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Abstract

In many parts of physics, chemistry, biology, or material science, excited electronic
states, accessible via the interaction of atoms or molecules with electromagnetic radiation,
play an essential role. Experimental spectra, however, generally provide only indirect
information on molecular structure and dynamics. Thus, a theoretical description of
excitation energies and transition strengths is crucial for a comprehensive understanding

of light-induced processes.

In this dissertation, the theory, implementation, and application of several Hermitian
methods to calculate the properties mentioned above are described. If excitation energies
are obtained by diagonalization of a non-Hermitian secular matrix, both left and right
eigenvectors need to be calculated to obtain spectral intensities and other properties. In
this case, the eigenvectors are not orthogonal to each other, and the energy may become
complex. Hermiticity is thus a very desirable property since none of the aforementioned
problems occurs. Thus, several approaches based on the algebraic-diagrammatic con-
struction (ADC) scheme, as well as the related unitary coupled-cluster (UCC) method,
are presented. Within these methods, one-electron properties such as dipole moments
are available via the so-called intermediate state representation (ISR) approach, which
corresponds to an expectation value of the respective one-electron operator with the wave
function.

The ISR formalism is also used to derive explicit working equations for the second-
order ADC scheme, which is based on a ground state described by Mgller—Plesset (MP)
perturbation theory. This implies that ADC inherits all weaknesses from the underlying
MP model. For the ADC(2) scheme, merely the first-order MP wave function is required,
which contains only doubly-excited determinants for a Hartree—Fock reference. Due to
the form of the first-order doubles amplitudes, several cancellations occur in the singles
block of the ADC(2) matrix. In order to remedy the breakdown of MP2, the first-order
doubles amplitudes from MP are replaced by the ones obtained from a coupled-cluster

(CC) calculation, which are formally correct through infinite order.

The resulting schemes, referred to as CC-ADC(2), are applied to several sets of small
to medium-sized molecular systems, where generally minor improvements in excitation
energies compared to the standard ADC(2) scheme can be observed. For the ozone
molecule, which is known to be a difficult test case for quantum-chemical methods, the
experimental first excitation energy is 1.6 eV; standard ADC(2) is far off with 2.14 €V, and
CCD-ADC(2) yields 1.59 eV. Excited-state potential energy curves along the dissociation
of the nitrogen molecule calculated with ADC(2) break down at around 2 A due to the
failure of MP2. The CCD-ADC(2) curves remain reasonable up to about 3.5 A.

The CC-ADC(2) methods are successively extended to the calculation of static dipole
polarizabilities. It is shown that the correlation amplitudes play a more important role in

the modified transition moments than in the ADC secular matrix itself, and consistent
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improvement is obtained for static polarizabilities with the CC-ADC schemes compared
to standard ADC, particularly for aromatic systems like benzene or pyridine, which
had proven difficult cases for standard ADC. Specifically, the CC-ADC(2) schemes yield
significantly better results than the ADC(3/2) scheme, at a computational cost amounting
to only 1% of the latter.

The ISR derivation can also be carried out with a CC wave function correct through
first order instead of the MP one. However, having converged CCD amplitudes instead
of the first-order MP ones, the aforementioned cancellations in the second-order singles
block do not occur. Hence, the final matrix elements differ between CCD-ADC(2)
and this scheme referred to as CCD-ISR(2). As the expansion of the UCC similarity-
transformed Hamiltonian does not truncate naturally, it needs to be truncated manually,
usually by using arguments from MP perturbation theory. The UCC2 doubles amplitudes
correspond to those from LCCD, but the secular matrix elements depend on the treatment
of the similarity-transformed Hamiltonian is treated. By employing the Baker—-Campbell-
Hausdorff expansion, the second-order singles block is equivalent to CCD-ISR(2), but by
employing the Bernoulli expansion, the matrix elements are equivalent to CCD-ADC(2),
with differences only in the correlation amplitudes. In a strict perturbation-theoretical
framework, all methods turn out to be identical. All different Hermitian second-order
methods have been implemented and tested on a set of small molecules, where it turned
out that the differences in excitation energies between the methods are small whenever

the systems are well described by means of perturbation theory.

The Bernoulli UCC scheme is further extended to third order, where excitation
energies and oscillator strengths on medium-sized organic molecules as well as ground-
and excited-state dipole moments are reported for the first time. While vertical excitation
energies of the UCC3 scheme are similar to those obtained with ADC(3), significant
improvements can be observed for the dipole moments in the ground and excited states.
Furthermore, this UCC scheme is applied to the electron propagator, and ionization
potentials of the IP-UCC2 and IP-UCC3 schemes of selected amino acids are reported for
the first time.

Apart from expectation values, molecular properties can be calculated as derivatives
of the energy with respect to a perturbation connected to the observable. The two
approaches are only equivalent if the Hellmann—Feynman theorem is fulfilled. By using
explicit working equations, the relationship between the two approaches is investigated
with a focus on orbital relaxation for all standard quantum-chemical methods, in particular
MP and ADC. It is shown that for MP2 the expectation value is very close to the orbital-
relaxed property. In contrast, for ADC(1) the expectation value includes no orbital
relaxation and for ADC(2) only a small fraction. With ADC(3) eigenvectors, on the
other hand, the ISR gets closer to the relaxed values, but only for singly-excited states.

Numerical investigations underline all the theoretical predictions.
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Zusammenfassung

In vielen Bereichen der Physik, Chemie, Biologie oder Materialwissenschaft spielen elektro-
nisch angeregte Zustinde, die durch die Wechselwirkung von Atomen oder Molekiilen mit
elektromagnetischer Strahlung zugénglich sind, eine wichtige Rolle. Experimentelle Spek-
tren liefern im Allgemeinen jedoch nur indirekte Informationen tiber molekulare Struktur
und Dynamik, weshalb eine akkurate theoretische Beschreibung von Eigenschaften wie
Anregungsenergien und Ubergangswahrscheinlichkeiten entscheidend fiir ein umfassendes

Versténdnis von photophysikalischen und photochemischen Prozessen ist.

In dieser Dissertation wird die Theorie, Implementierung und Anwendung verschiede-
ner hermitescher Methoden zur Berechnung der oben genannten Eigenschaften beschrieben.
Wenn Anregungsenergien durch Diagonalisierung einer nicht-hermiteschen Matrix erhal-
ten werden, miissen sowohl rechte als auch linke Eigenvektoren berechnet werden, um
spektrale Intensitdten und andere molekulare Eigenschaften zu erhalten, die Eigenvek-
toren sind nicht orthogonal zueinander, und die Energie selbst kann komplex werden,
insbesondere in der Néhe von konischen Durchschneidungen. Hermizitat ist daher eine sehr
wiinschenswerte Eigenschaft, da in diesem Fall keine der genannten Probleme auftreten. In
dieser Arbeit werden deshalb hermitesche Methoden betrachtet, insbesondere werden ver-
schiedene Anséitze auf Basis des algebraisch-diagrammatischen Konstruktionsverfahrens
(ADC) sowie unitéres coupled cluster (UCC) vorgestellt. Im Rahmen dieser Methoden
sind elektronische Einteilcheneigenschaften wie Dipolmomente {iber die sogenannte inter-
mediate state representation (ISR) zugénglich, die einem Erwartungswert des jeweiligen

Einteilchenoperators mit der Wellenfunktion entspricht.

Der ISR-Formalismuns wird auch verwendet, um explizite Gleichungen fiir das ADC-
Schema in zweiter Ordnung herzuleiten, welches auf einer Beschreibung des Grundzu-
standes durch Mgller—Plesset (MP) Storungstheorie beruht. Letzteres impliziert, dass
ADC alle Schwéchen der Storungstheorie des zugrunde liegenden MP-Modells erbt. Fiir
das ADC(2)-Schema ist nur die MP-Wellenfunktionskorrektur erster Ordnung notwendig,
welche bei einer Hartree-Fock (HF) -Referenz nur doppelt angeregte Determinanten
enthélt. Aufgrund der Form der doubles Amplituden erster Ordnung lasst sich der Teil
zweiter Ordnung der ADC(2)-Matrix deutlich vereinfachen, da sich bestimmte Terme
gegeneinander kiirzen. Um das Versagen von MP2 zu beheben, wurden die Amplituden
erster Ordnung durch diejenigen ersetzt, die durch eine coupled cluster (CC) Rechnung
erhalten wurden, bei der die Amplituden formal in unendlicher Ordnung korrekt sind.

Die resultierenden Schemata, CC-ADC(2) genannt, wird auf einige kleine bis mittel-
grofse molekulare Systeme angewendet, wobei im Allgemeinen geringfiigige Verbesserungen
der Anregungsenergien im Vergeich zum Standard-ADC(2)-Schema beobachtet werden.
Fiir das Ozonmolekiil, welches bekanntermafien ein schwieriger Testfall fiir quantenchemi-

sche Methoden ist, betrigt die experimentelle erste Anregungsenergie 1.6 eV, ADC(2) ist
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mit 2.14 eV weit davon enternt, mit CCD-ADC(2) wurden 1.59 eV erhalten. Potential-
kurven in angeregten Zustdnden entlang der Dissoziation des Stickstoffmolekiils, welche
mit ADC(2) berechnet werden, sind aufgrund des Versagens von MP2 ab 2 A nicht mehr
sinnvoll, jene mit CCD-ADC(2) jedoch bis iiber 3.5 A. Dieses bessere Verhalten kann
grofte Vorteile bei der theoretischen Beschreibung photochemischer Reaktionen haben.

Die CC-ADC(2)-Methoden werden anschliefiend zur Berechnung der statischen Dipol-
Polarisierbarkeit erweitert. Hierbei waren insbesondere aromatische System wie Benzol
nur schlecht durch Standard-ADC-Methoden beschrieben worden. Es wird gezeigt, dass
die Korrelationsamplituden in den modifizierten Ubergangsmomenten eine grokere Rolle
spielen als in der ADC-Sidkularmatrix selbst und dass mit den CC-ADC-Varianten
konsistente Verbesserungen der statischen Polarisierbarkeit verglichen mit Standard-ADC-
Methoden erhalten werden, besonders fiir aromatische Systeme wie Benzol oder Pyridin.
Insbesondere liefern die CC-ADC(2)-Methoden signifikant bessere Ergebnisse als das
ADC(3/2)-Schema, bei einem Rechenaufwand von nur etwa 1% des Letzteren.

Die ISR-Herleitung kann auch mit einer CC-Wellenfunktion, welche bis zur ersten Ord-
nung korrekt ist, durchgefiihrt werden. Jedoch treten die oben genannten Vereinfachungen
nicht mehr auf, wenn man konvergierte CCD-Amplituden anstelle der MP-Amplituden
erster Ordnung verwendet, sodass sich die Matrixelemente von CCD-ADC(2) und der
CCD-ISR(2) genannten Methode etwas unterscheiden. Da die Entwicklung des dhnlichkeit-
stransformierten Hamilton-Operators in UCC-Theorie nicht natiirlich abbricht, muss sie
“von Hand” abgeschnitten werden, was normalerweise unter Verwendung von Argumenten
aus MP-Storungstheorie geschieht. Bis zur zweiten Ordnung entsprechen die doubles Am-
plituden denen des linearisierten CCD-Modells. Die Elemente der UCC2-Sakularmatrix
héngen jedoch davon ab, wie der &hnlichkeitstransformierte Hamilton-Operator behan-
delt wird. Bei Verwendung der Baker-Campbell-Hausdorff (BCH) Expansion ist der
Block zweiter Ordnung dquivalent zu CCD-ISR(2), bei Verwendung der sogenannten
Bernoulli-Expansion jedoch zu CCD-ADC(2). Die Unterschiede liegen nur in den jeweili-
gen Korrelationsamplituden. In einem strengen stérungstheoretischen Rahmen erweisen
sich jedoch alle Methoden als identisch. Die genannten hermitschen Methoden zweiter
Ordnung wurden im Q-CHEM-Programmpaket implementiert und auf eine Reihe kleiner
Molekiile angewendet, wobei sich herausstellt, dass die Unterschiede in den Anregungs-
energien zwischen den Methoden immer dann gering sind, wenn die Systeme gut durch
Storungstheorie beschrieben werden.

Das auf der Bernoulli-Expansion basierte Schema wird anschliefend bis zur dritten
Ordnung erweitert, und es werden zum ersten Mal Anregungsenergien und Oszillatorstér-
ken von mittelgrofsen organischen Molekiilen sowie Dipolmomente im Grundzustand und
angeregten Zustdnden berichtet. Wahrend die vertikalen Anregungsenergien von UCC3
ahnlich zu denen von ADC(3) sind, konnen zum Teil signifikante Verbesserungen bei den
Dipolmomenten beobachtet werden. Dariiber hinaus wird dieses UCC-Schema erstmals

auf den Elektronenpropagator zur Berechnung von Ionisationspotentialen angewendet,
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und es werden Ergebnisse von ausgewdhlten Aminosduren mit [P-UCC2 und IP-UCC3
angegeben, wobei ebenfalls einige Verbesserungen im Vergleich zu IP-ADC beobachtet
werden kénnen.

Abgesehen von Erwartungswerten kdnnen molekulare Figenschaften auch als Ablei-
tungen der Energie in Bezug auf eine Stérung, welche mit der physikalischen Observablen
verkniipft ist, berechnet werden. Die zwei Ansétze sind nur dann &quivalent, wenn das
Hellmann—Feynman-Theorem erfiillt ist, die Methode also vollstédndig variationell ist.
Durch Verwendung expliziter Gleichungen wird die Beziehung der beiden Ansétze mit
einem besonderen Fokus auf Orbitalrelaxation fiir alle géngigen quantenchemischen Me-
thoden untersucht, insbesondere MP und ADC. Es wird gezeigt, dass der Erwartungswert
bei MP2 dhnlicher der orbitalrelaxierten Eigenschaft ist, wohingegen fiir ADC(1) der
Erwartungswert keine Orbitalrelaxation beinhaltet, und fiir ADC(2) nur einen Bruchteil.
Mit ADC(3)-Eigenvektoren liegen die ISR dagegen néher an den relaxierten Werten,
da hier die doppel angeregten Konfigurationen vollstandig gekoppelt sind. Numerische

Untersuchungen unterstreichen alle theoretischen Vorhersagen.
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Chapter 1

Introduction

Excited electronic states play a significant role in many fields of natural and material
sciences. In organic electronics, for instance, a detailed knowledge about the photophysical
and photochemical behavior of molecules is vital to develop and improve solar cells
or organic light-emitting diodes.!'™! Since experimental optical spectra of molecular
systems generally provide only indirect information on molecular structure or dynamics,
their theoretical description is often indispensable for a comprehensive understanding of

photochemical processes and thus a very active research field.

In the absence of external radiation, molecules are in their electronic ground state,
usually denoted by Sg. By shining light on a sample, molecules can absorb photons while
undergoing a transition to some higher, so-called excited state. The electronic transition
is usually accompanied by excitations of vibrational and rotational degrees of freedom,
but the latter are often ignored in the theoretical description. The excited electronic state
normally has a finite lifetime and can undergo several decay processes, such as internal
conversion, intersystem crossing, fluorescence or phosphorescence, and charge or energy
transfers. [’ From a simple theoretical perspective, an electron is excited from an occupied
molecular orbital (MO) to an unoccupied (or virtual) one during the excitation. However,
this simple MO picture is often not accurate and sufficient to correctly describe electronic
processes when molecules absorb light, and hence many more elaborate methods for the

description of electronic excitations have been developed over the last decades.

The most widely used method to calculate electronically excited states, especially
for large molecules, is time-dependent density functional theory (TDDFT) in its linear
response formalism. 68l However, since approximate exchange-correlation functionals
with often unpredictable errors need to be employed in practical calculations, TDDFT can

hardly be considered a “black-box” method. Methodologies with predictable errors that

Parts of this chapter have already been published in

e M. Hodecker, D. R. Rehn, A. Dreuw, “Hermitian Second-Order Methods for Excited Electronic
States: Unitary Coupled Cluster in Comparison with Algebraic-Diagrammatic Construction
Schemes”, The Journal of Chemical Physics, 2020, 152, 094106.
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can be improved systematically are thus desirable. The most prominent and successful ap-
proaches from wave-function theory are those based on a coupled-cluster (CC) parameter-
ization of the electronic ground state, 9111 ainly the equation-of-motion coupled-cluster
(EOM-CC) 127151 and coupled-cluster linear response (CCLR) theories. 1619 In spite of
their conceptual differences, both EOM-CC and CCLR yield identical excitation energies
and can be viewed as biorthogonal representations (BCC) of the (shifted) Hamiltonian
in terms of correlated excited states (CES) obtained from the CC ground state and an
associated set of biorthogonal states corresponding essentially to excited determinants
used in configuration interaction (CI) theory. [20.21] This BCC representation generates a
non-Hermitian secular matrix whose eigenvalues correspond to excitation energies, but
due to the non-symmetric nature of the representation, both left and right eigenvectors
are needed to calculate spectral intensities and other properties. [!32!] Further undesirable
properties arising due to lack of Hermiticity are that the eigenvectors of the secular matrix
are not orthogonal to each other and that the excitation energies may become complex,

in particular close to conical intersections. 223!

Hermitian excited-state theories are thus preferable since none of the problems
mentioned before occur. The classical Hermitian excited-state method is CI, but lack
of size consistency?4 is the main reason why single-reference, correlated and truncated
CI schemes do not find widespread application anymore. A method that is both size
consistent and also the most compact is the algebraic-diagrammatic construction scheme
(ADC) for the polarization propagator. 22281 Compact means that only very modest
configuration spaces need to be taken into account for excitation energies to be consistent
through a specific order in perturbation theory. ADC has originally been derived in the
context of many-body Green’s functions or propagators using diagrammatic perturbation
theory. [2526] However, a different, more elegant derivation route is offered via the so-called
intermediate state representation (ISR). 28,291 This rather general approach does not only
yield excitation energies and transition moments like the classical propagator approach,
but also provides access to the excited-state wave function and thus to excited-state
properties and state-to-state transition moments.273% The ISR used in the ADC scheme
for the polarization propagator is related to the BCC representation mentioned above, but
the correlated excited states are orthonormalized in a specific manner, thus preserving
the aforementioned properties of the propagator method such as compactness and size
consistency. [2931] Furthermore, the resulting secular matrix is Hermitian, and hence the

eigenvalues are guaranteed to be real, and the eigenvectors are mutually orthogonal.

While the CES are formally obtained from the ezact ground state, in practical
applications for ADC-ISR schemes, the latter is replaced by the well-known expansion
from Mgller—Plesset perturbation theory (MP).[24’32’33] This gives rise to a hierarchy
of approximations termed ADC(n) that are consistent through a specific order n in
perturbation theory. The perturbation-theoretical description of the ground state, however,

generally corresponds to the greatest weakness of the ADC methods since MP is well



known to fail in several cases, for instance, when a bond is stretched. 24 Coupled-cluster
schemes are more stable than MP in this respect because of their iterated, self-consistent

ground state. !l A central goal of this work has been to overcome this deficiency.

However, there have also been significant efforts within the framework of coupled-
cluster theory to obtain Hermitian (excited-state) methods. The two most important
examples are the expectation-value or variational coupled-cluster approach (VCC), [34-36]
and the closely related unitary coupled-cluster (UCC) ansatz. [37-39] The main disadvantage
of the two approaches compared to traditional CC theory is that their expansions do not
truncate naturally, and the working equations cannot be cast into closed-form expressions.
Hence, the corresponding expansions need to be truncated manually, and several truncation
schemes have been used, most often by employing arguments from perturbation theory. 7]
Most of the resulting schemes have been applied exclusively to the ground-state energy and
molecular ground-state properties. 34374047 Contrary to some claims in the literature,
VCC and UCC do not yield identical results through all orders. 48] More recently, they have
also been applied to the calculation of excited states via the time-dependent (TD) linear
response formalism 4950 and the time-independent polarization propagator approach. [51]
Furthermore, the working equations of the second-order unitary scheme TD-UCC|2| were
shown to be equivalent to the ones of the ADC(2) method, [’ whereas the ones from
TD-VCC|2] following a variational VCC ansatz differ from ADC(2).149 Similarly, the
working equations of the UCC-based polarization propagator approach through third
order (UCC3) have recently been shown to be equivalent to the ADC(3) scheme, 5! a

fact that has been exploited in the course of this work.

In the scope of my dissertation, I developed several new Hermitian excited-state
methods that can be regarded to connect ADC with CC theories, implemented them into
a development version of the adcman module, ®2l which is part of the Q-CHEM program
package, 53l and tested them on small to medium-sized molecules. The first approach
has been inspired by work by Geertsen and Oddershede on the second-order polarization
propagator approximation (SOPPA), a method closely related to ADC(2), where they
replaced the MP correlation coefficients by CC amplitudes to obtain the coupled-cluster
polarization propagator approximation (CCPPA). [54,55] Tny the same spirit, I replaced the
MP coefficients by converged CCD amplitudes to obtain the CCD-ADC(2) scheme. This
scheme, however, is closely related to a second-order unitary coupled-cluster method,
denoted UCC2, which I also implemented in two different variants. Here, the ground
state corresponds essentially to the linearized coupled-cluster doubles (LCCD) scheme.
For both methods, two different variants exist that differ slightly in the elements of
the secular matrix but are identical in a strict perturbation-theoretical framework. I
investigated and explained the exact relationship among all those methods, implemented,
and tested them. Analogous to the work of Sauer with his SOPPA(CCSD) method, [°!
the CCD-ADC family of methods has also been applied to the calculation of static dipole

polarizabilities, where significant and consistent improvements compared to standard
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ADC could be observed. The UCC method has also been implemented in its third-order
variant termed UCC3, not only for the calculation of excitation energies, but also for
other one-electron properties such as dipole moments, both in the electronic ground and

excited states as well as ionization potentials.

In general, molecular properties can be calculated in two different ways, the first
being the expectation value of the corresponding operator with the wave function, and
the second the derivative of the energy with respect to a perturbation connected to the
observable. The two approaches do not yield identical results whenever the Hellmann—
Feynman theorem is not fulfilled, which is the case for non-fully variational methods. [57]
I investigated the exact relationship between the two approaches from a theoretical
point of view for all standard quantum-chemical methods, with a particular focus on
orbital-relaxation effects in methods based on perturbation theory like MP and ADC,

and performed numerical tests to verify the theoretical predictions.

In this thesis, I want to present the (CC-)ADC and UCC methods and the results
I obtained with the implementations. The theoretical aspects and quantum-chemical
methods are introduced in Chapter 2, starting with the formalism of second quantization
(Section 2.1), and a brief discussion of Hartree—Fock theory and correlation methods
in Sections 2.2 and 2.3. Perturbation theory is presented in more detail in Section 2.4,
followed by the algebraic-diagrammatic construction scheme and intermediate state
representations in Section 2.5. Coupled-cluster theory is discussed in more detail in
Section 2.6, in particular the diagrammatic formalism for the explicit derivation of
working equations, since it is employed for the derivation of the UCC schemes. Eventually,
general aspects of molecular properties are discussed in Section 2.7. Chapter 3 presents a
thorough discussion of unitary coupled-cluster theory, starting with a general ISR approach
and the Bernoulli expansion for the similarity-transformed Hamiltonian, followed by a
derivation of the second- and third-order schemes UCC2 and UCC3, respectively, for
ground and excited states. Successively, their connection to ADC methods is outlined,
and the calculation of ground- and excited-state properties is discussed. Chapter 4
presents all different Hermitian second-order methods that I implemented, first from a
theoretical point of view, and then I discuss the results for excitation energies obtained
with these methods. Next, in Chapter 5, I take a turn away from electronic excitation
energies and discuss the influence of the ground-state correlation amplitudes on static
dipole polarizabilities calculated with ADC. In the following Chapter 6, I turn back to
UCC and present its third-order implementation in more detail, followed by results for
excitation energies as well as ground- and excited-state dipole moments. Due to the
general similarity between ADC and UCC, I was also able to implement a UCC-based
scheme for the electron propagator through third order and present some computational
results for ionization potentials of amino acids. Chapter 7 goes back to fundamental
theory at first and contrasts two different approaches for the calculation of one-electron

properties, expectation values and energy derivatives. A focus is put on the inclusion
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of orbital-relaxation effects in the two approaches, first by regarding explicit working
equations and then by confirming the theoretical predictions with numerical results.
Another turn towards the more applied field of computational chemistry is done in
Chapter 8, where I present my results of a computational study in collaboration with
experimental organic chemists in order to explain the surprising photophysical behavior
of azaacenes. Here, an additional double bond drastically alters the emission properties,
turning the molecule from highly fluorescent to almost non-fluorescent at all. A conclusion
of my work and an outlook on future projects are given in Chapter 9.

Finally, I would like to mention that many parts of this dissertation have already been
published in peer-reviewed journals. The respective article is always given as a footnote
in the chapter. Further projects that I have been involved with, mainly in collaboration
with experimentalists, are not included. However, the relevant publications I co-authored

are listed along with the ones included in this thesis on page 247.






Chapter 2

Theoretical Methods

Most quantum-chemical calculations seek to solve the electronic, time-independent
Schrodinger equation 5761l
H|Uy) = Ep|¥y), (2.1)

where |U,,) is the wave function of electronic state n with corresponding energy E,,, and
H is the electronic Hamiltonian operator that consists of kinetic and potential energy

contributions. In atomic units, it is given by

where the first sum on the right-hand side (RHS) is the kinetic energy operator of the
N electrons, V is the nabla operator, the second part is the potential energy of the
interaction between the electrons i and the nuclei K with charge numbers {Zk }, and the
last double sum is the electron-electron repulsion operator, where 7;; = |r; — r;| is the

distance between electrons ¢ and j.
Within the Born—Oppenheimer (BO) or adiabatic approximation, [57.62] the electronic
Schrédinger equation is solved for a fixed geometry of the nuclei and hence the nuclear-

nuclear repulsion energy

AN
Vnn = Z RK L ; (23)
K>1 KL

where R, = |[Rr — Rk is the distance between nuclei K and L, is constant. Thus, it
can be added to the electronic energy to yield the total energy of the molecule.

Before several approximation schemes for solving the electronic Schrédinger equation

are discussed, a convenient formalism for many-electron systems is introduced.
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2.1 Second Quantization

The following description of the formalism of second quantization closely follows Refs. 33
and 24.

Let {¢p(x)} be a basis of M orthonormal spin orbitals, where the coordinates x
collectively stand for the spatial coordinates r and the spin coordinate o of the electron. 133!
A Slater determinant is an anti-symmetrized product of an arbitrary number of spin
orbitals. For instance, the normalized Slater determinant of a system containing N

electrons may be written as

Opy(X1)  Ppy(X1) o0 Ppy(x1)
1 (;51()() ¢2<X) ¢N(X)
|¢p1¢pz"‘¢p1\r|:ﬁ pz ’ ps ’ g : i

(bpl (XN) ¢P2 (XN) T d)PN (XN>

In a somewhat different manner one may introduce an abstract linear vector space,
usually called Fock space, where each determinant is represented by a so-called occupation

number (ON) wvector |k),

1 ¢, occupied

|k>:‘klak27"'>kM>a kp: (25)

0 ¢, unoccupied

Hence, the occupation number £, is 1 if ¢, is present in the determinant and 0 if

not. The inner product between two ON vectors |k) and |m) is defined as

M
<k’m> = 5k,m = H 5kpmp s (2.6)

p=1

which is consistent with the overlap of two Slater determinants that contain the same
number of electrons. The definition in Eq. (2.6) also has a well-defined (zero) overlap
between states with different electron numbers. In a given spin-orbital basis there is a
one-to-one mapping between Slater determinants and the ON vectors in Fock space, 133!
which is why much of the terminology is the same in both cases and they are treated

equivalently in the following, as long as their differentiation is not of importance.

2.1.1 Creation and Annihilation Operators

In the formalism of second quantization, all operators can be constructed from a set of

creation and annihilation operators. The creation operator d;ﬂ is defined by

allki ko, ... 0p, . kng) =Ty lkr, koy ooy 1y, o) (2.7)
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where the phase factor

3
L

r, = [[(-1* (2.8)
=1

is equal to 41 if there is an even number of electrons in the spin orbitals ¢ < p, i.e. to
the left of p in the ON vector, or —1 if there is an odd number of electrons in these
spin orbitals, that is necessary to be consistent with the definition of operators in first
quantization and to fulfill the antisymmetry requirement. For Slater determinants this

can correspondingly be written as

d2‘¢p1¢p2 o '¢p1v‘ = ‘¢q¢p1¢pz T ¢PN’ - Fq‘¢p1¢p2 ’ "¢q e ¢pw’ ) (2~9)

which means that one creates an orbital in the first column of the determinant, which
then by exchanging columns yields the respective prefactor. However, if the corresponding

orbital has already been occupied, the operation yields zero,
allky, ko, 1p, .. k) =0, (2.10)

which is in line with the Pauli exclusion principle. Due to the phase factor I'y, the order

in which in the creation operators are applied is of importance,

abablky, ..., 0p,0q, ... knr) = alTqlke, ..., 0p, 1g, . kng) = |1, .., 1, g, Kong)
(2.11a)

alablky, ..., 0p,0q, ... kar) = @lTplke, ..., 1p, 0, oo kng) = — k1, .o 1p, gy )
(2.11b)

where different signs must occur since there is one more electron before ¢ in Eq. (2.11b).

Adding the two above equations leads to the anti-commutation relation for creation
operators [24]

=0. (2.12)
The adjoint of the creation operator d;, is the annihilation (or destruction) operator

a, that removes and electron from the respective orbital ¢, corresponding to

dp|/{?1, ]{32, ey 1p, ey k‘M> = Fp|]€1, k‘Q, ce ,Op, ey k‘M> (213&)
aplk1, k2, ..., 0p .. k) = 0. (2.13b)

The annihilation operators can be shown to obey the anti-commutation relation 24

{ap, g} = apiy + gy = 0. (2.14)
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Analogously, it can be shown that the combination of creation and annihilation

operators obeys the anti-commutation relation 24l
{af,aq} = alag + agal = dpq . (2.15)

2.1.2 Representation of Operators

As stated at the beginning of the last subsection, in the formalism of second quantization
all operators are expressed in terms of creation and annihilation operators, possibly

including a prefactor (or amplitude) in front of them. One- and two-particle operators f

and § are given as!24
F=>"fuaba (2.16)
Pq
and
~ 1 A'i- AT A A
g = 5 Z Gpgrs ApAgQsQyr (217)
pqrs

respectively, where prefactors are matrix elements of the first-quantized operators

~ N A~
fc = ch(xz) (2.18)
=1

Jc = ;Zf]c(xiaxj) (2.19)
i#]
within the basis of spin-orbitals
Foa = (9plfeldq) = /¢;(X)fc¢q(x)dx (2.20)
pire = (00041l 6r00) = [ [ 630500, xu)o ra)dadxa. (220

2.1.3 Normal-Ordered Operators and Wick’s Theorem

Definition: A normal-ordered string of second-quantization operators is one in which all

annihilation operators stand on the right of all creation operators. 6364

“Normal ordering” of such strings provides a bookkeeping system which helps identi-
fying non-zero matrix elements of second-quantized operators. For example, the arbitrary
string of annihilation and creation operators, A= dpdgdrdl, can be written in equiv-

alent form by moving the two annihilation operators to the right and applying the



2.1 Second Quantization 11

anticommutation relations as

A~ A"— A-i—/\ N A-‘—
= OpgGrGy — Quaparay (2.22)
SpgOrs — Opgiliiy — Opsiiba, + afapala '
pqOrs — OpglsGr — OrsGgQp T QApGgQr
AT/\ . /\T/\ ATA _ATATA ~
= OpgOrs — OpqQlar — Orslyap + Opsyay — GyaLapay

The first term in the final rearrangement contains only Kronecker delta functions,
and the next three terms contain operator strings of reduced length. Furthermore, all
operator strings in the final equation are normal-ordered according to the above definition.
Evaluating the quantum-mechanical expectation value of this operator with respect to

the true vacuum state |vac), i.e. the state that contains no electrons, one obtains
(vac|Alvac) = (vac|8,g0rs|vac) = dpgbys , (2.23)

where it was assumed that the vacuum state is normalized, (vac|vac) = 1. Hence, the only
term of A in Eq. (2.22) that produces a non-zero result is the one containing no second-
quantized operators; all others involve application of an annihilation operator on |vac) to
the right. The definition of normal-ordered operators can also help to evaluate matrix
elements involving determinants other than |vac) on the left and the right. However,
since it is more convenient and elegant, Wick’s theorem is explained for this purpose in
the following.

Using the anticommutation relations of second-quantized operators, an arbitrary
string of annihilation and creation operators can be written as a linear combination of
normal-ordered strings (most of which contain reduced numbers of operators) multiplied
by Kronecker delta functions. These reduced terms can be viewed as arising from so-called

contractions between operator pairs. A contraction between two operators A and B is
defined as —
AB = AB — {AB},, (2.24)

where the notation {AE}V indicates the normal-ordered form of the pair with respect
to the true vacuum. The contraction between the operators is simply the original ordering
minus the normal-ordered pair. For example, the contraction between two creation or

two annihilation operators is zero because they are already normal-ordered:

[
Gplyq = Gpiq — {aplghy = pig — aplg =0 (2.25)
alal = alal — {afal}, = alal — afal = 0. (2.26)
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Additionally, a third combination in which A is a creation operator and B is an

annihilation operator is also zero, since the string is already normal-ordered:
aqg=10. (2.27)

The final combination, where A is an annihilation operator and B is a creation
operator, is not zero, due to the anticommutation relations,
[

~ AT
apaq

Q —+

= apa) — {apal}y = apal + ala, = oy, (2.28)
where the correct sign must be maintained when the operators in braces are reordered.
Wick’s theorem!53:64] provides a recipe by which an arbitrary string of annihilation and
creation operators, ABC---XYZ , may be written as a linear combination of normal-

ordered strings. Schematically, Wick’s theorem is

ABC---XYZ =

(2.29)

doubles

where the limits (“singles”, “doubles”, etc.) refer to the number of pairwise contractions
included in the summation. If this theorem is applied to the operator A from the last

section, one obtains

~

[ -, 1 [} [ 1
A ={apalacal}y + {apataralty + {apalaral}y + {apalaal}y + {apatarally, (2.30)

where only non-zero contractions have been included [see Egs. (2.25)-(2.28)]. The
evaluation of pairwise contractions may introduce sign changes because the string of
operators must be permuted to bring the pair together before the contraction can be
evaluated. If the number of permutations is even, the sign is positive, if the number is

odd, the sign is negative. For example,

{ABCD}, = {ADBC}, (2.31a)
{ABCD}, = —{ACBD},. (2.31b)

Evaluating the contractions above for the operator A gives

A= {&pal;&r&l}v + 5pq{&r&§}v + 5ps{d¢§dr}v + 5rs{dpdj1}v + OpgOrs (2.32)

= —a}alapa, — Opgalay + Opslay — Orsibap + Opglns |
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which is identical to the result obtained using the anticommutation relations in Eq. (2.22).
Remembering that any matrix element of an operator may be written as a vacuum
expectation value by writing its left- and right-hand determinants as operator strings
acting on |vac), the composite string of creation and annihilation operators may then
be rewritten using Wick’s theorem as an expansion of normal-ordered strings. However,
only the “fully contracted” terms survive, i.e. the ones where no creation/annihilation
operator remains uncontracted, like the last term in Eq. (2.30). All other terms give a
zero result, by construction. Thus, if one wants to evaluate an expectation value of a
string of second-quantized operators with the vacuum state, one only needs to consider

all possible full contractions.

2.1.4 The Fermi Vacuum and the Particle-Hole Formalism

In many-electron theories of quantum chemistry it is more convenient to deal with the
N-electron reference determinant |®g), rather than the true vacuum state, |vac), since
the use of normal-ordered strings would be extremely tedious if one had to include the

complete set of operators required to generate |®¢) from the true vacuum, 1%

|@p) = alad - --al|vac) (2.33a)
<(I)()‘ = <V&C‘€LN Ce &2&1 . (2.33b)

A different definition of normal ordering relative to the reference state |®g), also called
the “Fermi vacuum”, is that all g-annihilation operators lie to the right of all q-creation
operators.

For the definition of g-annihilation and ¢-creation operators, the so-called “particle-hole
formalism” is used. Here, the one-electron states occupied in |®g) are referred to as
hole states, whereas those unoccupied in |®g) are referred to as particle states. This
nomenclature is due to the fact that a “hole” is created when an originally occupied state is
acted upon by an annihilation operator such as a;, whereas a “particle” is created when an
originally unoccupied state is acted upon by a creation operator such as dl. I Therefore,
operators that create or destroy holes and particles are referred to as quasiparticle (or
just g-particle) construction operators. Hence, g-annihilation operators are those that
annihilate holes and particles (e.g. d;r and d,) and g-creation operators are those that
create holes and particles (e.g. a; and dl). From now on simple braces without a subscript

{---} are used to denote normal-order with respect to the Fermi vacuum.
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Using the definition of a contraction, Eq. (2.24), for all possible combinations of

g-particle creation and annihilation operators yields the following rules for contractions

]

At at S
fal =0 g =0 (2.34a)
— [
dqdl =0 ifa, = 0 (2.34b)
— 1
a;al =0 ata, =0 (2.34c)
r [
ila; = 0y (o) = Sap (2.34d)

With these rules, in principle all kinds of operator matrix elements can be evaluated

in the following sections.

2.2 Hartree—Fock Theory

The most fundamental method and usually the starting point for more accurate calcu-
lations in quantum chemistry is the Hartree—Fock (HF) method. Essentially, a single
determinant |®) is chosen as the ansatz for the wave function and by using the variational
principle the orbitals in it are varied until an energy minimum is reached. 2 This is why
it is often also referred to as the self-consistent field (SCF).

2.2.1 Parameterization of the Wave Function

The energy calculated as the expectation value of the Hamiltonian with respect to a trial

Slater determinant |®) is given as
B[®] = (B]1]8), (2.35)

where the electronic Hamiltonian H is split into a one-electron part iL, a two-electron

part W and the nuclear repulsion Vyy, from Eq. (2.3),

H=h+W+Vy, = thq paq—i— qu\rs i dd ar + Vin - (2.36)

pqrs

The one- and two-electron integrals are defined as
hpg = /d)p VQ% Z/% |¢‘1 dx (2.37)
(alrs) = [ [ 630)650x2) 61 x0)04x2) e (239)

The energy minimum can be found by rotating the orbitals using unitary transfor-

mations U.B3l For unitary matrices the equality U = U1 holds. However, unitary
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matrices can be written as the exponential of an anti-Hermitian matrix «, for which
k! = —k holds. The unitary transformation of the orbitals can thus be written as a

MacLaurin series of the expontential of an anti-Hermitian operator &

e i1d)y =3 T ani gy (2.39)

n!

n=0

where & is a one-electron operator, that is also called the orbital rotation operator, and
with kK = {kpq}
h= kpglahig — alhay) = kpgFpy. (2.40)

p>q p>q

2.2.2 Electronic Gradient and Hessian

The excitation operator Ez;z = qu — Eqp = d;&q — dzdp in principle mixes all kinds of
orbitals, occupied with occupied or virtual and correspondingly virtual with any kind.
However, the only nonzero contribution is when occupied orbitals are mixed with virtual
ones. 33 The expectation value of the Hamiltonian (2.35) can then be expanded as a

function of Kk around Kk = 0 as
1
E(k) = EO 4+ TEW + ngE@m +..., (2.41)

where the column vector E() is called the electronic gradient and the matrix E®) is the
electronic Hessian.??l On the other hand, one can insert the transformed determinants

(2.39) into the energy expectation value (2.35) to yield

1

E(i) = (®|fHe ™ ¥|®) = (B|(1+ A+ =A%+ .. VHQ —h+ 2 —...)[D), (242)

[\
N | —

which can be reordered in powers of the operator & and written in terms of a Baker—
Campbell-Hausdorff (BCH) expansion as[l

E(&) = (B|H|D) + (D|[#, H]|D) + =(D|[#, [#, H]]|®) + ... . (2.43)

This expansion can be compared with the MacLaurin series of the energy (2.41) and

one finds the following expressions for the electronic energy, gradient, and Hessian as 33!

EO) = E(0) = (®|H|®) (2.44)
OF(k e
g = PO gy ) (2.45)
P4 k=0
0’E(k) 1 . s
2 — _ 2
Epgrs e 5 (1t Bpg.rs) (2B, [Ery, HY| ) (2.46)
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where qu,rs permutes the index pairs pq and rs to make the electronic Hessian symmetric.
The electronic gradient, on the other hand, is antisymmetric (Ez(ulz) = —E(gllg)) due to the

antisymmetry of the excitation operator Ez;z'

2.2.3 Brillouin’s Theorem

By expanding the commutator in Eq. (2.45) one can see that the electronic gradient
vanishes whenever p and ¢ belong to the same orbital space. The only nonzero contribution
is when p and g belong to different spaces, which can also be called the only nonredundant
orbital rotations. However, since an energy minimum is sought in the SCF procedure,

the gradient has to vanish. Thus, the variational condition for HF can be written as
! ~ A ~ ~ ~ A N ~
0= (P|[Eai, H]|®) = —(P|Ha]a;|®) , (2.47)

which means that the HF determinant does not couple to singly-excited determinants.
This result is known as Brillouin’s theorem.?*33] More generally, the HF variational

conditions can be written in the form
(Bo| H Epg| o) = (Po| H Egy| o) , (2.48)

which means that the converged HF state |®¢) is in perfect balance between excitations

and deexcitations, a result which is known as the generalized Brillouin theorem (GBT). 133l

2.2.4 The Fock Operator and the HF Energy

In order to uniquely define the wave function, other constraints apart from the variational
condition are introduced, which leads to an effective one-particle operator called the
Fock operator F that is constructed from the spin-orbitals that are eigenfunctions of
the Hermitian Fock operator. 33 The matrix elements fpq of the Fock operator F can be

shown to be of the following form,
foa = hpg + Z@ZHQU ) (2.49)
i
where the notation for antisymmetrized two-electron integrals was introduced as

(pqllrs) = (pqlrs) — (pq|sr) . (2.50)

Since the matrix elements depend on the occupied spin orbitals ¢;, an iterative
procedure for the solution of the HF problem has to be applied. The orbitals that

diagonalize the Fock matrix are called the canonical orbitals,

Jov = hpp + Z(pz|]pz> =¢&p, (2.51)
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where the eigenvalue of the Fock operator €, is called the orbital energy. The integral
(1jlij) is called Coulomb integral since it represents the quantum analogue of the
classical repulsion energy of an interacting charge cloud, whereas the exchange integral
(1j]j7), that arises due to the indistuingishability of the electrons, has no classical

analogue. [24]
The Fock operator F can now be written as a sum of single-particle Fock operators
fi which consist of the respective one-electron part h and the Coulomb and exchange

operators J and K , respectively,

>

A

i =hi+J - K;. (2.52)

The Hartree—Fock energy EgIF is given as the expectation value of the Hamiltonian
with respect to the HF determinant |®¢) consisting of the N orbitals with the lowest

energy &;,

v

B = (ol f120) =Y ha+ 3 Y llis) = S e 5 Sl (259

As can be seen in Eq. (2.53), the HF energy is not equal to the sum of occupied orbital
energies, since each orbital energy already includes the interaction of electron ¢ with all
others, but the expectation value of the Fock operator gives this result, (@0]13' |Po) =D, &
The orbital energies are well suited for a description of the ionization or electron attachment
process, the ionization potential (IP) for instance within HF is equal to the negative of
the respective orbital energy, EZIP = —¢g;. This result, which will later prove to be correct

through first order in perturbation theory, is known as Koopmans’ theorem. [24,65]

Even though Hartree-Fock yields most part of the total energy, it is not accurate
enough to describe or predict physical or chemical processes in a way comparable to
experiment. The remaining part of the electronic interaction beyond the mean-field
approach as described by the effective one-particle Fock operator is called electron
correlation, and several methods exist to recover parts of it. The most important ones

are summarized in the next section.
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2.3 Electron Correlation Methods

The Hartree—Fock method described in Section 2.2 describes only the average interaction
of an electron with all others. The remaining part is called electron correlation, and the
difference in energy (for a given one-particle basis set) compared to the fully interacting

system, according to Lowdin, %6 is the correlation energy E§°™ defined as
Egorr _ Sxact . E(I)—IF ) (254)

Since the approximation within Hartree—Fock consists of using only a single determi-
nant, all post-HF methods expand the many-electron wave function in |®y) and additional
determinants. Consequently, their difference lies in the evaluation of the correlation

energy and the most important ones are briefly discussed in the following.

2.3.1 Configuration Interaction

Configuration interaction (CI) constitutes the conceptually simplest method to include
electron correlation. [24:33:57:67] Here, a linear expansion for the ground-state wave function
|T§T) is chosen starting from the HF determinant |®o) and determinants created thereof by
replacing one or more occupied orbitals , j, ... with unoccupied (or virtual) ones a,b, ...,
denoted by |<I>;1]b) By employing excitation operators C°! = C’ch + C'QCI + ...+ C’](\j,I of

the form

' = afa (2.55)
a
. 1
oft=> afajaga;, (2.56)
ijab

a .ab
i Ci

S .} need to be determined, the wave-function

and so on, where the amplitudes {¢

ansatz can be written as
[T§T) = |@g) + CT@o) + CF Do) + . ..

1 2.57
= |<I>0>+Zcf|<1>?>+120%b|<1>%b)+..., (2.57)
1a

ijab

where so-called intermediate normalization was chosen, (®o|¥ST) = 1.

The wave-function ansatz (2.57) can be plugged into the electronic Schrédinger
equation (2.1) and solved by employing the variational principle. This is done by
representing the Hamiltonian H within the determinant basis and diagonalizing the
resulting matrix H. If the operator C°! is not truncated, which is referred to as full
configuration interaction (FCI), the numerically exact solution of the Schrodinger
equation within a given one-particle basis set is obtained. This is only feasible for small

systems with medium-sized basis sets, thus in practice the excitation manifold needs
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to be truncated. Including only single and double excitations, CCl = C’fl + C’gl, the
approach is referred to as CISD. However, truncated CI schemes lack a property termed
size consistency, 298] which essentially means that the calculated correlation energy
does not scale properly with the system size. This is why nowadays CI methods do not
find widespread application anymore. The only exception being the CI singles (CIS)
method, which is size consistent due to Brillouin’s theorem, but therefore also does not
improve the ground-state description beyond HF. Yet, it is a very effective and cheap

approach towards electronically excited states. (6]

2.3.2 Coupled Cluster

The flaw of CI not being size consistent can be traced back to the linear ansatz for the

wave function [9:33]

T = (14> CN|@o), (2.58)
o
where p runs over all included excitation classes. The proper, size-consistent form of the

wave function would be a product/33l

U5C) = [H(l + TM)} o) , (2.59)
I

where the so-called cluster operator T = Tl + Tg +...+ TN is an excitation operator

analogous to Cccl
Ty =) tlala =Y tf B (2.60)
ia i

- 1 b At AT A A 1 b A A
T, = 1 Z t?j aLaZajai = 1 Z t?j FE Ebj , (261)
ijab ijab

and the amplitudes {t, t%’, ... } need to be determined. This ansatz for the wave function
is referred to as coupled cluster (CC).19 111570 Since the cluster operators T;, commute

and E2 = 0, the wave-function ansatz (2.59) can also be written as
W5C) = eT|@p). (2.62)

This exponential ansatz is at the very heart of coupled-cluster theory. !9l More details
on CC are discussed in Section 2.6 (page 34). A third approach based on perturbation
theory is discussed in Section 2.4 (page 20).

2.3.3 Density Functional Theory

Another method that is formally closely related to Hartree—Fock, is density functional
theory (DFT). [57,70,72] Ttg foundations have been laid by Hohenberg and Kohn!™! and
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by Kohn and Sham.!™ Although its origins are quite different, the Kohn-Sham (KS)
approach to DFT is very similar to Hartree-Fock theory. It can be regarded as an effective
one-particle theory where the nonlocal exchange operator K from HF is replaced by a
local exchange-correlation (xc) potential vy, that artificially incorporates both exchange

and correlation effects.[™76] The resulting KS operator FXS is thus given as
FXS — 4 J + ige . (2.63)

The remaining machinery of KS-DFT is exactly identical to the one of HF, hence
both are usually summarized as self-consistent field (SCF) methods. Due to its low
computational cost but relatively accurate results, DFT is currently the most popular
method in computational chemistry. However, since it cannot be systematically improved
(in contrast to CI or CC theories), DFT cannot be regarded as a “black-box” method and
thus has to be handled with care. A kind of evidence for this is the plethora of existing

density functionals, that often depend on a number of empirical parameters. [57,76]

2.4 Perturbation Theory

Perturbation theory 245777 assumes that a system similar to the one of interest is known
and that the full system can be described by only slightly changing or “perturbing” the
simpler one. This perturbation may be for instance an external field or the remaining
two-electron interaction, as will be discussed later in this section. Mathematically this

means that the total Hamiltonian of a system is formally divided into two parts
H=Hy+ H, (2.64)

where Hj is called the perturbation, that needs to be small compared to the unperturbed
system. The Schrodinger equation with the total Hamiltonian cannot be solved, but it is

assumed that the solutions of a unperturbed system are known,
Holw?) = EP W), (2.65)
where the eigenfunctions \\1’7(10)> of Hy form a complete orthonormal set.

2.4.1 Rayleigh—Schrédinger Perturbation Theory

Within Rayleigh—Schrédinger (RS) perturbation theory, in order to obtain a numerical

solution of the perturbation problem, a parameter A is introduced in the Hamiltonian

H = Hy+ \H, . (2.66)



2.4 Perturbation Theory 21

When A = 0, the perturbation is formally switched off, for A = 1 it is “turned on”.
Now the exact eigenvalues E,, and the eigenfunctions |¥,,) of the full Hamiltonian H are

expanded in a Taylor series in A according to

E,=EY + \EWY + X2E( Z AR () (2.67)
|W,,) = WOy 4 N Wy 4 22| w2y 4 ZW\N) (2.68)

As defined by Eq. (2.65), the unperturbed system is described by the orthonormal set
(0)

of functions \\II%O)> with corresponding energies E; ’. The wave-function corrections for
the interacting system in Eq. (2.68) are chosen to be orthogonal with respect to ]\II%O)),
which corresponds to the use of intermediate normalization, <\1;,(10)|\11n> =

Now the partitioning of the Hamiltonian (2.66) and the expansions for the energy
(2.67) and wave function (2.68) are introduced into the Schrodinger equation (2.1) and

ordered by powers of the parameter A,

n | n
Hol WD) + F | 02) = EQ WD) + ED|w0)
Holw?) + B |0) = EQ[0?) + ED WD) + ED 0

k
Hol W) + Hy WD) = EP|wEY).

Projecting the equations (2.69) on the zeroth-order wave function yields the equa-

(k)

tions for the corresponding energy corrections Fy ', which by exploiting intermediate

normalization and the fact that Hy is a Hermitian operator gives!24

EY = (UD|Ho| V)
EM = (W) [H [w)
. (2.70)
ER = (W)[H [w)
EY) = (w0 |,

and so on. Since the eigenfunctions of the unperturbed Hamiltonian form a complete

orthonormal basis, the wave-function corrections ]\I/%k)> can be expanded in this basis,

o) = Sl = STl 21

i

where the expansion coefficients are determined by projecting Eqs. (2.69) on the respective

(k )

zeroth-order eigenstates, c,, (\IJ(O)\\IJ ). For example, the first-order coefficients are
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obtained by projecting the first-order equation of (2.69) onto <\IJ$2)| (where m # n), which

yields
(O | A )

D — O gy —
Cn,m <\Ijm |‘Iln > E}(LO) B E,(,g) (2-72)
Analogously, in second order one obtains
) 77, 1@ ) 77, 1 (0
), = (O[3 = (O [H[Wn7) oy (P [ H1[W7) (2.73)

EY B " (B -ER)

2.4.2 Mgller—Plesset Perturbation Theory

A special case of RS perturbation theory that is used frequently in quantum chemistry
for the electronic ground state is the so-called Mgller—Plesset (MP) perturbation the-
ory. [24,32.33] Here, the unperturbed Hamiltonian H, is the Fock operator F, and the
perturbation H; is the difference between the full Hamiltonian (2.2) of the system and
the Fock operator. MPn denotes the approximation where the ground-state energy is
expanded consistently through order n in perturbation theory. By using the relationship
between the Fock matrix and the one-particle elements (2.49) as well as the antisym-
metrized two-electron integrals (2.50), the electronic Hamiltonian H can be written
as

A i a 1 e
H= Z Ipq a;aq - Z(pk‘”qk:) a;ﬂaq +Z Z(pq”rs) a;aj]asar , (2.74)
pq pak pgrs

:qu hpqd;gdq
where the nuclear repulsion Vj,, is neglected from now on. For any converged HF solution

Brillouin’s theorem, which can now be written as
(Do|H|DF) = (¢|H|Po) =0, (2.75)
is fulfilled and the Fock operator is thus block diagonal,

F=3"fijala; +° faalay, (2.76)
17 ab

whereas in the so-called canonical orbital basis it is fully diagonal, meaning that f,, =

€p Opq » which further simplifies the Fock operator to

F=> epala,. (2.77)
p
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From Eq. (2.74) the perturbation operator H, can be identified, which is often called
the fluctuation potential V, [33]

V=— Z(pquk apag + — Z (pq||rs) a a . (2.78)

pgk qus

The zeroth-order wave function is the HF ground state, |\If(0)> |®p), and the
corrections are expanded in the basis of excited determinants @?Jb) = djlaz - ;03| Po),
since all of them are eigenfunctions of the Fock operator F. Thus, the wave-function

correction for each order n is written in a Cl-like expansion as

U57) = Dot 196) + 5 D el + (2:79)
4 J

ia ijab

(n)

where the expansion coefficients ¢, ’ are determined as described in Section 2.4.1. For
lower perturbation orders the expansion is not N-fold, but truncates to only modest

excitation levels. [9:24.78]

The zeroth- and first-order energy contributions may be calculated by inserting the
HF wave function into the corresponding expressions of Eqgs. (2.70) and employing Wick’s

theorem as
0 - o
B = (| F|Do) = Y fog(®@olafiq|®o) =Y fisij =D fu=D e, (2:80)
g ij i i

where the contraction only yields a nonzero result if both p and q are occupied indices, see
Eq. (2.34d), and the last equation holds for canonical orbitals. The first-order correction

can be evaluated as

ESY = (@0|V|®0) = — Y (pillas) (®olaf gl o)

pqJ
— 1 [t
+ = quHTs <q>oya 0l Gsty + )0l asan|Po) (2.81)
pqrs
| e 1 e
== llid) + 5 D _Gillig) = =5 > (ijllis),
ij ij ij

where again the only surviving contractions are those, where all orbital indices are
occupied ones. Hence, the Hartree-Fock energy (2.53) is the sum of the zeroth- and
first-order MP contributions, E'(I){F = E((]O) + E((]l).

Therefore, the first correction to the HF energy comes at second order, for which

the first-order correction to the wave function |\Il(()1)> is required. The necessary first-

ney

order correlation coefficients {tm stiiab -

. } can be obtained by projecting the first-order
equation onto the respective excited determinants, which is not done here since it is very

tedious especially for higher orders, but postponed to a later point in the discussion
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of coupled-cluster theory (Section 2.6), where the MP coefficients arise as finite-order
approximations to the CC amplitudes.

It is mentioned, though, that by employing the same technique as for the evaluation
of the energy contributions above, it can be shown that the first-order singles vanish,
tz(cll) = 0, as long as Brillouin’s theorem (2.75) is fulfilled. The only contributions to the
first-order wave function come from doubly-excited determinants, where the necessary
matrix element can be evaluated as <®§‘;’]V|CI>O> = (ab||ij). The first-order doubles

amplitudes and wave-function correction are thus given as

b A ..
(e (2510 (abllij)
1]ab abzy E(go) . E‘(boa)b Ei + 5] — Eq — Eb
4

b1 (ab]lij) 1
LNESDY = e (2.83)

€itej—€q—E€
ijab ' J a b z]ab

(2.82)

Triply- and higher-excited determinants cannot contribute to ]\I/(()I)) because of the

Slater-Condon rules. 24l The second-order energy contribution can thus be evaluated as

1 a
EP = (@|V|uy = ZZthb@OW@ by thb ij||ab) , (2.84)

ijab ijab

and the total MP2 energy is thus given as E%)\/Im = E(I){F + Eé2). I now turn the attention
to a method for the calculation of electronically excited states based on MP perturbation

theory, where the terms derived above are needed.

2.5 Algebraic-Diagrammatic Construction

The algebraic-diagrammatic construction scheme (ADC) is a method to cal-
culate generalized excitation energies originally derived in the framework of Green’s
functions or propagator theory. 25287983 Depending on the kind of the propagator,
different spectroscopic properties are obtained. For instance, ADC for the polarization
propagator yields electronic excitation energies,[2°-27:84-86] whereas ADC for the electron

propagator yields ionization potentials and electron affinities. [28:82:87-90]

Within the original derivation, however, no excited-state wave function was available
and only the excitation energy and transition moments could be calculated from the

poles and corresponding residues of the propagator, respectively. This drawback has

Parts of Section 2.5 have already been published in

e M. Hodecker, D. R. Rehn, A. Dreuw, “Hermitian Second-Order Methods for Excited Electronic
States: Unitary Coupled Cluster in Comparison with Algebraic-Diagrammatic Construction
Schemes”, The Journal of Chemical Physics, 2020, 152, 094106.
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been overcome later by an algebraic approach commonly referred to as the intermediate
state representation (ISR).[2O’27’29’91] In the following, first some general aspects
of intermediate state representations are discussed, then the procedure is carried out

explicitly taking the example of the ADC scheme for the polarization propagator.

2.5.1 General Considerations of Intermediate State Representations

In the context of intermediate state representations,[20’28731’91793] excitation energies
of an N-electron system are obtained by solving the secular equation of the shifted
Hamiltonian or excitation energy operator H — Ey represented within an orthonormal
basis of intermediate states (IS) {|®¥ )}

My = (U[|H — Eo|¥ ) = (¥;|H|V ;) — Eodps. (2.85)
The corresponding secular equation is a Hermitian eigenvalue problem
MX =XQ, X'X=1, (2.86)

where X is the column matrix of eigenvectors X,, and € is the diagonal matrix of
eigenvalues w, that correspond to excitation energies, w, = E,, — Fjy.

Ground- to excited-state transition moments x,, = (¥,|D|¥), where D is a suitable
transition operator, usually the dipole operator, can be calculated from an eigenvector
as T, = XIL F, where the so-called modified transition moments F were introduced, [2%]

whose elements are given by
Fr = (;|D|W) . (2.87)

A common starting point for intermediate state representations is the set of so-called
correlated excited states (CES)
[W5) = Cyl W), (2.88)

which are obtained by applying “physical” excitation operators to the correlated ground
state |Wg). For different kinds of propagators, for which different properties are obtained,
these operators take a different form, for instance excitation energies from the polarization

propagator (PP), ionization potentials (IP) and electron affinities (EA) from the electron

propagator:
PP: (Cy}y = {alai; alaiajaj,a < byi < 5;...} (2.89a)
IP: (CyYy = {ag; alasaz,i < j;... } (2.89b)
EA: (Cyy = {af,afala,a <b;...}. (2.89¢)
As usual, the indices i, j, ... stand for occupied orbitals in the reference |®(), whereas

a,b, ... stand for unoccupied (virtual) ones and p,q, ... for the general case. Capital
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Latin subscripts are used as a shorthand notation for strings of single-particle indices,
J = (a,b,c,...;i,7,k,...). The excitation operators in C; can obviously be decomposed
into different classes referred to as p-hole-u-particle (ph-pp), p=1,2,..., N, in the PP
case according to the number y of creation and annihilation operators. Analogously, this
holds for IP, EA and other cases. The class of an excitation J will be denoted by [J].
The ground state represents a zeroth excitation class with [.J] = 0.120)

The different classes of excitation operators also lead to a decomposition of the matrix
M into different blocks, according to the different classes of intermediate states. Taking

only p-h and 2p-2h configurations into account, M has the following structure:

(Mss MSD> ) <{<@?!ff—Eo‘i’§>} {(e|d —E0|@§;;>}> (2.90)

Mps Mpp {(Ueh|H — Eo|¥5)} {(UeP|H — Eo| U5}

where Mgg is the so-called singles-singles block, Mpp the doubles-doubles block and
Mgp = M};S are the coupling blocks.

The correlated excited states (2.88) are in general not orthonormal. However, a direct
symmetrical orthonormalization of the CES would generate a representation of H - E,
that is neither compact nor separable, 29l which means that the properties obtained
in this way would not be size consistent. Instead, a Gram—Schmidt (GS) procedure
is employed, as described in more detail in the literature. 2931 So-called excitation
class orthogonalized (ECO) intermediate states |¥ ;) may be constructed recursively

as follows: 1201

1. Assume the IS |\ilK> of classes 1,2,...,v — 1 have been constructed. Then the CES
|W9) of class [J] = v are orthogonalized to all intermediate states |V ) of the lower

classes [K| < v according to

O = [05) = 37 ) (U |WG) (2.91)

K
[K]<[J]

2. The “precursor” states ]\I/f[f) of class v are then orthonormalized symmetrically
among each other via )
Tr)= D (W58, (2.92)

J
[J]=(1]

Here, S is the overlap matrix of the precursor states, S;y = QI’?E\\I/?) As an example,
let us consider the construction of the intermediate p-h states.3% In the first step, the
precursor states are obtained by orthogonalization of the correlated excited states with

respect to the ground state:

(7Y = |W0,) — o) (Wo|VY,) = ala;|Wo) — [Wo)(Tolahas|To) . (2.93)



2.5 Algebraic-Diagrammatic Construction 27

In the second step, the intermediate states are obtained by Lowdin orthogonalization
via

- 1
REED L FAE R (2.94)
b
where the overlap matrix of the precursor states is given by
Siaj = (Yolafaad)a;|Wo) — (Wolalaa|Wo) (Wolafa; W) . (2.95)

An ISR derivation of the algebraic-diagrammatic construction scheme for the polar-
ization propagator through second order is summarized in the following subsection, where

the reader is referred to Ref. 94 for more details.

2.5.2 ADC Scheme for the Polarization Propagator

In the algebraic-diagrammatic construction scheme for the polarization propagator, [25-30]
an ISR based on the ECO states (Section 2.5.1) with physical excitation operators
(2.89a) is employed, but the exact ground state |¥g) and its energy Ey are replaced by

perturbation expansions,

1Wo) = [Ty + oy + Py 4. (2.96)
Eo=E"+EV+E®+. .., (2.97)

assuming the Mgller—Plesset partitioning of the Hamiltonian into the (zeroth order) Fock
operator and the (first order) perturbation, H = Hy + H;, see Section 2.4.2 (page 22).
Then the zeroth-order wave function is the Hartree-Fock determinant, |\I/(()0)> = | D).

Thus, the ADC secular matrix (2.85) is expanded in a series as well,
M=MO + MDD M 1 (2.98)

Taking all terms up to a certain order n into account, the so-called ADC(n) scheme
is obtained. However, not all blocks of the ADC matrix have to be expanded through
the highest order n. Taking only singly (S) excited p-h and doubly (D) excited 2p-2h

configurations into account, the ADC eigenvalue problem can be written in the form

M M X X
sS SD s\ _ s ’ (2.99)
Mps Mbpp/ \Xp Xp

where Xg is the singles (p-h) and Xp the doubles (2p-2h) part of the ADC eigenvector,

and the matrix decomposition is given by Eq. (2.90). Carrying out the matrix-vector
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p-h 2p-2h p-h 2p-2h p-h 2p-2h
p-h p-h Z|0-2 1 Z(0-2 1 Y iz
| 0 Slo-1
& & &
ADC(0) ADC(1) & 1 0 al 1 0-1 1l1-2| o0-1
(g ™ (o}
ADC(2) ADC(2)-x ADC(3)

FIGURE 2.1: Structure of the ADC(n) matrix at different orders n. The numbers
indicate the orders of perturbation theory used to expand the corresponding block.

multiplications, Eq. (2.99) can be equivalently written as a system of linear equations,

Mgs Xg + Mgp Xp = w Xg (2.100&)
Mps Xs + Mpp Xp = wXp, (2.100b)

the doubles part (2.100b) can be solved for Xp to obtain Xp = (w1l — Mpp) ' MpgXs,
which can be plugged into Eq. (2.100a), yielding an energy-dependent eigenvalue equation

in the singles space only,
[Mgs + Mgp (w1 — Mpp) ' Mps] Xs = wXs, (2.101)

from which the order relations of the different matrix blocks can be explained as follows.
The leading contributions of Mgg and Mpp, and thus also of (wl — Mpp)~*, are of
zeroth order, whereas the leading contributions of Mgp and Mpg are of first order. Hence,
if excited states dominated by single excitations are desired to be correct through, say,
second order, then Mgs+Msgp (w1 —Mpp)~! Mpg needs to be correct through this order,
meaning that Mgg needs to be correct through second order, Mgp and Mpg through
first order, whereas Mpp only needs to be correct through zeroth order. Expanding
Mpp through first order would lead to a third-order term, since the coupling blocks
are at least first order. For the same reason, expanding the coupling blocks through
second order would lead to terms that are at least of third order and are thus neglected
in a second-order scheme. A consistent third-order method requires each block one
order higher in perturbation theory, i.e. the singles-singles block through third oder, the
coupling blocks through second order and the doubles-doubles block through first order.
This result is depicted schematically in Figure 2.1 for ADC(n) schemes up to third order.
ADC(2)-x represents an ad hoc extension of ADC(2), where the first-order terms in the
doubles-doubles block from ADC(3) are taken into account.
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More explicitly, the matrix elements of a corresponding order n = k + [ 4+ m can be

obtained via

(n) yk+l4+m i o2 (k) . 0 1r oD 1 (m)
et =SS (s ) (i - o) (s07)
k+l+m=n KL

(2.102)
where the auxiliary index A = 1 was used to identify expressions with the same order
of perturbation theory and the first sum indicates that summation over indices k, [, m
with the restriction to k 4+ [ + m = n. Hence, ADC matrix elements can be derived by
considering the perturbation expansion of the overlap matrix S and the Hamiltonian
matrix in the basis of the precursor states \\1{% Thus, the p-h precursor states are

considered first, which are expanded analogously as

n n At A n n k Diata m m
WA = alawihar - ST ey ata ey (2.103)
k+l4+m=n

which in zeroth order are excited HF determinants:
0 At oA At oA At oA
(W) = alas| Do) — [@o) (Polada:|®o) = afai| o) = |07) . (2.104)
—_——
=0
The first-order term reduces to

i i At @ At
whD) = afaiw) — (198 (@olafal @) +10§) ((Wolatailwo)) ) = ahailwg?),
——

=0

=y =0

(2.105)
where the first-order correction to the wave function |\I/(()1)> is a sum of doubly-excited
determinants according to Eq. (2.83) and the first-order p-h CES are thus triply-excited

determinants. 4 The second-order term is given by

At At @ i
i) = alalw) - () ((olafailwe)) = alalwl) - o8 |o) . (2.100)

2
:p((n')

where p(2) is the second-order correction to the ground-state one-particle density ma-
trix, [52:95,96]

2.5.2.1 Overlap Matrix

Following the same procedure, the perturbation expansion of the overlap matrix S can be
shown to be diagonal in zeroth order S}?}) = <<I>0|C’}C' 71®0) = 017 whereas the first-order

contribution vanishes, S}b) = 0. The second-order part is only needed for the p-h/p-h
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block, the elements of which can be evaluated as!94

2
Sza bi 51]5ab Z ’tklcd‘ - 75 Z kcdt]kcd

kled ked (2 107)
- 75 St e+ >t )
] klac”klbc tkac”jkbc
klc ke

However, for the construction of the intermediate states in Eq. (2.94), the inverse

square root S~3 is needed and not S itself. For this, S can be reformulated as
S[J:(S[J+S§?7)+O(3), (2.108)

where O(3) stands for all terms of third and higher orders. Thus, S in principle has the

form
S(x)=1+x (2.109)

with x = S®) 4 O(3), such that Sfé(x) =1+ x)fé, which can be expanded in a Taylor

series around x = 0. With the first derivative (S_%(x))/ =—2(1+ x)_%, the series is

thus given by

S72(x) = $72(0) + (S72(0)) (x ~ 0) +
:1—%x+-- (2.110)
=1 (8% +0@) +
Thus, S~2 is finally given as
Sﬁ:éj——S})JrO( 3). (2.111)

2.5.2.2 Precursor Matrix

Now the matrix representation of the shifted Hamiltonian H — Ey in the basis of the
precursor states is discussed, where again the standard MP partitioning H = Hy+ \H,

is assumed. The so-called precursor matrix M# has the form
MEPIAT = (WES N (Hy + A - N ED )N e )
_ <\I,?E(k) |IfIO|\I,#(m)>)\k+m + <\ij(k) |ﬁ1|\1,§£(m)>)\k+m+1 (2.112)
— (S1sEo)™A",



2.5 Algebraic-Diagrammatic Construction 31

where the summations over k, [, m to yield all terms with order n is tacitly assumed. Up

to second order, M# is given by (%4
MO = (@o|CTHoCy|Ro) — 615EY” (2.113a)
MY = (00| LA Cy|@o) — 67/ E" (2.113b)

M = (@ICI G ) + (0G0 + () ClCole)
113¢
By - S{ B,

where the MP energy contributions E(()O) and Eéz) are given in Egs. (2.80) and (2.84),

respectively.

2.5.2.3 Explicit Expressions for ADC(2)

Explicit expressions for the elements of the ADC(2) matrix have originally been derived
diagramatically. 25! However, they can also be obtained via the ISR approach!? by
employing Wick’s theorem with the expressions from MP perturbation theory for the
wave function and energy as well as the overlap matrix and precursor states derived
above. For a more detailed derivation, where many contractions are carried out explicitly,
I refer the reader to Ref. 94 or 97. However, the same matrix elements are derived more

conveniently in a diagrammatic UCC approach in Chapter 3 (page 59).

Zeroth and First Order. In zeroth order, Eq. (2.102) simplifies to

1

_1 _1
M = 5 (5 0 ()

KL
= (®o|CTHoC | @o) — 61, E (2.114)
- Z%@o@}fl;,&péﬂ%) - 51JE60) ;

p

which yields orbital-energy differences on the diagonal of the p-h/p-h and 2p-2h/2p-2h
blocks:

Mz‘(c?,)jb = (€a — €i)dabdi; (2.115a)
Mi((?]?b,kcld = (ea + &b — €i — €5)0acObadirji - (2.115b)

Similarly, the first-order term is given by

1 =310 3 #(1) (g2 (0)
MI(J) = Z (SII?) MK(L)(SLJZ)
KL (2.116)
— (Bo|CTHLCy|®0) — 51JE51) ,
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which, after evaluating the matrix element of Hy, yields for the p-h/p-h block [94]

Mi(;,)jb = BV 6a0ij — {ajlbi) — EB§" 0w = —(ag||bi) . (2.117)

whereas for the p-h/2p-2h and 2p-2h/p-h coupling blocks one obtains

Mg = (klllid)Sac — (KL|[i€)8aa — (allcd)di + (ak|lcd)dy (2.118a)
M)y e = (6bl[i5)0ac — (kallig)dp — (abllcf)du, + (abl|ci)djy, - (2.118b)

Second Order. Second-order terms are only required for the p-h/p-h block. A more
detailed derivation will be presented in Chapter 4 (page 91). Here, only the final result is

presented, which can be written as

5 1 . 1) . 1
M2, = 2 S Lacllik) e + o) 50,
ke

1 . 1)* .
= 30 D [(edl[ik) £, 4 (ikled) )] (2.119)
ked

1
Z5ij [(ach:l} klbc + (Kl |bc) klac}’
klc

and mentioned, that the same results are obtained in a unitary coupled-cluster approach

through second order as presented in Section 3.3 (page 67).

2.5.3 Intermediate State Representation of a General One-Particle Op-
erator

Having solved the Hermitian eigenvalue problem (2.86), the ISR offers advantages over
classical propagator approaches by offering direct access to excited-state and transition
properties. For this, the exact excited-state wave function is expanded in the complete

basis of intermediate states,

W) =0 ) ([ W) ZXM;\DI (2.120)
I

where the expansion coefficients X7, = (¥;|¥,) are given by the elements of an ADC
eigenvector X,,. This expansion can be plugged into the expectation value of an arbitrary

operator D to calculate the corresponding physical observable D,, in electronic state n as

Dy = (T,|D|¥,) = X7, (U|DV ) Xy = X[ BX,,, (2.121)
1J
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where By = (¥;|D|¥ ;) is the matrix representation of the operator D in the IS basis.
State-to-state transition moments 7}, can analogously be obtained by employing different

vectors m # n on the left and right side,
Tonn = (V| D|¥,) = XTI, BX,, (2.122)

Another approach to molecular properties D,, consists of calculating the derivative of
the energy F,, with respect to a perturbation connected to the observable, which does not
necessarily yield the same result as the expectation value for approximate methods. The

relationship between the two approaches is investigated in detail in Chapter 7 (page 143).

Consequently, the only task is to determine the matrix representation B of the
operator D in the IS basis, which can be decomposed into its ground- and excited-
state contributions as Br; = Dyd;s + By, where Dy = (\110\15]‘110) is the ground-state
expectation value and hence Bry = (¥;|D — Dy|¥ ), analogous to the ADC matrix M.
Following the perturbation expansion of the intermediate states, the ISR matrix B is also
expanded in a series,

B=B" +BW +B®@ 4 . (2.123)

Exploiting the form of a general one-particle operator in second quantization, D=
qu dpq d};dq, the above equations can be rewritten in terms of excited-state or state-to-

state one-particle density matrices p,, or p,,,, respectively,

Dy = <‘I’n|ﬁ“l’n> = Z dpq Z X}k,n <@I|&qu"i’J> Xjn = Z dpq Pr.pq (2.124)
Pq 1J Pq
=Pn,pq
T = (U D W) = D g Y X7, (U110} ¥ 1) Xgm = ) dpg Prumpg - (2.125)
Pq IJ Pq
=pPmn,pq

The same form of equations for the calculation of properties is also true for the

unitary coupled-cluster scheme, which will be discussed in Section 3.7 (page 83).
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2.6 Coupled-Cluster Theory

The ground-state wave function in coupled-cluster theory[911:15:70.98.99] ig oiven by the
exponential ansatz of Eq. (2.62), |[¥§C) = exp(T)|®o), with the cluster operators 7' =
Ti+To+...+Ty given by Egs. (2.60) and (2.61). The exponential of the cluster operator

is defined via its Taylor series as

o0
Zkl +T+ QlT 1T3+.... (2.126)
k=0

If the cluster operator is not truncated, the exact wave function within the one-
electron basis set is obtained, which is equivalent to FCI, just the parametrization is
more complicated. Truncation of 7" at a certain excitation level leads to a hierarchy
of approximate CC methods, for example if 7' = T5 the coupled cluster doubles (CCD)
model is obtained, whereas if T=T 1+ T 5 the scheme is referred to as coupled cluster
singles and doubles (CCSD). 1 The advantage of the more complicated wave-function
parametrization compared to CI is that truncated CC schemes are also size consistent, or
more precisely, size extensive, which means results obtained with CC wave functions

scale properly with the system size. 1!l

In CI theory, the wave function ansatz (2.57) is optimized by minimizing the expec-

tation value of the Hamiltonian H with respect to the linear expansion coeflicients,

(v§"|H|vg")

EOCI = min
cw (TGP

(2.127)
The CC ground-state energy can in principle be obtained analogously to CI by
plugging the wave function \\11830> into the electronic Schrédinger equation and employing

the variational principle, meaning the energy is minimized with respect to the amplitudes

t
w b
Eg° = (GOANGE) L (ole” He|y) (2.128)
AT e R TN T
where TT acts as an excitation operator to the left and (U§C| = (®o|exp(T) =

(®g| exp(T't). However, due to the nonlinear ansatz of CC theory, this leads to intractable
set of non-linear equations for the amplitudes, since there is no natural truncation of its

power series expansion before the N-electron limit,
L 1. . 1.
(Dol HeT|®g) = (Bo|(1+ T + ST+ DH+ T+ 517+ )|®) . (2.129)

As such, even the simplest coupled cluster singles (CCS) model would have the
same computational effort as FCI. Therefore, the CC equations are usually solved in

a different way in practice, namely by projective techniques that are discussed in the
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following. Alternative anséitze like the variational one (2.128) are presented in more detail
in Section 2.6.9 (page 55).

2.6.1 The Projected Coupled-Cluster Equations

The CC wave function |[U§C) = eT\<I>0) in a given orbital basis is used to solve the

electronic Schrodinger equation
HeT|®g) = ESCeT|g) . (2.130)

By projecting Eq. (2.130) onto the HF ground state (®g| and the corresponding
excited determinant manifold (®;|, equations for the CC energy and amplitudes are

obtained,
(Bo| el |®g) = ESC (2.131)
(@7|HeT|Bo) = ESC (@7 |Do) , (2.132)
where again intermediate normalization is used, (| ¥§®) = 1. It is convenient to express

the projected CC equations in a slightly different form, where the Schrédinger equation
(2.130) is multiplied from the left by e~ to obtain°)

e THeT|®g) = ESC|®y) (2.133)

which can be seen as a Schrodinger equation with a so-called similarity-transformed
Hamiltonian,
H=eTHeT (2.134)

that is not Hermitian anymore, as can be seen by
(e_TAHeT)Jr = (eT)TﬁT(e_T)T =T fe T # e THeT. (2.135)

Hence, its matrix representation is mon-symmetric in contrast to the CI or ADC
matrix. Projecting the similarity-transformed Schrodinger equation (2.133) onto the same
determinants as before, the following set of equations for the CC energy and amplitudes

is obtained:

(Bole T HeT |®g) = ESC (2.136)
(@7]e T HeT|®o) = 0. (2.137)

These equations can be shown to be equivalent to the ones before, 33l but the

amplitude equations are now decoupled from the energy equation. For example, the
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energy equation (2.136) can easily be simplified in the following way:
ESC = (Bole T HeT|Bg) = (@o|HeT |®y) , (2.138)

since T acts as a deexcitation operator to the left and thus <(I>0|€_T = (Bo|(1—-TH...) =
(®p|. For diagrammatic reasons, Eq. (2.132) is referred to as the unlinked and (2.137) as
the linked coupled-cluster equations.!3l Expanding the exponential function in Eq. (2.138)
and inserting T = Tl + TQ + ..., one obtains

N ~ 1. A A A 1.
ESC = (®o|H(1 + T+ G174 )[@0) = (o[ H(1+ Ty + Ty + JT7)|o),  (2139)

where cluster operators higher than doubles do not contribute due to the Slater—-Condon
rules. 24 Furthermore, T} does not contribute as long as Brillouin’s theorem (2.75) is
valid, i.e. for any converged HF solution. Hence, irrespective of the truncation level
of the cluster operator, only single and double amplitudes contribute directly to the
CC energy. However, higher-order excitations contribute indirectly since all amplitudes
are coupled by the projected equations (2.137).191 Unlike the variational ansatz (2.128)
the projected form of the CC equations truncates naturally. Eq. (2.139) also reveals
that there are two different types of contributions to the energy as well as amplitude
equations arising from the linear and nonlinear parts of the cluster operator. The simple
Ty operator generates doubly-excited determinants such as |<I>%b> with corresponding
amplitudes tgjb, that are referred to as connected cluster amplitudes, whereas Tf
generates the same doubly-excited determinants, but with products of amplitudes such

as t?t;’- that are referred to as disconnected cluster amplitudes. %!

In order to further evaluate the linked projected CC equations (2.137), the Baker—
Campbell-Hausdorff (BCH) expansion is exploited. For two matrices A and B the BCH

expansion is given as

1 1
exp(—A)Bexp(A) =B + [B,A] + 5[[3, Al A] + 5[[[B, Al,A]LA]+..., (2.140)
which can be derived by inserting the Taylor expansions of the exponentials. Since the
Hamiltonian is at most a two-particle operator, the cluster operators commute among
each other and each commutator of H with T eliminates one general-orbital index of
H, the BCH expansion of the similarity-transformed Hamiltonian H is not higher than

quartic in the amplitudes, (93]

(8, 7), 7] + Sl T,

A~

e_TfleT:ﬁ+[ﬁ,T]+

N | —
E>
=
"
|
=
3
5
5
=
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2.6.2 The Coupled-Cluster Hamiltonian

As is shown in Ref. 9, by employing anticommutation relations and Wick’s theorem, the

electronic Hamiltonian (2.74) can be rewritten as

A At Aoy At s 1 At At
H =Y hp{afagt + Y (pillai{alag} + 5 > (pallrs){afafasa,}
Pq

pqL pqrs

1 .
+§;hii + 2%:<WHZJ>,

(2.142)

where the first and second terms are identified as the normal-ordered Fock operator Fx,
the last two terms correspond to the the HF energy EF = (®|H|®g), and the third term
is thus defined as the normal-ordered fluctuation potential . Hence, the Hamiltonian
can be written as H = Fx + Vx + (| H|®D), such that the normal-ordered Hamiltonian

is simply [

~ ~ o ~ ~ i 1 e
Ay = H — (®o|H|®o) = Fx + W = Y foglahag} + i > (pallrs){adadasan} . (2.143)

Pq pqrs

This result can easily be generalized, meaning that the normal-ordered form of any

operator is the operator itself minus its reference expectation value.

The concepts of normal ordering and Wick’s theorem in combination with the BCH
expansion (2.141) are in principle enough to derive programmable CC equations from
the formal equations (2.136) and (2.137). For example, truncating the cluster operator
as T=T) + Ty corresponding to the CCSD model and inserting it into the similarity-

transformed normal-ordered Hamiltonian H = e~ 7 Hye, one obtains

A = By + [, T2 + (B o] + 5 ([, T30, + 5 (1A, o), )+ [, B2, P

(2.144)
where the BCH expansion truncates naturally after quadruply nested commutators as
described before. It should be noted that the cluster operators (2.60) and (2.61) are
already in normal-ordered form. By employing Wick’s theorem on the commutators of
FN and VN with Tl and Tg, one notices that the second part of the commutator always
cancels the part of the first commutator term, where the Hamiltonian fragment shares no
contraction indices with the cluster operators.!?! This leads to a significant simplification
of coupled-cluster theory: The only nonzero terms in the BCH expansion are those in
which the Hamiltonian Hy has at least one contraction with every cluster operator T, on
its right.%) This means that Hy is always connected to the cluster operator T, which

can be written schematically as

~

e THye® = (Hyel)., (2.145)

where the subscript “c” stands for connected.
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2.6.3 The CC Energy Equation

With the simplifications from Section 2.6.2, the CCSD energy equation can be derived
rather straightforward using Wick’s theorem. According to Egs. (2.139) and (2.145), the

CC correlation energy is given by

[u—y

E§C — Eg" = (0| H|®o) = (®o| (ANTh)e + (ANTb)e + 5 (ANTT)e| Do), (2.146)

[\

where no other terms can contribute since no fully connected terms can be generated
from three or more pairs of excitation operators with the Hamiltonian. Inserting the
definition of the normal-ordered Hamiltonian, Hy = Fx + VN, the first term involving

the Fock operator and T can be evaluated as

(Dol (FNT1)elPo) = D Y foqti (@ol{ahaq}{alas} o)

Pq ia
—
= Z Z qut?<@0|{d;&qd2&i}|‘bo> (2.147)

pq  ia
=D Foatd Spidaa =D fiat?
pq ia ia
which is zero if Brillouin’s theorem is fulfilled, whereas the part with the fluctuation
potential vanishes, (®o|(VyT1)c|®o) = 0, since no fully contracted terms can be generated
from it.[% An analogous argument holds for the Fock operator part and the Ty operator,
(®¢|(FNTh)e|Po) = 0, where no fully contracted terms can be generated. The two-electron

component, on the other hand, does not vanish but produces four equivalent terms,

~ A 1 i A
(Dol (WT2)c|®o) = 74 S " pallrs)eek (@l {aalasar Hada)azat o)

pqrs ijab
1 AI AI AT AI AI AI AI A,?,_; AI AI
= 16 2 2_wallrs)ti) (®ol {a}abasdralaja;a} + {aaasaralalaai}
pqrs ijab
— . ! |
+ {ajalasaralaja;a) + {aaasaralala;a;}| o)
(2.148)

1
- 16 Z Z<pq‘ |r$>t;l.7b(5pi5w5raésb + 5pj5qic5rb65a

pqrs ijab
- 5pj5qi5ra53b - 5pi5qj5rb(ssa)
1 . a
= Z Z@]Ha‘b)tmb ;

ijab

where the factor of % in the first three equalities arises from the product of % that appear
in the definitions of VN and TQ, and the final factor of % results from combining the last
four terms by employing the permutational symmetry of the two-electron integrals. The

same contraction scheme occurs in the last term of Eq. (2.146), where the square of the
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T operator occurs. This term thus evaluates to

1 NN R
§<¢O|(VNT12)C‘®O> S ZZZ (pq||rs)tS tb CDO|{a asaTaTazaba]}]@[)@

pqrs ia

. .. b
- 5 Z@JHab t?t] )

ijab

(2.149)

where the factor of 1 from the BCH expansion and 1 from the definition of Vi yleld ,
but the resulting four identical terms give back the factor of % 19]
With this, all contributions to the CCSD energy have been derived, which can be

summarized as

ESC = EEF + meta +- Z ijl|ab)tet + Z<z‘j\|ab)tgt§. (2.150)

zjab zgab

In fact, this equation is not restricted to the CCSD approximation, but is valid also
for more complicated methods such as CCSDT or CCSDTQ), since cluster operators like
T 5 or Ty cannot produce fully contracted terms and thus do not contribute directly to the
energy.[?) The CCD energy expression is obtained by neglecting the terms involving the
T operator and is thus formally identical to the MP2 energy contribution (2.84), only
with different correlation amplitudes.

An analogous derivation employing Wick’s theorem can be carried out for the
amplitude equations, as is demonstrated in Ref. 9. This, however, is very tedious and
thus omitted here. Instead, I want to restrict myself to a diagrammatic approach, which

will prove to be more convenient and useful also for the UCC scheme in Chapter 3.

The expression for the CC energy is often written in terms of a Lagrange functional

ESC — EYF — (&) (1 + A)e T Hyel |@p) (2.151)
where A is a deexcitation operator defined similarly to the adjoint of the CI operator as

A=A+R+...=) Nala, Z alalayaa + ... (2.152)

ab ™
ia zgab

and that is used to ensure stationarity of the CC energy with respect to the T amplitudes

in order to faciliate the calculation of analytical gradients and properties. [18:100,101]

2.6.4 Introducing CC Diagrams

In this section, I want to introduce a simple diagrammatic formalism made popular by
Kucharski and Bartlett, 12 by which the CC energy and amplitude equations can be
derived significantly faster than by direct application of Wick’s theorem. The presentation

follows closely the one in Ref. 9, for more details the reader is also referred to Ref. 11.
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After describing some of the general features, I explain how diagrams can be connected
to form operator products in a manner analogous to Wick’s theorem. While different
types of diagrams have been employed in the literature, I restrict myself to the use of

so-called antisymmetrized Goldstone diagrams. 11103l

By making use of the particle-hole formalism, upward- and downward-directed lines
are drawn to identify the orbitals that differ from those in the reference |®g), as shown in
Figure 2.2. Downward-directed lines represent hole states, upward-directed lines particle
states. Combining these one may represent exicted determinants like |®¢), no lines thus
stand for the HF reference |®g).

(a) (b) (e) (d)

FIGURE 2.2: Some basic components of CC diagrams: (a) hole lines; (b) particle lines;
(c) a singly-excited determinant |®¢); (d) the reference |®¢) represented by empty space.

Dynamical operators like the one- and two-electron part of Hy and the cluster
operators T, are depicted by horizontal “interaction lines” that have a number of interaction
vertices (represented as dots) according to their electron number, and the vertical lines
from Figure 2.2 represent the creation and annihilation operators. Different interaction
lines represent different operators, dashed lines will be used for the electronic Hamiltonian,
whereas solid lines will be used for the cluster operators. The directed lines emerge
from the aforementioned vertices on the interaction line where each vertex represents
the action of the operator on an individual electron.l®) Hence, one-electron operators
have one vertex, two-electron operators two vertices, and so on, each of them have two
directed lines, one ingoing and one outgoing, associated to the annihilation and creation
operators from the operator’s normal-ordered string. Since two-electron operators contain
four quasi-particle construction operators, their diagrammatic representation contains
four directed lines. !l The direction of these lines indicates the orbital subspace in which
the second-quantized operators act: g-creation operators lie above the interaction line,
and g-annihilation operators lie below.

For instance, the normal-ordered Fock operator Fy is denoted by a dashed interaction
line capped by an “x”. The operator is written in four fragments as shown in Figure 2.3,
The first fragment has only operators in the unoccupied (particle) space, one g-creation line
above the interaction line that corresponds to the ELL operator, and one g-annihilation line
below the interaction line corresponding to the a; operator. O An analogous description
holds for the second fragment in the occupied (hole) space. Both fragments do not change
the excitation level relative to |®g), which is why their total excitation level is 0. The third
fragment contains only g-annihilation lines below the interaction line, which corresponds

to the operator string {d;rda} of a deexcitation, which is why it has the excitation level
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Fy = Zfab{a ab} +Zfz]{a a]} +me{a aa} +Zfaz{a az}

el

0 +1

FIGURE 2.3: Diagrammatic representation of each fragment of the normal-ordered Fock
operator Fy. The excitation level of each fragment is given below the diagram itself.

—1. The fourth Fy fragment contains only g¢-creation lines above the interaction line

representing the {&L&i} string of a single excitation, thus the excitation level of +1.

The two-electron fluctuation potential Vy may be partitioned in an analogous manner
as shown in Figure 2.4, where the antisymmetry with respect to a permutation of the
lines leaving and entering the vertices is implicit. For example, the third diagram,
corresponding to the sum over <m\|bj>{a aaa]ab} fragments, may also be mirrored in the
middle or drawn like one of the first two diagrams with the arrow direction of one side
inversed, but the result is still the same, with the exception of a possible sign change. ")

The cluster operators 7" and their Hermitian conjugates Tt are represented dia-
grammatically as shown in Figure 2.5, where the interaction lines are depicted as solid
horizontal bars. Since 7' contains only g-creation operators, which means it generates
excited determinants from |®g), it contains no lines below the horizontal interaction
line.[®) The opposite holds for its Hermitian conjugate T, which is a deexcitation operator.
They are also fully antisymmetric in the sense that the sign changed when any pair of
outgoing or ingoing lines is exchanged, as will be explained in the rules of algebraic
interpretation of the diagrams.

For the rest of this thesis, the diagrams will mostly be interpreted as matrix elements
of operators or operator products between determinants. The energy and amplitude
equations of the coupled-cluster ground state always contain the reference determinant
|®o) on the right and either (®¢| or excited determinant such as (®¢| and <<I>%b| on the left.
Diagrams are particularly convenient for the construction of such matrix elements as they
provide a straightforward way to evaluate the types of determinants they may be applied
to or what determinants they produce.!?) For example, considering the fourth Fx fragment
in Figure 2.3, which contains two lines above and none below the operator interaction
line. Since |®g) is represented by empty space and a singly-excited determinant |®¢) by

a pair of directed lines such as those in Figure 2.2(c), the diagram may be interpreted as

(®F | Fx|®o) = Z\/l . (2.153)
><,,,,

the matrix element [
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Vi = o S (ablled) {afafaane) + ; S (ilIk) (afalanas) + 3 (iallb){

alajay}
abed zjkl 'Ljab
1
- stato - L 4 Natalaa
+3 Xb:<a1|!bf3>{aaaiacab} +3 ;@JHWH% alr} + 5 zb}ab!\cw{aaabazac}
1abc z]a 1abc
+ = Zzaij: {alalapa;} + = Z(abHij}{& alaja;y + - Z(ngabH alapig}
Z]’W ijab zjab
: > ******* < + > ******* AT ¢
0 0 0
+ > iiiiii A N A + > iiiiii ¢
-1 -1 +1
' > ****** ¥ NN A
+1 +2 —2

FIGURE 2.4: Diagrammatic representation of each fragment of the normal-ordered
fluctuation potential Vx. The excitation level of each fragment is given below the
diagram itself.

Tl - Ztg{&j;dz} = z% z(a _|_1
a

Th= ) t{ala) = ; \ -1

Ty = Zt blatalaza;} = iy Ae I AL 42
1]ab

all 1 abx : 9

T; = Zztz {a abaa} = @ J b =
ijab

FIGURE 2.5: Diagrammatic representation of the cluster operators Ty and T and their
Hermitian conjugates T{r and T2T . The excitation level of each fragment is given on its
right.
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A similar analysis can be applied to the third diagram fragment of Vx in Figure
2.4, which contains pairs of particle-hole lines both above and below the interaction line
which may be interpreted as singly-excited determinants and thus as the general matrix
element <<I>g|VN\<I>?> 9] Matrix elements like these play an important role for excited-state
theories such as EOM-CC or UCC and will be discussed in more detail later. As in Ref.
9, I make use of the “excitation level” bookkeeping system 192 that is determined by
half of the difference between the number of g-creation and g-annihilation lines. If one
line is above and one is below a certain vertex in an interaction line, no net exctation
or deexcitation is produced and the excitation level for this vertex is thus 0, whereas
if both lines are above or below the interaction line the excitation level for this vertex
is +1 or —1, respectively. To get the total excitation level of an operator fragment, all

corresponding vertex excitation levels must be summed.

2.6.5 Diagrammatic Representation of the CC Energy Equation

As was seen earlier, many of the contractions resulting from the application of Wick’s
theorem generate mathematically redundant terms that can be combined after tedious ma-
nipulations to eventually give a much simpler result. Diagrams provide a straightforward
way to eliminate these redundancies. ¥l The CCSD energy equation was previously derived
using Wick’s theorem to yield Eq. (2.150). Each term of the general expression (2.146) is
a matrix element of a component of H = e_TfINeT with the HF determinant on both
sides. Since |®g) is depicted diagrammatically by empty space, the diagrams involved
in the energy equation must not contain directed lines above or below the first (lowest)
or last (highest) operator interaction lines, which means that the diagrams contain no
so-called “external lines”. Obviously, no fragment of Hy as shown in Figures 2.3 and
2.4 satisfies this criterion, and therefore they do not contribute to the CCSD correlation
energy Egc — E(I){F, as expected, since all diagrams represent normal-ordered operators

whose expectation value with the reference is zero, by construction. [l

Next T consider the linear term in 7 from Eq. (2.146), ESC < (®o|(HxTh)e|®o),
which was already evaluated by employing Wick’s theorem in Eq. (2.147). The arrow
indicates that the term to its right is only one of several contributions to EOCC to its
left. The rightmost operator here is T 1, SO its interaction line must be the lowest one in
the final diagram. By making use of the excitation levels associated with each operator
fragment, the total excitation level of the final diagram must be 0 since the reference
is found on both sides of the matrix element. As 7} has an excitation level of +1, the
only fragments of the Hamiltonian that can possibly contribute are the ones with an
excitation level of —1 and contain the reference at the top of the diagram. Of the Fx

and Vy diagrams given before, only the third diagram of Figure 2.3 meets these criteria.
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TABLE 2.1: Rules for the algebraic interpretation of coupled-cluster diagrams. [°!

1. All directed lines are labeled with appropriate indices, i, j, k,1, ... for hole
indices, a,b, ¢, d, ... for particle indices.

2. Fock operator fragments contribute f,, = (out|F|in), where out indicates the
index of the outgoing line and in the ingoing line at the interaction line’s
vertex.

3. Fluctuation potential fragments contribute an integral constructed by the rule
(pql||rs) = (left-out, right-out||left-in, right-in).

4. Cluster operators contribute amplitudes constructed using the hole and particle
indices in left-to-right order from the diagram.

5. Summation over all internal indices, i.e. all indices of lines that start and end
at an operator vertex.

6. The sign is determined from (—1)"*!, where h is the number of hole lines in the
diagram and [ is the number of “loops”, i.e. a route along a series of directed
lines that either returns to its beginning or starts at one external line and ends
at another.

7. Factor of % for each pair of equivalent lines, i.e. lines that start at the same
interaction line and end at the same interaction line. More generally, a factor
of % for n equivalent lines needs to be included.

8. Factor of % for n equivalent vertices, i.e. vertices of equivalent cluster fragments
that are connected to the same interaction line in the same manner.

9. Permutation function 75(pq) =1- qu for each pair of unique external hole or
particle lines, to ensure antisymmetry of the final expression.

Thus, the T diagram may be connected with this Fx fragment to obtain
y X
(Po|(FNT1)c|Po) = {}7 (2.154)

where all lines from the 7} fragment must be connected to each line from the Fx fragment

in order to avoid open lines.

The set of rules to interpret the CC diagrams algebraically are summarized in
Table 2.1.19 According to rule 1, the downward-directed hole line gets the index ¢ whereas
the upward-directed particle line gets the index a. Rules number 2 and 4 thus say that the
Fock operator contributes the matrix element f;, and the cluster operator the amplitude
t¢. Since both lines are internal lines, rule 5 states that one must sum over both indices.
The last rule necessary here is number 6, which says that the sign is positive since there is

one loop and one hole line ¢ and thus (—1)"*! = (—1)*! = +1. Hence, he final algebraic
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interpretation of the diagram is

><,,,,

o k=Y fuatf, (2.155)
ta

which is identical to the result in Eq. (2.147) obtained earlier using Wick’s theorem.
Now consider the term linear in Th of Eq. (2.146), ESC « (®o|(HxT2)c|®o), which
was evaluated in Eq. (2.148). The cluster operator is at the bottom of the diagram
since it is the rightmost operator in the expression, and since it produces an excitation
level of 42, a Hamiltonian fragment with an excitation level of —2 with no open lines
above the interaction bar is needed in order to obtain a total excitation level of 0. The
only Hy diagram fulfilling these criteria is the last diagram of Figure 2.4 that contains
four g-annihilation lines.!%) The most straightforward way to connect these two diagrams

without leaving any open lines is

(@l (WT)l@o) = of bo o fo =3 Slllan)esl, (2150
ijab

where the algebraic interpretation proceeded as follows. According to rule 7, the diagram
has two pairs of equivalent lines, since 7 and j as well as a and b start and end at the
same interaction line, giving a factor of % each, thus yielding a total prefactor of i. All
four lines are internal lines, thus one must sum over all of them (rule 5). Rule 3 states
that the fluctuation potential contributes and integral (ij||ab) and rule 4 that the cluster
operator contributes an amplitude t%b. Since there are two loops and two hole lines (i and
J), according to rule 6 the total sign of the final expression is positive. Hence, the final
result is again identical to the one obtained in Eq. (2.148). The lines could in principle
also be connected in a different way, with two lines crossing each other in the middle, but
since all operators are antisymmetric and due to slight changes in the interpretation of

rule 6, the final expression is equivalent to the above way of drawing the diagram. (‘!

The last contribution to the energy in Eq. (2.146) is the one quadratic in T, which
reads EJC « 1(®o|(ANT})c|®o). The same obersvations concerning the excitation levels
hold as in the previous matrix elements, since le also excites two electrons. The cluster
operators act before the Hamiltonian, thus they are placed at the bottom of the diagram,
but since they commute, their vertical alignment is not of importance.!®l The diagram is

thus given as

1 Or 2 AV . | 1 . . a b
2<¢O|<VNT1>C¢0>=zQa N =5 S llan (2.157)

ijab

where the algebraic interpretation is analogous to the previous diagram with the exception
of the prefactor. There are two particle and two hole indices, which are all summation

indices, and two loops, making the overall sign positive. The two-electron integral
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stemming from Vy is again (1j]|ab), but now there are two amplitude fragments, one
providing an amplitude ¢{ and the other t;’». However, the two pairs of particle and hole
lines are no longer equivalent as in Eq. (2.156), but according to rule 8 the two T} vertices
are connected to the same Vy interaction line in exactly the same manner, by a hole
and a particle line each, thus the prefactor is %.[9] The result is again identical to the
one obtained in Eq. (2.149). From this diagrammatic point of view it is also clearer that
no higher-order terms of the BCH expansion can contribute to the CC energy, since all
remaining terms contain cluster operators or operator products that produce excitation
levels higher than 42, which cannot be cancelled by Hy fragments to yield the required
total excitation level of 0.1 A diagrammatic summation of Eqs. (2.155), (2.156) and
(2.157) thus yields the same result for the CC energy as Eq. (2.150) derived by using
Wick’s theorem.

2.6.6 The CCSD Amplitude Equations

By employing the same concepts as in Section 2.6.5, explicit expressions for the CCSD
amplitude equations may be obtained. The corresponding matrix elements of H always
contain |®) on the right and an excited determinant, (®¢| for the 77 and (@?f’] for the
T equations, on the left. Hence, the corresponding diagrams have no g-annihilation lines
below the diagram but either one or two pairs of g-creation lines above to match the total
excitation level of +1 or +2 for the respective excited determinants. [l

The leading term of H is just the bare electronic Hamiltonian Hy itself. For the T}
amplitude equation, the matrix element (®¢|Fy + Vi|®o) must be evaluated. Since the
reference determinant is on the right and a singly-excited determinant on the left, those
fragments of Hy with an excitation level of +1 and no lines below the interaction line are
required. The only diagram from Figures 2.3 and 2.4 is the fourth fragment of the Fock
operator FN, while Vi cannot contribute in this case. The algebraic interpretation of the
diagram proceeds as follows. The two lines are labeled using ¢ and a to be consistent
with the singly excited determinant (®¢| on the left of the matrix element. There is no
summation since there are no internal lines; F\ contributes the corresponding matrix
element f,;. There is one loop that starts at one external line and ends at the other, and

one hole line, so the overall sign is positive. This finally gives!®l

(®F | Fx|®o) = \/é = fai- (2.158)
><_ R

For the contribution of Hy to the T amplitude equation the matrix element <<I>§‘}’|FN +
Vn|®o) must be evaluated, which contains the reference determinant on the right and a
doubly-excited determinant on the left, which means a Hamiltonian fragment with an
excitation level of +2 and without g-annihilation operators is required. This requirement

is only fulfilled by the eighth diagram in Figure 2.4, the algebraic interpretation of
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which is analogous: 9 the lines are labeled in the order i, a, 7,b to be consistent with the
doubly-excited determinant, there are no internal lines and thus no summation indices,
the fluctuation potential contributes the corresponding integral (ab||ij) and since there
are two loops and two hole lines, the sign of the final expression is positive. Hence, the

matrix element may be written as

@0 = Nfe N A = i (2.159)

The next term considered here is the matrix element (®%|((Fy + Va)Th)e|®o), where
Hamiltonian fragments with an excitation level of 0 are required. While both fragments
of the Fock operator in Figure 2.3 can contribute, the first two possible fragments of the
fluctuation potential in Figure 2.4 cannot contribute because they would leave an open
line below the diagram, which violates the condition that empty space for |®y) must be
beneath the diagram. Thus, only the third fragment with an excitation level of 0 from
Vx can contribute. The two diagrams including the Fock operator and their algebraic

interpretation are given as

(PL|(FNTY1)e| Ro) = Z fiitd (2.160)

where the first diagram has a positive sign since it has one loop and one hole line, the
second one a negative sign because it has one loop and two hole lines. The corresponding

diagram including Vn and its interpretation are given as

(D¢|(WTh)e|®o) = Q ----- \/ = "(jallbi) ¢4, (2.161)
j b gb

where the sign is positive because there are two loops and two hole lines.

Next, consider the contribution of the corresponding term linear in T to the doubles
equation, <(I>§1]b (HxT1)e|®g). Due to the doubly-excited determinant on the left, an
overall excitation level of +2 is needed. Since the T3 fragment produces a +1 excitation,
Hamiltonian fragments with an excitation level of +1 are needed to fulfill the requirement.
In principle, there is a +1 Fock operator fragment in Figure 2.3, but this cannot be
connected to the T} operator from below and this thus violates the “connected cluster”
form of e*TﬁNe (HNe )e- 91 The only contributions come from the two +1 fragments
of Figure 2.4, both of which produce diagrams with a pair of unique external particle or

hole lines, thus a permutation function needs to be included according to rule 9 (Table 2.1
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on page 44) to maintain the antisymmetry of the entire equation. 1 The two final diagrams

and their algebraic interpretations are given as

(P (VNT1)c| Do) =
(2.162)

Z kaZ] tk )
k

where the first term has two loops and two hole lines and thus a positive sign, whereas

the second term has two loops and three hole lines and thus an overall negative sign.

The above procedure can be carried out for the remaining terms of the CCSD
amplitude equations, % but this is rather lengthy and thus omitted here. The final

equation for the T amplitudes are given as 191

0= fai+ Zfactzq - kal % + ZU{:CLHC%)ti + kac ;lkc
+ = Z ka|lcd)tyd — = Z kl||ci)tiy — kactctk

kcd klc

— Kl||ci) 5t — kallcd)tstd — k‘lcdttdt“
Z< Kkl kv k%Yl

klc kcd kled

1
+ ) (k| |ed)titi — - Z<kzy|cd>tz§t;l -5 > (kl||ed)tigt]

klcd klcd kled

(2.163)

and for the Th amplitudes, showing only the leading terms!!

. . ac c a a 1 s o\ 1
0 = {abllij) + Z(fbctij - fact?j) - Z(fkjtilg - sz’tjlz) + ) Z<k”|w>tk?
c kl

k

+ % > (ablled)ts) + P(if)P(ab) Y (kbllej)tse + P(ig) Z<ab\ |ci)ts
o L e (2.164)
— P(ab) Y (kb||ij)ty + 5 Pid)P(ab) > (kll|ed)tict + < Z l||cd)tsdeet

k kled klcd

A ac | abc
Plab) Y (kl||cd)tisth] — SPid) > (kllled)test + ..

kled kled

w\)—'

2.6.7 Connection to MP Perturbation Theory

As originally pointed out by Bartlett, 79194 coupled-cluster theory is closely connected
to Mgller—Plesset perturbation theory in the sense that one may obtain finite-order
perturbation theory energies and wave functions via the iterations of the CC equations. !
For this, the normal-ordered electronic Hamiltonian is again split into the zeroth-order

component taken as the Fock operator, and the perturbation as the remaining two-electron
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operator, Hy = Fx+ Vi, and each perturbed wave function \\IJ(()k)> is expanded in a Cl-like
fashion according to Eq. (2.79). As mentioned in Section 2.4, in low orders of perturbation
theory only modest excitation levels are needed for the wave-function expansion. The
first-order correction |\Il(()1)>, for example, only contains doubly-excited determinants
and can be used to calculate the second- and third-order energy corrections, whereas
the second-order wave function |\I'62)> contains from singly- up to quadruply-excited
determinants and contributes to the fourth- and fifth-order energy corrections.[®! This
determinant-based expansion of \\If(()k)> suggests that also the cluster operators 1, may be

decomposed by order of perturbation theory as

Tn=TWN +72 476 4 (2.165)
where the low-order terms for certain excitation levels are naturally zero.!! By employing
the partitioning of Hy and the expansion of the cluster operators (2.165), the CC
Hamiltonian A may analogously expanded in orders of perturbation theory through the
BCH expansion, H = HO + HW + H® 4 where the lowest orders are given as!’!

2O — £ (2.166a)
HD = Vi + (BNTY), (2.166D)
A = (I 4 WY + SR, (2166¢)

which is simply constructed by assigning the appropriate perturbational order to each
cluster operator in Eq. (2.144) and retaining only the terms of the desired order n.[9 The

n-th order Schrodinger equation may then be constructed from the respective H(™) as
H™|%0) = E§”|0), (2.167)

from which the n-th order MP energy contribution may be calculated via projection on the
HF reference, Eé") = (®o|H™|®g). The n-th order cluster amplitudes are obtained by
projecting the n-th order Schrédinger equation onto the respective excited determinants. [°)
For instance, the first-order T amplitudes are obtained by projecting the first-order
variant of Eq. (2.167) onto a doubly-excited determinant, analogous to the CC amplitude
equations,

0 = (@AM | Do) = (B [Var|@o) + (BLI(ENTE)c| @) , (2.168)

which may also be evaluated diagrammatically I to obtain the identical amplitudes tl(gl'c)w
as in Eq. (2.82). Another way to obtain the lowest-order cluster amplitudes is directly
from the CCSD amplitude equations. Assuming a canonical HF reference, the Fock
matrix is diagonal with orbital energies as diagonal elements, fi; = d;;; and fop = dapea.

The amplitude equations (2.163) and (2.164) may thus be rewritten by taking the terms
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involving orbital energies on the other side as

(e; —€a)ty = fai + Z kal|ci)ty, + kac
+ = Z ka)|cd)ts? Z(k:chz)tkl

kcd klc

a 1 - -\ 14
(i + 25 — 20 — &)ty = (abllig) + 5 Y _(killig)tiy
kl

(2.169a)

+5 > (abllcdytl + P(if)P(ab) > (kbl|cj)ts (2.169b)
cd ke

+P(if) > (abllcj)t; — P(ab) > (kbllij)ts + ...

c k

By setting all amplitudes on the RHS of the above equations initially to zero, successive

division by the orbital-energy differences yields the first-order amplitudes as

(0 _Joi (2.170a)
Ei — Eq
t(;ib = \abjis) (2.170D)

)
Eitej—€q—¢&p

1) _

where the first-order singles t,,

(1)

= 0 as long as Brillouin’s theorem holds, and ¢;; Jab is
again identical to Eq. (2.82). Plugging these first-order amplitudes into the linear terms
in Egs. (2.169a) and (2.169b), the second-order amplitudes are obtained as

@ _ 1 A1) (1)
tia - &j [Z<kaHCZ tkc + kactikac

@7 ke ke

) 1 . (2.171a)
b5 S kalledyr, — 5 S thilleiyey,
kcd klc
2) _ 1 1 4(1)
tijab g+ €j —E€a — €p [2 ;%’ZHZ] kiab T 5 Z abHCd Zjab
+P(ij)P(ab) Y (kb]lcj)tipn. (2.171b)
ke
+Pij) Y (ablles)tls — Pab) D (kblligty, |
c k

where the first two terms in brackets of Eq. (2.171a) and the last two terms of Eq. (2.171b)

are zero for a HF reference.

2.6.8 Equation-of-Motion Coupled-Cluster Theory

Let me turn the attention to the calculation of excited electronic states with coupled-cluster
theory. Several schemes have been developed over the last decades, the most prominent

being equation-of-motion coupled-cluster (EOM-CC)!'271% and coupled-cluster
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linear response (CCLR) theory. [16-19] Degpite their conceptual differences, EOM-CC and
CCLR yield identical results for excitation energies and may be viewed as biorthogonal
representations (BCC) of the (shifted) Hamiltonian in terms of correlated excited states
obtained from the CC ground state and an associated set of biorthogonal states, which
correspond essentially to excited determinants used in CI theory. 2921 T restrict myself to
a more detailed discussion of EOM-CC in the following.

In equation-of-motion theory, the wave function |¥,) of the n-th excited state is
written as

|U,) = R|Wy), (2.172)

where |¥g) is the ground-state wave function and R is an excitation operator that
transforms the ground-state into the excited-state wave function and thus describes
differences in orbitals, correlation, etc. upon excitation. In EOM-CC, the ground state is
taken as Eq. (2.62), [¥§¢) = eT]<I>0>, and the excitation operator is parameterized the

same way as the cluster operator, as a linear combination of excitation operators

R=Ry+R +Ro+... (2.173)
Ro =7, (2.174)

Zr al (2.175)

Zr“b aTaba]az, (2.176)
'Ljab

and so on, where the unknown parameters are the amplitudes of R. If no approximations
are introduced, this corresponds to an exact parametrization of the excited-state wave
function.

In order to obtain equations for R, the EOM-CC ansatz is plugged into the electronic

Schrodinger equation for some excited state with energy Feyc
HReT|®g) = Eoxe ReT|0) (2.177)

exploit that the physical excitation operators R and T commute and multiply from the
left by e~T to obtain
e THe! R|®g) = Eexe R|®0), (2.178)

which can be seen as an eigenvalue problem for the similarity-transformed Hamiltonian
0= THeT with eigenvalue Fey. and eigenfunction R]q)0> The eigenvalue equation

(2.178) can further be rewritten by applying R to the ground-state CC equation (2.133)

Re THe @) = RESC|®y) (2.179)
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and subtract the two equations to obtain an equation directly for the excitation energy
— E§C as

W = Eexc
(e_TﬁeTR - Re_TerT) 1®) = wR| D), (2.180)
which can be written more compactly as

[H, R]|®0) = wR|®y). (2.181)

By expanding the commutator to (H R—RH ) and inserting the resolution of the
identity (RI) 1= |®g)(®o| + 3, |®;)(®,| between R and H, one obtains

[H R — R(|%o) ‘I%)HZ:I‘I> (@;]) H]|®o) = wR|®) (2.182)

HR|®o) — R|®o)(Do|H|®o) — ZR’(I)I (®7|H| Do) = whk| ) (2.183)

(H — (@o| H|Do)) R| @) ZR|<I’1 1|H|®o) = wR|) (2.184)
=0

where the sum vanishes due to the CC amplitude equations (2.137). By defining the
normal-ordered similarity-transformed Hamiltonian as Hy = H—(®|H|®), an eigenvalue

problem directly for the excitation energy is obtained,
HxR|®o) = wR|®), (2.185)

which is equivalent to FCI if no further approximations are introduced, since the effective
Hamiltonian H used in EOM-CC is defined via similarity transformation that preserves
the eigenvalues of the original operator. However, since it is not Hermitian anymore,

the left eigenvectors are different from the right ones. The LHS eigenvalue problem of
EOM-CC reads

(®o|LH = (®o|L Foxe , (2.186)

where L is a deexcitation operator defined as
£:£0+£1+£2+...
Zl ala, (2.187)
Z 1% atal Lapa ,

z]ab
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and so on, where the amplitudes of the R and L operators are different, r; # [;. They

are usually chosen to be biorthogonal,
(Bo| L™ R™|®0) = byn (2.188)

where m and n are state labels. Orthogonality, on the ther hand, does not hold,
<<I>0\(ﬁ’m)TR”|<I>O> # O0mn. The EOM-CC energy expression is thus a generalized expecta-

tion value of the form
Eoxe = (®o| LHR|®y) = ESC + (®o|LHNR|Dy) . (2.189)

In order to obtain a matrix representation of EOM-CC, the corresponding eigen-
value equation HR|®g) = Eexe R|®P) is projected onto the determinant manifold (& /1
(including the HF state)

<(I)I|}_IR’(I)O> = Eexc<q)[|R‘(I)O> (2.190)
and insert the resolution of the identity between the operators on the left-hand side to
obtain

> (@ H|® ) (| R|Dg) = Eexe (@] R| Do), (2.191)
J

which can be written in matrix form as
Hr = For, (2.192)
where the elements of the matrix H and the eigenvector r are given as
Hpy=(®;|H|®,) rr = (®;|R| o) . (2.193)
The corresponding LHS eigenvalue problem reads
TH=1"E,,. (2.194)

and the biorthogonality can be written as (1™)™ r™ = §,,,,, where m and n again are state
labels and the expression for the energy then simply is Fey. = 1THr.

By looking again at the eigenvalue equation (2.192) and the definition of the corre-
sponding matrix elements in Eq. (2.193), it is immediately obvious that EOM-CC can
be regarded as a CI approach with H replaced by H. Furthermore, it can be shown
that excitation energies obtained with EOM-CC are size intensive,'!! which means
they do not depend on the system size.['9 This is in contrast to other properties such as
the ground-state energy, which was shown to be size extensive,'!l meaning it scales
linearly with the size of the system.[1%° The related term size consistency denotes that
a quantum-chemical energy calculation on a system consisting of two fragments yields

the sum of two individual calculations on the separate fragments. (68!



54 2 THEORETICAL METHODS

Due to the biorthogonality, the left- and right-hand transition moments differ
in EOM-CC, and one can show that one of the two terms violates the size-consistency
condition. 11211061 Transition moments obtained with CCLR theory, on the other hand,
yield size-intensive results. [21:106]

As mentioned at the beginning of this section, both EOM-CC and CCLR can be
regarded as a biorthogonal representation of the (shifted) Hamiltonian,? and thus
an analogy to the intermediate state representation of Section 2.5.1 (page 25) can be

established. Within BCC representations, the correlated excited states take the form 20!
1B9) = Cy|W5C) = Crel @) = €T Cylo) (2.195)

where the physical excitation operators C; are given by Eq. (2.89a). Unlike the ADC-ISR
procedure, the CES of Eq. (2.195) are not orthogonalized, but instead a set of biorthogonal
states (W7 | is introduced that obey the relation

(OF|BY) =675, (2.196)
The CC form of |¥9) in Eq. (2.195) allows one to write the bra states explicitly as!?’!
(TF| = (Bo|Cle T (2.197)

The “mixed” representation of H — E defined with respect to the biorthogonal sets

of states leads to the non-Hermitian secular matrix M, with the matrix elements
My = (UF|H — Eo|0Y) = (Bo|CleT[H, CyleT|Dy), (2.198)

where the ground-state energy is no longer explicit in the last equation. The resulting
secular equation
MX = XQ (2.199)

is used both in the CCLR!!8 and EOM-CC methods. '3 Here, € is the diagonal matrix
of excitation energies and X is the matrix of right-hand eigenvectors. Due to the non-
Hermitian nature of the secular matrix, an analogous equation arises for the matrix Y of
the left-hand eigenvectors YIM = QYT . Both equations can be combined to

YIMX=Q, YX=1, (2.200)

where it should be noted that the left-hand and right-hand eigenvectors are biorthogonal
but in general not normalized.?”) The CI-like definition of the matrix H and the ISR

approach described here can be shown to be equivalent via

H[J = <(I)I‘B"q)J> = <(I’0’C'}L€_Tﬁ€Té[’(I’0> = <\I/}"I:I’\T/9> = M[J + E(()JC(SIJ. (2201)
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By choosing the excitation operators C'; in Egs. (2.195) and (2.197) as the ones
from Eq. (2.89b) or (2.89c¢), or by adapting the respective R and L operators, the EOM
approach can also be applied to obtain ionization potentials and electron affinities, for
instance, giving rise to the EOM-IP-CC and EOM-EA-CC methods, respectively. [107-112]

Another closely related scheme is the symmetry-adapted-cluster configuration
interaction (SAC-CI) method 131191 that is based on the mixed representation

M77C = (@, |H — Eo|¥)), (2.202)

where CI configurations (®;| = <<I’0|CA’} and the CC correlated excited states (2.195) are
used on the left- and right-hand sides, respectively. The overlap matrix Sy; = (®,;|¥9) of
the left- and right-hand basis functions is of lower triangular form. The right-hand form
of the SAC-CI secular equations read [2°)

M3ACX = SXQ, (2.203)

where  is the diagonal matrix of excitation energies and X denotes the matrix of
right-hand eigenvectors. An analogous equation applies to the matrix Y of left-hand
eigenvectors. A mutual orthogonalization is obtained via YSX = 1. If the configuration
spaces extend to the same excitation class and exp(T ) is treated in the same way, the
SAC-CI and BCC treatments give the same results for the energies, even though the

equations differ. [20]

2.6.9 Alternative Coupled-Cluster Ansatze

Although it is the most commonly used, the standard formulation of the CC equations
according to Egs. (2.136) and (2.137), it is only one possible formulation for the correlation
problem built upon an exponential wave-function ansatz. Several other formulations exist

and have been discussed by Bartlett and co-workers. [34:35:37,116,117]

The first one, that has already been mentioned is the variational expectation-
value coupled-cluster (XCC) method, 3117 that uses an energy functional as given
in Eq. (2.128). It has been shown that this expression can be written in a fully linked

(connected) and extensive form as!M18:119]
EFOC = (@] (7" HeT)o| @), (2.204)

which is the starting point for finite-order XCC(n) approaches3*17 and noniterative
corrections to lower-order CC methods. 120l Eq. (2.204) is an exact energy expression,
but the finite character of Eq. (2.128) is lost. [3%:116]

The linear nature of the A operator in the CC energy functional (2.151) is the reason
why effects of higher excitations are lost compared to XCC, 35 and also why transition

moments in EOM-CC are not size consistent. Replacing 1 + A by ei, where ¥ is a
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connected deexcitation operator that establishes the same relationship between Aand ©

as between C! and T,B% the resulting energy functional reads
E§©C = (@ol(e7(HeT)e)el @0) (2.205)

which defines the extended coupled-cluster (ECC) energy. (1217127 The energy expres-
sion has a similar structure as XCC, but it should be noted that 3 is different from
771351 Other methods include symmetric expectation coupled-cluster (SXCC), 17l
strongly-connected expectation-value coupled cluster (SC—XCC),[35] nonvaria-
tional expectation-value coupled cluster®! and, finally, unitary coupled cluster
(UCQ), 1373993, 117,128-138] which will be discussed in great detail in Chapter 3.
Alternative excited-state approaches comprise similarity-transformed equation-
of-motion coupled cluster (STEOM-CC), [139-143] where the CC Hamiltonian is similarity-
transformed a second time with a transformation operator S as H = {eg VIH {65},
equation-of-motion expectation-value coupled cluster (EOM-XCC), [144] and time-
dependent variational (TD-VCC)1! or unitary coupled cluster (TD-UCC). 5!

2.7 Molecular Properties

In order to set the stage for Chapter 7 (page 143), a brief review of the notions of molecular
properties shall be given, following closely the one in Ref. 57. Having a molecular system
with an electronic charge distribution p(r) with an electric potential ¢(r) gives an energy

contribution &£

E= /p(r)gb(r)dr. (2.206)

Since the electric field F = d¢/0r is normally uniform at the molecular level, £ is

written as a multipole expansion
L
€:q¢+u.7:+§Q.’F +..., (2.207)

where ¢ is the net charge (monopole), p is the electric dipole moment, Q the quadrupole
moment and F' = 9F /Or the electric field gradient.!®” In the absence of an external
field, the unperturbed dipole (and quadrupole) moments may be calculated from the
electronic wave function |¥,,) as expectation values according to g = (V|| V,,), where
i1 is the dipole operator in second quantization. The presence of a field influences the
wave function and leads to induced moments, which for the dipole moment g may be
written as

= py+aF + %,6.7:24- %77’3+... , (2.208)

where py is the permanent dipole moment, a the dipole polarizability, 3 the first
hyperpolarizability, 4 the second hyperpolarizability, and so on.®” For a homogeneous

field F, where the derivatives of the field are zero, the total energy E of a neutral molecule
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can be written as a Taylor series around F = 0 as

OF 1 0%E
E(F)=E0)+ = F+

1 O°FE
-y~ 2
OF | £, 2 OF? For

S —= Fi4... (2.209)
F=0 6 0F°

F=0

From the multipole expansion (2.207) it can be seen that 0F/0F = w. Differentiating

the above equation w.r.t. F thus gives

oF 0’FE 103E

= +— +o—=| FP+..., 2.210
o 0F ey 0Pl T 207 £l (2210
from which by comparison with Eq. (2.208) it follows that
OFE 0’FE 103E
Mo = = oa=—7:> B=-—= . (2.211)
OF | r—o OF | 5—o 20F3 | £,

An analogous analysis can be carried out for the influence of an external magnetic
field. 7l Hence, it may be stated generally that when a molecular system is perturbed by

some perturbation 7, its total energy E changes according to
1
E(n) =E® 4+ EWy 4 5E(%Q ..., (2.212)

where the expansion coefficients are referred to as molecular properties, which are
characteristic of the molecule and its quantum state. 4%l For a static perturbation, the
properties are said to be time-independent and may be calculated by differentiation

2
dE @ _ 4°F

(1 - 4%
E E e (2.213)

n=0

Examples of such properties include responses to geometrical perturbations, from
which one obtains forces and force constants as well as spectroscopic constants, responses
to external electromagnetic fields, which yield permanent and induced moments, polariz-
abilities and magnetizabilities, responses to external magnetic fields and nuclear magnetic
moments, which yield NMR shielding and spin-spin coupling constants as well as EPR
hyperfine coupling constants and ¢ values. 57l

The derivatives themselves can be calculated either numerically or analytically. In
the former case, one employs finite differences in combination with polynomial fitting,

meaning one chooses a small 7 > 0, and then the first derivative is given as
) (2.214)

which is usually simple to implement, but its numerical accuracy and computational
efficiency are rather low.®”l Analytical differentiation requires considerable programming

effort, but it has much greater speed, precision and convenience. Assuming that the
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electronic Hamiltonian H is augmented by linear terms only in the perturbation, 7:[(77) =

H+ 77]5, then the energy F may be written as

E(n) = (L (n)|Hn)¥(n)) (2.215)

where H has an explicit dependence on 7, whereas the one of |V) is only implicit via its
parameterization and possibly also basis functions.®”l The first derivative of the energy

at n = 0 for real wave functions is given as

ccllf i < ’ )\1/>+2< \I]’FI+UP‘\II>’UO (2.216)

— (V| P|w) +2<—’H‘\I/>

The wave function depends indirectly on the perturbation, namely via the wave-
function parameters A and possibly also via the basis functions 1x, such that its total

derivative is given as

dv  9VdA  0¥dx
dn " 0A dn  oxdn’

where the partial derivative vanishes since there is no explicit dependence on the pertur-

(2.217)

bation. Assuming the basis functions are independent of the perturbation, dx/dn = 0,

the derivative may be written as[?7]

Sl =P+ 2 (R A, (2218)

n=0

If |W) is variationally optimized w.r.t. to the parameters A, the last term of the

derivative disappears since FE is stationary w.r.t. A,

oL oV |
oA = 2<7‘ ‘\P> ’ 2.21
oA 0 oA 0 ( 9)
n
which means that variational wave functions obey the so-called Hellmann—Feynman
theorem [57:146,147]

fif <‘ )\11> (2.220)



Chapter 3
Unitary Coupled-Cluster Theory

In Section 2.6, the standard formulation of coupled-cluster theory was discussed, which
corresponds to a non-Hermitian, biorthogonal representation of the Hamiltonian. A
related, yet Hermitian approach is the so-called unitary coupled-cluster (UCC)
method, [20:35,37,:39,93,116,117,128-138] hich [ want to describe in detail in the following.
Furthermore, it is closely related to the algebraic-diagrammatic construction scheme
presented in Section 2.5. Several methods based on the UCC ansatz have been derived
and implemented within this thesis, which is why I want to discuss it in great detail. In
particular, first-time ever explicit derivations by employing diagrammatic techniques of
the so-called UCC2 and UCC3 schemes are given.

3.1 Intermediate State Representation Approach to UCC

An ISR scheme based on the UCC approach was initially considered by Prasad et al.l92
and by Mukherjee and Kutzelnigg!?3 and was later reviewed by Mertins and Schirmer. [20]

In UCC theory, the ground-state wave function is expressed in an exponential CC form as

05 ) = ¢%|@o) (3.1)
where the UCC cluster operator is chosen to be anti-Hermitian, 67 = —&, such that e is
unitary. Usually, & is written as

6=258-5T, (3.2)
where the operator S (like T ) is given by a linear combination of physical excitation
operators

al 1
§=3"8,=) orala; + ZZJ%I’ alalaai+ ... . (3.3)
n=1 ia ijab

Since ST contains only “unphysical” deexcitation operators, S’T|<I>0> = 0. In contrast

to the normal cluster operator T , the UCC operator ¢ does not commute with physical

99
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excitation operators. The UCC intermediate states ]\f/ J) are obtained by applying so-called

consistent operators eoC 777 to the UCC ground state,
(W) = e Cre 0 |WFCC) = 7 C|y) (3.4)

which corresponds to a unitary transformation of the CI configurations and thus the
UCC states form a complete and orthonormal set. 2l The UCC representation H of the

Hamiltonian is thus given by the matrix elements
Hyy = (V| H|U ;) = (@0|Cle " HeCy|Dp) = (@, H|D ), (3.5)

which can also be viewed as a representation of the UCC transformed Hamiltonian

H=e"Heo = e He® (3.6)
within the basis of CI configurations, analogous to EOM-CC. Due to the similarity
transformation, H can also be written in the connected form e 9 He? = (He%),. In fact,
the UCC states \\iﬁ and the ECO intermediate states |¥ ;) that are used in ADC are
related by a unitary transformation U with Ur; = (&J [@ 7), and the matrix representations
of the Hamiltonian are thus related by H = UAU' , which means that the same canonical
order relations hold for the UCC representation as for the ECO representation as well as

the compactness property. 29 Furthermore, the UCC representation is separable, which

means that it yields size consistent properties. (20]
In analogy to traditional coupled-cluster theory, the UCC ground-state energy Eg cC
is obtained via
E§©C = (®|H|®), (3.7)
and the UCC amplitudes are the solution of the projection equations
(®/|H|®o) = 0. (3.8)

The UCCSD Hamiltonian matrix H thus has the following form

EYCC 0 0
H= 0 Hgs Hgp |, (3.9)
0 Hps Hpp

which can be compared to the CISD and EOM-CCSD matrices H and H, respectively,

EUF 0  Hyp EG° Hos Hop
H=| 0 Hg Hg |, H=| 0 Hg Hgp |, (3.10)
Hpo Hps Hpp 0 Hps Hpp
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where E(I){F = <<I>g|ﬁ|<1>0> is the HF ground-state energy, Hgg = Hps = 0 due to Brillouin’s
theorem, Hgy = Hpg = 0 because of the amplitude equations (2.137), Hys # 0 in spite
of Brillouin’s theorem because of higher-order terms (products of H with T) in A, and
Hsp # Hpg, since the similarity-transformed Hamiltonian H = e~THeT of traditional

CC is not Hermitian.

The representation of the Hamiltonian (3.5), or rather its shifted version defined as

M=H - E[I)JCCl, gives rise to a Hermitian eigenvalue equation
MX = X0, (3.11)

which yields vertical excitation energies as eigenvalues in € and the corresponding
excitation vectors as eigenvectors collected in X. It should be noted that the same secular
equation has also been obtained in UCC-based self-consistent polarization propagator

theory. [51:92]

3.2 Bernoulli Expansion for the Transformed Hamiltonian

A complication of UCC compared to traditional CC theory is the non-terminating
Baker—Campbell-Hausdorff expansion of H in Eq. (3.6),

H =+ [H,6]+ ~([H,6],6] + SlIA6,61,6]+ .. (3.12)

due to the presence of both excitation and deexcitation operators in . As discussed
in Section 2.6, the BCH expansion truncates at the quartic commutator in traditional
CC theory. Thus, a practical truncation scheme is a mandatory prerequisite for a useful
UCC-based method. Several truncation schemes have been proposed and studied in
the literature. B73913L137 NMajor cancellations between commutators involving the Fock
operator Fy and those involving the fluctuation potential Vx has been observed in
the derivation for the perturbative expansion of the ground-state energy expression in
the UCC(4) approach.37l The cancellation of the commutators involving Fy and those
involving Vx has also been explored in the context of a non-perturbative treatment,
where the resulting formalism retains only a single commutator involving Fy and has
so-called Bernoulli numbers as the expansion coefficients of the commutators involving
V. [130.131] Ty the following, a different derivation for this “Bernoulli expansion” of H
according to Ref. 51 is presented.

The normal-ordered Hamiltonian Hy is again split like in MP perturbation theory
according to Hy = Fx + Wn. For any converged HF solution, the Fock operator is

(block-)diagonal and thus “rank-preserving”, which means that the commutator [Fy, A
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has the same number of holes and particles as the original operator fl,
Fa=Y" fiy{alag} + 3 fur {alas}, (3.13)
ij ab

whereas the fluctuation potential

N 1 St
W= 1 Z(pq||rs> {a;agasar} (3.14)
pqars

contains various types of rank-changing and rank-preserving operators, 51 as can also be

seen in Figure 2.4 (page 42).

In the following, the definition of a so-called superoperator is useful. The operation
of a superoperator B on an arbitrary operator A yields the commutator between the

standard operators B and A,

BA=[A B)=AB - BA, (3.15)

while the identity superoperator T is defined as IA = A. With the definition (3.15), the

transformed Hamiltonian Hy can be rewritten as
Hy = ¢ Hy, (3.16)

where the equivalence to the standard BCH expansion of H in Eq. (3.12) can be seen via

0
FH=Y
k=0

| —

. . 1 .

"H=H+6H + -6*H+...= H+[H,6) + =[[H,6],6] +.... (3.17)

-
N

!

The transformed Hamiltonian can be reorganized by separating terms involving Fx

and VN as
Ay = 7By +
NTEANTEOAN (3.18)
=Fn+ X(0)oFN + e’ WN,
where X is a polynomial function of the superoperator 3,[51]
o

. 1 1 1 1 . 1
X@) =Y =V ' =14 64624+ +—0o"+.... 3.19
() ZN!U +50+ 50+ 550 + 1550 T (3.19)

In order to derive the “Bernoulli expansion” of the transformed Hamiltonian, the
derivatives of X as well as its inverse function are required for its Taylor expansion, which

shall be derived explicitly in the following. The first few derivatives of this function with
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respect to o are given as

X(6)= 5+ %a +30%4 5% (3.20a)
X"(5) = % + ia - 1—1082 +... (3.20D)
X"E) =+ éa n (3.200)
X"(5) = % +..., (3.20d)

where in general the value at & = 0 is X (0) = %H for the n-th derivative.!
AThe inverse function X 1(5) = (1+ 15+ é&Z + 500+ ﬁ&‘i +...)71, also denoted
by X_1 for the sake of notational brevity in the following, can be expanded in a Taylor

series around o = 0 according to

T(G) =)
k=0

A~

. N . 1. o 1. N
|X(_’“1)(o)-a’“ = X,1(0)+X’_1(0)-a+§Xﬁl(o).02+6XZ’1(0)-03+. .. (3.21)

w\H

The first few derivatives of X_; are given as

; 1.1 1 1. 1
X' (o) = —(1+§8+682+.. )—2-(§+§8+§82+.. ) (3.22a)
; 1.1 1 1. 1
X'@)=42-1+-6+-6+..) 2 (c+50+-0"+...)>
2" 6 2 3 '8 (3.22b)
ST N I |
20’ 60’ . 3 40’ .
1.1 111
X/// ~ —_6 1 e~ 7/\2 . —4 - e~ 7’\2 . 3
(@) (+2U+60+ ) (2+3a+8a+ )
1. 1. _ 1 1. 1 1.
+2-(14+-6+-6°+..)2%2-(z4+=0+..)(c+-6+...)
2" 6 2 '3 3 4 (3.220)
L2 (144224 ) (et se . )t ot |
20‘ 60’ .. 9 30‘ .. 3 40‘ .
1.1 11
(1464 z0%4+..) 2 (5 +26+..
(+20+60’+ ) (4+5J+ )

The values of the first few derivatives at & = 0 are thus X (0) = 1; X'(0) = ; X”(0) = £, X"(0) =
1. X/NI(O) _ 1
1 =5
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Xﬁ’{(a):24-(1+%a+é82+..)—5-(%+é8+é52+...)4
—6-(1+%8+é82+ ..)—4-3-(%+%3+éa%...)2.(%+ia+...)
—6.(1+%a+%a2+ ..)*4-2.(%+%3+é32+...)2.(é+ia+%a2+.
+2-(1+%6+é82+ ..)*3-2.(%+%&+...)(%+i&+%@az+...)
+2-(1+%8+%82+ ..)—3-2-(%+%3+é62+...)-(i+%a\+..)
—6-(1+%8+%82+...)—4-(%Jr%&Jré&%r...)?-(%+%3+1—1082+..
—6-(1+%8+%82+..)—4-(%+§8+%&2+...)Q-(é+38+1—1032+ )
+2-(1+%a+é32+ .)—3-(%+ia+...)(§+ia+%62+..)
+2-(1+%6+%&2+ .)*3-(%+%a+éa2+...).(%+éa+..)
+2.(1+%a+éa2+ .)*3-(%+§a+%82+ .)-(%+éa+%32+..)
—(1+%5+é&2+. )‘2-(é+é&+. )
(3.22d)
With this,? one obtains for the Taylor expansion
X*l(a)zT(a):1—%a+%-éaué-o-ai‘—%-%au.... (3.23)
Multiplying the second line of Eq. (3.18) with X1 from the left, one obtains
X7YG)(Hx — Fy) =0 x4+ X 1(6)e" I (3.24)

Hence, from Eq. (3.23) it can be seen that the inverse function X1 contains

Bernoulli numbers as the expansion coefficients, 1]

X'G)=1+) B.o" (3.25)
n>0
1 1 1
Bl =—-=,By=-—,B3=0,B; = — (3.26)

In the following, the subscript “N” for normal ordering is dropped for better readability,

but normal-ordered operators are still assumed throughout. Thus, a suitable expression

2The values of X ™ at & = Oarethus X', (0) = —1; X", (0) = 3 -1 = L, X" (0) = -2+14+2-1 =0,
XTI'(O):24'1%—6'3'i'%—6'2'i'§+2'2'%'%+2'2%—6'i'%+2 1421401 1L

~—
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for the iterative generation of H is obtained

Il
M

H +V (3.27)

A~

F+X7'(6)e’V - B.g"V, (3.28)
n>0

<
I
Q)

where the last equation is obtained from Eq. (3.18) by multiplying V = X (3)6F + ¢V
with 1 = Xﬁl(&\) — Y ns0 Bno™:

1-V = (X7'@) - Y B.o") - (X@)5F +¢7V) (3.29)
n>0
V=X"106)XG)sF+X'5)eV - B,o"V
n>0
- B (3.30)
=GF+X71(6)e’V = > Bn"V
n>0

Now Onp is defined as the “nondiagonal” part of an arbitrary operator O containing
all the excitation and deexcitation operators in O. For instance, the last two diagrams
with excitation levels of —1 and 41 of the Fock operator in Figure 2.3 (page 41) and
the last two diagrams with excitation levels of +2 and —2 of the fluctuation potential
in Figure 2.4 (page 42) are the respective nondiagonal parts, whereas cluster operators
from Figure 2.5 are purely nondiagonal. Defining furthermore the “rest” part Op as

Or=0 — OAND7 the UCC amplitude equation can be written as
0 = (®;|Hxp|®o) = (@;|FNp|®o) +(®;|Vap|®o) , (3.31)
=0

where only Hnp needs to be considered since otherwise |®g) does not couple to excited
determinants and Fxp = 0 since the Fock operator is block diagonal according to

Eq. (3.13). Thus, the amplitude equation can be equivalently written as
Vap =0, (3.32)

and after having solved this equation only VR needs to be included in the iterative

procedure for the generation of V,[51]

VI =GF 4 X1 5)V - Y B VM (3.33)
n>0
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If one starts with Véo} = VR, then H can be generated as a power series of o.

Plugging all expansions into Eq. (3.33), one obtains in the first round

0 map s (1= o Bt Y1 dot e )7 (< B e
VR oF + 20+120 + ... —|—0’—|—2O' +...)V 20+12a + VR
P NN 1 5~ 1 .~ 1 5~ 1 o~
:(UF+V+UV+§U2V+...>+(—§O'V—§O'2V—ZO'3V— )
1 _5- 1 35 1 _4- ) (1,\A 1 5~ )
+(12 V50V + 2tV )+ (55TR - 500k (3.34)
—GE V48V - SaV 1 sl 5% - Larv 1 Laov - Lot
=0 o 50 50 VR + 50 50 13 27 R

P DN I 1 5~
=GF+V+ -6V + -6V +-—=6"VAp + - ..
or + +20 +2U R+120 ND + )
the result of which can again be plugged into Eq. (3.33) to obtain Vf?}, and so on.
The lowest-order terms, which are the most important ones, converge rather rapidly.

Eventually, the expressions for H are obtained, which up to cubic commutators are given
by 51

H = 70—|—H1—|—H2—|—H3 (3353)

Iy =F +V (3.35h)

Hy = [F, 6] + é[f/,&] + %[ /R, O] (3.35¢)

A I I M I (3.:354)

_ 1. - | 1o 0

Hj3 = 24[1[[VN13, 6], 6]r, 0] + %H[th 0]k, 0lr, 0]+ Sl[[V, 0]k, 1R, 0] (3.35)
= 57V, 0Ir, 61,61 = 5 [[[Vk, 6], 6], 6],

where the terms of H that involve F' now truncate to the first power of &, which
constitutes a significant simplification compared to the original BCH expansion (3.12).
In order to differentiate approaches using the BCH or the Bernoulli (Bn) expansion for
H, the methods will sometimes be donoted by BCH-UCC or Bn-UCC, respectively.

As stated previously, for an efficient UCC theory, not only the excitation manifold,
but also the expansion of H needs to be truncated in a certain manner. In the following,
the excitation manifold will include single and double excitations (and deexcitations) only,
which corresponds to the UCCSD scheme. For the truncation of H, several possibilities
have already been studied in the literature, for instance a truncation based on the order
of commutators, 37l the requirement for the method to be exact for a given number of
electrons, 39 or more often arguments from perturbation theory have been used to obtain
the UCC ground-state energy E(I]J CC consistent through a certain order. 3733131 The aim
of the method presented in the following is to obtain excitation energies of predominantly

singly-excited states correct through second or third order in MP perturbation theory.
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As was shown in Section 2.6.7 (page 48), doubly-excited configurations appear in
first order of perturbation theory, whereas single excitations occur only in second order
for the first time (assuming that Brillouin’s theorem holds). Thus, for the derivation of
approximate UCCSD amplitude equations, the &9 amplitudes will be regarded to be of
first order, whereas 67 amplitudes to be of second order. For a consistent second-order
scheme, apart from the commutator with F, only one commutator of 6o with V needs to
be taken into account for the matrix elements of H, whereas with the BCH expansion also
the double commutator of 69 with F needs to be included. For a consistent third-order
scheme one commutator of 51 with V and two commutators of 09 have to be considered.
This will be carried out for two approximate UCC schemes termed UCC2 and UCC3,
where the matrix elements of H are consistent through second and third order, respectively.
For the UCCSD scheme, the amplitude equations (3.8) can be equivalently written as the

matrix elements

H, = (P H|D) =0
) ai < zl|) 7| 0> (336)
Hep 5 = (@7 |H|®g) = 0

3.3 The Second-Order UCC2 Scheme

In this section, a consistent second-order scheme based on UCC theory is presented. First,
the ground-state amplitude equations will be derived, followed by the secular matrix
elements for the calculation of excitation energies, which will be seen to be equivalent to
ADC(2), but depend on how the transformed Hamiltonian H is treated. The terms from

the Bernoulli expansion of H that need to be considered in the UCC2 scheme are given as

_ PN . 1.~ 1.

HYCC? — P4V 4 [F,61 + 62 + i[V,&g] + i[VR,&Q] , (3.37)
where the leading term of H is the (normal-ordered) Hamiltonian H = F + V itself,
Eq. (3.35b). All commutators involving 6 = S— St can be written as two commutators, one
involving the excitation and one the deexcitation operator part as [V, 6] = [V, §]+[ST, V],

such that in principle always two possible contributions need to be considered.

3.3.1 Derivation of the UCC2 Amplitude Equations

In the following, the UCC2 amplitude equations shall be derived using the diagrammatic
techniques presented in Section 2.6. For the S and St operators the same diagrams are used
as for T'and T in Figure 2.5 (page 42). The only two contributions of H to the amplitude
equations are the same as for CCSD and have already been derived in Section 2.6.6. The
Fock operator contributes Eq. (2.158) to the singles equation, <<I>?|F|<I>0> = fai, which
vanishes if Brillouin’s theorem is fulfilled, and the fluctuation potential contributes the
integral from Eq. (2.159) to the doubles equation, <<I>§L;’|V\<I>o> = (abl|ij).



68 3 UNITARY COUPLED-CLUSTER THEORY

Due to the connectedness of the transformed Hamiltonian H, often only the (physical)
excitation part Sy of 65 contributes to the amplitude equations, making the linear

contributions almost identical to the CCSD ones (Section 2.6.6), for instance
(BF|(F61)c|Po) = (BF(FS1)c| o) + (BFI(SF)elo) = D faro? =D fiiof, (3:38)
—_— -
= b J
=0

as shown in Eq. (2.160). Another example is the contribution of the [F, &3] commutator
to the singles equation, that turns to vanish for a block-diagonal Fock matrix. Since only

the 5’2 part of &9 can contribute, the matrix element can be evaluated as

A X -
(DY (EF2)e| Do) = 1 { jf }b = fipol, (3.39)
jb

which vanishes if Brillouin’s theorem holds. The only remaining term for the singles
equation is the contribution of [V,&Q], where again only the Sy part can contribute,
making it identical to the CCSD contribution,

(3.40)

1 _ S R
= 5D aillbeioly — 5 S GHIIB

jbe kb

where the factor of % arises from the pair of equivalent lines (b and ¢, j and k, respectively),

and the signs come from two loops each but two or three hole lines, respectively.

Going on with the doubles equation, the contribution of [F ,09] can be evaluated as

(3.41)

=P(ab)Y  freoly = Pij) > frjoi
c k

where the permutation operator had to be included because of the pair of unique external
particle (a and b) or hole lines (7 and j), respectively. The last contribution to the UCC2
amplitude equations comes from the [V, 9| commutator, which gives rise to three distinct

contributions coming from the fragments of V with excitation level 0 and the excitation



3.3 The Second-Order UCC2 Scheme 69

part S, which are given as

7 a k c
1 \ (3.42)
= 2Z<ab\|cd o5 dy 2 Z kll|ij) ogy
cd
P(ij)P(ab )Z<kaCJ>U
ke
With this, the UCC2 amplitude equations can be summarized as
OZH(ECCQ Jai +Zfab0' Zf]zo' +ijb0'
(3.43a)
+5 Z aj||be)o; Z(Jkﬂlw
jbC ]kb
0= H(%CZ?Q (abl|ig) +73 ab) Zfbc o5 — kaj o
(3.43b)

k
+ = Zab”cda + = kaw of + P(if)Plab) > (kbl|cf) o

ke

Assuming a diagonal Fock matrix, f,q = €,0,¢, the equations can be simplified to

_ .1 , .1 e a
0= H(ECC2 = (eq —&i)ol + §Z<aj||bc>afj - §Z<]k||zb>aﬂ? (3.44a)
jbe Jkb
0= H;J,,CU@ (ab]|ij) + (5a+5b— i—gj)ol
ab | BB (3.44b)
+ = Z (ablled) o + = Z (Kl||if) o + P(if)P(ab) > (kbl|cj) o,
kc

from which the doubles equation can be seen to be equivalent to the one of the linearized
coupled-cluster doubles (LCCD) method, 3770148150 which can be obtained from
the CCSD doubles equation (2.164) by omitting all terms involving Ty amplitudes and
the quadratic terms in Ty. LCCD is also known under other names in the literature such
as D-MBPT(o00) 1041511 or CEPA-0.[129:152] The ground-state energy obtained with these
amplitudes is correct through third order in perturbation theory, and is also equivalent
to the third-order expectation-value coupled-cluster method, XCC(3).[34] The singles
equation, on the other hand, is formally identical to the second-order singles tfj), see
Eq. (2.171a), and since the singles amplitudes do not couple to the doubles, the LCCD
equations can be iterated alone and the converged amplitudes can then be plugged into

the singles equation.
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3.3.2 Derivation of the UCC2 Secular Matrix Elements

In order to obtain excitation energies within the UCC scheme, the secular matrix M

within the space of singles and doubles has to be diagonalized, which looks like

(1\?188 l\j/ISD> _ <{<<I>?!ﬁ— EGeCloh)}  {(@f]H ~ EECC@?@}) (3.45)

Mps Mpp {(@f[H — EJCC100)} {(Df|H — EY“C|eg))}

where for the same arguments as discussed for ADC in Section 2.5.2 (page 27), only the
singles-singles block needs to be expanded through second order, the coupling blocks

through first order and the doubles-doubles block in zeroth order.
Starting with the fIss block and the bare Hamiltonian, the matrix elements (@f\ﬁ]®?>

can be evaluated diagrammatically as follows. Since there is a singly-excited determinant
both on the left and on the right side of the operators, a pair of open particle and hole
lines is required above and below the operator interaction line, respectively. The Fock
operator can only couple two lines, which means the other pair of particle or hole indices
needs to be identical, which is indicated by the additional separate line with two indices

(counting as one), which gives rise to the Kronecker delta,

- i /\ (3.16)

= fab0ij — fij Oap + (aj||ib) ,

where the first two diagrams have only one loop, since the separate open lines can be
thought to form a loop with the other open lines by going towards infinity and come back
again with another open line.['l For non-HF references there might also be a contribution
from the [F ,01] commutator, that itself has contributions from both the Sy and the S’I

part of &1,
X - X -
VA RSRA
A - - (3.47)

= 5ij2fka U]l; + 5abeicU]C'

k c

+6i5 > fak OF +0ap Y fei 05"
k c

(@F|(FSy + S1F)c|®}) =

The [F , 02| commutator cannot contribute to the singles-singles block, hence the only

remaining term in the singles-singles block is the second-order contribution [V, 9], which
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gives rise to three distinct contributions including their Hermitian conjugates, where the
diagram is mirrored horizontally and thus the indices of the amplitude and two-electron
integral are exchanged. Thus, only the part involving S, is discussed. Since Sy has
an excitation level of +2, but the total excitation of the commutator has to be zero,
only the —2 fragment of V' comes into play, but again this is only present in the [V, G2
commutator of Eq. (3.37), but not in [Vg, d3], which is why the final equations will get

an additional factor of % The diagrams and their algebraic interpretation are given as

(@F](V82)c] 82 = w /\ .

- ac 1
= Z<k]||0d>aik - §5ij (lk||cb)oiy — abz kjlldc) Ukz ’
klc ked

where the first term has three loops and three hole lines and thus a positive sign, whereas
the other two have a negative sign because of two loops and three hole lines. By taking
the missing factor of 2 and the Hermitian conjugate part (@ﬂ(ﬁ;f/)c@?) into account,

the resulting second-order part of the matrix element

1 . ac . cdx*
3 > [(kjlled)ofs + (acllik)ofs’]
ke

1 ca cbx
10 > [kl eb)ii + (calllk)oi"] (3.49)
klc

_*5abz (kjl|de)os + (de||ki)ois]
ked

1o
S (@27, 52]]@%) =

is seen to be equivalent to the corresponding contribution of the ADC(2) matrix,
Eq. (2.119). As will be discussed in Chapter 4 (page 91), this equivalence does not
hold if the BCH expansion is used for H, but the matrix elements will be equivalent to a
second-order ISR approach based on a CCD ground state.

Going on to the singles-doubles coupling block, only the first-order contribution
from V contributes for a canonical HF reference, which corresponds to the identical
contribution as in the CI matrix Hgp = HJ{)S, but also to the corresponding first-order

term of the ADC matrix M(!). The matrix element can be evaluated diagramatically as

a

<<1>3|V|q>g;>_/\ i+ W+ g U+/\
J b k c

= 0ir(jal|bc) — bac(Jk||bi) + d;j kchb dap(kjllci) ,
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where the signs differ because each diagram has two loops but a different number of hole

lines. The other coupling block 1\7[Ds = 1\71%D can analogously be evaluated as
(F|V|@F) = dix(abllci) — Sac(kbl|ig) + Ojx (ballci) — Spe(kallji) (3.51)

The only missing term is the zeroth-order contribution in the doubles-doubles block,
<§>§;’|F |#¢4), which of course is identical to the corresponding CI or ADC matrix element
given as the orbital-energy differences on the diagonal. The UCC2 matrix elements for a

canonical HF reference can thus be summarized as

[ N 1 : ac . cdx*
ity = (2a = £0)0api; + (ajllib) + 5 > [(Killed)olf + (acl|ik)ofy"]

ke
1 ca cd*
- 15@' [(Lk|cb)ofi + (cal|lk)off™] (3.52a)
klc
1 . c _dex
~ 100 Y [(killde)ofs + (aelkiyofs']
ked
FUCC2 _ < /- U g e
iiba.ck = Oik(jallbe) — Sac(jk||bi) + 6ij(kalleb) — dap(kj]|ci) (3.52b)
o = Oin{abl|cj) — Sac(kb|[ig) + 051 (bal|ci) — Spe(kal |ji) (3.52¢)
bk = (€a + €4 — € — €7)0ik0j10ac0bd - (3.52d)

It should be noted that apart from the terms given in Eq. (3.47), there will also
be con‘Eributions from matrix elements like <<I>f|ﬁ’|<1>lﬁ>, (‘ID%Z’|F|<I>Z>, <@?|(F&1)c|@?i> and
<<I>§Jl7 (F'61)c| ) for a non-HF reference, since Brillouin’s theorem does not hold, f,; # 0,

and the 1 amplitudes then already appear in first order.

3.4 The Third-Order UCC3 Scheme

Now, the approach presented in Section 3.3 will be extended to third order. For this, the
commutators with 61 need to be included in Eq. (3.35¢) as well as the double commutators
with &9 in Eq. (3.35d) to take all third-order terms into account. The UCC3 Hamiltonian
is thus given as

— A A ~ 9 1 Y
HUCC3:F+V+[F,5-1+(}2]+ [V,al+c}2]+§[VR,61+6z]

N |

1.~ o 1.~ . 1.~ .
+ ﬁ[[VNm G2, b2) + ZHV’ G2]R, O2] + Z[WR, G2)R, 02]
) - (3.53)
= FUCC2 4 5[v, 61] + =[VR, 61]

. 1 .
[[V,62]Rr, 02] + Z[[VR, G2]R, 02],

A~ =

1 .- N
+ E[[VND,@],@] +

where for the first time double commutators occur and the “rest” part needs to be taken

after a commutator, which will be explained at a later point.
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3.4.1 Derivation of the UCC3 Amplitude Equations

The UCC3 amplitude equations correspond to the UCC2 ones plus the additional third-
order terms arising from the single commutators of V with &1 and the double commutators
of V with &, as can be seen in Eq. (3.53). Let me first discuss the contributions of 4; to
the singles equation, where two different terms need to be distinguished. The first one
contains the excitation operator Sy and thus needs a fragment of the fluctuation potential
with an excitation level of 0 and a pair of particle and hole lines above the interaction line,

such that the only possibility is the one already given for the CCSD case in Eq. (2.161),

(BF(VS1)e|®o) = (ajllib) ¥, (3.54)
jb

which occurs also in VR, and thus no additional factor of % needs to be included. However,
the deexcitation operator S’I can also contribute here by including the fragment of the

fluctuation potential with an excitation level of +2,

(@ (STV)c|®o) = iY Aa 4 = {abllij) ob", (3.55)
jb

where the final contribution will get a factor of % since the required fragment of the
fluctuation potential is not included in the commutator involving Vg in Eq. (3.53). No
such differentiation needs to be done for the contribution of &1 to the doubles equation,
since only Sy can contribute with a +1 fragment of the fluctuation potential. The
deexcitation part S”ir would require an excitation level +3, which is not present in V. The
[V, S1] commutator has already been evaluated in Eq. (2.162) for the CCSD case, but is

equivalent to the one here, and thus

(@EI(VS1)e|@o) = P(if) Y _(abllcj) of — Plab) Y _(kbllij) of - (3.56)
c k

Special care needs to be taken for double commutators involving &, since they can be
rewritten in terms of four commutators involving S and ST. In the most general case,

this can be written as

A~ ~

[[0. 6], 6n] = [[O. Sm], Sal + [SF, [S, O + [SF, [0, Sal] +[[SF, OL, Sl . (3.57)

for an arbitrary operator O. The only double commutators (DC) occurring in the UCC3

scheme are the ones involving 65 in Eq. (3.53),

_ 1. .- PN 1.~ . . 1.~ .
be = 13 ([Vap, 2], 62] + 2V, 62]r, 62] + 7 [[VR, G2lR, 62] (3.58)

A~ A~ ~ A~ ~ ~

for which Eq. (3.57) can be written as [[H,d2],02] = [[H,S2],S52] + [S;, [S;,fl]] +
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(S5, [H, Ss)]+[[S3, H), S3]. Starting with the singles equation of Eq. (3.36), (92| H|®g) = 0,
the two double commutators that involve only Sy or S’;r do not contribute because the
excitation levels cannot match. Hence, only the mixed commutators involving both S,
and S’; make a contribution. For this, only the +1 fragments of the fluctuation potential
are required, which is why the first commutator in Eq. (3.58) involving Vap does not
contribute. Thus, only the other two double commutators can possibly contribute to
the singles equation. In order to derive the explicit terms, a prior look at the operator
fragments seems advantageous. In the middle is a +1 fragment from the fluctuation
potential, Figure 2.4 (page 42), on top of that is a 5’;[ and below a Sy fragment, see the
cluster operators in Figure 2.5 (page 42). According to the matrix element, the target
indices (i and a) can either be both from the 1% fragment, both from the Sy operator, or
one on V and the other one on S5. The task now is to find all possible, uniquely connected

diagrams.

The most straightforward possibility is the first one with both target indices on the

1% fragment, which gives rise to two contributions as

(DF](SIV 82)c|®o) + \/ + \/
| ) (3.59)

! 1
= —5 D _talllik) ofjoi5" + 5 Y {adllic) ofjofy"
jklbe Jhbed

where the left arrow again indicates that it is only one of several contributions to the
matrix element. The prefactors arise from a pair of equivalent particle or hole indices
and the signs differ because both diagrams have three loops, but four or three hole lines,
respectively. The most difficult contribution is when one target index (one open line)
comes from V and the other one from S. In order to find only uniquely connected
diagrams, the procedure developed by Kucharski and Bartlett is useful. 911:102] Here, as
a first step, + symbols are assigned to particle lines and — symbols to hole lines between
the interaction lines. These signs are combined in all unique ways in order to produce
only unique connectivities of the operator diagrams. Since the 1% fragment has one open
line and the S, fragment the other one, the Sg fragment has two connections with V,
whereas S5 has only one, which are the only relevant connections to define the uniqueness.
For example, choosing one + and one — connection with 5’; and one — connection with
5‘2, this “sign sequence” will be denoted as + — |—, where the first pair of signs belongs
to the 5*; operator, and the one after the vertical bar to S. Thus, there are only four
unique ways to combine them: (1) ++ |+, (2) — —|—, (3) + — |+, and (4) + — |—. The
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four corresponding diagrams and their algebraic interpretation are given as (in order)
+ .

(@FI(

Uy
N =
<

>
+

2)C|(I)0> <~

(3.60)

1 | ) "
— 2 {bellid) ofitoli + 1 D (allljk) offols
jkbed jklbe
— > Aad|ljd) ool + > (ll|ik) ool
jkbed Jklbc

where the factor of i in the first two diagrams comes from two pairs of equivalent
lines. The last contribution to the singles equation comes from the part where both
target indices ¢ and a are on the S, fragment. However, in this case the order of the

commutators in Eq. (3.57) is of importance. If the inner part is [5’; V], this commutator
forms an intermediate of the form --/ which corresponds to a single deexcitation

(the direction of the arrows is not important here), and this term is vanished by the “R”
operation after the second and third commutator of Eq. (3.58). The other possibility,

where the inner commutator corresponds to [V, Ss], generates an intermediate of the
form \ / \ >- \/, which corresponds to a triple excitation (the arrow direction is not

important) and is not vanished by the “R” operation, since the UCCSD amplitude
equations as written in Eq. (3.32) only guarantee that the nondiagonal part of V' vanishes
for single and double (de)excitations, but not necessarily for triples. Hence, only half of
the corresponding terms contribute and the final matrix elements will get an additional
factor of % Neglecting this subtlety for a moment, the final diagrams are obtained by
adding the missing Sy or S’; fragment to obtain

(@7F(
(3.61)

1 ) . »
= 5 S GlR) ot + 5 S Gallje) ot
Jklbc jkbcd

where this factor of % comes from a pair of equivalent hole or particle lines. Hence, the

final contributions of Eq. (3.61) will have a prefactor of 7.
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Let me go on with the third-order contributions to the doubles equation, (@%ﬂf_f | Do) =
0. The simple commutator of the fluctation potential with 1 gives only a contribution for
the S; part, since otherwise the excitation levels do not match. This commutator is thus
identical to the corresponding CCSD term, which has already been derived in Eq. (2.162).
The only remaining part is again the double commutator with 2. Here, in addition to
the mixed commutators involving both Sy and S’;, also the part of Eq. (3.57) with two
Sy fragments contributes, which actually corresponds to an analogous contribution to the
CCSD doubles equation. The 44 excitation level from the two S, operators is met by the
—2 part of the fluctuation potential to yield a total excitation level of 42, matching the
doubly-excited determinant on the left of the matrix element. Since only the —2 fragment
of V is used, the third commutator involving Vg in Eq. (3.58) does not contribute. The
second commutator, on the other hand, is not vanished by the “R” operation, since the
intermediates are no pure excitations or deexcitations.

Employing again the Kucharski—Bartlett sign sequences, there are four unique con-
nectivity patterns of the cluster operators to the fluctation potential: (1) + — |+ —, (2)
++]——, ) ++4+ —|—, and (4) + — —|+, where the order of the parts left and right of
the vertical bar does not matter since the So operators commute. The resulting diagrams

and their algebraic interpretation are given as (in order)

3
+ .
(3.62)
1 . R
§73(2j)77(ab)z<kl||cd “,fafngr Z (kl||cd) ooty
kled klcd
1A ac 1o, .. ab__c
573( ) Z<leCd> 045 O—IIZ:? 3P(Z]) ZU{:ZHCd) Z,?O']ld ’
kled kled

where the first diagram has the prefactor because of a pair of equivalent vertices (that
would correspond to % in CCSD! and differs here because of the Bernoulli expansion for
H), the third and fourth diagram have one pair of equivalent lines each, and the second
diagram has an additional factor of % because it has two pairs of equivalent lines.

The last contributions to the doubles equation comes from the double commutators
in Eq. (3.58) involving one Sy and one Sg fragment in combination with the 42 fragment
of V. The same conclusions whether the double commutators of Eq. (3.58) contribute or
not hold as previously for the §22 case. However, more care has to be taken here since the
operator fragments do not commute with each other, which gives rise to seven unique
Kucharski-Bartlett sign sequences: (1) +—[+—, (2) ++|——, (3) ——|++, (4) ++—|—,
(5) + — —|+, (6) +| + ——, and (7) —| + +—, where only the first one is symmetric. The
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corresponding diagrams (in order) and their algebraic interpretations are given as

(I)ab ‘(I)O

\/O@/ m \/W»

ac| lik) aﬁbaﬁl*
klcd

1 . 1 «
+ o5 S tedllig) oot + <5 S (abllkl) oot
kled kled

1. ab _cdx > cdx
= 5P ig) D _(edl[ki) off o — ZPlab) Y _{cal ki) oifof]
klcd klcd

— ~P(ab) Y _(acllij) oot — ZP(ij) Y _(abllik) o5fofi™
kicd kicd

oo\»—l

D= O

CD\*—‘

where the first diagram has a pair of equivalent vertices but is the only term that actually
occurs twice in the double commutator for symmetry reasons, the last four diagrams
have one pair of equivalent particle or hole lines each but are unique (meaning they occur
only once), and the second and third diagram also occur only once but have two pairs of

equivalent lines, thus explaining the different prefactors.

It should be noted that in the original publication the terms in the amplitude

equations stemming from the bare Hamiltonian H were not shown. P1]
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The final UCC3 amplitude equations!®! can thus be summarized in the following:

0=Hy" = f«+§jﬁwa }jfﬂa-+§jnba

+ = Z aj|lbe)o; Z (jk|lib)o] +Z ajl|ib) 0 + - Z abllij) o

]bc jkb
1 . cb _cbx . c *
~3 Z(alekj Uljbakl]’ + 3 Z (ad||ic) Jkg’ag?
jklbc jkbcd (3.64a)
- = Z (bcl|id) o ad bc*+ Z (all|jk) ffaﬁ*
jkbcd Jklbc
— Y faclljd) oot + > (blllik) off ol
Jkbed Jklbc
1 . ac _bex 1 . ac *
— 1 > (vl||jk) offol + 1 > (bd]|jc) ool
jklbe jkbed
0= HC[L{)Cljcg <a’b|’”> +P ab) Zfbc 05 — ka] Oik
k
+ = Z ab||ed) of + = Z kl|lig) ofy + P(ig)P(ab) > _(kbl|cj) offc
kc
+73(ZJ)Z<abHCJ> of — P(ab) Z<kb!|ij>
1 A D ac cd _a
+ §P(1j)73(ab)z<kl]\cd kagu Z kl||ed) ofdogd
kled klcd
1A ac Lo . ab__c
- gp(ab) Z(leCd> T4 O—%l 373(2]) Z(kl|’6d> zlggjld (364b)
kled Eled
1o s . cdx
+ gP(@j)P(ab) Z(ac| |ik) afébak‘li
klcd

1 ) N »
klcd klcd

1o, .. ab _cdx 1 4 cdx*
— P Y edlki) oot — ZP(ab) (el ki) oo
kled kled

14 1 A . cd _cdx*
- gp(ab)Z@CHlﬁaklakl - 677( ) > _(abllik) o§iofi*.
klcd Kled

3.4.2 The UCC3 Secular Matrix Elements

In order to obtain electronic excitation energies with the UCC3 scheme, also the elements
of the secular matrix (3.45) need to be expanded one order higher, respectively. This
means l\z/ISS needs to be expanded through third order, l\z/ISD and 1\7IDS through second
order and KJDD through first order. Their derivation is very lengthy and thus omitted

here, only the final results are presented.
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There are two distinct third-order contributions in the singles-singles block, one from
the single commutator of V with &1, and one from the double commutator with . The

former is given as (5!l

(®2(VS1 + STV)c|2h) abZ (ik||jc) 0k+5wz (ak||bc) of
(3.65)
+Z azch o¢ —Z(kl\|jb> of) +hec.,
k

where “h.c.” stands for Hermitian conjugate.

The third-order terms arising from the double commutator with &4 are given as!®!!

al(QTYr & 1 c ex
([(S]V82)e|®5) = (0w Y _ (iellel) oo
klcde
1 *
+ glab > (im] kD) o5hof*) + hee)
klmed
1 o edw e 1 e ed cex
— 50ab Z (iml||j1) o oo, + 5 0ab Z (ielljd) ofiof;
klmed klcde
1 cdx*
- ((55% (md]|bl) Ukmffk?
klmed

1
+ 50 >~ (del|be) offosi™) + hee.)

klcde
1
+ 505 S fadllbe) offoff — 365 S (mallib) oo
. klcde klmed (366)
(G S timllkt)olots, + 5 S eello) ooy
klme kcde
d* : bd*
Y Z le|[kb) o 311 Ok — 9 Z(ZdeC> ;Llcakl
klcd kled
1 . d* 1 d d*
_ZZ<Zd||b‘7 Ol Okl —ZZWLHW OOk
klcd klcd
— ial|kc) %) 4 h.c.
> (iallke) oo}
kled
+ 3 (ik|[1g) ofe, 0t + S (ad]|cb) oS50t
klmc kcde
+ - Z kal||bl) Uk] o 4 = Z icl|dj) ofe* ol
klcd klcd

The second-order terms in the coupling blocks come from the commutator of V with

02, where depending on the block only one cluster fragment (SQ or 5’;) can contribute,



80 3 UNITARY COUPLED-CLUSTER THEORY

and the singles-doubles block is given as[?!!

(@F|(S]V)cl@%) = 8P (be)P(jk) D (acl|bl) o + 5zg7’(3k)2(ak!\lm> Oim

le Im
> D( i S TR cdx* 1 > . ex
_6ab7?(bc)73(jk)2(jdﬂzl) R §5ab77(bc)z<de\]zc> o (3.67)
ld de
k)Y (ak|lil) ob* 4+ P(be) > (adl|ib) ",

l d

and the other coupling block is the Hermitian conjugate of this one. The first-order
contribution to the doubles-doubles block is given as!®1l
<(I)ab‘V‘(I) > = 5lk5]l<abHcd> + 5ac(5bd<lezy) (Cd)P(kl) (5bd5jl<ak|]ci> (3 68)
+ Opadir(al]|cf) + 0acdji(DK||di) + 5a66ik<blde)) .

3.5 Strict UCC Variants and Connection to ADC

In the following, the “strict” versions of UCCn (n = 2,3) , denoted UCCn-s, are referred
to as the ones that contain the minimum number of terms required for obtaining excitation
energies of predominantly singly-excited states correct to order n."!l This corresponds to
a perturbation expansion of the matrix elements of H that uses amplitudes derived from
standard perturbation theory, as discussed for traditional CC in Section 2.6.7 (page 48).
In low order, the perturbation expansion of T is the same as for &, such that the first- and
second-order amplitudes required for UCC2 and UCC3 are the same as the ones given in
Egs. (2.170) and (2.171), where the first-order singles amplitudes vanish, o/ M) — 0. The

UCC3-s Hamiltonian is thus given as

AYCCs — g L g L g@ 4 gO) (3.69)
where the individual terms are given as 5!l
HO — F (3.70a)
HY = [F,6M+V (3.70b)
_ . 1.~ 1 -
A® = [F.67 + 6]+ SV, 03] + 5 [V 03] (3.70c)
_ . 1.~ 1.~
O = [F.61" + 6571+ 5V, 657) + 5[V, 657

(3.70d)
[V, 63" ]R, 6571,

which differs from the expansion of standard CC in Eq. (2.166) due to the Bernoulli
expansion. The perturbation expansion is simpler than the corresponding one using the
BCH expansion for H, since at most single commutators are needed for H® and double

commutators for H®). The UCC secular matrix elements thus still have the same form
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as derived in previous sections, only the converged amplitudes need to be replaced by the
ab(1) _ __ (abllij)
€i+€j —Ea—E€p

into the UCC2 secular matrix elements (3.52), the identical terms as for the ADC(2)
matrix (2.119) are obtained, thus establishing the equivalence of UCC2-s and ADC(2) for

excitation energies. The same equivalence can be shown for the strict UCC3 and ADC(3)

n-th order ones. Plugging the first-order doubles amplitudes t( ) ab = Tij

schemes, 51 since the UCC2 amplitude equations are exactly contained in CCSD, the
second-order amplitudes from UCC are identical to the ones obtained in the iterations
of standard CC theory, 0§ ) = T(Q) and 0&2) T( ), which correspond to the MP
amplitudes used in ADC. However, the UCC3 amplitude equations differ from traditional
CC, since contributions from Sg occur for the first time, and hence the third-order doubles
amplitudes will differ, 0(3) #* T 2(3). Together with the fluctation potential V, these
amplitudes occur for instance as a fourth-order term in the p-h/p-h block of the UCC
secular matrix, (®¢([V, 653)]|<I>?>7 which means that the strict version of UCC4 will differ
from ADC(4).

3.6 The UCC Ground-State Energy

Employing the standard Taylor expansions for the exponentials, the UCC ground-state

energy has already been expanded through fifth order, which has been termed UCC(5).[37]

E(I)JCC will be developed using the Bernoulli expansion of H. For the UCC ground-

Here,
state energy (3.7) to be consistent through at least second order, the terms of H in
Eq. (3.37) need to be taken into account, but for the correlation energy only the commu-
tators [F',61] and [V, &) can contribute. The commutator involving the Fock operator
contains the same matrix element as in the CCSD equations, Eq. (2.155), but additionally
the diagram mirrored horizontally in the middle contributes, which yields the total matrix

element
(DF(F61)e| Do) = (DL|(FS))e| Do) + (¢[(STF)e| @) = Zfzaa +Zfaz oi", (3.71)

which vanishes, of course, as long as Brillouin’s theorem holds. The commutator involv-
ing the fluctuation potential and &2 also contains the same matrix element as CCSD,
Eq. (2.156), but also the same diagram mirrored horizontally. However, only the first
commutator involving V in Eq. (3.37) contributes, the second commutator involving Vi
does not contribute since the required operator fragments having excitation levels of +2
or —2 (see Figure 2.4) are contained in Vxp, not in V. Thus, an additional factor of
% has to be included before the matrix elements and the UCC2 ground-state energy is

given as

E(I]jCC2 _EgIF Zflao' +Zfaz Ua* + 3 Z Z]Ha’b U + Z ab”” ab*’ (372)

z]ab zjab
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which simply yields the same formula as CCD (or MP2) for real orbitals,

UCC2 _ pHF
LBy = Ky

= 2> ligllab) o (3.73)

ijab

i.e. when ijb = oab* holds. Actually, this equation is correct through third order, since
the MP3 energy contrlbutlon can be written in the same way with the cluster amplitudes
replaced by the second-order doubles tg.()lb from Eq. (2.171b). Hence, Eq. (3.72) or (3.73)
would also be correct for E([)jCCB’. However, by using an approximate UCCSD ansatz,
like for CCSD, the ground-state energy can never be made consistent through fourth
) . required for the MP4 correlation energy contain
contributions from triple exmtatlons, that are not included in (U)CCSD. [11,153,154] v,

a comparison to fourth-order perturbation theory including only singles, doubles and

order, since the third-order doubles t

quadruples, MP4(SDQ),[1O4’153] seems possible since the quadruples can be factorized

into products of doubles. 11153l

Nonetheless, the UCC3 ground-state energy can be made “more consistent” by
including higher-order terms from the Bernoulli expansion (3.35a). Hence, the double
commutators (3.35d) involving 61 and &9 shall be investigated. From the four possible
contributions of Eq. (3.57), two different cases have to be differentiated, either only S
or Sir are involved, or both of them in the mixed commutators. In the first case, an
excitation level of +2 or —2 is generated by the cluster fragments, which has to be
cancelled by the fluctuation potential. This means that the term involving Vi from
the double commutators (3.35d) cannot contribute, but also the second term does not
contribute, since the inner commutator produces a single excitation or deexcitation, which
is vanished by the “R” operation after the commutator. Hence, only the first double

commutator involving VD contributes to the energy as

= (@ol[[Vam, 61], 1)1 B0} = [<<I>or TADS2)elBo) + (@0l ((S1)2Vn)el B0)]

; [0 0] ew

= = 3 [Gillab) oot + (abllig) o]
ijab
where the first term is equivalent to the corresponding contribution in the CC case (in
contrast to the second one that is typical for UCC), but the prefactor comes purely
from the Bernoulli expansion and thus differs from the corresponding factor occurring
in the BCH expansion. The mixed commutators, i.e. the ones involving one S, and one
S’I, cannot contribute because the required fragment of V with excitation level 0 is not
present in Vip, and for the the other two double commutators it is vanished by the “R”

operation because the inner commutator produces a single excitation or deexcitation.

A similar conclusion holds for the [[V, 5], 52] commutators. The terms involving
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only Sy or S’; cannot contribute, because the excitation level of +4 generated by the
cluster operators cannot be cancelled by V, and the mixed terms need a fragment of
the fluctuation potential with an excitation level of 0, which is not present in VND, and
the inner commutators generate intermediates that correspond to double excitations or
deexcitations which are then vanished by the “R” operation. This lack of contributions
from 63 is a major difference of Bn-UCC compared to BCH-UCC. Mixed commutators
such as [[V,61], 2] cannot contribute either, since the pure excitation or deexcitation
terms generate an excitation level of £3 that cannot be neutralized by the fluctuation
potential and the mixed commutators require fragments of V with an excitation level of +1,
which is not present if Vip. Furthermore, the inner commutators generate intermediates
that correspond to single or double (de)excitations and are thus vanished by the “R”
operation. Hence, the only contribution from double commutators is the fifth-order term
given in Eq. (3.74).

The next contributions to the ground-state energy would arise from triple commuta-
tors. There are, however, many terms and they are computationally rather expensive
and have not been implemented in the present work. In order to give an example,
one fourth-order contribution coming from %[[[VND, G2, 02], 62] which correpsonds to
an expectation value like <<I>0](ng/5’§)c|fl>0) can be represented diagrammatically and

evaluated as

1 --- 1 iy bd _cds
O T et o
ijklabed

3.7 Calculation of Properties with UCC

Molecular properties other than the energy can be calculated as expectation values of
the corresponding operator with the wave function.®”1%5 For an arbitrary one-electron

operator D with
D= dyafa,, (3.76)
pq

where dp, are the single-particle matrix elements according to Eq. (2.20), the expectation

value with the wave function |¥,,) of electronic state n is given as
D, = <\Dn‘ﬁ|\pn> : (3'77)

Transition moments between different states can be calculated in an analogous manner
as the off-diagonal elements of the operator, i.e. by choosing different m # n on the LHS
and RHS of the expectation value in Eq. (3.77). In order to derive explicit equations for
the UCC scheme, one needs to differentiate between ground-state properties, ground-

to excited-state transition moments, and excited-state properties, where the latter
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also includes state-to-state transition moments. All of these will be discussed in the
following sections.

Another approach to molecular properties is to calculate the derivative of the energy
F,, with respect to a perturbation connected to the observable. This approach will be

discussed in more detail and compared to the expectation value in Chapter 7 (page 143).

3.7.1 Ground-State Properties

By employing the exponential UCC ansatz for the ground-state wave function (3.1), the

expectation value of D can be written as
Do = (UJCCID|BICC) = (Dg|e=7 De? |Bp) = (o] D|Py) (3.78)
where the similarity-transformed operator D is defined via its BCH expansion as

D=e¢°De® =D+ [D,6]+ =[[D,5],6] + —[[[D,5],8],6] + ... (3.79)

The zeroth-order term is of course the Hartree-Fock contribution,

(Bo| D|Po) = dpg (Polfiig|Po) =D dii, (3.80)
pq %

which is trivial and vanishes for the normal-ordered operator form. In the following all
diagrams have to be closed, since an expectation value including the HF state |®() on
both sides is calculated. The first-order contribution would come from the commutator
of D with &9, but this term vanishes since a one-electron operator cannot cancel the £2
excitation level of 69. The single commutator involving &1 survives, however, and yields

the second-order contributions
(@ol(S]D + DS1)el o) = @ Q ~ Y a0t + Y diaot,  (381)
ia ia

where the circle is used for the one-electron operator D to distinguish it from the Fock
operator F'. Another second-order term comes from the double commutator involving &,

where the two “mixed” commutators including both S, and 5’; give a contribution as

+ O E .
' (3.82)

_ ab ab* be _acx
__7Zdﬂ OikOik T3 Zdbaw Tij s

ijkab ’Lj jabc

where the factor of % comes from a pair of equivalent lines, respectively.
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Third-order contributions come from the mixed double commutator involving both
01 and &9, which gives two pairs of double commutators involving either 5’1 and 5’; or S’g

and S’I The corresponding diagrams and algebraic interpretations are given as

A A --0
(@0]($T DSy + §1D51)e|Po) = Mb + m
--0

E: b b b
_ dzaa*a+zdazaa* a’

ijab ijab

(3.83)

while a fourth-order contribution comes from the double commutator with 61, which is

given as

(3.84)

= — E djiof*a?—i- E dabO'a*O'b

ija iab

Higher-order contributions can be included by taking triple and higher commutators

into account, which is not done here.

3.7.2 Ground- to Excited-State Transition Moments

The strength of a peak in an optical absorption or emission spectrum depends on the
strength of the coupling between the electronic ground and respective excited state via a
suitable transition operator, usually the dipole operator. In general, this can be written
as

T, = (U, |D| W), (3.85)

while for UCC the effective transition moments are defined by using the intermediate
states from Eq. (3.4), <\TJI‘ — <<I’0]CA’}L6*5’7 as

Fr = (0] D|®§C) = (@] Cle~? De?|@o) = (@] D] ®p) , (3.86)

which can also be seen as off-diagonal matrix elements of D including the HF reference on
the right side. Thus, the effective transition moments can be written in a diagrammatic
form like the UCC amplitude equations. The true transition moments (3.85) can then be
obtained by contracting the corresponding eigenvector X,, with the effective transition
moments F according to x,, = XL F = > X;n ff}.

Starting with the singles part of ﬁ’f, the zeroth-order term is simply given by an open
diagram with the same form as the one in Eq. (2.158), such that (®% D|®g) = dg;. The
first-order contribution comes from the commutator with &9, where only the physical

excitation part does not vanish, yielding a contribution analogous to Eq. (3.39), such
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that the term is given by

(D¢(DS2)c|®o) = Zdﬂ,a . (3.87)

The first second-order contribution comes from the single commutator with 6; that

is analogous to Eq. (2.160), such that it is given as
<(I)?’(Z>51 )e|®o) Zd b0 _Zdjzo'] ) (3.88)

while another second-order contribution comes from the double commutator with &9 that

gives rise to three distinct terms which are given as

1
(3.89)

bex _ab bex _be bex _ac
7ch’€‘7]k0w—* aJUJkUk_fzde Tjk Tk >
Jkbe Jkbe Jkbe

where the different signs come from a different number of loops and the additional factor
of % comes from the fact that connected contributions can only arise when the inner
commutator is [5’;, 15], since the Sy fragment cannot be connected to the +1 fragments

of D and [15, SQ] as the inner commutator hence does not contribute.

The third-order contribution comes from the mixed commutator involving both &1
and &9, where only those terms involving Sy in combination with Sq can survive, since
otherwise the total excitation level does not match. The resulting possible diagrams and

their algebraic interpretations are given as

o (3.90)

2 : bx _ab E b* ab*
+ dbCU U’Lk dk] lk' y

jbe Jjkb

where the different signs are due to a different number of hole lines and the first two
terms get an additional factor of % for the same reason as before, since in those the S’I

fragment is not connected to D.
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The fourth-order contribution is given by the double commutator involving &1, with

the corresponding diagrams and interpretations given as

=
o>
n»

(@F( 1)c|®o) = \

(3.91)

1 1
bx b b b
=-3 g dej o5 o) — 3 E dyi 0§ 0 + E dpj o af,
b b b

where for the first time a partially disconnected contribution arises because both target
indices (i and a) are on the S| fragment.
The doubles part of F T has no zeroth-order contributions, but a first-order contribution

analogous to Eq. (3.41), such that the corresponding term is given as
(BI(DSa)e| o) = P(ab) Y~ dye o — P(if) Y _ dj ol (3.92)
c k

which are the only terms needed for a consistent second-order scheme such as UCC2.

Second-order terms arising from the commutator with 61 and the double commutator
with &9 do not contribute because the operator fragments cannot be connected at all or
the total excitation levels cannot match the doubly-excited determinant on the left. In
the strict UCC versions, a second-order contribution arises from the single commutator
with (352), that is of course equivalent to Eq. (3.92). Analogous contributions are given
by replacing & by the corresponding n-th order operator 6. A third-order contribution

from the mixed commutator involving both &1 and &5 is given as

>

5@

=
o>

2)c’(1>0> =

(3.93)

1. 1.
= —ip(ab) kZdbk o off = 57)(1]) ;dcj oo
c C

where the factor of % arises again because the S, fragment is not connected to D.

3.7.3 Excited-State Properties and State-to-State Transition Moments

Analogous to the ADC scheme in Eq. (2.121), excited-state properties can be calculated
in UCC by contracting the eigenvector with the (shifted) “UCC-ISR” matrix B, where

By + Dodry = (U7 D) = <‘I)0|CA'}€_&IA)€&CA'J|‘I>O> = (®,|D[®,), (3.94)

that can also be viewed as a general matrix element of D within the basis of excited

determinants. The ground-state property Dy is subtracted on the diagonal in order to
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obtain only the excited-state contribution, which corresponds to neglecting closed D
diagrams.

Starting with the singles-singles block <@§’]D\<I>?>, the zeroth-order contribution is
analogous to the one-particle operator part of Eq. (3.46), giving the general matrix
element (<I>f|]_A?|<I>?> = dgp 0ij — d;j 6qp. There is no first-order contribution since the total
excitation level of the [D, 2] commutator cannot be 0, as it would be required for the
corresponding matrix element. The second-order contribution from the &1 commutator is
in fact equivalent to the non-HF term in the secular matrix, Eq. (3.47), such that it is

given as

(D(DS1 + SID)c|®) =05 > diaoh + 0y Y dic 0
k c

(3.95)
+ 5ij Z dak U,l;* + dap Z de; O';;* .
k c

The most complicated second-order contribution comes from the double commutator
involving 2. The analysis is faciliated by considering on which operator fragments the
target indices (i, j, a,b) can be located and generate all unique combinations thereof with
the remaining parts. The most straightforward way is when D has no target indices,
which means Sy has two (i and a) and Sg the other two (j and b), which gives rise to two
contributions depending on how D is connected to the other operator fragments. The are
four unique possibilities where D has one of the target indices and the other three are
on either the S, or the Sg fragment. The remaining contributions arise when two of the
target indices are not given by one of the operator fragments, which gives rise to terms
involving one Kronecker delta, either d;; or 45, but not both since that would correspond

to a closed D diagram and thus a ground-state contribution. The resulting diagrams with
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their algebraic interpretation are given as

W*W”W\
+ iYa O+za O

C J

(¢](S3DS2)c|@}) = + Of " X@ + * o4 1@ + ’ O+ '
Lyt + o gy Gt - o304
O c abp + O**d i + O**l i +
D Gto
d i 0 i

1
§ : bex _ca § bex _da § : cbx _ac
= — dlkO']k O + dCda]k O ki —*2 dk-zo'l] Okl

k:lc kcd klc (3,96)
dbx _cd dex _ad b
+ 3 Zdac * c Et 3 chb kj* gk - Zd]k Ik ZC
kcd kcd klc
1
d bds _cd
- Z%‘chb Ulil*ffkl - 5zy Zdacakl*agl
klcd Elcd
+ 5a,, > djofloit + 5a,, > dii ooy
klcd klcd
1
bx _d b
— 50 > deaoiit ol + 06 > duofmoi
kled klmce
1
d d+ _cd
—Oap Y deq 0" o1l + 5 0ab > dyoftoft,
kcde kled

where factors of % arise because of a pair of equivalent lines or because the inner

commutator is not connected to D.
In the coupling blocks the zeroth- and first-order contributions need to be considered.

I restrict myself to the presentation of the singles-doubles block, but the doubles-singles

block is just its Hermitian conjugate, Dpg = DgD. The zeroth-order contribution is given

by
.. O G- O - G-
ot Pt P A

= 0ab0ij dke — Oacdij Akb — daplik djc + dacik djp

where different signs occur because of different numbers of permutations that need to be
done before the contractions of the corresponding operator can be carried out. In first

order, only the Sg part of the [ﬁ, &3] commutator contributes, which gives rise to eight
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distinct terms as

= —0qb0ij Z dai 0" + Sacbij Z dar of)” (3.98)

+ dabOik Z dar 075 = Gacli Z djp of}*

- 5ab Z ddz jk + 5&0 Z ddz db*

— 0y Zdal o+ Gk Zdal o,
[ l

where it should be mentioned that equivalent contributions would also arise in the coupling
blocks of the secular matrix M if Brillouin’s theorem is not fulfilled, i.e. if fi;u = fai # 0,
for instance in an implementation of arbitrary-orbital ADC or UCC.

For the doubles-doubles block only the zeroth-order contribution is needed, which
represents mostly a combinatorial problem. By taking all possible index combinations

into account, eight distinct contributions arise with different signs which are given as

@ab!D\@ 1) = 0badik0ji dac — Obe0ik0j1 dad + 0acikdji dbg — Oaddirdji dpe (3.99)
— 0acObddji Aii + dacObadjk di; — 0acObadik dij + OacOpadi dij - .
Excited-state properties are obtained by contracting the matrix B with the same
vector on the left and right, D,, = Dg + XL B X, whereas transition moments between
excited states are obtained by taking two different vectors, T),, = XI,L]%XH, where
m # n. It should be noted that this property matrix B through second order is again
equivalent to B from Section 2.5.3 (page 32) as derived in the ADC framework. *° Ground-
and excited-state properties as well as oscillator strengths derived from the transition

moments correct through second order will be presented in Chapter 6.



Chapter 4

Comparison and Benchmark of
Hermitian Second-Order Methods
for Excited States

4.1 Introduction

In this chapter, the time-independent approach to excitation energies via UCC theory as
presented in Section 3.3 is further investigated, for which the resulting secular equation
has been shown to be equivalent to an ISR approach employing a so-called self-consistent
operator manifold for the generation of the correlated excited states. [2051:92:93] The aim
is to examine the exact relationship between the second-order ADC-ISR approach and an
analogous UCC2 scheme based on unitary coupled-cluster theory as well as the related
hybrid CC-ADC(2) approaches. It will be shown that the working equations of the UCC2
method differ depending on how the similarity-transformed Hamiltonian is treated, and
that the same difference occurs between the CC-ADC(2) method and a second-order
ISR approach based on traditional CC ground state. In a strict perturbation-theoretical
framework, however, all investigated methods turn out to be identical. Excitation energies

of the different methods will be compared and benchmarked on a set of small molecules.

Parts of this chapter have already been published in

e M. Hodecker, A. L. Dempwolff, D. R. Rehn, A. Dreuw, “Algebraic-Diagrammatic Construction
Scheme for the Polarization Propagator Including Ground-State Coupled-Cluster Amplitudes. 1.
Excitation Energies”, The Journal of Chemical Physics, 2019, 150, 174104.

e M. Hodecker, A. Dreuw, “Hermitian Second-Order Methods for Excited Electronic States: Unitary
Coupled Cluster in Comparison with Algebraic-Diagrammatic Construction Schemes”, The Journal
of Chemical Physics, 2020, 152, 094106.
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The CC-ADC(2) schemes have initially been motivated by something similar that
has been done before for the related second-order polarization propagator approximation
(SOPPA) method. [5456:156.157] Geertsen and Oddershede developed a variant of SOPPA
called the coupled-cluster polarization propagator approximation (CCPPA) where they
essentially replaced Rayleigh—Schrodinger (RS) correlation coefficients by CC ampli-
tudes. ®455] With this and similar modifications of SOPPA significantly improved results
for excitation energies, polarizabilities and other properties in systems like Li~, Be, BH
and CHT among others were obtained. 54158164 Tp this chapter, excitation energies
obtained with the CC-ADC(2) schemes are thoroughly benchmarked and compared to
standard second-order ADC, while a further benchmark of UCC schemes is postponed to
Chapter 6 (page 129), where the results are directly compared to the third-order variant.
It should be noted that in my master thesis only a part of the amplitudes had been
replaced.

This chapter is organized as follows. In the theoretical analysis, the ISR procedure is
carried out more explicitly to derive the second-order terms of ADC(2), which have been
given in Section 2.5.2. Subsequently, the hybrid CC-ADC and unitary CC schemes are
compared to ADC. Computational details and results for excitation energies on several
small molecules are given for all considered methods, while the CC-ADC schemes are
benchmarked on an extensive set of medium-sized organic molecules. Finally a short

summary will be given.

4.2 Theoretical Analysis

4.2.1 Algebraic-Diagrammatic Construction

General aspects of the ISR have been given in Section 2.5.1 and the procedure has been
applied explicitly through first order for the algebraic-diagrammatic construction scheme
for the polarization propagator in Section 2.5.2, where also the required terms of the
overlap matrix have been given. Here, the derivation of the second-order terms in the
p-h/p-h block shall be sketched, for a successive comparison with CC-ADC and UCC.
In order to derive M(?), the second-order precursor matrix from Eq. (2.113c) need to
be evaluated, where the second-order overlap matrix S@ is given in Eq. (2.107). Thus,
the three terms involving matrix elements of the Hamiltonian in Eq. (2.113c) need to be

evaluated, which can be done using Wick’s theorem, [®¥ then all terms can be plugged in
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and collected, which yields

2 9) 1 1)% 1)
M) = Sadig By + 505D (thane ac k) + i (K [be))
kle

1 1)«
T 25“”2 tﬁkcd (cdl|ik) +tzkcd<jk"0d>)
ked

- Z (tedacllik) + ) Gikllbe))

1 1
" 45ab5” Z |t’(fl<)3d (€a+ecteq—ei—ep—el) (4.1)
klcd
1 (1), (1)
o 550,6 Z tZkJCdt]kcd €a + Ee + Ed — E; — 8]' _ 5k)
ked
1
N 75” Z tklact/(cll)m 8‘1 +éptEc—€i — € — 51)
klc

1)*,(1
+ th(kznctg'k)bc(ga +eptec—¢&—¢g5— Ek) ,
kc

where Eq. (2.84) was used for E(SQ) in the matrix elements of H;. The last four terms
involving orbital-energy differences can be reordered and shown to cancel terms in the

matrix element

2 #
Mi(a,)jb = _§S'L(a)]b( - Z) B isz(a)ﬂ;( & ) Mm(jb) (42)

involving the overlap matrix S?), such that the matrix element is given as[%4

2 2) , 1 1)
M2 = 8adi B + 585 Y [thapedacllkl) + e (k] [bc)]
klc

]. 1)% .
+ §5ab Z [t§k)cd<CdHZk> + tzkcd<-7kHCd>]

ked
Z tg;,m (ac||ik) + t\1)_(jk||bc)]
15 5 2
+ 4 0ab0ij ;d |tklcd’ (ec+eq—er—e) (4.3)

1
_ Zéab Z [tg,ii;tﬁ)cd(ac +eqg—ei—ek)+ tg,il;tﬁ)cd(ac +eq—¢€5— ak)]

ked
1 1
5@] Z k‘lactl(cll)ac(ga tec—er—e)+ tl(clt)lctl(fll)ac(gb +ec—ep —el)]
kle

1 1
+3 Z zkactgk)bc 6‘1 téc—é&i— gk) + tgk:zzctEk)bc(Eb téc—¢&j— 6k>] :

Exploiting the form of the first-order doubles amplitudes (2.82), several simplifications

occur. Since the orbital-energy differences cancel the denominators of the first-order
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doubles amplitudes, the first term involving E(()2) cancels with the fifth term involving the
square of the same amplitudes, and last six terms partially cancel the ones with the same

summation indices, yielding the final ADC(2) matrix elements of Eq. (2.119).194

As will be discussed in the following, these terms in Eq. (4.3) do not cancel for other
than first-order MP amplitudes, and hence one obtains ground-state energy contributions
on the diagonal of M. However, the latter point is of minor importance for the discussion

here since it does not change the excitation energies, it just shifts the total energies.

4.2.2 Traditional Coupled-Cluster Theory

Before discussing the unitary ansatz for coupled-cluster (CC) theory, the traditional
CC ground-state aspresentedd in Section 2.6 is considered.[® 1170 Ag explained there,

the representation of the Hamiltonian is not Hermitian since it has different left- and

right-hand basis states in this ISR (or since e’

is not unitary), it is not topic of this
work. Nonetheless, one can derive a Hermitian second-order approach to excited states
from a CC ground state, in a similar spirit to the coupled-cluster polarization propagator
approximation (CCPPA) by Geertsen and Oddershede. [2455:156,165] o this it is noted
that the ground-state wave function was only needed up to first order wihin the ADC-ISR

approach presented in Section 2.5.2, which can be written as
[W0) = [@0) +]25”) = (1 +T3")[®o) (4.4)

where the first-order doubles excitation operator Tz(l) is given by Eq. (2.61), but the CC
doubles amplitudes tff’ are replaced by the first-order MP ones tgjl.gb from Eq. (2.82). If
one was to insert the CC ground-state parameterization from Eq. (2.62) together with its
Hermitian conjugate (<I>0|eTT into the ISR procedure, this would lead to a nonterminating
series, which is why a truncation at a certain power of the cluster operator must be
applied. A reasonable way to do so is to require that the standard ADC method must
be obtained in the first iteration of the cluster equations, analogous to CCPPA. [5%] This
leads to essentially the same ansatz for the ground-state wave function correct through at
least first order, but replacing the MP correlation coefficients with the cluster operator
from Eq. (2.61),

[Wo) = (1+T5)|®o) - (4.5)

An analogous second-order ISR procedure can be carried out like in Section 2.5, which
is now referred to as CCD-ISR(2), and the resulting equations will be of the same form as
for the standard ADC procedure, just the first-order MP amplitudes tgjl.c)bb in Eq. (4.3) are
replaced by the CC ones t%b as obtained from Eq. (2.137), that are formally of infinite
order. It is important to note that the truncation of the ground-state wave function
in Eq. (4.5) only applies to the ISR derivation or propagator calculation, analogous

to the CCPPA method, >4 but not to the determination of the ground-state cluster
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amplitudes themselves. The inclusion of double excitations only can further be justified
since effects of single excitations from ]\Il(()Q)> do not appear in the secular matrix M in
a consistent second-order method, only in the equations for the transition moments f‘,
which are not considered in this chapter.

Only one complication arises in the derivation of the matrix elements due to the
different choice of the reference function, as mentioned at the end of Section 4.2.1. The
terms in M., arising from (®o|T5alaqHoaa;T3|0) = (¥4 |ala. Hoaja; w5 do not
cancel (parts of) the ones from <\If(gl)\&j&alﬁll&2&j|fbo> and <®0\&I&aﬂ1&2&j|\llél)>, since
the orbital-energy difference cannot cancel the denominators of the t?;’ amplitudes and
thus cannot be simplified further than in Eq. (4.3). Using CC amplitudes within the
simplified ADC(2) equations (2.119) in an ad hoc modification is termed CC-ADC(2).

4.2.3 Unitary Coupled Cluster

Unitary coupled-cluster (UCC) theory has been discussed in detail in the previous
Chapter 3. It has also been shown that when using the so-called Bernoulli (Bn) expansion
(Section 3.2) for the similarity-transformed Hamiltonian H, which up to second order
is given by Eq. (3.37) the resulting matrix elements of the second-order scheme UCC2
(Section 3.3) are equivalent to those of ADC(2), compare Egs. (2.119) and (3.49).
However, when using the standard BCH expansion for H, the following commutators
need to be included for a second-order scheme within the singles and doubles space of the

cluster operator:

A~ ~ ~

H=F+V+[F,61+062]+[V,62] +

—_

[[F, 6], 6] + O(3), (4.6)

D |

where the differences to the Bn expansion are thus the missing splitting of V into Vap
and Vi and, in particular the double commutator of F' with &5. The contributions
arising from [V, &2] in the singles-singles block are <<I>f|(VS’2)C|<I>§> and <<I>f|(,§gf/)c|<1>?>,
which are given by Eq. (3.48) and its Hermitian conjugate, respectively. The double
commutator of F' with &9 is in fact equivalent to the second-order contribution of a general
one-particle operator for the calculation of excited-state properties, as given in Eq. (3.96).
By replacing the general matrix elements d,, with those of the diagonal Fock operator,
fpqg = €pdpg, and renaming some of the dummy indices, the terms can be rewritten as

follows for the example where no Kronecker delta appears,

1 1 1 1

AL A A b bex
(7] (STESs)c| DY) <—§ ok ik (e + 52+ 5o — ek — 5ei — 5¢5)
1 1 1 1
bex
—E oiit o (ep+ec—ej5 — €k+§€a_§€b_§€i+§€j) (4.7)

. 11 11
_ZO'?Z O',?k? 5a+5c*5i*8k*§5a+§€b+§€i7§€j),
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where half of the last two forms each can be added to obtain
1 «
B Z J?g oi[(ev+ec — €5 —er) + (€a +€c — & —€k)] (4.8)
kc

which means that the final matrix elements of BCH-UCC2 are equivalent to those of
Eq. (4.3), which cannot be simplified to Eq. (2.119) if the converged UCC2 (LCCD)
amplitudes from Eq. (3.44b) are used (the subtracted ground-state reference energy is
ignored from now on). Thus, the UCC2 secular matrix elements are identical to the
CCD-based ISR procedure from Section 4.2.2, as shown in Eq. (4.3), that again cannot
be simplified like in the ADC(2) case. The difference lies again only in the correlation
amplitudes. In this case, LCCD amplitudes are used, in contrast to the full CCD ones
in the CCD-ISR(2) procedure or first-order MP ones in ADC(2). Yet, if one uses the
b(1)

first-order a?j amplitudes, the orbital-energy differences cancel and also this “strict”
UCC2 approach is again exactly identical to ADC(2), which means one includes the

minimal amount of terms to be consistent through second order. [l

To summarize, basically three different Hermitian second-order approaches to excited
electronic states have been discussed, that are all identical in a strict perturbation-
theoretical framework, but not when different coupled-cluster based references are used.
Employing the algebraic derivation via the excitation-class orthogonalized or intermediate
state representation framework based on a wave function that is correct through first
order, essentially three terms contribute to the final secular matrix elements, two including
the perturbation operator Hj and one the Fock operator Hy. If the first-order correction

to the ground-state wave function according to MP perturbation theory is used, i.e.

the first-order doubles amplitudes tz(Jl'c)Lw the terms originating from I;TO cancel parts of
the other terms, simplifying the equations. If, on the other hand, the ground-state
wave function includes higher-order or (infinite order) CC doubles amplitudes tf}’, this
cancellation does not occur. Another approach, based on an expectation-value or unitary
coupled-cluster ansatz yields formally the same secular equations up to second order as
the ISR approach. However, the ground-state amplitude equations correspond to the
LCCD model in this case and a subtlety occurs in the secular matrix depending on how
the UCC similarity-transformed Hamiltonian H is treated. Employing the standard BCH
expansion, the same matrix elements as in the CCD-ISR(2) scheme are obtained, whereas
the “simplified” matrix elements without contributions from the Fock operator of the
MP-based ADC(2) scheme are obtained if one uses the so-called Bernoulli expansion for

H.

4.3 Computational Details and Implementation

The CCD-ADC(2), CCD-ISR(2), BCH-UCC2 and Bn-UCC2 approaches have been
implemented in a development version of the Q-CHEM 5.2 program package, [53] employing
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utilities of the ccman2 and ademan modules. [°2I Calculations of vertical excitation energies
of 66 states of HoO, HF, No, Ne, CHs and BH have been performed with the same basis sets
and geometrical parameters as in previous FCI, CC and ADC studies. 166170 In practice,
this means that for HF, BH and N the internuclear distances are 1.7328795 ag, 2.3289 ag
and 2.068 ag, respectively. For the triatomic molecules Csy, symmetry was used with the
following coordinates (in ap): O(0,0,0) and H(0, £1.429937284, —1.107175113) for water
and for methylene C(0,0,0) and H(£1.644403, 0, 1.32213) for the singlet excitations and
C(0,0,0) and H(+1.644403,0,1.32313) for the triplet excitations. For the Ne, BH and
CHj singlet excitations the entire molecular orbital space was used in the correlated
calculations, whereas for all other cases the 1s orbitals of the first-row elements were kept
frozen. For No, Dunning’s cc-pVDZ basis set 17 was used. For the singlet excitations of
Ne one s function with exponent 0.04 and one p function with exponent 0.03 was added.
For BH, two s, two p and two d functions with exponents of 0.03105, 0.009244, 0.02378,
0.005129, 0.0904 and 0.02383, respectively, were added to the standard cc-pVDZ basis of
B, respectively. %6 For H, two s and two p functions were added with exponents 0.0297,
0.00725, 0.141 and 0.02735. For CHjy, the basis of C was augmented with one s function
of exponent 0.015 and for H one s function with exponent 0.025 was added. For HoO the
oxygen basis was augmented with one s function of exponent 0.07896 and one p function
of exponent 0.06856, and for H one s function with exponent 0.02974 was added. For HF
and the triplet excitations of Ne the aug-cc-pVDZ basis set was used. [168]

The consistency of the input data with the ones used in previous FCI calculations
was checked by comparing the HF, MP2 and CCSD ground-state energies, as well as the
EOM-CCSD, ADC(1) and ADC(2) excitation energies, as far as they were available. 17l
For HF and the Ne and BH triplets the CIS energies were compared. 158 The Hartree-Fock
ground-state energy of —38.884254 FEj, reported in Ref. 169 could not be reproduced, but
the same value as in Ref. 170 (—38.884244 Ey) was obtained. All calculations have been
carried out with the Q-CHEM program package!®3! interfaced to a development version
of the adcman module. Also the standard-ADC excitation energies have been calculated
again, where sometimes discrepancies in the order of 0.01 eV compared to literature 170
occur, which have been accounted to round-off errors.

Furthermore, 102 vertical excitation energies for states of different characters (such
as valence, Rydberg, n-7*, m-*, singlet, triplet, ...) for 18 small molecules of the
benchmark set introduced by Jacquemin and co-workers!'™ have been calculated with
CCD-ADC(2), CCD-ISR(2), BCH-UCC2 and Bn-UCC2 employing the standard aug-
ce-pVTZ basis set 175173174 and compared to the standard ADC(2) approach, 2527 the
perturbative doubles correction to configuration interaction singles, CIS(D),[175’176] as
well as the non-Hermitian iterative second-order methods CIS(Dq), '™ and CC2.[178]
The geometries, originally optimized at the CC3/aug-cc-pVTZ level of theory, were taken
from literature. '™ The excitation energies with the standard ADC(2) method have been

recalculated in order to check the consistency of the input data.
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In order to check the performance of CCD-ADC(2) on unsaturated organic molecules,
vertical excitation energies of the benchmark set established by Thiel and co-workers179-181]
were calculated. For this, the standard TZVP basis set was employed and geometries
employing Abelian point-group symmetry were taken from the literature, which had been
optimized at the MP2/6-31G* level of theory.

4.4 Results and Discussion

4.4.1 Atoms, Diatomic and Triatomic Molecules

In Table 4.1, vertical excitation energies for water, hydrogen fluoride, neon, and nitrogen
calculated with ADC(2), CCD-ADC(2), CCD-ISR(2), and the two different UCC2 variants
are shown in comparison to full configuration interaction (FCI) results from the litera-
ture. [166-169] Thege are regular systems that are well described by means of perturbation
theory, where MP2 recovers already a large amount of the electron correlation. [166:167]
Correspondingly, all five methods yield in general rather similar results. In particular,
the deviation of the mean absolute error from the standard ADC(2) one for H,O, HF
and Ne is only in the range of about 0.05 eV. Interestingly, the largest difference can
here be observed between the BCH-UCC2 and Bn-UCC2 methods. The former yields
results that are almost identical to CCD-ISR(2), whereas the latter is, as expected, more
similar to CCD-ADC(2), with the difference between the respective two methods being
only the ground-state amplitudes (CCD vs. LCCD). If MP2 already recovers most of
the correlation energy, the difference between the full CCD variant and its linearized
version becomes rather negligible. The largest discrepancies can here be observed for the
nitrogen molecule, where CCD-ISR(2) and in particular BCH-UCC?2 yield the best results
with a mean absolute error of only about 0.2 eV. While Bn-UCC2 has the smallest mean

absolute error for the other three systems, it has the largest one for Ny of about 0.5 eV.

TABLE 4.1: Results for vertical excitation energies (in €V) of HoO, HF, Ne, and Ny
computed with ADC(2), CCD-ADC(2), CCD-ISR(2), BCH-UCC2 and Bn-UCC2, given

relative to FCIL.* The last two lines for each system give the mean absolute error (A,ps)
and the maximum absolute error (Apax).

Transition FCI* ADC(2) CCD-ADC(2) CCD-ISR(2) BCH-UCC2 Bn-UCC2

HQO 1 1A1 —

2 1A, 9.87 —0.50 —0.45 —0.54 —0.56 —0.42
1B, 7.45 —0.50 —0.47 —0.54 —0.55 —0.45
1B, 11.61 —0.64 —0.61 —0.68 —0.69 —0.58
1 1A, 9.21 —0.63 —0.61 —0.66 —0.67 —0.59
13B; 7.06 —0.45 —0.42 —0.49 —0.51 —0.40
13A, 9.04 —0.58 —0.56 —0.62 —0.63 —0.54
13A, 9.44 —0.44 —0.39 —0.49 —0.50 —0.37

23A, 10.83 —0.36 —0.37 —0.40 —0.40 —0.35
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TABLE 4.1: (Continued.)

Transition FCI* ADC(2) CCD-ADC(2) CCD-ISR(2) BCH-UCC2 Bn-UCC2

2 3B, 11.05 —0.48 —0.47 —0.52 —0.52 —0.45
1 3B, 11.32 —0.55 —0.52 —0.60 —0.61 —0.49
Aobs 0.51 0.49 0.55 0.57 0.47
A pax 0.64 0.61 0.68 0.69 0.59
HF 112+ —

11 10.44 —0.81 —0.80 —0.84 —0.85 —0.78
2111 14.21 —0.86 —0.86 —0.89 —0.90 —0.84
2 1yt 14.58 —0.67 —0.65 —0.70 —0.71 —0.62
1A 15.2 —0.74 —0.76 —0.77 —0.78 —0.74
11~ 15.28 —0.74 —0.76 —0.77 —0.78 —0.74
311 15.77 —0.85 —0.85 —0.88 —0.89 —0.84
31yt 16.43 —1.11 —1.08 —1.14 —1.14 —1.07
1310 10.04 —0.74 —0.74 —0.78 —0.79 —0.72
13%t 13.54 —0.49 —0.48 —0.53 —0.55 —0.45
2 311 14.01 —0.87 —0.87 —0.90 —0.91 —0.85
23yt 14.46 —0.66 —0.70 —0.69 —0.70 —0.68
13A 14.93 —0.71 —0.73 —0.74 —0.75 —0.71
13%- 15.25 —0.74 —0.75 —0.77 —0.77 —0.74
3311 15.57 —0.85 —0.85 —0.88 —0.89 —0.84
Agbs 0.77 0.78 0.81 0.81 0.76
Anax 1.11 1.08 1.14 1.14 1.07
NellS —

1P 16.40 —0.78 —0.76 —0.80 —0.80 —0.76
1D 18.21 —0.91 —0.90 —0.93 —0.93 —0.89
21p 18.26 —0.92 —0.91 —0.93 —0.94 —0.90
218 18.48 —1.05 —1.03 —1.06 —1.06 —1.02
318 44.05 —0.48 —0.45 —0.50 —0.50 —0.45
13P 18.70 —0.71 —0.70 —0.73 —0.73 —0.69
138 19.96 —0.74 —0.76 —0.76 —0.76 —0.75
13D 20.62 —0.79 —0.79 —0.81 —0.81 —0.78
2 3p 20.97 —0.82 —0.82 —0.84 —0.84 —0.81
238 45.43 —0.32 —0.30 —0.34 —0.34 —0.30
Agbs 0.75 0.74 0.77 0.77 0.73
Anax 1.05 1.03 1.06 1.06 1.02
Ny 118f —

1 I, 9.58 0.18 0.19 0.03 —0.06 0.29
11es 10.33  0.29 0.28 0.13 0.02 0.49
1A, 10.72  0.45 0.44 0.33 0.25 0.65
1 1, 13.61  0.95 1.03 0.81 0.72 1.13
135+ 7.90 0.41 0.11 0.26 0.20 0.17
1 311, 8.16 0.18 0.18 0.02 —0.08 0.29
13A, 9.19 0.33 0.20 0.12 —0.03 0.35
13%- 10.00 0.54 0.47 0.33 0.17 0.63

1 311, 11.44  0.29 0.37 0.14 0.04 0.49
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TABLE 4.1: (Continued.)

Transition FCI* ADC(2) CCD-ADC(2) CCD-ISR(2) BCH-UCC2 Bn-UCC2
Aubs 0.40 0.36 0.24 0.17 0.50
Amax 0.95 1.03 0.81 0.72 1.13

@ Results from the literature, 1661701

In Table 4.2, the results for CHy and BH are shown, which can be considered to be
of quasi-open-shell type, since they only possess are very small gap between occupied
and virtual orbitals.[17% Thus, perturbation theory is not well suited for these systems
and second-order methods are not accurate enough. An improved description of excited
states of such systems is rather expected at the third-order level.[®1:170] Nonetheless,
their comparison gives some insight into the differences between the various second-order
methods discussed here. Although the results are still rather similar, the mean abolute
errors of the CCD-ADC(2) and Bn-UCC2 methods differ now by slightly more than
0.1 eV for CHy and BH, and they both yield worse results than the standard ADC(2)
variants. However, the results of the CCD-ISR(2) and BCH-UCC2 schemes are even
worse and they differ significantly more than for the previous systems. In particular
BCH-UCC2 has a relatively large mean absolute error of about 1 eV. While ADC(2)
tends to underestimate the excitation energies of these two systems, CCD-ADC(2) and
Bn-UCC2 systematically overestimate them by about 0.2-0.4 eV, whereas CCD-ISR(2)
and BCH-UCC2 underestimate them even more strongly. This is probably a consequence
of the small orbital-energy differences, that are directly present in the singles-singles block
of the respective secular matrix. But also the ground-state amplitudes themselves have a
significantly larger influence. The full CCD scheme in CCD-ISR(2) improves the mean
absolute error of CHy for instance by almost 0.6 eV in comparison to BCH-UCC2, where

the LCCD ground state is used in an otherwise identical scheme.

TABLE 4.2: Results for vertical excitation energies (in €V) of CHy and BH computed
with ADC(2), CCD-ADC(2), CCD-ISR(2), BCH-UCC2 and Bn-UCC2, given relative to

FCI. The last two lines for each system give the mean absolute error (A,ps) and the
maximum absolute error (A,.x) in €V, respectively, relative to FCI.

Transition FCI* ADC(2) CCD-ADC(2) CCD-ISR(2) BCH-UCC2 Bn-UCC2

CH2 1 1A1 —

31A, 6.51 —0.08 0.23 —0.45 —1.04 0.35
4 1A 8.48 —0.20 0.11 —0.56 —1.14 0.22
1By 7.70 —0.11 0.20 —0.48 —1.06 0.31
11B; 1.79 —-0.14 0.28 —0.55 —1.15 0.40
11A, 5.85  0.04 0.47 —0.36 —-0.92 0.59
13A 6.39 —0.12 0.20 —0.47 —1.06 0.31

23A; 8.23 —0.17 0.15 —0.52 —1.12 0.27
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TABLE 4.2: (Continued.)

Transition FCI* ADC(2) CCD-ADC(2) CCD-ISR(2) BCH-UCC2 Bn-UCC2
33A, 9.84 —0.11 0.20 —0.46 —1.05 0.32
2 3B, 7.70 —0.18 0.13 —0.54 —1.13 0.25
1B, —0.01 —0.16 0.22 —0.56 —1.17 0.34
2 3B, 8.38 —0.08 0.22 —0.44 —1.02 0.34
13A, 4.79 —0.00 0.40 —0.38 —0.94 0.52
Aabs 0.12 0.23 0.48 1.07 0.35
Apax 0.20 0.47 0.56 1.17 0.59
BH1!:2t —

1 I 2.94 —0.09 0.42 —0.58 —0.93 0.54
2 Iyt 6.38 —0.08 0.35 —0.54 —0.89 0.47
2 111 747 —0.12 0.32 —0.67 —0.93 0.44
41yt 7.56 —0.20 0.24 —0.66 —1.01 0.36
3 I 8.24 —0.13 0.30 —0.60 —0.95 0.42
1311 1.31 —0.29 0.22 —0.81 —1.18 0.35
139+ 6.26 —0.12 0.31 —0.59 —0.93 0.43
23yt 7.20 —0.20 0.24 —0.66 —1.01 0.36
2 311 7.43 —0.17 0.27 —0.63 —0.98 0.38
339t 7.62 —0.08 0.35 —0.55 —0.89 0.47
3 311 7.92  0.00 0.41 —0.43 —0.76 0.52
Ajbs 0.13 0.31 0.61 0.95 0.43
Apax 0.29 0.42 0.81 1.18 0.54

& Results from the literature. [166-170]

In order to further include a challenging case, the lowest excited states of the ozone
molecule have been calculated, which exhibits a complicated ground-state electronic
structure and has thus been used as a benchmark molecule in the development especially
of multi-reference methodologies, 1827192 and the results are compared to available ex-
perimental data.293:194 Improving the ground-state electronic structure by going from
MP2 to LCCD or CCD should thus improve the accuracy of the excitation energies.
Therefore, vertical excitation energies have been calculated with ADC(2), CCD-ADC(2),
CCD-ISR(2), BCH-UCC2 and Bn-UCC?2 in combination with the cc-pVTZ basis set [171]
using the experimental Ca, geometry of the *A; ground state, 195 where the bond length
and angle are 1.272 A and 116.8°, respectively. I focus the discussion on the comparison
of ADC(2) and CCD-ADC(2), since the latter generally yields the best results in this
case. From the results shown in Table 4.3 it can be seen that for the first excited singlet
state 1Ay, ADC(2) overestimates the excitation energy by more than 0.5 eV compared
to experiment, whereas the CCD-ADC(2) variant is on spot. For the next state, !By,
ADC(2) yields a better result than CCD-ADC(2), but for the third excited state 1Bg, that
is actually the only one here with a non-vanishing oscillator strength, standard ADC(2)
again overestimates the excitation energy by almost 0.5 eV, whereas the CCD-ADC(2)

result agrees within less than 0.1 eV with experiment. The comparison of the triplet states
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TABLE 4.3: Vertical excitation energies (in €V) for the lowest excited singlet and
triplet states of the O3 molecule calculated with the cc-pVTZ basis set compared to
experimental results.

State ADC(2) CCD-ADC(2) CCDISR(2) BCH-UCC2 BnUCC2 Exp.®

1Ay 2.14 1.59 1.88 1.10 2.28 1.6
1B, 2.24 1.67 1.96 1.16 2.37 2.1
1By 5.38 4.82 5.15 4.71 5.83 4.9
3A 1.83 1.25 1.53 0.69 1.92 1.18
3B, 1.73 1.13 1.67 0.67 1.70 1.30
3B, 2.07 1.13 1.428 0.58 1.80 1.45

? Experimental results for singlet states from Ref. 193, for triplet states from Ref. 194.

with experiment has to be done with care. Since they were determined via photoelectron
spectroscopy of the O5 anion, 14 they can be regarded as adiabatic excitation energies
rather than vertical ones.['38] However, disregarding these issues for a moment, indeed a
clear improvement can be observed when going from ADC(2) to CCD-ADC(2), especially
for the lowest triplet state Ao, where ADC(2) again overestimates the excitation energy
significantly by more than 0.6 eV, whereas CCD-ADC(2) agrees within less than 0.1 eV
with experiment.

While CCD-ISR(2) yields results of a similar quality as CCD-ADC(2), BCH-UCC2
underestimates the excitation energies consistently, whereas Bn-UCC2 tends to overesti-
mate them slightly. This is an indicator that the UCC2 (LCCD) ground-state description

is not sufficient for a system exhibiting strong multi-reference character such as ozone.

4.4.2 Small Organic and Inorganic Molecules

Now I briefly want to discuss the benchmark set of Jacquemin et al.*7? The results for
the vertical excitation energies are compiled in the Table A.1 in the appendix (page 193),
the statistical error analysis with respect to the theoretical best estimates (TBE) is shown
in Table 4.4. As expected, for regular systems well described by means of perturbation
theory, the results of all methods are rather similar, as in Table 4.1. The mean abolute
error of all shown methods lies between 0.2 and 0.3 €V, similar conclusions hold for the
root mean square deviation (RMS). Interestingly, the Bn-UCC2 approach has the largest
RMS value of 0.32 eV, similar to the CIS(D) method, whereas the CCD-ISR(2) and
BCH-UCC2 have the smallest RMS of about 0.26 and 0.25 eV, respectively, and thus
perform even slightly better than CC2, which has a RMS of 0.28 eV. Whether this is a
general trend or only owed to the small size of the compounds remains to be seen, since
it has also been observed that the ADC(3) scheme tends to overcorrect its second-order
variant and thus performs significantly worse than CC3 for these systems, 172 whereas
for larger organic compounds of the Thiel benchmark set no real difference between

ADC(3) and CC3 could be observed, but rather a significant improvement when going
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TABLE 4.4: Mean signed error (MSE), mean abolute error (MAE), root mean square
deviation (RMS), as well as positive (Max) and negative (Min) maximal deviations with
respect to the TBE(FC) values. '™ All values are given in eV.

Method No. of States MSE MAE RMS Max Min
ADC(2) 102 —0.022 0.219 0.293 0.570 —0.760
CCD-ADC(2) 102 —0.035 0.210 0.286 0.511 —0.768
CCD-ISR(2) 102 —0.123 0.202 0.259 0.368 —0.809
BCH-UCC2 102 —-0.212 0.253 0.253 0.277 —0.838
Bn-UCC2 102 0.104 0.284 0.324 0.653 —0.722
CIS(D)? 106 0.10 0.25 0.32 1.06 —0.63
CIS(Do)? 106 —-0.01 0.21 0.28 057 —0.76
CcC2? 106 0.03 0.22 028 0.63 —0.71

& Taken from Ref. 172.

from ADC(2) to ADC(3).['%! How this turns out for the third-order approach based on

UCC theory!®! will be investigated in a future contribution.

4.4.3 Medium-Sized Organic Molecules

In this subsection the performance of CCD-ADC(2) and CCD-ADC(2)-x for unsaturated
organic compounds is investigated, using the benchmark set introduced by Thiel and
co-workers. 179181 The evaluation of UCC-based methods on the same set of molecules is
reported in Chapter 6. The 28 molecules used for this study are shown in Figure 4.1. It
comprises unsaturated aliphatic hydrocarbons, aromatic hydrocarbons and heterocycles,
carbonyl compounds and nucleobases, which are all standard chromophores in organic
photochemistry. An extensive comparison of standard ADC methods with CC2, CCSD
and CC3 results has been given before.[19 Here, T want to focus on the difference
between standard ADC(2) variants and the hybrid CCD-ADC(2) ones and evaluate
them with respect to the theoretical best estimates (TBE).[!™] Furthermore, a variety of
SOPPA-based methods including SOPPA(CCSD) has been tested on the same benchmark
set, 197 where it was shown that standard ADC(2) clearly outperforms standard SOPPA.
For SOPPA(CCSD) a deterioration compared to its standard version could even be
observed. [197]

For consistency, all geometries have been optimized at the MP2/6-31G* level of
theory and the standard TZVP basis set has been used for the excited-state calcula-
tions. [179:198-200] Ag discussed before, 179191 excited states which are spatially extended,
such as Rydberg states, are not well described since this basis set does not include diffuse
functions. 198199 Both the electronic structure as well as the symmetries and assignments
of the individual transitions of the molecules in the benchmark set have already been
discussed in detaill'™! and are here not given again. 134 singlet and 71 triplet states
have been computed and compared at the CCD-ADC(2) and CCD-ADC(2)-x levels.
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Unsaturated Aliphatic Hydrocarbons
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FIGURE 4.1: Thiel’s benchmark set of molecules considered for testing CCD-ADC(2)
and CCD-ADC(2)-x as well as UCC2 and UCC3 (see Chapter 6).

4.4.3.1 Singlet Excited States

The calculated vertical excitation energies of singlet states of the benchmark set are
compiled in Table A.2 in the appendix (page 196). The results for CCD-ADC(2) and
CCD-ADC(2)-x are compared with the ones from standard ADC(2) and ADC(2)-x and,
most importantly, with the theoretical best estimates (TBE). For the different ADC(2)
variants also the amount of doubly excited configurations (%R2) contained in the ADC

excitation vector is given as the sum of the squared doubles amplitudes.

Prior to a thorough discussion of the accuracy of the (CCD-)ADC methods, a brief
look at their performance for different substance classes is taken. For unsaturated aliphatic
hydrocarbons, standard ADC(2) overestimates excitation energies on average by about
0.5 eV whereas ADC(2)-x tends to underestimate them strongly (about 0.6 eV on average).
Similar to what has been observed in Section 4.4.1, the use of CCD amplitudes generally
increases excitation energies here, thus increasing also the error for ADC(2) while for
ADC(2)-x it becomes slightly smaller. However, the description of states with large
double-excitation character such as the 1Ag states of linear polyenes is in general difficult
for single-reference methods, 196201 because of its large %Ry values in the ADC excitation
vectors at the ADC(2)-x and CCD-ADC(2)-x levels (Table A.2). For these states, both
ADC(2) and ADC(2)-x have significantly larger errors compared to the TBE values than
for states with smaller %Ry fractions, however with different signs. It can also be seen
that the difference between standard ADC(2) and CCD-ADC(2) becomes negligibly small

for doubly-excited states, because the correlation amplitudes occur only in the p-h block
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of the ADC matrix. Hence for pure doubly-excited states both ADC(2) and CCD-ADC(2)

schemes will yield exactly the same excitation energies.

Going to aromatic hydrocarbons and heterocycles, ADC(2) performs somewhat better,
slightly overestimating excitation energies in most cases. While for aromatic systems with
one heteroatom such as furan, pyrrole or pyridine the overestimation lies mostly in the
range between 0.2 and 0.5 eV, for the six-membered rings containing two or three nitrogens
(with the exception of pyrazine), the error is always below 0.2 V. ADC(2)-x shows the
same trend as before, strongly underestimating excitation energies up to about 1 eV, on
average between 0.3 and 0.7 eV. The use of CCD amplitudes within ADC(2), however,
now has the opposite effect, as it tends to lower the excitation energies. For ADC(2)
this has a positive effect and decreases the errors, whereas for ADC(2)-x the magnitude
of the error becomes somewhat bigger. Only for states where ADC(2) already slightly
underestimates the TBE value, the lowering of the excitation energy in CCD-ADC(2)

has a negative effect compared to the reference.

The carbonyl compounds in the benchmark set (aldehydes, ketones and amides)
possess different excited-state structures which can be classified as n7*, nn*, and o7*
transitions. %! The accuracy and trends for ADC(2) and ADC(2)-x as well as CCD-
ADC(2) and CCD-ADC(2)-x are very similar to the ones of the previous compound
classes. The use of CCD amplitudes does not seem to have a significant impact on the

results, but mostly lower the excitation energies slightly.

For the last set of molecules considered in the benchmark set, the nucleobases, ADC(2)
shows only very small negative deviations of less than 0.1 eV on average, which is due to
the fact that no CC3 values were available for these molecules and hence also CC2 was
taken into consideration for the TBE values. 27919 Duye to the surprisingly good results
of standard ADC(2), the use of CCD amplitudes makes the error slightly larger in most
cases, again by lowering the excitation energies. For ADC(2)-x and CCD-ADC(2)-x the
same conclusions hold as before.

The statistical analysis of the obtained data is presented in Table 4.5 and Figure 4.2.
In the former, both TBE and ADC(3) values from Ref. 196 were taken as reference in
order to evaluate the accuracy of the CCD-ADC(2) approaches. Starting with the TBE
reference, one can see that the mean error can be significantly improved by using CCD
amplitudes within ADC(2). The mean error of CCD-ADC(2) is with 0.15 €V almost as
good as ADC(3), which has a mean error of 0.12 eV, whereas the one of standard ADC(2)
is 0.22 eV. However, the mean absolute error is very similar for all three methods, ranging
from 0.23 eV for ADC(3) to 0.26 eV for ADC(2), while CCD-ADC(2) lies in between
with 0.25 eV. Concerning the standard deviation, on the other hand, CCD-ADC(2) has a
larger value of 0.34 eV than standard ADC(2) with 0.30 eV, indicating a slightly higher
variation of the results when using CCD amplitudes. This is also indicated by the about
0.2 eV larger range between the minimal and maximal error of CCD-ADC(2) compared to
ADC(2). Going to the extended version CCD-ADC(2)-x, the underestimation of excitation
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TABLE 4.5: Statistical error analysis of the calculated excitation energies (in eV) of the
excited singlet states of Thiel’s benchmark set at the ADC(2), CCD-ADC(2), ADC(2)-x,
CCD-ADC(2)-x and ADC(3) levels of theory.* The theoretical best estimates (TBE)
were used as reference data as well as the ADC(3) values.

TBE as reference

ADC(2)* CCD-ADC(2) ADC(2)x* CCD-ADC(2)x ADC(3)

CountP 103 103 103 103 103

Min —0.32 —0.42 —1.83 —1.37 —0.78
Max 1.63 1.71 0.20 0.38 0.90
Mean 0.22 0.15 —0.70 —0.76 0.12
Mean Absolute 0.26 0.25 0.71 0.76 0.23
Standard Deviation 0.30 0.34 0.32 0.33 0.27

ADC(3) as reference
ADC(2)* CCD-ADC(2) ADC(2)x* CCD-ADC(2)x ADC(3)"

CountP 134 134 134 134

Min —1.00 —1.06 —1.79 —1.79
Max 2.20 2.28 —0.13 0.04
Mean 0.09 0.03 —0.83 —0.89
Mean Absolute 0.33 0.34 0.83 0.89
Standard Deviation 0.48 0.51 0.37 0.38

# For ADC(2), ADC(2)-x, and ADC(3) results see Ref. 196.

P Total number of considered states.

energies by the ad hoc extension of the 2p-2h block to first order cannot be corrected
by using CCD amplitudes, on the opposite, it gets slightly worse. The mean error is
with —0.76 eV slightly larger than for ADC(2)-x with —0.70 eV. This underestimation,
however, is very consistent, since the mean absolute error has exactly the same numerical
value, just the opposite sign. The standard deviation of CCD-ADC(2)-x is with 0.33 eV
almost identical to the one for ADC(2)-x with 0.32 eV. Only the range between the
minimal and maximal error is slightly improved, which amounts to 2.03 eV for standard
ADC(2)-x and only 1.75 eV for CCD-ADC(2)-x. Taking ADC(3) as a reference, a similar
picture is obtained. The mean error of 0.09 eV of ADC(2) can be reduced by using CCD
amplitudes to only 0.03 eV for CCD-ADC(2), whereas the mean absolute error stays
almost the same and the standard deviation increases slightly from 0.48 eV for ADC(2)
to 0.51 eV for CCD-ADC(2). The range between minimal and maximal error is again
increased by about 0.14 eV. The mean (absolute) error for CCD-ADC(2)-x is again slightly
larger in magnitude than for ADC(2)-x, whereas the standard deviation remains virtually
unchanged. However, the range between minimal and maximal deviation becomes slightly

larger in this case when CCD amplitudes are employed.

4.4.3.2 Triplet Excited States

For a further evaluation of the accuracy of the CCD-ADC(2) methods, 71 excited triplet
states of 20 molecules of the benchmark set (Figure 4.1) have been calculated and
compared to available TBE and ADC(2) and ADC(2)-x values. No benchmark data are
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FIGURE 4.2: Histograms of the error distribution of all calculated excited singlet states
with respect to the theoretical best estimates at the theoretical levels of (a) ADC(2),
(b) ADC(2)-x, (c¢) CCD-ADC(2), and (d) CCD-ADC(2)-x.

available for the triplet states of the molecules pyrazine, pyrimidine, pyridazine, s-triazine
as well as the nucleobases cytosine, thymine, uracil and adenine. The results are compiled
in Table A.3 in the appendix (page 200). Since the results are rather similar for all
considered substance classes, an individual discussion is omitted at this point and the

statistical analysis presented in Table 4.6 and Figure 4.3 is discussed immediately.

The error of the second-order ADC methods is generally smaller for triplet than for
singlet excited states. Compared to the TBE values, standard ADC(2) has a mean error
of 0.12 eV with a standard deviation of only 0.17 eV. The largest improvement, however,
can be seen for the CCD-ADC(2) variant with a vanishing mean error of 0.00 eV and
almost the same small standard deviation as standard ADC(2). This can be seen in the
histogram in Figure 4.3 (c), where the Gaussian curve is centered exactly at 0.0 V. The
mean absolute error, on the other hand, is of course larger than zero, but with 0.13 eV
still smaller than the one of ADC(2) with 0.17 eV.

The mean (absolute) errors of ADC(2)-x and CCD-ADC(2)-x are also smaller in
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TABLE 4.6: Statistical error analysis of the calculated excitation energies (in eV) of the
excited triplet states of the benchmark set at the ADC(2), CCD-ADC(2), ADC(2)-x,
CCD-ADC(2)-x and ADC(3) levels of theory.* The theoretical best estimates (TBE)
were used as reference data as well as the ADC(3) values.

TBE as reference

ADC(2)* CCD-ADC(2) ADC(2)x* CCD-ADC(2)x ADC(3)

CountP 63 63 63 63 63

Min —0.27 —0.38 —0.96 —1.06 —0.49
Max 0.48 0.35 —0.24 -0.23 0.44
Mean 0.12 0.00 —0.55 —0.67 —0.18
Mean Absolute 0.17 0.13 0.55 0.67 0.21
Standard Deviation 0.16 0.17 0.20 0.22 0.16

ADC(3) as reference
ADC(2)* CCD-ADC(2) ADC(2)x* CCD-ADC(2)x ADC(3)"

CountP 71 71 71 71

Min —0.38 —0.42 —1.41 —1.44
Max 1.52 1.32 0.08 —0.01
Mean 0.32 0.20 —0.40 —0.51
Mean Abolute 0.38 0.29 0.41 0.51
Standard Deviation 0.30 0.29 0.33 0.32

# For ADC(2), ADC(2)-x, and ADC(3) results see Ref. 196.

P Total number of considered states.

magnitude for the triplet than for the singlet excited states, but both still underestimate
excitation energies by more than 0.5 €V on average. The mean error of CCD-ADC(2)-x
is 0.12 eV smaller than the one of the standard version, exactly the same amount as for
ADC(2), although here this represents a deterioration. The lowering of the excitation
energies when using CCD amplitudes in ADC(2) thus seems to be rather consistent. Yet,
one has to keep in mind that these are numbers averaged over the employed benchmark
set and not rigorous trends that are valid for all individual excitation energies. Still,
both mean error as well as mean absolute error compared to TBE values are significantly
smaller for CCD-ADC(2) than for ADC(3).

Taking now ADC(3) values as reference, CCD-ADC(2) still outperforms ADC(2)
significantly. Both the mean error with 0.20 eV as well as the mean absolute error with
0.29 eV are more than 0.1 €V smaller than for ADC(2). It can thus be said that by the
use of CCD instead of Mgller—Plesset amplitudes, the ground-state energy is consistently
lowered which may lead to the on average improved numerical results.

The trend for CCD-ADC(2)-x compared to standard ADC(2)-x is the same as with
respect to the TBE reference, both mean error and mean absolute error are about 0.1 eV
larger in magnitude when CCD amplitudes are employed. The range between minimal
and maximal deviation from the reference, however, decreases both for CCD-ADC(2) and
for CCD-ADC(2)-x with respect to the ADC(3) reference, for CCD-ADC(2) significantly
by 0.18 eV.

A subset of the molecules considered in Sections 4.4.1 and 4.4.3 has also been



4.4 Results and Discussion 109

(a) ADC(2) (b) ADC(2)-x
T T T 30 T T T -]
30 |- — . _—

25 |- .

25 |- -
20 |- -

20 - -
S 15 |- - 1B |
10 |- | 10 |- |
5| = 51 .

0 | l | 0 | |
-15 -10 -05 0.0 0.5 1.0 1.5 -15 -10 -05 0.0 0.5 1.0 15
(c) CCD-ADC(2) (d) CCD-ADC(2)-x

T
30 |- ]
/\ |

15 |- \ .
20 |- . |

10 |

Count

10 - .

i ] N

0
—-1.5 —-1.0 —0.5 0.0 0.5 1.0 1.5 —-1.5 -1.0 —0.5 0.0 0.5 1.0 1.5

Error [eV] Error [eV]

FIGURE 4.3: Histograms of the error distribution of all calculated excited triplet states
with respect to the theoretical best estimates at the theoretical levels of (a) ADC(2),
(b) ADC(2)-x, (c¢) CCD-ADC(2), and (d) CCD-ADC(2)-x.

calculated with the CCSD-ADC(2) variant, the results of which can be found in Table A.4
in the appendix (page 202). As can be seen there, for the small molecules the difference
in excitation energies between the variants using CCD or CCSD doubles amplitudes is
usually only up to 0.02 eV. For the organic molecules this difference is sligtly larger,
although no improvement can be observed when using CCSD amplitudes. Rather, the
results of CCSD-ADC(2) are in general closer to standard ADC(2) than the ones of
CCD-ADC(2).

4.4.4 Excited-State Potential Energy Curves Along N, Dissociation

The failure of standard perturbation theory at points away from the equilibrium geometry
due to static correlation has been known for a long time.[24 Along a bond dissocation
coordinate any MPn model fails to give the correct asymptotic behavior. Single-reference
coupled-cluster models, on the other hand, tend to be more stable and break down

at a later point along the dissociation coordinate.?0?l Several approaches exist which
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FIGURE 4.4: Excited-state potential energy curves along the dissociation of Ny calculated
with standard ADC(2) (dashed lines) and CCD-ADC(2) (solid lines) using the cc-pVTZ
basis set.

describe dissociation processes correctly, for instance multi-reference (MR) methods such
as MR-CI or MR-CC,202-204] 4nd also the so-called spin-flip (SF) methods starting from
an open-shell triplet ground state. (205-212]

Here, the conceptually simple approach of CCD-ADC(2) is tested, thus staying within
a closed-shell single-reference description. Since standard ADC methods can generally not
be applied for cases where the MP ground-state description breaks down, it is investigated
whether the higher stability of the CCD ground state can be transferred to the excited
states. The potential energy curves of the HF molecule with standard ADC as well as
SF-ADC were presented before. 299 In order to choose a different, non-trivial example,
the dissociation of the triple bond in the Ny molecule is investigated here. The MP2
curve breaks down already at about 1.7 A, while the CCSD one for instance stays stable
also beyond 2 A.[1202]

Figure 4.4 shows that the increased stability of CCD along the dissociation coordinate
can indeed be transferred to the ADC excited states. Exemplarily, the energy curves of
the first excited singlet and triplet states of the nitrogen molecule are shown, i.e. the
first 137, 1Hg and 3% states. As can be seen in Figure 4.4, the energy curves obtained
at the ADC(2) level start to break down at around 2 A, similar to the MP2 curve, and
eventually even become lower in energy than the ground state. The CCD-ADC(2) curves,
on the other hand, do not show this unphysical behavior that early and remain reasonable
throughout almost the entire range up to 3.5 A, as shown here. As a cosequence, chemical
reactions in the excited state might be modeled qualitatively more correctly at the CCD-

ADC(2) level as well as excited-state equilibrium geometries which are spatially far away
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from the ground-state geometry may be obtained with higher accuracy. As mentioned
before, this is achievable by staying within a single-reference framework and with a
closed-shell RHF determinant, in contrast to SF-ADC where one necessarily starts from
an open-shell reference. Of course, it remains restricted to within the area of applications

where single-reference coupled cluster remains stable.

4.5 Summary and Conclusions

In this chapter, the working equations of the second-order algebraic-diagrammatic con-
struction scheme for the polarization propagator ADC(2) have been derived using an
intermediate-state representation (ISR) approach. The resulting equations have been
compared to analogous schemes based on a coupled-cluster (CC) reference function and
two methods based on a unitary coupled-cluster (UCC) parameterization of the ground
state. While the standard ADC(2) method uses the first-order doubles amplitudes tl(.;ib
from MP perturbation theory, converged cluster amplitudes are used in the CCD-ADC(2),
CCD-ISR(2), and UCC2 schemes. The latter uses converged amplitudes from the lin-
earized coupled-cluster doubles (LCCD) method, whereas the full coupled-cluster doubles
(CCD) amplitudes are used in the CCD-ADC(2) and CCD-ISR(2) schemes. Furthermore,
while the standard ADC(2) equations employing tgjl.()lb can be simplified such that no
more Fock matrix elements occur in second-order part of the singles-singles block of
the secular matrix, no such simplification is possible with a CCD ground-state wave
function, thus resulting in the CCD-ISR(2) scheme. If the amplitude substitution is
done only after this simplification, one ends up with the CCD-ADC(2) method. The
same sublety occurs in the second-order UCC scheme, depending on whether one uses
the Baker—Campbell-Hausdorff (BCH) or the so-called Bernoulli (Bn) expansion for
the similarity-transformed Hamiltonian H. While no Fock matrix elements occur in
second order for Bn-UCC2 analogous to CCD-ADC(2), the same working equations as for

CCD-ISR(2) are obtained in the BCH-UCC2 scheme. In a strict perturbation-theoretical

m

framework, however (i.e., using the first-order amplitudes ¢, Jab

to the standard ADC(2) method.

All different variants have been implemented and tested on a set of small molecules.

), all methods are identical

For systems that are well described by perturbation theory, no significant differences
occur in the excitation energies for the various schemes. For systems like CHy and BH, for
instance, that are of quasi-open-shell type, larger differences could be observed, where the
methods that include orbital-energy differences in their second-order terms (CCD-ISR(2)
and BCH-UCC2) generally perform worse than their counterparts. The opposite trend
has been observed for the benchmark set introduced by Jacquemin et al.['7 Here, the
BCH-UCC2 scheme showed a slightly better performance than its Bn-UCC2 counterpart.

The development of the CCD-ADC(2) and CCD-ISR(2) schemes was motivated by
similar work on the related SOPPA method. ®4%5] Apart from the small molecules and the
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benchmark set by Jacquemin and co-workers, they were tested on the benchmark set of
medium-sized organic molecules by Thiel et al. [179] a5 well as applied to the dissociation of
the nitrogen molecule. Concerning the Thiel benchmark set, no significant difference could
be observed in the mean signed and mean absolute errors as well as standard deviation
for the investigated singlet excited states. For triplet excited states, however, the mean
error and standard deviation exhibited by ADC(2) of 0.12 £ 0.16 €V could be lowered
t0 0.00 £ 0.17 eV for CCD-ADC(2) at the same time leading to a worse description in
the (CCD-)ADC(2)-x case. These results are in contrast to SOPPA-based methods, 197]
where, on the one hand, standard ADC(2) outperforms standard SOPPA and the use of
coupled-cluster amplitudes like in SOPPA(CCSD) reduced the quality of the results in
the statistical analysis. On the other hand, CCD-ADC(2) did not significantly change or
rather slightly improved the results.

The most impressive improvement apart from the ozone molecule, however, was
observed for the excited-state potential energy curves of Na. Since the MP2 ground
state breaks down at a distance of only about 1.7 A, so do the excited states described
by ADC(2). Using a CCD ground-state description that remains stable up to more
than 3 A of interatomic distance, also the corresponding excited states calculated with
CCD-ADC(2) remain stable over this range.



Chapter 5

Influence of the Ground-State
Correlation Amplitudes on ADC
Static Dipole Polarizabilities

5.1 Introduction

The algebraic-diagrammatic construction scheme (ADC) for the polarization propagator is
not only a versatile and reliable tool for the calculation of excitation energies and transition
moments, [2:52,8486,170,196] 1,1t hag also been applied successfully to static and dynamic
polarizabilities, [213214] X-ray absorption spectroscopy, [215-217] two-photon absorption, 218]
and Cg dispersion coefficients, 214! particularly exploiting the formalism of the intermediate
state representation (ISR).3%213] In a recent work on static polarizabilities and Cg
dispersion coefficients, 2! aromatic systems like benzene have proven difficult cases for
standard ADC approaches, yielding rather poor results compared to other theoretical
approaches or experiment. Thus, the previous implementation of second-order ADC with
ground-state coupled-cluster (CC) amplitudes (see Chapter 4) has been extended to the
calculation of molecular properties and tested its performance on static polarizabilities
of several small to medium-sized molecules, which is presented in this chapter. This
approach has again been inspired by similar work on the related second-order polarization
propagator approximation (SOPPA) method by Geertsen, Oddershede and Sauer. [54-56]
Furthermore, a variant of the implementation relevant for molecular properties has been

made by replacing the amplitudes in the transition moment vectors only, but not in the

Parts of this chapter have already been published in

e M. Hodecker, D. R. Rehn, P. Norman A. Dreuw, “Algebraic-Diagrammatic Construction Scheme
for the Polarization Propagator Including Ground-State Coupled-Cluster Amplitudes. II. Static
Polarizabilities”, The Journal of Chemical Physics, 2019, 150, 174105.
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ADC secular matrix itself. This variant has also been implemented for the ADC(3/2)
method, in which the eigenvectors (and response vectors) of the third-order ADC matrix
are used to calculate properties with second-order dipole matrices. The implementation
allows for the use of CC with double excitations (CCD) as underlying coupled-cluster
model as well as CC with single and double excitations (CCSD), where the singles
amplitudes replace a part of the second-order density-matrix correction as described in

the following section.

Experimentally, static polarizabilities can for instance be obtained by considering the
relative dielectric permittivity or the refractive index, 219 for which a comprehensive work
exists, where experimental data for 174 molecules are compiled. 2201 Alternatively, static
polarizabilities and other properties such as inelastic scattering cross sections of charged
particles, Lamb shifts or dipole-dipole dispersion coefficients can be estimated using
the so-called dipole oscillator strength distribution (DOSD), which is constructed using
various pieces of experimental information such as photoabsorption spectra, refractivity,
and electron scattering as well as constraints from quantum mechanics. [214:221,222]

As an example of the performance of the CC-ADC variants on molecular properties,
static dipole polarizabilities of several small to medium-sized atomic and molecular
systems are reinvestigated. In general, care has to be taken when comparing with
experiment, in particular due to vibrational or environmental effects. For example,
the compilation of Ref. 220 often includes estimates of vibrational contributions to the
static polarizability, but such effects are not considered in the present computational
study. [126:223] DOSD estimates, on the other hand, often include zero-point vibrational
effects, and a previous study on methane reported an increase of its static polarizability
by about 5% when including zero-point vibrational averaging (ZPVA).[224] While, in
the static limit, pure vibrational contributions can be of the same order of magnitude
as the electronic contributions for some molecules, ZPVA has been observed to change

polarizabilities in general by only a few percent. [126:225]

5.2 Theoretical Methodology and Implementation

The underlying theory and the ADC formalism for calculating polarizabilities has been
discussed in detail elsewhere. 213214 Here, only a brief outline of the basic equations
and principles for the calculation of dipole polarizabilities within the intermediate state
representation shall be given.

Apart from the classical derivation of the ADC equations with the propagator
approach, [25:28] an alternative exists via the so-called intermediate state representation
(ISR).[2730] The ISR does not only give direct access to excited states and transition
properties, but also offers a straightforward way to transform expressions from time-
dependent response theory into closed-form matrix expressions. 2132181 The components

of the frequency-dependent molecular dipole polarizability aap(w) (with A, B € {z,y, z})
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as a response function are given as

aap(w) = — (Woljia(fw — H + o)~ jup| W)

A X ) (5.1)
+ (Vo|fp(hw + H — Eg) ™' fua| W),

with the electric dipole operator i = qu /qud};dq. The exact sum-over-states expression is
obtained by inserting the resolution of the identity of evact states, 1 = 3 |W,)(¥,|.[23]
If instead the resolution of the identity of intermediate states, 1 = [Uo)(Wo|+ >, [¥1)(¥y]
is inserted, one arrives at the ADC formulation of the polarizability.[2!4 For a static

perturbation (w = 0), it is given by
aap(0) =F LM ' Fp+FLM 'Fyu, (5.2)
where the vectors of modified transition moments F were introduced with elements

Fr = (Ur|[W0) = pipg (Urlahitg|Wo) =Y pipqfig (5.3)
prq pq

and used the definition of the modified transition amplitudes, [{q = (U [|€L}L,dq]\110>. In
order to obtain ADC expressions, the intermediate states are constructed as described
in Section 2.5 and the exact ground-state wave function and energy are replaced by the

Mgller—Plesset (MP) perturbation series expansions from Section 2.4.

The first-order MP doubles amplitudes which are defined in Eq. (2.82) occur for the
first time in the second-order contribution to the p-h/p-h block of the ADC matrix. In the
previous Chapter 4 they have already been replaced here for the calculation of excitation
energies by CCD amplitudes, which are calculated in an iterative manner according to

the CC amplitude equations as described in Section 2.6.

The MP amplitudes also occur in the first- and second-order contribution to the
modified transition amplitudes fZ{lﬁ 25] where they were replaced by CCD or CCSD doubles
amplitudes as well. Furthermore, in a similar spirit to the work of Sauer, "6l the p-h part
) 1@ gee Eq. (2.171a), was

of the second-order one-particle density matrix correction p;, ia
corresponds precisely

replaced by the corresponding CCSD singles amplitudes. Since PE?
to the second-order contribution of 71, i.e. the lowest order where the singles occur in the
MP wave-function expansion, CCSD was considered to an equal extent as CCD here, in
contrast to the previous work on excitation energies. These singles amplitudes are not
(2)

replaced when CCD is chosen as coupled-cluster model, but p;.’ is calculated instead

with the CCD T amplitudes.
It is worth mentioning that the CC-ADC approach presented here is still size consistent

(size intensive), since on the one hand in the ISR the ground state is completely decoupled
from the excited configurations, and on the other hand, the form of the ADC equations is

still the same in the CC-ADC variants, which means that local and non-local excitations
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are exactly decoupled as well.

The CCD and CCSD amplitudes were combined with ADC(2) to yield the variants
termed CCD-ADC(2) and CCSD-ADC(2). Furthermore, in order to check for the
importance of the amplitudes in different parts of the calculation, more variants of
ADC(2) as well as ADC(3/2) have been implemented, in which the amplitudes are
replaced in the modified transition moments F, but not in the ADC matrix M. These
variants are then referred to as F/CC-ADC(2) and F/CC-ADC(3/2), where CC stands
for either CCD or CCSD.

5.3 Results and Discussion

In the following, static dipole polarizabilities of a series of small and medium-sized atomic
and molecular systems are calculated using different ADC and CC-ADC variants and the
results are compared to full configuration interaction (FCI), CC3 or experimental values.

23] it was shown that double-zeta basis sets are clearly insufficient for

In a previous study
the calculation of polarizabilites at the correlated wave-function level. Furthermore, one
set of diffuse functions is crucial, whereas adding further sets of diffuse functions seemed
to be of minor importance at the triple-zeta level. Thus, a basis set like aug-cc-pVTZ can
be seen as a good compromise between basis-set size and accuracy. 213 Since the purpose
of this study is to compare different CC-ADC variants with other methods, in particular
standard ADC, no attempt was made to optimize the employed one-particle basis set.
Instead, the basis sets of previous studies were employed for comparability. Most of the

geometries were taken from literature as well.[213]

5.3.1 Comparison with FCI
5.3.1.1 The Case of Li~

As first step, the case of the lithium anion, Li™ is reinvestigated, which has been a
prominent test case for the calculation of dipole polarizabilities with many correlated
methods. [199:226-229] Sayer chose to investigate this anion first as an “ideal test case” for
his SOPPA variant referred to as SOPPA(CCSD), ! where he replaced MP by CCSD
amplitudes, based on earlier work by Geertsen et al.l®»5% Thus, it was chosen as first
test case for the CC-ADC approaches using the same uncontracted (16s12p4d) Gaussian

one-electron basis set. [°6]

The values for the static dipole polarizability calculated with different ADC- and
SOPPA-based methods compared to FCI are shown in Table 5.1. A graphical representa-
tion of the relative error defined as %
depicted in Figure 5.1. As can be seen, both standard second-order methods, ADC(2)

and SOPPA, show only a small improvement compared to the first-order random-phase

, where X is the corresponding method, is

approximation (RPA) which has a relative error of about 50% (corresponding to 400 a.u.).
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TABLE 5.1: Static dipole polarizability (in a.u.) of Li~ calculated with different methods.

Method «

RPA? 1198.39
SOPPA® 1061.70
CCSDPPA® 620.80
SOPPA(CCSD)*  732.60
ADC(2) 1039.17
CCD-ADC(2) 601.66

F/CCD-ADC(2)  747.59
CCSD-ADC(2)  448.38
F/CCSD-ADC(2) 558.30
FCI! 797.77

[56]

& Taken from literaure.

They still overestimate the static polarizability significantly by more than 30% (about
250 a.u.). The use of coupled-cluster amplitudes within these methods lowers the value
of the polarizability in all cases, but the magnitude of the effect varies strongly for the
different variants. While SOPPA(CCSD) yields better results than Geertsen’s coupled-
cluster polarization propagator approximation (CCSDPPA) variant, [56] this also holds
true for the ADC(2) variant with CCD, but not for the one with CCSD amplitudes. In the
latter case the polarizability is underestimated by more than 40% or 350 a.u. With CCD
amplitudes the underestimation is less than 25% (200 a.u.). A further improvement can
be observed for the variants in which the amplitudes are only substituted in the modified
transition moments F. While for the F/CCSD-ADC(2) the error is still —30% (about
240 a.u.), the best result of all compared methods could be obtained with F/CCD-ADC(2),
where the underestimation is with 6% (50 a.u.) even smaller than for SOPPA(CCSD)
with 8% (65 a.u.). It can already be seen in this system that the amplitudes in the

F vectors play a larger role than the ones in the secular matrix, since the change in
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FIGURE 5.1: The relative error of the static dipole polarizability « for Li~ of results
presented in Table 5.1 with respect to FCIL.



5 INFLUENCE OF THE GROUND-STATE CORRELATION AMPLITUDES ON
118 ADC STATIC DIPOLE POLARIZABILITIES

TABLE 5.2: Static dipole polarizability (in a.u.) of Ne (d-aug-cc-pVDZ basis set) and HF
(aug-cc-pVDZ basis set) obtained with different variants of the ADC scheme compared
to FCI.

Ne HF

Method « Qgy Oy a

ADC(2) 2.83 | 4.55 6.71 5.27
CCD-ADC(2) 2.78 | 443 6.47 5.11
F/CCD-ADC(2) 2.78 | 443 6.48 5.11
CCSD-ADC(2) 2.83 | 4.53 6.58 5.21
F/CCSD-ADC(2) 2.83 | 4.53 6.59 5.22
ADC(3/2) 2.70 | 4.29 6.32 4.97
F/CCD-ADC(3/2) 2.65 | 419 6.12 4.84
F/CCSD-ADC(3/2) 2.70 | 428 6.21 4.93
FCI? 2.67 | 429 6.21 4.93

2 Taken from literaure. 213-230)

going from standard ADC(2) to F/CCD-ADC(2) is already almost 300 a.u., and when
the amplitudes are additionally substituted in the secular matrix in CCD-ADC(2), the
polarizability decreases by another 145 a.u. For CCSD amplitudes, this trend is even
more pronounced: the difference between ADC(2) and F/CCSD-ADC(2) amounts to
480 a.u., and between F/CCSD-ADC(2) and ‘full’ CCSD-ADC(2) only 110 a.u.

However, the results obtained with the different methods do not appear to be very
systematic, and especially the best result obtained with the F/CCD-ADC(2) variant seems
rather fortuitous. Since the lithium anion is a system with a diffuse charge cloud that is
easily polarizable, it is understandable that the computed polarizability is very sensitive
to small changes in the parameters. This makes it, however, questionable whether the Li~
ion is really an ideal test case and whether the observed improvements were obtained for
the right reasons and not fortuitously. Furthermore, Li™ is isoelectronic to the beryllium
atom that in turn is known to be a strongly correlated system and therefore perturbation
theories at low order and even single-reference coupled-cluster approaches may not be

appropriate, such that in this case a real multi-reference treatment would be needed.

In order to further investigate the CC-ADC methods and deduce some general trends
when using different t-amplitudes within ADC, more calculations on rather standard

chemical systems have been carried out and analyzed as shall be discussed in the following.

5.3.1.2 Neon and Hydrogen Fluoride

Two more small systems are discussed now, namely neon and hydrogen fluoride. The static
dipole polarizabilities of Ne and HF have been calculated with various ADC methods
and the results are compared to FCI. The basis sets used here are only of double-zeta
quality, but since the reference FCI values were calculated in the same one-particle basis,

the deviations from FCI stem solely from the approximations in the respective ADC
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method. Table 5.2 shows the static dipole polarizability of the Ne atom calculated with
the d-aug-cc-pVDZ basis set, 175231 and the relative error is depicted in Figure 5.2. The
deviation of the standard ADC(2) result from FCI of 6% (0.16 a.u.) are improved by
0.05 a.u. when using CCD amplitudes, such that the deviation is only 4% or 0.11 a.u.
When CCSD doubles amplitudes are employed, the polarizability increases again to the
same value as standard ADC(2) and hence no improvement is observed. It can be seen,
however, that the results for both CCD-ADC(2) and F/CCD-ADC(2) as well as for
CCSD-ADC(2) and F/CCSD-ADC(2) are the same, underlining the greater importance
of the amplitudes in the modified transition moments F compared to the ones in the
secular matrix M for the calculation of the polarizability. The same trend as for ADC(2)
is observed for the third-order variants, where standard ADC(3/2) slightly overestimates
the static polarizability by 1.0% compared to FCI. The use of CCD amplitudes within
the second-order modified transition moments F lowers the obtained value and improves
it slightly with a relative error of —0.7%, whereas with F/CCSD-ADC(3/2) the same
value as for standard ADC(3/2) is obtained.

The dipole polarizability of hydrogen fluoride was calculated with the aug-cc-pVDZ
basis set, 173 and the results can also be found in Table 5.2 and Figure 5.2. Again, the
results for the CC-ADC and F/CC-ADC variants are almost identical. Focusing first on
the isotropic polarizability of HF & = %(am + oy + ), With oy = ayy for symmetry
reasons, standard ADC(2) overestimates its value by 6.9% or 0.34 a.u. As before, the
use of CC amplitudes in ADC lowers the static polarizability and thus improves its value
compared to standard ADC. CCD amplitudes again yield a better result in ADC(2)
than CCSD ones, with the error of the former being only 3.7% (0.18 a.u.) compared to
about 5.8% (0.28 a.u.) of the latter. So again, when CCSD amplitudes are employed
the polarizability is raised compared to CCD ones, making the result more similar to
standard ADC(2). A similar trend is observed for the ADC(3/2) method. Here, however,
F/CCD-ADC(3/2) underestimates the polarizability by 1.9% or 0.09 a.u. due to the
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FIGURE 5.2: Relative error of the isotropic polarizability & for Ne and HF of results
presented in Table 5.2 with respect to FCI.
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already very good result of standard ADC(3/2), having an error of only 0.8% or 0.04 a.u.
The F/CCSD-ADC(3/2) method again raises the value of the polarizability to some
extent compared to F/CCD-ADC(3/2) and is in this case in almost perfect agreement
(relative error < 0.1%) with the FCI result of 4.93 a.u. for the isotropic polarizability.
Having a look at the individual values of the polarizability tensor, all ADC(2) variants
describe the components of the polarizability perpendicular to the molecular axis (that
is, agzz and ayy) better than the component parallel to the axis, a,,. The relative
improvement when using CCD amplitudes, however, is larger for the parallel z component
than for the perpendicular ones. A similar observation holds for the ADC(3/2) method.
Here, however, the standard version is already in agreement with FCI for the diagonal x
and y components of the polarizability, whereas the error of the z component amounts to
0.11 a.u. When using CCSD amplitudes in the F vectors, the perpendicular components
remain virtually unchanged, whereas the parallel z component is lowered to be in perfect

agreement with the FCI value as well.

5.3.2 Comparison with Experiment

In the following, the accuracy of the CC-ADC methods for molecular systems of increasing
size and with larger basis sets will be evaluated and the results will be compared to the
ones obtained in experiments, often by means of the dipole oscillator strength distribution
(DOSD). [222] Since no FCI results are available for these systems, results of the third-order
approximate coupled cluster (CC3) method 232] were taken as a theoretical reference

when they were available. Additionally, the polarizability anisotropy defined as

AO& — \v/(Oé-'JU-Z B O‘yy)Z + (O‘yy ;a22)2 + (aZZ B a$$)2 (54)
is compared. Previous studies have shown that ADC(2) yields in general rather large
discrepancies in the anisotropies due to a poor reproduction of longitudinal polarizability

components. [213,214]

5.3.2.1 Water and Carbon Monoxide

Let me start with the investigation of the water molecule, using the rather large d-
aug-cc-pVTZ basis set[231 in order to allow for a proper comparison of theory and
experiment. 2131 The results obtained for HoO are shown in Table 5.3 and the relative
error with respect to CC3 is depicted in Figure 5.3. Compared to CC3, the standard
ADC(2) variant overestimates the polarizability by almost 5%. This can be significantly
improved to almost 1% by using CCD amplitudes, independent of whether they are
used everywhere or only in the F vectors. When using CCSD amplitudes the results are
with a relative error of about 3.5% worse, but still better than for the standard ADC(2)

variant. ADC(3/2), however, yields a result very similar to CC3, having a relative error
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TABLE 5.3: Static dipole polarizability (in a.u.) of HoO and CO calculated with different
ADC variants (d-aug-cc-pVTZ basis set) compared to CC3 and experiment.

H,O CcO
Method Qpz Oy Oy Q Aa | oy Qs Q Ax
ADC(2) 9.79 10.41 10.17 10.13 0.54 | 11.88 17.32 13.70 5.43
CCD-ADC(2) 948 9.97 9.83 9.76 0.44 | 11.45 16.92 13.27 5.47
F/CCD-ADC(2) 9.48 9.97 9.85 9.77 0.45 | 11.47 17.07 13.34 5.61
CCSD-ADC(2) 9.81 10.11 10.05 9.99 0.28 | 11.51 17.14 13.38 5.63
F/CCSD-ADC(2) 9.81 10.12 10.06 10.00 0.28 | 11.55 17.27 13.46 5.72
ADC(3/2) 9.30 10.09 9.71 9.70 0.69 | 12.07 16.35 13.50 4.29
F/CCD-ADC(3/2) 9.03 9.70 9.43 9.39 0.58 | 11.68 16.28 13.21 4.59
F/CCSD-ADC(3/2) 9.33 9.82 9.63 9.59 043 | 11.78 16.45 13.33 4.67
cc3 9.38 9.96 9.61 9.65 0.51 | 11.95 15.57 13.16 3.62
Experiment? 9.83 0.67 13.08 3.59

 Taken from literature. [213:233-237]

of only 0.5%. The trend of using CCD or CCSD amplitudes within ADC(3/2) is the
same as for the pure second-order method. Here, however, this means a deterioration in
the case of CCD amplitudes, since the polarizability is underestimated by about 2.7%.
F/CCSD-ADC(3/2) has rougly the same relative error compared to CC3 as the standard
variant, just with the opposite sign.

When taking the experimental value as reference, which was obtained using refractive
index data, [234:236] gimilar trends are observed. ADC(2) overestimates the polarizability by
3% or 0.3 a.u., the use of CC amplitudes again lowers the obtained values, thus generally
improving the results. As for Ne and HF, CCD amplitudes yield better results than
CCSD ones and the difference between the CC- and F/CC-ADC variants is negligible.
CCSD-ADC(2), however, still overestimates the static polarizability by about 1.6%

(0.16 a.u.), whereas the variants with CCD amplitudes now underestimate its value by
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FIGURE 5.3: Relative error of the isotropic polarizability @ of HoO and CO of results
presented in Table 5.3 with respect to CC3.
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0.06 a.u. Overall, (F/)CCD-ADC(2) yields the best results of all compared methods
with a relative error of only about —0.65%. In fact, the result with CCD-ADC(2) agrees
even better with experiment than the CC3 one, which for the previously studied systems
yielded results almost identical to FCI, but here underestimates the polarizability by 1.8%
(0.18 a.u.) compared to experiment. 213,230 A significant difference to previous results is
observed for the third-order ADC scheme. The effect of the CC amplitudes of lowering
the values is still the same, but since standard ADC(3/2) already underestimates the
polarizability compared to experiment by 1.3% (0.13 a.u., thus being still more accurate
than CC3), in this case the results deviate stronger when using CCD or CCSD amplitudes
within the second-order F vectors. Deviations from experiment of —0.44 and —0.24 a.u.
corresponding to relative errors of —4.5% and —2.4% were obtained for F/CCD-ADC(3/2)
and F/CCSD-ADC(3/2), respectively.

Having a look at the polarizability anisotropy A« as defined in Eq. (5.4), standard
ADC(2) yields the best result of 0.54 a.u. with respect to CC3 or experiment compared
to all other second-order methods. CCD amplitudes lower this value only by 0.1 a.u., but
with CCSD amplitudes the result is with 0.28 a.u. the worst of all. Standard ADC(3/2)
yields the best result of all with respect to experiment, even better than CC3. Taking
CC3 as a reference, on the other hand, the ADC(3/2) value can be slightly improved by
using CC amplitudes.

Another molecular system under investigation here is carbon monoxide, which was
also calculated using the d-aug-cc-pV'TZ basis set. As can be seen from the results for
the isotropic polarizability shown in Table 5.3 and the relative error with respect to CC3
depicted in Figure 5.3, standard ADC(2) overestimates its value significantly by 4.1% or
0.34 a.u. The use of CCD amplitudes in both the F vectors and the secular matrix M of
ADC(2) lowers this error significantly to 0.11 a.u., yielding again the best result of all
ADC(2) variants compared to CC3 with a relative error of only about 0.9%. With CCSD
amplitudes, the deviation is 1.7% (0.22 a.u.), which is still less than half as large as for
standard ADC(2). The difference between the CC-ADC(2) and F/CC-ADC(2) variants
is for CO larger than for Ne or HF, but the trend is the same as for Li™: employing
CC amplitudes only in the modified transition moments has the largest influence and
lowers the value of the dipole polarizability significantly, with F/CCD-ADC(2) and
F/CCSD-ADC(2) resulting in a relative error of about 1.3% and 2.3%, respectively,
while the additional substitution in the secular matrix M has the same effect, but to a
smaller extent. Going to the third-order description in the secular matrix only yields a
small improvement compared to pure second-order; the error of standard ADC(3/2) still
amounts to 2.6% or 0.34 a.u. Replacing the MP amplitudes in the second-order transition
moment vectors by CC ones gives an improvement both for CCD and CCSD doubles
amplitudes. In this case, however, the variant with CCD amplitudes yields better result
than with CCSD ones. While F/CCSD-ADC(3/2) still deviates from experiment by 1.3%
(0.17 a.u.), F/CCD-ADC(3/2) yields the best result of all presented ADC variants with
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a deviation of only 0.05 a.u., corresponding to a relative error of about 0.4%. It is also
remarkable at this point that all “hybrid” CC-ADC variants, even the pure second-order
ones, yield better results than the (third-order) standard ADC(3/2) method. For example,
the relative error of F/CCD-ADC(3/2) is only one third of the standard ADC(3/2) one,
and the relative error of CCD-ADC(2) is about half as large as the one of standard
ADC(3/2) and only one third of the standard ADC(2) one. All observed trends and results
hold as well when taking experiment [213,235] 45 a reference for the isotropic polarizability,

just that the absolute deviation is 0.08 a.u. larger for all ADC variants.

A different picture is observed for the individual components of the polarizability
tensor. For the two components perpendicular to the molecular axis, a,; and oy, the
standard ADC approaches with MP amplitudes have a smaller deviation from the CC3
results than the ones with CC amplitudes, the order of magnitude of the deviation for the
former being about 0.1 a.u., whereas for the latter it is up to 0.5 a.u. However, for the
component along the molecular axis, ., the largest difference can be observed between
the pure second-order ADC variants and the ADC(3/2) ones. The third-order description
of the secular matrix M significantly improves the description of «,, by about 1.0 a.u.
for the standard ADC approaches. The influence of the chosen amplitudes in the F
vectors on the ADC(3/2) results is rather negligible. At the ADC(2) level, this influence
is somewhat larger, and the largest improvement is again obtained with CCD amplitudes
replacing the MP ones everywhere; with the error of CCD-ADC(2) being 0.4 a.u. smaller
than the one of the standard ADC(2) variant. These differences, of course, explain the
changes in the polarizability anisotropy. While all ADC variants overestimate its value
compared to experiment 213237 or also CC3,1233] the use of CC amplitudes within ADC
generally raises Aq, thus worsening the results. For CCSD amplitudes the effect is more

pronounced than for CCD ones.

5.3.2.2 Aromatic Systems

Finally, I turn the attention to some larger chemical systems: aromatic and heteroaromatic
compounds. Due to the lack of CC3 or similar values in the literaure for the systems,
they are compared to experimental values only. The prototype of aromatic systems is, of
course, the benzene molecule, which is computed as a first example using the Sadlej-pVTZ
basis set.[238] Experimental values in the literature were obtained by applying ultraviolet
Stark spectroscopy 239 or through a series of experimental and theoretical data using the
DOSD technique. 249 For standard ADC methods the benzene molecule has proven to
be a difficult case,?'*l which can be seen in the results shown in Table 5.4 and Figure
5.4 on the left. Compared to the DOSD value, standard ADC(2) overestimates the
static polarizability significantly by 5.14 a.u., corresponding to a relative error of 7.6%.
Expanding the secular matrix M to third order in standard ADC(3/2) improves the result
only slightly and still overestimates & notably by 6.1% or absolutely by 4.13 a.u. Using CC
amplitudes within ADC again improves the values for the polarizability significantly by
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TABLE 5.4: Static dipole polarizability (in a.u.) of the benzene, pyridine and naphthalene
molecules calculated with different ADC variants (Sadlej-pVTZ basis set) compared to
DOSD values.

Benzene Pyridine Naphthalene
Method fo 7 sy @ A« fo 7 Qryy (o @ A« fo 7 Qryy (o7 a Aa
ADC(2) 86.32 46.14 72.93 40.18 | 82.64 42.21 7849 67.78 38.53 | 182.3 1344 69.2 128.6 98.3
CCD-ADC(2) 81.68 45.99 69.78 35.69 | 78.41 42.09 74.67 65.05 34.60 | 172.8 128.5 69.4 123.6 89.8
F/CCD-ADC(2) 81.90 46.08 69.96 35.82 | 78.51 42.14 74.88 65.18 34.69 | 171.0 128.7 69.6 123.1 88.2
CCSD-ADC(2) 81.79 45.57 69.72 36.22 | 78.70 41.83 7520 65.24 35.26 | 172.9 129.0 68.9 123.6 904
F/CCSD-ADC(2) 82.14 45.75 70.01 36.39 | 78.96 41.97 7554 65.49 3541 | 171.6 129.5 69.3 123.4 89.1
ADC(3/2) 84.89 4597 71.92 38.92 | 80.91 41.95 76.59 66.48 36.99 | 178.1 130.7 68.6 125.8 95.2
F/CCD-ADC(3/2) 80.91 46.08 69.30 34.82 | 77.27 42.07 73.46 64.27 33.46 | 168.3 126.0 69.3 121.2 86.1
F/CCSD-ADC(3/2) 81.12 45.75 69.33 35.37 | 77.67 41.87 74.05 64.53 34.13 | 168.8 126.6 68.9 1214 86.8
Experiment® 67.79 315 62.88 1174 86.8

2 Taken from literature, [222:239-241]

lowering the computed values. Here, the difference between CCD and CCSD amplitudes
is replacing the MP ones either only in the F vectors or both in F and the secular matrix
M is rather negligible, with the difference between the two corresponding CC-ADC(2)
and F/CC-ADC(2) variants being <0.1%. Using CC amplitudes within ADC(2) in the
modified transition moment vectors only yields a deviation from experiment of about
3.2% (2.2 a.u.), whereas the error is about 2.9% (less than 2.0 a.u.) when the amplitudes
are replaced everywhere in CC-ADC(2). A significant improvement is also observed when
using CC amplitudes in the F vectors of the ADC(3/2) variant, with the deviation from
experiment being merely about 2.2% (1.5 a.u.), thus yielding the best results for all
compared ADC variants. Hence, the improvement obtained when using CC amplitudes
within ADC for the calculation of the static polarizability lies in the order of 63%, which is
the most significant one of all systems compared so far. Again, all CC-ADC variants show
a substantial improvement over the standard ones with the relative error of CC-ADC(2)
methods being only about half as large as the one for standard ADC(3/2). A possible
explanation for the better performance of the CC-ADC variants compared to the standard
ADC ones is the better description of excitation energies, especially for the lowest ones,
as shown in Chapter 4. Yet, the transition moments seem to be a more important
factor. They are, however, hard to compare with literature or especially experiment. In
literature, 196! only oscillator strengths were compared, but those depend also linearly on
the excitation energy.

But not only the isotropic polarizability, also its anisotropy is improved significantly
compared to the experimental value 239 when using CC amplitudes in ADC. While it does
not seem to play a significant role whether they are employed both in the secular matrix
and the modified transition moments, CCD amplitudes again yield slightly better results
than the corresponding versions with CCSD amplitudes. Other experimental results give
the polarizability anisotropy of benzene as 35.02 a.u.,[241:242] which is in almost perfect
agreement with CCD-ADC(2) or F/CCSD-ADC(3/2) results, for instance.

Another system closely related to benzene is the six-membered heteroaromatic

compound pyridine, the geometry of which has been optimized using the Gaussian 09
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FIGURE 5.4: Relative error of the isotropic polarizability & for benzene, pyridine and
naphthalene of results presented in Table 5.4 with respect to DOSD values.

&

program package 243 at the MP2 /cc-pVTZ level of theory. For the calculation of the
static polarizability again the Sadlej-pVTZ basis set was used, the results are shown
next to the ones for benzene in Table 5.4 and the relative errors are depicted in Figure
5.4. The experimental value of its isotropic polarizability was obtained using the DOSD
method. 222 However, no value for the individual components or its anisotropy could be
found in the literature. The deviation of the standard ADC(2) method from the DOSD
value is with 7.8% or 4.9 a.u. very similar to the one for the benzene molecule, while the
deviation of the standard ADC(3/2) variant is with 5.7% (3.6 a.u.) slightly smaller (0.5 a.u.
in absolute numbers) for pyridine than for benzene. However, a clear improvement is
observed again for all ADC variants when using CC instead of MP amplitudes. The
difference between the individual variants is slightly larger in this case than for benzene,
though all variants are still very similar. The best result for the pure second-order ADC
method is again obtained when CCD amplitudes are used throughout, i.e. CCD-ADC(2).
Here, the error amounts to 3.46% (2.17 a.u.), as compared to 3.76% (2.36 a.u.) when CCSD
amplitudes are used, or 3.65% and 4.15% corresponding to 2.30 and 2.61 a.u. when CCD
or CCSD amplitudes are used in the F vectors only, respectively. This corresponds to an
improvement of up to 55% compared to the relative error of the standard ADC(2) method.
Another significant improvement is observed when F/CCD-ADC(3/2) is employed. With
a deviation from experiment of 2.21% (1.39 a.u.), the F/CCD-ADC(3/2) variant again
yields the best result, which corresponds to an improvement of 61% as compared to the
standard ADC(3/2) variant. The F/CCSD-ADC(3/2) variant yields a comparable result
with a relative error of 2.62%. Again, the results obtained with all hybrid CC-ADC
variants show a significant improvement over the standard ones, even CC-ADC(2) over
standard ADC(3/2), at a lower overall computational cost.

The results for the last and largest system discussed here, the naphthalene molecule,

are summarized in Table 5.4 and Figure 5.4, as well calculated with the Sadlej-pV'TZ basis
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set. As noted by Millefiori and Alparone, 24! experimental results of the polarizability and
its anisotropy were obtained from the Cotton-Mouton effect,[?*4 molar Kerr constants
and refractions[24%:246] a5 well as from laser Stark spectroscopy. 2472481 Concerning the
isotropic polarizability, the standard ADC(2) variant has an even larger deviation from
experiment than for benzene and pyridine, the relative overestimation amounting to 9.6%,
its absolute error being 11.22 a.u. As previously, significant improvement is obtained when
CC amplitudes are used. For CCD-ADC(2), CCSD-ADC(2) and F/CCSD-ADC(2) the
relative error lies between 5.1% and 5.3%, with the absolute error between 6.0 and 6.2 a.u.
In this case, the F/CCD-ADC(2) variant again stands somewhat out, having the smallest
error of all compared methods with 4.9% or 5.72 a.u. Thus, the improvement obtained
when using CC amplitudes is up to almost 50% compared to the standard ADC(2) variant.
The standard third-order ADC(3/2) method again shows no significant improvement
compared to standard ADC(2) and has an error of 7.2% corresponding to 8.4 a.u. The
use of CC amplitudes within the second-order F vectors improves notably upon this value,
yielding the best result of all compared methods with 3.2% corresponding to 3.8 a.u.
As for the aromatic systems studied before, all CC-ADC variants yield better results
compared to experiment than the standard ones, especially CC-ADC(2) yields better
results than standard ADC(3/2) while the computational cost remains significantly lower.
On the other hand, an improvement in the relative error of more than 50% is obtained
when going from standard ADC(3/2) to F/CCD-ADC(3/2) at a higher computational
cost that only amounts to about 1% in this case. Again, a possible explanation for the
improved description of the polarizability is the improvement in excitation energies. Even
more pronounced than for benzene, significantly improved results for the polarizability
anisotropy A« compared to experiment are obtained when using CC amplitudes within
ADC, especially in the ADC(3/2) scheme where the F/CCSD-ADC(3/2) variant is in

perfect agreement with the experimental value.

Two more related aromatic systems, quinoline and isoquinoline, have been calculated
as well (see Appendix B on page 209), and the results show the same trends and
improvements for the CC-ADC methods, underlining the consistency of the improvement

for this class of molecules.

5.4 Summary

In this chapter, the existing implementation of the algebraic-diagrammatic construction
scheme for the polarization propagator with coupled-cluster amplitudes (Chapter 4)
has been extended to molecular properties, and in this special case tested for dipole
polarizabilities recently implemented for standard ADC using the damped response
formalism. 214 Furthermore, in addition to CCD, CCSD amplitudes can be used as well,
also in the second-order transition moments of the ADC(3/2) method. This new approach
is inspired by similar work done on the SOPPA method by Geertsen, Oddershede and
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Sauer. 4% In the new CC-ADC(2) variants, the MgllerPlesset correlation coefficients
that occur in ADC are replaced by either CCD or CCSD amplitudes, in the F/CC-
ADC(2) and F/CC-ADC(3/2) variants they are replaced only in the second-order modified
transition moments F, but not in the secular matrix M. In order to test the performance
of the new CC-ADC variants, the static dipole polarizabilities of several small to medium-
sized chemical systems have been calculated and compared to FCI, CC3, DOSD or
experimental reference values. As a first test case the Li™ ion was chosen, since it served
previously as reference. 5 In my opinion, however, this is not a good test case since the
results are very sensitive with respect to the amplitudes employed in the calculation and
hence the values vary very strongly and unsystematically. Although the result obtained
with the F/CCD-ADC(2) variant is very close to FCI, this seems to be rather fortuitous
than systematic and hence does not allow for many general conclusions regarding the use
of CC amplitudes within ADC, except that the polarizability becomes smaller when using
CC amplitudes. For the ten-electron systems neon and hydrogen fluoride the standard
ADC methods show a relatively large deviation from FCI that could be improved when
employing CCD amplitudes. Since, however, the third-order ADC(3/2) scheme already
provided very good results with relative errors <1%, no significant improvement was
obtained with CC amplitudes in the F vectors. A slightly different picture is obtained
when experimental values are used as reference. While for the water molecule notable
improvements, especially with CCD amplitudes, could be observed for the second-order
ADC method, an increased deviation is observed for ADC(3/2) because the standard
variant already underestimates the static polarizability by about 1%, and the use of CC
amplitudes in the F vectors generally lower its absolute value even more. For carbon
monoxide and in particular the aromatic systems benzene, pyridine and naphthalene,
which have proven to be very problematic cases for standard ADC, (214] very consistent
improvements for all CC-ADC variants compared to the standard schemes are obtained.
The CCD-ADC(2) results for instance even exhibit a notably smaller relative error than
the considerably more expensive ADC(3/2) method. For benzene the relative errors of
both the CC-ADC(2) and F/CC-ADC(3/2) variants amounted only to about 35-50% to
the one of standard ADC(3/2).

Due to the less favorable scaling of CCD/CCSD compared to MP2, the CC-ADC(2)
variants are of course computationally somewhat more demanding than standard ADC(2),
but still significantly cheaper than the standard third-order ADC(3/2) or EOM-CC
methods. At this point it seems appropriate to consider some computational efficiency
aspects of the different standard ADC, CC-ADC and standard (EOM-)CC aproaches
in terms of their formal scaling with system size a bit more in detail. Both MP2 and
ADC(2) scale as O(N?) (the latter in an iterative manner, however), whereas ADC(3)
and both (EOM-)CCSD and CCD scale as O(N°®), where N is the number of basis
functions. The price that has thus to be paid for the improvement of the results for the
static polarizability with CC-ADC(2) is the O(NY) iterative ground-state calculation with
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CCD or CCSD instead of just the single O(N%) MP2 one. The successive excited-state
calculation, however, scales more favorably for ADC(2) than for ADC(3) or CCSD. Thus,
while the ground-state calculation has become one order of magnitude more expensive
compared to MP2, the excited-state calculation still scales as O(N®) and the results
obtained with the CC-ADC(2) variants are notably better than the ones for standard
ADC(3/2). In this way, one obtains very good results at an overall lower cost than
standard third-order ADC or CCSD methods which are sometimes even comparable to
the very accurate iterative CC3 method, that however scales very unfavorably as O(N7).
As an example, in the ADC(2) and CC-ADC(2) computations of the aromatic systems
the CPU time needed for the ADC (and CC) calculations only amounts to about 1%
compared to ADC(3/2). On the other hand, the additional time needed for the CC
calculation in F/CC-ADC(3/2) also amounts only to about 1% of the total time, and the

improvement in the results is remarkable.

Especially the CC-ADC(2) variants might become useful and versatile alternatives to
standard ADC in the calculation of molecular properties such as polarizabilities, since it
combines a reliable iterated CC ground state and retains the advantageous features of

ADC with its Hermitian eigenvalue problem and low computational cost.



Chapter 6

Third-Order Unitary Coupled
Cluster for Electronic Excitation

and Molecular Properties

In this chapter, the third-order unitary coupled-cluster approach, as described in Sec-
tion 3.4 (page 72) based on the Bernoulli expansion of the similarity-transformed Hamilto-
nian (Section 3.2), is discussed in more detail, in particular its implementation within the
adcman module® of the Q-CHEM 5.2 program package. >3] For this, the general block
tensor library libtensor is used throughout, 249 which also means that the implemen-
tations are parallelized via shared memory and exploit permutation, spin, and Abelian
point-group symmetry. First, the implementation of the UCC3 amplitude equations
(3.64) for the electronic ground state is described, exploiting the similarity to standard
coupled-cluster approaches, then the eigenvalue problem to obtain excitation energies
and ionization potentials, where the relationship to the ADC schemes as described in
Section 3.5 is exploited. The UCC3 scheme is then benchmarked on the same set of
molecules as the second-order methods in Chapter 4. Apart from electronic excitation
energies, also transition moments, as well as dipole moments in the ground and excited
states, have been calculated with the approach described in Section 3.7. Furthermore,
the first-ever implementation of UCC-based self-consistent electron propagator theory
(IP-UCC) through third order as well as results of ionization potentials for selected amino

acids calculated with IP-UCC2 and IP-UCC3 are reported.

6.1 Implementation

6.1.1 Amplitude Equations

Since the UCC3 amplitude equations (3.64) are coupled and nonlinear, they need to

be solved in an iterative manner analogous to standard CC amplitude equations. ! For

129
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this, they are rewritten analogous to Egs. (2.169) in Section 2.6.7 by taking the terms
involving fi; = &; and f,q = €, on the LHS. Then, all amplitudes on the RHS are set to
zero and one divides by the orbital-energy differences. As the initial guess, the first-order

(1)

amplitudes ¢; ab from MP are used. Through the second iteration, i.e., up to second-order,

the perturbation expansion of the amplitudes is identical to the ones of CCSD.

However, in order to efficiently implement the UCC3 amplitude equations, it is
useful to factorize some terms that include products of 69 amplitudes and introduce
intermediates, which are stored in memory. All intermediates are listed in the following.
First, for the singles equations (3.64a), two intermediates denoted as I§3,2,V and Iéglv are
presented below, where o stands for “occupied” and v for “virtual” orbitals. The first line
of each equation represents the way the terms occur in the original equation, 5 the second
line includes index renaming and the third line shows the intermediate as implemented,
possibly with further index permutations. The index renaming and permutation is
necessary since only the canonical blocks oooo, ooov, oovv, ovov, ovvv and vvvv of the

electron repulsion tensor are available. The first two intermediates are given as

1 1. a C*x _Ca * Ca
_§Z<k]|“b>0?k_ Z(blHﬂ ?k Opl + Z (bd||ic)o; i

jkb jklbe ]kbcd
]. . a cbx a cax a
=-3 Z(ijzb)a?k — Z(ckz”lz ol;’ b E+ - Z (cd||ib) ]g a;’k
jkb , jklbe b 1jkbcd ) b (61)
=S [- Stmalliv) = > (S ttllke)ly — 3 S iblledyosi )| ot
jkb c l d
_ Z[ 7 }
kj,ib
Jjkb
5 S lagllebyot + 3 (ablldi)oliot — ¢ S allljk)ol s
]bc jkbed jklbc
= Z ajlleb)o + D (ad|[bk)of of — 5 Z (ajl|kl)opi oy
jbC jklbe ) , jkbed b b (62)
=3 [Stallbe) = X (S thbllad)ofs — & S hilljayols) ] ot
jbe k d l
(2
=2 [Bas]ot -
jbe

For the doubles equation (3.64b) three intermediates are introduced. For the first

two, Lgi?,o and I‘%z,‘,, no index renaming is necessary. Thus the second line immediately
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represents the intermediate as implemented, if required with index permutations,

1
3 LMkl + 5 S GHlledyoloft + 5 S (edlligyotof!
klcd klcd

-3 (5 allk) + & 37 ((Rtlledbots + 3 islleayos) | ot (63)
cd
= Z [ kl z]}akl
= Z ab||cd) o + — Z(ab|ykz>ag§l*a;d

klcd

= Z [ (abl|cd) + %Z(ab”klwﬁ*] ol (6.4)
= Z [ ab cd} Tij >

3)

where the choice to include the term with a prefactor of % into the I5o00 intermediate
instead of I‘%z,v was arbitrary. The last intermediate, LE?,Z,V, needs index renaming and is

given as

D\ ac 1 cd*x _be
P(zy)P(ab)(Z(akHzc ¢4 - Zlecd offol + 5 Y (adllit)of] agk)

ke klcd kled

> A a C 1 cdx _bc
= P(ij)P(a )(Z(ak‘Hzc ¢ 4 - ZlkHdc otfloll + 5 > (ad|lil)o agk)

ke . ld (6.5)
= P(ij)P(ab) (S [ = thallic) + 5 S ((killed)orst + Gl adyoii) | ot

kc ld
= Pli)Pab) (3 [10).] o)

kc

The convergence of the iterative solution of Eqs. (3.64) is accelerated analogous
to SCF or standard CC by using Pulay’s direct inversion in the iterative subspace
(DIIS) method.[250-252 The converged amplitudes and the ground-state energy EY CC (see
Section 3.6) are saved in the context for further use, and the ground-state density matrix
p is calculated and stored as well. Up to now, the ground-state energy is strictly correct
through third order in perturbation theory, and properties obtained with this density
matrix are correct through second order (see Section 3.7.1). In the future, both EJ €C and
p will be extended to include higher-order terms. The density-matrix contributions are
obtained from the equations for the property, which can be interpreted as the trace of the
matrix product between the density matrix and the one-particle integrals, Dy = Tr(pD).

For instance, the second-order density matrix elements obtained from Egs. (3.81) and
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(3.82) are given by

2 1 b _abx
oy = —5 D o (6.6a)
kab
(2) 1 ac _bcx
Pab = 5 Zaz’j Oij (6.6b)
ijc
2
o =at, (6.6¢)
and pfj) = o*, which is equal to pgz) for real orbitals, making the density matrix
symmetric.

6.1.2 Excitation Energies and Transition Moments

After the solution of the amplitude equations, the eigenvalue problem has been imple-
mented within adcman. This has been done by exploiting the close relationship between
ADC and UCC as described in Section 3.5. For the second-order variants, the only
difference between ADC(2) and UCC2 comes from the second commutator of H®?) in
Eq. (3.70c), where the first-order doubles amplitudes appear %[f/, é}él)], which have to be
replaced by the converged ones for UCC2, corresponding to the contribution of %[V, Fa).
This has been done by replacing the reference in the context used by ADC calculations
from the MP2 ground-state energy and amplitudes to the corresponding UCC2 contri-
butions. The implementation of excitation energies via UCC3 proceeded analogously.

The contributions of the double commutators part in H®), Eq. (3.70d), needed the same
(1

ijc)Lb
to be done, since ADC(3) or UCC3-s has an additional third-order contribution in the

singles-singles block arising from the %[V, (’}52)] commutator involving the second-order

(2)

ijab*

change of replacing t..”, by converged afjb amplitudes. However, one further change had

doubles amplitudes ¢ These do not occur in a non-perturbative treatment of UCC,
and hence the corresponding contribution was set to zero. The resulting equations
are implemented in matrix-vector-product form and the eigenvalue problem is solved

numerically by using the Davidson algorithm. 253l

The same changes described above for the ADC matrix are also valid for the ground-
to excited-state transition moments through second order (see Section 3.7.2). Thus, the
first-order doubles amplitudes are replaced by the converged UCC ones, whereas the
(2

second-order doubles are set to zero, and p;,” from the MP2 ground-state density matrix
is replaced by the UCC singles amplitudes o

Analogously, a UCC-based scheme for the calculation of ionization potentials (IP) or
electron attachment (EA) energies could be implemented by employing the existing IP-

ADC code. [89:90:254-256] Te resulting schemes are referred to as IP-UCC2 and IP-UCCS3.
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6.1.3 Program Invocation and Control

In the Q-CHEM input file, the METHOD keyword in the $rem section can be set to
UCC2, UCC2-x or UCC3 in order to carry out UCC calculations for the ground and excited
states at several levels of theory. The same keywords from standard CC theory can be
used to specify the parameters of the ground-state DIIS run, such as CC_ CONVERGENCE,
CC_E CONV, CC_T_CONV, to set the convergence criteria or CC_MAX ITER to set the

maximum number of iterations.

Concerning excited-state calculations, the same keywords from ADC calculations
apply. EE_STATES sets the number of excited states to calculate; by setting ADC_PROP_ES
= TRUE excited-state properties are calculated, and ADC_PROP_ES2ES controls the cal-
culation of transition properties between excited states (transition dipole moments
and oscillator strengths). ADC_DAVIDSON MAXSUBSPACE, ADC_DAVIDSON MAXITER, and
ADC_DAVIDSON CONV control the maximum subspace size, the maximum number of

iterations, and the convergence criterion of the Davidson procedure, respectively.

6.2 Vertical Electronic Excitations

In order to test the performance of the UCC3 scheme, apart from the pilot applications
published in Ref. 51, calculations were performed on the benchmark sets of Jacquemin et
al.'72 ag well as Thiel and co-workers, [179-181] analogous to the other methods compared
in Chapter 4. All the input data is thus identical to the ones described there. I want to
acknowledge that the calculations of the Thiel benchmark set were carried out under my
guidance by Sebastian M. Thielen. The results of the vertical excitation energies for the
Jacquemin benchmark set are given in Table A.1 in Appendix A (page 193). The results
of the Bernoulli variant of UCC2 as well as UCC3 are given in Table A.2 for singlet
excited states and Table A.3 for triplet excited states.

6.2.1 Small Inorganic and Organic Molecules

Let me start with a brief discussion of the benchmark set introduced by Jacquemin and
co-workers. 172 The ADC(3) values were recomputed to check the consistency of the input
data, but the fluorescence energies were not calculated and thus not taken into account
for the statistical error evaluation presented in Table 6.1, where also the results of the
third-order methods CCSDR(3), CCSDT-3 and CC3 are shown. CCSDT-3 is an iterative
third-order approximation to the full CCSDT model?7! similar to CC3,[232:258] while
CCSDR(3) can be seen as the non-iterative analog of CC3.125%1 While all methods based
on standard CC theory have tiny errors and RMS deviations (< 0.1 eV), these values
are significantly larger for both ADC(3) and UCC3. The iterative ground state of UCC3
improves the mean absolute error and RMS deviation slightly compared to ADC(3), but

it does not come close to the other CC methods. However, one should keep in mind that
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the theoretical best estimates were obtained by extrapolating CC schemes towards the
FCI limit, and they are based on CC3 geometries. 172!
TABLE 6.1: Mean signed error (MSE), mean absolute error (MAE), root mean square

deviations (RMS), as well as positive (Max) and negative (Min) maximal deviations
with respect to the TBE(FC) values.® All values are given in eV.

Method No. of States MSE MAE RMS Max Min
ADC(3) 102 —0.120 0.227 0.244 0.740 —0.560
UCcC3 102 —0.128 0.223 0.234 0.594 —0.634
CCSDR(3) @ 59 0.01 0.04 0.05 0.25 -0.07
CCSDT-3 @ 58 0.01 0.03 0.05 024 —0.07
cc3 @ 106 -0.01 0.03 0.04 0.19 —0.09

& Taken from Ref. 172.

6.2.2 Singlet Excited States

Going on with the Thiel benchmark set, I will only focus on the statistical error evaluation
in order to keep the discussion concise, which is presented in Table 6.2 and Figure 6.1 for
the singlet excited states. At first, the UCC excitation energies are compared against the
TBE values as reference. While UCC2 exhibits a mean error of 0.36 eV and a standard
deviation of 0.41 eV, its third-order variant UCC3 significantly improves upon this
decreasing the mean error to 0.07 eV and the standard deviation to 0.30 eV. Concerning
the second-order methods, UCC2 performs worse than CC2 and ADC(2). Both the mean
error, mean absolute error, and the standard deviation are about 0.1 eV larger for UCC2
than for the other two methods.

Compared to the other third-order methods, the mean error of UCC3 is significantly
smaller than those of ADC(3) and CC3, while the standard deviation of UCC3 is slightly
larger than for ADC(3). In the histograms in Figure 6.1, the distribution of the UCC
methods seems somewhat more narrow; however, they have an outlier each that is not
present in the ADC schemes. Taking ADC(3) as a reference in Table 6.2, UCC2 performs
very similar to CC2 but worse than ADC(2), as may not be surprising considering the
similarity to the reference. With CC3 as the reference, UCC2 again performs slightly
worse than ADC(2) and CC2, whereas UCC3 yields very similar results as ADC(3).
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TABLE 6.2: Statistical error analysis of the calculated excitation energies (in eV) of the
excited singlet states of Thiel’s benchmark set at the ADC(2), ADC(3), UCC2, UCC3
and CC3 levels of theory. The theoretical best estimates (TBE) were used as reference
data as well as the ADC(3) and CC3 values.

TBE as reference

ADC(2)> UCC2 ADC(3)* UCC3 CC3®

CountP 103 103 103 103 84

Min -0.32 —-1.38 —0.78 —0.77 —0.11
Max 1.63 2.03 0.90 1.43  1.15
Mean 0.22 0.36 0.12 0.07  0.23
Mean Absolute 0.26 0.41 0.23 0.23  0.24
Standard Deviation 0.30 0.41 0.27 0.30 0.21

ADC(3) as reference
ADC(2)* UCC2 ADC(3)* UCC3 CCs*

CountP 134 134 132 111

Min —1.29 —0.92 —0.68 —1.10
Max 2.19 2.62 1.03 2.41
Mean 0.07 0.24 —0.04 0.18
Mean Absolute 0.33 0.42 0.11 0.27
Standard Deviation 0.49 0.54 0.16 0.42

C(C3 as reference

ADC(2)* UCC2 ADC(3)* UCC3 CC3®

CountP 109 109 109 108

Min —-151  —1.02 —1.24 —1.41
Max 2.16 2.45 1.10 1.11
Mean 0.02 0.22 —0.14  —0.17
Mean Absolute 0.21 1.08 0.23 0.26

Standard Deviation 0.38 0.40 0.32 0.35

[179,196]

& Taken from the literature.

P Total number of considered states.

6.2.3 Triplet Excited States

The statistical error evaluation of the triplet excited states is presented in Table 6.3
and Figure 6.2. Starting again with TBE as the reference, UCC2 performs worst of all
second-order methods, having a mean error and standard deviation of 0.22 + 0.21 €V,
whereas ADC(2) has 0.12 +0.17 eV and CC2 0.17 £ 0.13 eV. Concerning the third-order
methods, CC3 outperforms all other methods, having errors < 0.1 eV. The ADC(3) and
UCC3 results, on the other hand, are rather similar, the former having a mean error and
standard deviation of —0.18 +0.16 eV, whereas —0.22 +0.15 €V is obtained for the latter.
Taking ADC(3) as the reference, UCC3 has very small errors of —0.04 + 0.08 eV, thereby
clearly outperforming CC3 with 0.23 4+ 0.20 eV, which demonstrates the similarity of the

two approaches. This similarity is further underlined by taking CC3 as the reference,
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FIGURE 6.1: Histograms of the error distribution of all calculated excited singlet states
with respect to the theoretical best estimates at the theoretical levels of (a) ADC(2),
(b) ADC(3), (c) UCC2, and (d) UCC3.

where ADC(3) and UCC3 again have very similar mean errors and standard deviations

of —0.23 £0.20 eV and —0.27 4+ 0.19 eV, respectively.

6.2.4 Oscillator Strengths

Apart from the computation of excitation energies, another vital aspect of the theoretical
investigation of excited electronic states is the prediction of spectral intensities. The latter
is usually given in terms of oscillator strengths, which are calculated from the excitation
energies and the transition dipole moments from the ground to the respective excited states.
The results for oscillator strengths of selected transitions of the Thiel benchmark set are
compiled in Table A.5 in the appendix. Values obtained from calculations using ADC(2)
and ADC(3/2), as well as reference literature data, are given for comparison. [179:196]
In analogy to the ADC(3/2) scheme, 19 oscillator strengths are computed using the
third-order UCC3 excitation vectors contracted with the second-order effective transition
moments (see Section 3.7.2) to produce transition matrix elements which are referred to
as UCC(3/2). Using UCC3 excitation energies, one then obtains UCC(3/2) oscillator
strengths. UCC2 and UCC(3/2) oscillator strengths are for almost every considered state
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TABLE 6.3: Statistical error analysis of the calculated excitation energies (in eV) of the
excited triplet states of Thiel’s benchmark set at the ADC(2), ADC(3), UCC2, UCC3
and CC3 levels of theory. The theoretical best estimates (TBE) were used as reference
data as well as the ADC(3) and CC3 values.

TBE as reference

ADC(2)* UCC2 CC2* ADC(3)* UCC3 CC3?

States 63 63 63 63 63 63

Min —0.27 -0.27 —-0.09 —-0.49 —-0.49 —-0.04
Max 0.48 0.63 0.48 0.44 0.43 0.32
Mean 0.12 0.22 0.17  —0.18 —0.22 0.04
Std. dev. 0.17 0.21 0.13 0.16 0.15 0.08

Abs. mean 0.17 0.25 0.18 0.21 0.24 0.04
ADC(3) as reference
ADC(2)* UCC2 CC2* ADC(3)* UCC3 CC3*

States 71 71 71 71 71

Min —0.38 —-0.31 —-0.37 —0.24 —-0.26
Max 1.52 1.76 1.58 0.17 1.29
Mean 0.32 0.42 0.37 —0.04 0.23
Std. dev. 0.30 0.33 0.29 0.08 0.20
Abs. mean 0.38 0.45 0.40 0.07 0.25

CC3 as reference

ADC(2)* UCC2 CC2* ADC(3)* UCC3 CC3®

States 71 71 71 71 71

Min —0.27 -0.27 -0.11 —-1.29 —-1.29
Max 0.48 0.70 0.56 0.26 0.29
Mean 0.10 0.19 0.14 —-0.23 —0.27
Std. dev. 0.15 0.19 0.14 0.20 0.19

Abs. mean 0.14 0.23 0.15 0.25 0.28

[179,196]

& Taken from the literature.

in good accordance with the literature data. However, since these values are in most
cases given in a relatively big interval, not many values disagree with the literature in
the first place. As can be seen there, the UCC2 oscillator strengths are usually quite
similar to the ADC(2) ones, whereas UCC(3/2) is very similar to ADC(3/2). The good
agreement of essentially all values with the results from the literature thus underlines the

reliability of the UCC approaches for spectral intensities.
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FIGURE 6.2: Histograms of the error distribution of all calculated excited triplet states
with respect to the theoretical best estimates at the theoretical levels of (a) ADC(2),
(b) ADC(3), (c) UCC2, and (d) UCC3.

6.3 Ground- and Excited-State Dipole Moments

One-particle properties such as the electric dipole moment can be calculated in UCC
via an expectation-value approach, as described in Section 3.7. The implementation
of ground- and excited-state properties through second order was analogous to the
excitation energies and transition moments by replacing the first-order doubles and
second-order singles amplitudes from MP by the converged UCC2 or UCC3 ones. As
a first test and validation of the present development, I performed UCC computations
of dipole moments for the HyO and HF molecules within the small 3-21G basis set 260
and compared them to FCI and ADC results. 3% The same geometrical parameters were
used as in Ref. 30 (Rop = 0.957 A, Z(HOH) = 104.5°, Ryp = 0.917 A), and the 1s core
orbitals were kept frozen in all correlated calculations. The Hartree—Fock and MP2 dipole
moments were recalculated in order to check the consistency of the input data. In the
present implementation, both the ground- and effective excited-state densities (p and ]§,
respectively) are correct through second order in perturbation theory, higher-order terms

will be included in future work. The dipole moments obtained with UCC3 amplitudes
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(and excitation vectors) and the second-order densities are denoted UCC(3/2), analogously
to ADC(3/2).126:30]

As can be seen in the results for the ground-state dipole moments in Table 6.4, the
values are getting closer to the FCI reference, starting from HF over MP2 and UCC2
to UCC(3/2) for both the HoO and HF molecules. Especially UCC(3/2) is in excellent
agreement with the FCI value.

TABLE 6.4: Ground-state dipole moments p = |p| (in Debye) of the HoO and HF

molecules calculated at the FCI, HF, MP2, UCC2 and UCC(3/2) levels of theory in
combination with the 3-21G basis set.

System FCI* HF MP2 UCC2 UCC(3/2)

H>O 230 244 236 234 2.30
HF 2.03 216 208 2.05 2.02

2 FCI results from Ref. 30.

In general, however, strict second-order schemes will be less satisfactory than in these
cases. For instance, for the CO molecule (Rco = 1.128 A) within the minimal STO-3G
basis set 269 the ground-state dipole moment is 0.63 D at the FCI level. Here, MP2 yields
1.30 D, and UCC2 improves only slightly with 1.16 D. Using third-order amplitudes in
UCC(3/2), the result is improved significantly to 0.70 D.

Going with dipole moments in excited electronic states for HoO and HF molecules
using the same input parameters, the results at the FCI, ADC(1), ADC(2), ADC(3/2),
UCC2 and UCC(3/2) levels of theory are presented in Table 6.5. It should be noted that
excitation energies and excited-state properties obtained with ADC(1) are identical to
the values obtained by configuration interaction singles (CIS) and a hypothetical UCC1
scheme since no ground-state correlation treatment enters the ADC(1) and UCC1 secular
or property matrices. Assuming that the UCC amplitudes are also correct through first
order, ground- to excited-state transition moments are identical in ADC(1) and UCCI as
well. However, they differ from CIS, since they are only correct in zeroth order in the
latter. As can be seen in Table 6.5, the dipole moments obtained with the second-order
schemes ADC(2) and UCC2 are very similar and a significant improvement upon the
first-order ADC(1) results, but they still deviate relatively strongly. By combining the
second-order property matrix with the eigenvectors of the third-order secular matrix,
the results can be significantly improved in both the ADC(3/2) and UCC(3/2) schemes,
where both again yield very similar results. For the lowest excited singlet states of water,
UCC(3/2) is 0.01-0.02 D further off than ADC(3/2), but for the 2 !By and the higher
triplet states as well as most states in hydrogen fluoride, the UCC(3/2) results are closer
to the FCI reference than ADC(3/2). These results are very promising and will be further

investigated by including higher-order terms to the effective density matrix in the future.
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TABLE 6.5: Excited-state dipole moments p = |p| (in Debye) of the H,O and HF
molecules calculated at the FCI, ADC(1), ADC(2), ADC(3/2), UCC2 and UCC(3/2)
levels of theory in combination with the 3-21G basis set.

State FCI* ADC(1)> ADC(2)* ADC(3/2)* UCC2 UCC(3/2)
HQO 1 1A1 —

1B, 0.17 0.76 0.35 0.24 0.38 0.26
1A, 0.19 0.27 0.01 0.15 0.03 0.13
2 1A, 0.50 1.15 0.72 0.60 0.74 0.61
1 1B, 0.24 0.64 0.45 0.26 0.47 0.27
2 1B, 0.54 0.24 0.44 0.52 0.43 0.54
13B; 0.15 0.69 0.32 0.22 0.35 0.24
13A, 0.59 0.80 0.68 0.61 0.70 0.62
13A, 0.12 0.22 0.03 0.08 0.05 0.06
1 3Bs 0.37 0.32 0.42 0.39 0.44 0.39
HF 112t —

11 1.80 2.42 2.07 1.84 2.09 1.85
2 1yt 1.28 2.13 1.66 1.31 1.66 1.28
1311 1.82 2.34 2.06 1.87 2.08 1.88
139t 1.65 1.54 1.68 1.65 1.68 1.65

& FCI and ADC results from Ref. 30.

6.4 Vertical Ionization Potentials

Apart from electronic excitation energies, where the total number of electrons N in the
system remains unchanged, also processes where one or several electrons are removed from
or attached to the system can be described by theories such as EOM-CC, ADC, and UCC.
For this, the “physical” excitation operators C are not chosen to be the particle-number
conserving ones of Eq. (2.89a), but those from Eq. (2.89b) for the IP case of (2.89c¢) for
the EA case. Considering only IP for now, this means that the Hamiltonian is represented
within the basis of intermediate states with N — 1 electrons, \&/y 1y = €70 |®p), which
corresponds to the transformed Hamiltonian H being represented within the basis of
“ionized” determinants, |<I)]}7 1), ie., determinants having one electron less than the HF

reference,
Hpyt = (U HT) = (@7 HH|e) ). (6.7)

By diagonalizing the above matrix and subtracting the energy of the N-electron

ECC, vertical ionization potentials are obtained. It can be shown that

ground state F,
the resulting IP-UCC scheme is equivalent to IP-ADC through third order. The matrix
elements of IP-UCC2 and IP-UCC3 thus correspond to those of IP-ADC(2) and IP-
ADC(3), respectively. [254] For instance, the zeroth-order element is given as the downward-
directed fragment of the Fock operator (see Figure 2.3), <<I>i|FN]<I>j> = —fji = —€i 0ij,
which corresponds to Koopmans’ theorem. 2465 The first-order contribution vanishes

since there are no fragments of the normal-ordered fluctuation potential with only two
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open lines, (@i\VN@j) = 0. Hence, Koopmans’ theorem is correct through first order in

perturbation theory. The second-order part of the 1h/1h block is given as

1 s
S, 62]|2,) =

1 . w1 N abs
=1 > _(killab) oy — 5 > _{abllki) o7’

kab kab

where the additional factor of % comes from the Bernoulli expansion of H, see Eq. (3.37),
since the Vg part does not contribute.

As some preliminary results, the ionization energies of the amino acids glycine, alanine,
and serine have been calculated with IP-UCC2 and IP-UCC3. They are compared to
IP-ADC and experimental results[?®! in Table 6.6, where the same basis set (cc-pVTZ)
and geometries as in the IP-ADC study were used.[2*4l As can be seen in Table 6.6, both
second-order methods consistently underestimate the IPs compared to the experiment.
However, the IP-UCC2 values tend to be closer to the reference than its IP-ADC(2)
counterpart. For the third-order variants, the opposite is true. IP-ADC(3) tends to
overestimate ionization potentials slightly compared to the experiment. At the same time,
for IP-UCC3, this overestimation is sometimes more pronounced, in particular for the
first ionized state, but in general, the results are well comparable. However, more tests
and calculations need to be carried out for a thorough investigation of the performance
and capabilities of the IP-UCC schemes.
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TABLE 6.6: Computed IP-UCC values for the lowest vertical ionization energies of
selected amino acids compared to IP-ADC and experimental data. All values in eV.

System State Exp.® IP-ADC(2)® IP-ADC(3)> IP-UCC2 IP-UCC3

Glycine 1 10.0 9.44 10.11 9.50 10.26
2 11.1 9.95 11.37 9.95 11.34
3 12.2 11.46 12.28 11.44 12.27
4 13.6 13.19 13.57 13.30 13.81
5 14.4 13.50 14.70 13.51 14.82
Alanine 1 9.85 9.24 9.95 9.29 10.10
2 11.0 9.77 11.16 9.76 11.14
3 12.1 11.31 12.14 11.30 12.14
4 12.8 12.40 12.85 12.50 13.11
5 13.4 12.90 13.50 12.97 13.73
Serine 1 10.0 9.39 10.28 9.42 10.39
2 11.0 10.00 10.99 10.05 11.03
3 11.25 10.09 11.44 10.09 11.43
4 12.4 11.41 12.24 11.42 12.27
5 12.6 11.81 12.77 11.83 12.84

@ Experimental data from Ref. 261. The stated values refer to band maxima.
" IP-ADC results from Ref. 254.



Chapter 7

Analysis and Comparison of
Expectation-Value and
Derivative-Based Molecular

Properties

7.1 Introduction

The quantum-chemical calculation of molecular properties is an every-day task of modern
computational chemistry. It is for example needed to predict properties for a rational
design of functional materials, to guide synthesis or to help identifying molecular species
with spectroscopic techniques. In principle, most (time-independent) molecular properties
can be calculated in two different ways, which are in general not equivalent for approximate
wave functions, since the Hellmann-Feynman theorem 16147 ;may not be fulfilled. It is
therefore of great interest to understand the accuracy, advantages and drawbacks of these

two approaches. [262-264]

The first approach is based on the expectation value of the corresponding operator for
the physical observable with the wave function and the second one on derivatives of the
energy with respect to (w.r.t.) a perturbation connected with the observable. For instance,

as described in Section 2.7, in case of the electric dipole moment p, the expectation value

Parts of this chapter have already been published in

e M. Hodecker, D. R. Rehn, A. Dreuw, S. Hofener, “Similarities and differences of the Lagrange
formalism and the intermediate state representation in the treatment of molecular properties”,
The Journal of Chemical Physics, 2019, 150, 164125.
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is given as
= (0|l ,), (7.1)

where [ is the dipole operator and |¥,) is the wave function of electronic state n.
Alternatively, the dipole moment can be computed as derivative of the energy w.r.t. an

external electric field F according to

d

=—FE,[H+ - F], 2
p= Bl 4 i F] (7.2)

evaluated at zero field strength. Here, F, [ﬁ + [1- F] denotes the general energy expression
of the electronic state n in the presence of the perturbation, which does not necessarily
need to also correspond to an expectation value. Formally, for exact energies and wave
functions, the two approaches in Eqs. (7.1) and (7.2) are equivalent, as well as whenever
the Hellmann—Feynman theorem is fulfilled. For approximate wave functions, however,
the two approaches can and usually do yield different results and for some properties
even only one of the approaches is applicable. For example, analytical nuclear gradients

can only be calculated as derivatives, unless Pulay forces are neglected. [265:266]

Following the postulates of quantum mechanics, 77 properties or observables are
associated with eigenvalues of the corresponding operator. Expectation values are averages
over such observables according to Eq. (7.1), which are identical to the eigenvalues if the
system is in an eigenstate of the operator. Eq. (7.1) yields the formally correct value
for a property within a given quantum-chemical model defined by approximations in the
Hamiltonian or the wave function. Comparing this value with an experimental reference
or the exact value may reveal substantial deviations due to the approximations in the
model. In fact, a value for the observable obtained as derivative of the approximate
energy defined by the same approximate level of theory according to Eq. (7.2) may yield a
better agreement, because additional contributions are taken into account, e.g. orbital and
amplitude relaxations, which may not be properly accounted for in the approximate wave
function used to compute the expectation value, and the derivative value may thus be
closer to the exact value.®”96 On the other hand, one can argue that it lies conceptually
“outside” the model chemistry defined by the approximate quantum-chemical method. It
is generally ambiguous as to which approach can be called more “correct” and therefore,
both computational pathways to molecular properties should not be seen as exclusive, but
rather complementary, since they can provide a measurement on how important orbital

or amplitude relaxation effects are for the respective property.

Generally, the description of molecular properties using approximate wave functions
requires additional considerations compared to exact-state theory. This applies not only
for ground-state but also for excited-state properties. 267 For example, the evaluation of
derivatives is generally more involved because the Hellmann—Feynman theorem [146:147]
does not apply for nonvariational approximate wave functions (see Ref. 265 and references

therein). For non-Hermitian approaches, such as coupled-cluster theory, it is assumed
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that generalized expressions are employed, e.g. by obtaining the real part as a sum of the

value and its complex conjugate. 13l

When computing molecular properties of excited states as expectation values, in
particular in connection with the algebraic-diagrammatic construction (ADC) scheme for
the polarization propagator!25:27:28 as described in Section 2.5, the algebraic approach
used is denoted intermediate state representation (ISR) formalism. 212930 In general,
propagator methods are usually limited to the calculation of excitation energies and
transition moments from the ground state without having access to the corresponding
wave functions. Within the alternative formulation of the ADC equations via the ISR
formalism this limitation is overcome, because the Hamiltonian shifted by the ground
state energy represented in a complete basis of known, so-called correlated excited states
or intermediate states also yields the ADC equations, and together with the excitation
vectors, the ISR provides thus access to the excited-state wave functions. The ISR
formalism can be used to calculate arbitrary excited-state properties and transition
properties between different excited states as formally correct expectation values within a

given ADC model. [28,30]

When computing molecular properties as derivatives w.r.t. the perturbation strength,

changes of the wave function parameters w.r.t. the perturbation are taken into account,

dE[k,N] 0E  OEds _ OEdA

F  oF " ondF T onaF’ (7.3)

</J’>rel =

where k and A represent the SCF coefficients and the correlated wave function parameters
such as amplitudes, respectively. In practice, a number of (coupled) response equations
have thus to be solved and their solution is then used to evaluate the derivative expression
Eq. (7.3). While such a treatment is in principle straightforward and numerically correct,
the derivation of the necessary equations is often cumbersome, even for basic correlation
methods such as second-order Mgller—Plesset perturbation theory. 268l Here, the Lagrange
formalism can be employed, which provides a simple recipe to include all perturbations
as Lagrange multipliers & and A representing orbital rotations and correlated amplitude

parameters, respectively,
Lialf, A&, Al = E[k, A + K- e+ X-ex = E[r,A] “+07. (7.4)

The Lagrange functional is by construction stationary w.r.t. all parameters using the
constraints e, = 0 and ey = 0 for the multipliers & and X, respectively, i.e. by fulfilling

the set of equations

aLrel o o aLrel i oFE _ ae,,‘-, 1l

ok T 0 ok Ok TR ok 0 (7.52)
LI‘ Lr E N !
15) 761 :C)\:O 0 el _87+Aaﬂ;0’ (75b)

oA OX O O
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which means that the Lagrange multipliers contain the same information as the perturbed
wave function parameters and are computed in a strict mathematical framework with
a clear-cut derivation. 192692751 Once the multipliers have been determined by solving

Egs. (7.5), the desired property can then be computed as a partial derivative:

dLre Lre E — K \
1 o0 1 0 Oe +)\36)\

W =47 = 5F ~oF TFoF TroF-

(7.6)

which has the advantage compared to the original expression (7.3) that only one set
of Lagrange multipliers need to determined independent of the perturbation, and no
perturbation-dependent orbital response need to be solved. 57l If all terms in Egs. (7.3)
and (7.4) are taken into account, the final property is denoted “orbital relaxed” because
also the response of the molecular orbitals onto the perturbation is included. Neglecting

this response of the orbitals w.r.t. the perturbation,

8Lunrel - 8£ + —%
oOF — OF oOF’

<u>unre1 = (77)

leads to so-called “orbital unrelaxed” molecular properties. While the relaxed treatment
employs a “fully” perturbed Hamiltonian, the unrelaxed case corresponds to a perturbation
of the Hamiltonian in the correlation treatment only and can be regarded as an ad hoc
approximation, which has the advantage of being computationally less demanding since
the response of the orbital coefficients & does not need to be determined. However,
the computation of both unrelaxed and relaxed properties have become standard in
computational chemistry and the differences of unrelaxed and relaxed properties have
been subject of detailed studies, see Ref. 276 for instance. It should further be pointed
out that in particular cases the unrelaxed approach can yield better results than the
relaxed approach. For example, in case of indirect spin-spin coupling constants computed
using coupled-cluster theory the unrelaxed results do not suffer from the poor orbital

response of Hartree-Fock to triplet perturbations. [277:278]

Using diagrammatic techniques, Bartlett and co-workers already discussed the connec-
tion between the relaxed density matrix and the one obtained with the expectation-value
approach (referred to as ISR in this chapter) in MP2. 961 Ty addition, they also investigated
orbital relaxation effects in the ground-state CCSD method, 278 and similar diagrammatic

analyses were performed for second-order properties by other groups. [279:280l

While the above-mentioned works focus on the electronic ground state, this chapter
aims to address these questions for excited states and therefore choose a slightly different
perspective. It is well understood that the singly-excited determinants correspond to
orbital-relaxation effects in case of ground-state methods. 33 Similarly, one can argue
that it is necessary to include at least doubly excited determinants in the wave function
to account for orbital-relaxation effects for singly excited states. While such a perspective

is straightforward for configuration-interaction (CI) methods, it is not clear to which
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extent orbital-relaxation is included in methods based on perturbation theory such as
ADC in case of excited states.

The goal of the present work is to fill this gap and analyze to which extend contribu-
tions can be associated with orbital-relaxation contributions with an emphasis on the
algebraic-diagrammatic construction scheme for the polarization propagator. In the theory
Section 7.2, working equations of both the Lagrange formalism and the ISR approach are
presented and similarities and differences are worked out. First, the MP2 expectation
value is formulated and then the scheme is transferred to ADC for excited states. In the
results Section 7.4, numerical examples are given to illustrate the conclusions drawn from
the theoretical analysis. Eventually, a short summary is given. I would like to mention
that the work presented here is the result of a close collaboration with Dr. Dirk R. Rehn

and Dr. Sebastian Hofener from the Karlsruhe Institute of Technology.

7.2 Theoretical Analysis

In this section, working equations for both the Lagrange formalism and the expectation-
value/ISR approach are presented for one-particle operators. I start with an analysis of
the HF /DFT and MP2 method for ground states, and highlight the origin of different
terms in the expectation-value (ISR) and Lagrange formalism, which are further used
to identify similarities and differences. This is followed by an analogous analysis of the
excited-state methods CI, ADC(1) and ADC(2) pinpointing the presence and absence of
different algebraic expression in the calculation of excited-state properties using the ISR

or Lagrange formalism.

7.2.1 Self-Consistent Field Methods

In self-consistent field (SCF) methods, i.e. Hartree Fock and DFT, "l the expectation
value (EV) is given by Eq. (3.80),

(BY = (ol 1| @o) = pigp (Dol Po) = pi (7.8)
N A
pq :DII){qF 2

where DHF is the HF density matrix in the MO basis, that corresponds to the unit matrix
in the occupied—occupied block and is zero everywhere else. The energy derivative is

obtained by replacing the Hamiltonian with H=H+ aF and differentiating according to

dEY k] d -
<H>§$ = (;)T = Cﬁ@o\m%)
ENF g 7.9
= (wolaien) + 220 I _ (e i

ox dF = <M>Ev7
=0
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where the derivative of E(I){F w.r.t. the SCF coefficients & is identified as the electronic
gradient (2.45) that vanishes for a converged HF solution and thus the derivative is
identical to the expectation value. This can also be explained by the fact that the method

is fully variational and thus the Hellmann—Feynman theorem is fulfilled.

7.2.2 Second-Order Mgller—Plesset Perturbation Theory

As discussed in Section 2.4.2, in Mgller—Plesset (MP) perturbation theory, [24,32,33] the
electronic Hamiltonian H is split into the Fock operator F and the fluctuation potential
1% representing electron correlation. The exact ground-state energy Ep and the exact
ground-state wave function |¥() are expanded in a series according to Egs. (2.67) and
(2.68). The Hartree-Fock (HF) determinant |\IJ((]O)> = |®) fulfills the zeroth-order equation

F|®g) = E”|®0) | (7.10)

where the energy E(go) is given by Eq. (2.80), while the first-order wave function correction
|\IJ[()1)> contains only doubly-excited configurations according to Eq. (2.83) due to Brillouin’s
(1)

theorem. The equation to obtain the first-order doubles amplitudes t,,, can be written as
(ol H + [, T3))| @) =0, (7.11)

in which |ug) represents doubly-excited determinants, yielding the well-known expression
of Eq. (2.82) in the canonical case. Orbitals and wave functions are assumed to be
real-valued throughout, and the superscript “(1)” for first order will be dropped in the
remainder of this chapter for better readability. Finally, the MP2 energy is given as the
sum of zeroth and first order, the Hartree—Fock energy (E[I){F = E(()O) + E((]l)) as given
in Eq. (2.53), and the second-order contribution EéQ) given by Eq. (2.84), such that
EMP2 — pHF | E( )

7.2.2.1 Orbital-Unrelaxed Lagrange Formalism for MP2 Properties

The unrelaxed MP2 Lagrange functional combines MP2 ground-state energy, i.e. the
Hartree—Fock energy and the MP2 correlation energy, with the equations defining the

doubles amplitudes ¢, , Eq. (7.11),

B2

NP3 = 3T 4 (@0|[H, T3] | o) Zt“” (nal H + [, D] @) (7.12)

unrel

where t(©) are the Lagrange multipliers to ensure stationarity of the Lagrangian w.r.t. the

amplitude parameters and the superscript “(0)” refers to the electronic ground state. The
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Lagrange multipliers are chosen such that they fulfill the stationarity condition

0 £ . 5 !
o, ——Lutval = (@0|[F,7,]|B0) + Y 00 (2| [F', 7,]|@0) = 0, (7.13)
H2

the solution of which reveals the amplitudes and multipliers to be identical in the case
of MP2, tﬁ? =t,,. In the Lagrange framework, unrelaxed dipole moments are obtained
from a perturbed Hamiltonian, 7 = H + jiF, in the Lagrange expression (7.12) followed

by differentiation:

0 N
(himral = 57 L H]

OF unrel
0
#(0)
a}_(<q>om+ [, T5)|®o) +Zt (p2|H + [H, T2]|‘1’0>> (7.14)
tj

where j1,, are the one-particle matrix elements of the dipole operator in the MO basis,
and pit = (®g|fi|®o) is the Hartree-Fock dipole moment. The density DY defined as

DF Ztlkabtjkab (7153)
kab

Z tW b (7.15b)

ijc

thus describes the contribution of the MP2 amplitudes to the dipole moment, which
consists of two blocks, occupied—occupied and virtual-virtual. It should be noted that
there are no occupied-virtual contributions to DY since no singles amplitudes are present

in canonical MP2.

7.2.2.2 Orbital-Relaxed Lagrange Formalism for MP2 Properties

In Eq. (7.14) the change of the orbitals due to the perturbation is not taken into account.
Including, however, the Brillouin condition, i.e. a vanishing occupied—virtual block of the
Fock matrix (fi, = 0), in the Lagrange functional ensures that the HF solution is also

independent of the perturbation. The relaxed MP2 Lagrange functional then reads
Lyl * = Linna + Z iy fia (7.16)
and a new term enters the calculation of the dipole moment

0
(N = G = 0+ T Al (7.7
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In the calculation of unrelaxed MP2 properties the occupied—virtual block of the
dipole operator u;, does not contribute, for relaxed properties it does due to orbital
relaxation. Similar to the multipliers t(°), the new orbital rotation multipliers &(®) have to
be computed before the dipole moment can be evaluated. Requesting that the derivative

of the relaxed Lagrange functional w.r.t. the orbital rotation parameters is zero,

i 0 Mp2
0= 8/{ ; rel ( )
7.18
o .. 0 0
_ 7(0) (0)
5y (ROl T} + 50 S 700 il I T o) +§ i G i

H2

yields the well-known Z-vector equations!26%281 determining the multipliers &():

_7(0')8,:8(1)AA(I) 0 N0 ® 1
Z B0 = Gy (Ol T °>+anbj§’f D2l lF ol @o) . (7.19)

The derivative of the relevant occupied—virtual block of the Fock matrix w.r.t. the

orbital rotation parameters, i.e. a part of the electronic Hessian (2.46), is given as (33]

0

8Tbjfia = 5llb5ij( ) + Aza]b? (720)

where the elements of the supermatrix A" are given as A%, .. = (pq||rs) + (ps||rq) . The

Z-vector equations for occupied—virtual rotations are thus given as

3" (Bardij(ea — 1) + Al y) B = ZMP2(§0), (7.21)
where for convenience ZMP? was introduced for the RHS of Eq. (7.19) as

0 NN d _ L
MP2 0
2" = G (@oll. B0} + 5o Z £ | [F', o] o) (7.22)

O of the Z-vector equation
(7.21) cannot be computed directly due to the nondiagonal matrlx A*. ZMP2 of Bq. (7.22)

can be evaluated as

chz\{ilp2( © )) thjcb bCH]a Ztk]cb ]kHbl
JbC jk’b

- fZ )+ D, (80) Af

Note that for occupied-virtual rotations the multipliers &,

(7.23)

The final orbital-relaxed one-particle MP2 density matrix is then given as

1
DW2IFU5+i%%+%%M9. (7.24)
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7.2.2.3 Expectation-Value Formalism for MP2 Properties

Dipole moments, as any one-particle operator, can be computed using the expectation

value according to Eq. (3.77), which can also be written as

() = (Yol ¥o) = Z <\I/O‘a aq| o) pigp = prq Hap (7.25)
%,_/

pq —
=Ppq

where p denotes the exact one-particle density matrix of the ground state. In case of

MP2, the wave function |¥g) is expanded according to Eq. (2.68) and all terms up to

only second order of the general expectation value (7.25) are considered in p, [95,96]
1)~ ~ 2
(WD = (ol ®0) + 2(@olafwg”) + (6|4 0") + 2@olawy”),  (7.26)

yielding the following nonvanishing elements of the symmetric density matrix/[°2! for the

first three terms:

pE?) = 5ij (7.27a)

pz] D) Z tzkabt]kab (727b)
kab

Ioab - Z tUac ijbc * (7270)

ijc

The contribution in Eq. (7.27a) originates from the first term on the RHS of Eq. (7.25),
i.e. p© corresponds to the Hartree—Fock density matrix DY the second term vanishes
for a canonical HF reference, meaning the first-order density matrix correction is zero
pI(JIq) = 0, and the terms in Egs. (7.27b) and (7.27¢) originate from the third term. The

last term of Eq. (7.26) contains the second-order correction to the wave function,
(@i v ) = Z%M, (7.28)

in which the second-order density is given as the second-order singles amplitudes (2.171a),

which for a canonical reference are given as

2 2
p((ll) = téi) 2( [Z tngc jCLHbC + Z tjlmb ijZb ] (729)
jbe Jkb
where as before ¢, ; jab Ar€ O be understood as first-order amplitudes t(;()lb. These contribu-

tions to the one- electron density matrix represent that part of relaxation effects contained
in the MP2 expectation value. Since the MP2 ground state corresponds to the reference
ground state employed in the construction of the ISR representation for the ADC(2)
scheme, vide infra, the computation of an MP2 ground-state expectation value is formally

identical to the ISR formalism applied later within the ADC schemes.
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7.2.2.4 Comparison of Lagrange and Expectation-Value Formalism for MP2

Comparing the expectation-value formalism with the derivative approach, first the
occupied—occupied and virtual-virtual contributions are found to be identical for the

expectation value, unrelaxed and relaxed properties at the MP2 level

1
) Z tikavtikap = Dij(t) (7.30a)
kab
pab - thjac ijbe — (t) . (730b)

ijc

The only difference is located in the occupied—virtual block of the density matrix,
which is zero in the unrelaxed Lagrangian and nonzero in the other two approaches. In
order to analyze the connection between the latter two approaches, I need to turn back
to the Z-vector equation. Neglecting the (non-diagonal) supermatrix A* in Eq. (7.21)
and the contributions containing the Lagrange multipliers, yields a diagonal Z-vector

equation of the form

_(0 1 . 1 -
gy (ca— i) = 5 2 tijap bella) + 5 Dt (il [ib) (7.31)
jbe jkb
which can directly be inverted to yield

_(0
Rt = a2y | 2 tunltellia) + D b li6)] - (7.32)
jbe jkb

Comparison with the identical Eq. (7.29) reveals the differences between the relaxed
and expectation-value approach in the case of MP2 to originate from the neglected

contribution of the nondiagonal part A" of the electronic Hessian in the Z-vector equation.

7.2.3 Coupled Cluster

In the case of coupled-cluster (CC) theory (Section 2.6), the ground state is usually
parameterized by two different left- and right-hand wave functions, [W§C) = eT|<I>g) and
(U] = (Po](1 + f\)e_T, respectively, where 7' is the cluster (excitation) operator and
A is the de-excitation operator that ensures stationarity of the CC energy functional
(2.151) w.r.t. to the cluster amplitudes, while the cluster amplitudes themselves ensure

stationarity w.r.t. the A amplitudes,
ESC = (Wi HWSC) = (®o|(1 + A)e T HeT |®y) . (7.33)
The expectation-value dipole moment is thus given as

()55 = (WA w5C) = (Bo|(1+ A)e T jieT o), (7.34)
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and the orbital-unrelaxed dipole moment can be evaluated to be identical to the expecta-

tion value,

OESC oH NP
(W)oste = o = (g |52 |6C) = (@ol(1 + D)e TieT|00) = ()G, (739)

since ESC in Eq. (7.33) is stationary w.r.t. both 7 and A. The orbital-relaxed CC

cc _

dipole moment can be calculated by differentiating the relaxed Lagrangian L]

E(()JC + Y 4 Faifia after having solved OLES [0k g = 0 for k.

rel

7.2.4 Configuration Interaction

As discussed in Section 2.3.1 (page 18), in configuration interaction (CI) the electronic
Hamiltonian H is represented in the orthonormal basis of excited determinants D),
which leads to a Hermitian eigenvalue problem HC,, = ESICm where Hyj; = (® I|I:[ |P ;)
and CLCn = 1. The diagonalization of H thus yields eigenvectors C,, and state energies

ECT = CLHCn, and the wave function of electronic state n can be written as
U =D Cal®)), (7.36)
J

where n can refer to either the ground or some excited state. The dipole moment can be

calculated as an expectation value by plugging Eq. (7.36) twice into Eq. (3.77),

()l = (WA = 37 C (@18 ) Co = CLBOC,,  (1.37)
1J
-39

where B(® is the representation of the dipole operator in the CI determinant basis. The
unrelaxed dipole moment is obtained by using LSIumel = ESI and H = H + aF, and

differentiating the expression to obtain

d OEST OESTdC, OE{'dk
CI CI n B T
(/J’>unrel dF ™ [K” ] oOF + BCn dF + Ok d7
Kyl —_— (7.38)
5 -0 neglected

= o (W + F 0 = (WA = (.

which means that the unrelazed property is identical to the expectation value, since the
CI energy EST is variational w.r.t. the eigenvectors C,, but not w.r.t. to the orbital

coefficients k. The relaxed dipole moment is obtained from the Lagrangian
Lot = BN+ Ry fias (7.39)
ia

where the orbital rotation multipliers k£ need to be determined analogous to Section 7.2.2.2.

Using again the perturbed Hamiltonian #H and differentiating, the relaxed CI dipole



7 ANALYSIS AND COMPARISON OF EXPECTATION-VALUE AND
154 DERIVATIVE-BASED MOLECULAR PROPERTIES

moment is given

0 _
<I1’>Sall = ﬁLg}rel = <“>§I£rel + Z Kai Hia - (740)

7.2.5 Algebraic-Diagrammatic Construction Scheme for the Polariza-
tion Propagator

The analysis in the previous sections has shown that orbital-relaxation effects are not
included in the CI or CC expectation value in their standard parameterization, and neither
are they in MP2 using the first-order wave function but arise only in the second-order
contributions. In these second-order contributions of MP2 the orbital-relaxation effects are
given due to singles contributions in the second-order wave function. As will be discussed
in the present section, a similar argument holds also for excited states. For example, in
the CI picture doubly-excited configurations are needed to account for orbital-relaxation
effects in p-h states, triply-excited configurations for 2p-2h states and so on. However, in
the ADC scheme, which combines a CI approach with perturbation theory, this is not as
straightforward since relaxation effects could be included via the perturbation expansion
of the expectation value similar to MP2. In the following, this shall be investigated for

the ADC scheme of first and second order in more detail.

The total energy of state n in ADC can be written as E, = Ey + w,, where Ej
is the MP ground-state energy and the excitation energy is given as w, = XLMX,L.
However, in the following it is assumed that only one excitation vector is treated and
thus the index “n” is dropped. The property calculation within the intermediate state
representation approach was discussed briefly in Section 2.5.3 (page 32). The ISR matrix
B is available up to second order, where the elements are equivalent to the ones presented
in Section 3.7.3 (page 87), i.e. the strict version of the UCC property matrix B through
second order is identical to the ADC variant B. The excitation vectors obtained with the
ADC(3) scheme, which is currently the highest available order of the ADC scheme for the
polarization propagator, can be combined with the second-order B to obtain excited-state
one-particle properties in the expectation-value approach at the theoretical level referred
to as ADC(3/2). Analytical gradients are available up to third order,?8? such that fully
relaxed properties are available through ADC(3).

7.2.5.1 ADC(1) Excited-State Properties

The elements of the ADC(1) matrix are identical to the configuration interaction singles
(CIS) ones and are given as the sum of Egs. (2.115a) and (2.117),1%! i.e. MAPCW)

ia,jb
(0)
Mia,jb

+M i((ll,)].b = 0apdij(€a — €i) — (aj||bi). The explicit equations for the excited-state
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contributions B up to first order are!3°l

Bz'(c(t),)jb = Oijftab — Oabiji (7.41a)
B, =0, (7.41D)

which can be inserted into Eq. (2.121) to obtain the dipole moment as

ADC(1
<“>n,ISP{( )= :“gF + Z“qu Hap (7.42)
Pq

where the only nonzero contributions to the density « are given as
Y= =) XiX] (7.43a)

Yab =Y X{X7. (7.43b)

At this point it should be mentioned that the ADC(1) and CIS schemes provide not
only identical excitation energies, but also the identical excited-state properties. However,
this analysis does not hold for transition moments from the ground to the excited state,
which differ from ADC(1) and CIS. At ADC(1) transition properties are correct up to first
order, while they are only given at zeroth order in CIS, where the respective terms are
equivalent to those in Section 3.7.2 (page 85). Hence, since ADC excitation energies are
stationary w.r.t. the ADC eigenvectors, analogous to CI, and in first order no parameters
from the MP perturbation treatment enter the ADC matrix, the unrelaxed Lagrangian
requires no multipliers and the dipole moments are thus identical to the ISR values

(A0S = T EAPOH] = (RS (749
cf. Eq. (7.42). Similar to MP2 or CI/CC, in case of relaxed properties the ADC(1) energy
expression is augmented with the constraint of the Brillouin condition to be fulfilled at

all times. Relaxed properties are thus obtained from the Lagrangian

LﬁDc(l) _ E?DC(I) + Z R((;)fm , (7.45)

ia

which gives rise to a new term to be added to the unrelaxed dipole moment. The Lagrange

7

multipliers £, where the superscript “(n)” refers to the excited state n, have to be
computed first and are chosen such that they ensure stationarity of the Lagrange function

w.r.t. orbital rotations.

From the analysis so far, I have shown that while for MP2 orbital-relaxation effects
are included partially in an expectation value of the electronic ground state, for ADC(1)
and CI approaches in general no orbital-relaxation effects are included in an expectation

value of p-h states.
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7.2.5.2 Orbital-Unrelaxed Lagrange Formalism for ADC(2) Excited-State

Properties

For excited states, an unrelaxed excited-state Lagrange function is used which includes
the MP2 ground-state energy, the equations defining the doubles amplitudes as well as
the ADC(2) excitation energy and which is given as

ADC(2)

n,unrel

L = EY""? + ) 1, (ol H + [F, To][®o) + wn (7.46)

B2

where the excitation energy w, was defined above. It should be noted that the Lagrange
multipliers t are solved in the presence of an excited-state contribution, but the explicit
dependence is dropped in Eq. (7.46) and the following for better readability similar to
the excitation vectors. Excited-state contributions to the one-particle density without

Lagrange multipliers can be collected in the matrix D* with

DA =7 (7.472)
1 o .
Dfy = =57 = 22 (0 Xbstajac) X! = D (D Xibtina) X (7.47h)
b Jke j kbe
DA, =~ (7.47c)

where the contributions to the density matrix v(9) are defined as

0
7 == XX (7.48a)
kab
1 = -2 Z xbxgh (7.48D)
VO — g+ XX, (7.48c¢)

ijc

see also Eqs. (7.43). The unrelaxed dipole moment can therefore be computed as

ADC(2 0 ADC(2).;
<p’>n,unr(el) = ﬁLn,unr(el) [H] = Z DI%DC@) Hap (749)
pq
DADC(Q) DHF + DF ( )_’_D;Aq, (750)

where it should be noted that the only explicit excited-state contribution is given by
DA, while implicitly also contributions are included in DF(t) due to different Lagrange

multipliers. In order to compute these excited-state contributions to DY, stationarity of

the Lagrangian is enforced w.r.t. the ground-state amplitudes [267-283]
0 LADC(Q) _ (0 - F = 1P 0 1 0 751
ot nunrel — vy + Zt;m(u?’[ 77—1’2” 0> + ot Wp = U, ( . )
V2

B2 ve
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where 17,(,(2]) = OE)"?) ot,, was used. The last contribution, i.e. the derivative of the

excitation energy with respect to the amplitudes, is given as (282l

afwn = —P(ab) Y _(ijlIbe)vac — P(ig) Y _{jkllab)vix
ijab ) ) c B (7.52)
— P(ij)P(ab) X{ Y (jkl[be) X,
ck

where the antisymmetrization operator 75(pq) =1 — P,, is used as before. Rearranging
Eq. (7.51) with respect to the Lagrange multipliers yields the explicit contribution in
case of ADC(2) including the excited-state contributions
(0) dwn,
_ Nijab i

t T eatep— g.ljibe = tijab T Nijab - (7.53)
a 7 7

ijab —

For ADC(2), the excited-state contribution n in Eq. (7.53) is explicitly given as

. i7||be
Nijab = — P(ab) Z {i]lbe) Yae

- €atep—€i—¢€j

- (jkllab)
— P(ij) Zk: P ——_ (7.54)
Pl Plabyxe S I e

€ Ep —E; —E&j
ok at€b % 7

Combining the density D? and the amplitude-relaxed contributions containing n

thus yield the explicit excited-state contributions to the ADC(2) density matrix:

D APY® =3O 4 DE(n) (7.55a)
DM =40 4 Dl (). (7.55b)

7.2.5.3 ISR Formalism for ADC(2) Excited-State Properties

For the second-order intermediate state representation, the configuration space has to
be expanded to doubly-excited configurations and hence the ADC matrix consists of
the p-h/p-h block, the diagonal 2p-2h/2p-2h block, and the p-h/2p-2h and 2p-2h/p-h
coupling blocks. Plugging the resulting equations, 3% which are again equivalent to those
in Section 3.7.3, into Eq. (2.121) yields several terms, sorted by order of perturbation
theory,

ADC(2 0 1 2
()20 = (M2 4 () Vg + () Mg + (0 P (7.56)

where each excited-state term represents a contraction of a density « with the one-
particle elements 114y, analogously to the ground state of Eq. (7.25). While the first-order

contributions () vanish for the excited state (similar to the ground state), a set of
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effective (ISR) densities can be found in zeroth and second order. Explicit expressions
for the ISR densities have been published in Ref. 52. The zeroth-order density (¥ is
closely related to the unrelaxed Lagrange density D* of Eq. (7.47). Together with the
second-order density v, the excited-state dipole moment is thus given up to second

order as
AADC(2
intsn 2 = D0 tap + 9D tap (7.57)
Pq Pq

7.2.5.4 Comparison of the ADC(2) Lagrange and ISR Formalism

The comparison of Lagrange and ISR can be split into a discussion of the occupied—
occupied, virtual-virtual and occupied—virtual blocks. Concerning the diagonal blocks,
only the virtual-virtual part is discussed explicitly but an analogous comparison is also

obtained for the occupied—occupied part.

In the case of MP2, the virtual—virtual and also the occupied—occupied blocks are

identical for the derivative and the ISR approach. For ADC(2) only the zeroth order
(0) (0)

contributions to the expectation value v,,” and Yij

see Eq. (7.47). However, also the second-order contributions to the ISR densities are

are identical to the unrelaxed density,

very similar to the unrelaxed densities. This can be seen after some rewriting of the ISR
expressions found in the appendix of Ref. 52. The result shows that for each term in the

ISR densities a corresponding one can be found in the unrelaxed densities. An example

is given as

ADC(2) 1 ( - ) (jk||cd) be
D +———(1+P g t: 7.58
ab g e : €c+£a—€j—€k%d ik (7.58)

Jked

(2) 1 ( A ) (jk|lcd) be
(142, Y ¢ 7.59
Yab 4 + Fap ~ fot ey — £j — €k Yad ik ( )

where the arrow again indicates that it is only one of several contributing terms of the
quantity on the left. The only difference between the terms in the ISR part and the
unrelaxed density is represented by the indices of the orbital energy denominator. In the
ISR case the indices refer to internal summation indices of the two-electron integral only,
while in the other case one index refers to the external index a of the unrelaxed density
D&DC@). The analogous comparison can be done for the remaining contributions to the
virtual-virtual block of the ISR density as well as the occupied—occupied part. In all

cases the only difference is found in one index of the orbital energy denominator.

Now I turn the discussion to the occupied—virtual block, for which more pronounced

differences can be found. In case of ADC(2), the differences are even further increased as
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compared to MP2. In the ISR framework, the occupied-virtual block is given as (52

2 b d
%(a) E L ’ij E triaaXil Xi — E XX ikea
klcd Jked

- Z pbz 7ab Z 'YZJP(U

(7.60)

(2)

where p,;
density matrix, cf. Eq. (7.29).

is the second-order correction to the occupied—virtual block of the ground-state

The relaxed excited-state Lagrange function used is given, similarly to the relaxed
MP2 and ADC(1) Lagrange functions, as the sum of the unrelaxed Lagrangian and the

Brillouin condition:

[ADCE) _ mmqgjym7 (7.61)

n,rel n,unrel

which again gives a contribution to the occupied—virtual block of the density matrix.
In order to ensure stationarity of the Lagrangian w.r.t. orbital rotations, Eq. (7.61) is

differentiated w.r.t. the orbital rotations and set to zero

0 _ADC(2) 0 _ADC(2
—L =—0L o = .62
8”bj n,rel 3'%;‘ n, unrel + Z az a f 0 (7 6 )

Rearranging Eq. (7.62) yields the Z-vector equation, from which the orbital rotation
multipliers £ are obtained. Neglecting the nondiagonal supermatrix A” on the left-hand

side the multipliers can directly be computed,

R -1 (iLADC@)). (7.63)

at o Kb n,unrel

Similarly to the ground-state MP2 method, the right-hand side leads to two contri-
butions originating from the (nonseparable) two-electron density matrix of ADC(2). The
relevant block of the (nonseparable) two-particle density matrix has the contributions

given as [284]
dzgab A (1 + Pabjjij) ( Z Vik tikab - Z Yoc tijac) ’ (764)
k c

(2)

which yields two terms which include the ground-state density p_;”, corresponding in the

derivative approach to terms which are contained also in the ISR

R & (Z Sani711KD) + D die(ajlbe))
jbe (7.65)
= —Z’vabpbz Z%J o

The comparison so far leads to a number of conclusions. First, while for the ground-

state MP2 method a clear match of the individual terms in the ISR and Lagrange
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formalism can be achieved, such a one-to-one mapping is not straightforward to realize
for ADC(2) excited-state properties. Second, the occupied—occupied and virtual-virtual
blocks of the unrelaxed and ISR density matrices are very similar. Third, major deviations
can only be found in the occupied—virtual block of the orbital-relaxed and the ISR density
matrix. However, the terms occurring in the occupied—virtual block of the ISR matrix
can be found in the Z-vector equation of the orbital-relaxed derivative approach, which
leads to the conclusion that the ISR at ADC(2) level captures a small fraction of the
orbital relaxation, but the missing terms will still lead to a significant deviation of ISR

and relaxed excited-state properties.

Going to higher-order ADC(3), the 2p-2h/2p-2h block is expanded to first order and
is no longer diagonal. Thereby, the doubly excited configurations are now fully coupled
and are able to describe first-order orbital relaxation effects of the primary p-h states via
the diagonalization of the ADC(3) matrix, analogous to the case of CI methods. As a
result, more orbital relaxation effects of the p-h states will be captured via the ADC(3)
vectors, and consequently, the expectation value computed via the ISR formalism will get
closer to the relaxed value obtained from the Lagrangian formalism. Also, relaxed and
unrelaxed properties of p-h states will lie closer together at ADC(3) level than at ADC(2)
level, at which orbital relaxation effects are not yet sufficiently contained in the ADC
vectors. For 2p-2h states, however, this conclusion does not hold, as will be shown in
Section 7.4.2.3.

7.3 Computational Details

Geometries of the test molecules were either taken from literature (where stated) or
optimized at the MP2/cc-pVTZ level of theory with the Q-CHEM 5.0 program package. [53]
Calculations with different coupled-cluster (CC) and equation-of-motion (EOM) CC
models were carried out with the CFOUR program. 2851 LR-CC calculations and Lagrangian-
based RI-MP2 and RI-ADC(2) calculations, in particular using the modified Z-vector
equations, were carried out by Dr. Sebastian Hofener with the KOALA program.[256]
ISR (expectation-value based) ADC calculations were carried out with the Q-CHEM
program package, analytic gradient calculations of ADC with a locally modified version
thereof. Calculations using the resolution-of-the-identity (RI) approximation were done
throughout with the corresponding auxiliary basis set and the 1s core orbitals were kept
frozen, in all other calculations all electrons and orbitals were correlated.

Different correlation-consistent basis sets by Dunning and co-workers[171:287 were
used throughout, although no attempt was made in order to optimize the one-particle
basis set for the calculation of molecular properties. Rather, the effect of increasing

(-quality on the difference between relaxed and unrelaxed properties is investigated.
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TABLE 7.1: FCI results for dipole moments p = |p| (in milli a.u.) in the first excited
state of the H atom and the HHe™ molecule calculated with increasing basis sets. For
the H atom, an external electric field with a field strength of 1.0 a.u. was employed. An
interatomic distance of 0.774 A was used for the HHe™ molecule.

H atom (2 2S) HHet (2 1%1)

FCI ADC(1) FCI ADC(3/2)
Basis set Hunrel Hrel HISR Hunrel Hrel HISR
cc-pVDZ 0.529 0.529 0.529 402.027 402.027 602.990
ce-pVTZ 139.523 139.523 139.523 294.470 294.470 493.362
cc-pVQZ 383.240 383.240 383.241 264.044 264.043 462.973
cc-pVhZ 589.898 589.898 589.898 249.305 249.304 448.251
cc-pVo6Z | 1149.967 1149.967 1149.967 248.114 248.113 447.014

7.4 Numerical Studies

In this section the theoretical analysis is illustrated with numerical results. First, orbital-
unrelaxed and orbital-relaxed approaches are compared, followed by an analysis of the ISR
approach. In order to emphasize the influence of the excitation level of the excited state
vectors, the chapter closes with a discussion of states with pronounced double-excitation

character.

7.4.1 Orbital-Unrelaxed and Orbital-Relaxed Properties
7.4.1.1 Full Configuration Interaction

I start the numerical investigations with an analysis of excited-state dipole moments
computed at the full configuration interaction (FCI) level of theory for two small model
systems, the hydrogen atom and the HHet molecule. In order to induce a dipole moment,
a static external electric field of 1 a.u. (in z direction) was applied for the hydrogen
atom. Due to practical issues, both systems were computed using an EOM-CCSD
implementation which corresponds to FCI for one- and two-electron systems like these
two. The results are compiled in Table 7.1, revealing that in both cases relaxed and
unrelaxed FCI results are identical, independent of the basis used. In particular for
the excited-state dipole moment of the hydrogen atom, the strong electric field has a
significant impact upon the basis set requirements, leading to a dipole moment that is
far from being converged to the complete basis set (CBS) limit even for large basis sets.
Highly augmented basis sets would be needed for a proper description of the excited-state
dipole moment with the external electric field. Table 7.1 thus illustrates nicely that at
the FCI level orbital relaxation is already fully included in the wave-function expansion,
independent of the quality of the one-particle basis set.

For one-electron systems such as the hydrogen atom, the ADC(1) method also
corresponds to a full CI treatment, so that the ISR approach yields identical results
compared to FCI. For two-electron systems like HHe™, however, the ADC(3/2) method
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TABLE 7.2: Results for the ground-state dipole moment p = |p| (in milli a.u.) of the
HF molecule calculated at the CC2, CCSD, CC3, and CCSDT levels with increasing
basis sets. The relaxed dipole moment is obtained as fiye] = funrel + Avel-

CC2 CCSD CcC3 CCSDT
Basis set Munrel Arel Hunrel Arel Hunrel A1rel Hunrel Arel
cc-pVDZ | 715.31  +5.99 717.13 +3.17 715.76 40.08 715.50 +40.28
cc-pVTZ | 705.14 +7.01 714,55 4380 711.12 +0.13 711.32 +40.62
ce-pVQZ | 702.84 +7.30 71593 +3.97 711.99 +0.08 712.36 +40.77
cc-pVbZ | 703.51 +7.43 71738 +3.92 713.24 +0.09 713.70 +40.81
cc-pV6Z | 700.99 +7.44 71556 +3.99 711.24 40.07 711.76 +40.85

is not equivalent to FCI and thus yields different results. The deviation of the FCI and
ADC(3/2) results which amounts approximately 200 milli a.u. is rooted in missing terms
in the second-order treatment of the ISR of the dipole operator. In addition, also the
ground-state contribution to the dipole moment is described at the the MP2 level only in

the ADC(3/2) method.

7.4.1.2 Ground-State Properties

In order to further investigate the convergence of relaxed and unrelaxed dipole moments
in more detail, the hydrogen fluoride (HF) molecule in its ground state is computed using
a hierarchy of coupled-cluster models with increasing basis sets. As shown in Section 7.2.3,
for ground-state coupled cluster the unrelaxed value corresponds to the expectation value.
The results, displayed in Table 7.2 and graphically represented with the example of
the cc-pV'TZ basis set in Figure 7.1, show that the difference between the relaxed and
unrelaxed dipole moment A, becomes significantly smaller with increasing excitation
level, i.e. from CC2 via CCSD to CC3, independent of the size of the one-particle basis set.
In case of CCSDT the difference increases slightly compared to CC3, but it is nevertheless
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FIGURE 7.1: Relaxed and unrelaxed ground-state dipole moments p = |p| and their
difference A, of hydrogen fluoride calculated with a hierarchy of coupled-cluster models
and the cc-pVTZ basis set.
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TABLE 7.3: Results for the first excited-state dipole moment p = |p| (in milli a.u.) of
the HF molecule calculated at different levels of theory with increasing basis sets. The
relaxed dipole moment is obtained as fiye] = ftunrel + Arel-

LR-CCS EOM-CC2 EOM-CCSD EOM-CCSDT
Basis set Hunrel A1rel Hunrel Arel Hunrel Arel Hunrel Arel
cc-pVDZ | 943.94 —-92.42  946.55 —59.76 914.22 -27.54 895.02 —0.76
cc-pVTZ | 991.42 —-90.07 1021.67 —58.14 973.23 —-31.13 954.33 —2.20
cc-pVQZ | 1049.10 —88.02 1098.15 —56.09 1034.39 —-31.75 1017.20 —2.81

smaller by one order of magnitude compared to CCSD. If the excitation level is further
increased, the difference will decrease further until it vanishes in the limit of FCI.

Table 7.2 also shows results for increasing basis sets with fixed methods, for which the
difference between relaxed and unrelaxed dipole moments in general increases slightly with
increasing basis-set size. This observation is probably rooted in the higher flexibility with
increasing basis-set size, resulting in overall larger orbital relaxation effects. The effect
is therefore particularly pronounced for the CC2 model, which is the most approximate
scheme in Table 7.2, so that relaxation has the largest effect. The results of which
are depicted schematically in Figure 7.2. Similarly, the largest increase of relaxation
contribution can be observed between the two smallest basis sets employed, i.e. cc-pVDZ
and cc-pVTZ. While for the CC3 model the differences with increasing basis set are almost
negligible, in case of the more accurate CCSDT model the effect is more pronounced.
Stated differently, the slightly increasing differences with basis-set size are obtained
because the relaxed dipole moment does not decrease as much as the unrelaxed dipole
moment. However, these dipole moments show no clear convergence towards the CBS
limit which is most likely rooted in an imbalance of the basis sets.
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FIGURE 7.2: Relaxed and unrelaxed ground-state dipole moments 1 = |u| and their
difference A, of hydrogen fluoride calculated with CC2 and increasing basis-set size.
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7.4.1.3 Excited-State Properties

In analogy to the ground state, the dipole moment of the first excited state is analyzed
for the HF molecule using different coupled-cluster models and basis sets. It should be
noted that both the equation-of-motion (EOM) and linear-response (LR) coupled-cluster
approaches yield not only identical excitation energies, but also the same first-order
properties such as dipole moments. (288291 The results are compiled in Table 7.3, showing
that the relaxed and unrelaxed values exhibit a more pronounced difference for excited

states as compared to the ground state.

Table 7.3 confirms that the difference between relaxed and unrelaxed dipole moments
becomes significantly smaller with increasing excitation level in the coupled-cluster
hierarchy from CCS to CCSDT. At the LR-CCS level, no orbital relaxation is included,
leading to large differences of unrelaxed and relaxed dipole moments. Including doubly-
excited determinants in zeroth order as in EOM-CC2 leads to the inclusion of some
orbital-relaxation effects and thus decreases A, already significantly, but a difference
of about 50 milli a.u. remains. Including doubly-excited determinants to first order in
EOM-CCSD decreases the difference between relaxed and unrelaxed dipole moments
further by about 50%. The EOM-CCSDT method reduces A, significantly to a few
milli a.u., where missing orbital-relaxation effects are included by virtue of the the higher

excited determinants.

TABLE 7.4: Results for dipole moments p = || and first excitation energies of different
molecules calculated at the RI-MP2/cc-pVTZ and RI-ADC(2)/cc-pVTZ level of theory.
All values in milli a.u. The frozen-core approximation was employed.

RI-MP2 RI-ADC(2)

Molecule E(()Q) ¢ Hunrel Hrel HEV w1 b Hunrel Hrel HISR

H,O —261.94 788.83 760.25 < 759.13 | 289.74  409.08  264.05  338.26
HF —272.50 760.48  726.54  719.31 | 376.72 1133.06  947.95 1060.77
HCN —346.20 1253.34 1169.49 1160.74 | 315.40 852.17 949.43  830.03
H,CO —395.92 1057.44 89246  872.02 | 146.87  268.81  623.88  287.87
Acetone —741.25 1266.10 1094.23 1073.93 | 161.80 251.34  690.18  292.26
Ethanol —555.64 41147  510.56  522.19 | 116.03  391.24  368.76  398.33
Serine —1420.86  825.67  855.58  831.30 | 214.76 1507.41 1186.05 1400.63
Aniline |—1161.62 573.43 593.94  592.71 | 177.26 1243.03 1001.04 1182.52
DMABN | —2187.97 2998.53 2717.22 2858.91 | 136.71 1689.06 1974.53 1739.52

2 MP2 correlation energy.
P First excitation energy.
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7.4.2 The Expectation-Value Approach
7.4.2.1 MP2 and ADC(2)

In order to further study the behavior of the molecular properties with different computa-
tional schemes numerically, the ground-state and first excited-state dipole moments for a
series of small to medium-sized molecules are compared in the unrelaxed, relaxed, and
the expectation-value (ISR) approach using RI-MP2 and RI-ADC(2), respectively. The
results for nine molecules of different size using the cc-pVTZ basis set are compiled in
Table 7.4.

A general observation is that for the small molecules HoO, HF, HCN, HoCO, acetone
and for dimethylamino benzonitrile (DMABN), including orbital relaxation decreases the
absolute value of the ground-state dipole moment, while for the other molecules ethanol,
aniline and serine orbital relaxation increases its value. Similarly, while for the small
molecules the RI-MP2 expectation-value results are always somewhat smaller than the
relaxed ones, this is not necessarily the case for the larger molecules. However, such
effects might be related to the basis set which does not include diffuse functions and are

thus not of importance here.
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FIGURE 7.3: Relaxed, unrelaxed and expectation-value dipole moments p = || of
different molecules calculated at the RI-MP2/cc-pVTZ level of theory.

In case of the RI-MP2 ground-state dipole moments, the expectation values show a
small deviation to the relaxed dipole moments while exhibiting an increased deviation
to the unrelaxed dipole moments, which can be seen for a few example molecules in
Figure 7.3. An exception is serine, but in this case the difference between the relaxed
and unrelaxed dipole moment is smaller than in most other molecules. However, the
numerical results nicely support the theoretical analysis in Section 7.2.2, showing that in

the average MP2 density a significant amount of orbital relaxation is included.

Concerning dipole moments in the first excited state computed at the RI-ADC(2)/cc-
pVTZ level of theory, Table 7.4 reveals that the numerical ISR results are in fact close to



7 ANALYSIS AND COMPARISON OF EXPECTATION-VALUE AND
166 DERIVATIVE-BASED MOLECULAR PROPERTIES

1.2 4 [ ]

0.6
0.4

0.2+

0.0

s

u [a.ul]
e} =
oo (e}
| |
Unrelaxed I I I
Rel.
Unrelaxed
Relaxed
Unrelaxed |
Relaxed
Unrel.
Relaxed
Unrel
Relaxed
Unrelaxed
Relaxed
Relaxed

H>O F| [(HCN]|[H2CO| [Acetone] [Aniline] [Ethanol

FIGURE 7.4: Relaxed and unrelaxed as well as expectation-value dipole moments p = |p|

in the first excited state of different molecules calculated at the RI-ADC(2)/cc-pVTZ
level of theory.

the unrelaxed dipole moments and increased deviations to the relaxed dipole moments
are obtained, as shown graphically for a few examples in Figure 7.4. This effect is very
pronounced for HoCO and acetone for both unrelaxed and ISR dipole moments deviate
from the relaxed dipole moments by a factor of 2. As numerically illustrated in Table 7.3,
the zeroth-order doubles block is not able to account for orbital relaxation. Therefore,
the second-order densities that occur additionally in the ISR approach cannot sufficiently
recover these relaxation effects, resulting in the observation that the ISR dipole moments
are numerically close to the unrelaxed dipole moments. Stated differently, the expectation
value is the formally correct value within the ADC(2) model, but its deviation from

the relaxed value reveals a generally incomplete description of orbital relaxation of that
particular state at the ADC(2) level.

7.4.2.2 Assessment of ADC(n)

In order to study the behavior of ADC expectation values of the dipole operator when
going to higher order in perturbation theory as well as to larger basis-sets of double- to
quadruple-¢ quality, they are compared to the values obtained with the orbital-relaxed
Lagrangian formalism. Therefore, the same molecules (except for DMABN) are studied
as before in Table 7.4. The results for the first excited-state relaxed and ISR dipole
moments calculated with ADC(1), ADC(2), ADC(2)-x and ADC(3) with the cc-pVDZ,
ce-pVTZ and cc-pVQZ basis sets are compiled in Table 7.5. ADC(2)-x is an ad hoc
extension of the standard ADC(2) scheme, where the first order terms in the 2p-2h/2p-2h
block are included that would naturally arise only at the ADC(3) level. As discussed in
Section 7.2.5.1, the ISR properties at ADC(1) level are equivalent to the unrelaxed values,
and hence the differences between relaxed and ISR dipole moments in ADC(1) are rather

large. Furthermore, the difference remains almost constant with increasing basis, although
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TABLE 7.5: Results for ADC first excited-state dipole moments p = |p| (in milli a.u.)
with increasing basis. The calculation of serine and aniline excited-state dipole moments
employing the cc-pVQZ basis set was not feasible with ADC(2)-x and ADC(3).

ADC(1) ADC(2)
Basis cc-pVDZ ce-pVTZ ce-pVQZ ce-pVDZ ce-pVTZ ce-pVQZ
Molecule | firel HISR frel JISR Hrel HISR Hrel HISR firel JISR Hrel HISR
H2O 194.92  478.90 243.48 524.81 297.72 575.96 216.54 300.16 263.08 337.23 319.63 388.10
HF 835.38 1119.81 886.55 1181.50 945.58 1240.73 866.63 989.64  947.20 1059.98 1025.45 1130.85
HCN 953.65 866.97 93243  835.14 909.29 809.22 956.43 854.69 950.80 831.90 931.69 806.61
HyCO 553.10 237.75 555.53 254.51 549.35 253.53 613.16 280.76 626.17 290.31 627.89 289.40

Acetone 653.98  277.37  673.00 316.28 689.11  342.02 | 652.38  255.67 692.79  294.67 728.72  327.26
Ethanol 24725  370.97 237.73  356.05 22894 345.04 | 24725 370.97 237.73 356.05 346.99  378.77

Serine 1325.29 1598.80 1300.40 1554.17 1298.93 1543.16 | 1213.00 1430.82 1188.13 1403.15 1397.47
Aniline 832.86 981.70 802.75 941.08 781.47 913.43 982.26 1178.22 919.61 1122.83 889.83 1095.44
ADC(2)x ADC(3)"

Basis cc-pVDZ ce-pVTZ ce-pVQZ ce-pVDZ ce-pVTZ ce-pVQZ
Molecule | firel MISR frel JISR Hrel HISR Hrel HISR frel JISR Hrel HISR
H>0O 230.19 235.88 268.93 281.92 318.35 334.79 223.59 262.53 251.94 308.87 293.61 357.85
HF 889.07 921.24 956.09 995.31 1021.52 1062.64 869.72 907.62 914.87 974.52 969.04 1035.27
HCN 984.30 946.56 977.37 932.50 958.07 910.39 928.76 959.79 919.81 944.27 898.54 921.84
H,CO 539.53 403.25 549.20 410.96 551.86 412.89 503.07 475.72 519.31 490.44 522.02 496.25

Acetone 577.00 417.73  610.83  455.51  643.57 488.96 | 573.51  539.78 617.25 589.36  648.37  627.98
Ethanol 431.16  460.12  389.43  421.44  368.39 403.72 | 372.11 361.44 331.84 32548 313.84 307.95
Serine 1258.51 1340.62 1240.20 1313.43 1239.68 1246.02 1218.95 1209.73
Aniline 865.70  912.84 79498  864.39 835.45  861.79 79498  818.65

@ ISR values obtained with ADC(3/2).

in most cases it becomes somewhat smaller, similar to what was observed for the LR-CCS
model in Table 7.3. Parts of the ADC(2) results have already been included in Table 7.4,
but neither the RI nor frozen-core approximation was used here and additionally the
influence of the basis-set size and the comparison to other ADC orders can be made in
Table 7.5. Exemplarily, the results for hyrdogen fluoride, acetone and aniline with the
cc-pV'TZ basis set are depicted graphically in Figure 7.5. Again, the difference between
ISR and relaxed dipole moment is not largely affected by the basis set, but in most cases it
becomes slightly larger, indicating that larger orbital relaxation contributions from bigger
basis set are generally not recovered in the intermediate state representation approach

at the ADC(2) level. An unclear trend is observed when comparing the ISR /relaxed

ADC(2)-x
ADC(3/2)
ADC(3/2)

FIGURE 7.5: Relaxed and ISR dipole moments u = |p| in the first excited state of
hydrogen fluoride, acetone, and aniline calculated with different ADC(n) schemes and
the cc-pVTZ basis set.
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differences between ADC(1) and ADC(2). While for half of the considered molecules
(water, hydrogen fluoride, ethanol and serine) the ISR /relaxed difference becomes smaller
at second-order ADC, for the other half (hydrogen cyanide, formaldehyde, acetone and
aniline) the difference becomes somewhat larger. This is due to the fact that the absolute
values for the relaxed dipole moments always increase, while the ISR dipole moments
decrease when going from ADC(1) to ADC(2), respectively, but for the first set of
molecules the relaxed values are smaller in magnitude than the ISR ones, while for the

second set the ISR values are smaller than the relaxed ones.

The effect of the inclusion of the first-order terms in the 2p-2h/2p-2h block in
ADC(2)-x compared to ADC(2) is more revealing. Here, the difference between ISR
and relaxed dipole moments becomes significantly smaller in all cases (except ethanol),
independent of the employed basis set. Hence, the description through first order in
perturbation theory of doubly excited states in ADC already leads to a better description
of orbital relaxation effects through the ADC(2)-x vectors, similar to what has been
observed for EOM-CCSD in the previous section. This is also identical to configuration
interaction schemes, in which the doubly excited configurations are known to be needed
to capture orbital relaxation effects of primary p-h states. Except for the two small
molecules HoO and HF, the difference between relaxed and ISR dipole moments is further
reduced when going to the ADC(3) level of theory. Thus, the expansion up to third order
of the p-h/p-h block and in particular to second order of the p-h/2p-2h and 2p-2h/p-h
coupling blocks recovers most of the remaining orbital relaxation effects.

However, one has to keep in mind that while for ADC(1) and ADC(2) the matrix
and ISR equations are both consistent in first and second order of perturbation theory,
respectively, the ADC(2)-x matrix is inconsistent since the 2p-2h/2p-2h block is expanded
to first order in an ad hoc manner. In the calculation of the ADC(3/2) ISR expectation
values, only the ADC(3) vectors are consistently third order, while the ISR used to
represent the dipole operator is only of second order. The relaxed ADC(3) dipole moment
is on the other hand consistent through third order as derivative of the third-order ADC
energy. This somewhat limits the direct comparability of the ISR value at ADC(3/2)
level and the relaxed ADC(3) value. Yet, it is seen that the additional ISR equations
in ADC(2) have little influence compared to the unrelaxed values, and hence orbital
relaxation has to be included already with the excitation vectors. Disregarding these
limitations for the moment, one can clearly see that for the primary singly excited states
considered here doubly-excited configurations are needed in order to describe their orbital
relaxation. If doubles are included only at zeroth order as in ADC(2), only little orbital
relaxation is recovered, but including them to first order as in ADC(2)-x or ADC(3)
significantly improves upon this.

However, combining the ADC(3) eigenvectors with the property matrix through
second order to obtain ADC(3/2) properties is not the only possible way to combine

different orders of perturbation theory for M and B. In order to to investigate the
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TABLE 7.6: Results for dipole moments p = |p| (in milli a.u.) of different molecules
calculated at the ADC(1/2), ADC(2/0), ADC(2/0)-x and ADC(3/0) level of theory
employing the cc-pVTZ basis set.

ADC(1) ADC(1/2) ADC(2) ADC(2/0)
Molecule | five) HISR HISR Hrel HISR MISR
H->O 243.48 524.81 509.38 263.08 337.23 255.21
HF 886.55 1181.50 1158.07 947.20 1059.98 966.79
HCN 932.43 835.14 893.56 950.80 831.90 805.59
H>CO 555.563 254.51 376.81 626.17 290.31 275.10
Acetone | 672.10 316.28 446.88 692.79 294.67 298.04

ADC(2)x _ ADC(2/0)x ADC(3) ADC(3/2) ADC(3/0)
Molecule | fize) MISR HISR Hrel HISR HISR
H>O 268.93 281.92 183.69 251.94 308.87 235.21
HF 956.09 995.31 888.34 914.87 974.52 893.80
HCN 977.37 932.50 923.04 919.81 944.27 927.35
H,CO 549.20 410.96 454.60 519.31 490.44 501.64
Acetone | 610.84 455.51 515.14 617.25 589.36 604.05

importance of relaxation effects through the excitation vectors and the property matrix,
the combinations of the first-order ADC matrix with the second-order ISR matrix in the
singles space, denoted ADC(1/2), as well the second- and third-order eigenvectors with
the zeroth-order ISR matrix in the singles and doubles space have been implemented, the
latter are denoted by ADC(2/0), ADC(2/0)-x and ADC(3/0). A similar strategy has
been employed for the properties of electron-detached states via the ADC scheme for the

electron propagator. [264-256]

As can be seen in the results in Table 7.6, a clear trend is observed for the first-order
scheme where the ISR value obtained with ADC(1/2) is still close to the one of ADC(1),
but the second-order B matrix captures a small fraction of the orbital relaxation, such
that it goes towards the relaxed ADC(1) result. This is nicely in line with the conclusions
drawn in the previous sections. However, for the other schemes involving the zeroth-order

ISR matrix, no clear trend can be observed.

7.4.2.3 States with Double-Excitation Character

In order to analyze the effect of the excitation level of the calculated excited state
upon the description of its orbital relaxation effects, all-trans linear polyenes (butadiene,
hexatriene, octatetraene) are investigated, which are known to have low-lying doubly
excited states. 291 In the present work, the lowest totally-symmetric excited state 2 1Ag
(assuming Cay, point-group symmetry) and the third excited state 2 1B, are considered.
Geometries were taken from the benchmark set introduced by Thiel and co-workers. 179 In
order to induce a dipole moment, an external electric field in z direction coinciding with the

Cy axis of symmetry was applied with a of strength of 0.0001 a.u. Additionally, the 3 A’
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TABLE 7.7: Results for excited-state dipole moments y = || (in milli a.u.) of the linear
polyenes butadiene, hexatriene, and octatetraene as well as pentadieniminium calculated
with different orders of ADC and the cc-pVTZ basis set. For the linear polyenes an
external electric field of 0.0001 a.u. was applied perpendicular to the molecular plane.
The amount of doubly-excited configurations (%Rs) in the ADC excitation vectors is
given as well.

ADC() ADC(2) ADC(2)x ADC(3)®
Molecule (State) Mrel  MISR | Mrel  MISR  JoR2 | pirel pisR - SoRa | firel puisr YR
Butadiene (2 TA,) 211 236 | 0.60 043 109 | 202 143 576 | 233 155 67.6
Butadiene (2 1Bu) 1.92 2.08 0.87 0.69 6.8 0.41 0.44 227 0.39 0.27 377
Hexatriene (2 lAg) 9.34 10.78 3.56 3.11 123 27.84 24.46 65.3 29.95 26.00 76.0
Hexatriene (2 lBu) 4.29 4.80 9.49 9.61 11.1 22.03 18.99 52.0 21.80 18.08 60.2
Octatetraene (2 1Ag) 7.36 6.84 5.95 5.27 13.1 5.39 5.88 68.6 4.80 5.85 79.3
Octatetraene (2 lBu) 5.65 5.64 4.20 4.02 12.8 4.48 4.93 61.0 4.28 5.23 72.1
Pentadieniminium (3 1A') 922.0 782.2 (634.3 599.0 11.2 |2229.1 1892.1 52.1 |2472.2 1824.9 60.9

* ISR values obtained with ADC(3/2).

state of the protonated Schiff-base penta-2,4-dieniminium cation cz‘s-C5H6NH2+, denoted

“pentadieniminium” in the following, exhibiting Cs symmetry was considered. [291:292]

Results for these states with significant double-excitation character are compiled
in Table 7.7. In the following, I focus on the differences of the relaxed and ISR dipole
moments while the absolute values are of minor importance for our discussion. The trends
observed in Table 7.7 are quite the opposite of the ones observed previously in Table 7.5.
While no clear trend can be observed when going from ADC(1) to ADC(2), the difference
between relaxed and ISR becomes bigger for most states when going from strict ADC(2)
to the extended version ADC(2)-x, with the exception of the B, state in butadiene and
Ag in octatetraene. For the states considered here, however, the clearest trend is observed
when going from second-order ADC, i.e. either ADC(2) or ADC(2)-x, to the third-order

method ADC(3), where the difference of relaxed and ISR increases in all cases.

The pentadieniminium cation exhibits a static dipole moment and shall serve as an
example to illustrate the trends. For this molecule, relaxation effects seem to play a huge
role in the first-order treatment, since there is a difference of about 140 milli a.u. between
the relaxed and ISR approach. In case of strict second-order ADC(2), a difference of 35
milli a.u. is observed which is smaller by approximately a factor of 5, but the amount
of doubly-excited configurations in the state vector is only about 11%. The description
of the doubly-excited state is therefore not accurately accounted for. Employing the
extended ADC(2)-x method, the double-excitation character increases to about 52%,
so that the first-order description of the doubles block is no longer sufficient to recover
orbital relaxation, yielding a difference of about 337 milli a.u. between ISR and relaxed
dipole moment. This effect becomes even more pronounced at the third-order ADC level.
The doubly-excited configurations in the excitation vector amount for 61% in this case
and the difference between relaxed and ISR dipole moments becomes as large as 647 milli

a.u.
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The results in Table 7.7 illustrate that for excited states with significant double-
excitation character the first-order description of doubly-excited configurations is not
sufficient to account for orbital relaxation effects, because additional single excitations
are required on top of the leading doubly-excited configuration to describe their orbital
relaxation. Hence, the explicit inclusion of triply-excited configurations is required to
account for a proper description of orbital relaxation effects of predominantly doubly
excited states. In case of ADC, however, no triply-excited configurations are present in
the ADC(2) or ADC(3) matrix, which would arise only at the ADC(4) level. This is in
contrast to third-order coupled-cluster schemes like EOM-CCSDT-3 or C(C3, [232:257,258,293]
where triple excitations are explicitly included. Furthermore, the ISR values are not strict
third order, but rather calculated with the ADC(3/2) method, in which the ADC(3)
excitation vectors are contracted with the second-order ISR equations. Thus it may be
speculated that the missing terms in the occupied—virtual block of the ISR density matrix
are relevant for these states, and that a full third-order ISR representation might slightly

improve the results. However, this remains to be shown in future work.

7.5 Summary

In this chapter, the expectation-value or intermediate state representation (ISR) formalism
is compared to the Lagrange formalism, which are both frequently used to compute
molecular properties, by analysis of the explicit algebraic equations as well as by numerical
results. The analysis reveals that in the Lagrange formalism higher-order terms enter wvia
the orbital-rotation multipliers in case of all methods. In the ISR formalism, however,
which amounts to the computation of an expectation value within a given ADC model,
these higher-order orbital relaxation terms are included in some cases only, namely
when they enter via the corresponding ADC vector, or in other words, when they are
contained within the ADC model. For example, in case of ground-state MP2 a large
faction is contained yielding expectation-value dipole moments close to orbital-relaxed
dipole moments, while in case of ADC(1) no higher-order orbital relaxation contributions
are included at all, resulting in a one-to-one mapping to unrelaxed properties in analogy
to CIS. Formally this is correct, as in CI models orbital relaxation is not included,
and relaxed CIS values thus go formally beyond the CIS model. Relaxed properties,
however, may lie closer to the “exact” values computed at higher level or determined

experimentally. [7]

Due to the inclusion of a few higher-order contributions, ADC(2) ISR expectation
values are numerically close but slightly different from unrelaxed ADC(2) properties,
while explicit inclusion of doubly-excited configurations in the M matrix of ADC(2)-x
and ADC(3), similar to going from CIS to CISD, leads to a drastic improvement of orbital
relaxation effects of singly excited states. Then, ISR expectation values tend to lie closer

to the relaxed Lagrangian values. Eventually, in case of full configuration action (FCI) no
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differences of relaxed and unrelaxed and ISR values are obtained, as full orbital relaxation

is contained in the FCI vectors.

The present work allows for an identification of terms which are responsible for
higher-order contributions. It might be worthwile to introduce further approximate ADC
schemes, for example, at the ADC(2) level, in which the rigorous ISR expectation value
is augmented with terms providing a significant fraction of higher-order contributions,
possibly based on semi-empirical evaluation of numerical results. Furthermore, it was
shown that most of the excited-state orbital relaxation is included wvia the excitation
vector going from ADC(2) to ADC(2)-x and ADC(3), and that the extension of the ISR
representation to higher orders had only little effect on the expectation values. Last
but not least, the amount of orbital relaxation included in an approximate excited-state
calculation does not only depend on the approximation level of the method but also on
the excitation level of the investigated excited state. The majority of orbital relaxation
effects of typical p-h states are captured when doubly-excited configurations are explicitly
included, while for 2p-2h states triply excited configurations are explicitly needed to

describe the same level of orbital relaxation.



Chapter 8

Investigating Fluorescence
Quenching in Azaacenes Bearing

Five-Membered Rings

In this chapter, the topic takes a drastic turn, from theoretical analyses to applied
computational chemistry. It is included as an expample of my collaborations with

experimental organic chemists.

8.1 Introduction

Azaacenes and their derivatives have been widely investigated due to their unique prop-
erties and employed in optoelectronic devices, e.g. as emitters in organic light-emitting

diodes or in organic field-effect transistors. [294-306]

Recently, the synthesis of processible (dihydro-)pyracyclene- and acenaphthylene-
substituted azaacenes was described, and the targets were characterized experimentally via
cyclic voltammetry, X-ray crystallography as well as UV /Vis absorption and fluorescence
spectroscopy. 37l Surprisingly, formal dehydrogenation of the annulated five-membered
ring significantly altered the emission properties of the substances, turning them from
strongly fluorescent to non-fluorescent at all. It was argued that this is because of a
modulation of the aromaticity, as indicated by nucleus-independent chemical shift (NICS)
calculations. [308:309]

Furthermore, preliminary computational investigations indicated the formal inclusion

of the unsaturated Cy-bridge not only to lower the energy gap between the electronic

This chapter has already been published in

e M. Hodecker, M. Ganschow, M. Abu-Odeh, U. H. F. Bunz, A. Dreuw, “Optical Spectra and
Fluorescence Quenching in Azaacenes Bearing Five-Membered Rings”, ChemPhotoChem, 2019, 3,
755-762.
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FI1GURE 8.1: Structures of the molecules considered in this study. R = TIPS for the
synthesized molecules (Ref. 307), whereas R = Me for the ones investigated computa-
tionally.

ground state So and the first excited state S; at the equilibrium geometry of the latter.
Moreover, also the oscillator strength decreases, turning the Sg <— S; transition into a
dark one. This usually leads to longer fluorescence lifetimes of excited states, which gives
thus more time for fluorescence quenching, i.e. a radiationless decay into So. 1397 The
purpose of this work is to explain the optical spectra of the azaacenes shown in Figure 8.1,
especially the different emission properties of the structurally similar azaacenes beyond a

qualitative level using state-of-the-art electronic structure methods.

This chapter is organized as follows. First, the computational strategy employed in
this work is described. Next, a suitable molecular model chemistry is derived by decreasing
the size of the system and by benchmarking different density functionals and basis sets.
Then the excited electronic states of the individual molecules are investigated, followed
by the investigation of possible intersystem crossing. Finally, vibrationally-resolved
electronic absorption and emission spectra are simulated and compared to experiment.
The chapter closes with a short summary. I would like to mention that many of the
initial computations were performed under my supervision by Mahmud Abu-Odeh and
the experimental spectra were measured and provided by Michael Ganschow from the
group of Prof. Dr. Uwe H. F. Bunz at the Institute of Organic Chemisty at Heidelberg

University.

8.2 Computational Strategy

Due to the relatively large size of the synthesized molecules in Ref. 307, in particular
because of the triisopropylsilyl (TIPS) groups, a compromise between accuracy and
computational cost has to be made. Here, the group of molecules 1-3 is investigated,
which are shown in Figure 8.1. First, a time-dependent density functional theory (TDDFT)
methodology in conjunction with medium-sized basis sets is validated by benchmarking
against a high-level ab initto method as well as against experimental results. For the sake
of computational efficiency, the size of the moieties (R = TIPS in Figure 8.1) is successively

reduced: R is replaced by trimethylsilyl (TMS) or methyl (Me), and the acetylene group
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is replaced entirely by Me. As will be seen below, the first two simplifications can be done
without significant loss of accuracy. The chosen functional and basis set will then be used
to simulate optical absorption and emission spectra using the appropriate size-reduced

molecules.

Calculations were carried out using the GAUSSIANO9 and Q-CHEM 5 program pack-
ages. 332431 The standard density functionals BLYP,[310-312] B3LYP, 3131 BHandHLYP
(here called BHLYP in the following),®'4 CAM-B3LYP, 319 wB97X[B16l and wB97X-
D[ as implemented in GAUSSIAN were employed in combination with the standard basis
sets by Ahlrichs and co-workers in their “def2” form up to quadruple-¢ quality (specifically,
def2-SVP, def2-SVPP, def2-TZVP, def2-TZVPP, def2-QZVP and def2-QZVPP).[198-200]
The polarizable continuum model (PCM) 31873201 ip jts integral-equation formalism (IEF-
PCM) 32! was used to account for solvation effects of n-hexane. Excited-state calculations
were carried out with linear-response TDDFTI6-8:322] yging the functionals mentioned
before as well as with the algebraic-diagrammatic construction (ADC) scheme for the
polarization propagator of second order, ADC(Q),[25’27’28’52] as benchmark method. Cal-
culations of spin-orbit couplings (SOC)[323:324 in the TDDFT framework [325:326] were
carried out with the Q-CHEM program package.

First, the gas-phase ground-state equilibrium geometry of molecule 1 with different
moieties R was optimized at the B3LYP /def2-TZVP level of theory (Section 8.3.1). The
chosen model molecule was then used for the basis set and functional benchmark of
vertical excitation energies at the TDDFT and ADC(2) levels (Section 8.3.2). Having
chosen a suitable functional and basis set, excited electronic states were calculated in
solution employing the PCM, for which the molecules were re-optimized in the ground

state Sp as well as optimized in the first excited singlet state S; (Section 8.3.3).

Since the experimental optical spectra, in particular the fluorescence spectra, show
a significant vibrational broadening, vibrationally-resolved electronic (vibronic) spectra
were simulated with different vibronic models in a time-independent framework, [327-330]
assuming the validity of the harmonic oscillator approximation (Section 8.3.5). The
vertical Hessian (VH) and vertical gradient (VG) models employ the same reference
geometry for both the initial and final state (the equilibrium geometry of the ground state
for absorption spectra), while the equilibrium geometry of the final state is extrapolated.
Within the adiabatic Hessian (AH) and adiabatic shift (AS) models the equilibrium
geometry of both the initial and the final state is optimized. It is noteworthy that the
computation times of the vibronic part are similar for all models, so the computational
cost is determined by the electronic-structure level used to describe the potential energy
surface (PES) of the excited state. 33 The most demanding approaches are thus in
general the VH and AH models, which require the Hessians of excited states. Concerning
electronic transition moments, the so-called Franck—Condon (FC) approximation was
employed, 33173331 which assumes that they keep their equilibrium values during the

transition.
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In order to obtain spectral line shapes from the calculated stick spectra that are
comparable to the experimental ones, all relevant electronic or vibronic transitions have
been convoluted by means of Lorentzian functions with a full width at half maximum
(FWHM) of 0.2 eV for vibronic absorption spectra and 0.06 eV for vibronic emission

spectra.

8.3 Results and Discussion

8.3.1 Size-Reduced Model Molecules

First, smaller model molecules shall be found by replacing the original ones as shown
in Figure 8.1 with R = TIPS. This is done exemplarily with molecule 1, where the
TIPS groups are replaced by TMS or Me ones. As further simplification, the ethynyl
groups (R— C=C) were completely replaced by methyl groups. The resulting molecules
la—d are shown in Figure C.1 in Appendix C (page 211) and were optimized at the
B3LYP /def2-TZVP level of theory. Frequency calculations were carried out to verify
the stationary points to be minima. As can be seen from the results in Table C.1 and
Figure C.2 in the Appendix, the excitation energies of the first ten excited singlet states
calculated in gas phase at the CAM-B3LYP /def2-TZVP level of theory do not change
significantly when going from R = TIPS (1a) via R = TMS (1b) to R = Me (1c),
whereas both the excitation energies and the order of the excited states change when the
entire ethynyl group is substituted by Me (1d). Similar conclusions hold for the resulting
spectral line shapes. Especially in the lower energy region, all important spectral features
are well reproduced for 1la—c and in good agreement with experiment, while the first
peak after 3 eV is missing for 1d. Thus, in the following computational study only the

molecules 1, 2 and 3 of Figure 8.1 with R = Me were considered.

8.3.2 Choosing Functional and Basis Set

To identify a suitable TDDFT-based methodology, vertical singlet excitation energies
of molecule 1 (Figure 8.1, with R = Me) have been computed with different electronic
structure methods and basis sets. First, different exchange-correlation functionals (specifi-
cally, BLYP, B3LYP, BHLYP, CAM-B3LYP, wB97X and wB97X-D) are compared against
ADC(2) using the def2-SVP basis set. 29 The results for the lowest excited singlet states
are shown schematically in Figure 8.2, where it can be seen that the BHLYP and CAM-
B3LYP functionals have by far the best agreement with the benchmark method. The pure
functional BLYP underestimates all excitations significantly, underlining the necessity of
exact exchange in TDDFT. The global hybrid BSLYP performs somewhat better than
BLYP, but still underestimates the excitation energies strongly. The range-separated
hybrid wB97X performs clearly better than BSLYP, but not as good as CAM-B3LYP, as

it overestimates most excitation energies slightly. The additional dispersion correction
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FIGURE 8.2: Vertical excitation energies of molecule 1 (Figure 8.1, with R = Me)
calculated with ADC(2) and different density functionals in combination with the
def2-SVP basis set.

in wB97X-D improves the results slightly, but they are still not as good as those of
BHLYP and CAM-B3LYP. Hence, since range-separated exchange-correlation functionals
are often superior to global hybrids, the CAM-B3LYP functional was chosen over the
BHLYP one for all further investigations. An analogous benchmark has been carried out
for vertical triplet excitation energies, the results of which are shown in Figure C.3 in
Appendix C. Here, no functional proved to be clearly superior over the others. However,
TDDFT seems to underestimate the triplet excitation energies rather strongly compared
to ADC(2), which has to be kept in mind in the following.

Next, various basis sets from double- to quadruple-¢ quality as well as the influence of
additional sets of polarization functions on excitation energies and oscillator strengths were
investigated. As can be seen in the results shown in Figure 8.3, while the double-{ basis
set def2-SVP is not sufficiently large, neither excitation energies nor oscillator strengths
change significantly when going from triple-¢ def2-TZVP to quadruple-¢ def2-QZVP
basis sets, indicating basis-set convergence at triple-( level. Furthermore, the influence of
additional sets of polarization functions in def2-SVPP, def2-TZVPP and def2-QZVPP
seems to be negligible, since no significant change in excitation energies or oscillator
strengths can be observed. Since no Rydberg or similarly diffuse states are considered in
this work, diffuse functions are not expected to play a significant role. It is thus safe to
assume that the error in the one-particle basis will be negligible with def2-TZVP and

therefore this basis set was chosen for all further investigations.

8.3.3 Electronic Excitations

Having chosen a suitable model chemistry, in this section we start with the investigation
of purely electronically excited singlet and triplet states of the molecules 1-3 (Figure 8.1,
with R = Me) and compare the resulting spectra to the experimental ones. From now on,
a PCM was applied to account for solvent effects of n-hexane (¢ = 1.8819). The molecules
were thus re-optimized in the ground state using the PCM and CAM-B3LYP /def2-TZVP
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FIGURE 8.3: Vertical excitation energies and oscillator strengths of molecule 1 (Fig-
ure 8.1, with R = Me) calculated with CAM-B3LYP and different one-particle basis
sets.

as well as optimized in the first excited singlet state Sq, the state from which emission

should occur according to Kasha’s rule. [334-336]

Results for excitation energies and oscillator strengths as well as the resulting elec-
tronic absorption spectra compared to the experimental ones are given in Tables C.2 and
C.3 and Figure C.4 in the Appendix. By comparing the corresponding results for the
excitation energies in Tables C.1 and C.2 of molecule 1 (with R = Me), one can also
estimate the influence of solvent effects introduced by the PCM, which are seen to be
usually smaller than 0.1 eV and thus do not play a significant role. Purely electronic
emission spectra have not been simulated, since the experimental ones show are prounced

vibrational fine structure that could not be resolved this way. 307

The findings are summarized in terms of simple Jablonski diagrams[337:338] in Fig-
ure 8.4, where it can be seen that both for molecule 1 and 2 the transition between Sy

and Sp is bright with a non-vanishing oscillator strength f, at the equilibrium geometries
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FIGURE 8.4: Simplified Jablonski diagrams of the molecules 1-3 (Figure 8.1, with
R = Me) considering the equilibrium geometries of the Sg and S; states, respectively.
The energy of the Sy state in its equilibrium geometry was set to zero in each case.

of both states. After excitation and internal conversion, the S; state relaxes about 0.3 eV
in both molecules, but it is still about 3 eV above the ground state. The large energy gap
and oscillator strength indicate a fast radiative decay of the S state and thus explain the

experimentally observed fluorescence around 450 nm in accordance with Kasha’s rule. [307]

In the case of molecule 3, however, the situation is not that simple. Concerning
absorption, the Sg — S; transition has an almost vanishing oscillator strength and is
thus not a bright one, and the same holds true for the Sy <— S; transition in the emission
case. This means that the molecule relaxes into the equilibrium geometry of the S; state
only after excitation to the brighter S, state and internal conversion. Due to the lower
energy gap and the small oscillator strength of S;, the molecule remains longer in this
state, which may open the possibility for fluorescence quenching via non-radiative decay.
According to Fermi’s golden rule, 339342 the transition rate from one state to another is
proportional to the square of the transition dipole moment or “dipole strength”, which
also corresponds to the oscillator strength divided by the excitation energy (ignoring
prefactors). Using this assumptions, the fluorescence rates of molecules 1 and 2 are
estimated to be more than 20 times faster than for molecule 3. Another striking difference
between molecule 3 and the other two is the extremely low-lying triplet state T at the Sq
equilibrium geometry (see Figure 8.4), that lies only 0.36 €V above the Sy state, ignoring
the assumed underestimation of triplet excitation energies at the TDDFT level for the
moment. A possible explanation for the missing fluorescence in case of molecule 3 would
thus be an intersystem crossing into the triplet manifold after excitation, relaxation into
the equilibrium geometry of the T state, and phosphorescence from there in the infrared

region. This route will be further investigated in the next Section 8.3.4.

Since the Stokes shift of all molecules is rather large, changes of the bond distances
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between equilibrium geometries of the Sop and the S; states were investigated exemplarily
for molecule 3. The results are shown in Table C.4 in the Appendix, where it can be seen
that the structural changes due to relaxation in the first excited state are rather small

and thus are not expected to affect the fluorescence behavior significantly.

FIGURE 8.5: Frontier molecular orbitals of molecule 1 (top left: HOMO, top right:
LUMO) and 3 (bottom left: HOMO-1, bottom middle: HOMO, bottom right: LUMO).

In the single-particle or molecular orbital (MO) picture, the S; and T; states of
molecules 1 and 2 can be described as a transition from the highest occupied molecular
orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO). For molecule 3,
however, both the S; and T states correspond to transitions from the HOMO-1 to the
LUMO, while the So corresponds to the HOMO—LUMO transition. These so-called
frontier molecular orbitals are shown in Figure 8.5 for molecules 1 and 3. The MOs and
transitions of molecule 2 are analogous to the ones of molecule 1 (see also Figure 7 in Ref.
307). The HOMO-1 and LUMO of molecule 3 are both located mostly on the pyracyclene
unit of the molecule, whereas the HOMO itself is located more on the diethynylbenzene
part. Thus, the Sy state might have some charge-transfer character in contrast to S; and
Ty, but it still has a larger oscillator strength than the local HOMO—LUMO transition.
While this picture is only qualitative, it underlines the different nature of the S; state of

molecule 3 in contrast to molecules 1 and 2.
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8.3.4 Fluorescence Quenching via an Intersystem Crossing?

In order for intersystem crossing (ISC) to occur efficiently, significant spin-orbit coupling
between the involved states is needed in molecule 3, while they should not necessarily
be present in molecules 1 and 2. Hence, spin-orbit coupling (SOC) calculations were
carried out for all three molecules at their ground-state equilibrium geometry at the
TDDEFT/PCM/CAM-B3LYP /def2-TZVP level of theory with the Q-CHEM 5 program
package 53, However, as can be seen from the results in Tables C.6-C.8 in Appendix C,
no significant SOC element between the singlet ground state or an excited singlet state
and an excited triplet state could be found for any of the molecules. Analogous SOC
calculations were also carried out at the equilibrium geometry of the S; state, but no
significant coupling element was obtained at this geometry, either. Hence, the low-lying
triplet state in Figure 8.4 for molecule 3 seems unlikely to play a role in the fluorescence
quenching mechanism, but can at this stage also not definitely be excluded. However,
the strong underestimation of triplet excitation energies at the TDDFT level as shown in
Figure C.3 in the Appendix makes triplet states more unlikely to play a significant role in
the fluorescence quenching mechanism of the considered molecules. Due to the high energy
gap between the Sg and S; states, a radiationless decay via a conical intersection is also
very unlikely. Yet, for a thorough investigation of the absorption and emission properties
of the three molecules, vibrationally-resolved electronic spectra shall be discussed in the

next section.

8.3.5 Vibrationally-Resolved Electronic Spectra

At first, the vibrationally-resolved electronic absorption spectra shall be discussed. Only
excited states with an oscillator strength larger than zero at the ground-state equilib-
rium geometry were considered for the generation of the “stick spectra” in a general

time-independent framework. 329 The stick spectra of the different excited states were
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F1GURE 8.6: Vibrationally-resolved electronic absorption spectra of molecules 1-3
(Figure 8.1, with R = Me) calculated with the AS model and shifted by —0.2 eV for
molecules 1 and 2, and with the VG model shifted by —0.32 eV for molecule 3, to match
the most intense peak, respectively. Lorentzian functions with a FWHM of 0.2 eV were
used to convolute the calculated stick spectra, which are shown in different colors for
the individual excited states.
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FIGURE 8.7: Vibrationally-resolved electronic Sy <— S; emission spectrum of molecules
1, 2 and 3 (Figure 8.1, with R = Me) calculated with the AH model and shifted by
—0.11, —0.13 and +0.55 eV, respectively, to match the most intense peak. Lorentzian
functions with a FWHM of 0.06 eV were used to convolute the calculated stick spectra.

added and convoluted with Lorentzian functions with a FWHM of 0.2 eV. For both the
experimental and the simulated spectrum, the most intense peak has been normalized to
unity. The Franck—Condon (FC) approximation for the electronic transition moment was
used throughout for the vibronic spectra. Concerning vibronic transitions, the adiabatic
shift (AS) model was employed for molecules 1 and 2, whereas for molecule 3 the vertical
gradient (VG) model was used, since no minimum of the Sg state could be found. The VG
model has also been applied to the first two molecules, and the results are very similar
to the AS model. Effects of anharmonicity and a finite temperature (“hot bands”) have
been neglected throughout. The vibrationally-resolved electronic absorption spectra for
molecules 1-3 are shown in Figure 8.6, where the simulated spectra of molecules 1 and 2
have been shifted by —0.2 eV, and by —0.32 eV for molecule 3 in order to match the most
intense peak. The shift can possibly be explained by the fact that both in the AS and the
VG model the normal modes and vibrational frequencies of the final excited states are
ignored and assumed to be the same as the ones of the initial ground state. As can be
seen in Figure 8.6, the general shape of the absorption spectra is quite well reproduced
for molecules 1 and 2, whereas the relative intensity of the highest peak compared to
the second highest is not. However, in particular for molecule 2, the distance and shape
of the three most intense peaks is significantly better reproduced than in the purely
electronic case (see Figure C.4 in the Appendix). Although the shift is slightly larger for
molecule 3 than for the other two, the experimental spectral line shape is remarkably
well reproduced in this case, and a significant improvement can be observed here as well
compared to the purely electronic spectrum. Furthermore, it should be noted that the
absorption spectra are not only broadened by vibronic progressions, but many electronic
states contribute and overlap in general.

For the vibrationally-resolved electronic Sy <— S; emission spectra of molecules 1-3
the same approximations as for the absorption spectra were used, except that the adiabatic
Hessian (AH) model was employed for the vibronic transition. The fluorescence spectrum

of molecule 3 has a very low measured emission intensity compared to the other two
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systems. Again, the most intense peaks have been normalized to unity in each case.
However, one has to keep in mind that the experimental emission intensity of molecule
3 only amounts to about 1-5% compared to molecules 1 or 2 and is thus significantly
weaker (see also Figure 5 in Ref. 307), an effect that is not properly seen anymore in the
results shown in Figure 8.7 because of the normalization. The simulated spectra were
shifted by —0.11 eV for molecule 1, —0.13 eV for molecule 2 and +0.55 eV for molecule 3,
respectively, and the stick spectra have been convoluted with Lorentzian functions with
a FWHM of 0.06 V. As can be seen in the results shown in Figure 8.7, the shapes of
the computed spectra are in very good agreement with the experimental ones. Both the
energetic distance and the relative intensity of the two most intense peaks in the very
similar spectra of molecules 1 and 2 around 2.8 and 3.0 eV perfectly match experiment,
and also the “shoulder” between 2.6 and 2.7 eV is nicely reproduced. The agreement
with experiment is thus even significantly better than for the absorption spectra, but one
has to keep in mind that here only one excited electronic state had to be considered, in

contrast to about ten in the absorption case.

The emission of molecule 3 is a more difficult case. As stated before, no fluorescence
can be observed with the naked eye and the measured emission is very weak. In principle,
the spectrum on the right in Figure 8.7 shows a similar structure as the other two
molecules, just that the absolute intensity is two orders of magnitude lower and the
energy of the maximum peak is shifted by about 0.4 eV. The calculated energy difference
between the Sy and the S; state in the equilibrium geometry of the latter (see Figure 8.4)
indicates a transition wavelength of 766 nm, which would be in the near infrared. However,
the experimentally observed emission takes place between about 2.0 and 2.6 eV or 475
and 620 nm, which is still in the visible region. Due to the large underestimation of
the electronic energy gap between the ground and first excited state in the equilibrium
geometry of the latter, the calculated spectrum had to be shifted by 0.55 eV. Yet, it can be
seen that molecule 3 does indeed fluoresce, albeit just very weakly, and that its emission

spectrum possesses a similar vibrational fine structure as the other two molecules.

8.4 Summary

In this work, the optical absorption and emission spectra as well as fluorescence quenching
of the azaacenes 1-3 (Figure 8.1) that bear five-membered rings have been investigated
computationally. While two of three structurally very similar azaacenes highly fluorescent,
a third class with an additional unsaturated Cy group did not show any visible emission
at all.[3%71 To this end, TDDFT computations employing the CAM-B3LYP functional
and the def2-TZVP basis set on somewhat smaller model molecules were validated with
reference to ADC(2) vertical excitation energies and experimental results. Purely vertical
electronic excitation proved not to be accurate enough for a proper description of the

experimental absorption and, in particular, emission spectra. Thus, vibrationally-resolved
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electronic spectra of the model molecules were calculated that were in very good to
excellent agreement with the experimental ones. Geometry optimizations in the first
excited singlet state indicated that an energetically very low-lying triplet state is present in
the non-fluorescent molecule in contrast to the other two molecules, and that a fluorescence
quenching might occur via an intersystem crossing and successive phosphorescence in
the infrared region. However, calculations of spin-orbit coupling elements showed that
this is probably not the case. Rather, the computations have shown that the S; state
has a different character for the non-fluorescent molecule as compared to the other two.
While for the emitting molecules the first excited state corresponds to a transition from
the HOMO to the LUMO with a significant oscillator strength, the S; state of the
non-emitting molecule corresponds to a transition from the HOMO-1 to the LUMO
with an almost vanishing oscillator strength. The corresponding bright HOMO—LUMO
transition corresponds to the Sy state in this case. Thus, the additional double bond of
the Cy unit changes the character of the first two excited singlet states in the molecules,
making the S; a dark one with a very low oscillator strenth. This gives this excited
species a long lifetime and a low fluorescence rate, such that the emission cannot be seen

anymore with the naked eye.



Chapter 9

Conclusions and Outlook

In this thesis, I have presented the theory, implementation, and results of several method-
ologies for the calculation of excited electronic states based on unitary coupled cluster
(UCC) or the algebraic-diagrammatic construction (ADC) scheme. Due to the particular
kind of basis states used to represent the electronic Hamiltonian, these schemes have
very beneficial properties such as separability and compactness. Separability is a suf-
ficient condition that the method under consideration treats electronic excitation in a
size-consistent or, more specifically, size-intensive manner. Compactness means that only
modest configuration spaces need to be taken into account in order to be correct through
a specific order in perturbation theory. While ADC is strictly based on Mgller—Plesset
perturbation theory (MP), UCC is, in principle, a nonperturbative ansatz. However,
in contrast to traditional coupled-cluster (CC) theory, its expansion does not truncate
naturally, and hence the working equations cannot be cast into closed-form expressions.
Thus, the disadvantage of UCC is that it needs to be truncated manually, usually by
employing arguments from MP perturbation theory.

My work consisted of a theoretical analysis of the different methods, their implemen-
tation into an existing program package, and their evaluation by comparing my results
to the ones from established methods. After presenting the basics of quantum-chemical
methods such as Hartree-Fock, configuration interaction, MP, ADC and traditional CC
in Chapter 2, I presented the UCC scheme for the calculation of ground-state energies,
electronic excitation energies and molecular properties by deriving most of the equations
using diagrammatic techniques explicitly through third order in perturbation theory in
Chapter 3. Furthermore, I gave an explicit derivation of the “Bernoulli expansion” (Bn)
of the similarity-transformed Hamiltonian H, which bears several advantages over the
traditional Baker-Campbell-Hausdorff expansion (BCH) such as cancellation of many
terms and the Fock operator occurring only up to a single commutator with the cluster
operator. Using the intermediate state representation (ISR), I explicitly derived the
ADC(2) equations, which uses the first-order correction to the wave function from MP.

Due to the form of the first-order correlation amplitudes, simplifications in the matrix
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elements occur due to partial cancellation of terms.

An analogous ISR procedure can be carried out starting from a different reference
function that is correct through first order. However, if other amplitudes such as from a
converged CC calculation are used, this cancellation of terms involving cluster amplitudes
and orbital-energy differences does not occur anymore. Taking coupled cluster doubles
(CCD) as the reference, I implemented the scheme termed CCD-ISR(2) as well as CCD-
ADC(2), where the MP amplitudes are replaced by CCD ones in the simplified matrix
version. Concerning UCC, I showed that matrix elements equivalent through second order,
but that the same subtlety arises depending on whether the BCH or Bernoulli expansion
is used for H. The BCH-UCC2 matrix elements are equivalent to those of CCD-ISR(2),
while the “simplified” version occurs for the Bn-UCC2 scheme. The difference lies again in
the ground-state cluster amplitudes, which for UCC2 essentially correspond to those from
linearized coupled-cluster doubles (LCCD). In a strict perturbation-theoretical framework,
however, where the ground-state amplitudes are only required to be correct to first order,
all variants are identical.

All schemes discussed above have been implemented as modifications of the standard
ADC(2) variant and tested on a set of small molecules. While for systems well described
by means of perturbation theory, the results for vertical excitation energies do not differ
significantly, larger deviations could be observed for systems of “quasi open-shell type.” For
the ozone molecule as an example, the first excitation energy was obtained experimentally
to be 1.6 eV. Standard ADC(2) yields 2.14 eV, CCD-ISR(2) 1.88 eV and CCD-ADC(2)
1.59 eV. A benchmark on a set of small organic and inorganic molecules did not reveal
major differences between the methods.

Focussing on the CCD-ADC variants, an extensive benchmark on small to medium-
sized unsaturated organic molecules revealed a mean error and standard deviation for
singlet excited states of 0.15 £ 0.34 eV for CCD-ADC(2), whereas for standard ADC(2)
0.22 £ 0.30 eV was obtained compared to the theoretical best estimates (TBE). For
triplet excited states, ADC(2) has a mean error and standard deviation of 0.12 £ 0.16 €V,
CCD-ADC(2) improves significantly upon this with 0.00 £ 0.17 eV. The same benchmark
has also been carried out for the extended variants ADC(2)-x and CCD-ADC(2)-x, where
the doubles block of the secular matrix is expanded through first order in an ad hoc
manner, but no improvements were observed when employing CCD amplitudes in this
case.

Another case where MP perturbation theory is known to fail, whereas CC is more
stable, is the stretching of bonds. The failure of MP has immediate consequences to the
excited-state potential energy surfaces calculated via ADC. When stretching the triple
bond of the Ny molecule, MP2 starts to break down at around 2 A, and so do the ADC(2)
excited states. On the other hand, CCD is more stable, and so are the potential energy
surfaces of CCD-ADC(2), which I could show to be reasonable towards the dissociation

limit up to about 3.5 A. This behavior can have significant consequences for the theoretical
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description of photochemical reactions via excited-state geometry optimizations.

In order to test CC-ADC schemes for a more complex property other than excitation
energies, I calculated static dipole polarizabilities of several small to medium-sized systems,
presented in Chapter 5. In particular aromatic molecules like benzene had proven difficult
cases for standard ADC approaches. For this, I extended and modified the previous
implementation to allow for calculations where the amplitudes are only replaced in
the transition moments, but not in the secular matrix, denoted F/CC-ADC(2). This
includes the F/CC-ADC(3/2) scheme, where the second-order transition moments are
combined with the third-order ADC matrix. Furthermore, both CCD and CCSD reference
functions were considered, where, in the latter case, the converged CC singles amplitudes
replaced a part of the second-order correction to the ground-state density matrix. The
amplitudes in the transition moments turned out to be more important than the ones
in the secular matrix itself, and consistent improvements for static polarizabilities were
observed compared to standard ADC schemes, in particular for aromatic systems like
benzene and pyridine. Here, both CCD-ADC(2) and CCSD-ADC(2) had a significantly
smaller relative error compared to experimental results than standard ADC(3/2), at a
computational cost amounting to only about 1% of the latter. The results are thus very
encouraging, such that in future projects also dynamic polarizabilities or other properties
like Cg dispersion coefficients could be calculated in order to further test and validate the
CC-ADC(2) schemes.

Turning back the attention to unitary coupled cluster in Chapter 6, the third-order
scheme UCC3 has been implemented, in which the amplitude equations and excited
states dominated by single excitations are correct through third order in perturbation
theory. The current implementation allows for the computation of the ground state and
excitation energies, vertical ionization potentials as well as properties and transition
properties of the ground and excited states. Both the second-order scheme UCC2 and
UCC3 have been benchmarked on the same set of unsaturated organic molecules as the
CC-ADC(2) schemes. Here, the performance of UCC2 was somewhat worse with a mean
error and standard deviation of 0.36 + 0.41 eV as compared to standard ADC(2) with
0.22 + 0.30 eV for singlet excited states compared to the TBE values. Concerning the
third-order variants, the performance of UCC3 with 0.07 £ 0.30 €V is slightly better than
ADC(3) with 0.12 + 0.27 eV. Oscillator strengths calculated with UCC2 and UCC(3/2),
which is analogous to ADC(3/2) described above, appear to be very reliable and sometimes
agree better with other literature values than those calculated with ADC.

The dipole moments calculated with UCC gave very promising results; for the HoO
and HF molecules, the UCC(3/2) result agreed almost perfectly with full configuration
interaction (FCI). For the more difficult CO molecule, FCI predicts a dipole moment
of 0.63 D, whereas the second-order methods deviate severely. MP2 predicts 1.30 D,
UCC2 improves slightly upon this with 1.16 D. However, using third-order amplitudes in
UCC(3/2), the result is very close to FCI with 0.70 D. These results suggest that it may
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be very rewarding to include higher-order terms in the expansion of the ground-state
energy expression, the one-particle densities of the ground and excited states as well as
the transition moments. Some of these expressions have already been derived, but still
need to be implemented. Another possible extension that will be tested in the future is
the perturbative inclusion of triple excitations, analogous to corrections to CCSD, such as
CCSD|T] or CCSD(T). In this manner, the ground-state energy can be made consistent
through fourth order as well as the density matrix through third order in perturbation

theory.

In general, the second- and third-order UCC schemes can be expanded into many
different directions. Apart from a more thorough investigation of ionization potentials via
the IP-UCC methods, unitary coupled-cluster schemes can furthermore be adapted to the
calculation of electron affinities (EA-UCC). Environment effects can be included via the
frozen density embedding approach (FDE-UCC) or the polarizable embedding scheme
(PE-UCC) in order to be able to calculate excited states in biologically relevant systems.
The spin-flip ansatz (SF-UCC) can be exploited for the calculation of systems with a
multi-reference character. The calculation of core-excited states and X-ray spectra can
be achieved by employing the so-called core-valence separation (CVS-UCC), everything
analogous to the work done on the ADC schemes. To check for the computational
efficiency of the implementations, the general timings of all UCC schemes need to be
investigated, and the performance could be improved by employing the resolution-of-the-
identity approximation (RI-UCC) for the two-electron integrals. All of the aforementioned
approaches can then be used to calculate optical spectra of molecular systems, such as
UV /Vis absorption or electronic circular dichroism (ECD). For the latter, not only the
electric transition dipole or oscillator strength but also the magnetic transition dipole
moment or rotatory strength is required. By developing analytical gradients for the
ground and excited states, geometry optimizations can be performed, and more complex

response properties for other spectroscopies calculated.

Analytic gradients, i.e., derivatives of the energy, constitute the second standard
approach for the calculation of molecular properties, besides the expectation value of the
respective operator with the wave function. In Chapter 7, the relationship between the
two approaches is investigated, which are not equivalent for nonvariational wave functions,
for all standard quantum-chemical methods, with a focus on the inclusion of orbital
relaxation in the expectation-value approach. While for fully variational SCF methods
like HF and DFT, the Hellmann—Feynman theorem is fulfilled, and the two approaches
are equivalent, no orbital relaxation is included by definition in the (ground-state) CC and
CI methods. For methods based on perturbation theory, i.e., MP and ADC, the situation
is not that clear. In MP2, orbital relaxation is partially included in the expectation value
by virtue of the singly-excited determinants in the second-order correction to the wave
function, which is exactly obtained in the first iteration of the Z vector equations, the

solution of which yields the full orbital relaxation.
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ADC(1), being essentially equivalent to the CIS method, contains no orbital relaxation.
An analogous analysis as for MP2 has been carried out for ADC(2), and even though
a one-to-one mapping like for MP2 is not possible in this case, it was shown that the
expectation value contains some orbital-relaxation terms, but is more similar to the orbital
unrelaxed expression. Numerical studies confirmed the conclusions from the theoretical
analysis. Concerning ground-state dipole moments, the MP2 expectation value was very
close to the relaxed one, while for ADC(2), the opposite trend was observed. This behavior
can also be explained by the fact that the doubles block of ADC(2) is diagonal in zeroth
order, and hence singles on top of single excitations cannot account for orbital relaxation
in singly-excited states. By taking the excitation vectors from the ADC(3) method, in
which doubly-excited configurations are fully coupled, in combination with the second-
order effective density, the expectation value results came closer to the relaxed dipole
moments. However, this is only true for excited states dominated by single excitations.
For doubly-excited states, both the ADC(2) and ADC(3/2) expectation values were far
from the relaxed value, showing that in this case, triply-excited configurations are needed

to account for orbital-relaxation effects.

Apart from my work on theoretical methods and development, I have been involved
in several projects in collaboration with experimental organic chemists. As an example,
the work resulting from one of these projects has been presented in Chapter 8. Here,
the optical absorption and emission spectra as well as fluorescence quenching of three
similar azaacenes bearing five-membered rings has been investigated computationally.
While two of the three structurally very similar compounds are highly fluorescent, the
third class with an additional unsaturated Co group did not show any visible emission at
all. TDDFT calculations on somewhat smaller model molecules were validated against
ADC(2) excitation energies and experimental results. As the purely vertical electronic
excitations proved not to be accurate enough, in particular for a proper description of the
experimental emission spectra, vibrationally-resolved electronic spectra were calculated

and turned out to be in excellent agreement with the experimental ones.

An energetically very low-lying triplet state and a possible fluorescence quenching
via an intersystem crossing followed by phosphorescence in the infrared region were ruled
out as the spin-orbit coupling elements were very small. Rather, the first excited singlet
state Sy of the nonfluorescent molecule has a different character as compared to the other
two. While for the emitting molecules, the S; state has a high oscillator strength and
can be described by a HOMO-LUMO transition, the S; of the non-emissive molecule
has an almost vanishing oscillator strength and different involved orbitals. The bright
HOMO-LUMO transition corresponds to the second excited state Sg in this case. Thus,
the additional double bond of the Co unit alters the character of the first two excited
singlet states and turns the S; into a dark one with an almost negligible oscillator strength.
This property gives the excited species a long lifetime and a low fluorescence rate, such

that the emission cannot be seen anymore with the naked eye.
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Appendix A

Vertical Excitation Energies and
Oscillator Strengths of the

Benchmark Sets

Table A.1 contains the results of the vertical excitaion energies calculated at the theoretical
levels of ADC(2), CCD-ADC(2), CCD-ISR(2), BCH-UCC2, Bn-UCC2 and UCC3 with
the aug-cc-pVTZ basis set in comparison with the theoretical best estimates (TBE) of
the benchmark set introduced by Jacquemin et al.l'7 Tables A.2 and A.3 contain those
of the Thiel benchmark set'™! calculated at the ADC(2), CCD-ADC(2), ADC(2)-x and
CCD-ADC(2)-x levels in combination with the TZVP basis set. Table A.4 contains results
for selected molecules calculated with CCSD-ADC(2) compared to standard ADC(2) and
CCD-ADC(2). Table A.5 contains results for oscillator strengths at the theoretical levels
of ADC(2), ADC(3/2), UCC2 and UCC(3/2) in comparison with literature data.

A.1 Jacquemin Benchmark Set

TABLE A.1: Vertical excitation energies (in eV) of the considered molecules in the bench-
mark set at the theoretical levels of ADC(2), CCD-ADC(2), CCD-ISR(2), BCH-UCC2,
Bn-UCC2, and Bn-UCC3 calculated with the aug-cc-pVTZ basis set in comparison with
the theoretical best estimates (TBE).?

a CCD- CCD- BCH- Bn- Bn-
Molecule State TBE ADC(2) ISR(2) UCC2 UCC2 UCC3
Acetaldehyde LA” 4.31 4.20 4.12 4.05 4.35 4.09
A 3.97 3.77 3.70 3.62 3.93 3.72

Acetylene Iy= 7.10 7.27 7.10 6.97 750 6.82

Ay 7.44 7.60 746 736 782 717
Syt 5.53 5.56 5.65 5.60 5.65 5.26
3Ay 6.40 6.53 6.41 6.25 6.71 6.11
3% 7.08 7.26 711 694 746 6.80

193
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TABLE A.1: (Continued.)

TBE? CCD- CCD-  BCH- Bn- Bn-
ADC(2) ISR(2) UCC2 UCC2 UCC3
Ammonia TA, 6.59 6.47 6.37 6.35 6.52 6.64
g 8.16 7.92 784 782 797 823
1A, 9.33 9.11 9.02 9.01 9.16 9.39
1A,y 9.96 9.74 9.64 9.62 9.79 10.02
3A9 6.31 6.22 6.12 6.10 6.28 6.33
Carbon monoxide 'II 8.49 8.72 853 843 885 8.44
Iy- 9.92 9.93 9.80 9.82 10.10 9.53
A 10.06  10.20 10.18 10.12 10.37  9.60
I+ 1095 11.45 11.22 11.14 11.53 11.05
Iyt 1152 11.98 11.73 11.66 12.05 11.57
B 11.72  12.17 11.93 11.85 12.25 11.77
31 6.28 6.53 6.28 6.18 6.66 6.18
3yt 845 8.31 839 834 841 8.10
3A 9.27 9.18 9.17 9.10 9.32 8.87
3y 9.80 9.88 9.85 9.77 10.03 9.35
39+ 1047 1097 10.73 10.65 11.05 10.50
Cyclopropene 1B, 6.68 6.82 6.64 6.50 T7.01 6.54
1B, 6.79 6.84 6.66 6.53 T7.04 6.60
3Bs 4.38 4.39 432 418 456  4.07
3B, 6.45 6.52 6.33  6.19 6.71 6.23
Diazomethane LA, 3.14 3.23 3.17 3.00 3.54 2.65
1B, 5.54 5.57 5.56 546 576 5.18
1A, 5.90 5.84 5.86 5.75 6.08 5.28
3A, 2.79 2.87 2.83 265 3.17 245
3A, 4.05 3.95 4.04 392 419  3.42
3B, 5.35 5.44 543 533 5.63 5.02
3A, 6.82 6.84 691 6.80 7.02 6.67
Dinitrogen I, 9.34 9.41 933  9.23 956 9.20
Iy 9.88 10.13 10.08 9.96 10.40  9.52
A, 1029 10.66 10.66 10.57 10.93 9.95
Iy+ 1298 1299 1293 1290 13.04 13.11
I,  13.03  13.34 13.27 13.24 13.39 12.87
v+ 13.09 13.08 13.02 12.98 13.13 13.20
1, 1346 13.97 13.83 13.73 14.11 13.49
3yt 7.70 .77 797 791 787 7.36
31 8.01 8.14 804 794 828 7.84
3A4 8.87 9.02 9.04 888 922 851
3y 9.66 10.06 10.02 9.85 10.28 9.33
Ethylene 1Bs,  7.39 7.41 7.25 710 757  7.29
Bi. 793 8.04 7.82 7.68 824 7.76
B,  8.08 8.06 790 7.75 822  7.96
3Bi,  4.54 4.60 446 431 477 427
3Ba,  7.23 7.30 714 699 7.46  7.18
5By 7.98 8.02 7.85 7.70 818 7.90
Formaldehyde 1Ay 3.98 3.92 3.80 3.71 4.08 3.74

Molecule State
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TABLE A.1: (Continued.)

a D- D- BCH- Bon- Bn-

Molecule State TBE A%C(J(Q) Igg{@) USCQ UCcc2  UCC3
1By 7.23 6.50 6.45 6.43 6.55 7.53

1B, 8.13 7.53 7.48 746  7.57 8.37

1A, 8.23 7.46 742 740 751  8.52

1A,y 8.67 7.98 794 792 803 8.92

1B, 9.22 9.14 9.06 897 9.29 9.03

A, 9.43 9.45 9.40 9.36 9.53 897

3As 3.58 3.44 3.32 322 360 3.34

3A, 6.06 6.01 6.05 5.94 6.16 5.62

3By 7.06 6.40 6.34 6.32 645 7.37

3Bsy 7.94 7.40 736 734 745 817

3A, 8.10 7.39 734 732 744 838

3B, 8.42 8.34 826 817 849 8.19

Formamide LAY 5.65 5.34 5.35 531 548 5.49
LAY 6.77 6.20 6.21 6.19 6.26 7.06

LA/ 7.63 7.32 731 724 731 7.66

LA 7.38 7.25 726 728 745 797

3A" 5.38 5.03 5.04 499 516 5.20

3A 5.81 5.70 577 572 584 548

Hydrogen chloride 'II 7.84 8.01 7.89 786 818 T7.76
Hydrogen sulfide 1Ay 6.18 6.57 6.27 6.21 6.69 6.03
1B, 6.24 6.46 6.26 6.22 6.55 6.16

3A, 5.81 6.11 581 575 6.22 5.66

3B, 5.88 6.10 5.88 584 6.19 5.79

Ketene 1Ay 3.86 4.04 3.99 390 4.24 3.66
1B, 6.01 6.02 597 592 6.15 5.96

1Ay 7.18 7.17 713 707 729 7.18

3A, 3.77 3.85 3.80 3.71 4.04 357

3A 5.61 5.55 5.55 548 5.71  5.37

3By 5.79 5.85 580 5.74 5.98 5.76

3A, 7.12 7.14 710 7.04 7.26 7.14

Methanamine La” 5.23 5.39 5.16 502 557 4.98
3N 4.65 4.70 447 432 488 4.38

Nitrosomethane LA" 1.96 1.85 1.70  1.30 213 1.63
LA 6.40 5.86 5.79 556 5.96  6.56

3N 1.16 0.98 0.84 043 124 0.81

3A 5.60 5.47 5.52 547 571 497

Streptocyanine 1B, 7.13 6.99 6.93 6.89 7.13 7.07
3B, 5.47 5.49 546  5.41 5.63 5.16

Thioformaldehyde A, 2.22 2.40 2.08 187 264 1.90
1B, 5.96 5.88 5.71 567 5.97 6.01

A, 6.38 6.68 6.46 6.28 6.91 6.58

3A, 1.94 2.01 1.70 149 225 1.58

3A, 3.43 3.43 3.30  3.09 364 296

3By 5.72 5.71 5.53 549 5.79  5.80

Water 1B, 7.62 7.19 715 714 723  7.75
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TABLE A.1: (Continued.)

TBE? CCD- CCD-  BCH- Bn- Bn-
ADC(2) ISR(2) UCC2 UCC2 UCC3
TA, 9.41 8.84 881 880 888 9.55
1A, 9.99 9.54 9.48 947 9.59 10.14
3B, 7.25 6.86 6.83 6.81 6.91 7.34
3A, 9.24 8.72 8.69 868 876 9.36
3A, 9.54 9.17 9.11 9.09 921 9.65

[172]

Molecule State

& Taken from literature.

A.2 Thiel Benchmark Set

TABLE A.2: Vertical excitation energies (EE in eV) of the lowest excited singlet states
of the considered molecules in the Thiel benchmark set at the theoretical levels of
CCD-ADC(2), CCD-ADC(2)-x, Bernoulli UCC2 and UCC3 calculated with the TZVP
basis set in comparison with the theoretical best estimates (TBE). The amount of
doubly-excited configurations (%Rs) in the ADC excitation vectors is given as well.

CCD- CCD-
Molecule State TBE? ADC(2) ADC(2)x UCcC2 UCC3
EE %Ry, EE %Ry EE %Ry EE %Rs
Ethene 1'By, 7.80 8.55 3 8.18 5 8.73 3 8.26 4

E-Butadiene 1 'B, 6.18 6.58 6 608 10 6.88 6 645 7
21Ag 655 779 10 518 60 804 10 578 69

all-F- 1B, 510 5.46 7 496 11  5.85 7 5.42 9
Hexatriene 21A, 509 6.80 12 405 67 712 12 451 77
all- E- 21A, 447 598 13 332 70 635 13 371 80

Octatetraene 1 !B, 4.66 4.73 8 424 12 5.20 8 475 10

Cyclopropene 1 !By 6.76  7.09 6 6.32 10 7.26 6 6.77 8
1B, 7.06 7.27 5 6.74 8  7.46 4  6.99 6

Cyclo- 1'B, 555 574 6 524 9 605 6 560 7
pentadiene 2 1A, 6.31 7.14 10 5.14 54 7.39 10 5.78 68
31A; 894 5 749 61 914 5 7.80 48
Norborna- 1'A, 534 561 7 502 11 590 7 556 8
diene 1'B, 611 643 8 574 13 6.68 8 648 10
2 1B, 7.69 6 714 10 791 7 7.62 8
2 1A, 7.71 7 711 11 794 7 767 9
Benzene 1'By, 508 514 9 411 18 540 9 501 15
1'B;, 654 658 6 614 9 6.91 6 654 6
1'Ey, 713 742 8 675 13 763 8 738 9
21Ey, 841 9.05 15 710 40 924 15 846 45
Naphtha- 1'Bs, 424 423 10 325 20 455 10 4.08 17
lene 1By, 477 482 10 423 16 522 9 490 11
21A, 590 6.05 11 482 34 632 11 547 65
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TABLE A.2: (Continued.)
Molecule State  TBE* (000 ADO(2x UCC2 UCC3
EE %R, EE %Ry EE %R, EE %R,
1By, 6.00 6.11 12 499 29 643 12 597 32
21Bs, 6.07 6.10 10 547 15 6.37 10 625 11
2By, 633 640 9 578 14 669 9 647 12
2B, 648 671 8 613 12 7.02 8 6.64 11
31A, 671 729 16 560 44 756 16 6.43 51
Furan 1'B, 632 673 6 613 10 701 6 654 8
2'A; 657 678 10 548 26 7.02 10 650 25
31A; 813 875 6 767 35 894 6 816 40
Pyrrole 2'A; 637 652 10 540 21 674 10 6.36 17
1'B, 657 68 6 615 13 7.09 6 6.58 10
31A; 791 843 6 741 26 861 6 790 25
Imidazole 2 1A/ 619 663 9 558 20 68 9 6.52 15
1'A” 681 669 7 600 13 6.8 7 656 11
31A/ 6.93 718 7 638 14 742 7  6.99 13
2 LA 770 8 704 14 781 8§ 776 11
417! 855 8 761 22 873 8 808 23
Pyridine 1'B;, 459 503 9 414 18 523 9 485 15
1'B, 485 516 10 413 17 542 10 510 14
21A, 511 534 11 442 17 552 11 580 13
2'A;  6.26 6.75 6 621 12 7.07 7 660 11
31A;, 718 766 8 696 14 787 9 7.62 12
2By 727 753 8 670 19 775 8 747 15
41A; 799 12 724 37 806 12 861 43
3 1By 884 12 749 35 889 12 891 48
Pyrazine 1'Bgy, 395 419 9 336 16 442 9 412 12
1By, 464 497 10 392 18 526 10 491 14
1'A, 481 494 10 403 17 513 10 520 13
1'Byy 556 584 9 471 24 606 10 550 23
1'B;, 658 697 6 652 9 732 6 694 7
1'By, 6.60 6.68 12 552 23 6.86 13 7.04 23
2By, 760 797 9 719 15 820 9 805 11
2By, 772 803 8 732 14 830 & 799 11
1 'Bs, 938 14 736 43 945 11 865 68
2 1A, 811 11 713 41 817 11  7.52 100
Pyrimidine 1'B; 455 436 10 351 16 455 10 439 14
1'A, 491 473 10 38 16 492 10 5.06 14
1'B, 544 529 10 429 18 555 10 539 14
2'A; 695 692 7 628 15 723 7 656 17
2 1B, 784 10 714 17 795 11 791 15
31A; 761 9 673 20 783 9 751 18
Pyridazine 1B, 3.78 3.81 10 293 17 405 10 3.83 13
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TABLE A.2: (Continued.)

a CCD- CCD-
Molecule State TBE ADC(2) ADC(2)x uccC2 UCC3

EE %Ry, EE %Rs EE %Ry EE %R

11A,y 432 437 11 3.36 19 457 11 4.57 17
2 1A, 5.18 5.16 11 4.06 19 5.47 10 5.11 16
2 1A, 5.77 573 10 4.65 24 5.98 10 5.58 23

2 1B, 636 11 529 21 6.55 11  6.53 16
1 1B, 6.84 7 617 18 7.22 7 6.80 9
2 1By 732 13 6.62 18 740 14 7.46 12
s-Triazine 1IAY 460 453 10 364 15 470 10 527 12

1Ay 466 4.64 10 378 16 482 10 452 14
11E” 471 461 10 375 16 478 10 4.89 13
1AL 579 553 11 456 18 577 10 5.83 14

2 1A] 769 8 645 17 748 8 6.60 20
2 1B 793 11 668 24 809 11 803 19
1'E 782 9 698 19 803 9 787 17
2 1E/ 861 10 800 15 866 10 945 10

s-Tetrazine 1'B3, 224 234 10 1.46 16 2.66 10 240 12
11A, 3.48 3.65 11 2.65 18 3.88 11 391 15
1 1B1g 4.73 5.00 11 3.70 26 5.31 11 4.88 20
11Boy, 491 491 11 3.80 20 5.29 11 5.00 16
1 1B2g 5.18 542 11 3.99 33 5.72 11 4.78 41
2 1A, 5.47 538 10 4.35 20 5.69 10 5.31 17

2 1By 6.33 12 486 30 6.55 12 643 29
2 1By 6.87 12 546 38 7.08 12 652 83
2 1B3, 6.66 11 556 21 6.88 11 6.76 17
3 1B, 769 14 591 35 7.8 14 7.04 22
1 By 7.35 7 674 15 7.82 7729 10
2 1B, 7.61 9 692 11 794 10 7.71 13
2 1B3g 883 12 713 16 890 12 8.08 57
2 1By, 857 12 758 48 864 12 778 97
Formaldehyde 1'A, 3.88 393 6 3.13 11 407 6 3.70 10
1B 910 917 6 839 11 930 6 9.01 10
21A; 930 937 9 872 20 943 10 9.04 31
Acetone 1'A 440 4.26 7 350 11  4.39 7 418 10
1'B; 910 9.08 7 837 9 922 7 904 9
21A; 940 945 8 871 15 9.59 7999 12
p-Benzo- 1'By, 278 258 10 1.66 21 286 10 2.64 19
quinone 1'A, 280 265 11 1.72 22 293 11 273 20

1'Bg; 425 475 9 369 24 516 9 455 19
1'Byy 529 534 10 461 16 575 11 540 17
1'Bg, 560 563 14 441 46 578 14 530 89
21B3, 698 723 10 615 27 756 11 6.80 44

Formamide 1 1A 5.63 5.38 7 469 11 5.49 7T 547 9
2 1A/ 744 779 10 723 14 7.86 10 741 12
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TABLE A.2: (Continued.)
Molecule State  TBE* (000 ADO(2x UCC2 UCC3
EE %R, EE %Ry EE %R, EE %R,

3 1A/ 795 11 743 15 801 10 878 14

Acetamide 1'A” 580 5.38 7 471 11 549 7 554 9
2 1A/ 727 741 9 6.76 13 7.52 9 750 12
3 1A/ 829 11 773 16 834 11 804 12

Propanamide 1'A” 572 539 7 472 11 550 7 556 9
2 LA 720 733 9 670 13 723 7 725 9
3 1A/ 791 11 741 15 796 11 804 11

Cytosine 2 1A/ 466 445 11 369 17 465 11 470 16
1'A” 487 468 14 403 18 482 14 523 13
2'A” 526 514 12 437 18 529 11 575 12
3 1A/ 562 547 11 459 19 565 11 560 18
4 1A 629 10 560 15 645 10 651 13

Thymine 1'A” 482 454 10 381 16 469 10 4.89 13
2 1A/ 520 519 9 462 14 541 9 533 13
21A” 616 595 10 533 14 6.08 10 645 10
3 1A/ 6.27 617 12 523 23 636 12  6.37 22
4 1A7 6.53 657 10 583 16 6.76 10 6.75 14
3 1A 6.44 14 580 21 658 15 6.61 10
4 1A" 6.68 7 607 12 682 8

Uracil 1'A” 480 451 10 377 16 467 10 4.85 14
2 1A/ 5.35 5.32 9 462 15 553 9 539 15
21A” 610 58 10 524 14 6.00 10 6.39 10
3 1A/ 6.26 6.15 12 518 23 634 12  6.35 22
31A” 656 647 15 579 21 661 15 6.79 11
4 1A/ 6.70 6.75 10 597 16 693 10 6.88 14
4 A" 690 7 605 17 703 7 768 25
5TA/ 725 11 654 15 739 11 765 14

Adenine 1'A” 512 506 11 430 15 524 11 543 13
2 LA 525 496 11 414 17 520 11 511 14
31A/ 525 512 10 446 15 538 10 5.22 14
2TA” 575 568 10 492 15 585 10 597 13
4 1A 631 11 551 19 6.53 11  6.47 16
5 1A 6.63 11 564 24 686 11  6.60 25

2 Taken from literature. [179:196]
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TABLE A.3: Vertical excitation energies (EE in €V) of the lowest excited triplet states of
the considered molecules in the benchmark set at the theoretical levels of CCD-ADC(2),
CCD-ADC(2)-x, Bernoulli UCC2 and UCC3 calculated with the TZVP basis set in
comparison with the theoretical best estimates (TBE). The amount of double excited
configurations (%R2) in the ADC excitation vectors is given as well.

CCD- CCD-

Molecule State  TBE? ADC(2) ADC(2)x ucC2 uccs3
EE %Ry, EE %R, EE %R, EE %R
Ethene 13By, 450 456 2 421 4 469 2 427 3
E-Butadiene 13B, 320 337 3 28 9 353 3 305 7
134, 508 528 3 48 5 550 3 491 5
all-E- 13B, 240 271 4 207 12 28 4 237 10
Hexatriene 134, 415 438 3 384 10 464 3 401 8
all-E- 13B, 220 229 5 1.61 14 247 4 194 13
Octatetraene  13A, 355 371 4 309 12 399 4 333 10
Cyclopropene 1 3By 4.34 441 3 3.99 ) 4.55 3 4.11 4
13B; 662 677 5 607 9 694 5 648 7
Cyclo- 13By, 325 327 4 273 9 344 3 297 7
pentadiene 13A, 5.09  5.18 3 4.71 6 5.41 3 4.83 )
Norborna- 13A, 372 367 4 323 6 38 4 349 5
diene 13By 416 414 4 373 5 430 3 392 4
Benzene 1By, 415 401 4 352 7 408 3 38 5
1%E;, 486 502 7 423 14 532 7 458 12
13By, 588 600 5 538 8 633 5 579 7
13Eg 751 785 7 722 12 802 7 778 9
Naphtha- 13Bg, 311 295 5 238 11 308 5 280 8
lene 13Bs, 418 416 8 339 16 452 8 384 15
1°By; 447 444 5 384 10 469 5 417 8
23By, 4.64 457 7 386 14 487 8 431 13
23B3, 511 492 7 430 11 532 7 484 8
13A, 552 559 6 490 13 58 6 522 11
23B), 648 6.33 12 547 22 6.65 12 6.13 4l
23A, 647 668 8 555 32 697 8 6.04 36
33%By, 676 711 7 582 36 736 7 645 21
334, 679 682 9 599 14 711 9 6.60 11
Furan 13By 417 418 3 361 9 435 3 389 7
13A; 548 550 4 494 8 573 4 531 7
Pyrrole 13By 448 449 4 393 9 465 4 421 7
13A; 551 558 5 494 10 58 5 531 9
Imidazole 13A" 469 468 4 410 9 485 4 440 7
23A” 579 58 5 521 10 6.07 5 559 8
13A” 637 631 7 552 13 648 7 622 9
33\ 655 656 5 587 10 677 5 623 8
437 759 13 670 14 764 13 7.09 12
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TABLE A.3: (Continued.)

Molecule State  TBE? A%%%) Aggg;_x UCC2 UCC3
EE %R, EE %R, EE %R, EE %R,
23A7 750 9 6.87 13 761 8 754 11
Pyridine 13A, 406 413 4 362 7 420 4 394 5
13B; 425 445 8 373 13 465 8 425 10
13B, 464 492 6 414 13 524 7 452 11
23A; 491 515 7 435 11 546 7 473 12
13A, 528 530 10 440 17 548 10 571 13
2%B, 608 638 6 567 10 671 6 613 9
3 3By 832 6 696 31 853 6 727 31
33A,; 787 12 6.89 30 792 12 711 27
s-Tetrazine 13Bs, 189 171 9 095 13 202 8 172 10
13A, 352 339 10 249 17 362 10 355 12
13By, 421 417 8 330 16 447 8 399 11
13By, 4.33  4.07 4 349 8 4.15 4 3.96 6
13By, 454  4.52 7 369 13 4098 7 405 11
13Bg, 493 488 8 392 20 518 8 458 24
23A, 503 491 9 404 15 522 9 493 12
2%B;, 538 538 8 443 16 579 8 498 15
2 3Bag 6.06 12 468 28 6.28 12 6.04 53
2 3By, 6.60 12 534 55 6.89 12 6.36 87
2 3B3, 6.48 10 547 19 670 10 6.59 15
2 3Boy 739 7 6.07 100 783 7 6.07 100
Formaldehyde 13A, 350 342 5 279 7 355 5 332 7
13A; 587 579 2 538 4 5091 2 543 3
Acetone 13A, 405 38 6 320 9 396 6 38 8
13A; 603 593 3 546 5 6.05 3 558
p-Benzo- 13By, 251 225 9 149 17 252 9 239 13
quinone 13A, 2.62  2.33 9 1.56 18 2.60 9 2.48 14
13B;, 29 28 5 215 13 303 5 25 9
1%Bg, 341 341 6 276 11 372 5 323 7
Formamide 13A” 536  5.03 6 4.44 9 5.14 6 5.18 7
13A/ 574 564 5 505 7 575 5 541 6
Acetamide 13A” 542  5.06 7 446 9 516 6 524 8
13A’ 588 574 5 516 8 58 5 555 6
Propanamide 13A” 545 5.07 7 448 9 5.18 7 5.27 8
13A/ 590 575 5 516 8 58 5 556 6

2 Taken from literature. [179:196]
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TABLE A.4: ADC(2), CCD-ADC(2) and CCSD-ADC(2) results for vertical excitation
energies (in eV) of HyO, HF, Ne, CH,, and selected examples of the medium-sized
organic molecules (Figure 4.1).

Molecule State  ADC(2)* CCD-ADC(2) CCSD-ADC(2)
H,O 2 1A, 9.37 9.42 9.43
11B; 6.95 6.98 6.99
1B, 10.97 11.01 11.02
1 1A, 8.58 8.60 8.61
13B; 6.61 6.64 6.65
13A, 8.46 8.48 8.49
13A, 9.00 9.05 9.06
2 3A4 10.47 10.46 10.48
2 3B, 10.57 10.58 10.60
1 3B, 10.77 10.80 10.81
HF 11 9.63 9.64 9.66
2 I 13.35 13.35 13.37
2%t 1391 13.94 13.95
1A 14.46 14.44 14.47
112~ 14.54 14.52 14.55
311 14.92 14.92 14.93
3%t 15.32 15.34 15.35
1310 9.30 9.30 9.32
139t 13.05 13.06 13.08
2 311 13.14 13.14 13.15
23yt 13.80 13.76 13.79
13A 14.22 14.20 14.22
135~ 14.52 14.50 14.52
3311 14.72 14.72 14.73
Ne 1'p 15.62 15.64 15.64
1'D 17.30 17.31 17.31
2'p 17.34 17.35 17.35
21s 17.43 17.45 17.45
31 43.57 43.60 43.60
13P 17.99 18.00 18.01
138 19.22 19.20 19.21
1°D 19.83 19.83 19.85
2 %p 20.15 20.15 20.17
239 45.11 45.13 45.14
CH, 31A, 6.43 6.74 6.75
4 1A, 8.28 8.59 8.60
1 1B, 7.59 7.90 7.91
1B, 1.65 2.07 2.09
11A, 5.89 6.31 6.33
13A, 6.27 6.59 6.53
23A, 8.06 8.37 8.43

Ethene 1 1By, 8.36 8.55 8.60
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TABLE A.4: (Continued.)

Molecule State  ADC(2)* CCD-ADC(2) CCSD-ADC(2)
1 3By 4.52 4.56 4.61
E-Butadiene 1By 6.43 6.58 6.64
2 1A, 7.68 7.79 7.85
1 3By 3.40 3.37 3.43
23A, 5.22 5.28 5.33
Cyclopentadiene 1 'By 5.66 5.74 5.80
2 1A, 7.08 7.14 7.19
31A, 8.85 8.94 8.98
1 3B, 3.35 3.27 3.32
13A, 5.19 5.18 5.23
Furan 1B, 6.76 6.73 6.80
2 1A, 6.85 6.78 6.84
31A, 8.73 8.75 8.80
1 3B, 4.35 4.18 4.25
13A; 5.59 5.50 5.57
Pyrrole 2 A, 6.60 6.52 6.57
1B, 6.89 6.84 6.89
31A; 8.43 8.43 8.48
1 3B, 4.66 4.49 4.54
13A, 5.67 5.58 5.63
Imidazole 2 1A/ 6.73 6.63 6.69
1 1A” 6.74 6.69 6.73
31A/ 7.26 7.18 7.23
2 LA 7.80 7.70 7.74
4 1A 8.60 8.55 8.60
13A/ 4.86 4.68 4.73
237/ 5.98 5.84 5.91
1 3A” 6.38 6.31 6.36
33A/ 6.71 6.56 6.62
43N 7.60 7.59 7.61
2 3A" 7.61 7.50 7.65
Pyridine 1B, 5.10 5.03 5.08
1B, 5.32 5.16 5.22
2 1A, 5.37 5.34 5.38
2 1A, 6.83 6.75 6.80
31A; 7.70 7.66 7.71
2 1B, 7.59 7.53 7.58
4 1A, 7.99 7.99 8.02
3 1By 8.84 8.84 8.86
13A, 4.46 4.13 4.17
13B; 4.52 4.45 4.49
1 3B, 5.06 4.92 4.98

23A, 5.30 5.15 5.21
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TABLE A.4: (Continued.)

Molecule State  ADC(2)* CCD-ADC(2) CCSD-ADC(2)
13A, 5.34 5.30 5.32
2 3B, 6.47 6.38 6.44
3 3B, 8.14 8.32 8.36
33A, 7.86 7.87 7.89
Formaldehyde 11A, 3.91 3.93 4.02
1B 9.17 9.17 9.17
2 1A 9.37 9.37 9.41
13A, 3.41 3.42 3.50
13A, 5.96 5.79 5.89
Formamide 11A” 5.46 5.38 5.49
2 LA/ 7.82 7.79 7.84
31A 7.98 7.95 7.99
1 3A” 5.13 5.03 5.13
13A’ 5.81 5.64 5.75
Thymine 1A 4.67 4.54 4.64
2 LA/ 5.30 5.19 5.30
2 1A” 6.09 5.95 6.05
31A/ 6.29 6.17 6.28
4 1A 6.72 6.57 6.69
3 1A 6.58 6.44 6.53
4 1A 6.74 6.68 6.74

# Taken from literature.
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TABLE A.5: Oscillator strengths of a selected set of vertical excited singlet states of the
benchmark set at the theoretical levels of ADC(2), ADC(3/2), UCC2 and UCC(3/2) in
comparison with the literature data.

Molecule State  Literature* ADC(2)* UCC2 ADC(3/2)*> UCC(3/2)
Ethene 1'By, 0.358-0.494 0.437 0.397 0.423 0.408
E-Butadiene 1'B, 0.52—-0.803 0.811 0.700 0.806 0.784
all- F-Hexatriene 1'B, 0.655—1.154 1.253 1.029 1.257 1.233
all- E-Octatetraene 1 'B, 1.382 1.701 1.331 1.724 1.696
Cyclopropene 1B, 0.001 0.001 0.001 0.001
1B, 0.094 0.082 0.096 0.092
Cyclopentadiene 1B,  0.099-0.157 0.113 0.097 0.101 0.101
2 1Ay  0.001-0.019 0.012 0.009 0.001 0.001
3'A;  0.025-0.538 0.695 0.631 0.029 0.034
Norbornadiene 1B, 0.028 0.024 0.036 0.035
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TABLE A.5: (Continued.)
Molecule State  Literature* ADC(2)* UCC2 ADC(3/2)* UCC(3/2)
2 1B, 0.210  0.173 0.221 0.213
2 1A, 0 0 0 0
Benzene 1'E;, 0.323—1.33 0.748 0.670 0.707 0.699
Naphthalene 1'Bs, 0 0 0 0 0
1By, 0.082 0.106  0.081 0.097 0.102
2 1B, 1.326 1.531 1.327 1.524 1.488
2 1By, 0.268 0.313  0.279 0.299 0.286
Furan 1'By  0.144—0.185 0.176  0.156 0.160 0.172
21A;  0.000-0.011 0.007  0.009 0.000 0
31A;  0.194-0.494 0.546  0.490 0.345 0.300
Pyrrole 21A;  0.000-0.036 0.009  0.009 0.004 0.004
1B,  0.099-0.99 0.185  0.166 0.171 0.176
31A;  0.176—0.706 0.574  0.536 0.458 0.411
Imidazole 21A7  0.08 0.092 0.071 0.112 0.109
1tA” 0.000  0.000 0.000 0.000
31A"  0.07 0.093  0.094 0.064 0.070
2 1A 0.003  0.003 0.002 0.002
4 1A 0.435  0.389 0.273 0.264
Pyridine 1By 0.023—0.040 0.025  0.021 0.027 0.026
11B; 0.005—0.01 0.005  0.005 0.005 0.005
21A;  0.006-0.021 0.020 0.016 0.010 0.007
31A;  0.513-0.67 0.611  0.475 0.620 0.614
21By,  0.407—0.65 0.609  0.543 0.538 0.538
Pyrazine 1!Bs, 0.01 0.007 0.007 0.007 0.007
1By, 0.08 0.074  0.062 0.077 0.077
1By, 0.06 0.098  0.086 0.070 0.070
21By, 0.37 0.505  0.429 0.496 0.482
2 1By, 0.33 0.471  0.402 0.446 0.433
Pyrimidine 11B; 0.007—0.01 0.006  0.006 0.007 0.009
1By  0.01-0.026  0.024  0.019 0.028 0.026
21A;  0.017-0.03 0.052  0.045 0.025 0.012
21By  0.41-0.499 0.213  0.056 0.523 0.518
31A; 0.519  0.468 0.462 0.493
Pyridazine 1B, 0.006  0.006 0.007 0.007
21A; 0.016  0.013 0.019 0.019



206 A  VERTICAL EXCITATION ENERGIES OF THE BENCHMARK SETS

TABLE A.5: (Continued.)

Molecule State  Literature* ADC(2)* UCC2 ADC(3/2)* UCC(3/2)
2 1B, 0.005  0.005 0.005 0.005
1By 0.007  0.007 0.012 0.013
2 1B, 0.544  0.003 0.492 0.471
31A, 0.541  0.436 0.466 0.453
s-Triazine 1'AY 0.02—-0.027  0.017  0.017 0.016 0.018
1'E" 092 0.521  0.464  0.443 0.478
2 'R/ 0.070  0.072 0.062 0.063
s-Tetrazine 11'Bs, 0.007—0.012 0.007  0.007 0.008 0.008
1By, 0.052-0.095 0.055  0.042 0.000 0.058
2 B3, 0.01-0.018 0.011  0.011 0.011 0.012
1By, 0.00-0.054  0.009  0.041 0.004 0.007
2By, 0.39-0.630 0.448  0.326 0.421 0.383
2 By, 0.45-0.755  0.022  0.007 0.013 0.012
Formaldehyde 1By 0.000-0.001 0.068  0.004 0.091 0.003
2'A;  0.063—0.100 0.029  0.044 0.096 0.109
Acetone 1By 0.003 0.000  0.000 0.000 0.000
2'A;  0.255 0.401  0.376 0.134 0.119
p-Benzoquinone 1 1Bgg 0 0 0 0
1By, 0.636—0.704 0.621  0.551 0.590 0.638
1'Bs, 0 0 0 0 0
Formamide 1'A”  0.000-0.001 0.001  0.001 0.001 0.001
21A”  0.149-0.338 0.373  0.312 0.135 0.137
31N 0.213  0.246  0.299 0.320
Acetamide 11A” 0.001  0.000 0.001 0.001
2 LA 0.235  0.223 0.132 0.146
3 LA/ 0.281  0.088 0.145 0.144
Propanamide 1 A7 0 0 0 0
2 LA’ 0.179  0.165 0.126 0.136
3 LA/ 0.098  0.101 0.112 0.114
Cytosine 21A”  0.052—0.080 0.046  0.043 0.071 0.069
1'A”  0.001-0.002 0 0 0.002 0.002
3TA”  0.138—0.181 0.195  0.190 0.143 0.137
4 1A 0.712  0.689 0.538 0.574
2 'A” 0.001—0.003 0.002  0.002 0.000 0.000

Thymine 11A” 0 0 0 0
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TABLE A.5: (Continued.)

Molecule State  Literature* ADC(2)* UCC2 ADC(3/2)* UCC(3/2)
21A" 0.8 0.23 0.198 0.238 0.263
31A" 0.04 0.083 0.097 0.055 0.041
2 1A” 0 0 0 0
4 1A 0.18 0.284 0.271 0.242 0.255
3 1A 0 0 0 0
417" 0 0 0.001

Uracil 1A 0 0 0 0
21A"  0.18-0.26 0.235 0.207 0.242 0.266
3TA"  0.04-0.05 0.059 0.070 0.04 0.027
2 1A 0 0 0 0
3 1A 0 0 0 0
4'A"  0.035—0.17  0.215 0.205 0.179 0.193
4 1A 0 0 0.001 0.001
51A" 051 0.377 0.362 0.471 0.476

Adenine 1'A”  0.001-0.007 0.001 0.001 0.001 0.002
2 A" 0.004—0.03  0.091 0.036 0.006 0.135
3TA"  017-0.36  0.244 0.265 0.274 0.136
2 'A” 0.003—0.005 0.002 0.002 0.002 0.002
41A7 051 0.563 0.519 0.249 0.528
5 LA 0.044 0.062 0.257 0.052

2 Taken from literature. [179:196]






Appendix B

Static Dipole Polarizabilities of

Quinoline and Isoquinoline

In this appendix, the static polarizabilities of quinoline and isoquinoline calculted with
the Sadlej-pVTZ basis set are presented in Table B.1 and Figure B.1.

TABLE B.1: Static dipole polarizability (in a.u.) of quinoline and isoquinoline calculated
with different ADC variants (Sadlej-pVTZ basis set) compared to experimental values.

Quinoline Isoquinoline

Method (e Qryy sy @ A« Qg Qryy sy @ A«

ADC(2) 65.64 127.67 176.72 123.34 96.42 | 65.34 130.24 171.62 122.40 92.79
CCD-ADC(2) 65.85 12244 168.03 118.77 88.66 | 65.56 124.63 163.41 117.87 85.35
F/CCD-ADC(2) 66.01 122.71 166.03 118.25 86.88 | 65.72 124.80 161.68 117.40 83.84
CCSD-ADC(2) 65.49 123.43 168.34 119.09 89.31 | 65.19 125.46 163.92 118.19 86.19
F/CCSD-ADC(2) 65.79 123.92 166.92 118.88 87.91 | 65.49 125.86 162.74 118.03 85.04
ADC(3/2) 64.88 123.46 172.43 120.26 93.26 | 64.62 126.25 167.00 119.29 89.28
F/CCD-ADC(3/2) | 65.55 119.45 163.21 116.07 84.73 | 65.30 121.77 158.54 115.20 81.35
F/CCSD-ADC(3/2) | 65.31 120.51 163.98 116.60 85.65 | 65.04 122.71 159.46 115.74 82.43
Experiment?® 53.30 111.30 151.10 105.20 85.18 | 50.60 128.90 134.90 104.90 81.47

a Taken from literature. 343

209



210 B STATIC DIPOLE POLARIZABILITIES OF QUINOLINES

18
17
16
15
14
gl?p
12
g 11
H 10
5 o i
= G = -
z 7 2|« g e
T 6 o [ 34
< 2|8 ol -
=R Gl © S0
4 = =
3
2
1
0

FI1GURE B.1: Relative error of the isotropic polarizability & for quinoline and isoquinoline
of results presented in Table B.1 with respect to experimental values.



Appendix C

Azaacenes Bearing Five-Membered

Rings

In this appendix, additional information for Chapter 8 is given.

C.1 Determination of Suitable Model Molecules

The moieties of the original, synthesized molecule 1a (Figure C.1) was systematically
made smaller, in order to reduce the computational cost without affecting relevant
photophysical properties. In this manner, the moieties containing the TIPS groups were
modified according to Figure C.1. The four molecules shown there were optimized in
the gas phase at the BSLYP /def2-TZVP level of theory [200.313] yging the GAUSSIAN 09
program package.?43] For molecules 1a, 1c and 1d symmetry of the C, point group
was obtained, for 1b the Coy point group. The minimum character of the stationary
points obtained was confirmed by frequency calculations, yielding all-positive vibrational
frequencies. Consecutively, vertical excitation energies and transition moments of the
four species in the gas phase were calculated at the linear-response time-dependent
density functional theory (TDDFT) level 58l using the CAM-B3LYP functional ®'%l and

TIPS T™MS Me
| | |
(o Ly Lo
Me
| | | 9
TIPS T™S Me
la 1b 1c 1d

Ficure C.1: Systematic reduction of the system size for the calculation of excitation
energies.
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TaBLE C.1: Gas-phase vertical excitation energies AF (in €V) and oscillator strengths
f of the first twenty excited singlet states of the molecules 1la—d (Figure C.1) calculated
at the TDDFT/CAM-B3LYP /def2-TZVP level of theory. The symmetry of the state in
the respective point group is given as well.

la 1b 1c 1d

State | Sym. AFE f Sym. AFE f Sym. AFE f Sym. AFE f

S1 A" 3,50 0.373 B. 3.52 0308 | A" 352 0.177 A’ 3.75 0.001
So A’ 3.69 0.001 B: 3.68 0.001 A’ 3.70  0.002 A”  3.80 0.005
S3 A 3.75  0.038 Ay 3.75  0.034 A 3.72  0.060 A 3.84 0.054
Sa A" 4.02 0.089 Bs 403 0.079 | A” 403 0.036 | A” 412 0.014
Ss A 4.11  0.968 Ay 411 0978 A’ 4.16  0.972 A’ 4.23  0.906
Se A" 4.28 0.000 A, 4.27  0.000 A" 4.25 0.000 A" 4.25 0.000
S7 A" 430 0.035 Bs 431 0.033 | A” 435 0.009 | A” 442 0.009
Ss A 4.51 0.136 A 4.53 0.161 A 4.48 0.175 A" 4.71 0.070
So A" 4.54  0.117 Bo 4.54 0.111 A" 4.56  0.088 A 4.82  0.388
S1o0 A" 4.62 0.000 A, 4.66 0.000 | A" 476 0.000 A 5.25  0.003
S11 A’ 4.65 0.001 B 4.69 0.001 A’ 4.81 0.000 | A" 5.68 0.000
Si2 A" 4.81 0.590 Bo 4.83  0.509 A" 4.97 0.496 A" 5.80 0.706
Si3 A 5.06 0.011 Ay 5.06 0.010 A 5.14 0.015 A 5.81 0.054
S14 A 5.19  0.020 Ay 5.26 0.012 A’ 5.34 0.001 A’ 6.05 0.097
Sis A 5.42 0.088 A 5.43 0.087 A 5.01 0.128 A" 6.15 0.012
S1i6 A" 5.57  0.000 B: 5.55 0.000 | A" 5.62 0.000 A 6.27 0.461
Si7 A’ 5.57  0.000 Ay 5.57 0.000 A’ 5.71 0.000 | A”  6.30 0.000
Sis A 5.69  0.000 B, 5.70  0.001 A" 5.76 0.491 A 6.34 0.000
S19 A 5.72  0.002 As 5.75  0.000 A 5.77 0.001 A"  6.43 0.081
S20 A" 5.74 0.066 B- 5.77 0500 | A" 5.87  0.000 A’ 6.48 0.000

the def2-TZVP basis set.[290 The results for the first twenty excited singlet states are
reported in Table C.1.

Using these results, one-photon absorption spectra were simulated by convoluting
the peaks with Lorentzian functions with a full width at half maximum (FWHM) of
0.3 eV. For the sake of a better comparison to experiment, the calculated spectra were
normalized to unity and shifted in energy such that the maximum absorption peaks
overlap. In practice, this meant a shift of 0.31 eV for molecules 1a and 1b, 0.35 eV for 1c
and 0.43 eV for 1d towards lower energies, respectively. The resulting spectra are shown
in Figure C.2. It can be seen that the peaks in the low-energy region between 3.0 and
3.5 €V are still quite well reproduced when the TIPS group is substituted by TMS or Me,
but it is missing in the 1d molecule. Yet, the distance between the most intense peak
around 3.8 eV and the next one seem to be best reproduced in the latter case, however,
the spectrum had to be shifted the most here. Changes in the spectrum above 5 eV are
not relevant, since this region was not measured experimentally. It should be noted that

so far vibrational contributions are neglected in the calculations.

C.2 Triplet Excitation Energies

Analogously to the singlet excitation energies benchmarked in the main paper, the same

comparison has been made for excitation energies of triplet states. The results are shown
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FIGURE C.2: Simulated vacuum absorption spectra of molecules 1la—d (Figure C.1)
at the TDDFT/CAM-B3LYP /def2-TZVP level compared to the experimental one.
Lorentzian functions with a FWHM of 0.3 eV were used as a convolution.

schematically in Figure C.3. It can be seen that the lowest TDDFT excitation energies
are in general rather strongly underestimated compared to ADC(2), in particular with
BHLYP. The other density functionals yield rather similar results for the first triplet
excitation energies, such that the choice of CAM-B3LYP as the density functional for the
rest of this study was not altered by this benchmark. However, they have to be treated a

bit with care.

. ADC(2)
AA AA A AA A N BLYP
- L LN I e} - . - B3LYP
L - - - .. - " BHLYP
* o ®le  osee |0 + CAM-B3LYP
> o se 4 me o wBITX
* o ose (oo | o * wB97X-D

I I I I I 1 I
1.5 2.0 25 3.0 3.5 4.0 45
Excitation Energy [eV]

FIGURE C.3: Vertical triplet excitation energies of molecule 1c calculated with ADC(2)
and different density functionals in combination with the def2-SVP basis set.
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FIGURE C.4: Simulated absorption spectra of molecules 1-3 (Figure 8.1) at the
TDDFT/PCM/CAM-B3LYP/def2-TZVP level compared to the experimental one.
Lorentzian functions with a FWHM of 0.3 eV were used as a convolution.

C.3 Vertical Excitation Energies and Electronic Spectra

In this section, results for the vertical excitation energies of singlet and triplet states of
the three molecules 1, 2 and 3 (Figure 8.1, page 174) in the equilibrium geometry of
both the ground state Sy and the first excited singlet state S; are given. The excitation
energies were calculated at the TDDFT /CAM-B3LYP /def2-TZVP level of theory using the
integral-equation formalism polarizable continuum model (IEF-PCM) 320321 to account
for the solvation effects of n-hexane. The ground-state geometries had been re-optimized
using the same methodology. The minimum character of the obtained stationary points
was again confirmed by means of frequency calculations. In the case of molecule 3, the
Cs point-group symmetry was lost during the optimization in the S; state.

The results for vertical excitation energies and oscillator strengths of the lowest
excited singlet and triplet states are shown in Table C.2 for the equilibrium geometry
of the Sg state and in Table C.3 for the equilibrium geometry of the S; state. The
resulting one-photon absorption spectra compared to experiment are shown in Figure C.4,
where Lorentzian functions with a FWHM of 0.3 €V were used as a convolution, and the
excitation energies have been shifted by —0.32 eV for molecule 1, —0.30 eV for molecule

2 and —0.44 eV for molecule 3, respectively.
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TABLE C.2: Vertical excitation energies AFE (in eV) and oscillator strengths f
of the 15 lowest excited singlet and triplet states of molecules 1, 2 and 3 at the
TDDFT/PCM/CAM-B3LYP /def2-TZVP level of theory in the equilibrium geometry of
the Sy state.

1 2 3

No. State AE f State AE f State AE f
1 | T, (A7) 212 — | T (Ba) 214 — | T; (A") 183 —
2 | To(A) 235  — | To(A) 234 — | T,(A) 215 —
3 | Ts(A) 317  — | Ts(By) 319 — | Ts(A”) 229 —
4 | T4(A") 319 — | T4 (B1) 319 — | Si(A") 289 0.005
5 | Ts(A) 326 — | Ts (A1) 327 — | T,(A") 312 —
6 S1 (A”) 357 0221 | S1(B2) 3.58 0.195 | Ts(A") 3.16 —
7 Te (A”) 3.68 — Ts (B2) 3.75 — Te (A') 3.24 —
8 S2 (A") 375 0.002 | Sz (By) 3.77 0.002 | Tr (A”) 345 —
9 Sz (A’)  3.81 0.107 | S3 (A1) 378 0.291 | So (A’) 347 0.226
10 | T, (A) 38 — | T;(By) 38 — | Ts(A) 354 —
11 | Ts (A") 3.86 — Ts (A1) 3.91 — Ss (A”) 3.65 0.275
12 | To (A”) 4.08 — Ss (A1) 4.08 1.090 | Ty (A”) 3.76 —
13 | Si(A”) 411 0.049 | S5 (By) 410 0.135 | Si (A”) 3.80 0.022
14 | S5 (A) 412 1222 | To (As) 414 — | S5 (A)  3.83 0.002
15 | Tio (A)) 427 — | Ty (Ba) 417 — | Ty (A”) 389 —
16 | Ty (A”) 428 — | Ty (Ba) 429 — | Se(A) 395 1.132
17 Se (A”) 4.35 0.000 | Ti2 (A1) 4.29 — Sz (A”)  3.98 0.000
18 Sy (A”) 439 0.022 | Sg (B2) 4.33 0.008 | Ss(A’) 4.13 0.178
19 | T2 (A") 443 — Tis (A1) 4.39 — Ti1 (A")  4.23 —
20 | Tis (A') 444  — | S;(As) 441 0.000 | Ty (A)) 431 —
21 | Ss (A') 455 0.160 | Ss (Ba) 456 0.063 | Tiz (A”) 444  —
22 | So (A”) 460 0.144 | So (A1) 457 0307 | T4 (A)) 457  —
23 | Tis (A”) 465 — | T (A2) 468 — | Ti5(A”) 465 —
24 | Tis (A') 4.70 — Tis (B2) 4.69 — Sg (A”) 4.66 0.001
25 | Sio (A”)  4.87 0.000 | Sio (A2) 4.90 0.000 | Sio (A7) 4.85 0.358
26 | Si1 (A’) 4.93 0.000 | Si1 (By) 4.96 0.000 | Si1 (A”) 4.89 0.000
27 | Si2 (A”) 5.01 0583 | Si2 (B2) 5.02 0.555 | Si2 (A)  4.94 0.000
28 | Sz (A)) 512 0.011 | Sis (A1) 5.14 0.007 | S5 (A/) 5.02 0.002
29 | S (A) 542 0.002 | Sia (A1) 547 0.000 | Sia (A”) 5.04 0.518
30 | Si5 (A’) 556 0.126 | Sis (A1) 558 0.095 | Si5 (A’) 5.09 0.021
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TABLE C.3: Vertical excitation energies AFE (in eV) and oscillator strengths f
of the 15 lowest excited singlet and triplet states of molecules 1, 2 and 3 at the
TDDFT/PCM/CAM-B3LYP/def2-TZVP level of theory in the equilibrium geometry of
the S; state.

1 2 3
No. State AE f State AE f State AE
1 [ T, (A7) 138 — T: (B:) 142 — T: (A) 036 —
2 Ty (A) 231 — Te (A1) 229 — Ty (A) 150 —
3 S1 (A") 296 0.250 | T3 (B2) 298 — Si (A) 1.62 0.006
4 | T3 (A”) 301 — S: (B2) 3.00 0.250 | T3 (A) 217 —
5 T, (A)  3.01 — Ty (A1) 3.00 — T, (A) 266  —
6 Ts (A)  3.05 — Ts (B1) 3.06 — Ts (A) 273 —
7 Se (AY) 356 0.033 | S2 (A1) 3.58 0.087 | Sa (A) 2.82 0227
8 Te (A') 357 — Te (B2) 362 — Te (A) 296  —
9 | T, (A") 358 — Ss (B1) 3.63 0.002 | Tr (A) 297 —
10 | Ss (A 3.63 0.002 | T7 (A;) 3.65 — S3 (A)  3.15 0.029
11 | Tg (A") 372 — Ts (B2) 3.78 0.000 | Tg (A) 3.18 —
12 | Ss(A') 392 1.406 | Sis (B2) 3.83 0.071 | Ty (A) 325 —
13 | S5 (A”) 3.97 0.040 | S5 (A;) 3.87 1477 | Ss(A) 3.36 0.000
14 | Ty (A”) 400 — To (B2) 393 — Ss (A) 347 0.098
15 | Tiwo (A)) 402 — | Ty (A;) 405 — Se (A) 357 1.236
16 | Ty (A”) 407 — | Ti1 (Ag) 411 — Sz (A)  3.69 0.230
17 | Se (A”) 420 0.011 | T2 (B2) 420 — | Ty (A) 382 —
18 | T2 (A)) 430 — Se (B2) 421 0.000 | Ss (A) 3.84 0.002
19 | T3 (A) 437 — | Ti3(B1) 433 — | T (A) 399 —
20 | S7(A”) 4.39 0.000 | Tia (A1) 434 — So (A) 413 0.162
21 | T (A”) 439 — Sy (A1) 436 0.082 | T2 (A) 423 —
22 | Ss (A 4.40 0.006 | Ss (A2) 4.43 0.000 | Ti3 (A) 428 —
23 | Tis (A”) 445 — | Ti5 (A2) 443 — | T (A) 446  —
24 | So (A’ 4.49 0.000 | So (B2) 4.52 0.006 | Ti5 (A) 4.55 —
25 | Sio (A”) 4.55 0.003 | Sio (B1) 4.53 0.000 | Sio (A) 4.66 0.000
26 | Si1 (A”) 4.60 0.000 | Si1 (Az) 4.65 0.000 | Si1 (A) 4.74 0.000
27 | S12 (A”) 4.63 0.722 | S12 (B2) 4.66 0.631 | S12 (A) 4.76 0.036
28 | Si3 (A/)  4.86 0.010 | Si3 (A1) 4.87 0.006 | S13 (A) 4.78 0.281
29 | S (A) 5.06 0.020 | Sia (A1) 512 0.016 | Sia (A) 4.90 0.000
30 | Sis (A’) 5.37 0.221 | Si5 (A1) 540 0.206 | Si5 (A) 4.91 0.049
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C.4 Geometrical Parameters

Due to the rather large Stokes shift of molecule 3, the change of different C-C and C-N
bond distances was compared between the equilibrium geometries of the Sy and Sy states.
The bond lengths and their changes are presented in Table C.4, the corresponding bonds
are labelled on the right.

TABLE C.4: Bond distances 7 and their changes (in A) of molecule 3 in the equilibrium
geometries of the Sg and S; states.

Bond r(Sg) 7(S1) Ar
1.2868 1.3086 +0.0218
1.4640 1.4778 +0.0138
1.4792 1.4371 —0.0421
1.4014 1.4033 +0.0019
1.3476 1.3431 —0.0044
1.3754 1.4166 +0.0411
1.3679 1.3426 —0.0252
1.4341 1.4342 +0.0001
1.3783 1.3783 +0.0000
1.4810 1.4810 +0.0000
1.3551 1.3551 -+0.0000 Me
1.3966 1.3965 —0.0001

o]

— X~ —T0m® -~ QO 0 T

C.5 Spin-Orbit Couplings

In order to test for a possible intersystem crossing (ISC), spin-orbit coupling (SOC)
calculations[?24 at the TDDFT level of theory!326l were carried out for the three model
molecules (Figure 8.1) in their respective ground-state equilibrium geometry (see Sec-
tion C.3) with the Q-CHEM 5 program package. 3] The results for molecules 1, 2 and 3
are given in Tables C.6, C.7 and C.8, respectively. The corresponding vertical excitation

energies are given in Table C.5.
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TABLE C.5: Vertical excitation energies AE (in e€V) and corresponding wavelength A
(in nm) for the first twenty excited singlet and triplet states of molecules 1-3 calculated
at the TDDFT/PCM/CAM-B3LYP /def2-TZVP level of theory with the Q-CHEM 5
program package.

1 2 3
No. | State AFE A State AFE A State AFE A
1 T, 256 4845 | T, 214 5789 | T, 220 564.4
2 T, 2.78  446.7 T, 2.34 529.8 Ty 2.54 488.1
3 T; 3.25 381.9 T; 3.19 388.6 T3 2.67 464.2
4 T, 3.37 367.8 T, 3.20 386.9 S1 2.98 416.2
5 Ts 3.42  362.1 Ts 3.27  379.7 Ty 3.21 386.3
6 St 3.72 335.0 S1 3.58 346.3 Ty 3.27 379.4
7 Ts 3.76  330.0 Tg 3.75 330.8 Tg 3.32 373.8
8 So 3.80 325.9 So 3.78 328.2 So 3.55 349.6
9 S3 3.89 318.6 S3 3.78 327.8 T, 3.60 344.4
10 T, 3.91 317.1 T, 3.85 321.7 Tg 3.67 337.4
11 Tg 3.95 313.6 Tg 3.91 316.8 Ss3 3.75  330.6
12 Ty 4.14 299.7 S4 4.08 303.6 Ty 3.80 325.9
13 S4 4.19 295.9 S5 4.10 302.2 S4 3.88 319.7
14 S5 4.29 288.9 Ty 4.16 298.1 Ss 3.92 315.9
15 Se 438 2832 | Ty 4.18 296.7 | Ti9p 4.01 309.4
16 Ty 442 280.7 | Tiy1 4.29 288.8 Sé 4.01 309.0
17 S» 445 2789 | Ti2 4.30 288.3 Sy 4.10 302.5
18 Ty 4.45 278.9 Sé 4.33 286.5 Ss 4.24 2927
19 T2 455 2725 | T3 439 2823 | Ty; 4.33 286.3
20 T3 4.55 272.3 S7 443 2799 | Tio 446 277.9
21 Sg 4.68 265.1 Sg 4.56 2719 | T3 4.55 272.7
22 So 4.68 265.1 So 4.58 270.9 T4 4.69 264.4
23 Ty 471 2631 | Tiya 469 2645 | Ti5 4.72 262.6
24 Tis 478 2595 | Ti5 4.70 263.9 So 4.74 261.9
25 T 485 2555 | Tig 4.73 262.0| T 4.79 2589
26 Ty7; 4.8 255.0 | Ty 477 260.2 | Ty 4.86 255.0
27 Sip 4.89 2536 | Tig 4.88 2542 | S19 491 252.6
28 S11 4.94 250.8 S10 4.91 2524 S11 4.94 250.9
29 Tis 498 2488 | Sy 4.97 2495 | Tis 494 250.8
30 Si12 511 2426 | Si;o 5.03 246.6 | S12 496 250.1
31 Si3  5.15 2406 | Ti9 5.11 2427 | Ti9 5.04 246.1
32 T 515 2406 | Si;3 5.13 241.6 | Ty 5.04 245.8
33 Toy 539 2302 | Toe 530 2339 | Si3  5.06 245.1
34 Si4 548 226.2 | Syu 547 2265 | Siu 5.13 241.8
35 Sis 5.62 2206 | Si5 5.54 2239 | S;5 5.14 241.3
36 Sig 5.75 2156 | S1 558 2221 | S15  5.39 230.0
37 Si7 584 2124 | Si;; 573 216.5 | Si7 549 226.0
38 Sig  5.83 211.7 | Sig 580 213.7 | Sig 5.54 223.7
39 Si9 597 207.6 | Si9 591 209.8 | Si9 5.66 219.1
40 Sop  6.02 206.1 | Sop 593 209.3 | Sop 5.67 2185
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TABLE C.6: Spin-orbit couplings (in cm™!) between singlet and triplet states for
molecule 1 calculated at the TDDFT/PCM/CAM-B3LYP /def2-TZVP level of theory.

So S1 So S3 Sy Ss Se S7 Sg So S10

Ty 0.82 0.00 13.12 1.23 0.01 0.82 0.09 0.01 0.25 0.00 11.10
Ty 0.04 0.19 0.47 0.00 0.84 0.01 10.24 0.92 0.00 2.00 0.64
T3 4.89 12.09 0.00 1.87 2.84 2.42 0.18 7.81 1.39 4.64 5.47
Ty 2.11 0.00 9.75 0.46 0.00 0.11 1.93 0.00 0.58 0.02 6.94
Ty 0.08 0.75 4.14 0.00 0.18 0.00 1.24 0.12 0.00 0.80 1.14
Tg 1.72 0.00 5.65 0.24 0.00 0.34 1.93 0.00 0.53 0.00 0.53
T, 0.08 1.16 0.43 0.00 0.14 0.00 894 0.14 0.00 0.18 1.67
Tg 0.59 0.00 10.30 0.71 0.01 0.54 1.78 0.00 0.46 0.01 0.95
Ty 48.34 1.77 0.25 10.78 2.05 6.14 0.00 1.25 0.97 0.87 0.05
T1o 0.01 0.15 0.45 0.00 0.00 0.00 1.77 0.05 0.00 0.11 0.79
T 0.34 0.01 7.65 0.52 0.00 0.49 1.96 0.01 0.07 0.02 2.71
Tio 1.70 0.00 0.15 0.79 0.01 1.41 0.91 0.01 0.65 0.01 1.35
Ti3 0.04 0.30 0.64 0.00 0.98 0.00 0.88 0.40 0.00 0.41 0.11
Ty4 | 16.47 12.81 5.10 4.62 5.40 0.29 0.02 4.87 0.70 2.82 0.01
Ti5 | 13.01 0.24 0.00 1.46 0.25 2.84 0.85 0.28 5.22 0.39 0.16
Ti6 0.12 0.01 7.51 0.99 0.01 0.48 1.98 0.00 0.60 0.02 6.68
Tqi7 0.02 0.18 0.47 0.01 0.79 0.01 4.36 0.61 0.01 0.48 0.31
Tig 0.04 0.18 0.68 0.01 0.01 0.01 4.15 0.12 0.00 0.16 2.83
Ti9 | 56.81 5.44 2.25 5.94 3.86 3.92 0.02 321 246 2.24 0.11
Tao 0.11 1.28 0.58 0.02 0.16 0.01 0.61 0.10 0.00 0.60 0.35
S11 S12 S13 S14 S1s St Sir Sz Sy Sa0

Ty 0.30 0.01 0.54 1.14 0.74 0.01 4.59 2.82 2.09 1.23
Ty 0.45 0.09 0.01 0.00 0.01 0.70 199 1.00 1.83 0.70
T3 0.00 5.01 0.71 1.15 0.73 0.90 0.55 0.00 0.02 0.14
Ty 0.08 0.00 0.82 0.25 0.18 0.01 374 5.82 0.15 1.61
Ty 0.29 0.06 0.00 0.00 0.01 0.21 7.45 0.41 0.05 0.66
Tg 0.04 0.00 0.02 0.06 0.08 0.00 0.79 0.88 1.61 0.29
T7 1.06 0.10 0.01 0.01 0.01 0.29 244 5.76 9.20 0.72
Ts 0.05 0.01 0.38 0.05 0.29 0.00 143 1.25 241 0.34
Ty 0.99 1.03 0.28 0.94 0.96 0.51 0.03 3.86 4.53 0.01
T1o 17.69 0.07 0.01 0.00 0.01 0.17 3.25 0.42 0.06 0.62
T11 0.50 0.00 0.57 0.20 0.10 0.02 2.19 4.28 3.45 0.40
Tq9 0.06 0.00 0.15 0.10 0.26 0.01 0.44 0.27 0.92 0.16
Ti3 0.57 0.08 0.01 0.00 0.00 0.07 0.15 0.50 0.41 0.11
T4 0.14 10.77 0.08 0.07 2.15 1.09 0.10 1.83 4.17 0.01
Ti5 0.00 1.04 0.59 21.39 14.11 0.09 094 0.00 0.01 0.66
Tie 0.61 000 020 003 016 001 1.63 374 124 1.10
Tqi7 0.73 0.05 0.01 0.00 0.00 0.22 0.16 1.12 0.80 0.26
Tig 3.92 0.50 0.00 0.00 0.00 0.08 497 235 1.98 0.05
T1g 0.54 8.74 0.17 1.31 2.02 0.85 0.03 3.67 1.28 0.00
Tao 1.29 0.03 0.01 0.01 0.00 0.20 1.55 2.65 3.83 0.08
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TABLE C.7: Spin-orbit couplings (in cm™!) between singlet and triplet states for
molecule 2 calculated at the TDDFT/PCM/CAM-B3LYP /def2-TZVP level of theory.

So S1 So S3 Sy Ss Se S7 Sg So S10
Ty 0.85 0.01 13.54 1.07 1.06 0.00 0.00 0.13 0.00 0.29 10.93
Ty 0.02 0.25 0.39 0.00 0.00 0.92 0.01 11.33 2.07 0.00 0.80
T3 2.57 0.00 11.05 0.55 0.13 0.00 0.00 1.48 0.00 0.64 7.13
Ty 4.61 13.65 0.00 1.49 2.15 5.07 5.61 0.16 2.73 1.22 5.42
Ty 0.02 0.82 3.61 0.00 0.00 0.24 0.12 1.42 0.71 0.01 1.46
Tg 1.35 0.00 7.86 0.32 0.07 0.00 0.00 2.45 0.01 0.06 0.19
T, 1.21 0.00 5.97 0.84 0.54 0.00 0.01 0.57 0.00 0.46 0.62
Tg 0.00 1.19 0.33 0.00 0.01 0.11 0.30 895 0.13 0.00 1.88
Ty 51.01 2.17 0.08 11.68 4.26 1.33 1.47 0.00 0.70 2.94 0.04
T1o 1.25 0.00 0.44 1.04 1.22  0.00 0.00 1.01 0.00 0.49 1.04
T 0.66 0.01 9.00 0.58 0.21 0.00 0.00 1.32 0.00 0.08 2.44
Tio 0.01 0.18 0.64 0.00 0.00 0.11 0.09 2.05 0.08 0.00 0.92
Ti3 0.00 0.41 0.48 0.00 0.00 1.00 0.20 1.00 0.45 0.00 0.23
T4 | 13.93 11.69 5.15 5.01 0.80 8.73 3.07 0.01 2.05 0.33 0.00
T1s5 0.32 0.00 6.38 0.78 0.85 0.01 0.00 2.41 0.01 047 6.16
T | 12.87 0.12 0.04 1.34 2.03 0.47 0.29 0.78 0.38 5.57 0.22
Tq7 0.02 0.09 0.19 0.00 0.00 0.43 0.83 5.20 0.16 0.00 0.21
Tig 0.04 0.23 0.65 0.00 0.01 0.16 0.08 3.33 0.17 0.01 2.67
Ti9 | 56.44 4.64 1.66 6.02 5.17 5.44 1.78 0.01 1.64 2.34 0.09
Tao 0.10 0.96 0.77 0.00 0.00 0.49 0.26 2.61 0.96 0.00 0.64

S11 S12 S13 Sia Sis Si6 Si7 Sis S Sa0

T 044 0.00 0.51 1.17 0.00 059 472 348 091 0.83
To 040 010 0.00 0.00 0.56 0.00 213 0.04 0.00 1.74
Ts 0.10 0.00 077 024 0.00 014 363 577 043 255
Ty 0.04 527 050 120 0.84 053 0.02 0.01 0.17 0.02
Ts 0.04 006 001 000 014 001 812 039 0.00 0.17
Te 0.04 000 017 001 0.00 018 082 1.16 036 229
T 0.07 000 032 009 000 023 07 061 079 147
Ts 049 003 000 000 0.18 000 291 1.10 0.00 10.28
Ty 092 090 046 079 043 091 0.00 1.55 493 6.17
Tio 0.20 000 029 0.07 0.00 028 094 209 080 0.39
T 0.61 000 044 0.18 0.00 0.10 197 5.77 0.06 1.10
Tio 1762 005 000 0.01 014 001 327 0.56 0.00 046
T3 0.20 006 000 0.00 0.00 000 011 0.22 0.00 0.99
T1a 0.25 1064 0.04 0.06 0.76 234 0.09 3.37 228 3.22
Tis 0.61 000 008 003 0.00 019 184 286 005 3.28
Ti6 0.00 1.26 0.26 20.68 0.12 1572 096 0.04 1.54 0.01
Ti7 1.50 013 0.00 0.00 0.12 0.00 133 095 0.00 1.11
Tis 3.57 051 000 000 0.12 000 496 272 0.00 0.87
T1g 0.60 842 0.08 1.81 0.78 242 003 278 495 3.08

Tao 0.12 0.14 000 0.00 036 000 115 0.29 0.00 2.76
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TABLE C.8: Spin-orbit couplings (in cm™!) between singlet and triplet states for
molecule 3 calculated at the TDDFT/PCM/CAM-B3LYP /def2-TZVP level of theory.

So Sq So S3 S4 Ss Se Sy Sg Sg9  Sio

Ty 2.75 0.02 0.19 0.01 0.00 7.69 0.30 0.51 0.57 0.01 0.02
Ty 0.07 0.01 0.01 0.68 0.85 0.26 0.01 11.02 0.02 1.50 0.94
T3 2.68 0.01 0.76 0.01 0.01 9.23 0.73 0.46 0.21 0.01 0.03
Ty 0.87 0.02 0.49 0.01 0.01 0.78 0.49 1.10 0.51 0.01 0.01
Ty 0.04 0.29 0.00 0.28 0.33 3.12 0.01 2.66 0.01 0.19 0.51
Te 5.13 2.63 1.23 9.74 3.79 0.01 1.56 0.15 0.80 8.62 8.84
T, 0.43 0.03 0.55 0.01 0.01 9.28 0.24 2.17 0.49 0.01 0.02
Tg 0.02 0.01 0.01 0.76 0.07 0.62 0.00 8.07 0.00 0.11 0.18
Ty 44.32 0.36 11.68 0.50 1.53 0.33 4.99 0.01 0.89 2.38 1.12
T1o 0.63 0.01 0.79 0.01 0.02 14.63 0.25 1.73 0.33 0.02 0.02
T11 0.06 0.77 0.01 0.06 0.43 1.81 0.01 1.31 0.01 0.20 0.01
Tio 0.04 0.39 0.01 0.11 0.48 0.31 0.02 0.18 0.01 0.04 0.01
T3 1.53 0.01 0.65 0.01 0.01 3.42 0.09 1.72 0.46 0.01 0.01
T4 0.02 0.49 0.01 0.63 0.66 0.37 0.02 5.16 0.02 0.43 0.08
T1i5 | 20.48 0.67 3.12  11.22 8.66 4.86 1.80 0.03 1.69 4.32  5.20
Tis 0.56 0.03 0.06 0.01 0.01 4.79 1.20 1.36 0.16 0.02 0.04
Ti7 | 13.24 0.32 2.66 0.44 0.35 0.04 1.69 1.53 5.04 0.15 0.39
Tig 0.07 0.17 0.01 0.45 0.05 1.01 0.01 0.88 0.00 0.24 0.06
Tig 0.08 0.35 0.01 0.74 0.60 0.42 0.01 2.35 0.01 0.23 0.19
Tao 0.81 0.00 0.77 0.03 0.00 6.93 0.47 0.59 0.35 0.04 0.02
S11 S12 S13 S14 Sis5 S16 Si7 Sig S19 Sz

Ty 3.75 0.51 0.57 0.01 1.28 3.20 0.13 0.59 0.17 0.43
Ty 0.06 0.80 0.01 0.07 0.01 1.58 0.01 0.14 0.00 0.01
T3 10.98 0.06 0.55 0.01 0.91 1.68 1.11  0.97 0.22 0.25
Ty 0.44 0.03 0.58 0.00 0.15 0.51 0.10 0.34 0.12 0.13
Ty 1.98 0.81 0.01 0.09 0.02 1.16 0.04 2.57 0.02 0.03
Te 5.19 0.04 2.04 3.84 0.91 0.03 0.32 0.70 1.38 2.15
T~ 6.30 0.03 0.16 0.01 0.24 2.27 0.40 0.96 0.18 0.42
Tg 1.01 4.47 0.01 0.25 0.02 10.35 0.01 0.19 0.01 0.02
Ty 0.02 1.97 2.18 0.38 0.89 8.47 0.96 0.06 2.97 5.79
Tio 1.76 0.31 0.00 0.01 0.45 0.90 0.23 0.49 0.18 0.92
Tq1 1.46 8.62 0.03 0.07 0.01 1.03 0.01 0.85 0.02 0.01
T1o 0.54 13.90 0.01 0.06 0.01 2.97 0.01 0.28 0.00 0.01
T3 1.77 0.70 0.66 0.01 0.18 1.39 0.40 0.54 0.05 0.02
T4 1.05 4.86 0.02 0.19 0.02 0.17 0.01 0.54 0.01 0.03
Ti5 0.02 0.29 1.37 10.65 1.31 1.71 1.12  0.03 1.29 0.22
Ti6 5.70 0.10 0.24 0.02 0.03 3.75 0.12 1.99 0.08 0.70
Tq7 0.20 0.00 0.50 0.98 1.21 0.01 16.27 0.04 20.13 0.24
Tig 2.18 4.16 0.01 0.40 0.02 2.13 0.01 1.56 0.00 0.01
Tig 0.09 2.15 0.04 0.05 0.00 2.61 0.02 0.11 0.01 0.01
Tao 4.71 0.52 0.17 0.01 0.05 0.46 0.02 0.27 0.07 0.31
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