ⊂ Rn be open and Φ : D −→ Rn continuously differentiable. Let the sequence {xn}n⩾0 be defined
as

xn+1 = xn +∆xn, ∆xn = −Jn
−1Φ(xn),

where x0 is chosen such that x0 ∈D. Let us suppose that the following assumptions hold:
(i) The sequence of invertible matrices {Jn}n⩾0 is uniformly bounded with uniformly bounded in-

verse.
(ii) There exists a κ < 1 such that for all n ∈ N it holds



J−1

n+1

�
Jn − d

dx
Φ(xn + t∆xn)

�
∆xn





⩽ κ∥∆xn∥ , ∀t ∈ [0, 1].
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(iii) The set

U ∥∆x0∥
1−κ
(x0)

def
=
§

x ∈ Rn : ∥x − x0∥⩽ ∥∆x0∥
1− κ

ª
is contained in D.

Then the sequence (xn)n∈N remains in D and converges towards a point x∗ ∈ U ∥∆x0∥
1−κ
(x0) that satisfies

Φ(x∗) = 0. In case it holds

lim
n→∞



J−1
n+1

�
Jn − d

dxΦ(x
∗)
�
∆xn




∥∆xn∥ = 0,

the convergence rate is q–superlinear. △

Theorem C.3 (Local Convergence of Level–C Iterations)
Let (w∗,λ∗,µ∗) be a KKT point of NLP (C.2), and let

Φ(x)
def
= Φ(w,λ,µ) =

∇wL(w,λ,µ)
G(w)eH(w)


be the function that consists of the Lagrange gradient, the equality constraints, and the inequality
constraints being active in the primal solution w∗. Let us suppose that the following assumptions hold:

(i) The primal solution w∗ is a regular point and the strict complementarity condition holds at
(w∗,λ∗,µ∗).

(ii) Let (Bk), (Gk) and (Hk) be uniformly bounded matrix sequences, where the Bk are positive
semidefinite for all k ∈ N. The sequence

��
J k
�−1� is uniformly bounded with J k being defined as

J k def
= J(Bk, Gk, Hk) (see (C.7)).

(iii) The sequence x k def
= (wk,λk,µk) is generated as

x k+1 = x k +∆x k, ∆x k def
= (∆wk,λk,QP −λk,µk,QP −µk),

where ∆wk is the primal solution, and λk,QP, µk,QP is the dual solution of the QP

min
∆w

1
2
∆wT Bk∆w+

�∇wL(wk,λk,µk) +
�
Gk
�T
λk +

�
Hk
�T
µk
�T
∆w (C.9)

s. t. 0= Gk∆w+G(wk) + [Inx0 . . .0]T x k+1
s ,

0⩾ Hk∆w+H(wk).

(iv) There exists a κ < 1 such that for all k ∈ N it holds



�J k+1
�−1

�
J k − d

dx
Φ(x k + t∆x k)

�
∆x k





⩽ κ

∆x k


 , ∀t ∈ [0, 1].

Then there exists a neighborhood N of (w∗,λ∗,µ∗) such that for any initial guess (w0,λ0,µ0) ∈ N
the sequence (wk,λk,µk) converges q–superlinearly towards (w∗,λ∗,µ∗) with convergence rate κ. The
active sets of the primal solutions of QPs (C.9) and w∗ coincide. △
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Proof See Wirsching [450, Theorem 4.3]. □

Theorem C.3 shows the local convergence of level–C iterations if they are applied to the same
problem in each iteration, i.e., if the initial values are chosen to be x k

s = xs for all k. It is
obvious that applying level–D iterations in each iteration results in standard full step SQP
iterations. For this reason local convergence can either be concluded from respective conver-
gence theory about SQP methods, or by applying Theorem C.3 with the appropriate choice
for the constraints Jacobians. Note that the modified objective gradient becomes the objective
gradient if the exact constraint Jacobians are chosen as constraint Jacobian approximations
Gk and Hk .
Next we consider the case of level–B iterations: it has been shown by Bock et al. [76] that if
level–B iterations are applied to the same problem (x k

s = xs) in each iteration and if they con-
verge to a limit w∗ (let (λ∗,µ∗) denote the associate level–B QP multipliers) then (w∗,λ∗,µ∗)
is a KKT point of the problem

min
wk

1
2
(wk −w)

T
Bk(wk −w) + ( f + ek)

T
wk (C.10)

s. t. 0= G(wk),

0⩾ H(wk),

where ek def
=
�

d
dw G(w∗)− Gk T

�
λ∗ +

�
d

dw H(w∗)−Hk T
�
µ∗, and Bk , Gk , Hk , w, f are the Hes-

sian approximation, the equality as well as inequality Jacobian approximations, the reference
trajectory and the reference objective gradient, respectively (see description of level–B itera-
tions).
Under the same conditions as and analogously to Theorem C.1 the stability of the active set
can be proven in a neighborhood of the KKT points. In a similar way as in Theorem C.3 with
Φ(·) being defined as

Φ(x)
def
= Φ(w,λ,µ) =

 f + Bk(wk −w)− (Gk)Tλ− ( eHk)
T
µ

G(w)eH(w)


local convergence of level–B iterations can be shown. It is obvious that level–B iterations are
feasible with respect to constraints of the original NLP, but in general they do no fulfill its KKT
conditions. Hence, a convergence to an optimal point cannot be expected, and compared to
the notation “optimality iterations” for level–C iterations the term “feasibility iterations” for
level–B iterations is used.
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Appendix D

Extensions to Multi–Level Iteration Schemes

In this chapter of the appendix, we develop a new level for the MLI approach (see Ap-
pendix C.4), which can be considered to be in between level–C and level–D iterations. This
level is described in the remainder of this chapter.
Let us consider a sequence of NMPC samples

�
x k
s
�

k⩾1. Then classic NMPC means to solve a
sequence of parametric NLPs that have the form

NLP
�
x k+1
s
�

: min
w

F(w)

s. t. 0= G(w) + [Inx
0 . . .0]T x k+1

s ,

0⩾ H(w).

These NLPs arise from from a Multiple Shooting discretization (compare NLP (6.20)). For an
initial guess (w0,λ0,µ0) the MLI approach generates iterates

wk+1 = wk +∆wk, λk+1 = λk,QP, µk+1 = µk,QP,

where (∆wk,λk,QP,µk,QP) is the solution of the parametric quadratic program

QP
�
x k+1
s
�

: min
∆w

1
2
∆wT Bk∆w+

�
f k
�T
∆w (D.1)

s. t. 0= Gk∆w+G(wk) + [Inx
0 . . .0]T x k+1

s ,

0⩾ Hk∆w+H(wk).

We use the same notation as in Appendix C, i.e., Bk denotes (an approximation of) the Hessian
of the Lagrangian, and f k , Gk , Hk denote the (modified) objective gradient, the equality and in-
equality constraint Jacobians, respectively. In the preparation phase the following evaluations
are necessary:

• Evaluations of Hessian approximation Bk , e.g. BFGS, L-BFGS, cf. Section 3.6.2.

• Evaluations of constraint residuals G(wk), H(wk) and (modified) objective gradient f k .
→ Requires function evaluations and numerical integration.

• Evaluation of constraint Jacobians Gk and Hk .
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Our new level focuses on the last point where we evaluate equality and inequality constraint
Jacobians Gk and Hk . While the Gk are evaluated in each level–D iteration (Gk = d

dw G(wk))
they are not updated at all in level–C iterations.

Approximation of Constraint Jacobian

The idea of our new level is to calculate approximate equality constraint Jacobians in each
iteration which can be calculate with low computational cost. To make things more clearly
we suppress the NMPC index k in the following. Let us recall the constraint Jacobian

d
dw

G(w) =


−Inx
X s

0 X q
0 −Inx

X s
1 X q

1 −Inx
. . .

X s
N−1 X q

N−1 −Inx


with X s

n and X q
n being defined as

X s
n

def
=∇sn

xn(tn+1; sn, qn)
T ∈ Rnx×nx , X q

n
def
=∇qn

xn(tn+1; sn, qn, p)T ∈ Rnx×nu ,

cf. (6.21). Using the notations X s
n(t)

def
= ∇sn

xn(t; sn, qn)
T and Xq

n(t)
def
= ∇qn

xn(t; sn, qn, p)T we
define

Xn(t)
def
=
�
X s

n(t) Xq
n(t)

0 I

�
, (D.2)

cf. (6.11). As we have shown in (6.12)+(6.13) Xn(·) is the solution of the VDE

Ẋn(t) =

�
f
′
x(t, xn(t; sn, qn), qn) f

′
u(t, xn(t; sn, qn), qn)

0 0

�
Xn(t), (D.3)

together with initial conditions

Xn(tn) =
�

I 0
0 I

�
. (D.4)

Now we apply a 2–stage Runge–Kutta method to the IVP (D.3)+(D.4) for n = 0, . . . , N − 1.
Let us briefly recall the trapezoidal rule to solve the general IVP

ẋ (t) = g (t, x (t)), t ∈ [ts, tf], (D.5)
x (ts) = xs. (D.6)
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The trapezoidal method applied to IVP (D.5)+(D.6) with discretization grid {τk} generates the
sequence of approximations {ηk} by means of the evaluation rule

ηk+1 = ηk +
1
2

hk
�
g (τk,ηk) + g (τk+1,ηk+1)

�
, hk = τk+1 −τk.

Next we do the following:

• Apply trapezoidal rule to VDE on each Multiple Shooting interval hn
def
= [tn, tn+1].

• Transform the implicit discretization approach to an explicit time stepping rule.

With definitions A11[t]
def
= f ′x(t, xn(t; sn, qn), qn) and A12[t]

def
= f ′u(t, xn(t; sn, qn), qn) and an

application of the trapezoidal rule we write (D.3)+(D.4) as

Xn(tn+1) = I +

∫ tn+1

tn

�
A11[t] A12[t]

0 0

�
Xn(t) dt

≃ I +
1
2

hn

��
A11[tn] A12[tn]

0 0

�
Xn(tn) +

�
A11[tn+1] A12[tn+1]

0 0

�
Xn(tn+1)

�
.

Using the initial value condition (D.4) and collecting the Xn(tn+1) terms yields�
I − 1

2
hn

�
A11[tn+1] A12[tn+1]

0 0

��
Xn(tn+1) = I +

1
2

hn

�
A11[tn] A12[tn]

0 0

�
⇔ Xn(tn+1) =

�
I − hn

2

�
A11[tn+1] A12[tn+1]

0 0

��−1 �
I +

hn

2

�
A11[tn] A12[tn]

0 0

��
.

Note that invertibility of the matrix on the right side of the equation holds under rather mild
assumptions. One can think of bounded functions f ′x(·) and f ′u(·) such that the matrix can be
inverted for sufficiently small values of hn. Now we reformulate the inverse matrix term as

�
I − 1

2
hn

�
A11[tn+1] A12[tn+1]

0 0

��−1

=

I − 1
2

hn A11[tn+1] −1
2

hn A12[tn+1]

0 I

−1

=

�I − 1
2

hn A11[tn+1]
�−1 �

I − 1
2

hn A11[tn+1]
�−1 �1

2
hn A12[tn+1]

�
0 I

 .

We therefore arrive at

Xn(tn+1) =

�I − 1
2

hn A11[tn+1]
�−1 �

I − 1
2

hn A11[tn+1]
�−1 �1

2
hn A12[tn+1]

�
0 I


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I +
1
2

hn A11[tn]
1
2

hn A12[tn]

0 I

 .

Using (D.2), we have approximations of X s
n(tn+1) and Xq

n(tn+1) given by

X s
n(tn+1)≃

�
I − 1

2
hn A11[tn+1]

�−1 �
I +

1
2

hn A11[tn]
�

and

Xq
n(tn+1)≃

�
I − 1

2
hn A11[tn+1]

�−1 1
2

hn (A12[tn] + A12[tn+1]) .

Now we introduce the notation

N s
n = Inx

+
1
2

hn f ′x(tn, sn, qn),

N q
n =

1
2

hn

�
f ′u(tn, sn, qn) + f ′u(tn+1, xn(tn+1; sn, qn), qn)

�
,

Dn = Inx
− 1

2
hn f ′x(tn+1, xn(tn+1; sn, qn), qn),

and use it to find approximations of X s
n and X q

n by

X s
n ≃ D−1

n N s
n, X q

n ≃ D−1
n N q

n .

Therefore an approximation of d
dw G(w) is given by

d
dw

G(w)≃


−Inx

D−1
0 N s

0 D−1
0 N q

0 −Inx

D−1
1 N s

1 D−1
1 N q

1 −Inx

. . .
D−1

N−1N s
N−1 D−1

N−1N q
N−1 −Inx



=


Inx

D0
D1

...
DN−1


−1

−Inx

N s
0 N q

0 −D0

N s
1 N q

1 −D1

...
N s

N−1 N q
N−1 −DN−1

= D−1N = G.

Newton–Type Method Approach

Next we deal with the question how the equality constraint Jacobian Gk and the modified
objective gradient f k in QP (D.1) have to be chosen. To avoid cluttering in our notations, we
omit inequality constraints as well as the linear initial value constraint and the NMPC index
k in the following considerations. The RTI QP (see (C.5)) therefore becomes
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min
∆w

1
2
∆wT B∆w+∇F(w)T∆w

s. t. 0=
d

dw
G(w)∆w+G(w).

Now we use the equivalence of SQP steps and Newton steps as we have seen in Sections 3.6.1
and 3.6.2. The corresponding primal–dual Newton–step (∆w,∆λ) is calculated by solving
the linear system�

B − d
dw G(w)

T

d
dw G(w) 0

�
·
�
∆w
∆λ

�
= −

�∇F(w)− d
dw G(w)

T
λ

G(w)

�
.

We want to use the fact that the Jacobian in a Newton step may be chosen rather arbitrarily,
cf. Nocedal andWright [341]. We replace the exact equality constraint Jacobian expressions
d

dw G(w) with our approximation G and solve the nonlinear system�
B −G

T

G 0

�
·
�
∆w
∆λ

�
= −

�∇F(w)− d
dw G(w)

T
λ

G(w)

�
.

In order to express the system in the primal step ∆w and the updated dual variable λ+∆λ
we reformulate the first row as

B∆w− G
T
∆λ= −∇F(w) +

d
dw

G(w)Tλ

⇐⇒ B∆w− G
T
(λ+∆λ) = −∇F(w) +

�
d

dw
G(w)T − G

T
�
λ.

This results in the system�
B −G

T

G 0

�
·
�
∆w

λ+∆λ

�
= −

�∇F(w)− � d
dw G(w)T − G

T�
λ

G(w)

�
. (D.7)

Again we use the equivalence of SQP and Newton steps which results in the QP

min
∆w

1
2
∆wT B∆w+

�
∇F(w)−

�
d

dw
G(w)T − G

T
�
λ

�T

∆w

s. t. 0= G∆w+G(w).

Putting everything together, the parametric QP (D.1) for our new MLI level is given by

QP
�
x k+1
s
�

: min
∆w

1
2
∆wT Bk∆w+M(wk,λk)

T
∆w

s. t. 0= G
k
∆w+G(wk) + [Inx

0 . . .0]T x k+1
s ,
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0⩾ Hk∆w+H(wk),

where

M(wk,λk)
def
=∇F(wk) + G

T
λk − d

dw
G(wk)

T
λk.

So far, we have shownwhich QP has to be solved in each level–T iteration. In order to evaluate
the G

k
=
�
Dk
�−1

N k , it is necessary to calculate a matrix inverse. Due to numerical instabilities
and the computational effort it is usually recommended to avoid the calculation of a matrix
inverse. As we will show in the following this is not required in our case if we transform the
constraint space of the QP to solve.

Transformation of Constraint Space

We show the transformation of the constraint space by reference to the equality constrained
system (D.7), i.e., we investigateBk −�Gk�T

G
k

0

 · �∆w
λk+1

�
= −

�
M(wk,λk)

G(wk)

�
. (D.8)

Substituting G
k
=
�
Dk
�−1

N k in the first row yields

Bk∆w− �Gk�T
λk+1 = −M(wk,λk)

⇐⇒ Bk∆w− �N k
�T ��

Dk
�−T
λk+1

�
= −M(wk,λk).

Likewise we substitute G
k
=
�
Dk
�−1

N k in the second row and get

G
k
∆w= −G(wk)

⇐⇒ N k∆w= −DkG(wk).

By introducing the auxiliary Lagrange multiplier λ̃k+1 def
=
�
Dk
�−T
λk+1 we can write the non-

linear system (D.8) as�
Bk −�N k

�T

N k 0

�
·
�
∆w
λ̃k+1

�
= −

�
M(wk,λk)
DkG(wk)

�
.

Using this result we obtain the level–T feedback QP

QP
�
x k+1
s
�

: min
∆w

1
2
∆wT Bk∆w+M(wk,λk)

T
∆w

s. t. 0= N k∆w+ Dk G(wk) + Dk [Inx
0 . . .0]T x k+1

s ,
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0⩾ Hk∆w+H(wk).

Since the level–T iterations can be interpreted as a special case of level–C iterations, the con-
vergence results for level–C (see Theorem C.3) also apply to the level–T iterates.
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·⊥· s, t ∈ Rn: 0⩾ s ⊥ t ⩽ 0⇔ 0⩾ s, 0⩾ t, sT t = 0
D First–order differentiation matrix (see Eq (B.9))
F ′(x; d) Directional derivative of F at x in direction d
δF(x)(d) Gateaux derivative of F at x in direction d
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F ′x(x , y) Partial Fréchet derivative of F at (x , y)
∇F(x) Gradient of F : Rn −→ R at x
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Yk
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ZH Discretized function space BV (see Section 9.3)
NBV Space of normalized functions of bounded variation
L (X , Y ) Set of all linear and continuous mappings L : X −→ Y
X ∗ Topological dual space of a normed vector space X
|·| Component-wise mapping of a real number to the absolute value
∥·∥ The (euclidean) norm of a matrix or vector
∥·∥F Frobenius norm of a matrix
∥·∥Yk Yk norm
∥·∥p Lp norm
∥·∥q,p W q,p norm

Interval Symbols

I Some time interval (open, closed, half–open) with endpoints a and b
T Time horizon T = [ts, tf] ⊂ R for an ODE or OCP
t Model or process time t ∈ T
ts, tf Initial/Final model or process time, start/end of time horizon T
tσ Activation time of an implicit switch
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λ, λ(·) Multiplier/Costate of the equality constraints
µ, µ(·) Multiplier/Costate of the inequality constraints
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[N] Set {1, . . . , N} for N ∈ N
|X | Cardinality of a set X
X Set of all differential state trajectories
U Set of all continuous control functions
Ω Set of admissible choices for discrete control function v
K+ Positive dual cone of cone K (see Definition 2.21)
K− Negative dual cone of cone K (see Definition 2.21)
Uϵ(x) Uϵ(x) = {y ∈ M : d(x , y)< ϵ} for a metric space (M , d)
conv(X ) Convex hull of a set X
A(x) Active set at x (see Definition 3.13)
T (Σ, x) Tangent cone (see Definition 2.14)
F(Σ, x) Linearized feasibility cone (see Definition 3.15)

Functions

φ(·) Mayer cost function [φ(z) ∈ R]
ψ(·) Lagrangian [ψ(z) ∈ R]
f (·) ODE system right hand side [ f (z) ∈ Rnx]
c(·) Path constraint function [c(z) ∈ Rnc]
r (·) Endpoint constraint function [r (z) ∈ Rnr]
x (·) Trajectory of ODE system states [x (t) ∈ Rnx , t ∈ T ]
u(·) Trajectory of continuous process controls [u(t) ∈ Rnu , t ∈ T ]
v(·) Trajectory of discrete process controls [v(t) ∈ Rnv , t ∈ T ]
ω(·) Trajectory of binary convex multipliers
α(·) Trajectory of relaxed convex multipliers
σ(·) Switching function
L(·) Lagrange function
H(·) Hamilton function
Ĥ(·) Augmented Hamilton function
{Pn(·; ·, ·)} Set of Jacobi polynomials
{Pn(·)} Set of Legendre polynomials
{Tn(·)} Set of Chebyshev polynomials of first kind
{Ln(·)} Set of Lagrange fundamental polynomials
XI(·) Characteristic function
Hs(·) (Translated) Heaviside function
δ(·) Dirac delta function
sgn(·) Sign function

Dimensions

nc Number of path constraints c(·)
nr Number of boundary constraints r (·)
nx Number of differential states x (·)
nu Number of controls u(·)
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