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Zusammenfassung

Das Ziel dieser Arbeit ist die Analyse der vakuolären pH-Homöostase in Wurzelzellen

von Arabidopsis thaliana mittels rechnerischer Verfahren. Der pH ist ein wichtiger

Parameter für eine Reihe zellulärer Prozesse, wie etwa der Kontrolle von En-

zymaktivitäten und der Aufrechterhaltung des osmotischen Drucks durch die

Schaffung eines Protonengradienten über die vakuoläre Membran hinweg, welcher

wiederum für die Homöostase anderer Ionen auf beiden Seiten der Membran

verwendet wird. Obwohl viele Prozesse bekannt sind, die wichtig für die Etablierung

und Aufrechterhaltung eines sauren vakuolären Lumens sind, haben neuere Ex-

perimente zeigen können, dass unser aktuelles Verständnis dieser Prozesse nicht

vollständig ist. Um die vakuoläre pH-Homöostase in einer integrativen Weise

zu untersuchen, fokussiert sich diese Arbeit auf drei Aspekte.

Im ersten Teil wird eine Übersicht über Ansätze der rechnerischen Systembiolo-

gie in Arabidopsis thaliana gegeben, um den Stand der Forschung aufzuzeigen

und den Rest dieser Arbeit in einen breiteren Kontext zu stellen.

Der zweite Teil konzentriert sich auf Transportreaktionen über Membranen hin-

weg und auf die Bedeutung der korrekten Skalierung kinetischer Geschwindigkeits-

gesetze in mathematischen Modellen mit gewöhnlichen Differenzialgleichungen

wie dem, welches im dritten Teil dieser Arbeit beschrieben wird.

Im dritten Teil wird schließlich ein mathematischer Modellierungsansatz ver-

wendet, um experimentelle Daten bezüglich der vakuolären pH-Homöostase

zu erklären. Dazu werden drei Hypothesen zu den Mechanismen, die zur

vakuolären Ansäuerung beitragen entwickelt: Ein bisher unbekannter direk-

ter Protonenimport, Protonen, die durch Proteindegradation freigesetzt wer-

den und die Umkehr der Richtung eines Protonen-Calcium-Antiporters. Jede

dieser Hypothesen wird in einem Model mit gewöhnlichen Differenzialgleichun-

gen implementiert und mittels experimenteller Daten getestet.





Summary

The aim of this work is the analysis of the vacuolar pH homeostasis in Ara-

bidopsis thaliana root cells by means of computational modeling. The pH is

an important parameter for a range of cellular processes such as the control of

enzyme activity and the maintenance of osmotic pressure acting through the

establishment of a proton motive force across the vacuolar membrane that in

turn is used in the homeostasis of other ions on both sides of the membrane.

Although many processes are known to be important for the establishment

and maintenance of an acidic vacuolar lumen, recent experimental results have

shown that our current understanding of those processes is not complete. To

study the vacuolar pH homeostasis in an integrative manner, this work focuses

on three different aspects.

In the first part, an overview over computational systems biology approaches

in Arabidopsis thaliana is given to demonstrate the state of the art and put the

rest of the work in a broader context.

The second part then focuses on transmembrane transport reactions and the

importance of the correct scaling of the kinetic rate laws of those reactions in

mathematical models employing sets of ordinary differential equations, which

is of importance for any multi-compartment model such as the one presented

in part three of this thesis.

In the third part, a mathematical modeling approach is subsequently used to

explain experimental data concerning the vacuolar pH homeostasis. To do so,

three hypotheses of the mechanisms contributing to vacuolar acidification are

developed: An as of yet unknown direct proton import, protons released by

protein degradation and the reversal of a proton-calcium antiporter. Each of

those hypotheses is implemented in an ordinary differential equations model

and tested for feasibility against the experimental data.
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Kinetic models in systems biology

I - General introduction

There have been many attempts to define systems biology, most of which in-

clude a definition of systems biology’s objectives as the integration of several

layers of biological knowledge into a bigger picture [1][2][3]. By doing so, sys-

tems biology can help us to discover gaps in our knowledge and to understand

complex biological systems to a greater extend. A system in this context can

be seen as set of entities, between which there is some sort of interaction,

in the case of biology this could be the set of animals in an ecosystem with

predator-prey interactions, or a set of molecules in a cell that can react with

one another. The interactions of the different components of a system can be

analyzed in many ways, both experimentally and computationally. In fact,

experimentation and computation often go hand in hand, as computational

approaches need to be tested against the real world situation and often can

only be applied in the first place after experimental knowledge was obtained.

The results of computational systems biology on the other hand can be used

to guide further experimentation (figure 1). Overall, this repeated cycle of

experimental data generation, model building and prediction as well as joint

hypothesis development and refinement can lead to a better understanding of

complex biological phenomena on all levels. It is also a great example of the

power of interdisciplinary research and communication, as only through the

collaboration of researchers with different expertises this cycle of knowledge

generation will actually be fruitful.

1



I - General Introduction

Figure 1: The cycle of knowledge generation in systems biology. Following
hypothesis-based experimentation, a model of the system is constructed.
Subsequent cycles of model analysis and refinement lead to an improved

formulation of the original hypothesis, based on which further experiments are
performed. Every round of the cycle will eventually lead to a better understanding

of the biological system under investigation.

1.1 Kinetic models in systems biology

In the computational part of systems biology, which this thesis is focused on, a

wide range of methods has been established such as network analysis based on

graph algorithms [4] or genome scale modeling approaches [5]. One of the most

common approaches in the quest to understand complex biological systems is

however kinetic modelling [6], in which a set of ordinary differential equations is

formulated, each describing the temporal development of the concentration of

a molecular species dependent on a set of parameters and the time-dependent

concentration of other molecular species. In general, a set of ODEs can be

expressed as:
dSi
dt

= f(Si(t), p) , (1)

where Si is the vector of substance concentrations and p a vector of kinetic pa-

rameters. To arrive at a specific formulation for an ODE of a given component,

one needs to consider all velocities leading to the production or degradation of

2



Kinetic models in systems biology

the component:

ν = νf–νr , (2)

which in the simple case of a reversible mass-action-governed reaction such as

S ←→ P

would read

ν = kf ∗ S − kr ∗ P (3)

with equilibrium constant

Keq =
kf
kr

=
P

S
. (4)

Here, S and P denote the substrate and product concentrations and kf , kr

the kinetic constants of the forward and reverse reaction. In many cases, more

complex terms are used for the formulation of reaction velocities, e.g. describ-

ing saturating rate laws as often caused by enzymatic catalysis like Michaelis-

Menten or involving inhibitors and activators [7]. For the modeller, there are

many decisions to be taken in the construction of the ODE system, such as

which molecular species is important for the understanding of the system and

which is not and can therefore be omitted in the modelling process. An exam-

ple for this are the multiple phosphorylation steps of receptors in response to

a stimulus. One can include each phospho-state explicitly in the model, which

comes at the price of computational cost and subsequently can extend the time

needed for model parametrization and analysis steps. On the other hand, one

might decide to model only a single phospho-state if one assumes that the dy-

namics of the overall system is not altered significantly by this simplification.

Another point to consider by the modeller is the level of detail of the chemical

kinetics expressions for a reaction. Reactions can be assumed to follow simple

mass-action kinetics as in the example above, which are straight forward and

add only a single kinetic parameter to the system. However, possibly impor-

tant regulatory interactions or saturation kinetics are not taken into account

3



I - General Introduction

in this case. A detailed physico-chemical kinetic expression can on the other

hand be taken, usually increasing the number of parameters, many of which

are often not exactly known. This in turn can, if no additional simplifications

are applied, once again increases the computational cost. Finding a middle

ground between computational cost and enough detail to describe the system

under investigation sufficiently well is therefore one of the central tasks for the

modeller.

The aforementioned parameters of the ODE system can be known from pre-

vious studies or measured by experiments. In many cases however, not all

parameter values have been determined or are even experimentally accessible,

so they must be inferred through other means. The typical procedure to do

this is through so called parameter estimation, in which experimentally mea-

sured variables (e.g. concentrations of molecular species) of the system under

given circumstances are used to infer the most likely values of the parameters.

A method to assess a model’s performance is the method of least squares, in

which the squared distance of some values of the model’s output functions and

the experimentally measured values is calculated and, through numerical proce-

dures (such as the particle swarm algorithm or a genetic algorithm), minimized

[8]. In this process, the ODE system’s parameters are successively adjusted by

the computer based on a range of possible criteria, until a sufficiently good fit is

reached. In some cases, the parameters can be determined well, in other cases,

there is a range of equally likely parameter values and value combinations ob-

tained. In this case, one speaks of non-identifiable parameters. If the reason for

the non-identifiabilities resides in the structure of the model, in which the value

of a parameter depends on the value of a set of other parameters (structural

non-identifiability), one can try to simplify the model by explicitly intruducing

the dependence [9]. If a lack of experimental data leads to some parameters be-

ing non-identifiable, one speaks of practial non-identifiability. In this case, the

existing model can be analysed to determine experiments that could help re-

solving the non-identifiabilities. If one can not avoid non-identifiabilities, a set

of similarly likely model parametrizations is obtained and all are subsequently

4
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analyzed. The results of the anayses can then be investigated, whether certain

common properties are present for all parametrizations or if the values or value

combinations of certain parameters determine can be grouped to determine the

specific aspects of the model’s behavior.

Among the standard model analysis routines are metabolic control analysis

(MCA), in which one analyzes how the control of the different enzymes involved

in a pathway over the concentrations and fluxes of metabolites is distributed.

Furthermore, calculating the sensitivities of a range of variables to changes in

parameters can give further insight into the specific effect a given parameter

has. In the biological context, this can help to identify for example steps of a

pathway that are promising targets for drug interferences.

Overall, systems biology has often been described as an iterative cycle of ex-

perimentation, modeling and prediction, as shown in figure 1. Throughout this

cycle, one hopes to arrive at a successively better understanding of the system

under investigation. In the following chapters, I will provide a more in depth

look at computational approaches in systems biology and how they have been

applied to problems in A. thaliana biology (chapter II), and describe specific

challenges and their overcoming of kinetic modeling when multiple compart-

ments are involved (chapter III). Finally, a kinetic modeling approach to a

concrete problem in A. thaliana cell biology concerning the vacuolar pH home-

ostasis will be presented (chapter IV).

5



II - SYSTEMS BIOLOGY OF ARABIDOPSIS THALIANA

I - Computational systems

biology of Arabidopsis thaliana

2.1 Introduction

By the submission of this thesis, the following chapter has been accepted for

publication in the journal of Cellular and Molecular Life Sciences (CMLS) as

a review under the same title. The review has been written by myself with

the support of Ursula Kummer and has been modified slightly for this the-

sis. Systems biology is a field employing both quantitative experimental

techniques such as quantitative time-course measurements of molecular species,

high-throughput techniques like mass-spectrometry based proteomics, high-

throughput RNA-sequencing or live cell imaging [10] as well as a variety of

computaional modeling approaches. The data resulting from the experiments

are analysed and used to build, validate and test the computational models

with the goal of elucidating the properties of the respective biological systems.

These techniques form an iterative cycle, in which experimental results can feed

into a mathematical model that can be used to identify the best approaches

for further experimentation, which in turn contribute to the refinement of the

model, leading successively to a better understanding of the system under in-

vestigation [11]. Multiple systems biology studies have been published with

respect to human cells or tissues, as well for animal model or microbial sys-

tems. Plant systems have been very underrepresented in this community for

many years. This is largely due to the fact that experiments like live cell imag-

ing and the measurement of intracellular components is harder to achieve than

with other organisms. Also, the plant biologist community in general is much

smaller than e.g. the biomedical community [12]. However, the model organism

Arabidopsis thaliana, for which a wide variety of information on its genome,

proteome and many of its biochemical pathways has been published, has been

6



Introduction

more of a target for computational systems biology. Therefore, especially over

the last decade, the number of systems biology studies on Arabidopsis thaliana

has steadily increased [13][14].

A. thaliana has been described as a valuable experimental system for genetic

analyses as early as 1943 by Laibach et al. [15] due to the unchanged number

of heterochromatic bodies seen in both inter- and metaphase, which had rarely

been observed in plants at that time. Following multiple fundamental studies

[16][17][18], the first international symposium for the plant was held in 1965,

organized by Gerhard Röbbelen. After it had been shown that A. thaliana’s

genome is comparatively small with few repetitive elements by Pruitt et al.

[19], the employment of the plant as a model organism gained traction, leading

to the sequencing of its entire genome between the years 1990 and 2000 by an

international consortium [20], in parallel to the human genome project [21],

thus becoming the first plant to have its whole genome sequenced. In the years

since then, our understanding of a multitude of aspects of A. thaliana’s biology

has been deepened by many studies and it has finally also become a target of

systems biology approaches. Some of these studies employing two of the major

computational modeling approaches, genome scale models and kinetic models

using ordinary differential equations, will be reviewed in the following.

Not included in this chapter are, to mention two major classes, stochastic mod-

eling and partial differential equation (PDE) based models. Stochastic model-

ing approaches are employed especially in situations, where low total numbers

of molecules can lead to significant stochastic effects. Specifically gene regula-

tory networks are frequently modeled using this approach in other organisms.

So far, stochastic modeling has only very sparsely been used in plant cell biol-

ogy. Partial differential equation based models that describe the development

of a molecular species not only over time like ODE-based modeling, but also

have a spatial component have also been omitted in this chapter, as compared

to ODEs, PDEs have only sparsely been applied in general as their computa-

7



II - SYSTEMS BIOLOGY OF ARABIDOPSIS THALIANA

tional complexity is higher and analysis techniques for them are comparably

sparse. In plants, PDE usage is mostly limited to cell-fate and morphological

studies, describing processes on a higher scale than the processes I focus on

here.

2.2 Kinetic models

Kinetic models employing ordinary differential equations (ODEs) are the class

of models most widely used to describe cellular processes like metabolic and

signalling pathways [22]. In these models, the change over time of the concen-

tration of a molecular species is described by a sum of reaction velocities for

each reaction the species takes part in. The reaction velocity is determined by

the kinetic rate law governing the respective reaction, including a set of kinetic

parameters, some of which are known or can be measured directly, others have

to be inferred. To estimate the values of as yet unknown parameters, the re-

sulting system of ODEs can subsequently be fitted to experimental data [23].

Not every time, all parameters can be identified unambiguously in this manner,

leading to a set of model parametrizations that can be compared to one another,

enabling researchers to determine common properties of all parametrizations

or parameter-specific differences.

In only extremely simple cases, an analytical solution to the set of ODEs can be

calculated leading to time-courses of all modeled molecular species. However,

in most cases typically occuring in systems biology, an analytical solution can

not be found, requiring a simulation of the time-courses by means of numer-

ical integration. Further analyses of the model such as steady-state analysis

can determine the concentration levels the system stably approaches over time,

while bifurcation analysis explores the stability of a steady-state and the oc-

curance of oscillations of a molecule’s concentration [24]. Other techniques

such as metabolic control analysis (MCA) [25] are employed to gain an un-

derstanding of the system beyond the directly observable and experimentally

8



Kinetic models

accessible facts, such as the control certain reactions have over a target func-

tion and to predict the responses to system perturbations. A good model is

able to reproduce the experimentally observed data, predict system responses

to perturbations and experimental results not used for fitting as well as pro-

vide insights into system structures and properties one could not have achieved

otherwise.

2.2.1 Kinetic models of metabolic pathways

The photosynthetic carbon reduction cycle (Calvin-cycle), in which CO2 gets

incorporated into carbohydrates by using the energy harvested during photo-

synthesis, was among the first pathways in plants for which metabolic kinetic

modeling was applied [26]. Being the defining features of photoautotrophs,

most current efforts in kinetic modelling of the metabolism in A. thaliana are

still focused on the various aspects of photosynthesis and photorespiration, to-

gether with their associated pathway of carbon fixation [27]. In a study by

Matuszynska et al. [28] in 2016, an ODE model of non-photochemical quench-

ing was employed to demonstrate that both the accumulation of the accessory

pigment zeaxanthin and the protonation of the photosynthetic antenna com-

plex are responsible for providing the plant with a short-term light memory,

through which damage by light overexposion can be avoided.

Using the energy gained through the light reactions of photosynthesis, the

Calvin-cycle’s first reaction is governed by RuBisCO, which attaches CO2 to

a five-carbon acceptor molecule to form two three-carbon products. Through

multiple further steps, larger carbohydrates such as the eventual storage com-

pound starch and the transportable sucrose are formed. To explore the reg-

ulatory principles behind the degradation and re-synthesis of starch, a model

of the cycling of sucrose through glucose and sugar phosphates in leaf cells by

Henkel et al. [29] was constructed. Fitting the model to experimental data, the

resulting parameters were analysed using principle component analysis, with

which further experiments could be suggested to increase the identifiabilies of
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a set of parameters. As a result of their modeling efforts, it could be suggested

that the enzyme hexokinase bears most of the control over the flux, with su-

crose degradation by invertases only contributing to a minor extend.

Besides carbon, oxygen and hydrogen, several other elements are necessary for

the plant’s survival. Among them is sulfur, a crucial component of the amino

acids cystine, cyteine and methionine as well as of vitamins and coenzymes

such as biotin and panthotetic acid [30]. A chronic lack of surfur generally

leads to a yellowing of leaves, and later inevitably to the death of the plant

[31]. It is therefore clear, that the assimilation of sulfur from the environment is

an important task for any plant. Despite a rich knowledge about the sulfur as-

similation pathway, a conclusive picture of the rate-limiting steps has not been

constructed until recently. In a study by Feldman-Salit et al., an ODE model

was constructed to tackle that problem in 2019 [32]. After fitting their model

to published data and creating a model ensemble to account for parameter

uncertainties, the group used MCA to show that the control over the sulfur as-

similation pathway was dynamically distributed, depending on environmental

conditions, where under sulfur starvation, adenosine-5’-phosphosulfate reduc-

tase carries most of the control. Under standard lab conditions, control is

shared with sulfite reductase.

Another nutrient, iron, plays an important function especially in redox reac-

tion governing enzymes, such as cytochromes. Under iron starvation conditions,

many eudicots such as A. thaliana acidify their roots’ environment, increase

iron reductase activity and iron transport across their root membranes [33]. A

model describing the regulatory interactions of iron-deficiency associated genes

and their transcriptional response induced by iron starvation was created by

Koryachko et al. [34]. Fitting the model to the results of gene expression

measurements and mRNA decay rate, they subsequently balanced the model’s

complexity with the available data. With the help of their model, the team was

able to correctly predict the protein expression changes resulting from double

mutants of iron deficiency response regulator genes, as well as account for a

significant difference in mRNA decay rates between low and high iron supply

10
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conditions.

An interesting example of kinetic modeling of metabolic pathways is provided

by Nägele et al. [35], demonstrating the power of such models to explain

strain-to-strain differences. They contructed a kinetic model of the central car-

bon metabolism in A. thaliana, fitting it to experimentally obtained, subcellu-

lar compartment-specific concentration values of carbohydrates and enzymatic

rates. Using their model, the group could show that increases in both vacuolar

and cytosolic sucrose levels are responsible for a higher cold tolerance in certain

Arabidopsis accessions found in northern climates.

Besides the primary energy metabolism, metabolism of the various secondary

plant compounds became a promising target for modeling approaches. The di-

versity of plant secondary compounds is unparalleled in other organisms, with

a number of 200,000 different chemical species being estimated to exist, all with

their unique pathways and functions [36]. Many of these compunds have been

proven to be useful for both agricultural and medicinal uses [37][38]. With a

better understanding of their pathways, biotechnological modifications can be

designed to increase the production of these compounds by the plant and help

us utilize them more efficiently.

An example for kinetic modeling in secondary compund metabolism is pro-

vided by Knoke et al. [39]. The group looked into the metabolism of aliphatic

glucosinolates, a class of major defense compound of A. thaliana derived from

methionine. The chain length of those compounds are determined by three

isoforms of multifunctional enzymes, methylthioalkymalate synthases (MAM).

To understand the specific role of each in the determination of glucosinolate

chain lengths, they measured much of the data on the pathway’s enzyme ki-

netics from wildtype strains or strains deficient in one of the isoforms. The

experimentally indeterminable parameters of their ODE model of the pathway

were fitted to data on glucosinolate chain lengths in those strains. Simulation

of the model provided insight into the differential roles of two multifunctional

enzymes of the pathway, MAM1 and MAM3, which can hardly be separated
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experimentally, showing that an elevated expression of MAM3 is necessary in

MAM1 knockout lines to produce the observed glucosinolate profile.

By using large amounts of experimental data on flavonoid profiles and RNA

levels, Olsen et al. constructed and fitted a kinetic model of the Arabidop-

sis flavonoid pathway, which is known to be differentially regulated by several

environmental stressors. Formulating an explicit temperature dependence of

kinetic constants by scaling them exponentially to the temperature using the

Arrhenius equation, the team’s ODE model predicts the last steps of the path-

way to be especially sensitive to temperature to account for the experimentally

determined flavonoid concentrations under different nitrogen supply and tem-

perature regimes [40].
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Kinetic models of metabolism

Focus Main findings Reference

Non-photochemical

quenching

A short term light memory is pro-

vided by zeaxanthin and protona-

tion of antenna complex

Matuszynska

et al.

(2016)[28]

Sucrose metabolism Hexokinase excerts most control

over sucrose cycling flux

Henkel et al.

(2011)[29]

Sulfur assimilation Control over the pathway is dy-

namically distributed, based on

sulfur availability

Feldman-

Salit et al.

(2019)[32]

Iron metabolism Iron defficiency response regulator

gene mRNAs exhibit different de-

cay rates under low and high iron

supply conditions

Koryachko et

al. (2019)[34]

Central carbon

metabolism

Intracellular sucrose concentra-

tions are responsible for strain-to-

strain differences in cold acclimati-

sation

Nägele et al.

(2013)[35]

Aliphatic glucosino-

lates metabolism

Differential role of MAM1 and

MAM3 in glucosinolate chain

length determination

Knoke et al.

(2009)[39]

Flavonoid pathway Last steps of the pathway are espe-

cially sensitive to temperature

Olsen et al.

(2009)[40]

Table 1: Overview over the kinetic models of metabolism discussed in the text,
showing the main focus as well as a selection of main conclusions drawn from each
model.
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2.2.2 Kinetic models of signalling pathways

Signalling events play a central role in most processes in the plant, from em-

bryogenesis to responses to both biotic and abiotic stressors. Among the best

studied long-distance signalling molecules in plants are plant hormones such as

auxins and cytokinins that, upon binding to cellular receptors, can trigger sig-

nalling cascades leading, for example, to altered gene expression [41]. Similar

to kinetic models of metabolism, ODEs are used in most of the computational

modeling studies of signalling pathways. While mass-flow is the subject of in-

terest in metabolism, signalling is concerned with information flow. The basic

approaches of kinetic model construction are the same for metabolic and sig-

nalling pathways, but since many signalling pathways share structures such as

the transfer of information from the extracellular space to the inside of the

cell and the nucleus as well as frequent covalent modifications of pathway com-

pounds, a separate discussion of these models seems appropriate [42].

Cytokinin and auxin are known to be, amongst other functions, the key hor-

mones in root development and control of lateral root formation in A. thaliana

[43]. Their signalling pathways are branched and intertwined with one another

[44], where for example the local accumulation of auxin leads to the initializa-

tion of lateral root primordia and promotes cell division, whereas cytokinin’s

action is opposed to that by promoting differentiation. Here, kinetic modeling

can provide help in elucidating their specific function and the relevant inter-

actions. Such is the case in a study by Muraro et al. [45], who investigated

the role of SHY2, a protein responsible for the balancing of auxin’s and cy-

tokinin’s role in meristem size determination as well as the response of auxin

response genes on cytokinin’s presence. Modeling the concentration changes

of 25 metabolites of the pathways and with the help of bifurcation analysis,

it was shown that the interaction between the two hormone induced pathways

can cause periodic root branching and can lead to tissue-specific oscillatory

gene expression.
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Auxin also plays a role in pattern formation during shoot development. By em-

ploying an ODE based modeling approach in which the transcriptional output

was modeled as a function of the combination of the concentration of auxin and

its perception by the cell, Vernoux et al. could predict spacial differences in

auxin sensitivities being one of the determining factors in shoot apex patterning

[46]. One of the underlying causes for this was predicted to be the differen-

tial expression of auxin response factors (ARFs), transcription factors acting

in auxin signalling, in different regions of the plant as well as the ability of a

cell to buffer the pathway’s response based on the ratio of ARF activators to

repressors. The model’s predictions were subsequently verified in experiments,

where the group could show that a reporter gene was inhibited differentially

by auxin in different meristematic zones.

Due to their sessile and photoautotrophic nature, plants are heavily influenced

by circadian rythms. A founding factor in the establishment of a circadian

response system in Arabidopsis is the transcriptional regulator TOC1. An in-

teraction of TOC1 signalling with the plant hormone abscisic acid (ABA) is

known during abiotic stress, though the exact dynamics of these circuits are

not well understood. Pokhilko et al. were able to construct a model of the

TOC1 pathway, exploring its connection with the signalling pathway induced

by abscisic acid. With their model, they could describe the experimentally

observed molecular profile and timing events of the clock [47], in which an in-

crease of ABA leads to a lengthened free-running period of the circadian clock.

Furthermore, including ABA regulated stomatal closure in the model, the in-

fluence of TOC1 on its closure and opening could be inferred. By doing so, a

better insight could be gained of the control TOC1 has as an environmental

sensor over the circadian processes in the plant.
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Kinetic models of signalling pathways

Focus Main findings Reference

Cytokinin and auxin

crosstalk

Interaction of auxin and cytokinin

pathways can lead to tissue specific

oscillatory gene expression

Muraro et al.

(2011)[45]

Auxin signalling Shoot apex patterning is pro-

duced by differential auxin inhibi-

tion of downstream genes in differ-

ent meristematic zones

Vernoux et

al. (2011)[46]

Circadian clock TOC1 as a environmental sensor

for circadian processes

Pokhilko et

al. (2013)[47]

Table 2: Overview over the kinetic models of signalling pathways discussed in
the text, showing the main focus as well as a selection of main conclusions drawn
from each model.

2.3 Genome scale metabolic models

Genome scale metabolic models, which model mass-flow through an organism’s

reactions based on genome annotations, have been generated for a variety of

organisms and cell types in the past few years. They can be constructed in the

absence of detailed information on the kinetic mechanisms of the biochemical

reactions involved in the mass-flow. In these models, the stoichiometric matrix

which containes the stoichiometry with respect to metabolites for each of the

reaction in a metabolic network is used to compute potential flux distributions

[48]. The stoichiometric information is established by the annotation of the

genome of a sequenced organism. The annotation allows to derive a draft sto-

ichiometric model of the metabolism by linking known genes to protein func-

tions, in this case enzymatic activities. Analysing if this draft stoichiometic

model allows the system to run into a steady state and produce e.g. biomass,
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can be used to identify and fill in gaps. This gap filling process already comes

with knowledge gain since often previously not annotated functions can be

found due to the need for the system to be able to carry out the respective

activity [49].

Using additional contrains, e.g. experimentally determined fluxes and direc-

tionalities of reactions, an optimality criterion is defined. This is often the

maximization of biomass. Subsequently, using so-called flux balance analysis

(FBA) optimal (with respect to the chosen criterion) flux distributions can be

computed. Additional analyses like flux variability analysis (FVA) allow to

estimate uncertainties in these fluxes [50].

By now, A. thaliana is the plant organism for which most of the genome scale

metabolic reconstructions have been done. The first ones to do so were Pool-

man et al. in 2009, who constructed a model containing 1,253 metaboilites and

1,406 reactions. By removing metabolites involved in only one reaction and the

respective reaction as such, they could reduce the model significantly to 855

reactions. They showed, among other findings, that their model can describe

the production of the main biomass components in experimentally observed

proportions and that a realistic ATP demand can be inferred. Comparing

this model to genome scale metabolic reconstructions of other organisms, they

found that a similar percentage of all available reactions, namely around 15%,

were needed to achieve the production of those main biomass components [51].

In a similar effort, Dal’Molin et al. created AraGEM, a comprehensive literature-

based whole genome reconstruction, which is comprised of 1,748 metabolites,

1,567 unique reactions and 5,253 gene-enzyme reaction-association entries. In

addition to the production of biomass as done in the Poolman model, AraGEM

considers the localization of reactions in organelles and it also includes au-

totrophic metabolism, a central feature of plants. The classical photorespira-

tory cycle could be well predicted using this model, as well as the specific redox

metabolism in both photosysnthetic and non-photosynthetic plant cells. Inter-

estingly, the model predicted 75 reactions necessary for primary metabolism for
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which genes have not yet been identified, an example of the predictive potential

of genome scale models. [52].

Models such as these can be used in further studies to analyze the global effects

of gene knock-outs or changes in gene expression. For example, Williams et al.

[53] used a genome scale metabolic model, building on the one by Poolman, to

predict the fluxes through different pathways of A. thaliana’s central carbon

metabolism, as well as the alteration of the flux distribution by temperature and

hyperosmotic stress which they showed could alter both biomass distribution,

glucose consumption rate and gene expression patterns. By using steady-state

metabolic flux analysis, an experimental method measuring the redistribution

of stable isotopes such as the carbon isotope 13C, the group were able to esti-

mate the flux distribution in Arabidopsis not only under standard conditions,

but also under stress conditions. Comparing the experimentally determined

fluxes with the fluxes predicted by the accordingly constrained genome scale

model, they showed that the model accurately could predict the shift from the

flux through phosphoenolpyruvat carboxylase towards TCA cycle under in-

creased temperature and hyperosmotic stress conditions, providing an example

of a fruitful integration of experimental and computational systems biology.

Plant metabolism is tightly coupled with the availability of light energy, where

storage compounds are synthesized during the day and became available for

further use during the night. To take into account the circadian rhythm also

in a genome scale model for A. thaliana, Cheung et al. constructed a model of

leaf metabolism, taking sucrose and several amino acids as output [54]. The

team achieved the incorporation of the day/night-cycle by simultaneous sim-

ulation of the specific metabolic fluxes occuring during the day, with photon

influx enabled, and the zero photon-flux night in a single optimization problem.

Constraints to the optimization problem were taken from literature, describing

ratios of sucrose to amino acids export and nitrate import, as well as carbon

conversion efficiencies. Using FBA, the team could show that by inclusion of

the circadian rhythm, the pattern of fluxes during the day observed experimen-

tally could be described better than without its inclusion. This also enabled
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them to compare C3 with CAM metabolism. They found no likely energetic

benefits of CAM over C3 metabolism.

Expanding on the model by Cheung et al., Shaw et al. constructed a large-

scale genome scale model consisting of 10,664 metabolites and 11,320 reactions,

where each original reaction was duplicated to represent separate modules for

leaf and root to investigate the partitioning of resources within root and leaf

cells [55]. The authors especially focused on nitrogen metabolism in the plant,

using a modified version of FBA, dynamic FBA (dFBA), which allows changes

of flux distributions over time to be modeled [56]. With this, the effects of

environmental perturbations could be closely investigated, for example by as-

suming a sudden biomass loss, simulating herbivory. The team showed that

the subsequent biomass recovery was significantly slowed under low nitrogen

conditions, as most bioassimilates were utilized for root growth. This result

suggests an adaptation of plants to grow roots for more effective nitrogen as-

similation under low nitrogen conditions.

An example for the usage of genome scale models in metabolic engineering is

the tissue-specific model by Mintz-Oron et al. [57], with the help of which ge-

netic manipulations increasing the production of specific metabolic compounds

could be designed. In the course of their study, they developed a modeling

pipeline which allows for semi-automatic construction of genome scale models

with the inclusion of high-throughput data, capable of processing a variety of

data sources. Using this pipeline, tissue-specific protein expression data was

used to search for a minimal reaction set necessary to reproduce the tissue-

specific core proteome, creating a range of metabolic models for different Ara-

bidopsis tissues exhibiting tissue-specific metabolic profiles. The value of their

approach was demonstrated by their ability to design genetic manipulations to

increase the production of vitamin E.
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Genome scale models

Focus Main findings Reference

Central carbon

metabolism

Realistic ATP consumption can be

inferred

Poolman et

al. (2009)[51]

Central carbon

metabolism

Photorespiration cycle and redox

metabolism can correctly be de-

duced

Dal’Molin et

al. (2010)[52]

Central carbon

metabolism

Stress shifts flux from phospho-

enolpyruvat carboxylase to TCA

cycle

Williams et

al. (2010)[53]

Central carbon

metabolism during

circadian rhythm

CAM not likely to yield energetic

benefits over C3 metabolism

Cheung et al.

(2014)[54]

Organ specific re-

source partitioning

during circadian

rhythm

Low nitrogen shifts biomass pro-

duction from leaf to root

Shaw et al.

(2018)[55]

Secondary com-

pound production

Genetic manipulations could be

designed to increase vitamin E pro-

duction

Mintz-

Oron et

al. (2012)[57]

Table 3: Overview over the genome scale models discussed in the text, showing
the main focus as well as a selection of main conclusions drawn from each model.
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2.4 Concluding remarks and perspective

A. thaliana, a model for higher plants, is a suitable organism for a multitude of

computational modeling approaches, as its genome got completely sequenced

and a wealth of experimental data has been generated over the decades it

has been used in molecular biology. Especially during the past decade, a

steadily increasing number of systems biological models have been created for

the plant, addressing a variety of questions from photosynthesis and central

carbon metabolism to signalling pathways in circadian rythms and secondary

plant compound production.

Kinetic models, as opposed to genome scale models, necessitate the availability

of detailed kinetic information of single reactions to construct a set of ordinary

differential equations for the concentrations of the involved molecular species.

These models are then employed for both metabolism and signalling to un-

derstand aspects of single pathways, smaller metabolic networks, or how the

cross-talk between different pathways shapes the overall output. ODE models

dealing with the metabolism of A. thaliana cover a wide range of processes,

from energy and carbon metabolism to the metabolism of a variety of sec-

ondary plant compounds, providing knowledge to be exploited for agricultural

and medical purposes. In addition, the understanding of plant development

and its hormonal control is significantly furthered by kinetic modeling, as one

can dissect single components of an otherwise heavily intertwined signalling

pathway in silico.

Genome scale metabolic models, consisting of stoichiometric information about

a usually large amount of reactions and their associated metabolites based on

genome annotations, have been constructed to model mass-flow through the

plant. They have proven to be useful in understanding the global metabolic

network of the plant, with the help of typical analysis methods such as flux

balance analysis. By constantly extending and improving existing models as

well as by developing new methods both to collect experimental data and to

incorporate features such as tissue specificity, this modeling approach is able
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provide more insight into various aspects of the plant’s metabolism.

Other modeling techniques such as partial differential equations based model-

ing can benefit from the development of a wider set of analysis methods as well

as an increase in computational power, rendering this approach fruitful for a

bigger variety of problems in plant biology, as the usually big cells, multiple,

often intricately shaped cellular compartments can require spatial aspects to

be taken into account.

Systems biology, a discipline integrating experiments, theory and computation,

applied to questions in plant research has already lead to significant insights,

as the exemplary studies provided in this chapter have demonstrated. There is

no doubt that with a further development of experimental and computational

techniques, it will continue to enhance our understanding of plant biology on

all levels.
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III - Area scaling in kinetic

models of biological systems

3.1 Introduction

This chapter is part of a work done in collaboration with Ruth Großeholz from

the group of Ursula Kummer, Bioquant, Heidelberg University. Here, I will

present a part of this work with some additional explanations and examples.

The structure of the text corresponds to a manuscript that, by the date of the

submission of this thesis, has been submitted for publication under the title

”Impact of explicit area scaling on kinetic models involving multiple compart-

ments”. Subchapter 3.3.2b has been directly taken from that manuscript.

An important feature of plant cells, as it is for all eukaryotic cells, is the spa-

tial separation of the various biochemical processes into distinct compartments,

such as the ER, the nucleus and the vacuole. By doing so, several cellular pa-

rameters such as the oxidative state or the pH can be held seperate and opti-

mized for the respective processes occuring inside one compartment. In plants,

vacuoles are responsible for creating the cell’s turgor pressure by accumulat-

ing ions, which in turn attract water into the cell. Moreover, compartmental

membranes can act as scaffolds for other proteins and harbour transporters

that facilitate the communication between exterior and interior, as well as they

enable a charge separation by selectively transporting ions between both sides.

This charge separation can then in turn be utilized for the accumulation of

molecules in an organelle. Being of such a central importance for eukaryotes,

a better understanding of the tranport processes on all levels is in the interest

of researchers in the biological sciences.

As I could lay out in the first two chapters of this work, computational model-

ing using ordinary differential equations (ODEs) is a tool that has frequently
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been used to describe biochemical systems and their dynamical properties [58].

While a good kinetic model has the power to explain and predict many proper-

ties of a dynamical system, some existing knowledge of the underlying processes

is also required, such as molecular players involved, reaction mechanisms and

kinetic parameters. While some parameter values are known from previous

studies, others have to be inferred through fitting of the model’s parameters

to experimental data. To enable modelers to easily exchange and store their

models depite the multitude of modeling tools, the Systems Biology Markup

Language (SBML) format was developed [59] allowing for the handling and

analysis of computational models with different software and platforms. This

format is especially suitable, but not restricted to ODEs.

As introduced in chapter I, ODEs express the time derivatives of the change

of the concentration of a substance as a function of it’s own and other species’

concentration and some kinetic parameters. Those enter some expressions for

the reaction velocities that determine eventually the production/consumption

speed of a molecular species. As expressed in equation (3), A simple reversible

mass-action reaction of one substrate S and one product P and their respective

forward and backward mass action rate constants kf and kr would lead to a

formulation of the reaction velocity as

ν = V ∗ (kf ∗ S − kr ∗ P )

if S, P are given as concentrations of substrate and product, respectively, and

V being the volume of the reaction space. Here, ν represents the reaction rate

in mol s−1

When considering more than one compartment in kinetic models, those rules

do not hold anymore, as the concentrations of the reactants are explicitly con-

tained within the expression for the reaction velocity. That means that if two

compartments with different volumes V1 and V2 harbour the substrate S and

product P , respectively, a decrease of S does not lead to an equally big increase

of P . For example, in a 1-to-1 reaction, a 10−3M concentration of S in a 10−9L
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compartment means a total of 10−12 moles of substrate, and a 10−3M concen-

tration of P in a 10−10L compartment means a total of 10−13 moles of product.

If now the substrate concentration decreases by 50%, i.e. 0.5∗10−12 moles, the

product also increases by 0.5 ∗ 10−12 moles, meaning a change of 0.5 ∗ 10−12

moles per 10−10L, equalling a change of the concentration of 0.5 ∗ 10−2M. This

is not a 50% increase of P , but a 500% increase.

So to account for this, many modelers chose to scale trans-membrane reactions

with the volume ratio of the respective compartments. SBML requires another

approach, using particle numbers instead of concentrations. That means that

the transport reaction rates describe particle fluxes instead of changes in con-

centrations, through which the above mentioned problems were thought to be

avoided. However, also in this case problems could arise if one simply multiplies

the reaction rates with the respective volumes of the compartments in which

the respective substances reside in, which is done by some software in the field,

calculating the particle flux ν as

ν = V1 ∗ kf ∗
nS

V1

− V2 ∗ kr ∗
nP

V2

(5)

nS, nP being the molar amounts of S and P . However, that means a direct

dependence of the rate of a trans-membrane transport process on the volumes

of the involved compartments. This is not conceivable, as on the molecular

level, a reaction rate can not directly depend on the anticipated volume of the

compartment the product resides in. Biologically accurate is the scaling of the

transport rate with the number of transporters in the membrane, or in the

case of diffusion of lipophilic substances through the membrane, simply with

the area of the membrane. That means, to correctly scale the reaction rates,

one should take into account the number of transporters in the membrane,

which could, in the case of a constant density of transporters, be simplified to

the surface area of the membrane. Instead of adjusting the transport reaction

rates by scaling with volumes when dealing with changing compartment sizes,
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the consideration of surface area changes is advised:

ν = A ∗ (kf ∗ S − kr ∗ P ) (6)

As will be discussed below, the change of the interface area between two com-

partments might simply be linearly dependent on the volume changes, as shown

in the example below. Volume and surface area could however also exhibit

highly non-linear or even a constant relationship, depending on the concrete

architecture of the respective compartments. In the case of the plant vacuole

for example, which can be idealized as a spheroidal compartment, the volume

would read 4
3
π ∗ r3, with the surface reading 4π ∗ r2. One can see that the

difference between the two scaling approaches scales with 1
3
r, i.e. linearly with

the radius of the spheroidal compartment. There are many other cases how-

ever, where a linear relationship can not simply be assumed, such as the highly

folded inner membrane of a mitochondrium, where the surface area can change

without a significant change of the volume.

For gaining an understanding about how exactly an output function is affected

by the scaling, it can be useful to calculate the sensitivities of the model out-

put regarding the rate of the transport reaction affected by the different scaling

formalism, e.g. to see whether these reaction rates are heavily influencing the

behavior of the total system and thus it is crucial to calculate those with more

care.

In the course of scaling correctly with the active area one can arrive at unusual

units of the kinetic parameters, as in this case m ∗ s−1 for kf and kr, neccessi-

tating the careful assessesment of the meaning of the affected parameters.

The aforementioned problems are not yet handled in the way suggested above

in every case, which can lead to confusing or incorrect analyses of modelled sys-

tems in some cases. Therefore, I present here a part of the investigation into

the implications of not taking into account the surface area at which a trans-

port reaction proceeds. To that goal, I first introduce a simplified toy model

to demonstrate the concept. Afterwards, I present exemplarily two published
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multi-compartment models without area scaling. I then compare their behav-

ior in diverse physiological circumstances, where volume ratios or the area to

volume ratio change. With this I will demonstrate that the correct behavior

can be obtained with any modeling approach as long as the parameters are

adjusted when dealing with altered cellular/compartmental geometries.

3.2 Methods

The models were selected using the EBI BioModels database [60]. By the time

of the submission of this thesis, 825 manually curated models were available

on the website. Out of these, only models with at least two compartments

with non-arbitrary volumes were selected. This led to a pool of 21 models,

out of which two were selected for further analysis: A model describing the

calcineurin-dependent NFAT signalling in T-cells by Fisher et al. [61] and a

TGF-β signaling model by Zi et al. [62].

The selected models were analyzed and modified using the modeling soft-

ware package COPASI, version 4.23 [63]. The time-courses of the relevant

species’ concentrations were determined deterministically using LSODA as im-

plemented in COPASI. Scaled sensitivities of steady-state concentrations and

transient concentration maxima were calculated using COPASI as well.

3.3 Results

3.3.1 Toy model

To introduce the concept of the effects of area-scaling on different model struc-

tures, a simple toy model will be introduced, with the understanding of which

other, more complex models from the BioModels database will be more easily

analyzed. To this end, a simple model of vacuolar transport of a compound X

in a plant cell will be used. Vacuoles in plants can occupy a large portion of

the cell, with shapes ranging from almost spherical to highly reticulated and
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intricately shaped [64]. For the purpose of this study, I take a single trans-

membrane reaction between cytosol and vacuole, formulated with mass action

kinetics according to the reaction:

Xcyt ←→ Xvac ,

where Xcyt and Xvac denote the compound X in the cytosol (cyt) and vacuole

(vac), respectively. A generic cell and vacuolar size were chosen, with the vac-

uole comprising 90% of the total volume. The cytosolic volume was assigned a

value of 2,000µm3 and the vacuolar volume 18, 000µm3. The initial concentra-

tion of cytosolic X was chosen to be 1µM, with no initial vacuolar X present,

and the transport was chosen to be governed by mass action kinetics with a

kinetic rate constant of 0.1.

To demonstrate the different effects of area- vs. volume scaling, two situations

were compared: A perfectly spherical vacuole and a reticulated vacuole with,

for the sake of this demonstration, twice the surface area of the spherical vac-

uole and half its original volume. In the spherical version of the vacuole, a

volume of 18, 000µm3 would mean a surface area of around 3, 322µm2. In the

hypothetical, reticulated form this would mean a volume of 9, 000µm3 and an

area of 6, 644µm2. Also, in the spherical vacuole version, the kinetic parameter

of the area-scaled model is adjusted to deliver the same results. The vacuolar

surface was then altered as described above, to compare the resulting time-

courses of both versions without further changes of the parameters.

Looking at the time-courses of the reaction in the spherical-vacuole-case, one

can see that both volume- and area-scaled versions can reproduce the same be-

havior (figure 2B). However, when the surface of the vacuole is doubled and the

volume of the vacuole is halved with all the other parameters held constant, the

volume-scaled model and the area-scaled model produce a different result: The

cytosolic concentration of X in the area-scaled version reaches a steady-state

in almoost half the time needed for compared with the volume-scaled model,

due to a steeper decrease of cytosolic X in the first 10 seconds. The eventual
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steady-state in both versions is the same, as surface areas can not influence the

thermodynamic properties of the system, with the equilibrium constant being

the same, 1, in all cases (figure 2C).

This example demonstrates the potential of differently scaled models to deliver

different results in case of changing cellular and compartmental geometries.
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Figure 2: Analysis of the transport of a compound between cytosol and
vacuole. A: Model reaction scheme according to the SBGN standard. B:

Reproducing the behavior of the original model (red) with the area-scaling
model (blue). C: Comparison of the simulations of the volume-scaling model
and the area-scaling model under the assumption of doubled vacuolar surface

and halved vacuolar volume.

3.3.2 Introducing area-scaling to more complex models

Next, two realistic examples from the BioModels database were analysed. The

models were selected as described in the methods section above from the

BioModels database. Both the number and size of the compartments included

in the models were considered. The vast majority of the models published on

BioModels were constructed using only one compartment. Only a small fraction

of entries consisted of multi-compartment models with realistic compartment

sizes (21 out of 737). Here, I considered the model for cytoplasmo-nuclear

shuttling of NFAT in T-cells [61] and a TGF-β model [62].
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3.3.2a NFAT signalling in T-cells can be affected by nuclear elonga-

tion

The NFAT model by Fisher et al. describes the shuttling of dephosphorylated

NFAT bound to calcineurin from the cytoplasm into the nucleoplasm and, upon

phosphorylation, back into the cytoplasm [61]. NFAT is a transcriptional ac-

tivator in T-cells, involved in immune and inflammatory responses. The main

conclusion drawn from the model was the requirement of higher frequencies of

calcium oscillations for NFAT activation compared to NFκB activation. The

original model scales all transport reactions with the volume of the compart-

ment the respective molecular species is located in. I changed those reactions

to instead scale with the nuclear membrane area, assumed to be spherical. In

total, there are seven transport reactions that had to be changed this way (fig-

ure 3A). Furthermore, the kinetic parameters of the respective reactions were

changed in such a way that the resulting velocities under standard conditions

are the same as in the original model by multiplying the original parameter

values with the volume of the compartment the molecular species resides in di-

vided by the nuclear membrane area (figure 3B). This leads to the area-scaled

model to behave the same way as the original, volume-scaled version of the

model.

The model is based on T-cells, which can exhibit an elongated nucleus upon

activation [65]. For this study, a constant nuclear and cytoplasmic volume are

assumed upon T-cell activation, with different values for the nuclear envelope

being investigated. As dephosphorylated, calcineurin bound NFAT is the ac-

tive transcription factor in this system, the development of its concentration

was analyzed as the relevant output function, with which I could compare the

effect of the different scaling approaches under the assumption of an elongated

nucleus. The volume-scaled model exhibits a slightly slower dynamics and a

minimally lower steady state of dephosphorylated, calcineurin-bound NFAT

than the area-scaled version when the nuclear surface area is doubled. The

difference between the two approaches however are not significant, as those
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differences are in the range of 1-2%. This can be explained by looking at the

scaled sensitivities of the sensitivites of nuclear NFAT Calcineurin complex (ac-

tive NFAT) concentration with respect to the different parameters. The kinetic

parameters involved in the transport reactions have a rather small impact on

active NFAT concentration, therefore a significant effect of their changed value

in the case of the area-scaled model is not to be expected, especially when the

surface area, entering the kinetic expression linearly, is not changed by large

percentages. Hence, a more significant difference in model behavior can be

seen with more drastic changes of nuclear surface area, as seen when compar-

ing a one tenth to a ten-fold change of nuclear surface area (figure 3C). This

demonstrates that including the area as a scaling factor is not always necessary,

especially if the qualitative outcome is more important than the quantitative.

Figure 3: Analysis of the NFAT signaling pathway by Fisher et al.. A:
Model reaction scheme according to the SBGN standard. B: Reproducing the

behavior of the original model (red) with the area-scaling model (blue). C:
Comparison of the simulations of the volume-scaling model (red) and the

area-scaling model at different nuclear surface values. The blue curves
indicate the range of possible outcomes for nuclear areas changed from 10%

(lower curve) to 1000% (upper curve) of the original value.
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3.3.2b Altered nuclear morphology in cancer cells affects signalling

response

I have written this subchapter for the manuscript of ”Impact of explicit area

scaling on kinetic models involving multiple compartments” as mentioned in

the introduction. From there, it has been taken unaltered for this thesis.

The model of Zi et al. describes the TGF-β induced Smad2 signaling pathway

(figure 4A). The authors constructed the model to investigate the differential

effects of variable TGF-β-doses on the intracellular signal dynamics, finding dis-

tinct responses of the cell to both sustained and pulsating TGF-β-stimulation.

The model reactions include the binding and unbinding of TGF-β to T1R

and T2R and their recycling at the plasma membrane, complex formation of

R-Smad with Co-Smad and the shuttling of R Smad, Co-Smad and the Smads-

complex across the nuclear envelope. Similar to the RanGTP model, the pro-

cesses of nuclear shuttling were changed from being scaled with the nuclear

or cytoplamic volume to being scaled with the nuclear membrane area. The

affected parameters were again adjusted to deliver the same output as before.

The model was originally constructed using data from HaCaT cells, a human

keratinocyte cell line. Skin cancer cells, as many other forms of cancer cells,

often exhibit nuclei with irregular shapes as well as being bi- or multinucleated

in several cases [66], both facts contributing to a higher surface area to volume

ratio, thus posing a potential situation in which the differential behavior of

volume- and area-scaled models can be observed.

The possible range of alterations here is large, so for the sake of this study, we

analyzed the effect of an increase of both the nuclear and whole cell radius by

50% (figure 4C) and the effect of a 50% increase of the nuclear surface area

while keeping all volumes constant (figure 4D). This change affects only the

area scaled model as in the volume-scaled version, the nuclear surface is not a

parameter considered. Analogously to the example above, the parameters of

the area-scaled model were adjusted to replicate the models original behavior
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(figure 4B) and we compared the simulations of both the original, volume-scaled

model with the area-scaled one (figure 4C and 4D). Furthermore, the scaled

sensitivities of the Smads-complex concentrations to the transport reactions

were calculated and shown to be sufficiently high, suggesting that a change

of the transport rates has a noticable influence on the signalling output. It

can be seen that both the steady state value of nuclear Smads-complex and

especially its transient are different in both model versions, e.g. the peak con-

centration of nuclear Smads-complex in the area-scaled model is around 10%

lower than in the volume-scaled version when both the cellular and nuclear vol-

umes are increased by 50%, while its peak concentration is around 14% higher

when just the nuclear area increased by 50%. Again, the differences are not

huge. However, if the models serve a quantitative purpose they are significant

enough. This result corroborates that depending on the system under investi-

gation, a careful consideration of the scaling of trans-compartmental rate laws

can change the model predictions.
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Figure 4: Analysis of the TGF-β induced Smad2 signaling pathway by Zi et
al.. A: Model reaction scheme according to the SBGN standard. B:

Reproducing the behavior of the original model (red) with the area-scaling
model (blue). C: Comparison of the simulations of the volume-scaling model

and the area-scaling model at both increased cell and nuclear size. D:
Comparison of the simulations of the volume-scaling model and the

area-scaling model at increased nuclear surface area. Figure taken from the
manuscript for ”Impact of explicit area scaling on kinetic models involving

multiple compartments”, Holzheu et. al, under revision.
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3.4 Discussion

In the continuous search for a better understanding of biological systems, com-

putational approaches such as kinetic modeling have become an important tool,

as with a good model, one can analyze systems properties on a different level

and even in circumstances, when experimental results are difficult to obtain. A

significant part of the modeling process involves the evaluation of assumptions

undertaken in the construction of the model, such as which molecular play-

ers to include or the level of detail for the kinetic expressions for a reaction.

The reaction velocities of enzyme-catalyzed reactions are usually dependent

on the amount of enzyme present in the respective compartment, with more

enzymes leading to a higher maximal velocity of the reactions they catalyze.

The same holds true for transport processes, where the transport velocity is

typically scaled with amount of transporters present in the membrane, which

can be approximated by the membrane area in case of locally evenly distributed

transporters.

This chapter was concerned with the analysis of the effects of different scaling

approaches on output functions of a biochemical system with varying sizes and

geometries, modeled with ODEs. Models using partial differential equations

have been used for the consideration of spacial aspects both on the intracel-

lular and macroscopic level [67] in biological systems [68], with ODE models

largely ignoring them. Oftentimes, ODE models are simplified to an extend,

where spacial questions are completely ignored and a multi-compartment sys-

tem is modeled as a single-compartment system, thereby ignoring aspects such

as dynamically changing cell and compartment sizes and shapes.

Such is the case with the majority of the curated models on the BioModels

database. If no changes in cellular or compartmental geometries and sizes are

analyzed, these models are still able to deliver good results and describe ex-

perimental data. In fact, if the parameters of the model are chosen well, they

do not perform differently from multi-compartment models whatever scaling

method is applied. However, if one is interested in changing geometries such
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as growing cells or if one wants to transfer the model onto another cell type,

the modeling results can become unreliable if the right scaling of the kinetic

transport rate laws with a subsequent adaption of the respective parameters is

not undertaken.

As shown in this chapter, the effects of the area- vs. volume scaling range

from neglectible to relevant, depending on the concrete system. In a model of

NFAT signalling in T-cells, a doubling in nuclear membrane area with constant

cytoplasmic and nuclear volume did not alter the output function significantly

in the area-scaled version compared to the volume-scaled version. In contrast

to this, changing the compartment sizes caused a notable difference in the out-

put of the TGF-β signaling model by Zi et al.. Not only is the Smad-complex

concentration sufficiently sensitive to the transport reactions, but the model ar-

chitecture also means that the change compartment size has a notable impact

on the output function. In more general terms, this means that - depend-

ing on how the system is decoded (signal amplitude versus signal duration) -

the area-scaling model would transmit different information than the volume-

scaling model unless the parameters are carefully adjusted.

In conclusion, this analysis demonstrates that including the membrane as scal-

ing factor - or at least carefully adjusting the parameters of multi-compartment

reactions - can be necessary to observe the correct model behavior. Nonethe-

less, the exact impact of not adjusting the model on the simulated behavior

depends on the modeled system itself, its geometry and the control that a

transport reactions holds over the behavior of the system.

Several software tools automatically scale with the volume in every case, if it

is changed. In this chapter, I could show that this should not be done as it can

lead to wrong model behaviors. Software like COPASI does instead correctly

adjust the particle fluxes according to the impact that a changing volume of a

compartment has. With the recently added feature of allowing for the defini-

tion of two-dimensional compartments, more models the membrane should be

considered as a separate compartment or scaling-factor for reaction velocities.
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Mathematical modeling of the

vacuolar pH-homeostasis in

Arabidopsis thaliana

4.1 Introduction

As sessile organisms, plants had the need to develop a set of adaptations to deal

with their changing environmental conditions, such as water, light and nutrient

availability. One such adaptation is the central vacuole, a compartment which

often is the largest structure in a plant cell, comprising up to 90% of the cel-

lular volume in some cases [69]. Early views did not attribute many functions

to this organelle, which was seen as a space mainly filled with water and with

little purpose (hence its name from uacuus, lat.: empty) [70]. Over time how-

ever, more functions of the plant vacuole were discovered, leading to today’s

view with the recognition of the vacuole as an important structure in plant

cells for processes such as the regulation of osmotic pressure and cytosolic ion

homeostasis, protein degradation and the storage of nutrients and secondary

metabolic compounds. Now, we can discern two subtypes of vacuoles: the lytic

vacuoles which are harboring a range of hydrolytic enzymes for protein diges-

tion similar to lysosomes in other organisms, and the protein storage vacuole,

keeping various defense and storage proteins inside [71].

To achieve this variety of functionality, the vacuole is in constant communi-

cation with other parts of the endomembrane system and the space outside

the plasma membrane (the apoplast) through vesicular trafficking as well as

with the cytoplasm through direct transport of compounds across the vacuo-

lar membrane, termed the tonoplast, and through tonoplast-intrinsic factors.

The tonoplast is host to a variety of transporters and molecules that enable

the tethering of vesicles from other compartments [64]. Known vesicular trans-
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port processes with the vacuole as the target include two types of clathrin

coated vesicles, discerned by their adaptor proteins AP-1 and AP-2 as well

as multivesicular bodies, all derived from the Trans-Golgi Network/Early En-

dosome (TGN/EE), which acts as a central hub in plants in which endocytic

and exocytic pathways meet [72]. A direct vesicular communication from the

Endoplasmic Reticulum (ER) has been described for young cells, essential for

the formation of the vacuole [73]. Vesicular trafficking and fusion are powered

by GTP through the action of a range of GTPases [74] [75], which allows for

the eventual accumulation of compounds in the vacuole and replenishment of

membrane bound proteins in the tonoplast [76] [77]. As for the transport of

compounds from cytoplasm into vacuolar lumen, those are transported pas-

sively into the vacuole only if a concentration and/or electrostatic gradient

is favoring it. Otherwise, energy sources such as ATP and PPi are used to

transport some compounds into the vacuole, such as calcium and hydrogen

ions/protons [78]. This is called primary active transport. Finally, secondary

active transport occurs by utilizing the electrochemical gradient of a compound,

channeling out this compound and thereby allowing for the transport of the

other compound [79]. The plant vacuole contains many transporters that uti-

lize the electrochemical gradient of protons (also termed proton motive force),

with a higher concentration and a positive charge surplus inside the vacuole

to pump compounds such as, among others, potassium and calcium ions into

the vacuole, thereby making the proton motive force a central feature for the

function of the vacuole [80].

It has been understood that two V-ATPases and one V-type PPase are re-

sponsible for the establishment of the proton gradient, using chemical energy

stored in ATP and pyrophosphate, respectively, to power the pumping of pro-

tons from the cytosol into the vacuole [81]. Due to large possible variations in

proton concentrations relevant in a range of fields, its value is most often given

as its negative base ten logarithm, the pH. Within plant systems, the proton

concentration can vary significantly, from less than 10-8 in peroxisomes to 10-5

in the apoplast. In Arabidopsis, the cytosolic pH typically is found to be held
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rather constant at around pH 7.4. On the other hand, in the endomembrane

system, the pH drops successively from ER (pH 6.4) to TGN/EE (pH 5.6) with

the apoplast having a pH of around 5.0. The vacuolar pH in wild type root

cells is typically recorded to fall around a value of 5.8 [82]. This is thought to

be achieved by both biochemical and biophysical pH regulatory systems, also

called pH stats, such as the buffering function of organic acids and phosphates

and plasma membrane resident proton pumps and redox systems [83][84][85].

In a study from 2015, Kriegel et al. could show that the vacuolar lumen is

still acidified by about 10 fold compared to the cytosol in a triple mutant

of both the vacuolar ATPases and the vacuolar PPase. Only when applying

concanamycin A to the cells, a drug inhibiting all V-type ATPases, could the

vacuolar pH be raised to cytosolic levels. This indicates that the only known

V-ATPase outside of the vacuolar membrane, the TGN/EE resident V-ATPase,

is responsible for the rest acidification observed in the triple mutant [81].

To achieve this rest acidification of the vacuole, protons must be able to reach

the vacuolar lumen through a so far unknown mechanism dependent on either

the TGN/EE residident V-ATPase directly, or a secondary dependent process

such as TGN/EE acidification, its ion balance or a subsequently potentially

inflicted vesicular transport from TGN/EE to vacuole. For a proton gradient

across the tonoplast to be stably maintained, energetic considerations must be

accounted for, as protons can either be transported across the tonoplast using

energy directly as is the case for proton pumps using ATP or PPi, or indirectly

by utilizing another ion’s electrochemical gradient, which in turn has to have

a proton independent energy source to be established. A third way is the us-

age of entropic forces, using a virtually irreversible process such as the fusion

of vesicular membranes with the tonoplast [86] [87]. Since the TGN/EE has

been shown to be among the most acidic organelles in Arabidopsis cells [88],

it has been suggested that vesicles from the TGN/EE containing an excess of

protons reach the vacuole and thereby contribute to its acidification, with an
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inhibition of the TGN/EE acidification leading to a stop of vesicular transport

to the vacuole. Another imaginable mechanism is the indirect transport of pro-

tons into the vacuole as proteins could reach the vacuole and hydrolyze there,

with the subsequently produced amino acids acidifying the vacuole. Finally, a

proton/ion antiporter could reverse its direction and inserting protons into the

vacuole while releasing the corresponding counterions.

In the following, the different factors in the systems and their contribution to

vacuolar pH-homeostasis will be discussed. After that, several hypotheses are

postulated and tested with respect to their feasibility and explanatory power

of experimental data using mathematical models of the system.

4.1.1 pH-regulation

To get a better picture of the pH homeostasis of the vacuole, a summary of the

processes that are known so far to be involved is given here. An overview over

those can be found in figure 5. While the cytosolic pH is set at around 7.4,

the cellular compartments get an increasingly acidic pH from ER to TGN/EE.

This is thought to be the effect of luminal connection of the compartments,

with a steady increase of acidification due to proton pumps being located in

the membrane of each compartment, in addition to differential pH regulation

due to different proton outflux processes and kinetics as well as buffering com-

pounds.

The cellular pH regulation is thought to include both a biochemical and a bio-

physical component. The biochemical pH stat is due to metabolic processes

producing and consuming protons continuously, such as malate derived alco-

holic and lactic fermentation processes as well as alternative route glycolysis

and alternative pathway respiration [89]. Especially important in this context

are enzymes couples that remove and add a carboxylic group from/to a shared

metabolite. If those enzymes have, as it is common, a pH-dependend activity

optimum, then there can be a point at which the pH-activity-curves of those

two enzymes intersect. Lowering the pH from there typically leads to an in-
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crease of activity for the decarboxylation step, whereas the oposite is true for

an increase of pH, thus returning the pH to the intersection point. A typical

example for this is the phosphoenolpyruvate carboxylase/malic enzyme couple

[90].

Figure 5: Overview over the processes able to influence the vacuolar pH. Besides

the three proton pumps in the vacuolar membrane, the V-ATPases designated by

their components (mutants: vha-a2 and vha-a3 ) and the PPase (vhp), a variety of

antiporters with diverse stoichiometries and counterions regulate the vacuolar pH

directly. Additionally, vesicles from the TGN/EE are thought to contribute to the

vacuolar pH, as well as, through an as-of-yet unknown mechanism, the

TGN/EE-resident V-ATPase subtype (vha-a1 ).

The biophysical pH stat on the other hand is due to the pumping of pro-

tons by pumps or the secondary active outflux of protons through antiporters.

Many components of the biophysical pH stat can be regulated by pH itself,

thereby ensuring an optimal pH to be maintained across wide conditions [91]
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[92]. Whereas the biochemical pH stat is mainly important for cytosolic pH

regulation, the biophysical pH stat is heavily involved in all organelles, among

them especially the vacuole due to its function for maintainance of the os-

motic potential of the cell and nutrient storage. Besides the two pH stats

mentioned, buffer systems contribute as well to the apparent proton concentra-

tion in a compartment. Buffers are aqueous solutions of weak bases and their

conjugated acids or vice versa. By adding a strong acid to such a mixture in

equilibrium, this equilibrium is shifted to the side of the protonated form, thus

lowering the effectively added concentration of protons. Malate, citrate, phos-

phate and amino acids are the most prominent buffer components in plants,

acting both cytosolically and in vacuoles. Buffer capacity is a typical measure

of a compartmental ability to buffer pH changes, defined as

β = −dC
dpH

with C being the concentration of strong acid (or protons themselves) added

to the solution.

4.1.2 Ions and their transporters

Different ions have an influence over the vacuolar pH both due to their contri-

bution to the tonoplastic membrane potential and the way of being transported

into the vacuole via proton/ion antiporters.

Potassium

As the most abundant inorganic ion with cytosolic concentrations held rather

constant at around 75-100mM [93], potassium plays a major role in estab-

lishing and maintaining the osmotic potential of the cell. Vacuolar potassium

concentrations are more variable, as vacuolar potassium is readily released into

the cytoplasm to keep cytoplasmatic concentrations constant, but most reports

indicate a range of vacuolar potassium concentrations from 75mM to 250mM

in wildtype conditions [94]. The uptake and release into and from the cell is
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tightly regulated by a set of transporters from the KT/HAK/KUP, TRK/HKT

and the CPA cation proton antiporter families in addition to a range of potas-

sium channels [95]. Inside the cell, the vacuole can take up potassium via a set

of NHX potassium/proton antiporters, releasing it into the cytosol via TPK

channels. Potassium also has been reported to regulate several enzymes and

transporters such as asparaginase [96] and the vacuolar proton pumping PPase

[97].

Calcium

Another important cation is calcium, the cytosolic concentration of which is

held very low at 10-200 nM under normal conditions [98], but can rise to low

millimolar concentrations as a signalling event [99]. This increase is facilitated

by the influx of calcium from apoplast, vacuole and ER, all of which are assumed

to have a manyfold higher calcium concentration under standard conditions,

with vacuolar concentratons found at 1-10mM [100]. The immense concentra-

tion difference between cytosol and vacuole is thought to be maintained by

both ACA1, a calcium pump powered by the hydrolysis of ATP and a set of

calcium/proton antiporters of the CAX family. Calcium channels lead to the

release of calcium into the cytosol. Upon receiving a signal such as abiotic

stress, the opening probability of the calcium channels increases drastically,

leading to a rapid outflux of calcium into the cytoplasm, where downstream

effectors such as calmodulin-regulated proteins lead to a change in immediate

enzyme activity or the expression of other effector proteins and thereby to the

cellular answer to the signal trigger [101]. Calcium is believed to be heavily

buffered both in the cytosol and in the vacuole, due to the abundance of cal-

cium binding proteins such as calmodulin. Although direct measurements have

been performed for only few cell types, it is believed that for 10-100 calcium

ions in the cytosol, only one is present in its free form [102] [103].

To enable the maintenance of high cationic concentrations in the vacuole with-

out the formation of a membrane potential so high that it would counteract
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the further accumulation of cations, anions need to be present in the vacuole

as well. Among the most common ones are organic acids, nitrate and chloride.

Organic acids

A variety of organic acids play an important role in plants. The most promi-

nent ones are amino acids, malic acid and citric acid and their deprotonated

forms. Amino acids, as the building blocks of proteins, occupy a central posi-

tion in a plants metabolism. The production of proteins occurs on ribosomes

in the cytosol or at the surface of the ER, whereas the degradation of pro-

teins happens both in the cytosol via the ubiquitin-dependent pathway and in

the vacuole through the action of proteases [104]. Under standard conditions,

the concentrations of amino acids in both of those compartments is comparable

and therefore does not significantly contribute to the membrane potential [105].

Nitrate

Nitrate is an important intermediate form in nitrogen assimilation, where ni-

trate is taken up into the cell and then stored in vacuole, where it can be

released when needed, or reduced to nitrite in the cytosol and quickly further

incorporated into amino acids in plastids [106]. The import of nitrate into the

vacuole is thought to be governed mostly by CLC proton/nitrate antiporters,

whereas the export mechanisms are not well understood as of yet [107]. Cy-

tosolic concentrations have been reported to lie around 4mM, vacuolar ones

range from 10mM to 80mM [108].

Chloride

Chloride is transported into the vacuole through proton antiporters of the CLC

family and released through a range of anion channels. The role of this ion is

thought to be only the dissipation of extreme charge levels, as any electrogentic

import of protons into the vacuole would cease if the membrane potential grows

too high [109].
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4.1.3 Membrane potential

The membrane potential, as mentioned above, is the result of the assymetric

distribution of charges on both sides of the vacuolar membrane. This leads

to an additional force acting on ions, either supporting or counteracting the

concentration gradient across a membrane. The exact value of the membrane

potential across the tonoplast has not been determined definively, but is as-

sumed to fall between -20 and -50 mV, averaging at around -35 mV, defining

the vacuolar space as outside and the cytosol as inside [110][111][112]. The

effect of the membrane potential on transport processes can be described by

Ohm’s law:

I = g ∗ (V m − E) (7)

with I being the current produced by a given ion, g the conductance, Vm

the membrane potential and E the transporter’s equilibrium potential. The

equilibrium potential of an ion X on the other hand is determined by Nernst’s

equation:

E =
RT

zF
∗ ln [X]outside

[X]inside

(8)

with R, T, F being the universal gas constant, the temperature and Faraday’s

constant, respectively and z the ion’s charge.

Those two expressions demonstrate the dependence of the direction of an ion’s

movement across a membrane on both its concentration and the electrical gra-

dient between the two respective compartments. No charge driven movement

of the ion across the membrane occurs when E = Vm, so that only concentra-

tion gradients remain as a driving force of the transmembrane movement. To

arrive at an expression for the mass flux J of an ion across a membrane, one can

simply divide the current by the charge of a single ion and faraday’s constant,

which is the elementary charge times the number of particles per mole:

J =
I

zF
(9)
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Since the membrane potential depends on all charges on both sides of the mem-

brane and those in turn depend dynamically on each other, an exact description

of the membrane potential at each time point can hardly be given. Instead,

a simplifying assumption that the membrane potential is only dependent on

proton concentrations can be taken, motivated by the observation that proton

concentrations are of central importance to the membrane potential both due

to their presence on both sides of the membrane as well as due to them acting

as counterion for the antiport processes observed [113].

4.2 Materials and methods

4.2.1 Computational methods

The model was set up using COPASI version 4.23 build 184 [63] on a Windows

10 PC. Time courses were obtained through deterministic simulation using the

LSODA algorithm [114]. Parameters were estimated using the experimental

data described below with the use of global and local algorithms. As global

algorithms, both the genetic algorithm [115] and the particle swarm [116] al-

gorithm as implemented in COPASI were used. As a local optimizer, the

Hooke-Jeeves algorithm was used [117]. The parameter estimation routines

were run on a computing cluster 50 times for each global method. In case of

particle swarm, the set up was 10,000 generations with a population of 100

parameter sets each and the random number generator turned on. For the

genetic algorithm, the set up was 5,000 generations with a population of 200

parameter sets was chosen. The resulting model ensemble was subsequently

analyzed using sensitivity analysis and time course simulations. Plots of time

courses were generated using the statistical programming language R [118] us-

ing the packages ”tidyverse” [119] and ”ggthemes” [120]. Model schemes were

constructed according to the SBGN standards using the software Vanted [121].
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4.2.2 Collaborations

The experimental data has been provided by our collaborators from Karin

Schumacher’s lab at the COS, Heidelberg University. The cellular and vacuo-

lar metrics (4.2.3a) have been measured by Falco Krüger [122]. Anne Kriegel

measured the vacuolar pH in proton pump mutants [81]. Melanie Krebs con-

tributed the datasets of the cellular buffer capacity (4.2.3b) and, together with

Catharina Larasati, provided the time course data of the vacuolar pH under

concanamycin A treatment (4.2.3d). The TGN/EE pH measurements (4.2.3c)

and the vacuolar pH measurements in the vesicle trafficking mutants (4.2.3e)

have been performed by Stefan Scholl [123] [88]. Here, I will discuss the con-

clusions one can draw from the experiments and how they will be used in the

modeling process.

4.2.3 Experimental data

4.2.3a Cellular and vacuolar geometries

The cellular and vacuolar volumes and surface areas in root tissue were mea-

sured using the fluorescent dye BCECF-AM, which specifically accumulates in

lytic vacuoles, to understand their developmental differences. Plasma mem-

branes were stained with FM4-64. Subsequent detection of the stain was

achieved with Confocal Laser Scanning Microscopy (CLSM). By recording sub-

sequent images along the Z-axis, 3D information of the cells and vacuoles was

obtained through surface rendering. For the study presented here, only the

data from the elongation zone was taken, as the rest of the experimental data

was obtained from the root elongation zone as well. For comparison and pos-

sible model adaptation to different zones, the other data is shown here, too

(table 4).
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Developmental zone Cellular volume Vacuolar volume Vacuolar surface

Meristematic zone 1260µm3 179µm3 591µm2

Elongation zone 3080µm3 654µm3 1537µm2

Differentiation zone 16740µm3 14700µm3 4874µm2

Table 4: An overview over the measured surface areas and volumes of the whole
cell and the vacuole in different developmental zones of the root. Krüger (2017)

[122].

For the model, the vacuolar volume and surface were taken as shown in the

data. The cytosolic volume was obtained by subtracting the vacuolar volume

from the cytoplasmic volume. This leads to a potentially slight overestimation

of the cytosolic volume, as the nucleus and other compartments are not taken

into account. Since cytosolic concentrations of a number of molecular species

included in the model will be fixed, this is assumed to be of little relevance for

the model’s performance. An exception to this are the calcium ions, for which

the implications will be discussed in section 4.5.

4.2.3b Buffer capacity

The potential to buffer pH changes in the cell is easily described by the buffer

capacity. This indicates the amount of protons needed for the decrease of the

pH of one unit. In an unbuffered system, a 10-fold increase of protons leads to

a drop of the pH by one unit. If buffers are present, some of the added protons

will not be present in their free form and therefore not contribute to a change

of pH, as described in section 4.1.1.

Here, the buffer capacity of the whole cell lysate has been measured through

titration. Since in mature cells like the ones taken here for the measurement,

vacuoles represent the major compartment in the cell, the result is taken as an

approximation of the vacuolar buffer capacities (figure 6).
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Figure 6: The pH region relevant for the modeling process described later is from
approximately pH 5.5 to pH 7.4. In this region, the buffer capacity is

approximately constant at slightly below 20 mmolEq(H+)/l cell sap/∆pH. This
means an increase of around 20 mmol per liter of protons leads to an decrease of

the pH by a single unit. Krebs and Schumacher (unpublished).

4.2.3c TGN/EE

To obtain the following pH values, pH in the TGN/EE was measured using

a ratiometric approach with a genetically encoded biosensor, pHusion, which

consists of a tandem concatenation of enhanced green fluorescent protein and

monomeric red fluorescent protein [124]. Those are coupled to a protein specif-

ically located to the membrane of the organelle of interest. In the case of the

TGN/EE, this was the C-terminus of SYP61. Subsequent measurement of flu-

orescence intensities was done using CLSM.

The wildtype plant (Col-0) exhibits the cytosolic pH of 7.4, whereas the TGN/EE

exhibits a more acidic pH of 5.6.

Additionally, the pH inside the TGN/EE has been measured with more spa-

cial resolution to obtain an idea of the differential proton concentration within

this organelle (figure 7). Here, no absolute pH values could be given for each

subcompartmental region, but one can assume the largest and smallest single
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values measured for the TGN/EE to represent the pH values in the most alcalic

and acidic regions of the organelle, respectively.

Figure 7: Overview over the pH in the TGN/EE. The distribution of pH values

measured in a single TGN/EE (A). The TGN/EE exhibits a pH gradient internally

(B). Data provided by Scholl (2018) [123]

4.2.3d Proton pump mutants and concanamycin A treatment

As shown by Anne Kriegel et al. [81] using the pH dependent vacuolar dye

BCECF-AM and CLSM, a knock-out of both vacuolar V-ATPases does lead to

an increase of the vacuolar pH to a value of around 6.4, still notably more acidic

than the cytosolic pH of 7.4. It could be ruled out that the rest acidification is

due to the contribution of the vacuolar PPase, as in triple mutants, the vacuolar

pH is still to be found at around 6.5.

Concanamycin A is a specific inhibitor of the V-ATPases, thereby inhibiting

a significant proportion of vacuolar acidification (vha-a2 and vha-a3 ) as well

as the only known acidifying factor of the TGN/EE (vha-a1 ). Only upon

treatment of the cells with concanamycin A, the vacuolar pH reaches cytosolic

levels in the triple mutant, demonstrating the TGN/EE-resident V-ATPase to
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be responsible for the vacuolar rest acidification through an as of yet unknown

mechanism (figure 8).

Figure 8: The vacuolar pH under different conditions. In the wildtype situation

(Col-0), the vacuolar pH is measured at around pH 5.8. both double mutants of the

V-ATPase subtypes vha-a2 and vha-a3 and triple mutants of the V-ATPases and

the PPase vhp1-1 are still acidified compared to the cytosolic situation. Only the

addition of concanamycin A equalizes the vacuolar pH with the pH in the cytosol.

Kriegel et al. (2015) [81]

To get an idea of the dynamics of the system, time course data for the vacuolar

pH under concanamycin A treatment was obtained as well (figure 9). The time

course data shows a fast alkalization of the vacuole in the beginning, with a

significantly flatter curve for pH values above around 6.8. The final pH of 7.4

was not reached during the timeframe of the measurement. It has to be noted

here, that the time course does not represent a simple exponential decay of the

vacuolar proton concentration, as would be assumed if a simple (mass action)

proton loss is responsible for the outflux of protons. The significantly slower

outflux of protons as soon as a pH of around 6.8 is reached can thus be explained

with a more complex kinetic system: either an at least two component loss

system, in which a fast component is inhibited when the pH has risen beyond a

certain threshold, or an additional proton influx component, that gets activated

in the same high-pH region. Since for the typical components of the proton

52



Experimental data

loss, the antiporters described in section 4.1.3, no such regulation is known, the

additional influx component will be given special attention in section 4.4.5.

Figure 9: Time course of the vacuolar pH under addition of 5000µL concanamycin

A. Following a rapid alkalization up to a pH of around 6.8 to 7.0, the pH adjusts

only very slowly to cytosolic levels, which are not reached before 500 min of

concanamycin A treatment. Lasarati, Krebs, Schumacher (unpublished).

4.2.3e Vesicles

To get an idea of the nature of the contribution of the TGN/EE to the vacuo-

lar acidification, knock-out lines of the three known vesicular pathways from

TGN/EE to vacuole were generated and the vacuolar pH was measured. BCECF-

AM and CLSM was used to measure the vacuolar pH. The results show no effect

of the knock-out of multivesicular bodies (MVBs), a slight increase of vacuolar

pH in AP-3 KO lines to 6.0 and a slight decrease of vacuolar pH in AP-1 KO

lines to 5.6 (figure 10).
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Figure 10: Effects of vesicular trafficking mutants on the vacuolar pH. Inhibiting

MVBs (sand1-1) does not alter the vacuolar pH, whereas the inhibition of AP-1

(hap13) lowers the vacuolar pH to 5.6 and AP-3 (wat1-1D) inhibition leads to an

increase of the vacuolar pH to 6.0. Scholl (2018) [123]

If the observed effect indeed is significant, the data can be explained in sev-

eral ways. The acidification seen in the AP-1 KO line could mean that AP-1

transports an alkalyzing factor such as one of the antiporters in the system,

a lack of which would then lead to a higher vacuolar proton concentration in

steady state. Reversely, AP-3 could transport acidifying factors such as proton

pumps, protons themselves or proton-releasing factors that would explain the

lower vacuolar proton concentration in the KO lines. Furthermore, not both of

these explanations have to be true at the same time, as the absence of one of

the vesicle types could lead to an increase transport of the other and thereby

have the oposite effect to their knockout.

4.3 Results

In this section, I will lay out four hypotheses to describe the observed phenom-

ena of vacuolar rest acidification in vha-a2/vha-a3/vhp1-1 triple mutants and

its abolishment upon application of concanamycin A. To do so, different ODE

models describing the time dependent concentration of protons in the vacuole

54



Core model

were established and tested using the experimental data introduced above. The

hypotheses are:

1. A direct transport of protons via vesicels or through an additional pro-

ton pump

2. Protons released by protein degradation

3. A reversal of the calcium/proton antiporter (CAX) direction.

The first decision to take is whether to include the membrane potential ex-

plicitly in the models. For the direct proton transport models and the protein

degradation model, the membrane potential was not included for two reasons.

First, data of ion concentrations is sparse, especially so under the conditions

tested here, and therefore an exact dependence of the involved processes in-

cluding their effect on membrane potential would introduce a high amount

of uncertainty in the models, rendering any effort for quantitative prediction

fruitless. Second, and more importantly, the first two hypotheses are practi-

cally independent of membrane potential, as the majority of the ions involved

in proton homeostasis processes are either imported into the vacuole in a non-

electrogenic manner (potassium, nitrate, most of the amino acids) or serve

purely as a membrane potential dissipator (chloride), which thereby does not

help in explaining the energetic requirements to establish the proton gradient

observed in the triple mutant.

For the hypothesis involving the reversal of the calcium-proton antiporter on

the other hand it is crucial to include the membrane potential, as the antiporter

itself is electrogenic and thus critically dependent on the electrochemical po-

tential across the membrane, the implementation of which will be described in

detail in chapter 4.3.4.
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4.3.1 Core model of vacuolar proton homeostasis

Construction of the model

The cytosolic pH does not change significantly during the experiments per-

formed for this study, due to large biochemical and biophysical pH stats, so

it was fixed in the model at a value of 7.4. The known processes involved

in vacuolar proton homeostasis are the proton import by the two V-ATPases

and the vacuolar PPase as well as a proton loss through a multitude of differ-

ent antiporters. Since the activities of the two V-ATPases are experimentally

not distinguishable under the circumstances described here, a single proton

V-ATPase process was modeled employing simple Michaelis-Menten kinetics.

The V-ATPase activity is dependent on vacuolar pH only at nonphysiological

cytosolic pH values, so no additional regulation of the V-ATPase activity by

either side’s pH was included [91]. Additionally, the V-PPase was modelled in

the same way. As the cytosolic ATP level is assumed constant, only protons

enter the reaction.

There are many antiport processes, exchanging protons with a large set of dif-

ferent compounds, each with their own stoichiometry and kinetics. The by far

largest pool of ions transported into the vacuole using the proton gradient as

an energy source is potassium through the NHX1,2,3 and 4 antiporters. As the

membrane potential is not included here, calcium antiporters were not mod-

elled seperately but rather implicitly assumed to be included in the potassium

antiport processes, as the cytosolic concentration of calcium is negligible com-

pared to potassium. The antiporter was modeled using convenience kinetics as

described in [125]. Thermodynamic constraints require Haldane’s relationship

to be true [126], onto which the model was restrained so that no accumulation

of a compound without the usage of energy can be achieved. Additionally, to

enable potassium to exit the vacuolar lumen, the potassium channel TPK1 was

modeled using simple mass action kinetics.

In addition to the described in- and effluxes of protons, a buffer system inside
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the vacuole was constructed to account for the multitude of molecular com-

pounds capable of buffering the vacuolar sap. To approximate the buffering

potential of the vacuole (figure 6) without adding a too high complexity, 4 sim-

ple buffers with different pKa values were used to form a stepwise distributed

buffer system, employing fast acting mass action kinetics. The pKa values were

chosen to be 3, 4, 5 and 6, respectively, similar to previous studies [127] and

motivated by the pKa values of the common vacuolar buffers malate, citrate

and phosphate. Their pKa values range from approximately 3 of the first cit-

rate deprotonation to approximately 7 of phosphate [128]. The total vacuolar

buffer concentration was left open in the range of 20 mM to 40 mM, equally

distributed among the four buffers, as their concentrations range in the low

millimolar range each [129] [130]. Smaller variations of the buffer capacity in

the mM range did not significantly alter the behavior of the model significantly.

An overview over the core model is shown in figure 11.

Figure 11: An overview over the core model. Reactions/enzymes are drawn in

blue, species in back. The processes governed by the antiporter NHX and the

potassium channel TPK can be simplified to a proton loss, ignoring changes in

potassium concentrations. H = protons, K = potassium, A = deprotonized buffer

component, HA = protonized buffer component.
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Overall, the core model’s proton fluxes can be summarized as

dH+(t)

dt
= −(JVHA2/3 + JVHP + JBuffer − Jantiporter) (10)

with J denoting the flux of protons, VHA2/3 as the V-ATPases and VHP as

the PPase.

The ODEs for the model can be found in appendix B1.1.

Fitting of the core model’s parameters

The buffer system was constructed by assuming 4 different buffer components,

each of the same total concentration but different pKa values (3, 4, 5 and 6),

as described in the previous paragraph. The parameters for the buffer system

were fitted to the data shown in figure 6. The relevant pH range for the condi-

tions presented here are between pH 5.5 and pH 7.5, where the buffer capacity

of the cell sap is mostly constant at around 15 mmolEq H+/l cell sap/∆pH.

Since the vacuole occupies most of the cell volume, this value is directly taken

as the buffer capacity for the vacuolar lumen at all relevant pH values.

In the concanamycin A treated cells, it is assumed that all proton import

through the V-ATPases into the vacuole comes to a standstill immediately

after the application of concanamycin A, which is justified due to the rapid

initial release of protons observed. As the loss and the PPase are the only pro-

ton translocating systems assumed to be left when concanamycin A is applied,

their parameters could be fitted to the time course data, which should then

unequivocally describe the ratio of the PPase flux to the loss flux. The time

course shows a rather fast decrease of vacuolar proton concentration up till

around pH 6.8 followed by a slow increase of pH, not reaching pH 7.4 during

the measured time. This cannot be explained by a simple mass-action kinetics

for the loss, which would produce a simple exponential decay of the proton
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concentration. Since many processes are involved in the proton loss, it is con-

ceivable to assume a regulation of some of the processes involved, such as an

inhibition of antiporters by low proton numbers. Since this seems to occur

only at a pH of around 6.8 however, this slowdown of the proton outflux is

not relevant for describing the rest-acidification at pH 6.5. As shown in figure

12, the data for the efflux of protons through the loss can be described by the

model when ignoring the final slowdown of the loss. Of course, a decision must

be taken whether the model should describe the initial fast loss or the slow

component better. Since the slow component is thought to occur due to some

as of yet unknown regulation, the fast component is the more relevant factor

to be fitted. As it is the case for all simple production-degradation cases, the

degradation (here: loss) part of the process determines the steepness of the

curve. Thus, the loss component was the determining factor for this. Due

to the uncertainty of the eventual reasons behind the observed time course, a

range of fits was taken as suitable for further analysis.

Figure 12: The range of accepted fits of the core model to the data of the

vacuolar pH development in concanamycin A treated cells. The model can fit the

time course data, with the exception of the eventual slowdown of the proton efflux

observed after around 150 min.

The potassium concentrations in the mutants and under concanamycin A treat-

ment are not known, so to reduce model complexity, potassium was eliminated
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from the model and the loss kinetics adjusted to follow simple mass action

kinetics. This model was examined and compared to the model including

potassium. The inclusion of potassium did not alter the outcome of the fit

as no exact information about potassium concentrations in the circumstances

described here was available. Therefore, for the other models, potassium was

not included anymore and the proton loss was handled as governed by mass

action kinetics.
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4.3.2 Hypothesis 1: Direct transport of protons into the

vacuole via pumps or vesicles

4.3.2a Unknown proton pump

Construction of the model

To investigate whether the rest acidification of the vacuole in the vha2/3 and

vhp1-1 knockout lines can be described by a simple pumping of protons into

the vacuole by a proton pump transported via vesicles from the TGN/EE other

than the two tonoplast resident V-ATPases or the PPase, it is useful to calcu-

late the number of protons per second needed to maintain the pH difference

of approximately 1 pH unit across the tonoplast, between 7.4 in the cytosol

and 6.5 in the vacuole. This is dependent on the speed of proton efflux from

the vacuole, represented by the loss term in the core model. The core model

was therefore extended by an additional term describing the translocation of

protons from the cytoplasm into the vacuole governed by Michaelis-Menten-

kinetics.

The model was fitted to the triple mutant data, the time course data as well as

the wildtype data (Col-0 in figure 8). The parameter space of the V-ATPases

was restricted to allow only for realistic pump activities, which have been re-

ported to lie around 60-90 protons per second per ATPase in mung bean and

oat [131] [132]. Broader ranges of up to 200 protons per second as maximal

rates were accepted. There are an estimated 1000-3000 V-ATPases per µm2

tonoplast [133] [134]. With the surface measured to be about 1537 µm2 (table

4), that leads to a total amount of 300,000 - 5,000,000 V-ATPases in the tono-

plast, through which one can arrive at a maximal rate of about 3E7 to 1E9

protons being inserted into the vacuole per second through all V-ATPases.

Analysis of the model

Under triple mutant simulating conditions, setting the flux through the V-
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ATPases and PPase to zero, the flux through the hypothesized proton pump

needed to acidify the vacuole to a pH of 6.4 was calculated and compared to

the steady state flux through the V-ATPases under steady state conditions,

showing that approximately 16 to 18% of the wildtype flux of VHA-a2/3 is

needed to maintain the observed acidification under vha2/3 knockout condi-

tions, if the unknown pump is only active in the triple mutant. If the unknown

pump is active in all cases but the concanamycin A treated cells, the unknown

pump must exhibit a steady state flux of around 20% of the V-ATPase flux.

As the only other V-ATPase in Arabidopsis that could possibly be inhibited by

concanamycin A, VHA-a1 could not neither be detected via fluorescence mi-

croscopy in the tonoplast, nor was there any V-ATPase activity detectable in

tonoplasts in mutant strains of the two intrinsic tonoplast V-ATPases [135]. By

assuming a similar activity as the other V-ATPases, one can therefore savely

exclude the possibility of tonoplast resident VHA-a1 being responsible for the

observed rest acidificytion in the vha-a2/3 lines. Proton pumping P-ATPases

like the one found at the plasma membrane are also not likely to be responsible

for the rest acidification, as Kriegel et al. could show that vanadate, a P-

ATPase inhibitor, did not significantly alter vacuolar pH in vha-a2/3 knockout

lines [81]. No other proton pump is known in Arabidopsis, and whole proteome

studies do not suggest the presence of any as of yet unknown proton pump.
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Figure 13: An overview over the direct proton import model. Reactions/enzymes

are drawn in blue, species in back. An unknown proton source was included, using

either a constant influx (from vesicles) or a Michaelis-Menten (unknown proton

pump) kinetics. H = protons, A = deprotonized buffer component, HA =

protonized buffer component.

4.3.2b Vesicular proton transport

Analysis of the model

As suggested by the dataset in figure 10, vesicular trafficking from the TGN/EE

to the vacuole could directly be involved in the establishment of the rest acidifi-

cation. To test whether protons themselves could be transported through AP-3

vesicles and acidify the vacuole significantly, instead of an additional proton

pump, proton transport by the AP3 vesicles into the vacuole was modelled

explicitly.

Similar to the calculations above, the parameters for the vesicular transport

were determined by using the vha-a2/3 dataset, with the flux of protons
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through the vesicles necessary being around a fifth of those reaching the vac-

uole through the V-ATPases, totaling around 3E+7 protons per second being

transported through vesicles. Assuming the intravesicular pH to be the same

as the pH of their organelle of origin, the TGN/EE (5.6), and taking the mean

diameter of clathrin-coated vesicles such as the ones designated by AP3 of 60

nm [136], an average of a single proton is transported per vesicle. That in turn

means a total of 3E+7 AP3 vesicles would need to arrive at the tonoplast per

second. A mean half life of clathrin coated vesicles such as AP-3 of around

10-30s [137] [138] could be found for other cell types. Since there are up to a

few hundreds of golgi bodies per cell [139] and an average of 4 TGN/EE units

observed per golgi body [140], it is assumed that a maximum of 1000 TGN/EE

bodies exist at a given time per cell. Taking this information together, every

single TGN/EE body would have to produce up to 1E5 vesicles per second.

To picture the impossibility of this, one can see that without a large scale ret-

rograde transport or recycling of membrane material, the tonoplast would in

this case grow by 2fold each second, which can safely be ruled out. The idea

that AP3 vesicles contain more protons than that requires the acceptance of

either a local accumulation of protons in the TGN/EE at the site where AP3

vesicles form, or a proton pump located on the vesicular membranes, acidifying

the vesicles on their way to the vacuole.

An exemplary parameter set for the unknown pump-hypothesis is shown in

table 5. Buffer parameters remain unaltered from the core model. Km values

of the pumps can be altered alongside their V values while keeping the model

output and drawn conclusions unaffected. Here, Km values in the range of

natural cytosolic proton concentrations in the system were taken.
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Parameter name Parameter description Value

V(loss) mass action constant for proton

loss, both directions

3.21E-7

µMµm−2min−1

V(unknown pump) maximal velocity of unknown

pump

1.98E-7

µMµm−2min−1

Km(unknown pump) Km of unknown pump 0.013 µM

V(ATPase) maximal velocity of ATPase 6.45E-7

µMµm−2min−1

Km(ATPase) Km of ATPase 0.013 µM

V(PPase) maximal velocity of PPase 6.63E-9

µMµm−2min−1

Km(PPase) Km of PPase 0.0097 µM

Table 5: An exemplary set of fitted parameters for the unknown pump model. No
big variations of parameter values were possible, as the concanamycin timecourse is
determined only by the ratio of proton loss to PPase activity. Those in turn must

have a fixed activity ratio to the ATPase, as determined by the wildtype. Changing
the Km values of the pumps alongside their V values accordingly leaves the model
output and conclusions as written in the text unaltered. Unusual parameter units

arise from the scaling with the vacuolar surface area, as described in chapter 3.
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Analyzing the TGN/EE’s internal pH gradient

For an evaluation of the possibility of a regional accumulation of protons in

the TGN/EE, one can look at figure 7B, where an exemplary TGN/EE body

and its internal pH are shown. If the pH gradient observed is caused by a spe-

cific mechanism trapping protons at a given spot, this spot could then develop

into a bud and become a highly acidified vesicle. Otherwise, the regional dif-

ferences could stem from the locally restricted existance of antiporters. In this

case, the pH gradient might simply be explained by proton diffusion through

the TGN/EE. To assess the probability of this idea, a simple model of the

TGN/EE is taken, in which I assume a spherical TGN/EE body with a diam-

eter of 500nm. Further, V-ATPases are assumed to be uniformly distributed

all over the membrane, with the proton loss being only found at a single spot

of the membrane. The diffusion time tdiff can be approximated by

tdiff ≈
x2

6D
(11)

with x as the mean displacement of the particle and D its diffusion constant.

This approximation can be obtained by calculating the probability density

function of a particle from the diffusion equation and find the time dependend

mean squared displacement of the particle from there.

The diffusion constant for protons is around 7,000µm2 [141]. As a uniform

distribution of ATPases in the membrane is assumed, the entry point of protons

into the TGN/EE has to be calculated and averaged over the whole TGN/EE,

which can then be taken as the mean displacement x. To do so, one can imagine

a line from the point of the proton loss to its antipodal point. At each point on

this line, the infinitessimal surface area of the TGN/EE perpendicular to this

can be calculated, by calculating the circumference of a circle that is formed

through the intersection of a normal plane at this point with the spheric surface.

This infinitesimal area is just the circumference of that circle, 2*π*r, with r

being the radius of the sphere at that point. To simplify the calculations, r can
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be assumed to change sinusoidal over the length of the leak-antipodal-line:

r ≈ 250nm ∗ sin(
π

500nm
∗ x) (12)

This can be plugged into eq. 11, and summing this up over the whole length of

the TGN/EE and taking the average by dividing it by the total surface area,

one arrives at a rough approximation of the time it takes a proton to travel

from its point of entry to its point of exit:

tdiff ≈
∫ 500

0
∗ x2

6D
∗ sin( π

500nm
∗ x)dx

Atot

(13)

which resolves to around 2.25E-6 s, meaning around 443,500 protons per sec-

ond being imported to keep up with the diffusion under the assumption of

immediate expulsion through the leak. Since this is unlikely, fewer protons are

actually needed, but this value serves as a proxy to estimate the maximally

needed number of protons to be inserted into the TGN/EE per second.

If the ATPase density of the TGN/EE is in a similar range as it is for the vac-

uole, one can assume to find between 1400 and 5000 ATPases in the membrane,

so each of them must pump at around 90-300 protons per second, which is in

accord with the typical ATPase pumping speed discussed above. Therefore,

there is no evidence for a local accumulation of protons by other means than a

specifically localized leak.
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Figure 14: Scheme of the TGN/EE for calculating proton diffusion. A spherical

TGN/EE is assumed, with a single point of proton outflux/leak (red) and a

uniformly distributed influx through ATPases (blue). To average the diffusion time

of protons from their points of entry to their point of exit, the TGN/EE was sliced

orthogonally at infinite spots along an antipodal line through the leak (exemplarily:

grey areas). The circumference of those slices correspont to an infinitesimal surface

of the TGN/EE, on which a proportional number of ATPases sit.

4.3.3 Hypothesis 2: Release of protons by amino acids

derived from protein degradation

Construction of the model

One of the vacuolar functions in plants is protein degradation. As could be

shown, the vacuoles of plants lacking the β subunit of the AP3 complex on

vesicles do not develop their lytic functions properly, wth proteins accumulat-

ing in the vacuoles, suggesting an important role for AP3 in protein degradation

[142]. The isoelectric points for amino acids ranges from below 3 in aspartic

acid to almost 11 in arginine, and the isoelectric point for amino acids with-

out an extra acid or base group can be found in the range of 5 to 6. The
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weighted average of the isoelectric point of amino acids can then be calculated

by knowing the relative amino acid composition of proteins, which has been

measured for A. thaliana leaves [143]. From this data and the knowledge of

each amino acid’s isoelectric point [144], one arrives at an average isoelectric

point of around 6.0. This means that in the vacuole of cells without functional

vacuolar V-ATPases (reaching a pH of 7.2, without TGN/EE contribution;

concanamycin A experiment), a certain amount of amino acids in the vacuole

are present in their deprotonated form and thereby effectively releasing a pro-

ton to their surrounding when produced. To test whether this is enough to

provide for the acidification of the vacuole down to a pH of 6.5, the core model

was enhanced by a module of protein degradation. For that, a simple steady

import of proteins was added, in addition to mass action reactions describ-

ing the protonation and deprotonation of the NH2 and COOH groups. The

pKa values were set to the average pKas of those α-carboxyl (2.18) and α-

ammonium (9.32) groups. The transition between different protonation states

occurs through fast acting mass action kinetics, the kinetic constants of which

could be set up through knowledge of the pKa values and the given pH of the

system using the Henderson-Hasselbalch equation:

pH = pKa ∗ log(
base

acid
) (14)

with base and acid refering to the concentrations of the deprotonated and pro-

tonated form of the amino acid, respectively [145] [146].

Furthermore, export reactions for the amino acids were formulated. Since there

is not much detailed knowledge about the biological mechanisms of amino acid

export, all protonation states of the amino acids are assumed to be exported

utilizing the same kinetics in order to estimate the maximally possible acid-

ification of vacuoles by protein degradation. To get an idea of the average

number of amino acids per protein in A. thaliana, one can assume a lognormal

distribution of protein lengths, and taking the parameters calculated in [147],
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one can calculate the expected value E of protein length with

E = exp(µ+ σ2/2) (15)

with µ and σ being the parameters found in [147]. This resolves to around 402

amino acids per protein. Each imported protein is assumed to immediately

degrade into this number of amino acids.

Figure 15: An overview over the protein degradation model. Reactions/enzymes

are drawn in blue, species in back. In addition to the core model, a protein import

and the degradation to amino acids was implemented. Each amino acid end group

can be (de-)protonized, releasing/uptaking protons in the process. Each amino acid

protonation state can be exported through the same exporter. H = protons, A =

deprotonized buffer component, HA = protonized buffer component,

NH2/3-R-COO/COOH = (de-)protonized amine and carboxy groups of amino

acids.

Analysis of the model

Fitting the model to the datasets of the concanamycin A time course, the

triple mutant and the wildtype (figures 8 and 9), one obtains a necessary im-
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port flux of at least 1E-5 µmol proteins per minute, or a total of around 6E12

proteins, taking the slowest proton loss fit (see chapter 4.3.1). The average

concentration of proteins in eukaryotes lies between 50 and 200mg/ml [148].

If this is true for A. thaliana root cells, that means an effective concentration

of around 3mM, or a total number of proteins of between 4 and 5E9, exclud-

ing non-soluble proteins. Taken together, this would suggest a turnover of the

whole plant proteome within just around 20 hours. Estimates of the aver-

age turnover rate of proteins however render this improbably, as around 3.5%

of proteins are degraded per day [149]. It is important to note, that not all

proteins are degraded in the vacuole, therefore lowering the actual number of

proteins imported into the vacuole for degradation. Overall, it seems unlikely

that protein degradation alone is sufficient to describe the observed rest acid-

ification in the triple mutant. An overview over an exemplary parameter set

can be found in table 6. The core model’s parameters are found in the same

range as before.
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Parameter name Parameter description Value

V(loss) mass action constant for proton

loss, both directions

3.44E-7

µMµm−2min−1

V(ATPase) maximal velocity of ATPase 7.82E-7

µMµm−2min−1

Km(ATPase) Km of ATPase 0.011 µM

V(PPase) maximal velocity of PPase 6.23E-9

µMµm−2min−1

Km(PPase) Km of PPase 0.0086 µM

k1(export) exemplary export rate constant

for amino acids

1.58E-11

lµm−2min−1

v(import) ”import” rate of amino acids

(AminoH )

2.367

µMµm−2min−1

Table 6: An exemplary set of fitted parameters for the protein degradation model.
The parameters for the proton loss, the Ppase and the ATPase are found in the
same range as for the core model. The export rate constant for amino acids was
kept high, altering it could not decrease the amount of protein import needed to
achieve a vacuolar acidification as observed in the experimental data. Unusual

parameter units arise from the scaling with the vacuolar surface area, as described
in chapter 3.

4.3.4 Hypothesis 3: Exchange of protons with vacuolar

calcium ions

Motivation of the model

Most ions are transported into the vacuole through antiporters using the proton

motive force across the tonoplast. In principle, a reversal of this transport is

imaginable, transporting protons into the vacuole by releasing other ions. This

process however is only feasible, if the ions to be transported by the antiporters

have another way to be actively inserted into the vacuole, as otherwise a cross-

membrane concentrational equilibrium would be reached quickly when there is

no proton pump active. Only few compounds are known to be pumped into the
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vacuole without the help of the proton motive force, among them is calcium,

which can be pumped into the vacuole through a calcium pumping ATPase.

As calcium is typically stored in both the ER and the vacuole in plants [150]

[100], a transport of calcium through vesicles, possible through the TGN/EE,

into the vacuole can be imagined, which has however to date not been proven.

The calcium concentration gradient across the tonoplast is typically believed

to be in the range of 1000 fold [151], providing a potentially powerful battery

for proton pumping. And indeed, studies of CAX transporters in oat have pro-

vided ground for the assumtion of a potential reversal of the CAX1 and CAX2

calcium antiporters [152], for which a stoichiometry of 1 Ca2+ per 3 H+ has

been suggested [153].

To test the hypothesis, whether a calcium antiporter reversal could account

for the rest acidification of the vacuole, the core model had to be altered mor

significantly than for the other hypotheses.

Species and global quantities

Besides the cytosolic protons, the concentration of which is still fixed, and

the vacuolar protons, the vacuolar 4-part buffer system was left unaltered from

the core model. In addition, calcium ions were introduced both for the cy-

tosol (Cacyt) and the vacuole (Cavac), the concentration of which was taken

from literature [94] to be 200nM for Cacyt and 10mM for Cavac as initial val-

ues. Furthermore, a calcium buffer system was included for both the cytosol

and the vacuole, since the free calcium concentration is typically 50-1000 fold

smaller than the bound form of calcium [103]. Therefore, similar to the proton

buffer system, a calcium buffer system for the cytosol and vacuole was modeled,

with the cytosolic bound calcium 1000 fold than the free calcium, the ratio for

which was adjusted to 50 for the vacuole, similar to values reported for the

ER of several other cell types [102] [154], and the total buffer concentrations in

the cytosol reaching 200µM and 10mM in the vacuole. Furthermore, the trans-

membrane voltage had to be included explicitly as a global quantity to test for
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the possibility of reversal, as the antiporter works in a electrogenic manner,

the reversal of which therefore being dependent on the membrane potential.

The value of the membrane potential across the tonoplast is still under debate,

however it is mostly reported to be around -35mV [110][111] [112]. As could be

shown, the membrane voltage can be formulated as a simple linear function of

the proton concentration difference across the membrane [113], which simpli-

fies the model significantly as no anions or further cations have to be included.

Hence, the membrane voltage was modeled phenomenologically using a linear

term, in which the potential is -35mV in the wildtype situation and decreases

linearly with the transmembrane pH difference. It reaches 0, when vacuolar

and cytosolic pH are equal.

Reactions

The proton and calcium ATPases were formulated, as before, with voltage

independent Michaelis-Menten kinetics, and the proton buffer kinetics were

left unaltered. The calcium buffers were implemented using fast acting mass

action kinetics for the cytosol and vacuole such that in the wildtype, the re-

ported concentrations are reached. All other processes (proton loss, a calcium

loss through a channel, calcium-proton antiporter) are modeled in a membrane

potential-dependent way. A common formalism for membrane potential depen-

dent kinetics is based on the Goldmann equation [155]. From this equation,

one can deduce the flux J of an ion X with charge z as done for example in

[127], leading to

J = Pz ∗ F∆E

RT
∗ [X]vac − [X]cyt ∗ e−zF∆E/RT

e−zF∆E/RT − 1
(16)

with F, R, T being Faraday’s constant, the universal gas constant and the

temperature in Kelvin, respectively, P the membrane’s permeability towards

X, ∆E the potential difference and [X] the concentration of X.

However, the potential difference between vacuole and cytosol in this study
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is assumed to be linearly dependent on the pH difference, which dissipates

completely in the case of concanamycin A treatment without an active PPase.

In that case, this equation is not applicable anymore. Therefore, the potential

dependent processes are here formulated according to Nernst’s equation, where

the reaction velocity is proportional to the difference between the equilibrium

potential of the involved species and the membrane potential:

ν = g ∗ (V m− R ∗ T
F
∗ lnXout

X in

) (17)

ν being the reaction velocity, g the conductivity of the respective transporter,

Vm the membrane potential, and X the respective molecular species.

Furthermore, an opening probability for the proton and calcium channels was

modeled explicitly. For this, a two-state Boltzmann equation was used to model

the distribution between open and closed channel states, similar to [156] and

[157]:

Co =
1

ex∗
zF
R∗T ∗(V m−V h)

(18)

with Co being the fraction of open channels, x the fractional difference of the

energy barrier of the mebranes inner and outer surface, z the valence of the

transported ion and Vh the voltage for half maximal activation. For a full

derivation of this formula, consult appendix 2.3. Taken together, one arrives

at a formulation for the calcium loss through the channel as:

JCa-channel =
g

1 + ex∗
F

R∗T ∗(V m−V h)
∗ (V m− R ∗ T

F
∗ lnCavac

Cacyt

) (19)

The equilibrium potential for the calcium-proton antiporter can be found by

considering the above stated and the stoichiometry of 1 calcium ion per 3

protons, arriving at:

JCAX = g ∗ (V m− R ∗ T
F
∗ lnHvac

3 ∗ Cacyt

Hcyt
3 ∗ Cavac

) (20)
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To test for the possibility that vesicles from the TGN/EE transport the an-

tiporter constitutively to the vacuolar membrane, a simple additional process

was included. Here, a species ”vesicles” is multiplied with the expression of the

kinetic rate law for the antiporter stated above. This ”vesicles” species is ini-

tially set to a concentration of 1, meaning a fully functional antiporter. When,

due to concanamycin A influence, the vesicular transport from TGN/EE to

vacuole stops, the antiporter is assumed to slowly degrade and not be replen-

ished, which is modeled by a simple degradation of the ”vesicles” species. An

overview over the newly formulated model can be found in figure 16.

Figure 16: An overview over the calcium antiporter model. Reactions/enzymes

are drawn in blue, species in back. The core model was modified to include calcium

and its im-/export processes and a membrane potential, which influences the rates

through Hloss and Ca-transporter. H = protons, Ca = calcium, A = deprotonized

buffer component, HA = protonized buffer component, CAX = calcium-proton

antiporter, B = Calcium buffer without calcium, CaB = Calcium buffer with

calcium bound.
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Fit and analysis of the model

The model’s parameters were fitted to the vacuolar pH data of the wildtype/Col-

0 (figure 8), the triple proton pump mutant (figure 8) and the concanamycin

A time course data (figure 9). As before, the ATPase flux was restrained to

only allow for realistic proton fluxes. For both the wildtype data and the

triple proton pump mutant data, the ”vesicle” process was set to 0, meaning

no degradation of the ”vesicle” species, the concentration of which remained

at 1 and therefore the antiporter process remained fully active. In the triple

proton pump mutant, both V-ATPase and PPase fluxes were set to 0, so the

proton fluxes through the proton loss and the proposed proton import through

the antiporter need to have a fixed ratio. For the time course data, the flux

through the ATPase was set to 0 and the degradation rate of the ”vesicles”

process was left to be fitted. Any rate greater than 0 would eventually lead to

the ”vesicle” species to be depleted and eventually stop any flux through the

antiporter, whereby only the PPase remains as an acidifying factor. Table 7

shows the parameter values for the best fit model. An overview over the best

fit of the pH values can be found in figure 17, from where it becomes clear that

the data is sufficiently well reproducable by the model.
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Parameter name Parameter description Value

g(loss) conductivity of the proton loss pro-

cess, adjusted for membrane surface

and electrical current to represent par-

ticle flux

1.43E-18

Sm−4C−1

V(ATPase) maximal velocity of the proton pump-

ing ATPase

2.52E-13

µMmin−1

Km(ATPase) Km of the proton pumping ATPase 0.01 µM

V(PPase) maximal velocity of the PPase 1.82E-14

µMmin−1

Km(PPase) Km of the PPase 0.01 µM

g(CAX) conductivity of the calcium-proton an-

tiporter, adjusted for membrane sur-

face and electrical current to represent

particle flux

9.11E-12

Sm−4C−1

V(Ca−Pump) maximal velocity of the calcium pump-

ing ATPase

5.20E-8

µMmin−1

Km(Ca−Pump) Km of the calcium pumping ATPase 0.001 M

g(Ca−Channel) conductivity of the calcium channel,

adjusted for membrane surface and

electrical current to represent particle

flux

9.7e-10 Sm−4C−1

x(Ca−Channel) difference between fractional distances

of the energy barrier between inside

and outside the vacuole for the calcium

channel

1.21

V h(Ca−Channel) half maximal activation potential for

the calcium channel

-0.02 V

Table 7: An exemplary set of fitted parameters for the calcium antiport model. in
contrast to the models of the other hypotheses, the time course of the vacuolar pH
under concanamycin treatment is not only determined by the proton loss and the
PPase, but also by the calcium antiporter kinetics and, connected with this, the
calcium pump and channel. Unusual parameter units arise from the scaling with

the vacuolar surface area, as described in chapter 3.
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Figure 17: The fitted values of the vacuolar pH (blue curve) and the experi-
mentally measured data (red point). Both the wildtype pH of 5.8 (A) and the
triple mutant (B) can be fitted well.

Figure 18: The fitted values of the vacuolar pH( blue and green curves) and the

experimental data (red points) of the concanamycin A time course, in which only

the PPase is active and the calcium-proton antiporter (CAX) degrades over time.

A degradatio time of 87 minutes (green) describes the data better than a

degradation time of 4 hours (blue).
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The cytosolic and vacuolar calcium concentrations are not known for each

of the experimental conditions, however it is important to check the predicted

calcium concentrations under the simulated experimental conditions, as cal-

cium acts as an important signalling molecule. In the triple mutant, where

a reversal of calcium-proton antiport direction is proposed, cytosolic values of

calcium should therefore not exceed wildtype values by too far, as typical val-

ues of around 800 nM are sufficient to trigger signalling responses. And indeed,

predicted cytosolic calcium levels in the triple mutant decrease to about 80 nM,

due to an increased flux through the calcium pump in these conditions which

counteracts the outflux of calcium from the vacuole via the antiporter. Overall,

the cytosolic calcium levels of 200 nM in the wildtype are rather slightly above

the acceptable physiologic levels in the wildtype, as reported levels range from

50nM to 150nM [158].
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Figure 19: The cytosolic calcium concentration values predicted by the
model with best fit parameters. In all cases, the calcium concentration lies
within a physiologically acceptable range (A: wildtype, B: triple mutant, C:
AP-1 KO, D: Concanamycin A time course).

It is interesting to note that the antiporter can switch its direction at a

vacuolar pH of around 6.5, thereby leading to a slowdown of the loss process

at that value, with the pH slowly approaching 7.2 as the antiporter degrades

due to the ”vesicles” process. This does not exactly reproduce the behavior

observed experimentally, since in this case the slowdown seems to start at

a pH of around 6.8, but given the standard deviation of the exeriment, the

behavior produced by the model can be considered to be in the acceptable

range. The magnitude of the eventual slowdown of the loss process is governed

completely by the ”vesicles” process. In the best fit, the degradation constant
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of the ”vesicles” species k1”vesicles” was found to be 0.008 min-1. To calculate

the half-life of the antiporter that this value represents, one can simply look at

a mass-action degradation rate of a species ”vesicles” (which serves as a proxy

for the antiporter concentration) with kinetic constant 0.008 min-1:

vesicles→ Ø (21)

which leads to the differential equation

d[vesicles]

dt
= −k1vesicles ∗ [vesicles](t) (22)

which has the solution

[vesicles](t) = A0 ∗ e−k1vesicles∗t (23)

with A0 being the initial concentration of ”vesicles”, which in this case is 1.

With this, the half life t1/2 is calculated:

0.5 =
A0

2
= A0 ∗ e−k1vesicles∗t = 1 ∗ e−0.008min-1∗t (24)

leading to a half-life of about 87 min.

No information about the half-life of the calcium-proton antiporters (CAX an-

tiporter family) has been published yet. In general however, plant proteins

display a broad range of half-lifes from few hours to several months [159]. This

means, the obtained half-life is rather too short to be sufficient to explain the

data. Taking a half-life of around 4 h is more realistic, especially in the con-

text of the root elongation zone, as an increase of vacuolar surface during this

process can lead to an effective ”dilution” of tonoplast proteins if there is no

constant supply. This however would require a ”vesicle” degradation rate con-

stant of 0.003. This is plotted in figure 18 too, and this results in a slightly too

slow increase of vacuolar pH.
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To further assess the feasibility of this proposed hypothesis, the fitted model

was used to simulate the knockout of AP-1 vesicles, that are the candidate for

the delivery of the calcium-proton antiporter. To do this, the flux through the

antiporter process was set to 0 with all other processes staying unaltered. And

indeed, as shown in figure 20, the vacuolar pH decreases to around 5.65, close

to the measured value in defective AP-1 strains (hap13; figure 10).

Figure 20: The predicted vacuolar pH (blue curve) and the experimental data

(red point) for the AP-1 KO. The flux through the calcium-proton antiporter

(CAX) was set to 0 to simulate it being transported through AP-1 vesicles.

Parameter space

In the case of this model, the possible parametrizations of the model vary more

widely than in the previous cases. This is due to the contribution of the calcium

module to both acidification in the triple mutant case and to the proton loss

under wildtype conditions. The kinetic parameters for the proton pumping V-

ATPase were still restricted in a range that leaves realistic amounts of protons

pumped through them, as described in the core model. If one looks only at the

parametrizations that lead to realistic calcium concentrations in cytosol and

vacuole as well as are able to produce a model behavior similar to the dataset

83



IV - VACUOLAR PH-HOMEOSTASIS IN ARABIDOPSIS

from AP-1 KO strains (figure 10 hap13 ; assume calcium antiporter inactive),

the parameter space is more heavily restrained. The parameters for the cal-

cium channel are more widely variable, especially the parameteres x(Ca−Channel)

and V h(Ca−Channel), describing the difference of the fractional distance of inner

and outer tonoplast energy barrier of the calcium channel transport and its

half maximal activation potential, respectively. The reason for this becomes

clear when looking at the rate law, as both parameters enter the rate law

only as exponents to an opening probability scaling factor in the denomina-

tor for the conductivity g, which eventually determines the model’s behavior.

The model can describe the data reasonably well even without the additional

scaling factor, which takes a value close to 0 for strongly negative values of

x(Ca−Channel), which are unphysical, or values of V h(Ca−Channel) far more posi-

tive than -0.035V, which are unphysiological. The scaling factor takes a value

of 1 for x(Ca−Channel) = 0 or V h(Ca−Channel) = -0.035V, which means a half

maximal activation of the channel. If the scaling factor becomes very high,

which happens for high values of x(Ca−Channel) and values of V h(Ca−Channel) far

more negative than -0.035V, the calcium channel effectively stops any activity

and the calcium antiporter must take the role as calcium outflux even in the

wildtype case. This does not correspond to the above mentioned behavior of

the system, for which reason the parameter values are restricted in those di-

rections. The other calcium channel parameter, g(Ca−Channel) can vary to some

degree, if the calcium pump parameters are adjusted accordingly, leading to a

higher overall variablility than for the parameters of the proton transporting

processes, which have been restricted by the proton pumping V-ATPase. The

calcium pump needs to have a comparably high activity for the model to repro-

duce the behavior observed experimentally. This could be due to the fact that

in reality, calcium is imported not only by the pump, but also by antiporters.

Since only one antiporter has been implemented in this model, a directional

reversal of this means that the only calcium import left is by the calcium pump,

which subsequently needs to be strong enough to counteract the vacuolar cal-

cium loss through both the calcium channel and antiporter. An overview over
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the possible parameter ranges that create both realistic calcium levels and a

realistic response to calcium antiporter inactivation is given in figure 21.

Figure 21: The possible fold changes of the parameter values compared to the

best fit result, that still produce model parametrizations that describe the data

well. The possible flux through the proton pumping ATPase has been restricted as

described in the text, and limits for x(Ca−Channel) and V h(Ca−Channel) have been

set to about 0.0001 to 1000-fold their best fit values. The parameters were obtained

from 50 fits using the genetic algorithm as described in the text.

The most pronounced impact on the model’s behavior is given by the Vmax pa-

rameters for both the V-ATPase (for proton concentrations) and the Ca-Pump

(for cytosolic calcium concentrations, negative sensitivity). This makes sense

biologically, as those processes are the only ones using ATP-stored energy di-

rectly and thereby powering the system. As a counterweight to those processes,

the Ca-channel and proton loss systems harbour some control over the respec-

tive ion’s concentrations, too. Interestingly, the CAX antiporter system does

not influence the wildtype proton and calcium concentrations as significantly

as could be expected by its central role in the explanation of the vacuolar rest

acidification in the triple mutant.
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Sensitivities

An understanding of the impact of each process on the overall pH homeostasis

can be gained by means of sensitivity analysis. The scaled sensitivities of the

vacuolar proton concentration as well as the cytosolic calcium concentration

in the wildtype can be seen in table 8. The most pronounced impact on the

model’s behavior is given by the Vmax parameters for both the V-ATPase (for

proton concentrations) and the Ca-Pump (for cytosolic calcium concentrations,

negative sensitivity). This makes sense biologically, as those processes are the

only ones using ATP-stored energy directly and thereby powering the system.

As a counterweight to those processes, the Ca-channel and proton loss systems

harbour some control over the respective ion’s concentrations, too. Interest-

ingly, the CAX antiporter system does not influence the wildtype proton and

calcium concentrations as significantly as could be expected by its central role

in the explanation of the vacuolar rest acidification in the triple mutant.
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Table 8: The scaled sensitivities of both vacuolar proton concentration ([Hvac])

and cytosolic calcium concentration ([Cacyt]). Green signifies a strongly positive

influence and red a strongly negative one. The pumps exhibit by far the greatest

influence on the respective ionic concentrations.
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4.4 Discussion

Recent experiments showed that the current understanding of the processes

involved in vacuolar pH homeostasis in Arabidopsis thaliana root cells is not

complete. In mutants lacking any proton pumping activity through the two

vacuolar V-ATPases and the vacuolar proton pumping PPase, the vacuole still

exhibits an approximately 10-fold acidification of its lumen compared to the

cytoplasm, and only if the TGN/EE-resident V-ATPase is simultaneously in-

hibited using concanamycin A, does the vacuolar pH reach cytosolic levels. In

this work, I introduced several hypotheses to explain this phenomenon and im-

plemented them in models consisting of a set of ordinary differential equations

describing the change of the concentrations of the molecular species involved

over time.

A direct import of protons into the vacuole through an as of yet unknown pro-

ton pump seems unlikely, as this would require a proton pumping activity of

around 20% of the known vacuolar V-ATPases. This requires either a large

amount of proton pumps with a similar activity to the known V-ATPases or a

new type of proton pump with even higher activity. In both cases, the respec-

tive proton pumps would be expected to have been detected already, though

a transfer of the TGN/EE-resident V-ATPase in large amounts can safely be

ruled out as they could not be detected using microscopically. Similarly, a

direct import of protons via TGN/EE derived vesicles is equally unlikely, as

this would require a physiologically not feasible amount of vesicles being trans-

ported from TGN/EE to vacuole or a specific, strong acidification of them, for

which there is no evidence.

A release of protons by vacuolar protein degradation has the potential to acidify

the vacuole, however not to the extend observed in the triple mutants, as the

whole plant proteome at a given timepoint would have to be degraded within

just 20 hours.

Finally, the reversal of a calcium-proton antiporter in the tonoplast is able to

reproduce the experimental data. In this model, the high concentration of cal-
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cium in the vacuole compared to the cytosol is only possible to be maintained

with a high enough pH gradient across the tonoplast. In the triple mutant how-

ever, this gradient is weakened and by this allows for a reversal of the antiporter

direction, so that calcium from the vacuole is released with protons from the

cytosol being taken up into the vacuole, effectively lowering the vacuolar pH.

This is possible, as calcium has another way of reaching the vacuolar lumen,

namely through a calcium pumping ATPase in the tonoplast, which leads to a

stable system even in the triple mutant. In this model, the cytosolic calcium

concentrations do not reach unphysiologically high levels even when the an-

tiport reverses, with cytosolic calcium concentrations reaching a maximum of

around 230 nM. This is slightly higher than the values reported in literature for

steady state (50 - 200 nM), but still far from signalling values (above 800 nM).

A reason for the slightly too high cytosolic calcium concentrations in the model

could be found in the calcium buffer system, for which exact parameter values

for A. thaliana vacuoles have not been published. Importantly, as calcium is

an important signalling molecule, one can expect a tight regulation of the pro-

cesses involved in calcium homeostasis. Calcineurin has been shown to be an

important regulator for calcium-proton antiporters in a variety of species, and

the calcium pump ACA1 is activated by calmodulin [160]. Those feedbacks can

well be relevant in the further development of the model and could prove to be

essential for attaining lower and thereby more physiological values for cytosolic

calcium levels.

The model has the ability to describe the present data well and was able to cor-

rectly predict the effect of defective AP-1 vesicle phenotypes when assuming the

antiporter CAX to be transported by them and degraded quickly. However,

the degradation rate necessary to achieve a good fit of the concanamycin A

time course data is higher than physiologically expected. For the future model

development, this could possibly be corrected if one assumes not (only) the

antiporter to be transported, but also regulator molecules such as calmodulin

or potentially calcium itself. The case of a direct vesicular transport of calcium

through TGN/EE derived vesicles has the advantage over the direct transport
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of protons as described above, that for one calcium ion, three protons can

be imported, thereby requiring a lower calcium concentration in the vesicles.

Furthermore, calcium-binding molecules are well known and would therefore

provide a plausible mechanism for local accumulation in vesicles, contrary to

protons.

Furthermore, in many systems, a close interaction of calcium signalling and

cellular pH has been observed, with propositions of a tight coupling of both

and the pH itself as a cellular signal, with the significant molecular players

enabling this connection still unknown [100] [161]. On this line of thought, this

model could provide one of those connections, as the concentration of protons

and calcium on both sides of the vacuolar membrane communicate through the

modeled antiporter system.

In terms of explanatory power, this study can not rule out any process ana-

lyzed here to contribute to the vacuolar pH-homeostasis. It is well possible

that a combination of the mentioned processes or other, unknown mechanisms

are eventually responsible for the observed experimental data. Especially in

the case of the reversal of the direction of the calcium antiporter, one could

imagine a range of other possible processes to be responsible for the experi-

mentally observed phenomena. Instead of a steady transport of the antiporter

itself from TGN/EE to vacuole, the calcium pump could be transported. That

would mean, that only if the calcium pump stops being transported to the vac-

uole when vesicular flux stops due to concanamycin A treatment, the vacuolar

calcium levels could drop enough to make a reversal of the antiporter impossi-

ble.

On the same line of thought, calcium itself could be transported through the

vesicles. This could be possible, as the ER is, together with the vacuole it-

self, a main storage compartment for calcium in plants. It is easy to imagine

the TGN/EE, as an intermediate compartment between ER and vacuole, to

harbour significant levels of calcium, too. In contrast to the hypothesis of a

direct proton transport from TGN/EE to vacuole, a direct calcium transport

would have two advantages: first, there is a host of calcium binding proteins
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in the cell, and therefore a specific mechanism of directed calcium transport

and release in the vacuole is easier to imagine than for protons, given the only

small pH difference between the two compartments. And second, calcium can

be exchanged with protons through the antiporter with a stoichiometric ratio

of 3 to 1, meaning less calcium would be required than proton in steady state

to maintain the given pH gradient across the tonoplast.

A direct transport of the calcium channel can not be able to describe the data,

as that would only lead to higher vacuolar calcium levels, meaning, as a ten-

dency, rather more calcium efflux through the antiporter and by doing so, still

acidifying the vacuole.

For future model developments, it will be interesting to analyze the role of ATP

in more detail. As the tonoplast-resident V-ATPases are major ATP consumers

in the cell, so a deletion of those consumers can increase the cellular ATP levels

(according to unpublished data by Melanie Krebs, vha-a1/a2 mutants contain

around 50% higher ATP levels). A higher level of ATP in the vha-a1/a2 mu-

tants could raise the activity of the calcium pumping ATPase. That could in

turn lead to a situation-specific shift in calcium pumping responsibility from

the antiporters (in the wildtype) to the calcium pump (in the mutant). That

would also allow for a weaker wildtype activity of the calcium pump pump in

the model, with a higher antiport activity. Overall, it is possible that this could

lead to a better reproduction of physiological calcium levels by the model, and

as a result, the neccessary degradation rate of the antiporter could possibly

be decreased in the model, leading to a more realistic value. Even more so,

comparing the changes of ATP levels in the different experimental conditions

might help to explain the discrepancy between the pH value when the rever-

sal of the antiporter happens could be explained: In the triple mutant, the

vacuolar rest acidification is found to be at around pH 6.5, while the marked

slowdown of the proton loss during the concanamycin A timecourse occurs at

a pH of around 6.8, indicating a reversal of the antiporter direction around

that pH value. In contrast to the triple mutant case, the ATP levels in the

concanamycin A treated cells can not be high from the very beginning, as the
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V-ATPases were still working until the application of the drug. That means in

turn, that the assumed higher calcium pump activity due to higher ATP levels

would occur only when the cell had the time to create a high-enough ATP level.

Therefore, vacuolar calcium levels could in this case initially be lower than in

the triple mutant, leading to a higher vacuolar pH at which the antiport rever-

sal occurs. This, of course, would need further experimental support, possibly

with measurements of vacuolar calcium levels under the given conditions, to be

acceptable as a valid mechanism.

Also, the exact value and dynamic behavior of the vacuolar membrane poten-

tial is certainly another important factor in this model. Measurements of its

dynamics could help the model to be more accurately describing the charge

fluxes across the tonoplast and possibly already resolve the remaining issues of

the model as stated in the results section.

In conclusion, this work could demonstrate a potential explanation for the

observed data by assuming a reversal of calcium antiporter direction. Further

validation of the model, beyond the correct prediction of the effect of AP-1

vesicle inhibition, could be provided by the aforementioned expansion of the

model on calcium signalling processes and the prediction of mutant effects on

it as well as in its current state by measurements of both vacuolar and cytosolic

calcium levels under the stated conditions. Overall, this model can serve as a

poweful tool for exploring calcium-proton signalling interactions in silico and

can thereby help in the understanding of a wide variety of dependent processes

in plant cells.
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Appendix A:

Area scaling in kinetic models of

biological systems

A1 Model structures
A1.1 Toy model

Volume-scaled transport

(Xcyt ↔ Xvac)

−Xcyt

dt
=
Xvac

dt
= k ∗ (Vcyt ∗Xcyt − Vvac ∗Xvac) (25)

Area-scaled transport

(Xcyt ↔ Xvac)

−Xcyt

dt
=
Xvac

dt
= Avac ∗ k ∗ (Xcyt −Xvac) (26)
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A1.2 NFAT model, altered reactions

Active Calcineurin transport

(Act Ccyt ↔ Act Cnuc)

Anuc ∗ (k5 ∗ Act Ccyt − k6 ∗ Act Cnuc) (27)

Inactive Calcineurin transport

(Inact Ccyt ↔ Inact Cnuc)

Anuc ∗ (k5 ∗ Inact Ccyt − k6 ∗ Inact Cnuc) (28)

Calcium transport

(Cacyt ↔ Canuc)

Anuc ∗ (k21 ∗ Cacyt − k22 ∗ Canuc) (29)

NFAT transport

(NFATcyt ↔ NFATnuc)

Anuc ∗ (k17 ∗NFATcyt − k18 ∗NFATnuc) (30)

Phosphorylated NFAT transport

(NFAT Picyt ↔ NFAT Pinuc)

Anuc ∗ (k3 ∗NFAT Picyt − k4 ∗NFAT Pinuc) (31)

NFAT Calcineurin complex transport
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(NFAT Act Ccyt ↔ NFAT Act Cnuc)

Anuc ∗ (k9 ∗NFAT Act Ccyt − k10 ∗NFAT Act Cnuc) (32)

Phosphorylated NFAT Calcineurin complex transport

(NFAT Pi Act Ccyt ↔ NFAT Pi Act Cnuc)

Anuc ∗ (k7 ∗NFAT Pi Act Ccyt − k8 ∗NFAT Pi Act Cnuc) (33)
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A1.3 TGFβ model, altered reactions

R1 Smad2 import

(Smad2 c− > Smad2 n)

Anuc ∗ kimp Smad2c ∗ Smad2c (34)

R2 Smad2 export

(Smad2 n− > Smad2 c)

Anuc ∗ kexp Smad2n ∗ Smad2n (35)

R3 Smad4 import

(Smad4 c− > Smad4 n)

Anuc ∗ kimp Smad4c ∗ Smad4c (36)

R4 Smad4 export

(Smad4 n− > Smad4 c)

Anuc ∗ kexp Smad4c ∗ Smad4c (37)

R24 Smads Complex import

(Smads Complex c− > Smads Complex n)

Anuc ∗ kimp Smads Complex c ∗ Smads Complex c (38)
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A2 Model parameters

A2.1 Toy model

Table A1:
Model structure Parameter Value

Volume-scaled, k 0.1s−1

normal vacuole Vcyt 2,000µm3

Vvac 18,000µm3

Area-scaled, k 3.01234E-5µm2 ∗ s−1

normal vacuole Vcyt 2,000µm3

Vvac 18,000µm3

Avac 3,322µm2

Volume-scaled, k 0.1s−1

reticulated vacuole Vcyt 2,000µm3

Vvac 9,000µm3

Area-scaled, k 3.01234E-5µm2 ∗ s−1

reticulated vacuole Vcyt 2,000µm3

Vvac 9,000µm3

Avac 6,644µm2
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A2.2 NFAT signalling model

Table A2:
Model structure Parameter Value

Volume-scaled k3 0.005s−1

k4 0.5s−1

k5 0.0019s−1

k6 0.00092s−1

k7 0.005s−1

k8 0.5s−1

k9 0.5s−1

k10 0.005s−1

k17 0.0015s−1

k18 0.00096s−1

k21 0.21s−1

k22 0.5s−1

Vcyt 2.69E-13L

Vvac 1.13E-13L

Area-scaled k3 1.19E-7

k4 5E-6µm ∗ s−1

k5 4.552E-8µm ∗ s−1

k6 9.2E-9µm ∗ s−1

k7 1.19E-7µm ∗ s−1

k8 5E-6µm ∗ s−1

k9 1.19E-7µm ∗ s−1

k10 5E-8µm ∗ s−1

k17 3.57E-8µm ∗ s−1

k18 9.6E-9µm ∗ s−1

k21 5E-6µm ∗ s−1

k22 5E-6µm ∗ s−1

Vcyt 2.69E-13L

Vvac 1.13E-13L

Avac,min 11.3µm2

Avac,max 1130µm2
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A2.3 TGFβ signalling model

Table A3:
Model structure Parameter Value

Volume-scaled Kimp Smad2c 0.16s−1

Kexp Smad2n 1s−1

Kimp Smad4c 0.08s−1

Kexp Smad4n 0.52s−1

Kimp Smads complexc 0.16s−1

Vcyt,min 1.15E-13L

Vnuc,min 3.49E-14L

Vcyt,max 1.725E-13L

Vnuc,max 5.235E-13L

Area-scaled Kimp Smad2c 7E-3dm ∗ s−1

Kexp Smad2n 1.4583E-2dm ∗ s−1

Kimp Smad4c 3.5E-3dm ∗ s−1

Kexp Smad4n 7.2917E-3dm ∗ s−1

Kimp Smads complexc 7E-3dm ∗ s−1

Vcyt,min 1.15E-13L

Vnuc,min 3.49E-14L

Anuc,min 2.4µm2

Vcyt,max 1.725E-13L

Vnuc,max 5.235E-13L

Anuc,max 3.6µm2
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A3 Scaled model sensitivities

A3.1 NFAT signalling model

Table A4:
Reaction Parameter scaled sensitivity of active

nuclear NFAT

Calcineurin dep NFAT dephosphorylation k1 2.18039E-7

Calcineurin dep NFAT dephosphorylation k2 -0.00123037

Phosphorylated NFAT transport k3 6.26247E-5

Phosphorylated NFAT transport k4 -0.000269936

Calcineurin transport k5 0.00311093

Calcineurin transport k6 -0.00323382

Phosphorylated NFAT Calcineurin complex

transport

k7 1.41609E-5

Phosphorylated NFAT Calcineurin complex

transport

k8 -0.0013551

NFAT Calcineurin complex transport k9 0.0131951

NFAT Calcineurin complex transport k10 -0.010444

Phosphorylated NFAT Calcineurin complex

disassembly

k11 0.00229174

Phosphorylated NFAT Calcineurin complex

disassembly

k12 -0.000367357

NFAT Calcineurin complex phosphorylation k13 0.00678753

NFAT Calcineurin complex phosphorylation k14 -0.00802142

NFAT Calcineurin complex formation k15 -0.0180615

NFAT Calcineurin complex formation k16 0.0179093

NFAT transport k17 7.49155E-5

NFAT transport k18 -0.000505822

Calcineurin activation k19 0.0103789

Calcineurin activation k20 -0.0103879

Calcium transport k21 0.0170185

Calcium transport k22 -0.01706
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A3.2 TGFβ signalling model

Table A5:
Reaction Parameter scaled sensitivity of nu-

clear SMAD complex

R1 Smad2 import Kimp Smad2c -0.0666527

R2 Smad2 export Kexp Smad2n 0.0916061

R3 Smad4 import Kimp Smad4c -0.0666877

R4 Smad4 export Kexp Smad4n 0.0819686

R5 T1R production vT1R 0.024528

R6/R12/R18 T1R/T2R/LRC Cave formation kiCave -0.340296

R7/R13/R19 T1R/T2R/LRC Cave recycling krCave 0.0842739

R8/R14/R20 T1R/T2R/LRC EE formation kiEE 0.302112

R9/R15/R21 T1R/T2R/LRC EE recycling krEE -0.130795

R10 T1R EE degradation kdegT1R,EE -0.00708498

R11 T2R production vT2R 0.129776

R16 T2R EE degradation kdegT2R,EE -0.0224511

R17 LRC formation kLRC 0.0242155

R22 LRC EE degradation Kcd -0.0550185

R23 Smads Complex formation k Smads complexc 0.486002

R24 Smads Complex import kimp Smads complexc 0.198014

R25 Smads Complex Dissociation kdiss Smads complexn -0.722791

R26 LRC Cave degradation Klid -0.00316132
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Appendix B:

Vacuolar pH-homeostasis

B1 Model structures
B1.1 Core model (simple proton loss)

d([Hvac] ·AVacuole·)
dt = +VVacuole

(
factor(”V−ATPase”) ·

V(”V−ATPase”) · [Hcyt]

Km(”V−ATPase”) + [Hcyt]

)
−AVacuole ·

(
V(Loss) · ([Hvac] − [Hcyt])

)
+VVacuole ·

((
k1(Buffer1) · [HA] − k2(Buffer1) · [Hvac] · [A]

))
+VVacuole ·

((
k1(Buffer2) · [HB] − k2(Buffer2) · [Hvac] · [B]

))
+VVacuole ·

((
k1(Buffer3) · [HC] − k2(Buffer3) · [Hvac] · [C]

))
+VVacuole ·

((
k1(Buffer4) · [HD] − k2(Buffer4) · [Hvac] · [D]

))
+AVacuole ·

(
factor(”V−PPase”) ·

V(”V−PPase”) · [Hcyt]

Km(”V−PPase”) + [Hcyt]

)
d([HA] ·VVacuole)

dt = −VVacuole ·
((

k1(Buffer1) · [HA] − k2(Buffer1) · [Hvac] · [A]
))

d([A] ·VVacuole)
dt = +VVacuole ·

((
k1(Buffer1) · [HA] − k2(Buffer1) · [Hvac] · [A]

))
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d([B] ·VVacuole)
dt = +VVacuole ·

((
k1(Buffer2) · [HB] − k2(Buffer2) · [Hvac] · [B]

))
d([HB] ·VVacuole)

dt = −VVacuole ·
((

k1(Buffer2) · [HB] − k2(Buffer2) · [Hvac] · [B]
))

d([C] ·VVacuole)
dt = +VVacuole ·

((
k1(Buffer3) · [HC] − k2(Buffer3) · [Hvac] · [C]

))
d([HC] ·VVacuole)

dt = −VVacuole ·
((

k1(Buffer3) · [HC] − k2(Buffer3) · [Hvac] · [C]
))

d([D] ·VVacuole)
dt = +VVacuole ·

((
k1(Buffer4) · [HD] − k2(Buffer4) · [Hvac] · [D]

))
d([HD] ·VVacuole)

dt = −VVacuole ·
((

k1(Buffer4) · [HD] − k2(Buffer4) · [Hvac] · [D]
))

pHcyt = − ( log10 (1e− 6 · [Hcyt]))

pHvac = − ( log10 (1e− 6 · [Hvac]))
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B1.2 Direct transport model

d([Hvac] ·VVacuole)
dt = +AVacuole ·

(
factor(”V−ATPase”) ·

V(”V−ATPase”) · [Hcyt]

Km(”V−ATPase”) + [Hcyt]

)
−AVacuole ·

(
V(Loss) · ([Hvac] − [Hcyt])

)
+VVacuole ·

((
k1(Buffer1) · [HA] − k2(Buffer1) · [Hvac] · [A]

))
+VVacuole ·

((
k1(Buffer2) · [HB] − k2(Buffer2) · [Hvac] · [B]

))
+VVacuole ·

((
k1(Buffer3) · [HC] − k2(Buffer3) · [Hvac] · [C]

))
+VVacuole ·

((
k1(Buffer4) · [HD] − k2(Buffer4) · [Hvac] · [D]

))
+AVacuole ·

(
factor(”V−PPase”) ·

V(”V−PPase”) · [Hcyt]

Km(”V−PPase”) + [Hcyt]

)
+AVacuole ·

(
factor(”unknown transport”) ·

V(”unknown transport”) · [Hcyt]

Km(”unknown transport”) + [Hcyt]

)
d([HA] ·VVacuole)

dt = −VVacuole ·
((

k1(Buffer1) · [HA] − k2(Buffer1) · [Hvac] · [A]
))

d([A] ·VVacuole)
dt = +VVacuole ·

((
k1(Buffer1) · [HA] − k2(Buffer1) · [Hvac] · [A]

))
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d([B] ·VVacuole)
dt = +VVacuole ·

((
k1(Buffer2) · [HB] − k2(Buffer2) · [Hvac] · [B]

))
d([HB] ·VVacuole)

dt = −VVacuole ·
((

k1(Buffer2) · [HB] − k2(Buffer2) · [Hvac] · [B]
))

d([C] ·VVacuole)
dt = +VVacuole ·

((
k1(Buffer3) · [HC] − k2(Buffer3) · [Hvac] · [C]

))
d([HC] ·VVacuole)

dt = −VVacuole ·
((

k1(Buffer3) · [HC] − k2(Buffer3) · [Hvac] · [C]
))

d([D] ·VVacuole)
dt = +VVacuole ·

((
k1(Buffer4) · [HD] − k2(Buffer4) · [Hvac] · [D]

))
d([HD] ·VVacuole)

dt = −VVacuole ·
((

k1(Buffer4) · [HD] − k2(Buffer4) · [Hvac] · [D]
))

pHcyt = − ( log10 (1e− 6 · [Hcyt]))

pHvac = − ( log10 (1e− 6 · [Hvac]))
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B1.3 Protein degradation model

d([Hvac] ·VVacuole)
dt = +AVacuole ·

(
factor(”V−ATPase”) ·

V(”V−ATPase”) · [Hcyt]

Km(”V−ATPase”) + [Hcyt]

)
−AVacuole ·

(
V(Loss) · ([Hvac] − [Hcyt])

)
+VVacuole ·

((
k1(T2) · [AminoHH] − k2(T2) · [Amino H] · [Hvac]

))
+VVacuole ·

((
k1(T3) · [AminoHH] − k2(T3) · [AminoH ] · [Hvac]

))
+VVacuole ·

((
k1(T4) · [AminoH ] − k2(T4) · [Amino ] · [Hvac]

))
+AVacuole ·

(
factor(”V−PPase”) ·

V(”V−PPase”) · [Hcyt]

Km(”V−PPase”) + [Hcyt]

)
+VVacuole ·

((
k1(Buffer1) · [HA] − k2(Buffer1) · [Hvac] · [A]

))
+VVacuole ·

((
k1(Buffer2) · [HB] − k2(Buffer2) · [Hvac] · [B]

))
+VVacuole ·

((
k1(Buffer3) · [HC] − k2(Buffer3) · [Hvac] · [C]

))
+VVacuole ·

((
k1(Buffer4) · [HD] − k2(Buffer4) · [Hvac] · [D]

))
+VVacuole ·

((
k1(T1) · [Amino H] − k2(T1) · [Amino ] · [Hvac]

))
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d([HA] ·VVacuole)
dt = −VVacuole ·

((
k1(Buffer1) · [HA] − k2(Buffer1) · [Hvac] · [A]

))
d([A] ·VVacuole)

dt = +VVacuole ·
((

k1(Buffer1) · [HA] − k2(Buffer1) · [Hvac] · [A]
))

d([B] ·VVacuole)
dt = +VVacuole ·

((
k1(Buffer2) · [HB] − k2(Buffer2) · [Hvac] · [B]

))
d([HB] ·VVacuole)

dt = −VVacuole ·
((

k1(Buffer2) · [HB] − k2(Buffer2) · [Hvac] · [B]
))

d([C] ·VVacuole)
dt = +VVacuole ·

((
k1(Buffer3) · [HC] − k2(Buffer3) · [Hvac] · [C]

))
d([HC] ·VVacuole)

dt = −VVacuole ·
((

k1(Buffer3) · [HC] − k2(Buffer3) · [Hvac] · [C]
))

d([D] ·VVacuole)
dt = +VVacuole ·

((
k1(Buffer4) · [HD] − k2(Buffer4) · [Hvac] · [D]

))
d([HD] ·VVacuole)

dt = −VVacuole ·
((

k1(Buffer4) · [HD] − k2(Buffer4) · [Hvac] · [D]
))

d([Amino ] ·VVacuole)
dt = +VVacuole ·

((
k1(T4) · [AminoH ] − k2(T4) · [Amino ] · [Hvac]

))
−AVacuole ·

(
k1(Export2) · [Amino ]

)
+VVacuole ·

((
k1(T1) · [Amino H] − k2(T1) · [Amino ] · [Hvac]

))
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d([Amino H] ·VVacuole)
dt = +VVacuole ·

(
k1(T2) · [AminoHH] − k2(T2) · [Amino H] · [Hvac]

)
−AVacuole ·

(
k1(Export1) · [Amino H]

)
−VVacuole ·

(
k1(T1) · [Amino H] − k2(T1) · [Amino ] · [Hvac]

)
d([AminoH ] ·VCytoplasm)

dt = +VVacuole ·
((

k1(T3) · [AminoHH] − k2(T3) · [AminoH ] · [Hvac]
))

−VVacuole ·
((

k1(T4) · [AminoH ] − k2(T4) · [Amino ] · [Hvac]
))

−AVacuole ·
(
k1(Export3) · [AminoH ]

)
+AVacuole ·

(
v(Import)

)
d([AminoHH] ·VCytoplasm)

dt = −VVacuole ·
((

k1(T2) · [AminoHH] − k2(T2) · [Amino H] · [Hvac]
))

−VVacuole ·
((

k1(T3) · [AminoHH] − k2(T3) · [AminoH ] · [Hvac]
))

−AVacuole ·
(
k1(Export4) · [AminoHH]

)
pHcyt = − ( log10 (1e− 6 · [Hcyt]))

pHvac = − ( log10 (1e− 6 · [Hvac]))
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B1.4 Calcium antiport model
d([Hvac] ·VVacuole)

dt =

AVacuole ·
(

factor(”V−ATPase”) ·Vmax(”V−ATPase”) · [Hcyt]

Km(”V−ATPase”) + [Hcyt]

)
−AVacuole ·

(
− factor(Loss) · g(Loss) ·

(
Vm − R ·T

z(Loss) ·F
· ln

(
[Hvac]
[Hcyt]

)))
+VVacuole ·

((
k1(HBuffer1) · [HA] − k2(HBuffer1) · [Hvac] · [A]

))
+VVacuole ·

((
k1(HBuffer2) · [HB] − k2(HBuffer2) · [Hvac] · [B]

))
+VVacuole ·

((
k1(HBuffer3) · [HC] − k2(HBuffer3) · [Hvac] · [C]

))
+VVacuole ·

((
k1(HBuffer4) · [HD] − k2(HBuffer4) · [Hvac] · [D]

))
−AVacuole · 3 ·

(
− [vesicles] · factor(CAX) · g(CAX) ·

(
Vm − R ·T

z(CAX) ·F
· ln

(
[Hvac]3 · [Cacyt]

[Hcyt]3 · [Cavac]

)))
+AVacuole ·

(
factor(”V−PPase”) ·Vmax(”V−PPase”) · [Hcyt]

Km(”V−PPase”) + [Hcyt]

)
d([HA] ·VVacuole)

dt =

−VVacuole ·
((

k1(HBuffer1) · [HA] − k2(HBuffer1) · [Hvac] · [A]
))

d([A] ·VVacuole)
dt =

+VVacuole ·
((

k1(HBuffer1) · [HA] − k2(HBuffer1) · [Hvac] · [A]
))
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d([B] ·VVacuole)
dt =

+VVacuole ·
((

k1(HBuffer2) · [HB] − k2(HBuffer2) · [Hvac] · [B]
))

d([HB] ·VVacuole)
dt =

−VVacuole ·
((

k1(HBuffer2) · [HB] − k2(HBuffer2) · [Hvac] · [B]
))

d([C] ·VVacuole)
dt =

+VVacuole ·
((

k1(HBuffer3) · [HC] − k2(HBuffer3) · [Hvac] · [C]
))

d([HC] ·VVacuole)
dt =

−VVacuole ·
((

k1(HBuffer3) · [HC] − k2(HBuffer3) · [Hvac] · [C]
))

d([D] ·VVacuole)
dt =

+VVacuole ·
((

k1(HBuffer4) · [HD] − k2(HBuffer4) · [Hvac] · [D]
))

d([HD] ·VVacuole)
dt =

−VVacuole ·
((

k1(HBuffer4) · [HD] − k2(HBuffer4) · [Hvac] · [D]
))
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d([Cacyt] ·VCytoplasm)
dt =

−V
Cytoplasm

· k1(CaBufferingcyt) · [Cacyt] · [CalciumBuffercyt]

−k2(CaBufferingcyt) · [”Ca− CalciumBuffercyt”]

−AVacuole ·
(

V(”Ca−Pump”) · [Cacyt]

Km(”Ca−Pump”) + [Cacyt]

)
−AVacuole ·

(
− [vesicles] · factor(CAX) · g(CAX) ·

(
Vm − R ·T

z(CAX) ·F
· ln

(
[Hvac]3 · [Cacyt]

[Hcyt]3 · [Cavac]

)))
+ (−AVacuole · factor(”Ca−Channel”) ·

g(”Ca−Channel”)

1 + e

x(”Ca−Channel”) · z(”Ca−Channel”) ·F
R ·T · (Vm−Vh(”Ca−Channel”))

·AVacuole ·
(

Vm − R ·T
z(”Ca−Channel”) ·F

· ln
(

[Cavac]
[Cacyt]

))
)

d([Cavac] ·VVacuole)
dt =

−VVacuole · (k1(CaBufferingvac) · [Cavac] · [CalciumBuffervac]

− k2(CaBufferingvac) · [”Ca− CalciumBuffervac”])

+AVacuole ·
(

V(”Ca−Pump”) · [Cacyt]

Km(”Ca−Pump”) + [Cacyt]

)
+AVacuole ·

(
− [vesicles] · factor(CAX) · g(CAX) ·

(
Vm − R ·T

z(CAX) ·F
· ln

(
[Hvac]3 · [Cacyt]

[Hcyt]3 · [Cavac]

)))
−AVacuole · (− factor(”Ca−Channel”) ·

g(”Ca−Channel”)

1 + e

x(”Ca−Channel”) · z(”Ca−Channel”) ·F
R ·T · (Vm−Vh(”Ca−Channel”))

· (Vm − R ·T
z(”Ca−Channel”) ·F

· ln
(

[Cavac]
[Cacyt]

)
))

d([vesicles] ·VCytoplasm)
dt =

−VCytoplasm ·
(
k1(”vesicles −>”) · [vesicles]

)
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d([CalciumBuffercyt] ·VCytoplasm)
dt =

−VCytoplasm · ((k1(CaBufferingcyt) · [Cacyt] · [CalciumBuffercyt]

− k2(CaBufferingcyt) · [”Ca− CalciumBuffercyt”]))

d([CalciumBuffervac] ·VVacuole)
dt =

−VVacuole · ((k1(CaBufferingvac) · [Cavac] · [CalciumBuffervac]

− k2(CaBufferingvac) · [”Ca− CalciumBuffervac”]))

d([”Ca−CalciumBuffercyt”] ·VCytoplasm)
dt =

+VCytoplasm · ((k1(CaBufferingcyt) · [Cacyt] · [CalciumBuffercyt]

− k2(CaBufferingcyt) · [”Ca− CalciumBuffercyt”]))

d([”Ca−CalciumBuffervac”] ·VVacuole)
dt =

+VVacuole · ((k1(CaBufferingvac) · [Cavac] · [CalciumBuffervac]

− k2(CaBufferingvac) · [”Ca− CalciumBuffervac”]))

pHcyt = − ( log10 ([Hcyt]))

pHvac = − ( log10 ([Hvac]))

Vm = − 0.035 · ([Hvac]− [Hcyt])
1.585e−6− 6.3e−8
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B2 Membrane potential dependend processes
B2.1 Channel opening probability

The two-state Boltzmann equation

Co =
1

ex∗
zF
R∗T ∗(V m−V h)

describes the fraction of Co of open channels. This can be understood by

looking at the transition between open (O) and closed (C) state of a channel:

O ←→ C

with which we can formulate

dO

dt
= k1 ∗O − k-1 ∗ C

which solves in steady state to

O =
k-1

k-1 + k1

Voltage dependency can be taken into the kinetic constant as done in [157]:

k1 = k1
0 ∗ e∆G∗ 1

RT
+zF∗x1∗V m

and

k-1 = k-1
0 ∗ e∆G∗ 1

RT
+zF∗x-1∗V m

with x1, x-1 being the fractional distance of the reaction energy barrier from

inside and outside the membrane.

By combining the above equations and replacing x1 - x-1 with x, one arrives at

the above stated two-state Boltzmann equation.
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