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Abstract

Multimodal image registration benefits the diagnosis, treatment planning and the performance of

image-guided procedures in the liver, since it enables the fusion of complementary information

provided by pre- and intrainterventional data about tumor localization and access. Although there

exist various registration methods, approaches which are specifically optimized for the registration

of multimodal abdominal scans are only scarcely available. The work presented in this thesis aims

to tackle this problem by focusing on the development, optimization and evaluation of registration

methods specifically for the registration of multimodal liver scans.

The contributions to the research field of medical image registration include the development of a

registration evaluation methodology that enables the comparison and optimization of linear and

non-linear registration algorithms using a point-based accuracy measure. This methodology has

been used to benchmark standard registration methods as well as novel approaches that were

developed within the frame of this thesis. The results of the methodology showed that the employed

similarity measure used during the registration has a major impact on the registration accuracy of

the method.

Due to this influence, two alternative similarity metrics bearing the potential to be used on mul-

timodal image data are proposed and evaluated. The first metric relies on the use of gradient

information in form of Histograms of Oriented Gradients (HOG) whereas the second metric em-

ploys a siamese neural network to learn a similarity measure directly on the image data. The

evaluation showed, that both metrics could compete with state of the art similarity measures in

terms of registration accuracy. The HOG-metric offers the advantage that it does not require

ground truth data to learn a similarity estimation, but instead it is applicable to various data sets

with the sole requirement of distinct gradients. However, the Siamese metric is characterized by

a higher robustness for large rotations than the HOG-metric. To train such a network, registered

ground truth data is required which may be critical for multimodal image data. Yet, the results

show that it is possible to apply models trained on registered synthetic data on real patient data.

The last part of this thesis focuses on methods to learn an entire registration process using neu-

ral networks, thereby offering the advantage to replace the traditional, time-consuming iterative

registration procedure. Within the frame of this thesis, the so-called VoxelMorph network which

was originally proposed for monomodal, non-linear registration learning is extended for affine and

multimodal registration learning tasks. This extension includes the consideration of an image mask

during metric evaluation as well as loss functions for multimodal data, such as the pretrained

Siamese metric and a loss relying on the comparison of deformation fields. Based on the devel-

oped registration evaluation methodology, the performance of the original network as well as the

extended variants are evaluated for monomodal and multimodal registration tasks using multiple

data sets. With the extended network variants, it is possible to learn an entire multimodal registra-

tion process for the correction of large image displacements. As for the Siamese metric, the results

imply a general transferability of models trained with synthetic data to registration tasks including

real patient data. Due to the lack of multimodal ground truth data, this transfer represents an

important step towards making Deep Learning based registration procedures clinically usable.
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Zusammenfassung

Multimodale Bildregistrierung ist ein wichtiges Forschungsgebiet in der medizinischen Bildverar-

beitung, da sie die Fusion von komplementären Informationen ermöglicht, die von verschiedenen

bildgebenden Verfahren geliefert werden. Obwohl es eine Vielzahl an Registrierungsmethoden gibt,

sind Ansätze, die speziell für die Registrierung von multimodalen Bildaufnahmen des Abdomens

optimiert wurden, kaum verfügbar. Das Ziel dieser Arbeit ist deshalb die Entwicklung, Optimierung

und Evaluation von Verfahren für die Registrierung multimodaler Bilddaten des Abdomens.

Die vorgeschlagenen Beiträge zum Forschungsgebiet der medizinischen Bildregistrierung umfassen

die Entwicklung einer Evaluationsmethodik für Registrierungsverfahren, die den Vergleich und die

Optimierung von linearen und nichtlinearen Registrierungsmethoden mittels eines punktbasierten

Genauigkeitsmaßes ermöglicht. Diese Methodik wurde sowohl für die Bewertung und Optimierung

von Standardregistrierungsmethoden als auch für neuartige Ansätze, die in dieser Arbeit entwickelt

wurden, verwendet. Die Ergebnisse zeigen, dass vor allem die für die Registrierung verwendete

Ähnlichkeitsmetrik einen großen Einfluss auf die Registrierungsgenauigkeit der Methode hat.

Daher wurden im Rahmen dieser Arbeit zwei alternative Ähnlichkeitsmetriken für den Vergleich

von multimodale Bilddaten entwickelt und evaluiert. Die erste Metrik beruht auf der Verwendung

von Gradienteninformation in Form von Histogrammen Orientierter Gradienten (HOG), während

die zweite Metrik ein sog. Siamesisches neuronales Netz verwendet, um ein Ähnlichkeitsmaß direkt

auf den vorliegenden Bilddaten zu erlernen. Die Auswertung zeigt, dass beide Metriken in Bezug

auf die erreichbare Registrierungsgenauigkeit mit traditionellen Ähnlichkeitsmaßen konkurrieren

können. Die HOG-Metrik bietet den Vorteil, dass sie zum Erlernen einer Ähnlichkeitsschätzung

keine Ground Truth-Daten benötigt, sondern auf verschiedensten Datensätzen anwendbar ist. Aller-

dings zeichnet sich die siamesische Metrik durch eine höhere Robustheit für große Rotationen aus.

Nachteil eines siamesischen Netzwerks ist der Bedarf an registrierten Ground Truth-Daten um das

Netz trainieren zu können. Die Ergebnisse weisen jedoch auf eine allgemeine Anwendbarkeit der

mit synthetischen Daten trainierten Modelle auf realen Patientendaten hin.

Der letzte Teil dieser Arbeit konzentriert sich auf die Verwendung von neuronalen Netzen, um

einen kompletten Registrierungsprozess zu erlernen. In dieser Arbeit wurde das sog. VoxelMorph-

Netzwerk, das ursprünglich für das Erlernen eines monomodalen, nichtlinearen Registrierungs-

prozesses vorgestellt wurde, für affine und multimodale Registrierungsaufgaben erweitert. Diese

Erweiterung beinhaltet die Berücksichtigung einer Bildmaske bei der Metrikberechnung, sowie die

Integration alternativer Verlustfunktionen die auf multimodalen Daten anwendbar sind. Diese

Funktionen umfassen die vortrainierte Siamesische Metrik, sowie eine Verlustfunktion, die auf dem

Vergleich von Deformationsfeldern beruht. Basierend auf der entwickelten Evaluationsmethodik

wurde die Registrierungsgenauigkeit des ursprünglichen Netzes sowie der erweiterten Varianten für

monomodale und multimodale Registrierungen bewertet. Die Ergebnisse zeigen, dass es mit den

erweiterten Netzvarianten möglich ist, einen Registrierungsprozess für die Korrektur großer Bild-

verschiebungen zu erlernen. Des Weiteren zeigen die Resultate auch hier eine Übertragbarkeit der

mit synthetischen Daten trainierten Modelle auf die Registrierung realer Patientendaten. Aufgrund

des Mangels multimodaler Ground Truth-Daten, repräsentiert dieser Transfer einen ersten Schritt

um auf Deep Learning basierende Registrierungsverfahren klinisch nutzbar zu machen.
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1

Introduction

1.1 Motivation

Multimodal image registration is an important research field in medical image processing, since it

enables the fusion of complementary information provided by different imaging modalities. This

fusion can benefit various applications in the clinical context, ranging from an improved diagnosis,

to treatment planning and navigation during image-guided procedures. Image registration can

even be relevant for treatment monitoring, since it e.g. enables the control of tumor shrinkage after

treatment, by registration of pre- and post-procedural image data.

Preoperative imaging data is used for the visualization and localization of tumor tissue and anatom-

ical landmarks and therefore builds the basis for interventional and surgical planning. It is often

useful to acquire image data of more than one modality, since different image modalities provide

different information. However, the precise localization of target anatomy with respect to planning

data during an intervention or surgery can be challenging due to differences in patient positioning,

anatomical deformations and the intervention itself. Therefore, intra-interventional image data is

additionally acquired in order to visualize contrasted vessels, interventional tools like a catheter or

the patients anatomy for navigation. Image registration then aims to incorporate the intraoperative

information as a real-time update in the preoperative surgical planning. Thus, image registration is

not only an important means for preoperative interventional/surgical planning, but can also benefit

other applications such as automatized tool positioning and tracking during the intervention.

Exemplary use-cases for such a scenario are image-guided procedures in the liver, such as e.g.

biopsies or treatment of liver cancer by means of a transarterial chemoembolization. The im-

provement of the whole treatment cycle of oligometastatic liver cancer, including the performance

of image-guided procedures in the liver, is subject of the research campus “Mannheim Molecular

Intervention Environment” (M2OLIE). Following the intended workflow of M2OLIE, the pre- and

post-interventional data is commonly acquired using three-dimensional computed tomography (CT)

and magnetic resonance imaging (MRI), whereas the intraoperative data corresponds to projective

X-ray fluoroscopy or three-dimensional cone-beam computed tomography (CBCT). The aim is to

fuse all available morphological, functional and molecular information about the tumor provided

by the different imaging modalities applied prior to the intervention into a multimodal data set.

This data set then builds the basis for an individualized treatment and is ultimately transferred in
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the intervention room and registered to the interventional image data to improve surgical planning

and the guidance of a robotic assistance system. Hence, such a scenario is based on the use of

multimodal image registration methods. There are various requirements for registration methods

in this context ranging from the use of an appropriate similarity metric which is able to compare the

image data of different modalities, to fast computation times to provide a time-efficient registration

of pre- and intraoperational data. Moreover, registration methods for interventional procedures are

required to yield a high registration accuracy that results in an optimal overlap of corresponding

structures in the images.

In general, the quality of the registration can have a high impact on the interventional or surgical

outcome, since a clear definition of the tumor margins is essential for its localization during an in-

tervention. Especially for soft tissues, this task can be very challenging due to tissue deformation.

The registration of the liver represents a particular difficult task, since the liver tissue is deformed

by respiratory as well as digestive motion. Yet, there exists no universal solution to image regis-

tration and registration methods have to be optimized for a specific task. Due to the challenges of

registering the liver, methods, especially multimodal registration methods, which are specifically

designed for this task are only scarcely available [1, 2].

Therefore, the work presented in this thesis focuses on the development, evaluation and optimization

of image registration approaches for three-dimensional multimodal scans of the liver with regard

to interventional applications.

1.2 Objectives

As a result of the limited availability of specified registration methods for abdominal image data,

general-purpose registration methods, which were often designed and optimized for other body

parts (mostly the brain), are transferred to be used for the registration of abdominal scans [3].

This potentially leads to suboptimal results for a number of reasons, including i.e. different degrees

of organ displacement, different image resolutions depending on the utilized imaging techniques, but

foremost different intensity distributions in the images which are to be registered. Additionally,

the task of registering the liver entails specific challenges, due to the homogeneity of its tissue

displaying less structure than i.e. the brain. Therefore, the choice and parametrization of the

registration method for abdominal scans reveals itself to be a challenging task and a performance

characterization of different methods to attain an accurate and robust registration result can be

necessary.

The general aim of this thesis is the development of novel multimodal registration methods for

abdominal data, as well as the optimization of existing methods for this task. The focus is set on

use-cases related to image-guided procedures of the liver, and therefore, the methods presented in

this work focus on the registration of three-dimensional (3D) CT, MRI and CBCT data.

Yet, to optimize a registration method and characterize its performance, an evaluation standard

has to be defined. This is a critical point in the field of image registration, since there exists no

standardized evaluation methodology to compare and benchmark registration methods until today.
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This is mainly caused by the diversity of different registration types [4] and the lack of appropriate

ground truth data that corresponds to optimally registered data for inter-subject or multimodal

registration.

Therefore, the first part of this thesis aims to develop an evaluation methodology that enables

a comparison and optimization of linear and non-linear multimodal registration methods based

on the estimation of registration accuracy. In general, the development of an evaluation strategy

requires a set of registered ground truth data as reference for an optimal image alignment. However,

these data sets are only scarcely available, especially for multimodal data, due to differences in the

acquisition procedures of different imaging modalities. Therefore, the development of an evaluation

methodology also includes the generation of multimodal ground truth data sets. Thus, different

approaches for the generation of these data sets are investigated, including manual preprocessing

of actual patient data as well as the generation of synthetic ground truth data using a neural

network. The idea is to implement an evaluation methodology in form of a framework that allows

the integration of any available registration approach. This methodology can then be used to

evaluate and optimize the performance of state of the art registration methods as well as novel

approaches for the multimodal registration of abdominal scans.

The most challenging part in multimodal image registration is represented by the choice of an

appropriate similarity measure to estimate the alignment of corresponding structures in images of

different modality. The main difficulty is represented by the fact, that different image acquisition

techniques may result in very dissimilar grey value distributions in the images, so that the same

anatomical features appear differently in these images. This potentially leads to the generation of

statistical correlations between image structures that do not correspond to the same anatomical

structures, thus violating the main assumption of most intensity-based similarity measures. Up

to now, there exists only a limited number of multimodal similarity measures that mostly rely on

the concept of mutual information [5]. To investigate further alternatives, the second part of the

thesis focuses on the development and evaluation of similarity measures that bear the potential to

be applicable on multimodal image data.

The last part of the thesis aims to investigate approaches to perform end-to-end registration learn-

ing using a neural network. The rise of Deep Learning methods in the field of medical image

processing benefits image registration not only in terms of novel similarity estimations but also

in the development of neural networks that are able to learn an entire registration process. Since

traditional registration methods correspond to iterative optimization procedures, an advantage of

novel approaches using Deep Learning is the fast computation time of the registration process,

once such a network is trained. A widely used network architecture for end-to-end registration

learning is the so-called VoxelMorph network [6]. However, as most of these registration learn-

ing networks, the VoxelMorph network is currently restricted to monomodal nonlinear registration

learning. Therefore, the last part of this thesis aims at the extension of the VoxelMorph network for

the application on multimodal image data as well as for affine registration to enable the correction

of larger image displacements.
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In summary, this thesis aims to contribute to three different research areas in the field of medical

image registration:

� Image registration evaluation and generation of ground truth data,

� novel similarity measures,

� and Deep Learning in medical image registration.

1.3 Thesis Structure

This thesis is composed of seven parts. After this introductory chapter 1 explaining the motivation

for the work presented in this thesis, all theoretical basics which are relevant to this work will be

explained in chapter 2. This includes a short presentation of the medical background of image-

guided procedures in the liver. Since this work focuses on the image registration of multimodal

data, chapter 2 also includes an explanation of the physical principals for the image contrast

generation in CT, CBCT and MRI. Next, the fundamentals of medical image registration such

as the different types of registration, the main components of an registration algorithm as well as

the challenges and limitations for registration methods are explained. Since this work not only

relies on traditional image processing but also on novel approaches using artificial neural networks,

chapter 2 also includes a general overview of the fundamentals of Deep Learning. This work

proposes contributions to three different research areas in the field of medical image registration:

image registration evaluation, novel feature-based similarity metrics and Deep Learning in medical

image registration. The current state of the art of these three topics and a brief description

of the advancements proposed in this thesis are presented in chapter 3. In chapter 4, the

approches proposed in this work are presented in detail. This includes the presentation of the

ground truth data used for the experiments in this thesis and the developed evaluation methodology

for linear and non-linear registration methods. Moreover, the basics and implementation details

of two alternative similarity metrics relying on traditional HOG features and a siamese network

are presented as well as the extensions integrated in the VoxelMorph network to enable affine and

multimodal end-to-end registration learning. The results obtained for the evaluation of various

registration methods, including registrations based on the alternative similarity measures as well

as the extended VoxelMorph network, using the novel evaluation methodology, are presented in

chapter 5 and discussed in detail in chapter 6. The thesis concludes with a summary of the work

presented in this thesis and an outlook to future work concerning the proposed approaches given

in chapter 7.
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2

Theoretical Background

In the following chapter, the medical background and the clinical use-cases of this work are de-

scribed. Moreover, the fundamentals of medical image acquisition as well as medical image reg-

istration are presented. The content and characteristics of medical images highly depend on the

acquisition technique. Therefore, the following section is dedicated to create a deeper understand-

ing of the fundamentals of medical image acquisition causing the different contrasts in different

modalities.

Since the focus of this thesis is set on the development and evaluation of image registration methods,

an overview over the general structure of image registration algorithms is presented. The basics for

each algorithm are explained as well as the general challenges of image registration. To take into

account the latest developments in the field of medical image processing, the fundamentals of deep

neural networks and their influence on the field of medical image registration will also be presented.

2.1 Medical Background

This work aims to develop and optimize image registration algorithms specifically for the regis-

tration of abdominal scans that are acquired for the diagnosis and treatment of liver cancer. To

further understand the necessity of image registration in this context, the following section aims to

described the anatomy of the human liver as well as common diseases and the treatment focusing

on image-guided interventional procedures.

Anatomy of the Human Liver

The liver is the largest internal organ in the human body and occupies a multitude of important

and complex functions concerning the entire human metabolism. It is located in the right upper

part of the abdomen, partially covered by the ribcage right below the diaphragm. The human

liver typically weights between 1.5 and 2 kg, making it the heaviest organ, and the largest gland in

the body of vertebrates [7]. The anatomy of the liver is divided into two main sections, the right

lobe (Lobus Dexter) and left lobe (Lobus sinister) in axial view, which are again subdivided in 8

subsegments according to the Couinaud system. This system relies relies on functional anatomy and

divides the liver in 8 parts based on a transverse plane through the bifurcation of the portal vein
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Figure 2.1: Schematic illustration of the human liver, displaying the vascular system and the liver segments according
to the Couinaud system (image adapted from [9]).

(Porta hepatis) as shown in fig. 2.1. In the hepatic portal system, the liver receives a double blood

supply: the portal vein carries venous blood from the gastrointestinal tract to the liver providing

70% of the total liver blood flow, while 30% comes from the right and left hepatic arteries which

carry oxygenated blood to the liver [8]. The liver regulates a variety of different vital functions

including detoxification, synthesis and storage. It i.a. filters and removes harmful substances and

toxins from the body, assures the metabolism of carbohydrates, fats and proteins while producing

bile which is essential for the digestion process and stores glucose, vitamins and iron.

Liver Diseases

In general, the liver is prone to many diseases. These range from diseases caused by viruses,

such as hepatitis, to diseases caused by intoxication such as the fatty liver disease and cirrhosis,

inherited diseases such as hemochromatosis or Wilson disease and liver cancer. In some cases, the

development of liver cancer can be linked to cirrhosis, which describes an increase in the scarring

of the liver tissue caused by a previous hepatitis infection or hemochromatosis [10], but the general

causing effects for the development of a liver tumor are not known. Since this work mainly focuses

on use-cases for the diagnosis and treatment of liver cancer, the different types of liver cancer are

described in more detail in the following.

It is distinguished between primary and secondary liver cancer. Primary tumors grow at the organ

where the tumor progression began whereas secondary tumors, so-called metastasis, are caused by

the spread of cancer cells from a primary site to a secondary site within surrounding tissue or to a

distant organ by intruding the circulatory or lymphathic system. Metastases are the major cause

of cancer morbidity and mortality and it is estimated that they account for 90% of cancer deaths

[11]. The most frequent sites for the spread of metastasis are lungs, liver, brain and bones [12].

The most common type of primary liver cancer in adults is the hepatocellular carcinoma (HCC),

a malignant liver tumor which ranks as the second leading cause of cancer death in East Asia and

sub-Saharan Africa and the sixth most common cause of cancer death in western countries [13].

Due the blood supply from the abdominal organs into the liver via portal vein, tumor cells can
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spread from these organs into the liver parenchyma, thus making the liver also prone to be a site

for metastatic (secondary) cancer. Liver metastases are often linked to colorectal cancer metastasis

which is the second most common tumor type in Germany [14]. If the tumor metastasizes only to a

limited number of sites and number of distinct metastases (typically between 1 and 5 metastases),

the disease is referred to as oligometastatic disease (OMD). Although metastatic malignancies are

generally associated with a poor treatment prognosis, the curability highly depends on the number

and diameter of the metastases, thus increasing the possibility to successfully treat OMD [15].

Image-guided Procedures in the Liver

To determine the severity of the liver disease, the extraction and analysis of samples cells or

tissues by means of a biopsy is an important measure for diagnosis and treatment monitoring [16].

A percutaneous liver biopsy involves the insertion of a thin biopsy needle through the patients

abdomen to extract a small tissue sample which can then be analyzed on a molecular level. Other

types of biopsy include the transjugular biopsy, during which the needle is inserted via catheter and

a vein in the neck, or the laparoscopic biospy using a small abdominal incision to enter the needle

and endoscope. The analysis of the biopsy then builds the basis for further treatment decisions.

The main focus of treatment for liver metastases is systemic therapy, however local therapies provide

an additional possibility to extend survival. These local treatments include surgical resection of

liver tumors, which can be challenging due to the location or extend of disease. Additionally,

they include liver directed therapies such as transarterial chemoembolization, radio embolization,

radiofrequency ablation, microwave ablation and stereotactic body radiotherapy [17]. A short

discussion of treatment procedures with respect to the staging of liver cancer is given in [18].

A uniting factor for the diagnostic biopsy as well as the liver directed therapies is that they all

represent interventional procedures which are performed using image-guidance in the operation

room. In general, image-guided interventions rely on computer-aided systems for the visualization

of target and risk structures in the intervention room. The first step for this visualization is often

represented by the preprocessing of the diagnostic image data that is acquired before the inter-

vention to develop specific models that can be employed for patient-individual treatment planning

as well as guidance during the intervention [19]. These models range from geometrical models en-

hancing the morphological information (e.g. deformation fields or segmentation masks), functional

models (e.g. perfusion maps) to interaction maps of the tissue with radiation or drugs [20].

The basis for most of these applications is the generation of a multimodal image map in which

the same organ structures overlap and which displays the complementary information offered by

different imaging modalities. The key technology for the generation of a fused data set is image

registration. Image registration generally describes the determination of a geometric transforma-

tion field which transfers two datasets in the same coordinate system in a way that same structures

overlay in both datasets. To further understand the necessity of multimodal imaging, the funda-

mental basics and differences in information content of standard imaging techniques will be further

explained in the following section.
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2.2 Medical Image Acquisition

Medical imaging refers to techniques and processes which enable a visualization of the interior

of a body for diagnosis, treatment and monitoring of medical conditions. There exist various

types, also called modalities, of medical imaging procedures, which use different technologies and

therefore yield different specific information about the imaged body region. These can range from

morphological to functional and sometimes even molecular information. Thus, it is often necessary

to combine different imaging techniques to obtain the full understanding of a medical condition.

The presented image acquisition techniques are restricted to the modalities which are in standard

use for the diagnosis of liver diseases and the performance of liver interventions relying on a C-

arm system to acquire interventional image data. The presented modalities comprise Computed

Tomography (CT), Cone-Beam Computed Tomography (CBCT) and Magnetic Resonance Imaging

(MRI).

2.2.1 X-ray Computed Tomography

In 1895, Wilhem Conrad Roentgen published a radiography of his wife’s hand representing the

first published medical image [21]. The generation of this image relies on X-ray radiation, a form

of high-energy electromagnetic radiation whose wavelength ranges between 0.01 to 10 nm and is

therefore not included in the visible spectrum of electromagnetic waves.

There are two different physical processes causing the generation of X-rays: During the first process,

a charged particle is decelerated due to the strong electric field near other charged particles, typically

an electron which is decelerated by an atomic nuclei. The loss of kinetic energy of the moving

particle is converted to electromagnetic radiation displaying a continuous energy spectrum, so

called Bremsstrahlung. The second process occurs when an orbital electron is knocked out of an

atom by a charged particle and the resulting vacancy is filled by an outer-shell electron. The

change in energy during this electron transition is compensated by the emission of a quantized

photon whose energy corresponds to the energy difference between the higher and the lower orbital

level. Due to the discrete energy levels in an atom, this process results in a discrete energy spectrum

which depends on the material of the target that is hit by the charged particle. Thus, this type of

radiation is called Characteristic X-rays.

When X-rays penetrate matter, both the amplitude and the phase of the electromagnetic wave

are affected due to different interaction processes taking place in the material. By detecting and

analyzing the intensity profile of the outcoming X-rays, it is possible to draw conclusions about the

object properties. This builds the basis of X-ray imaging.

In a homogenous object or body, the initial intensity I0 of monochromatic X-rays is decreased

following the so-called Lambert-Beers-Law

I(x) = I0 · e−µ(E,Z)·x , (2.1)

whereas x represents the propagation distance in the body and µ(E,Z) corresponds to the so-
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Figure 2.2: Setup for the acquisition of a radiography.
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Figure 2.3: Modern Spiral-CT scanners are equipped
with detector arrays surrounding the patient 360◦.

called linear attenuation coefficient which depends on the X-ray energy E and the atomic number

Z of the element that composes the material. The linear attenuation coefficient characterizes the

penetrability of a medium.

The fact that X-ray radiation is attenuated in a body can be used for imaging purposes by aligning

an X-ray source with a patient and a detector to capture the resulting intensity profile as shown

in Figure 2.2. Different tissues are characterized by different attenuation coefficients which enables

a visualization of the patients morphology. By shifting the patient in a plane perpendicular to

plane containing the X-ray source and the detector array, a two-dimensional intensity profile can

be determined. The resulting two-dimensional image is called a radiography. Highly absorbing

structures, such as bones, appear as high intensity areas in X-ray images (since the image is digitally

inverted due to historical reasons), whereas low absorbing structures, such as soft-tissue, result in

low intensity values. Thus, X-ray imaging is characterized by a low soft tissue contrast, but a high

image contrast for high density objects. This is exploited for various imaging techniques, such as

e.g. angiography, where a highly absorbing contrast agent is injected to enhance certain features

as e.g. vessels. In a context in which real-time moving images are acquired, the term fluoroscopy

is used instead of radiography, which refers to fixed still images.

Computed Tomography

In the early 1970s, the development of Computed Tomography (CT) opened up various new pos-

sibilities in the field of diagnostic radiology, since it enabled the generation of three-dimensional

cross-sectional images of the body and thus the visualization of superimposing objects which could

not be distinguished in 2D representations such as radiographies [22].

For the calculation of a three-dimensional CT scan, multiple two-dimensional X-ray projections are

acquired from different angles whilst rotating the X-ray tube and the detector array around the

patient. In modern generation CT scanners, this is done by placing the patient in a detector array

which is arranged as an outer circle and rotating the X-ray source in a spiral around the patient as

shown in Figure 2.3. By applying a geometric reconstruction algorithm to these projections, such

as i.e. a filtered back projection [23] or iterative reconstruction [24], a three-dimensional volume

of the patient’s anatomy is calculated from the measured intensity profiles. The grey values in a

volume element (voxel) of a CT scan correspond to the mean attenuation coefficient of X-rays due

9



Figure 2.4: Artis Zeego C-arm system (Siemens Healthineers,
Forchheim, Erlangen, Germany) implemented in the intervention
room of the M2OLIE research campus (image courtesy by Vanessa
Stachel, Fraunhofer IPA).
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Figure 2.5: Setup of a Cone Beam CT.

to the absorption caused by the tissue covered in this voxel. To assure a standardized comparison

between different CT images, the image intensity is measured in terms of Houndsfield Units. These

units are defined such that the value of water corresponds to zero and can be estimated using the

following relation

HU =
µtissue − µH2O

µH2O
· 1000. (2.2)

The employment of Hounsfield Units allows to estimate electron densities for dose calculations. Due

to their tomographic nature, CT scans enable the acquisition of detailed images of internal organs.

The development of widened fan-beam X-ray sources as well as multi-array detectors corresponding

to an increased width of the detector ring, allowed for a simultaneous acquisition of multiple images

in scan plane during a single rotation. Since this so-called Multi-Slice CT (MSCT) grants a fast

image acquisition in the range of a few seconds with a high spatial resolution. It can be used to

record dynamic processes, such as the beating of the heart, by acquiring several CTs over time

resulting in a 4D CT scan [25].

In general, CT is a very precise imaging technology, which offers a high speed of acquisition,

and therefore a low risk of distortions due motion during the scan. Moreover, CT data usually

provides a high spatial resolution and in comparison to other imaging modalities a pronounced

dense tissue contrast. On the other hand, CT scans yield a low soft tissue contrast and the biggest

disadvantage is the exposure of the patient to ionized radiation, which can cause damage to the

patients DNA. Therefore a large field of research focuses on the development of image acquisition

and reconstruction techniques which require less X-ray projections [26] and thus, less radiation

dose.

Cone-Beam CT

Conventional CT devices do not support the acquisition of 2D projections or fluoroscopies which

can pose a problem for interventional procedures that rely on real-time moving images to visualize

e.g. vessels by observing the spreading of a contrast agent [27]. In addition, conventional CT devices
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offer only a limited patient access and working space for the interventionalist. Therefore, open C-

arm systems equipped with a Cone Beam CT source and a flat panel detector as exemplary shown

in Figure 2.4 represent an important alternative, since they allow the acquisition of fluoroscopies

as well as 3D volumes in a single orbit around the stationary positioned patient.

One of the main differences to a conventional CT is the employment of an X-ray cone beam geometry

instead of a fan-shaped X-ray beam. Rather than spiraling the X-ray source around the patient

by shifting of the patient table, the C-arm rotates the X-ray source and the detector around the

stationary patient to acquire a three-dimensional image volume (shown in Figure 2.5). Since this

enables the acquisition of a three-dimensional image volume with a single orbit, the acquisition time

is reduced compared to a conventional CT that requires a spiral motion. Moreover, this acquisition

leads to a reduction of radiation dose for the patient compared to the image acquisition using a

conventional CT. However, the use of the cone beam geometry also results in a higher complexity

concerning the image reconstruction to generate cross-sectional views. Due to the geometry of the

image acquisition process, CBCTs are generally characterized by a circular shaped field of view

in the image plane perpendicular to the rotation axis of the system and hexagonal shape in the

planes parallel to this axis [28]. This limitation of the field of view is a major difference to other

tomography techniques.

Another difference to conventional CT is the use of flat panel detectors instad of detector rings.

On one hand, the employment of flat panel detectors offers the potential to use smaller pixel sizes

which results in a high spatial resolution of the acquired image volumes. On the other hand, smaller

detector pixel sizes lead to an increased level of Poisson noise due to a smaller number of photons

that can be registered [29]. Moreover, the employment of a cone beam geometry instead of a fan

beam combined with a flat panel detector results in an significant increase of scattered radiation

in a CBCT [30]. The combination of both factors leads to a decreased image quality of a CBCT in

comparison with a MSCT [31, 32]. Since C-arm systems are favorable to be used in an interventional

environment as means for image-guided procedures, the image quality is often additionally affected

by artefacts due to highly absorbing interventional tools. Another major difference in a CBCT

compared to a CT is the dependence of the image value of a voxel of an organ on its position in the

image volume [33, 34]. Thus, the values of a CBCT do not correspond to the HU values for similar

structures in a conventional CT. A summary of typical image artefacts in CBCT data is given in

[28].

2.2.2 Magnetic Resonance Imaging

As an alternative to X-ray imaging, research on Magnetic Resonance Imaging (MRI) started in the

early 1970s and the first MRI prototypes were tested in the 1980s [35]. MRI represents a tomography

imaging technique which relies on the varying magnetic properties of atoms to produce an image.

Thus, the imaging process does not involve the use of ionizing radiation which is associated with

potential harmful effects and is therefore considered a non-invasive imaging method. Since water

represents one of the main components of the human body, mainly the electromagnetic effects of

the nuclei of hydrogen atoms, thus single protons, are used for imaging. In general, atoms with

an odd number of protons or neutrons possess a nuclear angular momentum. These nuclei can be
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Figure 2.6: Alignment of magnetic moments with and without external magnetic field B0. Without an external
magnetic field, the spins are randomly aligned. With B0 the spin of a hydrogen nucleus aligns either parallel or
antiparallel to the external field and start to precess around its direction.

visualized as spinning charged spheres which possess a magnetic momentum as shown in Figure 2.6,

referred to as spin. In the absence of an external magnetic field, these spins are oriented in random

directions due to thermal motion and the summarized macroscopic magnetic moment M0 equals

zero. The quantum model restricts the spin of a proton to align either parallel or anti-parallel to

an external magnetic field B0 whereas the parallel alignment corresponds to a low-energy state and

the anti-parallel alignment to a high-energy state. This results in an excess of parallel aligned spins

creating a macroscopic magnetic moment M0 > 0 when an external magnetic field is applied.

The fact, that the nucleus has an angular momentum and therefore is subjected to momentum

conservation is leading to a precession around the axis of B0 (see figure 2.6). The frequency of this

precession is called Lamor frequency ω0 and defined as

ω0 = γ ·B0. (2.3)

The factor γ refers to the gyromagnetic ratio, a known constant for each type of atom (for hydrogen:

γ/2π = 42.58MHz/T). Conventionally, the direction of the applied magnetic field is defined as

z-axis. Under this assumption, the transverse component M0,xy defined as the projection of M0 in

the x-y-plane equals zero in equilibrium, since all contributions to M0,xy are dephased.

To obtain an MR signal, a radio frequency (RF) pulse is used to generate a secondary oscillating

magnetic field B1 which is applied perpendicular to B0 using the resonance frequency matching

ω0. The spin precesses around the field direction of the superimposed magnetic field, causing the

nuclear spin to spiral into a higher energetic state. Depending on the time that the oscillating

field is active and its magnitude, the nuclear spin orientation is directed away from the z-axis,

resulting in a transverse component M0,xy > 0. If M0 is e.g. flipped completely to the x-y-plane,

the corresponding radio frequency pulse is referred to as 90◦ pulse, a 180◦ pulse inverts the bulk

magnetization. The RF excitement is followed by an exponential relaxation, during which the

system is restoring its equilibrium state. It is possible to measure M0,xy during these processes

since it induces an electric voltage in another radio frequency coil. This signal builds the basis for

the image formation in MRI.

However the relaxation process is complex, due to the superposition of two independent effects:
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longitudinal and transverse relaxation. The longitudinal relaxation refers to the increase of the

longitudinal magnetization (parallel to B0) caused by an energy exchange between the spin system

and the surrounding thermal reservoir referred to as ’lattice’ (spin-lattice relaxation):

M0,z(t) = M0

(︂
1− e−t/T1

)︂
. (2.4)

Here, T1 refers to the time constant of this relaxation process and t to the time since the application

of the RF pulse. For t → ∞, the magnitude of the longitudinal magnetization approaches the

magnitude of the initial magnetizationM0,z → M0. The transverse relaxation describes the decrease

of the transverse magnetization component M0,xy due to interactions with neighboring atoms (spin-

spin relaxation) with time constant T2:

M0,xy = M0,xye
−t/T2 . (2.5)

Thus, for t → ∞, the transverse magnetization approaches zero M0,xy → 0. Generally T2 ≤ T1.

However, the transverse relaxation is not only influenced by spin-spin interactions, but also by

inhomogenities in the local magnetic field, which is taken into account by defining the effective

transverse relaxation time T ∗
2 .

T1 and T2 represent important quantities in MRI since they build the source of the image contrast.

To obtain high quality relaxation signals, spin echo sequences are applied which describe a certain

sequence of RF pulses to readout T1 and T2. A spin echo sequence consists of a 90◦ RF pulse

followed by a 180◦ pulse. The 90◦ RF pulse tips the magnetization into the x-y-plane. M0,xy can

then be measured to define T ∗
2 , whereas the signal directly after a high frequency pulse is called Free

Induction Decay. The spins start dephasing in the x-y-plane. By applying a 180◦ pulse, the spins

flip in the opposite direction in the transversal plane and start to refocus resulting in a pronounced

transverse magnetization signal, the so-called spin echo. Echo pulse sequences are characterized by

the echo time TE which denotes the time between the 90◦ pulse and the spin echo signal. When

repetitive spin echo sequences are used, the time between the application is called repetition time

TR. It is possible to measure T1 by applying several 90◦ pulses with short TR, since it flips the

non-relaxed longitudinal magnetization in the x-y-plane where its signal can be measured. T2 can

be measured by repetitively applying spin echo sequences measuring the amplitude decay of the

spin echo signals.

To spatially encode the source of measured magnetization signal, a magnetic gradient field is

superimposed to the constant external field B0 between the excitement with an RF pulse and the

signal measurement. As a result, the effective Larmor frequency of the precession is depended on

the local magnetic field ω0(z) = γ · (B0 +B(z)), and the previously aligned spins are artificially

dephased. Thus, all spins precess in the same frequency but different phases, however, spins in

the same row perpendicular to the gradient direction have the same phase. This is called phase

encoding and translates to the phase of the measurement signal. This procedure can be extended by

frequency encoding, which is also based on the use of a magnetic gradient field perpendicular to the

gradient field for phase encoding. In contrast to phase encoding, this field is continuously applied

during the signal measurement, causing the previously dephased spins to rotate with different
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Figure 2.7: Axial slices through an antrophomorphic phantom extracted at two different axial positions. The phantom
is specifically designed to demonstrate the advantages of multimodal imaging, since the composition of the artificial
lesions is chosen in such a way that the visibility varies in different image modalities. The phantom is measured
under clinically relevant conditions using the different imaging devices: a) + f) Multislice CT; b) + g) T1-weighted
MRI; c) + h) T2-weighted MRI; d) + i) PET-CT; e) + j) Cone Beam CT. The red arrows indicate the positions of
the artificial lesions.

frequencies depending on the spatial position. By applying a reconstruction based on a Fourier

transform and a complete sampling of the data matrix containing the raw MRI data, the so-called

k-space, it is possible to generate a spatially resolved image based on the local magnitude of the

transverse magnetization. This magnitude is proportional to the proton density of the tissue, and

thus it is possible to deduce a proton weighted image. By varying TR during the application of a

series of 90◦ pulses, a T1-weighted image can be calculated, whereas the signal decreases with an

increasing T1. Choosing long TR and TE when applying spin echo sequences allows to calculate

T2-weighted images, in which the signal is proportional to T2. Thus, varying the time parameters

during a measurement leads to different image contrasts.

This represents one of the main advantages of MRI, since it is possible to generate images with

different contrasts using the same imaging device. Moreover, MRI offers a very pronounced soft

tissue contrast, since the image generation is based on the spin of hydrogen nuclei, and even allows

to perform functional imaging [36]. However, the application of measurement sequences takes up to

several minutes, making it time-consuming and the images prone to motion artifacts due to patient

movements. Additionally inhomogeneities in the magnetic field or effects such as chemical shift can

lead to small distortions of the morphology [37, 38].

In summary, CT generally offers a stable spatial resolution, fast acquisition times and a pronounced

contrast for high-density structures such as bones, whereas MRI as a non-invasive technique is fa-

vorable for the imaging of soft tissue structures. Thus, it is often essential to employ multimodal

imaging for diagnosis and treatment planning, to integrate all necessary information. The ad-

vantages of multimodal imaging are demonstrated by the measurement of an antrophomorphic

phantom (designed within the research campus M2OLIE) containing an artificial liver with three

lesions: Figure 2.7 shows that some lesions are only visible in one modality, thus demonstrating the

need for multimodal imaging. The material composition of the lesions has been specifically chosen

to yield different contrast in different imaging devices.
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Figure 2.8: Optimization process of a geometrical transformation T so that corresponding features in the images
overlap.

2.3 Fundamentals of Image Registration

The main challenge in the context of multimodal imaging of a patient is the fact that images

acquired on different devices do not occupy the same physical space. Moreover, the organs of the

patient are subjected to deformation due to different positioning of the patient in different devices,

organ motion or image artefacts, impeding the comparison between different scans. Here, image

registration plays a major role to geometrically transform the images and enable the fusion of

different modalities in to a multimodal data set.

Image registration generally describes the process of determining a geometrical transformation to

align two images of the same object or scene and transfer them into the same coordinate system

so that identical features overlap as shown in Figure 2.8. There are various situations in which

this is necessary, including scenarios in which images of an object are acquired from different

angles, with different devices or at different points in time. Depending on the intended application,

image registration is used to either determine the geometrically transformed image data or the

transformation parameters. Image registration builds the basis to compare images of the same

object and is therefore important in many fields of application, ranging from computer vision and

pattern recognition, to medical image processing or even geosciences, when it comes to compare

data from satellites [39, 40]. In a clinical context, image registration is e.g. necessary to align images

acquired on different imaging devices or for treatment monitoring of diseases over time.

In a registration scenario, one of the images is chosen as reference image which is stationary and is

therefore called target, reference or fixed image. The other image is referred to as source or moving

image, since it is the image which is going to be geometrically transformed to align with the target

image. Image registration then aims to find a reasonable transformation so that the transformed

version of the source image is similar to the reference image.

Most image registration methods are considered as iterative optimization processes which aim to

find the optimal parameters of the geometric transformation to spatially align two images so that

the similarity between both images increases. This process is typically composed of four basic

elements as shown in Figure 2.9, namely:
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Figure 2.9: Visualization of the different components of a registration method and their interplay.

� A transform to geometrically distort the source image so that it aligns with the target image.

The type of transformation also defines the number of transformation parameters which are

optimized during the registration process.

� An interpolator to resample voxel intensities to the new coordinate system according to the

geometric transformation.

� A similarity metric which measures the (dis)similarity of images for the different geometric

alignments during the registration process based on their intensities, geometric features or

higher-level information, such es e.g. segmentation labels.

� An optimizer which aims to find the optimum, i.e. minimum or maximum, of an energy

function consisting of a similarity term or regularization penalty.

These components are often extended by a pre-registration transformation (or initialization) which

prealigns the target and source image in terms of a higher image similarity. Initializations can be

realized by overlaying the geometric image centers, by overlaying the intensity based centers of

mass, by identifying and matching corresponding points [41] or features [42] in the images or by

extracting and aligning segmentation masks [43].

All of these steps play a major role for the outcome of a registration method, and will therefore

be explained in more detail in the following sections 2.3.2 – 2.3.5. Image registration approaches

display a high diversity concerning the processed image information and structure of the methods.

Therefore, a short overview of the different types of image registration algorithms will be given in

the next section.

2.3.1 Classification of Image Registration Methods

There exist various different registration approaches, which can be sorted into different categories

depending on various characteristics. According to Maintz et al. [4] these characteristics include:
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� Image dimensionality: 2D-2D, 3D-3D, 2D-3D or time series

Registration methods are divided according to the spatial dimensionality of the input images

for which it is distinguished between 2D-2D, 3D-3D and 2D-3D registration methods. Most

medical registration methods focus on 3D-3D registration methods to register tomographic

data sets or 2D-2D registration methods to register slices of tomographic data. 2D-3D meth-

ods are e.g. used for the registration of a preoperative 3D image to an intra-operative pro-

jective image. In clinical applications, medical images are sometimes also acquired over time

intervals to examine medical processes such as e.g. tumor growth, leading to the acquisition

of 4D data sets. High image dimensionality corresponds to a high information density which

needs to be processed by the registration algorithm and therefore generally increases the

registration complexity as well as the computation time.

� Nature of transformation: rigid, affine, deformable

In general, it is distinguished between rigid and non-rigid transformations. Rigid transforms

are limited to translation and rotation and extended to affine methods by including scaling

and shearing whereas non-rigid or deformable methods result in the generation of complex

deformation fields. The type of the transformation determines the number of transform

parameters which are optimized during registration and is therefore directly related to the

complexity of the registration task. An extended overview over the different transformation

models is given in section 2.3.2.

� Domain of transformation: global vs. local

The domain of transformation describes the image area on which the transformation is ap-

plied. A global transformation is applied on the entire image whereas a local transformation

warps only a subsection, a so-called Region Of Interest (ROI). Registration methods are most

commonly employed on a global basis, i.e. a global geometric transformation is applied to

warp the source image to the target image.

� Nature of registration basis: extrinsic vs. intrinsic

Extrinsic registration methods are based on the detection of foreign objects (markers), which

are introduced to the image space and well visible in the image data. This allows a fast and

easy registration by aligning the artificial object whereas the main drawbacks are the often

invasive character of the object and the fact that provisions must be made before the image

acquisition. Moreover, since extrinsic methods rely on the alignment of external objects, no

patient information is included making it an insufficient method for tasks such as soft organ

alignment.

In contrast, intrinsic methods rely on patient generated image content only. This content

can be represented by salient image points (landmarks), by segmented binary structures such

as object surfaces (segmentation based) or by the intensity distribution of the grey values

in the image (voxel property based). In medical image processing, landmarks are points in

the patients morphology which can be accurately detected and located. By identifying and

matching these points on two data sets, it is possible to estimate a geometric transformation

to align the images. In many applications, these points are interactively identified by a

user which makes these approaches unsuitable for daily clinical routine. However, in some
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cases where the landmarks are based on geometrical properties (corners, local curvature), an

automatized identification is possible. A high density of such landmarks allows for an accurate

registration including deformable tasks. Segmentation based methods extend this approach

by identifying and aligning surfaces or volumes in different image data sets. In contrast,

voxel property based methods rely directly on the image grey values without including prior

knowledge as landmarks or segmentation based methods. To establish a similarity measure

between the images, the grey value distributions in the images are analyzed via correlation

metric, Fourier properties or other means of structural analysis. A brief overview over some

of the most commonly employed intensity-based and approaches for feature-based metrics is

given in chapter 2.3.4.

� Interaction: interactive, semi-automatic, automatic

Concerning registration methods, three levels of user interaction are distinguished. Interactive

processes include all methods in which a user performs the registration himself, but is assisted

by software giving him visual or numerical feedback. Semi-automatic methods require either

a user performed initialization of the image alignment or user generated input data such as

e.g. segmentation labels or user feedback in form of a rejection of acceptance of the suggested

registration hypotheses. Most approaches aim to realize an automatic registration method,

which requires only the image data and limited information on the image acquisition by

the user. Automatic methods provide a high comfort for the user making it suitable for

daily clinical practice, however the method has to be very robust to limit potentially false

registration results.

� Optimization procedure: direct, indirect, multi-stage

Since image registration represents an iterative optimization procedure, the results highly

depend on the choice of optimization. The required transform parameters can either be

computed directly from the available data or searched for by finding the optimum of a cost

function. A direct computation is often only feasible for sparse data (as e.g. shown in [44] or

[45]). To search the optimal parameter setting a quasi-convex mathematical cost function has

to be defined depending on the transformation parameters to quantify the similarity between

the images. The optimization then aims to identify the optimum of this function. A summary

of most commonly used optimization techniques used in image registration is given in chapter

2.3.5. Additional approaches to accelerate convergence of the optimization process include

multi-resolution approaches during which the spatial image resolution is altered from coarse

to fine during registration or multi-stage approaches, during which a rigid registration to

roughly align the images is ensued by a deformable registration for fine alignment.

� Involved image modalities: monomodal, multimodal, modality to model, patient to model

Monomodal registration methods refer to the alignment of two or more images which were

acquired using the same imaging device whereas multimodal registration involves the mapping

of input images acquired on different devices, e.g. MRT and CT. The latter results in a highly

increased difficulty for the registration method, since different imaging modalities are based

on different physical principles and therefore often display dissimilar object structures as

discussed in chapter 2.2. Thus, it represents a challenge to establish a relation between the
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Figure 2.10: Visualization of 2D transformations using the example of a rectangle.

input images to estimate and optimize an image similarity measure. Additional registration

scenarios include the registration of an image modality to a mathematical model or the patient

himself.

� Registration subject: intra-subject, inter-subject, atlas

Intra-subject registration refers to tasks involving the image data of a single patient whereas

inter-subject registration is accomplished when the data of different patients is registered.

Atlas registration describes the task to register the image data of a patient to a constructed

image from an image formation database, such as binary segmentation masks.

An extensive summary of these criteria is given in [4] and [46]. These categories show that there ex-

ists a high diversity concerning image registration methods with profound differences in complexity

and application possibilities. In this thesis, the focus is set to intra-subject mono- and multimodal

3D-3D registration techniques which provide a wide range of applications in clinical practice.

2.3.2 Geometric Transformation

A geometric transformation maps points from one image space to another. The choice of a geometric

transformation model highly depends on the nature of the data to be registered and can be crucial

for the success of a registration, since it defines the possibilities how an image can be warped. Some

transformation types result in global transforms which are applied to the entire image whereas other

transformation types yield local transforms which are only applied to a sub-region of the image and

are therefore useful to correct small organ movement or deformations. In general, it is distinguished

between linear and non-linear transformation types whereas the term ‘linear’ refers to the function

which is used for the mapping of one vector space to the other. Both types will be briefly explained

in the following. A visualization of the most commonly used geometric transformations is shown

in Figure 2.10.

Rigid Transformation

The simplest type of linear transformations are rigid transformations. Rigid transformations com-

prise geometric transformations which preserve the Euclidean distance between every pair of points

in an image, which means any object will keep its shape and size after the application of a rigid

transformation. Rigid transformations include translations and rotations as well as their combi-

nations. They are very useful for the registration of rigid structures, such as e.g. the skull, or an
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initial alignment of two images, but fail to compensate non-linear motions or organ deformations.

However, due to its limited degrees of freedom (DOF), the employment of a rigid transformation

allows for a fast and simple image registration since less parameters have to be optimized.

Mathematically, a rigid transformation T : R3 ↦→ R3 of the 3D point x = (x, y, z) can be formulated

as

Trigid(x) = Rx+ t (2.6)

Here, t = (tx, ty, tz) denotes the translation vector and R the rotation matrix. There are different

approaches to describe an arbitrary rotation either including Euler angles α1, α2, α3 or e.g. quater-

nions. For 3D data, a rigid transformation is defined by the three components of the translation

vector t and three parameters describing the rotation angles. This results in six DOF in 3D and

four in 2D.

Affine Transformation

Affine transformations represent the simplest type of non-rigid transformations. They extend rigid

transformations by shearing and scaling. Angles between lines or distances between points are no

longer preserved, although the ratio of distances between points on a straight line are maintained as

in the original image. Thus, they are also considered as type of linear transformation. A complex

affine transformation Taffine can be represented by a sequence of basic transforms. This if often

described using homogenous coordinates which are a concept that stems from the mathematical

field of projective geometry. They represent an extension of standart three-dimensional vectors and

allow the simplification of various transforms and their computation. In homogenous coordinates,

the sequence of basis transform to generate an affine transform can be expressed as a matrix

multiplication such that

Taffine = Ttranslation · Trotation · Tshear · Tscaling =

⎛⎜⎜⎜⎜⎝
m1 m2 m3 m10

m4 m5 m6 m11

m7 m8 m9 m12

0 0 0 1

⎞⎟⎟⎟⎟⎠ (2.7)

Here, m10 to m12 denote the translation parameters whereas all other parameters define scaling,

shear and rotation. This results in 12 DOF in a 3D scenario, and six in a 2D scenario.

Nonlinear Transformation

The previously presented linear transformations mainly capture global image motion, but are not

sensitive to model local structure deformations. This limitation is overcome by employing non-

linear, or deformable, transformations which represent the most complex type of geometric trans-

formations. They do not preserve straightness of lines nor parallelism, making them suitable to

model complex tissue deformations. This requires a high number of DOF and is generally a sophis-

ticated task.
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There exist different approaches to model non-linear deformations including non-parametric guided

deformations and multi-parametric basis function transformations. Guided deformations are based

on physical models which limit the range of potential transformation parameters due to the assump-

tion that these deformations have to follow physical principles. As the name suggests, basis function

transformations rely on a set of basis functions to model the transformation. Both types are used in

image registration. Parametric registration in this context simply implies that the transformation is

indirectly optimized by optimizing a parametric model which governs the transformation, whereas

non-parametric registration means that the transformation is directly optimized. Thus, the distinc-

tion between parametric and non-parametric registration does not describe the transformation, as

rather the type of regularization or parametrization which is used during the registration process.

The introduction of a regularization is necessary, since non-linear image registration is generally

considered as ill-posed problem. The estimated transformation during registration is required be

plausible in the sense that the determined deformation field should be generally smooth so that it

displays no singularities, tearing or folding. To avoid this, it is necessary to apply constraints on

the DOF of the deformation in form of a regularization. This can be done implicitly or explicitly.

Implicit regularization is achieved by parametrization of the deformation field with smooth func-

tions. Explicit regularization can be realized in form of constraints that the solution must satisfy

to achieve a successful registration or as additional penalty term in the energy function that is

optimized during registration.

For both non-linear transformation types, the actual transformation in 3D is represented by a

deformation field u : R3 ↦→ R3, which corresponds to a displacement field such that

Tnon−linear(x) = x+ u(x) (2.8)

Nonlinear transformations based on physical models take into account tissue characteristics, such

as e.g. elasticity, flow or diffusion. Following the idea of an elastic model, the objects in an image

are modeled as elastic solids which are affected by internal elastic forces as well as external forces

driven by similarity measures which try to deform the objects. In this scenario the source image is

deformed until external and internal forces reach an equilibrium [47, 48, 49]. Another type of elastic

transformation is based on finite element models which divide the input image into cells with certain

tissue properties [50, 51]. Flow based transformations use physical fluid flow models in which the

moving image is represented as a viscous fluid and the deformations can be described using formulas

such as the Navier-Stokes-equation [52, 53, 54]. In general, they allow larger deformations than

elastic model transformations. The most popular registration approach using diffusion models is

presented by Thirion et al. [55]. Here, the main idea is that object boundaries in an image are

considered as semi-permeable membranes through which the other image can diffuse by action of

effectors (“demons”) situated within these interfaces.

In case of deformation models which rely on basis function models, the deformation is modeled

by defining a regular grid of control points which can be moved individually in the direction that

leads to an optimization of a similarity measure. The density of the grid points is proportional

to the sensitivity of these methods to local deformations, but also to the computational cost of

these approaches, since displacement vectors for each point have to be estimated. Thus, by varying
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Figure 2.11: Forward and backward image warping using a transformation T and its inverse transformation T−1,
respectively. Forward warping (a) can cause non-defined pixel as marked in grey. Backward warping (b) allows
to obtain intensity values for locations that do not coincide with pixel coordinates from the reference image using
interpolation.

the number of grid points from low to high, a transition from the modeling of global to local

deformations can be realized. These types of transformation models have in common that they

rely on a combination of basis functions to determine the deformation field in between grid points.

The most popular interpolation method relies on cubic (B-)splines [56, 57, 58] which will be further

explained in the following chapter. Thus, the task of registration for these methods corresponds to

the problem of finding a set of coefficients for the basis functions to optimize the image alignment

in terms of a similarity measure. In contrast to physical models, transformations relying on basis

functions employ much fewer DOF and are therefore favorable for image registration tasks. In

[39], Sotiras et al. present an overview of deformable registration approaches in medical imaging

discussing the different deformation models in more detail.

An important criterion for geometric transformations in terms of image registration is diffeomor-

phism. A diffeomorphic transformation is differentiable and invertible and thus, has a differentiable

inverse transformation. This is important, since the transformation determined by a registration

algorithm generally describes the transformation of the coordinate system of the source image to

the coordinate system of the reference image. This is necessary to perform backward interpolation

which is required to preserve image topology. Backward interpolation is preferred over forward

warping since the latter can cause non-defined areas in the transformed source image as illustrated

in Figure 2.11. This approach is often received as counter-intuitive, since e.g. the transformation

obtained for the registration of a source image which is shifted to the right with respect to a target

image will point to the left, and not to the right as expected. The basics of image interpolation

will be explained in the following chapter 2.3.3.

2.3.3 Interpolator

Another basic component of a medical image registration method is the interpolator. Interpolation

is necessary since the registration input consists of discrete pixelated (or in the context of 3D data

voxelated) images which possibly differ in terms of spatial resolution and field of view (FOV).

Due to this pixelated nature of an image, the intensity values at integer grid locations are known.

However, the application of a geometric transform during the registration process possibly maps

an intensity value to a sub-pixel position. Interpolation then uses known intensity values at integer
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Figure 2.12: Nearest neighbor interpolation. The in-
teger grid is displayed in black and the sub-pixel grid
in blue.

Figure 2.13: Linear interpolation. The integer grid is
displayed in black and the sub-pixel grid in blue.

grid positions to estimate the intensity at these sub-pixel positions. The choice of interpolation

method has an important impact on the performance of a registration method, since it affects the

smoothness of the cost function and thus, the optimization process [59, 60, 61]. The most commonly

used interpolation methods include nearest neighbor interpolation, linear and spline interpolation

which will be briefly explained in the following. The explanation is based on the summary given

by Forsberg in [62].

Nearest Neighbor Interpolation

Nearest neighbor interpolation assigns the value of the nearest sample point in the input image

to the interpolated output pixel as shown in Figure 2.12, neglecting fractional contributions of

other pixels. So basically, this methods relies on simply copying intensity values, not actually

interpolating values. Let us assume that Ω̃ represents the discrete domain of the image and Ω

a continuous domain and x̃ and x are points in the respective domains. The nearest neighbor

interpolation can then be defined as

Inearest(Ĩ , x) = Ĩ([x]) , (2.9)

whereas [x] corresponds to the closest grid point x̃. This interpolation method is very simple, and

thus, very fast, but lacks accuracy and often results in block structures for high magnifications of an

image and significant aliasing effects along edges. Therefore, it is rarely used for image registration.

Linear Interpolation

A slightly more complicated interpolation method is linear interpolation. Under the assumption

that intensity values change linearly from one pixel to the next, it estimates the final interpolated

value by calculating the weighted average of the nearest neighbor pixels (see figure 2.13). For two

dimensions this neighborhood corresponds to an area of 2 × 2 pixel, in three dimensions the area

comprises 2 × 2 × 2 voxel. Under the assumption that ⌊x⌋ corresponds to the closest grid point

smaller than x̃, d to the number of image dimensions and ξ = x−⌊x⌋, then the linear interpolation

can be expressed as

Ilinear(Ĩ , x) =
∑︂

k∈{0,1}d

⎡⎣Ĩ(⌊x⌋+ k)
∏︂

l=1,...,d

(ξl)
kl(1− ξl)

(1−kl)

⎤⎦ . (2.10)

The interpolated pixel value then corresponds to a distance-based normalized linear combination

of the four closest pixel intensity values. In comparison to the nearest neighbor interpolation, this
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approach leads to a smoother interpolated image, but can lead to blurring effects. However, linear

interpolation represents an appropriate trade-off between computation time and accuracy and is

therefore often used for image registration.

Spline Interpolation

More sophisticated interpolation methods take even more than only adjacent voxel into considera-

tion by fitting the values between the closest neighboring pixel using Lagrange polynomials, cubic

splines, etc. Using the example of spline interpolation, a spline of degree n ≥ 1 is a continuous

piece-wise polynomial function of degree n of a real variable with continuous derivatives up to order

n−1. One of the most commonly used family of spline functions are basis splines (B-splines) which

can be derived by self-convolutions of a basis function

β0(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 |x| < 1

2

1
2 |x| = 1

2

0 |x| > 1
2

(2.11)

B-splines of the degree n are then iteratively defined using convolutions denoted with the operator

symbol ∗:
βn(x) = β0 ∗ β0 ∗ ... ∗ β0(x)⏞ ⏟⏟ ⏞

(n+1)times

. (2.12)

Interpolation based on B-spline functions of degree n = 0 is similar to nearest neighbor interpolation

and interpolation based on B-splines of degree n = 1 is identical to linear interpolation. Since cubic

B-splines (n = 3) provide the best trade-off between performance and computation efficiency, they

are most commonly used for image processing tasks and are given as

β3(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(2 + x)3 −2 ≤ x < −1

−(3x+ 6)x2 + 4 −1 ≤ x < 0

(3x− 6)x2 + 4 0 ≤ x < 1

(2− x)3 1 ≤ x < 2

(2.13)

Using a cubic B-spline interpolation, the intensity interpolation in one dimension at position x can

be calculated as

Ispline(x) =
m∑︂
j=1

cjβ
3
j (x). (2.14)

Here, m corresponds to the number of nearest neighbors, thus the number of available data points,

cj to the spline coefficients which need to be estimated for interpolation and the cubic B-splines

fulfill the condition β3
j (x) = β3(x− j).

The spline coefficients cj are then determined using the constraint that Ispline(x̃) = Ĩ(x̃). Spline

interpolations generally results in a high accuracy, however for high-resolution medical images linear

interpolation is often sufficient and preferred due to its lower computational cost. An overview

over the most common interpolation methods and their performance in the field of medical image

processing is given by Deserno et al. [63].
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2.3.4 Similarity Metrics

With regard to the typical components of iterative registration algorithms as shown in Figure 2.9,

geometric transformations and interpolation methods have been discussed so far. A registration

algorithm now aims to optimize the parameters of the transformation by defining and minimizing

a cost function. Given a transformation T defined by a set of parameters θ and two input images

It and Is, this can be mathematically expressed as

θ∗ = argmin
θ

(d(It, Is)) . (2.15)

Here, d denotes a similarity measure which estimates and quantifies the (dis)similarity between

two images. An ideal similarity measure corresponds to a smooth function which displays a global

extreme at the position of optimal alignment of the two images. In general, it is distinguished

between image-based similarity measures and feature based similarity measures. Depending on the

utilized features, some similarity measures can be included in both types of similarity measures

which will be further explained in the following.

Intensity-based Methods

Intensity-based similarity measures include all methods which rely on statistic correlations between

the intensity distributions of the target and source image to estimate image similarity. This is based

on the idea that similar structures in images share similar intensity value distributions and that

correlations are maximized when these two images are perfectly aligned. The correlation metrics do

not only rely on linear dependencies, but also include various relations such as e.g. entropy. There

exist many different variants of intensity-based similarity measures, however, in this summary only

the most commonly used metrics will be presented.

Sum of squared differences

A simple way to quantify image similarity between a reference image Ir and the source image Is

is to determine intensity differences for each voxel position in two images based on the assumption

that corresponding structures in two images have similar intensity values. This approach is called

sum of squared differences (SSD) and is defined as

SSD(Ir, Is) =
1

N

∑︂
x∈Ω

(Ir(x)− Is(T (x)))
2 , (2.16)

where Ω denotes the common image domain of both images, N the total number of pixels in this

common domain and T the transformation function that maps a voxel at position x to its new

position. The lower the SSD, the higher is the image similarity. Since SSD relies on the assumption

that corresponding data points have corresponding grey values, its performance is highly sensitive

to a small amount of pixel with large intensity difference. This can be especially important in case

the metric should be applied to very noisy images. A modified version of SSD is the sum of absolute

25



differences (SAD) which eliminates the quadratic behavior and is given as

SAD(Ir, Is) =
1

N

∑︂
x∈Ω

|Ir(x)− Is(T (x)|2 . (2.17)

In comparison to SSD, SAD is less sensitive to large intensity differences. However, both of these

similarity measures are influenced by illumination changes leading to the requirement of intensity

normalization of the input images. The metrics are most suitable for the similarity estimation of

images with corresponding grey values.

Cross-correlation

Another concept to estimate image similarity relies on cross correlation, a method which is widely

used in signal processing to determine the correlation between two signals. In image processing,

cross-correlation assumes that there exists a linear correlation between the intensity values of

corresponding structures in two images and is given as

CC(Ir, Is) =
1

N

∑︂
x∈Ω

Ir(x) · Is(T (x)). (2.18)

To increase its robustness to intensity and contrast changes, the correlation is normalized leading

to the definition of a normalized cross correlation (NCC) metric given as

NCC(Ir, Is) =

∑︁
x∈Ω(Ir(x)− µr)(Is(T (x))− µs)√︁∑︁

x∈Ω(Ir(x)− µr)2
√︁∑︁

x∈Ω(Is(T (x))− µs)2
. (2.19)

Here, µr and µs correspond to the mean of the intensity values computed over the overlapping

domain Ω in the reference and source image, respectively. The higher the numerical value of the

NCC, the better is the alignment of the two images. In contrast to SSD or SAD, cross-correlation

based similarity metrics do not rely on grey value correspondences but rather on a linear correlation

of the grey values of corresponding data points. Thus, these metrics are robust to illumination

differences and image noise. Moreover, they are easy to implement and have a low computational

demand and are therefore widely used in medical image registration [64, 65].

Mutual information

The described similarity measures represent commonly used methods for monomodal image reg-

istration tasks. However, these metrics are not suitable for multimodal registration applications,

since the assumption that similar structures display similar intensity values is not valid for the

case of multimodal data as discussed in chapter 2.2. In general, different image modalities display

different image contrasts and can even display structural differences due to the physical principles

of the imaging technique. This makes the registration of multimodal image data highly challenging.

The most popular approach to establish a relation between the intensity value distributions of mul-

timodal image data relies on statistical relations between two images in form of mutual information

(MI) or its variants. The general idea of MI is to quantify the information shared between two

images using the Shannon entropy H of a probability distribution which is estimated from the

distribution of intensity values in the images. The basics of information theory using entropy are
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explained by Shannon et al. [66]. In general, mutual information can be expressed as

MI(Ir, Is) = H(Ir)−H(Ir|Is) = H(Ir) +H(Is)−H(Ir, Is) , (2.20)

where H(Ir) and H(Is) denote the marginal Shannon entropy of the reference image and source

image, respectively, and H(Ir, Is) denotes the joint entropy of both images. The entropy is used

as a measure of the amount of information contained in an image, whereas the joint entropy refers

to the cumulated amount of information in both images. In general, the entropy of an image A is

given as

H(A) = −
∑︂
a∈A

pA(a) log pA(a) . (2.21)

Here, pA(a) denotes the probability that a voxel in image A has the intensity a. The probability

distribution of an image can be deduced from a histogram of the intensity values. The joint entropy

of two images A and B is then defined as

H(A,B) = −
∑︂
a∈A

∑︂
b∈B

pA,B(a, b) log pA,B(a, b) . (2.22)

In this case, the probability distribution function pA,B is derived from a normalized 2D histogram

which depicts how often each grey value correspondence in the image A and B occurs. The crucial

property is that H(A,B) ≤ H(A) + H(B). If both images are completely unrelated the joint

entropy corresponds to the sum of individual entropies. The image alignment is improved when

the joint entropy H(A,B) is minimized. Studholme et al. [67, 68] as well as Collignon et al. [69]

proposed joint entropy as similarity measure in image registration so that the entropy is minimized

during registration. Almost simultaneously, Viola and Wells [70, 71] and Maes and Colligonon [72]

proposed to use MI as similarity metric. Over the years, different derivatives of the classical MI

metric were publishaed, including e.g. Mattest Mutual Information (AMMI) where the probability

distribution is estimaned using Parzen histograms [73, 74].

Because of the statistical notion, MI is generally very sensitive to the amount of overlap between

both images. If the overlap of both images decreases, the number of samples decreases which

reduces the statistical power of the probability distribution. Moreover, it can be shown that for

the case of misregistrations which typically lead to a decrease of the overlap, MI possibly increases.

This may happen when the relative image areas of object and background even out and the sum

of marginal entropies increases faster than the joint entropy [5]. Therefore, Studholme et al.[75]

proposed normalized mutual information (NMI) which is defined as

NMI(Ir, Is) =
H(Ir) +H(Is)

H(Ir, Is)
(2.23)

NMI is generally a less sensitive variant of MI to changes in the image overlap. Since the image over-

lap constantly changes during a registration process due to the applied geometric transformation,

NMI represents a suitable and robust similarity measure for registration purposes.

Due to the fact that MI does not rely on a linear relation between the intensity values of two images

but on statistical relations, it is reasonable to be used as similarity measure for multimodal image
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data and MI and its many derivatives remain the state-of-the-art for multimodal image registra-

tion. However, MI is computationally expensive which makes the algorithm slow and therefore not

suitable for applications requiring fast or even real-time image registration. A survey on image

registration techniques based on mutual information was published by Pluim et al. [5].

Feature-based Methods

In contrast to intensity-based methods which use the entire image information during the registra-

tion, feature-based methods rely on the extraction, analysis and matching of distinct features in the

images which are to be registered. These features can be represented by geometrical features such

as points (so-called ”‘landmarks”’), lines and surfaces or by morphological features, e.g. anatomical

landmarks or fiducial markers. Image registration is then performed by optimizing a geometric

transformation which reduces the distance between corresponding features in both images. These

methods are mainly divided into landmark-based and surface-based methods.

For both types, feature-based registration methods require a preprocessing step of the image data

to extract these features manually or automatically. Manual preprocessing in medical image reg-

istration is very time consuming and the results of the identification of salient points or surfaces

highly depend on the skill and medical expertise of the user. Automatized feature-based regis-

tration methods typically consist of three steps: 1) keypoint detection and feature description, 2)

feature matching and 3) image warping.

In general, a keypoint is a distinct point of interest which can be clearly identified in an image, such

as e.g. previously described landmarks or as corners and edges. In image processing, a keypoint

can be represented by a descriptor which is a vector containing important characteristics of this

keypoint and its neighborhood. In an ideal case, the descriptor is robust against transformations,

including changes of brightness or geometrical transformations. Two of the most popular methods

for feature description are the Scale-invariant feature transform (SIFT) [76] or its derivative Speeded

Up Robust Features (SURF) [77]. There exist many alternatives for feature description whereas the

most common image registration approaches relying on feature descriptors will be further explained

in chapter 3.2.

Once the features are extracted and analyzed, image registration often relies on a matching method

which identifies corresponding features in both images. A simple method to perform feature match-

ing is by estimating the distance between each pair of keypoint descriptors and return the pair with

the smallest distance as matching keypoints. However, feature matching remains a challenging task

and various methods exist aiming to reduce false or double matching [78]. After a successful match-

ing of the image features, it is possible to estimate a deformation field by determining the spatial

distance between corresponding keypoints. Feature-based registration is not typically considered

an iterative optimization process, since the features are only extracted and matched once two align

the images. However, for a coarse rigid image alignment, the feature matching step can be neglected

and the registration can be e.g. performed using an iterative closest point algorithm which mini-

mized the difference between two clouds of points [79]. Another iterative feature-based registration

scenario is realized when the feature descriptor is determined globally over the entire image and
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does not only consider local features. This represents a mixture of feature- and intensity-based

registration and in this case, an image similarity measure is e.g. represented by estimating the sim-

ilarity of the feature descriptors of the images to be registered or estimating the Euclidean distance

of the two descriptors for each optimization iteration.

Depending on the utilized features, feature-based registration can be suitable for mono- and multi-

modal image registration. The accuracy of these registration methods highly depend on the number

and the accurate identification of the features. Thus, feature-based methods require either user

support or highly accurate feature extraction algorithms. However, recent advances using deep

neural networks allow to increase speed and accuracy of these procedures and therefore benefit

medical image registration.

2.3.5 Optimizer

The last component of an image registration algorithm is the optimizer which aims to optimize the

parameters of the transformation component with respect to the similarity value provided by the

metric component. Thus, the similarity measure represents the cost function in this optimization

procedure. As discussed in chapter 2.3.2, the amount of parameters which need to be optimized

highly depend on the DOF of the geometrical transformation with simple rigid transformations

having a low number of DOF whereas nonlinear transformations have a large number of DOF. A

common challenge in image registration tasks is that the cost function contains local minima to

which the registration possibly converges which leads to a misalignment of the images. To prevent

the method from getting stuck in such a local minimum, different strategies established. One

of them is multi-resolution registration which consists of different stages of image-down-sampling

followed by a registration which serves as an initialization for the next, less coarse resolution level.

Since there exist a multitude of optimization problems in different kinds of research fields, vari-

ous different optimization methods have been developed. The most commonly used optimization

methods for image registraion include gradient descent [80], Simplex [81], Gauss-Newton [82], Quasi-

Newton [83], Powell’s [84], stochastic and the Levenberg-Marquart method [85]. A comparison of

different optimizers for medical image registration was published by Klein et al. in [86]. Since most

experiments presented in this thesis were performed using gradient descent optimization, only this

method will be explained in more detail.

Gradient descent is a method to optimize an objective function, or in case of image registration

a cost function, J(θ) which is parametrized by a set of parameters θ ∈ Rd. This method updates

the parameters in the opposite direction of the gradient of the objective function with respect to

the parameters ∇J(θ) = ∂J(θ)
∂θ . The step size with which the parameters are changed to reach the

minimum during the update is called the learning rate η. Thus, the new parameters are determine

as

θnew = θ − η
∂J(θ)

∂θ
. (2.24)

This can be visualized such that the optimzer follows the slope of the parametric surface of the

objective function downhill until a valley is reached as shown in Figure 2.14.
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Figure 2.14: Optimization using a gradient descent method.

2.3.6 Challenges and Limitations

Image registration is still an active field of research which aims to develop novel fast and accurate

registration methods, improve existing methods and broaden their range of applications in daily

clinical routine. Despite ongoing efforts, the usage of image registration in clinical practice is often

limited to rigid registrations of mono- and multimodal data [87]. One of the reasons why deformable

registration methods are not in standard use is the uncertainty of these methods in terms of how

physically plausible organ and tissue deformations can be corrected. Although there exist various

approaches relying on physical models (as shown in chapter 2.3.2), image registration remains an

ill-posed mathematical problem which requires regularization.

Moreover, more advanced registration methods are often restricted to clinical research due to their

excessive computational cost which is either linked to high processing times or the demand of a

sufficient IT-infrastructure. However, recent advances of graphics processing units (GPUs) highly

improved computation times and helped to reduce this drawback. After years of theoretical model

development, the introduction of GPUs in medical image processing even allowed the realization of

novel registration techniques relying on deep neural networks, thus, opening a complete new field

of research. The employment of neural networks allows for a fast (possibly real-time) deformable

image registration, once the network is trained. The fundamentals of Deep Learning and the

influence of neural networks on the field of medical image registration will be explained in the

following chapter 3.3.

Nevertheless, advances using Deep Learning as well established methods suffer from the lack of

golden standards and adequate validation methods for registration results. This is especially crucial

for the training of neural networks which urgently requires ground truth data, but also hinders

the optimization and improvement of classical method since there exists no standard method to

evaluate registration accuracy which makes it difficult to compare registration performances of

different methods for a certain application.

The work presented in this thesis aims to tackle this drawback by proposing an evaluation method-

ology for multimodal medical image registration of abdominal scans and using this framework to

benchmark and optimize existing registration methods for this intended task.
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Figure 2.15: An artificial neuron.

2.4 Fundamentals of Deep Learning

Recent advances in the field of Deep Learning had tremendous impact on various fields of ap-

plications. One of them is medical image processing which has been highly benefiting from the

employment of artificial neural networks in image detection and recognition, image segmentation,

computer-aided diagnostics and also image registration [88, 89, 90]. This chapter aims to give a

brief introduction to the fundamentals of Deep Learning including the basics of artificial neural

networks and convolutional neural networks. Moreover, recent developments in image registration

based on neural networks will be presented.

In general, Deep Learning (DL) refers to a sub-field of machine learning methods. In machine learn-

ing, it is generally distinguished between supervised, semi-supervised and unsupervised learning,

depending on the input data that is used during the learning process. During supervised learning

the algorithm receives both input and the desired output during the training process, as for example

an image of an object and the corresponding label. This allows the algorithm to learn a mapping

between those two inputs. In contrast, unsupervised learning does not provide the algorithm with

the correct output. Here is the aim of the training process to find a structure in the given input.

Semi-supervised learning refers to training processes during which only sparse prior information is

provided, representing a mixture between both types.

These learning concepts also play a role in DL which is based on artificial neural networks. The

general idea is to use algorithms which are inspired by the information processing and structure of

the brain to mimic the learning process of a biological brain. To understand how the algorithm is

able to extract an inner structure in the input data, it is essential to understand the information

process of an artificial neural network.

2.4.1 Artificial Neural Networks

As artificial neural networks are inspired by the human biological nervous system, they consist of

single neurons which are connected. In biology, a neuron collects inputs from all other neural cells

to which it is connected and if the input reaches a certain threshold, it signals itself to connected

neural cells. An artificial neuron, also referred to as perceptron, is the basic building block of an

artificial neural network and can be seen as a simple model itself. It also receives inputs xi from
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multiple other neurons and computes the output as the sum of the weighted input values and a

bias, which allows to add an offset to the data. To simulate the threshold, the result of this linear

combination is then transformed via a nonlinear activation function f to get the final output of

the neuron. Figure 2.15 displays the illustration of a single neuron. Mathematically, this can be

expressed as

y = f

(︄
m∑︂
i1

wixi + b

)︄
, (2.25)

were wi denotes the individual weights for each input xi, the parameter b the bias and the function

f the nonlinear activation function. By using the bias b, it is possible to adapt the activation

threshold for the neuron. Combining and connecting several neurons results in an artificial neural

network model.

The choice of activation function is important to model non-linear problems, since it should be

continuously differentiable to enable the training of a neural network using back-propagation, a

method which relies on gradient estimation and will be explained in more detail in the following

section. A classic activation function is the logistic sigmoid function which is defined as

f(x) =
1

1 + e−x
. (2.26)

It is a smooth, non-linear function that is continuously differentiable and maps the input to values

between [0,1]. However, a drawback of this function for DL is the fact that for large absolute values

of x the gradient of the sigmoid function can become too small to be useful for a learning process.

A generalization of the sigmoid function is represented by the softmax function which corresponds

to a probability distribution and is given as

f(x) =
exi∑︁K
i=1 e

xi
. (2.27)

This function takes a vector of K elements and outputs a vector of K values that range between

[0, 1] and sum up to 1. Therefore, the softmax function is often used for DL networks aiming to

solve classification problems with more than 2 classes. Another activation function similar to the

sigmoid function but symmetric over the origin is the hyperbolic tangent function:

f(x) = tanh(x) =
ex − e−x

ex + e−x
. (2.28)

However, this function also has a vanishing gradient for large values x which can be a drawback

for the training of a neural network using backpropagation.

The most widely used activation function is the rectifier (and its variants) [91, 92] which is given

as

f(x) = max {0, x} . (2.29)

A unit with this activation function is called rectified linear unit (ReLU) and is easy to optimize

since the derivative is either 0 or a positive constant value which allows the network to converge

quickly. A drawback of this function is the fact that inputs that approach zero or are negative
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Figure 2.16: A fully connected multi-layer neural network.

result in a gradient equal to zero which hinders the performance of backpropagation.

In an artificial neural network, the neurons are arranged in layers, so that each layer receives

input from the previous layer, applies weights and then signals to the next layer if appropriate. A

multilayer network typically includes three types of layers: an input layer which is a representation

of the input data, one or more hidden layers which actually modify the data and an output layer

which converts the activations from the hidden layers to an output (see figure 2.16). A layer in

which each neuron is connected to each neuron of the previous layer is referred to as fully connected

[93] whereas layers in which only few neurons are connected to the previous layer is called sparsely

connected [94].

2.4.2 Training a Neural Network

During the learning process, the network parameters are updated to achieve the intended task.

The aim is to adjust the parameter values of weights wi associated with the connections between

layers and biases in order to minimize an error function measuring the discrepancy between the

desired output and the output of the model. However, in a multilayer network, it is difficult to

solve the optimization analytically. Therefore, iterative numerical procedures can be used to find a

sufficiently good solution. A possible approach is to use an iterative gradient descent optimization,

previously described in more detail in section 2.3.5. This approach is able to deal with various

activation and error functions. To start, the weights of the neural network are initialized to small

random values and the input is propagated forward through the network. The received network

output is then compared to the desired output using a loss function. To update the network

parameters, the gradient of this loss function is calculated with respect to the weight parameters of

the network. This is done using the chain rule of derivatives to propagate the error back through

the network. Thus, the calculation of the gradient proceeds backwards through the network, with

the gradient of the final layer of weights being calculated first and the gradient of the first layer

of weights being calculated last. This is called back propagation [95]. The neuron weights are

finally updated by subtracting a proportion of the gradient of the weights from the weights. This

proportion is called the learning rate. By repeating the procedure, the network model is able to

learn the given task.

Since this process corresponds to an iterative optimization procedure, different methods beside
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gradient descent optimization can be employed to update the weights, similar or corresponding to

those presented in section 2.3.5. These can include methods to estimate an appropriate step size

for the weight change, since the network might take too long to converge if the step size is too

small, or never converges and starts to oscillate if the step size is too large. Other approaches

focus on weight decay, which scales down all weights after every iteration to avoid weights growing

improportionally large [96, 97].

A common problem when training an artificial network is the so-called overfitting. In this case, the

network is perfectly trained for a given task, but is not able to recognize general input. This can

be monitored by dividing the training data into three subsets. These subsets correspond to one set

of training data, which is actually used to train the network, and two subsets, called the validation

and test data, which are held-out during training and only used to evaluate the model performance.

This is done, since testing the network model skill on already known training data would result is a

biased performance score. The difference between the validation data and the test data is that the

validation data is used to estimate the model performance during training, however the resulting

error is not taken into account for updating the network parameters, whereas the test set is used

to evaluate the final model. When the error increases in the validation set, this is an indicator for

overfitting.

Since the data sets are often too large to be processed as a whole, especially in image processing, the

data is provided to the network in batches. The batch size then defines the number of samples which

are worked through before the neural network model updates its parameters. Another important

parameter during training of neural network is the number of epochs whereas an epoch defines the

number of times the algorithm will work through the entire data set which is used for training.

Although the concept of multi-layer neural networks exist since 1980s, the training of large neural

networks only became possible in the last few years. This is linked to different reasons, such as

the lack of sufficiently large training data and powerful computers. The technological advances of

graphics processing units (GPUs) allowed to realize the training of complex deep neural networks.

Moreover, the development of novel activation functions such as ReLU or novel layer types that

reasonably decrease the amount of data further advanced the realization of various DL methods

and thus opened a way for the development of novel image processing methods.

2.4.3 Convolutional Neural Networks

The main challenge in processing image data is that even modestly sized images contain an enor-

mous amount of information. An average 2D medical image contains for example 256×256 = 65536

pixel and for 3D images, this number additionally increases by two orders of magnitude. Thus,

the amount of required weights to process such a 2D image in a fully connected neural network

would also amount to 65536, if the information of each pixel is separately processed. This would

result in a computationally demanding and slow training process. Moreover, image processing tasks

often require information from surrounding pixels. An approach to integrate the information of

neighboring pixel in classical image processing is the use of well-known convolutions such as e.g.

Gaussian operators, Laplacian operators or gradient operators like a Sobel filter.
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Figure 2.17: Principle of a convolution filter. The activation map is determined by sliding a filter, whose entries are
learning during training, over the input image. The matrix values correspond to the dot product of the filter and the
sub-image that is covered by it (here shown in blue).

To handle this vast amount of data in DL, a similar approach is used by introducing the concept

of convolutional neural networks [98, 99]. The main difference to fully connected neural networks

is that convolutional neural networks rely on information processing based on a convolutional

filtering of the input of neighboring neurons. Figure 2.17 displays an example of a convolutional

filter whereas the size of the receptive field, which corresponds to the region in the input space that

a particular feature of the neural network is affected by, is defined by the size of the filter kernel.

The discrete convolution of a 2D image f with a filter kernel g is defined as

h(x, y) = f(x, y) ∗ g(x, y) =
∑︂
n

∑︂
m

f(n,m)g(x− n, y −m) . (2.30)

Basically, the dot product of the filter g and a sub-image of f with the same size as the filter

centered at the coordinates (x, y) results in the intensity value of the filtered image h at pixel

(x, y). By shifting the filter over the entire image f an output matrix h is created. In the context

of convolutional neural networks h is referred to as feature map. The procedure requires a special

treatment of the pixels at the image borders, since the convolution filter exceeds the image bound-

aries in this case. The image can either be padded by adding pixels with e.g. zero intensity or the

intensity of the closest edge pixel, or the size of the resulting feature maps decreases slightly with

every convolution since the calculation neglects border pixel in the input which are not covered

entirely by the convolution kernel.

By applying such a set of convolutional filters, a convolutional layer in a neural network can be

created whose filter kernel values are trained as conventional neuron parameters. The height and

width of the output feature map depends on the dimensions of the input to the layer map whereas

its depth depends on the number of applied filters. Since these filters are used for the entire image,

the number of required parameters is drastically reduced compared to a fully connected layer in

which each input channel is treated separately. So a fully connected layer uses one weight for each

input pixel, whereas a convolutional layer only requires one weight per element of the filter kernel.

The neurons of the convolutional layer share the same parameters and thus ensure translation

invariance.

By connecting convolutional layers with other types of layers, a convolutional neural network (CNN)

is formed. Typically other types of layers which are connected include pooling layers. Pooling layers

are often used to decrease the size of the activation map created by the previous layer to decrease
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Figure 2.18: Maxpooling results in a down-sampling of the input image.

computation time. This is done, because deep layers of the network often require less spatial

information about exact feature locations, but more filter matrices to recognize high level patterns.

This can be realized by implementing a pooling layer with a stride larger than 1 (otherwise the

size of the output of the pooling layer is the same as the input size) to down-sample the size of the

activation map. The stride controls the distance between the centers of the applied filter kernel. If

the filter is applied for every pixel in a neighborhood, the stride equals 1, if the filter is only applied

to every n-th pixel the stride equals n. In addition, the introduction of a pooling layer increases

the translational invariance of the network. A typical pooling filter is a max pooling layer which

outputs the maximum value within a rectangular neighborhood of the activation map as shown in

Figure 2.18. Another method to reduce the size of the activation map is to employ a stride larger

than 1 during the convolutional operation. For certain applications, it is necessary to increase the

size of the activation maps again, which is done by using an upsampling layer. Here, the size is

increased e.g. by surrounding each value with zeros or a copy of this value.

Another way to regularize the learning process is the employment of dropout layers. The main idea

of a dropout layer is to randomly disable input units by setting the outputs of hidden neurons to zero

at a pre-set probability after each training iteration. Due to these dropouts, the network samples

a different architecture every iteration which forces the neurons to learn more robust features.

A special type of CNNs are Fully Convolutional Networks (FCNs). They are built only from locally

connected layers such as convolution, pooling and upsampling layers, but not fully connected layers.

This results in a reduction of the number of parameters and computation time and allows for a

computation which is independent from the original input size since all connections are local.

2.4.4 Encoder-Decoder Architecture

A very popular network architecture for image processing tasks are encoder-decoder networks which,

as the name implies, consist of two stages: an encoding and a decoding stage. The encoder is

typically composed of a sequence of convolutional and pooling layers and is used to embed the

information contained in an image in a compressed lower dimensional feature representation. After

every pooling step, the following convolutional layer has an effectively increased receptive field

taking into account a larger region in the original input image. This is important for the network

to not only learn local features, but also global context for larger image regions. A decoder is

build for the contrary purpose, thus, to decode the information contained in the lower dimensional

feature space. In consists of a series of convolutional and upsampling layers and aims to reconstruct

the compressed output from the encoder. The main idea to use these encoder-decoder networks is

that by compressing the input to a small intermediate feature representation, the network has to
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Figure 2.19: Encoder-decoder architecture based on the U-Net puplished by Ronneberger et al. [100].

learn a fitting representation of the input data to ensure that the decoder is able to reconstruct it

correctly. These encoder-decoder architectures have proven to be more effective with small data

sets as fully connected convolutional networks which are designed to learn little bits of information

over a vast number of examples.

The most popular encoding-decoding network architecture is the U-Net proposed by Ronneberger et

al. [100]. Its introduction has made a huge impact in many computer vision applications, especially

image segmentation, outperforming conventional methods in various fields [101]. In addition to the

standard encoder-decoder path, the U-Net includes ”‘short-cuts”’, so-called skip connections, which

are typically implemented as channel concatenations or additions between encoder and decoder at

the same depth as shown in Figure 2.19. In this way, the decoder receives additional information

and is able to regain spatial context and to include finer details of the encoder stage as well.

This architecture helped to achieve impressive results in image segmentation [100] and has been

successfully applied for many image-to-image translation tasks. New approaches also rely on this

architecture to learn image registration tasks as will be explained in chapter 3.3.

In summary, the recent developments using DL in computer vision and especially medical image

processing opened up an active field of research which yields new approaches for different image

processing tasks. Moreover, the field of DL-based methods still offers a multitude of open questions

including the investigation of novel network architectures or an effective characterization the impact

of certain training parameters which is essential for the understanding of learning process.
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3

State of the Art

The work presented in this thesis contributes to three different research areas in the field of medical

image registration:

1. Image registration evaluation,

2. Novel feature-based similarity metrics for image registration and

3. Deep Learning in medical image registration.

Although image registration has been a challenging task in computer vision for many years, all of

these topics are active fields of research and especially DL-driven registration methods are currently

quickly developing and changing. Therefore, the current state of the art of these three research

areas will be presented in this chapter, including a literature review of the most relevant approaches

to our research.

3.1 Image Registration Evaluation

Despite the fact that there have been significant advancements and developments of registration

methods themselves, techniques of registration evaluation received little attention.

Until today, there exists no standardized evaluation methodology to compare and benchmark ex-

isting registration methods. The main reason for this is the diversity of registration categories

as shown in Section 2.3.1 which makes it difficult to define general criteria to evaluate the per-

formance of a registration algorithm. The importance of certain criteria highly depends on the

intended application scenario, e.g. real-time applications focus on time efficiency of a registration

method whereas other applications require the highest possible registration accuracy in terms of

image alignment.

Some of the characteristics which are considered relevant to evaluate an image registration algorithm

and are therefore most often discussed in publications are:

� Image alignment:

Since image registration aims to optimally align two or more images, the accuracy and pre-

cision of this alignment represent the most important characteristics. The accuracy refers to
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the error/misalignment obtained for ideal input data and the precision refers to variations of

this error.

� Capture range:

A similar requirement is represented by the demand for a high capture range of the registration

technique. The capture range generally defines the magnitude of image displacements, that

can be corrected by the registration method. Hence, a large capture range ensures that the

algorithm is able to find a geometric transformation to realign the input images, although

the initial displacement between both images is very large. This is especially significant for

rigid registration methods which aim to find global geometric transformations.

� Plausibility of transformation:

This is an especially important point for deformable image registration, since the algorithm

should output a physically plausible and smooth displacement field without folding or tearing.

Moreover, the transformation determined by the registration method should maintain inverse

consistency. This means that the estimated transformation should not be affected by the

choice which image is used as reference and which as source image, but should maintain

symmetry such that TA→B = T−1
B→A. If a third image is included, the transform should

also maintain transitivity when registering image A → C so that the overall transformation

corresponds to the joint transformations TA→C = TA→B ◦ TB→C .

� Robustness and Stability:

A registration method should be robust in more than one sense. For once, the results of

the registration algorithm should not be significantly affected by perturbations in the image

data, such as different degrees of noise or small artefacts. In addition, the algorithm should

be robust in terms of consistency/stability, yielding a deterministic outcome when repeatedly

executed on the same data.

� (Computational) Requirements:

This refers to the required preprocessing and demand for IT resources of the algorithm. Both

of these requirements are directly related to the time efficiency of the algorithm. Advanced

complex registration methods or algorithms which rely on manual or automatic preprocessing

can be time-consuming whereas time-constraints highly depend on the intended application.

Another very significant cause which makes the development of a standardized registration eval-

uation difficult is the fact that there rarely exists perfectly aligned ground truth data which can

be used for the validation of the image alignment. Although monomodal registration methods can

theoretically be evaluated using the same input data as reference and geometrically transformed as

source image, there exists no ground truth data for the registration of two independent monomodal

scans. This is even more significant for multimodal registration methods, for which the input data

is acquired with different devices. As a result, the lack of a gold standard evaluation in terms

of alignment accuracy is a major limitation in the field of non-rigid registration and multimodal

registration. This is especially crucial for medical image registration, since a validation and evalua-

tion of registration results represents an important step before introducing a registration method to
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clinical routine. Thus, the absence of an evaluation gold standard impedes the use of image registra-

tion in different clinical workflows. Nevertheless, several surrogate measures have been developed

aiming to estimate registration accuracy in terms of image alignment which will be explained in

the following.

A very simple evaluation methodology to estimate registration accuracy is to apply a known defor-

mation to an image, and then attempt to recover it by registration [102, 103, 104]. By comparing

the known deformation field to the one estimated by the registration approach by using e.g. a

distance measure, it is possible to evaluate the registration process. This evaluation approach con-

veniently quantifies actual registration errors (and thus accuracy), but is limited by its inability to

quantify the accuracy of registrations between two independent images. Moreover, the generation

of synthetic displacement fields often ignores physical properties of the organ tissues and therefore

results in non-realistic deformations.

Most commonly employed alignment measures are based on the global overlap of different structures

in the images and require image preprocessing in form of the generation of segmentation masks

[105, 106, 107]. One of these measures is the Dice Similarity Coefficient (DSC) [108]. DSC is an

overlap measure of labeled image regions E (for example given by binary segmentation masks)

between the transformed source image Is(E) and the reference image Ir(E) and is given as

DSC =
2|Is(E) ∩ Ir(E)|
|Is(E)|+ |Ir(E)|

. (3.1)

A high DSC score (typically ≥ 90%) indicates a good overlap between the labeled regions after

image registration. An alternative to the DSC is the Jaccard Coefficient (JC) [109] which is defined

as

JC =
|Is(E) ∩ Ir(E)|
|Is(E) ∪ Ir(E)|

. (3.2)

Both of these overlap measures can be related through

DSC =
2JC

JC + 1
(3.3)

and can be calculated as single value for the overlap of two segmentation masks including several

structures or they can be calculated for the mask overlap of each structure separately.

Another accuracy measure that is also based on the estimation of global overlap is given by the

Hausdorff Distance (HD) [110]. On contrast to the DSC, HD does not rely on labeled image regions

but on finite sets of points A = {a1, ..., ap} and B = {b1, ..., bp} in the source and target image.

The HD is then defined as

HD(A,B) = max(h(A,B), h(B,A)) (3.4)

with

h(A,B) = max
a∈A

(min
b∈B

∥a− b∥) . (3.5)

The HD measure is often used to estimate the distance between a contour in the deformed source

image and the target image. A low HD value corresponds to a low distance between these points

and therefore a good registration accuracy.
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However, is has to be noted that these approaches highly depend on the quality of the employed

segmentation masks. Moreover, using only one of these accuracy measures can be misleading, since

a high DSC can indicate a good region overlap whereas the HD measure for the same registration

can be very low due to an inconvenient contour registration. Therefore, a combination of different

accuracy measures can be very useful. A selection of these surrogate measures were part of the

software package Nonrigid Image Registration Evaluation Program (NIREP) [111] which included

methods to estimate ROI overlap, intensity variations, inverse consistency and the transitivity

error, but which is no longer available.

A major drawback of overlap measures and contour alignment measures is the fact, that they do

not evaluate the registration accuracy within the labeled region. Using the example of non-rigid

liver registration, such an accuracy measure relying on a segmented liver mask and its contours may

indicate that the liver region in both images is perfectly aligned, but does not quantify the correct

alignment of vessel branches or other structures inside the liver. The use of similarity metrics

as presented in Section 2.3.4 is also not appropriate to measure alignment accuracy, since these

methods are often biased to registration algorithms which employ the same or a similar similarity

metric in their cost function.

Rohlfing [112] impressively demonstrated that commonly used accuracy measures such as tissue

label overlap scores or image similarity measures are not sufficient to evaluate deformable regis-

tration performance. In his paper, he showed that that even combinations of these measures are

unable to distinguish between accurate and inaccurate registrations. He did this by implement-

ing a registration method which purposely yields inaccurate registration results but which could

nevertheless achieve high accuracy scores using these image similarity and tissue overlap measures.

Thus, these methods do not provide valid evidence for accurate image registration. According to

Rohlfing, the standard for reporting nonrigid registration errors should ideally be reported as ac-

tual registration errors measured at a large number of densely distributed landmarks (i.e. distinct

identifiable anatomical locations).

Point-based accuracy measures rely on point correspondences in the images that are registered. If

these points are represented by anatomical landmarks or fiducial markers, two types of error are

important: The Fiducial Localization Error (FLE) and the Fiducial Registration Error (FRE). The

FLE corresponds to the distance of a localized point from the actual fiducial position in an image

before any alignment is done [113]. Thus, it gives an estimation of the identification accuracy of a

fiducial. The FRE then defines the Euclidean distance between the center of a fiducal in the source

image which is affected by the FLE and the center of its corresponding fiducial in the reference

image.

If the point-based accuracy is not limited to fiducials but includes the Euclidean distance between a

point in an image and its true position, the error is referred to as Target Registration Error (TRE)

[114]. Mathematically expressed, the TRE is given as the root mean square distance of homologous

targets ts,i and tr,i with i = 1, 2, .., N in the source and reference image, respectively

TRE =
1

N

⌜⃓⃓⎷ N∑︂
i=1

(T (ts,i)− tr,i)
2 , (3.6)
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with the geometric transformation T of the source image. Although the definition of FRE and

TRE are quite similar, Fitzpatrick et al. [115, 113] showed that both error types are in fact

uncorrelated and can not be used interchangeably. The points which are used for the calculation of

the TRE are typically chosen in a target location of some treatment and are therefore often more

clinically-relevant than the FRE [116]. However, due to some inconsistencies in terminology, it is

not uncommon that fiducial-based registration errors are referred to as TRE in literature.

Point- or fiducial-based registration evaluation methods are suitable for monomodal as well as

multimodal image data depending on the type of landmarks. One way to obtain the point sets for

registration evaluation is by manually choosing salient points in the data sets [117, 118, 119]. But

this is highly time-consuming and the results are biased by the accuracy of the annotations. Some

projects published their annotated data to help others develop registration evaluation methods,

such as Vandemeulebroucke et al. [120] whose data set consists of a single 4D lung CT data set

which is composed of 10 3D images with 41 landmarks each or Castillo et al. [117, 121, 122]

who also published 10 4D lung CT data sets with 300 landmarks per respiratory phase within

the frame of the Deformable Image Registration Laboratory (DIRLab). The Retrospective Image

Registration Evaluation (RIRE) project used skull-implanted fiducials in patients to generate a

gold standard transformation for the evaluation of multimodal rigid registration techniques and

published their data in a open-access database [123]. However implanted markers are highly invasive

and in practice, the manual determination of convenient target points or non-invasive fiducials is

challenging. Therefore, Murphy et al. [124] developed a semi-automatic process to generate ground

truth for point-based registration evaluation of thoracic CT scans and also published 30 pairs of

thoracic CT scans within the frame of the Evaluation of Methods for Pulmonary Image Registration

2010 (EMPIRE10) project [125]. In the EMPIRE10 challenge, registration algorithms are evaluated

based on lung boundary alignment, fissure alignment, correspondence of manually annotated point

pairs, and the presence of singularities in the deformation field.

Most of the presented approaches to medical image registration evaluation focus on the monomodal

registration of head or thoracic scans. Two of the rare approaches which focus on the registration

of abdominal scans are presented by Xu et al. [126] and Lee et al. [127]. In these papers, six

and five different registration methods were compared for the registration of abdominal CT scans,

respectively. However, the results on both publications are based on tissue overlapping accuracy,

using the DSC and HD as surrogate measures which are arguable accuracy estimates as discussed

previously.

Evaluation of Image Similarity Measures

Instead of evaluating the performance of an entire end-to-end registration method, it sometimes

is necessary to benchmark the performance of an isolated component of a registration algorithm

to investigate its influence on the overall performance of the method. An especially important

component in most registration methods is the employed similarity measure. Traditionally, the

behavior of an image similarity measure is investigated either indirectly by studying the quality of

the final registration outcome or by sampling the parametric space of the metric obtained for the

application of transformations relative to a ground truth. The latter results in the acquisition of a
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Figure 3.1: An ideal parametric cone is characterized by a smooth surface without local extrema and a clear extremum
indicating the optimal image alignment.

parametric cone that generally describes the landscape of the similarity measure in its parametric

space. In an ideal case, this landscape should be characterized by a smooth surface without local

extrema and a clearly identifiable extremum at the position of optimal image alignment as shown

in Figure 3.1.

However, the performance evaluation based on the parametric sampling is naturally limited to

a fraction of the parametric space. This lead to the development of more advanced similarity

evaluation techniques for rigid [128] and non-rigid registration [129]. Although both methods still

rely on the sampling of the parametric space, they extend the traditional sampling by examining

specific properties of the parametric space, including the distinctiveness of the optimum, the capture

range and the number of local extrema. However, current approaches to investigate the performance

of image similarity measures neglect the influence of differences in the image size of the input data

or the position of optimal image alignment on the similarity estimation.

Contributions of this work:

Up to now, there exists no freely available evaluation methodology for the registration of multimodal

abdominal scans, which relies on point-based accuracy measures. Therefore, such an evaluation

methodology was developed within the frame of this thesis, focusing on the accuracy evaluation

for the registration of 3D CT, MRI and CBCT scans of the liver. The proposed method is based

on the evaluation methodology for 2D-3D multimodal registration of vertebral bodies presented by

van de Kraats et al. [130]. However, the approach was expanded to 3D-3D registration, including

a modified preprocessing to set the focus on the registration of the liver. The developed evaluation

methodology will be presented in Section 4.2. To further investigate the influence of the employed

image similarity measure on the registration outcome, an additional evaluation step is presented.

This evaluation step extends the sampling of the parametric space of a similarity measure by

distinguishing between different types of input data and thus, enables an appropriate comparison

of similarity measures for specific input images. This similarity metric evaluation is presented in

Section 4.2.4.

3.2 Novel Multimodal Similarity Metrics

As presented in Section 2.3.4, the definition of a multimodal similarity metric is highly challenging,

since there exits no functional relation between the intensity mapping of corresponding anatomies
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in different image modalities due to their differences in physical acquisition principles. Up to date,

similarity measures based on Mutual Information (MI) as defined in Eq.2.20 and its derivatives rep-

resent the standard metrics for multimodal image registration tasks [5, 69, 73, 70]. Nevertheless,

these approaches suffer from several disadvantages. In general, MI is known to be non-convex and

typically results in local extrema which hinder the parameter optimization during image registra-

tion. This may result in incorrect image alignments or an increased computation time. Moreover,

MI is estimated based on the joint grey value distribution in both images. This requires the use of

approximations of the intensity distribution that are complex to compute and may involve sensi-

tive smoothing parameters. But the main drawback of MI-based similarity measures for non-rigid

registration tasks is the fact that MI-based metrics are intrinsically estimated on the entire image

and thus rely on global instead of local information. As a consequence, MI-based methods have

been very successful for rigid image alignment, but their application for non-rigid registration tasks

is more demanding. Thus, novel approaches to define multimodal similarity metrics have been

published in the last years.

Metrics based on Scalar Images

Mellor et al. [131] e.g. proposed the concept of phase mutual information. Instead of modeling an

intensity mapping between two images, this approach models a relationship between local image

phase and uses the extracted features as basis for a similarity measure. Other approaches focus on

the information gained by the calculation of image gradients [132, 133, 134]. One approach which is

relevant to some experiments performed within the frame of this thesis is the Normalized Gradient

Field (NGF) similarity measure published by Haber et al. [135]. In this approach, the normalized

image gradients are defined as

∇̃f =
∇f√︂

∥∇f∥2 + ϵ2
=

∇f

∥∇ϵf∥
, (3.7)

whereas ϵ corresponds to an edge parameter that controls the impact of image gradients and should

be chosen in the range of edges of interest. The NGF loss can then be estimated as

LNGF =

∫︂
Ω
1−

(︂
∇̃f(x− u)T · ∇̃g(x)

)︂2
dx . (3.8)

Here, f(x) and g(x) correspond to the intensity values at position x in the source and target image,

respectively, whereas Ω defines the entire image domain and u the displacement.

In general, the employment of image gradients for similarity estimation represents a reasonable

approach, since derivatives result from sudden intensity changes in the image which stem from the

image structure and are thus related to organ/tissue boundaries. Wachinger et al. [136] also rely on

structural information by proposing the definition of structural image representations which enable

the use of L1 or L2 distance as similarity measure.

An advantage for the optimization of the cost function during registrations relying on these ap-

proaches is the fact that the image representations can be minimized using point-based differences.
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However, for complex multimodal input data, scalar image representations may not be discrim-

inative enough which lead to the development of similarity measures which are based on more

discriminative feature descriptors.

Metrics based on Discriminative Feature Descriptors

A popular feature representation is the Self-Similarity Descriptor [137]. As the name suggests,

the descriptor relies on the concept of self-similarity which defines the similarity within an image

and can be estimated patch-wise using simple measures such as SSD. The patch-wise computation

results in a local descriptor which can be extracted and matched across images [138]. The general

assumption is that even though there exits no linear relation between the intensity distribution of

anatomical features in two images, the intensity distribution within a local neighborhood is reliable

and similar in different images of the same object. Consequently, the Self-Similarity Descriptor

incorporates local information and is independent of the particular intensity distribution in the

images making it suitable for multimodal deformable image registration.

This simple concept has been exploited in many different areas of image analysis and has been

expanded to more advanced and robust versions which can be used as basis for an image similar-

ity measure. One approach is to use a Local Self-Similarity Descriptor in combination with MI

[139, 140]. Another derivative of the Self-Similarity Descriptor is e.g. the so-called Modality Inde-

pendent Neighborhood Feature Descriptor (MIND) presented by Heinrich et al. [141]. The MIND

encodes the local configuration of the Gaussian-weighted patch-distance in a neighborhood of the

encoded voxel and is characterized by an advanced spatial sampling of the neighborhood, making

the descriptor robust to noise and illumination changes. By comparing the descriptor of different

images using simple monomodal distance measures, a similarity between these images can be es-

timated and used for image registration. Although this approach has been validated successfully

for CT-MRI and MRI-Ultrasound registration tasks, the MIND is rotationally invariant which is

a limitation for the registration of strongly rotated images. Although self-similarity seems to be

the most commonly used concept to extract a discriminative feature descriptor as basis for medical

image registration, there exists another approach which relies on a binary image descriptor referred

to as discriminative Local Derivative Pattern (dLDP) [142]. dLDP is calculated as a binary string

for each voxel according to the pattern of intensity derivatives in its neighborhood and evaluated

using the Hamming distance, instead of conventional L1 or L2 norms.

In this work, a novel feature-based similarity metric is propoposed which relies on Histograms

of Oriented Gradients (HOG) features. Originally, HOG were proposed as basis for a feature

extraction algorithm applied for human detection in 2D photos or videos [143] and are now used

for various computer vision applications [144, 145, 146]. The feature detection algorithm is based

on computing gradient orientation histograms and results in a global feature descriptor (or feature

vector) which can successfully describe the contents of the image regarding its gradient information.

The original version of the HOG descriptor is designed for 2D images. The first step to determine

the HOG descriptor of a 2D image is to calculate the gradients in x- and y-direction using a

derivation kernel, e.g. a Sobel filter. The magnitude g and the direction θ of the gradient in each

46



Figure 3.2: Generation of a Histogram of Oriented Gradients. After the gradient computation, the image is subdivided
into cells, shown in red, that are grouped to overlapping blocks such as the one exemplary shown in yellow for
normalization.

Figure 3.3: Extraction flow of a HOG feature descriptor.

pixel can then be calculated using the following formulas:

g =
√︂
g2x + g2y (3.9)

θ = arctan
gy
gx

(3.10)

The gradient orientation θ is generally defined as angles between 0◦ and 180◦ instead of 0◦ to 360◦.

It has been empirically shown that these unsigned gradients result in an increased robustness for

detection tasks based on HOG descriptors [143]. Next, the image is divided into equally sized

subregions called cells and the cells are organized in overlapping blocks as exemplary shown in

Figure 3.2. For every cell, a gradient histogram is calculated in which each histogram bin covers a

certain angular orientation range. e.g. in the original paper, a single bin corresponds to an angular

range of 20◦. The transfer of the gradient information into a histogram results in a quantization

and thus, a compression of the information.

The histogram entries correspond to the weighted gradient magnitude whereas the magnitude is

split between two neighboring bins. Under the assumption that the bin size is 20◦ and the gradient

orientation corresponds to 85◦, 1
4 of the gradient magnitude is added to the bin centered at 70◦

and 3
4 of the gradient magnitude is added to the bin centered at 90◦. It is important to note that

histogram entries for angles close to 180◦ may be partially transferred to the first bin, since 0◦

and 180◦ are considered to be equivalent. The aim of weighting the histogram entries is to take

gradients into consideration which are right on the boundary of two bins. Otherwise a small shift

of a gradient with a large magnitude would have a strong impact on the outcome of the histogram.

By organizing the cells in overlapping blocks and concatenating their histogram vectors, it is possible

to apply a normalization of the resulting block histogram vector. This normalization is based on

a larger region as the normalization of individual cell histograms. This leads to an increased

robustness of the feature descriptor extraction against local shadowing or intensity variations is

shown by Dalal et al. [143]. The final HOG descriptor for the entire image is then defined by
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Figure 3.4: Scheme of a siamese network.

concatenating all normalized block histogram vectors to a single vector. The whole extraction flow

is summarized in Figure 3.3.

In terms of image registration applications, only few approaches relying on HOG features exist.

Abraham et al. [147] implemented an approach for point-based image registration by estimating

and matching HOG feature descriptors of significant keypoints to generate a transformation field,

whereas Zhou et al. [148] applied HOG for a rotational pre-alignment of 2D images before per-

forming a registration.

Metrics based on Learned Features using Neural Networks

An alternative to the classical extraction of a feature descriptor comes with the rise of DL in the

field of computer vision. Novel methods based on neural networks enable the learning of distinct

feature descriptors which bear the potential to be used as basis for a multimodal image similarity

measure. Examples of these approaches are given by the Fully Convolutional Self-Similarity (FCSS)

descriptor presented by Kim et al. [149] and the Binary Robust Independent Elementary Features

(BRIEF) descriptor [150]. However, the extraction of features which can be used to calculate

a similarity value is not the only application of DL in terms of the development of novel image

similarity measures. Novel methods also rely on the use of neural networks to directly estimate

similarity between images without additional measures. This is called Deep Metric Learning.

More recent approaches to multimodal Deep Metric Learning employ a discriminative concept in

which the learning of image similarity is treated as a classification problem that aims to discriminate

between aligned and misaligned images of different modalities. Cheng et al. [151] propose a fully-

connected CNN pretrained with an autoencoder to directly learn image similarity of multimodal

2D images as binary classification. The input is preprocessed using a trained denoising autoencoder

network to learn appropriate feature representations which are more similar across modalities than

the original images. This method is similar to the one presented by Simonovsky et al. [152] who

scaled this approach to 3D input data and employs a training from scratch. The two input patches

are concatenated and fed to a feed-forward CNN whose output corresponds to a scalar classification

score.

Instead of concatenating the input images, approaches relying on Siamese networks, process the

input data separately. A siamese net is a network which consists of two branches that share exactly

the same architecture and the same set of weights to learn an optimal feature representation of two

images before comparing these representations via loss function. Deep Metric Learning based on
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siamese networks belongs to the group of supervised learning methods that are trained by using

labeled data. For a siamese network, this data is represented by a pair of images with a binary

label: the pair is labeled with 0 if the images are ‘similar’ and 1 if they are ‘dissimilar’. The training

of these networks often relies on a contrastive loss which is a combination of an Euclidean loss and

a hinge loss, given as

Lc(x1, x1, y,m) =
1

2
y(DW )2 +

1

2
(1− y) {max(0,m−DW )}2 , (3.11)

whereas DW represents the Euclidean distance between the outputs of each network branch

DW (x1, x2) =
√︁
(GW (x1)−GW (x2))2 . (3.12)

Here, x1 and x2 correspond to the input images, y to the assigned binary label and m represents

a margin value larger than 0. Dissimilar pairs with a distance larger than this value will not be

considered for the calculation of the loss. This ensures that the network is optimized learning the

nuances to distinguish between images that are very similar, but do not display the same object.

The contrastive loss forces a small distance between images that are labeled as similar and favors

large distances between dissimilar images pairs. Thus, instead of learning to classify its network

inputs, the neural network learns to differentiate between two inputs based on their similarity. The

network is then trained by updating the weights of each network branch independently and then

average the resulting weights. By feeding two input images in a trained siamese network the value

for the contrastive loss for these two images is determined and gives a indication on the similarity

of both images, thus serving as metric value. Although most siamese networks employ an encoder-

decoder architecture for each branch, the exact architecture can be adjusted to the task at hand.

Siamese networks are increasingly used for Deep Metric Learning [153, 154] and recent methods

expand this techniques to Triplet networks [155, 156].

The approaches to learn a similarity measure using neural networks yield promising results, however,

the main challenge of Deep Metric Learning in the context of medical image registration is the lack

of sufficiently registered multimodal ground truth data.

Contributions of this work:

The contributions of this work to the research field of novel similarity metrics are twofold:

1) A novel similarity metric is proposed which is based on the use of Histograms of oriented Gradi-

ents descriptors to define a novel measure for multimodal image similarity. Recent approaches that

incorporate gradient information as basis for a similarity measure typically rely on a global compu-

tation Therefore, a patch-based approach to integrate local information for registration purposes is

proposed. The proposed similarity measure relies on the gradient orientation and magnitude and

is implemented and evaluated for 3D-3D registration.

2) A siamese neural network architecture was implemented and trained in a medical context learning

a multimodal similarity measure using T1- and T2-weighted MRI brain scans as well as synthet-

ically generated MRI, CT and CBCT abdominal scans. The theoretical background as well as

implementation details for both of these novel similarity measures are presented in Section 4.3.1

and chapter 4.3.2, respectively.
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3.3 End-to-End Registration Learning using Neural Networks

Deep Learning benefits registration not only in terms of the evolution of novel similarity metrics,

but also in terms of the development of novel methods for end-to-end registration learning. In the

last few years, various new methods using neural networks in the field of medical image registration

have been proposed and a summary of current approaches is given by Haskins et al. [157].

End-to-end registration learning represents a subcategory of Deep Learning methods in image

registration. These methods aim to learn the spatial mapping of one image to register it with

another. The output of these networks therefore either corresponds to the warped source image,

the complete geometric deformation field which is necessary to align the images or both. One of the

main advantages to use neural networks for image processing is the fact that once the networks are

trained, they allow for a very fast processing of the input images. This can be especially important

for time critical applications including image registrations in an interventional scenario.

In general, end-to-end registration learning defines the registration as parametric function and

optimizes its parameters given a set of training data. The registration of new data pairs is then

computed by evaluating the function using the learned parameters.

Supervised Registration Learning

Most approaches proposing neural networks to learn such a parametric function for medical image

registration rely on ground truth deformation fields for training their networks [158, 159, 160, 161].

This ground truth data is either obtained by simulating and applying deformation fields or by using

classical registration methods. Although these supervised methods achieve impressive results, the

requirement of additional information in form of warping fields limits the potential application of

these algorithms, since it possibly restricts the deformations that can be learned.

Weakly and Unsupervised Registration Learning

Therefore, several weakly- and unsupervised methods have been published in the last years. These

methods typically employ a CNN and a spatial transform function that warps one image to the

other. Most of these approaches are driven by an image similarity measure which is used to compare

the fixed input image with the transformed source image warped by the spatial transformer similar

to conventional image registration. Examples for these types of networks are the so-called DIRnet

presented by de Vos et al. [162] or the fully convolutional net presented by Li et al. [163]. Both

networks lead to promising results for deformable registration tasks, but their demonstration is

limited to 2D slices or 3D sub-regions of the original images as well as the correction of small

deformations. A general disadvantage of similarity-driven methods is the fact that they inherit

shortcomings of the employed similarity measure.

As for conventional image registration, feature-based methods represent an alternative to intensity-

driven methods. These approaches aim to estimate the deformation fields from higher-level corre-

spondence information in anatomical labels using an end-to-end trained CNN. Such networks that
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Figure 3.5: Overview of the VoxelMorph network.

predict a displacement field to align multiple labeled corresponding structures for image registration

were presented by Wu et al. [164] based on a stacked autoencoder architecture and Yipeng et al.

[165] relying on a weakly supervised CNN. As additional alternative to intensity-driven methods,

approaches that rely on segmentation-based loss functions have been proposed. An example of such

a method is presented and successfully applied for the multomodal registration of T2-weighted MRI

to 3D ultrasound data by et al. [166, 167].

The VoxelMorph Network

An unsupervised learning model for deformable image registration which plays a particular role for

the work presented in this thesis is the VoxelMorph network by Balakrishnan et al. [6, 168, 169, 170].

Once again, the parametric function is modeled based on a CNN and an additional spatial transform

layer that processes both input images and outputs a mapping of all voxels from one image to the

other while imposing smoothness constraints on the estimated registration field. In contrast to

previously presented methods, this network is applicable for entire 3D volumes as well as large

deformations. Moreover, the network does not necessarily require supervised labels for training

and guarantees a diffeomorphic registration which preserves image topology. An overview of the

method is shown in Figure 3.5.

The VoxelMorph network generally relies on an encoder-decoder architecture with skip connections,

similar to a U-Net. The input to the network is represented by the source and target image which

are concatenated to a 2-channel 3D image. The encoding and decoding are realized by applying

3D convolutions with a kernel size of 3 × 3× 3 followed by Leaky ReLU activation functions. For

the encoding branch, the spatial image dimensions are reduced in half after every convolution due

to a stride factor of 2. As for the conventional U-Net, this is intended to capture hierarchical

features in order to estimate image correspondence. For the decoding branch, it is alternated

between upsampling, convolutions followed by a Leaky ReLU activation and the concatenation

of skip connections which propagate features learned during the encoding stage. The developers

propose two variants of the network which differ in size at the end of the decoder stage and tradeoff

between registration accuracy and computation time. The version VoxelMorph-1 uses one less layer

at the final resolution and less channels over the last three layers [170].
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The VoxelMorph network proposes two variants of registration learning: an unsupervised learning

method using a loss function that only relies on the input volumes and the generated registration

field, and an auxiliary supervised learning using a loss function that relies on anatomical segmen-

tations. As for traditional image registration methods, the unsupervised version of the network

is trained by minimizing a loss function that compares the warped source image to the reference

image. The geometric manipulation of the source image is realized by using a so-called Spatial

Transformer Network (STN) [171]. A STN performs the geometric transformation of an image

as well as a linear interpolation of the intensity values, thus combining the image resampling and

interpolator components of a traditional image registration algorithm.

The unsupervised registration learning relies on a loss function is constructed of two components:

a loss Lsim that penalizes differences in image appearance and corresponds to a conventional image

similarity metric, and Lsmooth that enforces a smooth displacement field. Lsim is chosen as nega-

tive cross-correlation between the reference and source image. Since cross-correlation is a similarity

metric mostly suitable for the comparison of images with similar intensity distributions, the reg-

istration learning using the unsupervised version of the original VoxelMorph network is limited to

monomodal applications. Lsmooth is introduced to encourage smoothness of the deformation field

based on a diffusion regularizer on the spatial gradients of the transformation.

As an option, it is possible to rely on supervised learning by using an additional loss function based

on the Dice coefficient to estimate the overlap of anatomical structures in the reference image and

the warped source image during training. This requires annotated data sets with segmentation

masks for both input images.

Initial experiments [6, 169] using the VoxelMorph network for the registration of T1-weighted

brain MRI scans indicate that the network obtains a similar registration accuracy to state-of-

the-art registration methods while reducing the computation time of the registration process by

several orders of magnitude. A major advantage of the unsupervised VoxelMorph network over

other registration learning methods is the fact that it does not require additional information such

as ground truth registration fields or anatomical landmarks. Moreover, it is able to perform a

registration of complete 3D image volumes instead of only smaller subvolumes.

In summary, novel methods for registration learning replace the costly optimization of traditional

registration methods for each image pair by optimizing a global parametric function. This highly

decreases the time required for an image registration, once the network is trained and thus, enables

a multitude of new possibilities and applications. Since this is a rather new research field which

developed quickly in the last few years, many new ideas and approaches are still to be expected.

Contributions of this work:

Within the frame of this work, the VoxelMorph network architecture has been modified to be used

for affine and multimodal image registration tasks. Novel loss functions such as an unsupervised

Siamese Deep Metric loss and a supervised Deformation field loss haven been implemented for

training the network and evaluated for the registration of multimodal brain and abdominal scans.
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4

Materials and Methods

In this chapter, the contributions of this thesis to the research field of medical image registration

will be presented. The chapter starts with a general overview of the employed software libraries.

Then the chapter is divided into three subsections each referring to contributions to the research

areas in medical image registration including image registration evaluation, novel image similarity

measures and end-to-end registration learning.

The first section focuses on evaluation methodologies. It starts with a presentation of the prepro-

cessing of the image data used for the experiments that are performed within the frame of this

thesis. The aim of this preprocessing is the generation of ground truth image data that can be used

for the evaluation of image registration processes. Moreover, a strategy to evaluate the performance

of similarity measures is presented as well as a novel evaluation methodology for the registration

of multimodal abdominal scans. The developed evaluation framework is explained and used to

compare and evaluate most commonly employed multimodal registration methods.

In the second section, two novel similarity metrics are presented. The first metric corresponds to a

feature engineering approach and relies on the extraction of Histograms of Oriented Gradients as

basis for a multimodal similarity measure. The second metric employs a Siamese neural network

to learn image similarity as a classification task to distinguish between similar and dissimilar image

patches. The presentation of both similarity measures includes details concerning their technical

implementation as well as a presentation of the experiments to evaluate their performance on 3D-3D

medical image data.

The third section is dedicated to study the performance of different variants of the VoxelMorph

network for end-to-end registration learning. The original network is restricted to deformable

monomodal image registration. Therefore, the network is modified to enable affine registration

learning. Moreover, novel cost functions are implemented that are applicable on multimodal input

data and thus, allow the application of the network for multimodal image registration. The per-

formance of the original network as well as the modified versions of the VoxelMorph network are

characterized for different application tasks and image data sets.
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4.1 Toolkits and Hardware

The work presented in this thesis is mostly implemented in the programming language Python,

except for the project presented in 5.3.1 which is implemented in C++. In order to simplify the

process of algorithm implementation, the software is developed using a set of software libraries.

These libraries and toolkits provide tools which facilitate basic image processing tasks or the im-

plementation of neural networks and will be shortly presented in the following. Moreover, the

employed IT-Infrastructure will be presented.

Software Libraries

The libraries which were employed for general image processing and analysis include:

� ITK :

The Insight Segmentation and Registration Toolkit (ITK) [172] is an open-source, cross-

platform application development framework for image registration and segmentation meth-

ods. It is developed in C++ and wrapped for Python, and relies on advanced templated

programming which makes the code highly efficient and expandable to higher spatial image

dimension and different pixel types. ITK contains all standard components used for image

processing including e.g. different interpolators, transformations or metrics, and allows the

development of individual modules which can be integrated in the intended application.

� SimpleITK :

SimpleITK [173] is an offshoot of the ITK project which provides a simplified interface to

ITK. This library is available in multiple programming languages, also including Python, and

usable on all three major operating systems. SimpleITK only exposes the most commonly

modified parameters settings of the ITK components, making it easy to use and thus, allows

for a fast setup of image processing pipelines.

� SimpleElastix :

SimpleElastix [174] is the python wrapper of for the Elastix tool [175]. Elastix is a soft-

ware toolkit developed for medical image registration which provides a collection of highly

optimized registration algorithms. It is based on ITK and its interface relies on a modular

parameter file which can be executed via command line. SimpleElastix is the corresponding

Python wrapper for Elastix which can be imported into Python as a module and enables a

direct modification and execution of the parameter file.

� MITK :

The Medical Imaging Interaction Toolkit (MITK) [176] represents open-source software for

medical image informatics, image processing and interactive 3D visualization. MITK com-

bines ITK and the Visualization Toolkit (VTK) [177] with an application framework and

enables the development of interactive medical image processing software.
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There exist different libraries to set up a functional neural network which are based on the same

theoretical machine learning models, but differ in their approach on how to implement them. The

work presented in this thesis is based on two libraries:

� TensorFlow :

TensorFlow [178] is a Python library which was originally developed as part of the Google

brain project and made open-source in 2015. It offers integrated tools such as TensorBoard,

a visualization tool that automatically generates graphs of scalars from summary files, such

as e.g. the loss function, the learning rate or model weights. Moreover, TensorFlow enables

the distribution of workload on several GPUs, thus offering a computational advantage.

� Keras :

Keras [179] is a neural networks application programming interface written in Python that

runs on top of either TensorFlow, Theano, PlaidML or Microsoft Cognitive Toolkit which are

all different software libraries for machine learning. Since it is designed modular and exten-

sible, it allows for fast and easy prototyping of machine learning algorithms and minimises

overhead.

Hardware

Due to the size of the input data and the large number of parameters optimized during image

registration or contained in a DL algorithm, the use of an appropriate hardware that is able to

handle this amount of data is essential to minimize computation time. For computationally complex

tasks, GPUs are favorable over a CPU, since they represent highly parallel computing engines which

enable a significant reduction in computation time compared to CPUs. The experiments presented

in this work that are characterized by a high computational demand were therefore performed on

a server equipped with two Intel Xeon X5670 CPUs with 96 GB RAM as well as and three Nvidia

GPUs: two Titan Xp GPUs (with 12 GB RAM) as well as one GeForce GTX 1080 Ti GPU (11

GB RAM).

4.2 Evaluation Methodology for Medical Image Registration

The overall goal of the work presented in this thesis is the development and optimization of image

registration methods for multimodal abdominal scans. In general, the performance of a registration

algorithm is highly dependent on the involved modalities, and therefore needs to be investigated

for each modality combination. To optimize a registration method it is crucial to specify criteria

which define the quality of a registration outcome. Since there exists no evaluation standard for

image registration, an evaluation methodology for linear and nonlinear registration of multimodal

abdominal scans has been developed.

The presented evaluation methodology includes two parts: The first part of the presented method-

ology refers to the evaluation of the entire image registration process. The outcome of each method
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is evaluated in terms of registration accuracy. As discussed in Section 3, overlap-based evalua-

tion scores are not suitable to sufficiently describe the performance of a registration method, thus,

the presented methodology relies on a point-based accuracy estimation. The second part aims to

discuss and implement a strategy to validate and compare different similarity measures. This is

important since image similarity metrics represent the most crucial component of the registration

method regarding multimodal image registration since there exists no linear relation between the

intensity distributions in different modalities.

However, as described in previous chapters, the main limitation to evaluate existing and newly

developed image registration methods as well as similarity measures is the lack of ground truth

data in form of optimally registered image pairs. The only exception to this is the use of one

single image simultaneously as reference and geometrically transformed as source image for the

registration.

Therefore, the first step to implement a registration evaluation method consists of an advanced

preprocessing of the employed image data to generate a sufficiently aligned ground truth. Parts

of this evaluation and the required data preprocessing were published in the proceedings of the

international conference SPIE Medical Imaging 2019 [180].

4.2.1 Data Pre-processing and Generation of Ground Truth Data

To enable a performance evaluation of novel similarity measures and registration methods developed

within the frame of this thesis, two approaches to artificially generate surrogate ground truth

data were employed. With regard to the use-case of image registration for the context of liver

interventions, the focus is set to the generation of abdominal ground truth data sets consisting

of pre-interventional CT and MRI data as well as intra-interventional CBCT data. The first

approach relies on classical image processing based on manually chosen landmarks whereas the

second approach employs a neural network to generate synthetic abdominal MRI, CT and CBCT

scans based on a digital phantom. Although multimodal ground truth data is scarcely available,

it is possible to use intra-modal ground truth data as surrogate multimodal data for registration

evaluation. This intra-modal image data is e.g. represented by T1- and T2 MRI scans of the same

subject acquired during the same imaging session. Moreover, several experiments in this thesis

aim to investigate the influence of the morphology depicted in the image data on the performance

of similarity measures or entire registration processes. Therefore, a third ground truth data set is

presented comprising T1 and T2 MRI of the brain.

Ground Truth Generation using a Point-based Pre-Registration

The first approach relies on the complete pre- and intrainterventional multimodal image data of

patients that underwent a transarterial chemoembolization (TACE) in the liver. The preinter-

ventional data is given as 3D T1- and T2-weighted MRI (T1 and T2) acquired on a 3 Tesla

MAGNETOM Skyra MR Scanner1and a 3D CT acquired on a SOMATOM Force CT scanner1. A

3D CBCT acquired during the performance of the TACE on an Artis ZEEGO® system1 serves as
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a) b) c) d)

Figure 4.1: a) Axial slice of the 3D-CT data with mask (shown in red) and artificial landmarks (shown in yellow)
for the estimation of the target registration error (see Eq.3.6); b) axial slice of the CBCT data; c) axial slice of the
T1 MRI; d) axial slice of the T2 MRI.

Table 4.1: Details of the patient data used for the evaluation of linear registration methods.

Patient Modality Size [px] Pixel Spacing [mm]

1

CT 512× 512× 189 0.83× 0.83× 1.5
CBCT 512× 512× 375 0.49× 0.49× 0.49
T1 384× 312× 64 1.09× 1.09× 3
T2 384× 308× 45 1.09× 1.09× 4.4

2

CT 512× 512× 188 0.98× 0.98× 1.5
CBCT 512× 512× 375 0.49× 0.49× 0.49
T1 320× 250× 72 1.31× 1.31× 3
T2 448× 364× 41 0.92× 0.92× 6

3

CT 512× 512× 172 0.68× 0.68× 1.5
CBCT 512× 512× 375 0.49× 0.49× 0.49
T1 320× 240× 80 1.31× 1.31× 3
T2 270× 148× 60 1.44× 1.44× 4.4

intra-interventional data. Three exemplary data sets are chosen for this preprocessing. Axial slices

of the corresponding data sets for one of the patients are exemplary shown in Figure 4.1 a) - d)

and further details of the image data are presented in Table 4.1. Figure 4.1 b) displays the circular

shaped field of view which is characteristic for CBCT data. In general, this limited field of view in

addition to the increased noise level in CBCT data (as discussed in Section 2.2.1) can pose major

problems for image registration processes involving this modality.

The preinterventional CT is chosen as the target data for the generation of the ground truth

registration. This is useful for multimodal medical image registration, since the CT is characterized

by a high contrast-to-noise ratio as well as a high spatial resolution. Moreover, the CT is not as

prone to geometric distortions and artefacts as MRI which is often affected by inhomogenities of

the magnetic field or susceptibility artefacts, as discussed in Section 2.2.2.

To attain an accurate ground truth for the registration evaluation, a rigid point-based registration of

the T1, T2 and CBCT data to the CT data is performed. The landmarks used for this registration

are manually extracted for each individual 3D volume by choosing 16 distinct points inside the

liver, such as i.e. branches of supplying blood vessels. The point-based registration is performed

using an iterative closest point algorithm [79] implemented in MITK. To get a first impression

1Siemens Healthcare, Forchheim, Germany

57



Manual extraction of 

landmarks

Rigid point-based 

preregistration

Generation of arti cial 

landmarks using the liver 

segmentation

Reference image

Source image

Figure 4.2: Visualization of the data preprocessing to generate a ground truth registration and the artificial landmarks
used for the TRE calculation.

Table 4.2: FRE (in mm) of the manually chosen landmarks after performing a point-based rigid registration and
after performing a point-based affine registration.

Modalities Registration Pat 1 Pat 2 Pat 3

T1 to CT
rigid 6.12 5.58 6.48
affine 5.69 4.19 5.87

T2 to CT
rigid 5.66 7.72 6.36
affine 5.48 7.65 5.23

CBCT to CT
rigid 6.43 5.02 4.16
affine 5.25 4.78 3.36

of the magnitude of the image displacement after this preregistration, the FRE (see Section 3.1)

before and after a rigid as well as an affine point-based preregistration is calculated for the manually

extracted landmarks and listed in Table 4.2. These FRE values indicate the mean distance between

corresponding landmarks after a rigid or affine preregistration and therefore, give an impression of

the resulting accuracy and general quality of the preregistration.

In general, the manual extraction of distinct feature points is very time consuming and therefore

not suitable for daily clinical routine. However, for the generation of ground truth data, the manual

feature extraction and subsequent matching may result in a high accuracy which is mainly limited

by the anatomical knowledge of the user and the spatial resolution of the images. Nevertheless, 16

landmarks per data set only result in a sparse displacement field between different modalities. Due

to this limited number of spatial correspondences, the images are not aligned using a nonlinear

transformation, since this potentially results in inappropriate interpolated voxel displacements be-

tween the manual landmarks caused by the lack of information in between these points. Since the

sparsity of the manual landmarks could affect the possible evaluation accuracy, artificial landmarks

are defined additionally.

As this thesis aims at the development and evaluation of new registration methods for the context of

hepatic interventional procedures, the focus of the registration evaluation is set on the registration

of the liver. Thus, the liver is manually segmented in the CT of each patient using MITK. Since this

step is performed after the point-based pre-registration, the resulting segmentation mask is accurate
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Figure 4.3: Illustration of the cycle loss employed in a CycleGAN. Image adapted from Zhu et al. [181].

for every modality of the corresponding patient. The mask is then used to distribute equally spaced

points with a distance of 20mm inside the liver serving as landmarks for the estimation of the mean

target registration error (TRE) before and after registration. This results in about 200 artificial

landmarks for each 3D volume. A visualization of the whole data preprocessing to generate the

ground truth registration is shown in Figure 4.2. A slice through the segmentation mask for one of

the patients and the resulting artificial landmarks are shown in Figure 4.1 a). An advantage of this

procedure is the fact that it allows the estimation of dense displacement fields whereas the spacing

between the artificial landmarks can be customized according to the registration task. However,

the definition of artificial landmarks requires a sufficiently accurate pre-registration as presented

here in form of the point-based ground truth registration.

This procedure results in three registered data sets consisting of T1, T2, CBCT and CT data of

the same patient, whereas the latter serves as target volume, including 16 manual landmarks and

about 200 artificial landmarks inside the liver as well as a segmentation mask for the liver.

Ground Truth Generation using a CycleGAN

A problem in using the patient data as ground truth data for deformable registration applications

is the fact that the images are only rigidly aligned during the preprocessing. This leads to mor-

phological deviations in the spaces between the manually chosen landmarks which result in an

incorrect ground truth for nonlinear registration methods. Replacing the rigid-point based pre-

registration with a nonlinear pre-registration is not reasonable, since this procedure leads to a bias

in the registration evaluation favoring the registration method which is used for the pre-registration.

Therefore, another approach to generate ground truth data is employed. This approach relies on

the use of a special type of neural networks, so-called Cycle-Consistent Generative Adversarial

Networks, to generate synthetic medical image data and was implemented by cooperation partners

from the Department of Computer Assisted Clinical Medicine, Heidelberg University.

Cycle-Consistent Generative Adversarial Networks, mostly referred to as CycleGANs, gained much

attention in the last years, since they allow the transfer of characteristics from one image to another

while training with unpaired image data. They are a subtype of conditional Generative Adversarial

Networks (conditional GANs) [182]. These networks are generally composed of two models, the

generator and the discriminator. As the name suggests, the generator aims to generate new data

from an input whose characteristics are similar to the characteristics of a second input. The role

of the discriminator is to distinguish if an input is real or faked by the generator. The ultimate
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Figure 4.4: Axial and coronal slices extracted from the digital XCAT phantom a) + e) with mask (shown in red) and
artifical landmarks (shown in yellow) as well as slices of the synthetically generated CT b)+f), CBCT c) + g) and
T1 d) + h) data based on this phantom.

goal is to trick the discriminator such that fake images are classified as real images. Thus, these

two models are trained in an adversarial fashion since they are trained to achieve opposing goals.

One application field of GANs is the use for image-to-image translation tasks. Image-to-image

translation generally describes the mapping from one specific image domain to another. A good

example is the field of style transfer that refers e.g. to the reproduction of a photo in the style

of a specific artist. However, this concept can also be transferred to medical image processing to

generate synthetic data in a specified modality from a base modality.

The challenge of using conditional Generative Adversarial Networks for image-to-image translation

is the requirement of pre-aligned, paired training data. To overcome this limitation Zhu et al.

[181] introduced an additional cycle-consistency loss which enforces a similarity of an input image

in domain X to the representation of the same image after mapping it to a domain Y and then

back to domain X as shown in Figure 4.3. This network architecture is the so-called CycleGAN.

Since it enables to use unpaired image data for training, this network architecture benefits various

applications including medical image processing where pre-aligned data of different modalities is

only sparsely available. First approaches to use CycleGANs for modality synthesis of medical data

have been presented in [183, 184, 185].

The project partners from the Department of Computer-Assisted Clinical Medicine implemented

a CycleGAN, additional details about their approach published in [186, 187]. In the context of

medical image registration, this network is used for the generation of multimodal synthetic ground

truth data. For the training of the network, we collected multimodal datasets of 18 patients

that underwent liver biopsy, including preinterventionl T1 MRI, CT and intrainterventional CBCT

abdominal scans. Compared to the patient data sets used for the ground truth generation described

in the previous section, the data sets are composed of the same imaging modalities, however they

differ in terms of the T1 MRI. The MRI sequence used as preinterventional data for the biospy differs

from the one used as preinterventional data for the TACE leading to different image contrasts.
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Table 4.3: Details on the XCAT image data as well as the synthetic modalities generated with the CycleGAN and
used for the evaluation of nonlinear registration methods.

Modality Size [px] Spacing [mm]

Synthetic
Data

XCAT phantom 512× 512× 155 0.75× 0.75× 1.5
CT 512× 512× 155 0.75× 0.75× 1.5

CBCT 512× 512× 386 0.49× 0.49× 0.49
T1 512× 512× 155 0.75× 0.75× 1.5

Instead of just training the network with patient data as two different input modalities, a digital

antropomorphic phantom, the so-called XCAT phantom [188], is used as input. The digital phantom

models the whole human body and allows for morphological variations by defining the organ size

and position as well as the simulation of respiratory and cardiac motion. Since the focus of this

thesis is set on the registration of abdominal image data, the XCAT phantom was used to model a

set of multiple 3D scans of the abdomen by varying these parameters. These 3D volumes serve as

input for the CycleGAN and patient data of a single modality is used as second input. Thus, the

network is trained for each modality separately and learns a mapping from the XCAT phantom

to the corresponding modality and vice versa. The trained network is then used to generate the

ground truth data by feeding an XCAT data set in the network to generate a synthetic T1, CBCT

and CT from this specific XCAT volume. Since the generation of all synthetic modalities rely on the

same XCAT scan, they are intrinsically aligned and display very similar morphological features.

Slices of the XCAT phantom and the synthetic modalities are exemplary shown in Figure 4.4.

However, since the network is not perfectly optimized yet, slight morphological variances such as

blurring artifacts are visible in the synthetic data sets. Nevertheless, by further optimizing this

setup, this methods is very promising to help overcome the lack of ground truth data in medical

image registration.

Another advantage of the XCAT phantom is the fact, that it allows to simulate the motion of a

cardiac as wells as a respiratory cycle by producing nonlinearly transformed image data (including

movement of the diaphragm, abdominal wall and the liver position). Moreover, this simulation

yields the computation of corresponding voxel positions in the reference frame and transformed

image frame of the phantom. This is very useful for the evaluation of nonlinear registration methods,

since it provides a perfect ground truth for the calculation of displacement fields and allows the

estimation of the TRE on a dense point grid. As additional information for image registration, a

mask of the liver region can be easily generated by applying a threshold algorithm on the image

data of the phantom. For the experiments performed in this thesis, the breathing cycle is simulated

to extract the image data and displacement vectors for five positions on the sinusoidal breathing

curve. Further information on the XCAT image data and the synthetic modalities used for these

experiments is given in Table 4.3. The simulation outputs the fixed position of each voxel in the

reference image as well as their new position in the transformed image leading up to several million

point pairs. Since the computation of such a large point set is very time consuming and the focus

of the registration evaluation is set on an optimal alignment of the liver, the data points are filtered

to the points in the liver including only every hundredth data point. This still results in a dense

point grid including about 20000 points inside the liver region. A coronal slice including the liver
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Figure 4.5: Slices through a pair of registered T1 and T2 MRI volumes of the IXI data set.

segmentation and landmarks is shown in Figure 4.4 e). As for the manually preprocessed data,

these points serve as landmarks for the TRE calculation before and after the application of an

image registration algorithm.

Intrinsically Registered Ground Truth Data

As third data set, the T1 and T2 MRI scans of the IXI data [189] are used. This data set is mostly

used for all experiments in this thesis that require a large amount of image data, such as approaches

that rely on DL, as well as for all expierments that aim to investigate the influence of the depicted

patient morphology on the performance of similarity measures or registration approaches.

The IXI data set refers to a data collection of nearly 600 MR images of the brain from normal,

healthy subjects including i.a. T1-, T2-and PD-weighted images. Since these scans are acquired on

the same device, the images are intrinsically well-aligned and therefore suitable to serve as ground

truth image data for evaluation purposes. Nevertheless, to correct for small image displacements

between scans of the same subject, a rigid registration based on a mutual-information based sim-

ilarity metric is performed using SimpleITK [173]. After the registration, all image volumes are

resampled to a size of 256×256×160 voxel with a spacing of 0.94×0.94×1.2mm, so that all images

display the same basic image characteristics. Although T1 and T2 scans are considered intra-modal

data, they still yield different contrasts and display morphological structures differently as shown

in Figure 4.5, thus, serving the purpose to be used as multimodal data sets.

In summary, three ground truth data sets are available, including:

1. Real Abdominal GT Data:

Three real patient data sets, consisting of registered CBCT, CT and T1 MRI data, 16 manual

landmarks and 200 artifical landmarks in the liver as well as a liver segmentation mask. This

data set is used to evaluate approaches on real patient data. However, it is only suitable for

approaches that do not rely on a large amount of data.

62



1. Ground Truth Data

with Landmarks

2. Application of 

Arti cial Transformations 

3. Re-registration and

Calculation of  TRE

Figure 4.6: Overview of the methodology applied for rigid image registration evaluation. The steps 1. to 3. are repeated
450 times with different transform parameters. The TRE before and after the re-registration are determined and are
used to estimate the capture range of the investigated registration method.

2. Synthetic Abdominal GT Data:

Five synthetic abdominal data sets generated for five positions of the respiratory cycle, con-

sisting of registered CBCT, CT and T1 MRI data, 20000 landmarks in the liver as well as

a liver segmentation mask. This data sets is used for all experiments that require optimally

registered multimodal images. Moreover, the data set serves for the extraction of a large

amount of multimodal subvolumes that can be used to train neural networks.

3. Real MRI Data of the Brain:

T1 and T2 MRI scans of the brain, including the data for 600 subjects. This data set is

used to establish a feasibility study for all applications requiring a large amount of diverse

registered data such as DL-based methods. Moreover, it serves as ground truth data for

experiments which aim to investigate the influence of morphology on the registration outcome,

by comparing the performance for abdominal and brain data.

4.2.2 Registration Evaluation Methodology for Multimodal Abdominal Data

In the first part of the evaluation methodology, the performance of an entire multimodal registra-

tion method is investigated. An evaluation for the multimodal registration of abdominal scans is

implemented for linear and nonlinear registration methods, respectively. Both evaluation methods

aim to analyze the performance of a complete registration algorithm in terms of registration accu-

racy and enable a comparison between different methods for the registration of the liver. Up to

now, only few evaluation methods for the registration of abdominal scans are available which rely

on segmentation-based measures such as the Dice Coefficient [108] or the Hausdorff distance [110].

However, overlap-based accuracy measures represent an arguable registration criterion. Therefore,

both evaluation approaches for linear and nonlinear registration methods presented in this thesis

rely on a point-based accuracy measure based on the estimation of the mean TRE using the land-

marks defined in Section 4.2.1. The aim is to implement an evaluation methodology which enables

an easy and fast comparison of different linear and nonlinear multimodal registration methods.
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Figure 4.7: Transformations applied to the preregistered source images.

Linear Registration

Starting with the evaluation of linear image registration methods, the attainable accuracy of the

different registration methods is estimated similar to the evaluation methodology presented by van

de Kraats et al.[130]. The general idea is to start using an optimally aligned ground truth data image

pair, apply a geometrical transformation to one of the images and correct the displacement by re-

registering the reference and the transformed image. By calculating the mean TRE before and after

registration, it is possible to evaluate the registration performance. Moreover, this procedure allows

the estimation of the capture range of the registration method that is generally defined as the range

of displacement positions from which the algorithm finds a sufficiently accurate transformation to

realign the input images. An overview of the method is given in Figure 4.6.

Since the focus of this work is the optimization of registration methods for multimodal abdominal

data, the data used for the evaluation experiments shown in this chapter corresponds to the pre-

and intra-interventional image data of patients undergoing a TACE, further described in Section

4.2.1. For the evaluation of DL-based registration methods that require a higher amount of im-

age data for training, the methodology is expanded for the use of the IXI data set as well as the

synthetic abdominal data (see Section 4.2.1) applying the same preprocessing as described in the

following. However, the experiments presented in the first part of this chapter focus on the appli-

cation of the registration methods on real abdominal patient data to evaluate their performance

in a accurate clinical context with regards to interventional procedures in the liver. After generat-

ing the ground truth registration of the other modalities to the CT target data for each patient,

the source images are artificially transformed by applying rigid transformations using SimpleITK

before re-registration.

These transformations include translation transformations in the range of 0 − 25mm in steps of

5mm. The translation directions are set as vector from the image center to one of five points

equally distributed on a spherical shell around the image center. These points are defined using the

method of Saff et al.[190]. The transformation also includes rotations around the image center in a

range of −15 ◦ to 15 ◦ in steps of 7.5 ◦. To take into consideration realistic variances of the patient

positioning in the scanners, three rotation axis with a maximum inclination angle of 10 ◦ relative

to the axial direction of the patient are chosen. This multiplies to a total of 6 × 5 × 5 × 3 = 450

artificial transformations which are applied during the registration evaluation for each pair of image
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Figure 4.8: For the evaluation of nonlinear registration methods, the digital XCAT phantom was used to simulate
a respiratory cycle and the image data at five positions was extracted and served as ground truth data for the
evaluation.

modalities (CT/CBCT, CT/T1, CT/T2).

To avoid non-relevant black regions in the source image after the transformation, no image resam-

pling is applied to obtain the transformed images. Since this could possibly influence the registra-

tion outcome as discussed in Section 4.2.4, only the image information, such as image origin and

direction, is altered according to the applied geometrical transformation.

For the estimation of the capture range of each method, the mean TRE before and after a rigid

registration of the target image and the geometrically transformed source image are calculated,

using the ∼ 200 artificial landmarks inside the liver.

Nonlinear Registration

The evaluation of nonlinear registration methods is based on the simulated data that is generated

using the digital XCAT phantom described in Section 4.2.1. Compared to the patient data used

for the evaluation of linear registration methods, this data is more suitable for the evaluation of

nonlinear methods since it provides a higher alignment accuracy of the ground truth data.

The digital XCAT phantom is used to generate abdominal image data of a respiratory cycle at

five different positions of the cycle, resulting in five abdominal XCAT volumes. The positions

and a coronal slice of the corresponding XCAT volume are shown in Figure 4.8, whereas position

1 is noted as reference frame. According to the preprocessing procedure based on a CycleGAN,

each XCAT volume is used to generate a synthetic CT, CBCT and T1 MRI of the specific volume.

Moreover, a list of voxel positions in the reference volume and their new position in the transformed

image volumes is generated which serves as basis for the calculation of a mean TRE.

To estimate multimodal registration accuracy for nonlinear methods, each of the five synthetic CT

serve as reference image in the registration process and are registered in a permutative manner to

the synthetic CBCT and T1 MRI of the other respiratory cycle positions. Thus, the 3D images of

positions 2, 3, 4, 5 are registered to the volume at position 1 in the first run, then the image volumes

1, 3, 4, 5 are registered to the volume at position 2 etc. This results in a total of 20 nonlinear

registrations. As for the evaluation of linear registration methods, the mean TRE before and after

registration are calculated to estimate the accuracy of each nonlinear registration method.
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4.2.3 Experimental Setup

The image registration process for the evaluation of linear and nonlinear algorithms is performed

using the open source software SimpleElastix [174]. SimpleElastix offers the possibility to use

predefined so-called parameter maps for rigid, affine and deformable registrations. In addition,

SimpleElastix enables an easy adjustment of individual parameter settings according to the intended

registration task. This makes it a very suitable basis for the registration evaluation algorithm,

since it allows a fast implementation of a various different registration methods. Nevertheless, the

component of the presented evaluation methodology that performs the actual registration can be

easily replaced by any custom registration method. This allows a comparison of commonly applied

registration methods to very specific or newly developed registration approaches.

Linear Registration

For the evaluation presented in this work, the presets of SimpleElastix for a linear registration

are used as basis for further optimization. The default parameter map generates a multiresolution

registration with 4 levels using a linear interpolator, an adapative stochastic gradient descent opti-

mizer and a three-dimensional Euler transform as geometric transformation. By default, Advanced

Mattes Mutual Information [73] (AMMI) is employed as a similarity metric. To study different

aspects influencing the outcome of the registration methods, the following parameters are further

investigated for the multimodal registration of abdominal scans while keeping the other parameters

at their default setting for every experiment:

� Initialization

In most registration scenarios, a transform initialization is performed to prealign the images

before starting the actual registration to reduce the geometric displacement which has to be

corrected. This is often done by superposing the geometrical centers of the reference and

source image. Based on the calculation of the mean TRE, this classic approach is compared

to an initialization by aligning the geometric center of the target organ, in our case the liver.

The geometric liver center has been chosen manually. These two types of superposition rep-

resent the first two initialization approaches investigated in this thesis. A third initialization

is realized by aligning the liver center in the CT, serving as reference modality in these ex-

periments, to the geometric center of the source image. This is especially interesting for the

registration of CBCT to CT, since the liver is centered during the acquisition of CBCT scans

acquired during a liver intervention. In contrast to the following experiments which rely on

the mean TRE of the artificial landmarks, this comparison is based on the mean TRE of the

manual landmarks, since the initialization is performed on the native image data and not the

preregistered images.

� Similarity metrics

Beside AMMI as default similarity metric, further metrics, namely Advanced Normalized

Correlation [191] (ANC) and Normalized Mutual Information (NMI) [75], were applied.
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� Masks

The introduction of a binary mask as additional information for the registration methods

was investigated. In general, masks can be used for the fixed and moving image to limit

the evaluation of the similarity metric to the region of the intended target structure. This

can be beneficial for the registration of organs highly affected by motion. In our case, the

position and form of the liver varies due to the breathing motion. By using a mask, static

significant structures such as the rib cage are not taken into account during registration. For

the evaluation, two different masks were employed for the fixed image (CT), including the

manual liver segmentation acquired during image preprocessing (Sec. 4.2.1), as well as a

simple cuboid mask covering the liver region.

� Number of resolution levels

In general, a higher number of resolution levels is expected to result in a higher capture range,

but also requires a higher computation time which is an important factor considering interven-

tional registration applications. To further study this tradeoff, the number of resolution levels

was set to values between 1 and 4, whereas 4 layers correspond to the predefined parameter

setting of the default parameter map for linear registrations offered by SimpleElastix.

� Rigid vs. affine Registration

Due to the rigid preregistration, the liver is not perfectly registered and the metrics potentially

optimize to a position which does not correspond to the position of the ground truth. To take

this into consideration, the TRE of the manually chosen landmarks used for the point-based

ground truth registration was estimated after applying a rigid registration and compared

to the TRE obtained for an affine registration using the predefined parameter map offered

by SimpleElastix. Similar to the parameter map for rigid registrations, this parameter map

generates a multiresolution registration with 4 levels using a linear interpolator, an adapative

stochastic gradient descent optimizer and an affine transform.

Nonlinear Registration

The deformable registration is performed using the default parameter map for B-spline-based image

registration offered by SimpleElastix. The basics of this default parameter map are very similar to

the default parameter map for rigid registrations. It generates a multiresolution registration with 4

resolution levels, employs an adaptive gradient descent optimizer and AMMI as similarity metric by

default. The main difference is naturally represented by the usage of a B-spline interpolator as well

as a B-spline transform as geometric transformation. For the registration evaluation experiments,

different parameters of the nonlinear registration have been altered to further understand their

impact on the registration of multimodal abdominal scans. The investigated parameters include:

� Physical grid spacing

SimpleElastix enables the alteration of the grid density of the B-spline transform for each

dimension individually by defining either a physical or voxel-based grid spacing. The basics

of B-splines are explained in Section 2.3.3. In general, a higher number of grid points allows

a higher flexibility of the transformation to model complex deformations. But although a
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higher number of grid points results in a higher number of DOF, it is also equivalent with an

increased number of transform parameters and therefore requires an increased computation

time. If the number of grid points is chosen too high, the registration can result in unrealistic

deformations of the source image, whereas a registration based on very few grid points is not

able to correct complex deformations. Thus, the spacing of the grid points should ideally

correspond to the size of expected deformations. To study its impact on the registration

accuracy, the physical grid spacing was varied from 50 to 150mm in steps of 20mm.

� Similarity metrics

The registration accuracy was estimated using AMMI, ANC as well as NMI as image similarity

measure.

� Masks

Similar to the evaluation of rigid registration methods, the influence of a fixed image mask

on the registration accuracy of nonlinear methods was investigated using a binary mask of

the liver as well as a cuboid mask that covers the liver region. These results were compared

to the results obtained without a fixed image mask.

� Number of resolution levels

The number of resolution levels was varied from 1 up to 4 resolution layers whereas the

number of grid points for the B-spline transform remained the same for every resolution level.

Since the physical spacing is increased by a factor of two for each level, this indirectly implies

that the grid spacing is divided in half.

While most of the parameters were kept at their default setting for the performance of the ex-

periments, the grid spacing of the B-spline transform in each dimension was adjusted to 110mm

for all experiments except the investigation of the grid spacing itself. This was done, since the

default setting corresponds to a physical grid spacing of 8mm which results in a very dense grid

and therefore high computation times. Such a dense grid was not necessary for the respiratory

deformations which were corrected via image registration.

4.2.4 Similarity Metric Evaluation

The experiments discussed in the previous chapter reveal the complexity of a registration method

as well as the wide range of interdependent influences on the registration outcome. One of the most

relevant parameters for the accuracy and robustness of a multimodal registration method is the

employed similarity measure. Each similarity measure has different properties and is characterized

by an individual sensitivity to the modality of the images, the image content, such as e.g. edges,

interpolation, the size of the image overlap etc. This makes it desirable to estimate the quality of

the similarity metric prior to registration. Thus, the second part of the evaluation methodology

focuses on the quality assessment of similarity measures.

Evaluation Strategy

A common approach to investigate the behavior of an image similarity measure is the sampling
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Figure 4.9: Visualization of the different cases considered for the evaluation of similarity measures depending on
the optimal position of image alignment and the size of the overlapping image region in which the metric value is
determined.

of the parametric space. This sampling for translation or rotation transformations is realized by

determining the similarity metric values after shifting or rotating one image of an image pair relative

to a gold standard position.

To evaluate the similarity metrics used and developed in this thesis, an evaluation algorithm has

been implemented which facilitates the sampling of the parametric space by enabling shifts in a

random spatial direction and image rotation around a specified rotation center and axis. The

translation range used for the evaluation of similarity metrics corresponds to a shift of −30 to

30mm. For most experiments, the metric values are estimated for a translation in x-, y- and z-

direction. However, for specific cases, the parametric space is sampled in a random direction or

an entire plane to further understand the behavior of the similarity metric. For the estimation of

rotational transformation parameters, the rotation angle is varied between −30◦ to 30◦ relative to

the rotation axis corresponding to one of the three main axes or a specified rotation axis pointing

in a random direction. The rotation center for all metric evaluations is set to the geometrical image

center.
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Different Cases

An important factor which is often neglected when evaluating a similarity measure is the dependence

of the similarity metric on the position of optimal image alignment and the size of the overlapping

image region. During a registration process, the source image is transformed interatively and

the similarity value is estimated after every transformation step. Thus, the size of image overlap

constantly changes during a registration process.

Case A:

Let us assume that the reference and source image have the same size and display the same object

in the same image region. In this case, the position of optimal image alignment corresponds to

the position of maximum image overlap (see Figure 4.9 Case A) and a simple registration could be

performed by superposing the geometric centers of both images. This scenario is mostly relevant

for deformable registration tasks, such as the correction of respiratory motion which require the

correction of local organ displacements instead of a global organ alignment. A similarity metric

would then be evaluated in the entire image region of both images, since they completely overlap.

However, if the images are not already aligned, there exist two different image regions which could

be considered for the similarity estimation before alignment:

Case A.1:

The first region corresponds to the image region of the fixed image, taking into account an image

region in the moving image which contains non-valid image values (visualized in Figure 4.9). In this

case, the size of the image region used for the similarity evaluation is constant, however non-valid

image regions are taken into account for the similarity estimation yielding a biased metric value.

Case A.2:

In a second scenario, the image region which can be used for metric evaluation corresponds to the

overlapping region of both images (also visualized in Figure 4.9). In this case, only valid image

information is taken into account for the similarity estimation between both images. However, the

size of the image region that is considered is variable and depends on the current image alignment,

thus having a direct impact on the resulting metric value. In real applications, this considera-

tion of only valid image regions is realized by using binary image masks that mask out non-valid

image regions. To minimize the influence of the overlap size on the estimated similarity value, a

normalization using the number of pixels in the overlapping image region is usually required.

Case B.1 and Case B.2:

Another case is given for images, in which the same object is not located in the same image region

and that require actual image registration to generate an overlap of the same structures in both

images. In such a case, the position of optimal alignment does not correspond to the position in

which the overlapping region of both images is maximized. This is exemplary shown in Figure 4.9

Case B. In addition to the problem of considering non-valid image information (in the following

referred to as Case B.1 ) that can be overcome by using binary image masks (referred to as Case

B.2 ), this offset could potentially influence the performance of the similarity measure, since some

metrics tend to optimize for a maximal image overlap.
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Table 4.4: Three different cases defined for the evaluation of a similarity measure depending on the optimal image
alignment as well as on the size of the overlapping image region in which the similarity value is determined. A
visualization of these cases is given in Figure 4.9.

Case Mask Image Overlap Non-Valid Image Information

A.1 no constant yes
A.2 yes variable no
B.1 no constant yes
B.2 yes variable no
C n.a. constant no

Case C:

Dropping the assumption that both images have the same size may result in a third scenario in

which the image overlap remains constant during the sampling of the parametric space without

the introduction of invalid image regions. This scenario is also illustrated in Figure 4.9 Case C.

In such a (ideal) case, the similarity evaluation with and without a mask will make no difference,

since the region in which the similarity metric is determined stays constant either way. In a clinical

context, this scenario is important for the registration of images with significantly different sizes.

An example for such a case is e.g. given by the registration of CBCT to CT scans, since CBCT

generally covers a smaller field of view as CT.

In general, it is important to take into consideration the size of the image overlap during similarity

metric evaluation. To study the behavior of similarity measures for all scenarios summarized and

listed in Table 4.4, the implemented algorithm for metric evaluation enables the possibility to

distinguish between these different cases, according to the optimal image alignment and the image

overlap during the evaluation. Depending on the image registration task, the image data used

as gold standard for this part of the evaluation is represented by one of the ground truth data

collectives presented in Section 4.2.1.

This procedure allows to evaluate and even visualize the performance of a similarity measure on

different imaging data in dependence of the specified transformation parameters. Moreover, the

presented similarity evaluation method includes the investigation of different evaluation cases that

enable a performance evaluation for very specific types of input images. In general, the acquisition

of parametric cones gives a good impression of the efficiency of a similarity metric for a specific

task. This makes this method an appropriate tool to facilitate the choice of an optimal similarity

metric for a specific application as well as the development and optimization of novel similarity

measures.

4.3 Novel Similarity Metrics

The results of the evaluation of different registration methods described in Section 4.2.2 show that

the choice of similarity measure highly influences the achievable registration accuracy. Especially

for multimodal image registration tasks, the choice of a suitable similarity measure is crucial. This

chapter presents novel similarity measures and the strategy of their evaluation for multimodal
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Figure 4.10: The gradient information in 3D is given as magnitude g and orientation defined by two angles θ and ϕ.

medical image registration.

4.3.1 Metric based on Histograms of Oriented Gradients

As first alternative to classic image similarity measures, a novel gradient-based 3D-3D-registration

method is proposed. The proposed method relies on the use of Histograms of Oriented Gradients

(HOG) as basis of a similarity estimation for the registration of pre- to intrainterventional image

data. The metric is based on the patch-wise computation of gradient orientations and magnitudes

and therefore does not rely on pixel-to-pixel but region-to-region correspondence of local distribu-

tions of gradient intensities and orientations. Hence, the metric is suspected to be less affected by

local changes of absolute intensity values and to yield stable registration results. The implemen-

tation of the metric, the experimental setup and the results of this project have been presented as

oral talk at the international conference SPIE Medical Imaging 2017 and have been published in

the corresponding conference proceedings [192].

Concept of a Similarity Measure based on 3D-HOG Descriptors

Although there exist various approaches using 2D-HOG descriptors in different application fields,

there exists no application of 3D-HOG descriptors for medical image processing tasks, including

image registration.

The main motivation to use a pure version of a HOG descriptor directly as a similarity measure

for gradient-based image registration is the important role image gradients (or edges) play in

conveying image content. Moreover, the estimation of histograms of oriented gradients provides a

high sensitivity towards translation, rotation and scaling transformations making it suitable as basis

for a similarity metric. Moreover, gradient information generally relies on sudden intensity changes

which are characteristic for organ margins in medical images. Thus, the proposed metric aims

on the alignment of object outlines instead of the establishment of a grey value relation between

the images, it offers the potential to be used on mono-as well as multimodal image data. Though

initially proposed for 2D applications, the feature detection using HOG has to be extended to

three dimensions for the intended task of 3D-3D-medical image registration. Therefore, a 3D-HOG

descriptor was implemented and used as basis of a similarity measure.

The extension to 3D is realized by referring to the spherical coordinate system to describe gradient
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Figure 4.11: Application of Histograms of Oriented Gradients (HOG) as basis for a similarity measure. The HOG
descriptor for the reference image is only calculated once whereas the HOG descriptor for the source image is calculated
for every optimization iteration of the registration process.

orientations as shown in Figure 4.10. Similar to the 2D approach, gradient filters are applied for

each spatial direction and the gradient orientation, given by two angles θ and ϕ, and magnitude g

are estimated using the following formulas:

g =
√︂

g2x + g2y + g2z (4.1)

θ = arctan
gy
gx

(4.2)

ϕ = arccos
gz√︂

g2x + g2y + g2z

(4.3)

Both orientation angles cover different angular ranges due to the nature of 3D spherical coordinates.

Whereas θ ranges from 0◦ to 180◦, ϕ covers an angular range from 0◦ to 360◦. However, to increase

the robustness of the resulting 3D HOG descriptor, the angular range of ϕ was projected in an

unsigned orientation range [0◦, 180◦].

The image volume is then subdivided into a dense grid of uniformly spaced cells. However, in

contrast to the one-dimensional histogram estimated for the case of HOG extraction in 2D, a 2D

histogram is defined for each cell in which each histogram axis defines the angular distribution for

θ or ϕ. As for the original HOG descriptor, the histogram entries for the HOG descriptor in 3D

are weighted to reduce the impact of gradient orientations close to bin boundaries. Whereas the

histogram entries for the 2D case only have to be split into bins of a 1D histogram, the histogram

entries for the 3D case have to be split into bins of the 2D histogram, taking into consideration the

binning for both orientation angles θ and ϕ.

Each histogram is then summarized in a vector by row-wise concatenation of the histogram entries

describing the gradient distribution for the respective cell. After normalizing the block histogram

vectors, the final HOG descriptor is obtained by concatenating these vectors.

By comparing the HOG descriptors obtained for two images, it is possible to estimate the image

similarity. This can be done by a multitude of different means such as simple distance measures
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b)a) c)

Figure 4.12: Patient data used for the evaluation of the similarity measure: a) Axial slice of the 3D-CT data; b)
coronal slice of the 3D-CT data; c) coronal slice of the 3D-CBCT data after the manual preregistration. The red
square in each slice indicates the ROI for the registration evaluation.

or approaches to compare probability distributions such as e.g. Kullback-Leibler-divergence [193].

Due to the simplicity of the computation, the 3D-HOG descriptor of the reference image and

the 3D-HOG descriptor of the source image were compared using the Euclidean distance between

both vectors for the experiments shown in this thesis. The entire workflow of this novel similarity

measure is shown in Figure 4.11.

To use the HOG-based similarity measure in an image registration process, the extraction of a 3D-

HOG descriptor as well as the complete HOG-based similarity metric was implemented in C++ as

module of the ITK toolkit [172]. To optimize computation, the reference image descriptor is only

calculated once whereas the descriptor for the source image is calculated for every optimization

iteration due to the geometric transform applied to the source image during every registration

iteration. The variation of different parameters of the HOG extraction, such as the cell and block

size, as well as the number of histogram bins, gives the possibility to optimize the performance

of the HOG-based similarity measure depending on the intended application. Smaller cells or

block sizes and higher number of histogram bins will increase the sensitivity of the metric to local

changes in gradient distributions, but can therefore also impede the matching process of different

HOG descriptors.

Experimental Setup

To validate the performance of this novel HOG-based similarity measure, an evaluation based on the

methods presented in Section 4.2.4 and chapter 4.2.2 was applied. To investigate its performance

in a clinical context, the patient data presented in Section 4.2.1 has been used as ground truth for

the evaluation.

The focus is set to the similarity evaluation and optimization for the registration of interventional

data, represented by the CBCT, to the pre-interventional CT of the patients. The results of

previous experiments have shown, that this is the most challenging registration due to the high

level of noise in the CBCT data sets as well as its limited field of view (see Section 5.1). Therefore,

new registration approaches are required to improve the accuracy for these cases including the

investigation of novel similarity measures. Taking into consideration the intended registration

application during liver interventions for the treatment of HCC, the evaluation focused on the

registration of a region of interest (ROI) inside the liver which was chosen individually for each of

the three patients. Figure 4.12 exemplary displays the ROI (voxel size: 74.9 × 51.6 × 49.5mm3)
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selected for one of the patients.

In addition to the generation of ground truth data described in Section 4.2.1, a second preregis-

tration step is applied consisting of an affine registration based on a mutual information image

metric. The metric is implemented in a registration framework consisting of a rigid 3D transform

and a Nelder-Mead downhill simplex-method as optimizer. To ensure a comparability of the results

obtained for the data set of each of the three patients, the metric and optimizer parameters are not

changed throughout the evaluation. The validation of the similarity metric consisted of two parts,

which in turn were subdivided to study the effects of translation and rotation transformations

separately.

Sampling of the Parametric Space

The first part focused on the isolated evaluation of the similarity metric by sampling of the para-

metric space based on the methodology presented in Section 4.2.4. Due to the nature of the CBCT

and CT data, the sampling of the parametric space corresponds to the evaluation case C pre-

sented in Figure 4.9 evaluating the similarity measure in an image region with constant overlap

and neglecting non-valid image region. Metric values were calculated after applying translation

transformations to the source image in a range from −30 to 30mm relative to a reference position

which corresponded to the alignment determined by the preregistration. This was done for the

tranlsation in x-, y- and z-direction as well as for the translation in the x-y-plane. To sample the

parametric space of the metric for the case of rotational transformations, the source image was

rotated in a range from −90 ◦ to 90 ◦, with the rotation center set to the center of the ROI. The

parametric space was sampled for the rotation around the x-y- and z-axis.

Estimation of the Capture Range

In the second part of the evaluation, the achievable registration accuracy when using the developed

similarity metric was studied in terms of the capture range of the method. The registration accu-

racy is determined based on the evaluation methodology for rigid registration methods presented

chapter 4.2.2. The method has been expanded by calculating the percentage of successful registra-

tions per initial displacement whereas a registration is considered successful when the mTRE after

registration is below 3mm.

To enable a performance comparison of the HOG-based metric to another well-established similarity

metric, the evaluation process was repeated for a normalized cross correlation (NCC) metric using

the 3D-CT and 3D-CBCT data sets of one of the three patients. This patient is referred to as patient

1 in the following. For this data, the position of the optimization minimum in parametric space

found during the registration process corresponds to the transformation of the preregistration for

both the HOG and the NCC metric. For the data of the other two patients, this position deviated

for the NCC metric, thus preventing a fair comparison of the two similarity metrics.

4.3.2 Deep Metric Learning based on a Siamese Neural Network

Another alternative to classic multimodal similarity measures are Deep Similarity Metrics which

rely on the training of a neural network to estimate image similarity as presented in Section 3.2.

The most widely used network architectures for this task are represented by Siamese networks
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Figure 4.13: Siamese network architecture used for learning a multimodal similarity metric.

[153, 154]. The general aim is to train such a siamese network so that it is able to estimate

a similarity score between patches of different medical image modalities and further analyze its

behavior for different modality combinations and morphologies.

Siamese Network Architecture

For the work presented in this thesis, a siamese network is implemented using TensorFlow [178].

The architecture of the siamese network corresponds to a feed-forward convolutional neural network

with two identical branches each of which relies on an encoder-decoder network as shown in Figure

4.13. The encoding part of the branches consists of two 3D-convolution layers. The convolutional

layers use a 4×4×4 sized kernel, a stride of 3 pixels and an image padding based on the duplication

of the intensity values for voxels at the image edge. Each convolutional layer is followed by a batch

normalization layer which adjusts and scales the activation values and a ReLU activation layer. In

addition, the first convolutional layer is followed by a 3D max pooling layer with a kernel size of

2×2×2 and a stride of 2 to downsample the size of the resulting feature maps. The encoding path of

the network generates a feature representation of the input image in which all image characteristics

that are necessary for the task of distinguishing similar and dissimilar image patches are encoded.

The decoding path consists of a 3D up-convolution layer with a kernel size of 2 × 2 × 2 and a

stride of 2 pixels which increases the size of the feature representation. To include additional image

information in the upsampling process, the features maps which are generated during the encoding

process are concatenated to the output of the up-convolutional layer. This resembles the skip

connections implemented in a regular U-Net architecture. After upsampling the feature maps to

the size of the original network input, the output is flattened to a vector representation of these

feature maps. The element-wise distance of the output vectors obtained for both network branches

then serves as input for the calculation of the contrastive loss function (see Eq. 3.11).
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Table 4.5: Summary of the data characteristics used for the training of the multimodal Siamese metric models.

GT Data Modalities Name Patch Sizes [px] # Training Pairs Margin m

IXI T1/T2

Patches 70 70x70x70 9526 0.5
Patches 100 100x100x100 4763 0.5
Patches 130 130x130x130 2381 0.55
Patches 150 150x100x150 1587 0.55
Slices 50 238x50x188 1587 0.5

Slices 50 Y 50x238x188 1587 0.55

XCAT

T1/CT

Patches 70 70x70x70 239 0.5
Patches 100 100x100x100 89 0.55
Patches 130 130x130x130 89 0.5
Patches 150 150x100x150 29 0.5
Slices 50 248x248x50 14 0.5

Slices 50 Y 50x248x160 19 0.5

CBCT/CT

Patches 70 70x70x70 239 0.6
Patches 100 100x100x100 89 0.5
Patches 130 130x130x130 89 0.5
Patches 150 150x100x150 29 0.5
Slices 50 248x248x50 14 0.5

Slices 50 Y 50x248x160 19 0.5

Network Training

To learn the image features which are necessary for this distinction, the network has to be trained

with a set of labeled, optimally registered ground truth image pairs as described in Section 3.2.

As for all image processing applications that rely on registered multimodal ground truth data,

this requirement represents a major challenge since this type of multimodal data is only scarcely

available. Therefore, the training data used for the training of the siamese network is extracted

from different ground truth data sets presented in Section 4.2.1. Only the ground truth consisting

of real patient data (Sec. 4.2.1) is excluded, since the preregistration of these data pairs is not

accurate enough to extract training patches for the siamese network.

The siamese network is then trained with image patches of different modality combinations and

also different types of morphology to study the applicability of the learned Siamese Deep Metric

(SDM) to various data sets. Moreover, different spatial geometries of the training patches are

investigated to derive training characteristics of the metric. The first data set used for training

the network corresponds to the registered T1 and T2 scans of the brain derived from the IXI data

set (Sec. 4.2.1). The intensity values of the registered image volumes are normalized to a range

of [−1, 1] to ensure a stable learning process by limiting the distribution range of feature values in

the images. Next, 3D subvolumes are extracted from the native scans at the same image positions

in both modalities and then used as training patches. To further understand the impact of the

geometry of the training patches on the performance of the learned Siamese metric, the patch size

is varied according to the sizes listed in Table 4.5. This table also includes the names employed for

distinguishing the input sizes in the following chapters. To ensure that no patches are used for the

training of the network that only include background information, the sampling of subvolumes is
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limited to the region of the brain.

The benefits of the extraction of subvolumes are twofold: the extraction yields a major benefit by

increasing the amount of available image pairs for training of the network. For the IXI data set,

the subsampling process yields multiple hundred registered image pairs whereas the correct number

for each patch size is listed in Table 4.5. In addition, the use of smaller image patches reduces the

computational memory required for the training of the siamese network. Nevertheless, due to the

fact that the siamese network is implemented for 3D image processing, the number of patches that

can be processed simultaneously is still limited, leading to the employment of a batch size of 6

during training of the network.

The sampling procedure results in a set of registered intermodal T1 and T2 MRI image patches

that are labeled as ‘similar’. To generate dissimilar image pairs, T1 MRI patches are paired with

random T2 MRI patches and labeled as ‘dissimilar’. To avoid overfitting, up to 3% random noise

is added to the T2 patches of each similar and dissimilar input pair. For every training process,

75% of these image pairs are used as training data and the remaining 25% serve as validation data.

The second data set relies on the synthetic multimodal image data of the abdomen that is generated

based on the digital XCAT phantom using image-to-image translation as described in Section 4.2.1.

The siamese network is trained for the data combinations CBCT/CT and T1/CT, since these

represent the modality combinations which are most relevant for the clinical context of this thesis.

The preprocessing of this data is very similar to the preprocessing of the IXI data sets, including an

intensity normalization to the range of [-1,1] and the extraction of 3D subvolumes in the abdomen

at fixed locations in each image modality with various patch sizes listed in Table 4.5. As for the

IXI data set, these extracted patches serve as ‘similar’ image pairs and a shuffling of these pairs is

applied to generate ‘dissimilar’ image pairs. Then resulting image pairs are again divided, so 75%

serve as training data and 25% as validation data.

So in summary, siamese network models are trained for three separate application cases, including

the distinction between similar and dissimilar subvolumes of

� T1- and T2 MRI data of the brain,

� synthetic CBCT and CT scans of the abdomen,

� as well as synthetic T1 and CT scans of the abdomen.

For each application, the training is performed by optimizing the contrastive loss function given in

Eq. 3.11 using the labeled image patches and an Adam Optimizer with a learning rate of lr = 2·10−4

over 30 epochs and batch size of 6. It has to be noted, that the optimal margin value m in the

contrastive loss function varies according to the image data and image size. In general, this margin

value designates a distance value and training pairs with a distance larger than this value will not

be considered for the calculation of the loss. Therefore, this value contributes as a regularization

value forcing the network to learn small deviations to distinguish between images that are labeled

‘dissimilar’ but still display similar structural features. If it is chosen too large, highly dissimilar

patches still contribute to the loss, if it is chosen too small, the siamese network losses general
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validity. The optimal value for m for each set of training data is empirically determined using only

values that yield a smooth parametric cone and listed in Table 4.5. Since the Euclidean distance

used for the calculation of the contrastive loss is normalized using the size of the employed training

patches, the values for m are very similar for the training with different patch sizes ranging between

0.5 to 0.6.

Experiments

Similar to the first part of the evaluation of the HOG metric, the performance of the different

Siamese metric models is evaluated based on the sampling of the parametric space for translation

and rotation transformations. The sampling is performed according to the three metric evaluation

cases presented in Section 4.2.4. For evaluation type B, the offset of the position of optimal image

alignment is chosen as 10mm in the investigated translation direction for translation transforma-

tions and as rotation of 10◦ around the studied rotation axis for rotation transformations.

To sample the parametric space, the translational image transformations are chosen between

−30mm and 30mm and the rotational transformations between −30◦ and 30◦. The sampling

of the parametric space for translation transformations includes the translation of one of the im-

ages along the x-,y- and z-direction of the coordinate system. These axis correspond to the sagittal,

coronal and axial-direction of the image subject (depending on the data, either the brain or the

abdomen). To include a translation direction that does not correspond to one of the main axes, the

parametric space is also sampled for translations along the axis (1,1,0). As for rotation transfor-

mations, the moving image is rotated around the x-, y- and z-direction as well as the diagonal axis

(1,1,1). The performance of the different metric models is evaluated on the same image modality

combinations that are used for training. Since the siamese network that is used for learning image

similarity is exclusively composed of convolutional layers, the network is able to process image data

of various size and not just the input sizes it has been trained for. To demonstrate this ability,

the image data used for all metric evaluation experiments, corresponds to axial 3D slices that are

extracted from the original data sets that is used to generate the multimodal training patches.

Concerning the IXI data, these slices have a size of 248 × 160× 48 pixel whereas the XCAT slices

have a size of 248× 248× 80 pixel.

The evaluation methodology is implemented in python relying on Keras for loading and applying

the pretrained model of the SDM. The geometric transformation for the sampling of the parametric

space is realized using a Spatial Transformer Network (STN) [171]. This STN outputs the geomet-

rically warped moving image as well as a binary image mask determined during the transformation

covering the image regions in which valid image information is stored after the resampling process.

During the estimation of metric values, this mask is used so that only image values in the geomet-

rically warped image that are located in the non-zero regions of the image mask are considered

during the calculation of the metric value. This ensures that only valid image regions contribute

to the metric evaluation.

As for the HOG metric, the results of the parametric sampling are additionally compared to the

results obtained using traditional similarity measures. Since the Siamese Deep Metric is mainly
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investigated for multimodal image similarity estimation, the comparison is performed using a mul-

timodal similarity measures only and not the NCC metric which was used to benchmark the HOG-

metric.

As first alternative multimodal metric, an NGF loss relying on the alignment of image gradients

(see Eq. 3.8) is implemented in Keras. And advantage of the NGF loss in comparison to the SDM

is the fact that no model has to be trained and loaded for the similarity estimation. However,

the Siamese metric is expected to yield a higher sensitivity for multimodal image data, since it is

directly trained on the intended data sets.

Moreover, the results of the parametric sampling are additionally compared to the results obtained

using the Advanced Mattes Mutual Information (AMMI) similarity metric implemented in the ITK

image processing toolkit. The metric is used twice, with and without the application of an image

mask covering only valid image regions. For reasons of simplicity, the geometric transformation

applied for this part of the evaluation was performed using ITK instead of the STN, although both

methods result in the same image warping.

Moreover, the performance of the SDM trained with the synthetic abdominal data is evaluated on a

test set of synthetic CBCT/CT and T1/CT image pairs as well as on real patient data represented

by the preregistered abdominal CBCT and CT scans of patients presented in Section 4.2.1. The

idea is to train the metric model using synthetic image data and then apply the learned SDM

on patient data to investigate its transferability. A successful transfer could highly increase the

usability of the novel similarity metric in a clinical setting. The transfer is facilitated by the fact,

that both data types (synthetic and patient data) cover the same abdominal region and the patient

CBCT/CT data displays a very similar grey value distribution as the synthetic CBCT/CT data.

Since the CycleGAN used for the generation of the synthetic ground truth data (see Section 4.2.1)

is trained with T1 MRI data based on a different image acquisition sequence as the T1 MRI of

patient data, both T1 MRI display different grey value distributions. Thus, a transfer of the SDM

trained with synthetic T1 MRI to real patient data is not appropriate, and the evaluation of the

SDM on real patient data is restricted to CBCT/CT.

4.4 End-to-End Image Registration Learning

In previous sections, improvements for single components along the pipeline of an image registra-

tion process were presented. Since image registration is an iterative process, the overall estimation

of optimal transformation parameters can still be time consuming. The aim of end-to-end reg-

istration learning is to estimate the transformation parameters directly in a single step. Hence,

aside from Metric Learning, the power of Deep Learning is also leveraged in the field of medical

image registration by training neural networks to learn an entire registration process. A widely

used example for a fast, self-learning convolutional neural network is the open-source VoxelMorph

network which was presented in more detail in Section 3.3. This network is capable of perform-

ing monomodal deformable registration tasks while achieving state-of-the-art registration accuracy.

Yet, the network enables a reduction of the required computation time several orders of magnitude

compared to registration methods relying on traditional image processing.
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Figure 4.14: Convolutional U-Net architecture building the basis for the VoxelMorph network used for the ex-
periments presented in this thesis. The input to this network is represented by a 2-channel 3D volume consisting
of the concatenated reference and source image. The network output serves as transform parameter input to the
Spatial Transformer Network. Each rectangle represents a 3D volume and the arrows the skip connections used to
concatenate encoder and decoder feature maps.

Within the frame of this thesis, the unsupervised version of the VoxelMorph network presented

in [6] and referred to as ’original’ VoxelMorph network in the following, has been modified. The

modifications include alterations in terms of geometric transformations by allowing the computation

of affine geometric transformations in addition to deformable image transformations. Moreover,

novel similarity metrics and loss functions have been integrated and investigated to extent the

VoxelMorph network for the application on multimodal image registration tasks.

4.4.1 Extension of the Classical VoxelMorph Network Architecture

The original code of the VoxelMorph network is implemented using Keras with a TensorFlow

backend and made publicly available by the authors [194]. The extension of the network is based

on the original code and all alterations of the network are also implemented using Keras with a

TensorFlow backend.

For the implementation of a multimodal VoxelMorph network, the general encoding-decoding archi-

tecture is kept similar to the VoxelMorph-1 network presented in [170]. However, the filter number

of the convolutional layers is adjusted for the task at hand, so that the network consists of three

convolutional layers with 8 filters and one layer with 24 filters for the encoding part of the network.

The decoding part is constructed of two upsampling convolutional layers with 24 filters and four

with 12 filters as shown in Figure 4.14.

Geometric Transforms

The original VoxelMorph network is designed to learn a deformable image registration. This type

of registration method relies on the computation of a deformable geometric transformation that is

differentiable and invertible, which leads to a smooth deformation field preserving image-topology

[168, 169]. In general, deformable image registration methods are very flexible and useful to model

organ deformations in medical image processing (see Section 2.3.2). However, these methods are

designed to capture local image motion rather than larger global image displacements. Thus,

deformable image registration methods are mostly applied on pre-aligned image data sets to correct

for small structure deformations.
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To make the VoxelMorph registration applicable for the registration of larger global image displace-

ments, the first extension of the original network included the implementation of affine registration

learning. The original network is designed so that the encoder-decoder block computes a 3D volume

whose size is given as the image size with 3 channels. Each channel can be interpreted as the dis-

placement vector entry for one of the three spatial dimensions x, y and z. This output then serves

as input to the Spatial Transformer Network [171], which uses the volume elements as parameters

for estimating a deformation field. This resulting 3D deformation field is then applied to the source

image to compute the warped image using linear interpolation. In addition to the warped source

image, the STN also outputs the applied deformation field.

To enable the network to learn affine registration tasks, a 3D global average pooling layer is added

to the encoder-decoder block. This additional layer estimates the average for each of the 12 feature

maps (see Figure 4.14), resulting in 12 single values. These values correspond to the 12 parameter

required to define a 3D affine transformation (9 parameters defining the rotation matrix and scaling

+ 3 translation parameters). So instead of a 3D deformation field, the input to the STN is repre-

sented by 12 parameters which the STN arranges to a two-dimensional 3× 4 affine transformation

matrix. The STN calculates a deformation field based on this matrix which is applied to create the

warped source image.

This extension of the architecture enables to choose between training the VoxelMorph network for

affine or deformable registration tasks.

Application of Image Masks

In addition to the extension of the network for learning affine image transformations, the STN is

modified so that it not only yields the warped source image and the 3D deformation field used to

create this warping, but also an image mask. This binary mask is computed during the transforma-

tion and has zero values in image regions containing non-valid image information that are created

during the image resampling process (see Section 4.2.4). It is concatenated to the warped source

image and the deformation field, so that the STN outputs a 5-channel tensor. This mask allows to

take only valid image regions into account for the metric evaluation during the registration learning

process. Ideally, the application of an image mask is suggested to increase the registration accuracy

of the network, since non-valid image regions are neglected for the learning process.

Alternative Loss Functions

Another extension of the network is represented by integrating alternative loss functions for the

training of the network. The loss function of the VoxelMorph network is a combination of a simi-

larity loss Lsim that compares the image appearance of the reference and the warped source image

and a loss designated to enforce a smooth deformation field Lsmooth. Both losses are multiplied

by a weighting factor (by default set to 1 in the original VoxelMorph network) and added up to a

complete loss function. By changing the weight parameter, one of the two losses can either be set

to a higher importance or completely neglected by setting the value to 0.
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In the original unsupervised version of the VoxelMorph network, Lsim can be set to either a negative

cross-correlation loss or to a mean-squared error loss. Both of these similarity measures perform

best for image pairs that display a similar intensity distribution and are therefore mostly used for

monomodal registration purposes. Moreover, both metrics are implemented without the consider-

ation of an image mask. This means that non-valid image regions are taken into account for the

metric evaluation during registration learning in case of larger global image displacements. This

possibly decreases registration accuracy. Within the frame of this thesis, new loss functions Lsim

are implemented, such as:

� Mean-Squared Error Loss with Image Mask:

A first addition to the original loss functions is realized by implementing a mean-squared error

(MSE) loss function that relies on the use of an image mask. Before returning the MSE metric

value, the distance tensor is multiplied with the binary mask that is calculated during the

geometric transformation by the STN, so that non-valid image regions are neglected during

similarity estimation. Moreover, the mask is used to normalize the loss value. Therefore, the

mask entries are added up to determine the number of valid image voxel. The loss value is

then divided by this number to increase robustness of the loss with respect to the size of the

overlap between fixed image and warped source image.

To extend the possible applications of the VoxelMorph network to multimodal registration tasks,

additional loss functions are implemented bearing the potential to be applied on and multimodal

image data:

� Siamese Metric Loss (unsupervised):

The first multimodal loss function is given by the integration of the pretrained models of the

siamese network, described in further detail in the previous chapter 4.3.2, in the VoxelMorph

network. These models are trained to evaluate image similarity between different modalities.

By incorporating the graph of the siamese network in the VoxelMorph network and loading

the pretrained siamese network weights, the SDM can be used to evaluate image similarity

during the training of the VoxelMorph network. It has to be noted that the weights of the

siamese network branch have to be excluded from the pool of trainable network parameters to

enable the use of the pretrained models. By using the SDM in the VoxelMorph network, the

network is able to learn the registration of multimodal datasets. However, since the SDM was

trained for specific modality combinations and data sets, the siamese loss is only applicable

for the registration of these data sets. During the metric evaluation, non-valid image regions

are masked out using the binary image mask.

� Deformation Field Loss (supervised):

An alternative supervised learning method is implemented which is based on the comparison

between two deformation fields. Using optimally registered image pairs as input data to

the network, one of these images is geometrically altered by application of a transformation

with known transform parameters using SimpleITK. These transformation parameters can be

used to estimate a 3D deformation field. By penalizing differences between this known field
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to the deformation field provided by the network, a novel loss function is created to train

the network. This deformation field loss (DFL) function is suspected to be applicable for

mono-and multimodal registration learning. However, this approach relies on ground truth

data in form of optimally registered images or a 3D ground truth deformation field, and is

therefore no longer considered as unsupervised.

4.4.2 Training VoxelMorph Models

Different VoxelMorph registration models are trained using the original as well as the modified

network architectures. To cover monomodal and multimodal registration learning, different models

are trained separately for both applications and various input data pairs.

Training Data

These input data pairs are extracted from the ground truth data described in more detail in

Section 4.2.1. The first data set which is used to train different VoxelMorph models corresponds

to the registered T1 and T2 brain MRI scans of the IXI data set. The second image data set is

represented by the synthetic abdominal CT, CBCT and MRI scans that were simulated for five

positions of the respiratory cycle and that are registered for each position. Due to the respiratory

motion, the five data triplets are characterized by slight variations in morphology. To simplify the

registration learning process, all images are resampled to a uniform physical spacing corresponding

to 1× 1× 1mm3 for both data sets.

Since both data sets represent ground truth data that consists of optimally registered image pairs,

the image chosen as moving image is geometrically transformed for all application cases to create

an actual registration task. The aim is to create a realistic registration task that corresponds to

the scenario denoted as Case B in Section 4.2.4. This transformation is applied directly after

loading an image pair for training the network. The transformation is realized by application of a

rigid transform using SimpleITK. The translation direction is randomly chosen and the range is set

between −30 and 30mm. The rotation angle is also randomly chosen between −15 and 15◦ with a

random rotation axis tilted by 10◦ maximum relative to the axial direction of the skull or abdomen.

The geometric transformation not only generates appropriate image data for registration learning,

but also yields a ground truth deformation field which is deviated from the applied transform

parameters using SimpleITK. This ground truth deformation field can be used for the calculation

of the deformation field loss described in the previous chapter.

Due to computational limitations in terms of memory usage, the network is trained with 3D subvol-

umes corresponding to 3D axial slices of the image volume instead of using the whole image. These

slices are extracted at variable axial positions between 80 – 100 px from the original 3D volumes

with spatial dimensions of 160 × 256 × 80 for the IXI data and 320 × 320 × 64 for the synthetic

multimodal data.

For monomodal registration learning, the first training data consists of T1 MRI brain scans of the

IXI data as fixed and moving image. In addition to the geometrical transformation of the moving

image, random noise up to 6% is added to the image to increase robustness and avoid overfitting

of the model. To train and test the monomodal registration learning on multiple data sets, the
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Table 4.6: List of monomodal and multimodal registration learning models and their respective characteristics.

# Model Registration Type GT Data Modalities Transform Loss Function

1

Monomodal

IXI T1/T1

affine
MSE w/o mask

2 MSE
3 DFL

4
deformable

MSE w/o mask
5 MSE
6 DFL

7

XCAT CT/CT

affine
MSE w/o mask

8 MSE
9 DFL

10
deformable

MSE w/o mask
11 MSE
12 DFL

13

Multimodal

IXI T1/T2
affine

DFL
14 SDM

15
deformable

DFL
16 SDM

17

XCAT

CBCT/CT
affine

DFL
18 SDM

19
deformable

DFL
20 SDM

21

T1/CT
affine

DFL
22 SDM

23
deformable

DFL
24 SDM

synthetic abdominal CT scans serve as second training data set. The same preprocessing is applied

as for the IXI data including the addition of noise and the application of a geometric transformation

to the moving image. Both data sets are used to train multiple monomodal VoxelMorph registration

learning models, varying different parameters such as the loss function, the application of an image

mask during similarity estimation or the type of geometric transformation. A list of all trained

monomodal registration models is given in Table 4.6, listed as model number 1 to 12.

For multimodal registration learning based on the VoxelMorph network, the T1 and T2 MRI scans

of the IXI data set as well as the synthetic abdominal CBCT, CT and MRI scans are used to

generate training image pairs. For the network training based on the IXI data set, the T1 MRI

serves as fixed image and the T2 MRI as moving image. Since both images already display variations

in the intensity distribution, no additional noise is added to the images. Moreover, the synthetic

abdominal data is used as training data whereas the focus is set on the multimodal registration

learning for two different modality combinations: CBCT to CT and T1 MRI to CT. The CT scan

serves as fixed image for all experiments. As for the multimodal IXI data pairs, no noise is added

to the images. With these multimodal data pairs, different registration learning models are trained
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that are listed in Table 4.6 from model number 13 to model number 24.

Training Parameters

The models are trained using a batch-by-batch data generation based on Keras-intern functions.

This guarantees an optimal use of memory exploitation due to real-time feeding of the model with

input data. The different networks are trained using a total of 500 training epochs for the IXI data.

Due to the limited number of XCAT data pairs corresponding to five per modality combination,

an increased number of 5000 epochs was used for training models using the synthetic ground truth

data. By increasing the number of epochs, the number of training pairs is artificially augmented,

since the z-position of the extraction of the 3D slices which are used for training is varied between

80 - 100 px for every epoch and thus the training pairs are different for every epoch. Moreover,

the parameters of the ground truth deformation field are also varied for every training run which

additionally leads to an effective augmentation of training data.

As an additional alteration to the original VoxelMorph code, an adaptive learning rate is used for

all trainings implemented by using the Keras-intern function Callbacks.ReduceLROnPlateau. This

function reduces the initial learning rate by a defined factor once the learning process stagnates

and no decrement of the loss is captured for a specified number of epochs. For both data sets,

an initial learning rate of lr = 2e−4 is chosen, which is reduced by a factor of 0.8 after 15 epochs

without a decrement of the loss function up to a minimum learning rate of lr = 1e−8for the IXI

data set and after 300 epochs for the XCAT data. Due to memory limitations, a batch size of 1

was employed for all model trainings.

Since the total loss function corresponds to the sum LVM = a · Lsim + b · Lsmooth, the weighting

factors a, b for each part of the total loss function are adjusted according to the investigated loss

Lsim. This is necessary due to the fact that the magnitude of the loss values highly varies for

different loss functions Lsim. The authors of the original VoxelMorph network recommend a ratio

of a
b ≈ 10. Therefore, all models are trained with a similar ratio. The weighting factors are adjusted

empirically for every model to ensure that the contribution of both losses to the total loss is the

same for all training runs.

4.4.3 Experiments

To characterize and evaluate the performance of the original VoxelMorph network as well as the

adjusted and extended versions for mono-and multimodal registrations, the trained network models

are linked to the evaluation methodology presented in Section 4.2.2. The aim is to establish a better

understanding of the different variants of the VoxelMorph network by determining their respective

capture range in terms of registration accuracy. All model numbers listed in the following refer to

the numbers listed in Table 4.6.

Since the MSE loss relies on a similar intensity distribution of the input images, all experiments

relying on registration models using an MSE loss are performed for monomodal data only.

� MSE loss function with and without a mask

Ideally, the use of a binary image mask during metric evaluation while registration learning
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is suggested to increase the accuracy of the registration, since non-valid image regions are

neglected. Therefore, the performance of the affine and deformable network versions trained

using a MSE loss without a binary mask is compared to the performance of these network

trained using a MSE loss with a binary mask.

Models investigated: 1 & 2, 4 & 5, 7 & 8 and 10 & 11

The following experiments are valid for monomodal and multimodal registration models. However,

not all studies are carried out for both registration types (or all available data sets) in cases where

one application is enough to demonstrate a general feasibility.

� Affine vs. deformable registration learning

In general, deformable image registration techniques are applied to correct for small local

structure deformations and affine registration methods for larger global displacements. Thus,

affine registration methods often provide a larger capture range as deformable methods. The

performance of the original deformable VoxelMorph network is therefore compared to the

performance of the extended affine VoxelMorph network. This comparison is performed for

all models based on mono- and multimodal loss functions.

Models investigated: 1-3 vs. 4-6, 7-9 vs. 10-12, 13-14 vs. 15-16, 17-18 vs. 19-20, 21-22 vs.

23-24

� Deformation field loss function

Supervised learning optimizes the model performance based on ground truth data. In general,

this leads to the best approximation of the relationship between input and desired output data.

This is further studied, by comparing the performance of the registration methods trained

using the supervised deformation field loss to unsupervised methods. Since the deformation

field loss is applicable for mono- and multimodal data, both registration types are investigated.

Models investigated: 3, 6, 9, 12, 13, 15, 17, 19, 21, 23

Since the Siamese metric is trained for specific modality combinations and data sets, the experi-

ments to study the performance of registration models trained with the Siamese metric loss are only

applied on multimodal data. However, the metric could potentially also be trained and applied for

monomodal registration tasks.

� Siamese metric loss for multimodal registrations

As an alternative multimodal metric, the SDM has been trained for the different modality

combinations and incorporated in the VoxelMorph network. The registration performance

has been investigated for affine as well as deformable multimodal registration models.

Models investigated: 14, 16, 18, 20, 22 and 24

These studies aim to investigate the behavior and applicability of the classical VoxelMorph regis-

tration network as well as the extended variants for monomodal and multimodal registration tasks.

Since the alterations to the original VoxelMorph network proposed in this chapter aim to extend

its application to registration tasks that require the correction of global image misalignments, the
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evaluation is restricted to rigid registration tasks and deformable registration is not considered

in this context. Hence, the evaluation is performed using the evaluation methodology for linear

registration methods presented in Section 4.2.2. Although the models are only trained to correct

translations up to 30mm, the evaluation is performed for translations up to 60mm to characterize

the capture range of the method.

Since the VoxelMorph models are trained on MRI brain scans and synthetic abdominal data,

this is also the data used in the evaluation methodology. Therefore, the evaluation presented

in Section 4.2.2 is extended for these data sets. The preprocessing of the brain data and the

synthetic data is similar to the preprocessing of the patient data described in Section 4.2.2 and

only shortly summarized here. Since the data corresponds to already registered ground truth data,

the preprocessing does not include a preregistration but only the segmentation via thresholding

of target structures. Concerning the IXI data set, the target structure is represented by the soft

tissue of the brain. The resulting segmentation is used to distribute equally spaced points inside

this target region which are used for the calculation of the TRE. For the synthetic abdominal

data, a liver segmentation is extracted as binary mask. The intrinsic landmarks in the liver which

are directly provided by the digital phantom that is used to generate the synthetic data sets as

presented in Section 4.2.1 serve as target points for the calculation of the TRE. Moreover, the

segmentation mask of both data sets are used to limit the image region in which the registration

accuracy is estimated to the structures of interest.

Similar to the evaluation of the Siamese Deep Metric presented in Section 4.3.2, the evaluation of the

novel VoxelMorph registration models also includes the transfer of the models trained with synthetic

abdominal image data to real patient data. The aim is to further characterize the performance of

the models and investigate their transferability to novel different data sets. For these experiments,

exempalry chosen data pairs of the abdominal CT and CBCT scans of the preregistered ground

truth data presented in Section 4.2.1 serve as patient data. The evaluation includes the monomodal

registration of CT to CT data as well as the multimodal registration of CBCT to CT data using

the models trained for the respective modality combinations.
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5

Results

In this chapter, the results of the different research projects introduced in Section 4 are presented.

The chapter is divided into four parts. The first and second part correspond to the results obtained

for the evaluation of linear and nonlinear multimodal registration methods, respectively. In the

third part, the performance of the two novel image similarity measures based on Histograms of

Oriented Gradients as well as a Siamese neural network is presented. The fourth and last part

includes the results obtained for the end-to-end registration based on a neural network.

5.1 Evaluation of Linear Image Registration

In this chapter, the results obtained for the evaluation of linear registration methods are presented.

Since the aim of this thesis is the optimization and evaluation of registration methods for abdominal

scans in the context of interventional procedures such as e.g. biopsies, the evaluation focuses on an

optimized registration of the liver tissue.

It has to be noted that the experiments were performed for all three patients, but for reasons of

clarity of presentation only the results for one of the patients are shown in most of the figures. Unless

stated otherwise, the results presented for this patient are similar for the data of all three patients.

The results were published in the proceedings of the international conference SPIE Medical Imaging

2019 [180].

5.1.1 Initialization

The first part of the evaluation focused on the influence of initialization methods on the image

registration process. Three different initialization methods are compared:

1. The initialization by superposition of the geometrical image centers.

2. The initialization by superposition of the geometrical image center of the reference image

(CT) and the geometric liver center of the source images.

3. The initialization by superposition of the liver centers.
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Table 5.1: Median TRE (in mm) of the manually chosen landmarks after performing different approaches for a
registration initialization for data sets of three patients.

Modalities Initialization Pat 1 Pat 2 Pat 3

CBCT to CT
Geometrical Center 83.49 84.48 85.85

Liver Center/Geometrical Center 26.52 37.88 25.50
Liver Center 20.46 25.21 13.07

T1 to CT
Geometrical Center 9.75 33.02 35.16

Liver Center/Geometrical Center 111.56 74.68 96.35
Liver Center 19.86 56.84 27.79

T2 to CT
Geometrical Center 11.63 43.11 19.40

Liver Center/Geometrical Center 107.51 71.21 98.23
Liver Center 17.50 53.60 29.52

The different initialization methods are compared in terms of the median Target Registration Error

(mTRE) using the manually chosen landmarks. Since the initialization methods are compared using

non-preprocessed image data, no ground truth artificial landmarks are available for this part of the

evaluation. However, the results presented in the following all rely on artificial landmarks, since

only a limited number of manually chosen landmarks is available.

The results of the different initialization approaches are listed in Table 5.1. In general, these

TRE values correspond to the physical distance that would have to be corrected by a registration

algorithm after an initialization has been performed. For the registration of CBCT to CT, it can

be stated that the initialization based on the superposition of the liver centers in the CBCT and

the CT images yields the lowest mTRE of the manual landmarks. Thus, this method outperforms

the other two approaches based on alignment accuracy. This is reasonable, since one of the main

obstacles when registering CBCT to CT data is the fact that the CBCT covers a smaller field

of view than the CT which is often restricted to the region of interested during the intervention.

Concerning the data used for these experiments, the CBCT is acquired during a liver intervention,

so that the liver is located in the geometric center of the CBCT. Since the CT covers the complete

abdominal region, an initialization based on the superposition of geometric centers as well as liver

center/geometric center still results in an offset of the images, as can be seen in the data listed in

Table 5.1.

For the registration of T1 and T2 to CT, the best results in terms of the lowest mTRE are achieved

based on an initialization by superposing the geometric image centers. However, the superposition

of liver centers yields only a minimally increased TRE. This is due to the fact that both, the CT

as well as the MRI cover the complete abdominal region and therefore the same organ structures

are located in similar image regions.

The mTRE after initialization gives a first impression of the required capture range of the regis-

tration methods to obtain an accurate image alignment. The smaller the TRE, the smaller is the

displacement which has to be corrected by the registration algorithm. By applying an initialization

before registration, the registration accuracy can be increased.
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(a) CBCT to CT (with liver mask)
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(b) T1 to CT (without mask)
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(c) T2 to CT (without mask)
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Figure 5.1: Similarity Metrics: Results obtained for the registration of (a) CBCT to CT, (b) T1 to CT and (c) T2
to CT exemplary shown for one of the three patients using different similarity metrics, as well as (d) the comparison
of the results obtained for the registration of T1 to CT using the ANC similarity metric for all three patients.

5.1.2 Similarity Metrics

The registration accuracy in the following relies on the calculation of the mTRE using the artificial

landmarks. The results obtained by applying different similarity metrics for the registration of

CBCT to CT, T1 to CT and T2 to CT are shown in Figure 5.1. All similarity metrics result in a

very similar post-registration TRE for small initial TREs in a range from 0 − 4mm. This implies

that all methods register to positions close to one another, hence indicating a sufficient accuracy

of the landmark-based ground truth registration.

For the registration of CBCT to CT data of all patients, the application of all three similarity

metrics resulted in similar post-registration accuracies with ANC and NMI slightly outperforming

the AMMI metric for all three patients by yielding a lower variance (Figure 5.1a). Up to initial

displacements of the liver around 14mm, all registration methods resulted in an improvement of

the image alignment. For larger initial deviations, the variance increases as a result of registrations

which yield a higher TRE than before registration. Taking into consideration the results for a

transformation initialization shown in Table 5.1, an improved initial image alignment superposing
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Figure 5.2: Application of Masks: Results exemplary shown for one of the patients obtained for the registration
of (a) CBCT to CT using the liver segmentation and a cuboid as fixed image mask; (b) T1 MRI to CT and (c)
T2 MRI to CT without mask, using the liver segmentation and using the cuboid segmentation as fixed image mask
during registration.

the center of the liver could be beneficial. Moreover, it has to be noted that for all patients the

liver segmentation served as fixed image mask during registration of CBCT to CT to prevent the

registration from failure. This behavior is further analyzed in the following section 5.1.3.

Concerning the multimodal registration of T1 to CT (Figure 5.1b), the ANC metric, which in

general is considered a suitable metric for monomodal applications only, since it relies on a direct

relation between the grey values in the images to register, achieved similar results to the MI-based

methods even resulting in a lower variance for large pre-registration TRE. To demonstrate that

this finding is not patient-specific, the results for all three patients are shown in Figure 5.1d. For

the multimodal registration of T2 MRI to CT (Figure 5.1c), ANC could not compete with MI-

based methods, even increasing the TRE after registration. For all three patients and all modality

combinations, NMI yields a low post-registration TRE outperforming the other two similarity

measures.
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5.1.3 Application of Masks

For the registration of the CBCT data sets (moving images) to CT data (fixed images) of all three

patients, the introduction of a fixed image mask was required to prevent the registration from

failure and achieve a sufficient registration accuracy. To study the impact of mask characteristics

on the registration accuracy, two masks, the liver segmentation of the CT data obtained during

image preprocessing and a simple cuboid covering the liver region, were used as binary masks for

the fixed image. The results obtained for the registration of CBCT to CT are shown in Figure 5.2a.

Relying on the default setting of the parameter map, AMMI was used as similarity metric. The

boxplots show that the median registration accuracy increases for the more complex liver mask.

However, for image displacements larger than 15 mm, the increased variance for the registration

using the liver mask implies a decreasing robustness of the method.

Additionally, a comparison of the results obtained for the multimodal registration of T1 and T2 to

CT for the same patient without using a mask, with the liver mask and with the cuboid mask as fixed

image mask are shown in Figure 5.2b and Figure 5.2c, respectively. Concerning the registration of

T1 to CT, the application of masks resulted in a similar TRE than the registration without mask.

However, the highest median post-registration TRE was obtained using the liver mask. In this

case, the mask reduces the image information to the homogenous region of the liver, neglecting

the information of the surrounding tissue which increases the difficulty of the registration. For the

registration of T2 to CT, the introduction of a mask seemed to increase the attainable registration

accuracy and the median TREs for both masks were very similar.

The results show that a fixed image mask improved the registration outcome for the registration

of CBCT to CT and T2 to CT, whereas the application of a cuboid fixed image mask seemed to

yield stable results for all modality combinations for initial displacements smaller than 25mm.

5.1.4 Number of Resolution Levels

The experiments revealed that the multimodal registration of the interventional CBCT to prein-

terventional CT data is an especially challenging task. This is caused by the high noise level of

the CBCT data and its limited field of view that only covers the anatomical region close to the

liver. Therefore, further registration parameters, namely the number of resolution levels, were

studied in terms of the attainable registration accuracy. Figure 5.3 displays the results obtained

for a multistage registration of CBCT to CT (Figure 5.3a), T1 to CT (Figure 5.3b) and T2 to

CT (Figure 5.3c) using between 1 and 4 spatial resolution levels and AMMI as similarity measure.

As expected, a higher number of resolution levels results in a higher median registration accuracy.

However, a registration based on 3 resolution levels results in a similar registration accuracy as the

default setting of 4 levels, while simultaneously resulting in a lower computation time. This can be

an important aspect considering interventional procedures which require accurate as well as time

efficient registration methods. In our experiments, an additional layer increased the computation

time for the registration of CBCT to CT by 61.9 ± 19.3%, for the registration of T1 to CT by

30.9± 5.9% and for the registration of T2 to CT by 27.1± 5.8%.
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(b) T1 to CT (AMMI, without mask)
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Figure 5.3: Number of Resolution Levels: Results obtained for the registration of (a) CBCT to CT, (b) T1
MRI to CT and (c) T2 to CT for one of the patients using different numbers of resolution layers for a multistage
registration.

5.1.5 Rigid vs. Affine Registration

As additional evaluation step, the capture range based on the TRE of the manually chosen land-

marks used for the point-based ground truth registration was estimated for a rigid registration

method and compared to the capture range obtained for an affine method. The results for the

registration of CBCT to CT (Figure 5.4a), T1 to CT (Figure 5.4b) and T2 to CT (Figure 5.4c)

show that the affine registration performs very similar to a rigid approach and therefore does not

provide an advantage for the data used in the evaluation.

To sum up the findings of the evaluation of different rigid registration methods, the results show

that the performance of an initialization before starting a registration process can be essential.

The choice of initialization methods depends on the image data that is to be registered: for the

registration of CBCT to CT an initialization based on the superposition of liver center (or generally

expressed - the center of target structures) results in the best prealignment of the images whereas

the superposition of geometric centers yields an optimal prealignment for images covering a same

FOV as e.g. MRI and CT data. Concerning the choice a similarity metric, the best results were
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(a) CBCT to CT (AMMI, with liver mask)
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(b) T1 to CT (AMMI, without mask)
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Figure 5.4: Rigid vs. Affine Registration: Results obtained for the registration of (a) CBCT to CT, (b) T1 MRI
to CT and (c) T2 to CT for one of the patients using a rigid and a affine registration relying on the manually chosen
landmarks used for the point-based ground truth registration of the data.

obtained using a NMI metric for all modality combinations and patients. Moreover, the results

show that three is the optimal number of resolution levels, since it enables an appropriate trade-off

between registration accuracy and computation time of the registration method. Especially for the

registration of CBCT to CT, the introduction of an image mask during registration was beneficial

to achieve a higher registration accuracy.

5.2 Evaluation of Nonlinear Image Registration

The second part of the evaluation methodology focused on non-linear registration methods. The

results obtained for the registration of each of the five time steps of the respiratory cycle of the

XCAT phantom to all remaining time steps are accumulated and visualized in a single figure. Due

to the nature of the displacement in the five respiratory phases, the initial median TRE before

registration results ranges either between 5 − 14mm or 20 − 29mm causing the non-continuous

spectrum in the figures shown in this chapter.
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Figure 5.5: Physical Grid Spacing: Results obtained for the nonlinear registration of the image data of each point
of the respiratory cycle to the data of all other time points by using the three similarity measures AMMI, ANC and
NMI as well as a physical grid spacing of the B-spline transform between 50 to 150mm.

5.2.1 Physical Grid Spacing

Since the physical grid spacing of the applied spline transform generally has a high impact on

the achievable registration accuracy, its impact on the registration of abdominal scans has been

studied by varying it from 50 to 150mm in steps of 20.mm. The results obtained for three different

registration methods using AMMI, ANC and NMI as similarity measures are shown in Figure

5.5. Concerning the physical grid spacing, the results show that the grid spacing has only a small

influence on the registration accuracy for the multimodal registration of abdominal scans. The

median TRE for both, the registration of CBCT to CT as well as T1 to CT, is around ∼ 2mm.

However, the standard deviation of the TRE increases with an increasing physical grid spacing.

In general, a smaller physical grid spacing for the same image volume indicates a higher number

of grid points and thus, a higher number of degrees of freedom of the spline transform. This also

leads to a higher computation cost that makes the registration time-consuming. It is good practice

to choose the grid spacing in correspondence to the size of the geometrical deformations which are

expected. In the presented case, the best trade-off between a flexible registration and a reasonable

number of grid points is given by a registration using a physical grid spacing of 110mm. This

setting results in a low mTRE of approximately 3mm for CBCT to CT and approximately 2mm

for T1 to CT after registration. Therefore, this setting yields a high registration accuracy and was

used for all following experiments.

The experiments were performed using three different similarity measures AMMI, ANC and NMI.

It has to be noted, that the number of grid points highly influences the registration based on ANC,

which is considered a monomodal similarity measure and therefore not suitable for multimodal

applications. The results show, that for an increased grid spacing (larger than 130mm), ANC

yields similar results as the metrics based on mutual-information. A possible explanation is given

by the fact that a larger grid spacing automatically implies less flexibility of the algorithm. If

the algorithm has a high flexibility and is able to intensely warp the image, it possibly shifts the

grid points to random positions in case an inappropriate similarity measure is used. Since ANC is
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(a) CBCT to CT (without mask, grid spacing: 110mm)
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(b) T1 to CT (without mask, grid spacing: 110mm)

Figure 5.6: Similarity Metrics: Results obtained for the nonlinear registration of the image data of each point
of the respiratory cycle to the data of all other time points by using the three similarity measures AMMI, ANC and
NMI.

considered a monomodal similarity measure, this is possibly the case here. A higher spacing and

less grid points prevent the algorithm from randomly warping the image which leads to a smaller

TRE. The impact of similarity measures on deformable registrations is further discussed in the

following section.

5.2.2 Similarity Metrics

As for the evaluation of linear registration methods, AMMI, ANC and NMI have been investigated

as similarity measures for nonlinear registration of abdominal scans. The results have been grouped

according to the initial median TRE in steps of 5mm before the registration and are displayed in

Figure 5.6. For both, the registration of CBCT to CT and T1 to CT, the metrics based on mutual

information yield a lower median postregistration TRE than ANC, with NMI slightly outperforming

AMMI for the registration of CBCT to CT.

The registration of CBCT to CT based on ANC a similarity metric results in a high postregistration

of ∼ 15mm, making the metric not suitable for this modality combination. However, the results

shown in Figure 5.5 indicate that the registration performance using ANC can potentially be

improved by increasing the physical grid spacing of the spline transform. Moreover, ANC yields

promising results for the registration of T1 to CT which is consistent with the results obtained for

linear registration methods (shown in Section 5.1.2).

5.2.3 Application of Masks

The next part of the evaluation was dedicated to study the impact of a fixed image mask and

its shape on the registration accuracy. The results of the nonlinear registration based on AMMI

without a mask, with a cuboid fixed image mask that covers the region of the liver and a liver

mask are grouped according to the initial TRE and shown in Figure 5.7. It has to be noted the
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(a) CBCT to CT (AMMI, grid spacing: 110mm)
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(b) T1 to CT (AMMI, grid spacing: 110mm)

Figure 5.7: Application of Masks: Comparison of results obtained for the nonlinear registration of each point
of the respiratory cycle to the other time points without mask, using the liver segmentation and using the cuboid
segmentation as fixed image mask during the registration.

registration of the synthetic CBCT to the synthetic CT does not require an image mask to prevent

the registration from failure, in contrast to the CBCT to CT registration of actual patient data as

presented for linear registrations. This is due to the fact, that the synthetic images are intrinsically

registered and display a very similar morphology and a lower level of noise which facilitates the

registration task.

The results show that using a liver mask drastically decreases the registration accuracy. This can be

explained by the fact that by using a liver mask, the similarity metric is only evaluated in the liver

region during registration. Since the liver is considered to be a very homogenous organ with only

few internal vessel structures and deformable registrations rely on local information to generate

an appropriate deformation field, this limitation causes an increase of the postregistration TRE.

Thus, using a larger cuboid mask leads to an improvement of the registration accuracy whereas the

best accuracy for nonlinear registration is obtained without a fixed image mask. This is valid for

the registration of CBCT to CT as well as T1 to CT. The results are consistent with the results

obtained for linear registration for T1 to CT, but deviate for the registration of CBCT to CT whose

performance for linear registrations could be improved using a liver mask (Sec. 5.1.3).

5.2.4 Number of Resolution Levels

The last parameter that was investigated for nonlinear registrations is the number of resolution

levels in a multistage registration. As for linear registrations, it is important to chose the number

of resolution levels as a trade-off between registration accuracy and registration speed. The reg-

istration results for resolution levels between 1 up to 4 for the nonlinear registration of CBCT to

CT and T1 to CT are displayed in Figure 5.8. As for linear registration of abdominal scans, the

registration accuracy generally decreases with a decreasing number of resolution levels. However,

the multistage registration based on 3 resolution layers yields the same registration accuracy as

the registration using 4 layers and thus, represents the best setting for the nonlinear registration

of abdominal scans.
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(a) CBCT to CT (AMMI, no mask, grid spacing: 110mm)
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(b) T1 to CT (AMMI, no mask, grid spacing: 110mm)

Figure 5.8: Number of Resolution Levels: Results obtained for the nonlinear registration of each point of the
respiratory cycle to the other time points using different numbers of resolution layers for a multistage registration.

In summary, the results obtained for the evaluation of non-linear registration methods are in good

agreement with the results obtained for the evaluation of linear methods. As for linear registration

approaches, the highest registration accuracy was obtained using NMI as similarity measure and

three layers of resolution. Moreover, the results show that the physical grid spacing of the spline

transform only has a small impact on the registration accuracy and that a spacing of 110mm is

appropriate for the registration of abdominal data. However, in contrast to the results obtained for

rigid registration methods, the introduction of an image mask decreased the registration accuracy.

5.3 Novel Similarity Metrics

Since previous results of the registration evaluation show that the choice of the similarity measure

has a significant impact on the capture range of the registration method, two alternative similarity

measure are proposed within the frame of this thesis. Both metrics are characterized for different

types of geometric transformation using multimodal data pairs. The results are presented in the

following.

5.3.1 Similarity Metric based on Histograms of Oriented Gradients

The evaluation of the HOG-based similarity metric is divided into two parts: the first part aims

to investigate the behavior of the isolated similarity measure by sampling the parametric space

for translation and rotation transformations. In the second part of the evaluation, the metric is

incorporated in a complete registration algorithm and its performance for the rigid registration of

abdominal CBCT to CT scans is studied in terms of the estimation of the capture range of the

method.
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Figure 5.9: a) Parametric space obtained with the HOG-based similarity metric for the translation in x-, y- and
z-direction for 3D CBCT/CT data of each patient. The metric values were projected in a range from 0− 1 to enable
a comparison between the parametric spaces. b) Parametric space obtained with the HOG-based algorithm for the
translation in the x-y-plane for one data set.
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Figure 5.10: Parametric space obtained with the HOG-based similarity metric for the rotation around the x-, y- and
z-axis for 3D CBCT/CT data of each patient.

Parametric Space

The parametric space plots obtained for the translation of the 3D-CBCT (set as source image) in

x-, y- and z- direction relative to the 3D-CT (set as fixed image) of each data pair for the HOG

based similarity metric are displayed in Figure 5.9 a). The metric values were normalized and

projected in a range from 0 − 1 in order to enable a comparison of the parametric spaces shapes

obtained for each pair of patient data sets. For all data sets, a distinct minimum can be identified

that indicates the position of the gold standard determined by the preregistration. The HOG-based

metric results in smooth parametric cone surfaces for all three pairs of data which display only few

notable local minima for translations up to ±10mm. However, local minima are identifiable for

larger translations and the general shape of the parametric hyper-cone surface (exemplary shown in

5.9 b) for translations in x- and y-direction) depends on the image data used for the evaluation. A

similar metric behavior is observed for the case of rotational transformations for which the results

are shown in Figure 5.10. For rotations up to ±50 ◦, the metric values in parametric space are

essentially smooth and monotonic, but show a few notable local minima for larger rotations.

To evaluate the performance of the HOG-based metric in comparison to a well-established similarity
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Figure 5.11: Parametric space obtained with the HOG-based similarity metric and the NCC metric for the translation
of the moving image in x-, y- and z-direction for one CBCT/CT data pair. As in Figure 5.9, the metric values were
projected in a range from 0 − 1 to enable a comparison between the two metrics. The plots show that the HOG
metric results in a broader parametric cone than the NCC metric, making it easier to find during the optimization
process.
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Figure 5.12: Parametric space obtained with the HOG-based similarity metric and the NCC metric for the rotation
of the moving image around the x-, y- and z-axis for one of the CBCT/CT data pairs. Again, the metric values were
projected in a range from 0 − 1. As observed for the evaluation for translation transformations, the plots show that
the HOG metric results in a broader parametric cone than the NCC metric.

metric, the normalized parametric space plots obtained for translation and rotation transformations

using the HOG as well as the NCC metric for a single data set are shown in Figure 5.11 and figure

5.12, respectively. Both methods result in smooth parametric cone surfaces for both types of

transformations with a distinct minimum. In general, the parametric cone obtained for the HOG

metric is broader than the one obtained for the NCC metric, possibly facilitating the identification

of the global minimum during the optimization process.

Capture Range

Next, the registration accuracy of the method is investigated by registering the 3D-CT and the 3D-

CBCT data pairs of all three patients after artificial displacements relative to a reference position.

The registration capture range is estimated for translation and rotation transformations obtained

for the registration relying on the HOG-based similarity metric and the results are shown in Figure
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5.13 a) and 5.14 a), respectively.

For all data pairs, it can be stated that the registration using the HOG-based metric yields an

average TRE below the successful registration threshold (set to a median TRE of 3mm) for ini-

tial mean displacements (initial mTRE before registration) of up to 10mm for translation and

rotation transformations. The results obtained for larger initial displacements show that the final

mTRE increases for increasing start mTREs, but that the HOG-based registration still improves

the alignment of the 3D-CT to the 3D-CBCT for all patients for both, the translational and rota-

tional case. However, the standard deviation of the final mTRE also increases for increasing initial

displacements which is additionally demonstrated by the percentage of successful registrations per

displacements. These results are shown in Figure 5.13 b) for the case of translation and in Figure

5.14 b) for rotation transformations. The mean rate of successful registrations constantly decreases

for increasing displacements as it gets more complicated for the optimizer to reach the global

minimum of the metric. This can be related to the fact that the amount of local minima in the

parametric space in which the optimizer can possibly get caught increases for larger displacements,

as discussed in the previous section 5.3.1.

Figure 5.15 a) and figure 5.16 a) show the results of the translation as well as the rotation capture

range obtained for the evaluation using the HOG- and NCC-based registration methods. Similar to

the HOG-based metric, the NCC-based algorithm yields an average final mTRE below the threshold

of successful registration for small initial displacements. Concerning translation transformations,

the final mTRE obtained with the HOG metric is still below this threshold for displacements in the

range between 10−15mm, whereas the final mTREs obtained with NCC start to increase. For larger

displacements, the final mTRE increases approximately linear for both algorithms. This behavior

can also be observed when examining the percentage of successful registrations displayed in Figure

5.15 b). Although both algorithms yield similar success rates for small initial displacements, the

HOG-based metric outperforms the NCC-based algorithm for medium displacements in terms of the

percentage of successful registrations. A reversed metric behavior is observed for the evaluation

of the rotational capture range shown in Figure 5.16 b). Again, both algorithms yield similar

registration results for small displacements, but the NCC-based algorithm offers a higher probability

for a successful registration than the HOG-metric for medium displacements in the range between

10 − 20mm. Moreover, figure 5.15 a) and figure 5.16 a) show that the standard deviation for

the NCC-based registration is constantly smaller than the standard deviation obtained for the

HOG-based registration, indicating a smaller probability of large misregistrations.
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Figure 5.13: Translation Transformations: a) Capture range using the HOG-based similarity metric for transla-
tion transformations for the data of three patients. Although the values for the start mTRE were the same for every
data pair, the results were plotted separately to avoid an overlapping of the errorbars. b) The barplot displays the
percentage of successful registrations achieved for each data pair. The threshold for a successful registration was set
to 3mm.
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Figure 5.14: Rotation Transformations: a) Capture range using the HOG-based similarity metric for rotation
transformations. for the data of three patient. b) The barplot displays the percentage of successful registrations
achieved for each data pair. The threshold for a successful registration was set to 3mm.
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Figure 5.15: Translation Transformations: a) Capture ranges using the HOG-based similarity metric and NCC
metric for translation transformations. b) The barplot displays the percentage of successful registrations achieved
with both metric types. The threshold for a successful registration was set to 3mm.
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Figure 5.16: Rotation Transformations: a) Capture ranges using the HOG-based similarity metric and NCC
metric for rotation transformations. b) The barplot displays the percentage of successful registrations achieved with
both metric types. The threshold for a successful registration was set to 3mm.
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However, since the comparison of both similarity metrics relies on the registration of a very limited

number of 3D CT and CBCT data pairs, no general conclusion indicating which metric is more suit-

able for the registration of this modality combination can be drawn from the results. Nevertheless,

the results show that the HOG-based similarity metric is generally suitable to be used as similarity

metric for the registration of abdominal CBCT to CT data. Moreover, the registration results

obtained with the HOG-based registration method indicate a performance similar to conventional

similarity measures such as NCC.

A major drawback of this novel similarity metric is its high computation time which is mainly

caused by the time required for the extraction of the 3D-HOG descriptor ranging between 10

to 20 s for a conventional CT depending on the exact size of the input image. But due to the

cell-based structure of the HOG algorithm, it is a suitable candidate for an optimized parallel

implementation on a GPU. A GPU-based computation of the extraction of a 3D-HOG descriptor

has been realized in cooperation with colleagues from the Department of Computer-Assisted Clinical

Medicine, Heidelberg University. This could speed-up the computation of the 3D-HOG descriptor

to approximately 1 s for abdominal volumes with 65 mio voxel. The results have been published

in the proceedings of the 3rd Conference on Image-Guided Interventions & Fokus Neuroradiologie

(IGIC 2017) [195]. However, since a registration process corresponds to an iterative optimization

procedure, the 3D HOG descriptor has to be computed multiple times per registration leading

to an unbalanced trade-off between computation time and registration accuracy of the metric.

Therefore, the applicability of this novel metric in a clinical context is rather limited and no further

experiments on multimodal image data were performed.

5.3.2 Similarity Metric based on a Siamese Neural Network

The results presented in this chapter aim to further understand and characterize a learned similarity

measure based on a siamese network architecture for different modality combinations and morpho-

logical data. The performance of the Siamese Deep Metric (SDM) is evaluated using modality

combinations of three different data types:

� MRI brain scans (T1/T2),

� multimodal synthetic image data of the abdomen (CBCT/CT, T1/CT),

� and (pre-)interventional multimodal patient data of the abdomen (CBCT/CT).

The following chapter is divided according to these three types of evaluation data. The first two

data types actually served as training data for the siamese network to estimate similarity between

T1/T2-MRI brain scans, as well as synthetic CBCT/CT and T1/CT abdominal scans. To further

investigate the transferability of the metric, the performance for a model trained with synthetic

data is evaluated on real patient CBCT/CT data. For each modality combination, the parametric

space for translation and rotation transformations has been sampled for the different types of metric

evaluation presented in Figure 4.9.
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Figure 5.17: Parametric space obtained for a pair of T1 and T2 MRI data using the SDM trained with different
patch sizes, for translation and rotation transformations.

To investigate the influence of the training data on the performance of the SDM, the siamese

network has been trained with image pairs of different sizes as listed in Table 4.5. Due to reasons

of clarity, the influence of the patch size of the training data on the performance of the similarity

measure is not shown for all metric evaluation types. Type A and B (see figure 4.9) are mostly

relevant for the similarity estimation between image volumes that cover the image regions of very

similar physical size. However, this is not often the case for medical image data acquired during

clinical routine. The difference in physical space covered by an imaging modality is especially

pronounced for pre-interventional data and intra-interventional CBCT, since the CBCT is often

characterized by a FOV that is limited to the anatomical region of interest. So the evaluation

type C represents the most relevant metric evaluation scenario in a clinical context with regards

to the use-case of interventional image registration. Hence, the results for all data types that will

be shown for the performance study of SDM models trained with different patch sizes are limited

to type C for all modality combinations. If not mentioned otherwise, the results are also valid for

evaluation types A and B.

The results obtained for the novel Siamese metric are compared to the results of traditional mul-

timodal similarity measures, corresponding to a Normalized Gradient Field metric (NGF) and the

Advanced Mattes Mutual Information (AMMI) with and without consideration of an image mask

during metric evaluation. For all results, the numerical values obtained for the similarity metrics

were projected in a range from 0 to 1 to enable a comparison between the different metrics.

T1/T2-MRI Brain Data

As discussed in Section 4.2.4, the parameter sampling in an ideal case results in a conical-shaped

parametric space landscape with a distinct extremum, either minimum or maximum depending on

106



30 20 10 0 10 20 30

angle [deg]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o

rm
a

liz
e

d
 M

e
tr

ic
 V

a
lu

e
 [

a
.u

.]

Type C - Rotation around X-axis

30 20 10 0 10 20 30

x [px]

0.0

0.2

0.4

0.6

0.8

1.0

1.2
N

o
rm

a
liz

e
d

 M
e

tr
ic

 V
a

lu
e

 [
a

.u
.]

Type C - Translation in X-direction

30 20 10 0 10 20 30

angle [deg]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o

rm
a

liz
e

d
 M

e
tr

ic
 V

a
lu

e
 [

a
.u

.]

Type C - Rotation around Y-axis

30 20 10 0 10 20 30

y [px]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o

rm
a

liz
e

d
 M

e
tr

ic
 V

a
lu

e
 [

a
.u

.]

Type C - Translation in Y-direction

30 20 10 0 10 20 30

z [px]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o

rm
a

liz
e

d
 M

e
tr

ic
 V

a
lu

e
 [

a
.u

.]

Type C - Translation in Z-direction

T1 to T2 MRI - Results obtained for 15 di erent Subjects

30 20 10 0 10 20 30

angle [deg]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o

rm
a

liz
e

d
 M

e
tr

ic
 V

a
lu

e
 [

a
.u

.]

Type C - Rotation around Z-axis

Figure 5.18: Parametric space obtained for the evaluation of different T1 and T2 MRI data pairs using the SDM
trained with a patch size of 100×100×100 pixel for translation and rotation transformations. Each color corresponds
to the parametric space obtained for one image pair.

the employed similarity measure, and a smooth surface without local minima which potentially

hinder the optimization process.

Figure 5.17 displays the results obtained for the evaluation of Siamese metric models trained with

different sizes of input data. The data varied in terms of image dimension of the input pairs ranging

from cubic patches (denoted as Patches in the figure legend) to 3D slices (denoted as Slices in the

figure legend). A complete list of the input dimensions is given in Table 4.5. The main difference

of these patches is the fact that they contain different degrees of image information. Since the

different input patches are sampled from the same native data set (as explained in Section 4.3.2),

cubic patches with a size of 70× 70× 70 pixel contain less structural information than e.g. patches

with a size of 130× 130× 130 pixel. The results show, that all SDM models trained with different

input sizes yield a very similar performance with the exception of the model the trained with 3D

slices Slices 50 Y. These slices are characterized by a size 50 × 238 × 188 whereby the slices were

extracted along the sagittal axis of the brain. The difference between these slices and the other

training data is the fact, that the T1 and T2 MRI do not cover the same field of view in axial

direction for all patients. In some cases, the T1 MRI covers the entire head region from skull to

neck whereas the corresponding T2 MRI only covers the skull. Although all training patches are

exclusively extracted above the neck region, some T2 Slices 50 Y contain a small image region

which is characterized by zero values due to the image resampling during pre-registration of the

data. These non-valid image regions are contained in the T1 Slices 50 Y for several data pairs

which potentially hinders the similarity learning for these cases. Although such image regions may

also appear in patches with other sizes, the ratio of patches containing such regions to patches

without these regions is possibly higher for Slices 50 Y, since the extraction possibilities of these

patch pairs in the original data sets are limited due to their size. As a result, the parametric cone

for these cases is not as smooth as for the other patch sizes.In general, the results indicate that
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the size of the training data and thus, the contained image information has only a small impact on

the similarity learning, in case the training patches are only extracted in valid image regions of the

native data set. Moreover, the results suggest that the number of training pairs does not affect the

performance of the SDM, since the extraction of the different sized training data from the native

MRI scans resulted in a varying number of training pairs as listed in Table 4.5 according to the

size of the extracted training data. Due to the performance similarity of all SDM models trained

with different input sizes, the results shown in the following are restricted to the parametric spaces

obtained using training data with a medium size of 100 × 100× 100 pixel.

To ensure that the SDM yields an accurate performance for the similarity estimation between more

than one pair of T1/T2 MRI scans, the performance has been evaluated for a total of 15 brain

data pairs. The results are shown in Figure 5.18. Each color corresponds to the parametric space

obtained for one data pair. The SDM yields a smooth parametric cone for all T1/T2 pairs with a

distinct minimum. Although the data pairs were pre-registered as explained in Section 4.2.1, some

of the data pairs still display slight misalignments which can be seen by small shifts of the mimima

for the translation in z-direction. However, the results indicate that the SDM accurately estimates

the similarity between multiple T1/T2 MRI scans for translation and rotation transformations

suggesting a general validity of the metric for different testing subjects.

To further analyze the behavior of the metric for both of these transformation types, the parametric

cones obtained for one data pair using the SDM model trained with Patches 100 for all three metric

evaluation types A, B and C are shown in Figure 5.19 and Figure 5.20, respectively. The columns

of these figures represent the type of metric evaluation A, B or C, whereas the lines show the results

obtained for one particular translation direction or rotation axis.

For both transformation types, the Siamese Deep Metric (SDM) results in smooth parametric cones

that do not display any local extrema. Moreover, the parametric cones present a significant global

minimum that indicates the position of optimal image alignment according to the metric. For

all translation and rotation cases, the position of this optimum corresponds to the same position

which is identified by the traditional similarity measures such as the NGF metric, as well as AMMI

with and without mask. Comparing the shapes of the parametric spaces obtained with different

similarity measures, NGF results in a very narrow cone with several discontinuities e.g. seen for

the translation in y-direction or along (1,1,0) axis (see Fig. 5.19) as well as the rotation around x-

and y-axis (see Fig.5.20). Since this can lead to inaccurate image alignment during the registration

process, NGF seems inappropriate for the registration of the T1 to T2 MRI brain scans.

The benefit of an image mask for the metric evaluation is demonstrated by the results obtained for

the AMMI metric with and without mask for metric evaluation type B. For this type, the optimal

image alignment does not correspond to the position with a maximal image overlap. AMMI without

the use of an image mask results in a displacement of the correct minimum of the parametric cone

by up to 10, mm as seen for the translation along the y- and diagonal (1,1,0)-axis as well as all

rotation transformations. This displacement of the minimum potentially leads to an incorrect

transformation estimation during a registration process. Therefore, the results shows that the

application of an image mask during for the similarity metric estimation during a registration

process can be beneficial to increase registration accuracy.
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Figure 5.19: Parametric space obtained for a pair of T1 and T2 MRI data using the learned SDM, a NGF metric
and a traditional AMMI metric with and without the use of an image mask for translation in x-,y-,z- and diagonal
(1,1,0)-direction. The metric values were projected in a range from 0 - 1 to enable a comparison between the different
metrics.
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Figure 5.20: Parametric space obtained for a pair of T1 and T2 MRI data using the learned SDM, a NGF metric and
a traditional AMMI metric with and without the use of an image mask for rotation around the x-,y-,z- and diagonal
(1,1,1)-axis.
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Synthetic Abdominal Data

To investigate the behavior of the metric on another type of patient morphology, the SDM has been

additionally trained and evaluated for the similarity estimation of multimodal abdominal data.

Two different modality combinations have been studied, corresponding to synthetic CBCT/CT

and synthetic T1 MRI/CT. For the sake of clarity, only the results obtained for the modality

combination CBCT/CT are shown here, whereas the results obtained for T1 MRI/CT can be

found in Appendix 7.

As for the MRI brain data, the impact of the training data on the metric performance is evaluated

for different input sizes. Figure 5.21 displays the results obtained for the similarity estimation

between synthetic CBCT and CT data. In contrast to the results obtained for the brain data,

the size of the training patches affects the performance of the metric especially for translation

transformations. Here, an increasing size of the cubic patches, corresponding to the Patches 70

up to Patches 150, lead to a broader parametric cone. In the context of image registration, a

similarity metric that is characterized by a broad parametric cone can decrease the computation

time of the registration method. In such a case, the optimization is potentially accelerated due to the

continuous slope in the parametric space indicating the optimization direction for the transform

parameters. However, the models trained with large cubic patches, yield no clearly identifiable

optimum anymore as seen e.g. for the model based Patches 150 for translation in z-direction. This

could potentially hinder the registration process. To establish an appropriate trade-off between a

broad parametric cone as well as a significant optimum, the optimal patch size for the modality

combination CBCT/CT is given by a medium patch size. Therefore, the following results are shown

for the SDM model trained with a patch size of 100 × 100× 100 pixel. In contrast to the findings

for CBCT/CT, the results obtained for the performance evaluation of SDM models trained with

different patch sizes of synthetic T1 MRI/CT (shown in Appendix 7) do not display a dependence

from the size of the training data. This is in agreement to the results obtained for brain MRI

presented in the previous section. A possible explanation that the training data size only affects

the similarity estimation between CBCT/CT is given by the differences in the FOV between these

two modalities. As discussed in Section 2.2.1, the CBCT volume is characterized by a ring-shaped

FOV in contrast to a CT volume. To take this into consideration during the similarity estimation,

the training patches were extracted at positions that not only include regions that contain valid

image information, but also partially include this ring artefact. Since all patches are extracted

from the same native CBCT/CT volumes, the extraction of larger patches automatically results in

more patches that contain segments of this ring artefact. This could possibly hinder the similarity

learning and smaller patches that only contain valid image information could be favorable.

The evaluation is performed for multiple subjects. However, the data used for the evaluation of

these SDM models corresponds to the synthetic image triplets of five positions of a respiratory

cycle that is simulated using the XCAT phantom (the entire generation process is described in

Section 4.2.1). Since the morphological changes are only minimal for the different positions of

the respiratory cycle including e.g. movements of the diaphragm, the evaluation results are only

shown for the data of one image pair instead of all five image pairs. Differences between the results

for different data pairs are only marginal as shown in Appendix 7 for the modality combination
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Figure 5.21: Parametric space obtained for a pair of synthetic CBCT and CT data using the SDM trained with
different patch sizes, for translation and rotation transformations.

CBCT/CT.

The parametric cones obtained for translation and rotation transformations for the metric eval-

uation types A, B and C based on the model trained with cubic image pairs with a size of

100 × 100 × 100 px are shown in Figure 5.22 and Figure 5.23, respectively. As for the MRI brain

data, the parametric cones obtained for both transformation types display no local extrema and

show a clearly identifiable minimum indicating the position of optimal image alignment which is

in correspondence with the position obtained using traditional similarity measures. Moreover, in

agreement to the findings obtained in the previous chapter, the NGF metric results in a very narrow

parametric cone which extends into plateaus, as seen e.g. for the translation along the (1,1,0)-axis.

The absence of a slope can complicate the optimization process during an image registration, since

it leads to a vanishing gradient that complicates e.g. a gradient-descend optimization.

Compared to the results obtained for the MRI data of the brain, the parametric cones obtained

for the SDM models trained on abdominal data provide an even smoother surface. A possible

explanation is given by the reduced amount of structural information in the abdominal data sets.

Images of the brain tissue are characterized by a lot of texture and sudden intensity changes, which

increase the complexity of a similarity estimation. However, the results show that the siamese

network is able to learn an appropriate similarity estimation for both types of morphology.
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Figure 5.22: Parametric space obtained for a pair of synthetic CBCT and CT data using the learned SDM, a NGF
metric and a traditional AMMI metric with and without the use of an image mask for translation in x-,y-,z- and
diagonal (1,1,0)-direction. The metric values were projected in a range from 0 - 1 to enable a comparison between
the different metrics.
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Figure 5.23: Parametric space obtained for a pair of synthetic CBCT and CT data using the learned SDM, a NGF
metric and a traditional AMMI metric with and without the use of an image mask for rotation around the x-,y-,z-
and diagonal (1,1,1)-axis.
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Figure 5.24: Parametric space obtained for a pair of real patient CBCT and CT data using the SDM trained with
different patch sizes, for translation and rotation transformations.

Patient CBCT/CT Abdominal Data

At last, the transferability of the SDM models trained with synthetic CBCT/CT-pairs is studied

by evaluating the performance for the image similarity estimation of these models on real patient

CBCT/CT data.

First, the SDM models trained with different input sizes were evaluated on a single real CBCT/CT

pair and the results are shown in Figure 5.24. The results show that the SDM metric generally

yields a parabolic parametric landscape for all translation directions and rotation axis whereby the

minimum indicates the position of optimal image alignment according to the SDM. This implies

a general transferability of the models to real patient data, since the SDM models are able to

estimate an optimum. However, in contrast to the results obtained for the evaluation on synthetic

CBCT/CT data, there exists a significant variation in the performance of the different SDM models.

Especially the models trained with small patch sizes, such as Patches 70 and Patches 100 display

local discontinuities and not always a significant optimum. This could possibly be related to

the fact, that real patient data displays more structure than the synthetic data sets. Taking

into consideration the different information content in the different training data, small synthetic

training patches cover only local structures whereas large patches or 3D slices cover a large region

including patient anatomy as well as background information. A model trained with small image

patches therefore focuses on local information only and mostly neglects large gradients between

background and patient anatomy. However, this large gradients could be important for the transfer

on patient data. Since the synthetic data are based on a digital phantom, they display less organ

structures in form of e.g. vessels, than real data sets. Thus, real and synthetic patient data mostly

differ in terms of local structure, but display both similar structures on a global scale (such as the
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Figure 5.25: Parametric space obtained for the evaluation of different patient CBCT and CT data pairs using the
SDM trained with a patch size of 150 × 100× 150 pixel for translation and rotation transformations.

margin between patient and background). Therefore, models trained with patch sizes larger than

100 × 100 × 100 pixel are preferable for the transfer on real patient data. Since the SDM model

trained with Patches 130 yields a smooth parametric cone with clear minimum, this model is used

for all following studies.

Next, the applicability of the SDM is investigated for CBCT/CT data pairs of three different pa-

tients, denoted as ‘subjects’, as shown in Figure 5.25. For all three subjects, the SDM yields a

smooth parabolic parametric landscape for translation and rotation transformations with a sig-

nificant minimum which can be used for the optimization during image registration. Thus, these

findings indicate a general transferability of the metric for various real data sets.

At last, the performance of the SDM metric on patient data is compared to traditional multimodal

similarity metrics for translation and rotation transformations. The results are shown in Figure

5.26 and Figure 5.27, respectively. For all transformation types, the SDM metric yields a similar

position of optimal alignment as the traditional AMMI metric with and without mask. Moreover,

the parametric shape obtained for the SDM metric is in good correspondence to the shape obtained

with the AMMI metric. This shows, that the metric enables a similar registration accuracy than

traditional methods while providing a faster computation time of the metric value, once the SDM

model is trained. The SDM metric even outperforms the NGF metric, which yields parametric

landscapes with a high amount of local extrema and shifted minima with respect to the optimal

alignment of the ground truth data sets situated at position 0.

In summary, the result show that a siamese network is able to learn similarity for various modality

combinations as well as morphologies. In addition, the findings presented in this section indicate

that it is possible to train the metric using synthetic image data and transfer the model to estimate

similarity on real patient data.
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Figure 5.26: Parametric space obtained for a pair of patient CBCT and CT data using the learned SDM, a NGF
metric and a traditional AMMI metric with and without the use of an image mask for translation in x-,y-,z- and
diagonal (1,1,0)-direction. The metric values were projected in a range from 0 - 1 to enable a comparison between
the different metrics.
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Figure 5.27: Parametric space obtained for a pair of patient CBCT and CT data using the learned SDM, a NGF
metric and a traditional AMMI metric with and without the use of an image mask for rotation around the x-,y-,z-
and diagonal (1,1,1)-axis.

118



5.4 End-to-End Image Registration Learning

The last part of the thesis focused on the training of a neural network to learn an entire end-to-end

registration process. In total, 24 models were trained using different mono-and multimodal input

data sets as wells as loss functions. The registration performance of all models is evaluated by

sampling the capture range of the method using the evaluation methodology for rigid registrations

presented in Section 4.2.2. The evaluation is divided into three parts, whereas the first part inves-

tigates the performance of trained registration models for monomodal registration tasks and the

second part focuses on models for multimodal image registration. In the last, the transferability of

the models trained with synthetic image data for the application on real patient data is investigated.

5.4.1 Monomodal Registration Learning

The monomodal registration models were trained using two different data sets, corresponding to

T1-MRI brain data and synthetic CT abdominal data which also represent the data sets used for

the evaluation of the models.

Affine vs. Deformable Registration Models

The original VoxelMorph network is restricted to deformable registration learning. Therefore, the

first alteration of the original network was represented by an extension to learn an affine image

registration process. Since deformable registration methods are intrinsically restricted to capture

local image deformations, it is expected that the original network is not suitable to correct large

global image displacements in contrast to the extended affine model.

The results obtained for both registration types using all implemented monomodal loss functions

are shown in Figure 5.29 for T1-MRI brain data and in Figure 5.30 for abdominal CT data. For

both data sets, the results confirm the assumption that deformable registration models are unable

to correct global image displacements, yielding a mean TRE (mTRE) that is only slightly smaller

than the mTRE before image registration (see 5.29b and 5.30b). The only exception is represented

by the deformable registration model based on a supervised DFL which yields an improved image

Moving Image Fixed Image Warped Moving Image

(deformable, DFL)

 

Warped Moving Image

(affine, DFL)

 

Figure 5.28: Registration example using the affine and deformable registration models trained with the supervised
DFL as loss function for the monomodal registration of T1-MRI data.
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Figure 5.29: Brain data (T1/T1): Monomodal affine and deformable registration of T1 brain MRI using models
trained with different loss functions.
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Figure 5.30: Synthetic data (CT/CT): Monomodal affine and deformable registration of synthetic abdominal CT
data using models trained with different loss functions.

alignment. Although the deformable registration model succeeds to shift the image in a reasonable

direction, its application results in unrealistic tissue deformations due to its flexibility and high

number of degrees of freedom. This is exemplary shown for the monomodal registration of T1-

MRI in Figure 5.28. In contrast, the affine registration model based on DFL preserves a correct

anatomy. Moreover, the comparison of the registration accuracy achieved for the deformable and

affine registration models trained with a DFL shows that the latter results in an even lower post-

registration TRE.

In general, the affine registration learning models all improve image alignment resulting in a lower

post-registration TRE than initial TRE. For image displacements up to 50mm, the affine registra-

tion models yield a mTRE of 10− 20mm for the registration of T1-MRI data (see Fig. 5.29a) and

a TRE below 10mm (see Fig. 5.30a) for the registration of synthetic CT data, depending on the

employed loss function. For displacements larger than 50mm, the post-registration TRE slowly

increases for both data sets including a larger standard deviation. The results show that the models

are able to correct large image displacements for both data sets. However, the performance for

small initial displacements differs depending on the data. For the synthetic CT data, the registra-

tion model leads to very small mTREs of ∼ 1mm for initial TREs smaller than 10mm. In contrast,

the models do not improve image alignment for the brain data pairs in this displacement range.

This may be linked to the higher amount of available brain data pairs that were used for training
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the model. Since they stem from different patients, the data pairs display variances in morphology.

This increases the difficulty to learn a registration potentially leading to a lower accuracy for the

fine registration of small displacements.

In addition, it has to be noted that the models were only trained for the correction of translation

transformations up to 30mm. Nevertheless, the results show that the affine models were able to

correct image displacements even larger than 60mm for both data sets. This implies a general

transferability to novel problems in form of larger image displacements.

Different Loss Functions

Figure 5.29 and Figure 5.30 also display the results obtained for the registration models trained with

different loss functions. In total, three loss functions were used for the training of the monomodal

registration models: an MSE loss without the consideration of an image mask during metric eval-

uation as proposed in the original VoxelMorph network, an MSE loss with image mask as well as

a supervised deformation field loss.

In contrast to the MSE-based losses which rely on the similarity estimation between the fixed image

and the warped moving image, the supervised DFL forces the network to learn the generation of a

deformation field that is similar to the known ground truth deformation field. Therefore, the model

based on a supervised DFL represents the only model that is able to improve the image alignment

for a deformable registration as shown in Fig. 5.29b and Fig. 5.30b. However, since the application

of deformable registration models for the registration of affinely transformed image pairs leads to

unrealistic image deformations, the comparison of different loss functions focuses on affine image

registration applications.

The results obtained for the affine registration models trained with T1-MRI data (see Fig. 5.29a)

and synthetic CT data (see Fig. 5.30a) show that all three loss functions represent appropriate

measures for monomodal registration learning. All affine registration models yield a mTRE below

20mm for the T1 brain data and below 10mm for the synthetic CT data for initial image displace-

ments up to 50mm. Especially the results obtained for the brain data set show the importance

of the use of an image mask during registration. Although all models trained with different loss

functions yield similar registration accuracies for small image displacements, the MSE loss without

an image mask results in a significantly larger post-registration TRE for large image displacements

than the MSE with mask. The consideration of an image mask during the estimation of the loss

ensures that only image regions containing valid image information contribute to the loss value.

Thus, for the T1-MRI brain data, the lowest mTRE after registration is achieved by using an

MSE loss with consideration of a binary image mask. The experiments for this data set have been

performed for multiple data pairs, but due to reasons of clarity of presentation, only the results for

one data pair are shown. The remaining results are in good agreement with the presented findings

and are shown in Appendix 7. For the synthetic CT data, both the MSE loss with and without

mask result in similar registration accuracies, whereas the MSE with mask yields a slightly higher

registration accuracy. The best loss function for the monomodal CT registration is given by the

DFL. However, the requirement of additional information in form of a known deformation field does
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Figure 5.31: Brain data (T1/T2): Multimodal affine and deformable registration of T1 and T2 brain MRI using
models trained with different loss functions.
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Figure 5.32: Synthetic data (T1/CT): Multimodal affine and deformable registration of synthetic T1 to CT data
using models trained with different loss functions.

not advocate the use of the DFL loss, since the unsupervised MSE loss leads to similar registration

accuracies, especially for small image displacements below 50mm.

5.4.2 Multimodal Registration Learning

In addition to the integration of novel monomodal loss functions, two multimodal loss functions

were implemented to enable a training of the network for the registration of multimodal image data.

The first loss corresponds to the supervised DFL loss. Since this loss only relies on a comparison

of deformation fields and not on intensity values, it is suitable for mono- as well as multimodal

registration applications. As alternative, the SDM which was discussed in detail in Section 5.3.2 is

incorporated as multimodal loss function. With these two losses, affine and deformable registration

models were trained for the registration of T1 to T2 brain MRI, synthetic abdominal T1-MRI to

CT data as well as synthetic abdominal CBCT to CT data.

Affine vs. Deformable Registration Models

The results obtained for the evaluation of these multimodal models are shown in Figure 5.31 for the

registration of T1/T2-MRI brain data, in Figure 5.32 for the registration of T1/CT and in Figure
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Figure 5.33: Synthetic data (CBCT/CT): Multimodal affine and deformable registration of synthetic CBCT to
CT data using models trained with different loss functions.
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Figure 5.34: Registration example using the affine and deformable registration model trained with the SDM as loss
function for the multimodal registration of synthetic T1 to CT data of the abdomen.

5.32 for the registration of CBCT/CT. As for monomodal registration tasks, the results show that

the deformable VoxelMorph models are unable to successfully register affinely transformed image

data. The results obtained with the deformable registration model trained for the registration of T1-

to T2-MRI brain data shown in Figure 5.31 are in good correspondence with the results obtained

for the use of monomodal deformable registration models, since their application results in a post-

registration TRE similar to the initial TRE. However, the results obtained for the registration

of synthetic abdominal data show that, depending on the employed similarity measure, the post-

registration TRE may even be larger than the initial TRE for the use of deformable registration

models. A possible explanation is given by the different amount of structural information contained

in brain and abdominal image data. The T1- and T2-MRI scans are characterized by a lot of texture

due to the morphology of the brain. In contrast, the structural information in abdominal data is

rather limited since the abdominal organs display a high degree of homogeneity. This is further

enforced by the fact that synthetic scans were used as training data which are generated using the

segmentation-based digital XCAT phantom which inherently contains less structural information

than real patient data. The deformable registration of homogenous image regions represents an ill-

posed problem and is generally a challenging task, possibly leading to the increased post-registration

TRE observed for the synthetic data pairs.

The performance differences observed for the models trained with different data sets also manifests

itself for the evaluation of affine registration models. The registration accuracy obtained for the
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affine registration of T1- to T2-MRI is shown in Fig. 5.31a, and for T1 to CT and CBCT to

CT in Fig. 5.32a and Fig. 5.33a, respectively. The results show that the magnitude of the post-

registration TRE highly deviates for models trained with different data sets. Concerning the affine

registration of T1- to T2-MRI data, the registration models yield a mTRE smaller than 20mm

for image displacements up to 50mm which slowly increases for larger displacements. The mTRE

obtained for the registration of T1 to CT and CBCT to CT is significantly larger ranging between

18 − 40mm depending on the employed loss function and modality combination for the same

range of initial image displacements (note the different y-axis used for brain MRI and synthetic

abdomindal data). As for deformable registration, this may be caused by differences in structural

image information.

However, the results obtained for all data sets show that the affine registration models generally

achieve an improvement of the image alignment for large image displacements. As for monomodal

registration tasks, the extension of the VoxelMorph network to affine registration results in a higher

registration accuracy as deformable registration models while preserving the morphology as shown

in Figure 5.34.

Different Loss Functions

As for monomodal registration models, the comparison of models trained with different loss func-

tions is limited to the application of affine registration tasks, since the use of deformable registration

models generally leads to unrealistic image deformations.

Concerning the range of large image displacements (larger than 40mm), the results show that

models trained with both loss functions, the DFL and the SDM loss, lead to an improvement of

image alignment. For all data pairs, the standard deviation of the registration accuracy obtained

with the DFL-based model is significantly lower than the standard deviation obtained using the

SDM-based model. This indicates a higher robustness of the models trained with the DFL loss. In

terms of registration accuracy, the DFL-based model outperforms the SDM loss for the registration

of T1/T2-MRI as well as CBCT/CT data. In contrast, the SDM loss leads to a lower post-

registration TRE for the registration of T1-MRI to CT.

The performance of the different models for small pre-registration TREs highly depends on the

image data used for training and evaluating the network. Whereas the model trained with the SDM

loss improves the image alignment for small image displacements below 10mm for the registration

of T1/T2-MRI, it leads to an even higher post-registration TRE for the registration of CBCT to

CT data for displacements below 30mm. This indicates the requirement of further optimization of

the SDM, so that it leads to stable registration results for all modality combinations. In contrast,

the performance of the DFL is similar for all data pairs, indicating a general applicability of the

method.

In general, the registration accuracy of the multimodal models is limited for small image displace-

ments below 10mm. This may be related to the quality of the ground truth image data used for

training the models. Since the brain data corresponds to real patient data, there might still exist

small displacements despite of the registration performed during preprocessing of the data. As for
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Figure 5.35: Real patient data (CT/CT, CBCT/CT): Monomodal and multimodal affine registration of real
patient data using models trained with synthetic CBCT to CT data based on different loss functions.

the generation of the synthetic data, the application of the CycleGAN might result in blurring on

the organ edges (as discussed in Sec. 4.2.1). These small morphological deviations in the ground

truth data pairs translate to the accuracy that is achievable by the registration models.

5.4.3 Transfer to Patient Data

At last, the performance of the registration models trained with synthetic image data is investi-

gated for the application on exemplary data pairs of real patient data. This transfer included the

evaluation of the affine registration models trained for the monomodal registration of abdominal

CT data as well as the multimodal registration of CBCT to CT data. To establish a comparability

of the synthetic and real patient data, the intensity values of real CBCT and CT data were rescaled

using SimpleITK, so that the intensity distributions are similar to the intensity distributions of the

data pairs that were used for training the models. The evaluation was performed for three data

pairs. Here, the results for one pair are exemplary shown whereas the remaining results are in good

correspondence with the findings presented here and are shown in Appendix 7.

Figure 5.35a displays the registration accuracy obtained for the monomodal registration models

trained with different loss functions. The results show that the application of the monomodal

affine registration model on real patient data leads to an improvement of the image alignment, since

all models yield a post-registration mTRE smaller than the initial mTRE. However, the obtained

registration accuracies are characterized by large standard deviations. As for the evaluation on

synthetic image data, the models trained with different loss functions yield very similar registration

results, whereas the model trained with DFL yields the highest registration accuracy for large image

displacements.

The results obtained for the application of the multimodal registration models trained with syn-

thetic CBCT/CT data on real CBCT/CT data are shown in Figure 5.35b. Both models trained

with different loss functions lead to a clear improvement of the image alignment for initial image

displacements larger that 20mm, whereas the model which was trained using the unsupervised

SDM slightly outperforms the DFL-based model in terms of registration accuracy. Comparing

these results to the results obtained for the application on synthetic image data, it can be seen that
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the model performs very similar on both data sets.

In summary, the findings presented in this section suggest the transferability of the models trained

for the registration of synthetic image data for applications based on real patient data. However,

the transfer is linked to some requirements, such as a preprocessing of the patient data so that

the underlying intensity distributions approximately correspond to the intensity distribution of the

image pairs used for training the network. Moreover, the VoxelMorph network can only handle

input images having the same size, therefore the preprocessing should not only include the rescaling

of intensity values but also a resampling of the image dimensions if necessary. The results show

that the models successfully achieved an improvement of the image alignment for monomodal as

well as multimodal registration.
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6

Discussion

In this chapter, the findings presented in the previous chapter will be summarized and their im-

plications for the field of medical image registration are discussed. The chapter is divided into

three parts. The first part includes a review of the developed evaluation methodology for linear

and non-linear multimodal registration approaches and its potential applications. The second part

provides a discussion of the performance of the novel image similarity measures proposed in this

thesis. The last part of this chapter focuses on the discussion of the performance of developed

models for mono- and multimodal image registration learning using a Deep neural network.

6.1 Evaluation of Linear and Nonlinear Image Registration

The developed evaluation methodology has been used for the optimization and performance com-

parison of methods for the multimodal registration of T1-MRI to CT data as well as CBCT to CT

data. The different registration methods are characterized by variations such as different similar-

ity measures, fixed image masks, the number of resolution layers or specific features such as the

physical grid spacing of a deformable spline transform.

Concerning the registration performance based on different similarity measures, the results for linear

and non-linear registration methods are consistent. For both registration types, the results indicate

that similarity measures based on mutual information yield a high accuracy for the registration of

CBCT/CT and T1-MRI/CT abdominal scans. Within the frame of this thesis, two different metrics

based on mutual information were investigated, namely Advanced Mattes Mutual Information

(AMMI) and Normalized Mutual Information (NMI). The results obtained for the comparison of

these metrics suggest that NMI leads to a minimally lower registration error than AMMI and is

therefore favorable for the registration of multimodal abdominal image data.

Another correspondence for both registration types occurred for the estimation of the optimal

number of resolution layers in a multistage registration. The experiments show that more than

three resolution layers do not improve registration accuracy, but only increase computation time.

A significant difference for both registration types is the behavior observed for the application of

fixed image masks during registration. Deformable registration methods improve by increasing

the image region in which the similarity measure is estimated during registration. Thus, the
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highest registration accuracy is achieved without an image mask. This can be explained by the

fact that deformable registration methods are very flexible. The application of a fixed image

mask restricts the image region considered during metric evaluation, which potentially leads to

a limitation of local information that is necessary to estimate an appropriate spatial deformation

field. This is especially significant for the registration of very homogenous structures, such as the

liver. In contrast, linear registration methods benefit from the introduction of a mask. During

the experiments for linear registration methods using actual patient data, it became apparent that

a fixed image mask is mandatory for the registration of CBCT as moving image to CT as fixed

image, to prevent the algorithm from failure. This is mainly due to the fact that rigid registrations

rely on global information and are generally intended to correct geometrical displacements of a

larger magnitude than nonlinear registration methods. Taking into consideration the intended

application scenario of interventional procedures, masks are usually not available in a routine

setting. The results indicate that even the introduction of a simple cuboid mask, which could

be provided manually with acceptable effort before the intervention, can improve the registration

outcome. Moreover, with the upcoming of deep learning based segmentation approaches, fully

automated, robust segmentation of target structures, such as the liver, is available with accuracies

that should be sufficient to be used as image masks for registration.

Especially the comparison of registration methods with and without the consideration of image

masks revealed that the registration of CBCT to CT data is a very difficult task. This is mainly

attributed to the often low image quality of CBCT data that is characterized by a high level of

noise as well as a limited FOV due the image acquisition and reconstruction. The difference in

the FOV represents a challenge, since CBCT data often only covers the anatomical target region,

such as the liver, whereas a CT generally covers the entire abdomen. This leads to a significant

difference in size of both images which can additionally complicate the registration procedure. A

possible improvement is given by the performance of an initialization procedure which roughly

prealigns the image volumes before the actual registration. The experiments performed for liver

scans in this thesis show that the best initialization for CBCT to CT data is given as superposition

of the geometrical centers of the target structure, such as the liver in the context of this thesis.

In addition, deviations in terms of grey value distributions in CT and CBCT data contribute to

the registration problem since there exists no defined relation between the intensity values in both

modalities. Although results presented in this thesis show that monomodal similarity measures

relying on cross-correlation may be appropriate for the registration of CBCT to CT, the results

obtained with a mutual information based metric outperform monomodal metrics. Thus, the results

presented in this thesis suggest the application of a multimodal rather than a monomodal similarity

measure for an accuracte registration of CBCT to CT data.

In general, the developed evaluation methodology for rigid and non-linear registration methods

enables a fast comparison and optimization of different techniques for the multimodal registration

of abdominal scans. In contrast to existing evaluation methods, the presented method does not

rely on overlap-based accuracy measures which represent arguable quality criteria for registration

evaluation [112]. Instead, the developed evaluation method uses a point-based accuracy estimation

which employs a dense grid of landmarks to estimate registration accuracy within the liver.
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Due to the modular setup of the SimpleElastix toolkit, an easy implementation of a multitude

of different registration methods as well as the adjustment of various registration parameters is

possible. In addition, the component performing the actual registration in the evaluation framework

can be replaced by any registration method, thus also enabling the evaluation of novel registration

approaches. This is demonstrated by the use of this novel evaluation methodology to benchmark

the performance of an algorithm that relies on a neural network to learn an entire end-to-end

registration developed within the frame of this thesis (see Section 4.4). Another advantage of the

methodology developed for the evaluation of rigid registration methods is the fact, that it can be

easily extended for the estimation of registration accuracy for alternative morphologies, such as

e.g. brain data. To realize such an extension, ground truth registered data is required as well as

segmentation masks for the target structures in which the registration accuracy should be estimated.

By using this data as novel input to the methodology, it is possible to apply the registration accuracy

for alternative morphologies or data sets. However, such an extension to alternative morphologies

is not as simple for the evaluation developed for non-linear registration methods, due to the lack of

non-linearly deformed ground truth data. An extension could potentially be realized by applying

artificial deformable transformations on prealigned ground truth data, and using these generated

deformation fields as input to the methodology. However, artificial non-linear transformations

rarely depict realistic deformations of organs and soft tissue.

Nevertheless, due to its wide range of application possibilities and easy modular setup, the de-

veloped evaluation methodology represents an important contribution to benchmarking various

methods for an optimized registration of abdominal image data.

6.2 Novel Similarity Metrics

6.2.1 Similarity Metric based on Histograms of Oriented Gradients

The evaluation of the novel similarity metric based on the comparison of 3D-HOG descriptors was

divided into two parts. The first part focused on the sampling of the parametric space of the metric

for different translation and rotation transformations using pre-interventional CT data and intra-

interventional CBCT data of three different patients. For the second part, the novel metric was

successfully implemented in an entire registration algorithm for CBCT/CT which was evaluated

using the methodology for rigid registration methods discussed in the previous section.

The evaluation of the parametric spaces showed, that the HOG-based metric yields a clear global

minimum for translation and rotation transformations which can be identified during an optimiza-

tion process. However, the metric displays tendencies to local minima in the parametric space for

large initial displacements eventually causing misregistrations depending on the utilized registration

optimizer.

Nevertheless, the results obtained for registration evaluation for translation displacements up to

30mm and rotation displacements up to 30◦ indicate that the HOG-based registration algorithm

is able to successfully correct medium image displacements. These reach up to 14mm translations

and 10◦ rotations. The results show that the probability for successful registrations in this range
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is comparable to the probability obtained with an NCC-based algorithm. The comparison of the

HOG-based metric to the NCC showed that the HOG metric is generally able to compete with

NCC in terms of the registration accuracy. For the data used in this evaluation, the novel metric

performs slightly inferior for the registration of rotational image displacements, but displays a

higher performance for the registration of translation transformations. Further studies have to

show if this is a general behavior of both registration metrics, or if this circumstance is only related

to the used image data.

In general, the patch-wise computation of the HOG-based metric provides a high level of robustness

to noisy image data and illumination changes, since it is not affected by the inevitable variety of

corresponding pixel-to-pixel intensities. Another advantage of the HOG-based similarity metric is

the fact that it has the potential to be usable not only for monomodal but also for multimodal

registration applications, since the metric exclusively relies on gradient information. Distinct gra-

dients in medical images are often related to organ margins or sudden structural changes which

are often visible in images of different modality. Moreover, the feasibility study done in this work

showed that the new metric can compete with established similarity metrics in terms of registration

accuracy for the challenging task of registration of CBCT to CT data.

However, a major drawback of the HOG-based similarity measure is the fact that the extraction

of a 3D-HOG descriptor may be very time consuming depending on the size of the input images.

In cooperation with project partners from the Department of Computer Assisted Surgery, Medi-

cal Faculty Mannheim, University of Heidelberg, a parallelized implementation of the extraction

algorithm has been implemented, reducing the computation time from 250 seconds to 1.1 seconds

for an image volume of 512 × 512 × 188 pixel [195]. But the complexity of the HOG estimation

still makes the HOG-based similarity metric unsuitable to be used for clinical applications requir-

ing fast computation. To make the algorithm usable in a clinical context, further adjustments to

improve the performance of the metric for rotation transformations would be required. Moreover,

the influence of different metric parameters, such as chosen histogram bin size, cell size or block

size, on the shape of the parametric space should be investigated further.

6.2.2 Similarity Metric based on a Siamese Neural Network

The performance of the learned similarity metric based on a siamese neural network was charac-

terized for different modality combinations and morphologies by sampling the parametric space for

translation and rotation transformations.

Concerning the application of the learned similarity metric for different morphologies, the results

obtained for brain and abdominal data show that the metric is able to define an optimum in the

parametric space for all investigated patient morphologies. The position of the optimum was in good

agreement with the position identified by traditional similarity measures such as AMMI and NGF.

This indicates that the neural network is able to distinguish between ‘similar’ and ‘dissimilar’ images

of different anatomical data. However, the results indicate that the performance of the metric is

affected by the complexity of the morphological structures displayed in the images. Although the

evaluation for both morphology type yields smooth parametric space landscapes with few local
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extrema, the parametric space obtained for complicated structures such as the brain displays a

decreased smoothness compared to the result obtained for abdominal image data.

The performance of the Siamese Deep Metric was additionally evaluated for different modality com-

binations, including intra-modal T1/T2-MRI as well as multimodal CBCT/CT and T1 MRI/CT

data. The learned similarity results in smooth parametric cones for all modality combinations which

indicate a general usability for image registration purposes. This behavior could be confirmed for

the evaluation of several data pairs per modality combination.

Instead of a general usability of the metric for universal image data, the Siamese Deep metric has

to be trained using image data specified for an intended task. This is simultaneously an advantage

and a drawback of the method. It can be advantageous since the metric is trained and optimized

to estimate the similarity between very specific data. This is exemplary demonstrated for the

comparison of the novel Siamese metric to the traditional NGF metric. This comparison showed

that the Siamese metric outperforms the NGF metric for certain data types, such as e.g. the MRI

brain data pairs, by providing a smoother parametric space landscape which is beneficial for image

registration. However, the training of the siamese network to learn such a similarity estimation

can be time consuming and requires registered multimodal ground truth data. This is a major

drawback of the method, since this type of data has to be tediously obtained first or may not exist

at all due to the acquisition process of different image modalities.

For one type of experiments performed in this thesis, this limitation is overcome by training the

network on synthetic image data. Since the aim of the work presented in this thesis is the de-

velopment of novel methods for the registration of real pre-and intrainterventional patient data,

the transferability of a learned Siamese metric model trained with synthetic image is investigated

by applying the model on real patient CBCT/CT data. The results show, that this transfer is

generally feasible and the parametric space landscapes obtained for the Siamese Deep metric are

in good agreement with the results obtained for traditional multimodal similarity measures such as

AMMI. This general transferability of the metric can be very beneficial, since the main advantage

of such a learned similarity measure is the fast computation time of metric values (in the range of

subseconds depending on the image size), once the model is trained. The implementation of such

a metric in an entire registration algorithm could therefore significantly increase the computation

speed of the registration, since the metric estimation traditionally corresponds to the most time

consuming component of the iterative procedure. Another benefit is the fact that it is possible to

integrate the trained Siamese metric as multimodal loss function in another neural network as will

be discussed in the next section. This is important, due to the promising results obtained for novel

approaches relying on DL in the field of medical image processing. However, up to now, only very

few loss functions applicable for the similarity estimation of multimodal image data exist for the

use in DL frameworks such as Keras or TensorFlow.

The results generally show, that it is possible to learn a similarity measure and successfully transfer

the trained models for the similarity estimation on data sets with comparable intensity distributions.

The fast computation time as well as the smooth parametric landscapes make these learned Siamese

similarity measures an interesting alternative to traditional similarity measures, especially for the

development of novel approaches requiring a multimodal similarity metric in the context of DL.
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Comparing the findings obtained for the novel Siamese metric to the findings concerning the HOG-

based similarity metric, it can be stated that the Siamese metric displays a higher robustness for

large rotations. Moreover, the computation time of the metric value is several magnitudes faster

than for the HOG-metric. However, a significant advantage of the HOG-metric is the fact that it

does not rely on a training requiring ground truth registered image data. In general, the HOG-

metric is applicable to various data sets with the sole requirement of distinct image gradients. Both

metrics represent appropriate alternatives for the similarity estimation of multimodal data, which

up to now is dominated by mutual information based metrics.

General Remarks

Aside from the performance evaluation of the Siamese Deep metric, the results obtained by sam-

pling of the parametric space for different data sets using traditional similarity metrics provided

additional important findings. For all experiments, three different metric evaluation cases were

distinguished which differ by the position of optimal image alignment and the application of image

masks. For one of these cases, the optimal position of image alignment corresponds to a position

with a slight offset and not to the position of maximal overlap of the images. The results obtained

for the sampling of the parametric space using AMMI with and without mask for this specific

case showed that the introduction of a binary image mask can be essential to identify the correct

position of image alignment. In general, the introduction of a binary image mask during similarity

estimation restricts the regions in both images taken into account for the computation of the met-

ric values to regions containing only valid image information. Non-valid regions containing default

pixel values which are created during image resampling processes after geometric transformations

are discarded when using an image mask. Hence, only image regions containing actual image in-

formation are compared for the similarity estimation. Without a mask, the default region of one

image may be compared to a valid region of another image, leading to incorrect metric values, as

shown for the results of the AMMI metric with and without mask. Up to now, the use of image

masks is not always a part of image registration methods especially for approaches based on neural

networks. However, the results obtained within the frame of this thesis indicate a high importance

of these masks to improve registration accuracy.

6.3 End-to-End Image Registration Learning

Deformable registration methods are generally limited to correct local image displacements, such

as e.g. organ deformations due to respiratory motions. However, for many applications in medical

image processing, it is necessary to correct larger, global image misalignments. Therefore, the first

modification of the VoxelMorph network is represented by learning the entries of an affine geometric

transform matrix. This matrix builds the basis for the calculation of a 3D deformation field that is

used to warp the moving image during registration learning. The results show that this extension

successfully enables the learning of an affine registration process. The direct comparison between

the deformable and affine registration models confirm the assumption that deformable models are

unable to correct global displacements, whereas the affine registration models improved image
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alignment for all investigated data sets and modality combinations. As expected, the evaluation

showed that affine registration learning generally preserves anatomy whereas the application of

deformable registration models lead to unrealistic tissue deformations.

Moreover, the results obtained for monomodal and multimodal registration tasks show that the

affine registration models are able to correct image displacements larger than the image displace-

ments used for training the network. Although this circumstance leads to an extended capture

range of the method, the training parameters should generally be chosen similar to the param-

eters of the intended registration task to ensure an optimal registration performance. For both

multimodal data sets, the brain MRI data as well as the abdominal image data, the models do

not improve image alignment for small displacements below 10mm. This is most likely related to

the accuracy provided by the multimodal ground truth data pairs. Therefore, future investigations

should focus on an improvement of the ground truth generation processes.

In a clinical context, an ideal registration algorithm would be able to correct global and local image

displacements. Therefore, an additional variation of the network could be realized by implementing

a multistage registration which combines a global affine registration to generate an initial image

alignment with a deformable registration to correct local image displacements.

In addition to the extension to affine registration learning, novel loss functions were investigated

to train the network for mono-and multimodal registrations. Concerning monomodal registration

learning, three loss functions were employed including an MSE without the use of an image mask

during metric evaluation, an MSE with image mask and a supervised DFL that is based on the

comparison between deformation fields. The results show that the affine registration models trained

with all three losses lead to an improvement of the image alignment and are suitable to be used as

loss functions for training the registration network. However, comparing the registration accuracies

obtained using the three loss functions, it can be stated that the MSE loss without consideration

of an image mask performs slightly inferior to the other two loss functions for the evaluation of

all data sets. This confirms the observations stated in the previous Section 6.2, that the use of an

image mask during metric evaluation leads to an improvement of the registration accuracy, since

only valid-image regions contribute to the similarity estimation of the images. Both the model

trained using the MSE loss with image mask and the model trained using the supervised DFL

yield very similar registration accuracies. But since the DFL loss relies on additional information

in form of a known deformation field, the unsupervised MSE loss with image mask represents the

most suitable loss function of all three options for monomodal registration learning.

Concerning multimodal registration learning, two loss functions were employed: Since the DFL

relies on the comparison of the known deformation field applied during training and the deformation

field generated by the neural network, it is applicable for mono- as wells as multimodal registration

tasks. In addition, the SDM is integrated as an alternative multimodal loss function.

The results show that the models trained with both multimodal loss functions lead to an im-

provement of image alignment for large displacements for all modality combinations. However, the

performance for small image displacements highly varies depending on the employed image data.

Whereas the SDM-based models succeed to improve image alignment for small displacements below

20mm for the registration of T1/T2-MRI, it decreases the registration accuracy for the registration
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of CBCT to CT data as well as T1/CT data. In turn, the DFL-based models decrease registration

accuracy for small image displacements below 10mm for all modality combinations, but outperform

the SDM-based models in terms of registration accuracy for larger displacements for the registra-

tion of T1/T2-MRI and CBCT/CT. For all data pairs, the DFL lead to a lower standard deviation

of the registration accuracy compared to the SDM-based models, indicating a higher robustness of

the method. Thus, DFL does not necessarily offer an advantage for monomodal registration learn-

ing but after further optimization could represent a useful alternative for multimodal registration

learning. In general, the result show that both multimodal loss functions are able to improve image

alignment for the registration of multimodal image data.

However, further optimization is needed to increase the registration accuracy of multimodal models

trained with both loss functions for the registration of small image displacements. The main reason

for the decreased registration accuracy in this range may be found in the quality of the alignment

of the ground truth data pairs used for training the network. Since the MRI brain data stems

from real patients, the data sets is characterized by a high degree of morphological variances which

leads to an increased complexity of learning an optimal image alignment. Concerning the synthetic

data pairs, the generation process using the CycleGAN may lead to slight blurring effects which

may also decrease the alignment accuracy in these data sets on a finer mm-scale. Therefore,

future investigations should focus on the quality of the ground truth data to improve registration

accuracy of the trained registration models. As for now, the results indicate a general usability

of the models to generate an appropriate initial registration of the data pairs. Due to the fast

computation time of this registration, a reasonable scenario in a clinical context may include the

performance of a multistage registration consisting of a model-based preregistration to roughly

align the images followed by a traditional registration to increase the accuracy for remaining smaller

image displacements.

As last part of the evaluation, the models trained with synthetic image data were evaluated on real

patient data to investigate the transferability of the method. The results show that the models

improved image alignment for both, the monomodal registration of CT/CT data as well as the mul-

timodal registration of CBCT/CT data. In general, the transfer is linked to several requirements.

These requirements include the preprocessing of the input data so that its intensity distributions

resemble the intensity distributions of the training data. Moreover, the network requires input

data with an identical image size leading to the requirement of an additional image resampling for

image pairs with different size. Nevertheless, the results obtained in this thesis suggest a transfer-

ability of the method to data sets with similar image characteristics. To further characterize the

transferability, an in-depth study of the tolerance of the method concerning differences in intensity

distributions or variations in morphological features may be of interest.

In summary, the results obtained in this thesis confirm the general applicability of a neural network

to learn entire monomodal as well as multimodal affine registration processes. Although the results

indicate the requirement of optimized training data to improve the performance of the models

in terms of registration accuracy, especially for the correction of small image displacements, the

networks generally achieved a significant improvement of the image alignment for larger initial image

displacements. Thus, end-to-end registration learning may represent an interesting alternative to
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traditional methods in the future, since it leads to a significant acceleration of the entire registration

process to (sub-)seconds, once the network is trained. As for all multimodal registration approaches

relying on Deep Learning, the main challenge of using such a network is its requirement for ground

truth training data. The results obtained in this thesis indicate the transferability of the registration

models to data sets with very similar intensity distributions as the training data. Therefore, a

possible solution to the requirement of ground truth data may be realized by training the network

on synthetic data before applying it on real patient data.
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7

Summary and Outlook

Image registration methods that are specifically designed for the registration of abdominal image

data are only scarcely available. Therefore, the aim of this thesis was the development and opti-

mization of approaches for the registration of multimodal image data of the abdomen. The focus

is set on the multimodal registration of abdominal T1-weighted MRI, CT and CBCT data with

regard to the use-case of diagnosis and treatment of liver cancer. This work contributes to three

different research areas in the field of medical image registration:

1) Image Registration Evaluation and Generation of Ground Truth Data

To evaluate the performance of a registration method, reference data in form of registered image

pairs is required which are hardly available, especially for multimodal applications. Therefore, two

approaches for the generation of multimodal ground truth data are presented: a pre-registration of

actual patient data based on anatomical landmarks as well as the generation of synthetic ground

truth data using a neural network. Based on this data, an evaluation methodology has been

developed that benchmarks methods based on registration accuracy in the liver. The presented

evaluation methodology enables a performance comparison as well as an optimization of rigid, affine

and deformable registration methods. It has been used to investigate the performance of different

registration methods for the registration of CBCT to CT patient data as well as T1-MRI to CT

patient data. The methods are characterized by the variation of multiple parameters including

different initialization methods, similarity measures, fixed image masks, the number of resolution

layers or specific features such as the physical grid spacing of a deformable spline transform.

As briefly demonstrated in this thesis for brain data, it is possible to extend the evaluation method-

ology for different morphologies making it a suitable tool to optimize various registration methods

for a very specific task. In addition, the integration and optimization of additional registration

methods may lead to the generation of a portfolio of methods that are suitable for multimodal

abdominal image registration.

2) Novel Similarity Measures

The evaluation results obtained for standard registration methods demonstrated the high impact

of the similarity measure on the achievable registration accuracy. Due to differences in intensity

distributions, it is especially demanding to establish a similarity estimation between images of

different modality. In this thesis, two alternative multimodal similarity measures were proposed.

The first metric relies on a comparison of gradient information in form of Histograms of Oriented
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Gradients (HOG) in the images. The HOG feature descriptor which was originally developed for

2D image processing applications has been extended for three dimensions and implemented as basis

of an image similarity measure. The novel metric was evaluated for the registration of CBCT/CT

patient data. The results confirm the assumption that HOG feature descriptors are suitable to

be used as basis of an image similarity metric and that the metric can compete with traditional

similarity measures in terms of registration accuracy. Due to its patch-wise computation the metric

is robust to image noise and illumination changes in the images. By variation of metric parameters,

such as the histogram bin size, the cell size or the block size, the metric may be further optimized

for specific data types.

As an additional alternative to conventional image similarity metrics, an approach based on mul-

timodal Deep Metric Learning using a Siamese neural network was proposed. The evaluation of

the second similarity metric focused on the sampling of the parametric space for translation and

rotation transformations. Moreover, the applicability of the metric for different morphologies and

modality combinations was investigated. The results show, that it is possible to learn a similarity

measure for various data combinations. Although the network training requires ground truth image

data, the results demonstrate a successful transfer of models trained on synthetic data to real pa-

tient data sets. Due to this transferability and its fast computation times, this metric represents an

interesting alternative to traditional similarity measures. Future studies should focus on variations

of the network architecture as well as an in-depth study of the tolerance of the metric concerning

differences between training and test data, such as e.g. differences in intensity distribution.

3) End-to-End Registration Learning

The last part of this thesis focused on the development and evaluation of methods for end-to-end

registration learning using a neural network. The network architecture employed for this task

is based on the VoxelMorph network presented by Balakrishnan et al.[6] which is designed for

monomodal deformable image registration learning. Within the frame of this thesis, this network

has been extended for affine registration tasks as well as for the application on multimodal image

data. The extension includes the consideration of an image mask during loss calculation and the

integration of novel loss functions, such as the pretrained Siamese metric and a supervised deforma-

tion field loss. The performance of the developed registration models was then investigated using

different data sets, including the monomodal registration of T1-MRI brain scans and synthetic

abdominal CT data pairs as well as the multimodal registration of T1/T2-MRI brain scans, syn-

thetic T1/CT and CBCT/CT scans. The evaluation of the registration models also included the

successful transfer of models trained using synthetic data pairs to the registration of real patient

data. The results confirm the possibility to learn entire monomodal and, most notably, multimodal

registration processes using a neural network with the actual registration being orders of magni-

tude faster than traditional registration methods. This may be especially relevant for time-critical

application scenarios.

In a clinical context, an ideal registration should be able to correct global and local image displace-

ments. Thus, a multi-stage registration which combines the global registration learning developed

in this thesis with deformable registration learning provided by the original VoxelMorph network

may be beneficial and should be subject to further investigations.
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In conclusion, this thesis proposes improved as well as novel approaches for the multimodal registra-

tion of abdominal image data. The presented work enables the optimization of existing registration

methods in terms of registration accuracy also beyond the use-case of interventional procedures in

the liver. Moreover, alternative registration approaches relying on novel similarity measures are

discussed as well as the exploitation of Deep Learning for image registration. Especially meth-

ods relying on Deep Learning represent impressive alternatives to traditional registration methods,

since they bear the potential to yield similar or even higher registration accuracies while performing

orders of magnitude faster.
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[180] B. Waldkirch, S. Engelhardt, F. G. Zöllner, L. R. Schad, and I. Wolf, “Multimodal image reg-

istration of pre- and intra-interventional data for surgical planning of transarterial chemoem-

bolisation,” in Proc. SPIE, Medical Imaging 2019: Image-Guided Procedures, Robotic Inter-

ventions and Modeling, p. 109512U, 2019.

[181] J. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-

consistent adversarial networks,” in 2017 IEEE International Conference on Computer Vision

(ICCV), pp. 2242–2251, Oct 2017.

154

https://github.com/fchollet/keras


[182] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional

adversarial networks,” Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit, pp. 5967–

5976, 2017.

[183] J. M. Wolterink, A. M. Dinkla, M. H. F. Savenije, P. R. Seevinck, C. A. T. van den Berg,
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Appendix

This appendix contains additional figures to the results presented in Section 5 and is divided

according to its subchapters. The figures presented here are added for the sake of completeness.

However, they do not contain additional information to the findings presented in Section 5.
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Figure 1: Parametric space obtained for three different pairs of synthetic CBCT and CT data using the SDM trained
with patches wit a size of 100 px3, for translation and rotation transformations.
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Synthetic T1/CT Abdominal Data
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Figure 2: Parametric space obtained for a pair of synthetic T1-MRI and CT data using the SDM trained with
different patch sizes, for translation and rotation transformations.
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Figure 3: Parametric space obtained for a pair of synthetic T1-MRI and CT data using the learned SDM, a NGF
metric and a traditional AMMI metric with and without the use of an image mask for translation in x-,y-,z- and
diagonal (1,1,0)-direction. The metric values were projected in a range from 0 - 1
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Figure 4: Parametric space obtained for a pair of synthetic T1-MRI and CT data using the learned SDM, a NGF
metric and a traditional AMMI metric with and without the use of an image mask for rotation around the x-,y-,z-
and diagonal (1,1,1)-axis.
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End-to-End Registration Learning

Monomodal Registration Learning
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Figure 5: Multimodal affine registration of four different T1 MRI brain data pairs using models trained with different
loss functions.

Multimodal Registration Learning
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Figure 6: Multimodal affine registration of four different T1 and T2 brain MRI data pairs using models trained with
different loss functions.
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Transfer to Patient Data
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Figure 7: Multimodal affine registration of three different abdominal CT data pairs using models trained with
different loss functions.
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Figure 8: Multimodal affine registration of three different abdominal CBCT/CT data pairs using models trained
different loss functions.
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