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Abstract:  

In this thesis, mid-infrared (MIR) pulses with arbitrary temporal and spectral shape are 

generated via a difference-frequency process for application in a non-linear Raman 

microscope. Solely by shaping the sub 10 fs driving pulses, the broadband spectra of the 

MIR pulses are switched to narrowband and tuneable ones. In MIR transmission 

spectroscopy, these narrowband MIR spectra allow for investigating molecular vibrations 

from 1250 to 3250 cm-1 with spectral resolutions below 20 cm-1. Furthermore, MIR 

transmission microspectroscopy is combined with coherent-anti-Stokes Raman scattering 

(CARS) to provide a direct comparison of spectra and images obtained in one spot of the 

sample. Sum-frequency (SF) microspectroscopy is an additional technique, which 

complements the toolbox of this non-linear Raman microscope with the potential to 

investigate non-centrosymmetric systems. The flexibility of the pulse shaper allows for 

implementing two different SF-methods. Whereas the heterodyne multiplex method 

acquires the whole SF spectrum by imprinting only three different phase functions, the 

homodyne MIR-scanning method generates a high SF intensity directly linked to one 

vibrational mode. In all applications, the phase of MIR pulses must be well-known. This 

phase is determined in the focal plane of the microscope over more than 1000 cm-1 via two 

methods based on the dispersion-scan.  

 

 

 

Zusammenfassung: 

Diese Arbeit behandelt die Erzeugung von Mittelinfrarotimpulsen (MIR-Impulsen) mit 

beliebig einstellbarer zeitlicher und spektraler Form mittels eines 

Differenzfrequenzprozesses und ihre Anwendung in einem nichtlinearen Ramanmikroskop. 

Nur durch das Umformen der sub 10 fs Erzeugerimpulse mithilfe eines Impulsformers wird 

aus dem breitbandigen Spektrum der MIR-Impulse ein schmalbandiges und 

durchstimmbares. In der MIR-Transmissionsspektroskopie ermöglicht dieses 

schmalbandige MIR Spektrum die Untersuchung von Molekülvibrationen in einem Bereich 

von 1250cm-1 bis zu 3250 cm-1 mit einer spektralen Auflösung unter 20 cm-1. Des Weiteren 

gelingt durch die Kombination der MIR-Transmissionsmikrospektroskopie mit kohärenter 

anti-Stokes Raman Streuung (CARS) der direkte Vergleich von Spektren und Bildern, da 

diese an der gleichen Probenstelle aufgenommen werden. Das Hinzufügen der 

Summenfrequenz- (SF) Mikrospektroskopie erweitert das Repertoire dieses nichtlinearen 

Ramanmikroskops um die Option auch nichtzentrosymmetrische Proben zu untersuchen. 

Die Flexibilität des Impulsformers ermöglicht die Implementierung zweier 

unterschiedlicher SF-Methoden. Wohingegen die heterodyne-multiplex-Methode das ganze 

SF-Spektrum beim Anlegen von nur drei unterschiedlichen Phasenfunktionen detektiert, 

erzeugt die homodyne MIR-scanning-Methode eine hohe SF-Intensität, welche direkt auf 

eine Vibrationsbande zurückgeführt werden kann. Für alle Anwendungen muss die Phase 

der MIR-Impulse vorab bekannt sein. Diese wird in der Fokalebene des Mikroskops in 

einem Bereich von mehr als 1000 cm-1 mittels zweier unterschiedlicher Methoden 

bestimmt, die beide auf der Dispersions-Scan-Methode beruhen. 
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I. Motivation and introduction 

Since its invention in the 17th century, microscopy has been the foundation of an 

enormous number of applications in various research fields. These applications have been 

accompanied by the continuous development of new techniques improving the visualisation 

of increasingly smaller objects as well as improving the sensitivity to more and more 

specimens. 

The invention of fluorescence microscopy was a milestone, especially in life sciences, 

because it offers unprecedented access to the individual building blocks of various samples. 

Fluorescence microscopy is done by staining each building block with a specific fluorescent 

label and detecting the high intensities of the emitted fluorescent light (Figure I.1a) [4]. 

These labels also allow for improved spatial resolution beyond the Abbe limit via the 

stimulated emission depletion method (STED) [5] or the stochastic optical reconstruction 

microscopy method (STORM) [6]. Recently, a resolution of 1 nm was even achieved [7]. 

Fluorescence microscopy is broadly applied for the investigation of samples whose 

building blocks and their behaviours in the staining process are well-known. However, 

applying this type of microscopy to new samples is more challenging since the information 

how to stain all the different building blocks is missing. Furthermore, it is possible that 

samples may be distorted during the labelling process. The use of fluorescent labels can be 

overcome by exploiting the intrinsic properties of the sample itself, which provide not only 

a contrast in imaging but also the potential to detect small structural changes of their 

molecules.  

 

Vibrational spectroscopy permits label-free access to molecules either through the direct 

excitation of vibrational modes in mid-infrared (MIR) transmission spectroscopy or by 

Raman spectroscopy, which probes the vibrational modes in an inelastic scattering (Figure 

I.1b & c) [8, 9]. Both methods provide access to vibrational modes over a broad spectral 

range via their linear interaction. Furthermore, information about the vibrational modes can 

also be obtained with spatial resolution when using Raman microscopy, as shown in various 

applications [10-12]. Recently, even MIR transmission microscopy has been implemented 

using novel light sources and sophisticated techniques [13-15]. However, both methods 

have several drawbacks. Poor spatial resolution and technical difficulties such as the lack 

of intense light sources are the main handicaps in MIR transmission, while the low signal 

levels in Raman spectroscopy prevent fast data acquisition.  

 

Coherent Raman anti-Stokes scattering (CARS) is a powerful tool for providing 

vibrational contrast as well as high signals [16, 17]. This spectroscopic technique gives 

access to the information about molecular vibrations via coherent Raman excitations in a 

four-wave mixing process (Figure I.1d). In contrast with Raman, CARS benefits from 

several advantages such as the generation of much higher signal levels, which have even 

led to imaging with video frame rate [18]. Furthermore, the application of CARS in 

microscopy offers high spatial resolution and the potential to represent objects in 3D due to 

the generation of CARS signals only within a small spatial volume [19]. Another principal 

advantage of CARS microscopy is that other nonlinear signals are simultaneously generated 

in this small spatial volume. Despite having no access to spectral information, each of these 
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signals provides essential information in microscopy by imaging specific types of 

molecules. Second-harmonic and two-photon excited fluorescence light, for example, are 

only generated by non-centrosymmetric systems and chromophores, respectively (Figure 

I.1e & f). The combination of all information obtained from these different signals is called 

multimodal microscopy [20, 21]. 

The success of multimodal microscopy has increased tremendously in the last years. 

Several applications in life sciences have been developed, such as determining skin diseases 

using a compact CARS tomography setup [22]. Another example is the tracking of neural 

activities in the brain by widefield multimodal microscopy [23]. Furthermore, the potential 

for providing real-time imaging during surgeries has been shown by endoscopes that can 

simultaneously acquire CARS, second-harmonic, and two-photon excited fluorescence 

images [24]. 

The crucial experimental issue in multimodal microscopy is the implementation of 

CARS because the other signals are additionally generated without any further effort. CARS 

microscopy is usually done using two different laser pulses with narrowband spectra in the 

near-infrared (NIR) range. The two pulses have slightly detuned spectra to generate the 

CARS signal of a specific vibrational mode. In order to acquire the whole CARS spectrum, 

one of the two NIR spectra is shifted. These laser pulses are generated either by optical 

parametric oscillators (OPO) or by fibre laser systems, which have both experienced great 

technical progress in the last years [25-28]. Recently developed OPO systems allow even 

for tuning the wavelength within milliseconds [29]. However, these setups are quite 

complex and static. Special care, for example, is required in order to provide a stable 

temporal synchronisation and a perfect spatial overlap of the two laser pulses. Furthermore, 

Figure I.1 Energy diagrams of the most common linear and non-linear interactions in 

spectroscopy and microscopy. The light emitting transitions are depicted in black. The 
transitions driven by light with a wavelength in the NIR and MIR range are depicted in red 

and purple, respectively. The transitions in the visible are shown in green. (SHG: second-

harmonic generation, TPEF: two-photon excited fluorescence, SFG: sum-frequency 

generation) 
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a change of the spectral tuning range is only accomplished by replacing the whole OPO or 

fibre system.  

 

A way to overcome these drawbacks is by applying a different laser source to excite all 

molecular vibrations and nonlinear interactions without any wavelength tuning. Sub 10 fs 

laser pulses are the key in this regard due to their broad spectra spanning over 3000 cm-1, 

which gives access to all molecular vibrations ranging from the fingerprint region up to the 

CH stretching. Furthermore, all nonlinear interactions benefit from the high instantaneous 

power of the ultrashort laser pulses. For spectroscopy, however, these laser pulses cannot 

be used without any further effort due to the indistinguishability and spectral overlap of the 

generated signals. 

The spectral resolution is accomplished by inserting a programmable pulse shaper inside 

the setup and shaping these ultrabroadband laser pulses (Figure I.2a). In pulse shaping, 

arbitrary phase and amplitude functions are imprinted on the laser pulses to adjust their 

spectral and temporal distribution. These shaped laser pulses are exploited in CARS 

spectroscopy in order to control the excitation of vibrational modes [30-32]. With the 

appropriate phase function, the excitation of many vibrations can be narrowed down to only 

one specific mode. A simple switch of the phase function is enough to tune this narrowband 

excitation. In recent years, several methods have been developed to flexibly adapt the laser 

pulses for specific tasks. The sensitivity to vibrational modes with a small cross section, for 

example, is significantly increased by using a heterodyne detection method [33]. Other 

methods have demonstrated phase-sensitive [34], time-resolved [35, 36], and multiplex [37] 

CARS spectroscopy. Moreover, the combination of several non-linear interactions benefits 

from flexible pulse shaping. Pulse shaping can adapt the laser pulses simultaneously to all 

Figure I.2 Flexible pulse shaping for multimodal microscopy. (a) CARS, second-harmonic 

and two-photon excited fluorescence imaging is provided by using arbitrary shaped, 
ultrabroadband NIR pulses in a microscope. The programmable pulse shaper controls the 

non-linear processes by tailoring the laser pulses. (b) An additional non-linear crystal allows 

the generation of shaped MIR pulses in a difference-frequency (DF) process by the shaped 

NIR pulses. By guiding both laser pulses inside the microscope, MIR transmission and SF 

microspectroscopy is possible. 
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interactions by tailoring its different spectral parts. One spectral part, for example, generates 

high second-harmonic signals with short pulses and the other part achieves spectral 

resolution in the CARS [35]. 

Despite its great success, multimodal microscopy in general, and its shaper-based 

implementation in particular, has been faced with several challenges. One of the main 

challenges is the acquisition of CARS spectra in the important fingerprint region due to the 

small cross sections of the vibrational modes in that region. Furthermore, the nonlinearity 

of the CARS process generates a non-resonant background, which distorts vibrational 

modes through interferences. This non-resonant background is highly dependent on the 

experimental setup used and therefore hinders a direct comparison of the CARS spectra 

obtained under different experimental conditions.  

 

In this thesis, a new MIR light source is developed which addresses each of the 

drawbacks in CARS by exploiting new spectroscopic techniques. MIR transmission 

microspectroscopy, for example, makes it possible to investigate molecular vibrations 

without any background. In contrast to CARS, a direct comparison of these background-

free spectra to the vast number of references in the literature is possible. Furthermore, the 

MIR transmission microspectroscopy is much more sensitive and provides a determination 

of vibrational modes in the fingerprint region via the broad spectral range of the new MIR 

light source. 

Another highlight of this new MIR light source is its potential to provide a variety of 

different MIR pulses in a robust and complex setup. This is accomplished by generating the 

MIR pulses in a difference-frequency (DF) process using shaped NIR pulses. By controlling 

the MIR generation, MIR pulses with arbitrary spectral and temporal distributions can be 

generated with nothing more than an additional nonlinear crystal (Figure I.2b). Therefore, 

the spectroscopic repertoire in this shaper-based setup is complemented without any loss of 

simplicity. In particular, this has the advantage of combining the MIR transmission and 

CARS microspectroscopy. Spectra and images obtained with both methods at the same 

position in the sample can be directly compared. 

Sum-frequency (SF) microspectroscopy is an additional vibrational sensitive method, 

which completes the toolbox of this shaper-based microscopy setup (Figure I.1g). This 

method has the potential to obtain information about molecular vibrations in non-

centrosymmetric systems using NIR and MIR pulses. In contrast to CARS, the structure of 

samples such as monolayers, interfaces, and crystals can be determined without the 

interference of the dense isotropic surrounding [38-41]. Furthermore, it overcomes the low 

spatial resolution of MIR microscopy with its dependence on the NIR laser pulse [42-45]. 

The advantages of SF microscopy are usually obtained at the price of a more complex setup, 

as it uses two different laser pulses. However, the arbitrary pulse shaping in this shaper-

based setup enables simple and flexible implementation, which allows for controlling the 

excitation in SF spectroscopy. 

 

The development and application of the new MIR light source in a multimodal 

microscopy setup is a crucial step towards developing a laser tool which can drive all kinds 

of non-linear interactions in shaper-based multimodal microscopy. This thesis presents this 

new MIR light source in the following chapters: 

 



I. 1 Ultrashort laser pulses 15 

• In chapter II, the basic concepts about laser pulses and pulse shaping are 

summarised. Furthermore, the theoretical backgrounds of MIR generation, 

CARS, and SF spectroscopy are introduced. Finally, pulse shaping in non-linear 

spectroscopy and the spectral focusing concept generating a narrowband 

excitation in CARS are introduced. 

• The flexible pulse shaping is demonstrated in a nonlinear microscopy setup, 

which consists of a laser, pulse shaper and microscope (see Figure I.2a). This is 

experimentally realised in this work by a Ti:Sa oscillator and a liquid crystal 

pulse shaper as described in chapter III. Especially, the implementation of the 

pulse shaper in a 4f setup and its operation principle is explained. 

• In chapter IV, the generation of MIR pulses with broadband and narrowband 

MIR spectra are discussed. Furthermore, the tuning range and spectral width of 

these narrowband spectra are experimentally determined and compared to 

simulations. 

• As described in chapter V, the NIR and MIR laser pulses can be applied in 

combined CARS and MIR microspectroscopy. This is demonstrated by 

detecting the vibrational resonances of polymers and alkynes. Furthermore, the 

potential of CARS and MIR microscopy is demonstrated using an example from 

the life sciences. Finally, the spatial resolution of the new MIR light source is 

determined.  

• In chapter VI, SF microspectroscopy is implemented via two different shaping 

methods. In a homodyne MIR-scanning method, narrowband MIR spectra are 

exploited to acquire SF spectra and vibrational resonant SF images. By contrast, 

the whole SF spectrum is obtained in only three shots using the heterodyne 

multiplex method.  

• The success of flexible pulse shaping is highly dependent on the knowledge of 

the spectral phase. The recently developed d-scan method [46] has the potential 

to retrieve this phase, as has already been shown in many applications. However, 

it has not been applied in the MIR range. In order to accomplish a MIR phase 

retrieval, two different d-scan based method are presented in chapter VII. 

• The potential of arbitrary pulse shaping for the MIR generation and multimodal 

microscopy is summarised in chapter VIII. This chapter highlights the 

advantages of the new MIR light source and discusses several potential 

improvements for future development. 





 

II. Concepts in pulse shaping and nonlinear spectroscopy 

This chapter gives information about the theoretical background, which is essential to 

understand the presented concepts and experiments of this work. At the beginning, the 

principles of ultrashort laser pulses are summarized and a general approach of pulse shaping 

is explained (section 1). 

In section 2, the fundamentals of non-linear optics are described and the theoretical 

background of MIR generation is discussed with respect to phase matching and conversion 

efficiency. Furthermore, the spectroscopic techniques SF and CARS are introduced in 

detail.  

Section 3 presents the implementation of non-linear spectroscopy using ultrashort laser 

pulses. Solely by shaping these laser pulses, a spectral resolution is gained. One powerful 

shaping concept is spectral focusing. Aside its theory, the implementation of this concept in 

different setups is discussed, and an extension called tailored spectral focusing is 

introduced.  

1. Ultrashort laser pulses 

1 i. Description of laser pulses 

The application of nonlinear spectroscopy have increased tremendously by the technical 

progress of pulsed laser sources [20, 47, 48]. Nowadays, there is a broad range of laser 

sources with different specifications in wavelength, pulse length and power. The 

wavelength ranges from the XUV down to the THz regime and a temporal width of the laser 

pulses from the picosecond down to the attosecond regime is available [49-51]. Recently, 

even peak powers of 2 GW have been demonstrated for 200 fs mid-infrared (MIR) laser 

pulses [52].  

Laser pulses with a linear polarization are described by an real electric field 𝐸(𝑡) having 

a slowly varying envelope 𝐸0(𝑡), a carrier angular frequency 𝜔0 and a phase factor 𝜙(𝑡). 

[53]: 

 
𝐸(𝑡) = Re{𝐸̃(𝑡)} = Re{𝐸0(𝑡)𝑒𝑖(𝜔0𝑡−𝜙(𝑡))}. 

II.1 
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Beside its description in time domain, the equivalent information is provided by the 

electric field in frequency domain. The Fourier transform transfers the electric field 𝐸̃(𝑡) 

from time representation into the frequency space 𝐸̃(𝜔) (eq. II.2). The inverse Fourier 

transform (II.3) permits a transformation back into the time domain (eq. II.3):  

 
𝐸̃(ω) = ℱ (𝐸̃(𝑡)) =  

1

√2π
∫ d𝑡 𝐸̃(𝑡) 𝑒−𝑖𝜔𝑡 , 

II.2 

 

 

𝐸̃(t) = ℱ−1 (𝐸̃(𝜔)) =  
1

√2π
∫ d𝜔 𝐸̃(𝜔) 𝑒𝑖𝜔𝑡 . 

II.3 

An important quantity to characterize a laser pulse is the product of the temporal and 

spectral width, which is called time-bandwidth product. It is often described by the full-

width-half-maximum of the intensity (FWHM: Δ𝑡: time and Δ𝜔 frequency) and is limited 

downwards by the threshold 2π ∙ 𝑐𝐵  due to the uncertainty limit. This threshold depends 

with the parameter 𝑐𝐵 on the shape of the intensity distribution and reaches its minimum for 

a sech-shaped pulse (𝑐𝐵 ≈ 0,315). In order to achieve short laser pulses, the spectral width 

must be large. Therefore, a laser pulse in the sub 10 fs regime can only be provided by a 

spectrum with a width Δ𝜔 ≥ 0,2
1

fs
= 2π ∙ 31,5 THz. This corresponds to a FWHM above 

70 nm for a spectrum centred at 800 nm [53].  

Figure II.1 Impact of the phase on the temporal shape of laser pulses: (a) The Gaussian 

shaped transform-limited 10 fs laser pulse with a carrier wavelength at 2 µm is as short as 

possible with respect to the time-bandwidth product. (b) A linear phase with the slope τgroup 

= 100 fs shifts the laser pulse linearly in time without changing its temporal envelope. (c) 

By imprinting a chirp of GDD = 100 fs2, frequencies are ordered linearly in time and the 

pulse is temporally stretched.  
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However, a broad spectrum does not lead inevitably to a short laser pulse. The time-

bandwidth product reaches the threshold only for so called transform-limited pulses, whose 

phase derivative 
𝜕𝜙(𝑡)

𝜕𝑡
 is constant (see eq. II.9). For a finite 

𝜕𝜙(𝑡)

𝜕𝑡
, the pulse is stretched in 

time and the time-bandwidth product increases 𝛥𝑡𝛥𝜔 > 2π𝑐𝐵.  

The impact of the phase can be analysed in frequency domain by the complex electric 

field 𝐸̃(ω) with its amplitude 𝐸0(𝜔) and phase 𝜑(𝜔) (eq. II.4). The spectral phase 𝜑(𝜔) is 

described by a Taylor series and has three main factors (eq. II.5): the carrier envelope phase 

𝐶𝐸𝑃 = 𝜑(𝜔0), the group delay 𝜏𝑔𝑟𝑜𝑢𝑝 =
𝜕𝜑

𝜕𝜔
|

𝜔0

 and the group-delay-dispersion 𝐺𝐷𝐷 =

 
𝜕2𝜑

𝜕2𝜔
|

𝜔0

:  

 
𝐸̃(ω) = 𝐸0(𝜔)𝑒𝑖𝜑(𝜔), 

II.4 

 

𝜑(𝜔) = ∑
1

n!

𝜕n𝜑

𝜕𝜔n
|

𝜔0

(𝜔 − 𝜔0)n

∞

i=0

 

≈ 𝐶𝐸𝑃 + 𝜏𝑔𝑟𝑜𝑢𝑝 (𝜔 − 𝜔0) +
1

2
𝐺𝐷𝐷(𝜔 − 𝜔0)2. 

II.5 

The CEP shifts only the oscillating electric field within its unchanged envelope. In 

contrast, the linear phase term 
𝜕𝜑

𝜕𝜔
|

𝜔0

∙ (𝜔 − 𝜔0) shifts the envelope of the laser pulse in 

time with the group delay 𝜏𝑔𝑟𝑜𝑢𝑝 (Figure II.1a&b). The quadratic term 𝐺𝐷𝐷 orders the 

frequencies linearly in time (𝜔(𝑡) ∝ 𝑡) and stretches the laser pulse temporally. This is 

illustrated in Figure II.1c by a laser pulse, whose temporal width is stretched from 10 fs to 

roughly 60 fs and the frequency at negative times are smaller than at positive ones. In 

accordance with the analogy between this frequency dependence and a birdsong, the 

quadratic phase is called up and down chirp for a positive and negative 𝐺𝐷𝐷, respectively. 

A 𝐺𝐷𝐷 is usually imprinted on laser pulses by inserting a glass substrate with the 

thickness 𝐿 into the beam path. The glass substrate has a refractive index 𝑛(𝑘) and modifies 

the dispersion relation between frequency and wave vector k (eq. II.6). This results in a 

material specific phase velocity 𝑐𝑀(𝑘), which is smaller than the light velocity in vacuum 

c and imprints the phase ∆𝜑 on the laser pulse (eq. II.7): 

 

𝜔(𝑘) = 𝑐𝑀(𝑘) ∙ 𝑘 =
𝑐

𝑛(𝑘)
𝑘, 

II.6 

 

Δ𝜑(𝜔) = (𝑛(𝜔) − 1)
𝜔

𝑐
𝐿. 

II.7 
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In order to observe the quadratic dependence in eq. II.7, the spectral shape of the 

refractive index must be taken into account. This is provided by the empirical derived 

Snellmeier equation and shows for many materials a strong quadratic dependence [54]: 

 

𝑛2(𝜆) = 1 + ∑
𝐵i𝜆

2

𝜆2 − 𝐶i
.

3

i=1

 

II.8 

The parameters of this equation (𝐵𝑖, 𝐶𝑖) yield a positive chirp for all materials in the 

visible and NIR region. In contrast, materials with positive (e.g. germanium) as well as 

negative (e.g. fluorides) amounts of chirp are available in the MIR region. The dispersion 

of a specific material is usually expressed in literature by the group-velocity-dispersion 

(𝐺𝑉𝐷), which is the 𝐺𝐷𝐷 per unit length. 

While in many applications the imprinted phases should be as small as possible, the 

phase is modified actively for many applications. Several phase shaping concepts are 

introduced in the following section.  

1 ii. Pulse shaping  

Pulse shaping is the manipulation of a laser pulse via its amplitude and phase. In general, 

every optical element can be interpreted as a pulse shaper by multiplying a transfer function 

Figure II.2 (a&b) Two identical laser pulses can be obtained by a Michelson interferometer. 

A single laser pulse is split into two pulses by a beam splitter (BS) and the time delay of 

these pulses is adjusted by using a movable mirror (a) or a pair of glass wedges (b). (c) 

Flexible pulse shaping can also generate the double pulses by imprinting the specific 
transfer function via the pulse shaper on the laser spectrum. The transfer function consists 

of a spectral phase and amplitude. 
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𝑀(𝜔) on the incoming electric field 𝐸𝑖𝑛 of the laser pulse (eq. II.9). A coloured glass or a 

filter, for example, are simple elements for amplitude shaping by their potential to cut the 

spectrum or to reduce the intensity. Phase shaping is also accomplished by every inserted 

substrate in the beam path since it disperses the laser pulses [55]: 

 
𝐸𝑜𝑢𝑡(𝜔) = 𝑀(𝜔) ∙ 𝐸𝑖𝑛(𝜔). II.9 

The different types of pulse shaping are exemplarily shown on the generation of two 

laser pulses with an arbitrary time delay 𝜏. This is usually accomplished by a Michelson 

interferometer, which splits the laser pulse on a substrate in two replicas (Figure II.2a). 

Whereas one of the laser pulses passes a static beam path, the path length of the other one 

is varied by a moveable mirror. In order to analyse the Michelson interferometer in 

accordance with pulse shaping, it is separated in an amplitude shaping provided by the beam 

splitter and an phase shaping, which is described by a linear phase affecting the time delay 

(see eq. II.10 and Figure II.1b): 

 
𝑀(𝜔) = (1 + e𝑖𝜔𝜏). 

II.10 

This Michelson interferometer can be modified by inserting a pair of glass wedges in 

one of the beam paths (Figure II.2b). The glass wedges imprint an additional phase on the 

laser pulse, which disperses and delays the laser pulse. A time delay of 1 ps can be obtained, 

for example, by changing the thickness of a BK7 glass (𝑛𝑔 ≈ 1,52) around 500µm 1. The 

dispersion of such a small variation is negligible (𝐺𝐷𝐷 ≈ 20 fs2). Therefore, the glass 

wedges are another method to accomplish the time scan, as usually exploited in multi-

dimensional time-resolved spectroscopy [56].  

On their downsides, Michelson interferometers are static and restricted to one specific 

task. Extensions or modifications of the setup are only possible by rebuilding the setup 

mechanically. The solution is a programmable pulse shaper, which can address each 

problem by tailoring the laser pulses arbitrary. Flexible pulse shaping is provided by 

imprinting a spectral phase 𝜑(𝜔) and amplitude 𝐴(𝜔) function on the laser pulse via the 

transfer function 𝑀(𝜔) (eq. II.11): 

 
𝑀(𝜔) = 𝐴(𝜔)𝑒𝑖𝜑(𝜔). 

II.11 

The two pulses with a variable time delay τ are simply accomplished by splitting eq. II.10 

in the phase and amplitude contributions as shown on eq. II.12 and Figure II.2c. The 

successful implementation of double pulses via a shaper has even shown a temporal 

resolution of zeptoseconds (10-21s) for interferometry [57]: 

 
1 𝐿 =

𝜏∙𝑐

𝑛(𝜔)−1
 [L substrate thickness; τ: time delay] 
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𝑀(𝜔) = 𝐴(𝜔)𝑒i𝜑(𝜔) =  |cos(𝜔
𝜏

2
)| 𝑒i𝑎(𝜔) 

with 𝑎(𝜔) = {
0  if cos (𝜔

𝜏

2
) ≥ 0 

π  if cos (𝜔
𝜏

2
) < 0

. 

II.12 

There are a lot of different experimental realisations of flexible pulse shaping. Most of 

them use spatial masks, which vary the optical thickness spatially on a broad window. In 

order to imprint a spectral phase on the laser pulse, the spectrum of the laser pulse is spatially 

dispersed on this window by a 4 f setup. This is discussed in detail for the used liquid crystal 

pulse shaper in section III.2 



 

2. Nonlinear spectroscopy 

2 i. Nonlinear optics 

Dispersion and absorption can be described by the Lorentz oscillator model in linear 

optics. It assumes a bound electron with the charge –𝑒 and the mass m in the interaction 

with light. The electric field 𝑬̌(𝑡) of the light deflects the electron out of the equilibrium 

and the restoring force FR moves it back. While the electric field 𝑬̌(𝑡) is well below the 

intramolecular bounding forces 𝑬𝒂𝒕𝒐𝒎 , the restoring force (𝑭𝑹 = 𝑚𝜔0
2𝒙; 𝐹𝑁𝐿 = 0) has 

only a linear dependence on the displacement 𝒙 and the electron acts as a harmonic 

oscillator, which is damped by −2𝛾𝒙̇ (in eq. II.13 & II.14)[54].  

However, this model does not work for intense light. If light induces forces in the order 

of the intra-atomic forces, the electron movement is perturbed by non-linear force 𝑭𝑵𝑳 

(eq. II.14) and additional electric fields are emitted. For a non-linear potential up to the 

second order (eq. II.15; 𝒆𝑥  unit vector in direction of x), for example, the electron motion 

drives the emission of a DC and a frequency doubled electric field (Figure II.3): 

 
𝑚 𝒙̈ = 𝑭𝑹 − 2γ𝒙̇ − 𝑒𝑬̌(𝑡), 

II.13 

 
𝑭𝑹(𝐱) = −m𝜔0

2𝒙 + 𝑭𝑵𝑳(𝒙), 
II.14 

Figure II.3 Demonstration of the linear (a) and non-linear (b) light-matter. (a) If light with 

a small electric field and the frequency ω1 incidents a material, the light is dispersed and 
absorbed. (b) If the electric field of the incoming light is in the order of the interatomic 

electric field, a DC field and light with the doubled frequency (2 ω1) is generated. (c) The 

dispersion and absorption can be descripted microscopically by an electron movement in a 

harmonic potential. This symmetric potential is disturbed by higher order terms.  



24 II 2 Nonlinear spectroscopy 

 

𝑭𝑵𝑳 = −
𝑚 𝑏3

2
|𝒙|𝟐𝒆𝒙.  

II.15 

In order to describe the nonlinear interaction, the microscopic movements of the 

electrons can be summed up over all electrons (number N) to the polarization 𝑷𝒕𝒐𝒕 =

−𝑁e ∑ 𝒙(𝑛)
𝑛 , which is divided into a linear and non-linear part: 

 
𝑷𝒕𝒐𝒕 = 𝑷𝒍𝒊𝒏𝒆𝒂𝒓 + 𝑷𝒏𝒐𝒏−𝒍𝒊𝒏𝒆𝒂𝒓 . II.16 

The strength of the polarization is described by the susceptibility of the specific order n 

𝜒(𝑛) and the electric field 𝐸: 

𝑷𝒕𝒐𝒕 = 𝜖0 (𝛘(𝟏)𝑬 + 𝛘(𝟐)𝑬2 + 𝛘(𝟑)𝑬3) + 𝒪(𝑬4). 
II.17 

The susceptibility 𝛘(𝐧) decreases rapidly with increasing order n. Thus, only the 

polarization and susceptibility 2nd order (| 𝛘(2)|~10
pm

V
) and 3rd order (| 𝛘(3)|~100

pm2

V2 ) are 

usually taken into account.  

It is important to note that the susceptibility is a tensor. The susceptibility 2nd order, for 

example, is the sum of 12 individual tensors, whereas each one consists of 27 individual 

components by the 3 different spatial polarizations and 3 interacting electric fields. 

Fortunately, the number of independent tensors entries can be reduced up to 18 by taking 

the symmetry and properties of electro-magnetic waves into account [58].  

 

In the following section, the susceptibility 2nd order for second-harmonic generation and 

difference-frequency (DF) generation is explained in consideration of the phase matching 

and the conversion efficiency. Furthermore, MIR generation and SF spectroscopy are 

introduced as two applications of the 2nd order nonlinear process. Finally, the susceptibility 

3rd order is considered by CARS spectroscopy (section 2 iii). 

2 ii. 2nd
 order nonlinear susceptibility: principle of MIR generation and sum-

frequency spectroscopy 

In order to describe the impact of the first term of the nonlinear polarization (∝ 𝛘(𝟐) 𝑬2), 

monochromatic light with the electric fields 𝑬𝟏(𝑡) and 𝑬𝟐(𝑡) and the corresponding 

frequencies 𝜔1 and 𝜔2 are considered (eq. II.18). The generated polarization 𝑷𝟑 has five 

different contributions: a DC field, two contributions with a doubled frequency 2𝜔1and 2𝜔2 

and two additional contributions with the sum and difference frequency 𝜔1 ± 𝜔2 (eq. II.19). 

The polarization drives the light emission at these frequencies due to the energy 

conservation:  
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𝑬(𝑡) = 𝑬𝟏(𝑡) + 𝑬𝟐(𝑡) = Re(𝑬𝟏,𝟎𝑒i𝜔1𝑡 + 𝑬𝟐,𝟎𝑒i𝜔2𝑡), 

II.18 

 𝑷𝟑(𝑡) ∝ 𝛘(𝟐)𝑬(𝑡)2 

∝ 𝛘(𝟐) ⋅ (
1

2
{𝑬𝟏,𝟎

2𝑒i2𝜔1𝑡 + 𝑬𝟐,𝟎
2𝑒i2𝜔2𝑡} + |𝑬𝟏,𝟎|

2
+ |𝑬𝟐,𝟎|

2

+ (𝑬𝟏,𝟎 𝑬𝟐,𝟎 𝑒i(𝜔1+𝜔2)𝑡

+ 𝑬𝟏,𝟎 𝑬𝟐,𝟎
∗𝑒i(𝜔1−𝜔2)𝑡)). 

II.19 

 

The emitted light with its electric field 𝑬𝟑(𝑡) and frequency 𝜔3 is derived by inserting 

𝑷𝟑(𝑡) into the wave equation and solving it. An analytical solution can only be obtained 

under special assumptions. By considering the same magnitude of the incoming electric 

fields and the propagation of all beams collinear in z-direction (reduction to 1D), the 

intensity (𝐼3 ∝ |𝐸3|2) of the generated electric field is expressed similar for all contributions 

of 𝑃3 (eq. II.20). It depends linearly on the incoming intensities 𝐼1 ∝ |𝐸1|2 and 𝐼2 ∝ |𝐸2|2 

as well as quadratically on the crystal length 𝐿. In addition, it depends on the product of the 

crystal length and the wave-vector mismatch Δ𝑘 appearing inside the sinc-function. It 

should be stressed out at this point, that Δ𝑘 is scalar here due to the propagation in z-

direction of all beams:  

 

𝐼3 ∝ 𝐼1𝐼2sinc2 (
Δ𝑘 𝐿

2
) 𝐿2. 

II.20 

By taking the argument of the sinc-function into account, an efficient non-linear process 

is only possible for Δ𝑘 ⋅ 𝐿 ≈ 0. Consequently, the wave-vector mismatch should be as small 

as possible to promote a high intensity 𝐼3 in non-linear crystals with a large  𝐿.  

2 ii a. Phase matching 

The condition Δ𝑘 ≈ 0 is called phase matching and can be interpreted as momentum 

conservation for the SF (eq. II.21) and DF (eq. II.22) process (using the wave vectors 𝑘1, 

𝑘2, and 𝑘3 ): 

 
Δk = 𝑘1 + 𝑘2 − 𝑘3 ≈ 0, II.21 

 
Δk = 𝑘1 − (𝑘2 + 𝑘3) ≈ 0. II.22 

These conditions are not fulfilled in isotropic media and require birefringent materials, 

whose refractive index is different in dependence on the axis (eq. II.23). The polarization 
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of the light is aligned along the axis to adjust the wave vectors by the specific refractive 

index1; Whereas the wave vector of an electric field polarized perpendicular to the optical 

axis is affected by the ordinary refractive index 𝑛𝑜 , the extraordinary refractive index 𝑛𝑒𝑜  

affects the wave vector, whose electric field is polarized in the plane spanned of the wave 

vector and the optical axis (see Figure II.4a). In addition, this extraordinary refractive index 

𝑛𝑒𝑜(𝜃) depends on the angle 𝜃 between the wave vector and the optical axis. It can be tuned 

from 𝑛𝑜  at 𝜃 = 0 to 𝑛𝑒𝑜  at 𝜃 = 90° and is adjusted to fulfil the phase matching condition. 

In accordance, this angle is called phase matching angle. In order to clarify the 

nomenclature, it should be noted that 𝑛𝑒𝑜(θ = 90°, ω) =  𝑛𝑒𝑜(𝜔) in eq. II.23: 

1

𝑛𝑒𝑜
2(𝜔 , 𝜃)

=
cos2(𝜃)

𝑛0
2(𝜔 )

+
sin2(𝜃)

𝑛𝑒𝑜
2(𝜔 )

. 
II.23 

 

There are two different kinds of phase matching conditions in birefringent crystals. In 

Type I crystals, the electric fields oscillating with smaller frequencies have the same 

polarization. These are perpendicular to the polarization of the electric field with higher 

frequency. The energy and momentum conservation in a Type I crystal is shown for the SF 

process (eq. II.24) and DF process (eq. II.25 and see Figure II.4b). Phase matching in Type 

II crystals is accomplished by a perpendicular polarization of the two lower energetic 

electric fields. (Type II phase matching is not considered in this work);  

 
1 𝑘 = 𝑛(𝜔)𝜔/𝑐 

Figure II.4 (a) The refractive indices of birefringent crystals are described by an index 

ellipsoid consisting of a constant ordinary refractive index no and extraordinary refractive 

index neo(θ ) which depends on the angle between wave vector k and optical axis. For θ = 
0, neo(θ ) is equal to no. By increasing θ, the optical axis is tilted and neo(θ ) increases. (b) 

For an efficient (collinear) DF generation in Type I crystals, the blue-detuned E(ω1) is 

polarized in the plane spanned by the optical axis and the direction of the incoming light. 
The red-detuned electric field E(ω2) is orthogonal to this plane. The generated electric field 

E(ω3) has a polarization parallel to E(ω2). 
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𝜔1 + 𝜔2 = 𝜔3, 

𝑛𝑜(𝜔1) ⋅ 𝜔1 + 𝑛𝑜(𝜔2) ⋅ 𝜔2 = 𝑛𝑒𝑜(𝜔3 , 𝜃) ⋅ 𝜔3 , 

II.24 

SF process 

 
𝜔1 − 𝜔2 = 𝜔3, 

𝑛𝑒𝑜(𝜔1, 𝜃) ⋅ 𝜔1 − 𝑛𝑜(𝜔2) ⋅ 𝜔2 = 𝑛𝑜(𝜔3) ⋅ 𝜔3. 

II.25 

DF process 

2 ii b. Broadband SF and DF generation 

The discussion above about SF and DF generation was fully derived by monochromatic 

electric fields. However, the polarization 𝑃3(𝑡) is usually generated by laser pulses with a 

broad spectrum Therefore, a mathematical description in the frequency domain is more 

convenient. This is presented for the SF process in the following. In order to derive an 

analytical solution, several assumptions are made. Firstly, a thin crystal with the length 𝐿 

and a constant susceptibility 𝑑 at a given phase matching angle is assumed ( 𝜒(2)(𝜔′, ω) =

const. ). The second assumption considers strong fundamental electric fields which are not 

depleted by the electric field of the SF light. Therefore, constant electric fields 𝐸1(𝜔) and 

𝐸2(𝜔) as well as a defined dispersion relation at the entrance of the crystal can be assumed. 

The generated electric field 𝐸3(𝜔) is derived under consideration of the slowly varying 

amplitude approximation. The generated electric field 𝐸3(𝜔) depends on the convolution 

of the fundamental electric field and a term taking the phase matching into account [58-60]:  

 

𝐸3(ω, L) ∝ 𝑑 ∙ ∫ 𝑑𝜔′𝐸1(𝜔′)𝐸2(𝜔 − 𝜔′)  × 

∫ 𝑒𝑖Δ𝑘(𝜔′,ω)𝑧𝑑𝑧.
𝐿

0

 

II.26 

In order to provide an intuitive access to these equations, the limit of an infinite thin 

crystal is assumed (i.e. ∫ 𝑒𝑖Δ𝑘(𝜔,Ω)𝑧𝑑𝑧 ≈∙ 1
𝐿

0
). In this case, only the convolution of the 

spectra must be considered: 

 

𝐸3(ω) ∝ ∫ 𝑑𝜔′𝐸1(𝜔′)𝐸2(𝜔 − 𝜔′).  
II.27 

The electric field generated in the DF process can be similarly derived (eq. II.28). The 

SF as well as the DF generated electric field are illustrated in Figure II.5; 
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𝐸3(ω) ∝ ∫ 𝑑𝜔′𝐸1(𝜔′)𝐸2
∗(𝜔 − 𝜔′) . 

II.28 

It is important to note that the numerical fast Fourier transform is much faster than a 

direct convolution. This is exploited in all simulations of this work for SF and DF generation 

by modelling the spectra of the electric fields by a product in time domain via eq. II.29 and 

eq. II.30, respectively [60]: 

 
𝐸3(𝜔) ∝ ℱ{ℱ−1(𝐸1(𝜔)) ∙ ℱ−1(𝐸2(𝜔))}, 

II.29 

 
𝐸3(𝜔) ∝ ℱ{ℱ−1(𝐸1(𝜔)) ∙ ℱ−1(𝐸2

∗(𝜔))}. 
II.30 

2 ii c. Applications 

In the presented work, two 2nd order nonlinear processes are exploited: the generation of 

MIR light (i) and SF spectroscopy (ii).  

Figure II.5 SF (a&b) and DF generation (c&d) process in time and space. (a) The SF 

process is described in time by the product of the electric fields E1 (blue) and (red) with the 

frequencies ω1 and ω2. SF generated light (black) with the electric field E3 is emitted with 

an oscillation at the sum of the interacting frequencies ω1 + ω2. (b) This process is depicted 
in frequency space after a convolution. (c) In the DF process, the interaction of the blue 

detuned E1 (blue) and the red-detuned E2 (red) can also be described by a multiplication 

when considering the complex conjugation of E2. (d) The electric field E3(ω) (black) is the 

convolution of the electric fields E1 (blue) and complex conjugated E2 (red).  
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(i) In order to generate MIR light, two electric fields with slightly shifted frequencies are 

required. The frequencies are usually in the NIR region and their electric fields generate in 

a DF process MIR light, which is located spectrally at the difference frequency of the 

incoming NIR frequencies. In accordance with the nomenclature in the CARS process (see 

later in section 2 iii), the lower-energetic and higher-energetic electric fields are called pump 

and Stokes, respectively. 

The pump and Stokes can be obtained either from one laser pulse having a broad 

spectrum or from two different laser pulses with narrowband spectra. Their spectral and 

temporal shapes have a huge impact on the spectrum of the generated MIR pulses as 

discussed in detail in chapter IV. 

 

(ii) SF spectroscopy is a powerful spectroscopic technique, which gives access to 

molecular vibrations in non-centrosymmetric systems. This access is provided by direct 

MIR excitations using a NIR and MIR laser pulse. The MIR pulse directly excites the 

vibrational modes of a molecule and these modes are non-resonantly probed by the NIR 

pulse while emitting SF light. The intensity of this SF light 𝐼𝑆𝐹  is proportional to the absolute 

square value of the susceptibility 2nd order (eq. II.31) which depicts the vibrational modes 

with their complex Lorentzian line shapes (Amplitudes 𝐵𝑛, centre frequencies 𝜔𝑛  and decay 

rates Γ𝑛). By adjusting the energy of the MIR laser pulse to a vibrational mode, the non-

linear process and the generated SF light 𝐼𝑆𝐹  is enhanced by many orders of magnitude. This 

gives access to the information of the vibrational modes in the SF spectrum: 

 

𝐼𝑆𝐹 ∝ |𝜒𝑛𝑟 + ∑
𝐵𝑛

(𝜔 − 𝜔𝑛) − iΓ𝑛𝑛
|

2

. 

II.31 

The SF spectrum shows additionally a contribution of a non-resonant background 𝜒𝑛𝑟 , 

which interferes with the resonant contribution. This background appears in almost all non-

linear spectroscopy techniques and is discussed in detail in CARS spectroscopy (see. 2 iii). 

2 iii. CARS spectroscopy 

CARS spectroscopy is another powerful technique to determine molecular vibrations. In 

contrast to SF, CARS is not restricted to non-centrosymmetric systems, and is also sensitive 

to isotropic media [36, 61-63]. The CARS process is a four-wave mixing process, which 

requires the interaction of three different electric fields. Two of them (𝐸𝑝𝑢𝑚𝑝, 𝐸𝑆𝑡𝑜𝑘𝑒𝑠) have 

a slightly detuned frequency and are called pump and Stokes (for simplicity both propagate 

in z-direction). The energetic-lower Stokes and energetic-higher pump generate in a DF 

process (eq. II.33) a coherence 𝐴(Ω) at the difference frequency Ω of pump and Stokes. 

This process is described equally to the 2nd order non-linear DF generation (eq. II.28). 

Instead of emitting MIR light directly, the light with the electric field 𝐸𝐶𝐴𝑅𝑆 is emitted after 

the interaction with the third electric field 𝐸𝑝𝑟𝑜𝑏𝑒, which is called probe (eq. II.32): 
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𝐸𝐶𝐴𝑅𝑆(𝜔) ∝ ∫ 𝑑𝛺 𝐴(𝛺)𝜒
(3)(𝛺)𝐸𝑝𝑟𝑜𝑏𝑒(𝜔 − 𝛺), 

II.32 

 

𝐴(𝛺) = ∫ 𝑑𝜔 𝐸𝑝𝑢𝑚𝑝(𝜔)𝐸𝑆𝑡𝑜𝑘𝑒𝑠
∗ (𝜔 − 𝛺). 

II.33 

By tuning the frequency difference Ω between pump and Stokes, the whole CARS 

spectrum can be acquired. The spectrum shows the vibrational signature of the material by 

the absolute square of the susceptibility 3rd order|𝜒
(3)

|
2

 .  

This susceptibility has a resonant contribution 𝜒𝑅𝑒𝑠
(3)

  and depicts all Raman active 

vibrational modes with their Fano line shape in the real part and a Lorentzian line shape in 

the imaginary part (see eq. II.34 Ω𝑅, decay rate: Γ𝑅; Amplitude 𝐴𝑅.). The resonant 

contribution 𝜒𝑅𝑒𝑠
(3)

 and the corresponding CARS spectrum are illustrated in Figure II.6a&b. 

The susceptibility 3rdorder 𝜒
(3)

 consists also of a non-resonant background 𝜒𝑁𝑅
(3)

, which is 

generated by an interaction with a different energetic ordering of pump and Stokes (see 

energy diagram in Figure II.6). This constant and real background interferes with the 

resonant contribution and distorts the line shapes of the vibrational resonances (Figure II.6c 

& d): 

Figure II.6 Comparison of CARS spectra having only a pure resonant contribution (upper 

row) and a non-resonant contribution in addition (lower row): (a) The complex 
susceptibility is described by a complex Lorentzian with its dispersion (real part: black) 

and absorption (imaginary part: red). (b) The detected absolute square of the susceptibility    

|χCARS|
2 has the known Lorentzian line shape. (c) The non-resonant background is an offset 

on the real part. (d) With the interference of the resonant and non-resonant contribution, 

the line shape of the detected susceptibility |χCARS|
2  is distorted. On the left side of the 

image, the energy diagrams of the resonant and non-resonant susceptibility are shown. 
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𝜒
(3)

(Ω) = 𝜒𝑁𝑅
(3)

+ 𝜒𝑅𝑒𝑠
(3)

(Ω) = 𝜒𝑁𝑅
(3)

+ ∑
𝐴𝑟

(Ω − Ω𝑟) − 𝑖Γ𝑟
.

𝑟

 
II.34 

It is important to note that the intensity of the non-resonant background scales with the 

number of additional interactions. This number is large in the interaction of short laser 

pulses, because many interactions are driven by the temporal overlap of a broad spectrum 

[64].  

In order to extract the information of the vibrational modes, the resonant and non-

resonant contributions must be disentangled. This is accomplished either by the time-

domain Kramer-Kronig transformation [65] or by the maximum entropy method (MEM) 

[66]. Latter one decomposes the CARS spectrum into Fourier coefficients and retrieves the 

amplitude and phase in a fitting procedure. The fitting procedure depicts the constant non-

resonant background in a real and constant Fourier coefficient. The time-domain Kramer-

Kronig transformation exploits the same fact but in the time domain. It separates a fast decay 

of the non-resonant background from the slowly decaying vibrational modes. 

This non-resonant background can also be experimentally supressed. This is 

accomplished by using at least two independent laser pulses. The first laser pulse provides 

pump and Stokes and excites the coherent Raman excitation. The second laser pulse is 

temporally delayed behind the decay of the non-resonant background. Therefore, this probe 

pulse generates the CARS signals only in an interaction with the resonant contribution [67, 

68].  



 

3. Shaper-based nonlinear spectroscopy 

3 i. Towards femtosecond nonlinear spectroscopy 

CARS spectroscopy is usually implemented by two NIR laser sources, which provide 

laser pulses with narrowband spectra (2-10 cm-1) for pump and Stokes. The interaction of 

pump and Stokes generates a narrowband DF excitation, which can be directly traced back 

to a specific vibrational mode. The CARS signal is generated by probing this narrowband 

excitation via an additional interaction with the pump (Figure II.7a & b) [69]. In order to 

obtain the whole spectrum, the pump spectrum is detuned. In experiments, the temporal and 

spatial overlap of pump and Stokes must be stable over the whole tuning range. This can be 

experimentally challenging, especially by a fast wavelength tuning [29]. 

Figure II.7 Comparison of narrowband (1st row) and broadband (2nd row) DF excitations 

provided by ps and fs pulsed laser sources, respectively: (a) Two laser pulses with 

narrowband and slightly detuned spectra are used in the CARS process (b) These laser 

pulses generate a narrowband DF excitation at the frequency difference of the spectra (e.g. 
at 2500 cm-1). (c) In the use of sub 10 fs laser pulses, the short laser pulses with a broad 

spectrum are able to generate many DF frequencies simultaneously (rainbow coloured area). 

(d) Broadband DF excitations with a range up to 3000 cm-1 are only possible by sub 10 fs 
laser pulses (black). 100 fs (purple), 50 fs (red) and 20 fs transform-limited laser pulses 

(orange) are limited to DF excitations below 250 cm-1, 500 cm-1 and 1000 cm-1, 

respectively. The broadband excitations are simulated by Gaussian shaped laser pulses.  
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The wavelength tuning can be circumvented by using a broad spectrum, which excites 

many vibrational modes simultaneously. This can be accomplished by the multiplex and 

single-beam CARS spectroscopy. In multiplex CARS spectroscopy, a narrowband pump 

and a broadband Stokes are exploited to excite all vibrational modes. Afterwards, these 

excitations are probed by the narrowband pump to provide the CARS spectrum with spectral 

resolution [70, 71]. In contrast, only one laser pulse acting simultaneously as pump, Stokes 

and probe is required in single-beam CARS spectroscopy (Figure II.7c) [31].  

This laser pulse is able to excite all vibrational modes, which have a pair of pump and 

Stokes within the broad spectrum. In accordance to the profile of the laser spectrum, the DF 

excitation decreases towards higher frequencies. Therefore, short laser pulses with a broad 

spectrum are needed to generate a broad DF excitation spectrum. Especially vibrational 

resonances in the CH stretching region can only be excited, when the pulse length is shorter 

than 10 fs (see Figure II.7d).  

Although this single laser pulse allows for exciting all vibrational modes, the detected 

CARS signal cannot be linked to a specific vibration and provides up to now no spectral 

contrast. Pulse shaping is the method of choice to enable spectral resolution using a single 

ultrabroadband laser pulse. Several shaping concepts have been developed in the last 

decades to tailor the laser pulse for the purpose of a spectral resolution in CARS [30, 36]. 

One of the most popular concepts is spectral focusing. 

3 ii. Concept of spectral focusing: spectral resolution in difference-frequency 

processes 

Introduced by Veitas et al [72], the concept of spectral focusing is a perfect tool to turn 

a broadband DF excitation into a narrowband and tuneable one [73-75]. In this section, the 

theory of this concept is summarized (section 3 ii a) [35, 72, 76, 77] and its experimental 

implementation is discussed (section 3 ii b). Furthermore, the recently discovered extension 

tailored spectral focusing [35] and its potential for non-resonant background suppression is 

shown (section 3 ii c).  

3 ii a. Concept of spectral focusing 

In a single-beam setup, a transform-limited laser pulse excites many frequencies in the 

DF excitation. Spectral focusing supresses most of these frequencies to generate a 

narrowband DF excitation 𝐴(Ω) (eq. II.35). This is accomplished by modifying the phase 

difference Δ𝜑 between pump 𝐸𝑃 and Stokes 𝐸𝑆 with two parabolic phase functions. These 

phase functions are defined by the same amount of chirp 𝛽 and the centre frequencies 𝜔𝑝 

and 𝜔𝑆, respectively (eq. II.36 and Figure II.8a): 

 

𝐴(Ω) ∝ ∫ 𝑑𝜔 |𝐸𝑝(𝜔 + Ω)||𝐸𝑆
∗(𝜔)|𝑒𝑖Δ𝜑(𝜔), 

II.35 
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Δ𝜑(𝜔) =
𝛽

2
(𝜔 + Ω − 𝜔𝑝)

2
−

𝛽

2
(𝜔 − 𝜔𝑆)2. 

II.36 

This phase difference Δ𝜑 is reordered mathematically to demonstrate its impact on the 

DF excitation 𝐴(Ω)  (eq. II.37): Whereas for Ω ≠ 𝜔𝑝 − 𝜔𝑆 the complex product of pump 

and Stokes 𝐸̃𝑝(𝜔 + Ω) ⋅ ẼS
∗(ω) interferes destructively over the integral (eq. II.35), the DF 

excitation 𝐴(Ω ≈ 𝜔𝑝 − 𝜔𝑆) is emphasized by constructive interference. Therefore, the 

frequency Ω of the narrowband excitation 𝐴(Ω) in eq. II.35 is equally to the difference of 

the centre frequencies of 𝜔𝑝 and 𝜔𝑆 (see Figure II.8c): 

 
Δ𝜑(𝜔) = 𝛽[Ω − (𝜔𝑝 − 𝜔𝑆)] ⋅ 𝜔 + 𝒪(𝜔0). 

II.37 

A deeper understanding of the spectral focusing concept is provided in the frequency-

time picture by considering the time dependent angular frequency 𝜔 (𝑡) ≈ 𝜔𝑖 +
1

𝛽
𝑡 for the 

pump (𝜔𝑖 = 𝜔𝑝) and Stokes (𝜔𝑖 = 𝜔𝑆), respectively. As shown in Figure II.8b, a high 

amount of chirp stretches the laser pulses up to several picoseconds and reduces the 

temporal overlap to frequencies with a constant instantaneous frequency difference 𝐼𝐹𝐷 

(eq. II.38 and Figure II.8b). A simple interpretation is depicted in Figure II.8d by the 

simultaneous increase of the pump and Stokes energy in time, which supresses all other 

pathways; 

 

𝐼𝐹𝐷 (𝑡) = 𝜔𝑝 +
1

𝛽
𝑡 − (𝜔𝑆 +

1

𝛽
𝑡) = 𝜔𝑝 − 𝜔𝑆.  

II.38 

 

For pump and Stokes, the centre of the parabolic phase function can be moved around 
𝜏

𝛽
 

(eq. II.39). This can be expressed as a linear phase with the slope 𝜏 and shows the additional 

time delay between pump and Stokes. In accordance with eq. II.38, this time delay tunes the 

𝐼𝐹𝐷 to 𝜔𝑝 − 𝜔𝑆 +
𝜏

𝛽
 and accomplishes the tuning of the narrowband DF excitation as 

depicted in the 2nd column in Figure II.8: 

 
𝛽

2
[𝜔 − (𝜔𝑖 −

𝜏

𝛽
)]

2

=
𝛽

2
[𝜔 − 𝜔𝑖]2 + 𝜏𝜔 + 𝒪(𝜔0) 

with 𝑖 ∈ {𝑝, 𝑆}. 

II.39 

 

Besides, the spectral width of the DF excitation can be varied by changing the imprinted 

amount of chirp (Figure II.8 3rd column). In order to understand it, the pulse length 𝑇 ≈ 𝛽 ∙

Δ𝜔 is depicted as the product of the imprinted chirp and the bandwidth of laser spectrum 

Δ𝜔. This relation demonstrates a stretch of the laser pulses by increasing the imprinted 
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amount of chirp β. The spectral width 𝛿𝜔 =  
𝜋

Δ𝜔𝛽
 of the frequency-time ellipse decreases 

simultaneously as shown in the 3rd column in Figure II.8. 

 

The spectral focusing concept can also be fully derived in the time domain. This temporal 

description highlights other aspects of this concept as shown in the appendix (section  IX.2). 
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Figure II.8 Concept of spectral focusing: This concept provides in DF processes  

narrowband excitations (see 1st column), which are tuneable in frequency (2nd column) and 

spectral width (3rd column). 1st column: (a) In spectral focusing, two parabolic phase 

functions with the same amount of chirp – e.g. 5000 fs2- are imprinted. (b) The chirped laser 
pulses are linearly stretched in time (main panel) and yield a beating in time (lower panel) 

with a constant frequency at the instantaneous frequency difference (IFD), which is defined 

by the distance of the parabola. (c) In DF generation processes, all off-resonant frequencies 

are supressed and a narrowband DF excitation at the IFD- e.g. 2000 cm-1- is promoted. 2nd 
column (e&f): The shift of the IFD- e.g. from 2000 cm-1 (grey) to 2500 cm-1 (solid line)- 

moves the frequency time ellipses in time. (g) In accordance, the narrowband excitation is 

shifted from 2000 cm-1 (grey) to 2500 cm-1 (black). 3rd column: (i) The spectral resolution 
can be tuned by varying the amount of chirp. Increasing the amount of chirp to 10000 fs2 

(red and blue phase) stretches the laser pulses more in time (j main panel). (k) This reduces 

the bandwidth of the narrowband excitation (solid line). (d&h&l) Spectral focusing concept 

is illustrated in a time dependent energy diagram. 



 

3 ii b. Experimental implementation of spectral focusing 

The spectral focusing concept is usually applied on the individual laser beams of pump 

and Stokes pulses (Figure II.9a). In these setups, a single laser pulse is split in the pump and 

Stokes by a dichroic mirror and the chirped phases are imprinted on them either by thick 

glass rods [78] or grating compressors [73, 79]. Afterwards, pump and Stokes are 

recombined by a second dichroic mirror and guided to the sample for CARS spectroscopy. 

In order to acquire the whole spectrum either the pump or Stokes pulse is temporally delayed 

by a translation stage.  

However, both kinds of setups are static: The glass rods are designed for a specific 

amount of chirp at a given wavelength and must be replaced to change the imprinted amount 

of chirp. Although the grating compressors are more flexible, the change of the imprinted 

amount of chirp is quite complex by adjusting the distance of the two gratings inside the 

compressor. This requires a new alignment of the whole setup and cannot be done in a daily 

basis. 

The use of flexible pulse shaping can overcome these issues by replacing the static optics 

with a programmable pulse shaper. In spectral focusing, the two parabolic phase function 

are imprinted on the pulse shaper in a 4f setup. The frequency as well as the spectral width 

of the narrowband excitation can be simply adjusted by a change of the phase function. 

Especially, direct control of the spectral resolution via the spectral width is a great advantage 

of a programmable pulse shaper. 

Figure II.9 Experimental implementation of the spectral focusing concept. (a) In many 

setups, the single laser pulse is split by a dichroic beam splitter. The pump and Stokes pulses 
are highly chirped by traversing thick glass substrates or a grating compressor. The acquired 

narrowband excitation can be tuned by a temporal delay of one laser pulse via a translation 

stage. (b) The concept of spectral focusing can also be realized using a programmable pulse 

shaper. This is accomplished by passing the laser pulses through the pulse shaper inside a 

4f setup. In order tune the DF excitation, the imprinted phases are changed.  
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3 ii c. Concept of tailored spectral focusing for CARS spectroscopy 

Recently, the spectral focusing concept was extended to enable in shaper-based setups a 

suppression of the non-resonant background observed in CARS spectroscopy. The so-called 

tailored spectral focusing [35] concept shapes a single laser pulse in order to delay the probe 

process after the fast decay of the non-resonant background (see section 2 iii). This is 

accomplished by simply imprinting a new phase function (Figure II.10a). Beside the two 

parabolic phase functions of pump and Stokes, this phase is linear in independent spectral 

part. Whereas the parabolic phase functions stretch the pump and Stokes pulses in time to 

generate the narrowband coherence, the linear phase shifts the probe behind the excitation 

(Figure II.10b). This delayed probe pulse is able to unveil the undistorted line shape of the 

vibrational mode as shown in simulations (Figure II.10c). In contrast to the CARS spectrum 

detected without an independent probe pulse, the spectrum obtained by the delayed probe 

shows the known Lorentzian line shape.  

Furthermore, non-resonant interactions like second-harmonic generation benefits also 

from this independent probe pulse. In order to understand this, it is important to note that 

this probe pulse is transform-limited and has usually a temporal width 𝜏 below 100 fs 1. 

Therefore, generated signals are higher since the generation depends reciprocal on the 

temporal width 𝜏𝑛−1 for the n-th order interaction [80]. 

 
1 In assumption of a spectral width above 150 cm-1 (assuming a Gaussian shaped pulse) 

Figure II.10 Demonstration of tailored spectral focusing in a single-beam setup. (a) Beside 

imprinting two parabolic phase functions on the broad Gaussian shaped laser spectrum (grey 

background), an additional linear phase is imprinted. (b) In the frequency-time space the 

probe pulse appears after the pump and Stokes at later time. (c) In CARS spectroscopy, the 
vibrational resonance is probed by the additional probe laser pulse. Whereas the CARS 

spectrum probed by the pump is affected by the non-resonant background (grey 

background), an independent and delayed probe pulse interacts with the resonant 

contribution after the fast decay of the non-resonant background. The detected vibrational 

mode shows no distortion. 
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Moreover, the arbitrary time delay of the probe pulse can be further exploited in time-

resolved CARS spectroscopy. By tuning the slope of the linear phase, the time delay of the 

probe pulse is scanned, and the free induction decay of the vibrational modes is determined.  

 

 





 

III. Experimental setup for shaper-based nonlinear 

microspectroscopy 

The potential of multimodal microscopy in a single-beam setup is provided by shaping 

ultrabroadband laser pulses, whose experimental realization is discussed in this chapter. 

Initially, the working principle (section 1 i) and the properties (section 1 ii) of the used laser 

system are described. Afterwards, the experimental implementation of pulse shaping is 

explained (section 2). 

1. Laser system 

1 i. Working principle of a Ti:Sa oscillator 

Sub 10 fs laser pulses are usually generated in a Ti:Sa oscillator by inserting a Ti3+ doped 

sapphire (Ti:Sa) crystal inside a resonator and by pumping this crystal with a 532 nm 

centred pump laser. Beside the broad gain bandwidth of the Ti:Sa crystal, its strong 

susceptibility 3rd order is important for the generation of short laser pulses. Because of this 

susceptibility, the refractive index of the crystal is varied in dependence on the electric field 

strength of the laser pulse. Since the spatial intensity profile of the laser pulse yield a higher 

refractive index inside the crystal than outside, this crystal can be considered as a lens by 

the so-called Kerr lens effect. Furthermore, the focal length of the crystal is shorter for the 

transmission of more intense laser pulses. Therefore, only intense laser pulses are focused 

through a small pinhole, which is present in the resonator. By having the highest electric 

field strengths, short laser pulses are solely amplified in the so-called mode-locking process 

due to this pinhole. Nowadays, this pinhole is not needed anymore since the spatial overlap 

of the laser pulses with the focused pump is used in the mode-locking process [81]. 

Furthermore, sub 10 fs laser pulses are only generated by implementing chirped mirrors 

inside the resonator. These mirrors compensate in each round trip the chirp imprinted by the 

Ti:Sa crystal on the laser pulses. Using additionally chirped mirrors outside the cavity, the 

generated laser pulses have a temporal width below 10 fs [82].  

1 ii. Properties of the used Ti:Sa oscillator 

In the following, the main properties of the Ti:Sa oscillator (Femtolasers Fusion Pro 800) 

used in this work are summarized [82, 83]. This laser source provides laser pulses with an 
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800 nm centred NIR spectrum, which ranges from 670 nm up to 930 nm (Figure III.1a). 

Furthermore, the laser pulses have a temporal width between 8,5 fs and 9,3 fs (Figure 

III.1b), which depends on the alignment of the two-folded resonator. The laser pulses are 

emitted with a repetition rate of 75 MHz and a pulse energy of 10 nJ, yielding an average 

output power of 800 mW.  

2. Pulse shaping 

The temporal and spectral shape of ultrashort laser pulses is adjusted by shaping their 

phase and polarization. In the presented work, the pulse shaping is accomplished by a spatial 

light modulator, which imprints the phase functions on a spatially distributed spectrum. 

Such a spectrum is provided by a 4f setup as shown in section  2 i. Afterwards, the working 

principle and the properties of the pulse shaper are explained (section 2 ii).  

2 i. 4f setup 

A 4f setup can be understood as an experimental implementation of two Fourier 

transforms. The first part of the setup disperses the laser pulse into its spatial distributed 

spectrum and the second part withdraws the first transformation. Both experimental parts 

are similar and each of them consists in the simplest application of a grating and a lens 

(focal length 𝑓), separated by 𝑓 (Figure III.2a). This distance provides the name 4f setup.  

In order to understand the 4f setup, only the lenses are considered in a first step (without 

the gratings). These lenses are aligned with a distance of 2𝑓 and build a simple imaging 

system. This system magnifies the spatial distribution of the laser pulses by the first lens in 

a distance of 1𝑓 and reduces it back on its original distribution by the second one. In the 

second step, the gratings are inserted in the setup to image the spectrum. In accordance with 

Figure III.1 Spectrum (a) and interferometric autocorrelation (b) of the laser pulses 

provided by the used Ti:Sa oscillator. (a) The spectrum has a bandwidth, which ranges from 

670 nm up to 930 nm. (b) The autocorrelation determines a pulse length with a FWHM of 

9 fs.  
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the first grating, the laser spectrum is imaged in the Fourier plane between the two lenses. 

The second grating transforms the spatially dispersed spectrum to its original distribution.  

The used experimental implementation is slightly different (Figure III.2b). Firstly, the 

lenses are replaced by cylindrical mirrors to prevent the chirp imprinted by the lenses on the 

laser pulses. Furthermore, the cylindrical mirror (𝑓=35 cm customized by Hellma Optics) 

and blazed grating (600lines/mm; Thorlabs GR25-0608) are aligned in one axis in order to 

achieve higher stabilities [84]. This is accomplished by inserting the cylindrical mirrors 

slightly below the gratings permitting the laser pulses to path these mirrors above. In 

accordance with this alignment, the beam path of the pulses is slightly tilted downwards on 

Figure III.2 Principle (a) and experimental implementation (b) of the 4f setup. (a) The 

4f setup disperses a laser pulse into its spectrum by a grating and a lens, which are separated 
by the focal length of the lens. The spectrum is spatially distributed in the Fourier plane 

having the spatial light modulator (LCD mask) inside. The spectrum is recollimated by an 

experimental part, which consists of the same lens and grating. All optical elements are 
separated in one focal length f . (b) The 4f setup is experimentally implemented by aligning 

a grating and the cylindrical mirror in one axis. The laser pulses are dispersed by the grating 

and have a beam path slightly downwards to the cylindrical mirror. After being deflected 

on these mirrors, the pulses are deflected on a folding mirror (fol. mir) into the Fourier 
plane. Afterwards, the same experimental setup of folding mirror, cylindrical mirror and 

grating is used to recollimate the laser pulses. 
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the grating and the pulses are reflected on the top part of the cylindrical mirrors. 

Furthermore, a folding mirror is inserted in the beam path behind the cylindrical mirrors to 

deflect the laser pulses by 90° into the Fourier plane (customized by Hellma optics). 

Afterwards, the dispersed laser pulses are confined by the same setup consisting of grating, 

folding and cylindrical mirror. For more information on the detailed setup see [55, 76]. 

2 ii. Pulse shaper 

In the presented setup, pulse shaping is accomplished by a liquid crystal pulse shaper 

(SLM 640d Jenoptik), which uses a mask consisting of 640 pixels (individual width: 97 µm; 

separation: 3 µm). Each pixel consists of liquid crystals which are embedded between two 

glasses, coated each with an indium-tin oxide electrode layer and an additional layer. 

These crystals are birefringent and disperse the transmitting light by an individual and 

arbitral phase shifts with respect to the refractive index 𝑛𝑜  and 𝑛𝑒𝑜  in ordinary and 

extraordinary polarization, respectively (eq. III.2). The ordinary polarization is 

perpendicular to the plane spanned by optical axis of the crystals and the wave vector 

(Figure III.3 a & b). The polarization in extraordinary direction is inside this plane as already 

discussed in section II.2 ii a. Whereas light polarized in ordinary direction is affected by the 

constant phase 𝜑0 =  
2𝜋𝑑

𝜆
𝑛𝑜 , light polarized parallel to this plane is imprinted by a variable 

phase shift 𝜑 =  
2𝜋𝑑

𝜆
𝑛𝑒𝑜(𝜃)1 , which depends on the angle  𝜃 (see eq. II.23 in section II.2 ii 

 
1 d: thickness of mask 

Figure III.3 Principle of a liquid crystal (LC) pulse shaper: (a) Each LC display consists of 

birefringent crystals wedged between glass substrates with electrodes (red) and an 
additional layer (blue). The phase shift of light polarized in ordinary (o) and extraordinary 

(eo) direction is affected by different phase shifts (b). If a voltage is applied on the 

electrodes, the birefringent crystals are rotated to the angle θ and the refractive index in 
extraordinary direction is varied. (c) For simultaneous polarization and phase shaping two 

LC masks with optical axis being perpendicular to each other are needed. For amplitude 

and phase shaping, an additional polarizer is placed behind the masks. 
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a). This angle and the relative phase shift Δ𝜑(𝜃) can be modified by applying different 

voltages on the electrodes (eq. III.1): 

 

Δ𝜑(𝜆, 𝑈) =
2𝜋𝑑

𝜆
(𝑛𝑒𝑜(𝜆, 𝜃(𝑈)) − 𝑛𝑜(𝜆)), 

III.1 

 
1

𝑛(𝜆, 𝜃)2
=

cos(𝜃(𝑈))2

𝑛𝑜(𝜆)2
+

sin(𝜃(𝑈))2

𝑛𝑒𝑜(𝜆)2
. 

III.2 

This phase shift is maximized without any applied voltage by orienting the optical axis 

of the crystals along the polarization of the light (Figure III.3a). While increasing the voltage 

on the electrodes, the relative phase shift is reduced by rotating the crystals (Figure III.3b). 

In order to imprint no additional phase on the electromagnetic field, the crystals are rotated 

90° by applying the highest voltage. 

A single liquid crystal mask allows only for adjusting the phase of the transmitted light. 

Simultaneous polarization and phase shaping is accomplished by two masks, whose optical 

axes are aligned 90° to each other and 45° to the incoming light (Figure III.3c). These masks 

provide the polarization and phase shaping 𝛷(Δ𝜑1, Δ𝜑2) by the difference and sum of the 

individual phase shifts Δ𝜑1 and Δ𝜑2, respectively. In addition, polarization shaping can be 

switched to amplitude shaping 𝐴(Δ𝜑1, Δ𝜑2) by inserting a polarizer behind the two masks 

(Figure III.3c): 

𝐴(Δ𝜑1 , Δ𝜑2) = cos (
Δ𝜑1 − Δ𝜑2

2
), 

III.3 

𝛷(Δ𝜑1 , Δ𝜑2) =
Δ𝜑1 + Δ𝜑2

2
. 

III.4 





 

IV. Shaper-based narrowband and tuneable mid-infrared 

light source 

1. Introduction 

MIR spectroscopy has provided a tremendous impact in material and life sciences in the 

last decades [85, 86]. In life sciences, for example, MIR spectroscopy has been used to 

discriminate between tumorous and healthy tissue by detecting structural changes of 

proteins [87]. Furthermore, it is a potential candidate for diabetes healthcare via the 

implementation of a continuous glucose monitoring system [88-90]. The impact of MIR 

spectroscopy is also shown on its key role in the fight against marine pollution due to its 

potential to identify microplastics in sea water.[91, 92]  

Globars are probably the most used MIR light source in the last decades due to their 

broad spectral range. In addition, a high spectral resolution is gained by using them in 

Fourier-transform infrared (FTIR) spectrometers [93, 94]. However, the emission of globars 

in the 4π-sphere reduces the signal intensities dramatically and hinders quick detection. 

Quantum cascade lasers [95] and difference-frequency-based laser sources [96] overcome 

this problem by offering higher signal intensities. In particular, the difference-frequency 

method is a powerful way to obtain MIR spectra with a wide range of implementations. 

These implementations range from non-collinear optical parametric amplification 

(NOPA) systems generating ultrashort laser pulses [97, 98] to optical parametric oscillators 

(OPO), which provide narrowband, tuneable MIR spectra [99, 100]. Another interesting and 

modern method is the generation of MIR pulses using an intrapulse DF process in a single-

beam setup [59, 101, 102]. 

These MIR pulses are usually implemented with either a broad or narrow MIR spectrum 

(Figure IV.1 a & b). Using thin crystals, the generated MIR spectra span a broad spectral 

range but with potentially weak spectral intensity. This can be addressed by using thick 

crystals to generate intense and narrowband MIR spectra, which require a tuning to probe 

different transitions. Both experimental schemes are static, and a switching of the spectrum 

from broad to narrowband requires a replacement of the crystal. 

A pulse shaper offers the flexibility of both implementations in one setup by exploiting 

an intrapulse DF process in a thin crystal. The switching between the broad and narrow MIR 

spectrum, and even the tuning of the narrowband one, is achieved by simply shaping the 

involved laser pulses without any additional mechanical adjustment (Figure IV.1c). This 

enables the implementation of a new MIR light source, which flexibly offers MIR spectra 

with arbitrary spectral and temporal shapes. 
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The narrowband and tuneable MIR spectra in particular have a huge potential for MIR 

transmission spectroscopy since expensive MIR spectrometers are not needed. When using 

a single-channel detector, a MIR transmission spectrum can be recorded by tuning the 

narrowband MIR spectra.  

In this chapter, the implementation of a narrowband and tuneable MIR light source is 

demonstrated via the following sections: Section 2 presents the method of using the shaper-

based concept to tune broad MIR spectra to narrowband and tuneable ones. Afterwards, 

section 3 presents the crystal, generating these MIR spectra, and highlights its important 

properties to accomplish a broad MIR tuning range. Section 4 describes the experimental 

details of the setup in order to show how the implementation of the new MIR light source 

is accomplished. The potential of the new MIR light source is determined in section 5 with 

respect to their spectral tuneability (5 i) and spectral resolution (5 ii). Finally, FTIR 

spectroscopy is implemented in the shaper-based setup, which provides all necessary steps 

simply with flexible pulse shaping (section 6). Parts of the results were already published 

in Brückner et al. [3] and Müller et al. [1].  

Figure IV.1 Experimental schemes for direct MIR generation. (a & b) The generated MIR 

spectrum in the critical phase matching regime can be varied by the crystal thickness: either 

(a) a broad or (b) narrowband MIR spectrum is generated by a thin or thick crystal, 

respectively. A tuning of the narrowband spectra is accomplished by tilting the DF crystal. 
(c) The flexible pulse shaping of the driving laser pulses can generate both spectra. They 

are switched by simply adjusting the imprinted phase without any mechanical changes on 

the setup. 



IV. 2 A tuneable narrowband MIR light source for MIR transmission spectroscopy 49 

2. A tuneable narrowband MIR light source for MIR transmission 

spectroscopy  

The implementation of a narrowband MIR light source is accomplished via spectral 

focusing [72], whose potential was already discussed for single-beam CARS spectroscopy 

(see section II.3 ii). This concept can be also applied to control the MIR generation in the 

intrapulse DF process by shaping the driving pulse (for more information about the DF 

generation, see section II.2 ii). In accordance with spectral focusing, this driving laser pulse 

is stretched in time and is split in pump and Stokes by imprinting parabolic phases via the 

pulse shaper. Having the same amount of chirp, a constant instantaneous frequency 

difference between pump and Stokes is provided (blue in Figure IV.2a) and a narrowband 

MIR spectrum centred at the applied instantaneous frequency difference is generated inside 

the crystal (blue in Figure IV.2c). In the scan of this frequency difference, the narrowband 

MIR spectrum is tuneable within the broad range of the transform-limited generated MIR 

spectrum (red in Figure IV.2c). Therefore, a complete MIR transmission spectrum can be 

acquired in the scan by detecting the MIR intensity after sampling with a single-channel 

detector. 

 

Figure IV.2 (a) For broadband MIR generation, a constant phase (red line on the left) is 

applied on the NIR spectrum (grey background on the left). The laser pulse (red in the main 

panel) is short and generates a broad MIR spectrum (red in the lower panel). In spectral 

focusing, the parabolic phase function (blue on the left) stretches the pulses linearly (blue 
in the main panel) and a narrowband DF excitation is generated (blue in the lower panel). 

(b) The schematic mechanism of broadband (left) and narrowband (right) MIR generation 

is presented. (c) The short laser pulses generate a broad MIR spectrum (red). By applying 
the phase of the spectral focusing concept with an instantaneous frequency difference (IFD) 

of 2500 cm-1, a narrowband MIR spectrum is generated at the IFD (blue). The MIR 

spectrum is tuneable in the boundaries of the MIR spectrum generated by a constant phase 

of the NIR pulse. 
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3. Difference-frequency crystals 

The generation of MIR pulses is carried out experimentally in the existing non-linear 

microscopy setup, which is based on a Ti:Sa oscillator. In order to use the MIR pulses in 

combination with the other spectroscopic techniques in this setup, the DF process must be 

driven by the same 800 nm centred laser pulses. However, the wavelength of these laser 

pulses greatly restricts the number of available crystals. Many crystals are limited in UV 

transparency and cannot be used because of the crystal damage caused by the two-photon 

absorption of the driving pulses [103, 104]. The best choice is a negative uniaxial LiIO3 

crystal, whose potential to generate MIR pulses with a broad spectrum and high intensity is 

shown in this section. 

 

Firstly, this crystal is investigated with respect to phase matching (see section II.2 ii a). 

The LiIO3 crystal requires Type I phase matching in order to efficiently generate MIR pulses 

(Figure IV.3). In this configuration, the pump and Stokes are polarised along the 

extraordinary and ordinary axis, respectively. In addition, the phase matching angle must 

be optimized to provide a small wave vector mismatch ∆𝑘~0 (see eq. II.22) [105]. The 

phase matching angle is around 20° and varies smoothly in dependence on the MIR 

frequency if a pump wavelength at 800 nm is used (see Figure IV.4a) [106, 107]. This small 

variation (3°) provides a broad phase matching in the wavelength range between 2 µm and 

9 µm. 

The phase matching condition can be understood more quantitatively by the coherence 

length 𝐿𝐶 ≡
2

∆𝑘
 defining the largest crystal length, which preserves just a phase matching by 

sinc(
∆𝑘𝐿

2
) ≈ 1 (eq. II.20) [102]. This coherence length is calculated for a Stokes wavelength 

of 850 nm and two different phase matching angles. In these results (Figure IV.4b), a 

coherence length above 100 µm over the whole MIR region and above 500 µm in a spectral 

range over 500 cm-1 is shown for both angles. 

Figure IV.3 (a) Phase matching in the LiIO3 crystal is acquired by the phase matching angle 

θ, which is in the plane of the beam wave vector and the optical axis. The pump is polarized 

in extraordinary (eo) axis inside this plane. The Stokes is polarized in ordinary (o) direction 
perpendicular to this plane. (b) In intrapulse DF generation, a single laser pulse provides 

the pump and Stokes, which are the blue and red parts of the spectrum, respectively. 
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In addition, the phase matching of a broadband pump and Stokes is determined for a 

coherence length of 1 mm (see Figure IV.4c & d). The graphs show a broad spectral range 

fulfilling the phase matching. Thus, a broad MIR spectrum is also generated in a 1 mm thick 

crystal, especially when the slight difference of the phase matching angles (19,7° and 20,0°) 

is within the angular distribution of the incoming laser beam and merges the MIR generation 

at different angles. This is usually provided by the aperture angle of the focusing lens.  

 

Beside the phase matching condition, the temporal overlap between the pump and Stokes 

in the LiIO3 crystal is also an important condition for optimal MIR generation. So-called 

pulse splitting is prevented if the group velocities of pump 𝜐𝑃  and Stokes 𝜐𝑆 do not differ 

strongly in the crystal. This condition is expressed quantitatively by the group velocity 

Figure IV.4 Optical properties of LiIO3 crystals in relation to DF generation: (a) The 

collinear phase matching angle (pump 800 nm) varies in dependence on the MIR 

wavelength only between 19,7° and 23° over a range of 8 µm (4000 cm-1). (b) The 

coherence length (Stokes 850 nm) is above 100 µm (500 µm) over 2000 cm-1 (500 cm-1) for 
a phase matching angle of 20° (dotted line) and 21° (solid line). (c & d) In accordance with 

the coherence length, the fulfilled phase matching condition (red area) in a 1000 µm thick 

LiIO3 crystal is demonstrated at a phase matching angle at 19,7° (c) and 20,0°(d). 



52 IV 4 Experimental setup for MIR generation 

mismatch 𝛿P−S (eq. IV.1; pump: 𝜐𝑃  and Stokes 𝜐𝑆 ), which can be interpreted as the time 

delay of the pulses per unit length [51, 58]: 

 

|
1

𝛿𝑃−𝑆
| = |

1

𝜐𝑃
−

1

𝜐𝑆
|. 

IV.1 

For LiIO3 crystals, the group velocity mismatch is below 30 fs/mm for the whole 

frequency range and is even less than 20 fs/mm for a generated MIR frequency below 

2000 cm-1 (Figure IV.5). This small mismatch demonstrates an efficient MIR generation in 

LiIO3 crystals with a thickness up to 1 mm since all obtained values of the time delay 

between pump and Stokes are in the order of the temporal width of the laser pulses 

(FWHM=10 fs). 

The following question may arise: why should the pulse splitting be considered in the 

generation of narrowband MIR spectra? In order to generate narrowband MIR pulses, the 

pulses are stretched up to several picoseconds, and the shift of the Stokes and pump by the 

dispersion is small compared to the pulse length. However, this temporal shift induces an 

additional tuning of the MIR spectrum by changing the instantaneous frequency difference. 

This change leads to an unwanted broadening of the narrowband MIR spectrum. 

Furthermore, the generation of MIR pulses also depends on the focusing condition into 

the non-linear crystal. These technical details are explained in the appendix (see 

section IX.3). 

4. Experimental setup for MIR generation 

The MIR generation is driven by ultrabroadband NIR pulses (Figure IV.6). These 

800 nm centred, sub 10 fs NIR laser pulses are provided by a Ti:Sa oscillator and guided 

Figure IV.5 Group velocity mismatch (GVM) of LiIO3 crystals. (a & b) Pump and Stokes 

are delayed to each other in the birefringent material since their polarization is different in 
relation to the Type I phase matching. (c) Generating MIR pulses with a centre frequency 

at 1750 cm-1 (green), 2000 cm-1 (red), and 3000 cm-1 (black), the group velocity mismatch 

is even for a 1 mm crystal below 15 fs, 20 fs, and 27 fs, respectively. 
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into a 4f setup. A two-mask liquid crystal pulse shaper is located in its Fourier plane, which 

shapes the laser pulses in phase as well as polarisation (for more details, see chapter III).  

Afterwards, the shaped laser pulses are guided into the MIR generation part and are 

focused with a parabolic mirror (f=10 cm) into a LiIO3 crystal. In accordance with the Type 

I phase matching condition, the pump and Stokes part of the NIR pulses are polarised 

perpendicular to each other. 

The MIR pulses are generated in 100 µm, 500 µm, and 1000 µm thick LiIO3 crystals that 

have a power of 5 µW, 16 µW, and 22 µW, respectively. They are measured by an MCT 

detector (InfraRed Associates 13-2.0), which was calibrated by detecting the power of a 

MIR-NOPA [108] with the MCT detector behind a ND2 filter and a calibrated power metre 

(Coherent PS 10) as reference. The results obtained reflect those of Zentgraf et. al. [102], 

which further corroborates the measured powers. 

After the MIR generation, the NIR and MIR laser pulses are collimated by a parabolic 

mirror (f =5 cm) and are guided to the detection part. Detection is made by focusing the 

MIR pulses with a spherical mirror (f =15 cm) on the single-pixel MCT detector, which was 

calibrated beforehand. In order to detect the MIR pulses without any interference, the 

fundamental laser pulses are blocked by a thick MIR-anti-reflection-coated germanium 

substrate (Edmunds Optics #62-645) in front of the detector. The signal on the MCT 

detector is electronically amplified by a preamplifier, which requires chopping the MIR 

pulses. Although the signal is chopped while spatially separated from the detector, small 

amounts of noise are also modulated and observed on the detector. To avoid this noise, the 

NIR pulses are chopped before the MIR generation and a MIR-absorbing glass substrate is 

placed behind the chopper to absorb the MIR noise. The dispersion imprinted by the glass 

on the NIR pulses is pre-compensated by the pulse shaper.  

Figure IV.6 The experimental scheme for MIR generation consists of a Ti:Sa laser, a pulse-

shaper setup, and a MIR generation stage. The sub 10 fs laser pulses are shaped in 

polarization and phase by a liquid crystal pulse shaper inside a 4f setup. These laser pulses 
generate MIR light in the DF crystal (LiIO3). The MIR light is detected by an MCT detector 

after suppressing the fundamental NIR pulses with a germanium filter. In correspondence 

with the MCT, the MIR pulses are chopped. The chopper reflects MIR light that originates 
from the environment on the detector. This is blocked by a glass substrate before the MIR 

generation. The phase of the glass substrate is compensated by the pulse shaper. 
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5. Characterization of the narrowband and tuneable MIR light source 

The narrowband and tuneable MIR light source is characterised by measuring the MIR 

transmission of a polystyrene reference film. As an example, the transmission taken with a 

high amount of chirp (15000 fs2) is depicted (black in Figure IV.7). It shows the specific 

polystyrene absorptions corresponding well with reference measurements obtained by a 

FTIR spectrometer (the grey background). By identifying the polystyrene absorption, a 

tuning of the MIR light source from 1250 cm-1 up to 3500 cm-1 is demonstrated (section 5 

i). Furthermore, a small difference between the MIR transmission with respect to the 

reference is shown. This can be explained by the spectral resolution, which is discussed in 

detail in section 5ii. 

5 i. Spectral tuneability 

The tuning of the narrowband MIR spectrum is observed by scanning the frequency of 

this spectrum and detecting the MIR light without any sample. The obtained broad spectrum 

determines the tuning range and is called the envelope spectrum. Due to the dependence of 

this tuning range on the crystal thickness, the envelope spectrum is investigated for the MIR 

generation by a 100 µm (a) and 500 µm (c & d) thick LiIO3 crystal (Figure IV.8). 

The bandwidth of the envelope spectrum generated in the 100 µm thick LiIO3 crystal 

ranges over 2000 cm-1, from 1250 cm-1 to above 3250 cm-1 and does not significantly vary 

by slightly changing the phase matching angle. This contrasts with the tuning bandwidth of 

the envelope spectrum generated in the 500 µm thick crystal. The thick crystal limits the 

phase matching and shifts the envelope spectrum with respect to the phase matching angle, 

as shown for two envelope spectra acquired at different phase matching angles (Figure 

IV.8c & d). Whereas the first angle maximises the MIR intensity generated by a transform-

limited NIR pulse and has a tuning range between 1750 cm-1 and 3250 cm-1 (c), the second 

one maximises the MIR power at 3000 cm-1 (d). The envelope spectrum in the latter case 

Figure IV.7 The Polystyrene transmission spectrum obtained by the new MIR light source 

shows a broad tuneability from more than 2000 cm-1 and a high spectral resolution (solid 

line). The MIR transmission spectrum is acquired using the concept of spectral focusing 

with an imprinted amount of chirp of 15000 fs2. For comparison, the MIR transmission is 

also taken by a FTIR spectrometer with a resolution of 1 cm-1 (grey background). 



IV. 5 Characterization of the narrowband and tuneable MIR light source 55 

has a broader bandwidth, ranging from 1500 cm-1 up to 3500 cm-1, and the highest MIR 

intensity is shifted towards higher and lower frequencies. Therefore, this envelope spectrum 

has the same tuning range as the envelope spectrum generated in a 100 µm thick crystal 

with a five times higher MIR intensity in the CH stretching region.  

In order to corroborate the measurements, they are also modelled by simulations. In the 

model, the complex electric fields of the NIR pulses consists of the measured NIR spectrum 

and of the imprinted phase with respect to the spectral focusing concept. This phase takes 

the pixelation of the pulse shaper into account and splits the simulated NIR laser pulse into 

pump (𝐸𝑝𝑢𝑚𝑝) and Stokes (𝐸𝑆𝑡𝑜𝑘𝑒𝑠). In the DF process, they generate a narrowband MIR 

Figure IV.8 Tuning range of the narrowband MIR spectra generated in a 100 µm (a) and 

500 µm (b-d) thick LiIO3 crystal. (a) The tuning range of the MIR spectra generated in a 
100 µm thick LiIO3 crystal (black) ranges from 1250 cm-1 up to 3250 cm-1 and corresponds 

well with simulations done at a phase matching angle of 19,8° (red). (b) The simulated MIR 

spectra generated in a 500 µm thick LiIO3 crystal are depicted in their dependence on the 
phase matching angle and show a shift towards larger MIR frequencies by increasing the 

phase matching angle. (c) The measured (black) and simulated (red) tuning bandwidth of 

the MIR spectra generated in the 500 µm thick crystal is more narrowband than the 100 µm 

thick crystal. (d) By shifting the phase matching angle, this bandwidth is increased. (a-d) 
Simulation and measurement use phases with an amount of chirp of 5000 fs2 in the spectral 

focusing concept. The measurements are corrected by the spectral response of the MCT 

detector and the transmission of the germanium filter. The simulation takes the measured 
NIR spectrum and phase matching, as well as thickness and transmission of the crystal into 

account. Contrary to the simulation, the known CO2 absorption at 2350 cm-1 is observable 

in the measurement. (c & d) The measured and simulated MIR spectra of the 500 µm thick 

LiIO3 are scaled relatively to the MIR intensity of the 100 µm thick crystal. For (a): Adapted 
with permission from [3]. For (b): Reproduced from [1], with the permission of AIP 

Publishing. 
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spectrum with the electric field 𝐸𝑀𝐼𝑅 (eq. IV.2) in consideration of the phase matching 

condition 𝑍(𝜔, Ω, 𝐿) with the crystal thickness L and wave vector mismatch Δ𝑘 (eq. IV.3) 

[58, 59]. After tuning the MIR spectrum, the acquired envelope spectrum is modified by the 

LiIO3 transmission 𝑇𝐿𝑖𝐼𝑂3(Ω, 𝐿):  

 
𝐸𝑀𝐼𝑅(Ω, L) ∝ 𝑇𝐿𝑖𝐼𝑂3(Ω, 𝐿) × 

∫ 𝑑𝜔 𝐸𝑝𝑢𝑚𝑝(𝜔) ∙ 𝐸𝑆𝑡𝑜𝑘𝑒𝑠
∗ (𝜔 − Ω) ⋅ 𝑍(𝜔, Ω, 𝐿), 

IV.2 

 

𝑍(𝜔, Ω, 𝐿) = ∫ 𝑒𝑖Δ𝑘(𝜔,Ω)𝑧𝑑𝑧
𝐿

0

=
1

i ∙ Δ𝑘(𝜔, Ω)
(𝑒𝑖Δ𝑘(𝜔,Ω)𝐿 − 1). 

IV.3 

The envelope spectrum modelled with a phase matching angle of 19,8° corresponds well 

with the measurement obtained by the 100 µm thick LiIO3 crystal (Figure IV.8a). However, 

modelled envelope spectra with a specific phase matching angle cannot describe the two 

measured spectra generated in the 500 µm thick crystal (not shown). In order to understand 

this, their dependence on the phase matching angle must be considered. In contrast to the 

MIR generation in the 100 µm thick crystal, the shape of the envelope spectra generated in 

the 500 µm thick crystal varies much stronger in dependence on the phase matching (Figure 

IV.8b). Therefore, the aperture angle of the parabolic mirror, which focuses the driving 

pulses in the crystal and offers a distribution of phase matching angles, is no longer 

negligible. Taking this angular distribution into account, each of the two measured MIR 

spectra can be modelled by a summation of MIR spectra at different phase matching angles. 

In a fit, the MIR spectra (angle: 20,0°–20,6°) are obtained, whose summation corresponds 

well with the measurement in Figure IV.8c. The best fit in accordance with the measured 

MIR spectrum in Figure IV.8d accounts for the MIR spectra with an angle from 20,5° to 

21,5°.  

5 ii. Spectral resolution 

Spectral focusing has the potential to flexibly adapt the bandwidth of the narrowband 

MIR spectra. This is shown on the transmission spectra of the polystyrene film by 

imprinting different amounts of chirp (Figure IV.9a). With a small amount of chirp (black), 

the obtained MIR transmission is unable to resolve the vibrational modes of polystyrene, 

which can be clearly seen by FTIR reference measurements (dotted line). Increasing the 

imprinted amount of chirp to 3000 fs2 indicates broad absorption peaks at 1450 cm-1 and 

1600 cm-1, as well as absorption at 2900 cm-1 and 3050 cm-1. The spectral resolution is 

further increased by tuning the imprinted amounts of chirp even to 10000 fs2 (green) and 

12500 fs2 (blue).  

For a more quantitative analysis, the MIR transmission spectrum 𝑇𝑚𝑒𝑎𝑠 (Ω) is expressed 

as convolution of a molecular response (MRF) and a Gaussian-shaped instrument response 

(IRF) function (eq. IV.4-IV.6). Although the MRF is not known, the FTIR reference 

measurement (PerkinElmer spectra 400) taken with high spectral resolution (1 cm-1) 
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provides a sufficient approximation. The spectral width of the IRF can be obtained by fitting 

the convolution to the measurement:  

 
𝑇𝑚𝑒𝑎𝑠 (Ω) = 𝐶𝑜𝑛𝑣(𝑀𝑅𝐹(Ω), 𝐼𝑅𝐹(Ω)), 

IV.4 

 

𝑇𝑚𝑒𝑎𝑠 (Ω) = ∫ 𝑀𝑅𝐹(Ω − ω) ⋅ 𝐼𝑅𝐹(ω)𝑑𝜔, 
IV.5 

 

𝐼𝑅𝐹(ω) ∝
4 𝑙𝑛(2)

FWHM2
∙ 𝑒𝑥𝑝 (−4 𝑙𝑛(2) ∙ (

𝜔

FWHM
)

2

). 
IV.6 

After obtaining the FWHMs of the IRF in a low-frequency range (1400–1900 cm-1) and 

a high frequency range (2800 cm-1–3200 cm-1), they indicate a decrease from above 100 cm-

1 for both spectral regions down to 20 cm-1 and 30 cm-1 for the low and high frequency 

region, respectively (Figure IV.9c).  

In order to understand the decrease of the best spectral resolution for higher MIR 

frequencies, it is important to know that the MIR spectra around 3000 cm-1 are generated at 

the wings of the NIR spectrum. Furthermore, the pixel density in the blue wing of the 

spectrum must be considered since it is smaller than the density in other parts of the 

spectrum due to the nearly linear wavelength distribution over the pulse shaper. Therefore, 

high amounts of chirp cannot be efficiently imprinted by the Nyquist theorem in the blue 

wing of the spectrum.  

 

In summary, the tuneable and narrowband MIR light source is able to generate MIR 

spectra that have a spectral width down to 20 cm-1 and are tuneable over more than 2000 cm-

1. This entails new potential applications like combined MIR and CARS microspectroscopy 

(chapter V) and SF spectroscopy (chapter VI). 
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Figure IV.9 The spectral resolution of the narrowband MIR light source can be determined 

on polystyrene vibrational modes. (a) In the low-frequency range (1400 cm-1–1900 cm-1) 
and in the high frequency range (2800 cm-1–3200 cm-1), transmission spectra of a 

polystyrene reference film show an increase in spectral resolution by an increasing amount 

of chirp from 1000 fs2 (black), over 3000 fs2 (red), 10000 fs2 (green) up to 12500 fs2 (blue). 

A FTIR transmission measurement obtained with a resolution of 1 cm-1 is also shown (grey). 
(b) For a more quantitative analysis in the two frequency regions, the convolutions (solid 

line) of the molecular response (FTIR measurement) and instrument response function 

(Gaussian shape) are fitted to the MIR transmission spectra (dots: measured transmission). 
It is depicted for an imprinted amount of chirp of 10000 fs2. (c) The FWHM of the 

instrument response function decreases for the low-frequency region (black dots) and the 

high frequency region (red dots) from above 100 cm-1 to below 20 cm-1 and 30 cm-1, 

respectively. Adapted with permission from [3]. 
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6. Additional approach: Difference-frequency based FTIR spectroscopy 

FTIR spectroscopy is a powerful tool for analysing samples by their MIR transmission 

[109, 110]. This is accomplished in a Michelson interferometer by splitting the laser light 

and scanning the time delay. The spectral resolution in FTIR spectrometers is directly 

defined by the scan length in this Michelson interferometer.  

In the shaper-based MIR setup introduced above (Figure IV.6a), FTIR spectroscopy can 

also be implemented by generating MIR double pulses via shaped NIR laser pulses. With 

the transfer function 𝑀(𝜔), the programmable pulse shaper splits the NIR pulses into two 

pulses. 𝑀(𝜔) on its turn consists of the amplitude 𝐴(𝜔) and phase 𝜑(𝜔) (eq. IV.7 taken 

from eq. II.12): 

 

𝑀(𝜔) = 𝐴(𝜔)𝑒𝑖𝜑(𝜔) =  |cos(𝜔
𝜏

2
)| 𝑒𝑖𝑎(𝜔) 

with 𝑎(𝜔) = {
0  if cos (𝜔

𝜏

2
) ≥ 0 

𝜋  if cos (𝜔
𝜏

2
) < 0

. 

IV.7 

After inserting a polariser behind the pulse shaper, amplitude shaping is implemented. 

Therefore, the polarisation cannot be adjusted by the pulse shaper for the conservation of 

phase matching. In order to still preserve phase matching, the LiIO3 crystal (of a thickness 

of 100 µm) is rotated around 45° to provide half of the NIR intensity along the ordinary and 

Figure IV.10 (a) In DF-based FTIR spectroscopy, MIR double pulses are generated via the 

pulse shaper, and an interference pattern is recorded by scanning the time delay. (b) The 

interferometric signal consists of three spectrally-separated components: the interferometric 

part at low frequencies known from conventional FTIR and the two spectral parts at the 

centre frequency ωNIR and at the doubled centre frequency 2ωNIR of the NIR laser pulse. The 
MIR spectrum can be retrieved after isolating the low-frequency signal. (c) The DF-based 

FTIR corresponds well with the commercial one (Δυ = 1 cm-1) in accordance with the 

reduced spectral resolution.  
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extraordinary axis. This results in only one fourth of the MIR intensity, which is generated 

without rotating the crystal. 

The acquired time scan of the pulses displays an interferometric autocorrelation by the 

amplitude ratio of 8:1 and includes different contributions (Figure IV.10a). The major one 

is the MIR interferogram at low frequencies. Since the high-frequency contributions are 

spectrally separated, the FTIR spectrum can be extracted [111, 112]. 

The potential of the shaper-based FTIR method is demonstrated on a polystyrene sample 

(Figure IV.10c). Although the acquired transmission of the polystyrene film follows the 

reference measurement, the spectral resolution is low. With its definition through the 

temporal overlap, the spectral resolution is around 150 cm-1 since the temporal overlap is 

only over 200 fs observable. Due to these limitations, the tuneable, narrowband MIR light 

source provided by the spectral focusing concept is exploited in the following for several 

applications (chapter V and VI). 

 

 



 

V. Single-beam Coherent Raman and mid-IR 

microspectroscopy 

1. Introduction 

CARS and MIR microspectroscopy are label-free methods for the detection of molecular 

vibrations. These methods have several complementary advantages and disadvantages. 

CARS microspectroscopy is a powerful method which combines vibrational sensitivity with 

high spectral resolution [21, 113-116]. However, the nonlinear process in CARS requires 

intense laser pulses that are not suitable for the investigation of samples with a low damage 

threshold [117]. In contrast, MIR microspectroscopy, with its linear process, has a much 

higher sensitivity over the whole spectral range although using lower intensities. Drawbacks 

compared with CARS are the worse spatial resolution in MIR microspectroscopy and its 

more challenging access to aqueous samples due to the strong water absorption. 

The combination of CARS and MIR spectra merges the advantages and overcomes the 

disadvantages of the individual methods as has already been shown in material and life 

sciences [118-121]. However, it is important to note that in these applications the spectra 

are obtained using different setups. The implementation of both methods in one setup is a 

further advantage for microspectroscopy since both spectra and the respective images can 

be acquired at the same position. 

The combination of both methods for microspectroscopy in one single-beam setup is 

demonstrated in this chapter. This is based on the new MIR light source, whose 

implementation was discussed in the preceding chapter (chapter IV). This light source 

provides MIR pulses with narrowband and tuneable spectra, which can be exploited inside 

the microscope. The MIR pulses are generated by shaped NIR pulses using the concept of 

spectral focusing. Additionally, these shaped NIR pulses can be used in the microscope 

directly to investigate the same sample by CARS microspectroscopy (see section II.2 iii).  

In order to describe the potential and applications of combined MIR and CARS 

microspectroscopy, this chapter is divided into the following parts. First, the details of the 

experimental setup are discussed (section 2). Afterwards, spectroscopy (section 3) and 

microscopy (section 4) are demonstrated especially on polymers and human dermis. A part 

of the results presented were previously published in [1]. 
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2. Experimental details for combined microspectroscopy 

The setup for combined microspectroscopy consists of three parts (Figure V.1): a laser 

pulse generation part, a microscope, and a detection part. In the first part, the NIR and MIR 

pulses are generated by the already used shaper-based setup, which in this case has a 500 µm 

thick LiIO3 crystal for MIR generation (see section IV.4.). 

After their generation, the collinear NIR and MIR pulses are guided in the microscope 

and focused by a Schwarzschild objective (74x, numerical aperture [NA] 0.65, Beck 

Optronic systems), which transmits 85% of the incoming power into the sample. The laser 

pulses are recollimated afterwards by another Schwarzschild objective (40x, NA 0.4, 

Thorlabs). The sample is moved inside the microscope by a piezo-driven table (PI nano 

XYZ). 

The detection of the signals is different for the two spectroscopic methods. An MCT 

detector is used for detection in the MIR transmission spectroscopy and the generated CARS 

signal is detected behind a 650 nm short-pass filter either by an intensity charged-coupled 

device (CCD) camera (Andor DH 501) or by a single-channel photomultiplier (Hamamatsu 

H9300 series). Whereas the camera offers higher sensitivities and is used for spectroscopy, 

Figure V.1 Setup for combined MIR and CARS microscopy. Sub 10 fs NIR laser pulses 

are created by a Ti:Sa oscillator and guided into a 4 f setup for flexible pulse shaping by a 

liquid crystal pulse shaper. The shaped laser pulses generate MIR laser pulses in a 500 µm 
thick LiIO3 crystal. Both laser pulses are focused by a Schwarzschild objective (BOS, 74x, 

NA 0.65) in the sample located on a piezo-driven stage. The NIR, MIR, and generated 

CARS signal is collimated by a 40x reflective objective and guided into the detection 

scheme. The MIR light is detected by an MCT detector and the CARS signal is detected 
after a 650 nm short-pass filter either by an intensity CCD camera or by a photomultiplier. 

To switch the setup from MIR to CARS spectroscopy, the LiIO3 crystal and germanium 

filter (GE) are replaced by a polariser (Pol.) behind the shaper. In addition, a mirror (FM) 

in the detection path is flipped. 
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data acquisition in microscopy is done faster with a photomultiplier, which is equipped with 

a bandpass filter (640 ± 10 nm).  

As already discussed, second-harmonic light is generated simultaneously with the CARS 

signal. A 2nd photomultiplier is inserted behind a bandpass filter at 400 nm (width: 10 nm) 

to detect this light. 

It is important to note that, the MIR and CARS spectra are not acquired simultaneously 

for two reasons. One, the NIR and MIR pulses overlap temporally and also generate SF 

light in the sample, which coincides with the CARS signal spectrally and thus, cannot be 

distinguished. Two, the small damage threshold of many samples requires a reduction of 

the NIR power, which should be accomplished in the single-beam setup without decreasing 

the MIR intensities. This reduction cannot be provided by any optical substrate, so far as 

the author is aware.  

Therefore, switching between the two spectroscopic methods is necessary. The setup is 

adapted for CARS spectroscopy by removing the LiIO3 crystal and by inserting a polariser 

behind the pulse shaper. This polariser lowers in combination with polarisation shaping the 

power of the NIR pulses down to 50 mW. In MIR spectroscopy, a MIR-anti-reflection-

coated germanium substrate is inserted in front of the microscope to block the NIR pulses. 

This substrate is tilted to a certain angle to compensate the small spatial shift between the 

NIR and MIR pulses caused by the spatial walk-off in the LiIO3 crystal (see section IX.3). 

The CARS and MIR spectra obtained in the single-beam setup are compared with 

reference measurements taken with an FTIR spectrometer (Perkin Elmer spectra 400) and 

a Raman microscope (Horiba XploRA Plus). These Raman spectra are acquired with an 

excitation wavelength at 532 nm. 

3. Demonstration of combined MIR and CARS spectroscopy 

The combined MIR and CARS spectroscopy is demonstrated by investigating a 

polystyrene film (section 3 i) and alkyne molecules (section 3 ii).  

Before the MIR and CARS spectra are acquired, a constant phase of the NIR pulses must 

be preadjusted via the pulse shaper to imprint the right phases without any artefacts. In both 

spectroscopy methods, this constant phase is determined by shortening the NIR pulses in 

the optimization with an evolutionary algorithm. The MIR and CARS signals are through 

their nonlinear dependence on the NIR intensity the feedback signals, which increase with 

shorter NIR pulses. 

3 i. Polystyrene 

The MIR and CARS spectrum of the polystyrene film are recorded with an imprinted 

amount of chirp of 12500 cm-1 and 7000 fs2, respectively (Figure V.2a). The MIR spectrum 

(blue) shows absorptions at 2920 cm-1 and 3050 cm-1, which are linked to CH2 and aromatic 

ring stretching, respectively [8]. The corresponding CARS spectrum indicates a strong non-

resonant background, which is generated by the interaction of pump and Stokes without an 
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independent probe pulse (not shown). This background is supressed by delaying the probe 

pulse 200 fs after the end of excitation via tailored spectral focusing (for more details see 

section II.3 ii c). The background-free CARS spectrum also shows the two vibrational 

resonances located at 2920 cm-1 and 3050 cm-1 (grey in Figure V.2a). Furthermore, a 

vibrational mode at 2850 cm-1 is observed, which is only shown by a sideband in the MIR 

spectrum.  

Spectra are taken with the FTIR spectrometer and Raman microscope to verify the 

recorded spectra. As already shown in section IV.5 ii, the instrument response function of 

the new MIR light source has a spectral width around 30 cm-1 and, thus, is worse than the 

resolution of the FTIR spectra (Δ𝜐 = 1 cm-1). In order to provide a direct comparison 

between the two MIR spectra, the MIR spectrum obtained by the FTIR is adjusted by a 

convolution with the instrument response function of the new MIR light source. Afterwards, 

it is observed that the FTIR spectrum corresponds well with the measured MIR spectrum 

(Figure V.2b). The CARS spectrum also matches the square of the Raman spectrum (Figure 

V.2c). The pre-process of taking the square value accounts for the linear and quadratic 

dependence on the number of molecules for the Raman and CARS processes, respectively. 

It is important to note that this simple pre-process is only possible after supressing the non-

resonant background. If this pre-process is not done, the resonant and non-resonant 

background must be disentangled using more sophisticated methods such as MEM retrieval 

(see section II.2 iii). 

3 ii. Alkyne 

The combined CARS and MIR spectroscopy are also demonstrated by detecting the C-

C triple bond in 1- and 4-octyne. These molecules are prepared inside a CaF2 cuvette with 

Figure V.2 Demonstration of combined MIR and CARS spectroscopy on a polystyrene 

film. (a) The CARS spectrum (grey dots) and MIR absorption spectrum (OD, blue dots) is 

detected by a narrowband DF excitation with a chirp of 7000 fs2 (CARS) and 12500 fs2 

(MIR), respectively. The CARS spectrum is acquired with tailored spectral focusing 

extension via a probe delay at 200 fs after the end of the excitation. (b) The MIR absorption 
spectrum (blue dots) corresponds well with the FTIR reference (blue line), after accounting 

for the instrument response function of the MIR light source. (c) The CARS spectrum (grey 

dots) shows the same vibrational modes as the squared Raman spectrum (black line) 

acquired with a commercial microscope. 
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a 50 µm-thick volume, and the dispersion of the top glass (1 mm thickness) is compensated 

by the pulse shaper for the CARS spectroscopy. The spectra of the molecules are detected 

by imprinting a chirp of 9000 fs2 (MIR) and 7000 fs2 (CARS) in the spectral focusing 

concept.  

Figure V.3 Demonstration of the combined MIR and CARS spectroscopy on the C-C triple 

bond of 1-octyne (the left column) and 4-octyne (the right column) in solution. The CARS 
spectra of (a) 1-octyne and (b) 4-octyne (dotted line) are transformed into the linear Raman 

signal (black line) by MEM retrieval. (c & d) MIR spectra (solid black lines) and the MEM-

retrieved Raman spectra (with grey backgrounds) for (c) 1-octyne and (d) 4-octyne. (e & f) 
Reference measurements are taken in a commercial Raman microscope and FTIR 

spectrometer for (e) 1-octyne and (f) 4-octyne. (a-d) A chirp of 9000 fs2 and 7000 fs2 is 

imprinted on the shaper in the single-beam setup for the MIR and CARS spectroscopy, 

respectively. Reproduced from [1], with the permission of AIP Publishing. 



66 V 4 Demonstration of combined CARS and MIR microscopy 

In CARS spectroscopy, vibrational modes are observed at 2120 cm-1 (a) and 2240 cm-1 

(b) for 1-octyne and 4-octyne, respectively (Figure V.3). These modes are affected by a 

strong non-resonant background. Therefore, a MEM retrieval with error-phase fitting was 

performed to extract the Raman-like spectra [66, 122].  

The linear Raman-like spectra are compared to the MIR spectra for 1-octyne (c) and 4-

octyne (d), as shown in Figure V.3. Whereas the C-C triple bond is observed at the same 

frequency in both spectra for 1-octyne, the vibration mode of 4-octyne is only shown in the 

Raman-like spectrum. This mode is not observable in the MIR spectrum due to its MIR 

inactivity, which is caused by the inversion symmetry of the C-C triple bond in 4-octyne. 

In order to verify these results, independent measurements are performed with a FTIR 

spectrometer (e) and a Raman microscope (f in Figure V.3). These measurements overlay 

well with the results of the combined MIR and CARS spectroscopy when the spectral 

resolution of the FTIR spectra is adjusted by the instrument response function of the new 

MIR light (see section IV.5 ii and section before). 

4. Demonstration of combined CARS and MIR microscopy 

4 i. CARS and MIR microscopy on polymers 

The potential of combined CARS and MIR microscopy with a polyethylene (PE) film is 

shown in Figure V.4. 

In order to identify the vibrational modes, spectra are recorded with both methods first. 

The CARS spectrum is taken with an imprinted amount of chirp of 7000 fs2 and a probe 

delay of 100 fs after the end of the excitation (Figure V.4d). This spectrum shows the 

vibrational resonances without any background at 2850 cm-1 and 2920 cm-1, originating 

from the symmetric and anti-symmetric CH2 stretching modes, respectively [123]. The same 

vibrational modes are also observed in the MIR transmission spectrum, which is acquired 

with the same imprinted amount of chirp (Figure V.4d).  

To investigate the sample microscopically using both methods, the frequency is tuned to 

the symmetric CH2 stretching (2850 cm-1) and the sample is spatially scanned (Figure 

V.4a&b). The CARS image (a) indicates the high intensity of the CARS signal inside the 

sample, and this also allows one to observe the structure of the PE film. As expected, the 

MIR image shows a low transmission inside the sample due to the high MIR absorption 

(Figure V.4b). In contrast to the CARS image, the obtained contrast in this image is much 

smaller due to the limitation in the spectral resolution, which is discussed in more detail 

below (see section 4 iii). It is important to note that the images are acquired by an amount 

of chirp (CARS: 5000 fs2; MIR: 3000 fs2), whose corresponding width matches the width 

of the vibrational resonance. Therefore, high signal levels in both methods are obtained. 
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The imaging potential is further investigated on 7 µm thick polystyrene beads (Figure 

V.5). This example demonstrates the good spatial accordance between the two images 

without a spatial shift.  

Figure V.4 First demonstration of the vibrational resonant CARS and MIR imaging. (a & 

b) The MIR transmission image (b, chirp: 3000 fs2) and the CARS image (a, chirp: 5000 fs2; 

probe delay: 100 fs after the end of excitation) are both resonant to the vibrational mode at 
2850 cm-1. They demonstrate reverse behaviours: high MIR transmission (bright) outside 

the polyethylene film and high intensity of anti-Stokes light inside the PE film. (c) In the 

combined image, the CARS intensity (green) and MIR transmission (red) are depicted. The 
black bar indicates 10 µm in all images. (d) The strong methylene band (CH2-stretching) of 

the polyethylene (PE) is recorded in the MIR (red) and CARS (green) spectrum with an 

imprinted amount of chirp of 7000 fs2. The probe pulse in CARS is delayed at 100 fs after 

the end of excitation. Reproduced from [1], with the permission of AIP Publishing. 

Figure V.5 Image of 7 µm polystyrene beads detected at the vibrational resonance at 

3060 cm-1 with an imprinted amount of chirp of 3000 fs2 in MIR (b) and CARS (a) imaging. 
(c) The combined image with the CARS signal (green) and the MIR transmission (red) 

shows good agreement between the CARS and MIR images. The bar in the lower left 

represents 10 µm. 
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4 ii. Application of combined microscopy in life sciences 

The combined MIR and CARS microscopy is also demonstrated on human skin tissue 

(in order to demonstrate how it would primarily be applied in life sciences). This sample is 

extracted from the dermis and fixed on CaF2 substrates 1. Its microspectroscopic 

investigation is done by acquiring the MIR transmission spectra as well as obtaining 

resonant MIR, resonant CARS, and second-harmonic images. 

The MIR transmission spectrum is detected with an imprinted amount of chirp of 7000 

fs2 (Figure V.6a). The transmission has in the low-frequency range an absorption at 

1655 cm-1 as well as two overlapping modes at 1540 cm-1 and 1450 cm-1. Furthermore, 

absorption bands at 2920 cm-1 and around 3300 cm-1 are observable in the high-frequency 

range. In accordance with the literature [8, 124, 125], the spectrum is assigned to the protein 

collagen, which has a high abundance in the dermis in the formation of fibre bundles. The 

absorption bands are assigned to the Amide I band (1655 cm-1), Amide II band (~1550 cm-

1), and the C-H bend vibration (1450 cm-1) in the low-frequency range and to the CH2 

(2920 cm-1) and N-H2 (~3300 cm-1) in the high-frequency range. 

 
1 prepared by the “Hautklinik des Universitätsklinikums Heidelberg” 

Figure V.6 Demonstration of combined MIR and CARS imaging on human skin tissue 

(190 µm x190 µm; 10 µm bar). (a) a MIR spectrum at a specific point of a human skin tissue 

sample is recorded. (b & c) The vibrational resonant MIR image at 1655 cm-1 (b) shows the 

collagen structure with more contrast than the non-resonant MIR transmission imaging at 
2000 cm-1 (c). In MIR spectroscopy and imaging, an amount of chirp of 7000 fs2 is 

imprinted. (d & e) CARS (d) and SHG (e) images are taken simultaneously at the resonance 

at 2920 cm-1 with an imprinted amount of chirp of 3000 fs2. They show the collagen 

structure. (f) The combined image of vibrational resonant MIR (red), CARS (green), and 

SHG (blue) shows the correspondence of the different structures. 
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To demonstrate vibrational resonant imaging, an image at 1655 cm-1 is taken (b) and 

compared with a non-resonant image, which is acquired at 2000 cm-1 (c in Figure V.6). The 

image taken at 2000 cm-1 has a contrast which is obtained without any vibrational signature 

by the scattering of the sample. In addition, the resonant image at 1655 cm-1 has a contrast 

from the absorption of Amide I and is directly sensitive to the collagen bundles. 

Beside the MIR microspectroscopy, a CARS image with a narrowband excitation at 

2920 cm-1 is taken simultaneously with a second-harmonic image at the same spot of the 

sample (Figure V.6 d & e). Both images indicate a fibrous structure, which can be directly 

assigned to collagen bundles. This structure is also shown in the superposition of the non-

linear images and the resonant MIR image (Figure V.6f). 

4 iii. Spatial resolution in MIR microscopy 

In microscopy, the spatial resolution is limited by the wave characteristics of light and 

can be expressed by several criteria. One of them is the Rayleigh criterion, which considers 

the imaged Airy discs of two-point light sources on a screen. In order to resolve the two 

light sources in the image, the maximum of the first disc should be located at least at the 

minimum of the second one. The FWHM of a disc is used to express the criterion 

quantitatively and to indicate a linear dependence on the wavelength 𝜆 and the inverse 

numerical aperture NA [126]:  

 

FWHM = 0,51 
𝜆

NA
. 

V.1 

Figure V.7 Determination of the spatial resolution in MIR microscopy by scanning a razor 

edge. (a) The image of a razor edge in the X-Z plane is displayed (X: lateral direction, Z in 

beam direction and across the focus). It shows the focal plane (Z-position 0) by the sharpest 
profile of the edge. (b) For a broadband (black) and a narrowband (red; centre: 2850 cm-1 

chirp: 7000 fs2) MIR spectrum, the spatial width of the focused laser beam is retrieved by 

fitting an error-function (line) to the corresponding data (dots). The spectral widths with 
(4,3+/-0,3) µm (broadband) and (3,3+/-0,15) µm (narrowband) corresponds well with the 

theoretical resolution of 3,8 µm (broadband) and 2,7µm (narrowband). 
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Besides the theoretical consideration, the spatial resolution can be obtained 

experimentally by imaging a razor edge. The rectangular profile of this razor edge is 

flattened in the image by the finite instrument response function. In order to determine the 

response function, the image can be fitted by the convolution of the rectangular profile and 

the instrument response function, 𝐼𝑅𝐹, which is assumed to be Gaussian shaped (eq. V.2). 

The fit provides the information of the spot size (FWHM) in the focus; 

 

𝐼𝑅𝐹(𝑥) ∝ 𝑒−√2l n(2)(
𝑥

FWHM
)

2

. 
V.2 

In order to determine the spatial resolution of the new MIR light source, the profile of 

the razor edge is measured at different positions z along the beam propagation through the 

focus (Figure V.7a). A FWHM of 4,3 ± 0,3 µ𝑚 and 3,3 ± 0,2 µ𝑚 is obtained in the focus 

(z=0) for a MIR beam with a broadband and narrowband (2850 cm-1) MIR spectrum, 

respectively.  

These results can be compared to the theoretical limit of the spatial resolution by taking 

the objective (NA 0.65) into account (eq. V.2). An FWHM of 3,9 µm is obtained for the 

beam with the broadband spectrum centred at 5 µm and the beam with the narrowband 

spectrum at 3,5 µm has a theoretical resolution of 2,7 µm. The comparison of the 

experimental results with the theoretical limit indicates a small decrease of the spatial 

resolution, which is probably due to small misalignments in the setup.  

The main limitation of MIR microscopy is the MIR wavelength itself, however, and its 

spatial resolution never reaches the limit that is possible in CARS microscopy. Defined by 

the wavelength at 800 nm, this theoretical limit is roughly five times smaller. Moreover, an 

additional factor 
1

√𝑁
 further increases the spatial resolution of the Nth order non-linear 

process (for more details see [127, 128]).  

 



 

VI. Sum-frequency microspectroscopy based on flexible 

pulse shaping  

1. Introduction  

In nonlinear microscopy, the information about molecular vibrations is often obtained 

via coherent Raman spectroscopy using one or several laser pulses having a spectrum in the 

NIR or visible region (see chapter V) [63, 78, 114, 129, 130]. This information is also 

accessible by direct MIR excitations in SF spectroscopy. In contrast to CARS spectroscopy, 

SF spectroscopy is only sensitive to non-centrosymmetric systems and allows for the great 

possibility to investigate surfaces, interfaces, and crystalline structures [40, 41, 131, 132]. 

It provides high contrast of these structures by being blind to the dense bulk surrounding 

[133]. 

In addition, the SF process can also be applied to microscopy. This provides huge 

potential by combining the vibrational information with improved spatial resolution [42-45, 

134-136]. In SF microscopy, the resolution is defined by the overlap of the NIR and MIR 

spot sizes. Since the spot sizes are proportional to the wavelengths due to Abbe’s law, the 

NIR spot is smaller and defines the spatial resolution. This is a great advantage of SF 

microscopy over the already presented MIR microscopy (chapter V), whose spectral 

resolution is limited to several micrometres (see  section V.4 iii). 

The SF spectroscopy and microscopy are typically implemented either via a MIR-

scanning or a multiplex method (Figure VI.1) [38, 137-141]. The MIR-scanning method 

Figure VI.1 Scheme for MIR-scanning (left) and multiplex (right) SF spectroscopy. For 

the MIR-scanning method, a narrowband MIR spectrum (red) is scanned across the 

resonances and generates an excitation. This is probed by a broadband NIR spectrum 

(green). In the multiplex method, a broad MIR laser spectrum (red) excites all resonances 

at once, and the excitations are probed by a narrowband NIR spectrum (green). 
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acquires the SF light by exciting a single vibrational mode with a narrowband MIR pulse 

and probing the excitation non-resonantly with a NIR pulse. In order to acquire the whole 

SF spectrum, the spectrum of the MIR pulse must be tuned, as accomplished in optical-

parametric-oscillators (OPO). By contrast, all vibrational resonances are excited in the 

multiplex method using one MIR pulse with a broad spectrum. The spectral resolution is 

obtained afterwards by generating the SF spectrum in the probe process via a NIR laser 

pulse, which has a narrowband spectrum. In order to assign the resonances to their MIR 

frequencies, the generated SF spectrum in the visible must be shifted by the NIR frequency 

into the MIR region. 

Both experimental methods have specific advantages, which are complementary to each 

other. The MIR-scanning method uses either high MIR intensities or strong and spectrally 

broad NIR pulses to generate strong SF signals, which are detectable with short integration 

times and even allow microscopic imaging. These signal levels are usually not reached in 

the multiplex method. In contrast to the MIR-scanning method, the multiplex method has 

the potential to take the complete spectrum in one shot. Consequently, the implementation 

of both methods in one setup provides great advantages and is accomplished in a compact 

way through flexible pulse shaping. With nothing more than a switch of the imprinted phase, 

the application of both methods in a series is provided.  

Furthermore, the shaping methods used have an additional difference. Whereas the MIR-

scanning method is homodyne due to the detection without any background, the multiplex 

method is heterodyne since the signal is enhanced by the interference with a strong 

reference, which is called a local oscillator (LO). By implementing both methods, the 

potential phase sensitivity in the heterodyne multiplex method and the capability for 

detecting the undistorted SF signal in the homodyne MIR-scanning method is merged in 

one setup. 

In this chapter, the shaper-based implementation of the homodyne MIR-scanning 

(chapter 2 i) and the heterodyne multiplex method (chapter 2 ii) is demonstrated. In the 

MIR-scanning method, the NIR laser pulses are shaped by spectral focusing [72] to generate 

narrowband MIR light. In order to achieve multiplex spectroscopy, the double-quadratic-

spectral-interferometry [142] and the phase cycling [143] method are combined in the 

heterodyne multiplex method. After describing the experimental details (chapter 3), the two 

methods are demonstrated by detecting the vibrational modes of cholesterol and of 

crystalline cysteine (chapter 4). The results were already published in [2].  

2.  Pulse shaping approach for sum-frequency spectroscopy 

The shaper-based implementation of SF spectroscopy consists of four main components: 

the NIR laser source, the DF generation stage, the pulse shaper, and the microscopic setup 

(Figure VI.2, 1st column): 
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Figure VI.2 Scheme to demonstrate the homodyne MIR-scanning (the 2nd column) and the 

heterodyne multiplex method (the 3rd column) on the specific experimental parts (the 1st 

column). The setup consists of a laser and pulse shaper (a), DF stage (b), sample (c), and 
detection channel (d). The experimental parts are assigned row-wise to the two methods. (e) 

In the homodyne MIR-scanning method, spectral focusing shaped phases (solid line in left 

panel) with an instantaneous frequency difference (IFD) of 2000 cm-1 are imprinted on the 
laser pulses. These laser pulses are stretched in time (main panel). (f) The shaped NIR pulses 

(NIR spectrum grey area in the main panel) with an IFD at 2000 cm-1 generate MIR pulses 

that have a narrowband spectrum (red) in a DF process (the left sketch). (g) After passing 

through a long-pass filter, the spectrally cut NIR laser pulses and the MIR pulses generate 
SF light (green) in the sample. (h) This SF light is integrated on the detector and linked to 

the specific IFD and MIR frequency at 2000 cm-1. To acquire the whole SF spectrum, the 

imprinted IFD and the MIR frequency are scanned (arrows in e, f, h). In the heterodyne 
multiplex method (the 3rd column), (i) the whole NIR spectrum (right) consists of a small 

gate with a variable phase of 0, π, -π/2 (left) and a broad part of the spectrum with an 

unchanged phase (middle). (j) The whole NIR spectrum (grey background) generates the 

broad MIR spectrum (red) in a DF process (left sketch). (k) Both NIR spectra generate SF 
light in the interaction with the MIR spectra, and the light varies in dependence on the 

imprinted phase on the gate (see zoom). (h) The SF spectrum is retrieved in accordance with 

eq. VI.3. Reprinted with permission from [2]. 
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The sub10 fs NIR laser pulses are shaped by a programmable pulse shaper and used in a 

nonlinear crystal to generate MIR pulses. Afterwards, the NIR and MIR pulses are guided 

into the microscope to generate SF light inside the sample. The spectral resolution is solely 

accomplished by the pulse shaping via the two different methods, which are described 

below. 

2 i. Homodyne MIR-scanning method 

In the homodyne MIR-scanning method (Figure VI.2, 2nd column), MIR pulses with 

narrowband spectra are generated via the same two steps as in the MIR transmission 

spectroscopy (chapter IV). In the first step, NIR pulses are shaped with respect to spectral 

focusing (see Figure VI.2e) [72]. In accordance with spectral focusing, these pulses are 

stretched by two parabolic phase functions to provide elliptically-shaped pump and Stokes 

pulses in the frequency-time space. In the second step, pump and Stokes generate inside the 

DF crystal MIR pulses with a narrowband spectrum (see Figure VI.2f). 

Afterwards, the generated MIR and shaped NIR pulses overlap perfectly in time and 

generate SF light inside the sample (see Figure VI.2g). After supressing these laser pulses 

with a short-pass filter, the SF light is detected. Although detection is made with a 

spectrometer, the signal is integrated and can be directly assigned to a specific vibrational 

mode due to the narrowband spectrum of the MIR pulses. To acquire the whole SF 

spectrum, this narrowband spectrum is tuned via an adjustment of the phase imprinted on 

the pulse shaper (for more details see chapter II.3 ii) 

It should be noted that the SF light must be detected without any spectral overlap with 

the fundamental laser pulses. This is not provided a priori since SF light generated by MIR 

Figure VI.3 The figure has two independent parts considering different aspects in the 

homodyne MIR-scanning method. Figures (a & b) explain the spectral resolution and figure 
(c) demonstrates the spectral filtering of the NIR pulse. (a) Imprinting a high amount of 

chirp (red in the left upper panel) stretches the pulses strongly in time (red frequency-time 

ellipse in the main panel). These laser pulses generate MIR pulses with a narrowband 
spectrum (red line in the lower panel). (b) The narrowband MIR pulses resolve the 

vibrational resonance (grey background), whereas MIR pulses with broader spectra are not 

capable of resolving it (black). (c) MIR excitations in the SF process can be probed either 
by the Stokes (grey background) or pump (grey line without background). Simulations show 

that the SF intensity generated by the Stokes (red background) is larger than the SF intensity 

generated by the pump (red without background). Therefore, an 800 nm long-pass filter 

provides the Stokes for the SF process. (a & b) Adapted with permission from [2]. 
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light at the low-frequency range (~1750 cm-1) overlaps with the broad spectrum of the NIR 

pulses. Therefore, the spectral range of the pulses must be restricted either to the pump or 

Stokes. This choice is determined by the dynamic of the vibrational excitations, which show 

a slow decay after the MIR excitation. The Stokes, via its temporal increasing intensity, 

accounts for this dynamic and probes the MIR excitation at later times with high intensities. 

In contrast, the pump has its high intensity before the MIR excitation is completely built up 

and generate less SF signals. Consequently, the Stokes is chosen as the NIR probe pulse in 

the SF generation. This choice is corroborated by simulations which indicate an SF signal 

roughly two times higher after probing the MIR excitation by the Stokes than by the pump 

(Figure VI.3 c). 

 

As already described in chapter II.3 ii, the flexible pulse shaping is also used for 

adjusting the spectral width of the MIR laser pulses by changing the amount of chirp 

imprinted via the pulse shaper (Figure VI.3a). The control of the shaper over the spectral 

resolution is shown in Figure VI.3b. The narrowband MIR pulses with a high amount of 

chirp can resolve the vibrational mode in the SF spectrum, whereas the one with a low 

amount of chirp cannot.  

2 ii. Heterodyne multiplex method 

In multiplex SF spectroscopy, the whole SF spectrum is acquired in general by probing 

broadband excited vibrational resonances with NIR pulses having a narrowband spectrum. 

Therefore, the width of these spectra directly determines the spectral resolution and should 

be narrower than 1 nm to resolve vibrational resonances with a typical width below 30 cm-

1. However, this bandwidth cannot be provided by typical pulsed laser sources, and 

additional spectral filtering is required. Usually this is done using Fabry-Perot filters or 

spatial filters in a 4 f setup [144, 145], although both have several drawbacks. Whereas a 

Fabry-Perot filter stretches the NIR pulses in a highly asymmetric manner over time, the 

spatial filtering in a 4f setup is complex as well as static [146].  

The heterodyne multiplex method overcomes these problems by shaping NIR pulses via 

the phase of the double-quadrature-spectral-interferometry method [142] (Figure VI.2, 3rd 

column). This phase divides the whole spectrum of the NIR pulses into a broadband part 

with a constant phase and a narrowband part of the spectrum with a variable phase 𝜗, which 

is called gate (see Figure VI.2i) [37, 143].  

These shaped pulses are focused in the DF crystal and generate broadband MIR pulses 

(Figure VI.2j). Due to the small bandwidth of the gate, the MIR pulses are generated mainly 

by the broadband part of the NIR pulses and are not distorted by the changes of the gate-

phase 𝜗. 

Afterwards, the combined NIR and MIR pulses generate SF light inside the sample, 

which is detected spectrally resolved. As depicted in the zoom in Figure VI.2k, the acquired 

SF spectra show a variation in dependence on the gate phase 𝜗 due to the interference 

between the SF light 𝐼𝐿𝑂  and 𝐼𝑠𝑖𝑔, which are generated by the broadband part of the NIR 

spectrum and the gate, respectively. This variation can be exploited to retrieve the spectral 

shape of 𝐼𝑠𝑖𝑔(𝜔), which depicts the vibrational mode of the sample with spectral resolution.  
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In order to derive the formalism unveiling 𝐼𝑠𝑖𝑔(𝜔), the varied SF spectra 𝑆 are divided 

into a constant part 𝐼ℎ𝑜𝑚𝑜 and a phase-sensitive term 𝐼ℎ𝑒𝑡 . 𝐼ℎ𝑜𝑚𝑜  depends only on the 

amplitude of the SF light 𝐼𝐿𝑂  and 𝐼𝑠𝑖𝑔. The phase-sensitive term 𝐼ℎ𝑒𝑡  is assigned to the 

interference of the generated SF lights. Therefore, in addition to the amplitudes of the SF 

light, it also depends on the relative phase of the SF light’s electric fields. This phase 

consists of the phase 𝜗 imprinted by the shaper and an unknown phase 𝜑, which originates 

from the sample itself (eq. VI.1): 

 
𝑆 = 𝐼ℎ𝑜𝑚𝑜 + 𝐼ℎ𝑒𝑡  

= (𝐼𝐿𝑂 + 𝐼𝑠𝑖𝑔) + 2√𝐼𝐿𝑂𝐼𝑠𝑖𝑔 cos(𝜑 + 𝜗). 

VI.1 

In order to reconstruct 𝐼𝑠𝑖𝑔(𝜔), three measurements, 𝑆(𝜗 = 0), 𝑆(𝜗 = π), and  𝑆(𝜗 =

−π/2), with different gate phases are considered. The interferences 𝐼ℎ𝑒𝑡  are varied for the 

three measurements: 𝐼ℎ𝑒𝑡(𝜗 = 0) ∝ cos (𝜑), 𝐼ℎ𝑒𝑡(𝜗 = π) ∝ −cos (𝜑), and  𝐼ℎ𝑒𝑡(𝜗 =

−π/2) ∝ 𝑠𝑖𝑛 (𝜑). The unknown parameters 𝐼𝐿𝑂(𝜔), 𝐼𝑠𝑖𝑔(𝜔), and 𝜑(𝜔) are determined by 

the equation system of the three measurements 𝑆(𝜗 = 0),  𝑆(𝜗 = π), and  𝑆(𝜗 = −π/2): 

 

tan(𝜑) =
1

𝐼ℎ𝑒𝑡
{𝑆 (𝜗 = −

π

2
) − 𝐼ℎ𝑜𝑚𝑜}, 

VI.2 

 

𝐼𝑠𝑖𝑔 =
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2
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, 

VI.3 

with the auxiliary equations  

 

𝐼ℎ𝑜𝑚𝑜 = (𝐼𝐿𝑂 + 𝐼𝑠𝑖𝑔) =  
1

2
{𝑆(𝜗 = 0) + 𝑆(𝜗 = π)}, 

VI.4 

 

𝐼ℎ𝑒𝑡 = 2√𝐼𝐿𝑂𝐼𝑠𝑖𝑔 cos(𝜑) =
1

2
{𝑆(𝜗 = 0) − 𝑆(𝜗 = π)}. 

VI.5 

The final step shifts the retrieved spectrum of 𝐼𝑠𝑖𝑔(𝜔) from the visible into the MIR 

region and assigns it to the vibrational modes by subtracting the frequency of the gate from 

the frequency of 𝐼𝑠𝑖𝑔(𝜔). 

In contrast to 𝐼𝑠𝑖𝑔(𝜔), 𝐼𝐿𝑂(𝜔) is generated by the broadband part of the NIR spectrum 

and consists mainly of the generated non-resonant background (see section II.2 ii). Since 

this background is much stronger than 𝐼𝑠𝑖𝑔(𝜔), it acts as an LO and enhances the low signals 

𝐼𝑠𝑖𝑔(𝜔) above the noise threshold [147]. Furthermore, it provides the phase sensitivity in 

the heterodyne detection, which is important for the reconstruction of Isig(𝜔). 

This heterodyne detection on the bases of the double-quadratic-spectral-interferometry 

method has three main advantages [142]. Firstly, the SF spectrum 𝐼𝑠𝑖𝑔(𝜔) is reconstructed 
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by its intensity, which hinders the increasing of the noise by taking the square-root in an 

analysis of its electric field. Secondly, the two-value problem of the trigonometric functions 

is overcome by accounting for the same periodicity of π in the phase (tan(𝜑)) and the 

intensity retrieval (cos (𝜑)). Lastly, the SF pulses of the signal and the LO overlap in time 

for all gate widths. Therefore, the highest spectral resolution can be acquired simultaneously 

with the highest signal-to-noise ratio. This is in contrast to the popular SF detection scheme 

‘spectral interferometry’, which provides spectral resolution by the interference of the signal 

with a time-delayed second laser pulse [148]. In this case, high spectral resolution is only 

possible with large time delays, which simultaneously reduces the temporal overlap of the 

two pulses and the signal-to-noise ratio. 

It is important to note that instead of using the specific SF spectra 𝑆(𝜗 = 0), 𝑆(𝜗 =

π), 𝑆(𝜗 = −π/2) every configuration of measurements with three different phases can be 

used for the spectral retrieval. However, phase imprinted variations of the SF spectra are 

maximized by combinations out of 𝜗 = 0, π, +π/2 , −π/2. Especially the configuration 

0, π, +π/2 can be simply used by adding a sign change in the argument of equation VI.2.  

 

The imprinted phases in the heterodyne multiplex method vary only in a small range. 

Therefore, the interacting laser pulses are much shorter and generate a large non-resonant 

background, which distorts the line shape of the detected vibrational modes (see section II.2 

ii). A reduction can be accomplished utilising the fast decay of the non-resonant background 

and the long lifetimes of the resonant contributions. Therefore, this background can be 

supressed by delaying the probe pulse behind the end of the MIR excitation. This is solely 

accomplished by an additional phase on the gate in the extension tailored-probing. Beside 

the variable phase ( 𝜗 = 0, π, −π/2 ), a linear phase is imprinted whose slope determines 

the time delay (Figure VI.4). 

However, the gate with its width between 10 and 30 cm-1 cannot be delayed by its 

temporal width in the ps-range. A temporal confinement of the gate is only possible by 

broadening its spectrum, which on its downside decreases the spectral resolution. In order 

to solve this contradiction, the narrow gate with its variable phase (𝜗 = 0, π, −π/2 ) is 

Figure VI.4 Concept and simulation of the extension tailored-probing in the heterodyne 

multiplex method: (a) Using linear phases imprinted on the gate, the NIR probe pulses are 
delayed to do not overlap with the MIR pulses. (b) The strong interference between the non-

resonant background and the vibrational resonances decreases by increasing the probe delay 

(from red to blue). Due to better illustration, the width of the gate in (a) is five- times greater. 

Adapted with permission from [2]. 
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enclosed in a broader gate, which contributes with the linear phase. While the narrowband 

gate still provides a high spectral resolution, the broader gate is short in time and 

accomplishes the time delay. 

It is important to note that tailoring the probe pulse only reduces the non-resonant 

background rather than supress it completely. This is important since this background is the 

main contribution of the LO. As demonstrated in simulations (Figure VI.5), detection in the 

heterodyne multiplex method without any LO allows no retrieval of the SF spectrum. 

In order to preserve the LO, it must be generated either by a small phase gate in a larger 

time gate or by a smaller time delay. The latter option yields an interference of the signal 

𝐼𝑠𝑖𝑔(𝜔) and the non-resonant background 𝐼𝐿𝑂(𝜔), which is generated by the broadband NIR 

pulse at time zero and is not completely decayed. With the first option, the phase gate is 

small, and the LO can also be generated by the resonant contribution. 

3. Experimental details 

Both methods are demonstrated by a setup (Figure VI.6) which is based on the already 

used shaper-based setup (chapter IV). A Ti:Sa oscillator provides sub 10 fs laser pulses, 

which are shaped by a liquid crystal pulse shaper and generate MIR pulses in a 1 mm thick 

LiIO3 crystal with a spectrum ranging from 1750 up to 3500 cm-1. 

The NIR and MIR pulses cannot be used for SF spectroscopy in a single-beam setup 

since the NIR pulses cannot be modified by any substrate without the MIR pulses 

Figure VI.5 Simulated failure of the heterodyne multiplex method. A suppression of the 

non-resonant background in combination with a broad gate width makes this method 
unusable. (a) In this case, the phase jump at the edge of the gate dominates the SF spectra 

(phase 0 [red], π [black], π/2 [green] and -π/2 [blue]). (b) The retrieved SF spectrum (black) 

also fails to show the expected vibrational mode (grey background). 
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deteriorating (see for more details section V.2). Therefore, these NIR and MIR pulses are 

separated on a germanium beam splitter. The MIR pulses transmit the beam splitter and pass 

through two CaF2 lenses, which provide temporal and spatial confinement. The NIR pulses 

are reflected on this beam splitter and their spectrum is cut afterwards by an 800 nm sharp-

edge long-pass filter. However, this filter stretches these pulses in time. They can be 

compressed by a specific number of reflections on chirped mirrors (1000 fs2) to the pulse 

length, which they have before the beam splitter. In order to determine the number of 

reflections, different amounts of chirp are imprinted on the pulse shaper, and the 

interferometric autocorrelation is measured before the chirped mirrors.  

The NIR and MIR pulses are combined on a second germanium beam splitter and 

focused into the sample using a 74X Schwarzschild objective (BOS 5007, NA 0.65). After 

the SF generation, all laser pulses are collimated using a 40X reflective objective (Thorlabs 

LMM-40x-P01), and they are guided to the detection channel. The SF light is detected 

spectrally resolved (Acton SP300i) by an electron-multiplying CCD camera (Andor Newton 

DU 970) after passing a short-pass filter (785 nm) that supresses the fundamental laser 

pulses. 

Figure VI.6 Experimental details of SF spectroscopy. The sub 10 fs laser pulses made by 

the Ti:Sa oscillator are guided into the 4 f setup for arbitrary pulse shaping. Afterwards, 

these shaped laser pulses are guided to the MIR generation setup consisting of parabolic 

mirrors that focuses the pulses (f = 10 cm) inside the 1 mm thick LiIO3 crystal and 

collimates (f= 5 cm) them. The MIR and NIR laser pulses are separated by a germanium 
(GE) beam splitter. The reflected NIR pulses are guided to the 800 nm long-pass filter 

(LPF) and to chirped mirrors (CM). The MIR pulses are transmitted and recollimated with 

the NIR laser pulses by a second GE beam splitter. The collimated MIR and NIR pulses 
generate SF light in the sample inside the microscopy. After passing through a 785 nm 

short-pass filter to suppress the fundamental laser pulses, the SF light is dispersed in a 

Frank-Czerny spectrometer and detected on an electron-multiplying CCD camera. Adapted 

with permission from [2]. 
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The potential of both methods is shown on cholesterol and cysteine. Cholesterol is 

prepared as a crystalline sample on an objective. This is accomplished by dissolving 

cholesterol in chloroform that evaporates in the crystallisation process [43]. The cysteine 

dissolved in water crystallises on an objective slide after the water has been evaporated. 

4. Experimental application 

4 i. Homodyne MIR-scanning method for sum-frequency microscopy 

The potential of the homodyne MIR-scanning method for SF microspectroscopy is 

demonstrated by investigating the strong methylene band of crystalline cholesterol. These 

spectra are taken with different spectral resolution by varying the imprinted amount of chirp 

(Figure VI.7a). The obtained spectra show a broad or narrow methylene band by imprinting 

a small or high amount of chirp, respectively. 

Figure VI.7 Demonstration of the homodyne MIR-scanning method by detecting the 

methylene group of cholesterol. (a) The measured (solid line) and simulated (background) 

SF spectra show an increase in spectral resolution with an increasing amount of chirp. All 

simulations agree with their measurement. (b) This is shown in particular for an imprinted 
chirp of 9000 fs2. (c) The spectral width of the methylene band decreases by an increasing 

chirp (measurement: dots, simulation red line). Adapted with permission from [2]. 
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The spectral resolution is analysed quantitatively by investigating the spectral width of 

this band in dependence on the imprinted amount of chirp (Figure VI.7c). The obtained 

widths (FWHM) show a decrease from above 100 cm-1 by chirps to below 3000 fs2 down 

to 30 cm-1 at chirps above 13000 fs2. 

The homodyne MIR-scanning method is further corroborated by modelling the 

experimental results with simulations. The simulations consider the experimental NIR 

spectrum, the pulse shaping in a 4f setup by the pixelated pulse shaper, as well as the MIR 

and SF generation. Using an evolutionary algorithm, a FWHM of 18 cm-1 is obtained for 

the molecular response function of the methylene band by fitting these results in 

combination with the results of the heterodyne multiplex method. The fittings (the 

backgrounds in Figure VI.7a) correspond well with all measurements (the solid lines in 

Figure VI.7a). 

It is important to note that the fitted linewidth of the molecular response function (18 cm-

1) is larger than the typical linewidths of vibrational modes in the susceptibility 2nd order 

(~8-12 cm-1) [149, 150]. This is caused by several line-broadening effects, which cannot be 

resolved in SF microspectroscopy. Firstly, the sample has an unordered crystalline structure, 

which provides a distribution of different phase matching angles in SF microscopy. With 

the large aperture angle of the microscopic objective, SF light with respect to all phase 

matching angles is generated. Consequently, a vibrational mode detected in the SF 

spectroscopy is the summation of individual vibrational line shapes. Secondly, the used SF 

microscopy is not polarisation sensitive. Therefore, the different spectral shapes of a 

vibrational mode observable in polarisation-sensitive SF spectroscopy cannot be resolved. 

The impact of the different line-broadening effects can be further analysed either in 

polarisation-sensitive or in time-resolved SF spectroscopy. In the latter, the free induction 

decay of the MIR excitation is detected by driving an excitation at time 0 with the MIR 

pulse and scanning the decay of this excitation with the NIR probe pulse in time. The 

obtained decay rates of the vibrational modes are the temporal representation of the 

vibrational line shapes and indicate the hidden structure of the detected SF spectrum [151, 

152].  

 

The potential of the homodyne MIR-scanning method for resonant imaging is 

demonstrated on crystalline cysteine. Cysteine is an amino acid, which is, for example, part 

of proteins inside the muscle tissue. This amino acid can be identified by its thiol group (-

SH sulphur hydrogen) around 2550 cm-1, as shown in the detected SF spectrum (Figure 

VI.8d; chirp 3000 fs2). In addition, the SF spectrum shows a distortion of the vibrational 

line shape and a small signal outside the resonance due to the presence of a non-resonant 

background. However, this background is much smaller than the resonant contribution 

generated using highly stretched laser pulses. Therefore, vibrational resonant imaging has a 

higher contrast compared to images obtained off-resonantly.  

A resonant image with an integration time of 100 ms is taken by tuning the MIR 

spectrum to the vibrational resonance (chirp 3000 fs2). It shows a crystalline structure of the 

cysteine (Figure VI.8a) and agrees well with an image taken by second-harmonic light 

(Figure VI.8b) due to the quadratic dependence on the 2nd order susceptibility of both 

processes. 

The agreement between both images is only obtained after a correction of the second-

harmonic image. This correction is needed due to the slight tilt of the sample in the 
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microscope. In this case, the sample moves out of focus and the beam spot size changes 

slightly across the sample. This change must be considered due to the different scaling of 

both processes on the NIR intensity and on the beam spot size. While the SF image linearly 

depends on the inverse NIR-beam spot size, the second-harmonic image quadratically 

depends on it. This different scaling is consequently corrected. 

  

Figure VI.8 Demonstration of the SF imaging on cysteine microcrystals. (a) A resonant 

SF image is recorded on the vibrational mode of the thiol group (the white bar represents 

10 µm). (b) The image obtained by second-harmonic light shows the same crystalline 

structure. (c) The lineouts also show the agreement of SF (black) and second harmonic 
(red) signals (position marked in [a] and [b]). (d) SF spectrum of cysteine depicts the well-

known thiol band. (a-c) Adapted with permission from [2]. 
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4 ii. Heterodyne multiplex method for sum-frequency spectroscopy 

The heterodyne multiplex method is demonstrated on cholesterol microcrystals (Figure 

VI.9). The SF spectra (a & b) show the known methylene band at 2855 cm-1 and, in addition, 

vibrational resonances at higher wavenumbers, which have been observed earlier by 

Hanninen et al. [43].  

However, these resonances are not present in the spectra acquired in the homodyne MIR-

scanning method. In order to understand the deviation between the SF spectra, the temporal 

differences in the excitation and probing of the two methods must be considered. In contrast 

to the excitation by long laser pulses in the homodyne MIR-scanning method, the excitation 

and probe process are much shorter in the heterodyne multiplex method. These time scales 

affect the SF generation on different vibrational modes since the dynamic of these 

vibrational modes must be accounted for. Therefore, the vibrational modes with higher 

Figure VI.9 Demonstration of the heterodyne multiplex method on the cholesterol 

methylene band. (a & b) The measured (black line) and simulated (grey background) SF 

spectrum are detected by a gate width of 2 (a) and 8 pixels (b). (c) The heterodyne multiplex 

method breaks down when using gate widths that are too large, as shown on the SF spectrum 

acquired with a gate width of 13 pixels. (d) The spectral widths (FWHM) of the measured 
(black) and simulated (red) methylene band increase by increasing the gate width. They 

correspond well with the squared sum (grey dotted line) of the molecular response function 

and the instrument response function. Latter one is determined by the spectral width of the 

gate on the pulse shaper (blue dotted line). Adapted with permission from [2]. 
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decay rates are detected with higher intensities in the heterodyne multiplex method than in 

the homodyne MIR-scanning method. 

The observation of the strong methylene band, which corresponds well with the 

homodyne MIR-scanning method, is also used to determine the spectral resolution. As 

shown in Figure VI.9d, the spectral width of this band (FWHM) increases depending on the 

gate width from below 25 cm-1 (1 pixel) up to 60 cm-1 (8 pixels). This is further corroborated 

by simulations, which are simultaneously performed with the ones for the homodyne MIR-

scanning method (see more details in section 4 i). 

The spectral resolution can be further analysed by taking the measured vibrational mode 

as a convolution of the instrument and molecular response function. The widths of the 

instrument and molecular response function are modelled by the width of the gate (blue line 

in Figure VI.9d) and the spectral width of the methylene band, respectively. The latter width 

(18 cm-1) is taken from the simultaneous fit of both SF methods (see section 4 i). Assuming 

Gaussian-shaped response functions, the spectral width of the SF-detected vibrational mode 

is calculated by the squared sum of the individual FWHMs. The result of this calculation 

corresponds well with the measurement, as shown in Figure VI.9d. 

The deterioration of the heterodyne multiplex method is also demonstrated on the 

methylene band of cholesterol as shown on the SF spectrum acquired by a large gate width 

(13 pixels). This spectrum indicates the edge of the gate rather than resolving the methylene 

Figure VI.10 Experimental demonstration of the extension tailored-probing in the 

heterodyne multiplex method on crystalline cysteine. (a) The detected SF spectra show a 
decrease of the non-resonant background from above 0,6 down to 0,1 when the time delay 

is increased (time gate: 50 cm-1, phase gate: 32 cm-1). In addition, the distortion of the 

vibrational mode is also reduced. (b) The shift of the centre of the detected mode is depicted 
in black in accordance with the left y-axis. The signal intensity outside the resonance is 

shown on the right y-axis for 2475 cm-1 (blue dotted line) and 2650 cm-1 (solid line). (c) A 

revival of the non-resonant background at probe delays of 900 fs2 and 1000 fs2 appears due 

to the sinc-shape of the gate in frequency space. (a) Adapted with permission from [2]. 
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band (see Figure VI.9c). This is in accordance with the previous theoretical considerations 

(see section 2 ii). 

 

The potential for supressing the non-resonant background by a delayed probe pulse is 

experimentally demonstrated on crystalline cysteine. This molecule is a perfect example 

due to the appearance of a strong non-resonant background in SF spectra that is detected 

without a probe delay (black in Figure VI.10). By delaying the probe (800 fs), this 

background is reduced by more than a factor of 20. Furthermore, the distortion of the 

detected vibrational mode disappears, and the centre of the resonance is shifted from 

2533 cm-1 (0 fs) up to 2541 cm-1 (800fs) (see also Figure VI.10b). 

The SF spectra acquired at a large time delay (900 fs and 1000 fs) show a small revival 

of this distortion and of the off-resonant amplitude (Figure VI.10c). This distortion can be 

traced back to the rectangular shape of the probe spectrum, which shows a sinc-function 

with known sidelobes as temporal distribution. For large probe delays, one of these 

sidelobes matches the MIR excitation at time 0 and generates a non-resonant background. 

In contrast to the non-resonant background generated by the LO (broadband part of the NIR 

spectrum), this one varies by the phase of the gate and therefore contributes to the retrieved 

SF spectrum. This explanation is corroborated by the good agreement between the time 

delay yielding experimentally the smallest non-resonant background (800 fs) and the 

position of the minimum (820 fs) calculated for this gate (width: 50 cm-1). 

4 iii. Homodyne MIR-scanning method for MIR spectroscopy 

MIR transmission spectroscopy is a powerful method for obtaining information about 

molecular vibrations by detecting their spectra directly in the MIR. However, the used 

spectrometers have much lower sensitivities than detectors in the visible, which can even 

detect single photons [153]. The up-conversion spectroscopy method exploits these 

detectors for the acquisition of MIR transmission spectra by shifting MIR spectra via an SF 

process in the visible [154-156].  

The SF spectroscopy setup presented here permits up-conversion spectroscopy by 

focusing the NIR and MIR pulses into a 100 µm thin LiIO3 crystal outside the microscope 

and detecting the generated SF light with a visible spectrometer (detailed setup in Figure 

VI.11a). The broad and constant conversion efficiency of this thin crystal provides SF light, 

which solely depends on the MIR intensity. In order to obtain the whole SF spectrum with 

spectral resolution, the homodyne MIR-scanning method is applied to scan the MIR spectra 

and link the detected SF light to a specific MIR frequency. 

In a first application, an SF spectrum without any sample is obtained (Figure VI.11b). 

This spectrum ranges from 1750 cm-1 above 3000 cm-1 and allows access to vibrational 

modes over a broad spectral range in SF spectroscopy. 

Furthermore, MIR transmission spectra of a polystyrene film are taken for different 

amounts of chirp (Figure VI.11c). These spectra agree well with the FTIR reference 

measurement as concerns the spectral resolution. The spectral resolution is analysed by 

fitting the convolution of molecular response and the instrument response function to the 

detected transmission spectra, as was already done for the spectra detected directly in the 

MIR (see chapter IV). The obtained spectral width of the narrowband MIR spectra 
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decreases from high spectral widths at low amounts of chirp towards a spectral width around 

25 cm-1 at high amounts of chirp (Figure VI.11d). These widths are in accordance with the 

results acquired previously by direct MIR detection (see Figure IV.9) 

 

Figure VI.11 Homodyne MIR-scanning method for up-conversion MIR spectroscopy. (a) 

The setup for up-conversion spectroscopy is slightly different to the setup for SF 

microscopy (Figure VI.6). It consists of a 100 µm thick LiIO3 crystal between two parabolic 
mirrors instead of a microscope (focusing: f = 10 cm; collimating: f = 5 cm). (b) The 

detected SF spectrum (chirp 5000 fs2) has a broad range from 1750 to above 3000 cm-1 (c) 

The transmission spectra of a polystyrene film are detected by the up-conversion method. 

They show the known vibrational resonances and an increase in spectral resolution when  
the amount of chirp is increased from 5000 fs2 (green) to 7000 fs2 (blue), 9000 fs2 (red), and 

12000 fs2 (black). The SF spectra at a high spectral resolution correspond well with the 

FTIR reference measurement (grey background; resolution 1cm-1). For illustration, an offset 
is added. (d) Taking the SF spectra as convolution of the molecular response and instrument 

response function into account, the FWHMs of the narrowband MIR spectra decrease by 

increasing the amount of chirp. (a & b) Adapted with permission from [2]. 



 

VII. Mid-infrared phase retrieval: a dispersion scan 

approach 

Phase shaping provides access to a great variety of information in nonlinear spectroscopy 

[32, 157]. The shaping of NIR pulses, for example, can be exploited for background-free 

[35], phase-sensitive, and heterodyne [33, 34, 37] CARS spectroscopy as well as 

multimodal microscopy [20, 63]. Combined CARS and MIR microspectroscopy 

(chapter V) as well as SF spectroscopy (chapter VI) are made possible by applying phase-

shaped NIR and MIR pulses. A fundamental requirement in all of these spectroscopic 

techniques is the precise knowledge of the optical phase 

Several experimental methods have been developed to obtain the phase of a laser pulse. 

Aside from the shaper-based multiphoton-intrapulse-interference-phase-scan (MIIPS) 

method [158], the frequency-resolved-optical-gating (FROG) method [159] is the 

foundation for many methods, and its potential is demonstrated in applications ranging from 

the MIR [160, 161], the NIR/visible [162], and the UV [163, 164] regions. Phase 

information is provided by splitting the laser pulse into two replicas and scanning their time 

delay. In contrast to the FROG-based methods, the recently developed dispersion scan (d-

scan) method [46, 165] does not require any pulse splitting and retrieves the phase in a 

single-beam setup by scanning the thickness of glass in its beam path. This compact setup 

makes the method attractive, as has already been shown for the visible and NIR regions 

[166, 167]. 

The phase retrieval of MIR pulses is more challenging due to difficulties in the setup 

alignment as well as the lack of suitable optics and spectrometers. In order to overcome 

such technical challenges, this chapter explains how NIR pulses can be exploited via an SF 

process in order to develop two novel d-scan methods. 

These two MIR d-scan methods are presented in the following sections: Initially, the 

general concept of the d-scan method is summarised (section 1) and the two MIR d-scan 

methods are introduced (section 2). After discussing the experimental details of the 

nonlinear microscopy setup used in this work (section 3), the two methods’ potential for 

MIR phase retrieval is demonstrated (section 4). 

1. Dispersion scan method  

The d-scan method [46] analyses laser pulses using a setup which consists of a pair of 

glass wedges, a nonlinear crystal, and a spectrometer (Figure VII.1a). The phases of the 

laser pulses are retrieved by scanning the thickness of the glass wedges and detecting 
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spectrally resolved the second-harmonic spectra. These spectra are collected in their 

dependence on the imprinted chirp in the so-called d-scan trace. 

This d-scan trace contains the signature of the unknown phase of the fundamental laser 

pulses, as shown in Figure VII.1 b-g. Laser pulses with a constant phase, for example, 

generate a symmetric d-scan trace around chirp 0 (e), and its shape cannot be changed by 

an additional linear phase affecting only a time delay. A quadratic phase with a certain 

amount of chirp shifts the d-scan trace without changing its shape to the same chirp with 

the opposite sign (f). Furthermore, the shape of the d-scan trace is stretched and tilted by an 

imprinted cubic phase (g). 

In order to retrieve these unknown phases 𝜑(𝜔) quantitatively, two steps are required: 

In the first step, the d-scan trace 𝑆𝑓𝑖𝑡  is modelled in dependence upon the second-harmonic 

frequency 𝜔 and the amount of chirp 𝛽, which is imprinted via the phase 𝜃(𝜔′, 𝛽) on the 

laser pulse (eq. VII.2). This laser pulse contributes to the d-scan trace by its complex electric 

field (eq. VII.1) with the amplitude 𝐸0(𝜔′) and phase 𝜑(𝜔′): 

Figure VII.1 (a) The phase retrieval in the d-scan method is accomplished by scanning the 

thickness of glass wedges which generates second-harmonic light in a nonlinear crystal and 

detects the second-harmonic light with a spectrometer. (b-g) The impact of different phases 
on the d-scan traces is shown: (b & e) A constant phase yields a symmetric d-scan around 

the imprinted chirp 0. (c & f) An imprinted amount of chirp of 250 fs2 results in a shift to -

250 fs2 of a d-scan trace with the same shape. (d & g) The d-scan trace of a cubic phase is 

tilted. 



VII. 2 Mid-infrared phase retrieval 89 

𝐸 (𝜔′) = 𝐸0(𝜔′) ⋅ 𝑒𝑖 𝜑(𝜔′), 
VII.1 

𝑆(𝜔, 𝛽) ∝ |ℱ ({ℱ−1(𝐸(𝜔′) ⋅ 𝑒𝑖 𝜃(𝜔′,𝛽))}
2

)|
2

. 
VII.2 

 In the second step, this unknown phase 𝜑(𝜔) is obtained in a fit by minimising the 

quadratic loss function 𝐿 (eq. VII.3) between the measured d-scan trace S𝑚𝑒𝑎𝑠(𝜔, 𝛽) and 

the modelled one S𝑓𝑖𝑡(𝜔, 𝛽). The amplitude of S𝑓𝑖𝑡(𝜔, 𝛽) is normalised beforehand via 

eq. VII.4. The multidimensional nonlinear fit is usually accomplished using the Nelder-

Mead method (also called the downhill simplex method) [168]: 

 

𝐿 = √∫ 𝑑𝜔 ∫ 𝑑𝛽 {𝑆𝑚𝑒𝑎𝑠(𝜔, 𝛽) − µ ⋅ 𝑅(𝜔) ⋅ 𝑆𝑓𝑖𝑡(𝜔, 𝛽)}
2

, 

VII.3 

 

µ =
∫ 𝑑𝜔 ∫ 𝑑𝛽 𝑆𝑚𝑒𝑎𝑠(𝜔, 𝛽)𝑅(𝜔) ⋅ 𝑆𝑓𝑖𝑡(𝜔, 𝛽)

∫ 𝑑𝜔 ∫ 𝑑𝛽 (𝑅(𝜔) ⋅ 𝑆𝑓𝑖𝑡(𝜔, 𝛽))
2 . 

VII.4 

(normalization) 

Two aspects are important to obtain a good fit. Firstly, the parametrisation of the 

unknown phase must be well chosen. The phase can be expressed either in a Fourier base 

to describe simple phases or in a sparse approximation capable of expressing more complex 

phases. The latter is implemented by iteratively running the fitting algorithm several times. 

In each step, the phase is varied at a few spline frequencies and the whole phase is obtained 

by an interpolation. The best result of the former step is used in the next iteration, and the 

number of spline frequencies is increased [169]. The second aspect regards the need for an 

additional fit parameter. For this purpose, the so-called spectral response 𝑅(𝜔) is inserted 

as an amplitude factor to model effects like the spectral response of the spectrometer and 

the conversion efficiency of the crystal [46]. 

2. Mid-infrared phase retrieval  

The phase retrieval of MIR pulses is demonstrated for two d-scan methods; the dual d-

scan (2nd row) and the Xd-scan method (3rd row in Figure VII.2). Both methods exploit the 

SF spectra generated by the interaction with NIR pulses. Therefore, the complex electric 

field of the NIR pulses must be determined first. This is done using the shaper-based NIR 

d-scan method (1st row in Figure VII.2). 
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2 i. Shaper-based NIR d-scan method 

The shaper-based NIR d-scan method is implemented using the usual setup (see Figure 

VII.1a) with one modification. Rather than use glass wedges, the phases are directly applied 

with a programmable pulse shaper, which has the advantage of imprinting positive as well 

as negative amounts of chirp arbitrarily (1st row in Figure VII.2). 

2 ii. Dual d-scan method 

With the dual d-scan method (2nd row in Figure VII.2), the scan of the dispersion is made 

with optical wedges inserted in the collinear NIR and MIR beam path to disperse both laser 

pulses. In this setup, CaF2 wedges are chosen to imprint the chirp (Figure VII.3a). The scan 

of the CaF2 thickness indicates three different d-scan traces (see Figure VII.3b). Beside the 

two traces generated in a second-harmonic process of the individual laser pulses, the 

interaction of the NIR and MIR pulses provide the d-scan trace of the SF light.  

Figure VII.2 The dual d-scan method (2nd row) and the Xd-scan method (3rd row) are able 

to reconstruct the phase of MIR pulses. The methods are independent of each other and 

require the retrieved phase of the NIR pulses in the fit. This phase is obtained by the shaper-

based NIR d-scan method (1st row). The shaper-based NIR d-scan is done by scanning the 
imprinted amount of chirp via a programmable pulse shaper and generating second-

harmonic light in a nonlinear crystal (SH crystal). (2nd row) With the dual d-scan method, 

dispersion is imprinted on the NIR as well as on the MIR laser pulses by CaF2 wedges and, 

SF light is generated in a nonlinear crystal (SF crystal). (3rd row) With the Xd-scan method, 
a pair of glass wedges is inserted into the NIR beam path to scan the SF spectra generated 

in the SF crystal. In both methods, the phase of the MIR pulses is retrieved independently 

in a fit, which accounts for the amplitude as well as the fitted phase of the NIR pulses. 
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This SF d-scan trace as well as the retrieved NIR phase from the shaper-based NIR d-

scan method is used to retrieve the phase of the MIR pulses in a fit, which takes the 

imprinted phase of the CaF2 wedges directly by taking the refractive index into account 

[170]. 

2 iii. Xd-scan method 

 In contrast to the dual d-scan method, the Xd-scan method is based on a scan of the 

temporal overlap between the NIR and MIR pulses, similar to the FROG method [159]. In 

this d-scan method, the NIR pulse is scanned temporally with respect to the MIR pulse by 

varying the thickness of glass wedges in the NIR-beam path (Figure VII.3c & d). The scan 

of the glass thickness in a limited range is enough to obtain the whole trace. Therefore, the 

additional imprinted chirp on the NIR pulses is negligible. This is shown in the result of a 

simulation, which depicts the temporal distributions of the laser pulses depending on the 

glass thickness (see Figure VII.3c). These distributions demonstrate a temporal confinement 

of the NIR pulses over the whole glass range without any signature of a chirp. If the chirp 

Figure VII.3 Principles of the dual d-scan (upper row) and the Xd-scan method (lower 

row). (a) In the dual d-scan method, CaF2 wedges are inserted into the NIR and MIR beam 

path to imprint the CaF2 phase (e.g. 5 mm thick substrate blue) on both laser spectra (black). 

(b) d-scan traces are generated by the MIR pulses (with a trace centred at 5000 cm-1) and 

NIR pulses (with a trace centred at 25000 cm-1), as well as by the SF process of both 
(middle). The latter is analysed in the dual d-scan method. (c) With the Xd-scan method, 

glass wedges are inserted into the NIR-beam path, and the NIR pulses are delayed to MIR 

pulses. (d) The temporal overlap in the Xd-scan method generates the SF light. 
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contributes to the imprinted phase, a temporal broadening at greater glass thickness would 

be observed. 

The phase of the MIR pulses can be obtained by a fit that takes the Xd-scan traces and 

the retrieved NIR phase into account. The fit algorithm also models the insertion of the glass 

wedges by their refractive index and uses the same principles as in the dual d-scan method. 

It is important to emphasise that the SF process in this algorithm takes the measured NIR 

and MIR spectrum into account and is modelled via eq. VII.2. 

 

Beside the individual fits of both methods, the phase can also be acquired by a global fit. 

To do so, the individual loss functions of both d-scan traces are summed to provide one 

fitted phase. This approach is shown below. 

2 iv. Benchmarking  

The potential of MIR phase retrieval is first demonstrated by simulations which use the 

experimental NIR and MIR spectra from SF spectroscopy (see chapter VI). A phase is 

imprinted on the MIR spectrum, and the d-scan traces are simulated for both methods 

(Figure VII.4a & b). This phase is reconstructed in the two individual fits of the methods 

and the global fit (Figure VII.4c & d). For all three fits, the results show good agreement 

between the imprinted and fitted phases over a broad spectral range (e). Therefore, the two 

MIR d-scan methods enable a phase retrieval over more than 1000 cm-1 (~3 µm for a centre 

at 5 µm). 

 

The fitted phases also show small deviations at the edge of the MIR spectrum. These 

deviations are caused by small contributions in the d-scan traces coming from the edge of 

the MIR spectrum. The fit of this small contribution is inherently difficult due to the 

multidimensional fitting character of the d-scan algorithm. This algorithm is prone to get 

stuck at a local minimum especially while addressing complex phases over a broad 

spectrum. Consequently, the small contributions of the wings play a minor role in the fit 

result. This issue has been addressed in several publications in recent years [169, 171-173] 

and goes beyond the scope of the proof of principle demonstration in this work. An elaborate 

discussion of this issue and some opportunities for overcoming it are discussed in section 5. 

 

Moreover, the fit performance is tested for both methods in a more quantitative way with 

a benchmark. In accordance, many synthetic d-scan traces are simulated with respect to the 

measured NIR and MIR spectrum as well as randomly generated MIR phases. The 

imprinted phases are a summation of quadratic (+/- 1000 fs2), cubic (+/- 5000 fs3), and 

oscillating contributions. In the benchmark, the shapes of these phases are retrieved by a fit 

and compared to the shape of the imprinted ones. 

In the analysis, the error between the imprinted 𝜑(𝜔) and fitted phase 𝜑′(𝜔) is 

calculated by taking into account the spectral amplitude 𝐸(ω) of the MIR pulse. The error 

ranges from 0 for perfect fitting to 2 for two complete opposite phases after normalizing the 

integral of the spectrum to 1: 
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error(𝜑, 𝜑′) = |∫ 𝑑𝜔 ||𝐸(𝜔)| ∙ (𝑒𝑖𝜑(𝜔) − 𝑒𝑖𝜑′(𝜔))|
2

|

1
2

. 

VII.5 

The error distribution is depicted for the two individual fits and the global fitting in 

histograms, which show a small error for all contributions (Figure VII.5). Furthermore, it is 

also observed that the performance of the Xd-scan is better than the dual d-scan.  

Figure VII.4 The performance of the Xd-scan method (a & c) and dual d-scan method (b 

& d) is demonstrated by simulations. The d-scan traces of the Xd-scan method (a) and dual 

d-scan method (b) are generated synthetically with a high amount of chirp. The fitted Xd-
scan (c) and dual d-scan (d) trace show good agreement with the simulated traces. (e) The 

phases obtained by the Xd-scan (blue) and the dual d-scan method (red) agree well with the 

imprinted phase (black) across the MIR spectrum (background). In addition, the fitted phase 
is obtained in a global fit by taking both methods into account (cyan). The fit in all d-scan 

methods is performed by a sparse approximation with four iterations. It is important to note 

that the offset of the glass insertion can be arbitrarily chosen. The glass insertion at 0 mm 
is the centre of the glass wedges in all d-scan traces. The simulated d-scan traces have a 

noise level of 10%. 
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3. Experimental details 

The potential of the MIR phase retrieval is demonstrated in the non-linear SF microscopy 

setup (Figure VII.6), as already used and described in chapter VI. It is important to 

remember that the spectrum of the NIR pulses has a sharp edge at 12500 cm-1 via an 800 nm 

long-pass filter. 

The phase of the NIR pulses are determined by the NIR d-scan method, which is 

implemented by inserting a 20 µm thick beta Barium Borate (BBO) crystal in the focal plane 

of the microscope which generates the second-harmonic spectra in the point of interest for 

SF microscopy. These spectra are detected by a fibre spectrometer (Ocean Optics 4000). 

The scan of the imprinted chirp is made with the previously used liquid crystal pulse shaper. 

The two d-scan methods in the MIR region are implemented using a 100 µm thick LiIO3 

crystal in the microscope, whose broadband conversion efficiency has been shown 

experimentally (see appendix section IX.5 i). For the dual d-scan method, a pair of CaF2 

wedges (angle 4°) is inserted into the collinear beam path behind the MIR generation and 

the scan is accomplished by a resonant piezoelectric motor (Thorlabs ELLK 17). A pair of 

glass wedges (angle 30’) is inserted behind the 800 nm long-pass filter for the Xd-scan, and 

the thickness of the glass in the NIR-beam path is scanned with a step motor (PI M531 

DD1). 

Figure VII.5 Error histogram of the fit performance for the Xd-scan (lower) and dual d-

scan (middle) method as well as a global fit of both methods. 
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The spectra of the fundamental NIR and MIR pulses are also needed for the phase 

retrieval. While the NIR spectrum is simply obtained with a fibre spectrometer (Ocean 

Optics 2000+), the broadband MIR spectrum is detected using a single-channel detector in 

a tuning of a narrowband MIR spectrum. The obtained envelope spectrum is similar to the 

broadband MIR spectrum (see chapter IV). 

4. Experimental application 

4 i. Near-infrared phase retrieval 

Figure VII.7 shows the phase of the NIR pulses which is experimentally obtained in the 

microscope. The fitted d-scan trace corresponds well with the measurement, providing a 

phase which is constant up to 12000 cm-1, as expected. This phase increases tremendously 

at the edge of the NIR spectrum due to the 800 nm long-pass filter. The direct connection 

between the filter and the phase change can be corroborated using two considerations. 

Firstly, NIR pulses not impacted by the 800 nm long-pass filter have a constant phase at 

Figure VII.6 Experimental setup of a shaper-based d-scan. The setup of chapter VI (Figure 

VI.6) is extended to determine the NIR and MIR phases. The NIR pulses are shaped via the 

pulse shaper inside the 4f setup and generate MIR pulses in a 1 mm thick LiIO3 crystal. 
Afterwards, the NIR and MIR pulses pass the CaF2 wedges (4° angle) and are then split on 

a germanium beam splitter (GE). The NIR pulses pass two chirped mirrors (-1000 fs2), an 

800 nm LPF filter and a pair of glass wedges (angle 30’) before they are recombined with 
the MIR pulses on a second germanium filter. The combined NIR and MIR pulses are 

guided in the microscope, which have a 20 µm thick BBO and a 100 µm thick LiIO3 in the 

focal plane for the NIR and MIR d-scan methods, respectively. 



96 VII 4 Experimental application 

800 nm (see appendix Figure IX.5). Secondly, the coated layers of the 800 nm long-pass 

filter change the transmission at 800 nm by varying the phase at the spectral edge. 

4 ii. Mid-infrared phase retrieval 

The potential of the dual d-scan and the Xd-scan method is shown experimentally by 

scanning the glass thickness from -1 mm to 1 mm and -80 µm to 80 µm, respectively (see 

Figure VII.8a & b). In both scans, the position 0 of the glass insertion is chosen as the centre 

of the scanning range. In order to probe the same MIR phase in both methods, this position 

is adjusted for each method during the scan of the other one. Furthermore, these positions 

are also chosen during the shaper-based NIR d-scan to provide the information of the NIR 

complex electric field in consideration of the optical wedges. 

The fittings are performed separately for the two methods as well as in a global fit (see 

Figure VII.8c-e). The three fits agree well with the measurements, and the obtained phases 

coincide between 1800 cm-1 and 2800 cm-1. They indicate a positive chirp from 1750 cm-1 

to 2350 cm-1, an oscillating contribution over the whole spectrum, and a phase jump at 

2350 cm-1. Furthermore, they show a discrepancy above 3000 cm-1, which can be traced 

back to the multidimensional fitting problem (see section 2 iv).  

 

Furthermore, the MIR methods are tested by retrieving the phase imprinted on the laser 

pulses with an additional substrate. This phase is compared to the one obtained theoretically 

in consideration of the well-known dispersion from the literature [170]. For this purpose, 

Figure VII.7 Experimental demonstration of the shaper based NIR d-scan method. (a & b) 

The fitted d-scan trace (b) agrees well to the measured one (a) after performing the fit, which 

uses the sparse approximation (4 iteration). (c) The fitted phase (blue) has a tremendous 

increase at the edge of the NIR spectrum (grey background) due to the 800 nm long-pass 

filter. 
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CAF2 substrates are inserted in the MIR-beam path, and the phase of the MIR pulses is 

retrieved by a global fit of both d-scan traces. After subtracting the original phase of the 

MIR pulse, the retrieved phase indicates the CaF2 imprinted phase as well as an additional 

linear phase. The latter phase corresponds to a time delay and does not contribute to the d-

scan traces. This linear contribution is subtracted in order to compare the retrieved phase 

directly to the literature.  

 For the test, the phase is retrieved for a reference (without any additional CaF2 substrate) 

as well as for a 1 mm and 2 mm thick CaF2 substrate (see Figure VII.9). The phases agree 

Figure VII.8 MIR phase retrieval via the two MIR d-scan methods. The measured Xd-scan 

(a) and the dual d-scan (b) traces are fitted with a constant spectral response and two steps 
in the d-scan algorithm. In the first step, a sparse approximation (using four iterations) is 

used, and the obtained result is further optimized in the second step by a fit, which expresses 

the phase in the Fourier base (40 parameters). The fit is performed independently for both 

methods (not shown) and in a global fit. The fitted Xd-scan (c) and dual d-scan (d) traces 
are depicted for the global one. (e) The fitted phases (Xd-scan [in blue], dual d-scan [in 

cyan], and global fit [in purple]) agree with each other between 1800 cm-1 and 2800 cm-1. 

In the background, the MIR spectrum is shown. 
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well with the theoretical phase between 1800 cm-1 and 3000 cm-1. The retrieved phase of 

the 2 mm thick CaF2 substrate shows, however, a jump at 2350 cm-1. This phase jump 

matches an absorption band of CO2 and can be directly linked to a phase, which is imprinted 

by the CO2 inside the humid air. This interpretation is further corroborated by detecting the 

MIR vibrational modes of a polystyrene film with phase sensitivity (see Figure IX.6 in 

appendix).  

 

5. Outlook 

As mentioned (see section 2 iv), the multidimensional-fitting character is responsible for 

the deterioration of the phase retrieval at the edge of the MIR spectrum. Several publications 

have already addressed this problem. All of them replaced the Nelder-Mead algorithm by a 

more sophisticated fitting algorithm. Kleinert et al. [171] use, for example, deep neural 

networks as a fitting method. After training a network with many synthetic, generated d-

scan traces, it is able to retrieve the phase within a few milliseconds. This network is based 

on the DenseNet network and solves the fitting as an image recognition task by comparing 

the fitted and measured d-scan traces. Another interesting approach has been shown by Geib 

et al. [172]. They developed a new pulse retrieval algorithm which exploits the Levenberg-

Marquardt algorithm. It is interesting to note that both approaches use gradient-descent-

based algorithms, whose potential for the fit of data with Gaussian noise is well-known.  

Furthermore, the programmable pulse shaper makes it possible to solve the fitting 

problem experimentally. The pulse shaper allows one to control the MIR generation by 

shaping the NIR pulses accordingly. Therefore, it can supress the central part of the MIR 

spectrum for some SF spectra in the d-scan trace. This relatively enhances the intensities at 

the edges of the MIR spectrum and their impact on the d-scan trace. Therefore, a fit on this 

trace can only be accomplished by retrieving the right phase also at the edge of the MIR 

Figure VII.9 The phase of a 0 mm (cyan dots), 1 mm (blue dots) and 2 mm (purple dots) 

thick CaF2 substrate is retrieved by the global fit and compared to the theoretical phases 

(solid lines).  
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spectrum. It is important to note that this approach requires the exact knowledge of the 

impact of the pulse shaping on the MIR generation since this must be considered in the 

phase retrieval.  

 

 





 

VIII. Summary and outlook 

1. Summary and discussion 

In this thesis, several vibrational sensitive techniques have been successfully combined 

in multimodal microscopy. A special attention was given to add techniques in a non-linear 

Raman microscope, which access molecular vibrations with high spectral and spatial 

resolution via direct MIR excitations. For that purpose, a new MIR light source was 

developed and implemented, which provides laser pulses with arbitrary temporal and 

spectral shape by using flexible pulse shaping. The pulse shaping makes it possible to have 

five different nonlinear techniques in a compact setup and to control two different laser 

pulses covering a spectral range over more than 5000 cm-1. The main results of this thesis 

are summarised below. 

 

Although MIR microscopy is of great interest for material and life sciences, its broad 

application is hindered by the lack of technical progress of MIR light sources. This has been 

successfully addressed in this thesis with the development of a new MIR light source for 

microscopy (chapter IV). This new MIR light source has been implemented in a single-

beam setup by inserting a nonlinear crystal in the Raman microscopy setup and by 

generating MIR pulses in a DF process. The spectral shape of these MIR pulses is arbitrary 

due to the flexible shaping of the driving pulses. Therefore, broad MIR spectra have been 

switched to narrowband and tuneable ones simply by changing the imprinted phase on the 

pulse shaper. In this work, a tuning bandwidth of more than 2000 cm-1, from 1250 up to 

3500 cm-1, has been achieved using a thin LiIO3 crystal. Although the choice of the crystal 

is a crucial issue and determines the spectral bandwidth, the concept of the new MIR light 

source is universal and not restricted to a specific spectral range. 

 

Another highlight of this work is how it combines MIR transmission and CARS 

microspectroscopy in one setup (chapter V). By acquiring both signals at the same position 

in the sample, the spectra and images can be directly compared without any distortion, 

which would be induced using two separate setups. Furthermore, the combination of CARS 

and MIR microspectroscopy merges their advantages and overcomes their disadvantages. 

CARS microscopy, for its part, contributes vibrational resonant images with high spatial 

resolution. MIR transmission spectroscopy has the advantage of taking spectra with high 

sensitivity over a broad range at specific positions in the same sample. The combined 

microspectroscopy was demonstrated in a proof of principle using human dermis and 

polymers. MIR and CARS microspectroscopy have been implemented solely with the 
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concept of spectral focusing via the pulse shaper. This concept provides spectral resolution 

in both processes with a narrowband DF excitation and even enables the arbitrary 

adjustment of this resolution. This has been demonstrated on the new MIR light source by 

tuning the spectral width from more than 100 cm-1 down to 20 cm-1 (see section IV.5 ii). 

The arbitrary spectral resolution has the advantage of being able to adapt the laser pulses 

either to spectroscopy, by providing higher spectral resolution, or to microscopy. For 

microscopy, the spectral width of the DF excitation is tuned to directly match the spectral 

width of the vibrational mode in order to acquire the highest signal intensities. 

 

SF microspectroscopy thus far has been largely absent from the repertoire of nonlinear 

techniques inside a microscope. This work has demonstrated several novel variants of SF 

by arbitrarily exploiting shaped NIR and MIR pulses (chapter VI) This flexible pulse 

shaping allows the application of a homodyne MIR-scanning and a heterodyne multiplex 

method, in which the spectral resolution as well as the switching between them depend only 

on a programmable pulse shaper. The methods have been applied in series to combine the 

high signal intensities in the homodyne MIR-scanning method with the potential to acquire 

the whole SF spectrum with only three shots in the heterodyne multiplex method. 

Furthermore, the latter method has been extended to solve the problem of large non-resonant 

backgrounds in many samples. An adjustment of the imprinted phase on the pulse shaper 

has reduced the non-resonant background in the presented example by more than a factor 

of 20. Both SF methods have shown their potential for analysing molecular vibrations in 

non-centrosymmetric systems. This was demonstrated on cysteine microcrystals and 

cholesterol. 

 

Phase shaping is only efficient when the phase is well-known beforehand. This requires 

a phase retrieval which can be accomplished in a compact setup using the recently 

developed d-scan method [46]. This method has been extended in the presented work in 

order to determine even the phases of MIR pulses over more than 1000 cm-1  in addition to 

the NIR phases (chapter VII). The extension of this method is based on the interaction of 

the MIR and NIR pulses in an SF process. The MIR phase retrieval benefits from this SF 

process by a detection with highly sensitive detectors in the visible. Furthermore, the intense 

NIR pulses generate high signal levels which cannot be provided by the second-harmonic 

process of the MIR pulses. By exploiting these NIR pulses, two independent MIR phase 

retrieval methods have been developed. Whereas the Xd-scan method relies on a time delay 

between the NIR and MIR pulses, the dispersion imprinted on both laser pulses is scanned 

using the dual d-scan method. These d-scan methods have been also combined in a global 

fit, which retrieves one phase with a better goodness of fit than the individual methods. In 

accordance with the similarity between the Xd-scan and FROG methods, this global MIR 

phase retrieval denotes a further step in the implementation of a uniform and powerful 

method which uses a robust algorithm to analyse the traces of different phase retrieval 

methods [172]. In addition, two major advantages have been shown with the d-scan methods 

in the shaper-based microscopy setup. Firstly, the phase retrieval of the NIR pulses is 

obtained by exploiting the programmable pulse shaper, which provides a simple adjustment 

of positive as well as negative amounts of chirp. This shaper overcomes the typically static 

setup in a flexible way and allows for the direct compensation of the retrieved phase. 
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Secondly, the phase retrieval has been accomplished directly in the focal plane of the 

microscope and therefore does not require any further optical setup. 

 

In summary, a new MIR light source adds MIR transmission and SF microspectroscopy 

to a setup, which is also capable of CARS, second-harmonic, and two-photon excited 

fluorescence microscopy. This light source is based on flexible pulse shaping and offers 

laser pulses with various MIR spectra.  

2. Outlook 

Several applications of a tailored MIR light source were already demonstrated in this 

work. Possible future applications as well as some suggestions for improving the existing 

setup are discussed in this section. 

 

For nonlinear spectroscopy in general and for the presented setup in particular, low-

signal intensities are a critical issue. Therefore, the small intensity of the new MIR light 

source is the major bottleneck for new applications. More intense MIR pulses can be 

generated by replacing the Ti:Sa oscillator with a laser system that provides higher pulse 

energies. Possible candidates are the commercially available optical-parametric-chirped-

pulse-amplification (OPCPA) systems, which offer intense NIR pulses with high repetition 

rates [174]. In an initial test, MIR transmission spectroscopy was successfully applied and 

an enhancement of the MIR intensity by a factor of 390 was already obtained. 

An external local oscillator provides another interesting possibility for increasing the SF 

signal in the heterodyne multiplex method. This local oscillator can be implemented in the 

presented setup by using the reflection on the 800 nm long-pass filter due to the perfect 

overlap of its spectrum with the SF light (Figure VIII.1a). By having much higher signal 

intensities than the intrinsic local oscillator used in this research, this external oscillator can 

enhance the signal levels in a simple way. This was already shown in a first test (see in 

appendix IX.4). The obtained amplification is well above the required amplification factor 

of 10, which is needed for hyperspectral imaging using the heterodyne multiplex method.1 

The phase of the MIR pulses is a further critical issue, which has a high impact on the 

SF generation. In order to enhance the SF signals, this phase should be as flat as possible. 

Unfortunately, the MIR phase in the presented setup is influenced by oscillating 

contributions, as shown experimentally (see chapter VII). Future works can address this 

problem by separating the MIR generation from the NIR pulses used in the SF process 

(Figure VIII.1b). This can be done by aligning two independent beam paths for the NIR 

pulses. In the first beam path, MIR pulses are generated by pump and Stokes, which have a 

small angle between them. This allows for the direct suppression of the NIR pulses by a 

spatial filter [112]. In the second beam path, a programmable pulse shaper generates shaped 

NIR pulses. The generated MIR and shaped NIR pulses path parallel at a certain distance to 

 
1 This factor is estimated by the comparison of the signal levels in the homodyne MIR-scanning 

and heterodyne multiplex method. 
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the objective and first meet inside the sample. This setup has two main benefits. Firstly, the 

NIR-MIR beam splitters are no longer needed and consequently their dispersion is not 

imprinted on the MIR pulses. Secondly, this setup allows for the shaping of the NIR pulses 

independently from the MIR generation. Therefore, the shaped NIR pulses can compensate 

the MIR phase to generate the SF light efficiently. It is important to note that the presented 

setup is only suitable for the heterodyne multiplex method and cannot be used for the 

homodyne MIR-scanning method. 

 

Furthermore, the setup developed in this work can be used for other applications without 

the need for any major modifications. The generation of multiple MIR and NIR pulses as 

well as the development of a universal shaping method are presented below.  

Multiple MIR and NIR pulse generation: Time resolved spectroscopy is a powerful 

method for investigating the molecular dynamics of new materials [175, 176]. The short 

and ultrabroadband NIR and MIR pulses in the presented setup allow new applications in 

time resolved spectroscopy by giving access to the dynamics of molecular vibrations. A 

first application could be a NIR pump and MIR probe experiment. However, the intrinsic 

Figure VIII.1 Setups for implementing an external local oscillator for the heterodyne 

multiplex SF spectroscopy (a) and separating MIR and NIR pulse generation (b). (a) The 
MIR and NIR pulses are separated on a germanium beam splitter (GE) by transmitting the 

MIR pulses (purple) and reflecting the NIR pulses (black). The NIR pulses are split on an 

800 nm long-pass filter (800 LPF). The transmitted part is the probe part (green) and the 
reflected part acts as local oscillator after it is reduced by a ND filter (red). The NIR pulses 

are recombined on another beam splitter (800 LPF). The NIR pulses pass the chirped mirror 

and are recombined with the MIR pulses on a germanium substrate (GE). (b) NIR pulses 

are split on a beam splitter (Bs1). The transmitted pulses pass the pulse shaper and the 
800 nm long-pass filter (800 LPF). They are guided towards the microscope. The reflected 

pulses are split in pump (red) and Stokes (green) on a dichroic beam splitter (Bs2). The 

polarization of the Stokes is rotated around 90° by a λ/2 beam splitter. After the pump and 
Stokes are recombined on another beam splitter (Bs2), they have a small angle inside the 

LiIO3 crystal, and the generated MIR light is spatially separated from them. A pin hole only 

transmits the MIR pulses. They are guided towards the microscope. Notably, the Stokes in 

(b) and the NIR probe pulse in (a) have the same spectrum. 



VIII. 2 Outlook 105 

temporal overlap between NIR and MIR pulses must be overcome to establish the arbitrary 

time delay between these pulses. This can be accomplished by splitting the NIR pulse into 

two pulses and controlling the polarisation of the two NIR pulses. In the use of the shaping 

method ‘multiple-independent-comb-shaping (MICS)’ [177], the polarisation is chosen in 

a way that only one of the NIR pulses generates a MIR pulse in accordance with phase 

matching. After the NIR pulses have passed several filters and polarisers, one NIR and one 

time-delayed MIR pulse are generated. Therefore, a NIR pump and MIR probe experiment 

is created. This can be used, for example, to investigate the thermal properties of graphene 

[178-180]. Additionally, the MICS concept can be exploited to generate more than two laser 

pulses. Three MIR pulses and a delayed NIR pulse can be obtained in a specific 

configuration of the NIR polarisation. These laser pulses can be used in multidimensional 

time-resolved spectroscopy in order to access the coupling between vibrational modes [181, 

182]. The three MIR pulses subsequently generate coherences in the molecules, which build 

up a photon echo. This can be detected using a heterodyne method via an SF process by 

interacting with the NIR pulse. 

Development of a universal shaping method: The development of a universal and 

global shaping method has been a long-standing dream in shaper-based microscopy. Such 

a method combines several advantages of different methods by applying more complex 

phase functions. With the flexibility of the presented multimodal microscopy setup on the 

one hand and the recent success of deep neural networks on the other [171, 183, 184], the 

development of a global shaping method is possible. In SF spectroscopy, for example, this 

is achieved by training the neural networks in supervised learning with synthetic data. These 

data can be acquired by modelling the measurement precisely in simulations as already 

demonstrated in section VI. Afterwards, the trained network is able to retrieve the SF 

spectra within a few milliseconds. Furthermore, the analysis can be done simultaneously 

with an iterative measurement by using neural networks. The network analyses the data 

after each measurement step and predict the phase function of the shaper for the next 

measurement step. Therefore, the network directly controls the data acquisition and has the 

potential to speed up the measurement while increasing the sensitivity. 

Ultimately, combining pulse shapers and neural networks represents a promising 

connection helping pave the way towards quantum control. 

 





 

IX. Appendix 

1. List of abbreviations 

 

eq. equation 

CARS coherent anti-Stokes Raman scattering 

SF sum-frequency 

DF Difference-frequency 

MIR mid-infrared 

NIR near-infrared 

IFD instantaneous frequency difference 

IRF instrument response function 

MRF molecular response function 

BBO beta Barium Borate 

CCD charged coupled device 

FWHM full width half maximum 

MEM maximum entropy method  

NA numerical aperture 

PE polyethylene 

GDD group-delay-dispersion 

LO local oscillator 
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2. Spectral focusing concept in the time domain 

A full derivation of the spectral focusing concept can be derived in time domain by 

imprinting the temporal parabolic phases 
1

2𝛽
𝑡2 on the electric field 𝐸𝑖(t) of pump and Stokes 

(𝑖 ∈ {𝑝, 𝑆}). Pump and Stokes are highly stretched in time (Figure IX.1a); 

 

𝐸𝑖(t) = 𝐸𝑖,𝑜(𝑡) ⋅ 𝑒
𝑖{𝜔𝑖+

1

2𝛽
𝑡}⋅𝑡

 with 𝑖𝜖{𝑝, 𝑆}. 
IX.1 

By generating a DF excitation 𝐴(𝑡) with pump and Stokes, the interference of the 

stretched pump and Stokes generate a beating: 

 

𝐴(𝑡) ∝ |𝐸𝑝 (𝑡 −
𝜏

2
)| |𝐸𝑆

∗ (𝑡 +
𝜏

2
)| 𝑒𝑖Δ𝜙(𝑡), 

IX.2 

 

Δ𝜙(𝑡) = (𝜔𝑝 − 𝜔𝑆 −
1

𝛽
𝜏) ⋅ 𝑡. 

IX.3 

This beating is exemplarily shown in Figure IX.1b: For an imprinted amount of chirp of 

3500 fs2 and no additional time delay, the pump and the Stokes interfere constructively with 

the periodicity of T=16,6 fs. This is linked to a narrowband excitation at 2000 cm−1 7 

 

7 Ω =
1

𝑇∙𝑐
[cm-1]  

Figure IX.1 Demonstration of the spectral focusing concept in time: (a) The pump with a 

frequency of 13000 cm-1 (blue) and the Stokes (11000 cm-1; red) are stretched by a chirp of 

3500 fs2 in time. (b) A zoom shows that pump and Stokes interfere with a constant IFD . 

This IFD is observed in the DF excitation A(t) (black). (c) A temporal shift of the pump 
with respect to the Stokes detunes the constructive and destructive interference of pump and 

Stokes. The IFD of A(t) is changed.  
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This narrowband excitation can be tuned to Ω = 𝜔𝑝 − 𝜔𝑆 − 𝜏/𝛽 by an additional time 

delay 𝜏 between pump and Stokes shifting the constructive interferences (Figure IX.1c). 

3. Focusing condition for MIR generation 

In order to increase the power of MIR pulses, the focusing of the driving pulses into the 

crystal can be varied. By reducing the focal length of the mirrors, the spot size in the crystal 

is decreased, which increases on its turn the MIR generation. However, there are several 

aspects, which hinder the use of too small focal lengths. The two main limitations are the 

damage threshold and the phase matching condition of the crystal. Moreover, the anisotropy 

of the crystals hinders by the so-called spatial walk-off the use of too short focal lengths. In 

order to understand this, it is important to know that the pump pulse polarized in 

extraordinary axis is shifted spatially by the distance 𝛿 = 𝐿 tan(𝜑), while traversing the 

crystal. Therefore, MIR generation cannot take place over the whole crystal length 𝐿 due to 

vanishing temporal overlap between pump and Stokes. This takes especially place in the 

use of extreme small spatial spots of pump and Stokes.  

This is quantitatively analysed in the following by calculating the spatial walk-off and 

the MIR generation in consideration of the spatial overlap between pump and Stokes. 

The spatial walk-off 𝛿 depends via the deflection angle 𝜑 on the phase matching angle 

𝜃 and the refractive index neo (𝜃) of the crystal [58]. For the LiIO3 crystal the spatial walk-

off is 
𝛿

𝐿
≈ 56 

µm

mm
; 

 

tan(𝜑) = −

𝜕𝑛𝑒𝑜
𝜕𝜃
𝑛𝑒𝑜

. 
IX.4 

The impact of the spatial walk-off on the MIR generation is numerically analysed. In 

accordance, a Gaussian beam (w=1 mm) is focused inside a crystal and generates the MIR 

intensity in the interaction area A(x,y) of the pump and Stokes over the crystal length L[58]:  

 
𝐼𝑀𝐼𝑅 (𝐿)~ ∫ (

1

𝐴(𝑥, 𝑦, 𝑧)
)2

𝐿

0

 𝑑𝑧. IX.5 

This simple model is used to analyse the dependence of the generated MIR intensity on 

the crystal length (i) as well as on the focal length (ii).  

(i) Assuming an ideal DF generation- without any spatial walk-off 𝐴(𝑥, 𝑦, 𝑧) = 𝐴(𝑧) and 

an infinite focal length 𝐴(𝑧) = 𝐴 – the MIR intensity increases quadratically with increasing 

crystal length. This situation changes by taking the spatial walk-off into account. In this 

case, the Gaussian beams of pump and Stokes are split spatially by 𝛿 and the spatial overlap 

as well as the MIR generation vanishes inside the crystal. Therefore, the quadratic 

dependence of the MIR generation on the crystal length is deteriorated. The MIR generation 

in a 1 mm thick LiIO3 crystal, for example, is only 20 times of the MIR generation in a 

100 µm thick LiIO3. The simulated results are supported by experimental results, taken with 

a 100 µm, 500 µm and 1 mm thick crystal (Figure IX.2a). 
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(ii) In the second case, the focal length is varied and the MIR generation is analysed on 

its dependence. Considerations of Boyd and Kleinman [185] take the properties of Gaussian 

beams into account and result in an optimum focusing well below 2 cm. This focal length 

is underestimated due to the missing spatial walk-off. By taking it into account, an optimal 

focal length of 4 cm for a 500 µm thick crystal is provided (Figure IX.2b). However, this 

focal length is also underestimated by taking only geometrical properties of Gaussian beams 

and the spatial walk-off into account. In contrast, the phase matching angle should be 

additionally considered, which would only be provided in extensive stochastic simulations. 

Instead, the optimal focal length was experimentally determined by testing the MIR 

generation in consideration of a 5 cm, 10 cm, 15 cm, 20 cm focal length. In the experimental 

benchmarking, the NIR pulses are focused inside the 100 µm thick crystal and the generated 

MIR light is detected. A parabolic mirror with f=10 cm is in agreement with literature [102, 

186, 187].  

4. First demonstration of an external local oscillator in the heterodyne 

multiplex method 

An external local oscillator enhances the signal in the heterodyne SF spectroscopy 

method. The presented SF microscopy setup indicates a simple way to implement an 

external local oscillator (see  Figure VIII.1a). This is accomplished by exploiting the unused 

blue part of the NIR spectrum as an external local oscillator after reducing its intensity. In 

a first test, the SF signal is generated in crystalline cholesterol and enhanced by the local 

oscillator. The dependence of the detected signal on the local oscillator is tested by varying 

its phase (i) and intensity (ii). 

Figure IX.2 The theoretical conversion efficiency in 2nd order nonlinear processes for 

collinear beams is quadratic (black). In the presence of a spatial walk-off of 56 µm/mm 

(LiIO3) and a focused Gaussian beam (f=10 cm), the conversion efficiency is reduced 
(green) and describes well the measurements of a narrowband MIR generation in a LiIO3 

crystal (purple dots). (b) In the presence of spatial walk-off, the optimal focal length, which 

generates in 100 µm (black), 500 µm (red) and 1000 µm (green) thick LiIO3 crystals the 

highest MIR power, increase with the crystal thickness.  
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(i) The phase is varied by the imprinting an additional phase on the small phase gate via 

the pulse shaper (Figure IX.3b). This variation can be well described by a cosine-function. 

(ii) The amplification factor is also controlled by varying the intensity of the local 

oscillator. It shows the expected square-root dependence and is fitted well by a linear 

function (slope 0,51 ± 0,01) in the log-log scale (Figure IX.3b). 

Figure IX.3 The principle of an external local oscillator is demonstrated by varying its  

amplification (upper) and phase (lower). In accordance to eq. VI.5, the heterodyne signal 

SHet is enhanced or supressed. The measured date (black) agrees well with the theoretical 

expectations (red). 



 

5. Appendix of the MIR phase retrieval 

5 i. Conversion efficiency of SF process 

The 100 µm LiIO3 crystal has a broad collinear phase matching in the MIR as shown in 

section IV.3. However, the situation is different by using the LiO3 crystal inside microscope 

due to the broad aperture angle. Therefore, a constant conversion efficiency is not a priori 

provided. Since a wavelength-independent SF generation is essential for the determination 

of the MIR phase directly in the microscope (see section VII), an experimental test is 

performed. In this purpose, the SF spectrum is obtained by inserting a LiIO3 crystal in the 

microscope and exploiting the homodyne MIR-scanning method. This SF spectrum is 

compared with the MIR spectrum detected in the MIR directly. 

The MIR and SF spectra agree well to each other over a broad spectral range (Figure 

IX.2). However, a small deviation at the edge of the spectrum can be observed. By varying 

the temporal overlap of the NIR and MIR pulses, these deviations vanish either at the low 

or high frequency edge and exclude an impact of the phase matching. It is important to note, 

that the temporal overlap is considered in the d-scan fit and does not reduce the quality of 

the fit.  

5 ii.  NIR phase retrieval of broadband NIR spectra 

The phase of the NIR pulses is determined without any impact of spectral filtering. In 

accordance, the 20 µm thick BBO crystal is inserted directly behind the MIR generation and 

the shaper-based NIR d-scan method is used to retrieve the phase of the broadband NIR 

pulses. This phase shows a constant phase over the broad NIR spectrum as well as a phase 

Figure IX.4 The MIR (black) and SF spectrum (coloured) are obtained by the narrowband, 

tuneable MIR light source via the concept of spectral focusing. The MIR spectrum is 

detected directly in the MIR and the SF spectra, which differ slightly due to the temporal 

overlap of the NIR and MIR pulses, are generated in the LiIO3 crystal located in the 

microscope. Both spectra agree with each other and prove a constant conversion efficiency. 
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variation at the edge of the spectrum (14000 cm-1), which has been already discussed 

(see section VII.5) 

5 iii. Phase-sensitive MIR spectroscopy 

The MIR phase retrieval also provides the potential to determine the phase of vibrational 

modes. This is demonstrated on a polystyrene film. In accordance, the phases of MIR pulses 

are determined via a global fit of the Xd-scan and dual d-scan traces. These phases are 

determined for two different considerations. A reference phase is obtained in a first d-scan 

without any additional substrate and in a second scan the phase of the MIR pulse is 

Figure IX.5 Experimental MIR phase retrieval of an ultrabroadband NIR pulse: (a&b) 

Measured (a) and fitted (b) d-scan trace; (c) NIR spectrum (grey background) and retrieved 

spectral phase (blue). 

Figure IX.6 Demonstration of the phase sensitivity of the d-scan method by detecting the 

vibrational modes of a polystyrene film. The film is inserted in the NIR beam path and the 

fitted phase (blue) is obtained like in Figure VII.9. It shows the same vibrational modes as 

the absorption (grey). 
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determined with the polystyrene film in the beam path. After subtracting the reference, the 

latter phase indicates the phase of the vibrational modes. As depicted in Figure IX.6, this 

phase shows the same vibrational modes as the MIR absorption spectrum. 
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