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 Summary  IV

As two leading female cancers, breast cancer, especially metastatic breast cancer, and ovarian 

cancer, have brought an increasing health and economic burden globally. Biomarkers could 

improve patient outcomes and quality of life because they play vital roles in cancer screening, 

diagnosis, prognosis, and prediction. Metabolites are promising cancer biomarkers, as they 

represent the ultimate phenotypic alteration of the organism and are closely related to cancer. 

Plasma metabolites can be accessed with minimally invasive procedures. Using plasma 

metabolites as biomarkers for cancer and other diseases has been widely explored because of 

the possibility of repeated sampling and periodic monitoring of blood samples. However, 

metabolic studies are still in their infancy, and only a few studies with large sample sizes are 

available so far. In this thesis project, we explored the potential of metabolites as putative 

diagnostic and prognostic markers in breast and ovarian cancer. 

Plasma metabolite profiling and subsequent validation in primary breast cancer 

patients and healthy controls identified 18 metabolites that were significantly differentially 

represented (FDR < 0.05). Multivariate logistic regression analysis selected a panel of seven 

metabolites to discriminate primary breast cancer patients from healthy controls with an AUC 

of 0.80. If this panel of metabolites identified here could be verified in large prospective 

study cohorts, this panel, including Glu, Orn, Thr, Trp, Met-SO, C2, and C3, might add value 

to multi-molecular diagnostic marker sets for breast cancer early detection.  

The association of plasma metabolites with metastatic breast cancer was investigated 

as well. Metastatic breast cancer patients with high numbers of circulating tumor cells 

(termed CTC-positive) and those with low numbers or without CTCs (termed CTC-negative) 

were analyzed and compared to healthy controls as well as primary breast cancer patients. 

Lists of 19 and 12 metabolites were identified to significantly distinguish CTC-positive and 

CTC-negative samples from healthy controls, respectively. A panel comprising His, C4:0, 

C18:1, lysoPC a C18:2, PC aa C40:6, and PC ae C42:3 for CTC-positive patients with AUC 

= 0.92, and a combination of Asn, Glu, His, Thr, Trp, C16:0, C18:0, C18:1, C18:2, lysoPC a 

C18:2, and PC aa C40:6 for CTC-negative patients with AUC = 0.89 were selected to 

distinguish from healthy controls. Significantly different metabolites between CTC-
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positive/CTC-negative and primary breast cancer patients exhibited significant overlaps with 

those between CTC-positive/CTC-negative patients and healthy controls. 

We also investigated the prognostic value of metabolites in metastatic breast cancer 

patients. After successive analysis of the discovery and validation cohorts, four metabolites 

were found to be significantly negatively correlated with progression-free survival, while 12 

metabolites were negatively correlated with overall survival. Amongst these metabolites 

associated with survival, LASSO Cox regression analysis selected a combination of PC ae 

C36:1 and PC ae C38:3 to predict progression-free survival, and a combination of lysoPC a 

C20:3, lysoPC a C20:4, PC aa C38:5, PC ae C38:3, and SM (OH) C22:2 to predict overall 

survival. Even though the proposed metabolic signatures showed a lower prognostic power 

than the CTC status, an FDA-approved prognostic marker, the combination of the Cox 

selected metabolites with the CTC status displayed a lower integrated prediction error than 

CTC status alone. Therefore, the identified metabolic markers might add prognostic value in 

combination with other biomarkers such as CTC status determination. The majority of the 

here identified metabolites have previously shown functional roles in cancer and metastasis 

development, thus laying a supposed mechanistic basis for their differential levels observed 

in plasma. 

Lastly, comparative profiling of plasma metabolites in ovarian cancer patients and 

healthy controls were applied to identify metabolites associated with ovarian cancer. 

Remarkably, 71 significantly differentially expressed metabolites were identified (FDR < 

0.05). Most of them were down-regulated in ovarian cancer patients. A combination of seven 

metabolites, including His, Trp, C18:1, lysoPC a C18:2, PC aa C32:2, PC aa C34:4, PC ae 

C34:3, were identified to differentiate ovarian cancer cases from healthy controls with an 

AUC of 0.95. Furthermore, this panel could distinguish ovarian cancer from primary breast 

cancer patients with an AUC of 0.93.  

In conclusion, we identified specific signatures of plasma metabolites associated with 

primary breast cancer, metastatic breast cancer, and ovarian cancer. Further, we identified 

sets of metabolites correlated with the prognosis of metastatic breast cancer patients. If these 
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identified metabolic marker signatures can be verified in large, multi-centric, prospective 

studies, they might add value to the development of blood-based diagnostic tests.  
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 Zusammenfassung V

Als führende Krebserkrankungen bei Frauen haben Brustkrebs und Eierstockkrebs weltweit 

zu einer zunehmenden gesundheitlichen und wirtschaftlichen Belastung geführt. Ovarialkrebs 

und metastasierender Brustkrebs weisen zudem eine sehr schlechte Prognose auf. Biomarker 

könnten den Behandlungserfolg und die Lebensqualität der Patientinnen verbessern, indem 

sie eine wichtige Rolle bei der Krebsvorsorge, Diagnose, Prognose und Vorhersage spielen. 

Metaboliten sind vielversprechende Krebs-Biomarker, da sie eine endgültige phänotypische 

Veränderung des Organismus darstellen und in enger Beziehung zur Krebsentstehung und 

Progression stehen. Der Zugang zu Plasmametaboliten ist minimal invasiv und aufgrund der 

Möglichkeit einer wiederholten Probenentnahme und der regelmäßigen Überwachung von 

Blutproben vielversprechend. Metaboliten-basierte Biomarkerstudien für Krebsdiagnostik 

und Prognose befinden sich jedoch noch in einem frühen Stadium, da bislang nur wenige 

Studien mit umfassenden Probenzahlen und /oder optimaler Blutplasmaproben-Prozessierung 

vorliegen. In diesem Dissertationsprojekt untersuchten wir das Potenzial von Metaboliten als 

mutmaßliche diagnostische und prognostische Marker für Brust- und Eierstockkrebs.  

Das Plasmametaboliten-Profiling und die anschließende Validierung bei primären 

Brustkrebspatientinnen und gesunden Kontrollpersonen identifizierte 18 Metaboliten, die 

signifikant unterschiedlich in den beiden Gruppen vertreten waren (FDR <0,05). Durch eine 

multivariate logistische Regressionsanalyse konnte eine Gruppe von sieben Metaboliten (Glu, 

Orn, Thr, Trp, Met-SO, C2 und C3) ausgewählt werden, die Patientinnen mit primärem 

Brustkrebs von gesunden Kontrollen mit einer AUC von 0,80 unterscheiden kann. Sofern die 

hier identifizierten Metaboliten in großen prospektiven Studienkohorten verifiziert werden 

können, könnten diese zur Entwicklung von multimolekularen diagnostischen Markersätzen 

für die Brustkrebs Früherkennung beitragen. 

Die Assoziation von Plasmametaboliten mit metastasierendem Brustkrebs wurde 

ebenfalls untersucht. Patientinnen mit metastasierendem Brustkrebs, die eine erhöhte Anzahl 

zirkulierender Tumorzellen (als CTC-positiv bezeichnet) aufwiesen und solche mit einer 

geringen Anzahl oder ohne CTCs (als CTC-negativ bezeichnet) wurden analysiert und mit 

gesunden Kontrollpersonen sowie Patientinnen mit primärem Brustkrebs verglichen. Es 
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wurden 19 bzw. 12 Metabolite identifiziert, um CTC-positive bzw. CTC-negative MBC 

Proben signifikant von gesunden Kontrollen zu unterscheiden. Zur Unterscheidung von CTC-

positiven MBC Patienten von gesunden Kontrollen wurde ein Panel bestehend aus His, C4:0, 

C18: 1, lysoPCa C18:2, PC aa C40:6 und PC ae C42:3 identifiziert (AUC = 0,92) und für 

CTC-negative Patienten eine Kombination aus Asn, Glu, His, Thr, Trp, C16:0, C18:0, C18:1, 

C18:2, lysoPC a C18:2 und PC aa C40:6 (AUC = 0,89) ausgewählt. Signifikant 

unterschiedliche Metaboliten zwischen CTC-positiven/CTC-negativen metastasierenden 

Brustkrebspatientinnen und primären Brustkrebspatientinnen zeigten signifikante 

Überschneidungen mit denen o.g. zwischen CTC-positiven/CTC-negativen metastasierenden 

Patientinnen und gesunden Kontrollpersonen.  

Wir untersuchten auch den prognostischen Wert von Metaboliten bei Patientinnen 

mit metastasierendem Brustkrebs. Nach sukzessiver Analyse der Entdeckungs- und 

Validierungskohorten wurde festgestellt, dass vier Metaboliten signifikant negativ mit der 

progressionsfreien Überlebensrate korrelierten, während 12 Metaboliten negativ mit dem 

Gesamtüberleben korrelierten. Via LASSO Cox-Regressionsanalyse wurde eine Kombination 

aus PC ae C36:1 und PC ae C38:3 identifiziert, um eine progressionsfreie Überlebensrate 

vorherzusagen, und eine Kombination aus lysoPC a C20:3, lysoPC a C20:4, PC aa C38:5, PC 

ae C38:3 und SM (OH) C22:2 um eine Vorhersage zum Gesamtüberleben zu treffen. Obwohl 

die vorgeschlagenen metabolischen Signaturen eine niedrigere Prognoseleistung als der CTC-

Status, ein von der FDA zugelassener Prognosemarker, aufwiesen, konnte durch die 

Kombination der durch die Cox Analyse ausgewählten Metaboliten mit dem CTC-Status ein 

geringerer integrierter Prognosefehler als mit dem CTC-Status allein erzielt werden. Daher 

könnten die identifizierten Metabolitenmarker in Kombination mit anderen Biomarkern wie 

der CTC-Statusbestimmung die prognostische Aussagekraft erhöhen.  

Zuletzt wurden Plasmametabolite identifiziert, die mit Ovarialkrebs assoziiert sind. 

Bemerkenswerterweise wurden zwischen Proben von Ovarialkrebspatientinnen und gesunden 

Kontrollen 71 signifikant unterschiedlich exprimierte Metaboliten identifiziert (FDR <0,05). 

Die meisten von ihnen waren bei Patientinnen mit Ovarialkarzinom herunterreguliert. Eine 

Kombination von sieben Metaboliten (His, Trp, C18:1, lysoPC a C18:2, PC aa C32:2, PC aa 

C34:4, PC ae C34:3) wurde identifiziert, um Ovarialkrebsfälle von gesunden Kontrollen zu 
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unterscheiden (AUC = 0,95). Darüber hinaus konnte dieses Panel Eierstockkrebs von 

primären Brustkrebspatientinnen mit einer AUC von 0,93 unterscheiden.  

Zusammenfassend konnten wir spezifische Signaturen von Plasmametaboliten 

identifizieren, die mit primärem Brustkrebs, metastasiertem Brustkrebs und Eierstockkrebs 

assoziiert sind. Darüber hinaus identifizierten wir Metabolitensätze, die mit der Prognose 

metastasierender Brustkrebspatientinnen korrelieren. Sofern diese identifizierten 

metabolischen Markersignaturen in großen, multizentrischen, prospektiven Studien verifiziert 

werden können, könnten sie zur Entwicklung von Blut-basierten diagnostischen 

Markersätzen beitragen. 
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1. Introduction 

 Cancer  1.1

Cancer is a collection of more than 100 related diseases that can start almost anywhere in the 

body and characterize by the feature of the abnormal and uncontrollable proliferation of cells. 

Carcinogenesis involves a series of complex and dynamic processes consisting of three stages: 

initiation, progression, and metastasis (Wang et al., 2017). Biological capabilities acquired during 

the complex, multistep development of human tumors are defined as the hallmarks of cancer, 

which was proposed by Hanahan and Weinberg in 2000 (Hanahan and Weinberg, 2000). Later in 

2011, another four emerging hallmarks were supplemented (Hanahan and Weinberg, 2011), and 

the ten hallmarks are shown in Figure 1.1. Cancer is a genetic disease. Genetic changes, which 

regulate cell cycle and cell homeostasis, result in an imbalance between cell proliferation and cell 

death, leading to tumorigenesis (Weinberg, 2014). Cancer-causing mutations primarily include 

point mutations, as well as chromosomal structural alterations and loss of heterozygosity (Loeb 

and Loeb, 2000). Cells that gain these cancer-causing mutations and stimulate tumor formation 

are defined as tumor-initiating cells (TIC) (Qureshi-Baig et al., 2017). Tumors can be either 

benign or malignant. The ability to invade nearby tissues and spread to distant sites is an 

important criterion to distinguish malignant tumors from benign tumors. Metastases spawned by 

malignant tumors are responsible for almost all deaths from cancer (Sopik and Narod, 2018). In 

addition to the tumor cells, tumor niche within the tumor microenvironment (TME) is closely 

connected to the process of tumorigenesis, from pre-malignant to a malignant state and facilitates 

tumor growth (Wang et al., 2017). Based on the tissue of origin, cancer in humans can be 

classified into five principal types: carcinoma (epithelial tissues), sarcoma (connective tissue), 

leukemia (blood cells of bone marrow), lymphoma and multiple myeloma (immune system), and 

neuroectodermal tumors (brain and spinal cord) (Weinberg, 2014).  
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Figure 1.1: The Hallmarks of Cancer. Ten functional properties of tumor cells required for 

complete malignant transformation are essential. (Adapted from Hanahan and Weinberg, Cell, 

2011, Hallmarks of cancer: the next generation). 

 

Cancer is a major public health problem worldwide and is the second leading cause of death 

in the United States (Siegel et al., 2018). Cancer was responsible for an estimated 8.1 million 

new cancer cases, and 9.6 million deaths in 2018 alone, about 1 in 6 deaths is due to cancer 

globally (Bray et al., 2018). The commonly diagnosed cancer cases were lung cancer (11.6%), 

female breast cancer (11.6%), prostate cancer (7.1%), and colorectal cancer (6.1%) (Bray et 

al., 2018). Prevention, screening, diagnosis, prognosis, and tumor development or spread 

targeted therapies are strategies for cancer management and treatment (Gralow et al., 2008).  
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 Breast Cancer 1.2

1.2.1 Epidemiology and Detection  

Breast cancer is cancer that arises from the breast tissue, and most of the breast cancer cases 

are adenocarcinomas. Breast cancer continues to be the most prevalent malignancy and a 

major cause of human mortality in women worldwide. It accounts for 24.2% of all newly 

diagnosed cancer cases and 15% of all cancer-related deaths among females in 2018 (Figure 

1.2) (Bray et al., 2018). Due to the availability of early detection and treatment, the incidence 

rates in high-income countries are higher than those in low- and middle-income countries, 

whereas the mortality rates are lower in high-income countries than those in low- and middle-

income countries (Torre et al., 2017). In Germany, breast cancer causes the highest cancer-

related morbidity and mortality rates in females, with percentages of 25.9% and 17.6%, 

respectively (Figure 1.2) (Bray et al., 2018). These high numbers have indicated the urgency 

and importance of breast cancer study in the field of cancer research.    

Currently, mammography is the standard technique for breast cancer screening and 

detection, and it was reported to have high detection sensitivity (93%) for breast cancer 

patients with symptoms (Jiang et al., 2016). However, mammography is far less effective for 

early-stage breast cancer detection and is less sensitive among women with high breast 

density and young women (Buist et al., 2004; Tabar et al., 1995). Moreover, mammography 

has only a minor effect on the reduction of breast cancer mortality (Bleyer and Welch, 2012; 

Broeders et al., 2012). Besides, the x-ray radiation from mammography adds up over time 

does harm to the breast (Miglioretti et al., 2016). Other screening methods, including self or 

clinical examination, breast ultrasound, and magnetic resonance imaging, have their pros and 

cons (Elmore et al., 2005).   
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Figure 1.2: Incidence and mortality numbers and rates of female cancer worldwide and in 

Germany in 2018. Data source: GLOBOCAN 2018 ( http://gco.iarc.fr/).   

 

1.2.2 Classification  

Breast cancer is a highly heterogeneous disease that has long been noted in histology and 

clinical outcomes, which serve as the basis for disease classification (Polyak, 2011). Since the 

subtypes of breast cancer differ a lot in outcomes and responses to treatment (Taherian-Fard 

http://gco.iarc.fr/
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et al., 2015; Viale, 2012), breast cancer classification and characterization are substantially 

crucial for a better understanding of the disease and the treatment of individuals with 

precision medicine. There are four major routinely used breast cancer classification methods 

in the clinic, as shown in Figure 1.3.   

Based on the tumor cells of origin, breast cancer can be classified into different 

histological subtypes. As reported by the latest World Health Organization (WHO) guidelines, 

20 major and 18 minor tumor types, including benign, carcinoma in situ, malignant invasive 

carcinomas, and sarcomas, are recognizable (Tavassoéli, 2003). Among these histological 

subtypes, invasive ductal carcinoma (IDC) is the most common, representing 75% of all 

cancer cases. The second common is invasive lobular carcinoma (ILC), accounting for 

around 10% of all cancer patients (Li et al., 2005).    

The grading system, which indicates the differentiation extent of tumor cells, is based on 

the microscopic appearance of the tumor section. The Nottingham grading system is currently 

the most widely recommended method for breast cancer grading (Bloom and Richardson, 

1957). According to tubule formation, nuclear pleomorphism, and mitotic count, tumors are 

classified into well-differentiated (low grade, Grade 1), moderately differentiated 

(intermediate grade, Grade 2), and poorly differentiated (high grade, Grade 3) (Bloom and 

Richardson, 1957).  

The staging system was proposed by the American Joint Committee on Cancer (AJCC) 

in 1959 for the first time, and from then on, it has been updated continuously as 

understandings of disease refreshed (Edge S et al., 2010). The AJCC system classified cancers 

with three criteria, tumor size (Tx, Tis, T0, T1-T4), lymph node number (Nx, N0-N3), and 

distant metastasis (Mx, M0, M1), which is known as the TNM staging system (Edge S et al., 

2010). Breast tumors include stages 0, I, II, III, and IV according to these three TNM 

pathological features, and the prognosis becomes worse as the stages increase. The five-year 

survival rate is 100% for stage 0 and stage I patients, 93% for stage 2, 72% for stage 3, and 

decrease to 22% for patients with stage IV breast cancer (Howlader N et al., 2019).  

The immunohistochemical recognition of hormone receptors, including estrogen 

receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 
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(HER2/neu), classifies breast cancer into four molecular subtypes (Schnitt, 2010), i.e. 

Luminal A (ER+ and/or PR+, HER2-, low grade), Luminal B (ER+ and/or PR+, HER2-, high 

grade), HER2 amplified, and basal or triple-negative (ER-/PR-/HER2-). The molecular 

subtype of breast cancer determines its progression and treatment response. From Luminal A, 

Luminal B, HER2 amplified to triple-negative, cancer growth rate increase, as well as cancer 

aggressiveness, while cancer prognosis becomes continuously worse (Schnitt, 2010). Besides 

these four molecular subtypes, some other subtypes, such as Claudin-low and normal-like 

breast cancer, have been proposed (Malhotra et al., 2010). Determination of the subtype of 

breast cancer is vital for making treatment decisions, specifically for those that target 

hormone receptors, and improving patient management.  

 

 

Figure 1.3: Major classification methods of breast cancer.  



Introduction  23 

 

1.2.3 Risk Factors 

Breast cancer is a result of the interplay of diverse genetic and environmental factors. 

Approximately 75% of breast cancer cases are sporadic, while the remaining 25% are 

familial/hereditary (Anderson, 1992). The risk factors of breast cancer can be classified as 

genetic risk factors and non-genetic risk factors.  

 

Genetic Risk Factors 

Genetic and familial factors can substantially increase the lifetime risk of developing breast 

cancer and are associated with the development of cancer at a young age. Women with any 

first-degree relative with breast cancer have about twice the risk of developing breast cancer 

(Pharoah et al., 1997). Approximately 30% of breast cancer cases are attributed to hereditary 

factors (Mavaddat et al., 2010; Turnbull and Rahman, 2008). BRCA1, a DNA-repair gene, 

was the first established major breast cancer susceptibility gene. BRCA2 is another gene of 

the same family, and they cause most of the hereditary breast carcinoma (Hall et al., 1990). 

Women with inherited mutations in BRCA1 or BRCA2 genes are at particularly high risk. 

Carriers of BRCA1 mutations have a 55%-60% chance for developing breast cancer during 

their lifetime, whereas those with BRCA2 mutations have a lower risk of 45% (Foulkes and 

Shuen, 2013; Malone et al., 1998). Besides these two genes, TP53, PTEN, and 

STK11/LKB1are also essential susceptibility genes that involve in the hereditary and familial 

forms of breast cancer (Nathanson et al., 2001). Genetic low-penetrance risk factors 

contribute much more modest (2 ~ 4 fold) risks of breast cancer (Thompson and Easton, 

2004). 

 

Non-genetic Risk Factors 

Age is the most potent risk factor for breast cancer. The incidence of breast cancer increases 

with age, doubling every ten years until menopause and is usually diagnosed in the 50 ~ 60 

age group (Allison, 2012; McPherson et al., 2000). Reproductive factors and hormones are 

also established risk factors for breast cancer, such as earlier menarche, later menopause, 
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nulliparity, delayed childbearing, no breastfeeding, and hormone exposure (McPherson et al., 

2000). Also, a personal history of breast disease, benign breast diseases such as fibrosis and 

hyperplasia are other non-modifiable risk factors for breast cancer (McPherson et al., 2000). 

At last, unhealthy lifestyles are also associated with breast cancer incidence, e.g., alcohol 

drinking, smoking, physical inactivity, excess body weight (postmenopausal females), and 

high-dose radiation to the chest, particularly at a young age (Verma et al., 2012).  

 

1.2.4 Metastatic Breast Cancer 

Around 25%-30% of primary breast cancer (PBC) cells leave their original primary site and 

migrate to distant sites, which is called metastatic or stage IV breast cancer (Lorusso and 

Ruegg, 2012; Redig and McAllister, 2013). Approximately 10%-15% of PBC patients 

develop metastasis within three years. However, metastatic manifestation after ten or more 

years from initial diagnosis was also reported (Weigelt et al., 2005). Breast cancer cells tend 

to metastasize to essential organs in humans, such as bone and liver, also less frequently to 

lung and brain (Lee, 1985).  Most of the breast cancer-related deaths are due to metastasis, 

rather than the primary ones. Since our understanding of metastasis mechanism is inadequate, 

most of the metastatic cancers are still incurable.  

 

Evolution of metastasis theories 

The term metastasis was coined in 1829 (JC, 1829), and understandings of cancer metastasis 

evolved from time to time in nearly two hundred years (Dong et al., 2009; Talmadge and 

Fidler, 2010). In 1889, a London surgeon Stephen Paget proposed the famous “seed and soil” 

hypothesis to explain the usual organ-specific metastasis pattern (Paget, 1989). Forty years 

later, in 1928, James Ewing suggested that metastasis occurs purely through an anatomic 

mechanism (Ewing J, 1928). In 1975, Irwin Bross et al. proposed the metastatic cascade for 

sequential events needed for disseminated cancer (Nicolson and Winkelhake, 1975). Then the 

clonal selection and expansion model was proposed by Peter Nowell and Isalah Fidler in 

1976 (Fidler and Kripke, 1977; Nowell, 1976). Until in 2001, the role of cancer stem cells 

(CSC) in metastasis was proposed by Irving Weissman et al. (Reya et al., 2001). Then the 
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next year, Rene Bernard and Robert Weinberg raised a progression puzzle to challenge the 

traditional view of metastasis. The dual proclivity model was subsequently proposed 

(Bernards and Weinberg, 2002).  At the same time, Jean Paul Thiery used the epithelial-

mesenchymal transition (EMT) phenomenon to explain metastatic progression (Thiery, 2002). 

In 2006, Kent Hunter et al. emphasized the role of genetic susceptibility for metastatic 

propensity (Hunter, 2006). Figure 1.4 shows a brief evolution timeline of metastasis theories.      

 

 

Figure 1.4: The evolution of metastasis theories. The timeline outlines the major conceptual 

advances in the origins and mechanisms of metastasis from Paget’s seminal “seed vs. soil” 

hypothesis to more recent theories regarding the role of cancer stem cells and early 

developmental transitions. (Adapted from Dong, F. et al., clinical cancer research, 2009, 

Translating the metastasis paradigm from scientific theory to clinical oncology.) 

 

Mechanism of metastasis 

Integration of the metastasis theories in nearly two hundred years, the current model for 

cancer metastasis proposed by Christine L. Chaffer and Robert A. Weinberg is shown in 

Figure 1.5 (Chaffer and Weinberg, 2011). In general, cancer metastasis is a two-phase 

process. The first phase is known as the metastasis cascade, which involves the physical 

translocation of cancer cells from the primary tumor to a distant organ and colonization of the 

translocated cells within the new organ. The second phase encompasses the ability of the 
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cancer cell to develop into a metastatic lesion at that distant site (Chaffer and Weinberg, 

2011). During these processes, circulating tumor cells (CTC), tumor cells traveling through 

the circulating, play a vital role in establishing cancer metastasis (Reya et al., 2001).   

During metastasis, primary epithelial tumor cells have to leave their extracellular matrix 

and establish metastasis at a distant organ, during which their morphologies alter. The 

hypothesis of mechanism that promotes detachment and migration is the epithelial-

mesenchymal transition (EMT). EMT, which plays critical roles in early embryonic 

morphogenesis (Thiery et al., 2009), can help tumor cells transit from the epithelial state to 

the mesenchymal state. Once tumor cells reach the target site, the mesenchymal phenotype 

reverts to the epithelial state via mesenchymal-to-epithelial transitions (Chaffer and Weinberg, 

2011). EMT program induction during tumorigenesis needs various signaling pathways 

between cancer cells and stromal cells nearby, such as transforming growth factor β (TGF-β), 

receptor tyrosine kinases, Wnt-β-catenin, Notch, and bone morphogenetic protein (Gonzalez 

and Medici, 2014).  
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Figure 1.5: The Processes of cancer metastasis. (Adapted from Christine L. Chaffer and 

Robert A. Weinberg, Science, 2011, A perspective on cancer cell metastasis) 

 

 Ovarian Cancer 1.3

1.3.1 Epidemiology 

Ovarian cancer (OVCA) is cancer that arises from the ovary. It is the eighth leading in cancer 

incidence and mortality in women worldwide, representing 3.4% of all newly diagnosed 

cancer cases and 4.4% of all cancer-related deaths among females in 2018 (Figure 1.2)(Bray 

et al., 2018). Among all gynecological cancers, ovarian cancer is the third most common 
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cancer after cervical and uterine cancer and is associated with the second-worst prognosis and 

the second-highest mortality rate (Bray et al., 2018). In Germany, ovarian cancer is the ninth 

most common cancer, but the fifth highest in mortality rate, with percentages of 2.4% and 

4.9%, respectively (Figure 1.2). In most developed countries, ovarian cancer remains the 

leading cause of death among gynecological cancers (Siegel et al., 2018). Such a high 

mortality rate is due to the asymptomatic and secret growth of ovarian cancer, which delays 

the onset of symptoms. Besides, the absence of effective screening and early detection 

methods result in its diagnosis in the advanced stages (Momenimovahed et al., 2019). As a 

result, ovarian cancer is called the “silent killer” (Momenimovahed et al., 2019).  

 

1.3.2 Classification 

Ovarian cancer is highly heterogeneous that encompasses a collection of neoplasms with 

distinct histological and molecular features and prognosis (Gilks and Prat, 2009). Ovarian 

cancer has a variety of subtypes. Currently, there are two conventional classification methods 

for ovarian cancer (Figure 1.6).  

Cells of origin: Based on the cells of origin and histogenetic principles, the WHO 

classified ovarian cancer into three main classes of tumors: epithelial tumors, stromal tumors, 

and germ cell tumors (Kurman, 2014). Epithelial tumors represent around 90% of all ovarian 

cancer cases, which form on the outer layer of the ovaries. Epithelial ovarian tumors can be 

further classified into histological types as follows: serous, mucinous, endometrioid, clear cell, 

transitional cell tumors (Brenner tumors), carcinosarcoma, mixed epithelial tumor, 

undifferentiated carcinoma, and others (Kaku et al., 2003; Kurman, 2014). Among these 

subtypes, serous tumors are the most common ones. Around 7% of ovarian cancers are 

stromal, which begins in the tissue that contains hormone-producing cells. Another category 

is the germ cell tumor that starts in egg-producing cells, which is rare and usually occurs in 

younger women (Kaku et al., 2003; Kurman, 2014).  

FIGO staging: For patient outcome prediction and treatment plan determination, the 

basic principle to refer to is cancer staging. The International Federation of Gynecology and 
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Obstetrics (FIGO) Committee on Gynecologic Oncology has a staging system for ovarian 

cancers since 1973 (Prat and Oncology, 2014). The FIGO stages ovarian cancer surgically 

and pathologically by detecting the tissue samples from ovaries, pelvis, and abdomen. 

Ovarian cancer is thus classified into four stages, namely stages I, II, III, and IV, as shown in 

Figure 1.6 (Javadi et al., 2016).  

 

 

Figure 1.6: Major classification methods of ovarian cancer.  

 

According to the data released by the Surveillance, Epidemiology, and End Results 

(SEER) program, the five-year survival rates for ovarian cancer vary for the different cell of 

origin subtypes (Table 1.1) (Howlader N et al., 2019). For women with the disease is 

confined to the ovary at diagnosis, cure rates are as high as above 90%. Even when the tumor 

extends to other pelvic structures or develops into primary peritoneal cancer, the five-year 

survival rates are still higher than 70%. However, it decreases to lower than 20% for patients 

with advanced stage. One main reason for the high mortality rate of ovarian cancer is that 

over 70% of ovarian cancer cases are detected at the late stage when it has the worst 

prognosis and causes most of the deaths (Rauh-Hain et al., 2011). Therefore, early detection 

of ovarian cancer is of significance in disease management and survival improvement.  
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Table 1.1: Five-year survival rates of ovarian cancer patients with different subtypes (data 

source: SEER, 1975-2016). 

Five-year survival rates of ovarian cancer 

FIGO staging Epithelial tumors Stromal tumors Germ-cell tumors 

Stage I 90% 95% 98% 

Stage II 70% 78% 94% 

Stage III 39% 65% 87% 

Stage IV 17% 35% 69% 

 

1.3.3 Risk Factors 

The risk factors of ovarian cancer are almost the same as that of breast cancer, which also 

includes genetic and non-genetic factors. The most significant genetic risk factor for ovarian 

cancer is the inherited mutations in BRCA1 or BRCA2, which account for around 5%-15% of 

all ovarian cancer cases (Lynch et al., 2013). Compared to women without BRCA1/BRCA2 

mutations, carriers of BRCA1 mutations have a 65% higher ovarian cancer risk, while women 

with BRCA2 mutations have a risk of up to 35% higher (Ingham et al., 2013; Mavaddat et al., 

2013). Similar to breast cancer patients, high-risk factors of ovarian cancer patients are 

familial and personal history (Momenimovahed et al., 2019).  Older age is the leading risk 

factor, especially for women over 65 years old, which largely reflects the accumulation of 

DNA mutations (Mohammadian-Hafshejani et al., 2017). Other factors like early age at 

menarche, late age at menopause, nulliparity, reproductive organ surgery, no contraception, 

hormone therapy, and unhealthy lifestyles, e.g., low physical exercise, smoking, alcohol, and 

high body mass index (BMI) in premenopausal women are all associated with the risk of 

ovarian cancer (Daniilidis and Karagiannis, 2007; Momenimovahed et al., 2019).       
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 Metabolomics  1.4

“Genomics and proteomics tell you what might happen, but metabolomics tells you what 

actually did happen.” 

                                                                   ─ Bill Lasley, University of California, Davis. 

In the “omics” family, metabolomics is the newest omics technology after genomics, 

epigenomics, transcriptomics, and proteomics, and is the endpoint of the pyramid (Dettmer 

and Hammock, 2004).  Metabolomics is the technique in system biology to qualitatively or 

quantitatively measure and analyze the metabolome changes associated with specific 

physiological and pathophysiological processes (Beger, 2013; Psychogios et al., 2011). The 

metabolome is the sum of all small-molecule (molecular weight less than 1500 Da) chemicals 

within cells, tissues, liquid biopsies, or the entire organism (Wikipedia). Metabolites are 

produced from metabolism, and they involve in many important biological processes, such as 

energetic regulation, enzyme activity control, structure build-up, and signaling (Vinayavekhin 

et al., 2010). Metabolic alterations are thought to be the downstream end products of 

expression alterations in genes or proteins. Metabolic variations reflect not only changes in 

individual genetic phenotypes and molecular physiology but also environmental influences 

(Beger, 2013). In this respect, metabolomics has the most significant advantage over the other 

omics technologies, the most predictive ability for the phenotypic properties could help to 

elucidate the nature and identity of the biological processes (Capati et al., 2017).   

Metabolic alterations caused by certain diseases could be detected in biological fluids 

before the clinical symptoms manifest because the cascade of small changes in enzyme 

activities could amplify the signal, which could be detected on the metabolite level (Capati et 

al., 2017). As a consequence, metabolomics is a promising method for disease biomarkers 

study. Indeed, metabolomics has attracted much attention in the discovery of biomarkers for 

disease diagnosis and prognosis (Wang et al., 2018a). 
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1.4.1 Cancer Metabolism  

Metabolic reprogramming, which is characterized by enhanced nutrient uptake to support 

biosynthetic, bioenergetics, and redox demands of malignant cells, is one of the hallmarks of 

cancer (Boroughs and DeBerardinis, 2015). Many metabolic processes are altered in cancer 

cells, tissues, or biofluids, resulting in measurable changes in metabolites that can be used as 

biomarkers to indicate the presence of cancer or its activity (Vazquez et al., 2016). The most 

classical metabolic pathway in cancer is aerobic glycolysis, rather than mitochondrial 

oxidative phosphorylation, which generates the energy needed for cellular processes in 

normal cells. Aerobic glycolysis in cancer is known as the “Warburg effect” (Vander Heiden 

et al., 2009; Warburg, 1956). In addition to glucose metabolism, glutamine metabolism is 

another fuel that supports cancer growth (Boroughs and DeBerardinis, 2015). Other amino 

acid metabolisms in cancer cells also play important roles. For instance, the oxidation of the 

branched-chain amino acids (BCAAs) isoleucine and valine provide an anaplerotic flux in 

some tissues (DeBerardinis and Chandel, 2016; Tonjes et al., 2013). Fatty acid metabolism is 

another common metabolic change in cancer cells that participate in membrane biosynthesis, 

lipidation reactions, and cellular signaling, which render as potential targets (DeBerardinis 

and Chandel, 2016). For example, the widely expressed transmembrane protein CD36 that 

facilitates fatty acid uptake is one of the targets in breast cancer. What is more, the decreased 

levels of CD36 in stromal tissue are associated with tumorigenesis initiation (DeFilippis et al., 

2012).  

Redox balance is also an essential feature of cancer cells. During tumorigenesis, reactive 

oxygen species (ROS) increased their production, which can be as high as a toxic level. 

Accordingly, glutathione oxidation-reduction, coupled to NADPH reduction-oxidation, is a 

major antioxidant pathway in cancer cells to cope with this (Boroughs and DeBerardinis, 

2015; Vazquez et al., 2016). The fundamental reason behind metabolic alterations of cancer 

cells can be attributed to the alterations in gene expression, as well as the metabolic enzyme 

activities (DeBerardinis and Chandel, 2016; Hart et al., 2016).   
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1.4.2 Metabolomics Techniques  

Currently, there are two standard identification techniques for metabolomics: nuclear 

magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). NMR spectroscopy 

uses isotopes processing property of magnetic spin, providing solution-state molecular 

structures information based on atom-centered nuclear interactions (Marion, 2013). MS 

involves an initial separation of metabolites from biological samples using chromatography 

(capillary electrophoresis (CE), gas chromatography (GC), liquid chromatography (LC) or 

ultra-high performance liquid chromatography (UPLC)) base on their mass to charge ratio, 

then identified with a tandem mass spectrometer (Feng et al., 2008). However, the pre-

separation stage is not always necessary. 

Each technique has its strengths and weaknesses but gives complementary information 

(Zhang et al., 2012). As summarized in Table 1.2, NMR is more reproducible, simple sample 

preparation, non-destructive, faster, quantitative, and less expensive, while MS has higher 

sensitivity, needs less sample, and gives more chemophysical information (Aboud and Weiss, 

2013; Capati et al., 2017; Hart et al., 2016; Zhang et al., 2012).  

 

Table 1.2: Summary of the advantages and disadvantages of NMR and MS techniques. 

 Features  NMR spectroscopy  MS 

Reproducibility  Very good 
Possible variation introduced 

by preparation 

Sensitivity  

Less sensitive 

(LOD: 100 µM 

≈100 metabolites) 

Very sensitive 

(LOD: 100 nM 

>1000 metabolites)  

Sample amount 
More sample is required 

(500 µl) 

Less sample is required 

(1-10 µl) 

Sample intervention Non-destructive Destructive  

Sample preparation  
Minimal   

(no separation required) 

Extensive (separation required, 

but not always) 
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Structural information High  Low  

Time consume  ~ 10 minutes  ~ 30 minutes 

Quantification  Easy  Difficult  

Chemophysical 

information 
Less information  

More information  

(time separation) 

Cost  Less expensive  Expensive 

 

So far, no technique could detect the whole metabolome. According to the aim of the 

investigation, one of the two approaches is used in metabolomics study: targeted or 

untargeted (Menni et al., 2017; Suhre and Gieger, 2012). The untargeted metabolomics 

technique detects previously unpredicted metabolic alterations associated with a specific 

disease, which is vital for identifying new biomarkers or novel mechanisms. The untargeted 

metabolomics usually uses NMR in hypothesis-generating studies that compare different 

groups (Menni et al., 2017; Suhre and Gieger, 2012). The targeted metabolomics technique 

involves hypothesis-driven experiments and is characterized by measuring sets of metabolites 

that are predefined and involve in a few metabolic pathways of interest. This approach mostly 

employs MS and has advantages of easily chemical identification, higher sensitivity, and 

absolute metabolite quantification (Menni et al., 2017; Patti et al., 2012). As a result, the 

typical method for metabolomics is to use NMR spectroscopy for untargeted screening and 

explore interesting pathways. Then employ MS to detect specific metabolites with low 

concentrations in a targeted way.  

 

 Tumor Markers   1.5

As defined by the National Cancer Institute, a tumor marker is “a substance found in tissue or 

blood or other body fluids that may be a sign of cancer or certain benign (noncancer) 

conditions. Most tumor markers are made by both normal cells and cancer cells, but they are 

made in larger amounts by cancer cells” (NCI Dictionary of Cancer Terms). Various tumor 

markers can be classified into the following categories according to their functions:  
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1) Screening markers are used to assess the cancer risk, distinguish individuals that are 

predisposed to particular types of cancers from the population. Typically, these 

markers are associated with genetic or epigenetic alterations. For instance, mutations 

of genes BRCA1 or BRCA2 indicates a higher risk of breast and ovarian cancer 

(Mavaddat et al., 2013).  

2) Diagnostic markers detect whether a specific tumor exists or not. For example, 

elevated levels of cancer antigen CA125 and CA19-9 could indicate ovarian cancer 

and pancreatic cancer, respectively (Haglund, 1986).   

3) Prognostic markers can be useful in predicting the course of tumor progression or 

outcomes and evaluating the survival chance of cancer patients. Tumor progression 

can be disease-free survival (DFS), distant disease-free survival (DDFS), 

progression-free survival (PFS), or overall survival (OS). In this project, we will 

emphasize PFS, a period that the disease remains stable, and OS, time from 

diagnosis to death.  

4) Predictive markers can predict patients’ responses to a particular treatment and help 

to decide the treatment plans. For example, the HER2 status of breast cancer patients 

is needed to determine the usage and efficacy of trastuzumab treatment.  

These tumor markers play essential roles in decision-making and tumor management, 

which have been demonstrated of significant clinical relevance.  

 

1.5.1 Tumor Markers for Breast Cancer  

Since breast cancer is a heterogeneous disease, no universal biomarker is available currently 

to diagnose and predict all types of breast cancer. Well-studied biomarkers for breast cancer 

can be categorized into several groups. Hormone receptors, including estrogen receptor (ER), 

progesterone receptor (PR), and human epidermal growth factor receptor family (HER2/neu), 

are the most important markers that assist in making treatment decisions (Harris et al., 2007). 

However, none of them has satisfactory diagnostic ability because they are not expressing in 

all breast cancer patients. Proliferation markers, such as Ki67, p53, cyclin D or E, 

differentially expressed in breast cancer cells, are potential prognostic markers.  
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However, they are not sufficiently recommended for the route clinical assessment of breast 

cancer (Harris et al., 2007; Weigel and Dowsett, 2010). The emerging multigene expression 

tests, such as the commercially available MammaPrint test and Oncotype DX, as well as 

Rotterdam Signature, have been developed as breast cancer prognostic markers (Harris et al., 

2007; Paik et al., 2004; van 't Veer et al., 2002).  

Well-established circulating markers, such as carbohydrate antigens CA15-3, CA27-29, 

and carcinoembryonic antigen (CEA), are important prognostic markers and are routinely 

used to monitor MBC relapse and treatment efficacy. However, they are not used for PBC 

screening or diagnosis (Bast et al., 2001; Ludwig and Weinstein, 2005). The American 

Society of Clinical Oncology (ASCO) recommended urokinase plasminogen activator (uPA) 

and plasminogen activator inhibitor-1 (PAI-1) for determining prognosis in patients with 

newly diagnosed, lymph node-negative breast cancer (Harris et al., 2007). However, they are 

only recommended when imaging results are available due to the limit of accuracy, so they 

are not recommended for MBC (Guadagni et al., 2001; Lumachi et al., 2000; Uehara et al., 

2008). Other circulating tumor markers, such as metabolites and the US Food and Drug 

Administration (FDA) approved prognostic marker CTCs, will be discussed in the following 

sections.  

 

1.5.2 Tumor Markers for Ovarian Cancer  

Carcinoembryonic antigen (CEA) was the first described single serum marker for epithelial 

ovarian cancer in 1976 (Khoo and Mackay, 1976). Cancer antigen 125 (CA125) is the most 

studied serum biomarker for serous epithelial ovarian cancer (Muinao et al., 2018). It was 

approved by the FDA in 1981 to monitor cancer for women with a known diagnosis of 

ovarian cancer, rather than for preoperative use, nor associated with a survival benefit 

(Ueland, 2017). However, CA125 has sensitive of 47% for patients at their early stages, but a 

sensitivity of 80%-90% at the late stages (Colakovic et al., 2000; Hogdall, 2008). Moreover, 

CA125 expresses not only in ovarian cancer but also in breast cancer, colon cancer, 

endometrial cancer, and pancreatic cancer. Around 20% of ovarian cancer patients do not 
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have CA125 expressed at all (Muinao et al., 2018). Thus, CA125 is not a specific biomarker. 

As a supplement to CA125, human epididymis protein 4 (HE4) was cleared by the FDA in 

2009 as a serum biomarker to monitor patients with a known diagnosed epithelial ovarian 

cancer and their recurrence (Ueland, 2017). In addition, HE4 could detect epithelial ovarian 

cancer 2 to 3 months earlier than CA125 (Ueland, 2017). However, serum HE4 levels are 

changing with aging, different menopausal status, and pregnancy, which lower the specificity 

of HE4 (Moore et al., 2012).  

 The new multivariate index assays, OVA1, Overa, Risk of Ovarian Malignancy 

Algorithm (ROMA), and combining with several serum markers have been cleared by the 

FDA to assess the risk of ovarian malignancy (Bristow et al., 2013; Coleman et al., 2016; 

Moore et al., 2009; Ueland et al., 2011). The individual serum markers are CA125, HE4, 

transferrin, β-2 microglobulin, apolipoprotein A1, and transthyretin. These multivariate index 

assays significantly improved preoperative testing sensitivity compared with the single 

biomarker tests (Bristow et al., 2013). Gene mutations, such as genes of BRCA1/BRCA2, P53, 

KRAS, EGFR, and microRNAs, might be promising markers for ovarian cancer screening, 

prognosis, and prediction (Bell, 2005; Ingham et al., 2013; Milner et al., 1993; Zhang et al., 

2008). 

 

 Circulating Tumor Cells 1.6

Circulating tumor cells (CTCs) are cancer cells derive from clones in the primary tumor and 

migrate around the body via the blood circulation. Thomas Ashworth first observed CTCs in 

the blood of a man with metastatic cancer in 1869 (Ashworth, 1869). CTCs are the 

intermediates in the metastatic cascade, where a subpopulation of CTCs works as seeds and is 

responsible for the dissemination to distant sites, namely the well-known cancer metastasis, 

as shown in Figure 1.5 (Chaffer and Weinberg, 2011). As revealed by experimental studies in 

the past decade, CTCs were present in blood of patients with different types of solid 

carcinomas while absent in blood of healthy individuals and patients without malignant 

tumors (Allard et al., 2004; Cristofanilli et al., 2004; Ghossein et al., 1999; Racila et al., 
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1998). Later, circulating tumor cells were proposed as an independent prognostic marker for 

metastasis, specifically for PFS and OS (Cohen et al., 2009; Cristofanilli et al., 2005; Danila 

et al., 2007; Giuliano et al., 2011). Enumeration of CTCs assists the prognosis of not only 

solid metastatic cancer with follow up data but also newly diagnosed cancer patients 

(Franken et al., 2012).  

A cardinal cut off of greater than or equal to five CTCs per 7.5 ml blood has been 

defined as CTC positive (Gregory et al., 2008), and it was proposed as an indicator of poor 

prognosis (Cristofanilli et al., 2005). Accordingly, those with less than 5 or no CTCs in 7.5 

ml blood are designated as CTC negative, representing good prognosis (Cristofanilli et al., 

2005). Additionally, CTCs could also predict the treatment responses in MBC, metastatic 

prostate cancer, and metastatic colorectal cancer. Therefore CTCs were also proposed as 

predictive markers (Budd et al., 2006; Cristofanilli et al., 2007; Tol et al., 2010). What is 

more, the expression profile of the hormone receptor status of CTCs could indicate the real-

time phenotype of metastasis, which could help to make appropriate treatment plans, 

especially for cancer patients at the late stages (Aktas et al., 2011; Fehm et al., 2009).  

Because of the low number of CTCs in peripheral blood, an enrichment step has to be 

done before detection (Zhe et al., 2011). The enrichment step could concentrate CTCs from 

the milieu of blood cells based on their physical features such as size, density, electric charge 

and deformability, and biological features such as surface marker or protein expression and 

invasion capacity (Alix-Panabieres and Pantel, 2014; Pantel and Alix-Panabieres, 2010). 

Currently, the gold standard of the first and only actionable test for detecting CTCs in cancer 

patients is the FDA approved CellSearchTM system. This system is based on the positive 

expression of epithelial markers epithelial cell adhesion molecule (EpCAM) or cytokeratin 8, 

18, and/or 19, and the negative expression of leukocyte CD45 on CTCs (Allard et al., 2004).     

However, it is of importance to note that a significant fraction of patients with overt 

distant metastases is negative for CTCs. This could be partly explained by EMT of CTCs, in 

which case they can be missed by enumeration techniques that exploit the expression of 

epithelial markers such as EpCAM or cytokeratin (Cristofanilli et al., 2004). The absence of 

CTCs in metastatic cancer patients gives rise to false-negative results and is the major 

drawback of the CellSearchTM system. Besides, leucocytes in the activated state have 
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epithelial markers expressed as well, thus increasing the false positive rate of CTCs (Allan 

and Keeney, 2010). Moreover, enrichment methods based on physical properties such as size 

and density have low sensitivity (Konigsberg et al., 2011; Ring et al., 2005). As a result, 

current methods for CTC detection can lead to under- or over-estimation of CTC number, so 

novel prognostic markers are highly needed. 

 

 Blood Metabolites as Tumor Markers  1.7

Cancer metabolomics studies with sample types of cell, tissue, urine, and blood have been 

reported, which have generated metabolite panels for various applications (Gunther, 2015; 

Wang et al., 2018a; Wang et al., 2016b; Xiao and Zhou, 2017). However, tissue biopsy has 

limitations of high invasive and heterogeneous, as well as the ineffectiveness in 

understanding metastatic risk, disease progression, and treatment efficiency (Marrinucci et al., 

2009). Urine samples can be easily affected by confounding factors and contaminated by 

microbiota, which makes it not the perfect sample type in biomarker study (Rodrigues et al., 

2016). The minimally invasive nature of blood samples (Crowley et al., 2013; Haber and 

Velculescu, 2014), the sensitive feature of metabolite, and the changes of metabolites in 

breast cancer initiation and progression make blood-based metabolites attractive biomarker 

candidates (Gunther, 2015). Indeed, blood metabolites associated with cancer risk have been 

studied in most cancers including breast (Fan et al., 2016b; Jasbi et al., 2019; Yuan et al., 

2018), ovarian (Fan et al., 2012; Li et al., 2017a; Zhou et al., 2010), prostate (Derezinski et 

al., 2017), colorectal (Shu et al., 2018a; Zaimenko et al., 2019), lung (Kumar et al., 2017; 

Xiang et al., 2018), pancreatic (Di Gangi et al., 2016; Kobayashi et al., 2013; Shu et al., 

2018b), and etc. 

Various studies have found promising applications for blood metabolites as detective, 

diagnosis, and prognostic markers for breast cancer. Some studies suggest the decreased 

levels of amino acids in breast cancer patients compared to healthy controls (More et al., 

2018; Shen et al., 2013; Zhou et al., 2017), and their increased levels in metastatic relative to 

early-stage breast cancer patients (Jobard et al., 2014; Oakman et al., 2011). On the contrary, 

higher levels of lipids were observed in breast cancer patients than in healthy controls (Shen 
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et al., 2013; Zhou et al., 2017), whereas lower levels of lipids were investigated in metastatic 

breast cancer than in early-stage breast cancer (Oakman et al., 2011). Apart from detection 

and prognosis, blood metabolite alterations have been linked to breast cancer treatment or 

chemotherapy response as well, which indicated the potential of metabolites as predictive 

markers (Stebbing et al., 2012; Tenori et al., 2012; Wei et al., 2013). Reports also uncovered 

the dependence of circulating metabolites profile on subgroups by examining breast cancer 

and healthy control blood from individuals with different molecular subtypes (Fan et al., 

2016b; Hart et al., 2017). However, studies about breast cancer plasma metabolites 

sometimes gave controversial results. For example, a lower serum level of glutamic acid in 

breast cancer patients was observed by Zhou et al. than in healthy controls, while Wang et al. 

showed an increased level (Wang et al., 2018b; Zhou et al., 2017). Moreover, two studies 

showed that lipids had higher amounts in the blood of metastatic breast cancer patients than 

early-stage ones (Jobard et al., 2014; Tenori et al., 2015), whereas another study indicated the 

opposite result (Oakman et al., 2011). 

Similar to other cancers and diseases, studies have found promising applications for 

blood metabolites as diagnostic, prognostic, or predictive markers in ovarian cancer, 

especially in epithelial ovarian cancer, the most common type of ovarian cancer (Turkoglu et 

al., 2016). Researchers have revealed the relationship between blood metabolites and ovarian 

cancer risk with mass spectrometry (Bachmayr-Heyda et al., 2017; Plewa et al., 2019; Yang 

et al., 2018). The pilot study to explore the relevance of plasma metabolites in ovarian cancer 

found an association between levels of plasma phosphatidylcholine, lysophosphatidylcholine, 

phosphatidylinositol, triglyceride, and sphingolipid, and ovarian cancer recurrence (Li et al., 

2017a). However, another study found some amino acids are correlated with ovarian cancer 

recurrence additional to lipids (Zhang et al., 2015). Kynurenine, acetylcarnitine, PC (42:11), 

and LPE (22:0/0:0) were selected as potential predictive markers for ovarian cancer in 

another study, with plasma samples followed up for three years (Xie et al., 2017). 

Furthermore, combining four plasma metabolites with the currently used predictive marker 

CA125 has been demonstrated to be more accurate than CA125 alone for ovarian cancer 

(Buas et al., 2016). 
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These studies suggest the possibility of using blood-based metabolic markers for the 

detection, diagnosis, and prognosis of breast cancer and ovarian cancer, irrespective of full 

understanding of the pathophysiological mechanisms. However, evidence is still limited. 

Optimized marker panels are yet to be developed and tested in large populations by high-

quality studies and further validated in prospective studies. 
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2. Aims and Objectives 

 Aims  2.1

Breast cancer is the most common cancer type in women worldwide and causes most of the 

cancer-related female deaths, which is mostly attributed to metastasis. Ovarian cancer has the 

second leading mortality rate among gynecological cancer. Detecting cancer at an early stage 

is expected to improve the survival rate. In addition, early detection and better 

prognostication of metastasis could improve patients’ outcomes and lower the high mortality 

rate. Liquid biopsy has advantages over the tissue sample because it can be accessed with 

minimally invasive procedures and monitored continuously. Cancer can cause overt 

metabolic alterations in cancer cells and the surrounding milieu. Blood metabolites have 

shown great capability as highly sensitive and informative markers in cancer, including breast 

cancer and ovarian cancer. The thesis aims to explore the potential of circulating metabolites 

as diagnostic and prognostic markers in breast cancer and ovarian cancer using a case-control 

approach. Plasma metabolites with possible diagnostic and prognostic values were identified 

in an initial discovery cohort and further tested in a validation cohort. Besides, the prognostic 

capabilities of these metabolites were compared to that of circulating tumor cells, an 

established prognostic marker for MBC patients. 

 

 Objectives  2.2

This project includes the following objectives:  

1) Identify significantly different metabolites that could distinguish:  

a. PBC patients from healthy controls 

b. MBC patients from healthy controls 

c. MBC patients from PBC patients      

d. OVCA patients from healthy controls  
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e. OVCA patients from PBC patients 

2) Identify plasma metabolites that correlate with progression-free survival and 

overall survival, which is thus of prognostic significance in MBC patients. 

3) Evaluate the potential of metabolites as putative biomarkers for early diagnosis 

and prognosis. 
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3. Materials and Methods 

 Study Samples 3.1

All studies were performed following the Declaration of Helsinki and approved by the 

Ethical Committee of Medical Faculty, University Heidelberg. In total, this project includes 

four different categories of blood samples. All subjects shared the same gender (female) and 

ethnic (Caucasian origin) background. They were provided written informed consent for the 

use of their blood samples and data.  

 

Healthy Controls - Healthy control samples from BIOMARKER Study 

The healthy controls consisted of individuals without clinically diagnosed malignancies or 

autoimmune diseases currently or historically, or current inflammation. Before blood 

withdraws, each volunteer was asked to finish a questionnaire under the supervision of study 

representatives regarding their lifestyle data. (Study Ethic number: S-175/2010, University of 

Heidelberg, Heidelberg, Germany) 

 

PBC - Primary breast cancer patients from the GENOM Study 

The PBC category included patients with sporadic and at the first diagnosis of breast cancer. 

Blood samples were collected before they underwent any therapeutic procedures, e.g., 

surgery, radiation, or systemic therapy. Histopathological and clinical-pathological features 

were determined by tumor tissues obtained from both the initial biopsy and surgical resection. 

For those who received neoadjuvant therapy, results from the former were regarded as valid 

only when the latter was not available. Histopathological and clinical pathology features of 

PBC patients were summarized in Table A1. (Study Ethic number: S-039/2008, University of 

Heidelberg, Heidelberg, Germany) 
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MBC - Metastatic breast cancer patients from CTC Study 

Breast cancer patients with one or more sites of metastasis were recruited, which were 

confirmed by radiological investigations. All MBC patients have received or were receiving 

therapy for their metastatic tumors before initial blood withdraw. Histopathological and 

clinical-pathological features of both their primary and metastatic tumors were recorded. 

Tumor progression status was radiographically monitored with around three-month intervals 

after each round of therapy. According to the RECIST guidelines, results were classified into 

complete or partial response (tumor size decrease), stable disease (tumor size neither increase 

nor decrease), or progressive disease (tumor size increase) (Eisenhauer et al., 2009). All the 

MBC patients were followed up after recruitment for up to 30 months. Histopathological 

characteristics and clinical pathology features of their metastatic tumors were summarized in 

Table A2. (Study Ethic number: S-295/2009, University of Heidelberg, Heidelberg, Germany) 

 

OVCA - Ovarian cancer patients  

The OVCA patients were recruited with the same standards as the PBC patients from the 

GENOM Study. Histopathological and clinical-pathological features of OVCA patients were 

summarized in Table A3. (Study Ethic number: S-052/2010, University of Heidelberg, 

Heidelberg, Germany). 

 

 Blood Sample Processing 3.2

Peripheral blood was drawn from all study participants into 9 ml EDTA tubes (S-Monovette®, 

Sarstedt, Nümbrecht, Germany) by nurses. Blood was centrifuged at 1300 g with a precooling 

centrifuge at 10°C for 20 min.  The resulting supernatant of the fractionated blood, i.e. 

plasma, was transferred to 2 ml vials. The fractionated blood supernatant was transferred into 

2 ml vials and was centrifuged at 15500 g with a precooling centrifuge at 10°C for 10 min, 

then a white pellet was observed. The supernatant plasma was pipetted out without touching 

the pellet and aliquoted in cryogenic vials. This step was done to ensure that the plasma was 

completely cell or cell debris free. All plasma aliquots were quickly frozen and stored at -
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80°C until the execution of metabolic analyses. The blood processing procedures for all 

sample categories are summarized in Figure 3.1. 

 

 

Figure 3.1: Blood sample pre-processing pipeline. Plasma is isolated by a two-step 

centrifugation protocol to remove cells and cell debris.  



Materials and Methods   48 

 

 CTC Detection and Enumeration 3.3

An additional 10 ml blood from MBC patients was collected into CellSaveTM tubes (Veridex, 

LLC, Raritan, NJ), of which 7.5 ml was used to enumerate intact, apoptotic, and enucleated 

CTCs. Blood samples were processed on the CellTracksTM AutoPrep system using the 

CellSearchTM circulating tumor cell kit (Veridex, LLC, Raritan, NJ), and CTC numbers were 

evaluated by the CellTracksTM AnalyserII (Veridex, LLC) (Veridex, 2010). CTC enumeration 

was done by our collaborators at the Department of Tumour Biology, University Hospital of 

Hamburg-Eppendorf. According to the number of CTCs, MBC patients were further 

classified as: 

 CTC positive (CTCpos-MBC): more than or equal to 5 intact CTCs per 7.5 ml blood. 

 CTC negative (CTCneg-MBC): less than 5 intact CTCs per 7.5 ml blood.  

 

 Metabolites Quantification by Targeted Metabolomics 3.4

3.4.1 Sample Preparation and the AbsoluteIDQ
®
 p180 Kit 

Plasma samples were thawed on ice, centrifuged, and aliquots of 10 μL were used for 

targeted quantitative metabolite analysis. Samples were prepared and analyzed using the 

AbsoluteIDQ® p180 Kit (Biocrates Life Sciences AG, Innsbruck, Austria) in strict 

accordance with the user manual. This kit was designated to target 188 common metabolites 

in human samples, including 21 amino acids (AAs), 21 biogenic amines (BAs), 40 

acylcarnitines (ACs), 76 phosphatidylcholines (PCs), 14 lysophosphatidylcholines (lysoPCs), 

15 sphingomyelins (SMs), and the sum of hexoses (H1) (Table A4; Table 3.1). The kit is high 

throughput, reproducible, translatable, and needs a small sample volume. 
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Table 3.1: Metabolite classes in the Biocrates AbsoluteIDQ® p180 kit (adapted from the 

Biocrates product information sheet).     

Metabolite classes Numbers Biological relevances (representatives) 

Amino Acids 21 

• Immune regulation 

• Nutritional status 

• Energy homeostasis 

Biogenic Amines 21 

• Detoxification 

• Cell cycle control 

• Neurotransmission 

Acylcarnitines 40 
• Mitochondrial function 

• Fatty acid oxidation 

(Lyso-)Phosphatidylcholines 90 
• Lipoprotein structure 

• Inflammation 

Sphingolipids 15 
• Membrane composition 

• Neuroprotection 

Hexoses 1 
• Insulin resistance 

• Glycolysis and gluconeogenesis 

 

3.4.2 Metabolites Quantification    

In brief, added 10 μL of the internal standard solution, which serves as a reference for 

quantification, to each well on a filtering spot of the 96-well extraction plate. Then 10 μL of 

each plasma sample, low/medium/high-quality control (QC) samples, blank, zero samples, or 

calibration standard were added to the appropriate wells (St John-Williams et al., 2017). 

Nitrogen of a gentle stream was used to dry the plate. Samples were derivatized for AAs and 

BAs with phenyl isothiocyanate. Then with 5 mM ammonium acetate in methanol, sample 

extracts were eluted. Furthermore, sample extract dilution was performed with either kit 

running solvent for flow injection analysis tandem mass spectrometry (FIA-MS/MS) (5:1) or 

40% methanol in water for the UPLC-MS/MS analysis (2:1). Absolute quantification of AAs 
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and BAs was performed by UPLC-MS/MS analysis. ACs, SMs, and (lyso)PCs were analyzed 

by FIA-MS/MS. Peak integration, calibration, and concentration calculations of the UPLC-

MS/MS data were done by TargetLynxTM (Waters Corporation). Then Biocrates’ MetIDQTM 

software was used to analyze both the UPLC-MS/MS data processed by TargetLynxTM and 

the data generated from FIA-MS/MS. All metabolite concentrations are reported in 

micromolar. 

 

3.4.3 Quality Controls and Technical Validation 

All samples were randomized and evenly distributed on seven kit plates. On each plate, one 

low-level QC, five medium levels QC, and one high-level QC samples were measured. To 

prove the validity of the run, and to verify the authentic performance of the applied 

quantitative procedure, technical validation of each analyzed kit plate was done automatically. 

MetIDQTM software was used to perform inter-plate technical validation (St John-Williams et 

al., 2017). All measured plates passed the technical validation, which confirmed the high 

quality and accuracy of the quantitative metabolomics data obtained. In order to minimize 

batch effects, normalization using medium level QC measurement was applied. 

Normalization procedure was performed by MetIDQTM software too. 

 

 Statistical Analysis 3.5

For each sample category, two independent study cohorts were included, the discovery cohort 

of 314 individuals included 100 MBC, 80 PBC, and 34 OVCA patients, and 100 healthy 

controls to identify potential candidate metabolites, while the validation cohort of 237 

samples consisted of 78 MBC, 109 PBC, and 35 OVCA patients, and 50 healthy controls. 

Among the 80 PBC samples in the discovery cohort, three with confirmed late-stage breast 

cancer and one with breast angiosarcoma, so these four samples were removed from the 

downstream analysis. Among the 78 MBC patients in the validation cohort, CTC status 

information was lacking for two, and they were excluded when identifying prognostic 
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markers for MBC. Additionally, four samples did not feature any FIGO staging information 

within the 35 OVCA samples in the validation cohort. The types and number of samples were 

listed in Table 3.2. All statistical analysis was performed with R3.5.1 (Team, 2015).   

 

Table 3.2: Overall of the type and number of samples used in this thesis work.    

 

 

3.5.1 Quality Control 

Metabolites were excluded when the percentage of concentration values, missing or below 

the limit of detection (LOD), was higher than 20%, and when batch coefficients of variation 

were larger than 0.3. Five healthy and five OVCA plasma samples from the discovery cohort 

were measured in triplicates to test the reliability of the mass spectrometry generated 

metabolite data. Metabolite SM C22:3 had coefficients of variation larger than 0.3 and, 

therefore, it was excluded from the following statistical analysis (Figure A1). After filtering 
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out metabolites with percentages of LOD or missing values higher than 20% (n = 50), the 

remaining values that below LOD or missing were replaced by imputed values between LOD 

and LOD/2 following equal distribution. At last, the remaining 138 unique and variably 

expressed metabolites were used for subsequent comparisons. All metabolite concentration 

values were log2 transformed and then normalized by the metabolite-wise batch 

standardization. 

 

3.5.2 The Difference in Metabolites between Groups 

Age was the only clinical characteristic available in all study groups and was unequally 

distributed among different groups, especially in the validation cohort (Figure A2). Human 

serum metabolic profiles are age-dependent (Yu et al., 2012), which was also verified in our 

study (Figure A3). Therefore, age was always adjusted in the univariate logistic regression 

analysis, which aimed to identify significantly altered metabolites between study groups or 

subgroups in the discovery cohort. The resulting p-values were adjusted for multiple testing 

by controlling for the false discovery rate (FDR; Benjamini-Hochberg method). All statistical 

tests were two-sided; FDR below 0.05 were regarded as statistically significant.  

The identified metabolites were further validated by age-adjusted univariate logistic 

regression analysis in an independent validation cohort. Only metabolites with FDR less than 

0.05 were chosen for downstream analysis. To compute the least redundant and most 

informative panel of metabolites that could discriminate different groups, penalized LASSO 

logistic regression models (ten-fold cross-validation to tune penalty parameter) were built 

(Tibshirani, 1996). This process was implemented in the R package “glmnet”. The 

corresponding area under the curve (AUC) was calculated for each multivariable model, as 

well as the sensitivities at predefined specificities with corresponding 95% confidence 

intervals (CIs). The performance of each metabolite was evaluated by using a ten-fold cross-

validated receiver operating characteristic (ROC) curve based on the logistic regression 

model.   
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3.5.3 Correlation between Variables 

Relationships between investigated metabolites were evaluated by partial Spearman 

correlation, which could adjust the remaining variables when calculating the correlation 

between any two metabolites. Relationships between metabolite concentrations and CTC 

numbers were analyzed by Spearman rank correlation.   

 

3.5.4 Correlation with Survival 

Period (in months) from blood withdrawn to the progression of the disease or last radiological 

examination was defined as PFS, while to death or last visit was regarded as OS. Each 

metabolite was dichotomized as the lowest quartile and the residual quartiles based on its 

concentration. Then the log-rank test was applied on the stratified data to compare the 

probability of survival between these two groups. Kaplan-Meier curve was constructed at the 

same time to demonstrate the relationship between individual metabolite levels and survival 

time. Metabolites that showed significant associations with survival in the univariate log-rank 

tests were imported into a multivariate LASSO cox model. Relevant metabolite variables 

were selected automatically with the LASSO penalty (ten-fold cross-validation to tune the 

penalty parameter) (Tibshirani, 1996).  

 

Comparison of survival models 

Survival models, including metabolite variables alone, CTC status alone, or metabolite 

variables with CTC status, were built. The 0.632+ bootstrap was used to evaluate the 

prognostic values of models by estimating the prediction error of LASSO cox models. The 

resulting values were summarized as the integrated prediction error (IPE) curve up to 30 

months (Gerds and Schumacher, 2007). Then IPEs of the models were compared to 

determine the best model. The lower of the IPE value of a model indicates the higher model 

accurate, which fits the data better. 
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3.5.5 Correlation with Clinical Characteristics 

When calculating the relationships between metabolite levels and clinical characteristics, 

different tests were used according to the data type. For categorical and binary data, 

Wilcoxon rank-sum tests were used. Spearman correlation permutation tests fitted the 

quantitative and continuous data better, while Jonckheere-Terpstra tests were the best for 

ordinal data. For clinical features that are distributed differently between CTCpos-MBC and 

CTCneg-MBC sub-groups, logistic regression analysis with covariates adjusted was done. In 

this way, authentic significance contributed by metabolites in differentiating between groups 

or the actual association between metabolites and survival could be evaluated.  

 

 Pathway Analysis 3.6

Associated metabolic pathways that these significantly different metabolites between PBC 

and healthy controls participated in were enriched by MetaboAnalyst 3.0 (Xia et al., 2015). 

This online software MetaboAnalyst 3.0 imported the concentration data of metabolites, and 

the standard metabolite names were human metabolome database (HMDB) IDs. The pathway 

library of “Homo sapiens” was selected. Pathway analysis algorithm of “Global test” was 

used for enrichment analysis, while the algorithm of “Out-degree Centrality” was used for 

topology analysis. 
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4. Results 

 Early Detective Value of Plasma Metabolites in PBC 4.1

Patients  

4.1.1 Global plasma metabolite profiles of PBC patients and healthy controls   

Estrogen receptor (ER) status and age were not equally distributed between discovery and 

validation cohorts, with the p-values for chi-square test were 0.047 and 0.001, respectively 

(Table A2). Fold changes (FCs) were calculated to show the distribution trend of metabolites 

and univariate logistic regression models were constructed to distinguish statistically different 

metabolites (p < 0.05) between PBC patients and healthy controls, with age was adjusted for 

its effect. Resulting p-values were adjusted for multiple comparisons. In the discovery cohort, 

between PBC patients and healthy controls, a total of 37 metabolites were significantly 

different, with six up-regulated metabolites and 31 down-regulated metabolites observed in 

PBC patients. In the validation cohort, 24 metabolites were significantly different, of which 

21 metabolites were found to be down-regulated while three metabolites up-regulated in PBC 

patients (Figure 4.1) (Yuan et al., 2018). 
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Figure 4.1: The volcano plot shows the comparison between PBC patients and healthy 

controls. The Y-axis represents -log10 (FDR: adjusted p-value with Benjamini-Hochberg), 

while the horizontal axis represents log2 (fold change: PBC patient versus healthy control), 

each spot symbolizes one metabolite. The dotted horizontal purple line highlights the 

statistical significance threshold (FDR < 0.05). Round spots represent metabolites in the 

discovery cohort, while triangular spots represent metabolites in the validation cohort. 

Metabolites that are not significantly altered are shown in grey, while significant metabolites 

are shown in red. Those that are prominent in both cohorts are shown in cyan and marked 

with text. 

 

Among these significantly altered metabolites, 18 metabolites were present in both 

discovery and validation cohorts (Table 4.1). Compared to healthy controls, 13 amino acids, 

two biogenic amines, and one acylcarnitine of downregulation, two acylcarnitines of 
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upregulation were detected in PBC patients. A heatmap visualized sample clustering based on 

the expression levels of these 18 metabolites with Euclidean distance metrics showed 

different clustering patterns of up-regulated and down-regulated metabolites (Figure 4.2) 

(Yuan et al., 2018). 

 

Table 4.1: List of significantly different levels of metabolite between PBC patients and 

healthy controls in the discovery and validation cohort.  

Metabolites (18) 
Discovery cohort Validation cohort 

p-value FDR FC p-value FDR FC 

Ala ↓ 4,59E-04 3,33E-03 -1,13 1,59E-03 1,45E-02 -1,12 

Asn ↓ 2,45E-04 2,16E-03 -1,16 7,46E-05 2,48E-03 -1,21 

Glu ↓ 1,03E-03 6,45E-03 -1,33 7,74E-04 9,41E-03 -1,31 

His ↓ 1,60E-04 1,83E-03 -1,11 3,14E-03 2,70E-02 -1,11 

Leu ↓ 3,99E-03 1,67E-02 -1,14 5,10E-03 3,72E-02 -1,13 

Lys ↓ 1,52E-04 1,83E-03 -1,15 1,48E-03 1,44E-02 -1,13 

Met ↓ 2,67E-03 1,27E-02 -1,17 8,48E-05 2,48E-03 -1,20 

Orn ↓ 6,26E-06 1,73E-04 -1,24 1,20E-05 8,79E-04 -1,27 

Phe ↓ 2,15E-03 1,10E-02 -1,10 6,95E-03 4,23E-02 -1,09 

Thr ↓ 2,51E-04 2,16E-03 -1,18 6,72E-03 4,23E-02 -1,18 

Trp ↓ 2,04E-06 1,22E-04 -1,21 1,83E-05 8,91E-04 -1,20 

Tyr ↓ 2,59E-05 5,95E-04 -1,21 6,04E-03 4,20E-02 -1,11 

Val ↓ 3,26E-04 2,50E-03 -1,12 6,79E-03 4,23E-02 -1,08 

Kynurenine ↓  2,79E-04 2,27E-03 -1,22 1,05E-03 1,10E-02 -1,17 

Met-SO ↓ 2,65E-06 1,22E-04 -1,46 1,27E-04 2,65E-03 -1,31 

C3 ↓ 4,18E-06 1,44E-04 -1,31 7,59E-04 9,41E-03 -1,19 

C2 ↑ 1,56E-07 2,16E-05 1,46 3,06E-04 4,47E-03 1,41 

C14:1 ↑ 2,40E-04 2,16E-03 1,19 2,91E-04 4,47E-03 1,35 

Note: The arrows indicate the relative increase/decrease of metabolite levels in PBC patients 

compared to healthy controls. p-values were adjusted for Benjamini-Hochberg correction. 

The criteria for selecting significantly altered metabolites were: FDR <0.05.  
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Figure 4.2: Supervised hierarchical complete linkage clustering with Euclidean distance 

metric, depending on the 18 significantly different metabolites between PBC patients and 

healthy controls.  
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4.1.2 A panel of metabolites associated with breast cancer early diagnosis and 

detection 

The diagnostic potential of metabolite panel was assessed through more advanced statistical 

tools. A multi-parameter ROC curve that established through a penalized LASSO logistic 

regression model (adjusting penalty parameters through 10-fold cross-validation) was used to 

build the least redundant and most informative metabolite panel. This panel was able to 

distinguish between PBC patients and healthy controls. The discovery cohort was used to 

build a robust statistical model, while the validation cohort was used for model selection and 

final classification model testing. The corresponding AUC was calculated for the LASSO 

logistic regression model. Finally, a multivariate model containing seven metabolites (Glu, 

Orn, Thr, Trp, Met-SO, C2, C3) was predicted, which produced high discrimination accuracy 

with AUCs of 0.87 (95% CI: 0.81 ~ 0.92) and 0.80 (95% CI: 0.71 ~ 0.87) for the discovery 

and validation cohorts, respectively (Figure 4.3) (Yuan et al., 2018). 

The leave-one-out cross-validated ROC curve built with the logistic regression model 

revealed that each metabolite in the panel could distinguish PBC patients from healthy 

controls (Figure 4.4). However, the combination of these seven metabolites performed better 

than individual metabolites (Figure 4.3). The AUC of each metabolite in the validation group 

was as follows: Glu (AUC 0.66), Orn (AUC 0.68), Thr (AUC 0.66), Trp (AUC 0.73), Met-

SO (AUC 0.68), C2 (AUC 0.72), and C3 (AUC 0.64) (Yuan et al., 2018). 
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Figure 4.3: Multi-parameter ROC classifier curves for distinguishing between PBC patients 

and healthy controls. The multi-parameter panel with seven variables selected by the 

penalized LASSO logistic regression model shows the best performance for the discovery 

and validation cohorts. The solid colored line typifies the discriminative power of the 

classifier and corresponding AUC value and 95% CI are displayed. ROC curve is colored 

according to cutoff values, and scale is shown on the right side of the graph. The x-axis and 

the y-axis represent the false positive rate (1-specificity) and the true positive rate 

(sensitivity), respectively. The diagonal dashed gray line means no separation ability, i.e. 

random classification. 

 

 



Results   61 

 

 

Figure 4.4: Univariate ROC curves for leave-one-out cross-validated logistic regression 

models based on the ability of individual metabolites to distinguish between PBC patients 

and healthy controls. The ROC curves for the discovery and validation cohorts are displayed 

in red and blue lines, respectively. The diagonal gray line means no separation ability, i.e. 

random classification. 
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In this thesis project, most of the PBC patients were at stage I or stage II (71 of 80 in the 

discovery cohort and 99 of 109 in the validation cohort). The logistic regression model, with 

only stage I and II breast cancer patients, was established to validate the potential 

classification functions of these seven metabolites further. The multi-parameter ROC curve 

had an AUC of 0.80 (95% CI: 0.71 ~ 0.87), which was equivalent to the AUC of all PBC 

patients. AUCs of individual metabolites from stage I and II breast cancer patients were 

similar to those from all PBC patients. The metabolite panel had better breast cancer 

detection capabilities than each metabolite in the panel as well (Yuan et al., 2018). 

 

4.1.3 Pathway analysis 

With metabolite concentration data, pathway enrichment analysis was performed to compare 

the metabolism of PBC patients to healthy controls. As a result, significant differences were 

observed between the two groups (Figure 4.5). In total, a list of 28 metabolic pathways was 

connected with significantly differentiated metabolites, among which 12 pathways were 

significant (p < 0.05). These pathways mostly involve acid metabolism, aminoacyl-tRNA 

biosynthesis, and nitrogen metabolism (Yuan et al., 2018). These pathways mostly involve 

acid metabolism, aminoacyl-tRNA biosynthesis, and nitrogen metabolism (Yuan et al., 2018). 
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Figure 4.5: All matched pathways, according to the p-values from pathway enrichment 

analysis (y-axis) and pathway impact values obtained from pathway topology analysis (x-

axis), for metabolites that could distinguish PBC patients from healthy controls. The color 

and size of each circle represent the p-value and pathway impact value, respectively. Pathway 

analysis was performed using the MetaboAnalyst 3.0 online tool. 
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 Diagnostic Value of Plasma Metabolites in MBC Patients  4.2

4.2.1 Plasma metabolite profiles of MBC, PBC patients, and healthy controls 

In the discovery cohort, plasma samples consist of 100 MBC patients (44 CTC-positive and 

56 CTC-negative), 76 PBC patients, and 100 healthy controls. In CTC-positive MBC patients, 

82 metabolites were found to be differentially expressed in comparison to healthy controls, 

whereas, only 17 metabolites were differentially expressed in CTC-negative MBC patients 

when compared to healthy controls. Similar results were obtained when comparing MBC to 

PBC patients. Indeed, 62 significantly different metabolite levels were observed after 

comparing CTC-positive MBC to PBC patients, while only 19 metabolite levels were 

significantly different between CTC-positive MBC and PBC patients.      

Significant differentially expressed metabolites identified in the discovery cohort were 

further tested in an expanded independent sample set with 76 MBC patients (21 CTC-positive, 

55 CTC-negative), 109 PBC patients, and 50 healthy controls. Univariate logistic regression 

analysis was used to validate the metabolites that could separate different groups. We 

confirmed 19 metabolite levels (five increased and 14 decreased) for CTC-positive MBC 

patients, and 12 metabolite levels (seven elevated and five reduced) for CTC-negative MBC 

patients were significantly different from healthy controls (Table 4.2). Likewise, 25 

metabolite levels (six increased and 19 decreased) for CTC-positive patients and nine 

metabolite levels (seven elevated and two reduced) for CTC-negative patients were found to 

be significantly different from PBC patients (Table 4.3). More metabolites were identified for 

patients with CTC-positive MBC than CTC-negative MBC in comparison to healthy controls 

or PBC patients. So the differences between CTC-positive MBC patients and controls or PBC 

patients were larger than that for CTC-negative MBC patients (Figure 4.6). These 35 

metabolites, including amino acids, biogenic amines, short- and long-chain acylcarnitines, 

lysophosphatidylcholines, and phosphatidylcholines, differed significantly between MBC 

patients and PBC patients or healthy controls.  
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Table 4.2: Metabolite levels are significantly different between CTC-positive or CTC-negative 

MBC patients and healthy controls.  

CTC-positive MBC vs. Control CTC-negative MBC vs. Control 

Metabolites  FC FDR AUC Metabolites  FC FDR AUC 

Asn ↓ -1.25 2.71E-02 0.71 Asn ↓ -1.24 7.26E-04 0.72 

Glu ↑ 1.69 1.29E-02 0.82 Glu ↑ 1.60 7.26E-04 0.72 

His ↓ -1.16 3.06E-02 0.79 His ↓ -1.16 9.21E-04 0.73 

Trp ↓ -1.17 3.92E-02 0.75 Thr ↓ -1.17 1.73E-02 0.69 

C4:0 ↑ 1.99 9.59E-03 0.79 Trp ↓ -1.24 2.44E-04 0.71 

C16:0 ↑ 1.29 3.05E-02 0.77 C2:0 ↑ 1.41 9.21E-04 0.68 

C18:1 ↑ 1.29 4.19E-02 0.80 C16:0 ↑ 1.41 3.28E-04 0.74 

lysoPC a C18:2 ↓ -1.65 9.56E-03 0.88 C18:0 ↑ 1.34 9.65E-04 0.66 

PC aa C40:6 ↑ 1.52 9.59E-03 0.74 C18:1 ↑ 1.50 2.44E-04 0.78 

PC ae C34:2 ↓ -1.25 3.42E-02 0.75 C18:2 ↑ 1.35 9.21E-04 0.71 

PC ae C34:3 ↓ -1.43 9.59E-03 0.76 lysoPC a C18:2 ↓ -1.33 9.21E-04 0.72 

PC ae C36:3 ↓ -1.32 9.59E-03 0.78 PC aa C40:6 ↑ 1.29 1.91E-03 0.68 

PC ae C40:4 ↓ -1.25 1.41E-02 0.68 
    

PC ae C42:3 ↓ -1.29 1.29E-02 0.83 
    

PC ae C42:4 ↓ -1.53 2.81E-03 0.77 
    

PC ae C44:3 ↓ -1.25 2.29E-02 0.77 
    

PC ae C44:4 ↓ -1.51 2.81E-03 0.80 
    

PC ae C44:5 ↓ -1.51 2.81E-03 0.72 
    

PC ae C44:6 ↓ -1.36 9.56E-03 0.69 
    

Note: Results of fold change (FC), univariate logistic regression with corresponding false 

discovery rate (FDR), and ten-fold cross-validated area under the curve (AUC) estimate for 

significantly different metabolites in both cohorts are shown. 
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Table 4.3: Metabolite levels are significantly different between CTC-positive or CTC-negative 

MBC and PBC patients.  

CTC-positive MBC vs. PBC CTC-negative MBC vs. PBC 

Metabolites FC FDR AUC Metabolites FC FDR AUC 

Arg ↓ -1.25 2.03E-02 0.80 Arg ↓ -1.17 1.67E-02 0.67 

Glu ↑ 2.22 1.58E-04 0.90 Glu ↑ 2.10 1.77E-07 0.85 

Orn ↑ 1.29 1.81E-03 0.70 Orn ↑ 1.49 2.57E-08 0.83 

Kynurenine ↑ 1.28 9.84E-03 0.66 Kynurenine ↑ 1.25 1.63E-03 0.68 

Met-SO ↑ 1.36 1.37E-02 0.68 Met-SO ↑ 1.36 6.11E-04 0.69 

C4:0 ↑ 2.19 4.23E-04 0.85 Spermidine ↑ 1.13 1.67E-02 0.63 

lysoPC a C18:2 ↓ -1.49 2.07E-03 0.83 C4:0 ↑ 1.49 3.20E-03 0.69 

lysoPC a C20:3 ↓ -1.31 1.37E-02 0.69 C18:2 ↑ 1.33 1.91E-04 0.69 

lysoPC a C20:4 ↓ -1.22 3.52E-02 0.71 lysoPC a C18:2 ↓ -1.20 8.31E-03 0.64 

PC aa C40:6 ↑ 1.43 1.11E-03 0.73 

    PC aa C42:1 ↓ -1.21 3.52E-02 0.67 

    PC ae C34:2 ↓ -1.28 4.58E-03 0.73 

    PC ae C34:3 ↓ -1.38 1.63E-03 0.73 

    PC ae C36:3 ↓ -1.37 4.23E-04 0.76 

    PC ae C40:1 ↓ -1.19 1.35E-02 0.75 

    PC ae C40:3 ↓ -1.19 7.75E-03 0.68 

    PC ae C40:4 ↓ -1.33 4.18E-04 0.71 

    PC ae C42:1 ↓ -1.19 7.75E-03 0.73 

    PC ae C42:3 ↓ -1.31 2.07E-03 0.81 

    PC ae C42:4 ↓ -1.62 1.15E-04 0.81 

    PC ae C42:5 ↓ -1.42 1.45E-04 0.75 

    PC ae C44:3 ↓ -1.31 2.72E-03 0.78 

    PC ae C44:4 ↓ -1.61 1.15E-04 0.82 

    PC ae C44:5 ↓ -1.64 1.15E-04 0.77 

    PC ae C44:6 ↓ -1.46 4.23E-04 0.73 
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Figure 4.6: Supervised hierarchical complete linkage clustering with Euclidean distance 

metric, depending on the 35 significantly different metabolites between MBC patients and 

PBC patients or healthy controls.  
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4.2.2 Plasma metabolite panels associated with metastatic breast cancer early 

detection 

A multivariable penalized LASSO logistic regression model (ten-fold cross-validated) 

comprising six metabolites (His, C4:0, C18:1, lysoPC a C18:2, PC aa C40:6, and PC ae 

C42:3) was predicted. It yielded a high discriminatory accuracy with an AUC of 0.92 (95% 

CI: 0.86 ~ 0.99) for CTC-positive MBC patients versus healthy controls. For CTC-negative 

MBC patients versus healthy controls, the predicted model consisting of 11 metabolites (Asn, 

Glu, His, Thr, Trp, C16:0, C18:0, C18:1, C18:2, lysoPC a C18:2, and PC aa C40:6) had the 

best distinguishing performance with an AUC of 0.89 (95% CI: 0.83 ~ 0.95). Another 

multivariable model was built to compare CTC-positive MBC and PBC patients, which 

contained 15 selected metabolites (Arg, Glu, Orn, C4:0, lysoPC a C18:2, lysoPC a C20:4, PC 

aa C40:6, PC aa C42:1, PC ae C34:2, PC ae C34:3, PC ae C36:3, PC ae C42:1, PC ae C42:3, 

PC ae C42:5, and PC ae C44:4) and generated an AUC of 0.95 (95% CI: 0.9 ~ 1.0). Though 

individual metabolite could not distinguish CTC-negative MBC patients from PBC patients 

with high accuracy, the model with a combination of seven metabolites (Arg, Glu, Orn, Met-

SO, spermidine, C4:0, and lysoPC a C18:2) predicted an appreciable AUC of 0.90 (95% CI: 

0.86 ~ 0.95) (Figure 4.7). 
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Figure 4.7: ROC curves for multivariable panels based on penalized LASSO logistic 

regression models to discriminate MBC patients from PBC patients or healthy controls. CTC-

positive MBC patients versus control: His, C4:0, C18:1, lysoPC a C18:2, PC aa C40:6, and 

PC ae C42:3; CTC-negative MBC patients versus control: Asn, Glu, His, Thr, Trp, C16:0, 

C18:0, C18:1, C18:2, lysoPC a C18:2, and PC aa C40:6; CTC-positive MBC versus PBC 

patients: Arg, Glu, Orn, C4:0, lysoPC a C18:2, lysoPC a C20:4, PC aa C40:6, PC aa C42:1, 

PC ae C34:2, PC ae C34:3, PC ae C36:3, PC ae C42:1, PC ae C42:3, PC ae C42:5, and PC ae 

C44:4; CTC-negative MBC versus PBC patients: Arg, Glu, Orn, Met-SO, spermidine, C4:0, 

and lysoPC a C18:2.  
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Figure 4.8: Distribution of the LASSO selected metabolite concentrations in CTC-positive 

MBC, CTC-negative MBC, PBC patients, and healthy controls. Box plots of metabolites are 

represented as the logarithm of concentration to the base 2 values. 

 

Boxplots for the 25 metabolites selected by the four multivariate penalized LASSO 

logistic regression models were constructed to show the distributions of metabolite 

concentrations in each group (Figure 4.8). Ten-fold cross-validated univariate ROC analysis 

for each candidate metabolite in the set could predict the ability to distinguish CTC-positive 

or CTC-negative MBC patients from PBC patients or healthy controls. Even though 

individual metabolites could distinguish different groups by themselves, multivariable models 

with selected panels performed better (Figure 4.7; Figure 4.9). Among these 25 metabolites, 

glutamate showed the best ability to discriminate different groups (Table 4.2; Table 4.3; 

Figure 4.9). Remarkably, ornithine and Met-SO could differentiate MBC patients from PBC 

patients better than MBC patients from healthy controls (Figure 4.9). 
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Figure 4.9: Ten-fold cross-validated ROC curves based on univariate logistic regression models 

for the selected individual metabolites. The ROC curves for CTC-positive MBC patients versus 

healthy controls, CTC-negative MBC patients versus healthy controls, CTC-positive MBC versus 

PBC patients, and CTC-negative MBC versus PBC patients are displayed in red solid, blue 

dashed, purple dotted, and black dot-dashed lines, respectively. The diagonal gray line means no 

separation ability, i.e. random classification. 
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 Prognostic Value of Plasma Metabolites in MBC Patients  4.3

4.3.1 Plasma metabolites correlated with PFS and OS 

Survival data were available for all MBC patients in both discovery and validation cohorts. 

The log-rank test was employed to identify metabolites that could predict PFS and OS. Each 

metabolite was categorized into two classes according to its concentration value: the lowest 

quartile and the residual quartiles. In the discovery cohort, 16 and 51 metabolites were 

significantly correlated with PFS and OS (p < 0.05), respectively. These metabolites were 

further tested in the validation cohort. Ultimately, four metabolites, kynurenine, PC aa C36:3, 

PC ae C36:1, and PC ae C38:3, were correlated with PFS significantly. Here, p-values were 

not adjusted for multiple testing. Higher levels of these metabolites were found to be 

associated with higher probabilities of PFS (Table 4.4; Figure 4.10A). Twelve metabolites, 

lysoPC a C18:1, lysoPC a C20:3, lysoPC a C20:4, PC aa C36:3, PC aa C36:4, PC aa C38:5, 

PC ae C36:1, PC ae C38:3, PC ae C38:4, PC ae C40:2, SM C18:1, and SM (OH) C22:2, were 

also positively related to OS significantly (Table 4.4; Figure 4.10B). 

Table 4.4: Associations between plasma metabolites or CTC counts and PFS and OS 

assessed by the log-rank model.  

Metabolites PFS OS 

Kynurenine 3.88E-04 3.94E-01 

lysoPC a C18:1 3.08E-01 1.18E-03 

lysoPC a C20:3 7.78E-02 6.63E-05 

lysoPC a C20:4 7.47E-01 5.09E-04 

PC aa C36:3 2.98E-03 1.81E-07 

PC aa C36:4 2.20E-01 1.15E-05 

PC aa C38:5 2.30E-01 9.59E-05 

PC ae C36:1 2.77E-03 6.33E-04 

PC ae C38:3 1.79E-04 1.12E-08 

PC ae C38:4 7.98E-02 1.30E-03 

PC ae C40:2 4.35E-01 5.40E-03 

SM C18:1 1.73E-01 1.23E-06 

SM (OH) C22:2 3.30E-01 6.28E-05 

CTC 3.05E-02 6.37E-10 

Note: significant results are in bold. 
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Figure 4.10: Kaplan-Meier curves of the CTC status and metabolites that significantly 

correlated with progression-free survival (PFS, A) and overall survival (OS, B). Metabolite 

levels were stratified according to their concentrations as the lowest quartile (“Low”) and 

residual quartiles (“High”). CTCs were stratified as CTC-positive and CTC-negative.  

 

4.3.2 Correlations of plasma metabolites with CTC counts 

For these 12 metabolites that related to OS, spearman correlation analysis was performed to 

assess the correlations between metabolite concentrations and CTC counts. Results revealed 

that kynurenine, PC ae C36:1, PC ae C40:2, and SM C18:1 were not significantly correlated 

with CTC counts, while the other metabolites were negatively correlated with CTC counts 

significantly. The lower metabolite concentrations, the higher CTC numbers (Figure 4.11).    
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Figure 4.11: Spearman rank correlation of metabolite concentrations and CTC numbers. 

Metabolites significantly associated with CTC counts are marked with texts of correlation 

coefficients. The green dots represent positive correlations, while red dots indicate negative 

correlations. 

 

4.3.3 Evaluation and comparison of putative prognostic models 

The LASSO cox model predicted that combination of PC ae C36:1 and PC ae C38:3 for PFS 

(IPE = 5.669 compared to IPE0 = 5.689 for the null model without covariate information) and 

combination of lysoPC a C20:3, lysoPC a C20:4, PC aa C38:5, PC ae C38:3, and SM (OH) 
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C22:2 for OS (IPE = 5.795 compared to IPE0 = 6.130 for the null model without covariate 

information) were the best-fitting multivariate models, as shown in Table 4.5. When CTCs 

were introduced into these multivariable metabolite models, the IPEs were somewhat lower 

but essentially unchanged (PFS: 5.610, OS: 5.254; Figure 4.12). For PFS, PC ae C36:1 

outperformed the multivariable model (IPE = 5.617), while lysoPC a C20:3 outperformed the 

multivariable for OS (IPE = 5.722). In comparison to CTCs (IPE of 5.628 for PFS and 5.268 

for OS), PC ae C36:1 performed slightly better for PFS, but lysoPC a C20:3 performed worse 

for OS. However, combinations of PC ae C36:1 with CTCs and lysoPC a C20:3 with CTCs 

showed better prediction accuracies than CTCs alone for PFS (IPE = 5.535) and OS (IPE = 

5.082), respectively (Figure 4.13).  

 

 

Figure 4.12: Integrated prediction error (IPE) curves up to 30 months for the null model 

(Kaplan-Meier model without any covariate information), CTC, multivariate metabolite 

model, and metabolite model + CTC for PFS and OS. The number of individuals at risk at 

different time points is indicated along the x-axis. The y-axis represents prediction errors of 

the LASSO cox model. 
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Figure 4.13: Integrated prediction error (IPE) curves for PFS (A) and OS (B). The curves 

were up to 30 months for the null model (Kaplan-Meier model without any covariate 

information), CTCs, PC ae C36:1 (PFS)/lysoPC a C20:3 (OS), and PC ae C36:1 

(PFS)/lysoPC a C20:3 (OS) + CTCs. The number of individuals at risk at different time 

points is indicated along the x-axis. The y-axis represents prediction errors of the LASSO cox 

model. 
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Table 4.5: Different LASSO cox models for PFS and OS in MBC patients, corresponding 

integrated prediction errors (IPE) were shown.  

Type Model 
PFS OS 

Variables  IPE Variables  IPE 

O
n
e-

m
et

ab
o
li

te
 Null model  None  5.689 None 6.130 

Metabolite 

model 
PC ae C36:1 5.617 lysoPC a C20:3 5.722 

CTC model CTC status  5.628 CTC status 5.268 

Metabolite + 

CTC model 

PC ae C36:1, 

CTC status 
5.535 lysoPC a C20:3, CTC status 5.082 

M
u
lt

i-
m

et
ab

o
li

te
s 

Null model  None 5.689 None 6.130 

Metabolites 

model 

PC ae C36:1, PC 

ae C38:3 
5.669 

lysoPC a C20:3, lysoPC a 

C20:4, PC aa C38:5, PC ae 

C38:3, SM (OH) C22:2 

5.795 

CTC model CTC status 5.628 CTC status 5.268 

Metabolites + 

CTC model 

PC ae C36:1, PC 

ae C38:3, CTC 

status  

5.610 

lysoPC a C20:3, lysoPC a 

C20:4, PC aa C38:5, PC ae 

C38:3, SM (OH) C22:2, CTC 

status 

5.254 
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 Diagnostic Value of Plasma Metabolites in OVCA 4.4

Patients  

4.4.1 Plasma metabolite profiles of OVCA, PBC patients, and healthy 

controls 

With the remaining 138 metabolites after removing outliers, principal component analysis 

(PCA) was performed for OVCA patients and healthy controls in the discovery and 

validation cohorts. As shown in Figure 4.14, the separation of these two groups was based on 

the first principal component, and the separation of samples within the groups was mostly 

depending on the second principal component. The variance of ovarian cancer patients was 

generally higher than healthy controls, which may be related to the heterogeneous nature of 

ovarian cancers. The highest contribution to the overall variance originates from 

phosphatidylcholines and acylcarnitines. 

 

 

Figure 4.14: PCA scoring plot on the metabolite dataset of ovarian cancer patients and 

healthy controls for the discovery cohort (A) and validation cohort (B) with outliers excluded, 
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95% confidence ellipses are drawn for each group. Round red spots represent samples from 

healthy controls, while triangular aqua spots represent samples from ovarian cancer. 

 

The data set of the discovery cohort consisted of 34 OVCA patients, 80 PBC patients, 

and 100 healthy controls. A total of 94 metabolites were differentially expressed between 

OVCA patients and healthy controls (FDR < 0.05). The data set for validating the potential 

metabolites consisted of 35 OVCA patients, 109 BC patients, and 50 healthy controls. 

Among these significant differentially expressed metabolites identified in the discovery 

cohort, 71 were verified independently to separate OVCA samples from healthy controls, 

including seven amino acids, four acylcarnitines, five lysophosphatidylcholines, 54 

phosphatidylcholines, and one sphingomyelin. Except for the increased levels of Glu, C2, 

C18:1, and C18:2 in ovarian cancer patients relative to healthy controls, all the other 

identified differentially expressed metabolites were down-regulated. 

 

4.4.2 A panel of plasma metabolites associated with OVCA diagnosis 

The resulting 71 features were reduced by LASSO regression analysis as described in the 

Methods. Videlicet, models were trained on the discovery cohort with ten-fold cross-

validation, which generated an optimal parameterized model consisted of a subset of seven 

metabolites: His, Trp, C18:1, lysoPC a C18:2, PC aa C32:2, PC aa C34:4, and PC ae C34:3. 

Following training, this panel of metabolites was tested on an independent validation dataset 

consisted of 35 OVCA patients, 109 PBC patients, and 50 healthy controls. The performance 

of this classifier was as high as AUC = 0.95 (95% CI: 0.89 ~ 1.00) (Figure 4.15, left). 

FIGO stages I and II are designated as early-stage OVCA, while stages III and IV are 

designated as late-stage OVCA. Correspondingly, the discovery cohort included three early-

stage and 31 late-stage OVCA samples, while the validation cohort contained ten early-stage 

and 21 late-stage OVCA samples. There were only ten and three early-stage samples in the 

discovery and validation cohort, respectively. The model with seven metabolites that could 

discriminate OVCA patients from healthy controls achieved an AUC of 0.87 (95% CI: 0.76 ~ 



Results   81 

 

0.97) for early-stage OVCA samples (Figure 4.15, middle) and an AUC of 0.96 (95% CI: 

0.92 ~ 1.00) for late-stage OVCA samples to differentiate from healthy controls (Figure 4.15, 

right). 

 

 

Figure 4.15: ROC curves for a seven metabolites panel to distinguish between OVCA 

patients and healthy controls (left), early-stage OVCA patients and healthy controls (middle), 

late-stage OVCA patients and healthy controls (right). This classifier panel includes His, Trp, 

C18:1, lysoPC a C18:2, PC aa C32:2, PC aa C34:4, and PC ae C34:3. The diagonal dot-

dashed gray line means no separation ability, i.e. random classification. 

 

The performance of this seven metabolites classification model in discriminating OVCA 

patients from PBC patients was also evaluated. The ROC curve analysis for OVCA and PBC 

patients separation achieved an AUC of 0.93 (95% CI: 0.88 ~ 0.98) (Figure 4.16, left). At the 

same time, OVCA patients at the early and late stages were also investigated. Early-stage 

OVCA and PBC patients distinction had a relatively low AUC of 0.70 (95% CI: 0.57 ~ 0.83) 

(Figure 4.16, middle). However, the discriminatory power between late-stage OVCA and 

PBC patients could be as high as AUC = 0.943 (95% CI: 0.88 ~ 1.00) (Figure 4.16, right).  

The low number of early-stage OVCA samples might be the reason for their low performance, 
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and the reason for the similar discriminative ability between late-stage and overall OVCA 

patients.    

 

 

Figure 4.16: ROC curve for a seven metabolites panel to distinguish between OVCA and 

PBC patients (left), early-stage OVCA and PBC patients (middle), late-stage OVCA and PBC 

patients (right). This classifier panel includes His, Trp, C18:1, lysoPC a C18:2, PC aa C32:2, 

PC aa C34:4, and PC ae C34:3. The diagonal dot-dashed gray line means no separation 

ability, i.e. random classification. 

 

To evaluate the power of each metabolite in discriminating OVCA patients from healthy 

controls or PBC patients, leave-one-out cross-validated ROC analysis for the logistic 

regression model was built in the discovery and validation cohorts (Table 4.5). AUCs of 

early-stage OVCA patients differed a lot from the overall OVCA patients because of the 

small sample size. Therefore, results for early-stage OVCA patients could not reflect the 

authentic ability of the metabolite panel in differentiating them from healthy controls or PBC 

patients. Each metabolite in the panel performed with high AUC in separating OVCA 

patients from healthy controls or PBC patients (Figure 4.17). However, the multivariate 

model containing these seven metabolites had the highest differentiation power (Figure 4.15; 

Figure 4.16).   
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Figure 4.17: Leave-one-out cross-validated ROC analysis for individual metabolites to 

differentiate OVCA patients from healthy controls or PBC patients. The continuous red line 

and dotted blue line represent the ROC curves for OVCA patients versus healthy controls, 

OVCA patients versus and PBC patients, respectively. The diagonal gray line means no 

separation ability, i.e. random classification. 
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4.4.3 Plasma metabolites associated with OVCA diagnosis identified by 

Biocrates AbsoluteIDQ
®
 p400 HR Kit 

During the process of data analysis, Biocrates released the AbsoluteIDQ® p400 HR Kit. This 

new kit could measure 408 metabolites simultaneously, including 21 amino acids, 21 

biogenic amines, one hexose, 172 phosphatidylcholines, 24 lysophosphatidylcholines, 31 

sphingomyelins, nine ceramides, 55 acylcarnitines, 14 cholesteryl esters, 18 diglycerides, and 

42 triglycerides (Table A5). With the same patient samples, plasma metabolites were again 

measured by the p400 HR kit. The profiling procedure was the same as for the p180 kit, 

which was described in the Methods.   

A total of 248 metabolites were left for downstream analysis after filtering with the same 

criteria. Metabolites concentration data were log2 transformed, and univariate logistic 

regression analysis identified the significantly different metabolites between groups. In the 

end, 133 differentially expressed metabolites between ovarian cancer patients and healthy 

controls were identified in the discovery cohort, and 77 metabolites were verified in the 

validation cohort. These 77 metabolites consisted of eight amino acids, four biogenic amines, 

35 phosphatidylcholines, nine lysophosphatidylcholines, 12 sphingomyelins, two ceramides, 

four acylcarnitines, one cholesteryl ester, one diglyceride, and one triglyceride. Moreover, all 

the metabolites in the classifier panel that measured with the p180 kit to distinguish between 

OVCA patients and healthy controls were also differentially expressed when measured with 

the p400 kit. 

Further, a panel of 17 metabolites was selected by multivariate penalized LASSO 

logistic regression analysis, as with the p180 kit. This discriminative panel contained Ala, 

Asn, Cit, Glu, Trp, ADMA, c4-OH-Pro, SDMA, AC(4:0), AC(16:1), LPC(18:2), PC(34:5), 

PC(35:1), PC(42:4), PC-O(30:0), SM(32:2), and SM(42:1) achieved a high AUC of 0.99 (95% 

CI: 0.97 ~ 1.00) (Figure 4.18). The sensitivity and specificity were higher than the panel 

selected with the p180 kit. Trp and LPC(18:2) were the overlapped metabolites in the classier 

panels that selected with the p180 kit and p400 kit. Likewise, the combination of the classier 

panel performed better than individual metabolites in separating OVCA patients from healthy 

controls (Figure 4.18; Figure 4.19).      
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Figure 4.18: ROC curve for multiparametric panel based on penalized LASSO logistic 

regression model to distinguish ovarian cancer patients from healthy controls. The diagonal 

dot-dashed gray line means no separation ability, i.e. random classification. 
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Figure 4.19: ROC curves of individual metabolites from the classifier panel that measured 

with p400 kit to separate OVCA patients from healthy controls. ROC curves for the 

discovery and validation cohorts are shown with red and blue lines, respectively. The 

diagonal gray line means no separation ability, i.e. random classification. 
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5. Discussion 

Cancer management and treatment have benefited a lot from biomarkers, which have 

improved disease outcomes and the overall life quality of cancer patients. Cancer biomarkers 

have increased the survival rates, for instance, amongst breast cancer patients (Cardoso et al., 

2009; Kataja et al., 2009) and ovarian cancer patients (Ledermann et al., 2018). In addition, 

the prediction of the metastasis risk of cancer patients might facilitate to generate tailored 

treatment (Weigelt et al., 2005). The better prognostic prediction will promote a more 

personalized medicine approach, which is the future of cancer treatment. However, well-

established circulating biomarkers have limited applications. For example, CA15-3, CA27-29, 

and CEA are only appropriate for metastatic breast cancer relapse monitoring and prognosis, 

rather than diagnosis (Bast et al., 2001; Ludwig and Weinstein, 2005). Similarly, FDA 

approved CEA, CA125 and HE4 are markers for ovarian cancer diagnosis and monitoring, 

but lacking high specificity and sensitivity, especially for patients at an early stage (Hogdall, 

2008; Moore et al., 2012; Muinao et al., 2018; Ueland, 2017). Though CTCs are very 

promising prognostic markers of metastatic breast cancer, their detection methods increase 

the false positive and false negative rate (Allan and Keeney, 2010; Cristofanilli et al., 2004). 

Therefore, it is urgent to develop better and more accurate markers for breast cancer and 

ovarian cancer early detection, as well as for metastatic breast cancer early detection and 

prognosis.       

Circulating biomarkers, especially biomarkers in blood, are suitable and practical for 

routine clinical use. Compared to tumor tissues, blood samples can be easily accessed with 

minimally invasive procedures, which is highly appropriate for repeated sampling and 

continuously monitoring. Blood metabolic profile alterations, which have been proposed as 

diagnostic, prognostic, and predictive markers for several cancers including breast cancer and 

ovarian cancer, were investigated (Gunther, 2015; Hart et al., 2017; Loke and Lee, 2018; 

Plewa et al., 2019). Metabolites represent the ultimate changes of the organism and could 

directly reflect the phenotypic properties, which help to elucidate the nature and identity of 

biological processes (Beger, 2013; Capati et al., 2017). This is the most significant advantage 
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of metabolites over other signatures such as somatic DNA mutations, DNA methylations, 

microRNAs, or proteins. Measurement of metabolites by mass spectrometry is fast, sensitive, 

robust, and needs only a very small sample volume. These properties indicate the potential of 

metabolites as biomarkers for breast cancer and ovarian cancer.     

 

 Metabolites Associated with PBC 5.1

Comparative profiling of plasma metabolite levels generated a list of 18 metabolites that were 

significantly different (FDR < 0.05) between PBC patients and healthy controls. In detail, 

increased levels of C2 and C14:1, and decreased levels of Ala, Asn, Glu, His, Leu, Lys, Met, 

Orn, Phe, Thr, Trp, Tyr, Val, Kynurenine, Met-SO and C3 in PBC samples were observed. 

A multi-marker panel is superior to a single marker, because the multi-marker panel is 

more informative, accurate, and stable. The panel of metabolites differentiating PBC patients 

from healthy controls showed that a combination of the discriminatory power of individual 

metabolites resulted in higher performance than each metabolite. An AUC of 0.80 was 

achieved, wherein the models consisted of Glu, Orn, Thr, Trp, Met-SO, C2, and C3 that may 

serve as potential early diagnostic biomarkers of breast cancer. The inclusion of metabolites 

in the final model was based on a penalized automatic variable selection with ten-fold cross-

validation regression analysis. The cross-validation method randomly divides the data into 

training and validation tests, so multiple rounds of cross-validation are performed, reducing 

data variability and over-fitting. This is statistically equivalent to independent validation, so it 

is crucial here because these results are not independently validated. Pathway enrichment 

analysis revealed significant enrichment of 12 pathways, including disturbances in amino 

acid metabolism, aminoacyl-tRNA biosynthesis, and nitrogen metabolism.  

As one of the most prominent discriminatory features, the majority of amino acids in 

plasma of PBC patients were lower than in healthy controls, which is consistent with the 

results of most previous reports of breast cancer patients with lower amino acid amounts than 

healthy controls (Jove et al., 2017; Shen et al., 2013; Wang et al., 2016a; Zhou et al., 2017). 

Lower levels of amino acids might associate with higher protein requests in the cancer cell to 
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support its rapid growth and proliferation (Lai et al., 2005). Another feature of this study is 

the significant increase in fatty acid and lipid levels in PBC patients, relative to those in 

healthy controls, which have been mentioned in other reports (Lv and Yang, 2012; Wang et 

al., 2016a; Zhou et al., 2017).  

 

 Metabolites Associated with MBC 5.2

MBC subgroups defined by CTC status had distinct plasma metabolite profiles, as evident 

from the clustering of samples. Abundances of 19 metabolites for CTC-positive MBC 

samples and 12 metabolites for CTC-negative MBC samples were validated to significantly 

(FDR < 0.05) different from healthy controls. Increased levels of Glu, C4:0, C16:0, C18:1, 

PC aa C40:6 in CTC-positive MBC samples, and Glu, C2:0, C16:0, C18:0, C18:1, C18:2, PC 

aa C40:6 in CTC-negative MBC were observed when compared to healthy controls. On the 

other hand, Asn, His, Trp, and lysoPC a C18:2 were decreased in all MBC samples in 

comparison to healthy controls.  

Multivariate ten-fold cross-validated LASSO regression analysis generated two panels 

of metabolites to distinguish between MBC subgroups and healthy controls. All metabolites 

were allowed to enter the model as penalized variables and retained as long as they have 

unique contributions to the discriminative power of the model. For discriminating CTC-

positive MBC from healthy samples, a combination of His, C4:0, C18:1, lysoPC a C18:2, PC 

aa C40:6, and PC ae C42:3 was postulated with AUC = 0.92. Although the difference 

between CTC-negative MBC and healthy controls were not as high as the CTC-positive 

MBC, combining Asn, Glu, His, Thr, Trp, C16:0, C18:0, C18:1, C18:2, lysoPC a C18:2, and 

PC aa C40:6 could differentiate CTC-negative MBC and control with an AUC of 0.89.  

Metabolites that were different between MBC subgroups and PBC patients exhibited 

many overlaps with those between MBC subgroups and healthy controls. Among the 25 

significantly different metabolites, a combination of Arg, Glu, Orn, C4:0, lysoPC a C18:2, 

lysoPC a C20:4, PC aa C40:6, PC aa C42:1, PC ae C34:2, PC ae C34:3, PC ae C36:3, PC ae 

C42:1, PC ae C42:3, PC ae C42:5, and PC ae C44:4 was postulated with AUC = 0.95 for 
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CTC-positive MBC samples, whereas within the nine significantly different metabolites, a 

panel of  Arg, Glu, Orn, Met-SO, spermidine, C4:0, and lysoPC a C18:2 with AUC = 0.90 

was selected for CTC-negative MBC samples compared to PBC samples. Nowadays, MBC 

patient detection depends on the clinical manifestations of disease transmission to distant 

organs, a biopsy of affected organs, imaging methods, radiological assessment, and serum 

tumor markers (Scully et al., 2012). However, these methods are less effective in detecting 

metastasis, especially at the early stage, when the patient could have a better outcome (Scully 

et al., 2012). Serum markers such as CA 15-3 and CEA are widely used to detect the 

development of breast cancer metastasis, however, only useful in 54%-80% and 30%-50% of 

MBC patients, respectively (Lee et al., 2013). In comparison to these markers, the 

performance of our panel of metabolites was much higher for distinguishing subjects with 

MBC from healthy controls or PBC. Thus, the panels of metabolites identified here, if 

verified in large multi-centric prospective studies, might be potential diagnostic markers, 

which would have important applications in identifying early-stage MBC patients or micro-

metastatic patients without clinically overt metastasis, which are usually missed by imaging 

techniques. In turn, early capture of the disease might increase the survival rate of patients 

with MBC. 

Phosphatidylcholines were the mostly identified metabolites associated with MBC, and 

they were widely studied in many cancer types (Bertini et al., 2012; Mir et al., 2015). 

However, for breast cancer, they were mostly studied in breast cancer tissues (Brockmoller et 

al., 2012; Hilvo et al., 2011) or blood samples from mice with MBC (Kus et al., 2018), and 

they were present at lower levels in all these studies. lysoPC a C18:2, a 

lysophosphatidylcholine, decreases with the progression of breast cancer. Previous studies 

have claimed that most of the amino acid levels in patients with metastatic breast cancer are 

high (De Luca et al., 2010; Hart et al., 2017; Seidlitz et al., 2009). Dysregulation of 

acylcarnitines has been widely reported in other cancers types, but rarely in MBC blood 

samples (Lu et al., 2016; Shen et al., 2013; Xie et al., 2017). The involvement of here-

identified metabolites in other epithelial cancers raises the questions about their specificity 

for breast cancer and we hypothesize that they might be generally elevated in epithelial 

cancer. 



Discussion   93 

 

 Putative Prognostic Metabolites for MBC 5.3

The prognostic significance of plasma metabolites in MBC patients was investigated and 

characterized by analyzing their correlations with PFS and OS. Disease progression 

quantified as PFS is one of the original four categorical outcomes developed by the WHO to 

describe changes in tumor burden (Miller et al., 1981). Determination of whether the disease 

has progressed or not was established based on the RECIST guideline in the MBC cohort 

(Eisenhauer et al., 2009). PFS and OS are important outcomes in advanced cancers wherein 

PFS and OS are related to quality and quantity of life for cancer patients, respectively (Booth 

and Eisenhauer, 2012; Siena et al., 2007).   

Within MBC patients, metabolites that were differentially expressed between patients 

with poor and good prognosis correlated with PFS, while metabolites that were differentially 

expressed between deceased and alive patients correlated with OS. Log-rank tests were 

applied to metabolites data stratified into lower quartile and the residual quartiles based on 

their concentrations. A list of four metabolites, kynurenine, PC aa C36:3, PC ae C36:1, and 

PC ae C38:3, correlated with PFS and 12 metabolites, lysoPC a C18:1, lysoPC a C20:3, 

lysoPC a C20:4, PC aa C36:3, PC aa C36:4, PC aa C38:5, PC ae C36:1, PC ae C38:3, PC ae 

C38:4, PC ae C40:2, SM C18:1, and SM (OH) C22:2, correlated with OS. Kaplan-Meier 

curves indicated that lower levels of the metabolites correlated with the lower probability of 

PFS and OS, namely, a shorter progress-free survival time and a shorter overall survival time.   

Penalized LASSO Cox regression analysis was carried out to predict putative metabolite 

combinations from these prognostic metabolites with optimal performance. Signatures of PC 

ae C36:1 and PC ae C38:3 for PFS, lysoPC a C20:3, lysoPC a C20:4, PC aa C38:5, PC ae 

C38:3, and SM (OH) C22:2 for OS were put forth by these analyses. To understand the 

performance of metabolite panels associated with currently available markers, they were 

compared to CTC status, which is an established and FDA approved prognostic marker for 

MBC (Allard et al., 2004). Evaluating the IPE of the model with metabolites or CTC status 

proved that the metabolite signatures (IPE = 5.669) performed not as well as CTC status (IPE 

= 5.628) for PFS, the difference in IPE between the metabolite panel (IPE = 5.795) and the 

CTC status (IPE = 5.268) was much wider for OS. Next, a panel combining both metabolite 
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variables and CTC status was built. Here, as we found no significant interaction between 

metabolites and CTC status, interaction between the metabolites and CTC status was ignored. 

The results showed that the combination of the CTC status and the metabolite panel largely 

diminish the prediction error in comparison to the CTC-status alone or metabolite profile 

alone. It is interesting to note that the best-fitting multivariable models for PFS were PC ae 

C36:1 and CTCs (5.535), for OS were lysoPC a C20:3 and CTCs (5.082). This study is the 

first to explore the associations of metabolite and CTC status combination with breast cancer 

prognosis.  

Prognostic significance of plasma phospholipids and sphingolipids has been 

demonstrated in breast cancer and other cancers (Bertini et al., 2012; Bilal et al., 2019; Hilvo 

et al., 2011; Ruckhaberle et al., 2008; Zaimenko et al., 2019). Serum phosphatidylcholine 

levels decreased in breast cancer patients after systemic chemotherapy (Li et al., 2017b). The 

lower stearic acid level in tumor membrane phosphatidylcholine, which related to the fatty 

acid composition of phosphatidylcholine, indicates poor breast cancer prognosis (Bougnoux 

et al., 1992). Besides, a study revealed that the survival of patients with metastatic lung and 

gastrointestinal cancers correlates with low levels of total plasma phospholipids (Murphy et 

al., 2010), which supports our hypothesis. This result is consistent with previous studies 

showing that higher plasma levels of lysophosphatidylcholines are related to a lower risk of 

several cancer types, including breast cancer (Kuhn et al., 2016; Zhao et al., 2007). In 

addition, higher levels of sphingomyelins were reported to be significantly associated with 

better DFS in triple-negative breast cancer patients (Purwaha et al., 2018), which is in 

concordance with our results. In future, large multi-centric cohorts will be needed to test the 

reproducibility of our results.  

 

 Metabolites Associated with OVCA 5.4

Next, we identified metabolites associated with ovarian cancer. A panel of seven metabolites, 

including His, Trp, C18:1, lysoPC a C18:2, PC aa C32:2, PC aa C34:4, PC ae C34:3, could 

distinguish ovarian cancer patients from healthy controls with an AUC of 0.95. Such a high 
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performance raises the hope that the identified metabolites, if they can be validated in large 

prospective studies, can prospectively indicate the existence of ovarian cancer at an earlier 

stage than ovarian cancers are diagnosed today. Moreover, this panel of metabolites could 

distinguish OVCA patients from PBC patients as well, which indicates their OVCA-specific 

discriminative feature. In addition, the measurement of plasma metabolites with p400 kit has 

extended the library of potential candidate markers. Currently, no sufficient screening 

strategy has been established for OVCA. CA125 and HE4 are the two blood-based protein 

markers for OVCA monitoring approved by FDA (Ueland, 2017). However, screening with 

CA125 or vaginal ultrasound did not show a significant mortality reduction (Jacobs et al., 

2016), and nowadays, CA125 is only used as an indicator of disease recurrence due to its 

limitation in specificity and sensitivity (Suh et al., 2010). Serum HE4 levels are changing 

with aging, different menopausal status, and pregnancy, which lower the specificity of HE4 

(Moore et al., 2012). The multivariate index assay demonstrated lower specificity compared 

with physician assessment and CA 125 in detecting ovarian malignancies (Ueland et al., 

2011). 

Levels of lipid alterations are usually associated with cancer progression (Chen et al., 

2016; Zhang et al., 2016). Lipid metabolism is increasingly required for cell membranes and 

cell signaling construction during rapid cell proliferation and apoptosis (Zhang et al., 2018). 

In our study, the decreased levels of lipids in OVCA patients, especially phospholipids, are 

associated with an increased risk for ovarian cancer. Similar results have been partially 

presented before (Bachmayr-Heyda et al., 2017; Fan et al., 2016a; Gaul et al., 2015; Plewa et 

al., 2019). Lysophosphatidylcholine is an important signaling molecule for cellular 

proliferation, inflammation, and cell invasion regulation (Li et al., 2017a). 

Phosphatidylcholine, another critical signaling molecule, regulates cell signaling and 

structural integrity of cell membranes (Li et al., 2017a). Previous studies provided evidence 

of the associations between amino acid levels and OVCA metabolism, which demonstrated 

that blood amino acid profiles might be useful for ovarian cancer detection (Plewa et al., 

2017; Zhou et al., 2010). Our present study also observed correlations between decreased Ala, 

Asn, Cit, His, Trp, and Tyr levels and increased ovarian cancer risk, except for Glu. 
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 Functional Relevance of Identified Metabolites 5.5

Amino acids, being both metabolic fuel and building blocks of protein synthesis, have been 

proposed as predominant participants in the development of cancer (Lai et al., 2005). In 

general, amino acids decreased in PBC patients but increased in MBC and OVCA patients in 

our study. Hart et al. investigated higher levels of most amino acids in metastatic breast 

cancer patients than the ones at the early stage, which supports our results (Hart et al., 2017). 

Bone metastasis of breast cancer exhibits increased secretion of glutamate into the 

extracellular environment, which contributes to the disruption of normal bone homeostasis 

(Seidlitz et al., 2009).  

The increased activity of arginase and ornithine decarboxylase might explain the lower 

amount of arginine and the higher level of spermidine (Miolo et al., 2016; Perez et al., 2012). 

Methionine is a major target of reactive oxygen species (ROS), leading to the formation of 

Met-SO (Moskovitz, 2005). During breast cancer metastasis, a decreased amount of 

methionine sulfoxide reductases causes Met-SO to accumulate (De Luca et al., 2010). 

Tryptophan may originate from an increased metabolization via the indoleamine-2,3-

dioxygenase to kynurenine or via tryptophan-hydroxylase to serotonin (O'Mahony et al., 

2015). Tryptophan is particularly unexpected in early-stage cancer patients, as it is associated 

with cancer progression (Miyagi et al., 2011). Kynurenine not only promotes epithelial-to-

mesenchymal transition via activating aryl hydrocarbon receptor but also promotes the 

degradation of E-cadherin by enhancing the formation of the E-cadherin/AhR/Skp2 complex. 

These processes are believed to play vital roles in cancer invasiveness and metastasis (Chen 

et al., 2014; Duan et al., 2018).  

Glutamate, the interchangeable substrate of glutamine, was significantly lower in PBC 

patients, whereas significantly higher in metastatic breast cancer and ovarian cancer patients 

was observed by us. Glutaminolysis is one of the distinctive central features of cancer 

metabolism (Cluntun et al., 2017). Thereby glutamine is converted via glutamate to α-

ketoglutarate, which enters the tricarboxylic cycle to produce energy and anabolic carbons for 

the synthesis of amino acids, nucleotides, and lipids (Jin et al., 2016). These biological 

processes may partially explain the change of glutamate levels in our results.  
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The putrescine is a polyamine product from ornithine that catalyzed by ornithine 

decarboxylase, which exists in breast cancer cells and other cancer types (Afshar et al., 2017; 

Kim et al., 2017). Polyamine is indispensable for normal cell growth and development, and 

its elevated level has been observed to associate with several cancer types(Luk and Casero, 

1987). We observed a lower level of ornithine in PBC patients, which possibly due to its 

conversion to polyamine.  

Compared to healthy controls, PBC patients have significantly lower threonine 

concentrations in our study. We speculate that this may be a sign of increased production of 

pyruvate from threonine, which also associated with impaired glutamate uptake in a previous 

study (Poschke et al., 2013). On the other hand, threonine also has a role in immunoglobulin 

production (Wils-Plotz et al., 2013). The gut may absorb a large proportion of dietary 

threonine for the production of immunoglobulins because of disease or treatment. This is an 

interesting perspective and future research is needed to assess this possibility.  

Acylcarnitines play an essential role in regulating the balance between intracellular 

carbohydrate and lipid metabolism (Li et al., 2019). Increased concentrations of 

acylcarnitines hint an excess of acetyl-CoA in cancer cells, which are converted to C2 by the 

carnitine O-acetyltransferase with subsequent excretion (Pietrocola et al., 2015). As acetyl-

CoA inhibits pyruvate dehydrogenase and induces gluconeogenesis, so its accumulation is 

undesirable in cancer cells (Li et al., 2014; Schug et al., 2015). In order to cross the 

mitochondrial matrix for fatty acid β-oxidation, which produces energy to maintain cancer 

progression, long-chain fatty acids must be conjugated to carnitine to form long-chain 

acylcarnitines (Schug et al., 2015). We speculate that this process leads to the accumulation 

of long-chain acylcarnitines observed in cancer plasma. Compared to healthy controls, less 

free carnitine and odd number short-chain acylcarnitines C3 and C5 were observed by us in 

the plasma of PBC patients because the conjugation of medium- and long-chain acyl groups 

to free carnitine (C0). Similar results had demonstrated that several acylcarnitines associated 

with β-oxidation showed higher plasma concentrations in breast cancer patients than in 

healthy controls (Lv and Yang, 2012; Shen et al., 2013). 
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In our study, the majority of the identified metabolites associated with MBC and OVCA 

were phosphatidylcholines. OVCA and CTC-positive patients showed lower levels of 

phosphatidylcholines, so we speculate that phosphatidylcholines participate in the metastasis 

of cancer, especially in the late stage. Indeed, a study showing that the survival of patients 

with metastatic lung and gastrointestinal cancers correlates with low levels of total plasma 

phospholipids supports our hypothesis (Murphy et al., 2010). Currently, few 

phosphatidylcholines have been investigated in human breast cancer blood samples. Most of 

them were studied either in breast cancer tissues (Brockmoller et al., 2012; Hilvo et al., 2011) 

or blood samples derived from mice with MBC (Kus et al., 2018). Phosphatidylcholines were 

present at lower levels in all these studies. Lower levels of phosphatidylcholines were also 

observed in OVCA patients (Fan et al., 2016a). Phosphatidylcholines are one of the most 

abundant glycerophospholipids in human cells, which are essential components of the cell 

membrane, maintaining its integrity and functions. Phosphatidylcholines play a crucial role in 

cell proliferation and apoptosis (Ridgway, 2013). Also, we found lysoPC a C18:2, one of the 

lysophosphatidylcholines, decreases as breast cancer progressed. This result is consistent with 

previous studies showing that higher plasma levels of lysophosphatidylcholines are related to 

a lower risk of several cancer types, including breast cancer (Kuhn et al., 2016; Zhao et al., 

2007). 

 

 Strengths and Limitations of the Study 5.6

The significant strength of this project is that the samples were carefully collected and 

processed. Pre-analytical conditions play a vital role in investigating blood metabolites and 

are one of the main reasons for the lack of reproducibility in results among studies (Santos 

Ferreira et al., 2019). According to a previous report and our experience, the processing of 

blood samples within two hours after blood collection and two-step centrifugation before 

snap-freezing are critical to avoid hemolysis and metabolite contamination from cells or cell 

debris (Yin et al., 2013). This protocol is designed to make sure that the metabolites 

originated from the cell-free portion of the blood exclusively. Sample preparation is of 

translational importance as not all samples are prepared ideally in a clinical setting, so the 
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newly speculated markers need to be able to buffer such differences. The choice of plasma as 

the sample type is also one of the advantages. Serum is more sensitive than plasma in 

metabolomics study because most metabolites have higher concentrations in serum (Liu et al., 

2010; Yu et al., 2011). However, partly this higher metabolite levels are suspected to 

originate from metabolites that have been released from cells or cell debris into the serum 

during sampling, as plasma is more reproducible than serum, which is quite popular in the 

biomarker study (Yu et al., 2011).   

The other significant advantage of this study is the systematic study design consisting of 

the discovery and validation phase. Plasma metabolites were profiled in both phases with 

identical experimental procedures independently to demonstrate metabolites that have 

potential diagnostic and prognostic values. Sample randomization through all steps of the 

experimental setup was done to avoid batch variations and, thus, any possible bias. The large 

sample size of breast cancer patients is another positive aspect. Additionally, the prognostic 

metabolites were validated in an independent sample group for their association with PFS and 

OS, which consolidate the validity of our results. 

One major drawback of the study is that, with this experiment, the length of side chains, 

distribution and position of double bonds of metabolites cannot be discerned. Thus, the exact 

conformations of metabolites are unknown. In addition, this kit identifies many metabolites 

with functions not well known currently. As a result, the reason why they appear in the blood 

or plasma is hard to explain.   

Another limitation of the study is the lack of lifestyle and physiological information of 

cancer patients. Thus we cannot adjust all the confounding factors with the univariate and 

multivariate logistic regression analysis. In the study, we have identified panels of 

metabolites as supposed diagnostic and prognostic markers with high performance. However, 

whether they are specific for their corresponding cancer type is unknown. Furthermore, no 

animal model experiment was conducted to explain or investigate our results concerning the 

underlying mechanism.  

Last but not least, the sample size of OVCA patients, especially early-stage OVCA 

samples, is relatively low. Therefore, the metabolite panel identified here fits the late-stage 
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OVCA patients better. This limitation reflects the general diagnosis of ovarian cancer at a 

relatively late stage. In our study, we focused on OVCA patients with rather an early-stage 

diagnosis. But as the sample size would have been too small, we had to include also even 

more advanced-stage samples. Large studies including more early-stage OVCA patients as 

well as large prospective studies are needed to identify and verify metabolites for early-stage 

detection. The fact that no significant metabolites were detected between breast tumor 

molecular subgroups may be due to the uneven distribution of samples between subgroups, 

resulting in relatively small sample sizes of rare subgroups. Large cohorts in the future 

including enough samples of even rare breast cancer subgroups are needed.    

 

 

 

 

 

 

 

 



Perspectives   101 

 

6. Perspectives  

Identified metabolite panels associated with PBC, MBC, and OVCA patients and MBC 

prognosis are needed to be further validated with independent and more extensive multi-

centric prospective studies. Metabolites connected with breast cancer and ovarian cancer 

from different layers could extend to other epithelial cancers. Therefore, population-based 

metabolomics studies are essential to be conducted. Especially prognostic metabolites for 

metastatic breast cancer should be analyzed in epithelial cancers that also use CTC status as 

prognostic factors for metastasis, such as prostate cancer and colorectal cancer.  

In this project, metabolites of different combinations are speculated as promising 

biomarkers for breast cancer and ovarian cancer. However, whether these combinatorial 

panels are specific for the corresponding cancer types needs to be further verified. Plasma 

metabolite profiles are also affected by patient lifestyles, physiological status, and 

environmental factors. Unfortunately, this information was not available for most of the 

cancer patients in our study. Investigations in the future should be applied to adjust all 

meaningful confounding factors. Moreover, higher mass resolution methods need to be 

employed to measure the exact composition of lipids. Metabolites that measured with 

Biocrates AbsoluteIDQ® p400 HR kit for breast cancer patients will be analyzed in the future 

to expand the library of breast cancer diagnostic and prognostic biomarkers.  

It might be promising and illuminating to combine metabolomics data and 

transcriptomics data, together with genomics data, to explore the underlying mechanisms of 

metabolic changes. The multi-omics analysis will not only deepen our understanding of the 

metabolic processes of breast cancer and ovarian cancer but also likely help to develop new 

therapeutic targets for cancer treatment. The functional characterization of the metabolites 

identified in this project may promote understanding of the biological processes in cancer 

occurrence and development. Further, the combination of metabolites with other promising 

blood-based molecular markers, such as DNA methylation, microRNA, cell-free DNA 

mutation markers, will be an attractive option. Multimarkers from different layers could be 
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potentially useful in developing blood-based diagnostic tests for breast cancer and ovarian 

cancer. 
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Appendix  

Detailed Clinical Features of Samples 

Table A1: Clinicopathological characteristics of the PBC patients in discovery and validation 

cohorts. aChi-squared test, bWilcoxon rank-sum test, ctests with p < 0.05. 

Clinical Characteristics Discovery 

Cohort 

(n = 80) 

Validation 

Cohort 

(n = 109) 

p-value 

 

Ageb 

Mean 

Median 

Range  

55.6 

53.0 

30.6 ~ 84.4 

50 

46.2 

26.8 ~ 77.4 

 

0.001c 

 

Menopausea 

Premenopause 

Perimenopause 

Postmenopause 

NA 

29 (36.3%) 

8 (10.0%) 

42 (52.5%) 

1 (1.3%) 

61 (56.0%) 

7 (6.4%) 

39 (35.8%) 

2 (1.8%) 

 

 

0.055 

 

 

Gradinga 

G1 

G2 

G3 

NA 

6 (7.5%) 

38 (47.5%) 

36 (45.0%) 

0 

12 (11.0%) 

53 (48.6%) 

43 (39.4%) 

1 (0.9%) 

 

 

0.641 

 

 

 

Tumor sizea 

Tis 

T1 

T2 

T3 

T4 

2 (2.5%) 

29 (36.3%) 

44 (55.0%) 

5 (6.3%) 

0 

1 (0.9%) 

45 (41.3%) 

55 (50.5%) 

3 (2.8%) 

5 (4.6%) 

 

 

0.184 

Lymph node 

spreada 

N0 

N1 

N2 

57 (71.3%) 

22 (27.5%) 

1 (1.3%) 

72 (66.1%) 

35 (32.1%) 

2 (1.8%) 

 

0.738 
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AJCC stagea 

0 

I 

II 

III 

IV 

NA 

2 (2.5%) 

23 (30.0%) 

48 (60.0%) 

3 (3.8%) 

3 (3.8%) 

1 (1.25%) 

1 (0.9%) 

37 (33.9%) 

62 (56.9%) 

9 (8.3%) 

0 

0 

 

 

 

0.159 

 

 

ER statusa 

Positive 

Negative 

NA 

46 (57.5%) 

33 (41.3%) 

1 (1.3%) 

80 (73.4%) 

29 (26.6%) 

0 

 

0.047c 

 

 

PR statusa 

Positive 

Negative 

NA 

43 (53.8%) 

36 (45.0%) 

1 (1.3%) 

74 (67.9%) 

35 (32.1%) 

0 

 

0.087 

 

 

HER2 statusa 

Positive 

Negative 

NA 

16 (20.0%) 

63 (78.8%) 

1 (1.3%) 

30 (27.5%) 

79 (72.5%) 

0 

 

0.262 

 

 

Triple negativea 

Yes 

No 

NA 

20 (25%) 

59 (73.8%) 

1 (1.3%) 

25 (22.9%) 

84 (77.1%) 

0 

 

0.470 
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Table A2: Clinicopathological characteristics of the MBC patients in discovery and 

validation cohorts. aChi-squared test, bWilcoxon rank-sum test, ctests with p < 0.05. 

 

Clinical characteristics  

Discovery Cohort (n=100) Validation Cohort (n=76) 

CTC-

positive  

(n=44) 

CTC-

negative 

(n=56) 

p-

value 

CTC-

positive 

(n=21) 

CTC-

negative 

(n=55) 

p-

value 

 

Ageb 

Mean 57.25 60.63  

0.17 

59.86 58.96  

0.74 Median 56 62 57 59 

Range 33 ~ 81 31 ~ 89 42 ~ 77 36 ~ 78 

Bone 

metastasis a 
Yes 34 33  

0.09 

16 32  

0.23 No 10 23 5 23 

Lung 

metastasis a 
Yes 13 29  

0.04c 

12 31  

1 No 31 27 9 24 

Liver 

metastasis a 
Yes 22 20  

0.22 

10 18  

0.35 No 22 36 11 37 

Brain 

metastasis a 
Yes 4 7  

0.83 

0 5  

0.36 No 40 49 21 50 

Number of 

sites of 

metastasis a 

1-2 25 33  

0.97 

10 32  

0.57 3-5 18 22 11 23 

> 5 1 1 0 0 

 

Disseminated 

metastasis a 

Yes 34 22  

0.0003
c 

16 43  

0.78 No 10 34 5 11 

NA 0 0 0 1 

 

Metastatic 

ER status a 

Positive 17 26  

0.64 

10 24  

0.6 Negative 6 5 1 7 

NA 21 25 10 24 

 

Metastatic 

PR status a 

Positive 14 22  

0.71 

8 17  

0.57 Negative 9 9 3 14 

NA 21 25 10 24 

 

Metastatic 

HER2 status a 

Positive 3 8  

0.49 

1 8  

0.5 Negative 21 25 10 23 

NA 20 23 10 24 

 

PFS status a 
Progression 27 34  

1 

18 48  

1 No 

Progression 

17 22 3 7 

PFS (Month) b Mean 14.2 6.4  5.45E-

04 c 

8.2 4.5  0.24 

 

OS status a 
Dead 35 25  

8.66E-

04 c 

19 24  

6.14E-

04 c 
Alive 9 31 2 31 

OS (Month) b Median 23.3 11.3 2.69E-

07 c 

21.5  11.4 1.3E-

04 c 
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Prognosis 

status a 

Good 8 23  

0.048 c 

2 13  

0.39 Bad 26 17 17 34 

Middle 10 16 2 8 

 

 

Histology a 

 

IDC 19 31  

 

0.02c 

13 31  

 

0.73 
ILC 8 4 1 7 

Others  5 0 1 4 

NA 12 21 6 13 

 

 

Grading a 

G1 1 4  

 

0.14 

0 2  

 

0.56 
G2 26 21 9 25 

G3 14 23 7 21 

NA 3 8 5 7 

 

 

 

Tumor size a 

 

Tis 1 0  

 

 

0.34 

0 0  

 

 

0.36 

T1 12 25 7 10 

T2 21 22 9 29 

T3 6 4 0 5 

T4 4 4 4 7 

NA 0 1 1 4 

 

 

Lymph node 

spread a 

 

N0 20 21  

 

 

0.45 

6 21  

 

 

0.84 

N1 11 22 7 16 

N2 3 5 3 8 

N3 8 5 4 6 

NA 2 3 1 4 

 

Distant 

metastasis a 

M0 19 29  

0.69 

11 29  

1 M1 8 9 6 15 

NA 17 18 4 11 

 

Primary ER 

status a 

Positive 31 45  

0.14 

18 38  

0.25 Negative 13 9 2 15 

NA 0 2 1 2 

 

Primary PR 

status a 

Positive 25 42  

0.02c 

14 33  

0.59 Negative 19 11 5 19 

NA 0 3 2 3 

Primary 

HER2 

status a 

Positive 4 9  

0.33 

0 11  

0.05 Negative 37 40 16 38 

NA 3 7 5 6 

DFS (Month) 

b 

Median 28 46 0.06 51 45 0.66 

DDFS 

(Month) b 

Median 29 70.5 0.006c 79 50 0.83 
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Table A3: Clinicopathological characteristics of the ovarian cancer patients in discovery and 

validation cohorts. aChi-squared test, bWilcoxon rank-sum test, ctests with p < 0.05. 

Clinical Characteristics 
Discovery Cohort 

(n=34) 

Validation Cohort 

(n = 35) 
p-value 

Ageb 

Mean 61.2 61.6 

0.889 Median 62.6 64.5 

Range 37.5 ~ 77 25.5 ~ 83.6 

FIGO 

staginga 

I 2 (5.9%) 5 (14.3%) 

0.006c 

II 1 (2.9%) 5 (14.3%) 

III 29 (85.3%) 15 (42.9%) 

IV 2 (5.9%) 6 (17.1%) 

NA 0 4 (11.4%) 

Gradinga 

G1 1 (2.9%) 3 (8.6%) 

0.111 
G2 7 (20.6%) 1 (2.9%) 

G3 21 (61.8%) 24 (68.6%) 

NA 5 (14.7%) 7 (20%) 

Diabetesa 

Yes 5 (14.7%) 1 (2.9%) 

0.214 No 26 (76.5%) 30 (85.7%) 

NA 3 (8.8%) 4 (11.4%) 

BMIb 

Mean 25.7 26 

0.842 
Median 24.8 25 

Range 19.2 ~ 42 19.5 ~ 42.5 

NA 9 (26.5%) 10 (28.6%) 

Menopausea 

Premenopause 

 
3 (8.8%) 6 (17.1%) 

0.382 

Perimenopause 

 
1 (2.9%) 0 

Postmenopause 

 
24 (70.6%) 26 (74.3%) 

NA 6 (17.6%) 3 (8.6%) 
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Metabolites List  

Table A4: List of metabolites measured with Biocrates AbsoluteIDQ® p180 kit. 

Category N  Metabolites 

Amino Acids 21 Ala, Arg, Asn, Asp, Cit, Gln, Glu, Gly, His, Ile, Leu, Lys, 

Met, Orn, Phe, Pro, Ser, Thr, Trp, Tyr, Val 

Biogenic Amines 21 alpha-AAA, ADMA, Ac-Orn, carnosine, creatinine, DOPA, 

dopamine, histamine, kynurenine, Met-SO, Nitro-Tyr, cis-OH-

Pro, trans-OH-Pro, PEA, putrescine, SDMA, sarcosine, 

serotonin, spermidine, spermine, taurine 

Carnitine 1 C0 

Acylcarnitines 

(Cx:y) 

26 C2, C3, C3:1, C4, C4:1, C5, C5:1, C6 (or C4:1-DC), C6:1, C8, 

C8:1, C9, C10, C10:1, C10:2, C12, C12:1,C14, C14:1, C14:2, 

C16, C16:1, C16:2, C18, C18:1,C18:2 

Hydroxy- and 

Dicarboxy- 

Acylcarnitines 

(Cx:y-DC/OH) 

13 C3-OH, C4-OH (or C3-DC), C5-DC (or C6-OH), C5-OH (or 

C3-DC-M), C5:1-DC, C5-M-DC, C7-DC, C12-DC, C14:1-

OH, C14:2-OH, C16:1-OH, C16:2-OH, C16-OH, C18:1-OH 

Sum of Hexoses (H1) 1 H1 

Sphingomyelins 

(SM Cx:y) 

10 SM  

C16:0/ C16:1/ C18:0/C18:1/ C20:2/ C22:3/ C24:0/ C24:1/ 

C26:0/C26:1 

Hydroxy- 

Sphingomyelins (SM 

(OH) Cx:y) 

5 SM (OH)  

C14:1/ C16:1/ C22:1/ C22:2/ C24:1 

Diacyl-

Phosphatidylcholines 

(PC aa Cx:y) 

38 PC aa  

C24:0/C26:0/C28:1/C30:0/C30:2/C32:0/C32:1/C32:2/C32:3/C

34:1/C34:2/C34:3/C34:4/C36:0/C36:1/C36:2/C36:3/C36:4/C3

6:5/C36:6/C38:0/C38:1/C38:3/C38:4/C38:5/C38:6/C40:1/C40:

2/C40:3/C40:4/C40:5/C40:6/C42:0/C42:1/C42:2/C42:4/C42:5/

C42:6 

Acyl-alkyl- 

Phosphatidylcholines 

(PC ae Cx:y) 

38 PC ae  

C30:0/C30:1/C30:2/C32:1/C32:2/C34:0/C34:1/C34:2/C34:3/C

36:0/C36:1/C36:2/C36:3/C36:4/C36:5/C38:0/C38:1/C38:2/C3

8:3/C38:4/C38:5/C38:6/C40:1/C40:2/C40:3/C40:4/C40:5/C40:

6/C42:0/C42:1/C42:2/C42:3/C42:4/C42:5/C44:3/C44:4/C44:5/

C44:6 

Lyso-

phosphatidylcholines 

(lysoPC a Cx:y) 

14 lysoPC a  

C14:0/C16:0/C16:1/C17:0/C18:0/C18:1/C18:2/C20:3/C20:4/C

24:0/C26:0/C26:1/C28:0/C28:1 

 

Abbreviations: 

a, acyl; aa, acyl-acyl; ae, acyl-alkyl; 
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DC, decarboxyl groups; M, methyl; OH, hydroxyl groups; 

PC, phosphatidylcholine; SM, sphingomyelin; 

x:y, x is the number of carbons and y is the number of double bonds in the fatty acid side chain 

 

Table A5: List of metabolites measured with Biocrates AbsoluteIDQ® p400 HR kit. 

Category N  Metabolites 

Amino Acids 21 Ala, Arg, Asn, Asp, Cit, Gln, Glu, Gly, His, Ile, xLeu, Lys, 

Met, Orn, Phe, Pro, Ser, Thr, Trp, Tyr, Val 

Biogenic Amines 21 alpha-AAA, ADMA, Ac-Orn, carnosine, creatinine, DOPA, 

dopamine, histamine, kynurenine, Met-SO, Nitro-Tyr, cis-

OH-Pro, trans-OH-Pro, PEA, putrescine, SDMA, sarcosine, 

serotonin, spermidine, spermine, taurine 

Sum of Hexoses (H1) 1 H1 

Diacyl-

Phosphatidylcholines 

PC(x:y) 

108 PC  

(24:0)/(25:0)/(26:0)/(27:0)/(27:1)/(28:1)/(29:0)/(29:1)/(29:2)/

(30:0)/(30:1)/(30:2)/(30:3)/(31:0)/(31:1)/(31:2)/(31:3)/(32:0)/

(32:1)/(32:2)/(32:3)/(32:4)/(32:5)/(32:6)/(33:0)/(33:1)/(33:2)/

(33:3)/(33:4)/(33:5)/(34:0)/(34:1)/(34:2)/(34:3)/(34:4)/(34:5)/

(35:0)/(35:1)/(35:2)/(35:3)/(35:4)/(35:5)/(36:0)/(36:1)/(36:2)/

(36:3)/(36:4)/(36:5)/(36:6)/(37:0)/(37:1)/(37:2)/(37:3)/(37:4)/

(37:5)/(37:6)/(37:7)/(38:0)/(38:1)/(38:2)/(38:3)/(38:4)/(38:5)/

(38:6)/(38:7)/(39:0)/(39:1)/(39:2)/(39:3)/(39:4)/(39:5)/(39:6)/

(39:7)/(40:1)/(40:2)/(40:3)/(40:4)/(40:5)/(40:6)/(40:7)/(40:8)/

(40:9)/(41:1)/(41:2)/(41:3)/(41:4)/(41:5)/(41:8)/(42:0)/(42:1)/

(42:2)/(42:3)/(42:4)/(42:5)/(42:6)/(42:7)/(42:10)/(43:2)/(43:6

)/(44:1)/(44:3)/(44:5)/(44:6)/(44:7)/(44:10)/(44:12)/(46:1)/(4

6:2) 

Acyl-alkyl- 

Phosphatidylcholines 

PC-O-(x:y) 

64 PC-O-  

(26:0)/(26:1)/(28:0)/(28:1)/(29:0)/(30:0)/(30:1)/(30:2)/(31:0)/

(31:1)/(31:3)/(32:0)/(32:1)/(32:2)/(32:3)/(33:0)/(33:1)/(33:2)/

(33:3)/(33:4)/33:6)/(34:0)/(34:1)/(34:2)/(34:3)/(34:4)/(35:3)/(

35:4)/(36:0)/(36:1)/(36:2)/(36:3)/(36:4)/(36:5)/(36:6)/(37:6)/(

37:7)/(38:0)/(38:1)/(38:2)/(38:3)/(38:4)/(38:5)/(38:6)/(40:0)/(

40:1)/(40:2)/(40:3)/(40:4)/(40:5)/(40:6)/(40:7)/(40:8)/(42:0)/(

42:1)/(42:2)/(42:3)/(42:4)/(42:5)/(42:6)/(44:3)/(44:4)/(44:5)/(

44:6) 

Lyso-

phosphatidylcholines 

LPC(x:y) 

24 LPC 

(12:0)/(14:0)/(15:0)/(16:0)/(16:1)/(17:0)/(17:1)/(18:0)/(18:1)/

(18:2)/(20:0)/(20:1)/(20:2)/(20:3)/(20:4)/(22:5)/(22:6)/(24:0)/

(24:1)/-O(16:1)/ -O(17:1)/ -O(18:0)/ -O(18:1)/ -O(18:2) 



 

130 

Sphingomyelins 

SM(x:y) 

31 SM  

(30:1)/(31:0)/(31:1)/(32:1)/(32:2)/(33:1)/(33:2)/(34:1)/(34:2)/

(35:1)/(36:0)/(36:1)/(36:2)/(37:1)/(38:1)/(38:2)/(38:3)/(39:1)/

(39:2)/(40:1)/(40:2)/(40:4)/(41:1)/(41:2)/(42:1)/(42:2)/(42:3)/

(43:1)/(43:2)/(44:1)/(44:2) 

Ceramides 

Cer(x:y)  

9 Cer 

(34:0)/(34:1)/(38:1)/(40:1)/(41:1)/(42:1)/(42:2)/(43:1)/(44:0)/ 

Acylcarnitines 

AC(x:y) 

34 AC 

(0:0)/(2:0)/(3:0)/(3:1)/(4:0)/(4:1)/(5:0)/(5:1)/(6:0)/(6:1)/(7:0)/

(8:0)/(8:1)/(9:0)/(10:0)/(10:1)/(10:2)/(10:3)/(11:0)/(12:0)/(12:

1)/(13:0)/(14:0)/(14:1)/(14:2)/(15:0)/(16:0)/(16:1)/(16:2)/(17:

0)/(18:0)/(18:1)/(18:2)/(19:0) 

Hydroxy- and 

Dicarboxy- 

Acylcarnitines 

AC(x:y-DC/OH) 

21 AC 

(3:0-DC)/(3:0-OH)/(4:0-DC)/(4:0-OH)/(4:1-DC)/(5:0-DC)/ 

(5:0-OH)/ (5:1-DC)/ (6:0-DC)/(6:0-OH)/(7:0-DC)/(8:1-OH)/ 

(12:0-DC)/(14:0-OH)/(14:1-DC)/(14:1-OH)/(14:2-

OH)/(16:0-OH)/(16:1-OH)/(16:2-OH)/(18:1-OH) 

Diglycerides 

DG(x:y) 

18 DG 

(32:1)/(32:2)/(34:1)/(34:3)/(36:2)/(36:3)/(36:4)/(38:0)/(38:5)/

(39:0)/(41:1)/(42:0)/(42:1)/(42:2)/(42:3)/-O(32:2)/-O(34:1)/ -

O(36:4) 

Triglycerides 

TG(x:y) 

42 TG 

(44:1)/(44:2)/(44:4)/(46:2)/(48:1)/(48:2)/(48:3)/(49:1)/(49:2)/

(50:1)/(50:2)/(50:3)/(50:4)/(51:1)/(51:2)/(51:3)/(51:4)/(51:5)/

(52:2)/(52:3)/(52:4)/(52:5)/(52:6)/(52:7)/(53:3)/(53:4)/(53:5)/

(53:6)/ (54:2)/(54:3)/(54:4)/(54:5)/(54:6)/(54:7)/(55:6)/(55:7)/ 

(55:8)/(55:9)/(56:6)/(56:7)/ (56:8)/(56:9) 

Cholesteryl Esters 

CE(x:y) 

14 CE  

(16:0)/(16:1)/(17:0)/(17:1)/(17:2)/(18:1)/(18:2)/(18:3)/(19:2)/

(19:3)/(20:4)/(20:5)/(22:5)/(22:6) 

 

Abbreviations: 

-O-, acyl-alkyl; 

PC, phosphatidylcholine; LPC: lyso- phosphatidylcholine; SM, sphingomyelin; 

Cer: ceramide; AC: acylcarnitine; DG: diglyceride; TG: triglyceride; CE: cholesteryl ester; 

DC, decarboxyl groups; OH, hydroxyl groups; 

x:y, x is the number of carbons and y is the number of double bonds in the fatty acid side chain 
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R Packages  

Table A6: R packages used in this thesis work. R package source: Comprehensive R Archive 

Network. 

R3.5.1 was used in this project 

Boruta v6.0.0 caret v6.0.80 

CoxBoost v1.4 dplyr v0.7.8 

e1071 v1.7-0 ggcorrplot v0.1.2 

ggplot2 v3.1.0 ggpubr v0.2 

ggrepel  v0.8.0 ggsignif v0.4.0 

glmnet v2.0.16 gmodels v2.18.1 

gridExtra v2.3 gtools v3.8.1 

Hmisc v4.2.0 penalized v0.9.51 

peperr v1.1.7.1 pROC v1.13.0 

randomForest v4.6-14 ROCR v1.0.7 

survival v2.43.1  
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Supplementary Figures 

 

Figure A1: Coefficient of variation of triplicate samples from five healthy controls and five 

ovarian cancer patients. Metabolite with a coefficient of variation larger than 0.3 is marked 

(SM C22:3). 
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Figure A2: Age is unequally distributed among MBC patients, PBC patients, OVCA patients, 

and healthy controls, especially in the validation cohort.    
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Figure A3: Associations between age (continuous) and metabolite concentrations plotted as 

−log10(p-values) for healthy control individuals in discovery and validation cohorts. The 

dashed line shows a statistical significance level (p = 0.05). The p-values were derived from 

partial spearman correlation adjusted for BMI, alcohol, sports, and smoking status. 
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