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Abstract

Dielectric fluids under the influence of an external electric field and temperature variations
experience a body force that is a combination of buoyancy and dielectrophoresis. The resulting
motion can be described by the so-called Thermal-Electro-Hydrodynamic (TEHD) Boussinesq
equations. In this thesis, a variational formulation for these equations is proposed, with an
emphasis on the mathematical modeling of the acting body force. Within this framework,
existence and stability of steady and unsteady solutions is shown. Moreover, uniqueness of
steady solutions under certain conditions is proven.
As second part of this thesis, a numerical method is proposed for approximately solving the

TEHD Boussinesq equations in the stationary and instationary case. The spatial discretization is
based on the conforming Finite Element Method (FEM) and temporal discretization is realized by
a variant of the Backward Differentiation Formula (BDF). In both cases, a priori error estimates
are derived and validated by numerical experiments in a 2D test problem.
Finally, the 3D flow inside a vertical annulus with applied temperature and electric potential

gradient is simulated. The formation of vortex structures is analyzed and the obtained results
are compared with experimental data. By means of the corresponding adjoint problem, the
sensitivity of solutions w.r.t. perturbations is investigated and it is numerically shown, that
steady solutions are not unique in this scenario.

Zusammenfassung

Werden dielektrische Fluide einem elektrischen Feld und Temperaturunterschieden ausgesetzt, so
wirken Auftriebskraft und dielektrophoretische Kraft. Die resultierende Strömung kann mithilfe
der sog. Thermisch-Elektrisch-Hydrodynamischen (TEHD) Boussinesq Gleichungen beschrieben
werden. In dieser Arbeit wird eine variationelle Formulierung für diese Gleichungen vorgeschla-
gen, wobei das Hauptaugenmerk auf der mathematischen Modellierung der vorherrschenden Vol-
umenkraft liegt. Für diese Formulierung wird Existenz und Stailität von Lösungen nachgewiesen.
Weiterhin wird die Eindeutigkeit von stationären Lösungen unter gewissen Bedingungen gezeigt.
Der zweite Teil dieser Arbeit besteht in der numerischen Approximation von Lösungen der

stationären und instationären TEHD Boussinesq Gleichungen. Die räumliche Diskretisierung
basiert hierbei auf der konformen Finiten Elemente Methode (FEM), während eine Variante der
sog. Backward Differentiation Formula (BDF) zur zeitlichen Diskretisierung verwendet wird. Im
stationären, wie instationären Fall werden a priori Fehlerabschätzungen für die vorgeschlagene
Diskretisierung hergeleitet und mittels numerischer Experimente validiert.

Abschließend wird die 3D Strömung in einem zylindrischen Spalt simuliert, wobei eine Potential-
und Temperaturdifferenz zwischen innerem und äußerem Zylinder angenommen wird. Die Entste-
hung von Wirbelstrukturen wird untersucht und die Simulationsergebnisse werden mit experi-
mentellen Daten verglichen. Mithilfe des zug. adjungierten Problems wird die Sensibilität der
numerischen Lösung bzgl. Störungen analysiert. Außerdem werden numerische Lösungen kon-
struiert welche zeigen, dass in diesem Szenario die Eindeutigkeit von stationären Lösungen nicht
gegeben ist.





Acknowledgments

First of all, I want to express my gratitude to Prof. Dr. Vincent Heuveline for his scientific
guidance, starting with my Diploma thesis at KIT and continuing over my Ph.D. studies at the
Faculty of Mathematics and Computer Science at Heidelberg University. Thanks to him, I’ve
found myself working in the wonderful field of computational fluid dynamics, eventually leading
to this work. I deeply appreciate his advices and the opportunity of working at the Engineering
Mathematics and Computing Lab (EMCL).
A special thanks goes to all current and former colleagues at EMCL for the nice time of

working at this institute. In particular, I want to thank Dr. Michael Schick for his advice in the
very early phase of my time at EMCL, Dr. Martin Baumann for his support in the project that
formed the base of this work and my office mate Dr. Chen Song for his help and discussions on
various things related to HiFlow and for proof-reading parts of this work. Many thanks to Lydia
Mehra for her ongoing advice and support in any kinds of organizational issues. I also want to
thank Dr. David Hipp for proof-reading large parts of this thesis.
This work would not have been possible without the financial support by the German Re-

search Foundation (DFG) under the grant “Thermo-elektro-hydrodynamisch TEHD getriebene
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1. Introduction

In many technical devices, systems and facilities, fluids serve as medium for transferring ther-
mal energy. Corresponding examples range from micro channel heat exchangers in combustion
turbines, over domestic heating systems to cooling circuits in nucular power plants. The un-
derlying principles are always the same: thermal energy is transferred by molecular interaction
(conduction), by bulk motion of the fluid (convection), and by radiation, which occurs without
interaction with the fluid.
This work addresses conduction and convection, with a strong emphasis on the later one. A

simple scenario where these two mechanisms do occur is given by a vertical annulus, where a fluid
is contained between two concentric cylinders of different temperature. By means of conduction,
this temperature difference propagates through the fluid which becomes non-isothermal. As
mass density is temperature dependent, the impact of gravity varies and the fluid experiences
a spatially varying force. As result, a motion is induced in the initially resting fluid and heat
transfer by convection arises. The acting force is called buoyancy and the overall process is
denoted by natural convection, since gravity is the only external force being present. Natural
convection can be observed in nature - as driving process behind atmospheric motions, for
instance - and it is utilized to build heat exchanging systems without the need of an external
power supply. However, the strength of buoyancy cannot be controlled and in many situations,
the amount of transferred heat is not sufficiently high. This is apparent for space devices in
Earth’s orbit which do not experience any gravity at all. From a practical point of view, it is
thus desirable to have another mechanism on hand which affects the fluid motion in a comparable
way as buoyancy. Such an additional force can be obtained, if the fluid’s molecules are polar or
polarizable and if an external electric field is applied. In this situation, dielectrophoresis occurs
and the fluid experiences an additional body force.
There has been growing interest of physicists and engineers in the investigation of these di-

electrophoretic force driven flows. Physical experiments have been conducted for capacitors
filled with dielectric liquids and in zero-gravity environments provided by parabolic flights and
the International Space Station (ISS). Moreover, stability analysis and simulations have been
performed to gain more insights by theoretical means.
The underlying mathematical model is based on the Navier-Stokes equations for describing

the motion of a non-isothermal fluid. These equations are enhanced by the dielectrophoretic
(DEP) force and by Gauss’ law for describing the internal electric field and they are simplified
by using the Boussinesq approximation. The resulting equations are denoted by Thermal-Electro-
Hydrodynamic (TEHD) Boussinesq equations and are given by [58]:

∂tu+ (u · ∇)u− ν∆u+∇p = αe |∇Φ|2∇θ − αgθg

∇ · u = 0

∂tθ + (u · ∇)θ − κ∆θ = 0

−∇ · (ǫ(θ)∇Φ) = 0.

(1.1)

To the best of the author’s knowledge, very few research has been done yet to investigate exis-
tence, stability and uniqueness for solutions of (1.1), and to analyze any discretization method
for approximating solutions of (1.1) numerically. Therefore, it is the goal of this thesis to derive
statements on well-posedness of the TEHD Boussinesq equations, to propose a discretization
scheme and to derive a priori error estimates for this discretization.
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1 Introduction

1.1. Literature Overview

Dielectrophoretic force driven flows have been investigated by means of physical experiments in
various works. [17] is one of the first of them. The authors conduct experiments with a silicone
oil which is contained in the gap between two concentric cylinders of different temperature and
with applied alternating voltage difference. It is shown that heat transfer between the inner, hot
cylinder and the outer cooling circuit is indeed enhanced by application of an electric field. In
particular, the Nusselt number as measure for heat transfer enhancement, grows with increas-
ing voltage difference. The proposed vertical annulus as experimental geometry is investigated
by many other works. In order to observe DEP driven flow under absence of Earth’s gravity,
experiments have been conducted in parabolic flight campaigns which allow micro-gravity con-
ditions for approximately 22 s, see [18], [51], [55]. In [18], tracer particles and laser illumination
is used to visualize fluid motion on an axial cut plane. Azimuthally aligned vortices are observed
whose formation highly depends on the applied voltage and the curvature of the annulus. High
curvature destabilizes the flow, i.e. the critical voltage, above which convection cells do arise, is
decreased. Shadowgraph imaging and particle tracking as combined measurement technique is
used in [51], [54], [55]. It is observed that the fluid can undergo a helical motion under micro-
gravity conditions. In general, pure conductive, axisymmetric and non-axisymmetric states are
observed; depending on the applied voltage. A detailed overview on micro-gravity experiments
for DEP force driven flow is given by [58]. Here, experimental results for planar, cylindrical and
spherical geometry are reported for parabolic flights and long-term micro-gravity conditions on
the ISS. Experiments for the cylindrical geometry under the combined effect of gravity and DEP
force are presented in [27] and [68]. There, particle tracking and shadowgraph imaging is used
to characterize the flow field on axial cut planes and to visualize an axially averaged temper-
ature distribution. The formation of axially oriented columnar flow structures and helicoidal
flow structures is reported. Moreover, it is shown that heat transfer under natural convection is
enhanced by applying an additional electric field.
Besides experiments, linear stability analysis has been an important method for investigating

DEP force driven flows, see [48], [52], [74], [73], [76] and [81]. Most of these works consider the
vertical annulus scenario of infinite length. In this case, an analytic solution of the stationary
TEHD Boussinesq equations is known. Without gravity, this base solution exhibits no motion, i.e.
u = 0, see [81]. When gravity is axially aligned, velocity has a non-zero axial component, see [52].
By using cylindrical coordinates and exploiting symmetries, the governing equations (1.1) can be
simplified such that all occurring quantities do only depend on the radial coordinate. Starting
from this system, perturbations of the base flow are constructed in terms of axial and azimuthal
wavenumbers. Then, stability of these perturbations is analyzed by computing the eigenvalues
of the resulting systems. It is stated in [48] and [81], that the critical voltage difference highly
depends on the annulus’ curvature and the critical perturbation modes are stationary helices.
In addition, there are a few works on direct numerical simulation of system (1.1). Most of

the proposed methods are applied on the vertical annulus geometry in order to compare the
simulation results with available experimental data. In [78] and [79], the vertical annulus with
periodic boundary conditions on top and bottom is considered. The so-called gauge transform
method is used, where velocity is split according to u = a−∇ψ. This allows to derive decoupled
equations for a, ψ and p. Spatial discretization is done by a multiplicative ansatz w.r.t. the
individual cylinder coordinates: Chebyshev polynomials are used for discretization in the radial
direction and Fourier modes are employed for the periodic axial and azimuthal direction. In this
way, the Fast Fourier Transform can be used for solving the arising algebraic equations. [53]
and [70] employ a (not further specified) finite element method based on the software Comsol
Multiphysics. In [42], [43], [44] and [82] the use of Finite Volumes is proposed for spatial dis-
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1 Introduction

cretization. The corresponding temporal discretizations are based on a fractional step method
and Crank-Nicolson, respectively. In addition, a turbulence model is used for approximating
subgrid scales in [82].
In contrast to the TEHD Boussinesq equations, well-posedness of the standard Boussinesq

equations has been shown quite some time ago. In [56] and [57] results on existence and unique-
ness of solutions are proven for the stationary and instationary Boussinesq equations with ho-
mogenous Dirichlet boundary conditions for velocity. Both works extend the corresponding
results on the incompressible Navier-Stokes equations, see e.g. [77]. In these works, existence
is shown by considering the problem in a finite-dimensional setting, which allows the use of a
fixed-point theorem (stationary case) and existence results for systems of ordinary differential
equations (instationary case). Solutions in the original function spaces are then obtained by
a limit process. A crucial assumption in [56] and [57] concerns the Dirichlet boundary condi-
tions for temperature. It is required that corresponding boundary liftings of arbitrarily small
L3-norm can be constructed in order to show that solutions of the Boussinesq equations are
stable. Uniqueness is shown by similar arguments as for the incompressible Navier-Stokes prob-
lem. Thus, a small data condition is required in the stationary case and a temporal regularity
has to supposed in the instationary case, which is higher than provided by the existence re-
sult. Further works on well-posedness consider the cases of temperature-dependent viscosity and
thermal diffusion coefficients and non-homogenous or mixed velocity boundary conditions, see
e.g. [4], [19], [33], [47] and [61].
Many works on numerical analysis of finite element discretization of the standard Boussinesq

equations are extensions of the corresponding results on the incompressible Navier-Stokes equa-
tions. An overview on error estimates for incompressible flow problems is given in [32], [46], [41],
for instance. Early works on finite element analysis for the standard Boussinesq equations are
given by [10] and [11]. Later on, these results have been extended to the case of temperature
dependent viscosity and thermal diffusion, e.g. [3], [59], [60], [62] and [75]. The underlying
principles in the stationary case are typically very similar: first a best-approximation result
is derived by using Galerkin orthogonality, comparable to Cea’s lemma. Actual convergence
rates are then obtained by using the approximation properties of interpolation and projection
operators w.r.t. the given finite element spaces. A different principle is used in [5], where an ap-
proach based on the implicit function theorem is proposed. In [59], the use of H(div)-conforming
Brezzi-Douglas-Marini elements is proposed, which allows to obtain numerical velocities that are
exactly divergence free. An approach based on the Discontinuous Galerkin method is proposed
in [67].
The works [3] and [75] on the unsteady equations make use of the Rothe method for combining

spatial and temporal discretization. Here, the error is measured at the temporal discretization
points. Estimates are derived by using Galerkin orthogonality and approximation properties of
the underlying finite element spaces for the spatial error contributions, and by Taylor expansion
for the temporal error contributions. The application of Gronwall’s inequality is crucial in the
presented proofs.

1.2. Contributions of this Thesis

In this thesis, variational formulations of the stationary and instationary TEHD Boussinesq
equations are proposed, which allow to derive statements on well-posedness. These formulations
require a special treatment of the DEP force term FDEP = |∇Φ|2∇θ, because it is a product of
three gradients. For the typical regularity of solutions θ and Φ of heat equation and Gauss’ law,
respectively, one cannot assume that FDEP is sufficiently regular to be an element of H−1(Ω).
Thus, several modelizations of FDEP are proposed that lead to well-defined problems. These
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1 Introduction

models are either based on linearization, on the use of regularization operators or on cut-off
functions.
Known results on the existence and stability of solutions of the stationary Boussinesq equations

and instationary Navier-Stokes equations are then extended to the proposed problem formula-
tions. In the stationary case, a uniqueness result under a small data condition is derived.
Besides analysis, discretization schemes are proposed for solving the TEHD Boussinesq equa-

tions numerically. The spatial discretization is based on the Finite Element Method (FEM) and
for temporal discretization, a variant of the Backward Differentiation Formula (BDF) is em-
ployed. In both, stationary and instationary case, a priori error estimates are derived. In the
former case, these estimates hold under a certain small data condition. The derived convergence
rates are validated by numerical experiments.
Finally, the often considered scenario of a dielectric fluid confined in the gap between to

concentric cylinders is numerically investigated. Here, emphasis is put on the formation of
vortex structures and sensitivity of the solutions w.r.t. perturbations. To this end, the adjoint
problem of (1.1) is derived and approximately solved. By numerical means it is shown, that
solutions of the stationary problem are not unique. Moreover, different time stepping schemes
and DEP formulations are compared in the framework of this 3D flow problem.

1.3. Outline

In Section 2, a brief description of the TEHD Boussinesq equations (1.1) is presented and the
underlying assumptions are stated. This is followed by the derivation of the associated adjoint
problem. A variational formulation of the stationary version of (1.1) is given in Section 3
and well-posedness of this problem is shown. In Section 4, a variational formulation of the
instationary TEHD Boussinesq equations is given. Afterward, existence and stability of solutions
is proven. Section 5 is concerned with the numerical solution of the previously introduced
variational problems. First, a conforming finite element discretization for the stationary problem
is proposed and a best-approximation result is derived. This result allows to state a priori
convergence rates for the spatial error. In the second part of this section, a full discretization
in space, based on FEM, and in time, based on a BDF scheme, is proposed. Then, a priori
convergence rates are derived. Each of the Sections 3, 4 and 5 is concluded by considering the
modelization of DEP force in the respective context. Section 6 on numerical experiments is split
into two main parts. First, a 2D benchmark problem is considered to validate the previously
derived convergence rates. Then, results for DEP driven flow in a vertical annulus are presented
with emphasis on formation of vortices and adjoint sensitivity. This section is concluded with
a comparison of experimental data and simulation results. The thesis is finalized by a short
summary and outlook in Section 7.

4



2. Modelization of Dielectrophoretic Force Driven Flow

In this section, we give a brief overview on the underlying physical model which is basically
an extension of the well-known Boussinesq equations for modeling natural convection flow. The
physical scenario we have in mind is given by a dielectric fluid inside a closed, vertical annulus.
Its inner and outer wall are kept on fixed temperatures and an electric voltage in the range of
several kilovolts is applied between both walls, see Figure 1. This setup could be considered as an
idealized heat exchanging system. It turns out, that the superposition of gravity and DEP force
induces vertically aligned vortex structures which lead to an enhanced heat transfer between
inner and outer wall, see Section 6.3.
In the second part of this section, the adjoint TEHD Boussinesq equations are derived, in

order to investigate local sensitivity of solutions of system (2.28).

Figure 1: Schematic view on an idealized heat exchanging system. A vertical annulus is filled
with a dielectric fluid and fixed temperatures θi and θo are applied on the inner and outer wall.
Between both walls, an external electric voltage V0 is applied. The boundaries on top and bottom
of the annulus are assumed to be thermally and electrically insulating and g denotes gravity.

2.1. TEHD Boussinesq Equations

The state of a single-phase, non-isothermal fluid inside a closed container can be described by its
velocity u(t,x), pressure p(t,x), density ρ(t,x) and temperature θ(t,x) at time t ∈ [0, T ] and at
point x ∈ Ω. Here, Ω ⊂ Rd, d ∈ {2, 3} describes the fixed geometry of the container. The result-
ing governing equations are derived from the basic physical principles of mass, momentum and
energy conservation and are given by the compressible Navier-Stokes equations for a Newtonian
fluid in non-conservative form, see e.g. [63]:

∂tρ+ u · ∇ρ = −ρ(∇ · u) (2.1)

ρ (∂tu+ u · ∇u) = f + λ∆u+ (λ+ µ)∇ (∇ · u)−∇p (2.2)

ρ (∂tθ + u · ∇θ) = λ
1

4

(
∇u+∇uT

)
:
(
∇u+∇uT

)
(2.3)

+ µ (∇ · u)2 − p (∇ · u) + α∆θ + ρQ,

with dynamic viscosities λ, µ and thermal conduction coefficient α which themselves are tem-
perature dependent.
Here, the respective left-hand sides denote the material derivatives of ρ, u and θ w.r.t. the

convection field u. The right-hand side of (2.2) collects the sum of all internal and external
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2 Modelization of Dielectrophoretic Force Driven Flow

forces that act on the fluid. The external forces, also called body forces, are given by f . If the
container is placed in a gravitational field g(t,x), then the buoyancy force ρg contributes to f .
The internal forces are given by the viscous forces which arise due to internal friction between
the fluid’s molecules and by spatial pressure differences within the fluid. The right-hand side
of (2.3) consists of thermal conduction, α∆θ, external sources of heat, ρQ, and internal sources
due to deformations of the fluid.
Since continuity equation (2.1), momentum equation (2.2) and energy equation (2.3) form an

under-determined system for the unknowns u, p, ρ, θ, they have to be accompanied with a state
equation that defines the relationship between density, pressure and temperature. Often, the
ideal gas law is assumed, which is given by

cvθ =
p

ρ(1− β)
(2.4)

with adiabatic exponent β and specific heat capacity cv at constant volume.
If the considered fluid is dielectric, then its molecules are polar or can be polarized by an

applied outer electric field due to induced polarization or orientation polarization [82]. In case of
induced polarization, the electric field causes a displacement between the negative electrons and
the positive nuclei, such that the molecules become electric dipoles. Orientation polarization
takes place if the molecules are permanent dipoles, which then get aligned along the external
electric field. In any case, an internal electric field E(t,x) is induced which is determined by
Gauss’s law,

−∇ · (ǫE) = ρE (2.5)

where ρE(t,x) denotes the free charge density. Moreover, ǫ = ǫ0ǫr with vacuum permittivity
ǫ0 and relative permittivity ǫr. The later quantity becomes dependent on t and x through its
temperature- and density-dependence, i.e. ǫr = ǫr(ρ, θ).

In absence of a magnetic field, the electric field can be expressed in terms of a scalar potential
Φ(t,x),

E = −∇Φ. (2.6)

In case of a non-zero electric field and free electric charges, additional electric forces arise that
act on the fluid. Their densities are given by, see e.g. [50]:

fE = fC + fDEP + fES

= ρEE− 1

2
|E|2∇ǫ+ 1

2
∇
[
ρ

(
∂ǫ

∂ρ

)

θ

|E|2
]
, (2.7)

with Coulombic force density fC , dielectrophoretic force density fDEP , electrostrictive force den-
sity fES . The Coulombic force acts on free charges within the fluid. The DEP force occurs in the
presence of non-uniform electric fields. Then, induced or permanent dipoles align along this field
and experience a resulting force that is non-zero since the electric field has different strength at
the individual poles’ position. Eletrostriction causes dielectrics to change their shape but has
no effect on the velocity field when the fluid is inside a closed container. For details see [58] and
the references therein.
The density of the resulting body force acting on the fluid is then given by

f = ρg + fC + fDEP + fES . (2.8)

Moreover, orientation polarization induces dielectric heating if the applied outer electric field is
alternating with some given frequency f . In this case, the term

QDH =
2πfǫ0
ρcp

cǫ|E|2 (2.9)
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2 Modelization of Dielectrophoretic Force Driven Flow

enters the source term Q in the energy equation (2.3). Here, cp denotes the specific heat capacity
at constant pressure and cǫ denotes a permittivity-dependent factor, see e.g. [82] for details.

The unknowns u, θ and Φ are further subjected to boundary conditions on Γ = ∂Ω. As
we consider a closed container with solid walls, we suppose that the fluid satisfies the no-slip
condition on the entire boundary,

u = 0 on Γ. (2.10)

Since some parts of the container’s wall are kept on some predefined temperature or electric
potential, Dirichlet boundary conditions of the form

θ = θD and Φ = ΦD on ΓD ⊂ Γ (2.11)

are imposed. On the remaining part of the boundary, a certain amount of temperature or
potential may penetrate through the wall. For simplicity, we assume that that container walls
are thermally and electrically insulated, leading to the Neumann boundary conditions

∇θ · n = 0 and ∇Φ · n = 0 on ΓN = Γ \ ΓD. (2.12)

In practice, one often uses an alternating electric potential V (t) =
√
2V0 sin(2πft) of frequency

f which is applied between two different parts of the boundary which are separated by an
electrically insulating part. In this case, the Dirichlet boundary conditions for Φ are typically of
the form

Φ = V0 on ΓD,1 and Φ = 0 on ΓD,2 (2.13)

with ΓD,1 + ΓD,2 = ΓD. Here, V0 denotes the effective value of the electric potential, i.e.
V0 =

√
〈V 2(t)〉 [81].

The full system of governing equations is now given by (2.1) - (2.9) with the boundary condi-
tions (2.10) - (2.13).
At this point, several simplifications can be applied. First, we assume that the fluid is incom-

pressible, meaning that
∇ · u = 0 (2.14)

holds everywhere on Ω. In this way, the third term in (2.2), as well as the second and third term
in (2.3) cancel out. The next simplification involves the Coulombic force. According to [81], the
free charge density ρE is negligible at sufficiently high frequency of the alternating outer electric
field, i.e. if f ≫ τ−1

E . Here, τE denotes the charge relaxation time which describes the time scale
on which charge accumulation may occur in an initially electrically neutral fluid [81]. According
to [68], f ≫ τ−1

E is satisfied for typical dielectric fluids if f ≥ 60 Hz. In this case, fC ≈ 0. We
neglect dielectric heating, i.e. we consider fluids without permanent dipole moment, and heating
due to friction, i.e. the first term in (2.3).
Finally, the well-known Boussinesq Approximation is applied, see e.g. [71]. To this end, the

density is written as
ρ = ρr + δρ (2.15)

with fixed reference density ρr ∈ (0,∞) and density variation δρ(t,x). According to (2.4), there
holds ρ ∝ θ−1 for some fixed reference pressure p = pr. If the temperature θ takes values in
a small interval [θ−, θ+], θ+ − θ− <∼ 10, then the density variation is typically small compared
to the reference density, i.e. δρ ≪ ρr. Therefore, ρ on the left-hand side of (2.2) and (2.3)
is approximated by ρr. Additionally, the continuity equation (2.1) is replaced by (2.14) since
the left-hand side term ∂tδρ + u · ∇δρ is assumed to be small compared to the right-hand side
ρ(∇ · u) ≈ ρr(∇ · u).
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2 Modelization of Dielectrophoretic Force Driven Flow

Plugging formulation (2.15) into the buoyancy force and assuming that gravitation is constant
in space and time, yields for the pressure and bouyancy force in (2.2) and (2.8):

−∇p+ ρg = −∇p+ ρrg + δρg = −∇p̃+ δρg. (2.16)

In (2.16), a generalized pressure p̃ := p − ρrg̃ is introduced with g̃(x)i := gixi. A first order
Taylor expansion applied to (2.4) yields

ρ(θ, p) ≈ ρ(θ, pr) ≈ ρ(θr, pr)(1− αg(θ − θr)) =: ρr(1− αg(θ − θr)) (2.17)

for some reference temperature θr ∈ [θ−, θ+], thermal expansion coefficient αg > 0 and reference
density ρr. We thus replace δρ by −ρrαg(θ − θr), resulting in an approximate buoyancy force
density

fbuo = −ρrαg(θ − θr)g. (2.18)

In an analogous way, relative permittivity is linearized around the reference temperature and
density w.r.t. temperature, i.e.

ǫr(ρ, θ) ≈ ǫr(ρr, θ) ≈ ǫr(ρr, θr) (1− γ(θ − θr)) =: ǫr(1− γ(θ − θr)), (2.19)

with γ = −ǫ−1
r ∂θǫ(θ, pr) > 0. According to [18] and the references therein, there holds

γ = αg
(ǫr − 1)(ǫr + 2)

3ǫr
. (2.20)

In this way, the dielectrophoretic force density can be written as

fDEP = −1

2
|E|2∇ǫ ≈ ǫ0ǫrγ

2
|∇Φ|2∇θ. (2.21)

Since the electrostrictive force is a gradient field, it can be hidden inside the new generalized
pressure

p̂ := p̃− 1

2
ρ

(
∂ǫ

∂ρ

)

θ

|E|2 = p− ρrg̃ − 1

2
ρ

(
∂ǫ

∂ρ

)

θ

|E|2. (2.22)

In this way, fDEP is the only part of fE , that actually has an impact on the velocity field. The
resulting force density is then given by

f =
ǫ0ǫrγ

2
|∇Φ|2∇θ − ρrαg(θ − θr)g. (2.23)

In the literature, an alternative formulation of (2.21) is commonly used to stress the analogy
between buoyancy and DEP force. To this end, note that fDEP can be replaced by

ǫ0ǫrγ

2
|∇Φ|2∇θ = ∇

(ǫ0ǫrγ
2

|∇Φ|2 (θ − θr)
)
− ǫ0ǫrγ

(
∇2Φ∇Φ

)
(θ − θr), (2.24)

where the first term in (2.24) can be hidden in another generalized pressure

P := p̂− ǫ0ǫrγ

2
|∇Φ|2(θ − θr). (2.25)

Eventually, an alternative force density is obtained according to

fa = −ρrαg(θ − θr) (g + gE) , (2.26)

with electric gravitiy

gE =
ǫ0ǫrγ

ρrαg
∇2Φ∇Φ. (2.27)
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2 Modelization of Dielectrophoretic Force Driven Flow

By (2.26) it becomes clear that the DEP force can be considered as buoyancy force for the
artificial gravity gE .
We further neglect the temperature dependence of viscosity and thermal conduction coefficient.

Then, dividing momentum and energy equation by ρr yields the final, simplified system, also
known as TEHD Boussinesq equations [58]:

∂tu+ (u · ∇)u− ν∆u+ ρ−1
r ∇p̂ = αe |∇Φ|2∇θ − αg(θ − θr)g

∇ · u = 0

∂tθ + (u · ∇)θ − κ∆θ = 0

−∇ · (ǫ0ǫr(1− γ(θ − θr))∇Φ) = 0

(2.28)

with kinematic viscosity, thermal diffusion coefficient and DEP coeeficient given by

ν :=
µ(θr)

ρr
, κ :=

α(θr)

ρr
, αe :=

ǫ0ǫrγ

2ρr
. (2.29)

For the remaining of this work, we simply write p instead of ρ−1
r p̂.

In summary, the underlying physical model is an extension of the well-known Boussinesq
equations for natural convection, with additional force term fDEP and additional variable Φ.

2.2. Adjoint TEHD Boussinesq Equations

In order to obtain a better understanding of the physical behavior of DEP driven flows, we
consider the local sensitivity of a given flow state w.r.t. small perturbations. Therefore, the
goal of this section is the derivation of the adjoint problem associated to system (2.28). The
corresponding adjoint or dual solution can be interpreted as derivative of a given quantity of
interest evaluated at the primal solution, i.e. the solution of the primal problem (2.28).

First, the dual problem is derived on an abstract level, following the presentation in [37]
and [8]. Then, the concrete set of equations is plugged into the abstract framework.

Abstract Adjoint Problem

Let normed spaces W and L be given and let J : W → R denote some quantity of interest. Let
the primal problem be given in form of a variational formulation, i.e. there is a primal operator
ρ : W → L∗ and the primal solution u ∈W is given as solution of

ρ(u)(ψ) = 0 for all ψ ∈ L. (2.30)

We assume that ρ and J are continuously Frechet-differentiable with respective derivatives at
point u ∈W given by J ′(u) : W → R and ρ′(u) : W → L∗. Then, the dual operator w.r.t. J and
ρ at u is defined as

ρ∗(u) : L→W ∗

z 7→ J ′(u; ·) + ρ′(u; ·)(z) (2.31)

and the dual solution z ∈ L is given as solution of

ρ∗(u; z)(φ) = 0 for all φ ∈W. (2.32)

The connection between dual solution and sensitivity is now given by the following considerations,
see [8]. Let P : L → L∗ denote a continuously Frechet-differentiable perturbation operator. For
some perturbation p ∈ L denote with u(p) ∈W the solution of the perturbed problem

ρ(u)(ψ) = −P (p)(ψ) for all ψ ∈ L.
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2 Modelization of Dielectrophoretic Force Driven Flow

Now, the derivative of J(u(p)) w.r.t. p can be stated in terms of the dual solution, for details
see [37] and [8]: 〈

d

dp
J(u(p)), q

〉

L∗

=
〈
P ′(p; q), z(p)

〉
L∗
, (2.33)

with z(p) denoting the solution of (2.32) for u = u(p). In the special case of L being a Hilbert
space with inner product (·, ·)L and P being of the form P (p) = (p, ·)L, there follows from (2.33):

(
d

dp
J(u(p)), q

)

L

= (z(p), q)L (2.34)

and, with u denoting the solution of the unperturbed system and z its corresponding dual, a
first order Taylor expansion yields

J(u(p)) ≈ J(u) + (z, p)L . (2.35)

According to (2.35), a dual solution of small L-norm means that any kind of perturbation of the
primal system only leads to small changes in the quantity of interest. For typical applications,
(·, ·)L is an integral over the space-time domain [0, T ] × Ω. Thus, large values of z at a specific
period in time Ĩ ⊂ [0, T ] and in specific spatial areas Ω̃ ⊂ Ω imply that perturbations in Ĩ × Ω̃
may potentially lead to high variations of J . In this way, regions of low and high sensitivity of
the primal solution w.r.t. a given quantity of interest can be characterized by means of the dual
solution.

Adjoint Problem for TEHD Boussinesq Equations

Based on the abstract problem definition above, the adjoint problem of (2.28) is derived. To this
end, first the pointwise formulation (2.28) is transformed into a variational one by multiplication
with test functions, integration over Ω and [0, T ] and integrating by parts:
Let θb ∈ H1

D(Ω), Φb ∈ W 1,6(Ω) denote liftings of the Dirichlet boundary conditions θD, ΦD
and u0 ∈ H1

0(Ω), θ0 ∈ H1
D(Ω) denote initial conditions with ∇·u0 = 0. Then, the primal solution

u = (u, p, θ,Φ) ∈W is defined as solution of (2.30) with ansatz and test spaces

W := W0(0, T ; 2, 2,H
1
0,H

−1)× L2(0, T ;L2
0)×W0(0, T ; 2, 2, H

1
D, H

−1
D )× L∞(0, T ;W 1,6

D )

L := L2(0, T ;H1
0) × L2(0, T ;L2

0)× L2(0, T ;H1
D) × L2(0, T ;H1

D)

and primal operator

ρ(u)(ψ) :=

∫ T

0
〈∂tu,v〉H−1 + ((u+ u0) · ∇(u+ u0),v) + ν (∇(u+ u0),∇v) dt (2.36)

+

∫ T

0
− (p,∇ · v)−

(
αe|∇(Φ + Φb)|2∇(θ + θ0 + θb)− αg(θ + θ0 + θb − θr)g,v

)
dt

+

∫ T

0
(∇ · (u+ u0), q) dt

+

∫ T

0
〈∂tθ, τ〉H−1

D
+ ((u+ u0) · ∇(θ + θ0 + θb), τ) + κ (∇(θ + θ0 + θb),∇τ) dt

+

∫ T

0
ǫ0ǫr ((1− γ(θ + θ0 + θb − θr))∇(Φ + Φb), β) dt

for test functions ψ = (v, q, τ, β) ∈ L. For a definition of the involved function spaces and inner
products see Section A.3 and A.4 in the Appendix.
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2 Modelization of Dielectrophoretic Force Driven Flow

We assume that the quantity of interest is of the form

J(u) := J i(u, p, θ,Φ) + Jf (u, θ)

:=

∫ T

0

∫

Ω
ji(u, p, θ,Φ) dx dt+

∫

Ω
jf (u(T ), θ(T )) dx (2.37)

with continuously differentiable functions ji : Rd+3 → R and jf : Rd+1 → R. In this way, J
covers both temporal averages and evaluations at the final time.
Actually, ji and jf could also depend on derivatives of the primal solution components, which

is not considered here to shorten the presentation. According to (2.31), the dual operator
ρ∗(u; z)(φ) for dual solution z = (û, p̂, θ̂, Φ̂) ∈ L and dual test function φ = (v̂, q̂, τ̂ , β̂) ∈ W is
then given by

ρ∗(u; z) = ρ∗v(u; z) + ρ∗q(u; z) + ρ∗τ (u; z) + ρ∗β(u; z), (2.38)

with

ρ∗v(u; z)(φ) =
∫ T

0
〈∂tv̂, û〉H−1 + (v̂ · ∇(u+ u0), û) + ((u+ u0) · ∇v̂, û) (2.39)

+

∫ T

0
ν (∇v̂,∇û)− (q̂,∇ · û) + αg (τ̂g, û) dt

−
∫ T

0
αe
(
|∇(Φ + Φb)|2∇τ̂ , û

)
+ 2αe((∇(Φ + Φb) · ∇β̂)∇(θ + θ0 + θb), û) dt

+

∫ T

0

(
∂uj

i(u+ u0, p, θ + θ0 + θb,Φ+ Φb), v̂
)
dt

+ (∂uj
f (u(T ) + u0, θ(T ) + θ0 + θb), v̂(T ))

ρ∗q(u; z)(φ) =
∫ T

0
(∇ · v̂, p̂) dt+

∫ T

0

(
∂pj

i(u+ u0, p, θ + θ0 + θb,Φ+ Φb), q̂
)
dt (2.40)

ρ∗τ (u; z)(φ) =
∫ T

0
〈∂tτ̂ , θ̂〉H−1

D
+ (v̂ · ∇(θ + θ0 + θb), θ̂) + ((u+ u0) · ∇τ̂ , θ̂) dt (2.41)

+

∫ T

0
κ(∇τ̂ ,∇θ̂) + (∂θj

i(u+ u0, p, θ + θ0 + θb,Φ+ Φb), τ̂) dt

+ (∂θj
f (u(T ) + u0, θ(T ) + θ0 + θb), τ̂(T ))

ρ∗β(u; z)(φ) =
∫ T

0
ǫ0ǫr(−γτ̂∇(Φ + Φb),∇Φ̂) + ǫ0ǫr((1− γ(θ + θ0 + θb − θr))∇β̂,∇Φ̂) dt (2.42)

+

∫ T

0
(∂Φj

i(u+ u0, p, θ + θ0 + θb,Φ+ Φb), β̂) dt.

If primal and dual solution are sufficiently regular, then integrating by parts, such that all dual
test functions occur without preceding differential operators, yields the following dual system in
pointwise form:

−∂tû+ û · (∇u)T − u · ∇û− (∇ · u)û− ν∆û−∇p̂+ θ̂∇θ = f̂u

−∇ · û = f̂p

−∂tθ̂ − u · ∇θ̂ − (∇ · u)θ̂ − κ∆θ̂ + αgg · û+ αe∇ · (|∇Φ|2û)− ǫ0ǫrγ(∇Φ · ∇Φ̂) = f̂θ

−∇ · (ǫ0ǫr(1− γ(θ − θr))∇Φ̂) + 2αe∇ · ((∇θ · û)∇Φ) = f̂Φ,

(2.43)
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2 Modelization of Dielectrophoretic Force Driven Flow

with f̂u = −∂uji(u, p, θ,Φ), f̂l = −∂lji(u, p, θ,Φ) for l ∈ {p, θ,Φ}. The dual solution is subjected
to initial conditions

û(T ) = −∂ujf (u, p, θ,Φ)
θ̂(T ) = −∂θjf (u, p, θ,Φ)

(2.44)

and boundary conditions

û = 0 on Γ

θ̂ = 0 on ΓD, ∇θ̂ · n = 0 on ΓN (2.45)

Φ̂ = 0 on ΓD, ∇Φ̂ · n = 0 on ΓN .

One basic feature of the dual system (2.43)-(2.45) is the fact that all first order differential
operators, in particular ∂t, have a reverse sign. In combination with the prescribed value for
dual velocity and dual temperature at the end of the time interval, this means that the dual
problem is posed backwards in time. In contrast, the symmetric operators in the primal system,
e.g. ∆, are not modified in the dual formulation. An interpretation of this fact is given by the
physical meaning of ∆, which corresponds to a homogeneous diffusion process. Thus, there is
no distinguished direction of information flow.
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3. Analysis of the Stationary Problem

In this section, we consider the stationary TEHD Boussinesq equations on a bounded domain Ω:

δu+ (ū · ∇)u− ν∆u+∇p = F(θ, Φ̄) + fv

∇ · u = 0

δθ + (ũ · ∇)θ − κ∆θ = fτ

−∇ · (ǫ(θ̄)∇Φ) = fβ .

(3.1)

System (3.1) can be considered as that system, which is obtained after discretizing (2.28) in
time. Here, δ, fv, fτ , fβ denote contributions by some outer time-stepping scheme. This
scheme may also determine the functions (ū, ũ, θ̄, Φ̄). Depending on the degree of its implicitness,
each of these variables could be either fixed or unknown. In particular, we allow the case
(ū, ũ, θ̄, Φ̄) = (u,u, θ,Φ), δ = 0 and fv = fτ = fβ = 0, which corresponds to the stationary
version of the transient TEHD equations (2.28). Compared to (2.28), a general force term
F(θ, Φ̄) and a general permittivity ǫ : R → (0,∞) are introduced and θ is shifted by the constant
reference temperature θr. The system of equations (3.1) is subjected to the boundary conditions

u = 0 on ∂Ω = ΓD + ΓN

θ = θD on ΓD, ∇θ · n = 0 on ΓN (3.2)

Φ = ΦD on ΓD, ∇Φ · n = 0 on ΓN .

Concerning well-posedness, we note that for given θ̄, the potential Φ is determined by Gauss’s
law. This fact motivates proving the existence of weak solutions of (3.1) by means of a fixed-
point iteration. For this iteration, (3.1) is split into an hydrodynamical part, given by the
stationary Boussinesq equations with buoyancy being replaced by F(θ, Φ̄) and Gauss’ law with
temperature-dependent permittivity.
The existence of solutions (u, θ) of the Boussinesq equations is shown by employing a Galerkin

principle combined with a fixed-point argument to a series of finite-dimensional problems. To
be more precise, we adapt the concept presented in [46] for the stationary incompressible Navier
Stokes equations. This result can be seen as generalization of [57], where existence and uniqueness
of solutions of the stationary Boussinesq equations is shown for the standard buoyancy force.

The corresponding proof requires F to satisfy some type of weak continuity property. More-
over, the proposed procedure demands stability of solutions (u, θ) w.r.t. the input data. This is
established by combining ideas from the corresponding result for the stationary incompressible
Navier-Stokes equations (see e.g. [46]) with the procedure proposed in [56] and [57] to cope with
non-homogeneous Dirichlet boundary conditions for the temperature. To this end, one has to
impose the assumption that there exists a family of boundary liftings for θD of arbitrarily small
L3-norm. Moreover, one has to require the force term F to fulfill a boundedness principle of the
form ‖F(θ,Φ)‖ ≤ aF(‖Φ‖)‖∇θ‖ for some non-decreasing function aF.

Eventually, a uniqueness result for the stationary TEHD equations (3.1) under rather strict
assumptions on the involved data is derived by modifying existing techniques and one obtains
the requirement that F is locally Lipschitz continuous in some sense.

Concerning the choice of F, we suggest models that are based on linearization around a smooth
reference potential or which make use of a regularization operator such as mollification. We give
a heuristic justification for the proposed procedure in case of fluids with small permittivity
variation dǫ

dθ and for small temperature variations.
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3 Analysis of the Stationary Problem

The outline of this chapter is as follows: In Section 3.1, the Boussinesq problem with gen-
eral force term F is formulated and the requirements posed on F are summarized. Afterward,
stability and existence of solutions are proven. In Section 3.2, the variational formulation for
the stationary TEHD Boussinesq equations is set up and well-posedness of these equations is
considered by investigating existence, stability and uniqueness of solutions. In the final Section
3.3, several modelizations of the DEP force are proposed which fit into the framework of the
previously considered general body force F.
Throughout this work, ‖ · ‖k,p denotes the norm associated to the Sobolev space W k,p(Ω) with

W 0,p(Ω) := Lp(Ω) for k ∈ N0, p ∈ [1,∞]. If not stated otherwise, ‖ · ‖ := ‖ · ‖0,2 and the inner
product on L2(Ω) is denoted by (·, ·). The constant in Friedrich’s inequality for H1

0(Ω) is denoted
by c0, i.e. ‖v‖ ≤ c0‖∇v‖ for all v ∈ H1

0(Ω). A detailed description of all involved functions
spaces, such as H1

0(Ω), V(Ω), L2
0(Ω) and H

1
D(Ω), is given in the Appendix, Section A.4.

As mentioned in the beginning of this section, we want to cover the cases of (3.1) being either
a fully nonlinear system or a (partially) linearized system. Therefore, the introduced variables
ū, ũ, θ̄, Φ̄ can either denote known functions, in the following called fixed, or they are unknown.
The later case means that ū = ũ = u, θ̄ = θ and Φ̄ = Φ. The linearized case will be used in
Section 5.2 for analyzing the proposed time discretization.
The following assumptions on the domain, boundary conditions and physical parameters are

imposed for the remaining of this work.

Assumption 3.1. (Domain and Boundary Conditions)
Let Ω ⊂ Rd, d ∈ {2, 3} be given. Its boundary ∂Ω =: Γ =: ΓD + ΓN is split into a Dirichlet part
ΓD and Neumann part ΓN . The corresponding Dirichlet boundary conditions for temperature and
potential are denoted by θD : ΓD → R and ΦD : ΓD → R, respectively. The following conditions
should hold:

(i) Ω is a bounded Lipschitz domain.

(ii) A Friedrich-type inequality is satisfied for functions vanishing on ΓD, i.e. there is cD > 0
such that

‖τ‖ ≤ cD‖∇τ‖ for all τ ∈ H1
D(Ω).

(iii) There exists an extension Φb ∈ H1(Ω) of ΦD.

(iv) There exists a family of extensions {θb[ξ] : ξ ∈ (0, 1)} ⊂ H1(Ω) of θD with ‖θb[ξ]‖0,3 ≤ ξ for
all ξ ∈ (0, 1).

Assumption 3.2. (Physical Parameters)
Let δ ≥ 0 and ν, κ > 0. The permittivity ǫ : R → [ǫ−, ǫ+] as a function of temperature is assumed
to be Lipschitz continuous with constant Lǫ and 0 < ǫ− ≤ ǫ+ <∞.

Remark 3.3. According to Remark 1.6 in [12], Assumption 3.1 (ii) is satisfied if the boundary
Γ is piecewise smooth and the Dirichlet boundary part ΓD has a positive d − 1 dimensional
measure. A more general sufficient condition implying (ii) is given by Proposition 7.5 in [21]
and Theorem A.109. According to Lemma 2 in [56], (iv) is satisfied if Γ is of class C1, ΓD has
positive d− 1 dimensional measure, the intersection ΓD ∩ΓN is a d− 2 dimensional C1 manifold
and θD ∈ C1(ΓD).

The variational formulation of (3.1) is based on the function spaces for velocity, U := H1
0(Ω)
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3 Analysis of the Stationary Problem

and V := V(Ω) = V(Ω)H
1
0 with V(Ω) = {u ∈ D(Ω)d : ∇ · u = 0}, for pressure, M := L2

0(Ω),
for temperature, Θ := H1

D(Ω) and for potential, Υ := H1
D(Ω). Moreover, the following bi- and

trilinear forms are used:

av(u,v) := ν(∇u,∇v), cv(u,v,w) := (u · ∇v,w)

aτ (θ, τ) := κ(∇θ,∇τ), cτ (u, θ, τ) := (u · ∇θ, τ) (3.3)

aβ(θ,Φ, β) := (ǫ(θ)∇Φ,∇β), b(u, q) := (∇ · u, q).
For a precise definition of the involved Sobolev spaces see Definition A.89 and A.95.
Additionally, a set of domain dependent constants is frequently needed. Employing Friedrich’s

inequality A.106 and Assumption 3.1 (ii), the Sobolev embedding W 1,2(Ω) →֒ L6(Ω), Theorem
A.92, and Hölder’s inequality, the following expressions take finite values

Kp := sup
v∈H1

0(Ω)

‖v‖0,p
‖∇v‖ , Kp := sup

τ∈H1
D
(Ω)

‖τ‖0,p
‖∇τ‖ , Kp,q := sup

τ∈Lq(Ω)

‖τ‖0,p
‖τ‖0,q

, (3.4)

for p ∈ [1, p∗], q ≥ p and p∗ ∈ [1,∞] such that − d
p∗ ≤ 1− d

2 .
Note that K2 ≤ cD according to Assumption 3.1 (ii) and K2 ≤ c0 by Friedrich’s inequality

for H1
0(Ω).

Lemma 3.4. (Properties of Trilinear Forms)
There holds

Kv := sup
u,v,w∈U\{0}

cv(u,v,w)

‖∇u‖‖∇v‖‖∇w‖ <∞

Kτ := sup
u∈U\{0},θ,τ∈Θ\{0}

cτ (u, θ, τ)

‖∇u‖‖∇θ‖‖∇τ‖ <∞.

Moreover, if u ∈ V, then for v,w ∈ U, τ, θ ∈ H1(Ω):

cv(u,v,w) = −cv(u,w,v)
cτ (u, θ, τ) = −cτ (u, τ, θ).

Proof. See Lemma II.1.1 and Lemma II.1.3 in [77].

3.1. The Boussinesq Problem with General Force Term

In this section, we investigate the standard Boussinesq equations for natural convection with
buoyancy being replaced by a general force term F. In contrast to previuous works with general
force term, e.g. [5], F may depend on the temperature θ as an element of H1 and not as scalar
value. In this way, the formulation of F may also contain the gradient ∇θ. Moreover, it may
take the potential Φ as additional argument.
The way for setting up the variational formulation and considering well-posedness is a gen-

eralization of the approach presented in [46] for investigating the incompressible Navier-Stokes
equations. The main difficulty in doing so arises when proving stability of solutions, see Lemma
3.13. Here, we follow the idea of [57], where the standard Boussinesq equations are considered,
and assume that θb can be chosen with arbitrarily small L3-norm.
We start with setting up the variational formulation, given by Problem 3.5. Here, an ad-

ditional coefficient λ ∈ [0, 1] is introduced to obtain a family of stationary problems. In this
way, Problem 3.5 fits into the framework of a suitable fixed-point theorem. In the subsequent
presentation, the problem is considered in solenoidal form.
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Problem 3.5. (Stationary Boussinesq Equations)
Let θb ∈ H1(Ω) be a lifting of given Dirichlet boundary conditions θD and F : Θ → U∗, fv ∈
U∗, fτ ∈ Θ∗ given source terms. Let either ū and ũ denote fixed elements of V or the unknown
velocity u. For λ ∈ [0, 1] find (u, θ) ∈ V ×Θ such that for all (v, τ) ∈ V ×Θ:

δ(u,v) + av(u,v) + λ (cv(ū,u,v)− 〈F(θ + θb) + fv,v〉U∗) = 0

δ(θ, τ) + aτ (θ, τ) + λ (δ(θb, τ) + aτ (θb, τ) + cτ (ũ, θ + θb, τ)− 〈fτ , τ〉Θ∗) = 0.

This problem can be written compactly in form of a fixed-point equation. To this end, a solution
operator for the linear, elliptic part of Problem (3.5) is used.

Definition 3.6. (Stokes Solution Operator)
Let W ⊂ U and T ⊂ Θ denote Hilbert spaces with inner products (·, ·)W := (∇·,∇·) and
(·, ·)T := (∇·,∇·), respectively. The solution operator for the Stokes equations in solenoidal
form, combined with an additional heat equation, is defined as

K[W, T ] : W∗ × T ∗ → W × T

(f , g) 7→ (u, θ)

such that for all (v, τ) ∈ W × T :

δ(u,v) + av(u,v) = −〈f ,v〉W∗

δ(θ, τ) + aτ (θ, τ) = −〈g, τ〉T ∗ .

The remaining terms, i.e. nonlinearities, source terms and boundary contributions, are collected
in the operator N .

Definition 3.7. (Non-Stokes Terms)
Let the notation and assumptions of Problem 3.5 and Definition 3.6 hold. Define

N [W, T ] : W × T → W∗ × T ∗

(u, θ) 7→
(

cv(ū,u, ·)− F(θ + θb)− fv
δ(θb, ·) + aτ (θb, ·) + cτ (ũ, θ + θb, ·)− fτ

)
.

The fixed-point version of Problem 3.5 is now given as follows.

Problem 3.8. (Fixed-Point Version)
Let the notation and assumptions of Problem 3.5, Definition 3.6 and Definition 3.7 hold. For
K := K[W, T ], N := N [W, T ] and λ ∈ [0, 1] find (uλ, θλ) ∈ W × T such that

(uλ, θλ) = λK(N (uλ, θλ)) = λF(uλ, θλ).

with fixed-point operator

F := F [W, T ] := K ◦ N : W × T → W × T.

In order to apply an appropriate existence theorem to Problem 3.8, one needs to show compact-
ness of F . For finite dimensional spaces, this can be accomplished by the next lemmas below.
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Lemma 3.9. (Properties of K)
Let the assumptions of Definition 3.6 hold. Then, the following statements hold.

(i) K[W, T ] is well defined and linear

(ii) There exists CK ≥ 0 such that (u, θ) = K[W, T ](f , g) satisfies

‖u‖W + ‖θ‖T ≤ CK(‖f‖W∗ + ‖g‖T ∗) for all (f , g) ∈ W∗ × T ∗.

Proof. Follows by application of Lax-Milgram A.40, Friedrich’s inequalities A.106 and Assump-
tion 3.1 (ii).

Lemma 3.10. (Properties of N )
Let the assumptions of Problem 3.5 and Definition 3.7 hold. Assume that F(· + θb) : T → W∗

is continuous. Then, N [W, T ] is continuous w.r.t. the norms ‖ · ‖W×T := ‖∇ · ‖ + ‖∇ · ‖ and
‖ · ‖W∗×T ∗ := ‖ · ‖W∗ + ‖ · ‖T ∗ .

Proof. The proof is only presented for ū = ũ = u. Continuity of W ∋ u 7→ cv(u,u, ·) ∈ W∗ is
shown by using standard arguments, see e.g. Lemma 16 in [46]. Analogously, W×T ∋ (u, θ) 7→
cτ (u, θ, ·) ∈ T ∗ is continuous. By continuity of F, N [W, T ] is a composition of continuous
functions and therefore continuous as mapping on (W×T, ‖·‖W×T ) → (W∗×T ∗, ‖·‖W∗×T ∗).

Lemma 3.11. (Properties of F)
Let the notation and assumptions of Problem 3.8 and of Lemma 3.9 and 3.10 hold. Then,
Problem 3.5 and 3.8 are equivalent if W×T = V×Θ. Moreover, the following properties of the
fixed-point operator F [W, T ] hold:

(i) F [W, T ] is continuous.

(ii) F [W, T ] is compact if W and T are finite dimensional, i.e. it maps bounded sets to sets
with compact closure.

Proof. (i) follows since F [W, T ] is a composition of continuous functions due to Lemma 3.9 and
3.10. If W and T are finite dimensional, (ii) follows since F [W, T ] is a continuous map on a
finite dimensional Hilbert space, see Lemma A.13. To see the equivalence of Problem 3.5 and
3.8, let (uλ, θλ) denote a solution of Problem 3.8. By definition of K[V,Θ], this solution satisfies

(
δ(u,v) + av(u,v)
δ(θ, τ) + aτ (θ, τ)

)
= −λN [V,Θ](uλ, θλ)(v, τ) for all (v, τ) ∈ V ×Θ

Inserting the definition of N [V,Θ] yields the assertion.

The problem setup is finished by stating the following conditions on the body force F. They are
chosen to ensure certain well-posedness results for the generalized Boussinesq equations, Problem
3.5.
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Assumption 3.12. (General Body Force)
Let F : H1(Ω)×H1(Ω) → U∗ satisfy the following conditions for all v ∈ U:

(i) F is locally Lipschitz continuous: for all R > 0 there is a non-decreasing function

L
(θ)
F : [0,∞) → [0,∞) such that

|〈F(θ1,Φ)− F(θ2,Φ),v〉U∗ | ≤ L
(θ)
F (‖Φ‖1,2)‖θ1 − θ2‖1,2‖∇v‖.

for all θ1, θ2 ∈ BR(0, H
1(Ω)), Φ ∈ H1(Ω) and v ∈ U.

Moreover, for all R > 0 there is L
(Φ)
F ≥ 0 such that for all θ ∈ H1(Ω), Φ1,Φ2 ∈

BR(0, H
1(Ω)) and v ∈ U,

|〈F(θ,Φ1)− F(θ,Φ2),v〉U∗ | ≤ L
(Φ)
F ‖θ‖1,2‖Φ1 − Φ2‖1,2‖∇v‖.

(ii) F is bounded: There are non-decreasing functions

aF : [0,∞) → [0,∞) and bF : [0,∞) → [0,∞),

such that
|〈F(θ,Φ),v〉U∗ | ≤ aF(‖Φ‖1,2)‖θ‖1,2‖∇v‖+ bF(‖Φ‖1,2)‖∇v‖

for all θ ∈ H1(Ω),Φ ∈ H1(Ω),v ∈ U.

(iii) Let sequences (θn)n, (Φn)n ⊂ H1(Ω) and elements θ∗, Φ∗ ∈ H1(Ω) be given such that
θn ⇀ θ∗ in H1(Ω) and Φn ⇀ Φ∗ in H1(Ω). Then, there holds

|〈F(θ∗,Φ∗)− F(θn,Φn),v〉U∗ | → 0

The local Lipschitz condition (i) is used to show uniqueness of solutions under an appropriate
small data condition and condition (ii) allows to prove stability of solutions of Problem 3.5.
Note that the growth rate of F w.r.t. ‖Φ‖1,2 is not restricted, while it may grow at most linearly
w.r.t. ‖θ‖1,2 . This is due to the fact that ‖Φ‖1,2 can be bounded in terms of the input data
only. Assumption (iii) is needed in various cases to show that weak convergence of some kind of
approximate solutions translates into pointwise convergence in U∗ of the variational formulation.

Stability

The following lemma states that the norm of solutions of Problem (3.5) can be bounded in terms
of input parameters, boundary liftings and source terms. For this reason, it is required that the
boundary lifting θb can be chosen in such a way that ‖θb‖0,3 is sufficiently small.
The subsequent result will play an important role in showing both existence (by virtue of a

fixed-point argument) and uniqueness of solutions. For the former case, it is crucial that the
stability bound is uniform w.r.t. λ ∈ [0, 1].

Lemma 3.13. (Stability of Stationary Solutions)
Let λ ∈ [0, 1], Φ ∈ H1(Ω) and F satisfying Assumption 3.12 be given. Set F(θ) := F(θ,Φ) and
aF := aF(‖Φ‖1,2), bF := bF(‖Φ‖1,2). Define

d(s) =

{
1
Ks , if ũ = u

∞, if ũ is fixed
,
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with K = K6
κν

√
8(K2

2 + 1). Then, there are continuous functions

gi : R
6 ∩ {x1 < d(x2)} → [0,∞), i ∈ {u, θ}

such that

‖∇u‖ ≤ gu(‖θb‖0,3, aF, bF, ‖θb‖1,2, ‖fv‖U∗ , ‖fτ‖Θ∗) =: Gu

‖∇θ‖ ≤ gθ(‖θb‖0,3, aF, bF, ‖θb‖1,2, ‖fv‖U∗ , ‖fτ‖Θ∗) =: Gθ

for all solutions (u, θ) of Problem 3.5 with boundary lifting θb satisfying ‖θb‖0,3 < d(aF). In
particular, gu and gθ do not depend on the parameter λ ∈ [0, 1] and are non-decreasing in their
arguments x2 and x3. Moreover, if ũ = u, then gi → 0 for (x4, x5, x6) → 0, i.e.

Gi → 0 for (‖θb‖1,2, ‖fv‖U∗ , ‖fτ‖Θ∗) → 0.

Proof. Let (u, θ) ∈ V × Θ denote a solution of the stationary problem. Inserting v = u, τ = θ
in 3.5 and noting that, by Lemma 3.4,

cv(ū,u,u) = 0 and cτ (ũ, θ + θb, θ) = cτ (ũ, θb, θ) = −cτ (ũ, θ, θb)

since ū, ũ ∈ V, one obtains

δ‖u‖2 + ν‖∇u‖2 = λ〈F(θ + θb) + fv,u〉U∗ (3.5)

δ‖θ‖2 + κ‖∇θ‖2 = −λ (δ(θb, θ) + κ(∇θb,∇θ)− (ũ · ∇θ, θb)− 〈fτ , θ〉Θ∗) . (3.6)

Using the assumptions on F and Young’s inequality, (3.5) yields

ν‖∇u‖2 ≤ aF

√
K2

2 + 1
︸ ︷︷ ︸

=:ãF

‖∇θ‖‖∇u‖+ (bF + aF‖θb‖1,2 + ‖fv‖U∗)︸ ︷︷ ︸
=:b̃F

‖∇u‖

≤
(

1

2δ1
ã2F‖∇θ‖2 +

δ1
2
‖∇u‖2

)
+

(
1

2δ2
b̃2F +

δ2
2
‖∇u‖2

)
(3.7)

for δ1, δ2 > 0. (3.6) gives

κ‖∇θ‖2 ≤ κ‖∇θb‖‖∇θ‖+ δK2K23‖θb‖0,3‖∇θ‖+K6‖∇ũ‖‖∇θ‖‖θb‖0,3 + ‖fτ‖Θ∗‖∇θ‖

≤ κ

(
1

2δ3
‖∇θb‖2 +

δ3
2
‖∇θ‖2

)
+

(
1

2δ4
K2

6‖θb‖20,3‖∇ũ‖2 + δ4
2
‖∇θ‖2

)
(3.8)

+

(
1

2δ5
‖fτ‖2Θ∗ +

δ5
2
‖∇θ‖2

)
+

(
1

2δ6
δ2K2

2K
2
23‖θb‖20,3 +

δ6
2
‖∇θ‖2

)

for δ3, δ4, δ5, δ6 > 0. Rearranging terms in (3.7), (3.8) yields

(ν − δ1
2

− δ2
2
)‖∇u‖2 ≤ ã2F

1

2δ1
‖∇θ‖2 + 1

2δ2
b̃2F (3.9)

κ̄‖∇θ‖2 ≤ κ
1

2δ3
‖∇θb‖2 +

1

2δ4
K2

6‖θb‖20,3‖∇ũ‖2 (3.10)

+
1

2δ5
‖fτ‖2Θ∗ +

1

2δ6
δ2K2

2K
2
23‖θb‖20,3.

with κ̄ = κ − κ δ32 − δ4
2 − δ5

2 − δ6
2 . Setting δ1 = δ2 = ν

2 , δ3 = 1
4 , δ4 = δ5 = δ6 = κ

4 , and dividing
(3.9), (3.10) by ν

2 and κ
2 , respectively, yields

‖∇u‖2 ≤ C1‖∇θ‖2 + C2 (3.11)

‖∇θ‖2 ≤ C3‖∇θb‖2 + C4‖θb‖20,3‖∇ũ‖2 + C5 + C6‖θb‖20,3 (3.12)
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with constants

C1 =
2

ν2
a2F(K

2
2 + 1), C2 =

2

ν2
(bF + aF‖θb‖1,2 + ‖fv‖U∗)2 , C3 = 4

C4 =
4K2

6

κ2
, C5 =

4

κ2
‖fτ‖2Θ∗ , C6 = 4

(
δK2K23

κ

)2

.

If ũ = u, set d(aF) := (C1C4)
− 1

2 and obtain for ‖θb‖0,3 < d(aF) by combination of (3.11) and
(3.12),

‖∇u‖2 ≤ 1

1− C1C4‖θb‖20,3
(
C2 + C1

(
C3‖∇θb‖2 + C5 + C6‖θb‖20,3

))
=: G2

u.

Now, θ can be bounded by

‖∇θ‖2 ≤ C3‖∇θb‖2 + C4‖θb‖20,3G2
u + C5 + C6‖θb‖20,3 =: G2

θ.

If ũ is fixed, one gets:

‖∇θ‖2 ≤ C3‖∇θb‖2 + C4‖θb‖20,3‖∇ũ‖2 + C5 + C6‖θb‖20,3 =: G2
θ

‖∇u‖2 ≤ C1G
2
θ + C2 =: G2

u.

Remark 3.14. The previous proof shows that Lemma 3.13 is valid for arbitrary subspaces
W × T ⊂ V ×Θ with functions d, gu, gθ that are independent of the specific choice of W × T .

The next lemma bounds the variation of solutions of the Boussinesq equations w.r.t. variations
of the respective input data, i.e. the force term F and the terms ū, ũ, θ̄, Φ̄. These bounds will
be used later on for showing uniqueness of solutions.

Lemma 3.15. (Stability of Stationary Solutions w.r.t Varying Data)
Let (u1, θ1) and (u2, θ2) denote solutions of Problem 3.5 for λ = 1, respective convection fields
(ū1, ũ1), (ū2, ũ2) and external forces F1 = F1(·,Φ1), F2 = F2(·,Φ2) which do both satisfy
Assumption 3.12. Assume

DF := sup
w∈V,θ∈Θ

|〈F1(θ + θb)− F2(θ + θb),w〉U∗ |
‖∇w‖‖θ + θb‖1,2

<∞.

Then, the solutions satisfy

‖∇(u1 − u2)‖ ≤ D1‖∇ (ū1 − ū2) ‖+D2‖∇(ũ1 − ũ2)‖+D3DF

‖∇(θ1 − θ2)‖ ≤ D4‖∇(ũ1 − ũ2)‖

with constants {Di}4i=1 given by (3.19).

Proof. Inserting (u1, θ1) and (u2, θ2) into Problem 3.5 and subtraction yields for all (v, τ) ∈ V×Θ

δ(u1 − u2,v) + av(u1 − u2,v) + (ū1 · ∇u1,v)− (ū2 · ∇u2,v)

= 〈F1(θ1 + θb)− F2(θ2 + θb),v〉U∗ (3.13)

δ(θ1 − θ2, τ) + aτ (θ1 − θ2, τ) + (ũ1 · ∇θ1, τ)− (ũ2 · ∇θ2, τ)
= − ((ũ1 − ũ2) · ∇θb, τ). (3.14)
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Defining w := u1 − u2, ū := ū1 − ū2, ũ := ũ1 − ũ2, φ := θ1 − θ2 and setting v = w, τ = φ
yields

δ‖w‖2 + ν‖∇w‖2 + (ū · ∇u1,w) = 〈F1(θ1 + θb)− F2(θ2 + θb),w〉U∗ (3.15)

δ‖φ‖2 + κ‖∇φ‖2 + (ũ · ∇θ1, φ) = −(ũ · ∇θb, φ) = (ũ · ∇φ, θb). (3.16)

Let G
(i)
u , G

(i)
θ denote the respective stability bounds provided by Lemma 3.13 for i ∈ {1, 2}.

Define Gθ := max{G(1)
θ , G

(2)
θ } and R := ‖θb‖1,2 +

√
K2

2 + 1Gθ. Then, local Lipschitz continuity

of F1 with constant L
(θ)
F1

= L
(θ)
F1

(R) yields

〈F1(θ1 + θb)− F2(θ2 + θb),w〉U∗ = 〈F1(θ1 + θb)− F1(θ2 + θb),w〉U∗

+ 〈F1(θ2 + θb)− F2(θ2 + θb),w〉U∗

≤ L
(θ)
F1

√
K2

2 + 1‖∇(θ1 − θ2)‖‖∇w‖+DF‖θ2 + θb‖1,2‖∇w‖.

Thus, one obtains from (3.15)

ν‖∇w‖2 ≤ KvG
(1)
u ‖∇ū‖‖∇w‖+ L

(θ)
F1

√
K2

2 + 1‖∇φ‖‖∇w‖ (3.17)

+DF

(
G

(2)
θ

√
K2

2 + 1 + ‖θb‖1,2
)
‖∇w‖,

and from (3.16),

κ‖∇φ‖2 ≤ KτG
(1)
θ ‖∇ũ‖‖∇φ‖+K6‖∇ũ‖‖∇φ‖‖θb‖0,3. (3.18)

Dividing by (3.17) and (3.18) by ‖∇w‖ and ‖∇φ‖, respectively, yields the desired result with
constants

D1 =
1

ν
KvG

(1)
u

D2 =
1

νκ
L
(θ)
F1

√
K2

2 + 1
(
KτG

(1)
θ +K6‖θb‖0,3

)

D3 =
1

ν

(
G

(2)
θ

√
K2

2 + 1 + ‖θb‖1,2
)

D4 =
1

κ

(
KτG

(1)
θ +K6‖θb‖0,3

)
.

(3.19)

Existence

Proving existence of solutions of Problem 3.5 can be achieved by application of the well-known
Galerkin principle, following the work in [57] and the procedure proposed by [46]. Hereby, the
application of the general fixed-point Theorem A.39 to a finite dimensional version of Problem
3.8 is combined with an approximation of the infinite dimensional problem by a series of finite
dimensional systems.

Lemma 3.16. (Existence of Solutions in Finite Dimensional Spaces)
Let W ⊂ V, T ⊂ Θ denote finite dimensional Hilbert spaces and Φ ∈ H1(Ω) be given. Let
Assumption 3.12 hold and assume that the boundary lifting θb is chosen such that ‖θb‖0,3 < d(aF)
for d, aF defined in Lemma 3.13. Then, there exists a solution (u, θ) of Problem 3.8 with λ = 1,
i.e.

(u, θ) = F [W, T ](u, θ).
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Proof. Follows by application of Lemma 3.13 with Remark 3.14 (uniform stability), Lemma 3.11
(compactness of F [W, T ] : Y → Y with Y := W × T ) and Theorem A.39.

The following theorem is based on the existence result in [57], with a slight modification to
take into account the more general body force term F.

Theorem 3.17. (Existence of Solutions for Stationary Boussinesq Equations)
Let Φ ∈ H1(Ω) be given, Assumption 3.12 be satisfied and assume that the boundary lifting θb is
chosen such that ‖θb‖0,3 < d(aF) for d, aF defined in Lemma 3.13. Then, there exists a solution
(u, θ) ∈ V ×Θ of Problem 3.5 with λ = 1.

Proof. The proof for the case ū = ũ = u works exactly like the one presented in [57]: Since V

and Θ are closed subspaces of the separable normed spaces W 1,2(Ω)d and W 1,2(Ω), respectively,
they are separable as well according to Lemma A.4. Therefore, there a sequences (Wm)m, (Tm)m
of finite dimensional subspaces satisfying

Wm ⊂ V, Wm ⊂ Wm+1 and Tm ⊂ Θ, Tm ⊂ Tm+1

with

V =
⋃

n∈N
Wn and Θ =

⋃

n∈N
Tn.

For each n ∈ N let (un, θn) ∈ Wn × Tn denote the solution of Problem 3.5 with V×Θ replaced
by Wn × Tn. These solutions exist due to Lemma 3.16. Moreover, they are uniformly bounded
according to Lemma 3.13 and Remark 3.14,

‖∇un‖+ ‖∇θn‖ ≤ Gu +Gθ for all n ∈ N.

Since V and Θ are Hilbert spaces, they are reflexive. Thus, there are (u∗, θ∗) ∈ V × Θ and a
subsequence (uk, θk)k ⊂ (un, θn)n with uk ⇀ u∗ in V and θk ⇀ θ∗ in Θ according to Theorem
A.32. Using Assumption 3.12 (iii), one can show that (u∗, θ∗) is indeed a solution of Problem
3.5 with λ = 1. For details see [57]. The assertion for ū 6= u or ũ 6= u follows analogously.

3.2. The TEHD Boussinesq Problem

In this section, we consider the problem of finding a solution (u, θ,Φ) of the stationary TEHD
Boussinesq equations. Existence of solutions is shown by applying a fixed-point iteration that
is alternating between solutions (u, θ) of the Boussinesq Problem 3.5 and solutions Φ of Gauss’
law. Afterward, we show that solutions are unique under certain restrictions onto the data.
The variational formulation for the stationary TEHD equations is given as follows.

Problem 3.18. (Stationary TEHD Equations)
Let θb ∈ H1(Ω) and Φb ∈ H1(Ω) denote liftings of given boundary conditions and F : Θ × Υ →
U∗, fv ∈ U∗, fτ ∈ Θ∗, fβ ∈ Υ∗ be given source terms. Each of the functions ū, ũ, θ̄, Φ̄ can
either denote a fixed element of V, Θ and Υ, respectively, or the unknown variable u, θ and Φ,
respectively. Find u ∈ V, θ ∈ Θ, Φ ∈ Υ such that for all (v, τ, β) ∈ V ×Θ×Υ:

δ(u,v) + av(u,v) + cv(ū,u,v) = 〈F(θ + θb, Φ̄ + Φb) + fv,v〉U∗

δ(θ + θb, τ) + aτ (θ + θb, τ) + cτ (ũ, θ + θb, τ) = 〈fτ , τ〉Θ∗

aβ(θ̄ + θb,Φ+ Φb, β) = 〈fβ , β〉Υ∗ .
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Existence

The following theorem states existence of solutions of Problem 3.18. Moreover, it is shown that
the H1-norm of all solutions can be bounded by the problem data.

Theorem 3.19. (Existence and Stability of Stationary TEHD Solutions)
Let the assumptions of Problem 3.18 and Assumption 3.12 hold. Assume that θb is chosen such
that ‖θb‖0,3 < d(aF(GΦ,Φb

)) holds with

GΦ,Φb
=
√
K2

2 + 1GΦ + ‖Φb‖1,2

GΦ =
ǫ+
ǫ−

‖∇Φb‖+
1

ǫ−
‖fβ‖Υ∗ .

Then, there exists a solution (u, θ,Φ) of Problem 3.18. Further, all solutions of 3.18 satisfy

‖∇u‖ ≤ gu(‖θb‖0,3, aF(GΦ,Φb
), bF(GΦ,Φb

), ‖θb‖1,2, ‖fv‖U∗ , ‖fτ‖Θ∗) = Gu

‖∇θ‖ ≤ gθ(‖θb‖0,3, aF(GΦ,Φb
), bF(GΦ,Φb

), ‖θb‖1,2, ‖fv‖U∗ , ‖fτ‖Θ∗) = Gθ

‖∇Φ‖ ≤ GΦ,

with functions gu, gθ defined in Lemma 3.13.

Proof. As before, only the proof for the implicit case ū = ũ = u, Φ̄ = Φ is shown.
Problem 3.18 is split into two parts: for given Φ# ∈ Υ find (u, θ) ∈ V ×Θ satisfying

(P1) :

{
δ(u,v) + av(u,v) + cv(u,u,v)− 〈F(θ + θb,Φ# +Φb) + fv,v〉U∗ = 0 ∀v ∈ V

δ(θ + θb, τ) + aτ (θ + θb, τ) + cτ (u, θ + θb, τ)− 〈fτ , τ〉Θ∗ = 0 ∀τ ∈ Θ

and for given θ̄# ∈ Θ find Φ ∈ Υ such that

(P2) : aβ(θ̄# + θb,Φ+ Φb, β) = 〈fβ , β〉Υ∗ ∀β ∈ Υ.

Define the following fixed-point iteration: let Φ0 ∈ Υ be arbitrary and set for n ∈ N

· (un, θn) denotes the solution of (P1) for Φ# = Φn−1

· if θ̄ = θ, then θ̄n := θn. Otherwise, θ̄n := θ̄

· Φn denotes the solution of (P2) for θ̄# = θ̄n

Here, Theorem 3.17 garuantees the existence of (un, θn). Moreover, under Assumption 3.2, the
bilinear form Υ×Υ ∋ (Φ, β) 7→ aβ(θ̄n+θb,Φ, β) ∈ R is bounded and coercive. Thus, there exists
a unique solution Φn ∈ Υ of (P2) by Lax-Milgram, Theorem A.40, and it is bounded according
to

‖∇Φn‖ ≤ ǫ+
ǫ−

‖∇Φb‖+
1

ǫ−
‖fβ‖Υ∗ = GΦ.

On the other hand, for all n ∈ N

‖∇un‖ ≤ Gu and ‖∇θn‖ ≤ Gθ,

according to Lemma 3.13 by using ‖Φn+Φb‖1,2 ≤ GΦ,Φb
and the monotonicity of aF, bF, gu, gθ. As

in the proof of Theorem 3.17, there are (u∗, θ∗,Φ∗) ∈ V×Θ×Υ and a subsequence (uk, θk,Φk)k ⊂
(un, θn,Φn)n with uk ⇀ u∗ in V, θk ⇀ θ∗ in Θ and Φk ⇀ Φ∗ in Υ. The compact embedding
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3 Analysis of the Stationary Problem

W 1,2(Ω) →֒→֒ L4(Ω) for d ∈ {2, 3}, Theorem A.92, additionally implies uk → u∗ in L4(Ω)d,
θk → θ∗ in L4(Ω) and Φk → θ∗ in L4(Ω). By Assumption 3.12 (iii),

|〈F(θ∗ + θb,Φ∗ +Φb)− F(θn + θb,Φn +Φb),v〉U∗ | → 0 for all v ∈ U.

Thus, as in the proof of Theorem 3.17, (u∗, θ∗) solves (P1) for Φ# = Φ∗.
It remains to show that Φ∗ solves (P2) for

θ̄# =

{
θ∗, if θ̄ = θ

θ̄, else

In the former case, let β ∈ C∞
D (Ω) be arbitrary but fixed. Then, using Hölder’s inequality and

the Lipschitz continuity of ǫ,

|aβ(θn + θb,Φn +Φb, β)− aβ(θ∗ + θb,Φ∗ +Φb, β)|
≤ |((ǫ(θn + θb)− ǫ(θ∗ + θb))∇(Φn +Φb),∇β)|+ |(ǫ(θ∗ + θb)∇(Φk − Φ∗),∇β)|
≤ ‖ǫ(θn + θb)− ǫ(θ∗ + θb)‖0,3‖∇(Φn +Φb)‖‖∇β‖0,6 + |(ǫ(θ∗ + θb)∇(Φn − Φ∗),∇β)|
≤ LǫGΦ,Φb

‖θn − θ∗‖0,3‖∇β‖0,6 + |(ǫ(θ∗ + θb)∇(Φn − Φ∗),∇β)|
=: An.

Here, limn→∞An = 0 since θn → θ∗ in L4(Ω) and by Φn ⇀ Φ∗ in Υ, respectively. Thus,

aβ(θ∗ + θb,Φ∗ +Φb, β) = 〈fβ , β〉Υ∗ for all β ∈ C∞
D (Ω).

Since C∞
D (Ω) is dense in H1

D(Ω) and the linear form H1
D(Ω) ∋ β 7→ aβ(θ∗ + θb,Φ∗ + Φb, β) is

continuous, Φ∗ solves (P2) for θ# = θ∗. The case θ̄# = θ̄ follows analogously.
In order to show the stated energy norm estimate, let (u, θ,Φ) ∈ V×Θ×Υ denote an arbitrary

solution. As before, by setting β = Φ,

‖∇Φ‖ ≤ ǫ+
ǫ−

‖∇Φb‖+
1

ǫ−
‖fβ‖Υ∗ = GΦ,

which implies ‖Φ+ Φb‖1,2 ≤ GΦ,Φb
.

Moreover, by means of Lemma 3.13,

‖∇u‖ ≤ gu(‖θb‖0,3, aF, bF, ‖θb‖1,2, ‖fv‖U∗ , ‖fτ‖Θ∗)

‖∇θ‖ ≤ gθ(‖θb‖0,3, aF, bF, ‖θb‖1,2, ‖fv‖U∗ , ‖fτ‖Θ∗)

with constants aF = aF(‖Φ+Φb‖1,2) ≤ aF(GΦ,Φb
) and bF = bF(‖Φ+Φb‖1,2) ≤ bF(GΦ,Φb

). Since
gu, gθ are non-decreasing in their arguments x2 and x3, the stated result is obtained.

So far, the TEHD equations have been considered in solenoidal form only. By means of a stan-
dard procedure, see e.g. Lemma IX.1.2 in [28], existence of solutions for the problem in mixed
form can be shown.

Corollary 3.20. (Recovering the Pressure)
Let (u, θ,Φ) ∈ V×Θ×Υ denote a solution of Problem 3.18. Then, there exists a pressure p ∈M
such that (u, p, θ,Φ) satisfies for all (v, q, τ, β) ∈ U×M ×Θ×Υ:

δ(u,v) + av(u,v) + cv(ū,u,v)− b(v, p) = 〈F(θ + θb, Φ̄ + Φb) + fv,v〉U∗

b(u, q) = 0

δ(θ + θb, τ) + aτ (θ + θb, τ) + cτ (ũ, θ + θb, τ) = 〈fτ , τ〉Θ∗

aβ(θ̄ + θb,Φ+ Φb, β) = 〈fβ , β〉Υ∗ .
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3 Analysis of the Stationary Problem

Uniqueness

We now investigate uniqueness of solutions of the stationary TEHD Problem 3.18. To do so, we
adapt the standard procedure for showing uniqueness of stationary solutions of the incompressible
Navier Stokes equation, see e.g. [46], or of the stationary Boussinesq equations, see e.g. [57].
To this end, let the assumptions of the existence Theorem 3.19 hold and let (u1, θ1,Φ1) and

(u2, θ2,Φ2) denote two solutions. Using the properties of F given by Assumption 3.12 (i), there

is L
(Φ)
F > 0 such that

DF := sup
w∈V,θ∈Θ

|〈F(θ + θb,Φ1 +Φb)− F(θ + θb,Φ2 +Φb),w〉U∗ |
‖∇w‖‖θ + θb‖1,2

≤ L
(Φ)
F ‖Φ1 − Φ2‖1,2. (3.20)

Applying Lemma 3.15 with Fi = F(·,Φi + Φb) and introducing dx := x1 − x2 with x ∈
{u, θ,Φ, ū, ũ, θ̄, Φ̄} yields

‖∇du‖ ≤ D1‖∇dū‖+D2‖∇dũ‖+D5‖∇dΦ̄‖ (3.21)

‖∇dθ‖ ≤ D4‖∇dũ‖. (3.22)

with {Di}4i=1 given by (3.19) and

D5 :=
1

ν
L
(Φ)
F

(
Gθ(K

2
2 + 1) +

√
K2

2 + 1‖θb‖1,2
)
. (3.23)

Here, dy = 0 for y ∈ {ū, ũ, θ̄, Φ̄} if the corresponding variable y is fixed. Otherwise, there holds
dū = du, dũ = dθ, dθ̄ = dθ and dΦ̄ = dΦ, respectively. According to the assumptions and results
from Theorem 3.19, Gauss’ law implies

ǫ−‖∇dΦ‖2 ≤ (ǫ(θ2 + θb)∇dΦ,∇dΦ)
= −((ǫ(θ1 + θb)− ǫ(θ2 + θb))∇(Φ1 +Φb),∇dΦ). (3.24)

If an additional regularity Φ1 ∈W 1,3(Ω) is assumed, then the previous inequality together with
H1(Ω) →֒ L6(Ω) implies

ǫ−‖∇dΦ‖2 ≤ LǫK6‖∇dθ̄‖‖∇(Φ1 +Φb)‖0,3‖∇dΦ‖. (3.25)

The previous estimates (3.21), (3.22) and (3.25) can be summarized as

‖∇du‖ ≤ α1‖∇dū‖+ α2‖∇dũ‖+ α3‖∇dΦ̄‖
‖∇dθ‖ ≤ α4‖∇dũ‖
‖∇dΦ‖ ≤ α5(‖∇Φ1‖0,3)‖∇dθ̄‖,

(3.26)

with constants given by

α1 = D1, α2 = D2, α3 = D5, α4 = D4

α5(s) =
Lǫ
ǫ−
K6(s+ ‖∇Φb‖0,3).

(3.27)

Based on the set of inequalities (3.26), the following theorem yields conditions under which
uniqueness of solutions for the stationary TEHD Problem 3.18 can be guaranteed. In doing so,
one needs to differentiate w.r.t. the degree of implicitness in Problem 3.18.
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3 Analysis of the Stationary Problem

Theorem 3.21. (Uniqueness for Small Data)
Let the assumptions of Theorem 3.19 hold and constants {αi}5i=1 be given by (3.26). Assume
that all solutions of Problem 3.18 satisfy Φ ∈W 1,3(Ω) and that the following condition holds:

(i) if ũ ∈ V fixed:

(i.i) if ū ∈ V fixed: nothing

(i.ii) if ū = u: α1 < 1

(ii) if ũ = u:

(ii.i) if θ̄ ∈ Θ fixed: α1 + α2 < 1

(ii.ii) if θ̄ = θ:

(ii.ii.i) if Φ̄ ∈ Υ fixed: α1 + α2 < 1

(ii.ii.ii) if Φ̄ = Φ : there is R > 0 such that α1 + α2 + α3α4α5(R) < 1 and Φ ∈
BR(0,W

1,3(Ω))

Then, there is at most one solution of Problem 3.18.

Proof. The assertions are proven by using (3.26) with dx = 0 if x ∈ {ū, ũ, θ̄, Φ̄} is fixed, or
dx̄ = dx for x ∈ {u, θ,Φ} otherwise. In case (i), i.e. dũ = 0, (3.26) directly leads to dθ =
dθ̄ = dΦ = dΦ̄ = 0. For (i.i), dū = 0 as well, implying du = dθ = dΦ = 0 and therefore
(u1, θ1,Φ1) = (u2, θ2,Φ2). In case (i.ii), one obtains

‖∇du‖ ≤ α1‖∇du‖,

i.e. du = 0 if α1 < 1. In (ii.i), (3.26) leads to

‖∇du‖ ≤ α1‖∇du‖+ α2‖∇du‖
‖∇dθ‖ ≤ α4‖∇du‖
‖∇dΦ‖ ≤ 0.

Thus, uniqueness of solutions is given if α1 + α2 < 1. In case (ii.ii.i), i.e. θ̄ = θ and dΦ̄ = 0,
(3.26) leads to

‖∇du‖ ≤ α1‖∇du‖+ α2‖∇du‖
‖∇dθ‖ ≤ α4‖∇du‖
‖∇dΦ‖ ≤ α5(‖∇Φ1‖0,3)‖∇dθ‖.

Now, α1 + α2 < 1 implies du = 0 and consequently, dθ = 0 and dΦ = 0. Finally, consider the
case (ii.ii.ii), i.e. the fully implicit problem. (3.26) leads to

‖∇du‖ ≤ α1‖∇du‖+ α2‖∇du‖+ α3α4α5(‖∇Φ1‖0,3)‖∇du‖
‖∇dθ‖ ≤ α4‖∇du‖
‖∇dΦ‖ ≤ α5(‖∇Φ1‖0,3)‖∇dθ‖.

In this case, du = 0 if α1 + α2 < 1 and ‖∇Φ1‖0,3 < R such that

α1 + α2 + α3α4α5(R) < 1.
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3 Analysis of the Stationary Problem

The previous theorem shows that solutions are unique without any restriction on the problem
data only, if the convection terms in both momentum and heat equation are explicitly given.
Otherwise, uniqueness only holds under certain restrictions on the data. A closer look on the
involved constants (3.27) reveals that (α1, α2, α3, α4) tends to zero as (‖θb‖1,2, ‖fv‖U∗ , ‖fτ‖Θ∗)
tends to zero (see definition of Di in (3.19)). Thus, if the energy that is put into the system
is sufficiently small, uniqueness of solutions can be shown. This energy is given in terms of
an applied external force, temperature source terms and temperature differences between the
boundaries.
However, {αi}4i=1 are proportional to the inverse of viscosity ν and thermal diffusion coefficient

κ, see (3.27) and (3.19). For most practical applications, ν and κ tend to take values of very small
order of magnitude, e.g. for water there holds ν = O

(
10−6

)
and κ = O

(
10−7

)
. In such cases,

uniqueness of solutions can only be guaranteed for very small values of ‖θb‖1,2, i.e. for small
temperature differences across the boundary and small volumes of the considered fluid container.
Further, the constant α3 is proportional to GΦ, which in turn is proportional to ‖Φb‖1,2 according
to Theorem 3.19. Thus, with increasing voltage differences across the boundary of the container,
the uniqueness conditions become even more restrictive.
In summary, for most applications the uniqueness statement is of little practical use as long as

the system is considered with implicit convection fields ū, ũ. However, if the instationary TEHD
system is discretized in time such that ū, ũ are defined as numerical solution at a previous time
step, then Theorem 3.21 can be applied without any restriction. This fact is used in Section 5.2
to show uniqueness of solutions of the spatially and temporally discretized system.

3.3. Modeling of DEP Force

In this final section on the stationary TEHD system, we propose several modelizations of the
body force

FDEP + Fbuo = αe|∇Φ|2∇θ − αgθg (3.28)

that satisfy the main Assumption 3.12. By means of Theorem 3.19, one may state existence of
solutions u ∈ H1

0(Ω), θ, Φ ∈ H1(Ω) of the stationary TEHD Problem 3.18. Thus, Φ solves the
Poisson equation

−∇ · (ǫ∇Φ) = f (3.29)

with diffusion coefficient ǫ ∈ H1(Ω), subjected to mixed Dirichlet-Neumann boundary conditions
and posed on a domain whose boundary is only Lipschitz. To the knowledge of the author it is
unclear, whether more that L2 regularity of ∇Φ can be expected in this situation. For example,
Theorem 1 in Chapter 6.3 of [26] provides interior H2-regularity of Φ supposed that ǫ ∈ C1(Ω).
On the other hand, H2 regularity on the complete domain Ω can be shown if additionally ∂Ω ∈ C2

holds and pure Dirichlet boundary conditions are assumed, see Theorem 4. Whereas the case of
pure Dirichlet conditions and smooth boundary could in principle be assured by the underlying
application, ǫ ∈ C1(Ω) cannot be simply taken as a priori assumption, since the permittivity is
temperature dependent.
In summary, it is not even guaranteed that |∇Φ|2∇θ is L1-integrable. Thus, this term is

not necessarily contained in H−1(Ω), meaning that 〈FDEP ,v〉U∗ is not well-defined for general
v ∈ U. For this reason, it is necessary to replace FDEP by an expression F(θ,Φ) that requires
less regularity of θ and Φ to be an element of H−1(Ω). Moreover, Assumption 3.12 requires
that the norm of F(θ,Φ) grows at most linearly with the norm of θ and weak H1-convergence
in the arguments (θ,Φ) must imply pointwise convergence of F(θ,Φ) in U∗. In order to find an
appropriate mathematical model of FDEP , we make use of the alternative DEP formulation

FDEP,a = −2αe(∇2Φ∇Φ)θ, (3.30)
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3 Analysis of the Stationary Problem

which has already been introduced in Section 2.
The models that are proposed in the following, rely on the idea of either replacing the poten-

tial Φ in FDEP,a by some smooth, fixed function Φ0, or on applying a smoothing operator to Φ.

Remark 3.22. When proving a priori error estimates for the fully discretized instationary TEHD
equations, Section 5.2, it will be possible to work with another model force Fs,K , that makes use
of an cut-off operator. In this case, one can avoid the use of a predefined base potential Φ0.

Definition 3.23. (Approximations of FDEP + Fbuo based on Linearization)
Let Φ0 ∈W 2,∞(Ω) denote a fixed base potential. The standard body force with fixed base potential
is defined as

Fs,0 : H
1(Ω)×H1(Ω) → U∗

(θ,Φ) 7→ αe(|∇Φ0|2∇θ, ·)− αg(θg, ·).

The alternative body force with fixed potential is defined as

Fa,0 : H
1(Ω)×H1(Ω) → U∗

(θ,Φ) 7→ −2αe((∇2Φ0∇Φ0)θ, ·)− αg(θg, ·).

The alternative body force with linearized potential is defined as

Fa,1 : H
1(Ω)×H1(Ω) → U∗

(θ,Φ) 7→ −2αe((∇2Φ0∇Φ)θ, ·)− αg(θg, ·).

The following Lemma shows that the previously defined approximations of FDEP + Fbuo are
suitable for proving existence and uniqueness of stationary solutions.

Lemma 3.24. (Properties of the Body Forces)
The body forces Fs,0, Fa,0 and Fa,1 given by Definition 3.23 satisfy Assumption 3.12.

Proof. Assumption (i) and (ii) directly follow by the linearity of Fs,0,Fa,1,Fa,1 w.r.t. θ and
their growth rate w.r.t. ‖Φ‖1,2 being linearly at most. Validness of (iii) is shown for Fa,1 only:
Let sequences (θn)n ⊂ H1(Ω) and (Φn)n ⊂ H1(Ω) be given that converge to θ∗ ∈ H1(Ω) and
Φ∗ ∈ H1(Ω), respectively, in the following sense: θn ⇀ θ∗ in H1(Ω) and Φn ⇀ Φ∗ in H1(Ω).
The compact embedding H1(Ω) →֒→֒ L4(Ω), Theorem A.92, implies θn → θ∗ and Φn → Φ∗ in
L4(Ω). Additionally, ‖θn‖1,2 + ‖Φn‖1,2 ≤ K for some K > 0 and all n ∈ N by Lemma A.33.
Then, for arbitrary v ∈ U,

|〈F(θ∗,Φ∗)− F(θn,Φn),v〉| ≤ |〈F(θ∗,Φ∗)− F(θ∗,Φn),v〉|+ |〈F(θ∗,Φn)− F(θn,Φn),v〉|
≤ 2αe|((∇2Φ0∇(Φ∗ − Φn))θ∗,v)|+ 2αe|((∇2Φ0∇Φn)(θ∗ − θn),v)|
+ αg|((θ∗ − θn)g,v)|

≤ C|((∇2Φ0∇(Φ∗ − Φn))θ∗,v)|+ CK‖θ∗ − θn‖0,4‖v‖0,6
+ C‖θ∗ − θn‖0,4‖v‖0, 4

3
.

Noting that θ∗ v · ∇2Φ0 ∈ L2(Ω) follows by the assumption on Φ0 and the Sobolev embedding
H1(Ω) →֒ L6(Ω), Theorem A.92, the first term converges to 0 due to Φn ⇀ Φ∗ in H1. Moreover,
both other terms converge to 0 by θn → θ∗ in L4.
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A heuristic justification for the proposed approximations can be given by employing Lemma
3.15. Therefore, let F∗(θ,Φ) := 〈(∇Φ)2∇θ, ·〉U∗ denote the straightforward model of FDEP ,
and assume that a solution (u∗, θ∗,Φ∗) of Problem 3.18 with F = F∗ exists with the additional
regularity θ∗ ∈ L∞(Ω),Φ∗ ∈ W 1,6(Ω). In this case, F∗(θ∗,Φ∗) ∈ H−1(Ω). Now, let (u, θ,Φ)
denote another solution for F = Fs,0. If either ū and ũ are fixed or if the input data (parameters
{D1, D2, D4} in (3.19)) is sufficiently small, then Lemma 3.15 yields

‖∇(u∗ − u)‖+ ‖∇(θ∗ − θ)‖ ≤ C DF, (3.31)

with

DF = sup
w∈V,θ∈Θ

|〈F∗(θ + θb,Φ
∗ +Φb)− Fs,0(θ + θb,Φ+ Φb), w〉U∗ |

‖∇w‖‖θ + θb‖1,2
≤ C‖∇(Φ∗ − Φ0)‖0,6 (‖∇(Φ∗ +Φb)‖0,6 + ‖∇(Φ0 +Φb)‖0,6) . (3.32)

Thus, the difference between both solutions is proportional to the difference between the exact
potential Φ∗ and its approximation Φ0. Such an a priori approximation Φ0 could be defined
as regularization of the solution Φ00 of Gauss’s law for some given reference temperature θ0 ∈
L∞(Ω), i.e. Φ00 satisfies

(ǫ(θ0)∇(Φ00 +Φb),∇β) = 0 for all β ∈ Υ. (3.33)

Further note that

‖∇(Φ1 − Φ2)‖ ≤ ‖ǫ(1) − ǫ(2)‖0,∞
ǫ
(2)
−

‖∇(Φ1 +Φb)‖ (3.34)

holds for potentials Φ1,Φ2 solving Gauss’s law with respective permittivities ǫ(i) ∈ L∞(Ω),

ǫ(i) ≥ ǫ
(i)
− > 0 a.e. If the permittivity is chosen as in [58], i.e. ǫ(θ) = ǫ0ǫr(1−γθ), we obtain for the

relative H1-deviation between Φ00 and the potential Φ∗ determined by the correct temperature
θ∗ + θb:

‖∇(Φ00 − Φ∗)‖
‖∇(Φ∗ +Φb)‖

≤ γ‖θ0 − (θ∗ + θb)‖0,∞
1− γ‖θ∗ + θb‖0,∞

. (3.35)

When considering dielectric fluids with permittivity of low temperature sensitivity - typical values
are γ ≈ 10−3−10−1 K−1, [58] - and temperature regimes in which the Boussinesq approximation
is fairly accurate, i.e. ‖θ0 − (θ∗ + θb)‖0,∞ <∼ 10 K, then the right hand side term in (3.35) is of
small order as well. If, in addition, the effect of regularization is moderate, i.e. ‖∇(Φ00 − Φ0)‖
is small, one may conclude that the difference between (u∗, θ∗) and (u, θ) is of moderate size. In
Section 6.3 this reasoning is substantiated by numerical experiments.
Following the previously stated idea of regularization, we propose another approximation to

FDEP,a that is based on mollification of the electric potential. By replacing Φ by Sψ,rΦ (see
Definition A.110 for the mollification operator Sψ,t) in the formulation of FDEP,a, we are able to
construct a body force F = Fr that satisfies Assumption 3.12. This implies existence of a family
of solutions of Problem 3.18, {(ur, θr,Φr)}r>0. Since Sψ,r converges pointwise to the identity
operator on Lp(Ω) as r → 0, see Lemma A.112, it is natural to ask whether a sequence of so-
lutions (urn , θrn ,Φrn)n with rn → 0 converges in some sense. To answer this question, we need
to introduce another modification of FDEP,a to ensure that the associated growth parameters,
aF = aF(r) and bF = bF(r), stay bounded for r → 0.
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Definition 3.25. (Cut-Off Operator)
For K > 0 let mK ∈ L∞(Rd) denote a Lipschitz continuous function with mK(x) = x if |x| ≤ K.
Define the cut-off operator

PmK
: L1(Ω) → L∞(Ω)

g 7→ mK ◦ g.

By combining the previously defined operators, we may define a regularized electric gravity gE,r.

Definition 3.26. (Regularized Electric Gravity and DEP Force)
Let a mollifier ψ and a cut-off function mK according to Definitions A.110 and 3.25 be given.
For r > 0 define the regularized electric gravity

gE,r : H
1(Ω) → L3(Ω)

Φ 7→ gE,r[Φ] := PmK

[
∇2Sψ,rΦ · ∇Sψ,rΦ

]
.

The corresponding body force is defined by

Fr : H
1(Ω)×H1(Ω) → U∗

(θ,Φ) 7→ −2αe(θ gE,r[Φ], ·)− αg(θ g, ·).

Lemma 3.27. (Properties of Mollified Body Force)
Fr satisfies Assumption 3.12 with growth rates aF, bF being independent of r.

Proof. For Φ ∈ H1(Ω), note that the following estimates hold by means of Lemma A.112 and
Definition 3.25

‖∇Sψ,rΦ‖0,6 ≤ C‖∇Sψ,rΦ‖0,∞ ≤ CC∇(ψ, r)‖Φ‖
‖∇2Sψ,rΦ‖0,6 ≤ C‖∇2Sψ,rΦ‖0,∞ ≤ CC∇2(ψ, r)‖Φ‖
‖gE,r[Φ]‖0,3 ≤ C‖mK‖0,∞

‖PmK
[f1]− PmK

[f2]‖0,p ≤ LmK
‖f1 − f2‖0,p

(3.36)

with LmK
denoting the Lipschitz constant of mK and C denoting a generic constant that only

depends on Ω and p. The proof is abbreviated by setting the involved physical parameters to
1 and only considering the DEP part of Fr, since the stated assertions easily follow for (θg, ·).
Assertion (i) of Assumption 3.12 follows from the estimates

|〈Fr(θ1,Φ)− Fr(θ2,Φ),v〉| ≤ ‖θ1 − θ2‖‖gE,r[Φ]‖0,3‖v‖0,6
≤ CK6‖mK‖0,∞‖θ1 − θ2‖1,2‖∇v‖

and

|〈Fr(θ,Φ1)− Fr(θ,Φ2),v〉| ≤ ‖θ‖‖v‖0,6‖gE,r[Φ1]− gE,r[Φ2]‖0,3
≤ K6LmK

‖θ‖1,2‖∇v‖
·
(
‖∇2Sψ,r(Φ1 − Φ2)‖0,6‖∇Sψ,rΦ1‖0,6

+ ‖∇2Sψ,r(Φ2)‖0,6‖∇Sψ,r(Φ1 − Φ2)‖0,6
)
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for arbitrary R > 0, Φi, θi ∈ BR(0, H
1(Ω)), Φ, θ ∈ H1(Ω),v ∈ U and by using (3.36). Assertion

(ii) follows from

|〈Fr(θ,Φ),v〉| = |(θgE,r[Φ],v)| ≤ ‖gE,r[Φ]‖0,3‖θ‖‖v‖0,6 ≤ C‖mK‖0,∞‖θ‖1,2‖v‖0,6,

i.e. bF = 0 and aF = C‖mK‖0,∞. Finally, let weakly convergent sequences (θn)n, (Φn)n be given
with respective limits θ∗, Φ∗ according to Assumption 3.12 (iii). Then,

|〈Fr(θ∗,Φ∗)− Fr(θn,Φn),v〉| ≤ |((θ∗ − θn)gE,r[Φ∗],v)|+ |(θn (gE,r[Φ∗]− gE,r[Φn]) ,v)|
≤ C‖mK‖0,∞‖θ∗ − θn‖0,4‖v‖0,6 + CLmK

‖θn‖‖v‖0,6
·
(
‖∇2Sψ,r(Φ∗ − Φn)‖0,6‖∇Sψ,rΦ∗‖0,6

+ ‖∇2Sψ,r(Φn)‖0,6‖∇Sψ,r(Φ∗ − Φn)‖0,6
)

=: An

Here, limn→∞An = 0 follows from ‖Φn−Φ∗‖0,4 → 0, ‖θn−θ∗‖0,4 → 0, the uniform boundedness
of ‖Φn‖1,2, ‖θn‖1,2 and the estimates (3.36).

Due to Lemma 3.27, Fr satisfies the requirements of the existence Theorem 3.19 for all r > 0.
Under the remaining conditions of 3.19, one may now state the existence of a family of solutions
{(ur, θr,Φr)}r>0 of Problem 3.18. Moreover, Theorem 3.19 provides energy bounds

‖∇ur‖ ≤ Gu, ‖∇θr‖ ≤ Gθ, ‖∇Φr‖ ≤ GΦ (3.37)

with constants Gi that depend on Fr only via aF(r) = const, bF = 0. Thus, they are uniform
w.r.t. r. Choosing an arbitrary sequence rn → 0 and using again the reflexivity of U,Θ,Υ (see
Theorem A.90 and A.96), one obtains functions u∗ ∈ U, θ∗ ∈ Θ, Φ∗ ∈ Υ such that

urn ⇀ u∗, θrn ⇀ θ∗, Φrn ⇀ Φ∗. (3.38)

By construction, ‖gE,rn [Φrn+Φb]‖0,3 ≤ C‖mK‖0,∞ and since L3(Ω) is reflexive (Theorem A.84),
there additionally exists some g̃E ∈ L3(Ω) such that

gE,n := gE,rn [Φrn ]⇀ g̃E . (3.39)

For arbitrary test functions (v, τ, β) ∈ V×Θ×Υ of Problem 3.18, one now obtains convergence
of all bi- and trilinear forms as in the proof of Theorem 3.19, e.g. av(urn ,v) → av(u∗,v), etc.
Moreover, the term 〈Frn(θrn + θb,Φrn +Φb),v〉U∗ converges because of

|(θngE,n,v)− (θ∗gE,∗,v)| ≤ |(θ∗(gE,∗ − gE,n),v)|+ |((θrn − θ∗)gE,n,v)|
≤ |(θ∗(gE,∗ − gE,n),v)|+ C‖θrn − θ∗‖0,4‖gE,n‖0,3‖v‖0,6 (3.40)

=: An.

Here, limn→∞An = 0 due to gE,n ⇀ g̃E , and the second term by uniform L3-boundedness of
gE,n and the compact embedding H1(Ω) →֒→֒ L4(Ω).
These considerations are summarized by the following theorem.
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Theorem 3.28. (Existence of Solutions with Weak Approximation of Electric Gravity)
Let the requirements of Theorem 3.19 and Lemma 3.27 hold. Then, there are (u, θ,Φ, g̃E) ∈
V ×Θ×Υ× L3(Ω) such that for all (v, τ, β) ∈ V ×Θ×Υ:

δ(u,v) + av(u,v) + cv(ū,u,v) = −((θ + θb)(2αeg̃E + αgg),v) + 〈fv,v〉U∗

δ(θ + θb, τ) + aτ (θ + θb, τ) + cτ (ũ, θ + θb, τ) = 〈fτ , τ〉Θ∗

aβ(θ̄ + θb,Φ+ Φb, β) = 〈fβ , β〉Υ∗ .

The connection between electric gravity g̃E and electric potential Φ is given in the sense that
there is a sequence (rn,Φn)n ⊂ (0,∞)×Υ with

rn → 0

Φn +Φb ⇀ Φ+ Φb in H
1(Ω) (3.41)

gE,rn [Φn +Φb]⇀ g̃E in L3(Ω),

with approximate electric gravity gE,rn [Φn +Φb] given by Definition 3.26.

According to Theorem 3.28, we obtain a notion of a solution for the stationary TEHD equations
3.18, where the strong connection between electric gravity and potential (2.27),

gE(Φ + Φb) = ∇2(Φ + Φb) · ∇(Φ + Φb), (3.42)

is replaced by the weaker form (3.41).
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In this section, we consider the instationary TEHD Boussinesq equations, given by

∂tu+ (u · ∇)u− ν∆u+∇p = F(θ,Φ) + fv

∇ · u = 0

∂tθ + (u · ∇)θ − κ∆θ = fτ

−∇ · (ǫ(θ)∇Φ) = fβ .

(4.1)

System (4.1) directly follows from the TEHD Boussinesq system (2.28) through replacing FDEP+
Fbuo by the general body force term F(θ,Φ), as it is done in the stationary case. In contrast
to the stationary system (3.1), (4.1) is only investigated in a completely nonlinear version. In
particular, the convection fields in momentum and heat equation are not given by predefined
functions ū, ũ.
The instationary equations are subjected to the same boundary conditions as their stationary

counterparts, i.e.

u = 0 on ∂Ω = ΓD + ΓN

θ = θD on ΓD, ∇θ · n = 0 on ΓN (4.2)

Φ = ΦD on ΓD, ∇Φ · n = 0 on ΓN .

The aim of this section consists in setting up an approriate variational formulation and defining
the notion of a weak solution for (4.1). Further, existence and stability of such solutions is shown
by the main result of this chapter, Thereom 4.3. The corresponding proof is an extension of the
proof of Theorem III.4.1 in [77] for showing existence of weak solutions for the incompressible
Navier-Stokes equations. This result is obtained by a semi-discretization in time which leads
to a series of stationary problems. Existence of such semi-discrete solutions can be guaranteed
by the previously derived results for the stationary case. Using linear interpolation between the
associated time steps, an approximate solution that is defined for every point in the entire time
interval [0, T ] can be constructed. When the time step size k tends towards 0, one can show that
the corresponding sequence of approximate solutions converges in weak topology towards a limit
function that itself satisfies the variational formulation of the instationary system.
The outline of this section is as follows: first the variational formulation and the main result

are stated. The proof of this theorem is split into several subsections. After some preliminaries
in Section 4.1, the aforementioned semi-discrete problems are discussed in Section 4.2. In Section
4.3, the limit process for k → 0 is investigated and the final proof of Theorem 4.3 is given. In
the concluding Section 4.4, the modeling of the DEP force is once again considered, since one
has to impose additional requirements compared to the stationary case.
For the remaining of this work, and if not stated otherwise, let ‖·‖p;X := ‖·‖Lp(0,T ;X) for some

Banach space X and p ∈ [1,∞]. Moreover, domain and physical parameters are subjected to
the previous conditions, Assumption 3.1 and 3.2, and the same function spaces U, V, M, Θ, Υ
as defined in Section 3 are used. In addition, let V2 := V2(Ω), H := H(Ω) denote the closure
of {v ∈ D(Ω)d : ∇ · v = 0} in H2

0(Ω) and L2(Ω), respectively, and Θ2 := H2
D(Ω), see Definition

A.89 and A.95. The corresponding duals norms of these spaces naturally appear in the bounds
of the temporal variation of the semi-discrete solutions. The underlying bi- and trilinear forms
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4 Analysis of the Instationary Problem

will be the same as in Section 3, i.e.

av(u,v) := ν(∇u,∇v), cv(u,v,w) := (u · ∇v,w)

aτ (θ, τ) := κ(∇θ,∇τ), cτ (u, θ, τ) := (u · ∇θ, τ) (4.3)

aβ(θ,Φ, β) := (ǫ(θ)∇Φ,∇β), b(u, q) := (∇ · u, q).
The following notion of a weak solution is comparable to Definition 7.8 in [41]. There, the test
functions are split into purely space and time dependent contributions. The spatial variation is
done analogously to the stationary case, whereas the temporal variational formulation is posed
in C∞([0, T ])∗. Moreover, integration by parts w.r.t. ∂t is applied when deriving the weak for-
mulation from the classical formulation (4.1). Thus, ∂tu and ∂tθ do not explicitly occur.

Problem 4.1. (Instationary TEHD Equations in Solenoidal Form)
Let initial conditions (u0, θ0) ∈ V×Θ, boundary liftings (θb,Φb) ∈ H1(Ω)×H1(Ω) source terms
fv ∈ L2(0, T ;U∗), fτ ∈ L2(0, T ; Θ∗), fβ ∈ L∞(0, T ; Υ∗) and T > 0 be given. Find

u ∈ L2(0, T ;V) ∩ L∞(0, T ;H)

θ ∈ L2(0, T ; Θ) ∩ L∞(0, T ;L2)

Φ ∈ L∞(0, T ; Υ)

such that for all (v, τ, β) ∈ V ×Θ×Υ and ψ ∈ C∞([0, T ]) with ψ(T ) = 0:
∫ T

0
−(u,v)ψ′ + {av(u,v) + cv(u,u,v)}ψ dt

−
∫ T

0
〈F(θ + θb,Φ+ Φb) + fv,v〉U∗ψ dt = (u0,v)ψ(0) (4.4)

∫ T

0
−(θ, τ)ψ′ + {aτ (θ + θb, τ) + cτ (u, θ + θb, τ)}ψ dt

−
∫ T

0
〈fτ , τ〉Θ∗ψ dt = (θ0, τ)ψ(0) (4.5)

∫ T

0
{aβ(θ + θb,Φ+ Φb, β)− 〈fβ , β〉Υ∗}ψ dt = 0. (4.6)

Similar to the stationary case, the general body force F has to satisfy certain requirements. First,
since the instationary problem will be reduced to a series of stationary ones and the results of
Section 3 are reused, F has to satisfy all conditions posed in Assumption 3.12. Further, an
additional continuity result, similar to Assumption 3.12 (iii), is needed for passing to the limit
k → 0. In Section 4.4, it is shown that the DEP models Fs,0, Fa,0, Fa,1, given by Definition
3.23, satisfy this additional assumption as well.

Assumption 4.2. (Body Force for Instationary Problem)
Let F : H1(Ω) × H1(Ω) → U∗ satisfy Assumption 3.12 and for bounded sequences (θn)n ⊂
L2(0, T ;H1), (Φn)n ⊂ L∞(0, T ;H1) with

θn ⇀ θ in L2(0, T ;H1), θn → θ in L2(0, T ;L2)

Φn ⇀ Φ in L2(0, T ;H1)

assume that
∫ T

0
〈F(θn(t),Φn(t)),v〉U∗ψ(t) dt→

∫ T

0
〈F(θ(t),Φ(t)),v〉U∗ψ(t) dt
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4 Analysis of the Instationary Problem

for all v ∈ V(Ω) and ψ ∈ C∞([0, T ]).

The following theorem states the existence of solutions of Problem 4.1. For solutions that are
constructed in the course of the proof of Theorem 4.3, further properties can be deduced. For
instance, these solutions turn out to be weakly differentiable w.r.t. t according to Definition
A.66 and the corresponding derivatives are L1-integrable. Moreover, the norm of these solutions
can be bounded by the input data.

Theorem 4.3. (Existence of Instationary Solutions)
Let Assumption 4.2 hold and assume that the boundary lifting θb is chosen such that ‖θb‖0,3 is
sufficiently small in order to meet the requirements of Lemma 4.10 and 4.15. Then, there exists
a solution (u, θ,Φ) of Problem 4.1. In addition, u and θ are weakly differentiable w.r.t. t and
there holds u′ ∈ L1(0, T ;V∗), θ′ ∈ L1(0, T ; Θ∗). Furthermore, the following estimates hold

‖u‖∞;H ≤ Gu,∞,H and ‖u‖2;V ≤ Gu,2,V

‖u′‖2;V∗

2
≤ Gw,2,V∗

2

‖θ‖∞;L2 ≤ Gθ,∞,L2 and ‖θ‖2;Θ ≤ Gθ,2,Θ

‖θ′‖2;Θ∗

2
≤ Gη,2,Θ∗

2

‖Φ‖2;Υ ≤
√
TGΦ,

with constants G· that only depend on the problem data and which are defined in Corollary 4.17.

The proof of Theorem 4.3 is an extension to the proof of Theorem III.4.1 in [77] and it is split
into several parts given in Section 4.1, 4.2 and 4.3. The summary of the proof is given in the
end of Section 4.3.

4.1. Preliminaries

In this section, certain preliminary results are collected which are frequently used for proving
Theorem 4.3.

Lemma 4.4. (Lemma III.4.1 in [77])
The trilinear forms cv and cτ satisfy

Kv,2 := sup
u,v∈V\{0},w∈V2\{0}

cv(u,v,w)

‖u‖‖∇v‖‖w‖2,2
<∞

Kτ,2 := sup
u∈V\{0},θ∈Θ\{0},τ∈Θ2\{0}

cτ (u, θ, τ)

‖u‖‖∇τ‖‖τ‖2,2
<∞

Proof. The assertion for cv is shown in Lemma III.4.1 in [77], the assertion for cτ follows analo-
gously.

Lemma 4.5.

Let u ∈ L2(0, T ;V) ∩ L∞(0, T ;H), θ ∈ L2(0, T ;H1) ∩ L∞(0, T ;L2) and Φ ∈ L∞(0, T ;H1).
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Moreover, let Assumption 4.2 hold. Then,

[0, T ] ∋ t 7→ av(u(t), ·) is an element of L2(0, T ;U∗)

[0, T ] ∋ t 7→ aτ (θ(t), ·) is an element of L2(0, T ; Θ∗)

[0, T ] ∋ t 7→ aβ(θ(t),Φ(t), ·) is an element of L∞(0, T ; Υ∗)

[0, T ] ∋ t 7→ cv(u(t),u(t), ·) is an element of L1(0, T ;U∗)

[0, T ] ∋ t 7→ cτ (u(t), θ(t), ·) is an element of L1(0, T ; Θ∗)

[0, T ] ∋ t 7→ F(θ(t),Φ(t), ·) is an element of L2(0, T ;U∗).

Proof. The result for aβ follows from ‖aβ(θ,Φ, ·)‖Υ∗ ≤ ǫ+‖∇Φ‖ according to Assumption 3.2.
The assertion for cv is shown in Lemma III.3.1 and III.4.2 in [77], the assertion for cτ follows
analogously. According to Assumption 4.2, ‖F(θ,Φ, ·)‖U∗ ≤ aF(‖Φ‖1,2)‖θ‖1,2 + bF(‖Φ‖1,2) with
non-decreasing functions aF and bF.

The next lemma shows that for converging sequences of velocity and temperature, the corre-
sponding convection terms converge pointwise, i.e. for a fixed choice of test functions.

Lemma 4.6. (Convergence of Convection Terms, Lemma III.3.2 in [77])
Let u ∈ L2(0, T ;V) ∩ L∞(0, T ;H) and θ ∈ L2(0, T ;H1) ∩ L∞(0, T ;L2). Let sequences (un)n ⊂
L2(0, T ;V) ∩ L∞(0, T ;H) and (θn)n ⊂ L2(0, T ;H1) ∩ L∞(0, T ;L2) be given with

un ⇀ u in L2(0, T ;V), un → u in L2(0, T ;H)

θn ⇀ θ in L2(0, T ;H1), θn → θ in L2(0, T ;L2).

Then, there holds for all v ∈ C1([0, T ]× Ω)d and τ ∈ C1([0, T ]× Ω)

∫ T

0
cv(un(t),un(t),v(t)) dt→

∫ T

0
cv(u(t),u(t),v(t)) dt

∫ T

0
cτ (un(t), θn(t), τ(t)) dt→

∫ T

0
cτ (u(t), θ(t), τ(t)) dt

Proof. The assertion for cv is shown in Lemma III.3.2 in [77], the assertion for cτ follows analo-
gously.

When deriving a semi-discrete, stationary formulation of Problem 4.1, the time-continuous source
terms fv, fτ , fβ need to be transformed to piecewise-constant sequences which converge towards
the original source terms as the time step size converges towards 0. This is done by taking the
average over small time intervals, as shown by the following lemmas.

Lemma 4.7. (Lemma III.4.5 in [77])
Let X denote a Banach space and f ∈ L2(0, T ;X). Let N ∈ N and k = T

N be given and define

fm :=
1

k

∫ mk

(m−1)k
f(t) dt ∈ X for m = 1, · · · , N.

Then,

k
N∑

m=1

‖fm‖2X ≤
∫ T

0
‖f(t)‖2X dt.
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Lemma 4.8. (Lemma III.4.9 in [77])
Let X denote a Banach space and f ∈ L2(0, T ;X). For N ∈ N and k := T

N let elements fm ∈ X
for m = 1, · · · , N be given according to Lemma 4.7. Define

fN : [0, T ] → X, t 7→
N∑

m=1

fmχ[(m−1)k,mk)(t).

Then, fN → f in L2(0, T ;X) as N → ∞.

4.2. Semi-Discrete Problem

In this section, a semi-discrete formulation of Problem 4.1 is considered. Following the approach
proposed in chapter III.4 in [77], this formulation is derived by applying the implicit Euler time
stepping scheme to the continuous equations. In this way, the stability and existence results for
the stationary case, Section 3, can be reused to analyze the sequence of semi-discrete solutions.

Problem 4.9. (Semi-Discrete Problem)
Let T > 0, initial conditions (u0, θ0), boundary liftings (θb,Φb) and source terms fv, fτ , fβ be
given as in Problem 4.1. For N ∈ N, k = T

N a sequence of stationary problems is given for
1 ≤ m ≤ N :
Find (um, θm,Φm) ∈ V ×Θ×Υ such that for all (v, τ, β) ∈ V ×Θ×Υ:

1

k
(um − um−1,v) + av(u

m,v) + cv(u
m,um,v) = 〈F(θm + θb,Φ

m +Φb) + fmv ,v〉U∗

1

k
(θm − θm−1, τ) + aτ (θ

m + θb, τ) + cτ (u
m, θm + θb, τ) = 〈fmτ , τ〉Θ∗

aβ(θ
m + θb,Φ

m +Φb, β) = 〈fmβ , β〉Υ∗ ,

where fmv , f
m
τ , f

m
β are defined according to Lemma 4.7 and (u0, θ0) := (u0, θ0).

The following lemma shows that a sequence of semi-discrete solutions exists for each N ≥ 1.
This result is a direct consequence of the stationary existence Theorem 3.19.

Lemma 4.10. (Existence of Semi-Discrete Solutions)
Let Assumption 4.2 hold and assume that θb is chosen such that ‖θb‖0,3 ≤ d(aF(GΦ,Φb

)) with d
given by Lemma 3.13 and aF given by Assumption 3.12, i.e.

d(s) =
1

Ks
with K =

K6

κν

√
8(K2

2 + 1)

aF : [0,∞) → [0,∞) non-decreasing

and

GΦ,Φb
=
√
K2

2 + 1GΦ + ‖Φb‖1,2, GΦ =
ǫ+
ǫ−

‖∇Φb‖+
1

ǫ−
‖fβ‖∞;Υ∗ .

Then, there exists a sequence of solutions {(um, θm,Φm)}Nm=1 of Problem 4.9.

37



4 Analysis of the Instationary Problem

Proof. For fixed m ∈ {1, . . . , N}, the corresponding stationary equations defined in Problem 4.9
fit into the framework of Problem 3.18 with δ = 1

k and source terms (in the notation of Problem
3.18)

fv =̂ fmv +
1

k
um−1

fτ =̂ fmτ +
1

k
(θm−1 + θb)

fβ =̂ fmβ .

Moreover, let

GmΦ,Φb
:=
√
K2

2 + 1GmΦ + ‖Φb‖1,2

GmΦ :=
ǫ+
ǫ−

‖∇Φb‖+
1

ǫ−
‖fmβ ‖Υ∗ .

Since ‖fmβ ‖Υ∗ ≤ ‖fβ‖∞;Υ∗ , there holds

d(aF(G
m
Φ,Φb

)) ≥ d(aF(GΦ,Φb
)) ≥ ‖θb‖0,3.

Thus, the requirements of Theorem 3.19 are satisfied and a solution (um, θm,Φm) exists.

Based on the solution of Problem 4.9 for some N ≥ 1, one may now construct associated func-
tions that are defined for all t ∈ [0, T ] by using characteristic functions and linear interpolation,
see III.4.2 in [77].

Definition 4.11. (Sequence of Approximate, Instationary Solutions)
Let the assertions of Lemma 4.10 hold. For given N ∈ N let {(umN , θmN ,ΦmN )}Nm=0 ⊂ V × Θ × Υ
denote the sequence of semi-discrete solutions of Problem 4.9. These solutions exist according to
Lemma 4.10. Define interpolating functions

uN : [0, T ) → V, uN (t) = umN for t ∈ [(m− 1)k,mk), 1 ≤ m ≤ N

θN : [0, T ) → Θ, θN (t) = θmN for t ∈ [(m− 1)k,mk), 1 ≤ m ≤ N

ΦN : [0, T ) → Υ, ΦN (t) = ΦmN for t ∈ [(m− 1)k,mk), 1 ≤ m ≤ N

wN : [0, T ] → V, continuous and piecewise linear with wN (mk) = umN , 0 ≤ m ≤ N

ηN : [0, T ] → Θ, continuous and piecewise linear with ηN (mk) = θmN , 0 ≤ m ≤ N.

In addition, let functions
fv,N : [0, T ] → U∗

fθ,N : [0, T ] → Θ∗

fΦ,N : [0, T ] → Υ∗

be given according to Lemma 4.8.

Using Lemma 4.10, we can suppose that the sequences given by Definition 4.11 do exist for all
N ≥ 1. Moreover, the notation {(uN ,wN , θN , ηN ,ΦN , fv,N , fτ,N , fβ,N )}N will always refer to
Definition 4.11 and we assume that N ≥ T , i.e. k ≤ 1. The next lemma shows in which sense
the constructed sequence of Definition 4.11 solves the instationary problem 4.1.
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Lemma 4.12. (Approximate Instationary Solution)
For all (v, τ, β) ∈ V ×Θ×Υ and ψ ∈ C∞([0, T ]) with ψ(T ) = 0 there holds

∫ T

0
−(wN ,v)ψ

′ + {av(uN ,v) + cv(uN ,uN ,v)}ψ dt

−
∫ T

0
〈F(θN + θb,ΦN +Φb) + fv,N ,v〉U∗ψ dt = (u0,v)ψ(0) (4.7)

∫ T

0
−(ηN , τ)ψ

′ + {aτ (θN + θb, τ) + cτ (uN , θN + θb, τ)}ψ dt

−
∫ T

0
〈fτ,N , τ〉Θ∗ψ dt = (θ0, τ)ψ(0) (4.8)

∫ T

0
{aβ(θN + θb,ΦN +Φb, β)ψ − 〈fβ,N , β〉Υ∗}ψ dt = 0. (4.9)

Proof. Let tm := mk. There holds

∫ T

0
−(wN (t),v)ψ

′(t) dt

=
N∑

m=1

∫ tm

tm−1

−(wN (t),v)ψ
′(t) dt

=
N∑

m=1

{∫ tm

tm−1

(w′
N (t),v)ψ(t) dt− (wN (tm),v)ψ(tm) + (wN (tm−1),v)ψ(tm−1)

}

=

N∑

m=1

{∫ tm

tm−1

1

k
(umN − um−1

N ,v)ψ(t) dt

}
+ (u0,v)ψ(0).

Analogously,

∫ T

0
−(ηN (t), τ)ψ

′(t) dt =
N∑

m=1

{∫ tm

tm−1

1

k
(θmN − θm−1

N , τ)ψ(t) dt

}
+ (θ0, τ)ψ(0).

Moreover,

∫ T

0
〈fv,N (t),v〉U∗ψ(t) dt =

N∑

m=1

∫ tm

tm−1

〈fv,N (t),v〉U∗ψ(t) dt =
N∑

m=1

∫ tm

tm−1

〈fmv ,v〉U∗ψ(t) dt,

and, analogously,

∫ T

0
〈fτ,N (t), τ〉Θ∗ψ(t) dt =

N∑

m=1

∫ tm

tm−1

〈fmτ , τ〉Θ∗ψ(t) dt

∫ T

0
〈fβ,N (t), β〉Υ∗ψ(t) dt =

N∑

m=1

∫ tm

tm−1

〈fmβ , β〉Υ∗ψ(t) dt.

Taking into account that uN , θN , ΦN are piecewise constant, the assertion follows by multiplying
the equations in Problem 4.9 by ψ, integrating over [tm−1, tm] and summation over 1 ≤ m ≤
N .
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The goal for the remainder of this subsection is to derive upper bounds on the norms of the
approximate solutions {(uN ,wN , θN , ηN ,ΦN , fv,N , fτ,N , fβ,N )}N that are independent of k and
N . This result will allow us to state the existence of a weakly convergent subsequence in Section
4.3. Afterward, one can pass to the limit in the variational formulation (4.7), (4.8), (4.9).
First, the following two lemmas show that these norms can be bounded by the respective

norms of the semi-discrete solutions.

Lemma 4.13. (L∞-Norm Estimation)
There holds

‖uN‖∞;H = max
m∈{0,...,N−1}

‖umN‖ and ‖wN‖∞;H = max
m∈{0,...,N}

‖umN‖,

‖θN‖∞;L2 = max
m∈{0,...,N−1}

‖θmN‖ and ‖ηN‖∞;L2 = max
m∈{0,...,N}

‖θmN‖,

‖ΦN‖∞;Υ = max
m∈{0,...,N−1}

‖ΦmN‖.

Proof. The stated assertions hold due to the piecewise linear and piecewise constant in-time
definition of uN , wN , θN , ηN and ΦN .

Lemma 4.14. (L2-Norm Estimation)
There holds

‖uN‖22;V = k

N∑

m=1

‖∇umN‖2 and ‖wN‖22;V ≤ k

N∑

m=0

‖∇umN‖2,

‖θN‖22;Θ = k

N∑

m=1

‖∇θmN‖2 and ‖ηN‖22;Θ ≤ k
N∑

m=0

‖∇θmN‖2,

‖w′
N‖22;V∗

2
=

1

k

N∑

m=1

‖umN − um−1
N ‖2V∗

2
and ‖η′N‖22;Θ∗

2
=

1

k

N∑

m=1

‖θmN − θm−1
N ‖2Θ∗

2
.

Proof. Let ψ : [0, T ] → R denote a piecewise linear function with ψi := ψ(ik) for i = 0, . . . N .
Then, by the Simpson quadrature rule,

∫ T

0
|ψ(t)|2 dt =

N∑

i=1

∫ ik

(i−1)k
|ψ(t)|2 dt =

N∑

i=1

k

6

(
|ψi−1|2 + |ψi|2 + 4|1

2
(ψi−1 + ψi)|2

)

≤
N∑

i=1

k

2

(
|ψi−1|2 + |ψi|2

)

≤ k

N∑

i=0

|ψi|2.

In this way, the assertions for wN and ηN follow. The assertions for uN , θN , w
′
N and η′N directly

follow by the fact, that these functions are piecewise constant in time.

Now, the norm of the semi-discrete solution for some fixed N ≥ 1 is bounded independently of
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N . The first estimate, Lemma 4.15, is a modification of Lemma 3.13 in the stationary case. The
latter one cannot be simply reused, since one has to ensure that the derived upper bounds are
uniform w.r.t. N . A comparable result is given by Lemma III.4.4 in [77].

Lemma 4.15. (Stability of Semi-Discrete Solutions I)
Let {(um, θm,Φm)}Nm=0 denote the sequence of semi-discrete solutions of Problem 4.9. Let As-
sumption 4.2 hold and assume that θb is chosen such that ‖θb‖0,3 is sufficiently small, i.e.

‖θb‖0,3 ≤
νκ√

8(K2
2 + 1)K6

1

aF(GΦ,Φb
)
,

with GΦ,Φb
given by Lemma 4.10.

Then there exist nonnegative constants GΦ (given by Lemma 4.10) and D, {αi}4i=1 (given by
(4.25)) that only dependent on the input data but not on N , k such that

‖∇Φm‖ ≤ GΦ for m = 1, . . . , N

α1‖um‖2 + α2‖θm‖2 ≤ D for m = 1, . . . , N

N∑

m=1

(
α1‖um − um−1‖2 + α2‖θm − θm−1‖2

)
≤ D

k

N∑

m=1

(
α3‖∇um‖2 + α4‖∇θm‖2

)
≤ D.

Proof. Setting β = Φm in Problem 4.9 and using ǫ ∈ [ǫ−, ǫ+] according to Assumption 3.2 yields

‖∇Φm‖ ≤ 1

ǫ−

(
ǫ+‖∇Φb‖+ ‖fmβ ‖Υ∗

)
≤ 1

ǫ−
(ǫ+‖∇Φb‖+ ‖fβ‖∞;Υ∗) = GΦ. (4.10)

Consequently,
‖Φm +Φb‖1,2 ≤ GΦ,Φb

for m = 1, . . . N, (4.11)

with GΦ,Φb
defined in Lemma 4.10. Setting v = um, τ = θm in Problem 4.9 yields

L1 := (um − um−1,um) + kν‖∇um‖2
= k〈F(θm + θb,Φ

m +Φb) + fmv ,u
m〉U∗ =: R1 (4.12)

L2 := (θm − θm−1, θm) + kκ‖∇θm‖2
=− kκ(∇θb,∇θm) + kcτ (u

m, θm, θb) + k〈fmτ , θm〉Θ∗ =: R2. (4.13)

The respective left-hand sides of (4.12) and (4.13) can be reformulated to

L1 =
1

2

(
‖um‖2 − ‖um−1‖2 + ‖um − um−1‖2

)
+ kν‖∇um‖2 (4.14)

L2 =
1

2

(
‖θm‖2 − ‖θm−1‖2 + ‖θm − θm−1‖2

)
+ kκ‖∇θm‖2. (4.15)

Using Assumption 4.2, (4.11) and Friedrich’s inequality, the right-hand side of (4.12) can be
estimated from above by

R1 ≤ kCm1 ‖∇um‖+ kC2‖∇um‖‖∇θm‖ (4.16)
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with
Cm1 := ‖fmv ‖U∗ + aF‖θb‖1,2 + bF

C2 := aF

√
K2

2 + 1

aF := aF(GΦ,Φb
)

bF := bF(GΦ,Φb
).

On the other hand, R2 can be estimated from above via

R2 ≤ kCm3 ‖∇θm‖+ kC4‖θb‖0,3‖∇um‖‖∇θm‖ (4.17)

with
Cm3 := κ‖∇θb‖+ ‖fmτ ‖Θ∗

C4 := K6.

Combining (4.14) and (4.16) and using Young’s inequality yields

‖um‖2 − ‖um−1‖2 + ‖um − um−1‖2︸ ︷︷ ︸
=:Um

+kν‖∇um‖2 ≤ 2(Cm1 )2

ν
k +

2C2
2

ν
k‖∇θm‖2

=: Cm5 k + C6k‖∇θm‖2. (4.18)

Analogously, combination of (4.15) and (4.17) yields

‖θm‖2 − ‖θm−1‖2 + ‖θm − θm−1‖2︸ ︷︷ ︸
=:Tm

+kκ‖∇θm‖2 ≤ 2(Cm3 )2

κ
k +

2C2
4

κ
k‖θb‖20,3‖∇um‖2

=: Cm7 k + C8k‖θb‖20,3‖∇um‖2. (4.19)

Combining (4.18) and (4.19) gives

Um + kν‖∇um‖2 ≤ Cm5 k +
C6

κ

(
Cm7 k + C8k‖θb‖20,3‖∇um‖2 − Tm

)
. (4.20)

Choosing θb such that C6C8
κ ‖θb‖20,3 ≤ ν

2 , (4.20) can reformulated to

Um +
C6

κ
Tm + k

ν

2
‖∇um‖2 ≤ k

(
Cm5 +

C6C
m
7

κ

)
=: Cm9 k. (4.21)

Combination of (4.21) and (4.19) yields

Tm + kκ‖∇θm‖2 ≤ Cm7 k +
2C8

ν
‖θb‖20,3

(
Cm9 k − Um − C6

κ
Tm
)
,

which can be rewritten as

F1T
m + F2U

m + kκ‖∇θm‖2 ≤ Fm3 k, (4.22)

with

F1 := 1 +
2C6C8

νκ
‖θb‖20,3

F2 :=
2C8

ν
‖θb‖20,3

Fm3 := Cm7 +
2C8

ν
Cm9 ‖θb‖20,3.
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Adding (4.21) and (4.22) gives

(1 + F2)U
m +

(
C6

κ
+ F1

)
Tm +

ν

2
k‖∇um‖2 + κk‖∇θm‖2 ≤ (Cm9 + Fm3 )k.

With α1 := 1 + F2, α2 :=
(
C6
κ + F1

)
, α3 :=

ν
2 , α4 := κ and αm5 := Cm9 + Fm3 , we finally obtain

α1U
m + α2T

m + kα3‖∇um‖2 + kα4‖∇θm‖2 ≤ αm5 k. (4.23)

By carefully tracking the m-dependent contributions to αm5 (Cm1 , Cm3 , Cm5 , Cm7 , Cm9 ) one can
state the existence of d1, d2, d3 ≥ 0, only depending on the input data, but not on m, N and k,
such that

αm5 ≤ d1‖fmv ‖2U∗ + d2‖fmτ ‖2Θ∗ + d3.

Thus, by virtue of Lemma 4.7 one obtains

k

N∑

m=1

αm5 ≤ d1‖fv‖22;U∗ + d2‖fτ‖22;Θ∗ + d3 T.

Taking the sum in (4.23) for m = 1, · · · , r with r ∈ {1, · · · , N}, gives

α1‖ur‖2 + α1

r∑

m=1

‖um − um−1‖2 + α3k
r∑

m=1

‖∇um‖2

+ α2‖θr‖2 + α2

r∑

m=1

‖θm − θm−1‖2 + α4k

r∑

m=1

‖∇θm‖2

≤ d1‖fv‖22;U∗ + d2‖fτ‖22;Θ∗ + d3 T + α1‖u0‖2 + α2‖θ0‖2. (4.24)

The assertion now follows from (4.10) and (4.24) with constants given by

D := d1‖fv‖22;U∗ + d2‖fτ‖22;Θ∗ + d3 T + α1‖u0‖2 + α2‖θ0‖2

α1 = 1 + 4K2
6‖θb‖20,3(νκ)−1

α2 = 1 + 2a2F(K
2
2 + 1)(νκ)−1

(
1 + 4K2

6‖θb‖20,3(νκ)−1
)

α3 = 0.5ν

α4 = κ

d1 = 8ν−1
(
1 + 4K2

6‖θb‖20,3(νκ)−1
)

d2 = 4κ−1
(
1 + 2a2F(K

2
2 + 1)(νκ)−1

(
1 + 4K2

6‖θb‖20,3(νκ)−1
))

d3 = 4κ‖∇θb‖2 +
(
1 + 4K2

6‖θb‖20,3(νκ)−1
)

·
(
8ν−1(a2F‖θb‖21,2 + b2F) + 8a2F(K

2
2 + 1)‖∇θ‖2ν−1

)
.

(4.25)

Whereas the previous lemma provides bounds on the L2(0, T ;H1) and L∞(0, T ;L2) norms of the
semi-discrete solution, the following lemma shows that the L2(0, T ;V∗

2) and L2(0, T ; Θ∗
2) norm

of w′ and η′, respectively, can be bounded independently of N . At this point, an H2-regularity
of test functions is needed to bound the convection terms cv(u,u, ·), cτ (u, θ, ·) in terms of a
product of L2- and H1-norm.
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Lemma 4.16. (Stability of Semi-Discrete Solutions II, see Lemma III.4.6 in [77])
Let the assumptions of Lemma 4.15 hold. Then, there exists a constant D2, independent of N ,
k, such that

k

N∑

m=1

{
‖1
k
(um − um−1)‖2V∗

2
+ ‖1

k
(θm − θm−1)‖2Θ∗

2

}
≤ D2.

Proof. In the following, C denotes a generic (varying) constant that is independent of k, m and
N . Using Lemma 4.4 and Assumption 4.2, there holds for arbitrary v ∈ V2,

1

k
|(um − um−1,v)| ≤ C (‖∇um‖‖∇v‖+ ‖um‖‖∇um‖‖v‖2,2 + ‖fmv ‖U∗‖∇v‖)

+ C (aF(‖Φm +Φm‖1,2)‖θm + θb‖1,2‖∇v‖+ bF(‖Φm +Φm‖1,2)‖∇v‖) .

With ‖Φm + Φb‖1,2 ≤ GΦ,Φb
for all m according to Lemma 4.15, one obtains by taking the

supremum over all v ∈ V2 and Young’s inequality,

‖1
k
(um − um−1)‖2V∗

2
≤ C

(
‖∇um‖2 + ‖um‖2‖∇um‖2 + ‖fmv ‖2U∗ + ‖∇θm‖2 + 1

)
.

Using Lemma 4.7 and 4.15, multiplication by k and summation for m = 1, . . . , N , yields

k

N∑

m=1

‖1
k
(um − um−1)‖2V∗

2
≤ C

(
k

N∑

m=1

‖∇um‖2 + k

N∑

m=1

{
D‖∇um‖2

}
+ k

N∑

m=1

‖fmv ‖2U∗

)

+ C

(
k

N∑

m=1

‖∇θm‖2 + T

)

≤ C
(
D +D2 + ‖fv‖22;U∗ +D + T

)
,

with constant D given by Lemma 4.15. Now, let τ ∈ Θ2 be arbitrary. Then, by Lemma 4.4,

1

k
|(θm − θm−1, τ)| ≤ C

(
(‖∇θm‖+ ‖∇θb‖)‖∇τ‖+ ‖um‖(‖∇θm‖+ ‖∇θb‖)‖τ‖2,2

+ ‖fmτ ‖Θ∗‖∇τ‖
)
.

Thus,

‖1
k
(θm − θm−1)‖2Θ∗

2
≤ C

(
‖∇θm‖2 + ‖∇θb‖2 + ‖um‖2(‖∇θm‖2 + ‖∇θb‖2) + ‖fmτ ‖2Θ∗

)

and, similarly as before,

k

N∑

m=1

‖1
k
(θm − θm−1)‖2Θ∗

2
≤ C

(
D + T‖∇θb‖2 +D2 +DT‖∇θb‖2 + ‖fτ‖22;Θ∗

)
.

Combination of the previous lemmas now yields bounds on the sequence of approximate insta-
tionary solutions that are independent of N .
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Corollary 4.17. (Boundedness of Approximate Instationary Sequences)
Let the assumptions of Lemma 4.15 hold. Then, there holds for all N ∈ N

‖uN‖∞;H ≤ Gu,∞,H, ‖uN‖2;V ≤ Gu,2,V

‖wN‖∞;H ≤ Gu,∞,H, ‖wN‖2;V ≤ Gu,2,V

‖w′
N‖2;V∗

2
≤ Gw,2,V∗

2

‖θN‖∞;L2 ≤ Gθ,∞,L2 , ‖θN‖2;Θ ≤ Gθ,2,Θ

‖ηN‖∞;L2 ≤ Gθ,∞,L2 , ‖ηN‖2;Θ ≤ Gθ,2,Θ

‖η′N‖2;Θ∗

2
≤ Gη,2,Θ∗

2

‖ΦN‖∞;Υ ≤ GΦ,

with constants

Gu,∞,H := max

{
‖u0‖,

√
Dα−1

1

}
, Gθ,∞,L2 := max

{
‖θ0‖,

√
Dα−1

2

}
,

Gu,2,V :=

√
‖∇u0‖2 +Dα−1

3 , Gθ,2,Θ :=

√
‖∇θ0‖2 +Dα−1

4 ,

Gw,2,V∗

2
:=
√
D2, Gη,2,Θ∗

2
:=
√
D2,

that are independent of k and N . Here, the constants D, D2, {αi}4i=1 and GΦ are given by the
previous lemmas.

Proof. Follows by combination of Lemma 4.13, 4.14, 4.15 and 4.16.

4.3. Passage to the Limit

In this section, we first show that the previously constructed sequences converge as N → ∞ in
various meanings. This is the result of Lemma 4.18, 4.19 and 4.20. Afterward, we investigate
how this convergence translates into convergence of the individual terms in the variational for-
mulation (4.7) - (4.9).

Lemma 4.18. (Strong Limits I, see Lemma III.4.8 in [77])
Let the assumptions of Lemma 4.15 hold. Then, there holds

uN −wN → 0 in L2(0, T ;H)

θN − ηN → 0 in L2(0, T ;L2).

Proof. According to Lemma III.4.8 in [77] there holds

‖uN −wN‖2;H =

√
k

3

(
N∑

m=1

‖umN − um−1
N ‖2

) 1
2

.

Thus, uN − wN → 0 follows from k → 0 as N → ∞ and Lemma 4.15. θN − ηN → 0 follows
analogously.
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Lemma 4.19. (Weak Limits)
Let the assumptions of Lemma 4.15 hold. Then, there are elements u ∈ L2(0, T ;V)∩L∞(0, T ;H)
with u′ ∈ L2(0, T ;V∗

2), θ ∈ L2(0, T ; Θ)∩L∞(0, T ;L2) with θ′ ∈ L2(0, T ; Θ∗
2) and Φ ∈ L∞(0, T ; Υ)

and a (not relabeled) subsequence of {(uN ,wN , θN , ηN ,ΦN )}N such that

uN ⇀ u in L2(0, T ;V) and uN
∗
⇀ u in L∞(0, T ;H)

wN ⇀ u in L2(0, T ;V) and wN
∗
⇀ u in L∞(0, T ;H)

w′
N ⇀ u′ in L2(0, T ;V∗

2)

θN ⇀ θ in L2(0, T ; Θ) and θN
∗
⇀ θ in L∞(0, T ;L2)

ηN ⇀ θ in L2(0, T ; Θ) and ηN
∗
⇀ θ in L∞(0, T ;L2)

η′N ⇀ θ′ in L2(0, T ; Θ∗
2)

ΦN ⇀ Φ in L2(0, T ; Υ) and ΦN
∗
⇀ Φ in L∞(0, T ; Υ).

Proof. By Theorem A.96, the spaces V,V2,H,Θ,Θ2,Υ are reflexive and separable. According
to Lemma A.24 and Lemma A.26 the same holds for V∗

2 and Θ∗
2. Thus, all considered spaces

L2(0, T ; ·) are reflexive according to Theorem A.55. By the boundedness stated in Corollary
4.17 and the reflexivity of the spaces L2(0, T ; ·), there exist elements u,w ∈ L2(0, T ;V), gw ∈
L2(0, T ;V∗

2), θ, η ∈ L2(0, T ; Θ), gη ∈ L2(0, T ; Θ∗
2) and Φ ∈ L2(0, T ; Υ) and corresponding subse-

quences (not relabeled) with

uN ⇀ u in L2(0, T ;V)

wN ⇀ w in L2(0, T ;V)

w′
N ⇀ gw in L2(0, T ;V∗

2)

θN ⇀ θ in L2(0, T ; Θ)

ηN ⇀ η in L2(0, T ; Θ)

η′N ⇀ gη in L2(0, T ; Θ∗
2)

ΦN ⇀ Φ in L2(0, T ; Υ).

Moreover, by Lemma A.61 and the L∞(0, T ; ·)-boundedness, there are u∗,w∗ ∈ L∞(0, T ;H),
θ∗, η∗ ∈ L∞(0, T ;L2) and Φ∗ ∈ L∞(0, T ; Υ) (and another not relabeled subsequences) such that

uN
∗
⇀ u∗ in L∞(0, T ;H)

wN
∗
⇀ w∗ in L∞(0, T ;H)

θN
∗
⇀ θ∗ in L∞(0, T ;L2)

ηN
∗
⇀ η∗ in L∞(0, T ;L2)

ΦN
∗
⇀ Φ∗ in L∞(0, T ; Υ).

The weak convergence uN ⇀ u in L2(0, T ;V) implies

∫ T

0
(uN (t), f(t)) dt→

∫ T

0
(u(t), f(t)) dt

for arbitrary f ∈ L2(0, T ;H). Due to uN
∗
⇀ u∗ in L∞(0, T ;H), there holds

∫ T

0
(uN (t), g(t)) dt→

∫ T

0
(u∗(t), g(t)) dt for all g ∈ L1(0, T ;H).
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Since L2(0, T ;H) ⊂ L1(0, T ;H), there holds u = u∗ in L2(0, T ;H), i.e. u = u∗ for almost all
t ∈ (0, T ). Analogously, w = w∗, θ = θ∗, η = η∗. A similar procedure (with both, V and H,
being replaced by Υ) shows that Φ∗ = Φ.

Moreover, uN −wN
∗
⇀ u −w in L∞(0, T ;H) implies

∗
⇀ convergence in L2(0, T ;H). On the

other hand, uN−wN → 0 in L2(0, T ;H) according to Lemma 4.18, and therefore, uN−wN
∗
⇀ 0.

Thus, u−w = 0. Analogously, θ = η.
Finally, as wN ⇀ u in L2(0, T ;V) and w′

N ⇀ gw in L2(0, T ;V∗
2), there holds u′ = gw

according to Lemma A.75 with X = V and Y = V∗
2. Analogously, gη = θ′.

Lemma 4.20. (Strong Limits II)
Let the assumptions of Lemma 4.15 hold. Then, there holds

wN → u and uN → u in L2(0, T ;H)

ηN → θ and θN → θ in L2(0, T ;L2)

for (u, θ) and not relabeled subsequences of the subsequences given by Lemma 4.19.

Proof. Lemma 4.17 implies that {wN}N is a bounded sequence in W(0, T ; 2, 2,V,V∗
2) =: W.

According to Lemma A.74, W is reflexive and W →֒→֒ L2(0, T ;H) according to Theorem A.71.
Thus, there exists a subsequence (not relabeled) {wN}N that converges weakly to w∗ in W. By
the compact embedding and Lemma A.35,wN → w∗ in L2(0, T ;H). Moreover, weak convergence
in W implies weak convergence in L2(0, T ;V) since W ⊂ L2(0, T ;V). According to Lemma 4.19,
wN ⇀ u in L2(0, T ;V). Thus, w∗ = u. uN → u in L2(0, T ;H) follows from Lemma 4.18. The
assertion for θ follows analogously.

For the remainder of this section, {(uN ,wN , θN , ηN ,ΦN )}N always denotes the final subsequence
chosen in Lemma 4.20 and (u, θ,Φ) denotes the weak limits introduced in Lemma 4.19. Hereby,
it is implicitly assumed that the necessary requirements, see Lemma 4.15, are satisfied.
The series of upcoming lemmas now show that all terms of the system provided by Lemma

4.12 do converge.

Lemma 4.21. (Convergence of Time Derivative)
Let (v, τ) ∈ V ×Θ and ψ ∈ C∞([0, T ]) be arbitrary. Then,

∫ T

0
−(wN (t),v)ψ

′(t) dt→
∫ T

0
−(u(t),v)ψ′(t) dt

∫ T

0
−(ηN (t), τ)ψ

′(t) dt→
∫ T

0
−(θ(t), τ)ψ′(t) dt.

Proof. Follows from wN ⇀ u in L2(0, T ;V) and ηN ⇀ θ in L2(0, T ; Θ).
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Lemma 4.22. (Convergence of Bilinear Forms)
Let (v, τ) ∈ V ×Θ and ψ ∈ C∞([0, T ]) be arbitrary. Then,

∫ T

0
av(wN (t),v)ψ(t) dt→

∫ T

0
av(u(t),v)ψ(t) dt

∫ T

0
aτ (ηN (t), τ)ψ(t) dt→

∫ T

0
aτ (θ(t), τ)ψ(t) dt.

Proof. Follows analogously to the proof of Lemma 4.21.

Lemma 4.23. (Convergence of Convection Terms)
Let v ∈ V(Ω), τ ∈ C∞

D (Ω) and ψ ∈ C∞([0, T ]) be arbitrary. Then,

∫ T

0
cv(uN (t),uN (t),v)ψ(t) dt→

∫ T

0
cv(u(t),u(t),v)ψ(t) dt

∫ T

0
cτ (uN (t), θN (t) + θb, τ)ψ(t) dt→

∫ T

0
cτ (u(t), θ(t) + θb, τ)ψ(t) dt.

Proof. The assertion follows directly by Lemma 4.6 with v(t) := ψ(t)v ∈ C1([0, T ] × Ω)d. The
assertion for cτ follows analogously.

Lemma 4.24. (Convergence of Force Terms)
Let Assumption 4.2 hold. Let v ∈ V(Ω), τ, β ∈ C∞

D (Ω) and ψ ∈ C∞([0, T ]) be arbitrary. Then,

∫ T

0
〈F(θN (t) + θb,ΦN (t) + Φb),v〉U∗ψ(t) dt→

∫ T

0
〈F(θ(t) + θb,Φ(t) + Φb),v〉U∗ψ(t) dt

∫ T

0
〈fv,N (t),v〉U∗ψ(t) dt→

∫ T

0
〈fv(t),v〉U∗ψ(t) dt

∫ T

0
〈fτ,N (t), τ〉Θ∗ψ(t) dt→

∫ T

0
〈fτ (t), τ〉Θ∗ψ(t) dt

∫ T

0
〈fβ,N (t), β〉Υ∗ψ(t) dt→

∫ T

0
〈fβ(t), β〉Υ∗ψ(t) dt.

Proof. The assertion for fv, fτ , fβ is a direct consequence of Lemma 4.8. The assertion for F

holds by Assumption 4.2.

Lemma 4.25. (Convergence of Gauss Bilinear Form)
Let β ∈ C∞

D (Ω) and ψ ∈ C∞([0, T ]) be arbitrary. Then,

∫ T

0
aβ(θN (t) + θb,ΦN (t) + Φb, β)ψ(t) dt→

∫ T

0
aβ(θ(t) + θb,Φ(t) + Φb, β)ψ(t) dt.
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Proof. There holds

∣∣∣∣
∫ T

0
aβ(θN (t) + θb,ΦN (t) + Φb, β)ψ(t) dt−

∫ T

0
aβ(θ(t) + θb,Φ(t) + Φb, β)ψ(t) dt

∣∣∣∣

≤
∫ T

0
|((ǫ(θN (t) + θb)− ǫ(θ(t) + θb))∇(ΦN (t) + Φb),∇β)||ψ(t)| dt

+

∣∣∣∣
∫ T

0
((ǫ(θ(t) + θb)∇(ΦN (t)− Φ(t)),∇β)ψ(t) dt

∣∣∣∣
=: I1 + I2

Considering I1,

|I1| ≤
∫ T

0
Lǫ‖θN (t)− θ(t)‖‖∇(ΦN (t) + Φb)‖‖∇β‖∞|ψ(t)| dt

≤ Lǫ‖θN − θ‖2;L2 (‖ΦN‖∞;Υ + ‖Φb‖∞;Υ) ‖∇β‖∞‖ψ‖2;R
≤ Lǫ(GΦ + ‖∇Φb‖)‖∇β‖∞‖ψ‖2;R ‖θN − θ‖2;L2

=: AN ,

where limN→∞AN = 0 since θN → θ according to Lemma 4.20. Moreover, let

L : L2(0, T ; Υ) → R

Φ 7→
∫ T

0
((ǫ(θ(t) + θb)∇Φ(t),∇β)ψ(t) dt.

Since |LΦ| ≤ ǫ+‖ψ‖2;R‖∇β‖‖Φ‖2;Υ, there holds L ∈ L2(0, T ; Υ)∗. Thus, I2 → 0 since ΦN ⇀ Φ
in L2(0, T ; Υ).

After considering the individual terms, the validness of the complete momentum and heat equa-
tion, as well as Gauss’ law, are shown.

Lemma 4.26. (Momentum and Heat Equation)
Let Assumption 4.2 hold. Then, (u, θ,Φ) satisfies (4.4) and (4.5) for all v ∈ V, τ ∈ Θ and
ψ ∈ C∞([0, T ]).

Proof. Let C denote a generic constant that only depends on problem data. For ψ ∈ C∞([0, T ])
arbitrary but fixed, define the linear maps

Lv : V → R

v 7→
∫ T

0
−(u(t),v)ψ′(t) + {av(u(t),v) + cv(u(t),u(t),v)}ψ(t) dt

−
∫ T

0
〈F(θ(t) + θb,Φ(t) + Φb) + fv(t),v〉U∗ψ(t) dt

− (u0,v)ψ(0)
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and

Lτ : Θ → R

τ 7→
∫ T

0
−(θ(t), τ)ψ′(t) + {aτ (θ(t) + θb, τ) + cτ (θ(t), θ(t) + θb, τ)}ψ(t) dt

−
∫ T

0
〈fτ (t), τ〉Θ∗ψ(t) dt

− (θ0, τ)ψ(0).

Combining Lemma 4.12, 4.21, 4.22, 4.23 and 4.24, (4.4) and (4.5) hold for all v ∈ V(Ω), τ ∈
C∞
D (Ω) and ψ ∈ C∞([0, T ]), which is equivalent to

Lvv = 0 for all v ∈ V(Ω)
Lττ = 0 for all τ ∈ C∞

D (Ω).

Moreover, there holds for all v ∈ V \ {0}

|Lvv|
‖∇v‖ ≤ C

(
‖u‖2;V‖ψ′‖2;R + ‖u‖2;V‖ψ‖2;R + ‖u‖22;V‖ψ‖∞;R

)

+ C
(
‖aF(‖Φ+ Φb‖1,2)‖∞;R‖θ + θb‖2;H1‖ψ‖2;R

)

+ C (‖bF(‖Φ+ Φb‖1,2)‖∞;R‖ψ‖2;R + ‖fv‖2;U∗‖ψ‖2;R + ‖u0‖|ψ(0)|)
<∞

where we used that ‖Φ‖∞;Υ < ∞ and the properties of aF, bF according to Assumption 4.2.
Moreover, for τ ∈ Θ \ {0}:

|Lττ |
‖∇τ‖ ≤ C

(
‖θ‖2;Θ‖ψ′‖2;R + ‖θ + θb‖2;H1‖ψ‖2;R

)

+ C
(
‖u‖2;V‖θ + θb‖2;H1‖ψ‖∞;R + ‖fτ‖2;Θ∗‖ψ‖2;R + ‖θ0‖|ψ(0)|

)

<∞.

Thus, both Lv and Lτ are bounded. Since V(Ω) and C∞
D (Ω) are dense in V and Θ, respectively,

there follows

Lvv = 0 for all v ∈ V

Lττ = 0 for all τ ∈ Θ.

Since ψ was chosen arbitrarily, the assertion follows.

Lemma 4.27. (Gauss Law)
(u, θ,Φ) satisfies (4.6) for all β ∈ Υ and ψ ∈ C∞([0, T ]).

Proof. Combining Lemma 4.12, 4.24 and 4.25, (4.6) holds for all β ∈ C∞
D (Ω) and ψ ∈ C∞([0, T ]).

Consider the linear map for an arbitrary, fixed ψ ∈ C∞([0, T ]).

L : Υ → R

β 7→
∫ T

0
((ǫ(θ(t) + θb)∇(Φ(t) + Φb),∇β)ψ(t) dt−

∫ T

0
〈fβ(t), β〉Υ∗ψ(t) dt.
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Then,
|Lβ| ≤ ǫ+‖Φ+ Φb‖2;Υ‖ψ‖2;R‖∇β‖+ ‖fβ‖∞;Υ∗‖ψ‖1;R‖∇β‖,

i.e. L ∈ Υ∗. Since Lβ = 0 for all β ∈ C∞
D (Ω) which is dense in Υ by definition, (4.6) holds for

all β ∈ Υ.

The proof of Theorem 4.3 is now given by combination of Lemma 4.26, 4.27 and can be completed
by the following statement.

Proof of Theorem 4.3

Let u ∈ L2(0, T ;V) ∩ L∞(0, T ;H), θ ∈ L2(0, T ; Θ) ∩ L∞(0, T ;L2), Φ ∈ L∞(0, T ; Υ) denote
the weak limits given by Lemma 4.19. The corresponding sequences do exist and the required
stability properties hold due to Lemma 4.10, 4.15 and 4.16. Then, (u, θ,Φ) is a solution of
Problem 4.1 by means of Lemma 4.26 and 4.27. In order to show the stated weak differentiability,
define

hu : [0, T ] → V∗

t 7→ −av(u(t), ·)− cv(u(t),u(t), ·) + F(θ(t) + θb,Φ(t) + Φb) + fv(t)

hθ : [0, T ] → Θ∗

t 7→ −aτ (θ(t) + θb, ·)− cτ (u(t), θ(t) + θb, ·) + fτ (t).

According to Lemma 4.5, hu ∈ L1(0, T ;V∗) and hθ ∈ L1(0, T ; Θ∗). Since (u, θ,Φ) solves Problem
4.1, there holds for all (v, τ) ∈ V ×Θ and ψ ∈ D(0, T )

∫ T

0
−〈u(t),v〉V∗ψ′(t) dt =

∫ T

0
〈hu(t),v〉V∗ψ(t) dt

∫ T

0
−〈θ(t), τ〉Θ∗ψ′(t) dt =

∫ T

0
〈hθ(t), τ〉Θ∗ψ(t) dt.

(4.26)

Using the reflexivity of V and Θ, Theorem A.96, (4.26) is equivalent to

∫ T

0
−〈v∗∗,u(t)〉V∗∗ψ′(t) dt =

∫ T

0
〈v∗∗, hu(t)〉V∗∗ψ(t) dt

∫ T

0
−〈τ∗∗, θ(t)〉Θ∗∗ψ′(t) dt =

∫ T

0
〈τ∗∗, hθ(t)〉Θ∗∗ψ(t) dt

(4.27)

for all v∗∗ ∈ V∗∗, τ∗∗ ∈ Θ∗∗ and ψ ∈ D(0, T ). Thus, by Theorem A.67, u′ = hu and θ′ = hθ.
Moreover, u and θ are a.e. equal to a continuous function from [0, T ] to V∗ and Θ∗, respectively.

Finally, the norm bounds for {(uN ,wN , θN , ηN ,ΦN )}N given by Corollary 4.17, the weak
convergence of these sequences towards (u,u′, θ, θ′,Φ) stated by Lemma 4.19, together with
Lemma A.34 and A.60 on the norm of weak limits yields the stated norm estimates.

4.4. Modeling of DEP Force

As in the stationary case, the formulation of the DEP force has to be given in such a way,
that the requirements of the existence Theorem 4.3 are met. In Definition 3.23, we already
introduced certain formulations for F that are based on linearization around a base potential
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and showed that these forces, Fs,0, Fa,0, Fa,1, satisfy the crucial Assumption 3.12 for showing
well-posedness of the stationary TEHD Boussinesq equations. In this section, we show that
Fs,0, Fa,0, Fa,1, satisfy the additional Assumption 4.2 as well.

Lemma 4.28. (Properties of DEP Force Terms, Continued)
The DEP force terms Fs,0, Fa,0 and Fa,1 given by Definition 3.23, satisfy Assumption 4.2.

Proof. Due to Lemma 3.24 in only remains to show the additional requirement defined in As-
sumption 4.2. We only show the proof for Fa,1. The assertion for Fs,0, Fa,0 follows analogously.

To this end, let sequences (θn)n, (Φn)n and elements θ, Φ be given as stated in Assumption
4.2. Let v ∈ V(Ω) and ψ ∈ C∞([0, T ]) be arbitrary. For simplicity, we set all involved physical
constants to 1. Then,

∣∣∣∣
∫ T

0
〈Fa,1(θn(t),Φn(t)),v〉U∗ψ(t) dt−

∫ T

0
〈Fa,1(θ(t),Φ(t)),v〉U∗ψ(t) dt

∣∣∣∣

≤
∣∣∣∣
∫ T

0

(
(∇2Φ0∇(Φn(t)− Φ(t))θ(t)),v

)
ψ(t) dt

∣∣∣∣+
∫ T

0

∣∣((∇2Φ0∇Φn(t)(θn(t)− θ(t)),v
)
ψ(t)

∣∣ dt

+

∫ T

0
|(g(θn(t)− θ(t)),v)ψ(t)| dt

=: I1 + I2 + I3.

Concerning I1, let

L : L2(0, T ;H1) → R

Φ 7→
∫ T

0

(
(∇2Φ0∇Φ(t)θ(t)),v

)
ψ(t) dt.

Since

|LΦ| ≤ ‖∇2Φ0‖0,6‖v‖0,6‖ψ‖∞;R‖θ‖2;L6‖Φ‖2;H1 ,

L ∈ L2(0, T ;H1)∗ and I1 → 0 by the assumption Φn ⇀ Φ in L2(0, T ;H1). Moreover, the second
term can be estimated from above via

I2 ≤ ‖∇2Φ0‖0,∞‖v‖0,∞‖ψ‖∞;R‖Φn‖2;H1‖θn − θ‖2;L2 .

Then, I2 → 0 by the boundedness of (Φn)n in L∞(0, T ;H1) and θn → θ in L2(0, T ;L2). Analo-
gously, I3 → 0.

We conclude this section on the instationary TEHD Boussinesq equations by reconsidering
the DEP formulation

Fr(θ,Φ) = −2αe(θ gE,r[Φ], ·)− αg(θ g, ·), r > 0, (4.28)

which is based on a regularized electric gravity gE,r[Φ] with regularization parameter r > 0, see
Definition 3.26. We now show that a similar procedure as presented in the end of Section 3.3 is
also possible in the instationary case, i.e. we prove existence of instationary solutions of Problem
4.1 with a weakened connection between electric gravity and potential.
First, we set F = Fr=k in the definition of the semi-discrete Problem 4.9, i.e. the regularization

parameter is set to the time step size k. Note that Fr satisfies the requirements of the existence
theorem in the stationary case with r-independent growth rates aF and bF according to Lemma
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3.27 for all r > 0. Thus, all existence, stability and convergence results on the semi-discrete
solutions (uN ,wN , θN , ηN ,ΦN ) derived in Section 4.2 and 4.3 remain valid: Lemma 4.10 to 4.25.
Therefore, one only has to investigate convergence of the term

∫ T

0
〈Fk(θN (t) + θb,ΦN (t) + Φb),v〉U∗ψ(t) dt (4.29)

for v ∈ V(Ω), ψ ∈ C∞([0, T ]) which replaces Assumption 4.2. As noted in Section 3.3, there
holds

‖gE, T
N
[ΦN (t) + Φb]‖0,3 ≤M (4.30)

withM being independent of k, N , t, due to the cut-off operator in the Definition of gE,r. Thus,

the sequence
(
gE, T

N
[ΦN +Φb]

)
N

is bounded in L2(0, T ;L3), which in turn is a reflexive Banach

space, Theorem A.55. Thus, there is g̃E ∈ L2(0, T ;L3) and a (not relabeled) subsequence such
that

gE, T
N
[ΦN +Φb]⇀ g̃E in L2(0, T ;L3). (4.31)

for this subsequence, one obtains
∣∣∣∣
∫ T

0
〈θN (t)gE, T

N
[ΦN (t) + Φb],v〉U∗ψ(t)−

∫ T

0
〈θ(t)g̃E(t),v〉U∗ψ(t) dt

∣∣∣∣

≤
∣∣∣∣
∫ T

0
〈θ(t)(g̃E(t)− gE, T

N
[ΦN (t) + Φb]),v〉U∗ψ(t) dt

∣∣∣∣

+

∣∣∣∣
∫ T

0
〈(θN (t)− θ(t))gE, T

N
[ΦN (t) + Φb]),v〉U∗ψ(t) dt

∣∣∣∣

≤
∣∣∣∣
∫ T

0
〈θ(t)(g̃E(t)− gE, T

N
[ΦN (t) + Φb]),v〉U∗ψ(t) dt

∣∣∣∣
+ ‖θN − θ‖2;L2‖gE, T

N
[ΦN +Φb])‖2;L3‖v‖0,6‖ψ‖∞;R

=: AN . (4.32)

Here, limN→∞AN = 0, due to (4.31) (first term) and (4.30) and Lemma 4.20 (second term).
Proceeding with Lemma 4.26, 4.27 and the proof of Theorem 4.3, the following result is obtained.

Theorem 4.29. (Existence of Solutions with Weak Approximation of Electric Gravity)
Let the requirements of Theorem 4.3 and Lemma 3.27 hold. Then, there is g̃E ∈ L2(0, T ;L3)
and (u, θ,Φ) with regularity given by Problem 4.1 and Theorem 4.3 such that heat equation
(4.5), Gauss’ law (4.6) and the following momentum equation (4.33) are satisfied for all v ∈ V,
ψ ∈ C∞([0, T ]) with ψ(T ) = 0:

∫ T

0
−(u(t),v)ψ′(t) + {av(u(t),v) + cv(u(t),u(t),v)}ψ(t) dt

−
∫ T

0
{((θ(t) + θb)(2αeg̃E(t) + αgg,v) + 〈fv(t),v〉U∗}ψ(t) dt = (u0,v)ψ(0). (4.33)

The connection between electric gravity g̃E and electric potential Φ is given in the sense that
there is a sequence ( T

Nn
,ΦNn)n ⊂ (0,∞)× L2(0, T ; Υ) with

T

Nn
→ 0

ΦNn +Φb ⇀ Φ+ Φb in L
2(0, T ;H1) (4.34)

gE, T
Nn

[ΦNn +Φb]⇀ g̃E in L2(0, T ;L3),
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with approximate electric gravity gE,k[·] given by Definition 3.26.

Similar to the stationary case, the system described by Theorem 4.29 can be considered as a
weaker form of the TEHD Boussinesq equation (2.28) with alternative DEP formulation

fa = −θ(2αegE [Φ + Φb] + αgg), (4.35)

see (2.26). Here, the strong connection between electric gravity and potential,

gE [Φ + Φb] = ∇2(Φ + Φb)∇(Φ + Φb), (4.36)

is replaced by the weaker condition (4.34).
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5. Numerical Approximation

In this section, the discretization of the stationary and instationary TEHD Boussinesq equa-
tions, system (3.1) and (4.1), is addressed. The spatial discretization is based on the conforming
Finite Element Method (FEM), whereas a variant of the Backward Differentiation Formula
(BDF) is used for temporal approximation. We derive a priori error estimates in both cases.
The result in the stationary case can be seen as direct generalization of the procedure presented
in [46] for the incompresible Navier-Stokes equations and in [11] for the standard Boussinesq
problem. The underlying approach is similar to the proof of uniqueness, Theorem 3.21. Thus,
the corresponding result only holds under a suitable smallness condition posed on the problem
data. The proposed error estimation for the instationary case is inspired by [75] where a full
discretization of the instationary Boussinesq problem with temperature dependent viscosity is
analyzed. This work is extended to take into account the DEP force and Gauss’ law and to allow
more general time stepping schemes.
The outline of this section is as follows. First, some required tools for spatial and temporal dis-

cretization are introduced. Afterward, the stationary and instationary problem are investigated
separately in Section 5.1 and 5.2. Finally, the modeling of the DEP force has to be addressed
again to cover additional aspects that come with the topic of discretization in the instationary
case. This is done in Section 5.3.
For the remainder of this section, c denotes a generic constant that only depends on Ω,

differentiability and integrability orders via embedding constants, but not on problem-dependent
parameters such as ν or κ and discretization parameters such as time step size k and mesh width
h. Moreover, the notation a <∼ b means that a ≤ Cb for some constant C that does not depend
on h and k. As in the previous sections, the Assumptions 3.1 and 3.2 for domain, boundary
conditions and the involved physical parameters should hold.
We start with setting up the basic tools that are needed to define the finite element discretiza-

tion. In order to avoid technical difficulties in dealing with curved boundaries, the conditions on
Ω become slightly more restrictive compared to the previous sections. Moreover, it is assumed
that all cells in the mesh can be obtained by affine transformations of a single reference cell.

Assumption 5.1. (Discretized Domain)
Assume that Ω is a bounded, polyhedral domain with Lipschitz continuous boundary. For some
h0 ∈ (0, 1) let a regular family of triangulations {Th}h∈(0,h0] of Ω be given according to Definition
A.118. The following conditions should hold for all h ∈ (0, h0]:

(i) If d = 2, then Th either consists of triangles or quadrilaterals only.

(ii) If d = 3, then Th either consists of tetrahedrons or hexahedrons only.

(iii) There exists a compact set K ⊂ Rd with non-empty interior and piecewise smooth boundary
such that for all T ∈ Th there is an affine map FT (x) = ATx+ bT with nonsingular matrix
AT ∈ Rd×d such that FT (T ) = K.

(iv) ΓD =
⋃
f∈Eh,D f , where Eh,D denotes the set of all facets f , that have a non-empty inter-

section with ΓD.

In the following, the spatial discretization parameter h, also called mesh width, denotes the
maximal cell diameter relative to the diameter of the entire domain,

h := max
T∈Th

diam(T )

diam(Ω)
. (5.1)
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The subsequent definition relates the used finite element spaces for velocity, pressure, tempera-
ture and potential to some general finite element spaces. This is done to take care of additional
restrictions, such as Dirichlet boundary conditions and zero average pressure. Afterward, As-
sumption 5.3 states sufficient conditions to ensure H1-conformity, inf-sup stability, approxima-
tion properties and inverse estimates of the resulting finite element spaces.

Definition 5.2. (Discrete Ansatz Spaces)
Let Ω and a corresponding family of triangulations {Th}h satisfy Assumption 5.1. LetWh, Nh, Yh
denote associated finite element spaces according to Definition A.120. The velocity ansatz space

is defined by Uh :=
(
Wh ∩H1

0 (Ω)
)d
, the pressure space by Mh := Nh ∩ L2

0(Ω), the temperature
and potential space by Θh = Υh := Xh with Xh := Yh ∩H1

D(Ω).

Assumption 5.3. (Finite Element Spaces)
Let Wh, Nh and Yh of Definition 5.2 satisfy for all h ∈ (0, h0]:

(i) Wh ⊂ H1(Ω), Mh ⊂ L2(Ω) and Yh ⊂ H1(Ω).

(ii) There is β > 0 such that

inf
qh∈Mh

sup
vh∈Uh

1

‖vh‖1,2‖qh‖

∫

Ω
qh(∇ · vh) dx ≥ β.

(iii) There are m ∈ N and operators ΠUh
∈ L

(
H2(Ω),W d

h

)
∩ L

(
H2(Ω) ∩H1

0(Ω),Uh

)
, ΠMh

∈
L
(
L2(Ω),Mh

)
such that for all integers 1 ≤ s ≤ m,

‖u−ΠUh
u‖ + h‖u−ΠUh

u‖1,2 ≤ chs+1‖u‖s+1,2 for all u ∈ Hs+1(Ω),

‖p−ΠMh
p‖ ≤ chs‖p‖s,2 for all p ∈ Hs(Ω).

(iv) There is n ∈ N and an operator ΠXh
∈ L(H2(Ω) ∩ H1

D(Ω), Xh) such that for all integers
1 ≤ s ≤ n

‖θ −ΠXh
θ‖ + h‖θ −ΠXh

θ‖1,2 ≤ chs+1‖θ‖s+1,2 for all θ ∈ Hs+1(Ω) ∩H1
D(Ω).

Moreover, the following stability estimate holds

‖ΠXh
θ‖2,2 ≤ c‖θ‖2,2 for all θ ∈ H2(Ω) ∩H1

D(Ω).

(v) For all s, t ∈ {0, 1} with 0 ≤ t ≤ s ≤ 1 and q, r ∈ [1,∞] with 1 ≤ r ≤ q ≤ ∞ there holds

‖uh‖s,q ≤ ch
t−s+d

(

1
q
− 1

r

)

‖uh‖t,r for all uh ∈ Uh,

‖θh‖s,q ≤ ch
t−s+d

(

1
q
− 1

r

)

‖θh‖t,r for all θh ∈ Xh.

Assumption 5.3 (i) is used to obtain a conforming spatial discretization, i.e. Uh ⊂ U, Mh ⊂M ,
Θh ⊂ Θ and Υh ⊂ Υ. Condition (ii) assures that the discrete velocity-pressure pair is stable,
i.e. the discretized equations for the incompressible flow part are solvable. Condition (iii) and
(iv) state the existence of operators, that allow to approximate the exact solution by an element
of the discrete ansatz space with an error that converges towards zero, as the mesh parameter h
converges to zero. Typically, these operators are projection or interpolation operators. They are
used to bound the error of the discrete solution in terms of h. The inverse estimate (v) allows to
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bound the norm of a finite element function by another, weaker norm in terms of differentiability
and integrability. This goes to the expense of negative powers of h and is used to derive bounds
on the pressure error.
One example of a combination of finite element spaces that satisfies Assumption 5.3 is based

on the well-known Taylor-Hood element, see e.g. [32], for velocity and pressure.

Lemma 5.4. (Taylor-Hood Element)
Let Assumption 5.1 hold and define

Wh := {u ∈ C(Ω): u|T ◦ F−1
T ∈ I2 ∀T ∈ Th}

Nh := {p ∈ C(Ω): p|T ◦ F−1
T ∈ I1 ∀T ∈ Th}

Yh := {θ ∈ C(Ω): θ|T ◦ F−1
T ∈ I2 ∀T ∈ Th},

with Ii = Pi, if T consists of triangles or tetrahedrons and Ii = Qi if T consists of quadrilaterals
or hexahedrons. Then, Assumption 5.3 is satisfied for m = 2 and n = 2.

For the definition of Pi and Qi, i ∈ {1, 2} see Definition A.113.

Proof. The underlying Finite Element (K,P,N ) of the spaces Wh, Nh, Yh is the well-known
Lagrange element which satisfies Assumption A.123 for (k, l) = (3, 0), (k, l) = (2, 0) and (k, l) =
(3, 0), respectively. Let ΠXh

be given by the global interpolant Ih as in Definition A.122 w.r.t.
Yh. Using Assumption 5.1 (iv), Theorem A.124 and Corollary A.125 with (k, l, p) = (3, 0, 2),
ΠXh

is a bounded linear operator and satisfies condition (iv) for n = 2. By using the analog

interpolation operators for (Wh)
d and Nh, condition (iii) holds for m = 2.

Condition (v) follows by Theorem A.126. Finally, Wh, Yh ⊂ H1(Ω) due to their piecewise
smoothness and global continuity of its member functions. Condition (ii) follows from Theorem
A.127.

When deriving a priori error estimates of finite element discretizations, convergence rates w.r.t.
the mesh width h are typically obtained by projecting the unknown, exact solution onto the
underlying finite element space. Whereas Assumption 5.3 (iii) and (iv) already provide projec-
tion operators ΠUh

, ΠMh
and ΠXh

, it is beneficial to use a projection operator for velocity and
pressure, that is tailored to the underlying equation. Such an operator is given by the Stokes
Projection, see e.g. [30].

Definition 5.5. (Stokes Projection)
For (u, p) ∈ U×M with ∇ · u = 0 let (wh, rh) ∈ Uh ×Mh denote the unique solution of

av(wh,vh)− b(vh, rh) = av(u,vh)− b(vh, p) for all vh ∈ Uh

b(wh, qh) = 0 for all qh ∈Mh.

The Stokes Projection is defined as

ΠS : U×M → Uh ×Mh, (u, p) 7→ (wh, rh).

The main advantage of ΠS compared to ΠUh
is given by the fact, that the projected velocity

wh is discretely divergence free and no additional consistency terms will occur, when replacing
av(u,vh) − b(vh, p) by av(wh,vh) − b(vh, rh) for deriving the error equation in the subsequent
convergence proofs. The following lemmas provide additional properties of the Stokes projection,
such as its approximation properties w.r.t. H1- and L2-norm and stability.
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Lemma 5.6. (Properties of Stokes Projection, Lemma 4.42 and 4.43 in [41])
Let Assumption 5.3 (i) and (ii) hold. Then, ΠS is well-defined, linear and there holds for
(wh, rh) = ΠS(u, p)

‖∇(u−wh)‖ ≤ c

((
1 + β−1

)
inf

vh∈Uh

‖∇(u− vh)‖ + ν−1 inf
qh∈Mh

‖p− qh‖
)

‖p− rh‖ ≤ cβ−1

(
ν
(
1 + β−1

)
inf

vh∈Uh

‖∇(u− vh)‖ + inf
qh∈Mh

‖p− qh‖
)

‖∇wh‖ ≤ ‖∇u‖ + ν−1‖p‖.

Moreover, if (u, p) ∈
(
Hl+1(Ω) ∩U

)
×
(
H l(Ω) ∩ L2

0(Ω)
)
for some 1 ≤ l ≤ m, then

‖u−wh‖1,2 ≤ CSh
l

(
‖u‖l+1,2 +

1

ν
‖p‖l,2

)

‖p− rh‖ ≤ CSh
l (ν‖u‖l+1,2 + ‖p‖l,2) ,

for some constant CS that is independent of (u, p) and h.

If Ω possesses some additional regularity, then L2-error estimates of order hl+1 can be derived
for the Stokes projection, see the following Definition 5.7 and Lemma 5.8.

Definition 5.7. (Regular Stokes Problem, Definition II.1.1 in [32])
The Stokes problem is called regular, if the mapping

(u, p) 7→ −ν∆u+∇p

is an isomorphism from
(
H2(Ω) ∩V

)
×
(
H1(Ω) ∩ L2

0(Ω)
)
onto L2(Ω).

Lemma 5.8. (L2-Error of Stokes Projection, Theorem II.1.9 in [32])
Let Assumption 5.3 and the requirements of Lemma 5.6 hold and assume that the Stokes problem
is regular. If (u, p) ∈

(
Hl+1(Ω) ∩U

)
×
(
H l(Ω) ∩ L2

0(Ω)
)
for some 1 ≤ l ≤ m, then (wh, rh) =

ΠS(u, p) satisfies

‖u−wh‖ ≤ CL2hl+1 (‖u‖l+1,2 + ‖p‖l,2) .

Remark 5.9. According to Theorem I.5.4 in [32], the Stokes problem is regular if Γ ∈ C2.
According to Remark I.5.6, the Stokes problem is regular if d = 2 and Ω is a convex polygon.

The final point in this series of preparation is concerned with the trilinear forms cv and cτ . In
previous stability results, e.g. Lemma 3.13, we made use of the identities cv(u,w,w) = 0 and
cτ (u, θ, θ) = 0 if ∇ · u = 0 holds. In general, these identities do not hold for discrete velocities
uh ∈ Uh, since the condition (∇ · uh, qh) = 0 for all qh ∈ Mh does not imply ∇ · uh = 0 a.e.,
unless ∇·Uh ⊂Mh. In order to cope with this issue, the convection terms cv and cτ are replaced
by the well-known skew symmetrized trilinear forms, see e.g. Remark 6.25 in [41],

c̃v(u,w,v) :=
1

2
(cv(u,w,v)− cv(u,v,w)) ,

c̃τ (u, θ, τ) :=
1

2
(cτ (u, θ, τ)− cτ (u, τ, θ)) ,

(5.2)
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for formulating the discretized problem. The skew symmetrized trilinear forms satisfy the fol-
lowing identities and estimates.

Lemma 5.10. (Properties of Skew-Symmetrized Trilinear Forms)
There holds for all u,w,v ∈ H1

0(Ω), θ, τ ∈ H1(Ω)

(i) c̃v(u,w,v) = −c̃v(u,v,w)

(ii) c̃τ (u, θ, τ) = −c̃τ (u, τ, θ)
(iii) |c̃v(u,w,v)| ≤ c‖∇u‖‖∇w‖‖∇v‖
(iv) |c̃v(u,w,v)| ≤ c‖∇u‖ 1

2 ‖u‖ 1
2 ‖∇v‖‖∇w‖

(v) |c̃τ (u, θ, τ)| ≤ c‖∇u‖‖θ‖1,2‖τ‖1,2
(vi) |c̃τ (u, θ, τ)| ≤ c‖∇u‖ 1

2 ‖u‖ 1
2 ‖θ‖1,2‖τ‖1,2

(vii) |c̃τ (u, θ, τ)| ≤ c‖∇u‖‖θ‖0,3‖τ‖1,2,
and, if ∇ · u = 0,

(viii) c̃v(u,w,v) = cv(u,w,v)

(ix) c̃τ (u, θ, τ) = cτ (u, θ, τ),

with c̃v, c̃τ defined by (5.2). Additionally, if w ∈ W1,3(Ω) ∩ L∞(Ω) and η ∈ W 1,3(Ω) ∩ L∞(Ω),
then

(x) |c̃v(u,w,v)| ≤ c‖u‖ (‖∇w‖0,3 + ‖w‖0,∞) ‖v‖1,2
(xi) |c̃τ (u, η, τ)| ≤ c‖u‖ (‖∇η‖0,3 + ‖η‖0,∞) ‖τ‖1,2.

Proof. The assertions follow by Hölder’s inequality, the interpolation estimate (Theorem A.93),
the Sobolev embeddings (Theorem A.92), integration by parts,

c̃τ (u, θ, τ) =
1

2

(∫

Ω
(u · ∇θ) τ dx−

∫

Ω
(u · ∇τ) θ dx

)

=
1

2

(
−
∫

Ω
(∇ · u)θ τ dx− 2

∫

Ω
(u · ∇τ)θ dx

)

and the analog identity w.r.t. c̃v.

5.1. Stationary Problem

In this section, a priori error estimates are derived for a conforming finite element discretization
of the stationary TEHD Boussinesq equations. As in Section 3, the stationary system can also
be considered as time-discrete version of the instationary equations. This continuous system in
mixed form is given by Problem 5.11.

Problem 5.11. (Continuous Stationary Problem in Mixed Form)
Let (θb,Φb) ∈ W 1,2(Ω) × W 1,3(Ω) denote boundary liftings and F : H1(Ω) × H1(Ω) → U∗,
fv ∈ U∗, fτ ∈ Θ∗, fβ ∈ Υ∗ be given source terms. Let either ū, ũ ∈ U, θ̄ ∈ Θ, Φ̄ ∈ Υ denote
fixed functions or the unknown variables u, θ, Φ. Find (u, p, θ,Φ) ∈ U×M ×Θ×Υ such that
for all (v, q, τ, β) ∈ U×M ×Θ×Υ:

δ (u,v) + av(u,v) + cv(ū,u,v)− b(v, p) = 〈F(θ + θb, Φ̄ + Φb) + fv,v〉U∗

b(u, q) = 0

δ (θ + θb, τ) + aτ (θ + θb, τ) + cτ (ũ, θ + θb, τ) = 〈fτ , τ〉Θ∗

aβ(θ̄ + θb,Φ+ Φb, β) = 〈fβ , β〉Υ∗ .
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Compared to the previously stated stationary system, Problem 3.18, the boundary lifting Φb is
supposed to be an element of W 1,3 instead of H1 in order to derive a specific estimate from the
bilinear form aβ in the proof of Lemma 5.14.

Discrete Problem

The corresponding discrete system is obtained by replacing the continuous functions spaces by
their finite dimensional counterparts as given by Definition 5.2. Moreover, the trilinear forms
cv, cτ are replaced by the skew-symmetrized versions c̃v, c̃τ defined by (5.2).

Problem 5.12. (Discrete Stationary TEHD Equations)
In the setting of Problem 5.11, let either ūh, ũh ∈ U, θ̄h ∈ Θ, Φ̄h ∈ Υ denote fixed vector fields
or the unknown variables uh, θh, Φh. Find (uh, ph, θh,Φh) ∈ Uh ×Mh ×Θh ×Υh such that for
all (vh, qh, τh, βh) ∈ Uh ×Mh ×Θh ×Υh:

δ (uh,vh) + av(uh,vh) + c̃v(ūh,uh,vh)− b(ph,vh) = 〈F (θh + θb, Φ̄h +Φb) + fv,vh〉U∗

b(qh,uh) = 0

δ (θh + θb, τh) + aτ (θh + θb, τh) + c̃τ (ũh, θh + θb, τh) = 〈fτ , τh〉Θ∗

aβ(θ̄h + θb,Φh +Φb, βh) = 〈fβ , βh〉Υ∗ .

If ūh, ũh, θ̄h, Φ̄h are fixed, suppose that they are uniformly bounded w.r.t. h, i.e. ‖∇ūh‖, ‖∇ũh‖ ≤
Gu, ‖∇θ̄h‖ ≤ Gθ, ‖∇Φ̄h‖ ≤ GΦ for all h ∈ (0, h0]

Before turning towards the error analysis, existence and stability of solutions of the discrete sys-
tem are shown in the following Lemma 5.13. Due to the conformity of the involved finite element
spaces and the skew-symmetrized trilinear forms, the corresponding proof works analogously as
in the continuous setting.

Lemma 5.13. (Existence and Stability of Discrete Stationary TEHD Solutions)
Let the assumptions of Problem 5.12 and Assumption 3.12 and 5.3 hold. Assume that θb satisfies
‖θb‖0,3 < d(aF(G̃Φ,Φb

)) with

G̃Φ,Φb
:=
√
1 + c2DG̃Φ + ‖Φb‖1,2

G̃Φ :=
ǫ+
ǫ−

‖Φb‖1,2 +
1

ǫ−
‖fβ‖Υ∗

and d be given by Lemma 3.13. Then, there exists a solution (uh, ph, θh,Φh) of Problem 5.12.
Further, there exist constants G̃u, G̃θ, independent of h, such that all discrete solutions satisfy

‖∇uh‖ ≤ G̃u, ‖∇θh‖ ≤ G̃θ, ‖∇Φh‖ ≤ G̃Φ.

Proof. Since Uh, Mh, Θh and Υh are closed subspaces of their infinite dimensional counterparts
U, M, Θ and Υ, respectively and the discrete inf-sup condition holds according to Assumption
5.3, existence and norm estimates of solutions follow analogously to the proof of Theorem 3.19 and
Corollary 3.20 with minor modifications: the skew-symmetrized trilinear forms ensure existence
and norm estimates of solutions of the Boussinesq equations for fixed potential. For proving
stability, one needs to take into account that ∇ · uh 6= 0 when estimating the term c̃τ (uh, θb, θh)
in the proof of Lemma 3.13. This can be done by using |c̃τ (uh, θb, θh)| ≤ c‖∇uh‖‖∇θh‖‖θb‖0,3
according to Lemma 5.10.
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Error Estimate

The main result of this section is given by Theorem 5.15 which states that the discrete solution
obtained by the standard Galerkin procedure satisfies a best-approximation property w.r.t. the
chosen ansatz space. The approach for proving this result is similar to the standard Boussinesq
case, e.g. in [11]: By using conformity, the error equation is obtained by subtracting the discrete
equations from the continuous one with test functions chosen as (v, q, τ, β) = (vh, qh, τh, βh).
Afterward, the individual error terms e·,h can be split into discretization error d·,h ∈ Xh and
approximation error z·,h ∈ X. Then, the claimed result is obtained by bounding d·,h in terms of
z·,h.
As this procedure requires a case-by-case analysis similar to the uniqueness Theorem 3.21, a

major of the calculation is put into a preliminary estimation given by Lemma 5.14.

Lemma 5.14. (Preliminary Error Estimation)
Let the assumptions stated in Problem 5.11 and 5.12 and in Lemma 5.13 hold. Assume that a
solution (u, p, θ,Φ) of Problem 5.11 is given with Φ ∈ W 1,3(Ω) and let (uh, ph, θh,Φh) denote a
solution of Problem 5.12. For arbitrary (wh, rh, ηh,Ψh) ∈ Vh ×Mh ×Θh ×Υh define the errors

eu,h := u− uh = (u−wh) + (wh − uh) =: zu,h + du,h

ep,h := p− ph = (p− rh) + (rh − ph) =: zp,h + dp,h

eθ,h := θ − θh = (θ − ηh) + (ηh − θh) =: zθ,h + dθ,h

eΦ,h := Φ− Φh = (Φ−Ψh) + (Ψh − Φh) =: zΦ,h + dΦ,h

eū,h := ū− ūh

eũ,h := ũ− ũh

eθ̄,h := θ̄ − θ̄h

eΦ̄,h := Φ̄− Φ̄h.

Then, there exist nonnegative constants ǫ∗· and C·, independent of h, such that the discretization
errors d·,h satisfy

‖∇du,h‖2 ≤
(
ǫ∗1 + ǫ∗4,2‖∇ūh‖2

)
‖∇zu,h‖2 + ǫ∗4,1‖∇u‖2‖∇eū,h‖2 + ǫ∗2‖zp,h‖2 (5.3)

+ ǫ∗5,1ǫ
∗
7,1‖θ + θb‖21,2‖∇eũ,h‖2 + ǫ∗5,1

(
1 + ǫ∗6 + ǫ∗7,2‖∇ũh‖2

)
‖∇zθ,h‖2

+ ǫ∗5,2‖∇eΦ̄,h‖2

‖∇dθ,h‖2 ≤
(
ǫ∗6 + ǫ∗7,2‖∇ũh‖2

)
‖∇zθ,h‖2 + ǫ∗7,1‖θ + θb‖21,2‖∇eũ,h‖2 (5.4)

‖∇dΦ,h‖2 ≤ C2
0,1‖∇zΦ,h‖2 + C2

0,2‖∇(Φ + Φb)‖20,3‖∇eθ̄,h‖2. (5.5)

Proof. Using the fact ∇ · u = 0 with Lemma 5.10 and Assumption 5.3 (i), the following error
equations hold for all (vh, qh, τh, βh) ∈ Uh ×Mh ×Θh ×Υh,

δ
(
du,h,vh

)
+ av(du,h,vh) = −〈R1 +R2 +R3 +R4 −R5,vh〉 (5.6)

δ
(
dθ,h, τh

)
+ aτ (dθ,h, τh) = −〈R6 +R7,vh〉 (5.7)

aβ(θ̄ + θb,Φ+ Φb, βh) = aβ(θ̄h + θb,Φh +Φb, βh), (5.8)
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with residuals

〈R1,vh〉 = δ
(
zu,h,vh

)
+ av(zu,h,vh)

〈R2,vh〉 = b(vh, zp,h)

〈R3,vh〉 = b(vh, dp,h)

〈R4,vh〉 = c̃v(ū,u,vh)− c̃v(ūh,uh,vh)

〈R5,vh〉 = 〈F (θ + θb, Φ̄ + Φb)− F (θh + θb, Φ̄h +Φb),vh〉U∗

〈R6, τh〉 = δ
(
zθ,h, τh

)
+ aτ (zθ,h, τh)

〈R7, τh〉 = c̃τ (ũ, θ + θb, τh)− c̃τ (ũh, θh + θb, τh).

Now, all individual terms are estimated in order to bound ‖∇d·,h‖ in terms of ‖∇z·,h‖.

Estimation of Potential Error

Setting βh = dΦ,h in Gauss’s law, one obtains

0 = aβ(θ̄ + θb,Φ+ Φb, dΦ,h)− aβ(θ̄h + θb,Φh +Φb, dΦ,h)

= aβ(θ̄ + θb,Φ+ Φb, dΦ,h)− aβ(θ̄h + θb,Φ+ Φb, dΦ,h)

+ aβ(θ̄h + θb,Φ+ Φb, dΦ,h)− aβ(θ̄h + θb,Ψh +Φb, dΦ,h)

+ aβ(θ̄h + θb,Ψh +Φb, dΦ,h)− aβ(θ̄h + θb,Φh +Φb, dΦ,h)

=: L1 + L2 + L3.

The terms Li can be estimated via

|L1| = |(
(
ǫ(θ̄ + θb)− ǫ(θ̄h + θb)

)
∇(Φ + Φb),∇dΦ,h)|

≤ LǫK6‖∇eθ̄,h‖‖∇(Φ + Φb)‖0,3‖∇dΦ,h‖

|L2| = |(ǫ(θ̄h + θb)∇(Φ−Ψh),∇dΦ,h)|
≤ ǫ+‖∇zΦ,h‖‖∇dΦ,h‖

L3 = (ǫ(θ̄h + θb)∇(Ψh − Φh),∇dΦ,h)
≥ ǫ−‖∇dΦ,h‖2.

Thus,

‖∇dΦ,h‖ ≤ ǫ+
ǫ−

‖∇zΦ,h‖+
LǫK6

ǫ−
‖∇(Φ + Φb)‖0,3‖∇eθ̄‖

=:
1

2
C0,1‖∇zΦ,h‖+

1

2
C0,2‖∇(Φ + Φb)‖0,3‖∇eθ̄‖. (5.9)

Diffusive and Pressure Residual

Setting vh = du,h ∈ Vh and using dp,h ∈Mh, there holds

|〈R2,du,h〉| ≤ c‖∇du,h‖‖zp,h‖ =: C2‖∇du,h‖‖zp,h‖ (5.10)

〈R3,du,h〉 = 0. (5.11)
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Moreover, with τh = dθ,h,

|〈R1,du,h〉| ≤
(
δc20 + ν

)
‖∇zu,h‖‖∇du,h‖ =: C1‖∇zu,h‖‖∇du,h‖ (5.12)

|〈R6, dθ,h〉| ≤
(
δc2D + κ

)
‖∇zθ,h‖‖∇dθ,h‖ =: C6‖∇zθ,h‖‖∇dθ,h‖. (5.13)

Convection Residual

Using Lemma 5.10 (i), (ii), (iii), (v), H1(Ω) →֒ L6(Ω) and Friedrich’s inequality,

|〈R4,du,h〉| = |c̃v(eū,h,u,du,h) + c̃v(ūh, eu,h,du,h)|
≤ C4

(
‖∇eū,h‖‖∇u‖‖∇du,h‖+ ‖∇ūh‖‖∇zu,h‖‖∇du,h‖

)
(5.14)

and

|〈R7,du,h〉| = |c̃τ (eũ,h, θ + θb, dθ,h) + c̃τ (ũh, eθ,h, dθ,h)|
≤ C7

(
‖∇eũ,h‖‖θ + θb‖1,2‖∇dθ,h‖+ ‖∇ũh‖‖∇zθ,h‖‖∇dθ,h‖

)
. (5.15)

Force Residual

Continuing with the force term, we have

|〈R5,du,h〉| ≤ |〈F (θ + θb, Φ̄ + Φb)− F (θh + θb, Φ̄ + Φb),du,h〉U∗ |
+ |〈F (θh + θb, Φ̄ + Φb)− F (θh + θb, Φ̄h +Φb),du,h〉U∗ |

=: L4 + L5.

Using the local Lipschitz continuity of F , Assumption 3.12 (i), and the fact that ‖θ + θb‖1,2,
‖θh + θb‖1,2 and ‖Φh + Φb‖1,2 are uniformly bounded w.r.t. h, according to Theorem 3.19 and

Lemma 5.13, one can state the existence of L
(θ)
F = L

(θ)
F (‖Φ̄ + Φb‖1,2) > 0, L

(Φ)
F > 0 such that

L4 ≤ L
(θ)
F ‖eθ,h‖1,2‖∇du,h‖

≤ L
(θ)
F

√
1 + c2D

(
‖∇zθ,h‖+ ‖∇dθ,h‖

)
‖∇du,h‖

L5 ≤ L
(Φ)
F ‖θh + θb‖1,2‖Φ̄− Φ̄h‖1,2‖∇du,h‖

≤ L
(Φ)
F

(
G̃θ + ‖θb‖1,2

)√
1 + c2D‖∇eΦ̄,h‖‖∇du,h‖.

Thus,
|〈R5,du,h〉| ≤ C5,1

(
‖∇zθ,h‖+ ‖∇dθ,h‖

)
‖∇du,h‖+ C5,2‖∇eΦ̄,h‖‖∇du,h‖. (5.16)

Left-Hand Sides

The respective left-hand sides in (5.6)-(5.8) can be estimated from below as

δ
(
du,h,du,h

)
+ av(du,h,du,h) ≥ ν‖∇du,h‖2 (5.17)

δ
(
dθ,h, dθ,h

)
+ aτ (dθ,h, dθ,h) ≥ κ‖∇dθ,h‖2. (5.18)

Combined Estimation

Combining the previous estimates (5.10) - (5.18), using Young’s inequality, ab ≤ ǫ
2a

2 + 1
2ǫb

2,
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with parameters ǫ· > 0 and stability bounds Gu, Gθ, GΦ derived for the exact solution according
to Theorem 3.17, gives

(
ν − ǫ1

2
− ǫ2

2
− ǫ4,1

2
− ǫ4,2

2
− ǫ5,1 −

ǫ5,2
2

)
‖∇du,h‖2

≤ 1

2ǫ1
C2
1‖∇zu,h‖2 +

1

2ǫ2
C2
2‖zp,h‖2

+
1

2ǫ4,1
C2
4‖∇u‖2‖∇eū,h‖2 +

1

2ǫ4,2
C2
4‖∇ūh‖2‖∇zu,h‖2

+
1

2ǫ5,1
C2
5,1

(
‖∇zθ,h‖2 + ‖∇dθ,h‖2

)
+

1

2ǫ5,2
C2
5,2‖∇eΦ̄,h‖2.

An appropriate choice of {ǫi} such that the factor on the left-hand side is positive, i.e. ǫi ∝ ν,
yields

‖∇du,h‖2 ≤ ǫ∗1‖∇zu,h‖2 + ǫ∗2‖zp,h‖2 + ǫ∗4,1‖∇u‖2‖∇eū,h‖2 + ǫ∗4,2‖∇ūh‖2‖∇zu,h‖2 (5.19)

+ ǫ∗5,1
(
‖∇zθ,h‖2 + ‖∇dθ,h‖2

)
+ ǫ∗5,2‖∇eΦ̄,h‖2,

with positive constants {ǫ∗i }. Concerning the error equation for eθ, one obtains
(
κ− ǫ6

2
− ǫ7,1

2
− ǫ7,2

2

)
‖∇dθ,h‖2

≤ 1

2ǫ6
C2
6‖∇zθ,h‖2 +

1

2ǫ7,1
C2
7‖θ + θb‖21,2‖∇eũ,h‖2 +

1

2ǫ7,2
C2
7‖∇ũh‖2‖∇zθ,h‖2.

Again, choosing ǫi ∝ κ such that the factor on the left-hand side is positive yields

‖∇dθ,h‖2 ≤ ǫ∗6‖∇zθ,h‖2 + ǫ∗7,1‖θ + θb‖21,2‖∇eũ,h‖2 + ǫ∗7,2‖∇ũh‖2‖∇zθ,h‖2 (5.20)

for ǫ∗i > 0. Combining inequalities (5.19), (5.20) and (5.9) now yields the stated assertion.

By means of the inequalities (5.3)-(5.5) it is possible to bound the discretization error ‖∇du,h‖,
‖∇dθ,h‖, ‖∇dΦ,h‖ in terms of the approximation errors ‖∇zu,h‖, ‖zp,h‖, ‖∇zθ,h‖, ‖∇zΦ,h‖ and
the error terms ‖∇eū,h‖, ‖∇eũ,h‖, ‖∇eθ̄,h‖, ‖∇eΦ̄,h‖. Depending on the degree of implicitness of
Problem 5.12, each of the latter terms can be either fixed, or equal to the error in the solution,
e.g. eū,h = eu,h = zu,h + du,h. In case of ū, ũ and their respective discrete counterparts being
fixed, (5.3)-(5.5) directly leads to some type of best approximation result of the discrete solution,
up to the modeling errors ‖∇eū,h‖, ‖∇eũ,h‖, ‖∇eθ̄,h‖, ‖∇eΦ̄,h‖. However, if this is not the case,
one has to impose certain smallness conditions onto the data in order to obtain a comparable
result. The following theorem collects the different possibilities.

Theorem 5.15. (Best Approximation of Finite Element Discretization)
Let the assumptions of Lemma 5.14 hold. Assume that one of the following conditions hold:

(i) ‖∇u‖, ‖θ + θb‖1,2, ‖Φ+ Φb‖1,3 are sufficiently small.

(ii) ū, ũ and ūh, ũh are fixed.

(iii) ū, ũ, θ̄, Φ̄ and ūh, ũh, θ̄h, Φ̄h are fixed.

Then,

‖∇ (u− uh) ‖+ ‖∇ (θ − θh) ‖+ ‖∇ (Φ− Φh) ‖ <∼ inf
vh∈Uh

‖∇ (u− vh) ‖+ inf
qh∈Mh

‖p− qh‖

+ inf
τh∈Θh

‖∇ (θ − τh) ‖+ inf
βh∈Υh

‖∇ (Φ− βh) ‖

+ δū‖∇ (ū− ūh) ‖+ δũ‖∇ (ũ− ũh) ‖
+ δθ̄‖∇

(
θ̄ − θ̄h

)
‖+ δΦ̄‖∇

(
Φ̄− Φ̄h

)
‖,
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with δū = δũ = δθ̄ = δΦ̄ = 0 in case (i), δū = δũ = 1, δθ̄ = δΦ̄ = 0 in case (ii) and δū = δũ =
δθ̄ = δΦ̄ = 1 in case (iii).

Proof. Case (i):
Replace ‖∇eX,h‖2 by 2‖∇dY,h‖2 + 2‖∇zY,h‖2 for (X,Y ) ∈ {(ū,u), (ũ,u), (θ̄, θ), (Φ̄,Φ)} in the

set of inequalities (5.3)-(5.5), estimate ‖∇ūh‖ = ‖∇ũh‖ = ‖∇uh‖ ≤ G̃u and obtain for the
velocity discretization error,

Ξ1‖∇du,h‖2 ≤ 2ǫ∗5,2‖∇dΦ,h‖2 (5.21)

+
(
ǫ∗1 + ǫ∗4,2‖∇u‖2 + 2ǫ∗4,1‖∇u‖2 + 2ǫ∗5,1ǫ

∗
7,1‖θ + θb‖21,2

)
‖∇zu,h‖2

+ ǫ∗2‖zp,h‖2

+ ǫ∗5,1
(
1 + ǫ∗6 + ǫ∗7,2G̃

2
u

)
‖∇zθ,h‖2

+ 2ǫ∗5,2‖∇zΦ,h‖2,

with
Ξ1 := 1− 2ǫ∗4,1‖∇u‖2 − 2ǫ∗5,1ǫ

∗
7,1‖θ + θb‖21,2. (5.22)

If Ξ1 > 0, then (5.21) leads to

‖∇du,h‖2 ≤ α∗
1‖∇dΦ,h‖2 + α∗

2‖∇zu,h‖2 + α∗
3‖zp,h‖2 + α∗

4‖∇zθ,h‖2 + α∗
5‖∇zΦ,h‖2, (5.23)

with α∗
i ≥ 0. For the temperature and potential discretization error, (5.3)-(5.5) leads to

‖∇dθ,h‖2 ≤ 2ǫ∗7,1‖θ + θb‖21,2‖∇du,h‖2 (5.24)

+ 2ǫ∗7,1‖θ + θb‖21,2‖∇zu,h‖2

+
(
ǫ∗6 + ǫ∗7,2G̃

2
u

)
‖∇zθ,h‖2

and

‖∇dΦ,h‖2 ≤ 2C2
0,2‖∇(Φ + Φb)‖20,3‖∇dθ,h‖2 (5.25)

+ 2C2
0,2‖∇(Φ + Φb)‖20,3‖∇zθ,h‖2

+ C2
0,1‖∇zΦ,h‖2.

Inserting the upper bound for ‖∇dΦ,h‖2 (5.25) and then for ‖∇dθ,h‖2 (5.24) into (5.23), gives

Ξ2‖∇du,h‖2 ≤
(
α∗
2 + 4α∗

1ǫ
∗
7,1C

2
0,2‖∇(Φ + Φb)‖20,3‖θ + θb‖21,2

)
‖∇zu,h‖2 (5.26)

+ α∗
3‖zp,h‖2

+
(
α∗
4 + 2α∗

1C
2
0,2‖∇(Φ + Φb)‖20,3

+ 2α∗
1C

2
0,2‖∇(Φ + Φb)‖20,3

(
ǫ∗6 + ǫ∗7,2G

2
u

) )
‖∇zθ,h‖2

+
(
α∗
5 + α∗

1C
2
0,1

)
‖∇zΦ,h‖2.

with
Ξ2 := 1− 4α∗

1ǫ
∗
7,1C

2
0,2‖∇(Φ + Φb)‖20,3‖θ + θb‖21,2. (5.27)

Imposing additionally Ξ2 > 0, (5.26) can be written as

‖∇du,h‖2 ≤ β∗1‖∇zu,h‖2 + β∗2‖zp,h‖2 + β∗3‖∇zθ,h‖2 + β∗4‖∇zΦ,h‖2 (5.28)
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for constants β∗i > 0. Inserting this expression into (5.24) yields

‖∇dθ,h‖2 ≤ 2ǫ∗7,1‖θ + θb‖21,2 (1 + β∗1) ‖∇zu,h‖2 (5.29)

+
(
2β∗2ǫ

∗
7,1‖θ + θb‖21,2

)
‖∇zp,h‖2

+
(
ǫ∗6 + ǫ∗7,2G̃

2
u + 2β∗3ǫ

∗
7,1‖θ + θb‖21,2

)
‖∇zθ,h‖2

+
(
2β∗4ǫ

∗
7,1‖θ + θb‖21,2

)
‖∇zΦ,h‖2.

Finally, inserting (5.28) and (5.29) into (5.25) yields

‖∇du,h‖2 + ‖∇dθ,h‖2 + ‖∇dΦ,h‖2 <∼ ‖∇zu,h‖2 + ‖zp,h‖2 + ‖∇zθ,h‖2 + ‖∇zΦ,h‖2. (5.30)

Case (ii):
One can replace ‖∇eX,h‖2 by 2‖∇dY,h‖2+2‖∇zY,h‖2 for (X,Y ) ∈ {(θ̄, θ), (Φ̄,Φ)} in the set of

inequalities (5.3)-(5.5) and obtains

‖∇du,h‖2 ≤
(
ǫ∗1 + ǫ∗4,2‖∇ūh‖2

)
‖∇zu,h‖2 + ǫ∗4,1‖∇u‖2‖∇eū,h‖2 + ǫ∗2‖zp,h‖2 (5.31)

+ ǫ∗5,1ǫ
∗
7,1‖θ + θb‖21,2‖∇eũ,h‖2 + ǫ∗5,1

(
1 + ǫ∗6 + ǫ∗7,2‖∇ũh‖2

)
‖∇zθ,h‖2

+ 2ǫ∗5,2‖∇dΦ,h‖2 + 2ǫ∗5,2‖∇zΦ,h‖2

‖∇dθ,h‖2 ≤
(
ǫ∗6 + ǫ∗7,2‖∇ũh‖2

)
‖∇zθ,h‖2 + ǫ∗7,1‖θ + θb‖21,2‖∇eũ,h‖2 (5.32)

‖∇dΦ,h‖2 ≤ C2
0,1‖∇zΦ,h‖2 + 2C2

0,2‖∇(Φ + Φb)‖20,3
(
‖∇dθ,h‖2 + ‖∇zθ,h‖2

)
. (5.33)

Inserting the upper bound on ‖∇dθ,h‖2 into the upper bound on ‖∇dΦ,h‖2 and inserting this
new upper bound again into (5.31) finally yields

‖∇du‖2 + ‖∇dθ‖2 + ‖∇dΦ‖2

<∼ ‖∇zu‖2 + ‖zp‖2 + ‖∇zθ‖2 + ‖∇zΦ‖2 + δū‖∇eū‖2 + δũ‖∇eũ‖2. (5.34)

The analog result for case (iii), directly follows from (5.3)-(5.5).
By means of the triangle inequality ‖∇eX,h‖ ≤ ‖∇dX,h‖+ ‖∇zX,h‖, equivalence of l1- and l2-

norm and taking the infimum over all (vh, qh, τh, βh) ∈ Vh ×Mh × Θh × Υh the stated error
estimate follows from (5.30) or (5.34), respectively, however, with infvh∈Vh

instead of infvh∈Uh
.

The latter term can be established by a standard procedure (see e.g. Theorem II.1.1 in [32])
under the use of the discrete inf-sup condition Assumption 5.3 (ii).

In combination with the interpolation properties of a specific finite element ansatz space and
under sufficient regularity of the respective exact solution, Theorem 5.15 immediately yields an
a priori error estimate, including h-convergence rates in H1-norm.

Corollary 5.16. (A Priori Convergence Rates)
Let the assumptions and notation of Theorem 5.15 hold and assume that the exact solution
satisfies the additional regularity requirements

u ∈ Hl+1(Ω), p ∈ H l(Ω), θ ∈ H l+1(Ω), Φ ∈ H l+1(Ω),

for some l ≥ 1. Then,

‖∇ (u− uh) ‖+ ‖∇ (θ − θh) ‖+ ‖∇ (Φ− Φh) ‖ <∼ hl (‖u‖l+1,2 + ‖p‖l,2 + ‖θ‖l+1,2 + ‖Φ‖l+1,2)

+ δū‖∇ (ū− ūh) ‖+ δũ‖∇ (ũ− ũh) ‖
+ δθ̄‖∇

(
θ̄ − θ̄h

)
‖+ δΦ̄‖∇

(
Φ̄− Φ̄h

)
‖.
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Proof. Follows directly from Theorem 5.15 and Assumption 5.3 (iii) and (iv) by estimating the
inf-terms from above by chosing vh = ΠUh

u, qh = ΠMh
p, τh = ΠXh

θ and βh = ΠXh
Φ.

In the fully implicit case, the proof of Theorem 5.15 imposes the following smallness conditions
on the problem data and exact solution, (5.22), (5.27):

Ξ1 = 1− 2ǫ∗4,1‖∇u‖2 − 2ǫ∗5,1ǫ
∗
7,1‖θ + θb‖21,2 < 1 (5.35)

Ξ2 = 1− 4α∗
1ǫ

∗
7,1C

2
0,2‖∇(Φ + Φb)‖20,3‖θ + θb‖21,2 < 1. (5.36)

A closer look onto the introduced constants reveals that

ǫ∗4,1 ∝ ν−2, ǫ∗5,1 ∝ ν−2
(
L
(θ)
F

)2
, ǫ∗5,2 ∝ ν−2

(
L
(Φ)
F

)2 (
G̃2
θ + ‖θb‖21,2

)

ǫ∗7,1 ∝ κ−2, C0,2 ∝ Lǫǫ
−1
− , α∗

1 ∝ ǫ∗5,2Ξ
−1
1 , (5.37)

with ∝ meaning equal up to a multiplicative constant coming from Friedrich’s inequality and
Sobolev emebeddings. According to Lemma 3.13 and 5.13, ‖∇u‖ → 0 , ‖θ + θb‖1,2 → 0 and
G̃θ → 0 for (‖θb‖1,2, ‖fv‖U∗ , ‖fτ‖Θ∗) → 0. Thus, the stated conditions can hold if the data is
sufficiently small. However, similar to the the uniqueness Theorem 3.21, these conditions are
very restrictive due to the terms ν−2 and κ−2. Thus, the error estimates for the fully nonlinear,
stationary system can only be applied in case of slow fluid flow, small temperature and potential
differences and small domains. However, conditions (5.35),(5.36) are not sharp and might be too
pessimistic in practice. For instance, the numerical experiments presented in Section 6.2 exhibit
the previously stated convergence rates, even though (5.35),(5.36) are not satisfied.
On the other hand, if Problem 5.11 and 5.12 are derived by discretizing the instationary system

in time with explicit convection fields ū, ũ, ūh, ũh, then the best-approximation result holds
without any restriction. Thus, Theorem 5.15 and Corollary 5.16 could be used for proving a
priori convergence rates of a full discretization of the instationary equations by means of the
Rothe method.

5.2. Instationary Problem

In this section, we propose a full discretization of the instationary TEHD equations by combining
FEM and BDF with the Rothe method. We aim at deriving a priori error estimates. The error
analysis is based on the procedure presented in [75] for the instationary Boussinesq equations
with temperature dependent viscosity. However, it is modified to take into account Gauss’ law
and a general force term. Moreover, we do not restrict ourselves to a first order scheme in time.
Instead, a general approximation of the ∂t-terms is considered. The main result of this section
is given by Theorem 5.24 which provides error bounds in terms of the spatial discretization
parameter h under certain conditions on the spatial regularity of the exact solution. At this
point, convergence w.r.t. the temporal discretization parameter k and temporal regularity have
not been taken into account. This is done in Corollary 5.29, 5.30, 5.31 and 5.32, which provide
temporal convergence rates for two different time stepping schemes. According to [35], strong
temporal regularity assumptions on the exact solution may imply non-local compatibility con-
ditions for the initial data that usually cannot by checked in realistic scenarios. For this reason,
the convergence rates for each scheme are derived under two different sets of regularity condi-
tions: a set of weak conditions, that do not imply the aforementioned compatibility problems (at
the expense of reduced convergence rates), and a set of strong conditions that lead to optimal
convergence rates. We first restate the continuous instationary system with increased temporal
regularity requirements compared to Problem 4.1. This is done to obtain a set of equations that
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is pointwise well-defined for all t ∈ [0, T ].

Problem 5.17. (Continuous Instationary TEHD Equations)
Let initial conditions (u0, θ0) ∈ V × Θ, boundary liftings (θb,Φb) ∈ W 1,∞(Ω) × W 1,∞(Ω),
body force F : H1(Ω) × H1(Ω) → U∗, source terms fv ∈ C(0, T ;U∗), fτ ∈ C(0, T ; Θ∗), fβ ∈
C(0, T ; Υ∗) and T > 0 be given. Find

u ∈ L2(0, T ;V) with ∂tu ∈ L1(0, T ;H)

θ ∈ L2(0, T ; Θ) with ∂tθ ∈ L1(0, T ;L2)

p ∈ L2(0, T ;M)

Φ ∈ L2(0, T ; Υ),

each of these functions having pointwise well-defined values on [0, T ], such that for all t ∈ [0, T ]
and (v, q, τ, β) ∈ U×M ×Θ×Υ:

(∂tu(t),v) + av(u(t),v) + c̃v(u(t),u(t),v)− b(v, p(t)) = 〈F(θ(t) + θb,Φ(t) + Φb) + fv(t),v〉U∗

b(u(t), q) = 0

(∂tθ(t), τ) + aτ (θ(t) + θb, τ) + c̃τ (u(t), θ(t) + θb, τ) = 〈fτ (t), τ〉Θ∗

aβ(θ(t) + θb,Φ(t) + Φb, β) = 〈fβ(t), β〉Υ∗

u(0) = u0

θ(0) = θ0.

Discrete Problem

To set up the temporal discretization, let 0 = t0 < t1 < . . . < tN = T denote an equidistant
partition of the time interval [0, T ], i.e. ti = ik with k := T

N and N ∈ N. For 0 ≤ m < M ≤ N , a
space of Z-valued sequences is defined by lp(m,M ;Z) := {(zn)n : n = m, . . . ,M, zn ∈ Z} and
equipped with the norm

‖(zn)n‖plp(m,M ;Z) := k
M∑

n=m

‖zn‖pZ for p ∈ [1,∞), (5.38)

‖(zn)n‖l∞(m,M ;Z) := max{‖zn‖Z : n = m, . . . ,M} for p = ∞. (5.39)

For a continuous function z : [0, T ] → Z let zn := z(tn) and ‖z‖lp(m,M ;Z) := ‖ (z(tn))n ‖lp(m,M ;Z).

Definition 5.18. (q-Step Difference Operator)
Let q ∈ N and c ∈ Rq+1. The q-step difference operator Jc, applied to a sequence (zn)n ⊂ Z, is
defined as

Jcz
n :=

q∑

i=0

ciz
n−i.

Jc is called explicit, if c0 = 0 and J1 denotes the 1-step operator determined by c = (1,−1).

We now define a numerical scheme for approximating the solution of Problem 5.17 and which
can be considered as modification of the one introduced in [75]. In contrast to [75], we investi-
gate a temporal scheme based on general q-step difference operators as given by Definition 5.18.
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Problem 5.19. (Discretized Instationary TEHD Equations)

Let q ≥ 1, initial conditions
{
(uih, θ

i
h)
}q−1

i=0
and q-step difference operators Jc, Jd, Jf , Jg be given.

The full discretization of Problem 5.17, is given by the following sequence of finite dimensional,
stationary problems for m ∈ {q, . . . , N}: Find (umh , p

m
h , θ

m
h ,Φ

m
h ) ∈ Uh×Mh×Θh×Υh such that

for all (vh, qh, τh, βh) ∈ Uh ×Mh ×Θh ×Υh:

(k−1Jdu
m
h ,vh) + av(u

m
h ,vh) + c̃v(Jcu

m
h ,u

m
h ,vh)− b(vh, p

m
h )

−〈F(Jfθmh + θb,Φ
m
h +Φb),vh〉U∗ = 〈fv(tm),vh〉U∗ (5.40)

b(umh , qh) = 0 (5.41)

(k−1Jdθ
m
h , τh) + aτ (θ

m
h + θb, τh) + c̃τ (Jcu

m
h , θ

m
h + θb, τh) = 〈fτ (tm), τh〉Θ∗ (5.42)

aβ(Jgθ
m
h + θb,Φ

m
h +Φb, βh) = 〈fβ(tm), βh〉Υ∗ . (5.43)

So far, the q-step difference operators Jd, Jc, Jf , Jg for ∂t, convection, force and Gauss terms
have not been specified. The only requirement for proving the error estimates of Theorem 5.24
is given by Assumption 5.20.

Assumption 5.20. (Difference Operators)
The q-step difference operators introduced in Problem 5.19 should satisfy

(i) Jc, Jf , Jg are explicit.

(ii)
∑q

i=1 fi =
∑q

i=1 gi = 1.

(iii) For each Hilbert space Z, there exists a constant o ≥ 0 such that for each sequence (zm)m≥0 ⊂
Z there are sequences (Zm)m≥q−1, (Zm)m≥q ⊂ R with

(Jdz
m, zm)Z ≥ oJ1(‖zm‖2Z + Z2

m) + Z
2
m for all m ≥ q.

The proposed time stepping scheme is implicit in the diffusion terms in order to avoid a time
step size restriction due to the stiff nature of ODEs resulting from a conforming finite element
discretization of the Laplace terms. Due to Assumption 5.20 (i), the nonlinear terms are treated
semi-implicitly. In this way, the resulting system of algebraic equations is decoupled and can be
solved by solving a series of linear problems in each time step:

TimeLoop

given N > 0 and (uih, θ
i
h) for i = 0, . . . , q − 1.

for m = q . . . N do

solve Gauss’ law (5.43) for Φmh
solve Oseen equations (5.40), (5.41) for (umh , p

m
h )

solve heat equation (5.42) for θmh
end for

Moreover, by Assumption 5.20 (i), the corresponding proof of a priori error estimates does not
require a time step size restriction when applying Gronwall’s inequality. Assumption 5.20 (ii)
implies Jfxb = Jgxb = xb for the (not time-dependent) boundary liftings xb ∈ {θb,Φb}. (iii) is
used to obtain the L2-norm of the discretization error in the proof of Theorem 5.24.
In order to derive a priori error estimates, it will be necessary to impose some kind of Lipschitz

continuity for the general body force F. Compared to the previously stated Assumption 4.2 for
proving existence of continuous solutions, this new Assumption 5.21 is more restrictive in the
sense that ‖∇(θ1− θ2)‖ is replaced by the weaker term ‖θ1− θ2‖0,3. This modification turns out
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to be sufficient for avoiding a time step size restriction. It will be shown in Lemma 5.33 that
Assumption 5.21 is satisfied by the previously defined body forces Fs,0, Fa,0, Fa,1.

Assumption 5.21. (Body Force Lipschitz Continuity I)
Let F : H1(Ω)×H1(Ω) → U∗ satisfy

(i) F is Lipschitz continuous in θ: there is a non-decreasing function L
(θ,∗)
F : [0,∞) → [0,∞)

such that for all θ1, θ2, Φ ∈ H1(Ω) and v ∈ U,

|〈F(θ1,Φ)− F(θ2,Φ),v〉U∗ | ≤ L
(θ,∗)
F (‖Φ‖1,2)‖θ1 − θ2‖0,3‖∇v‖.

(ii) F is locally Lipschitz continuous in Φ: for all R > 0 there is L
(Φ,∗)
F ≥ 0 such that for all

θ ∈ H1(Ω), Φ1,Φ2 ∈ BR(0, H
1(Ω)) and v ∈ U,

|〈F(θ,Φ1)− F(θ,Φ2),v〉U∗ | ≤ L
(Φ,∗)
F ‖θ‖1,2‖Φ1 − Φ2‖1,2‖∇v‖.

(iii) F(0,Φ) = 0 for all Φ ∈ H1(Ω).

The introduced DEP models Fs,0, Fa,0, Fa,1 are based on linearization around a given base
potential Φ0. As pointed out in Section 3.3, this procedure can be justified in case of a small
temperature dependence of the permittivity ǫ, since the resulting electric potential is then sub-
jected to rather small spatial and temporal variations. However, a suitable base potential might
not be available in general. In such a case, one might prefer a DEP model that does not require
a priori information but is still close to the original term |∇Φ|2∇θ. This requirement can be
met by introducing a cut-off operator, that bounds the supremum norm of ∇Φ. The resulting
DEP model will be defined in detail in the upcoming Section 5.3. At this point, we only state an
alternative body force Assumption 5.22 that is tailored to this new model. For the DEP model
we have in mind, it will be necessary to bound the variation of F(θ,Φ) w.r.t. θ in terms of
‖∇(θ1 − θ2)‖. As we will see in the proof of Theorem 5.24, a small data condition that involves
the Lipschitz constant of F w.r.t. θ has to imposed when deriving error estimates in this case.
However, this condition turns out to be less restrictive then the one which is imposed for proving
error estimates in the stationary case, see Theorem 5.15 and the subsequent remarks.

Assumption 5.22. (Body Force Lipschitz Continuity II)
Let F : H1(Ω)×H1(Ω) → U∗ satisfy

(i) F is Lipschitz continuous in θ: there are L
(θ,H1)
F , L

(θ,L2)
F such that for all θ1, θ2, Φ ∈ H1(Ω)

and v ∈ U,

|〈F(θ1,Φ)− F(θ2,Φ),v〉U∗ | ≤ L
(θ,H1)
F ‖∇(θ1 − θ2)‖‖v‖ + L

(θ,L2)
F ‖θ1 − θ2‖‖v‖.

(ii) F is locally Lipschitz continuous in Φ: for all R > 0 there is L
(Φ,∗∗)
F ≥ 0 such that for all

θ ∈W 1,3(Ω), Φ1,Φ2 ∈ BR(0, H
1(Ω)) and v ∈ U,

|〈F(θ,Φ1)− F(θ,Φ2),v〉U∗ | ≤ L
(Φ,∗∗)
F ‖θ‖1,3‖∇(Φ1 − Φ2)‖‖v‖0,6.

(iii) F(0,Φ) = 0 for all Φ ∈ H1(Ω).

The following Lemma 5.23 states that a unique discrete solution does exist and yields bounds
on the solution’s norm. The proof is similar to that of Lemma 4.10 and 4.15 which state an
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analogous result for the semi-discrete system, Problem 4.9. Here, it is crucial to obtain norm
bounds which are independent of the discretization parameters h and k.

Lemma 5.23. (Existence, Uniqueness and Stability of Discrete Solutions)
Let Assumptions 5.3 and 5.20 hold and assume that F satisfies either Assumption 5.21 or 5.22.
In the latter case, assume additionally that

qc0|f |∞L(θ,H1)
F < 2

√
νκ (5.44)

with c0 denoting the constant of Friedrich’s inequality w.r.t. H1
0(Ω). Then, there exists a unique

sequence of solutions {(umh , pmh , θmh ,Φmh )}Nm=q of Problem 5.19. Moreover, this sequence of discrete

solutions is stable in the following sense: there exist constants ν̄ ∈ (0, ν), κ̄ ∈ (0, κ) and G̃u,θ, G̃Φ

only depending on model parameters and the initial conditions
{
(uih, θ

i
h,Φ

i
h)
}q−1

i=0
, such that

‖(umh )m‖l∞(0,N ;L2) ≤ G̃u,θ

‖(θmh )m‖l∞(0,N ;L2) ≤ G̃u,θ

‖(Φmh )m‖l∞(0,N ;H1
D
) ≤ G̃Φ

ν̄‖(umh )m‖2l2(0,N ;H1
0)
+ κ̄‖(θmh )m‖2l2(0,N ;H1

D
) ≤ G̃u,θ.

Proof. For fixed m ∈ {q, . . . , N}, the corresponding stationary equations defined in Problem
5.19 fit into the framework of the mixed formulation of Problem 3.18 (given by Corollary 3.20)
with δ = d0

k and the following terms (in the notation of Problem 3.18)

(ū, ũ, θ̄, Φ̄) =̂ (Jcu
m
h , Jcu

m
h , Jgθ

m
h ,Φ

m
h )

F(·, ·) =̂ F(Jfθ
m
h + θb, ·)

fv =̂ fv(tm) + k−1
q∑

i=1

diu
m−i
h

fτ =̂ fτ (tm) + k−1
q∑

i=1

diθ
m−i
h

fβ =̂ fβ(tm),

with cv, cτ being replaced by c̃v and c̃τ , respectively. According to Assumption 5.20 (i), ū, ũ, θ̄
are fixed in the sense Problem 3.5, which implies d(s) = ∞, where d denotes the imposed upper
bound on ‖θb‖0,3, see Lemma 3.13. Moreover, the continuous spaces U, M, Θ, Υ are replaced by
their finite dimensional counterparts Uh, Mh, Θh, Υh. These spaces are closed subspaces, the
discrete inf-sup condition holds and the trilinear forms c̃v, c̃τ have the property of being skew-
symmetric. Moreover, since Θh = Υh = Xh are finite dimensional, weak convergence implies
strong convergence w.r.t these spaces, see Lemma A.36. Additionally, we have Xh ⊂ W 1,3(Ω).
Therefore, the body force F̃(·, ·) := F(Jfθ

m
h + θb, ·) with F satisfying Assumption 5.21 or 5.22

satisfies Assumption 3.12 and all the arguments used to prove Theorem 3.19, Corollary 3.20 and
Theorem 3.21 remain valid. Here, note that the following modification in the proof of Lemma
3.13 is required: the used estimate |cτ (ũ, θ + θb, θ)| ≤ c‖∇ũ‖‖∇θ‖‖θb‖0,3 is replaced by

|c̃τ (Jcumh , θmh + θb, θ
m
h )| ≤ c‖∇Jcumh ‖‖∇θmh ‖‖θb‖0,3,

according to Lemma 5.10. Thus, existence of a solution (umh , p
m
h , θ

m
h ,Φ

m
h ) follows from Corollary

3.20 and uniqueness from Theorem 3.21, using Φmh ∈ Xh ⊂W 1,3(Ω).
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The stability estimates follow similarly to the proof of Lemma 4.15: Let m ∈ {q, . . . , N} be
arbitrary. Setting βh = Φmh in Problem 5.19 and using ǫ ∈ [ǫ−, ǫ+] according to Assumption 3.2
yields

‖∇Φmh ‖ ≤ 1

ǫ−
(ǫ+‖∇Φb‖+ ‖fβ(tm)‖Υ∗) ≤ 1

ǫ−
(ǫ+‖∇Φb‖+ ‖fβ‖∞;Υ∗) =: G̃Φ.

Consequently,

‖Φmh +Φb‖1,2 ≤ c
(
G̃Φ + ‖Φb‖1,2

)
=: G̃Φ for all m ∈ {q, . . . , N}. (5.45)

Setting vh = umh , τh = θmh in Problem 5.19 yields

L1 := (Jdu
m
h ,u

m
h ) + kν‖∇umh ‖2

= k〈F(Jfθmh + θb,Φ
m
h +Φb) + fv(tm),u

m
h 〉U∗ =: R1 (5.46)

L2 := (Jdθ
m
h , θ

m
h ) + kκ‖∇θmh ‖2

=− kκ(∇θb,∇θmh )− kc̃τ (Jcu
m
h , θb, θ

m
h ) + k〈fτ (tm), θmh 〉Θ∗ =: R2. (5.47)

The respective left-hand sides of (5.46) and (5.47) can be estimated from below by means of
Assumption 5.20 (iii),

L1 ≥ oJ1
(
‖umh ‖2 + U2

m

)
+ U

2
m + kν‖∇umh ‖2 (5.48)

L2 ≥ oJ1
(
‖θmh ‖2 + T 2

m

)
+ T

2
m + kκ‖∇θmh ‖2, (5.49)

for some real sequences (Um)m, (Um)m, (Tm)m, (Tm)m.
Using Assumption 5.21, (5.45) and Theorem A.93, the right-hand side of (5.46) can be esti-

mated from above by

R1 ≤ ck‖∇umh ‖
(
‖fv(tm)‖U∗ + L

(θ,∗)
F ‖Jfθmh ‖0,3 + L

(θ,∗)
F ‖θb‖0,3

)

≤ ck
(
‖fv(tm)‖U∗ + L

(θ,∗)
F ‖θb‖0,3

)
‖∇umh ‖ (5.50)

+ ckL
(θ,∗)
F |f |∞‖∇umh ‖

q∑

i=1

{
‖θm−i
h ‖ 1

2 ‖∇θm−i
h ‖ 1

2

}
,

with L
(θ,∗)
F := L

(θ,∗)
F (G̃Φ). On the other hand, if F satisfies Assumption 5.22 instead of 5.21, then

by using similar arguments,

R1 ≤ k‖fv(tm)‖U∗‖∇umh ‖

+ kL
(θ,H1)
F

(
q∑

i=1

{
|fi|‖∇θm−i

h ‖
}
+ ‖∇θb‖

)
‖umh ‖

+ kL
(θ,L2)
F

(
q∑

i=1

{
|fi|‖θm−i

h ‖
}
+ ‖θb‖

)
‖umh ‖

≤ k
(
‖fv(tm)‖U∗ + c0L

(θ,H1)
F ‖∇θb‖+ c0L

(θ,L2)
F ‖θb‖

)
‖∇umh ‖ (5.51)

+ kc0L
(θ,H1)
F |f |∞‖∇umh ‖

q∑

i=1

‖∇θm−i
h ‖

+ kc0c
1
2
DL

(θ,L2)
F |f |∞‖∇umh ‖

q∑

i=1

{
‖θm−i
h ‖ 1

2 ‖∇θm−i
h ‖ 1

2

}
.
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Summing up (5.50) and (5.51), one obtains

R1 ≤ kG1‖∇umh ‖+ kG2‖∇umh ‖
q∑

i=1

{
‖θm−i
h ‖ 1

2 ‖∇θm−i
h ‖ 1

2

}
(5.52)

+ kG∗‖∇umh ‖
q∑

i=1

‖∇θm−i
h ‖,

with constants that are given in by

G1 := c‖fv‖∞;U∗ + L
(θ,∗)
F ‖θb‖0,3

G2 := cL
(θ,∗)
F |f |∞

G∗ := 0,

if Assumption 5.21 holds and

G1 := ‖fv‖∞;U∗ + c0L
(θ,H1)
F ‖∇θb‖+ c0L

(θ,L2)
F ‖θb‖

G2 := c0c
1
2
DL

(θ,L2)
F |f |∞

G∗ := c0L
(θ,H1)
F |f |∞,

otherwise. Using Lemma 5.10 (vi), R2 can be estimated from above via

R2 ≤ ck‖∇θmh ‖
(
κ‖∇θb‖+ ‖fτ (tm)‖Θ∗ + ‖θb‖1,2

q∑

i=1

{
|ci|‖um−i

h ‖ 1
2 ‖∇um−i

h ‖ 1
2

})

≤ kG3‖∇θmh ‖+ kG4‖∇θmh ‖
q∑

i=1

{
‖um−i

h ‖ 1
2 ‖∇um−i

h ‖ 1
2

}
(5.53)

with constants
G3 := cκ‖∇θb‖+ c‖fτ‖∞;Θ∗ , G4 := c‖θb‖1,2|c|∞.

Combining (5.48) and (5.52) and using Young’s inequality yields for arbitrary γ ∈ (0, 2), δ > 0,

o
(
‖umh ‖2 − ‖um−1

h ‖2 + U2
m − U2

m−1

)
+ U

2
m + k

ν

4
(2− γ)‖∇umh ‖2

≤ 2G2
1

ν(2− γ)
k +

2G2
2q

ν(2− γ)
k

q∑

i=1

{
‖θm−i
h ‖‖∇θm−i

h ‖
}
+
G2

∗q
2γν

k

q∑

i=1

‖∇θm−i
h ‖2

≤ 2G2
1

ν(2− γ)
k + k

q∑

i=1

{
κ

δq
‖∇θm−i

h ‖2 + δG4
2q

3

ν2κ(2− γ)2
‖θm−i
h ‖2 + G2

∗q
2γν

‖∇θm−i
h ‖2

}

= G5k + k

q∑

i=1

{
κ

δq
‖∇θm−i

h ‖2 + 1

γq
G∗∗‖∇θm−i

h ‖2 +G6‖θm−i
h ‖2

}
, (5.54)

with constants

G5 :=
2G2

1

ν(2− γ)
, G6 :=

δG4
2q

3

ν2κ(2− γ)2
, G∗∗ :=

G2
∗q

2

2ν
.
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Analogously, combination of (5.49) and (5.53) yields for arbitrary ǫ ∈ (0, 1), σ > 0,

o
(
‖θmh ‖2 − ‖θm−1

h ‖2 + T 2
m − T 2

m−1

)
+ T

2
m + kκ(1− ǫ)‖∇θmh ‖2

≤ G2
3

2ǫκ
k +

G2
4q

2ǫκ
k

q∑

i=1

{
‖um−i

h ‖‖∇um−i
h ‖

}

≤ G2
3

2ǫκ
k + k

q∑

i=1

{
ν

σq
‖∇um−i

h ‖2 + σ

ǫ2
G4

4q
3

16κ2ν
‖um−i

h ‖2
}

= G7k + k

q∑

i=1

{
ν

σq
‖∇um−i

h ‖2 +G8‖um−i
h ‖2

}
, (5.55)

with

G7 :=
G2

3

2ǫκ
, G8 :=

σ

ǫ2
G4

4q
3

16κ2ν
.

Adding (5.54) and (5.55) and summation over m = q, . . . ,M for arbitraryM ∈ {q, . . . , N} yields

o
(
‖uMh ‖2 + ‖θMh ‖2 + U2

M + T 2
M

)
+ k

M∑

m=q

{
ν̄‖∇umh ‖2 + κ̄‖∇θmh ‖2 + 1

k
U

2
m +

1

k
T
2
m

}

≤ k

M−1∑

m=0

{
G8q‖umh ‖2 +G6q‖θmh ‖2

}
+ k

M∑

m=q

{G5 +G7} (5.56)

+ o
(
‖uq−1

h ‖2 + ‖θq−1
h ‖2 + U2

q−1 + T 2
q−1

)

+ k

q−1∑

i=0

{
ν

σ
‖∇uih‖2 +

(
κ

δ
+
G∗∗
γ

)
‖∇θih‖2

}
.

with

ν̄ := ν

(
1

4
(2− γ)− 1

σ

)
(5.57)

κ̄ := κ

(
1− ǫ− 1

δ

)
− 1

γ
G∗∗. (5.58)

If G∗∗ < 2κ, which is equivalent to (5.44), then γ, δ, ǫ, σ can be chosen such that ν̄ > 0 and
κ̄ > 0. Then, application of the discrete Gronwall inequality, Lemma A.42, to (5.56) gives

o
(
‖uMh ‖2 + ‖θMh ‖2 + U2

M + T 2
M

)
+ k

M∑

m=q

{
ν̄‖∇umh ‖2 + κ̄‖∇θmh ‖2 + 1

k
U

2
m +

1

k
T
2
m

}

≤ exp
(
(T + k)qo−1max{G6, G8, 1}

)
(5.59)

·
[
(G5 +G7)T + o

(
‖uq−1

h ‖2 + ‖θq−1
h ‖2 + U2

q−1 + T 2
q−1

)

+ k

q−1∑

i=0

{
ν

σ
‖∇uih‖2 +

(
κ

δ
+
G∗∗
γ

)
‖∇θih‖2

}]
.

Then, the stated estimate follows from (5.45) and (5.59).
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Preliminary Error Estimate

The following Theorem 5.24 provides a basic a priori error estimate for the numerical scheme
defined by Problem 5.19. The corresponding result provides convergence rates w.r.t. the spatial
discretization parameter h. Moreover, the derived upper bounds depend on the error of the
initial conditions and the approximation properties of the temporal difference operators. At
this point, no regularity on temporal derivatives of the exact solution is imposed. Thus, no
convergence rates w.r.t. k are shown yet. This will be done in a separate step.
Before stating Theorem 5.24, some notation has to be introduced. The exact solution at

time tn is denoted by (un, pn, θn,Φn) and corresponding approximations in the underlying finite
element spaces are obtained by using the Stokes projection ΠS and the projection ΠXh

,

(wn
h , r

n
h) := ΠS(u

n, pn), ηnh := ΠXh
θn, Ψn

h := ΠXh
Φn. (5.60)

The discretization error between these projections and the discrete solution of Problem 5.19 is
defined as

dnu,h = wn
h − unh, dnp,h = rnh − pnh, dnθ,h = ηnh − θnh , dnΦ,h = Ψn

h − Φnh. (5.61)

When applying the estimate stated in Assumption 5.20 (iii) for zm = dnu,h and zm = dnθ,h,

respectively, one further obtains real sequences (Un)n≥q−1, (Tn)n≥q−1, (Un)n≥q, (Tn)n≥q such
that the following estimates hold for all n ≥ q

(Jdd
n
u,h,d

n
u,h) ≥ oJ1(‖dnu,h‖2 + U2

n) + U
2
n (5.62)

(Jdd
n
θ,h, d

n
θ,h) ≥ oJ1(‖dnθ,h‖2 + T 2

n) + T
2
n. (5.63)

The error will be bounded in terms of the subsequent expressions. The first set of expressions
measures the error contributions by the q initial conditions:

E1(q)
2 := k

q−1∑

n=0

{
‖un − unh‖21,2 + ‖θn − θnh‖21,2

}
(5.64)

+ ‖uq−1 − u
q−1
h ‖2 + ‖θq−1 − θq−1

h ‖2 + U2
q−1 + T 2

q−1

E2(q) := max{‖un − unh‖1,2 : n = 0, . . . , q − 1} (5.65)

E3(q) := max{‖θn − θnh‖ : n = 0, . . . , q − 1}. (5.66)

Error contributions that arise due to the temporal discretization and which do not depend on
the spatial discretization are given by

E(k)2 := k
N∑

n=q

{
‖∂tun − k−1Jdu

n‖2−1,2 + ‖∂tθn − k−1Jdθ
n‖2−1,2

}
(5.67)

+ k
N∑

n=q

{
‖un − Jcu

n‖2 + ‖θn − Jfθ
n‖21,2 + ‖θn − Jgθ

n‖2
}

E(k) measures how well the time derivative ∂t is approximated by the finite difference k−1Jd and
how well a function at time tn can be extrapolated by the function values at time tn−q, . . . , tn−1

through the operators Jc, Jf , Jg. On the other hand, contributions by both temporal and spatial
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discretization are denoted by

E(h, k)2 := h2l+2l∗k
N∑

n=q

{
‖k−1Jdu

n‖2l+1,2 + ‖k−1Jdp
n‖2l,2

}
(5.68)

+ h2lk

N∑

n=q

‖k−1Jdθ
n‖2l+1,2,

with constants l, l∗ that describe the spatial regularity of the exact solution and the approxi-
mation quality of the finite element spaces. Finally, the term

Ed(h, k)
2 := k−1

N∑

n=q

‖Jddnu,h‖2, (5.69)

which involves the unknown velocity discretization error will be bounded by other terms and is
used to bound the pressure discretization error. The actual error bounds are now composed by
the previously defined terms and are separately given for velocity and temperature, pressure,
potential and Ed(k, h) according to

Eu,θ(h, k, q) := hl + E(k) + E(h, k) + E1(q) (5.70)

EΦ(h, k, q) := E3(q) + Eu,θ(h, k, q) (5.71)

Ep(h, k, q) := E(k) + E(h, k) + Ed(k, h) + Cp(h, k, q)Eu,θ(h, k, q) (5.72)

Ed(h, k, q) := k−
1
2 (E(k) + E(h, k)) + Cp(h, k, q)

(
hl + E2(q) + k−

1
2Eu,θ(h, k, q)

)
(5.73)

Cp(h, k, q) := 1 + E2(q) + min{h−1, k−
1
2 }Eu,θ(h, k, q). (5.74)

Theorem 5.24. (Error of Numerical Scheme)
In the framework of Problem 5.19, let a solution of Problem 5.17 be given that satisfies the
following additional regularity requirements for some l ≥ 1:

u ∈ L∞(0, T ;Hl+1)

p ∈ L∞(0, T ;H l)

θ ∈ L∞(0, T ;H l+1)

Φ ∈ L∞(0, T ;W 1,∞) ∩ L∞(0, T ;H l+1).

Suppose that Assumption 5.3 holds with m = n = l, where m, n denote the respective finite
element approximation orders, see (iii) and (iv). Moreover, let l∗ = 1 if the underlying Stokes
problem is regular and l∗ = 0, otherwise. Let further the assumptions of Lemma 5.23 hold;
in particular, assume that F satisfies Assumption 5.21 or 5.22. In the latter case, assume
additionally that the following small data condition holds:

c0
√
q|f |2L(θ,H1)

F <
√
2ν̃κ̃, (5.75)

with ν̃ = ν 1
2(1+c20)

, κ̃ = κ 1
2(1+c2

D
)
and c0, cD denoting the respective constants from Friedrich’s
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inequality w.r.t. H1
0 and H1

D. Then,

‖ (un − unh)n ‖l∞(q,N ;L2) + ‖ (θn − θnh)n ‖l∞(q,N ;L2)
<∼ Eu,θ(h, k, q)

‖ (un − unh)n ‖l2(q,N ;H1) + ‖ (θn − θnh)n ‖l2(q,N ;H1) <∼ Eu,θ(h, k, q)
‖ (Un)n ‖l∞(q,N ;R) + ‖ (Tn)n ‖l∞(q,N ;R) <∼ Eu,θ(h, k, q)
‖
(
Un
)
n
‖l2(q,N ;R) + ‖

(
Tn
)
n
‖l2(q,N ;R) <∼ Eu,θ(h, k, q) k

1
2

‖ (Φn − Φnh)n ‖l2(q,N ;H1) <∼ EΦ(h, k, q)
‖ (pn − pnh)n ‖l2(q,N ;L2)

<∼ Ep(h, k, q)
Ed(h, k) <∼ Ed(h, k, q).

Theorem 5.24 states that the errors of velocity and temperature due to spatial discretizations,
measured in l2(H1) and l∞(L2) norm, converge with rate hl for fixed time step size k. The anal-
ogous result in l2(H1) holds for the potential error. Moreover, the purely temporal contributions
E(k) can be estimated by the series of corollaries in the end of this section. The remaining
terms in Eu,θ and EΦ stem from errors in the initial conditions, E1(q) and E3(q), and from the
mixed terms E(h, k). Depending on the temporal regularity of the exact solution, the latter ones
may contain negative powers of k as pointed out in Lemma A.81 (v) and (vi). In this case, the
resulting negative effect when decreasing k can be compensated by a simultaneous decay of h.
Therefore, the convergence rate w.r.t. h is, at least in theory, reduced. Concerning the pressure
error, the factor k−

1
2 enters Ep through the term Ed(k, h), thus yielding a reduced convergence

rate compared to velocity, temperature and potential. Here, the term Cp denotes a bound on
the l∞(H1) norm of discrete velocity (5.116) and one can show that it stays bounded as h, k → 0
supposed that the exact solution is sufficiently regular and the initial conditions are chosen such
that E1(q) = O(h), see Corollary 5.30 and 5.32.
Depending on the underlying body force assumption, the small data condition (5.75) has to

be imposed. Compared to the smallness condition in the stationary case, see Theorem 5.15,
(5.75) is much weaker though, since only the square root of inverse diffusion constants enters the
condition. In Section 6.3, the validness of this assumption is shown in a practical scenario.
The underlying principle of the associated proof is inspired by comparable results on the error

of fully discretized flow problems, see e.g. [75] for the Boussinesq problem with temperature-
dependent coefficients and [41] for the incompressible Navier-Stokes equations: First, the error
is split into discretization and approximation part, denoted by dn·,h and zn·,h, respectively. Then, a
corresponding error equation is derived by subtracting the discrete equations from the continuous
ones. Afterward, one aims to bound dn·,h in terms of zn·,h. This is done by exploiting coercivity

of av, aτ , aβ to obtain H1-norms of dn·,h and Assumption 5.20 (iii) to obtain L2-norms from
the Jd terms. Using Young’s inequality multiple times, the remaining dn·,h norms can be hidden
inside the ones on the left-hand side. The final estimate for velocity, temperature and potential
is then obtained by employing a discrete Gronwall inequality. Afterward, it remains to bound
the pressure error by a similar argument as used in [75].

Proof. The error of the respective variables is decomposed into approximation and discretization
contributions:

enu,h := un − unh = un −wn
h +wn

h − unh =: znu,h + dnu,h

enp,h := pn − pnh = pn − rnh + rnh − pnh =: znp,h + dnp,h

enθ,h := θn − θnh = θn − ηnh + ηnh − θnh =: znθ,h + dnθ,h

enΦ,h := Φn − Φnh = Φn −Ψn
h +Ψn

h − Φnh =: znΦ,h + dnΦ,h.

77



5 Numerical Approximation

Error Equation

Subtracting the discrete equations 5.19 from the continuous ones 5.17 at each time tn, n ∈
{q, . . . , N} yields the following error equation for all (vh, qh, τh, βh) ∈ Uh ×Mh ×Θh ×Υh:

k−1(Jdd
n
u,h,vh) + av(d

n
u,h,vh)− b(vh, d

n
p,h) = 〈Rn1 +Rn2 +Rn3 +Rn4 ,vh〉 (5.76)

b(dnu,h, qh) = 〈Rn5 , qh〉 (5.77)

k−1(Jdd
n
θ,h, τh) + aτ (d

n
θ,h, τh) = 〈Rn6 +Rn7 +Rn8 , τh〉 (5.78)

aβ(θ
n + θb,Φ

n +Φb, βh) = aβ(Jgθ
n
h + θb,Φ

n
h +Φb, βh) (5.79)

with residuals

〈Rn1 ,vh〉 = −(∂tu
n − k−1Jdw

n
h ,vh)

〈Rn2 ,vh〉 = −(av(z
n
u,h,vh)− b(vh, z

n
p,h))

〈Rn3 ,vh〉 = −(c̃v(u
n,un,vh)− c̃v(Jcu

n
h,u

n
h,vh))

〈Rn4 ,vh〉 = 〈F(θn + θb,Φ
n +Φb)− F(Jfθ

n
h + θb,Φ

n
h +Φb),vh〉

〈Rn5 , qh〉 = −b(znu,h, qh)
〈Rn6 , τh〉 = −(∂tθ

n − k−1Jdη
n
h , τh)

〈Rn7 , τh〉 = −aτ (znθ,h, τh)
〈Rn8 , τh〉 = −(c̃τ (u

n, θn + θb, τh)− c̃τ (Jcu
n
h, θ

n
h + θb, τh)).

(5.80)

Now, all individual residual terms (5.80) are considered. By definition of (wn
h , r

n
h) and the Stokes

projection, there holds 〈Rn2 ,vh〉 = 0 and 〈Rn5 ,vh〉 = 0 and for residual R7 one obtains

|〈R7, d
n
θ,h〉| ≤ κ‖znθ,h‖1,2‖dnθ,h‖1,2. (5.81)

In the following, the introduced constants {Ci,j} do not depend on h and k.

Estimation of Potential Error

Setting βh = dnΦ,h in Gauss’ law (5.79) gives

0 = aβ(θ
n + θb,Φ

n +Φb, d
n
Φ,h) − aβ(Jgθ

n
h + θb,Φ

n
h +Φb, d

n
Φ,h)

= aβ(θ
n + θb,Φ

n +Φb, d
n
Φ,h) − aβ(Jgθ

n + θb,Φ
n +Φb, d

n
Φ,h)

+ aβ(Jgθ
n + θb,Φ

n +Φb, d
n
Φ,h) − aβ(Jgθ

n
h + θb,Φ

n +Φb, d
n
Φ,h)

+ aβ(Jgθ
n
h + θb,Φ

n +Φb, d
n
Φ,h) − aβ(Jgθ

n
h + θb,Ψ

n
h +Φb, d

n
Φ,h)

+ aβ(Jgθ
n
h + θb,Ψ

n
h +Φb, d

n
Φ,h)− aβ(Jgθ

n
h + θb,Φ

n
h +Φb, d

n
Φ,h)

=: J1 + J2 + J3 + J4.
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Then, using Assumption 3.2 on ǫ,

|J1| =
∣∣((ǫ(θn + θb)− ǫ(Jgθ

n + θb))∇(Φn +Φb),∇dnΦ,h
)∣∣

≤ Lǫ‖θn − Jgθ
n‖‖Φn +Φb‖1,∞‖∇dnΦ,h‖

|J2| =
∣∣((ǫ(Jgθn + θb)− ǫ(Jgθ

n
h + θb))∇(Φn +Φb),∇dnΦ,h

)∣∣

≤ Lǫ‖Jg(θn − θnh)‖‖Φn +Φb‖1,∞‖∇dnΦ,h‖
≤ Lǫ‖Φ+ Φb‖∞;W 1,∞

(
‖Jgznθ,h‖+ ‖Jgdnθ,h‖

)
‖∇dnΦ,h‖

|J3| =
∣∣(ǫ(Jgθnh + θb)∇(Φn −Ψn

h),∇dnΦ,h
)∣∣

≤ ǫ+‖znΦ,h‖1,2‖∇dnΦ,h‖

J4 =
(
ǫ(Jgθ

n
h + θb)∇(Ψn

h − Φnh),∇dnΦ,h
)

≥ ǫ−‖∇dnΦ,h‖2.

Combining these estimates with
∑4

i=1 Ji = 0 yields

‖∇dnΦ,h‖ ≤ Lǫ
ǫ−

‖Φ+ Φb‖∞;W 1,∞

(
‖θn − Jgθ

n‖ + ‖Jgznθ,h‖+ ‖Jgdnθ,h‖
)
+
ǫ+
ǫ−

‖znΦ,h‖1,2

=: C0,1

(
‖θn − Jgθ

n‖ + ‖Jgznθ,h‖+ ‖Jgdnθ,h‖
)
+ C0,2‖znΦ,h‖1,2. (5.82)

According to Lemma 5.23,
‖Φnh‖1,2 ≤ cG̃Φ (5.83)

and, by Assumption 5.3 (iv),

‖ηnh‖1,2 ≤ ‖ηnh‖2,2 ≤ c‖θn‖2,2 ≤ c‖θ‖∞;H2 (5.84)

‖Ψn
h‖1,2 ≤ ‖Ψn

h‖2,2 ≤ c‖Φn‖2,2 ≤ c‖Φ‖∞;H2 . (5.85)

Estimation of Body Force Residual

Residual R4, induced by the force term F, can be decomposed into five parts:

〈Rn4 ,vh〉 = 〈F(θn + θb,Φ
n +Φb) − F(Jfθ

n + θb,Φ
n +Φb),vh〉

+ 〈F(Jfθn + θb,Φ
n +Φb) − F(Jfθ

n + θb,Ψ
n
h +Φb),vh〉

+ 〈F(Jfθn + θb,Ψ
n
h +Φb) − F(Jfη

n
h + θb,Ψ

n
h +Φb),vh〉

+ 〈F(Jfηnh + θb,Ψ
n
h +Φb)− F(Jfη

n
h + θb,Φ

n
h +Φb),vh〉

+ 〈F(Jfηnh + θb,Φ
n
h +Φb) − F(Jfθ

n
h + θb,Φ

n
h +Φb),vh〉

=:
5∑

i=1

〈Li,vh〉.

Then, by using the Lipschitz continuity of F as given by Assumption 5.21, together with the
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uniform boundedness of (ηnh ,Φ
n
h,Ψ

n
h)n given by (5.83) - (5.85),

|〈L1,vh〉| ≤ cL
(θ,∗)
F (‖Φn +Φb‖1,2) ‖θn − Jfθ

n‖1,2‖vh‖1,2
≤ cL

(θ,∗)
F

(
‖Φ‖∞,H1 + ‖Φb‖1,2

)
‖θn − Jfθ

n‖1,2‖vh‖1,2
( by H1(Ω) →֒ L3(Ω) )

|〈L2,vh〉| ≤ L
(Φ,∗)
F ‖Jfθn + θb‖1,2‖znΦ,h‖1,2‖vh‖1,2

≤ L
(Φ,∗)
F

(
|f |1‖θ‖∞,H1 + ‖θb‖1,2

)
‖znΦ,h‖1,2‖vh‖1,2

|〈L3,vh〉| ≤ cL
(θ,∗)
F (‖Ψn

h +Φb‖1,2) ‖Jfznθ,h‖1,2‖vh‖1,2
≤ cL

(θ,∗)
F

(
c‖Φ‖∞;H2 + ‖Φb‖1,2

)
‖Jfznθ,h‖1,2‖vh‖1,2

|〈L4,vh〉| ≤ L
(Φ,∗)
F ‖Jfηnh + θb‖1,2‖dnΦ,h‖1,2‖vh‖1,2

≤ L
(Φ,∗)
F

(
c|f |1‖θ‖∞;H2 + ‖θb‖1,2

)
‖dnΦ,h‖1,2‖vh‖1,2

|〈L5,vh〉| ≤ L
(θ,∗)
F (‖Φnh +Φb‖1,2) ‖Jfdnθ,h‖0,3‖vh‖1,2

≤ c
ǫ+
ǫ−
L
(θ,∗)
F

(
cG̃Φ + ‖Φb‖1,2

)
‖Jfdnθ,h‖

1
2 ‖Jfdnθ,h‖

1
2
1,2 ‖vh‖1,2

( by Theorem A.93 ) .

On the other hand, if F satisfies Assumption 5.22 instead,

|〈L1,vh〉| ≤ c0L
(θ,H1)
F ‖∇(θn − Jfθ

n)‖‖vh‖1,2 + c0L
(θ,L2)
F ‖θn − Jfθ

n‖‖vh‖1,2

|〈L2,vh〉| ≤ L
(Φ,∗∗)
F ‖Jfθn + θb‖1,3‖∇znΦ,h‖‖vh‖0,6

≤ cL
(Φ,∗∗)
F

(
c|f |1‖θ‖∞;H2 + ‖θb‖1,3

)
‖∇znΦ,h‖‖vh‖1,2

( by H2(Ω) →֒W 1,3(Ω) )

|〈L3,vh〉| ≤ c0L
(θ,H1)
F ‖∇Jfznθ,h‖‖vh‖1,2 + c0L

(θ,L2)
F ‖Jfznθ,h‖‖vh‖1,2

|〈L4,vh〉| ≤ L
(Φ,∗∗)
F ‖Jfηnh + θb‖1,3‖∇dnΦ,h‖‖vh‖0,6

≤ cL
(Φ,∗∗)
F

(
c|f |1‖θ‖∞;H2 + ‖θb‖1,3

)
‖∇dnΦ,h‖‖vh‖1,2

( by H2(Ω) →֒W 1,3(Ω) and H1(Ω) →֒ L6(Ω) )

|〈L5,vh〉| ≤ c0L
(θ,H1)
F ‖∇Jfdnθ,h‖‖vh‖1,2 + c0L

(θ,L2)
F ‖Jfdnθ,h‖‖vh‖1,2.
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Using (5.82) to substitute ‖∇dnΦ,h‖, the force residual norm can be estimated from above via

|〈Rn4 ,vh〉|
‖vh‖1,2

≤ C4,1‖θn − Jfθ
n‖1,2 + C4,2

(
‖Jfznθ,h‖1,2 + ‖znΦ,h‖1,2

)
(5.86)

+ C4,3

(
C0,1

(
‖θn − Jgθ

n‖ + ‖Jgznθ,h‖+ ‖Jgdnθ,h‖
)
+ C0,2‖znΦ,h‖1,2

)

+ C4,i‖Jfdnθ,h‖
1
2 ‖Jfdnθ,h‖

1
2
1,2 + C4,ii‖Jfdnθ,h‖ + C4,iii‖Jfdnθ,h‖1,2.

Depending on the underlying Assumptions on F, the introduced constants take the followig form

· if Assumption 5.21 holds:
C4,ii = C4,iii = 0.

· if Assumption 5.22 holds:

C4,i = 0, C4,ii = c0L
(θ,L2)
F , C4,iii = c0L

(θ,H1)
F .

Estimation of Convection Residual

The convection residuals R3 and R8 can estimated as follows by using Lemma 5.10 (i) and
(ii),

|〈R3,d
n
u,h〉| = |c̃v(un,un,dnu,h)− c̃v(Jcu

n
h,u

n
h,d

n
u,h)|

≤ |c̃v(un − Jcu
n,un,dnu,h)|+ |c̃v(Jcznu,h,un,dnu,h)|

+ |c̃v(Jcdnu,h,un,dnu,h)|+ |c̃v(Jcunh, znu,h,dnu,h)|

=:

4∑

i=1

Ki

and

|〈R8, d
n
θ,h〉| = |c̃τ (un, θn + θb, d

n
θ,h)− c̃τ (Jcu

n
h, θ

n
h + θb, d

n
θ,h)|

≤ |c̃τ (un − Jcu
n, θn + θb, d

n
θ,h)|+ |c̃τ (Jcznu,h, θn + θb, d

n
θ,h)|

+ |c̃τ (Jcdnu,h, θn + θb, d
n
θ,h)|+ |c̃τ (Jcunh, znθ,h, dnθ,h)|

=:

8∑

i=5

Ki.

Further, by Lemma 5.10 and the Sobolev embedding Theorem A.92, H2(Ω) →֒ C0(Ω) and
H2(Ω) →֒W 1,3(Ω),

K1 ≤ c‖dnu,h‖1,2 ‖u‖∞;H2 ‖un − Jcu
n‖

K2 ≤ c‖dnu,h‖1,2 ‖u‖∞;H1 ‖Jcznu,h‖1,2
K3 ≤ c‖dnu,h‖1,2 ‖u‖∞;H1 ‖Jcdnu,h‖

1
2 ‖Jcdnu,h‖

1
2
1,2

K4 ≤ c‖dnu,h‖1,2 ‖Jcunh‖1,2 ‖znu,h‖1,2
K5 ≤ c‖dnθ,h‖1,2 ‖θ + θb‖∞;H2 ‖un − Jcu

n‖
K6 ≤ c‖dnθ,h‖1,2 ‖θ + θb‖∞;H1 ‖Jcznu,h‖1,2
K7 ≤ c‖dnθ,h‖1,2 ‖θ + θb‖∞;H1 ‖Jcdnu,h‖

1
2 ‖Jcdnu,h‖

1
2
1,2

K8 ≤ c‖dnθ,h‖1,2 ‖Jcunh‖1,2 ‖znθ,h‖1,2.
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Thus,

|〈R3,d
n
u,h〉|

‖dnu,h‖1,2
≤ C3,1

(
‖un − Jcu

n‖ + ‖Jcznu,h‖1,2 + ‖Jcdnu,h‖
1
2 ‖Jcdnu,h‖

1
2
1,2

)
(5.87)

+ C3,2‖Jcunh‖1,2‖znu,h‖1,2

|〈R8, d
n
θ,h〉|

‖dnθ,h‖1,2
≤ C8,1

(
‖un − Jcu

n‖ + ‖Jcznu,h‖1,2 + ‖Jcdnu,h‖
1
2 ‖Jcdnu,h‖

1
2
1,2

)
(5.88)

+ C8,2‖Jcunh‖1,2‖znθ,h‖1,2.

Estimation of Difference Quotient Residual

The residual norms of the difference quotients, R1 and R6, can be estimated via

|〈R1,vh〉|
‖vh‖1,2

≤ ‖∂tun − k−1Jdu
n‖−1,2 + k−1‖Jdznu,h‖−1,2 (5.89)

|〈R6, τh〉|
‖τh‖1,2

≤ ‖∂tθn − k−1Jdθ
n‖−1,2 + k−1‖Jdznθ,h‖−1,2. (5.90)

Left-Hand Sides

By using Assumption 5.20 (iii) and the definition of wn
h by means of the Stokes projection,

the left-hand sides of (5.76),(5.78) can be estimated from below,

k−1(Jdd
n
u,h,d

n
u,h) + av(d

n
u,h,d

n
u,h)− b(dnu,h, d

n
p,h)

≥ ok−1J1
(
‖dnu,h‖2 + U2

n

)
+ k−1U

2
n +

1

1 + c20
ν‖dnu,h‖21,2 (5.91)

k−1(Jdd
n
θ,h, d

n
θ,h) + aτ (d

n
θ,h, d

n
θ,h)

≥ ok−1J1
(
‖dnθ,h‖2 + T 2

n

)
+ k−1T

2
n +

1

1 + c2D
κ‖dnθ,h‖21,2. (5.92)

Here, (Un)n, (Un)n, (Tn)n, (Tn)n denote real sequences according to Assumption 5.20.

Application of Discrete Gronwall Inequality

Combination of the previous estimates (5.81), (5.86) - (5.92) with vh = dnu,h and τh = dnθ,h,

application of Young’s inequality ab ≤ 1
2ǫa

2 + ǫ
2b

2 for all a, b ∈ R, ǫ > 0 and the inequality

(
∑n

i=1 ai)
2 ≤ n

∑n
i=1 a

2
i for ai ≥ 0 yields for n ≥ q:

ωl ≤ c(ωv
r + ωτr ) (5.93)
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with

ωv
r :=

1

ǫ1

(
‖∂tun − k−1Jdu

n‖2−1,2 + k−2‖Jdznu,h‖2−1,2

)

+
1

ǫ3,1

(
C2
3,1‖un − Jcu

n‖2 + C2
3,1‖Jcznu,h‖21,2 + C2

3,2‖Jcunh‖21,2‖znu,h‖21,2
)

+
1

ǫ23,1ǫ3,2
C4
3,1‖Jcdnu,h‖2

+
1

ǫ4

(
C2
4,1‖θn − Jfθ

n‖21,2 + C2
4,2

(
‖Jfznθ,h‖21,2 + ‖znΦ,h‖21,2

))

+
1

ǫ4
C2
4,3

(
C2
0,1

(
‖θn − Jgθ

n‖2 + ‖Jgznθ,h‖2 + ‖Jgdnθ,h‖2
)
+ C2

0,2‖znΦ,h‖2
)

+

(
1

ǫ24ǫ4,i
C4
4,i +

1

ǫ4,ii
C2
4,ii

)
‖Jfdnθ,h‖2

ωτr :=
1

ǫ6

(
‖∂tθn − k−1Jdθ

n‖2−1,2 + k−2‖Jdznθ,h‖2−1,2

)

+
κ

ǫ7
‖znθ,h‖21,2

+
1

ǫ8,1

(
C2
8,1‖un − Jcu

n‖2 + C2
8,1‖Jcznu,h‖21,2 + C2

8,2‖Jcunh‖21,2‖znθ,h‖21,2
)

+
1

ǫ28,1ǫ8,2
C4
8,1‖Jcdnu,h‖2

and

ωl := ok−1J1
(
‖dnu,h‖2 + ‖dnθ,h‖2 + U2

n + T 2
n

)
+ k−1

(
U

2
n + T

2
n

)

+
(
2ν̃ − ǫ1

2
− ǫ3,1

2
− ǫ4

2
− ǫ4,ii

2
− ǫ4,iii

2

)
‖dnu,h‖21,2 −

ǫ3,2 + ǫ8,2
2

‖Jcdnu,h‖21,2

+
(
2κ̃− ǫ6

2
− ǫ7κ

2
− ǫ8,1

2

)
‖dnθ,h‖21,2 −

(
ǫ4,i
2

+
C2
4,iii

2ǫ4,iii

)
‖Jfdnθ,h‖21,2.

If ǫ4,iii > 0 is chosen such that
ǫ4,iii
2

< ν̃, (5.94)

then ǫ1, ǫ3,1, ǫ4, ǫ4,ii ∝ ν can be chosen such that
(
2ν̃ − ǫ1

2
− ǫ3,1

2
− ǫ4

2
− ǫ4,ii

2
− ǫ4,iii

2

)
> ν̃.

On the other hand, if there is some σ ∈ (0, 1) such that the condition

C2
4,iii < σ

κ̃

q|f |22
ǫ4,iii (5.95)

holds, then

−
(
ǫ4,i
2

+
C2
4,iii

2ǫ4,iii

)
‖Jfdnθ,h‖21,2 ≥ −

(
ǫ4,i
2

+
C2
4,iii

2ǫ4,iii

)
|f |22

q∑

i=1

‖dn−iθ,h ‖21,2

≥ −
(
ǫ4,i
2

|f |22 + σ
κ̃

2q

) q∑

i=1

‖dn−iθ,h ‖21,2.
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Thus, ǫ4,i > 0 can be chosen sufficiently small such that

−
(
ǫ4,i
2

+
C2
4,iii

2ǫ4,iii

)
‖Jfdnθ,h‖21,2 ≥ − κ̃

2q

q∑

i=1

‖dn−iθ,h ‖21,2.

In summary, if

C2
4,iii <

2ν̃κ̃

q|f |22
, (5.96)

then one can always select σ ∈ (0, 1) and ǫ4,iii > 0 such that both (5.94) and (5.95) do hold,
since

σ
κ̃

q|f |22
ǫ4,iii →

(
2ν̃κ̃

q|f |22

)−
for σ → 1−, ǫ4,iii → (2ν̃)−.

Note that (5.96) is precisely the assumed condition (5.75).
Choosing the remaining ǫ7 > 0, ǫ6, ǫ8,1 ∝ κ such that

(
2κ̃− ǫ6

2
− ǫ7κ

2
− ǫ8,1

2

)
≥ κ̃

and ǫ3,2, ǫ8,2 ∝ ν such that
ǫ3,2 + ǫ8,2

2
≤ ν̃

2q|c|22
,

one obtains from (5.93),

ok−1J1
(
‖dnu,h‖2 + ‖dnθ,h‖2 + U2

n + T 2
n

)
+ k−1

(
U

2
n + T

2
n

)

+ ν̃‖dnu,h‖21,2 + κ̃‖dnθ,h‖21,2 −
ν̃

2q

q∑

i=1

‖dn−iu,h ‖21,2 −
κ̃

2q

q∑

i=1

‖dn−iθ,h ‖21,2

≤
q∑

i=1

{
αu‖dn−iu,h ‖2 + αθ‖dn−iθ,h ‖2

}
+ αn + βn + γn + δn, (5.97)

with factors for n ≥ q

αu := c

(
1

ν3
C4
3,1 +

1

κ2ν
C4
8,1

)
|c|2∞

αθ := c

(
1

ν2κ
C4
4,i +

1

ν
C2
4,ii

)
|f |2∞ + c

1

ν
C2
4,3C

2
0,1|g|2∞

and

αn

c
≤
(
1

ν
‖∂tun − k−1Jdu

n‖2−1,2 +

(
1

ν
C2
3,1 +

1

κ
C2
8,1

)
‖un − Jcu

n‖2
)

+

(
1

κ
‖∂tθn − k−1Jdθ

n‖2−1,2 +
1

ν
C2
4,1‖θn − Jfθ

n‖21,2 +
1

ν
C2
4,3C

2
0,1‖θn − Jgθ

n‖2
)

βn

c
≤
(
1

ν
C2
3,1 +

1

κ
C2
8,1

)
‖Jcznu,h‖21,2 +

1

ν
C2
4,2‖Jfznθ,h‖21,2 + κ‖znθ,h‖21,2 +

1

ν
C2
4,2‖znΦ,h‖21,2

+
1

ν
C2
4,3C

2
0,1‖Jgznθ,h‖2 +

1

ν
C2
4,3C

2
0,2‖znΦ,h‖2

γn

c
≤ 1

ν
k−2‖Jdznu,h‖2−1,2 +

1

κ
k−2‖Jdznθ,h‖2−1,2

δn

c
≤ ‖Jcunh‖21,2

(
1

ν
C2
3,2‖znu,h‖21,2 +

1

κ
C2
8,2‖znθ,h‖21,2

)
.
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Multiplication of (5.97) by ko−1 and summation from n = q, . . . ,M for arbitraryM ∈ {q, . . . , N}
gives

‖dMu,h‖2 + ‖dMθ,h‖2 + U2
M + T 2

M + k

M∑

n=q

1

o

{
k−1

(
U

2
n + T

2
n

)
+
ν̃

2
‖dnu,h‖21,2 +

κ̃

2
‖dnθ,h‖21,2

}

≤ k
M−1∑

n=0

2q

o

{
αu‖dnu,h‖2 + αθ‖dnθ,h‖2

}
+ k

M∑

n=q

1

o
{αn + βn + γn + δn} (5.98)

+ k

q−1∑

i=0

1

o

{
ν̃

2
‖diu,h‖21,2 +

κ̃

2
‖diθ,h‖21,2

}
+ ‖dq−1

u,h ‖2 + ‖dq−1
θ,h ‖2 + U2

q−1 + T 2
q−1.

Application of the discrete Gronwall inequality, Lemma A.42, finally yields

‖dMu,h‖2 + ‖dMθ,h‖2 + U2
M + T 2

M + k

M∑

n=q

1

o

{
k−1

(
U

2
n + T

2
n

)
+
ν̃

2
‖dnu,h‖21,2 +

κ̃

2
‖dnθ,h‖21,2

}

≤ exp
(
T2qo−1max {αu, αθ}

)

·
(
k

N∑

n=q

1

o
{αn + βn + γn + δn}+ C

2
q−1

)
,

(5.99)

with C
2
q−1 denoting those terms in (5.98) that correspond to time steps i ≤ q − 1 only, i.e. the

last row in (5.98).

Finite Element Approximation Error

The finite element approximation errors can be bounded by means of Assumption 5.3, Lemma
5.6, and the imposed regularity of the exact solution:

‖znu,h‖1,2 ≤ CSh
l

(
‖u‖∞;Hl+1 +

1

ν
‖p‖∞;Hl

)
(5.100)

‖znp,h‖ ≤ CSh
l
(
ν‖u‖∞;Hl+1 + ‖p‖∞;Hl

)
(5.101)

‖znθ,h‖1,2 ≤ chl‖θ‖∞;Hl+1 (5.102)

‖znΦ,h‖1,2 ≤ chl‖Φ‖∞;Hl+1 . (5.103)

By using the linearity of ΠS and ΠXh
, Assumption 5.3 and Lemma 5.6, 5.8, one obtains for an

arbitrary q-step difference operator Jh,

‖Jhznu,h‖p,2 = ‖
q∑

i=0

hiu
n−i −

q∑

i=0

hiΠS(u
n−i, pn−i)‖p,2

= ‖Jhun −ΠS(Jhu
n, Jhp

n)‖p,2

≤ CSh
l+l∗

(
‖Jhun‖l+1,2 +

1

ν
‖Jhpn‖l,2

)
(5.104)

‖Jhznx,h‖p,2 = ‖
q∑

i=0

hix
n−i −

q∑

i=0

hiΠXh
xn−i‖p,2

= ‖Jhxn −ΠXh
Jhx

n‖p,2
≤ chl‖Jhxn‖l+1,2, (5.105)
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for x ∈ {θ,Φ} and p ∈ {0, 1}. Here, l∗ = 1 if the underlying Stokes problem is regular and p = 0.
Otherwise, l∗ = 0.

Final Error Estimation for Velocity, Temperature and Potential

The term k
o

∑N
n=q {αn + βn + γn + δn} in (5.99) can estimated as follows:

k

o

N∑

n=q

αn <∼ k
N∑

n=q

‖∂tun − k−1Jdu
n‖2−1,2 + k

N∑

n=q

‖∂tθn − k−1Jdθ
n‖2−1,2

+ k

N∑

n=q

‖un − Jcu
n‖2 + k

N∑

n=q

‖θn − Jfθ
n‖21,2 + k

N∑

n=q

‖θn − Jgθ
n‖2

= E(k)2, (5.106)

and, by means of (5.100)-(5.103), there holds

k

o

N∑

n=q

βn <∼ h2l. (5.107)

Using (5.104) and (5.105) with h = d,

k

o

N∑

n=q

γn <∼ k−1

(
h2l+2l∗

N∑

n=q

‖Jdun‖2l+1,2 + h2l+2l∗
N∑

n=q

‖Jdpn‖2l,2 + h2l
N∑

n=q

‖Jdθn‖2l+1,2

)

= E(h, k)2. (5.108)

Combination of (5.100),(5.102) and the discrete stability result, Lemma 5.23, yields

k

o

N∑

n=q

δn ≤ c

o
max

n∈{q,...,N}

(
1

ν
C2
3,2‖znu,h‖21,2 +

1

κ
C2
8,2‖znθ,h‖21,2

)
· q|c|2∞k

N∑

n=0

‖unh‖21,2

<∼ h2l. (5.109)

Squaring and multiplying (5.82) by k, summing over n = q, . . . , N and using (5.103) gives

k

N∑

n=q

‖∇dnΦ,h‖2 <∼ k

N∑

n=q

‖θn − Jgθ
n‖2 + h2l + k

N∑

n=0

‖dnθ,h‖2

<∼ E(k)2 + h2l + E3(q)
2 + k

N∑

n=q

‖dnθ,h‖2. (5.110)

Using (5.106) - (5.109), the right-hand side in (5.99) is equal to the stated term Eu,θ(h, k, q), up
to a multiplicative constant that is independent of h and k. In this way, the estimates

‖
(
dnu,h

)
n
‖l2(q,N,H1) + ‖

(
dnθ,h

)
n
‖l2(q,N,H1) <∼ Eu,θ(h, k, q) (5.111)

‖
(
dnu,h

)
n
‖l∞(q,N,L2) + ‖

(
dnθ,h

)
n
‖l∞(q,N,L2) <∼ Eu,θ(h, k, q) (5.112)

‖ (Un)n ‖l∞(q,N ;R) + ‖ (Tn)n ‖l∞(q,N ;R) <∼ Eu,θ(h, k, q) (5.113)

‖
(
Un
)
n
‖l2(q,N ;R) + ‖

(
Tn
)
n
‖l2(q,N ;R) <∼ Eu,θ(h, k, q)k

1
2 (5.114)
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follow. Similarly, the square root of the right-hand side in (5.110) can be estimated from above
by EΦ(h, k, q) (under the use of (5.111)). Thus,

‖
(
dnΦ,h

)
n
‖l2(q,N,H1) <∼ EΦ(h, k, q) (5.115)

is obtained. The stated assertions on the complete error of velocity, temperature and potential
now follow by the decomposition en·,h = zn·,h + dn·,h, (5.111), (5.112), (5.115), estimations (5.100)
- (5.103) for zn·,h and the triangle inequality.

Pressure Error Estimation

As next step, the pressure error dnp,h for n ≥ q is considered. To this end, note that there
holds for n ≥ q (see [75])

‖dnu,h‖1,2 ≤ min
{
ch−1‖dnu,h‖, ‖dnu,h‖1,2

}

≤ min
{
ch−1‖

(
dnu,h

)
n
‖l∞(q,N ;L2), k

− 1
2 ‖
(
dnu,h

)
n
‖l2(q,N ;H1)

}

<∼ min
{
h−1, k−

1
2

}
Eu,θ(h, k, q)

=: D̃(h, k, q)

by the inverse estimate, Assumption 5.3 (v), and (5.111), (5.112). Thus,

‖
(
dnu,h

)
n
‖l∞(0,N ;H1) <∼ max

{
D̃(h, k, q), ‖dnu,h‖1,2 : n = 0, . . . , q − 1

}
=: D(h, k, q).

Moreover, by

‖unh‖1,2 ≤ ‖un‖1,2 + ‖znu,h‖1,2 + ‖dnu,h‖1,2

<∼ ‖u‖∞;H1 + CS

(
‖u‖∞;Hl+1 +

1

ν
‖p‖∞;Hl

)
hl +D(h, k, q)

<∼ 1 + hl +min
{
h−1, k−

1
2

}
Eu,θ(h, k, q) + max{‖un − unh‖1,2 : n = 0, . . . , q − 1}

=: Cp(h, k, q),

one obtains
‖ (unh)n ‖l∞(0,N ;H1) <∼ Cp(h, k, q). (5.116)

Now, by the discrete inf-sup condition, Assumption 5.3 (ii), and the error equation (5.76),

β‖dnp,h‖ ≤ sup
vh∈Uh

b(vh, d
n
p,h)

‖vh‖1,2

≤ sup
vh∈Uh

1

‖vh‖1,2

(
k−1|(Jddnu,h,vh)|+ |av(dnu,h,vh)|+ |〈Rn1 ,vh〉|

+ |〈Rn3 ,vh〉|+ |〈Rn4 ,vh〉|
)

≤ k−1‖Jddnu,h‖ + ν‖dnu,h‖1,2 + ‖Rn1‖U∗

h
+ ‖Rn3‖U∗

h
+ ‖Rn4‖U∗

h
. (5.117)

‖Rn1‖U∗

h
and ‖Rn4‖U∗

h
can be estimated from above by (5.89) and (5.86) respectively,

‖Rn1‖U∗

h
≤ ‖∂tun − k−1Jdu

n‖−1,2 + k−1‖Jdznu,h‖−1,2 (5.118)

‖Rn4‖U∗

h
<∼ ‖θn − Jfθ

n‖1,2 + ‖θn − Jgθ
n‖ (5.119)

+ ‖Jgznθ,h‖+ ‖Jfznθ,h‖1,2 + ‖Jgdnθ,h‖+ ‖znΦ,h‖1,2
+ ‖Jfdnθ,h‖ + ‖Jfdnθ,h‖

1
2 ‖Jfdnθ,h‖

1
2
1,2 + ‖Jfdnθ,h‖1,2.
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To estimate ‖Rn3‖U∗

h
, use Lemma 5.10 (iii), (x) with H2(Ω) →֒ C0(Ω), H2(Ω) →֒ W 1,3(Ω) and

the bound (5.116) to obtain

‖Rn3‖U∗

h
= sup

vh∈Uh

|〈Rn3 ,vh〉|
‖vh‖1,2

≤ sup
vh∈Uh

1

‖vh‖1,2

(
|c̃v(un − Jcu

n,un,vh)|+ |c̃v(Jc(un − unh),u
n,vh)|

+ |c̃v(Jcunh,un − unh,vh)|
)

≤ ‖un − Jcu
n‖‖un‖2,2 + |c|∞

q∑

i=1

{
‖zn−iu,h ‖1,2 + ‖dn−iu,h ‖1,2

}
‖un‖1,2

+ |c|∞
(

q∑

i=1

‖un−ih ‖1,2
)
(
‖znu,h‖1,2 + ‖dnu,h‖1,2

)

<∼ ‖un − Jcu
n‖ +

q∑

i=1

{
‖zn−iu,h ‖1,2 + ‖dn−iu,h ‖1,2

}
(5.120)

+ Cp(h, k, q)
(
‖znu,h‖1,2 + ‖dnu,h‖1,2

)
.

Squaring and multiplication by k of (5.117), summing from n = q, . . . , N , using the estimates
on the residual norms (5.118), (5.119), (5.120), the estimate of the approximation errors (5.100)
- (5.105) and the estimates of the discretization errors (5.111), (5.112) yields

k

N∑

n=q

‖dnp,h‖2 <∼ k

N∑

n=q

‖∂tun − k−1Jdu
n‖2−1,2

+ k
N∑

n=q

{
‖un − Jcu

n‖2 + ‖θn − Jgθ
n‖2 + ‖θn − Jfθ

n‖21,2
}

+
(
1 + Cp(h, k, q)

2
)
h2lk

N∑

n=0

{
‖un‖2l+1,2 + ‖pn‖2l,2 + ‖θn‖2l+1,2 + ‖Φn‖2l+1,2

}

+ h2l+2l∗k−1
N∑

n=q

{
‖Jdun‖2l+1,2 + ‖Jdpn‖2l+1,2

}

+
(
1 + Cp(h, k, q)

2
)
k

q−1∑

n=0

{
‖dnu,h‖21,2 + ‖dnθ,h‖21,2

}

+ k−1
N∑

n=q

‖Jddnu,h‖2

+
(
1 + Cp(h, k, q)

2
)
Eu,θ(h, k, q)2

<∼ E(k)2

+ Cp(h, k, q)
2h2l

+ E(h, k)2

+ Cp(h, k, q)
2
(
h2l + E1(q)

2
)

+ Ed(h, k)
2

+ Cp(h, k, q)
2Eu,θ(h, k, q)2.
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Thus,
‖
(
dnp,h

)
n
‖l2(q,N,L2) <∼ Ep(h, k, q). (5.121)

The stated assertion on enp,h now follows from (5.121) and the triangle inequality.

Bound on Temporal Variation of Estimation Error

It remains to derive an upper bound for Ed(h, k). Setting vh = Jdd
n
u,h in (5.76) und using

Young’s inequality yields

k−1‖Jddnu,h‖2 ≤
ν

2

q∑

i=0

|di|
{
‖∇dnu,h‖2 + ‖∇dn−iu,h ‖2

}

+ c
(
‖Rn1‖2U∗

h
+ ‖Rn3‖2U∗

h
+ ‖Rn4‖2U∗

h

)
+ c

q∑

i=0

|di|2‖dn−iu,h ‖21,2.

Summing this inequality from n = q, . . . , N and using the previously derived bounds on
{
‖Rni ‖U∗

h

}4

i=1
,

(5.118), (5.119), (5.120), the approximation estimates (5.100) - (5.105) and the error estimates
for velocity and temperature, (5.111), (5.112), yields

k−1
N∑

n=q

‖Jddnu,h‖2 <∼ (1 + Cp(h, k, q)
2)

N∑

n=0

‖dnu,h‖21,2 +
N∑

n=q

‖dnθ,h‖21,2 +
N∑

n=q

‖∂tun − k−1Jdu
n‖2−1,2

+
N∑

n=q

{
‖un − Jcu

n‖2 + ‖θn − Jfθ
n‖21,2 + ‖θn − Jgθ

n‖2
}

+ k−2
N∑

n=q

‖Jdznu,h‖2−1,2

+
(
1 + Cp(h, k, q)

2
) N∑

n=0

{
‖znu,h‖21,2 + ‖znθ,h‖2

}

+
(
1 + Cp(h, k, q)

2
) N∑

n=0

{
‖znθ,h‖21,2 + ‖znΦ,h‖2 + ‖znΦ,h‖21,2

}

<∼
(
1 + Cp(h, k, q)

2
)
(
k−1Eu,θ(h, k, q)2 +

q−1∑

n=0

‖dnu,h‖21,2

)

+
N∑

n=q

‖∂tun − k−1Jdu
n‖2−1,2

+

N∑

n=q

{
‖un − Jcu

n‖2 + ‖θn − Jfθ
n‖21,2 + ‖θn − Jgθ

n‖2
}

+ h2l+2l∗k−2
N∑

n=q

{
‖Jdun‖2l+1,2 + ‖Jdpn‖2l,2

}

+
(
1 + Cp(h, k, q)

2
)
h2l

N∑

n=0

{
‖un‖2l+1,2 + ‖pn‖2l,2 + ‖θn‖2l+1,2 + ‖Φn‖2l+1,2

}
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Thus,

k−1
N∑

n=q

‖Jddnu,h‖2 <∼ Cp(h, k, q)
2
(
k−1Eu,θ(h, k, q)2 + h2l + E2(q)

2
)

(5.122)

+ k−1E2(k)

+ k−1E2(h, k)

+ Cp(h, k, q)
2h2l.

Taking the square root in (5.122) yields the final estimate

Ed(h, k) <∼ Ed(h, k, q). (5.123)

Remark 5.25. In the previous proof, we required that C2
4,iii < 2ν̃κ̃|f |−2

2 q−1, see (5.96). However,

this assumption could be relaxed to C2
4,iii < 4ν̃κ̃|f |−2

2 q−1, to the expense of a slightly more
technical presentation.

In the proof of Theorem 5.24, a time step size restriction when applying Gronwall’s inequality
could be avoided, since the right-hand side in (5.98) only contains terms ‖dnu,h‖, ‖dnθ,h‖ for n < M ,

whereas the corresponding left-hand side involves ‖dMu,h‖, ‖dMθ,h‖. Thereby, ‖dnu,h‖ stems from
‖Jcdnu,h‖ which in turn arises from the convection residual estimation (5.87), (5.88). For this
reason, it is assumed that Jc is an explicit difference operator. Otherwise, the right-hand side in
(5.98) would also depend on ‖dMu,h‖ and a restriction of the form k <∼ α−1

u would be necessary,
see Lemma A.42. An analogous argument applies for ‖dnθ,h‖ which occurs in the right-hand side
through the terms ‖Jfdnθ,h‖ and ‖Jgdnθ,h‖.
One drawback of the presented proof lies in the exponential factor that arises due to the

application of Gronwall’s inequality. This exponent is proportional to negative powers of viscosity
and thermal diffusion and may thus take very large values for typical fluids. Strictly speaking,
one obtains an exponent Cexp with

Cexp ∝ T max{αu, αθ} ∝ T
(
ν−3 + κ−2ν−1 + ν−2κ−1 + ν−1

)
. (5.124)

The term ν−3 + κ−2ν−1 comes from the estimation of the convection terms c̃v, c̃τ , see (5.2),
(5.87) and (5.88). In [66], an approach is shown that avoids the explicit occurrence of ν in
the exponential factor when deriving error estimates for the instationary incompressible Navier-
Stokes equations. This is achieved by the use of H(div)-conforming elements that yield exactly
divergence free discrete velocities in combination with ∇u ∈ L1(0, T ;L∞) and a W 1,∞-stability
assumption on the Stokes projection. Conditions for this stability are given in [30], for instance.
The term ν−2κ−1 is actually multiplied by the constant C4

4,i, which is introduced in the
estimation of the body force residual (5.86). As pointed out after equation (5.86), C4,i = 0
if Assumption 5.22 holds. The remaining factor ν−1 also arises due to the body force and is
multiplied by the constant

C2
4,ii + C2

4,3C
2
0,1 ∝

(
c0L

(θ,L2)
F

)2
+

(
L
(Φ,·)
F

(
‖θ‖∞;H2 + ‖θb‖1,3

) Lǫ
ǫ−

‖Φ+ Φb‖∞;W 1,∞

)2

. (5.125)

Thus, large values of ν−1 could be compensated if the domain has a small diameter, i.e. small
c0, and if the spatial variations of temperature and potential are rather low.
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Full Error Estimate

We now consider two concrete temporal discretization schemes by choosing the difference op-
erators introduced in Problem 5.19: 1-step BDF1 (which could be considered as semi-implicit
Euler) and a 2-step BDF2 method. It is shown that the resulting difference operators for both
schemes satisfy Assumption 5.20. Moreover, the k-dependent error contributions in Theorem
5.24, E(k), E(h, k) and Ed(h, k) are bounded from above in order to derive convergence rates
w.r.t. k. This is done by using Taylor expansion under certain assumptions on the temporal
regularity of the exact solution. However, it was pointed out in [35], that too strong regularity
requirements on the solution of the incompressible Navier-Stokes equations for t→ 0 imply non-
local compatibility conditions on the intial data which may be uncheckable in practice. Among
others, it is critical to impose the following assumptions according to Corollary 2.1 in [35]:

‖u‖∞;H3 <∞
‖∂tu‖∞;H1 <∞, ‖∂tu‖2;H2 <∞, (5.126)

‖∂ttu‖2;L2 <∞.

On the other hand, the following conditions “are optimal in the sense that higher, not time-
weighted regularity of the solution is equivalent to compatibility conditions on the problem’s
data” [24], according to Theorem 2.1 in [24] and [23]:

∂tu ∈ L2(0, T ;H1)

∂ttu ∈ L2(0, T ;H−1), t
1
2∂ttu ∈ L2(0, T ;L2), t∂ttu ∈ L2(0, T ;H1) (5.127)

t∂tttu ∈ L2(0, T ;H−1), t
3
2 (∂ttf − ∂tttu) ∈ L2(0, T ;L2),

where f denotes the entire right-hand side in the momentum equation. In (5.127), the integra-
bility of ∂ttu and ∂tttu is increased by weakening the spatial regularity requirements, i.e. going
from H1 over L2 to H−1, and by time-weighting, i.e. multiplication by tβ . In doing so, a possibly
non-smooth behavior of the solution for t → 0 can be compensated. The higher β, the more
regular the time-weighted terms become.
The proposed time stepping schemes are based on difference operators determined by the

vectors

a(1) = (0, 1), a(2) = (0, 2,−1)

b(1) = (1,−1), b(2) = (
3

2
,−2,

1

2
). (5.128)

Here, b(1) and b(2) define the standard one- and two-step backward finite differences Jd for ap-
proximating ∂t. The remaining difference operators Jc, Jf , Jg are determined by a(1) and a(2),
leading to the following time stepping schemes.

Definition 5.26. (BDF1 Scheme)
The 1-step BDF scheme is given by d := (1,−1), c := (0, 1), f := (0, 1), g := (0, 1).

Definition 5.27. (BDF2 Scheme)
The 2-step BDF scheme is given by d := (32 ,−2, 12), c := (0, 2,−1), f := (0, 2,−1), g :=
(0, 2,−1).

Both, BDF1 and BDF2 are widely used for discretizing flow problems, see e.g. [75] for the use of
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BDF1 for the Boussinesq equations and [24] and [31] for the use of BDF2 for the incompressible
Navier-Stokes equations. In BDF1, the velocity un in the convection terms c̃v, c̃τ is replaced by
the first order extrapolation un−1. In BDF2, the second order extrapolation 2un−1 − un−2 is
used. The same holds for the temperature in the body force term F and in the Gauss bilinear
form aβ .
It is easy to see that difference operators given by Definition 5.26 and 5.27 satisfy Assump-

tion 5.20 (i) and (ii). The stability condition (iii) is stated by Lemma 5.28, see e.g. [75] and [24].

Lemma 5.28. (Stability of Difference Operators)
Let Z denote a Hilbert space, z ∈ L2(0, T ;Z) with z′ ∈ L1(0, T ;Z), zn = z(tn) for n = 0, . . . , N .
Then,

(i) for n = 1, . . . , N ,

(Jb(1)zn, zn) =
1

2
J1‖zn‖2Z +

1

2
‖zn − zn−1‖2Z ,

i.e. o = 1
2 , Zn = 0 and Zn = 1√

2
‖Jb(1)zn‖Z in the notation of Assumption 5.20.

(ii) for n = 2, . . . , N ,

(Jb(2)zn, zn) =
1

4
J1
(
‖zn‖2Z + ‖Ja(2)zn+1‖2Z

)
+

1

4
‖zn+1 − 2zn + zn−1‖2Z ,

i.e. o = 1
4 , Zn = ‖Ja(2)zn+1‖Z and Zn = 1

2‖zn+1 − 2zn + zn−1‖Z .

The following corollaries now provide upper bounds for the k-dependent error contributions of
Theorem 5.24. In this way, the errors can be bounded in terms of h, k and El(q), l ∈ {1, 2, 3, 4}.
The later terms measure the error of the q initial conditions (uih, θ

i
h), i = 0, . . . , q − 1.

For each time stepping scheme, BDF1 and BDF2, two sets of estimates are derived. One set
that only requires regularity conditions that are not stronger than the ones stated in (5.127) and
another set which may involve the critical estimates (5.126) and, in return, allows for conver-
gence rates of higher order. We start with BDF1.

Corollary 5.29. (BDF1 Scheme with Weak Regularity Requirements)
Let the assumptions of Theorem 5.24 hold with l = 1 and let additionally

∂tu ∈ L2(0, T ;L2), ∂ttu ∈ L2(0, T ;H−1)

∂tθ ∈ L2(0, T ;H l+1), ∂ttθ ∈ L2(0, T ;H−1
D ).

Let the difference operators in Problem 5.19 be given according to Definition 5.26 and h, k < 1.
Then, the upper error bounds derived in Theorem 5.24 satisfy

Eu,θ(h, k, q) <∼ hl + k + hl+l
∗

k−1 + E1(q)

EΦ(h, k, q) <∼ hl + k + hl+l
∗

k−1 + E1(q) + E3(q)

Ep(h, k, q) <∼ k
1
2 + hlk−

1
2 + hl+l

∗

k−
3
2 + k−

1
2E1(q)

+ Cp(h, k, q)
(
hl + k + hl+l

∗

k−1 + E1(q)
)

Cp(h, k, q) <∼ 1 + E2(q) + min{h−1, k−
1
2 }
(
hl+l

∗

k−1 + E1(q)
)
.
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Proof. Using Lemma A.81 (i), (iii), (v) with β = 0, the error terms given by Theorem 5.24 can
be estimated as follows:

E(k)2 <∼ k2
(
‖∂ttu‖22;H−1 + ‖∂ttθ‖22;H−1

D

)

+ k2
(
‖∂tu‖22;L2 + ‖∂tθ‖22;H1 + ‖∂tθ‖22;L2

)

and

E(h, k)2 <∼ h2l+2l∗k−2

(
k

N∑

n=1

{
‖un‖2l+1,2 + ‖pn‖2l,2

}
)

+ h2l‖∂tθ‖22;Hl+1

<∼ h2l+2l∗k−2T
(
‖u‖2∞;Hl+1 + ‖p‖2∞;Hl

)
+ h2l‖∂tθ‖22;Hl+1

<∼ h2l+2l∗k−2 + h2l.

By Lemma 5.28 (i),

Ed(h, k)
2 = k−1

N∑

n=1

‖Jb(1)d
n
u,h‖2 = 2k−1

N∑

n=1

U
2
n = k−2‖

(
Un
)
n
‖2l2(1,N ;R)

<∼ k−1Eu,θ(h, k, q)2.

Thus,

Eu,θ(h, k, q) <∼ hl + k + hl+l
∗

k−1 + E1(q)

Ed(h, k)
2 <∼ k + h2lk−1 + h2l+2l∗k−3 + k−1E2

2(q).

Then, the assertion follows by plugging these estimates into the terms Ep, EΦ, Cp.

Corollary 5.30. (BDF1 Scheme with Strong Regularity Requirements)
Let the assumptions of Corollary 5.29 hold for some l ≥ 1 and let additionally

∂tu ∈ L2(0, T ;Hl+1) and ∂tp ∈ L2(0, T ;H l).

Then,

Eu,θ(h, k, q) <∼ k + hl + E1(q)

EΦ(h, k, q) <∼ k + hl + E1(q) + E3(q)

Ep(h, k, q) <∼ k
1
2 + hlk−

1
2 + k−

1
2E1(q) + Cp(h, k, q)

(
k + hl + E1(q)

)

Cp(h, k, q) <∼ 1 + E2(q) + min{h−1, k−
1
2 }E1(q).

Proof. The assertion follows analogously to Corollary 5.29, however, with

E(h, k)2 <∼ h2l+2l∗
(
‖∂tu‖22;Hl+1 + ‖∂tp‖22;Hl

)
+ h2l‖∂tθ‖22;Hl+1

<∼ h2l+2l∗ + h2l.

according to Lemma A.81 (v) with β = 0.
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The difference between Corollary 5.29 and 5.30 lies in the estimation of the term E(h, k). In
the strong regularity case, the finite difference ‖k−1Jdu

n‖l+1,2 can be estimated from above by
using ‖∂tun‖l+1,2 and thereby obtaining an upper bound that only depends on h. This is not
possible in the weak regularity case, where ‖k−1Jdu

n‖l+1,2 is simply estimated by using the
triangle inequality. Thus one does not get rid of the preceding factor k−1. At least, this factor is
multiplied by hl+l

∗

in the final estimate, such that the negative effect of an increased temporal
resolution can be compensated by an increased spatial resolution. Apart from this factor and the
initial condition contributions, the error of velocity, temperature and potential is proportional
to hl + k in both cases, as expected by a first order method in time. In contrast, a factor k

1
2 is

lost for the pressure error, similar to the estimates derived in [75].
We proceed with the BDF2 scheme.

Corollary 5.31. (BDF2 Scheme with Weak Regularity Requirements)
Let the assumptions of Theorem 5.24 hold with l = 1 and let additionally

∂tu ∈ L2(0, T ;L2), t
1
2∂ttu ∈ L2(0, T ;L2), t∂tttu ∈ L2(0, T ;H−1)

∂tθ ∈ L2(0, T ;H l+1), t∂ttθ ∈ L2(0, T ;H l+1), t
1
2∂ttθ ∈ L2(0, T ;H1), t∂tttθ ∈ L2(0, T ;H−1

D ).

Let the difference operators in Problem 5.19 be given according to Definition 5.27 and h, k < 1.
Then, the upper error bounds derived in Theorem 5.24 satisfy

Eu,θ(h, k, q) <∼ hl + k + hl+l
∗

k−1 + E1(q)

EΦ(h, k, q) <∼ hl + k + hl+l
∗

k−1 + E1(q) + E3(q)

Ep(h, k, q) <∼ k
1
2 + hl+l

∗

k−
3
2

+ Cp(h, k, q)
(
k

1
2 + hlk−

1
2 + hl+l

∗

k−
3
2 + k−

1
2E1(q) + E2(q)

)

Cp(h, k, q) <∼ 1 + E2(q) + min{h−1, k−
1
2 }
(
hl + hl+l

∗

k−1 + E1(q)
)
.

Proof. Using Lemma A.81 (ii) with β = 1
2 , (iv) with β = 1, (vi) with β = 0, γ = 1, the error

terms given by Theorem 5.24 can be estimated as follows:

E(k)2 <∼ k2
(
‖t∂tttu‖22;H−1 + ‖t∂tttθ‖22;H−1

D

)

+ k3
(
‖t 12∂ttu‖22;L2 + ‖t 12∂ttθ‖22;H1 + ‖t 12∂ttθ‖22;L2

)

<∼ k2 + k3

E(h, k)2 <∼ h2l+2l∗k−2
(
‖ (un)n ‖2l2(1,N ;Hl+1) + ‖ (pn)n ‖2l2(1,N ;Hl)

)

+ h2l
(
‖∂tθ‖22;Hl+1 + ‖t∂ttθ‖22;Hl+1

)

<∼ h2l+2l∗k−2T
(
‖u‖2∞;Hl+1 + ‖p‖2∞;Hl

)

+ h2l
(
‖∂tθ‖22;Hl+1 + ‖t∂ttθ‖22;Hl+1

)

<∼ h2l+2l∗k−2 + h2l.
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Thus,

Eu,θ(h, k, q) <∼ hl + k + hl+l
∗

k−1 + E1(q)

Ed(h, k)2 <∼ k−1
(
k2 + k3 + h2l+2l∗k−2

)

+ Cp(h, k, q)
2
(
h2l + k−1

(
h2l + k2 + h2l+2l∗k−2 + E1(q)

2
)
+ E2(q)

2
)

<∼ k + h2l+2l∗k−3 + Cp(h, k, q)
2
(
k−1h2l + k + h2l+2l∗k−3 + k−1E1(q)

2 + E2(q)
2
)
.

Then, the assertion follows by plugging these estimates into the terms Ep, EΦ, Cp.

Corollary 5.32. (BDF2 Scheme with Strong Regularity Requirements)
Let the assumptions of Corollary 5.31 hold for l ≥ 1 and let additionally

∂tu ∈ L2(0, T ;Hl+1), t∂ttu ∈ L2(0, T ;Hl+1), ∂ttu ∈ L2(0, T ;L2), ∂tttu ∈ L2(0, T ;H−1)

∂tp ∈ L2(0, T ;H l), t∂ttp ∈ L2(0, T ;H l)

∂ttθ ∈ L2(0, T ;H1), ∂tttθ ∈ L2(0, T ;H−1
D ).

Then,

Eu,θ(h, k, q) <∼ k2 + hl + E1(q)

EΦ(h, k, q) <∼ k2 + hl + E1(q) + E3(q)

Ep(h, k, q) <∼ k
3
2 + hl+l

∗

k−
1
2 + Cp(h, k, q)

(
k

3
2 + hlk−

1
2 + k−

1
2E1(q) + E2(q)

)

Cp(h, k, q) <∼ 1 + E2(q) + min{h−1, k−
1
2 }E1(q).

Proof. The assertion follows analogously to Corollary 5.31, however, with

E(k)2 <∼ k4
(
‖∂tttu‖22;H−1 + ‖∂tttθ‖22;H−1

D

)

+ k4
(
‖∂ttu‖22;L2 + ‖∂ttθ‖22;H1 + ‖∂ttθ‖22;L2

)

<∼ k4

E(h, k)2 <∼ h2l+2l∗
(
‖∂tu‖22;Hl+1 + ‖∂tp‖22;Hl + ‖t∂ttu‖22;Hl+1 + ‖t∂ttp‖22;Hl

)

+ h2l
(
‖∂tθ‖22;Hl+1 + ‖t∂ttθ‖22;Hl+1

)

<∼ h2l+2l∗ + h2l,

by using Lemma A.81 (ii), (iv), (vi) with β = 0, γ = 1. Thus,

Eu,θ(h, k, q) <∼ hl + hl+l
∗

+ k2 + E1(q)

Ed(h, k)2 <∼ k−1
(
k4 + h2l+2l∗

)
+ Cp(h, k, q)

2
(
h2l + k−1

(
k4 + h2l + E1(q)

2
)
+ E2(q)

2
)

<∼ k3 + k−1h2l+2l∗ + Cp(h, k, q)
2
(
k3 + k−1h2l + k−1E1(q)

2 + E2(q)
2
)
.
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Corollary 5.31 shows that the BDF2 scheme yields the same convergence order as BDF1 in case
of weak regularity requirements. To obtain the expected second order convergence in time, see
Corollary 5.32, it is necessary to impose critical conditions, e.g. ∂ttu ∈ L2(0, T ;L2), as stated
in (5.126). One way of coping with this issue is proposed in [36] and [24] for the incompressible
Navier-Stokes equations. There, a time-weighted error is considered and optimal order conver-
gence rates are derived.
In Section 6.2, we present numerical experiments that exhibit first and second order conver-

gence rates of both proposed schemes. Moreover, we will see that a reduced temporal regularity
for t → 0 may actually lead to an observable reduced convergence rate when the BDF2 scheme
is used.
In practice, the initial condition errors El(q) can be controlled in the following way: First,

(u0
h, θ

0
h) is computed by projecting or interpolating the analytically known functions (u0, θ0) onto

the respective discrete spaces. The resulting error can be bounded in terms of hl. Then, the
remaining initial conditions (uih, θ

i
h) for i = 1, . . . q − 1 can be computed by using BDF1 with

time step size k2. In this way, the resulting errors can be bounded in terms of hl + k2 according
to the previously derived convergence rates of BDF1.

5.3. Modeling of DEP Force

We conclude this section on discretization of the TEHD Boussinesq equations by reconsidering
the modeling of DEP force w.r.t. the requirements posed in Section 5.2. The next lemma shows
that the force terms that are defined in Section 3.3 and which are based on linearization do
actually satisfy Assumption 5.21

Lemma 5.33. (Properties of DEP Force Terms, Continued)
The DEP force terms Fs,0, Fa,0 and Fa,1 given by Definition 3.23 satisfy Assumption 5.21.

Proof. Consider Fa,1: Let θ1, θ2,Φ ∈ H1(Ω) and v ∈ U. Then,

|〈Fa,1(θ1,Φ)− Fa,1(θ2,Φ),v〉U∗ | ≤ c2αe‖∇2Φ0‖0,∞‖Φ‖1,2‖θ1 − θ2‖0,3‖∇v‖
+ cαg‖g‖0,∞‖θ1 − θ2‖0,3‖∇v‖

=: L
(θ,∗)
F (‖Φ‖1,2) ‖θ1 − θ2‖0,3‖∇v‖,

thus (i) follows. Moreover, for θ, Φ1, Φ2 ∈ H1(Ω) there holds

|〈Fa,1(θ,Φ1)− Fa,1(θ,Φ2),v〉U∗ | ≤ c2αe‖∇2Φ0‖0,6‖Φ1 − Φ2‖1,2‖θ‖1,2‖∇v‖
=: L

(Φ,∗)
F ‖Φ1 − Φ2‖1,2‖θ‖1,2‖∇v‖,

which implies (ii). The validness of (iii) is clear. The proof for Fs,0, Fa,0 follows analogously.
In the former case, use the identity

(|∇Φ0|2∇θ,v) = −(|∇Φ0|2 θ,∇ · v)− (∇ |∇Φ0|2 θ,v).

Finally, we give a DEP model that satisfies the alternative Assumption 5.22 and which does
not require a priori information, such as the base potential in the definition of Fs,0, Fa,0 and
Fa,1. Instead, the integrability of the electric field term |∇Φ|2 in the DEP force is increased by
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replacing |∇Φ|2 by |mK ◦ ∇Φ|2, where mK is a cut-off function. In this way, one obtains L∞

integrability instead of L2 and it is possible to define a DEP model that satisfies Assumption
5.22. This is shown in the subsequent Definition 5.34 and Lemma 5.35.

Definition 5.34. (Cut-Off DEP Force)
For K > 0 let mK ∈ L∞(Rd) denote a Lipschitz continuous function with Lipschitz constant LK
and ‖mK‖0,∞ ≤ K. Define

Fs,K : H1(Ω)×H1(Ω) → U∗

(θ,Φ) 7→ αe(|mK ◦ ∇Φ|2∇θ, ·)− αg(θg, ·).

Lemma 5.35. (Properties of Cut-Off DEP Force Term)

The force term Fs,K given by Definition 5.34 satisfies Assumption 5.22 with L
(θ,H1)
F = αeK

2 and

L
(θ,L2)
F = αg‖g‖0,∞.

Proof. Let θ1, θ2,Φ ∈ H1(Ω) and v ∈ U. Then,(i) follows from

|〈Fs,K(θ1,Φ)− Fs,K(θ2,Φ),v〉U∗ | ≤ αe‖|mK ◦ ∇Φ|2‖0,∞‖∇(θ1 − θ2)‖‖v‖
+ αg‖g‖0,∞‖θ1 − θ2‖‖v‖

≤ αeK
2‖∇(θ1 − θ2)‖‖v‖+ αg‖g‖0,∞‖θ1 − θ2‖‖v‖

Moreover, for θ ∈W 1,3(Ω), Φ1,Φ2 ∈ H1(Ω) there holds

|〈Fs,K(θ,Φ1)− Fs,K(θ,Φ2),v〉U∗ | ≤ αe‖|mK ◦ ∇Φ1|2 − |mK ◦ ∇Φ2|2‖‖∇θ‖0,3‖v‖0,6
≤ αe‖mK ◦ ∇Φ1 +mK ◦ ∇Φ2‖0,∞‖mK ◦ ∇Φ1 −mK ◦ ∇Φ2‖
· ‖∇θ‖0,3‖v‖0,6

≤ αe2KLK‖∇(Φ1 − Φ2)‖‖∇θ‖0,3‖v‖0,6

Thus, (ii) is satisfied and (iii) follows trivially.

An example of a suitable cut-off function mK is given by the metric projection of a vector w ∈ Rd

onto the ball {x ∈ Rd : |x| ≤ K}.

Definition 5.36. (Metric Projection)
For K > 0 the metric projection is defined by

mK : Rd → Rd, w 7→
{
w, |w| ≤ K

K|w|−1w, |w| > K.

The following Lemma 5.37 states that the previously defined cut-off function satisfies the re-
quired properties as stated in Definition 5.34.

Lemma 5.37. (Properties of Cut-Off Function)
Let mK be given by Definition 5.36. Then, ‖mK‖0,∞ = K and mK is Lipschitz continuous with
constant LK = 1.
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5 Numerical Approximation

Proof. The stated assertion ‖mK‖0,∞ = K is clear and the Lipschitz continuity follows from
the fact, that mK can be written as mK(w) = w0 where w0 is the unique solution of the
minimization minr∈B |w − r|, with the compact and convex set B = {x ∈ Rd : |x| ≤ K}, see
e.g. [7].

Regarding Assumption 5.22 only, the actual value K does not play a role in the construction of
Fs,K . However, according to Lemma 5.23 and Theorem 5.24, a small data condition of the form

L
(θ,H1)
F ≤ cΩ

√
νκ (5.129)

has to be supposed. Following Lemma 5.35, there holds L
(θ,H1)
F = αeK

2 which yields an upper
bound on K,

K2 ≤ cΩ
αe

√
νκ. (5.130)

If Fs,K is based on the metric projection mK of Definition 5.36, then the electric field at some
point x ∈ Ω is not modified, as long as its magnitude is below a given threshold. Thus, the
proposed approach can be justified for practical applications, if one can give an upper bound on
maxx∈Ω |E(x)| = maxx∈Ω |∇Φ(x)|, e.g. by physical reasons. Moreover, these definitions of Fs,K
and mK allow to draw some conclusions about the error when F is set to the straightforward
DEP formulation

Fs(θ,Φ) = αe(|∇Φ|2∇θ, ·)− αg(θg, ·). (5.131)

Note that Fs does not satisfy the required Assumptions 5.21 and 5.22. However, if the computed
discrete potential is bounded according to

‖∇(Φnh +Φb)‖0,∞ ≤ K∗ for all n = 0, . . . , N, (5.132)

uniformly w.r.t. h and k, then the obtained discrete solution is de facto the same as if it was
computed by using F = Fs,K∗

. If, in addition, K∗ is small enough to fulfill (5.130), then Theorem
5.24 can be applied and the corresponding error estimates do hold. In practice, condition (5.132)
probably can not be proven in a rigorous way, since it can only be checked for certain values
of h and k. However, this uniform boundedness might be safely assumed, if a series of discrete
potentials for various discretization parameters h, k do not exhibit a significant grow in the
‖ · ‖0,∞-norm.

Unfortunately, the new DEP model Fs,K does not satisfy Assumption 3.12 and 4.2 which
are needed to show existence of solutions of the stationary and instationary TEHD Boussinesq
equations. The problem is that the weak convergence Φn ⇀ Φ in H1(Ω) does not translate to
pointwise convergence in U∗ as required by Assumption 3.12 (iii), since the term |mK ◦∇Φ|2 is
nonlinear w.r.t. Φ.
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6. Numerical Experiments

In this section, we present numerical experiments that are obtained by solving the stationary
and instationary TEHD Boussinesq equations with the discretization proposed in Section 5. Two
different scenarios are considered. First, a 2D benchmark problem is solved for which an analytic
solution is known. This configuration is used to measure the error of the discrete solution and
compare the empirical convergence rates with the theoretical ones that are derived in Section
5.1 and 5.2. The second scenario is given by a cylindrical configuration which is commonly used
by engineers to investigate DEP-driven flow with physical experiments in the laboratory, see
e.g. [68]. Before we turn to the numerical results in Section 6.2 and 6.3, the underlying solution
method, implementation and computing details are given in Section 6.1.
As another preparation step, we make a note of the temperature boundary lifting θb. According

to Assumption 3.1 (iv), a family of boundary liftings {θb[ξ] : ξ ∈ (0, 1)} is supposed with the
property ‖θb[ξ]‖0,3 ≤ ξ for all ξ ∈ (0, 1). In case of simple geometries, such a family can be
constructed by using the following function for ǫ ∈ (0, 12), bi, bo ∈ R:

bǫ,bi,bo(x) :=





bi,ǫ(x), 0 ≤ x < ǫ

0, ǫ ≤ x < 1− ǫ

bo,ǫ(x), 1− ǫ ≤ x ≤ 1

(6.1)

with polynomials bi,ǫ, bo,ǫ that satisfy

bi,ǫ ∈ P3([0, ǫ]), bi,ǫ(0) = bi, bi,ǫ(ǫ) = b
′

i,ǫ(ǫ) = b
′′

i,ǫ(ǫ) = 0

bo,ǫ ∈ P3([1− ǫ, 1]), bo,ǫ(1) = bo, bo,ǫ(1− ǫ) = b
′

o,ǫ(1− ǫ) = b
′′

o,ǫ(1− ǫ) = 0. (6.2)

Then, there holds bǫ,bi,bo ∈ C2(Ω) with ‖bǫ,bi,bo‖0,3 → 0 for ǫ → 0 and ‖∇bǫ,bi,bo‖ → 0 for
(bi, bo) → 0.

6.1. Implementation

The discrete equations to be solved are stated in Problem 5.12 and 5.19 for the stationary
and instationary case, respectively. The spatial discretization is based on Taylor-Hood finite
elements for velocity and pressure, and continuous quadratic Lagrange elements for temperature
and potential, see Lemma 5.4. The underlying mesh consists of quadrilaterals for 2D problems
and hexahedrons for 3D problems, and is obtained from an initial coarse mesh by uniform
refinement. For the cylindrical configuration in the second scenario, we use a formulation of the
TEHD Boussinesq equations in cylindrical coordinates. Thus, the underlying domain is given
by a cuboid.
The temporal discretization makes use of the difference operators given by Definition 5.26

and 5.27, i.e. BDF1 and BDF2 schemes are applied. In addition, we consider a Crank-Nicolson
discretization of the instationary equations for the sake of comparison, see e.g. [41].
The resulting nonlinear system of algebraic equations for each time step is solved by the inexact

Newton-Raphson method with Eisenstat-Walker forcing strategy [22]. This nonlinear iteration
is terminated if the initial algebraic residual is decreased by a factor of 10−10 for instationary
problems and 10−5 for stationary problems. Moreover, within each iteration, the pressure is
shifted by a constant scalar to ensure

∫
Ω p dx = 0. The arising linear systems within each

Newton iteration are solved by a preconditioned GMRES method [64]. We use a block Jacobi
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method as preconditioner whereat the inverse of each diagonal block is approximated by an
incomplete LU factorization.
As noted in Section 2.2, the dual problem (2.43) is posed backwards in time with prescribed

values at t = T . Thus, the temporal discretization can be realized in a time stepping manner,
where the solution at time tn+1 is used to calculate the solution at tn. Here, the Crank-Nicolson
method is used as time stepping scheme. In each single time step, a linear system of PDEs has
to be solved. The associated spatial discretization is based on the same mesh and finite element
spaces as in the primal case and the resulting linear system of equations is solved similarly to the
primal case. Further note that the primal solution occurs in the dual formulation (2.43). Since
both systems are posed in opposite temporal directions, the primal problem has to be solved first
and the corresponding solution has to be stored at each single time step tn, n = 0, . . . , N . Only
if this calculation is done, the dual system can be solved. As the amount of data for storing the
complete primal solution is typically very high, the solution is not kept in memory, but stored
on the hard drive by using the parallel file format HDF5.

The implementation is based on the open-source, general purpose FEM package HiFlow3

[29], which is written C++. In HiFlow3, parallelization is mainly employed for assembling and
solving linear systems and is obtained by domain decomposition of the physical domain Ω. The
partitioning of the original mesh is performed by the metis library [45] and communication
between the individual processes is based on MPI.

All simulations were performed on the HPC system bwForCluster MLS & WISO, located at
Heidelberg University and based on Intel Xeon E5 CPUs with 2.4 GHz and 20MB cache and 16
cores per node. For parallelization, we typically used 256 - 1024 cores, resulting in approximately
10,000 to 20,000 degrees of freedom per core. The application was compiled with openmpi 3.1.4
and the GNU Compiler Collection gcc 8.3.

6.2. Convergence of FEM-BDF Discretization

This section is devoted to substantiate the theoretically derived error estimates of Section 5.1 and
5.2 by numerical experiments. To this end, we consider a 2D test case where the right-hand sides
fv, fτ , fβ in Problem 5.11 and 5.17 are constructed in such a way, that a predefined analytical
function does actually solve the equations in the classical, i.e. pointwise, sense. Hereby, T = 1
and the domain is given as unit square, Ω = (0, 1)2 with left, right, top and bottom boundary
defined by

Γl := {0} × [0, 1], Γr := {1} × [0, 1]

Γt := [0, 1]× {1}, Γb := [0, 1]× {0}. (6.3)

We impose Dirichlet boundary conditions for temperature and potential on the left and right
boundary, i.e. ΓD := Γl + Γr, and homogeneous Neumann conditions on top and bottom, i.e.
ΓN := Γt + Γb:

θ = 1 on Γl, θ = 0 on Γr

Φ = 1 on Γl, Φ = 0 on Γr (6.4)

u = 0 on Γ.

Here, the reference temperature θr is set to 0.5. The boundary liftings θb and Φb are defined
according to θb[ξ](x, y) := bζ(ξ),1,0(x) and Φb(x, y) := 1 − x, with ζ(ξ) > 0 chosen such that
‖θb[ξ]‖0,3 ≤ ξ, see (6.1), (6.2). In practice, the boundary conditions are imposed by explicitly
setting the degrees of freedom that are located on a boundary facet to the respective value. We
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further assume that the permittivity depends linearly on the temperature, see Section 2, and set
for some parameter γ ∈ (0, 1)

ǫ : R → [1− γ, 1], ǫ(s) = ǫr ·





1, s ≤ 0

1− γs, s ∈ (0, 2),

1− γ, s ≥ 2

(6.5)

to meet the requirements of Assumption 3.2.
Moreover the stationary Problem 5.11 is considered as fully implicit, i.e. ū = u, ũ = u, θ̄ = θ,

Φ̄ = Φ and without contributions from outer time stepping, i.e. δ = 0. In all considered cases,
the fluid properties correspond to the liquid Wacker AK5 , which is commonly used by physical
experiments, see e.g. [51]. However, for the convergence analysis we increased the viscosity and
thermal diffusion coefficient to improve the convergence of the used linear and nonlinear algebraic
solvers. In Section 6.3, the fluid is used with its original properties. All fluid and experimental
parameters are listed in Figure 2.
In the following, the right-hand side terms fv, fτ , fβ are chosen such that

u∗,x(t, x, y) = g(t) sin(πx)2 sin(2πy)

u∗,y(t, x, y) = −g(t) sin(2πx) sin(πy)2
p∗(t, x, y) = g(t) cos(2πy)

θ∗(t, x, y) = 1− x+ gθ g(t)
(
1− 4(x− 0.5)2

)

Φ∗(t, x, y) = 1− x+ gΦ g(t) sin(πx),

(6.6)

solves the TEHD Boussinesq equations in strong form (2.28) with those source terms added. The
temporal factor g is either chosen as gexp(t) := exp(−10 t) or as gα(t) := tα for some α ≥ 0 to
cover different temporal regularities of the exact solution. In particular, g = g0 = 1, gθ = gΦ = 0
corresponds to the stationary case, gexp ∈ C∞([0, T ]) and there holds for α ∈ (32 ,

5
2 ] \ {2},

gα ∈ L∞(0, T ;R), g′α ∈ L∞(0, T ;R), g′′α ∈ L2(0, T ;R)

tg′′′α ∈ L2(0, T ;R), g′′′α 6∈ L2(0, T ;R), (6.7)

and for α ∈ (52 ,∞) ∪ N,

gα ∈ L∞(0, T ;R), g′α ∈ L∞(0, T ;R), g′′α ∈ L2(0, T ;R), g′′′α ∈ L2(0, T ;R). (6.8)

Thus, for g = gexp and g = gα with α ∈ (52 ,∞) ∪ N, the exact solution satisfies the strong regu-
larity conditions for both, BDF1 and BDF2, assumed by Corollary 5.30 and 5.32, respectively.
On the other hand, if α ∈ (32 ,

5
2 ] \ {2}, then the strong regularity conditions for BDF1 are still

satisfied, whereas the conditions for BDF2 do not hold. However, the weak conditions for BDF2
are still valid, see Corollary 5.31.

Stationary Case

We first consider error convergence of the discrete stationary solution, defined by Problem 5.12.
In this case, the corresponding exact solution, given by (6.6) with g(t) = 1, satisfies the regularity
conditions imposed by Corollary 5.16. This a priori estimation states that the H1-error of
velocity, temperature and potential is bounded from above by a constant times hl. According
to the underlying second order Taylor-Hood elements combined with quadratic elements for
temperature and potential, we have l = 2, supposed that the small data conditions (5.35),
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ν (st.) 5.0 ·10−1
[
m2 s−1

]

ν (inst.) 5.0 ·10−3
[
m2 s−1

]

κ (st.) 7.74 ·10−1
[
m2 s−1

]

κ (inst.) 7.74 ·10−5
[
m2 s−1

]

ǫr 2.391 ·10−11
[
kg m−3

]

γ 1.065 ·10−3
[
K−1

]

αg 1.08 ·10−3
[
K−1

]

αe 1.379 ·10−17
[
A s m2( kg K V)−1

]

gx 0
[
m s−2

]

gy −9.81
[
m s−2

]

gθ (st.) 0
gθ (inst.) 0.2
gΦ (st.) 0
gΦ (inst.) 0.1

Figure 2: Left: Streamlines of exact flow field with colors indicating the velocity magnitude.
Right: Physical parameters.

(5.36) holds. These conditions, however, is not satisfied because of 2
ν2
‖∇u‖2 = 4π2, which

implies Ξ1 > 1. Nevertheless, the numerical experiments still exhibit the theoretically predicted
convergence rates as shown in the following.
In Figure 3, the computed errors of the individual components are plotted over the mesh width

h for the choice F = Fa,1 given by Definition 3.23 and the unmodified DEP formulation

Fs(θ,Φ) = αe(|∇Φ|2∇θ, ·)− αg(θg, ·). (6.9)

In contrast to Fa,1, Fs does not satisfy the required Assmption 3.12. However, both choices of
F lead to similar results.

One can observe that the velocity error converges with the theoretically predicted rate h2,
whereas temperature converges faster than expected. For large values of h, the potential error
converges with similar rate as the temperature error, but is several orders of magnitude smaller.
At a certain point, the potential error stagnates at a very low level. A possible reason is the
finite accuracy of the underlying nonlinear solver. Perhaps, the algebraic residual of Gauss’ law
is dominated by the other equations and stagnation is a result of a non-accurate solution of the
algebraic equations.

Instationary Case

We now investigate convergence in the instationary case. To this end, different configurations
are considered: the temporal factor g is chosen from the set {gexp , g1.51, g2}, the temporal dis-
cretization is chosen as BDF1 or BDF2 and the DEP body force takes the forms Fa,1 (Definition
3.23) or Fs given by (6.9).
Further, the initial condition is set to the exact solution at t = 0 and for the 2-step method

BDF2, the approximate solution for the first time step is set to the exact solution at t = k.
Thus, errors induced by the initial conditions, given by E1(q), E2(q), E3(q) in Theorem 5.24,
can be neglected.
In case of Fa,1, the base potential Φ0 is chosen as the exact potential Φ∗ defined in (6.6).

Furthermore, Fs fits into the framework of Fs,K given by Definition 5.34, if the cut-off function
is chosen as metric projection, see Definition 5.36, and if K is chosen sufficiently large to ensure
Fs(·,Φnh+Φb) = Fs,K(·,Φnh+Φb) for the computed discrete potentials, i.e. ‖∇(Φnh+Φb)‖0,∞ < K.
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10−3 10−2

10−13

10−11

10−9

10−7

10−5

10−3

10−1

h
10−3 10−2 10−1

h

‖∇eu‖
‖ep‖
‖∇eθ‖
‖∇eΦ‖
∝ h2

Figure 3: Error for g = 1 and gθ = gΦ = 0. Left: F = Fa,1, right: F = Fs.

On the other hand, K should be small enough such that the small data conditions supposed by
Lemma 5.23 and Theorem 5.24 are satisfied. As pointed out in the end of Section 5.3, these
conditions are of the form

αeK
2
∗ ≤ cΩ

√
νκ, (6.10)

with domain dependent constant

cΩ = c−1
0 min

{(
2q(1 + c20)(1 + c2D)

)− 1
2 |f |−1

2 , 2q−1|f |−1
∞
}
. (6.11)

As c0, cD denote the respective constants in Friedrich’s inequalities on a square domain, they
can be bounded as c0 ≤ 1 and cD ≤ 1 according to Lemma A.107. Concerning the time stepping
contributions, q and f , we have

BDF1: q = 1, |f |2 = 1, |f |∞ = 1

BDF2: q = 2, |f |2 =
√
5, |f |∞ = 2. (6.12)

In summary, (6.11) and (6.12) lead to

BDF1: cΩ ≥ 1√
8

BDF2: cΩ ≥ 1

4
√
5
. (6.13)

Using (6.10), (6.13), αe =
ǫ0ǫrγ
2ρ and the fluid parameters, an upper for K is given by

K2 ≤ cΩα
−1
e

√
νκ = cΩ · 4.8 · 1010 = O(1010), (6.14)

which is several orders of magnitude larger than the computed values ‖∇(Φnh +Φb)‖0,∞ = O(1)
and the exact value ‖∇Φ∗(t)‖0,∞ = O(1). Thus, K can be chosen small enough to ensure the
validness of the small data condition (6.10) and large enough to guarantee Fs(·,Φ∗) = Fs,K(·,Φ∗)
and Fs(·,Φnh +Φb) = Fs,K(·,Φnh +Φb) for all considered n, h and k.

Since two discretization parameters, spatial h and temporal k, can be selected, two different
types of test series are performed: Either h is left constant, h = 2−8, or h is chosen to be
proportional to k, h = 1.25k. In either case, k is varied over a certain range. If h = const,
then it is chosen sufficiently small to make the temporal contributions to the error dominant.
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If h ∝ k, the hl terms in the error estimates given by Corollaries 5.29 - 5.32 are transformed
to kl. As pointed out in the stationary case, we obtain l = 2 due to the spatial regularity
of the exact solution and due to the polynomial order of the underlying finite element space.
Thus, the temporal contributions in the derived error estimates, which are of the form k and k2,
dominate the spatial contributions hl ∝ kl and the observed errors should resemble the temporal
convergence order.
The results for F = Fs, g = gexp and h = const are shown in Figure 4. In this case, the exact

solution has the full regularity as required by Corollary 5.32. Further, the errors of velocity
and temperature approximation, given by ‖ (un∗ − unh)n ‖l2(0,N,H1) and ‖ (θn∗ − θnh)n ‖l2(0,N,H1),
respectively, exhibit first (BDF1) and second order (BDF2) convergence w.r.t. k, in accordance
with Corollary 5.30 and Corollary 5.32. The same holds for h ∝ k, see Figure 5. In each case,
the pressure error ‖ (pn∗ − pnh)n ‖l2(0,N,L2) converges faster as predicted by the theory.

In fact, it converges with the same order as velocity and temperature and one does not loose
a factor k

1
2 . In the proof of Theorem 5.24, this factor k−

1
2 stems from the term Ed(h, k),

(5.69), which basically measures the temporal variation of the discretization error (dnu,h)n. The
similar quantity E(h, k), which measures the temporal variation of the exact solution (un)n,

does not cause the occurrence of k−
1
2 , since the temporal regularity of u could be exploited.

From a theoretical point of view, this temporal regularity could not be derived for (dnu,h)n. In
the underlying test problem, however, this discretization error might have a similar temporal
smoothness as the exact solution, resulting in comparable k-convergence rates for pressure and
velocity.
The potential error ‖ (Φn∗ − Φnh)n ‖l2(0,N,H1) shows a behavior that deviates from the theory,

as well. After decreasing with similar rate as velocity and temperature for large k, the error
eventually stagnates for smaller k (BDF1) or even increases slightly (BDF2) for small k. This
might be due to the fact, that the potential error is several orders of magnitude smaller than
the errors in the other variables. Therefore, the contribution of Gauss’ law to the nonlinear,
algebraic residual is significantly smaller than the contributions of the other equations when
employing Newton’s method. Regarding the finite tolerance of Newton’s method, the discrete
potential may not be forced sufficiently strongly to further reduce the residual of Gauss’ law,
and thereby increase its accuracy.
When considering g = g2, one can observe pretty much the same behavior as for g = gexp, see

Figure 6 and 7. As before, the exact solution satisfies the regularity requirements supposed by
Corollary 5.30 and 5.32 and the velocity and temperature error converge with the rate that is
predicted by the theory. The only significant difference can be observed in Figure 6 (right), i.e.
when BDF2 is applied with fixed h. In contrast to the previous case, compare Figure 4 (right),
one can observe a stagnation of the velocity and temperature error around 10−4. Apparently, at
this point the spatial error contribution becomes dominant and h has to be decreased to further
reduce the errors, see Figure 7 (right).
Two more scenarios are left to consider. In Figure 8, the error is shown for g = g2, h ∝ k and

the alternative DEP formulation F = Fa,1. Compared to the analog configuration with F = Fs,
Figure 7, one can observe almost identical values for the respective errors.
Finally, Figure 9 illustrates the errors for the case F = Fs, BDF2, h = const and h ∝ k. In

contrast to Figure 6 (right) and 7 (right), the temporal factor g is set to g1.51 instead of g = g2.
As pointed out in the beginning of this section, the exact solution does not satisfy the strong
regularity requirements of Corollary 5.32 any more, whereas the weaker assumptions supposed
by Corollary 5.31 do still hold. Therefore, the theory predicts a linear convergence rate w.r.t.
k. In practice, one can observe a temporal convergence order of 1.5 for velocity, temperature
and pressure and an unchanged rate of 2 for potential. Thus, the regularity condition that is
supposed for second order convergence appears not only sufficient, but also necessary. Since the
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Figure 4: Error for F = Fs, g = gexp and h = const. Left: BDF1, right: BDF2.
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Figure 5: Error for F = Fs, g = gexp and h ∝ k. Left: BDF1, right: BDF2.

condition ∂tttu∗ ∈ L2(0, T ;H−1) in Corollary 5.32 is violated, but not ∂tu∗ ∈ L2(0, T ;Hl+1), we
conclude that the overall convergence is reduced due to the purely temporal contributions E(k),
but not due to the mixed contributions E(h, k).
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Figure 6: Error for F = Fs, g = g2 and h = const. Left: BDF1, right: BDF2.
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Figure 7: Error for F = Fs, g = g2 and h ∝ k. Left: BDF1, right: BDF2.
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Figure 8: Error for F = Fa,1, g = g2 and h ∝ k. Left: BDF1, right: BDF2.
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Figure 9: Error for F = Fs, g = g1.51 and BDF2. Left: h = const, right: h ∝ k.

6.3. Dielectrically Driven Flow in a Vertical Annulus

In this section, simulation results are presented for a scenario that often serves as test case
for both numerical simulations and physical experiments of DEP-driven flow, see e.g. [42], [54],
[58], [68], [78], [79], [81]. In this scenario, a dielectric fluid is contained in the gap between two
concentric cylinders with inner radius ri, outer radius ro and height H:

Ω = {(x, y, z) ∈ R3 : r2i < x2 + y2 < r2o , 0 < z < H}. (6.15)

In most cases considered in the aforementioned literature, the radii are in the range of 5−20 mm
and the height is typically in the range of 3− 30 cm.
We further assume that a temperature and potential difference is applied between the inner

and outer wall of the annulus, whereas the top and bottom plate are supposed to be thermally
and electrically insulated. In this way, the entire configuration can be considered as cylindrical
capacitor where the fluid serves as dielectric.
To be precise, the boundary Γ = ∂Ω is decomposed into the following parts:

Γi :=
{
x ∈ Ω: x21 + x22 = r2i

}
, Γo :=

{
x ∈ Ω: x21 + x22 = r2o

}

Γt :=
{
x ∈ Ω: x3 = H

}
, Γb :=

{
x ∈ Ω: x3 = 0

}
. (6.16)

Dirichlet boundary conditions for temperature and potential are imposed on the inner and outer
cylinder, ΓD = Γi+Γo, and homogeneous Neumann conditions on top and bottom, ΓN = Γt+Γb.
The Dirichlet boundary conditions are of the form

u = 0 on Γ

θ = θi on Γi, θ = θo on Γo (6.17)

Φ = V0 on Γi, Φ = 0 on Γo.

with inner temperature θi := θr +
1
2dθ and outer temperature θo := θr − 1

2dθ. Here, θr denotes
the reference temperature, for which the fluid’s parameters, such as viscosity, density, thermal
conduction coefficient, etc. are known, see Figure 11.
The presented configuration is relevant from a practical point of view for several reasons. On

one hand, it can be regarded as an idealized heat exchanging system, where the fluid serves as
medium for transporting heat from an inner, hot device to an outer cooling system. In this case,
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Figure 10: Left: Schematic view on domain and boundary conditions. Right: Illustration of
finite element mesh and initial temperature distribution.

ν 5.0 ·10−6
[
m2 s−1

]

κ 7.74 ·10−8
[
m2 s−1

]

ρ 9.23 ·102
[
kg m−3

]

ǫr 2.391 ·10−11
[
kg m−3

]

γ 1.065 ·10−3
[
K−1

]

αg 1.08 ·10−3
[
K−1

]

αe 1.379 ·10−17
[
A s m2( kg K V)−1

]

θr 2.9815 ·102 [ K ]

dθ ∈ [0, 7] [ K ]
V0 ∈ [0, 9] ·103 [ V ]
gx 0

[
m s−2

]

gy 0
[
m s−2

]

gz −9.81
[
m s−2

]

ri 5.0 ·10−3 [ m ]
ro 1.0 ·10−2 [ m ]
H 1.0 ·10−1 [ m ]

Figure 11: Fluid and geometry parameters
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(
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r
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base electric gravity gE ∇2Φ∇Φ|r=0.5(ri+ro)

Prandtl number Pr νκ−1

thermal Rayleigh number Ra αg(ro − ri)
3dθ(νκ)−1|g|

electric Rayleigh number L αe(ro − ri)
3dθ(νκ)−1|gE |

Figure 12: Characteristic numbers of non-dimensionalized equations
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it is interesting to investigate to which extend the DEP force has an impact on the heat transfer
between inner and outer cylinder. Ideally, the DEP force would lead to enhanced heat transfer,
thus improving cooling efficiency.
On the other hand, this simple geometry offers an accessible way for analyzing DEP-driven

flow by experimental means. In these experiments, the boundary conditions for temperature and
potential can be controlled and the heat transfer can be determined by measuring the amount
of electric power that is needed to keep the temperature at the inner boundary at a constant
level, [27]. Moreover, it is possible to visualize the velocity field by means of particle tracing [18]
and Schlieren technique [20]. In addition, one can draw some conclusions on the temperature
field by using shadowgraph imaging, see e.g. [68]. In summary, experimental data is available
for this configuration, making it possible to validate numerical simulations.

Concerning numerical simulations, the cylindrical geometry can be exploited when discretizing
system (2.28) to obtain efficient solvers. Most reported numerical methods for solving the TEHD
equations in a cylindrical domain impose periodic boundary conditions in the axial direction,
see e.g. [42], [70], [78], [79]. By doing so, spectral methods can be applied and the Fast Fourier
Transform can be used for solving the resulting discretized equations. An exception is presented
in [53], where the same boundary conditions as in our case are supposed and a (not further
specified) finite element solver is used.
In the literature, the TEHD system (2.28) is typically described by a set of non-dimensional

numbers, see Table 12. Of particular interest are the thermal and electric Rayleigh numbers,
Ra and L, since they measure the strength of the buoyancy and DEP force, respectively. The
definition of L involves the electric gravity gE which is defined for some base potential Φ.
As base potential, one typically uses the solution of the TEHD system (2.28) in a cylinder of
infinite length and without natural gravity, g = 0. A closed analytical expression in cylindrical
coordinates is available in this case according to [81]:

u(ϕ, r, z) = 0

p(ϕ, r, z) = p(r) =

∫ r

ri

h(s) ds

θ(ϕ, r, z) = θ(r) = θo + dθ (ln (η))−1 (ln(r)− ln(ro))

Φ(ϕ, r, z) = Φ(r) = c+ b ln
(
1− γ(θ(ϕ, r, z)− θr)

)
, (6.18)

with

h(s) = −(θ(s)− θr)∂
2
rrΦ(s)∂rΦ(s)

b = V0

(
ln

(
2− γdθ

2 + γdθ

))−1

c = −b ln
(
1 +

1

2
γdθ

)
.

Later on, we make use of Φ to define the linearized DEP models Fs,0, Fa,0, Fa,1.
The previously described configuration is usually investigated either under standard laboratory

conditions, i.e. g corresponds to Earth’s gravity [68], in the following denoted by gn := −9.81·ez,
or under zero gravity conditions, i.e. g = 0. The latter case can be experimentally implemented
by means of a drop tower, a parabolic flight [18] or an orbital laboratory, e.g. on the ISS [58], in
ascending order w.r.t. duration of the micro gravity state.
In this subsection, we give higher priority to the standard gravity case and most presented

numerical results are obtained for a fixed temperature and potential difference, since a wide
list of parametric studies can be found in the literature, see e.g. [68], [58] and the references
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therein. Instead, we want to put emphasis on the following aspects: temporal evolution of vortex
formation, comparison of different time discretization schemes, comparison of different DEP
models, sensitivity of the solution w.r.t. the initial condition and non-uniqueness of stationary
solutions.
But before turning to the numerical results, we reconsider the small data condition that is

imposed by the convergence result Theorem 5.24. As before, this condition is of the form

αeK
2
∗ ≤ cΩ

√
νκ, (6.19)

with domain-dependent constant

cΩ = c−1
0 min

{(
2q(1 + c20)(1 + c2D)

)− 1
2 |f |−1

2 , 2q−1|f |−1
∞
}
. (6.20)

As in the previous section, it possible to determine the domain-dependent constant due to the
relatively simple geometry. According to Lemma A.107, there holds c0, cD ≤ c∗ with

c∗ =

(
1

2
(ln(ro)− ln(ri))

(
r2o − r2i

)) 1
2

. (6.21)

Inserting the problem data, i.e. ri, ro and the time stepping parameters according to (6.12), into
(6.20) and (6.21), leads to

BDF1: cΩ ≥ 138.69 ⇒ cΩ
αe

√
νκ ≥ 6.255 · 1012

BDF2: cΩ ≥ 43.86 ⇒ cΩ
αe

√
νκ ≥ 1.978 · 1012. (6.22)

Thus, (6.19) is satisfied for

BDF1: K∗ ≤ 2.5 · 106

BDF2: K∗ ≤ 1.41 · 106. (6.23)

Regarding the zero gravity solution, we obtain for the base potential ∇Φ = ∂rΦ er with

∂rθ(ϕ, r, z) =
dθ

ln(η)r

∂rΦ(ϕ, r, z) = −b
(
1− γ(θ(ϕ, r, z)− θr)

)−1
γ∂rθ(ϕ, r, z). (6.24)

Therefore,

|∂rΦ(ϕ, r, z)| =
γ|b|dθ

|1− γ(θ − θr)|| ln(η)|r
≤ 2V0dθγ

∣∣∣∣ri ln(η)(2− γdθ) ln

(
2− γdθ

2 + γdθ

)∣∣∣∣
−1

. (6.25)

In the following, we only consider dθ ≤ 7, which implies

|∂rΦ(ϕ, r, z)| ≤ 290 · V0.

In summary, ‖∇Φ‖0,∞ ≤ K∗ withK∗ satisfying the small data condition (6.23) can be guaranteed
if the potential difference between inner and outer cylinder wall V0 satisfies

BDF1: V0 ≤ 8.62 · 103 V

BDF2: V0 ≤ 4.86 · 103 V. (6.26)
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In one of the upcoming sections, it is numerically shown that the relative difference between
Φnh +Φb and Φ is only of order O(10−3). Further, we could observe that

‖∇(Φnh +Φb)‖0,∞ < 2 · 106 (6.27)

holds for V0 ≤ 7 · 103 V. According to (6.23), (6.27) and the remarks at the end of Section
5.3, one can thus state that, at least for BDF1, the error estimates derived in Section 5.2 are
applicable for the choice F = Fs for V0 ≤ 7 · 103 V. Moreover, a comparison between BDF1
and BDF2 shows that both schemes yield very similar results. For this reason, all conducted
simulations are done by using BDF2 with time step size k = 0.05 and F = Fs, unless stated
otherwise.
Concerning the spatial discretization, all simulations are performed on the same mesh consist-

ing of 96,000 cells, see Figure 10; thus leading to approximately 4 ·106 spatial degrees of freedom.
Again, if not stated otherwise, the initial condition is set to the stationary solution of the stan-
dard Boussinesq equations for natural convection, i.e. the stationary version of system (2.28)
with αe = 0. Further, most simulations are conducted for dθ = 7 K and V0 = 7 · 103 V which
corresponds to a thermal Rayleigh number Ra = 23946, an electric Rayleigh number L = 15220
and a Prandtl number Pr = 61.

Temporal Evolution under Earth’s Gravity

The temporal evolution of the fluid’s velocity and temperature when both natural convection
and DEP force are active is now considered. The occurrence of stationary, axially oriented vortex
structures is reported by experiments [27], linear stability analysis [54] and simulations [42], if
the electric Rayleigh number L is in a certain range that depends on η, A and Ra. Under this
threshold, the fluid remains in a unicellular flow state that is close to the natural convection
case. According to [27] and [70], the smaller the radius ratio η. i.e. the larger the curvature of
the annulus, the lower the critical L becomes. For higher L, the linear stability analysis in [53]
predicts the onset of stationary, helical modes with non-zero axial wavenumber. This parameter
regime, however, is not covered by our simulations.
Our simulation results are illustrated by Figures 13, 14 and 15. In Figure 13, the temperature

isosurface {(x, y, z) ∈ Ω: θ(x, y, z) = θr} w.r.t. the reference temperature is shown at times
t ∈ {50, 60, 70, 80, 90, 100} with colormap indicating the strength of axial vorticity. One can
observe how the initially axisymmetric temperature distribution transforms to a state where a
certain number of axially aligned plumes is present in the middle part of the annulus. Apparently,
the temperature distribution does not deviate too much from the initial state in regions close
to the top and bottom. This due to the fluid motion, which still keeps its initial characteristics
of a unicellular convection field in those regions. This effect can be seen more clearly in Figure
14, where velocity is plotted on a vertical and horizontal cut plane. Here, color indicates the
axial velocity component, i.e. red means upward movement and blue downward. Regarding the
vertical plane, one can observe how the initial, symmetric convection cell is perturbed in the
middle part of the cylinder, while it roughly keeps its shape close to top and bottom. Moreover,
the velocity on the horizontal plane clearly illustrates an alternating behavior w.r.t the azimuthal
direction. In summary, the fluid’s velocity can be considered as superposition of a main, axially
directed component, coming from natural convection, and rotational motion in the horizontal
plane.
Eventually, the instationary solution appears to converge towards a stationary state. Figure

16 illustrates different aspects of the solution at the last computed step t = 200 s. Here, the
streamlines (with color encoding axial velocity) on the left-hand side indicate a helicoidal motion.
The visualization of velocity, body force, temperature and axial vorticity on the horizontal cut
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Figure 13: Temperature isosurface {θ = θr} for dθ = 7 K, V0 = 7000 V, F = Fs and g = gn at
multiple time instances.

Figure 14: Velocity field for dθ = 7 K, V0 = 7000 V, F = Fs and g = gn at multiple time
instances. The color map indicates axial velocity with red / blue denoting rising / falling fluid.
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Figure 15: Temperature field for dθ = 7 K, V0 = 7000 V, F = Fs and g = gn at multiple time
instances.

Figure 16: Simulation state for dθ = 7 K, V0 = 7000 V, F = Fs and g = gn at t = 200 s. Left:
Temperature isosurface {θ = θr} and streamlines with color indicating axial velocity. Middle
upper: Axial velocity at {z = 0.5H}. Right upper: Body force FDEP + Fbuo. Middle lower:
Temperature distribution. Right lower: Axial vorticity.
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plane at z = 0.5H clearly depicts a state that is periodic in the azimuthal direction with wave
number K = 7. On one hand, the temperature plumes arise due to the counter-rotating, axially
aligned convection rolls. On the other hand, this temperature distribution with strong gradient
in radial and azimuthal direction further enhances the formation of axial vorticity, thus leading to
a self-amplifying process with exponential growth of the axial vorticity component, see Figure 17.
This can be made more clear by considering the vorticity equation: Applying the curl operator
∇× to the momentum equation of (2.28) yields for the vorticity w = ∇× u:

∂tw + u · ∇w −w · ∇u− ν∆w = αe∇
(
|∇Φ|2

)
×∇θ − αg∇θ × g. (6.28)

The right-hand side terms in (6.28) denote the driving forces in the generation of vorticity.
Supposing Φ ≈ Φ = Φ(r), the DEP contribution to vorticity becomes

αe∇
(
|∇Φ|2

)
×∇θ ≈ αe∇

(
|∇Φ|2

)
×∇θ = αe∂r

(
∂rΦ(r)

)2



∂zθ
0

−r−1∂ϕθ


 (6.29)

and regarding buoyancy force, one obtains

− αg∇θ × g = −αggz




∂rθ
−r−1∂ϕθ

0


 . (6.30)

Thus, azimuthal variations of temperature, ∂ϕθ, enhance axial vorticity through DEP force and
radial vorticity through buoyancy force, which in turn contribute to these azimuthal variations
through the convection term u · ∇θ in the heat equation.
Actually, one might expect a similar behavior for azimuthal vorticity, which is influenced by

axial temperature variations according to (6.29). And indeed, one can observe the occurrence
of slight convection rolls which are azimuthally aligned, see the upper third of Figure 14 and 15
at t = 50 s. These rolls origin at the lower part of the annulus and then travel upwards due to
buoyancy. However, they quickly disappear with the onset of the columnar structures. This is
in contrast to the zero-gravity scenario, where those rolls are much more present.
Multiplying (6.28) by w and integrating over Ω further yields an expression for d

dt‖∇×u‖2 of
the form

d

dt
‖w‖2 = Wconv +Wdiss +Wdep +Wbuo, (6.31)

with contributions by the convection terms, Wconv, dissipation of vorticity, Wdiss, and source
terms

Wdep = 2αe
((
∇|∇Φ|2 ×∇θ

)
,w
)

Wbuo = 2αg ((∇θ × g) ,w) . (6.32)

The individual components of Wdep and Wbuo are plotted in Figure 17. Apparently, the ex-
ponential growth of ‖(∇× u)z‖ comes with an exponential growth of Wdep

z which is of similar
order of magnitude. In contrast, the azimuthal and radial component of Wdep are several or-
ders of magnitude smaller than the respective vorticity norm. It seems that for these vorticity
contributions, buoyancy force is the main driving mechanism in accordance with (6.29) and
(6.30).
To conclude the observation of vorticity, consider Figure 18 where all vorticity components

are plotted over time, now on a linear vertical axis. The period when axial and radial vorticity
become of comparable order of magnitude as the initially dominating azimuthal vorticity is
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Figure 17: Temporal evolution of vorticity components and vorticity source terms for dθ = 7 K,
V0 = 7000 V, F = Fs and g = gn.

around 60 s−70 s. During this period, also the first axially aligned, columnar structures become
visible in Figure 13.
Eventually, we consider the heat transfer at the inner cylinder, which is given by

ht(θ, t) :=

∫

Γi

∇θ(t) · n dσ. (6.33)

The corresponding Nusselt numbers are denoted by

Nucond(t) := ht(θ, t) ht(θ, t)−1 (6.34)

Nuconv(t) := ht(θ, t) ht(θ(0), t)−1. (6.35)

They describe how strong the heat transfer is enhanced, compared to the initial state, Nuconv

or to the state of pure conduction, Nucond. Figure 18 clearly shows that the heat transfer is
enhanced by the onset of the helicoidal fluid motion at time t = 62 s.
As final remark, we note that both kinetic energy and dissipation slightly decrease due the

helicoidal motion, see Figure 19.

Temporal Evolution Without Gravity

In absence of Earth’s gravity, the flow behavior significantly differs. The occurrence of axisym-
metric, azimuthally aligned vortices is reported in [18] for numerical simulations and parabolic
flight experiments. In that work, a time period of ≈ 20 s is considered, which corresponds to
the duration of one micro-gravity phase during a parabolic flight. For an experimental cell of
the same geometry as we consider and dθ = 10 K, the transition from a single convective flow
cell to multiple, small and azimuthally aligned convective cells is observed for V0 ≥ 5300 V.
Moreover, it is noted that this critical voltage is significantly higher for cells of larger radii ratio
η. In the linear stability analysis of [81], three different types of disturbances are considered,
which develop into stationary convection rolls for sufficiently large L: azimuthally aligned (zero
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Figure 18: Temporal evolution of certain characteristics for dθ = 7 K, V0 = 7000 V, F = Fs and
g = gn. Left: L

2-norm of vorticity components. Right: Nusselt number.
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Figure 19: Temporal evolution of certain characteristics for dθ = 7 K, V0 = 7000 V, F = Fs and
g = gn. Left: Kinetic energy and dissipation. Right: Violation of incompressibility constraint.
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azimuthal wavenumber), axially aligned (zero axial wavenumber) and helical ones (non-zero az-
imuthal and axial wavenumber). The later ones appear to yield the lowest critical L and “the
predicted critical mode is made of stationary helices”.
In our simulations, the initial condition is set to u = 0, p = 0, θ = θ and Φ = 0, i.e. the fluid

is at rest and the temperature distribution is determined by conduction only. This corresponds
to the standard, stationary Boussinesq equations with g = 0.
Figure 22 and 23 depict the isosurface for θ = θr with additional streamlines whose color

indicate axial velocity, and the temperature distribution on an axial cut plane. After switching
on the potential difference at t = 0 s, it takes around 25 s, until the first deviations from the
initial state can be observed. Azimuthally aligned convection rolls are formating, in accordance
with the only vorticity source term Wdep, which has non-zero azimuthal and axial component.
The first rolls have their origins at the outer regions of the annulus (without gravity, there is
no “top” and “bottom” any more), then additional ones arise and extend towards the middle
of the cylinder. This effect can be explained by (6.29): the azimuthal component of Wdep is
proportional to ∂zθ. Thus, as soon as an initial temperature variation along the axial direction
is present, azimuthal vorticity and thereby axial variation of velocity is enhanced, which in
turn enhances axial variation of temperature due to the convection term u · ∇θ. As a result,
exponential growth of ‖(∇ × u)ϕ‖ can be observed, see Figure 20. Moreover, this vorticity
component is dominating the initial phase of the simulation. However, the ϕ-invariance breaks
down around t = 40 s, starting in the middle of the cylinder, where azimuthal convection rolls
from both ends come together, and at the very outer regions. Eventually, a rather irregular flow
structure establishes and due to the non-zero axial component of Wdep, axial vorticity takes
comparable values and even higher values as the azimuthal one for t ≥ 360 s.

Over the entire period, radial vorticity only plays a minor role, due to the absence of a
corresponding source term; a fact that is also observed for the numerical experiments in [78].
Moreover, both kinetic energy and dissipation stay on a rather constant level after the first
convection rolls have evolved, see Figure 21.
The last computed state is shown in Figure 24, which is not a stationary state yet. Thus, by

comparing this simulation with the previous one, one can conclude that the presence of gravity
has a stabilizing effect on the fluid’s motion. Compared to the standard gravity case, the Nusselt
number is of similar magnitude ≈ 3, see Figure 20. Thus, DEP-driven flow significantly enhances
heat transfer, also in absence of gravity. Note that the heat transfer reaches its maximum at
t ≈ 45 s shortly after the onset of the azimuthally aligned vortices. This peak is followed by
slow decay that correlates with the decay of azimuthal vorticity. As similar effect is observed
for the simulations in [53], where a much shorter time period and different initial conditions are
supposed in order to mimic the conditions of one micro-gravity parabola period.
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Figure 20: Temporal evolution of L2-norm of vorticity components for dθ = 7 K, V0 = 7000 V,
F = Fs and g = 0. The dotted vertical lines at t ∈ {27, 45, 70, 360} mark the onset of azimuthally
aligned vortices, peak of azimuthal vorticity, local minimum of axial vorticity and equilibrium of
azimuthal and axial vorticity.
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Figure 21: Temporal evolution of certain characteristics for dθ = 7 K, V0 = 7000 V, F = Fs and
g = 0. Left: Kinetic energy and dissipation. Right: Violation of incompressibility constraint.
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Figure 22: Simulation visualization for dθ = 7 K, V0 = 7000 V, F = Fs and g = 0 at certain
time instances. Upper: Temperature isosurface {θ = θr} and stream lines with color indicating
axial velocity. Lower: Temperature field on axial cut plane.
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Figure 23: Simulation visualization for dθ = 7 K, V0 = 7000 V, F = Fs and g = 0 at certain
time instances. Upper: Temperature isosurface {θ = θr} and stream lines with color indicating
axial velocity. Lower: Temperature field on axial cut plane.
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Figure 24: Simulation visualization for dθ = 7 K, V0 = 7000 V, F = Fs and g = 0 at final time
t = 600 s. Upper: Temperature isosurface {θ = θr} and stream lines with color indicating axial
velocity. Lower: Temperature field on axial cut plane.

Comparison for Different Rayleigh Numbers

We now present results for a parametric study, where dθ = 7 K is kept fixed and the volt-
age difference is varied over an interval V0 = 0 − 9000 V. In addition, annuli of height H ∈
{3 cm, 10 cm, 30 cm} are considered, yielding aspect ratios A ∈ {6, 20, 60}.

Figure 25 shows the resulting Nusselt numbers and vorticity components at time t = 200s,
plotted over electric Rayleigh number L. A first point to note is that in each test series, there
exists a threshold L0, such that for all electric Rayleigh numbers L ≤ L0 there holds:

Nu(θ|L, 200) = Nu(θ|L=0, 200)

‖(∇× u|L(200))l‖ = ‖(∇× u|L=0(200))ϕ‖, l ∈ {ϕ, r, z} (6.36)

This means that the solution stays close to its initial state which is given as solution of the
stationary Boussinesq equations without DEP force. This behavior could be explained by using
the uniqueness result for the stationary TEHD Boussinesq equation. According to Theorem
3.21, there exists at most one solution, provided that the problem data is sufficiently small:

α1 + α2 + α3α4α5(R) < 1, (6.37)

with constants αi defined in (3.27). Now, L→ 0, i.e. V0 → 0, implies ∇Φb → 0 and aF becoming
smaller. This further implies that α2 becomes smaller and α5 → 0. Thus, (6.37) becomes more
likely to hold for small L. In order to guarantee (6.37), one further has to impose that dθ is
sufficiently small. However, the fact that it is possible to compute stationary solutions of the
standard Boussinesq equations, might be a hint that α1 and α2 are indeed small enough to
satisfy (6.37). In summary, there may exist unique solutions for the stationary TEHD equations
at small L. On the other hand, if (u, p, θ,Φ)(ϕ, r, z) denotes a stationary solution of (2.28),
then (u, p, θ,Φ)(ϕ + dϕ, r, z) should be a solution as well for all dϕ ∈ [0, 2π] according to the
ϕ-invariance of the geometry and boundary conditions. But this is a contradiction to uniqueness
of solutions, unless (u, p, θ,Φ) is azimuthally invariant. Therefore, the occurrence of axially
aligned, columnar structures is not possible for small L. In the end of the section, this reasoning
is verified by comparison with experimental data.
Apart from that, Figure (25) shows the clear trend of increasing Nusselt number, radial and

axial vorticity component and decreasing azimuthal vorticity component for increasing L and A.
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Figure 25: Left: Nusselt number for Ra = 23946 and g = gn over electric Rayleigh number L
for different aspect ratios. Right: L2-norm of vorticity components for Ra = 23946, A = 20 and
g = gn over electric Rayleigh number L.

For A = 6 and A = 20 the Nusselt number grows linearly with L on the considered range:

Nu6(L) = 1.20 + 6.42 · 10−5 · L, L ∈ [19880, 44729]

Nu20(L) = 1.31 + 9.57 · 10−5 · L, L ∈ [5479, 15220] (6.38)

Nu60(L) = 0.116 · L0.334, L ∈ [1242, 15220].

A comparable growth of Nusselt number w.r.t. V0 is experimentally reported in [27].
The azimuthal wave number K appears to be independent of L, supposed that L ≥ L0, see

Figure 26. A similar behavior is reported by linear stability analysis in [54]. However, the
axial extent of the columnar structures increases with increasing L as depicted by Figure 27. In
addition, these structures become less regular.
Figure 28 illustrates the exponential growth of axial vorticity for different values of V0. One

can observe a significant decay in the duration that is needed for the helicoidal motion to evolve.
To be precise, there holds

‖
(
∇× u|L(t)

)
z
‖ ∼ 10αLt for t ≤ tL (6.39)

with tL denoting the end time of exponential grow as depicted in Figure 28. Here, the exponential
factor αL shows a dependence on L that can be fairly well described by αL ∝ V 2

0 ∝ L, see Figure
28. Here, the simulation for V0 = 9000 V was not taken into account since at some point, the
Newton iteration did not converge any more. Also, as shown by 29, the violation of ∇ · uh = 0
becomes more severe by increasing V0. At this point, a higher spatial resolution or the use
of stabilization techniques such as div-grad stabilization and SUPG should be considered for
simulating scenarios of large V0.
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Figure 26: Upper: Temperature distribution on {z = 0.5H} for dθ = 7 K, g = gn for different
potential differences V0 and time instances. Lower: Axial vorticity.

Figure 27: Temperature isosurface {θ = θr} for dθ = 7 K, g = gn for different potential
differences V0 and time instances.
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Figure 28: Temporal evolution of L2-norm of axial vorticity for dθ = 7 K, g = gn and different
potential differences V0.
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Comparison of Time Stepping Schemes

We now compare the simulation results that are obtained by the time stepping schemes BDF1
and BDF2, as defined in Section 5.2, and the Crank-Nicolson method. The scenario under
Earth’s gravity is simulated by using each method and for time step sizes k ∈ {0.1, 0.05, 0.025}.
Thereby, the norm of axial vorticity, Nusselt number and violation of the divergence constraint
as function over time are considered as quantities of interest and plotted in Figure 31. In terms
of these quantities, all schemes yield for all time step sizes very similar results, except of two
outliers. For BDF2 with k = 0.1 and Crank-Nicolson with k = 0.05 a significant difference in
all quantities can be observed. Apparently, BDF2 is not stable for too large time step sizes, as
the very high values of ‖∇ ·u‖0,∞ and Nusselt number indicate. From the literature, it is known
that both BDF1 and BDF2 are A-stable, however, with BDF2 having a smaller stability region
as BDF1.
The solution obtained by Crank-Nicolson for k = 0.05 could be a pathological case, since the

respective results for k = 0.1 and k = 0.025 are very close to the majority of results.
Figure 33 illustrates the iso-surface for θ = θr and axial vorticity at final time t = 200 s for

all time stepping schemes and k ∈ {0.05, 0.025}. Except of the aforementioned Crank-Nicolson
/ k = 0.05 outliers, all solutions look very similar.
In Figure 30 the average CPU time for solving the arising linear systems is listed for each

method and each time step size. As usual in the context of incompressible flow problems, the
linear solver converges faster with decreasing time step size, since the well-conditioned mass
matrix arising from the finite element discretization of ∂tu becomes more dominant compared
to the typically ill-conditioned stiffness matrix that comes from ∆u. For k ≤ 0.05, BDF2 is
apparently the fastest scheme in terms of linear systems. A clear advantage of BDF1 and BDF2
over Crank-Nicolson lies in the decoupling of the nonlinear system into three parts (momentum
/ continuity equation, heat equation, Gauss’ law) which can be solved separately. However, the
used nonlinear and linear solver are not optimized to exploit this fact. In doing so, a further
reduction of CPU time could be possible.

k BDF1 BDF2 CN

0.1 15.95 18.39 13.7
0.05 12.57 10.11 11.07
0.025 9.47 9.39 10.89

Figure 30: Average CPU time in seconds for solving the arising linear systems for different time
stepping schemes and time step sizes k.

Comparison of DEP Formulations

So far, all presented simulation results are obtained for the choice F = Fs, given by (6.9) and
which does not satisfy the requirements needed for the existence results. These conditions are
met by the linearized DEP models Fs,0, Fa,0 and Fa,1, introduced in Definition 3.23.

We now compare the results that are obtained by the different formulations. As base potential
in the definition of the linearized terms we set Φ0 = Φ, where Φ denotes the analytical solution
in the zero-gravity case with infinite cylinder, (6.18). In Section 3.3, the use of linearization was
motivated by the fact that small values of γ in Gauss’ law and small temperature differences
dθ lead to a small corridor in which all possible potential solutions are contained. Figure 34
depicts the difference between Φ and the potential Φ which is computed in the F = Fs case
with dθ = 7 K and V0 = 7000 V under Earth’s gravity gn. Apparently, the relative difference
between both potentials is of order O(10−3) over the entire time interval. We therefore expect
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Figure 31: Temporal characteristics for dθ = 7 K, V0 = 7000 V and g = gn for different time
stepping schemes and time step sizes k. Left: L2-norm of axial vorticity. Right: Violation of
divergence constraint

fairly similar results for all considered DEP formulations. This is indeed the case, as the following
results show. According to Figure 34, the temporal evolution of axial vorticity exhibits pretty
much the same characteristics, leading to very similar columnar vortex structures in the final
state, see Figure 35. In particular, the number of those structures is the same in all cases. As
single significant difference, one can observe that the resulting flow states are slightly rotated
around the axial axis. This is illustrated in Figure 36, where the {uz = 0} level set is used to
highlight the location of the columnar structures.
In summary, one can conclude that the proposed linearized DEP models denote acceptable

substitutions of the “exact” model Fs in case of small temperature dependence of permittivity
and moderate temperature differences within the fluid. This is in agreement with the statements
in [78]. According to them, “the thermo-electric coupling can be neglected in agreement with the
linear stability theory” for “small values of γ ≈ 10−3 − 10−2 K−1 and wide gaps, i.e. η ≤ 0.6”.

Sensitivity and Non-Uniqueness of Stationary Solutions

As we will see in the end of this section, simulation results and experimental data are in good
agreement in the sense that columnar structures are present in both cases. However, the actual
number of these structure differs in some of the considered cases. In order to further investigate
this issue, we now consider the sensitivity of the solution w.r.t. perturbations by using the
adjoint framework presented in Section 2.2. For doing so, we first define the quantity of interest

Jvort(u) :=

∫

Ω̃
(∂xuy(T )− ∂yux(T ))

2 dx (6.40)

with Ω̃ = {(x, y, z) ∈ Ω: 0.6H ≤ z ≤ 0.7H}. Jvort measures the strength of axial vorticity
in a certain area of the annulus at T = 70 s, see Figure 39. The idea behind this definition
is that the formation of columnar structures is closely related to axial vorticity. Further, the
previously presented simulations under earth gravity show that the spatial distribution of axial
vorticity at t = 70 s correlates with the positions of thermal plumes, see Figure 13. Regarding
the framework of Section 2.2, we have J i = 0 and Jf = Jvort.
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Figure 32: Nusselt number for dθ = 7 K, V0 = 7000 V and g = gn for different time stepping
schemes and time step sizes k.

As pointed out in Section 2.2 the solution z = (û, p̂, θ̂, Φ̂) of the dual system (2.43) with zero
right-hand side terms ∂·ji and initial conditions û(T ) = ∂uJvort(u), θ̂(T ) = 0 can be interpreted
as derivative of Jvort at the solution u = (u, p, θ,Φ) of the primal problem (2.28). Thus,

Jvort(u(p)) ≈ J(u) + (z, p)L. (6.41)

for small perturbations p = (δu, δp, δθ, δΦ) ∈ L := L2(0, T ;H1
0 × L2

0 ×H1
D ×H1

D) on the right-
hand side of (2.28). According to (6.41), perturbations at locations where the dual solution takes
large values may potentially lead to large deviations of Jvort from the unperturbed state. On
the other hand, small dual values indicate areas of low sensitivity.
Figure 38 illustrates the temporal evolution of the logarithm of the dual solution’s magnitude.

At final time t = 70 s, large dual values are restricted to the area given by Ω̃. As time evolves,
this area of influence is covering the entire annulus and the dual solution grows several orders
of magnitude. At initial time t = 0 s, the largest values can be found in the lower part of the
annulus. Apparently, perturbations which originate in the lower inner part and travel upwards
due to natural convection have a larger impact than those who start in the upper outer part and
travel downwards.
In Figure 37, the norms of the individual dual components are plotted over time for V0 =

7000 V and V0 = 4000 V. In the high voltage case, perturbations of Gauss’ law have a compa-
rable impact on axial vorticity as momentum perturbations have. Probably, the reason is the
fact that Gauss’ law perturbations lead to a perturbed potential field which in turn leads to a
perturbed DEP force term. According to (6.29), DEP force is the only source of axial vorticity.
In contrast, perturbations of heat equation and incompressibility constraint have a significantly
smaller impact.
For t ≈ 55−70 s, the norms of all dual components stay approximately at their level at t = 70 s.

This is exactly that period, when the first columnar structures become visible, see Figure 13,
and when axial vorticity reaches its final order of magnitude, see Figure 18. For t < 55 s, all
dual components exhibit an exponential growth for decreasing t. Due to the resulting extremely
large values, one can conclude that even tiny perturbations at the initial stage of the simulation
may lead to large variations of the final axial vorticity. The sooner the flow state is perturbed,
the larger the impact on the final state is. On the other hand, once the columnar structures are
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Figure 33: Temperature isosurface {θ = θr} and axial vorticity for dθ = 7 K, V0 = 7000 V and
g = gn at t = 200 s for different time stepping schemes and time step sizes k.
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Figure 34: Temporal characteristics for dθ = 7 K, V0 = 7000 V, F = Fs and g = gn. Left:
Relative W 12-difference between analytic potential Φ for infinite cylinder and computed potential
Φ. Right: L2-norm of axial vorticity for different choices of F.
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Figure 35: Temperature isosurface {θ = θr} for dθ = 7 K, V0 = 7000 V and g = gn at t = 200 s
for different choices of F.

Figure 36: Left: Axial velocity on {z = 0.5H} for dθ = 7 K, V0 = 7000 V and g = gn at
t = 200 s for different choices of F. Right: Comparison of {uz = 0} level set on {z = 0.5H}.
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Figure 37: Temporal evolution of norms of dual solution for dθ = 7 K, F = Fs, g = gn and for
V0 = 7000 V (solid), and V0 = 4000 V (dashed).

almost fully developed, such severe amplification of perturbations is not given anymore.
As shown in Figure 28, the flow state for V0 = 4000 V does not exhibit a transition from its uni-

cellular initial state and its axial vorticity is zero. This matches the fact, that the corresponding
dual solution stays at a very low level, see Figure 37. Apparently, axial vorticity is insensitive
w.r.t. perturbations as long as the electric Rayleigh number is sufficiently small.
Motivated by these considerations, simulations with perturbed initial condition for tempera-

ture, θ̃0 = θ0 + δθ(j), are conducted for two different types of perturbations:

δθ(j)(ϕ, r, z) := 0.1 cos(2πKϕ) sin

(
π
r − ri
ro − ri

)
·
{
sin
(
π

z−z1,j
z2,j−z1,j

)
, z ∈ [z1,j , z2,j ]

0, else
, (6.42)

for j ∈ {l, h}. Thus, the perturbation is continuous and restricted to a cross-section of the
cylinder, defined by lower and upper axial coordinate z1,j , z2,j . In a first scenario, [z1,h, z2,h] =
[0.1H, 0.16H], i.e. the perturbation is located in the area of highest dual magnitudes. The
second scenario is defined by [z1,l, z2,l] = [0.92H, 0.98H], where dual values are lower, but still
of order O(105), see also Figure 39. In both cases, the azimuthal wavenumber K is set to 6.
The results of these simulations are depicted in Figure 40 and 41. For both scenarios, one can
observe that axial vorticity reaches its maximal value significantly sooner as in the unperturbed
case. Generally, it appears that the solution converges faster towards its final, stationary state
if the initial condition is perturbed in its high-sensitivity region, j = h, compared to the low-
sensitivity case, j = l. The second scenario in turn converges faster than the unperturbed case.
Furthermore, it is remarkable that the perturbed solutions exhibit an azimuthal wavenumber of
6, in contrast to 7 for the unperturbed solution.
We investigate this effect in more detail. In Figure 42, the temperature at t = 100 s is visual-

ized on a horizontal cut-plane at z = 0.5H for different perturbed initial conditions. All initial
perturbations are of the form dθ(h), however, with azimuthal wavenumbersK ∈ {0, 3, 4, 5, 6, 7, 8}.
The resulting azimuthal wave numbers at final time are KT ∈ {7, 6, 8, 5, 6, 7, 8}. In each case, the
solution appears to have reached a stationary state. Thus, we have shown numerically, that the
stationary TEHD equations exhibit several solutions, of similar shape but different amount of
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Figure 38: expz := log10

(
|û|+ |p̂|+ |θ̂|+ |Φ̂|

)
for dθ = 7 K, V0 = 7000 V, F = Fs and g = gn

at different time instances.

columnar structures. According to the plots in Figure 43 and 44, several levels of heat transfer,
axial vorticity, kinetic energy and dissipation can be observed, where solutions with coinciding
wave number are on the same respective level. Interestingly, the solution for K = 5 is the only
one, whose kinetic energy in the final state is larger as in the initial state. Generally, kinetic
energy and dissipation decrease with increasing KT , whereas heat transfer and vorticity increase.
In summary, one can state axial vorticity of the solution of the instationary TEHD equations is

extremely sensitive to perturbations in the initial stage of the simulation. Moreover, by suitable,
small perturbations of the initial condition, one can generate a variety of different stationary
solutions and convergence towards these stationary states is enhanced.
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Figure 39: Initial / final state of primal / dual solution for dθ = 7 K, V0 = 7000 V, F = Fs and
g = gn. Left: Temperature isosurface {θ = θr} of primal solution at t = 70 s with axial vorticity.
The shaded part indicates the area of interest Ω̃ in the definition of Jvort, (6.40). Second from
the left: expz at t = 70 s. Second from the right: expz at t = 0 s with shaded area indicating the
support of the initial condition perturbation dθ(l). Right: expz at t = 0 s with shaded area
indicating the support of dθ(h).
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Figure 40: Temporal evolution of L2-norm of azimuthal and axial vorticity for dθ = 7 K,
V0 = 7000 V, F = Fs and g = gn . The unperturbed solution is denoted by u; u(h), u(l) denote
the solutions that are obtained by perturbing the initial temperature by dθ(h) (high sensitivity
region) and dθ(l) (low sensitivity region), respectively.
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Figure 41: Unperturbed u and perturbed solutions u(l), u(h) for dθ = 7 K, V0 = 7000 V,
F = Fs and g = gn. Left: Temperature isosurface {θ = θr} and axial vorticity of primal solutions
at t = 50 s. Right: Temperature distribution on {z = 0.5H} at t = 140 s.

Figure 42: Temperature distribution on {z = 0.5H} at t = 100 s for dθ = 7 K, V0 = 7000 V,
F = Fs and g = gn. K > 0 denotes the azimuthal wavenumber of initial temperature
perturbation dθ(h) in (6.42). K = 0 denotes the unperturbed case.
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Figure 43: Temporal characteristics of perturbed solutions for dθ = 7 K, V0 = 7000 V, F = Fs

and g = gn. u
(K) with K > 0 denotes the solution obtained for initial temperature perturbation

δθ(h) of azimuthal wavenumber K. u(0) denotes the unperturbed solution. Left: Nusselt number.
Right: L2-norm of axial vorticity.
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Figure 44: Temporal characteristics of perturbed solutions for dθ = 7 K, V0 = 7000 V, F = Fs

and g = gn. u
(K) with K > 0 denotes the solution obtained for initial temperature perturbation

δθ(h) of azimuthal wavenumber K. u(0) denotes the unperturbed solution. Left: Kinetic energy.
Right: Dissipation.
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Comparison with Experimental Data

We conclude this section on numerical results by comparing the simulation with experimental
data in the standard gravity case with two different configurations of dθ and V0. The physi-
cal experiments were conducted by Dr. Torsten Seelig at the Lehrstuhl für Aerodynamik und
Strömungslehre at BTU Cottbus, which is headed by Prof. Christoph Egbers, see also [68].
Two different measurement techniques are employed: By means of the so-called particle image

velocimetry (PIV) it is possible to measure the fluid’s radial and axial velocity on a vertical
cut plane. Here, particles are used that are transported by the fluid’s motion. By means of
short laser impulses, the positions of the particles can be recorded by a camera and correlation
between positions at subsequent impulses allows to compute the particle velocities. As second
technique, the so-called shadowgraph imaging is used. Here, a telecentric light is placed at the
bottom of the annulus which has transparent top and ground plate. The light is directed along
the axial axis and recorded by a camera. As the fluid’s refraction index is density-, and therefore
temperature-dependent, conclusions on the z-averaged fluid’s temperature distribution can be
drawn. For details concerning both techniques see [68]. Figure 45 depicts the experimental cell
and a schematic view on the underlying measurement techniques.
The experiments are realized in the following way: first the temperature difference dθ is applied

between the inner and outer cylinder. This state is kept unchanged for 60 minutes in order to
obtain a fully developed, stationary, uni-cellular flow field, which corresponds to the solution of
the stationary Boussinesq equations for natural convection. Then, the voltage difference V0 is
switched on and data is acquired for 15 minutes. In both considered cases, the experimental
data shows convergence towards a stable state, [68]. The presented data always corresponds to
the last recorded time instance.
The top row of Figure 46 shows the results of the shadowgraph measurement (left) and the

z−averaged simulated temperature distribution (right) for dθ = 2 K and V0 = 6000 V. The
shadowgraph image depicts the normalized light intensity, where blue / red regions refer to
locations of denser / lighter fluid compared to the reference state with V0 = 0 V, [68]. One can
observe a good qualitative agreement in the sense that five, equally spaced temperature plumes
are visible in both cases.
In the dθ = 7 K, V0 = 7000 V case, the experimental data indicates the occurrence of six

thermal plumes, see the bottom row of Figure 46 (left). This is in contradiction to the sim-
ulation results, where seven plumes are visible, see Figure 16. However, it was shown in the
previous section, that the solution of the stationary TEHD Boussinesq equations is not unique
and different solutions can be generated by small perturbations of the initial condition. Figure
46 (right) illustrates the numerical solution for perturbed initial condition with azimuthal wave
K = 6, (6.42). Then, experimental and simulation data show a similar qualitative agreement as
in the previous case.
One should note that the physical experiments have been repeated multiple times for the same

experimental configuration as the presented simulations and under fairly comparable laboratory
conditions. The results of these experiments did not show any variation in the azimuthal wave
number, although slight perturbations in the initial conditions can never be excluded in physical
experiments and are likely to happen. In this sense, the mathematical model (or the numerical
solution method) differs from the physical experiment, which appears to be more stable.
A more quantitative comparison is presented by Figure 48, where the flow field on a vertical

cut-plane is shown. Here, the cut-plane for the simulation data is chosen to minimize the
difference between experiment and simulation. The arrows depict the radial and axial velocity
component with red / blue indicating positive / negative axial velocity. As for the shadowgraph
measurement, one can observe a good agreement between experiment and simulation concerning
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the qualitative flow structure. In the dθ = 2 K, V0 = 6000 V case, the axial velocity covers
approximately the same range of values. For dθ = 7 K, V0 = 7000 V the simulation seems to
slightly overestimate the magnitude of the velocity. Possible reasons for this discrepancy might be
modeling errors (Boussinesq approximation), discretization inaccuracy and measurement errors.
As final comparison, we consider the critical value of V0 at which the fluid departs from

the stable, uni-cellular convection cell which is typical for natural convection at low Rayleigh
numbers, to a state where columnar vortex structures do occur, see Figure 47. For three different
configurations, critical values obtained by experiments [68] and intervals obtained by simulations
are presented. Here, the respective lower interval bounds denote the largest considered effective
voltage, for which no transition from the uni-cellular state was observed. The respective upper
bounds denote the smallest considered effective voltage, for which this transition does occur in
the numerical simulation.
In each case, the experimentally obtained critical values are either contained in the numerical

interval, or very close to the respective upper bound.

experiment simulation
configuration shadowgraph PIV interval

Γ = 20, dθ = 2K ≈ 1300 ≈ 1300 (1268, 1449)
Γ = 20, dθ = 7K ≈ 1000 ≈ 1150 (905, 1090)
Γ = 60, dθ = 7K ≈ 780 (711, 776)

Figure 47: Critical value dV
Veff

above which non-zero azimuthal wavenumbers can be observed by

shadowgraph imaging, PIV and simulation.
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Figure 48: Comparison of experimental PIV data and simulation for radial-axial velocity field
when the flow reached a stationary state, with g = gn. Color encodes axial velocity. Left: PIV
for dθ = 2 K, V0 = 6000 V. Second from the left: Simulation for dθ = 2 K, V0 = 6000 V and
F = Fs. Second from the right: PIV for dθ = 7 K, V0 = 7000 V. Right: Simulation for dθ = 7 K,
V0 = 7000 V, F = Fs and initial temperature perturbation dθ(h) with K = 6.
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7. Conclusion

In this thesis, we analyzed the TEHD Boussinesq equations by analytical and numerical means.
First, a variational formulation for the steady equations was given. Here, the crucial point is
the mathematical modeling of the DEP force term |∇Φ|2∇θ due to the high regularity that is
required on Φ and θ to make this term meaningful. Therefore, the DEP force is replaced by a
general force term F which should satisfy certain conditions. For such F, existence and stability
of stationary solutions of the standard Boussinesq equations, i.e. with fixed potential Φ, was
shown by extending existing results given by [57]. Afterward, existence and stability of solutions
for TEHD Boussinesq equations was proven by employing a fixed-point iteration. Additionally,
we showed uniqueness of solutions under a suitable small data condition.
Existence and stability of instationary solutions was shown by extending a proof approach

given in [77] for the incompressible Navier-Stokes equations. Here, the unsteady problem is
discretized in time, leading to a sequence of N steady problems with k = T

N denoting the time
step size. Existence and stability of solution sequences for those steady equations follows by
the previously derived results. Unsteady solutions are then constructed by the taking the limit
k → 0.

So far, the body force F has been kept rather general. We then proposed several modelizations
of the original DEP force |∇Φ|2∇θ which fit into the previously derived framework. These models
are either based on linearization around a given base potential Φ0, or on the use of a regularization
operator. The later modelization is used to propose an alternative notion of steady and unsteady
solutions, where the strong connection between potential and electric gravity gE = ∇2Φ∇Φ, is
weakened.
The second main part of this thesis addressed the discretization of the stationary and insta-

tionary TEHD Boussinesq equations. A spatial discretization based on the conforming finite
element method and a temporal discretization based on a variant of BDF was proposed. The
main feature of the temporal discretization is the fact, that it is kept general, i.e. first and second
order methods fit into the given time stepping scheme. Moreover, this temporal scheme allows
to solve the resulting set of discretized equations in a decoupled way.

A priori error estimates were derived for the stationary and instationary problem. In the
former case, another small data condition is supposed. For the unsteady error analysis, the
proof approach given by [75] for the standard Boussinesq equations was extended to take into
account the additional Gauss’ law and DEP force. Additionally, we did not restrict ourselves to
first order in time methods.
The derived error analysis works for the same DEP modelizations, that are proposed to show

existence of solutions. Additionally, we presented another DEP formulation based on a simple
cut-off function; thus being more suitable for practical realizations. In doing so, another small
data condition has to supposed. However, this one is way less restrictive as the one that posed
for the steady problem. Indeed, we showed that this condition is satisfied for a realistic scenario
in the section on numerical experiments.
We concluded this thesis with numerical experiments. First, the theoretically derived conver-

gence rates were validated for a 2D benchmark model. Then, the 3D flow of a dielectric fluid
contained in a cylindrical gap was numerically investigated. We showed that heat transfer is en-
hanced by application of an electric field and visualized the resulting fluid states under Earth’s
gravity and zero-gravity conditions. It was pointed out that vorticity grows exponentially in
time if the fluid experiences the DEP force. We further showed that a critical voltage difference
exists, below which the fluid stays in its initial state. The results and computational effort of

139



7 Conclusion

different time stepping schemes was compared. Moreover, the different DEP formulations were
compared, which showed that linearized models are a good approximation to the exact DEP
formulation, at least in the considered scenario. Afterward, we investigated the sensitivity of
the solution w.r.t. perturbation by solving the associated adjoint problem. It was pointed out
that the norm of the dual solution grows exponentially as t→ 0. We deduced that the resulting
fluid motion is highly sensitive w.r.t. perturbations in the initial phase of the simulation. Using
this information, we defined perturbed initial conditions and could thereby construct steady so-
lutions of different azimuthal wave numbers. Thus, the corresponding steady problem exhibits
more than one solution. Finally, we compared our numerical solution with experimental data,
provided by our project partners at BTU Cottbus, and a good agreement was found.
There are several issues where future work could lead to new contributions. A more stable

spatial discretization could lead to more accurate results and higher stability for high thermal and
electrical Rayleigh numbers. Such a discretization could be given by H(div)-conforming elements
that provide exactly divergence-free solutions of the incompressible Navier-Stokes equations,
e.g. Raviart-Thomas and Brezzi-Douglas-Marini elements, in combination with Discontinuous
Galerkin techniques, such as upwinding. By means of these elements it could also be possible,
to derive unsteady error estimates that are Reynolds-semi-robust, as it is done in [66] for the
incompressible Navier-Stokes equations.
Concerning the underlying model, one could also take into account dielectric heating, as pre-

sented in [82]. For large temperature differences, the question arises whether the Boussinesq
approximation is still accurate, or whether more advanced models, such as the Low-Mach ap-
proximation, should be used.
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A. Appendix

A.1. General functional analytic results

Throughout, let X denote a non-empty vector space over R.

Definition A.1. (Normed Space and Banach Space)
A map ‖ · ‖X : X → [0,∞) is called a norm on X if the following conditions are satisfied

(i) ‖αx‖X = |α|‖x‖X for all α ∈ R, x ∈ X.

(ii) ‖x+ y‖X ≤ ‖x‖X + ‖y‖X for all x, y ∈ X.

(iii) ‖x‖X = 0 ⇒ x = 0.

The space X equipped with norm ‖ · ‖X , written as (X, ‖ · ‖X), is called normed space . If any
Cauchy sequence in (X, ‖ · ‖X) converges to an element of X, then (X, ‖ · ‖X) is called Banach
space.

For R > 0 and x ∈ X let BR(x,X) := {y ∈ X : ‖x − y‖X ≤ R} denote the closed ball around
x of radius R. In the following, we will often skip the index of the norm and write simply X
instead of (X, ‖ · ‖X).

Definition A.2. (Inner Product and Hilbert Space)
A map (·, ·)X : X ×X → R is called inner product on X, if

(i) (αx+ βy, z)X = α (x, z)X + β (y, z)X for all x, y, z ∈ X,α, β ∈ R.

(ii) (x, y)X = (y, x)X for all x, y ∈ X.

(iii) (x, x)X ≥ 0 for all x ∈ X.

(iv) (x, x)X = 0 ⇒ x = 0.

The inner product space (X, (·, ·)X) is called Hilbert space , if (X, ‖ · ‖X) is a Banach space,
where ‖ · ‖X =

√
(·, ·)X .

In the following, we will often skip the index of the inner product and denote the corresponding
Hilbert space by X or (X, ‖ · ‖).

Definition A.3. (Separable Space)
A normed space X is called separable, if it contains a countable, dense subset.

Lemma A.4. (Subspaces of Separable Spaces, Aufgabe I.4.26 in [80])
Let X denote a separable normed space. Let U ⊂ X,U 6= ∅ denote some subspace. Then U is
separable.

Definition A.5. (Bounded Linear Operator)
Let X,Y denote normed spaces. A map T : X → Y is called bounded linear operator, if

(i) T (αx+ βy) = αTx+ βTy for all x, y ∈ X, α, β ∈ R.
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(ii) There is C > 0 such that ‖Tx‖Y ≤ C‖x‖X for all x ∈ X.

The space of all bounded linear operators from X to Y is denoted by

L(X,Y ) := {T : X → Y : T is bounded and linear }.

This space is equipped with the norm

‖T‖L(X,Y ) := sup
x∈X,‖x‖X=1

‖Tx‖Y .

If Y is a Banach space, then L(X,Y ) is a Banach space as well. If X = Y , we write L(X) :=
L(X,X).
A linear operator T ∈ L(X,Y ) is isometric, if ‖Tx‖Y = ‖x‖X for all x ∈ X. T ∈ L(X,Y ) is

an isomorphism, if T is bijective and T−1 ∈ L(Y,X).

Theorem A.6. (Closed Graf Theorem)
Let X, Y denote Banach spaces. A linear operator T : X → Y is continuous if and only if its
graph is closed in X × Y . This implies that the inverse of a bounded, bijective linear operator
T ∈ L(X,Y ) is bounded as well.

Lemma A.7. (Isometry and Closed Range)
Let X,Y denote Banach spaces and T ∈ L(X,Y ) an isometry. Then, the range T (X) is closed
in Y .

Proof. Let (yn)n ⊂ T (X) with yn → y in Y and yn = Txn for xn ∈ X. Moreover,

‖yn − ym‖Y = ‖Txn − Txm‖Y = ‖xn − xm‖X .

Thus, (xn)n is a Cauchy sequence. Therefore, there exists x ∈ X with xn → x in X. Further,

Tx = T ( lim
n→∞

xn) = lim
n→∞

Txn = lim
n→∞

yn = y,

i.e. y ∈ T (X).

Definition A.8. (Embedding)
Let X,Y be normed spaces and T ∈ L(X,Y ) be injective. Then, T is called embedding. If the
identity operator Id : X → Y, x 7→ x is an embedding, we write X →֒ Y . In this case, there is a
constant C > 0 such that

‖x‖Y ≤ C‖x‖Y for all x ∈ X.

If the embedding operator is additionally compact, we write X →֒→֒ Y .

Definition A.9. (Compact Set)
Let X denote a normed space. A subset K of X is called compact, if every open covering C of
K contains a finite covering {O1, . . . , Om} ⊂ C such that K ⊂ O1 ∪ . . . ∪ On. A subset C of X
is called sequentially compact, if every sequence (xn) ⊂ C possesses a subsequence converging to
some x ∈ C. According to 2.5 in [6], K ⊂ X is compact if and only if K is sequentially compact.

142



A Appendix

Theorem A.10. (Compact Unit Ball, Satz I.2.7 in [80] )
Let X be a normed space. Then, B := BX(0, 1) with BX(0, 1) := {x ∈ X : ‖x‖X < 1} is compact
if and only if dimX <∞.

Definition A.11. (Compact Linear Operator)
Let X,Y denote Banach spaces. A linear operator T : X → Y is compact if T (BX(0, 1)) is
compact in Y . Equivalently, for any bounded sequence (xn)n ⊂ X, the sequence (Txn)n ⊂ Y
contains a converging subsequence. Moreover, a compact linear operator is bounded.

Definition A.12. (Compact Nonlinear Operator, Definition 25 in [46])
Let X denote a Hilbert space. An operator F : X → X is compact if it maps bounded sets to
sets with compact closure in X.

Lemma A.13. (Compact Operator in Finite Dimensions)
Let X denote a finite dimensional Hilbert space and F : X → X a continuous function. Then,
F is compact.

Proof. Let M ⊂ X denote a bounded set. Then, M is closed and bounded, thus compact since
X is finite dimensional by using Theorem A.10. Let K := F (M) and C denote an open covering
of K. Since F is continuous, F−1(U) := {x ∈ X : F (x) ∈ U} is open for all open subset U ⊂ X.
Therefore, D := {F−1(U) : U ∈ C} is an open cover of M . Since M is compact, there exists
U1, . . . , Um ∈ C for some m ≥ 1 such that M ⊂ F−1(U1) ∪ . . . ∪ F−1(Um). Now

F (M) ⊂ F
(
F−1(U1) ∪ . . . ∪ F−1(Um)

)

⊂ F (F−1(U1)) ∪ . . . ∪ F (F−1(Um))

= U1 ∪ . . . ∪ Um.

Therefore, C contains a finite covering of F (M), i.e. F (M) is compact. Thus, it is also bounded,
implying that F (M) ⊂ F (M) is bounded as well. Therefore, the closure of F (M) is bounded
and closed, thus compact in X.

Definition A.14. (Linear Form and Dual Space)
Let X denote a normed space. A bounded linear operator from X to R is called linear form.
The space of all linear forms on X is called dual space of X. One denotes X∗ = L(X,R) with
associated norm

‖φ‖X∗ = sup
x∈X,‖x‖X=1

|φ(x)|.

We will use the following notation for the dual pairing of X and X∗

〈φ, x〉X∗,X := 〈φ, x〉X∗ := 〈φ, x〉 := φ(x) for φ ∈ X∗, x ∈ X.
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Definition A.15. (Adjoint Operator)
Let X,Y denote normed spaces and T ∈ L(X,Y ). The adjoint of T is defined as

T ∗ : Y ∗ → X∗, 〈T ∗y∗, x〉X∗ := 〈y∗, Tx〉Y ∗ for y∗ ∈ Y ∗, x ∈ X.

There holds T ∗ ∈ L(Y ∗, X∗) with ‖T ∗‖L(Y ∗,X∗) ≤ ‖T‖L(X,Y ).

Theorem A.16. (Schauder Theorem, Satz III.4.4 in [80])
Let X,Y denote Banach spaces. An operator T ∈ L(X,Y ) is compact if and only if T ∗ ∈
L(Y ∗, X∗) is compact.

Lemma A.17. (Adjoint Operator and Isomorphism)
Let X,Y denote Banach spaces and T : X → Y an isomorphism. Then, T ∗ : Y ∗ → X∗ is an
isomorphism.

Proof. Let T ∗y∗ = 0 for some y∗ ∈ Y ∗. By definition, 〈y∗, Tx〉 = 0 for all x ∈ X. By surjectivity
of T , 〈y∗, y〉 = 0 for all y ∈ Y , i.e. y∗ = 0. Thus, T ∗ is injective. On the other hand, let x∗ ∈ X∗

be arbitrary. Define 〈y∗, y〉 := 〈x∗, T−1y〉. Since T−1 ∈ L(Y,X), y∗ ∈ Y ∗. Moreover, for any
x ∈ X,

〈T ∗y∗, x〉 = 〈y∗, Tx〉 = 〈x∗, T−1Tx〉 = 〈x∗, x〉,
i.e. T ∗y∗ = x∗.

Definition A.18. (Orthogonal Complement and Polar)
Let X be a Hilbert space and V ⊂ X a subspace. The orthogonal complement and polar of V
are defined as

V ⊥ := {x ∈ X : (x, v)X = 0 ∀v ∈ V }
V ◦ := {g∗ ∈ X∗ : 〈g, v〉X∗ = 0 ∀v ∈ V }.

Definition A.19. (Reflexive Space)
Let X be a normed space. The bidual of X is defined as X∗∗ := (X∗)∗. For each x ∈ X define
JX(x) : X

∗ → R by
〈JX(x), x∗〉X∗∗ := 〈x∗, x〉X∗ for all x∗ ∈ X∗.

According to Satz III.3.1 in [80], JX(x) ∈ X∗∗ and JX : X → X∗∗ is a linear isometry. The
space X is called reflexive, if JX is surjective.

Theorem A.20. (Riesz Representation Theorem, Theorem V.3.6 in [80])
Let H denote a Hilbert space. Then, for all φ ∈ H∗ there exists a unique g ∈ H such that
〈φ, f〉H∗ = (g, f)H for all f ∈ H. Moreover, ‖g‖H = ‖φ‖H∗ .
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Definition A.21. (Riesz Identification)
Let H denote a Hilbert space. Define

JH : H → H∗, g 7→ (g, ·)H .

According to Theorem A.20, JH is bijective and isometric. Thus, H and H∗ are isomorphic,
written as H ∼= H∗. Moreover their elements are identified in the following sense: For x ∈ H,
x ∈ H∗ means that JH(x) ∈ H∗.

Theorem A.22. (Hilbert spaces are reflexive, Korollar V.3.7 in [80])
Let X be a Hilbert space. Then X is reflexive.

Lemma A.23. (Subspace of Reflexive Space, Satz III.3.4 in [80])
Let X denote a reflexive Banach space and Y ⊂ X a closed subspace. Then Y is reflexive.

Lemma A.24. (Reflexive Dual Space, Satz III.3.4 in [80])
Let X denote a reflexive Banach space. Then X∗ is reflexive.

Lemma A.25. (Theorem 2.4.6 in [16] )
Let X be a Banach space. If X∗ is separable, then X is separable.

Lemma A.26. (Reflexivity and Separability)
Let X denote a reflexive and separable Banach space. Then, X∗ is separable.

Proof. Let M ⊂ X denote a dense and countable subset. Then, M∗∗ := {JX(x) : x ∈ M} is
countable. Let x∗∗ ∈ X∗∗ be arbitrary. Let x := J−1

X (x∗∗) and (xn)n ⊂ M with xn → x. Then,
there holds for (x∗∗n := JX(xn))n ⊂M∗∗:

‖x∗∗ − x∗∗n ‖X∗∗ = ‖JX(x− xn)‖X∗∗ = ‖x− xn‖X → 0.

Thus,M∗∗ is dense in X∗∗, i.e. X∗∗ is separable. Using Lemma A.25, X∗ is separable as well.

Lemma A.27. (Reflexivity and Isomorphism)
Let X,Y denote Banach spaces and T ∈ L(X,Y ) be an isomorphism. If X is reflexive, then Y
is reflexive.

Proof. Let JX : X → X∗∗ and JY : Y → Y ∗∗ be defined according to Definition A.19. Using
Lemma A.17, T ∗ : Y ∗ → X∗ is an isomorphism. Thus, again by Lemma A.17, T ∗∗ : X∗∗ → Y ∗∗
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is an isomorphism. Define J := T ∗∗JXT−1 ∈ L(Y, Y ∗∗). Let y∗ ∈ Y ∗, y ∈ Y be arbitrary. Then,

〈Jy, y∗〉Y ∗∗ = 〈T ∗∗JXT
−1y, y∗〉Y ∗∗

= 〈JXT−1y, T ∗y∗〉X∗∗

= 〈T ∗y∗, T−1y〉X∗

= 〈y∗, TT−1y〉Y ∗

= 〈y∗, y〉Y ∗

= 〈JY y, y∗〉Y ∗∗ .

Thus, J = JY and accordingly, JY is an isomorphism since T ∗∗, JX , T−1 are isomorphisms
each.

Theorem A.28. (Consequence of Hahn-Banach, Korollar III.1.6 and III.1.7 in [80])
Let X be a normed space, and x ∈ X. Then the following assertions hold

(i) If x 6= 0, there exists x∗ ∈ X∗ with 〈x∗, x〉X∗ = ‖x‖ and ‖x∗‖ = 1.

(ii) There holds
‖x‖ = max

x∗∈X∗,‖x∗‖≤1
|〈x∗, x〉X∗ |.

Definition A.29. (Weak Convergence)
Let X be a normed space.

(i) A sequence (xn)n ⊂ X converges weakly to x ∈ X, written as xn ⇀ x, if

for all x∗ ∈ X∗ : 〈x∗, xn〉X∗ → 〈x∗, x〉X∗ as n→ ∞.

(ii) A sequence (x∗n)n ⊂ X∗ converges weakly∗ to x∗ ∈ X∗, written as x∗n
∗
⇀ x∗, if

for all x ∈ X : 〈x∗n, x〉X∗ → 〈x∗, x〉X∗ as n→ ∞.

Lemma A.30. (Weak Limits are Unique)
Let xn ⇀ x1 and xn ⇀ x2. Then, x1 = x2.

Proof. Follows directly from Theorem A.28.

Lemma A.31. (Weak Limits and Embedding)
Let X, Y denote Banach spaces with X →֒ Y and xn ⇀ x in X for some sequence (xn)n ⊂ X
and x ∈ X. Then, xn ⇀ x in Y .

Proof. Let φ ∈ Y ∗ be arbitrary and define φ̃ := φ|X . Then, φ̃ ∈ X∗. Thus, φ(xn) = φ̃(xn) →
φ(x), i.e. xn ⇀ x in Y .
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Theorem A.32. (Weak Convergence in Reflexive Spaces, Theorem III.3.7 in [80])
Let X be a reflexive Banach space. Then, every bounded sequence (xn) in X has a weakly
convergent subsequence.

Lemma A.33. (Weak Convergence and Boundedness, Korollar IV.2.3 in [80])
Let X denote a normed space and xn ⇀ x in X. Then, supn∈N ‖xn‖X <∞.

Lemma A.34. (Weak Limits and Norm convergence)
Let X be a normed space.

(i) If xn ⇀ x in X, then ‖x‖ ≤ lim infn→∞ ‖xn‖
(ii) If φn

∗
⇀ φ in X∗, then ‖φ‖X∗ ≤ lim infn→∞ ‖φn‖X∗

Proof. (i). Let φ ∈ X∗ with 〈φ, x〉 = ‖x‖ and ‖φ‖X∗ ≤ 1, by Theorem A.28. Then, the assertion
follows from

‖x‖ = 〈φ, x〉 = lim inf
n→∞

〈φ, xn〉 ≤ lim inf
n→∞

‖φ‖X∗‖xn‖ ≤ lim inf
n→∞

‖xn‖.

(ii). Let ǫ > 0 and x ∈ X such that ‖x‖ = 1 and |〈φ, x〉X∗ | ≥ ‖φ‖X∗ − ǫ. Then,

lim
n→∞

|〈φn, x〉X∗ | = |〈φ, x〉X∗ | ≥ ‖φ‖X∗ − ǫ

lim
n→∞

|〈φn, x〉X∗ | ≤ lim inf
n→∞

‖φn‖X∗‖x‖ = lim inf
n→∞

‖φn‖X∗

and therefore
‖φ‖X∗ − ǫ ≤ lim inf

n→∞
‖φn‖X∗ .

Since ǫ > 0 was chosen arbitrarily, the assertion follows.

Lemma A.35. (Weak Convergence and Compact Embedding Implies Strong Convergence)
Let X, Y denote Banach spaces and xn ⇀ x in X. If T ∈ L(X,Y ) is compact, then T (xn) →
T (x) in Y .

Proof. According to Lemma A.33, the sequence (xn)n is bounded. Thus, there is a subsequence
(xk)k ⊂ (xn)n and y ∈ Y such that Txk → y by compactness of T . Now, let ψ ∈ Y ∗ be
arbitrary. Then, φ := ψ ◦ T ∈ X∗ and therefore ψ(Txn) → ψ(Tx) by xn ⇀ x. Since ψ was
chosen arbitrarily, Txn ⇀ Tx in Y . Thus, y = Tx.

Now, assume that Txn does not converge to y in Y . Consequently, there is δ > 0 and a
subsequence (xl)l ⊂ (xn)n such that ‖Txl − y‖Y > δ for all l. By compactness of T , there is
another subsequence (xm)m ⊂ (xl)l and z ∈ Y with Txm → z. Due to ‖Txm − y‖Y > δ for all
m, z 6= y. Addtionally, Txm ⇀ z. On the other hand, there still holds Txm ⇀ Tx = y since
Txl ⇀ y. This is a contradiction to z 6= y. Therefore, Txn → y = Tx.

Lemma A.36. (Strong Convergence in Finite Dimensional Spaces)
Let X denote a finite dimensional Banach space and (xn)n ⊂ X with ‖xn‖X ≤ M for some
M > 0 and all n ∈ N. Then, there is x∗ ∈ X and a subsequence (xk)k ⊂ (xn)n such that
xk → x∗ in X.
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Proof. As X is finite dimensional, it is isomorphic to the Hilbert space RN for some N ∈ N

and thus reflexive by Lemma A.27. Thus, there is x∗ ∈ X and (xk)k ⊂ (xn)n with xk ⇀ x∗ by
Theorem A.32. Moreover, the identity map Id : X → X is compact since X is finite dimensional,
use Theorem A.10. Using Lemma A.35, this implies xn → x∗.

Theorem A.37. (Banach-Alaoglu, Theorem 3.2.1 in [16])
Let X denote a separable Banach space. Then, for each bounded sequence (x∗n)n ⊂ X∗ there

exists x∗ ∈ X∗ and a subsequence (x∗k)k such that x∗k
∗
⇀ x∗ in X∗.

Definition A.38. (Gelfand Triple)
let V,H denote separable Hilbert spaces with continuous and dense embedding. Then, the Gelfand
triple is defined as

V →֒ H ∼= H∗ →֒ V ∗.

Theorem A.39. (Leray-Schauder Fixed-Point Theorem, Theorem 6.16 in [46])
Let Y be a Hilbert space and let F : Y → Y be a compact map. Consider the fixed-point problem:

Find y∗ ∈ Y such that
y∗ = F(y∗) (A.1)

Associate with (A.1) the family of fixed-point problems:
Find yλ ∈ Y such that

yλ = λF(yλ), 0 ≤ λ ≤ 1. (A.2)

If there is a constant K such that all solutions of (A.2) are uniformly bounded, i.e. ‖yλ‖ ≤
K for all 0 ≤ λ ≤ 1, then there exists a solution to (A.1).

Theorem A.40. (Lax-Milgram, Satz 4.2 in [6])
Let H denote a real Hilbert space with norm ‖ ·‖H , a : H×H → R a bilinear form and l : H → R

a linear form. Assume that there exists M,N,α > 0 such that for all u, v ∈ H:

a(u, v) ≤M‖u‖H‖v‖H , a(v, v) ≥ α‖v‖2H , l(v) ≤ N‖v‖H .

Then, there exists a unique solution u of

a(u, v) = l(v) for all v ∈ H.

Moreover, this solution satisfies

‖u‖H ≤ N

α
.

Theorem A.41. (Well-Posedness Under Inf-Sup Condition, Lemma I.4.1 in [32] )
Let (X, ‖ · ‖X) and (M, ‖ · ‖M ) denote Hilbert spaces and let a bilinear form b : X ×M → R be
given which is assumed to be bounded, i.e.

|b(v, p)| ≤M‖v‖X‖p‖M for all v ∈ X p ∈M.
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Define linear operators

B : X →M∗, x 7→ b(x, ·)
B∗ : M → X∗, p 7→ b(·, p)

and a subspace V := {v ∈ X : b(v, q) = 0 ∀q ∈ M}. Then, the following statements are
equivalent:

(i) There is β > 0 such that

inf
p∈M,p 6=0

sup
v∈X,v 6=0

b(v, p)

‖v‖X‖p‖M
≥ β.

(ii) B∗ is an isomorphism from M to V ◦ with

‖B∗p‖X∗ ≥ β‖p‖M for all p ∈M.

(iii) B is an isomorphism from V ⊥ to M∗ with

‖Bv‖M∗ ≥ β‖v‖X for all v ∈ V ⊥.

Lemma A.42. (Discrete Gronwall Inequality, Lemma 5.1 and Subsequent Remark in [36])
Let k, B ≥ 0 and (al)l, (bl)l, (cl)l, (γl)l ⊂ [0,∞) such that

an + k
n∑

l=0

bl ≤ k
n∑

l=0

γlal + k
n∑

l=0

cl +B for n ≥ 0.

Suppose that kγl < 1 for all l and set σl := (1− kγl)
−1. Then,

an + k

n∑

l=0

bl ≤ exp

(
k

n∑

l=0

σlγl

)(
k

n∑

l=0

cl +B

)
for n ≥ 0.

If
∑n

l=0 γlal can be replaced by
∑n−1

l=0 γlal, then the restriction kγl < 1 is not necessary and σl
can be set to 1.

A.2. Bochner Spaces

The statements in this section are taken from [37], [38] and [77]. Let a, b ∈ (−∞,∞) and X
denote a Banach space with norm ‖ · ‖.

Definition A.43. (Continuous Functions)
A function f : [a, b] → X is continuous at some point t0 ∈ [a, b], if limn→∞ ‖f(t0)− f(t)‖X = 0
for all sequences (tn)n ⊂ [a, b] with limn→∞ tn = t0. The space of continuous functions is defined
as

C(a, b;X) := {f : [a, b] → X, f is continuous for all t0 ∈ [a, b]}
and equipped with the norm

‖f‖C(a,b;X) := sup
t∈[a,b]

‖f(t)‖X .
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Definition A.44. (Weakly Continuous Functions)
A function f : [a, b] → X is weakly continuous, if the function [a, b] ∋ t 7→ 〈φ, f(t)〉X∗ ∈ R is
continuous for all φ ∈ X∗.

Definition A.45. (Simple Functions)
A function f : (a, b) → X is called simple, if it is of the form

f(t) =
N∑

i=1

ciχEi
(t)

where E1, . . . , EN denote Lebesgue measurable subset of (a, b) and c1, . . . , cN ∈ X.

Definition A.46. (Measurability)
A function f : (a, b) → X is called strongly measurable if there is a sequence {fn}n of simple
functions such that ‖fn(t)− f(t)‖ → 0 for n→ ∞ for almost all t in (a, b).

Lemma A.47. (Remark in [38])
If f : (a, b) → X is strongly measurable and φ : (a, b) → R is measurable, then φf : (a, b) → X is
measurable.

Definition A.48. (Integral of Simple Functions)
Let f =

∑N
i=1 ciχEi

(t) denote a simple function. The integral of f is defined by

∫ b

a
fdt :=

N∑

i=1

ci|Ei| ∈ X.

Definition A.49. (Bochner Integral)
A strongly measurable function f : (a, b) → X is called Bochner integrable if there is a sequence
of simple functions {fn}n such that fn(t) → f(t) pointwise a.e. in (a, b) and

lim
n→∞

∫ b

a
‖f(t)− fn(t)‖dt = 0.

In this case, the integral of f is defined by

∫ b

a
f(t)dt := lim

n→∞

∫ b

a
fn(t)dt.

Theorem A.50. (Bochner Integrability, Theorem 6.24 in [38])
A function f : (a, b) → X is Bochner integrable if and only if it is strongly measurable and

∫ b

a
‖f(t)‖dt <∞.
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Definition A.51. (Bochner Space)
For p ∈ [1,∞) define

Lp(a, b;X) := {f : (a, b) → X strongly measureable ,

∫ b

a
‖f(t)‖p <∞},

equipped with the norm

‖f‖Lp(a,b;X) :=

(∫ b

a
‖f(t)‖p

) 1
p

.

The space of locally integrable functions is defined by

Lploc(a, b;X) := {f : (a, b) → X strongly measurbale : f ∈ Lp(a′, b′;X) for all a < a′ ≤ b′ < b}.

For p = ∞ define

L∞(a, b;X) := {f : (a, b) → X strongly measureable , esssupt∈(a,b)‖f(t)‖ <∞},

equipped with the norm
‖f‖L∞(a,b;X) := esssupt∈(a,b)‖f(t)‖.

If there is no danger of ambiguity, we write Lp(X) := Lp(a, b;X) and ‖ · ‖p;X := ‖ · ‖Lp(a,b;X). In
particular, this is the case for a = 0 and b = T .

Theorem A.52. (Banach Space Property, Theorem 7.5.6 in [16])
If X is a Banach space, then Lp(a, b;X) is a Banach space for p ∈ [1,∞].

Theorem A.53. (Approximation of Bochner Spaces, Proposition 6.29 in [38])
Let X be a Banach space and p ∈ [1,∞). Then the space

{f(t) =
n∑

i=1

ciφi(t) : n ∈ N, ci ∈ X, φi ∈ C∞
c (a, b)}

is dense in Lp(a, b;X).

Theorem A.54. (Separability Property, Korollar 2.11 in [65])
Let X be a separable Banach space. Then, for p ∈ [1,∞) the space Lp(X) is separable.

Theorem A.55. (Reflexivity Property, Corollary 7.5.17 in [16])
Let X be a reflexive Banach space. Then, for p ∈ (1,∞) the space Lp(X) is reflexive.

Definition A.56. (Radon-Nikodym Property, Definition 7.5.11 in [16])
A Banach Space X has the Radon Nikodym property, if every Lipschitz continuous function
f : [0, 1] → X, is differentiable almost everywhere.
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Theorem A.57. (Dunford-Pettis, Theorem 7.5.13 in [16])
Let X denote a Banach space. If X∗ is separable, then X∗ has the Radon-Nikodym property.

Theorem A.58. (Consequence of Dunford-Pettis, Theorem 7.5.13 in [16])
Every reflexive Banach space has the Radon-Nikodym property.

Theorem A.59. (Dual of Bochner Space, Theorem 1.3.10 in [39])
Let p ∈ [1,∞) and X denote a Banach space with X∗ having the Radon-Nikodym property. Then
the dual of Lp(a, b;X) is isometrically isomorphic to Lp

∗

(a, b;X∗), i.e. the mapping

T : Lp
∗

(a, b;X∗) → Lp(a, b;X)∗

g 7→ φ with 〈φ, f〉Lp(a,b;X)∗ =

∫ b

a
〈g(t), f(t)〉X∗ dt for f ∈ Lp(a, b;X)

is an isometric isomorphism.

Lemma A.60.

Let X be a reflexive Banach space. If un
∗
⇀ u in L∞(a, b;X∗), then

‖u‖L∞(a,b,X∗) ≤ lim inf
n→∞

‖un‖L∞(a,b,X∗).

Proof. Due to the assumptions on X, the space L1(a, b,X)∗ is isometrically isomorphic to
L∞(a, b;X∗), by Theorem A.58 and A.59. Let T : L∞(a, b;X∗) → L1(a, b;X)∗ denote the
isometric isomorphism defined in Theorem A.59. Define φn := Tun, φ = Tu ∈ L1(a, b;X)∗.
Then, un

∗
⇀ u is equivalent to φn

∗
⇀ φ in L1(a, b;X)∗. By Lemma A.34, have ‖φ‖L1(a,b;X)∗ ≤

lim infn→∞ ‖φn‖L1(a,b;X)∗ and the assertion follows from the isometry property of T .

Lemma A.61. (Weak ∗ convergence in L∞(a, b;X))
Let X denote a separable, reflexive Banach space and a sequence (un)n ⊂ L∞(a, b;X∗) be given
with ‖un‖L∞(a,b;X∗) ≤ M for all n ∈ N. Then, there is u ∈ L∞(a, b;X∗) and a subsequence

(uk)k ⊂ (un)n, such that uk
∗
⇀ u in L∞(a, b;X∗). Moreover, there holds ‖u‖L∞(a,b;X∗) ≤M .

Proof. According to Theorem A.59, L∞(X∗) ∼= L1(X)∗. Define φn := Tun ∈ L1(X)∗ according
to the isometric isomorphism T defined in Theorem A.59. Since ‖φn‖L1(X)∗ = ‖un‖L∞(a,b;X∗) ≤
M and L1(X) is a separable Banach space due to Theorem A.52 and A.54, Theorem A.37 is

applicable. Thus, there is φ ∈ L1(X)∗ and a subsequence (φk)k ⊂ (φn)n with φk
∗
⇀ φ in L1(X)∗.

Due to Theorem A.59, there is u ∈ L∞(X∗) corresponding to φ, i.e. u = T−1φ. Thus,

∫ b

a
〈uk(t), f(t)〉X∗ dt→

∫ b

a
〈u(t), f(t)〉X∗ dt for all f ∈ L1(X),

i.e. un
∗
⇀ u. Moreover, by Lemma A.60, ‖u‖L∞(a,b,X∗) ≤ lim inf ‖un‖L∞(a,b,X∗) ≤M .
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Lemma A.62. (Remark after Proposition 1.2.3 in [39])
Let f : (a, b) → X be integrable and A ∈ L(X,Y ) with Banach spaces X,Y . Then, Af : (a, b) →
Y is integrable and

A

(∫ b

a
f(t)dt

)
=

∫ b

a
A(f(t))dt.

Lemma A.63. (Corollary 6.33 in [38])
Suppose that f : (a, b) → X is locally integrable and

∫ b

a
φ(t)f(t)dt = 0 for all φ ∈ C∞

c (a, b).

Then, f(t) = 0 a.e. in (a, b).

Lemma A.64.

Let X denote a Banach space and A ∈ L1(a, b;X∗) such that
∫ b

a
〈A(t), x〉X∗ψ(t) dt = 0 for all x ∈ X and ψ ∈ C∞

c (a, b).

Then, A(t) = 0 a.e. in (a, b).

Proof. Let ψ ∈ C∞
c (a, b) be fixed but arbitrary. Define I :=

∫ b
a A(t)ψ(t) dt ∈ X∗ and

J : X → X∗∗, x 7→ 〈·, x〉X∗ .

Using Lemma A.62, there holds for all x ∈ X:

〈I, x〉X∗ = J(x)[I] =

∫ b

a
J(x)[A(t)ψ(t)] dt =

∫ b

a
〈A(t), x〉X∗ψ(t) dt = 0.

Thus,

0 = I =

∫ b

a
A(t)ψ(t) dt in X∗.

Since ψ was chosen arbitrarily, Lemma A.63 now yields A(t) = 0 a.e.

A.3. Vector-Valued Sobolev Spaces

The statements in this section are taken from [37], [38] and [77]. Throughout, let a, b ∈ (−∞,∞)
and X denote a Banach space with norm ‖ · ‖. Moreover, D(a, b) := C∞

c ((a, b)).

Definition A.65. (Frechet Derivative)
Let V , W denote normed spaces and U ⊂ V be open. A function f : U → W is Frechet
differentiable at x ∈ U , if there is A ∈ L(V,W ) such that

lim
‖h‖V →0

‖f(x+ h)− f(x)−Ah‖W
‖h‖V

= 0.

In this case, A is called Frechet derivative of f at x and denoted by ∂xf . The function f is
called Frechet differentiable on U , if f is Frechet differentiable at every point x ∈ U and if the
mapping

Df : U → V,W, x 7→ ∂xf(x)

is continuous.
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Definition A.66. (Weak Time Derivative, Definition 6.31 in [38])
Let u, g ∈ L1

loc(a, b;X). Then, g is called weak time derivative of u, if

∫ b

a
u(t)φ′(t)dt = −

∫ b

a
g(t)φ(t)dt for all φ ∈ D(a, b).

In this case, one writes
dtu = g or u′ = g.

Theorem A.67. (Characterization of Weak Time Derivative, Lemma III.1.1 in [77])
Let u, g ∈ L1(a, b;X). Then, the following statements are equivalent

(i) g = u′.

(ii) There exists ξ ∈ X such that

u(t) = ξ +

∫ t

a
g(s)ds, a.e. t ∈ [a, b].

(iii) For each φ ∈ X∗ there holds

d

dt
〈φ, u〉X∗ = 〈φ, g〉X∗ in D(a, b)∗,

i.e.

−
∫ b

a
〈φ, u(t)〉X∗ψ′(t)dt =

∫ b

a
〈φ, g(t)〉X∗ψ(t)dt for all ψ ∈ D(a, b).

In this case, u is a.e. equal to a continuous function from [a, b] to X.

Lemma A.68. (Product Rule and Partial Integration)
Let u ∈ L1(a, b;X) with derivative u′ ∈ L1(a, b;X) and Φ ∈ C∞([a, b]). Then, (Φu)′ = Φ′ u+Φu′

and ∫ b

a
Φ(t)u′(t) dt = Φ(b)u(b)− Φ(a)u(a)−

∫ b

a
Φ′(t)u(t) dt.

Proof. Let φ ∈ D(a, b) be arbitrary. Then, Φφ ∈ D(a, b) and by definition of u′,

∫ b

a
u′(t)(Φφ)(t) dt = −

∫ b

a
u(t) (Φφ)′ (t) dt = −

∫ b

a
u(t)Φ′(t)φ(t) + u(t)Φ(t)φ′(t) dt.

Thus,
(uΦ)′ = u′Φ+ uΦ′.

Moreover, using Theorem A.67 (ii),

(uΦ)(b)− (uΦ)(a) =

∫ b

a
(uΦ)′(t) dt =

∫ b

a
(u′Φ)(t) dt+

∫ b

a
(uΦ′)(t) dt.
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Definition A.69. (Vector-Valued Sobolev Space)
Let X0, X1 denote Banach spaces with X0 →֒ X1 and p0, p1 ∈ [1,∞]. Define

W := W(a, b; p0, p1;X0, X1) := {v ∈ Lp0(a, b;X0), v
′ ∈ Lp1(a, b;X1)},

equipped with the norm
‖u‖W := ‖u‖Lp0 (a,b;X0) + ‖u′‖Lp1 (a,b;X1).

Theorem A.70. (Banach Space Property and Continuous Injection, [69])
Let p0, p1 ∈ (1,∞) and Banach spaces X0 →֒ X →֒ X1 be given. Then, W(a, b; p0, p1;X0, X1) is
a Banach space and there holds

W(a, b; p0, p1;X0, X1) →֒ Lp0(a, b;X).

Theorem A.71. (Compact injection I, Theorem III.2.1 in [77])
Let p0, p1 ∈ (1,∞) and Banach spaces X0 →֒→֒ X →֒ X1 be given with X0, X1 being reflexive.
Then,

W(a, b; p0, p1;X0, X1) →֒→֒ Lp0(a, b;X).

Theorem A.72. (Compact injection II, Theorem 1.3 in [69])
Let p0, p1 ∈ [1,∞) with p0 = 1 if p1 = 1 and Banach spaces X0 →֒→֒ X →֒ X1 be given. Then,

W(a, b; p0, p1;X0, X1) →֒→֒ Lp0(a, b;X).

Theorem A.73. (Hilbert Space Setting, Theorem 1.32 in [37])
Let V →֒ H →֒ V ∗ denote a Gelfand triple. Then, W(a, b; 2, 2;V, V ∗) is a Hilbert space and

W(a, b; 2, 2;V, V ∗) →֒ C(a, b;H).

In this setting, the space W0 := {v ∈ W(a, b; 2, 2;V, V ∗) : v(0) = 0} is well-defined.
Moreover, for all u, v ∈ W(a, b; 2, 2;V, V ∗), there holds

∫ b

a
〈u′(t), v(t)〉V ∗dt = (u(b), v(b))H − (u(a), v(a))H −

∫ b

a
〈v′(t), u(t)〉V ∗dt.

Lemma A.74. (Reflexive Property)
Let p0, p1 ∈ (1,∞) and Banach spaces X0 →֒ X1 be given with X0, X1 being reflexive and
separable. Then, W(a, b; p0, p1;X0, X1) is reflexive.

Proof. Let W := W(a, b; p0, p1;X0, X1) and define

T : W → Lp0(a, b;X0)× Lp1(a, b;X1)

u 7→ (u, u′).
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Then T is an isometry, Moreover, Lp0(a, b;X0) and L
p1(a, b;X1) are reflexive according to The-

orem A.55 and so is Lp0(a, b;X0) × Lp1(a, b;X1). Further, T (W) is closed in Lp0(a, b;X0) ×
Lp1(a, b;X1) by Lemma A.7. Thus, T (W) is reflexive by Lemma A.23. Since T : W → T (W) is
an isomorphism, W is reflexive as well according to Lemma A.27.

Lemma A.75. (Weak Limit of Weakly Differentiable Sequence)
Let X →֒ Y denote Banach spaces and a sequence (wk)k ⊂ W(a, b; 1, 1;X,Y ) be given with
wk ⇀ u in L1(a, b;X) and w′

k ⇀ g in L1(a, b;Y ). Then, u ∈ W(a, b; 1, 1;X,Y ) with u′ = g.

Proof. By Assumption, there holds for all k ∈ N:

∫
wk(t)φ

′(t) dt = −
∫
w′
k(t)φ(t) dt for all φ ∈ D(a, b). (A.3)

Let φ ∈ D(a, b) be arbitrary but fixed. For arbitrary f ∈ X∗ and t ∈ (a, b) define ψ(t) :=
φ′(t) f ∈ X∗. Then, ψ ∈ L∞(a, b;X∗) ∼=

(
L1(a, b;X)

)∗
. Using Lemma A.62, Theorem A.59 and

wk ⇀ u

〈f,
∫
wk(t)φ

′(t)dt〉X∗ =

∫
〈f, wk(t)〉X∗φ′(t)dt = 〈ψ,wk〉L1(X)∗

→ 〈ψ, u〉L1(X)∗ = 〈f,
∫
u(t)φ′(t)dt〉X∗ .

Thus,

∫
wk(t)φ

′(t)dt ⇀
∫
u(t)φ′(t)dt in X and thus in Y since X →֒ Y and Lemma A.31 .

Analogously, ∫
w′
k(t)φ(t)dt ⇀

∫
g(t)φ(t)dt in Y.

Using (A.3),

∫
u(t)φ′(t)dt ↼

∫
wk(t)φ

′(t)dt = −
∫
w′
k(t)φ(t)dt ⇀ −

∫
g(t)φ(t)dt in Y.

By uniqueness of weak limits, Lemma A.30, and since φ was chosen arbitrarily, u′ = g ∈
L1(a, b;Y ).

Lemma A.76. (Taylor Expansion I)
Let a ≥ 0, k > 0 and u ∈ L2(a, a + k;X) with u′ ∈ L1(a, a + k;X). For β ∈ [0, 12) assume that
tβu′ ∈ L2(a, a+ k;X). Then,

if a > 0 :

‖u(a+ k)− u(a)‖X ≤ a−βk
1
2 ‖tβu′‖L2(a,a+k;X).

if a = 0 :

‖u(k)− u(0)‖X ≤ (1− 2β)−
1
2 k

1
2
−β‖tβu′‖L2(0,k;X).
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Proof. By Theorem A.67 there is ξ ∈ X such that

u(t) = ξ +

∫ t

a
u′(s) ds for all t ∈ [a, a+ k].

Setting t = a yields ξ = u(a). Setting t = a + k, taking the norm and using Hölders inequality
leads to

‖u(a+ k)− u(a)‖X ≤ ‖
∫ a+k

a
u′(s) ds‖X

≤
∫ a+k

a
s−β‖sβu′(s)‖X ds

≤
(∫ a+k

a
s−2β ds

) 1
2
(∫ a+k

a
‖sβu′(s)‖2X ds

) 1
2

.

The stated result follows from
∫ a+k

a
s−2β ds ≤ a−2βk for β ≥ 0 and a > 0,

∫ k

0
s−2β ds =

1

1− 2β
k1−2β for β <

1

2
.

Lemma A.77. (Taylor Expansion II)
Let a ≥ 0, k > 0 and u ∈ L2(a, a+k;X) with u′, u′′ ∈ L1(a, a+k;X) and tβu′′ ∈ L2(a, a+k;X)
for some β ∈ [0, 32). Then,

if a > 0:

‖u′(a+ k)− k−1 (u(a+ k)− u(a)) ‖X ≤ k
1
2a−β‖tβu′′‖L2(a,a+k;X).

if a = 0:

‖u′(k)− k−1 (u(k)− u(0)) ‖X ≤ (3− 2β)−
1
2 k

1
2
−β‖tβu′′‖L2(0,k;X).

Proof. Using integration by parts, Lemma A.68 and Theorem A.67 (ii),

∫ a+k

a
k−1(t− a)u′′(t) dt = k−1(ku′(a+ k))−

∫ a+k

a
k−1u′(t) dt

= u′(a+ k)− k−1 (u(a+ k)− u(a)) .

Further, the left-hand side above can be estimated as

‖
∫ a+k

a
k−1(t− a)u′′(t) dt‖X ≤ k−1

∫ a+k

a
(t− a)t−β‖tβu′′(t)‖X dt

≤ k−1

(∫ a+k

a
(t− a)2t−2β dt

) 1
2

‖tβu′′‖L2(a,a+k;X).

If a > 0, then

∫ a+k

a
(t− a)2t−2β dt ≤ k3a−2β ,
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and, if a = 0 and β < 3
2 ,

∫ k

0
t2t−2β dt =

1

3− 2β
k3−2β .

Lemma A.78. (Taylor Expansion III)
Let a ≥ 0, k > 0 and u ∈ L2(a, a + 2k;X) with u′, u′′ ∈ L1(a, a + 2k;X) and tβu′′ ∈ L2(a, a +
2k;X) for some β ∈ [0, 32). Then,

if a > 0:

‖u(a+ 2k)− 2u(a+ k) + u(a))‖X ≤ k
3
2

(
(a+ k)−β + a−β

)
‖tβu′′‖L2(a,a+2k;X).

if a = 0:

‖u(2k)− 2u(k) + u(0)‖X ≤ k
3
2
−β
(
1 + (3− 2β)−

1
2

)
‖tβu′′‖L2(0,2k;X).

Proof. Using integration by parts, Lemma A.68, one may verify that

u(a+ 2k)− 2u(a+ k) + u(a) =

∫ a+2k

a+k
(a+ 2k − t)u′′(t) dt+

∫ a+k

a
(t− a)u′′(t) dt.

Moreover,

‖
∫ a+2k

a+k
(a+ 2k − t)u′′(t) dt‖X ≤

∫ a+2k

a+k
(a+ 2k − t)t−β‖tβu′′(t)‖X dt

≤
(∫ a+2k

a+k
(a+ 2k − t)2t−2β dt

) 1
2

‖tβu′′‖L2(a+k,a+2k;X)

≤ k
3
2 (a+ k)−β‖tβu′′‖L2(a+k,a+2k;X).

and

‖
∫ a+k

a
(t− a)u′′(t) dt‖X ≤

∫ a+k

a
(t− a)t−β‖tβu′′(t)‖X dt

≤
(∫ a+k

a
(t− a)2t−2β dt

) 1
2

‖tβu′′‖L2(a,a+k;X).

If a = 0, then

∫ k

0
t2−2β dt =

1

3− 2β
k3−2β .

Otherwise,

∫ a+k

a
(t− a)2t−2β dt ≤ k3a−2β .

Lemma A.79. (Taylor Expansion IV)
Let a ≥ 0, k > 0 and u ∈ L2(a, a + 2k;X) with u′, u′′, u′′′ ∈ L1(a, a + 2k;X) and tβu′′′ ∈
L2(a, a+ 2k;X) for some β ∈ [0, 52). Then,
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if a > 0:

‖u′(a+ 2k)− k−1

(
3

2
u(a+ 2k)− 2u(a+ k) +

1

2
u(a)

)
‖X

≤ k
3
2

(
(a+ k)−β +

1

16
a−β

)
‖tβu′′′‖L2(a,a+2k;X).

if a = 0:

‖u′(2k)− k−1

(
3

2
u(2k)− 2u(k) +

1

2
u(0)

)
‖X

≤ k
3
2
−β
(
1 +

1

16
(5− 2β)−

1
2

)
‖tβu′′′‖L2(0,2k;X).

Proof. Using integration by parts, Lemma A.68, one may verify that

u′(a+ 2k)− k−1

(
3

2
u(a+ 2k)− 2u(a+ k) +

1

2
u(a)

)

=

∫ a+2k

a+k
−(t− (a+ 2k))

(
3

4k
(t− (a+ 2k)) + 1

)
u′′′(t) dt+

∫ a+k

a

1

4k
(t− a)2u′′′(t) dt.

Moreover, there holds

∫ a+2k

a+k
(t− (a+ 2k))2

(
3

4k
(t− (a+ 2k)) + 1

)2

t−2β dt ≤ k3(a+ k)−2β .

If a > 0, then

∫ a+k

a

1

16k2
(t− a)4t−2β dt ≤ 1

16
k3a−2β

and, otherwise,

∫ k

0

1

16k2
t4−2β dt =

1

16(5− 2β)
k3−2β .

Lemma A.80 and A.81 are the foundation of the final error estimates given in the end of Section
5.2. Their proofs make use of the previous estimates. Similar results can be found in [24].

Lemma A.80. (Temporal Approximation)
Let difference operators be given by

a(1) = (0, 1), a(2) = (0, 2,−1)

b(1) = (1,−1), b(2) = (
3

2
,−2,

1

2
). (A.4)

Let Z denote a Hilbert space, z ∈ L2(0, T ;Z) with z′ ∈ L1(0, T ;Z), zn = z(tn) for n = 0, . . . , N .
Then

(i) If tβz′ ∈ L2(0, T ;Z) for some β ∈ [0, 12), then for n = 1, . . . , N :

‖Jb(1)zn‖Z = ‖zn − Ja(1)zn‖Z <∼ k
1
2
−β‖tβz′‖L2(tn−1,tn;Z).
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(ii) If z′′ ∈ L1(0, T ;Z), tβz′′ ∈ L2(0, T ;Z) for some β ∈ [0, 32), then for n = 2, . . . , N :

‖zn − Ja(2)zn‖Z <∼ k
3
2
−β‖tβz′′‖L2(tn−2,tn;Z).

(iii) If z′′ ∈ L1(0, T ;Z), tβz′′ ∈ L2(0, T ;Z) for some β ∈ [0, 32), then for n = 1, . . . , N :

‖∂tzn − k−1Jb(1)zn‖Z <∼ k
1
2
−β‖tβz′′‖L2(tn−1,tn;Z).

(iv) If z′′, z′′′ ∈ L1(0, T ;Z), tβz′′′ ∈ L2(0, T ;Z) for some β ∈ [0, 52), then for n = 2, . . . , N :

‖∂tzn − k−1Jb(2)zn‖Z <∼ k
3
2
−β‖tβz′′′‖L2(tn−2,tn;Z).

(v) If z′′ ∈ L1(0, T ;Z), tβz′, tγz′′ ∈ L2(0, T ;Z) for some β ∈ [0, 12), γ ∈ [0, 32), then for n =
2, . . . , N :

‖Jb(2)zn‖Z <∼ k
1
2
−β‖tβz′‖L2(tn−2,tn;Z) + k

3
2
−γ‖tγz′′‖L2(tn−2,tn;Z).

Proof. (i), (ii), (iii), (iv) are direct consequences of Lemma A.76, A.78, A.77 and A.79, re-
spectively. (v) follows by combination of Lemma A.76, (ii) and the identity zn − Ja(2)zn =
Jb(2)zn − 1

2

(
zn − zn−2

)
.

Lemma A.81. (Estimation of Temporal Error Terms)
Let the notation of Lemma A.80 hold. Then,

(i) Under the assumption of Lemma A.80 (i),

k

N∑

n=1

‖zn − Ja(1)zn‖2Z <∼ k2(1−β)‖tβz′‖22;Z .

(ii) Under the assumption of Lemma A.80 (ii),

k

N∑

n=2

‖zn − Ja(2)zn‖2Z <∼ k2(2−β)‖tβz′′‖22;Z .

(iii) Under the assumption of Lemma A.80 (iii),

k

N∑

n=1

‖∂tzn − k−1Jb(1)zn‖2Z <∼ k2(1−β)‖tβz′′‖22;Z .

(iv) Under the assumption of Lemma A.80 (iv),

k
N∑

n=2

‖∂tzn − k−1Jb(2)zn‖2Z <∼ k2(2−β)‖tβz′′′‖22;Z .

(v) Under the assumption of Lemma A.80 (i),

k
N∑

n=1

‖k−1Jb(1)zn‖2Z <∼ k−2β‖tβz′‖22;Z .

(vi) Under the assumption of Lemma A.80 (v),

k

N∑

n=2

‖k−1Jb(2)zn‖2Z <∼ k−2β‖tβz′‖22;Z + k2(1−γ)‖tγz′′‖22;Z .

Proof. The stated assertions follow directly from Lemma A.80.
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A.4. Function spaces

In the following, let Ω ⊂ Rd be bounded and open with Dirichlet boundary condition part
ΓD ⊂ ∂Ω, where ΓD is assumed to be closed.

Definition A.82. (Smooth Functions)
Let M,O ⊂ Rd with O being open, k ∈ N0, α ∈ (0, 1] and m ∈ N. The following sets of smooth
functions are defined:

(i) Continuous:
C(M) := C0(M) := {u : M → R : u is continuous }.

(ii) Hölder continuous:

C0,α(M) :=

{
u ∈ C0(M) : sup

x,y∈M

|u(x)− u(y)|
|x− y|α <∞

}
.

(iii) Continuously differentiable:

Ck(M) := {u ∈ C0(M) : u is k − times cont. differentiable}.

(iv) Hölder continuously differentiable:

Ck,α(M) := {u ∈ Ck(M) : all derivatives are in C0,α(M)}.

(v) Smooth functions:

C∞(M) :=
⋂

l≥1

C l(M).

(vi) Smooth functions with compact support:

C∞
c (M) := {u ∈ C∞(M) : supp(u) ⊂⊂M}.

(vii) Smooth functions with with zero trace on Dirichlet boundary:

C∞
D (Ω) := {u|Ω : u ∈ C∞

c (Rd), supp(u) ∩ ΓD = ∅}.

(viii) Test functions:
D(O) := C∞

c (O) and D(O) := {v|O : v ∈ D(Rd)}.

Definition A.83. (Lebesgue Spaces)
For p ∈ [1,∞) and u : Ω → R define

‖x‖0,p,Ω :=

(∫

Ω
|u(x)|pdx

) 1
p

,

‖x‖0,∞,Ω := esssupx∈Ω|u(x)|.
The corresponding Lebesgue spaces are given as

Lp(Ω) := {u : Ω → R measurable , ‖x‖0,p,Ω <∞}

and for vector-valued functions

Lp(Ω) := Lp(Ω)n := {u : Ω → Rn measurable , ui ∈ Lp(Ω), i = 1, . . . , n}.
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The scalar product of L2(Ω) is denoted by

(u, v)2,Ω :=

∫

Ω
u(x)v(x)dx.

Moreover,
Lploc(Ω) := {v : Ω → R measurable , ∃K ⊂⊂ Ω, v|K ∈ Lp(K)}

and

Lp0(Ω) := {v ∈ Lp(Ω),

∫

Ω
v = 0}.

For bounded Ω, Lp0(Ω) isomorphic to the quotient space L2(Ω)/R which is equipped with the norm

‖u‖0,2/R,Ω := inf
c∈R

‖u+ c‖0,2,Ω.

For p ∈ [1,∞] let p∗ ∈ [1,∞] be defined such that 1
p +

1
p∗ = 1.

If there is no potential unambiguity, we write (·, ·) := (·, ·)2,Ω, ‖ · ‖ := ‖ · ‖0,2,Ω and skip the
subscript Ω in the norm notation.

Theorem A.84. (Basic Properties of Lp Spaces)

(i) Lp(Ω) is a Banach space for p ∈ [1,∞] (Theorem 2.16 in [1])

(ii) L2(Ω) is a Hilbert space

(iii) Lp(Ω) is separable for p ∈ [1,∞) (Theorem 2.21 in [1])

(iv) Lp(Ω) is reflexive for p ∈ (1,∞) (Corollary 2.40 in [1])

(v) D(Ω) is dense in Lp(Ω) for p ∈ [1,∞) (Lemma I.1.1 in [32]).

Theorem A.85. (Duals of Lp Spaces, Theorem 2..4 in [1])
Let p ∈ [1,∞) and φ ∈ Lp(Ω)∗. Then there exists v ∈ Lp

∗

(Ω) such that for all u ∈ Lp(Ω)

〈φ, u〉Lp(Ω)∗ = (u, v) =

∫

Ω
u(x)v(x) dx.

Moreover, ‖φ‖ = ‖v‖p∗ .

Definition A.86. (Distributions, Chapter B.2 in [25] )
A linear mapping

u : D(Ω) → R, φ 7→ 〈u, φ〉D′

is called a Distribution on Ω, if and only if for all compact K ⊂ Ω, there is an integer p and a
constant c such that

φ ∈ D(Ω), supp(φ) ⊂ K ⇒ |〈u, φ〉D′ | ≤ c sup
x∈K,|α|≤p

|∂αφ(x)|.

D′(Ω) denotes the set of all distributions on Ω.
A function f ∈ L1

loc(Ω) can be identified with a distribution via

〈f, φ〉D′
∼=
∫

Ω
f(x)φ(x)dx.
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Definition A.87. (Distributional Derivative, Chapter B.2 in [25] )
Let u ∈ D′(Ω) and α ∈ Nd0 denote a multi-index. The distributional derivative ∂αu ∈ D′(Ω) is
defined as

∂αu : D(Ω) → R, φ 7→ (−1)α〈u, ∂αφ〉D′ .

Lemma A.88. (Fundamental Property, Chapter B.2 in [25])
Let f ∈ L1

loc(Ω) such that
∫
Ω fφ = 0 for all φ ∈ D(Ω). Then, f = 0 a.e. in Ω.

Definition A.89. (Sobolev Spaces, [25] and Chapter I.1.1 in [32])
For k ∈ N and p ∈ [1,∞] denote

W k,p(Ω) := {u ∈ Lp(Ω) : ∂αu ∈ Lp(Ω) ∀ |α| ≤ k}

with the convention W 0,p(Ω) = Lp(Ω). For σ ∈ (0, 1) fractional Sobolev spaces are defined as

W σ,p(Ω) :=
{
u ∈ Lp(Ω): (u(x)− u(y))|x− y|−(σ+ d

p
) ∈ Lp(Ω× Ω)

}
.

and for s > 1, let σ = s− ⌊s⌋ and define

W s,p(Ω) := {u ∈W ⌊s⌋,p(Ω): ∂αu ∈W σ,p(Ω), ∀|α| = ⌊s⌋}.

The corresponding norms are defined as

‖u‖pk,p,Ω :=
∑

|α|≤k
‖∂αu‖0,p,Ω for p ∈ [1,∞)

‖u‖k,∞,Ω := max
|α|≤k

‖∂αu‖0,∞,Ω for p = ∞

‖u‖ps,p,Ω := ‖u‖p⌊s⌋,p,Ω +
∑

|α|=⌊s⌋

∫

Ω

∫

Ω

|∂αu(x)− ∂αu(y)|p
|x− y|d+σp dx dy for s ∈ (0,∞).

Furthermore, for s ≥ 0, p ∈ [1,∞) set

W s,p
0 (Ω) := D(Ω)

W s,p(Ω)
and W s,p

D (Ω) := C∞
D (Ω)

W s,p(Ω)

and for 1
p +

1
p∗ = 1 set

W−s,p∗(Ω) :=W s,p
0 (Ω)∗.

With ‖ · ‖−s,p,Ω we denote the norm of W s,p
0 (Ω)∗. Finally, a semi-norm is given by

|u|k,p,Ω :=


∑

|α|=k
‖∂αu‖0,p,Ω




1
p

.

and for p = 2 an inner product can be defined as

(u, v)k,2,Ω :=
∑

|α|≤k

∫

Ω
∂αu(x)∂αv(x)dx.
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For p = 2 we use the notation

Hs(Ω) :=W s,2(Ω), H−1(Ω) :=W−1,2(Ω)

Hs
0(Ω) :=W s,2

0 (Ω), H1
0(Ω) :=

(
H1

0 (Ω)
)d
, H−1(Ω) :=

(
H1

0(Ω)
)∗

Hs
D(Ω) :=W s,2

D (Ω), H−1
D (Ω) :=

(
W 1,2
D (Ω)

)∗

and skip the subscript Ω if there is no potential ambiguity.

Theorem A.90. (Basic Properties of Sobolev Spaces)

(i) W k,p(Ω) is a Banach space for k ∈ N, p ∈ [1,∞] (Theorem 3.3 in [1]).

(ii) W k,2(Ω) is a Hilbert space for k ∈ N.

(iii) W k,p(Ω) is separable for k ∈ N, p ∈ [1,∞) (Theorem 3.6 in [1]).

(iv) W k,p(Ω) is reflexive for k ∈ N, p ∈ (1,∞) (Theorem 3.6 in [1]).

Theorem A.91. (Approximation by Smooth Functions, Theorem I.1.2 in [32])
Let Ω be open and Lipschitz.

(i) D(Ω) is dense in W k,p(Ω) for k ∈ N and p ∈ [1,∞) .

(ii) Let u ∈W k,p(Ω) and ũ its extension by zero outside Ω. If ũ ∈W k,p(Rd), then u ∈W k,p
0 (Ω).

(iii) If ∂Ω is bounded and m ≥ 1, there exists a continuous linear extension operator
P : W k,p(Ω) →W k,p(Rd) such that Pu|Ω = u for all u ∈W k,p(Ω).

Theorem A.92. (Sobolev Embedding, Theorem I.1.3 in [32])
Let Ω ⊂ Rdbe open and Lipschitz. Let p ∈ [1,∞) and m,n ∈ N0 with 0 ≤ n ≤ m. Then, the
following embeddings hold

Wm,p(Ω) →֒Wn,q(Ω) if
1

q
:=

1

p
− m− n

d
> 0

Wm,p(Ω) →֒Wn,q
loc (Ω) for all q ∈ [1,∞) if

1

p
=
m− n

d

Wm,p(Ω) →֒ Cn(Ω) if
1

p
<
m− n

d
.

Moreover, if Ω is bounded, the last inclusion holds in Cn(Ω) and the emebedding of Wm,p(Ω)
into Wn,q′(Ω) is compact for all real q′ that satisfy

or

{
1 ≤ q′ < dp

d−(m−n)p when d > (m− n)p

1 ≤ q′ <∞ when d = (m− n)p
.

In addition, these compact emebddings are also valid for negative n or m.
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Theorem A.93. (Interpolation Theorem, Theorem 5.8 in [1])
Let Ω be a domain satisfying the cone condition. If mp > d, let p ≤ q ≤ ∞; if mp = d, let
p ≤ q < ∞; if mp < d, let p ≤ q ≤ p∗ = dp

d−mp . Then there exists a constant K depending on
m,n, p, q and Ω such that for all u ∈Wm,p(Ω),

‖u‖0,q ≤ K‖u‖θm,p‖u‖1−θ0,p ,

where θ = d
mp − d

mq .

Theorem A.94. (Continuity of Superposition Operator, Theorem 1 in [49])
Let f ∈ C0,1(R). Then the following operator is continuous

Tf : W
1,p(G) →W 1,p(G)

v 7→ f ◦ v.

Definition A.95. (Function Spaces for Flow Problems, Chapter I.1 in [77])
Spaces of functions with weak divergence are defined as

E(Ω) := {u ∈ L2(Ω)d, ∇ · u ∈ L2(Ω)}

E0(Ω) := D(Ω)d
E(Ω)

,

where E(Ω) is equipped with the norm ‖u‖E(Ω) :=
(
‖u‖20,2 + ‖∇ · u‖20,2

) 1
2 .

The space of divergence-free test functions is given by

V(Ω) := {u ∈ D(Ω)d : ∇ · u = 0}

and its closures by

V(Ω) := V(Ω)H
1
0(Ω)

, V2(Ω) := V(Ω)H
2
0(Ω)

, H(Ω) := V(Ω)L
2(Ω)

equipped with respective inner products

(u,v)V(Ω) := (u,v)1,2 − (u,v)2

(u,v)V2(Ω) := (u,v)2,2 − (u,v)2

(u,v)H(Ω) := (u,v)2

Theorem A.96. (Properties of Flow Spaces)
The spaces V(Ω),V2(Ω),H(Ω), H1

D(Ω), H
2
D(Ω) are complete, reflexive and separable.

Proof. Completeness, separability, reflexivity follow since all spaces are closed subspaces of the
separable, reflexive Banach spacesH1

0 (Ω)
d, H2

0 (Ω)
d, L2(Ω)d, H1(Ω), H2(Ω), respectively, under

the use of Lemma A.4 and A.23.
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Theorem A.97. (Standard Trace Operator, Theorem I.1.5 in [32], Theorem 1.5.1.3 in [34] )
Let Ω be a bounded Lipschitz domain and p ∈ (1,∞). Define

γ0 : D(Ω) → D(∂Ω), v 7→ v|∂Ω .

Then, γ0 can be extended to a linear, bounded operator

γ0 ∈ L(W 1,p(Ω),W
1
p∗
,p
(∂Ω)).

There holds ker(γ0) = W 1,p
0 (Ω) and γ0 is surjective, i.e. for all h ∈ W

1
p∗
,p
(∂Ω) there is v ∈

W 1,p(Ω) such that
γ0v = h and ‖v‖1,p,Ω ≤ C‖h‖ 1

p∗
,p,∂Ω

with C being independent of h and v.

Theorem A.98. (Dirichlet Trace Operator)
Let Ω be a bounded Lipschitz domain with ΓD ⊂ ∂Ω having nonzero d−1 dimensional Haussdorff
measure and p ∈ (1,∞). Let

γD : D(Ω) → D(ΓD), v 7→ v|ΓD
.

Then, γD can be extended to a linear, bounded operator

γD ∈ L(W 1,p(Ω),W
1
p∗
,p
(ΓD)).

There holds W 1,p
D (Ω) ⊂ ker(γD).

Proof. Let γ̃D : D(∂Ω) → D(ΓD), v 7→ v|ΓD
. Then, γD = γ̃D ◦ γ0 and for v ∈ D(Ω) there follows

by use of Theorem A.97,

‖γDv‖ 1
p∗
,p,ΓD

= ‖γ̃Dγ0v‖ 1
p∗
,p,ΓD

≤ ‖γ0v‖ 1
p∗
,p,Γ

≤ ‖γ0‖‖v‖1,p,Ω.

Since D(Ω) is dense in W 1,p(Ω), Theorem A.91, γD can be extended to a bounded operator in

L(W 1,p(Ω),W
1
p∗
,p
(ΓD)).

Moreover, there holds C∞
D (Ω) ⊂ D(Ω) and γDv = 0 for all v ∈ C∞

D (Ω). Thus, C∞
D (Ω) ⊂

ker(γD). Since ker(γD) is closed inW 1,p(Ω) as kernel of a bounded linear operator andW 1,p
D (Ω) =

C∞
D (Ω)

W 1,p

, there follows W 1,p
D (Ω) ⊂ ker(γD).

Theorem A.99. (Normal Trace Operator, Theorem I.1.1, I.1.2, I.1.3, Remark I.1.3 in [77])
Let Ω be a bounded Lipschitz domain and p ∈ (1,∞). Define

γn : C
0(Ω)d → L∞(∂Ω), v 7→ v|∂Ω · n.

Then, γn can be extended to a linear, bounded operator

γn ∈ L(E(Ω),W− 1
2
,2(∂Ω)) with ker(γn) = E0(Ω).
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Moreover, for all u ∈ E(Ω) and w ∈W 1,2(Ω),
∫

Ω
u · ∇w +

∫

Ω
w∇ · u = 〈γnu, γ0w〉− 1

2
,2.

According to Corollary B.57 in [25], the above result can be generalized to p ∈ [1,∞).

Proposition A.100. (Characterization of H(Ω), Theorem I.2.7 in [32])
Let Ω ⊂ Rd be open, bounded, connected and Lipschitz. Then,

H(Ω) = {u ∈ L2(Ω)d, ∇ · u = 0, γνu = 0}
H(Ω)⊥ = {u ∈ L2(Ω)d, u = ∇p, p ∈ H1(Ω)}

Proposition A.101. (Characterization of V(Ω), Theorem I.1.6 in [77])
Let Ω ⊂ Rd be open and Lipschitz. Then,

V(Ω) = {u ∈ H1
0(Ω), ∇ · u = 0}.

Proposition A.102. (De Rham, Theorem I.2.3 in [32])
Let Ω ⊂ Rd be open, bounded and Lipschitz. If f ∈ H−1(Ω)d satisfies

〈f, v〉 = 0 for all v ∈ V(Ω),

then there exists p ∈ L2(Ω) such that
f = ∇p.

If Ω is connected, p is unique up to an additive constant.

Proposition A.103. (Bijective Gradient and Divergence Operator, Corollary 2.4 in [32])
Let Ω ⊂ Rd be open, bounded, connected and Lipschitz. Then,

(i) ∇ : L2
0(Ω) → V◦(Ω) is an isomorphism

(ii) ∇· : V(Ω)⊥ → L2
0(Ω) is an isomorphism

By Proposition A.103 and Theorem A.41 one directly obtains the following proposition.

Proposition A.104. (Inf-Sup Condition)
Let Ω ⊂ Rd, d ≥ 2 be open, bounded and Lipschitz. Then, there is some β > 0 such that

inf
q∈L2

0(Ω)
sup

v∈W 1,2
0 (Ω)d

∫
Ω q∇ · v

‖∇v‖2‖q‖2
≥ β.

Theorem A.105. (Sobolev’s Inequality, Lemma 4.3.4 in [13])
Suppose Ω is bounded and star-shaped w.r.t. a ball B. Let either (i) 1 < p < ∞ and m ≥ d

p or
(ii) p = 1 and m ≥ d. Then, there exists a constant C = C(Ω, d,m) such that all u ∈ Wm,p(Ω)
are continuous and

‖u‖0,∞ ≤ C‖u‖m,p.
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Theorem A.106. (Friedrich’s Inequality for H1
0 , Theorem I.1.1 in [32])

Let Ω be open, bounded and connected. Then, there is CPF > 0 such that

‖u‖0,2 ≤ CPF ‖∇u‖0,2 for all u ∈ H1
0 (Ω).

Lemma A.107. (Constant in Friedrich’s Inequality for Simple Domains)
Let

Ωcub :=
d⊗

i=1

(ai, bi)

Ωcyl :=

{
(x1, x2, x3) ∈ R3 : ri <

√
x21 + x22 < ro, 0 < x3 < H

}

with ai < bi, i = 1, . . . , d, 0 < ri < ro and H > 0. Moreover, let

ΓD,cub := {a1} ×
d⊗

i=2

(ai, bi) + {b1} ×
d⊗

i=2

(ai, bi)

ΓD,cyl :=

{
(x1, x2, x3) ∈ R3 : 0 ≤ x3 ≤ H,

√
x21 + x22 ∈ {ri, ro}

}
.

Let Ω denote either Ωcub or Ωcyl. In the former case, let ΓD := ΓD,cub and in the latter case,
ΓD := ΓD,cyl. Then, for all θ ∈ H1

D(Ω), there holds

‖θ‖0,2 ≤ c∗‖∇θ‖0,2

with

c∗ = ccub := b1 − a1, if Ω = Ωcub

c∗ = ccyl :=

(
1

2
(ln(ro)− ln(ri))

(
r2o − r2i

)) 1
2

, if Ω = Ωcyl.

The same results hold for θ ∈ H1
0 (Ω).

Proof. (i): Let Ω = Ωcub and θ ∈ C∞
D (Ω). Define (x1, . . . , xd) =: (x1, x

′) and Ωcub =: (a1, b1)×Ω′.
Then, θ(a1, x

′) = θ(b1, x
′) = 0 for x′ ∈ Ω′. Thus, for x1 ∈ (a1, b1) and x

′ ∈⊗d
i=2(ai, bi):

|θ(x1, x′)|2 =
∣∣∣∣
∫ x1

a1

∂x1θ(s, x
′) ds

∣∣∣∣
2

≤
(∫ x1

a1

1 ds

)
·
(∫ b1

a1

∣∣∂x1θ(s, x′)
∣∣2 ds

)

≤ (b1 − a1)

∫ b1

a1

|∇θ(s, x′)|2 ds.
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With Fubini’s Theorem follows,

‖θ‖20,2 =
∫

Ω
|θ(x)|2 dx ≤ (b1 − a1)

∫

Ω

∫ b1

a1

|∇θ(s, x′)|2 ds dx

= (b1 − a1)

∫ b1

a1

dx1 ·
∫

Ω′

∫ b1

a1

|∇θ(s, x′)|2 ds dx′

= (b1 − a1)
2‖∇θ‖20,2

= c2cub‖∇θ‖20,2.

(ii): Let Ω = Ωcyl and θ ∈ C∞
D (Ω). Consider θ in cylindrical coordinates, i.e. θ = θ(ϕ, r, z),

∇θ = r−1∂ϕθeϕ + ∂rθer + ∂zθez and θ(ϕ, ri, z) = θ(ϕ, ro, z) = 0 for (ϕ, z) ∈ [0, 2π] × [0, H].
Then, for arbitrary ϕ ∈ (0, 2π), r ∈ (ri, ro), z ∈ (0, H), there holds

|θ(ϕ, r, z)|2 =
∣∣∣∣
∫ r

ri

∂rθ(ϕ, s, z) ds

∣∣∣∣
2

≤
(∫ r

ri

1

s
ds

)
·
(∫ r

ri

|∂rθ(ϕ, s, z)|2s ds
)

≤ (ln(ro)− ln(ri)) ·
∫ ro

ri

|∇θ(ϕ, s, z)|2s ds.

Thus, by Fubini,

‖θ‖20,2 =
∫

Ω
|θ(ϕ, r, z)|2r dϕ dr dz ≤ (ln(ro)− ln(ri))

∫

Ω

∫ ro

ri

|∇θ(ϕ, s, z)|2s ds r dϕ dr dz

= (ln(ro)− ln(ri))

∫ ro

ri

r dr ·
∫

Ω
|∇θ(ϕ, s, z)|2s ds dϕ dz

= (ln(ro)− ln(ri))
1

2

(
r2o − r2i

)
‖∇θ‖20,2

= c2cyl‖∇θ‖20,2.

(iii): By combining (i) and (ii), there holds

‖θ‖0,2 ≤ c∗‖∇θ‖0,2 for all θ ∈ C∞
D (Ω).

Now, let θ ∈ H1
D(Ω) = C∞

D (Ω)
W 1,2

be arbitrary and {θn}n ⊂ C∞
D (Ω) with θn → θ in W 1,2(Ω).

Thus, ‖θn‖0,2 → ‖θ‖0,2 and ‖∇θn‖0,2 → ‖∇θ‖0,2 and therefore,

‖θ‖0,2 ≤ c∗‖∇θ‖0,2.

The assertion for θ ∈ H1
0 (Ω) follows analogously.

Theorem A.108. (Generalized Friedrich’s Inequality, Proposition 7.1 in [21])
Let Ω be open, bounded and connected and p ∈ (1,∞). Assume that (X, ‖ · ‖X) is a closed
subspace of W 1,p(Ω) that does not contain the function f ≡ 1 and for which the restriction of the
canonical embedding W 1,p(Ω) →֒ Lp(Ω) to X is compact. Then, ‖ · ‖X is equivalent to ‖∇ · ‖p.
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Theorem A.109. (Friedrich’s Inequality for H1
D(Ω))

Let Ω ⊂ Rd be open, bounded and connected. Assume that ∂Ω = ΓN+ΓD with ΓD having positive
(d− 1)−Hausdorff measure. Then, there is cD > 0 such that

‖u‖2 ≤ cD‖∇u‖2 for all u ∈ H1
D(Ω).

Proof. Let (X, ‖·‖X) := (H1
D(Ω), ‖·‖1,2). By definition, X = C∞

D (Ω)
W 1,2

, and γDv = v|ΓD
for all

v ∈ C∞
D (Ω) by definition of γD with γD ∈ L(W 1,2(Ω),W

1
2
,2(ΓD)) denoting the boundary trace

operator w.r.t. ΓD. Additionally, by Theorem A.98, X ⊂ ker(γD). Moreover, there holds

(H1
D(Ω), ‖ · ‖1,2) →֒W 1,2(Ω) →֒→֒ L2(Ω),

where the first embedding is obvious and the second embedding follows from the Sobolev em-
bedding Theorem 4.12 in [2]. Therefore,

(H1
D(Ω), ‖ · ‖1,2) →֒→֒ L2(Ω).

Finally, the function f : Ω → R, x 7→ 1 is not contained in ker(γD), since γD(f) ≡ 1 6= 0 on ΓD
and ΓD has non-zero measure. Therefore, f /∈ X. Thus Theorem A.108 yields the existence of
some C > 0 such that

‖ · ‖2 ≤ ‖ · ‖1,2 := ‖ · ‖X ≤ C‖∇ · ‖2 on X.

Definition A.110. (Mollifier, Section 1.6 in [40])

A nonnegative function ψ ∈ C∞(Rd,R) with supp(ψ) = B1(0,Rd) and
∫
Rd ψ(x)dx = 1 is called

mollifier. For such kind of function and t > 0 define the mollifying operator

Sψ,t : L
1(Ω) → C∞

c (Rd)

f 7→ ft := (f̃ ∗ ψt) =
∫

Rd

f̃(· − y)ψt(y)dy

with ψt(y) := t−dψ(yt ) and f̃ denotes the extension of f by 0 outside of Ω.

Lemma A.111. (Properties of Convolution)
Let φ ∈ C∞

0 (Rd), f ∈ L1
loc(R

d), g ∈ Lp(Rd) for p ∈ [1,∞) and 1
p +

1
p∗ = 1. Then,

(i) ‖(g ∗ φ)‖0,∞ ≤ ‖g‖0,p‖φ‖0,p∗.
(ii) ∂

∂xi
(f ∗ φ) = (f ∗ ∂

∂xi
φ).

(iii) ∂2

∂xi∂xj
(f ∗ φ) = (f ∗ ∂2

∂xi∂xj
φ).

Proof. (i) follows from

‖(g ∗ φ)‖0,∞ = sup
x∈Rd

|
∫

Rd

g(x− y)φ(y)dy| = sup
x∈Rd

|
∫

Rd

g(y)φ(x− y)dy|

≤ sup
x∈Rd

‖g‖0,p‖φ(x− ·)‖0,p∗ = ‖g‖0,p‖φ‖0,p∗

(ii) is shown in Lemma 1.16 in [40]. (iii) follows by iteratively applying (ii).
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Lemma A.112. (Properties of Mollifiers)
Let p ∈ [1,∞) and p∗ such that 1

p +
1
p∗ = 1 and f ∈ Lp(Ω). The following properties hold for the

operator Sψ,t given by Definition A.110.

(i) Sψ,t ∈ L(Lp(Ω), L∞(Ω)) with ‖Sψ,t‖ ≤ ‖ψt‖0,p∗,Rd.

(ii) Sψ,tf → f in Lp for t→ 0.

(iii) ‖∇Sψ,tf‖0,∞ ≤ C∇(ψ, t)‖f‖0,p.
(iv) ‖∇2Sψ,tf‖0,∞ ≤ C∇2(ψ, t)‖f‖0,p .

(v) If fn → f in Lp, then ∇Sψ,tfn → ∇Sψ,tf in L∞(Ω).

Proof. (i): Let g ∈ Lp(Ω) with ‖g‖0,p = 1 and denote by g̃ its extension by 0 outside of Ω. Then,
by Lemma A.111 (i),

‖Sψ,tg‖0,∞ = ‖(g̃ ∗ ψt)‖0,∞ ≤ ‖g̃‖0,p,Rd‖ψt‖0,p∗,Rd = ‖ψt‖p∗,Rd .

Since Sψ,t is obviously linear, (i) follows.
For (ii), see e.g. Theorem 2.29 in [1]. (iii) is obtained by using Lemma A.111 in

‖∇Sψ,tf‖0,∞ = sup
x∈Ω

(
d∑

i=1

(|∂iSψ,tf(x)|)2
) 1

2

≤
(

d∑

i=1

(sup
x∈Ω

|∂iSψ,tf(x)|)2
) 1

2

=

(
d∑

i=1

(‖∂i(f̃ ∗ ψt)‖0,∞)2

) 1
2

≤
(

d∑

i=1

(‖f‖0,p‖∂iψt‖0,p∗,Rd)2

) 1
2

=: C∇(ψ, t)‖f‖0,p.

(iv) follows analogously. (v) is a direct consequence of (iii) and the linearity of Sψ,t.

A.5. Finite Element Method

The statements in this section are taken from [13]. Let Ω denote a bounded domain in Rd with
d ∈ {2, 3}.

Definition A.113. (Polynomial Spaces)
For a multiindex α ∈ Nd0 let

|α|1 :=
d∑

i=1

αi and |α|∞ := max{α1, . . . , αd}.

Polynomial spaces are defined as

Pk := span{xα : |α|1 ≤ k}
Qk := span{xα : |α|∞ ≤ k}.

Definition A.114. (Star-Shaped Domain, Definition 4.2.2 in [13])
Ω is star-shaped w.r.t. B if, for all x ∈ Ω, the closed convex hull of {x} ∪B is a subset of Ω.
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Definition A.115. (Finite Element, Definition 3.1.1 and 3.1.2 in [13])
Let

(i) K ⊂ Rd be a bounded closed set with nonempty interior and piecewise smooth boundary
( element domain).

(ii) P be a finite-dimensional space of functions on K ( shape functions).

(iii) N = {N1, . . . , Nk} be a basis of P∗ (nodal variables).

Then, (K,P,N ) is called a Finite Element.
The basis {φ1, . . . , φk} of P with Ni(φj) = δij is called the nodal basis of P.

Definition A.116. (Subdivision of Ω, Definition 3.3.8 in [13])
A subdivision of Ω is a finite collection of element domains {Ki} such that

(i) intKi ∩ intKj = ∅ if i 6= j.

(ii)
⋃
Ki = Ω.

Definition A.117. (Triangulation, Generalization of Definition 3.3.11 in [13])
A subdivision T of a polygonal domain Ω is called triangulation, if the following is satisfied:

(i) if Ki ∩Kj = {p}, then p is a vertex of both Ki and Kj

(ii) if Ki ∩Kj, i 6= j consists of more than one point, then Ki ∩Kj is either an edge or a facet
of Ki and Kj.

Definition A.118. (Quasi-Uniform and Regular Triangulation, Definition 4.4.13 in [13])
Let {Th}h∈(0,1] be a family of subdivisions of Ω such that

max{diam(K) : K ∈ Th} ≤ h diam(Ω).

The family is said to be quasi-uniform if there is ρ > 0 such that

min{diam(BK) : K ∈ Th} ≥ ρh diam(Ω)

for all h ∈ (0, 1], where BK is the largest ball contained in K such that K is star-shaped with
respect to BK . The family is called regular, if there is ρ > 0 such that for all K ∈ Th and all
h ∈ (0, 1],

diam(BK) ≥ ρ diam(K).

Definition A.119. (Affine Equivalence, Definition 3.4.1 in [13])
Let (K,P,N ) denote a finite element and F (x) := Ax + b with nonsingular A ∈ Rd×d, b ∈ Rd.
For a function f̂ : Rd → R, the pull-back is defined as F ∗(f̂) := f̂ ◦ F and the push-forward is
defined by (F∗N)(f̂) := N(F ∗(f̂)). The finite element (K̂, P̂, N̂ ) is affine equivalent to (K,P,N )
if

(i) F (K) = K̂.
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(ii) F ∗P̂ = P.

(iii) F∗N = N̂ .

Definition A.120. (Finite Element Space)
Let {Th}h∈(0,1] be a family of triangulations of a polyhedral domain Ω. Let (K,P,N ) be a
reference finite element and for T ∈ Th let (T,PT ,NT ) be affine-equivalent to the reference
element. A corresponding family of finite element spaces is defined by

Vh := {v : Ω → R, v is measurable and v|T ∈ PT ∀T ∈ Th}.

Definition A.121. (Local Interpolant, Definition 3.3.1 in [13])
Given a finite element (K,P,N ) with nodal basis {φ1, . . . , φk}. If v : K → R is a function for
which all Ni ∈ N are defined, then the local interpolant is defined by

IKv :=

k∑

i=1

Ni(v)φi.

Definition A.122. (Global Interpolant, Definition 3.3.9 in [13])
Let {Th}h∈(0,1] denote a subdivision of Ω. Assume each K ∈ Th is equipped with some type of
shape functions P and nodal variables N such that (K,P,N ) is a finite element. Let m be the
order of the highest partial derivatives involved in the nodal variables. For f ∈ Cm(Ω), the global
interpolant is defined by

Ihf|Ki
:= IKi

f for all Ki ∈ Th.

Assumption A.123. (Interpolation Estimate Assumption, see Theorem 4.4.4 in [13])
Let (K,P,N ) denote a finite element satisfying

(i) K is star-shaped with respect to some ball.

(ii) Pk−1 ⊂ P ⊂W k,∞(K) for some integer k ≥ 1.

(iii) N ⊂
(
C l(K)

)∗
for some integer l ≥ 0.

Theorem A.124. (Global Interpolation Estimate, Theorem 4.4.20 in [13])
Let {Th}h∈(0,1] be a regular family of subdivisions of Ω. Let (K,P,N ) denote a reference finite
element satisfying Assumption A.123 for some k, l. For all T ∈ Th, all h ∈ (0, 1] let (T,PT ,NT )
be affine-equivalent to the reference element. Suppose p ∈ [1,∞] and either k − l − d

p > 0 when
p > 1 or k − l − d ≥ 0 when p = 1.
Then there exists a constant C > 0 depending on the reference element, d, k, p and ρ of

Definition A.118 such that for 0 ≤ s ≤ k,


∑

T∈Th
‖v − Ihv‖ps,p,T




1
p

≤ Chk−s|v|k,p,Ω if p ∈ [1,∞)

max
T∈Th

‖v − Ihv‖s,∞,T ≤ Chk−s|v|k,∞,Ω if p = ∞,
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for all v ∈W k,p(Ω). Moreover, for all 0 ≤ s ≤ l, there holds

max
T∈Th

‖v − Ihv‖s,∞,T ≤ Ch
k−s− d

p |v|k,p,Ω,

for all v ∈W k,p(Ω).

Corollary A.125. (Boundedness of Global Interpolant)
Let the assumptions of Theorem A.124 hold. Then, Ih ∈ L(W k,p(Ω),W k,p(Ω)).

Proof. Let v ∈W k,p(Ω). Then, by Theorem A.124,

‖Ihv‖k,p ≤ ‖v − Ihv‖k,p + ‖v‖k,p ≤ (C + 1)‖v‖k,p.

Theorem A.126. (Inverse Estimate, Theorem 4.5.11 in [13])
Let {Th}h∈(0,1] be a quasi-uniform family of subdivisions of a polyhedral domain Ω. Let (K,P,N )

be a reference finite element such that P ⊂ W l,p(K) ∩Wm,q(K), where 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞
and 0 ≤ m ≤ l. For T ∈ Th let (T,PT ,NT ) be affine-equivalent to the reference element and
Vh := {v : Ω → R, v is measurable and v|T ∈ PT ∀T ∈ Th}. Then there exists C = C(l, p, q, ρ)
such that for all v ∈ Vh:


∑

T∈Th
‖v‖pl,p,T




1
p

≤ Ch
m−l+min{0, d

p
− d

q
}


∑

T∈Th
‖v‖qm,q,T




1
q

.

When p = ∞ (resp., q = ∞), then
[∑

T∈Th ‖v‖
p
l,p,T

] 1
p
(resp.,

[∑
T∈Th ‖v‖

q
m,q,T

] 1
q
) is replaced by

maxT∈Th ‖v‖l,∞,T (resp., maxT∈Th ‖v‖l,∞,T ).

Theorem A.127. (Stability of Taylor-Hood Elements)
Let the assertions and notation of Definition A.120 hold. For a given reference element K let
an finite element space Vh = V d

h be given that is based on shaped functions PV and degrees of
freedom such that Vh ⊂ H1(Ω). Let another finite element space Mh based on shape functions
PM be given and degrees of freedom such that Mh ⊂ H1(Ω) holds. Then, the discrete inf-sup
condition

inf
qh∈Mh

sup
vh∈Vh

1

‖vh‖1,2‖qh‖

∫

Ω
qh(∇ · vh) dx ≥ β,

for some constant β that is independent of h holds in the following cases:

(i) d = 2, K = [0, 1]2, PV = Q2, PM = Q1, [14]

(ii) d = 3, K = [0, 1]3, PV = Q2, PM = Q1, [15]

(iii) d = 2, K = {(x, y) ∈ [0, 1]2 : 0 ≤ x+ y ≤ 1}, PV = P2, PM = P1, [9]

(iv) d = 3, K = {(x, y, z) ∈ [0, 1]3 : 0 ≤ x+ y + z ≤ 1}, PV = P2, PM = P1, [72]
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[59] R. Oyarzúa, T. Qin, and D. Schötzau. An exactly divergence-free finite element method for
a generalized Boussinesq problem. IMA Journal of Numerical Analysis, 34(3):1104–1135,
10 2013.
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