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Abstract
Recent breakthroughs in sequencing technologies allowed researchers to generate
extensive amounts of data characterizing cellular regulation at many levels. Conse-
quently, this boosted our understanding of gene regulatory networks responsible for
different biological processes and highlighted the overall importance of transcription
factors (TFs). TFs are dynamic mediators that react to both intra- and extracellular
changes in order to ultimately transmit signals and execute genetically inherited
gene regulatory programs in a time- and location-specific manner. However, it is still
challenging to quantify in vivo TF specific binding occupancy and dynamics due to
the high complexity of the regulatory part of the genome. Modern technologies mea-
suring chromatin changes (e.g., chromatin accessibility, DNA methylation, histone
modifications) can now generate testable hypotheses about the effects of TF binding
on gene regulation.

In this thesis, I mainly describe the novel computational tool diffTF, a multiomics
data integration tool for globally assessing differential TF activity and classifying TFs
into transcriptional activators and repressors (by integrating chromatin accessibility
and gene expression data). We applied it to a recently published ATAC-seq dataset
from a cohort of chronic lymphocytic leukemia (CLL) patients and identified dozens
of differential active TFs representing two different CLL subtypes that are inherently
linked to tumour progression. In addition, we integrated gene expression data from
corresponding RNA-seq and were able to globally predict an activating or repressive
role for 40% of the expressed TFs. We validated the approach on an independent
CLL dataset and showed that the majority of TFs does not change their mode of
action upon genetic or environmental perturbations. Finally, we extensively tested
and benchmarked diffTF to validate its technical robustness.

We also applied diffTF to a multiomics dataset from the mouse hematopoietic
differentiation system and targeted potential TFs that are disturbed upon epigenetic
dysregulation driven by a Tet methylcytosine dioxygenase 2 (TET2) knockout in
acute myeloid leukemia (AML). TET2 plays an essential role in the cellular DNA
methylation balance and is known to be frequently mutated in leukemia. We used
the first high-quality TET2 binding map to identify TF families that can facilitate
TET2 binding in the genome.



In summary, we developed a novel hypothesis-generation computational tool
that can, in a data-driven way, identify key regulators of cellular biological processes
based on chromatin and expression data.



Zusammenfassung
Die jüngsten Durchbrüche bei den Sequenzierungstechnologien ermöglichten es den
Forschern, umfangreiche Datenmengen zu hinterlegen, die die zelluläre Regulation
auf vielen Ebenen charakterisieren. Dies verbesserte folglich unser Verständnis der
Genregulationsnetzwerke, die für verschiedene biologische Prozesse verantwortlich
sind, und der allgemeinen Bedeutung von Transkriptionsfaktoren (TFs). TFs sind
dynamische Mediatoren, die sowohl auf intra- als auch auf extrazelluläre Verän-
derungen reagieren, um letztendlich Signale zu übertragen und genetisch vererbte
Genregulationsprogramme zeit- und ortsspezifisch auszuführen. Aufgrund der ho-
hen Komplexität des regulatorischen Genoms ist es jedoch immer noch schwierig,
die TF-spezifische Bindungsbelegung und -dynamik in vivo zu quantifizieren. Mod-
erne Technologien, die Chromatinveränderungen messen (z. B. Zugänglichkeit
von Chromatin, DNA-Methylierung, Histonmodifikationen), können nun überprüf-
bare Hypothesen über die Auswirkungen der TF-Bindung auf die Genregulation
generieren.

In dieser Arbeit beschreiben wir hauptsächlich das neue Tool diffTF, ein
Multiomics-Datenintegrationswerkzeug zur globalen Bewertung der differentiellen
TF-Aktivität und zur Klassifizierung von TFs in Transkriptionsaktivatoren und
-repressoren (durch Integration von Chromatin-Zugänglichkeits- und Genexpres-
sionsdaten). Wir haben es auf einen kürzlich veröffentlichten ATAC-seq-Datensatz
aus einer Kohorte von Patienten mit chronischer lymphatischer Leukämie (CLL)
angewendet und Dutzende von differentiell aktiven TFs identifiziert, die ver-
schiedene CLL-Subtypen darstellen, die inhärent mit der Tumorprogression
zusammenhängen. Zusätzlich haben wir Genexpressionsdaten aus entsprechenden
RNA-Sequenzen integriert und konnten die globale aktivierende oder repressive
Rolle für 40% der exprimierten TFs vorhersagen. Wir haben den Ansatz anhand
eines unabhängigen CLL-Datensatzes validiert und gezeigt, dass die Mehrheit
der TFs ihre Wirkungsweise bei genetischen oder Umweltstörungen nicht ändert.
Schließlich haben wir diffTF ausgiebig getestet und evaluiert, um seine technische
Robustheit zu überprüfen.

Wir haben diffTF auch auf einen Multiomics-Datensatz aus dem hämatopoet-
ischen Differenzierungssystem der Maus angewendet und potenzielle TFs identi-
fiziert, die durch eine epigenetische Dysregulation gestört werden, ausgelöst durch



einen TET2-Knockout bei akuter myeloischer Leukämie (AML). TET2 spielt eine
wesentliche Rolle im zellulären DNA-Methylierungsgleichgewicht und ist bekan-
ntermaßen bei Leukämie stark mutiert. Wir haben die erste hochwertige TET2-
Bindungskarte verwendet, um TF-Familien zu identifizieren, die die TET2-Bindung
im Genom erleichtern können.

Zusammenfassend haben wir ein neuartiges Tool zur Erstellung von Hypothesen
entwickelt, das auf datengesteuerte Art und Weise Schlüsselregulatoren zellbiologis-
cher Prozesse aus Chromatin- und Expressionsdaten identifiziert.
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Chapter 1

Introduction
In the past 50 years our understanding of molecular events happening in the cell and

their underlying logic has improved significantly. Science moved from the descriptive

state of observing and characterizing biological molecules to the analyzing and

predictive state of the molecular systems. With the discovery of the central molecular

biology dogma, the role of genes are characterized as a blueprint for the construction

of all biological systems. Each eukaryotic cell has a nucleus with DNA inside,

compacted in a specific manner. In the tightly controlled process of gene regulation

genes are getting expressed to RNA and then transcribed to proteins, therefore

transferring information stored in the nucleus to maintain and construct the cell.

Each cell, though, is not only a product of genetic information from ancestor cells,

but it has an amazing ability to react and adapt to external/internal stimuli. Using

molecular receptors and signalling pathways a cell is able to modify and correct the

maintaining plan, written in DNA, e.g. via the gene regulation mechanisms. The

definition of the cell types changed from the description of the cellular phenotypes

(size, shape, location of the cells) to the common gene regulation programs and their

ability to evolve together (Arendt et al., 2016).

It is obvious, that at this stage of molecular biology development, we are just

starting to understand key mechanisms occurring in the cell and taking part in the

gene regulation. With the rise of the high-throughput methods (NGS sequencing,

imaging, genetic screens) we are gathering more and more information about

the characteristics and states of the molecular phenotypes in the cell. However,

the major bottleneck for nowadays biology and future generations is to develop

analysis strategies to integrate all these massive amounts of data and provide testable

hypotheses of cell gene regulation underlying principles in different conditions. Such

information is essential in order to provide solutions to the diseases on the multiple

levels of biological systems organization.
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1.1 Gene regulation in the 3D genome

All the human cell blueprint genetic information is encoded within the ~3 billions

nucleotides that are stored in the cell nucleus with a diameter of ~10 µm on average.

This is an extremely important topological problem solved intracellularly by using

additional nucleosome organizational proteins (e.g. histones). At the first level of

compactization ~150 bp of DNA are wrapped circularly around histone octamer, thus

reducing the needed space 5 times. After this nucleosomes can fold in loops and fibers

thus decreasing the occupied 3D space even more. In the past 10 years more and

more understanding of the DNA structural folding in the nucleus has been obtained,

with the development of the various sequencing and imaging methods/analyses,

such as fluorescent in situ hybridization (FISH) and chromatin capture (3C, 4C,

Hi-C) methods (Kempfer and Pombo, 2019). On top of it, advances in the electron

and superresolution microscopy (Boettiger et al., 2016; Ou et al., 2017) provide

additional information about chromatin structure in the nucleus. Latest research

suggests that chromatin is a highly dynamic, but strongly controlled intracellular

phenotype. Genes located in the regions with more compacted chromatin have lower

expression levels, in comparison to genes in the open chromatin, so called “A” and

“B” compartments (Lieberman-Aiden et al., 2009).

Figure 1.1: Chromatin affects gene regulation. (A) Scheme of chromatin organization in the
nucleus. (B) Compression of DNA in the nucleus with histones. Scheme of opened and closed
chromatin regulated post-translational histone modifications. NGS methods for measuring different
information about chromatin dynamics affecting gene expression (ATAC-seq, ChIP-seq, Bisulfite
sequencing) are shown. (C) Scheme of the gene expression (a–d). TFs specific DNA binding (1).
Activation of the transcriptional machinery (2) through DNA looping (3). Enhancer regulation of
transcription (4). Adapted from (Buchberger et al., 2019) under Creative Commons License 4.0.
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A remarkable observation of the Human Genome Project was that only 2% of the

human genome are occupied by the protein-coding genes. The remaining part is used

to regulate the expression of the protein-coding genes in various ways. Compared to

the prokaryotic promoter-oriented gene expression scheme, eukaryotic regulation is

much more complex, involving a combined regulation of enhancers and promoters,

summarized in Figure 1.1. Large international consortia, such as ENCODE and

Roadmap Epigenomics (Kundaje et al., 2015), generated deep databases of the

specific enhancer regulation of different cells using different epigenetic phenotypes

(e.g. chromatin states, chromatin accessibility, DNA methylation, TF binding).

One of the possible explanations of the eukaryotic gene regulation can be charac-

terized with restricted spatial organization of the genome (Li et al., 2018). Chromatin

inside the nucleus can be divided by the topological associated domains (TADs), a

structure, which explains the enhancer-promoter gene regulation. Thisstructure, on

a big scale chromosomal territories, is conserved through evolution (Fudenberg and

Pollard, 2019) and highly controlled. All the dynamic changes of the gene regulation,

responsible for the fast adaptations and reaction to the intra- and extracellular

signals, are occuring with the changing DNA loop structures inside the TADs. The

previously proposed loop extrusion (Sanborn et al., 2015) model explains how CTCF

together with cohesin, through sliding on DNA, can regulate the 3D structure of the

locus specific DNA, and connect enhancer and promoter regions.

Another model attempting to explain chromatin structure is phase separation

(Hnisz et al., 2017) based on the biophysical properties of the molecules inside

the nucleus. Due to the high amount of different proteins associated with gene

transcription (TFs, RNA polymerase, transcriptional machinery) regulatory regions

in the genome have gel-like consistency different from the heterochromatin, and

therefore forced physically to interact. The same effect is enhanced with increased

local concentration of TFs (Cortini and Filion, 2018) and is predicted to occur in

super-enhancers. Likely, the truth about principles of chromatin organization lies

somewhere in the middle of these two models, taking into account sequence specific

features of DNA itself and biophysical properties of molecules around it.

In this thesis I will discuss and use chromatin accessibility data obtained from NGS

sequencing. Notably, information about chromatin accessibility and structure can be

obtained using imaging techniques. At the moment, these two fields of chromatin

biology are developing separately, but future integration of both approaches to define

precise 3D genome in the nucleus is essential.
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1.2 Chromatin accessibility assays

Recent advances in sequencing technologies together with decreased cost of it,

allowed development of high-throughput DNA accessibility methods (Klein and

Hainer, 2019). In this section we are going to mainly discuss methods developed

in the past ten years to measure bulk chromatin accessibility, such as DNAse-seq,

FAIRE-seq, MNase-seq and ATAC-seq. However, more and more techniques are

appearing that measure chromatin accessibility as readout on the single-cell level

(e.g. scATAC-seq, scDNAse-seq). This is particularly interesting, as we will be able

to measure dynamic changes of chromatin for each cell and much more precise

integrate this information with the unique cellular external and internal molecular

phenotypes to understand the basic gene regulation principles.

Overall, all chromatin accessibility methods are based on the ability of enzymes

to access and modify or digest chromatin. A schematic representation of the most

popular methods is shown in the Figure 1.2. DNAse-seq uses DNAse I endonuclease,

which cuts unprotected DNA, and therefore allows further identification of it after

PCR amplification and sequencing (Song and Crawford, 2010). DNA fragments of a

certain size (from 50 bp to 160 bp) are used to construct a template for the library

construction. This method was the first one to define chromatin accessibility and

is widely used till now, especially in the ENCODE consortium. FAIRE-seq, on the

contrary, doesn’t use enzymatic activity to define opened regions, but rather use

formaldehyde crosslinking to identify all DNA-protein connections (Gaulton et al.,

2010). DNA that was not crosslinked is sonicated, amplified and then sequenced. As

this method crosslinks all the DNA-protein interactions it is much harder to obtain

high quality chromatin accessibility signal using it. MNase-seq combines both of

the described above techniques, while first crosslinking DNA with proteins and then

applying micrococcal nuclease to digest free DNA (Schones et al., 2008). Covered

DNA then follows removal of the proteins and further sequencing. Importantly, this

method was used to identify precise nucleosome positioning. It is quite sensitive to

the MNase digestion kinetics and requires specific titration beforehand.

ATAC-seq is using Tn5 transposase in order to find accessible regions in chro-

matin (Buenrostro et al., 2013). It cuts accessible DNA and insert specific primers,

which can be used for extracting nucleosome-free regions of DNA afterwards and

amplification of the signal. In comparison to the other methods, ATAC-seq does not

require a lot of time (whole experiment can be done in a few hours) and has a higher

signal-to-noise ratio. In recent years this method is used widely and has become the
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golden standard to define chromatin accessibility. It is important to note that the

majority of these methods, based on the enzymes, have different biases based on

the DNA sequence. For example DNase I has a specific bias depending on the width

of the minor groove of DNA. On top of it, there are known CG biases of sequencing

that should be taken into account.

Figure 1.2: Chromatin accessibility methods. Schematic representation of DNAse-seq (A), FAIRE-
seq (B), MNase-seq (C) and ATAC-seq (D) workflow. Adapted from (Klein and Hainer, 2019).

For each of the mentioned methods specific pre-processing analysis is needed to

infer open chromatin regions from the raw sequencing data. However processed

data defining chromatin accessibility can be used together in downstream analyses

(TF footprinting, differential accessibility analysis, nucleosome occupancy). More

importantly, these techniques are not identifying specific binding of different proteins

(histones, TFs) and need to be combined with assays that specifically map binding to

DNA of different regulatory proteins (e.g. ChIP-seq for TF binding) to understand

gene regulation mechanisms.
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1.3 Transcription factors

Transcription factors is a unique class of proteins that can directly bind DNA sequence

and regulate gene expression. They are an essential part of the cell signalling and

often are master regulators of key cellular processes, such as cell differentiation,

development, cell cycle and metabolism. Dysregulation of TF functioning often

occurs in diseases and cancer. A typical TF consists of a DNA-binding domain (DBD),

which facilitate DNA binding, and effector domains, that are responsible for the

fine-tuning of the TF activity through the binding of other molecules/cofactors

(Figure 1.3A). Places where TFs can bind (TFBS) are essential to know, as the

identification of them is the first step of possible linkage of TF activity with the

gene expression (Wasserman and Sandelin, 2004). Such binding specificities for

each TF are recapitulated in the term TF motif, a predictive model of TF binding

based on the DNA sequence. Experimentally, TF motifs were determined, both

in vitro with protein binding microarrays (Berger et al., 2006), SELEX methods

(Jolma et al., 2010) or earlier with DNA footprinting assays (Galas and Schmitz,

1978), and in vivo with chromatin immunoprecipitation based methods (Johnson

et al., 2007) and DamID-seq (Wu et al., 2016). Despite the fact that there are

a lot of methods uncovering locations of TF binding in the genome, it is still a

huge limitation towards analyzing complex gene regulation networks. TF binding

is highly dynamic, and ChIP based methods, which are known to best characterize

TF binding, are not able to measure this dynamics due to crosslinking. Also if it

is not possible to get antibodies for a specific TF that makes ChIP based assays

for such cases not appropriate. On the other hand it is possible to model de novo
TF binding sites in a genome, using as initial set TFBS derived from experimental

studies. One of the most widespread representations of TF motifs is position weight

matrix (PWM), that is basically a base pair oriented relative representation of TF

binding specificity in a specific genome (Stormo and Zhao, 2010). There are more

ways of TF motif representation, reviewed in (Lai et al., 2019), which take into

account similarities between TFs, DNA shape and sequence background. Overall

it seems that the combination of the computational predictions of TF binding and

experimental validations of such binding is a key for future dissection of the precise

TF binding and impact on gene regulation.

In recent years, a lot of progress of TF annotation has been done, with the rise of

many TF binding models databases (JASPAR (Mathelier et al., 2016), HOCOMOCO

(Kulakovskiy et al., 2015), CisBP (Weirauch et al., 2014)). The whole repertoire
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of the human transcription factors consists of 1639 TFs, summarized in (Lambert

et al., 2018). Most of the TFs contain one type of DBD and can be grouped based

on that into 35 TF families (Figure 1.3B). Importantly, despite DBD domains in the

TFs are highly consevative through evolution (Lambert et al., 2019), there are a

lot of variation of the other domains of the TF that are regulated by the cofactors,

which is much more harder to identify in vivo. Most abundant TF families are C2H2

zinc finger factors (~45% of all TFs), homeodomain containing TFs (~11%), bHLH,

bZIP, HMG, Forkhead and nuclear hormone receptors. For the zinc fingers it is also

possible to further subclassify TFs based on the effector domains (KRAB, BTB, SCAN).

Curation of the transcription factors is a very challenging task. A lot of known TFs

lack crystal structures, there is high similarity between the motifs and it is hard to

dissect the functional effect of individual TFs on the biological regulation.

Figure 1.3: Classification of TFs based on DBDs. (A) Schematic of a prototypical TF. (B) Distribu-
tion of TFs and motif status for each DBD family. Zoomed area describe further division of the C2H2
zinc fingers family into effector domains (KRAB, SCAN, or BTB domains); “Classic” group summarize
related and highly conserved SP, KLF, EGR, GLI GLIS, ZIC, and WT proteins. Adapted from (Lambert
et al., 2018).
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Via binding to DNA, TFs directly or indirectly control gene expression. Depending

on the functional context they can activate or repress expression. Notably, they

don’t necessarily act on their own at any given TFBS. Large amounts of cofactors,

that can either enhance or reduce the activity of a TF, as well as local sequence

content affect the function of TF. In eukaryotic cells vast amounts of chromatin

modifiers are affecting the region-specific TF functionality as well. Taken together, it

seems that TFs are maintaining the balance of regulation, which is, despite being

tightly controlled, highly variable and gene specific through different regulatory

mechanisms. Disruption of TF regulatory networks mainly leads to apoptosis or

abnormal cellular functioning. They are an essential part of the chromatin regulation

and key mediators of all the changes occuring in the cell.

1.4 Measuring TF activity

In the following chapters we will refer to TF activity as a measure how TFs can

regulate chromatin and target genes expression. Interestingly, with a different

logic in mind, a massively parallel protein activity assay for TFs, based on the

electrophoretic separation of TF-bound DNA sequences from a complex DNA library

and followed by mass-spectrometry, was performed recently (Wei et al., 2018) and

found a high correspondence with the chromatin accessibility data.

Before the rise of the chromatin accessibility methods, TF activity was often

inferred from gene regulatory networks. After defining a set of target genes for each

TF, based on the proximity of binding sites, through manual curation or semantic

search, TF activity was defined from a linear model taking into account expression

of TF and target genes. A number of such approaches are summarized in (Garcia-

Alonso et al., 2019). They have been proven to correctly predict the magnitude of

TF activity changes in different biological systems and generate testable hypothesis,

however not always showing consistent accurate estimates of the regulatory effect

of TFs on the specific gene. TFs are regulating gene expression through an effect on

chromatin (i.e. binding to the DNA), thus, gene expression is a less direct readout

than chromatin accessibility, since it is the result of activities of multiple enhancers,

promoters and posttranscriptional regulatory steps. Besides this TFs can also co-

operatively regulate expression of the genes, making the inferred predictions from

only gene expression data even more noisy. Using chromatin accessibility, as more

direct readout of the gene expression and regulation, which allows us to estimate

more accurate TF activity from the predicted TFBS. In the following paragraphs I
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will briefly describe major computational approaches for estimating TF activity from

the bulk and single cell chromatin accessibility samples.

One of the recent tools for the bulk chromatin accessibility samples, BagFoot,

calculates TF footprints for the predicted TFBS, and then compares obtained signal

between two conditions of interest (Baek et al., 2017). By default, a differential TF

footprint is defined as the sum of the genome-wide differential footprint depth and

flanking accessibility. Footprint depth serves as a normalisation factor of the TFBS

accessibility compared to the genome-wide baseline. Differences in the flanking

regions of a footprint are hypothesized to distinguish between more TFs locating in

more active or repressive chromatin. BagFoot has an interesting approach purely

based on TF footprinting, however it is not clear if this tool can be used for all

predicted TFs. First of all, not all TFs have a strong footprint, due to the high

dynamics of association/disassociation. Also, it is known that for proper footprint

you need to have deeply sequenced samples (Calviello et al., 2019), thus making this

approach even more specialized on the input data. Another interesting TF activity

defining computational application (Azofeifa et al., 2018), demonstrated also on

the bulk samples, uses the assumption that active enhancers should be associated

with the presence of eRNAs. Using computed eRNA profiles they calculate the

enrichment of TF motif occurrences around eRNA sites and define a differential

motif displacement score between conditions. It is possible to apply such an approach

to ATAC-seq data (Tripodi et al., 2018), however no proper benchmarking on the

effect of eRNA peak calling and comparison to other enrichment tools were shown.

With the technological advancement of chromatin accessibility methods for single

cell data, it is possible to estimate TF activity on the single cell level. One of the first

tools developed to define such measures is chromVAR (Schep et al., 2017). In this

approach TF activities are defined as chromatin accessibility deviations for each TF

in each sample compared to other cells. Using predicted TFBS that overlap with

accessibility peaks it compares observed and expected fragment counts for each of

TFBS. Obtained raw deviation score is then compared to the background distribution

of deviations, that takes to account CG bias for each TFBS. The advantage of such a

method is that it computes one TF activity measure for each cell/sample, however it

doesn’t have encoded statistical methods to compare samples from different groups

between each other. One can use mean of deviations z-scores to summarize the

signal between samples of each group and compare such values with another group.

Development of computational strategies defining TF activity, especially for single

cell data, are extremely important for the analysis of the cell regulatory landscape.
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1.5 Chromatin regulation changes in leukemia

Hematopoiesis is one of the most controlled biological processes. The formation of

the spectrum of different blood cells from one source of stem cells is coordinated

through specific gene regulation programs. However, dysruption of such regulation

and evasion from normal hematopoiesis cause leukemia. Leukemia oncogenesis

results from both genetic and epigenetic factors. All leukemias can be divided

into four main classes: acute lymphoblastic leukemia (ALL), chronic lymphocytic

leukemia (CLL), acute myeloid leukemia (AML) and chronic myeloid leukemia

(CML). ALL is the most common type of cancer in children, whereas adults often

are diagnosed with the CLL and AML types. As genetic factors are inherited and

hardly can be removed, the main focus of possible high-level treatments of leukemia

is to understand what is causing the disruption of the gene regulatory mechanisms

in the cells, on which stage of the differentiation this is happening, and ultimately

prevent or revert this. Such a goal sounds almost impossible taking into account how

complex and dynamic the gene regulatory mechanisms are. However, one important

cellular molecular phenotype that can be measured nowadays and used for further

dissection of gene regulation is chromatin accessibility.

Figure 1.4: Chromatin regulators in leukemogenesis and leukemia maintenance. (a) Schematic
of leukemia initiation and aberrant self-renewal in the context of hematopoiesis. (b) Chromatin
regulators and transcription factors recurrently mutated in leukemia (red) and critical requirements
of self-renewal and cell survival (blue). Illustration is taken from [https://www.imp.ac.at/groups/
johannes-zuber/] and modified from Saygin and Carraway (Journal of Hematology & Oncology,
2017) under Creative Commons License 4.0.

https://www.imp.ac.at/groups/johannes-zuber/
https://www.imp.ac.at/groups/johannes-zuber/
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Genomic instability is one of the main characteristics of cancer (Hanahan and

Weinberg, 2011), which leads to the abnormal chromatin structure in the nucleus,

and it is very common for leukemia. Due to such genomic aberrations normal

enhancer-promoter interactions are disrupted. On top of that, leukemia often has

specific mutational signatures, especially affecting histones or chromatin modifying

enzymes (Boileau et al., 2019). Dysregulation of the DNA methylation is regarded

as key event for the development of leukemia development, with increased mutation

rate and abnormal functioning of DNMT and TET methyltransferases (Yang et al.,

2019). Altogether, it seems that cancer affects gene regulation on multiple levels

(chromatin, histone modifications, DNA methylation), and due to high interconnec-

tivity of these molecular phenotypes it is challenging to find the causal dysfunction

among them. Moreover, leukemogenesis is a very rapid process, difficult to catch

and analyze, with most of the samples coming already on the stage of the leukemia

maintenance (Figure 1.4).

Transcription factors play a central role in cancer as well. All the genetic pre-

disposition together with environmental changes are affecting specific TF binding

programs. Together with chromatin modifying enzymes TFs are balancing the reg-

ulation of normal hematopoiesis, by regulating histone modification codes, DNA

methylation and chromatin interactions. Specific TFs are known to be mutated in

cancer or have disrupted activity due to genomic rearrangements, such as MYC/MYB

(Delgado and Leon, 2010), CEBP family of TFs, RUNX family, NFAT TFs (Beekman

et al., 2018). Knowledge of the gene regulation changes occurring in the cancer

cells can increase our understanding of basic biological pathways and interactions

between different layers of epigenetics. More complex and targeted leukemia treat-

ments directed on the regulators of gene expression can be designed using such

knowledge.

We propose that chromatin accessibility is an ultimate measure of chromatin

changes occuring in leukemias, which can be used to predict in parallel TF activity of

multiple TFs. Recently, a lot of research was done to establish epigenomic landscape

of the different leukemic cells (Beekman et al., 2018; Rendeiro et al., 2016), and

this data should be used for the further investigation of the TF regulatory changes in

leukemia.





Chapter 2

Characterizing differential TF activity
with diffTF
In this chapter I will describe the methodology to define transcription factor (TF)

activity that we developed during my PhD and that was applied to the different

data in other chapters. The main ideas about this method were conceived by me

under the supervision of Dr. Judith Zaugg and Dr. Christian Arnold. Most of the

computational analyses of this chapter were carried by me, with some of the analyses

being made by Dr. Christian Arnold, Dr. Armando Reyes-Palomares and Giovanni

Palla. Additionally, I received statistical support on different stages of this project

from Dr. Bernd Klaus and Dr. Wolfgang Huber. The text in this chapter has been

originally written by myself and was taken and adapted from:

Ivan Berest†, Christian Arnold†, Armando Reyes-Palomares, Giovanni Palla, Kasper
Dindler Rasmussen, Holly Giles, Peter-Martin Bruch, Wolfgang Huber, Sascha Dietrich,
Kristian Helin & Judith B. Zaugg (2019) Quantification of Differential Transcription
Factor Activity and Multiomics-Based Classification into Activators and Repressors:
diffTF. Cell reports, 29(10), 3147–3159.e12. doi: 10. 1016/ j. celrep. 2019. 10.

106

doi:10.1016/j.celrep.2019.10.106
doi:10.1016/j.celrep.2019.10.106
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2.1 Introduction

As discussed in the first chapter, TFs are playing a crucial role for coordinating

and regulating various biological processes and pathways in the cell. It was shown

before that disruptions of TF motifs in the TFBS can partly explain variation in

H3K27ac histone mark signal across individuals (Grubert et al., 2015). Pioneer

transcription factors can bind directly to the nucleosomes and affect the chromatin

accessibility, histone modifications and methylation landscape of the nearby region

(Liu et al., 2015; Mayran and Drouin, 2018). Here, we revert this statement, and

use summarized changes of chromatin accessibility or histone modification marks in

the vicinity of TFBSs of a certain TF as a functional TF-specific readout of chromatin

changes in the cell, which we called TF activity. Such TF activity is rather cell type

specific and determined by the local chromatin microenvironment, potential binding

partners and cofactors, as well as local concentration of TF (Kribelbauer et al., 2019;

Whyte et al., 2013).

Despite the vast regulatory mechanisms controlled by TFs, they are usually low

abundant proteins in the cell, making it difficult to measure in high throughput

their abundance and activity with proteomics or biochemical assays (Kim et al.,

2007; Komatsu et al., 2010; Liu et al., 2011). On the other hand, chromatin

immunoprecipitation DNA sequencing (ChIP-seq), which provides information about

condition-specific TFBS for one TF at a time, does not quantify changes in TF activity

without additional spike-in normalization method (Bonhoure et al., 2014). On top

of this complexity, depending on the epigenetic background, the mode of action

of many TFs can vary from activating to repressing transcription of genes (Han

et al., 2018). Therefore, understanding the global TF mode of action will help to

unbiasedly interpret the effects of a changes in TF expression. Altogether, a unified

method for defining differential TF activity between conditions or cell types and

assigning global TF mode of action in a high-throughput manner is currently missing

in the field.

To overcome these limitations, we developed diffTF [https://git.embl.de/
grp-zaugg/diffTF)], a computational Snakemake based pipeline to define global

differential TF activities and to classify TFs into activators or repressors based on

the integration of chromatin accessibility (ATAC-seq,DNAse-seq) or histone mark

ChIP-seq data with gene expression (RNA-seq) data. In the following chapter we

will describe in detail the functionality behind this tool and benchmark it against

advanced motif analysis methods.

https://git.embl.de/grp-zaugg/diffTF
https://git.embl.de/grp-zaugg/diffTF
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2.2 Methods

2.2.1 Data sources

To benchmark and test our designed workflow we used previously published mul-

tiomics dataset from CLL patients (Rendeiro et al., 2016), downloaded from the

European Genome-phenome archive with the accession number EGAD00001002110.

From this dataset we used for the further analyses 52 ATAC-seq samples (25 of which

were classified as unmutated CLL and 27 as mutated CLL) and 8 RNA-seq samples

(4 unmutated CLL and 4 mutated CLL samples). Complete table of the used samples

with assigned metadata is shown in the Appendix A.

Apart from the sequencing data, we also used several TF binding profiles

databases, such as JASPAR and HOCOMOCO. We obtained JASPAR 2016 (Math-

elier et al., 2016) core position frequency matrices through the JASPAR REST-

ful API [http://jaspar.genereg.net/api]. As main set set of predictive PWMs

we used data from HOCOMOCO v10 (Kulakovskiy et al., 2015) database [http:
//hocomoco10.autosome.ru] containing 640 human and 423 mouse TF binding

models. We also downloaded ChIP-seq data for hg19 genome annotation from ReMAP
2015 (Griffon et al., 2015) [http://tagc.univ-mrs.fr/remap/index.php)].

2.2.2 ATAC-seq processing pipeline

As it was first described in the original ATAC-seq paper (Buenrostro et al., 2013)

raw ATAC-seq data is required to undergo several processing and quality filtering

steps before it can be used for the downstream analyses. We established an in-house

Snakemake ATAC-seq processing pipeline that performs several quality controls,

adaptor trimming, alignment, base quality recalibration, removal of mitochondrial

reads and indels and removal of CG bias, if needed, see workflow in Figure 2.1.

As the first step we perform sequence quality checks on the raw fastq data using

FastQC (Andrews, 2010), followed by the removal of adaptor sequences from the

Nextera Transposase with Trimmomatic (Bolger et al., 2014) [internal parameters:

ILLUMINACLIP:NexteraPE-PE.fa:1:30:4:1:true TRAILING:3 MINLEN:10]. Further we

continue with quality checks with FastQC (Andrews, 2010) after adapter trimming

and alignment to the reference hg19 human genome using Bowtie2 (Langmead and

Salzberg, 2012) algorithm [internal parameters: -X 2000 –very-sensitive]. We also

perform base quality recalibration using GATK suite (McKenna et al., 2010) with the

known variants for the hg19 genome.

http://jaspar.genereg.net/api
http://hocomoco10.autosome.ru
http://hocomoco10.autosome.ru
http://tagc.univ-mrs.fr/remap/index.php
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As the next step, the pipeline executes several filtering steps: removing mitochon-

drial reads and indels, removing reads with a low mapping quality (< 10), mark-

ing and removing PCR duplicates using Picard tools [http://broadinstitute.
github.io/picard/], adding 4bp on the forward and 5bp on the reverse strand

to the reads to deal with the transposase cleavage and also removing reads from

non-assembled contigs or alternative haplotypes. We also suggest to perform CG

bias detection and removal using deepTools (Ramírez et al., 2014) and Benjamini’s

method (Benjamini and Speed, 2012), as DNA polymerases used for ATAC-seq library

generation have CG bias that emerge in synthetically higher read counts for the

regions with high CG frequency.

Finally, the downstream analysis of this pipeline ends with peak calling using

MACS2 (Zhang et al., 2008) [internal parameters: -q 0.01 –slocal 10000 –nomodel

–nolambda] and removal of reads in the blacklisted region of the hg19 human

reference genome (Amemiya et al., 2019). Another function of this pipeline is

to generate visual and qualitative summary statistics, for example coverage plots,

transcription start site enrichment, fragment length distribution plots, that allow to

quickly judge the quality and complexity of the performed ATAC-seq experiment and

choose which potential further analysis can be performed.

Conversion to BAM
and cleaning

Base quality
recalibrationInitial QC Adapter trimming

(trimmomatic)

Raw sequencing
reads (fastq)

Removal of mitochondrial
and low quality reads

Marking and removal
of duplicates

Alignment
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Removal of reads
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Read start site
adjustment
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Final BAM files
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Figure 2.1: Schematic workflow of the ATAC processing pipeline

http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
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2.2.3 Description of diffTF basic mode workflow

diffTF is a complex computational pipeline that estimates global differential TF

activity for the pairwise comparisons between two or several conditions (basic mode)

and predict TF mode of action by integrating gene expression data (classification

mode), conceptual scheme shown in Figure 2.2. In the basic mode we summarize

genome-wide readout of changes in chromatin accessibility across multiple TF

binding sites and perform a statistical test to obtain TFs that are significantly different

between conditions. Whereas in the classification mode, by correlating TF expression

and chromatin accessibility changes in the TF binding sites, and comparing them

to the background, we predict global TF mode of action, for example activator or

repressor.

We can split the description of the diffTF basic mode to the 7 consecutive steps,

which are described below.

Generate consensus peakset

In order to have the same search space for all of the samples used in the analysis

we need to define a common consensus peakset. Users can either provide this

information or such a peakset will be generated based on the sample-specific peaks.

By using DiffBind (Ross-Innes et al., 2012) Bioconductor package functionality

we define consensus peakset across ATAC-seq samples with a parameter minOverlap
that state the amount of samples which should contain the peak. Afterwards we

only keep peaks from autosomes and sort them by coordinate, which is required for

further steps.

Predicting of TF binding sites

One of the essential principles of diffTF, is that it is region-oriented, therefore it

requires an input set of predicted TF binding sites. We use PWMscan tool (Ambrosini

et al., 2018) to scan hg19 reference genome with the set of TF binding models/PWMs

downloaded from HOCOMOCO v10 database (Kulakovskiy et al., 2015). By default,

we are using cutoff p-value equals to 0.00001 and background composition that is

similar to the human genome (0.29;0.21;0.21;0.29). Finally we sort the obtained

bed files of the predicted TFBS by coordinates. By default we are providing this set

of TFBS, however, it is important to note that one can use a completely different set

of predicted TFBS.
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Differential accessibility consensus peaks analysis

First of all, we calculate sample specific counts for the consensus peaks using the

featureCounts function from the Subread R package (Liao et al., 2019) [internal

parameters: -p -B -d 0 -D 2000 -C -Q 10 -O -s 0]. After that, we use obtained

counts in the DESeq2 (Love et al., 2014) and determine the fold change for our

pairwise comparisons for each peak. By default, at this step we are using cyclic

loess normalization defined by normOffsets function from csaw (Lun and Smyth,

2016) Bioconductor package. As compared to the default DESeq2 normalization by

library size, we found out that loess normalization is more robust to the chromatin

accessibility differences between the samples. One of the diffTF features that

distinguishes this algorithm from similar ones, is that it can use various design

formulas in the differential accessibility analysis, therefore potential batch effects

and covariables can be handled to improve statistical output of the analysis. During

this step in the pipeline we generate several diagnostic plots (MA plots, density plots

of counts before and after normalization, mean standard deviation plots), which

can help users to assess whether normalization is working correctly for the input

samples.

As diffTF can use all types of design formulas supported in DESeq2, it is also

applicable to the time series data. Described above fold changes are then calculated

as per unit of change of the variable. For example, negative fold changes would

mean that overall it was negative slope per unit of change, whereas positive fold

changes would mean opposite behaviour - positive slope.

Read counts for the intersected TFBS

At this step we overlap predicted binding TFBS with the consensus peaks using

bedtools (Quinlan and Hall, 2010) [internal parameters: -wa -wb] and extend each

overlapped TFBS by some value (default: 100bp) in both ends. Afterwards using

same parameters as for consensus peaks we calculate read counts per TFBS using

featureCounts function from the Subread R package (Liao et al., 2019). From the

obtained matrix of peaks and overlapped TFBS we choose one TFBS of certain TF

per peak with the biggest average read counts across samples.

Differential accessibility analysis for each TFBS

After counting reads for the intersected TFBS we proceed with differential accessi-

bility analysis for this sites using limma (Ritchie et al., 2015) R package with lmFit
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and eBayes functions. At this step we are also utilising the same design formula and

normalization factors that were defined in the differential accessibility analysis of

the peaks. As a result of this analysis we obtain log2 fold change values for each

of the selected TFBS and various diagnostic plots, similar plots that we generated

for the differential accessibility of the consensus peaks and additionally ECDF and

density plots summarizing log2 fold changes per TF.

Calculation of the differential TF activity

As different TFBS are positioned in the local environments varying by their CG

content and this can strongly affect chromatin accessibility of these sites, we are

adding CG binning step in order to summarize TF activity per each TF. First we

calculate CG content of the extended TFBS with bedtools (Quinlan and Hall, 2010)

nuc function. Then we group all extended TFBS in the n bins (default: 10) based on

their CG content. For each TF for each bin that has at least 20 TFBS, we compare

the TFBS distribution of log2 fold changes with all log2 fold changes of all TFBS

from all TFs that are assigned to the same CG bin, and calculate the difference in

means between these two distributions (TF-specific vs all). As we have n amount of

bins, the differential TF activity for each TF is defined as weighted mean difference

summarized across all CG bins, using as weight percentage of TFBS of this TF in

each bin.

Estimation of significance for differential TF activity

To assess statistical significance and the magnitude of the resulting differential TF

activity for a large datasets we recommend using a permutation approach. In essence,

we permute n times (default: 1000; dependent on the dataset size) our metadata

table and repeat steps involving computation of differential accessibility (peak- and

TF-specific) and then calculate empirical two-sided p-value per TF by comparing

the real value of differential TF activity with the permuted ones. Magnitude of

the p-values is related to the number of the samples in the input data (minimum

p-value equals to the 1/ n permutations) and can be defined with the binomial

coefficient (j/k) with j being the sum of samples across all dataset and k amount of the

samples for the smallest condition. Finally, we apply multiple testing correction using

Benjamini-Hochberg correction (Benjamini et al., 1995) and plot the distribution of

the permuted differential TF activity values as compared to the real one. Such an

approach is heavily computationally expensive. Finally, we observed no correlation
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between the number of TFBS per TF and the p-value obtained.

On the other hand, if the number of samples in a dataset is small, and it is

impossible to calculate meaningful p-value, we offer a different approach to assess

the significance of the differential TF activity that we called analytical approach.

Following this approach to calculate log2 fold changes for the consensus peaks

and TFBS we use DESeq2 instead of limma workflow, which is appropriate for the

small number of samples. Instead of starting permutations, we run extra steps to

define statistical significance of the differential TF activity. From the CG binning

step we perform for each bin per TF Two Sample Welch t-test and transform the

resulting t-score of the difference to z-score, which allows us to summarize them

across multiple bins per TF to the one p-value. As we calculate differential TF activity

as weighted mean difference between the CG bins, we also need to calculate the

weighted mean of the T-scores with estimation of the expected variance.

For the variance estimation for each TF we use propagation of uncertainty formula

in which ωi and xi represent the weight, as ratio of TFBS for each TF, and T-score

from the t-test for each bin i. Cov(xi, xj) is the covariance of two independent bins i
and j, and var(xi) is the variance of the T-score for xi.

var(x) =
n∑

i=1
var( ωi∑n

k=1 ωkxi

) + 2
i<j∑
i≥1

j≤n∑
j>i

ωiωjCov(xi, xj)︸ ︷︷ ︸
(weights sum up to 1)

var(x) =
n∑

i=1
var(ωi ∗ xi) + k

If all values are scaled by constant, the variance is scaled by the square of the

constant.

var(x) =
n∑

i=1
ω2

i var(xi) + k

This scaling is done to prevent a biased estimation of the variance with the

assumption that sum of it should be 1 for all bins. To not be biased for this, we

add to the variance var(x) calculation bootstrap using the boot library in R with

a number (default: 10000) of bootstrap replicates. During this we resample the

bin-specific data and use t-test against the full sample. After this we calculate the

variance var(xi) of the bootstrapped T-scores per each bin per each TF. Since we can

guarantee that the T-scores across all bins for each TF are independent, we correct

this variance using the pairwise covariance, that is estimated by Cov(xi, xj) for each
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bin using bootstrap data. From the 9,099 covariances for all the combinations of TFs

and bins, only 19 cases exceeded an absolute value of 0.05 and only one 0.2, while

over 91% had absolute values of smaller than 0.02, which make us believe that such

covariances have very small effect and may be neglected in the analysis.

Afterwards we calculate weighted T-score for all TFs and centralize the distribu-

tion by subtracting the mean, which we predict using maximum likelihood estimate

of the distribution mean with locfdr function from the locfdr (Efron, 2007) R pack-

age. Then we calculate p-values out of the obtained z-scores using the variance

as estimated above, followed by multiple testing correction of this p-values using

Bejamini-Hochberg method (Benjamini et al., 1995).

2.2.4 diffTF classification mode

There are already published databases, like TRRUST (Han et al., 2018), that classify

TFs on the mode of action based on text-mining in the published research. Nonethe-

less, when we tried to classify most differentially active TFs from the diffTF basic

mode using this database, we observed that most TFs are classified equally often both

as activator and repressor. This classifying strategy is of course biased to the amount

of published papers for a specific TFs and does not take into account different cell

types and conditions, which makes it difficult to judge objectively about data specific

TF mode of action.

To overcome this limitation, we decided to employ a novel data-driven approach

for classification of TFs having global activating or repressing functions in the

genome, based on the integration of TF specific gene expression and chromatin

accessibility at the predicted TFBS, conceptual scheme shown in Figure 2.2. Major

assumption of this method is that if TF is predominantly activator, then increasing

expression of it would lead to the increased chromatin accessibility of its putative

binding sites, whereas for repressive TFs, increased expression will result in the

decreasing chromatin accessibility.

We start with the normalization of the RNA-Seq count data for TFs (default:

quantile normalization) to reduce effects from gene expression outliers on the fur-

ther correlation analysis. After that we calculate the Pearson correlation coefficients

between the chromatin accessibility read counts of each TFBS per individual TF and

respective TF expression from each sample. Median of the resulting distribution

serves as a classifier for the mode of TF action. TFs with more positive correlations

are predicted to be activators and TFs with larger ratio of negative correlations are
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repressors. However, on this step we also calculate the correlation median for the

background set of regions for each TF, that consists of correlations from all TFBS,

excluding TF-specific TFBS, and TF expression. Such measure allows us to estimate

the noise level for each specific TFs. To distinguish real dependency of accessibil-

ity from the TF expression from the noise, we use percentiles of the background

distribution across all TFs, as a cutoff for defining activators and repressors from

the undetermined TFs. In the output classification we provide several variants of

such classification based on the different stringency thresholds (default: 0.1/0.9,

0.05/0.95, 0.01/0.99, 0.001/0.999, 0.00001/0.9999) that allow user to choose

needed level of stringency and flexibility for the downstream analyses.

At last, we measure if the foreground distribution of correlations (unique TFBS

per TF) and background distribution (all TFBS without unique TFBS per TF) are

significantly different between each other using one-sided Wilcoxon rank sum test.

P-value from this test serves as the additional threshold for defining activators and

repressors. TFs that were classified in previous steps as activators or repressors,

but are not significantly different from the background distribution, are moved to

the undetermined class. We store resulting values in the output files and provide

a visual representation of such correlations per each TF and summarized across all

TFs used in the analysis. This analysis was originally conceived by Dr. Armando

Reyes-Palomares.

2.2.5 Benchmarking robustness of diffTF

Importance of the TFBS scanning parameters

The essential part of diffTF analysis is defining the regions in the genome that are

potentially bound by the TFs. We are limiting predicted TFBS to the space of the open

chromatin peaks, but as we used external PWMscan (Ambrosini et al., 2018) algo-

rithm, we need to control if diffTF is unbiased from the cutoffs used in the scanning

procedure. For this we tested several p-value cutoffs in PWMscan (0.00005, 0.00001,

0.000001) and generated for these cutoffs different sets of predicted TFBS. Also,

we generated different sets of TFBS specific for the consensus peakset background

composition (0.27;0.23;0.23;0.27), as used by default nucleotide background com-

position ratios of the human genome (0.29;0.21;0.21;0.29). We transformed bed
file of consensus peaks to the fasta file with bedtools getfasta function, and then

calculated respective background nucleotide composition using fasta-get-markov
function from the MEME suite (Bailey et al., 2009).
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To compare different databases storing TF binding models information (in this

case HOCOMOCO v10 vs JASPAR 2016), we downloaded the respective PWMs from

HOCOMOCO and PFMs from JASPAR and converted them into integer log likeli-

hoods models with pwm_convert function from PWMscan standalone version [internal

parameters: -f “real” for HOCOMOCO; -f “jaspar” for JASPAR]. Finally, for all the

scenarios we performed prediction of possible TFBS using pwm_bowtie_wrapper
script from PWMscan. Part of these analyses were done by Giovanni Palla.

Impact of the differentially accessible peaks

A lot of approaches of ATAC-seq data analysis are centered around differentially

accessible peaks. Therefore, we tested if the signal from these peaks is prevalent

in comparison to all other peaks from consensus peakset. We used DiffBind (Ross-

Innes et al., 2012) R Bioconductor package [design formula: batch_number +

Condition] and determined 389 differentially accessible peaks for mutated CLL and

3569 peaks for unmutated CLL. We excluded these peaks from the consensus peakset

and reran diffTF on the whole CLL dataset using the default parameters. Obtained

differential TF activity we correlated using Pearson correlation with TF activities

gained from diffTF run with all peaks.

Validation using ReMap ChIP-seq data

For the validation of our predicted TFBS we used data from human ChIP-seq experi-

ments collected by ReMap (Griffon et al., 2015) and intersected them using bedtools

intersect function with respective predicted TFBS. Out of 640 human TFs available

from HOCOMOCO v10 we found overlap only for 157 common TFs from ReMap. We

reran diffTF pipeline using an intersected set of TFBS and excluding the intersected

set from the predicted TFBS (potentially noise). After this we correlated these groups

with each other and with the all predicted TFBS from HOCOMOCO v10.

Robustness to the internal diffTF parameters

As we checked the robustness of diffTF to the external scanning parameters, we

also need to verify if the signal that we obtain is robust to the internal diffTF
parameters. One of the key parameters is the motif extension parameter [default:

100bp]. We consistently changed only the motif extension width starting from 0bp

to 600 bp (0,50,100,200,400,600) and reran diffTF pipeline. Also, as discussed at

the previous section regarding the estimation of p-value, we checked the effect of
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amount of permutations for permutation approach and amount of bootstraps for

the analytical approach and observed that output of diffTF is not biased on these

parameters. This analysis was done by Dr. Christian Arnold.

Dependence on the dataset size and depth of sequencing

In order to check the dependence of the diffTF results on the number of samples

per dataset or per condition and sequencing depth of coverage of ATAC-seq data,

we implemented a subsampling scheme, repeating the diffTF workflow chang-

ing read depth and sample size. Importantly, for this analysis we used the whole

CLL dataset consisting of 84 ATAC-seq samples. For the subsampling based on

the read depth, we used non-GC corrected CLL dataset with 84 samples from 52

individuals and randomly downsampled bam files using DownsampleSam function

from Picard tools with random seeds and probability = k, ranging from 0.01 to 1

(0.01;0.02;0.06;0.125;0.25;0.5;0.75;1). For the downsampled bam files we calcu-

lated the median number of reads across all samples to determine the estimate of the

sequencing read depth of the sample required to gain particular accuracy. After this

we permute also the number of samples per condition, however, keeping the original

ratio of the samples from the initial dataset (60% of unmutated CLL vs 40% of

mutated CLL samples). The calculated ratios of conditions in the diffTF runs were

varying from 34+50 to 3+5 (decreasing to the 9+14 step by 5 and 7 respectively;

and from 9+14 to 3+5 in steps of 1), where the first and second number correspond

to the absolute number of distinct unmutated and mutated samples, respectively.

For each of these subsampling schemes, we performed 50 repetitions to minimize

the effect of the sampling noise. After running diffTF for each subsampling we

matched the results with the differential TF activity observed in the full dataset

and calculated the fraction of significantly differentially active TFs that show the

same sign of change with the full dataset. To differentiate changes between TFs

with different effects of signal, we separated all TFs into 3 bins using 0.33 and 0.66

percentile threshold of the differential TF activity from the full data. This analysis

was performed by Dr. Christian Arnold.
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2.2.6 Comparison with similar tools

Comparison with HOMER

To run HOMER (Heinz et al., 2010), as one of the standard motif enrichment analysis

tools, first, we extract fasta files from bed differentially accessible peaks for each

condition. Using obtained fasta files we generated a set of two-fold background

sequences using BiasAway (Hunt et al., 2014) software, taking to the account

the length and GC bias as main covariables. Lastly, we used HOMER (Heinz et al.,

2010), setting as foreground fasta files from the differentially accessible peaks and as

background corresponding unbiased fasta files for each of the conditions. To compare

obtained enrichments with diffTF results we transformed them to the percentage of

differentially accessible peaks enriched for the given motif and correlated them with

TF activities from diffTF using Pearson correlation.

Comparison with chromVAR

To compare diffTF results with the output of chromVAR (Schep et al., 2017) we

adjusted the chromVAR framework to work with the same input files. We started

by importing to R all TFBS that were predicted with PMWscan from HOCOMOCO

v10 database using chromVAR getAnnotations function. To have similar regions of

interest in the genome we also loaded our set of consensus peaks with getPeaks
function without resizing to keep them as similar as possible to the diffTF settings.

Using this data and metadata related to the CLL dataset we counted fragments in

paired-end mode from the bam files with the function getCounts [internal param-

eter: by_rg = FALSE]. Resulted counts matrix was corrected for the CG bias using

addCGBias function and filtered for non-overlapping peaks with default parameters.

To normalize the resulting counts for each condition we computed expectations,

which summarized the average fraction per peak in each sample for the two different

conditions. Fragment counts matrix, background set of peaks, expectations and peak-

TFBS matrix were used to compute deviations using computeDeviations function. AS

chromVAR was originally designed for the single-cell data, and does not provide

log2 fold changes for the pairwise comparisons, we needed to summarize sample

specific deviations and deviations scores. As for the diffTF we used weighted mean

difference between the CG bins as main measure of effect size, we decided to also

use mean of deviations within each condition in the chromVAR to define one number

of TF activity per TF per condition. It is important to note that as diffTF utilize more

complicated analysis to define log2 fold changes it is not prone to outliers as much
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as deviations from chromVAR summarized by simple mean. Finally, we calculated

Pearson correlation coefficient between summarized deviations/deviations scores

and diffTF TF activity values. Majority of this analysis was done by Dr. Christian

Arnold.
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2.3 Results

We developed diffTF as a complex computational workflow to assess genome-wide

differential TF activity based on the chromatin accessibility or chromatin marks

distribution between two or multiple conditions in a pairwise manner (basic mode)

and to provide data-driven classification of TFs based on their mode of action

(classification mode), see Figure 2.2. In the basic mode diffTF calculates log2

fold change for each of the predicted in silico TFBS and summarize them globally

across genome to define differential TF activity while normalizing for GC content.

Depending on the dataset size, the significance is estimated using a permutation

approach or an analytical approach, for a detailed explanation see section 2.2.3.
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Figure 2.2: Schematic representation of the diffTF workflow. On the left scheme of the diffTF
basic mode: For each TFBS of a given TF, the fold change between the two conditions is computed,
followed by comparing their distribution to a background set of fold changes obtained from GC
content-matched loci that do not contain the putative TFBS. On the right description of the diffTF
classification mode: TF expression levels are correlated with the accessibility of their target sites. If
correlations with its target sites are more positive than with the background distribution (non-target
sites), the TF is classified as putative activator; if they are more negative than with the background, it
is classified as putative repressor; and if they are indistinguishable from the background, it is classified
as undetermined. This figure was contributed by Dr. Judith Zaugg and is published in (Berest et al.,
2019).

In the classification mode, diffTF utilizes additional RNA-seq data and calculates

correlation of TF expression and every TFBS for each sample. We classify each TF

into putative activators (having mostly positive correlations), repressors (mostly
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negative correlations), or undetermined (similar to background) class, by comparing

the distribution of correlations between TF abundance and peaks with predicted

binding sites against all other peaks, see described analysis in the section 2.2.4.

All the following benchmarking analyses were completed on the CLL dataset, see

section 2.2.1 for the source of the data. In the next methods section 3.2.2 we will

discuss in detail all preprocessing parameters and results of diffTF pipeline applied

on this dataset. However, as such dataset is still one of the biggest up to date bulk

multiomics datasets (including ATAC-seq and RNA-seq), it is particularly useful to

perform various benchmarking analyses of our pipeline on it in order to define limits

and potential biases of diffTF.

2.3.1 diffTF is robust to the internal and external parameters

Before investigating biological interpretation of the diffTF results on the CLL dataset,

described in the Chapter 3, we used this dataset to check the effects of different

internal diffTF and external programs parameters on the final output, see methods

from section 2.2.5.

As one of the main input data for diffTF are predicted in silico TFBS (Ambrosini

et al., 2018), first, we concentrated on assessing potential influences of the different

parameters of TFBS predictions on the diffTF results. Varying the p-value threshold

in the PWM scanning, we observed that overall the correlation for the differential TF

activities derived using more lenient p-value as compared to default (5e-5 versus

1e-5) is quite high (R=0.87; Figure 2.3B), suggesting that we capture most of the

signal. At the same time by using more stringent parameters (1e-6 versus 1e-5) we

have lower correlation (R=0.62; Figure 2.3A), however the amount of predicted

TFBS with such parameters drops significantly. The proposed by authors p-value

cutoff of 1e-5 seems to be optimal for PWM scanning by capturing most of the

signal and still having sufficient amounts of TFBS per each TF. Similarly, we found

that by changing nucleotide background composition for the PWM scanning from

genome-wide to the consensus peaks specific we are not altering the signal (R=0.93;

data not shown). diffTF seems to be also robust to the input TF binding models that

were used from the different databases. For 412 common TFs from HOCOMOCO v10

and JASPAR 2016 databases we observed high correlation (R=0.69; Figure 2.3C),

considering that normalization steps and binding models formats are different for

each database. We also varied internal diffTF extension size from 0bp to 600bp,

but haven’t observed significant differences in the diffTF results.
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This figure was produced by myself and was published in (Berest et al., 2019).
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All performed above benchmarks showed the robustness of our pipeline to the

parameters for TF binding sites prediction. One of the possible reasons for this is the

fact that diffTF summarizes signal across many TFBS genome-wide and therefore

obtained signal is much stronger than the false-positive prediction noise.

By aggregating differential signals across multiple TFBS per TF diffTF can show

differences between samples in experiments with low biological signal. We tested this

by excluding differentially accessible regions (FDR=5%) from the consensus peakset

and rerunning diffTF analysis. Resulting TF activities showed high correlation

(R=0.89; Figure 2.3D) with the default full consensus peakset, therefore supporting

the hypothesis that diffTF can be applied to low-signal experiments.

As previously reported (Jayaram et al., 2016; Landt et al., 2012), TF binding sites

in silico predictions are intrinsically noisy and have a high ratio of false-positives

when compared to the experimental ChIP-seq experiments, we decided to compare

diffTF robustness via changing predicted TFBS to the ChIP-seq peaks. Overall, while

computing TF activities for the 157 common TFs between used predicted TFBS

and ReMap (Griffon et al., 2015) data we observed strong correlation (R=0.84;

Figure 2.3E) with TF activities derived from predicted TFBS. When excluding from

all TFBS the ones that overlap with ChIP-seq peaks we still observed sufficient

correlation (R=0.52; Figure 2.3F), suggesting that potential low affinity binding

sites not recognized by ChIP-seq but predicted in silico show the signal that has the

same direction high affinity binding sites. The analysis described above suggests that

diffTF utilize the power of the quantity of predicted in silico TFBS, however, does

not lose in the quality of signal.

Considering the fact that we are working with very large ATAC-seq datasets, we

decided to perform subsampling experiments which provide guidelines to the sample

sizes needed for the diffTF analysis. We found that diffTF analysis results in the

highly consistent results across permutation on the sample size and sequencing

depth for both significant (Figure 2.4A) and not significant differential active TFs

(Figure 2.4B). Taking into account subsampling analysis we state that for diffTF the

number of samples are more important than the sequencing depth of the samples.

We observed that even with 1 million reads per sample while using all samples from

dataset, we had a very high correlation (R=0.92) with the full dataset that has 21.4

million reads on average for the significant TFs. Such observations are in line with

the recent statements about the robustness of single-cell ATAC-seq data analyses to

low coverage for genome-wide summary statistics (Mezger et al., 2018).
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Figure 2.4: Robustness analysis for the sequencing depth and sample size. Each cell in the
heatmap shows the fraction of TFs that have the same direction of change as in the full dataset
for varying degrees of down-sampling sequencing depth and number of samples, averaged over 50
independent repetitions to minimize sampling noise. Sequencing depth is shown as a fraction of the
original data and median number of reads across samples, while the number of samples is given as
unmutated + mutated. (A) Only TFs that were deemed significant in the full dataset are considered
(5% FDR). (B) The fraction of TFs that were not assigned as significant with the full data are shown.
This figure was contributed by Dr. Christian Arnold and is published in the (Berest et al., 2019).

In summary, all results described above showed that diffTF analysis is robust

either to external and internal parameters in detecting differential TF activities,

and highlight the importance of summarizing signals from TFBS genome-wide, as

efficient and sensible way to deal with technical limitations, such as little biological

variation between conditions and low coverage.

2.3.2 Comparing diffTF results with similar tools

Lastly, we quantitatively compared diffTF pipeline results with modern computa-

tional tools widely used in the field that define motif enrichment and activity (Baek

et al., 2017; Heinz et al., 2010; Schep et al., 2017). More technical description of

the following analysis is described in the section 2.2.6.

We started by comparing diffTF with a typical TF motif analysis from HOMER
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(Heinz et al., 2010), that by matching two sets of sequences identify TF motifs that

enriched in one set relative to another. As described by HOMER tutorial, we used a

set of differentially accessible condition specific peaks and compared them to the set

of two-fold background peaks defined by BiasAway (Hunt et al., 2014). Notably, we

haven’t found any enriched motifs for M-CLL, while 32 of them pass the significance

threshold of 10% FDR for U-CLL. This can be due to the fact that for M-CLL samples

only 389 peaks were differentially accessible, as compared to 3569 differential peaks

defined in M-CLL. We correlated results of HOMER motif enrichment analysis and

diffTF differential TF activity, and observed significant correlation (R=0.63; Figure

2.5B) between the significant TFs from both analyses. Such correlation for U-CLL

samples supports the results of diffTF, however also highlight the impact of the

extra step of defining differential accessible peaks for the motif enrichment analysis.

Since diffTF uses the union of peaks from the open chromatin in all samples, it

tends to capture more signal than currently available differential peaks-oriented

motif enrichment approaches.

We also compared diffTF to the computational tools that have similar input files

and estimate, as final output, measures similar to diffTF differential TF activity,

chromVAR (Heinz et al., 2010) and BaGFoot (Baek et al., 2017). Unfortunately,

we were incapable of using our CLL dataset with BaGFoot workflow due to the

incomplete documentation and absence of the example files.

By comparing differential TF activity from diffTF to chromVAR results, which

was designed for analysis of single cell ATAC-seq data, we detected high correlation

overall (see Figure 2.5C-D). As chromVAR outputs two final measures (deviations

and deviations scores) we used both of them for correlation analysis, and observed

Pearson correlation between 0.75 and 0.93 dividing also by TF significance from

diffTF (splitting into 2 groups with a threshold of 10% FDR). Highly significant

differential active TFs from diffTF have the strongest correlation with deviations

from chromVAR analysis.

Even though we quantified very strong significant correlation between chromVAR

and diffTF results, there are distinct methodological discrepancies between them

worth noticing. First, chromVAR counts ATAC-seq fragments for peaks and not

exactly TFBS, with subsequent assignment of them to TFBS overlapping certain

peaks. On the contrary, diffTF always work in the TFBS specific space and count the

exact number of reads overlapping with TFBS. While we observed that overall log2

fold changes for peaks and respective TFBS are highly correlated (R=0.91; data not

shown), the range of TF-specific differences can vary greatly depending on the TF.



2.3. Results 33

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●
●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●
●

●

●

●
●

●

●

●

IRF2

−0.0010

−0.0005

0.0000

0.0005

0.0010

0.0015

NFIL3

0

25

50

75

100

−0.075 −0.050 −0.025 0.000

∆ TF activity [M-CLL]

H
O

M
E

R
 e

n
ri

c
h

m
e

n
t

 (
in

 %
)

H
O

M
E

R
 e

n
ri

c
h

m
e

n
t

 (
in

 %
)

0

25

50

75

100

0.00 0.05 0.10

A

∆ TF activity [U-CLL]

R = 0.63

Significance 10% FDR: none only x only y x and y

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

−2.5

0.0

2.5

5.0

−0.05 0.00 0.05 0.10−0.05 0.00 0.05 0.10

FDR < 0.1
●

●

No
Yesch

ro
m

VA
R 

de
via

tio
n 

sc
or

e
m

ea
n(

un
m

ut
at

ed
) -

 m
ea

n(
m

ut
at

ed
)

B

FDR < 0.1
●

●

No
Yes

∆ TF activity [U-CLL vs M-CLL]

ch
ro

m
V

A
R

 d
e

vi
a

tio
n

m
e

a
n

(u
n

m
u

ta
te

d
) 

- 
m

e
a

n
(m

u
ta

te
d

)

∆ TF activity [U-CLL vs M-CLL]

DC

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●
●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●●
●

●●

●

●

●

●

●●
●

●

●
●

●●

●

●

●● ●

● ●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●
●

●

●

● ●

●

●
●

● ●●
●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●
●
●

●

●
●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●
●

●
● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●●

●●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●●
●

●

●

● ●●
●

●

●

●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

● ●

●
●

●

●●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●

●
●

● ●

●

●

●
●

●
●

●
●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

● ●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●● ●

●
●●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●
●

●

●● ●

●

●

●

●

●
●

●
●
●

●●

●

●

●

●
●

●

●

●
●

●

●● ●
●

●

●

●

●

● ●
●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●● ●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●
●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●

●
●

●

●

●
●

●●
●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●
●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●
●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●●

●

●
●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●
● ●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●
● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●●●

●

●

●

● ●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

● ●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●
● ●

●
●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●

●●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●●●

● ●

●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●

●●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●●

●

●

●

●

●
●

●

●

●

● ●

●●

●

●●

●

●

●

●

● ●

●

●●●●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●
● ●

●●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●

●

●

●●

●

●

● ●
●

●

●

●

●

●●
●●

●

●●●

●
●

●
●

●●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●
●

●
●
●●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

● ●●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●●
●

●

●

●

●●

●●

●

●
●

●
●

●

●●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●
●
● ●

●

●

●

● ●●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●
●

●

●
●

●

●

● ●

●
●
●

●

●

●

●
●

●

●

●

●
●

−2

−1

0

1

2

−2 −1 0 1 2

lo
g

2
 f
o

ld
-c

h
a

n
g

e
 in

d
iv

id
u

a
l T

F
B

S

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●

● ●

●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

1.5

−1 0 1

log2 fold−change peak

lo
g

2
 f
o

ld
-c

h
a

n
g

e
 in

d
iv

id
u

a
l T

F
B

S

log2 fold−change peak

E F

Figure 2.5: Comparison of diffTF with similar tools. (A-B) Comparison with HOMER for M-CLL
(A) and U-CLL (B). Each point represents one TF. The x-axis shows the differential “TF activity” from
diffTF, while the HOMER enrichment (in %) is shown on the y-axis. Colors represent significance
(FDR < 10%): white - not significant in either analysis; light green and light blue - significant
only for the analysis from the x-axis or y-axis, respectively; purple - significant for both analyses.
Spearman correlation was computed only for TFs with FDR < 10% for the adjusted p-values from
the HOMER enrichment using Benjamini-Hochberg. 0 and 32 motifs were enriched in HOMER in
(A) and (B), respectively. In (B), a linear model is shown as a black line. (C-F) Comparison plots for
diffTF vs. chromVAR. (C)-(D): The diffTF “TF activity” is shown on the x-axis and the chromVAR
deviation (C) and deviation score (D) on the y-axis, as measured by the difference of the means
between the two conditions U-CLL and M-CLL. Only the 370 expressed TFs from the CLL analysis are
included. The two TFs that are mentioned in (E) and (F) are labeled in (C). (E)-(F): Correlation of
log2 fold-changes between U-CLL and M-CLL from peaks versus individual TFBS for two selected TFs.
Note that for each peak, the TFBS per TF with the highest average read count across all samples was
selected (see section @ref(basicdiffTF). (E) TF with the lowest correlation among all expressed TFs
from the second quadrant (NFIL3, 290 TFBS). (F) TF with the highest correlation among the set of
significant TFs according to diffTF (IRF2, 4362 TFBS). This figure was partly (chromVAR analysis)
contributed by Dr. Christian Arnold and is published in the (Berest et al., 2019).
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TFs with a low number of binding sites, such as NFIL3 (Figure 2.5E), can be

affected by this more, as peak-TFBS variation is stronger there due to the sample

size, whereas TFs with a high number of binding sites (Figure 2.5E-F) seems to not

have such strong variation. Also, diffTF calculates differential TF activity always

compared to the mean effect of differences in chromatin accessibility using common

space of TFs, therefore the resulting measure is relative. Whereas, chromVAR is

defining deviations summarizing only chromatin accessibility for only one TF across

all samples and assigning rather absolute value for each TF and each sample. Such

phenomenon can explain the observed shift to the positive side for the chromVAR

deviations values (424 TFs > 0; 66.3%; Figure 2.5E-F).

As chromVAR is not designed for bulk datasets, it never precisely compares the

differences in TF activity between two conditions (f.e. by computing log2 fold-

changes), however it can take into account sample metadata to calculate condition-

specific expectations. It provides one deviation value/score for each sample and each

TF, which was recommended by the authors to summarize by calculating the mean

deviation within each condition. The resulting measure is similar to the diffTF
differential TF activity, as we can see from the high correlation between these two

methods, though it is prone to outliers. diffTF does not have this problem as it uses

log2 fold-changes between pairwise comparisons taking into consideration different

covariates (f.e. batch, gender) that can be stated in the design formula.

In conclusion, the comparisons described above reported comparability between

diffTF and state-of-the-art tools in motif analysis, although featuring strength of

diffTF approach. It shows more sensible results, as compared to HOMER, and

provides a more dynamic and detailed workflow structure than chromVAR. As

compared to the chromVAR it also saves output from different steps of pipeline,

which can be used for various downstream analyses, and has higher flexibility of the

workflow. In addition to this diffTF goes one step further by directly integrating

chromatin accessibility data and gene expression with further TF classification into

activators or repressors, thus providing additional insights into their molecular

function.
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2.4 Discussion

Here, we presented a novel method for calculating genome-wide differential TF

activity from chromatin accessibility for a large set of TF motifs at the same time,

called diffTF (comprehensive documentation and starting vignette available at

https://diffTF.readthedocs.io/). Instead of chromatin accessibility data, as

input to the diffTF, without changing global assumptions sequencing data from the

active histone marks (e.g. H3K27ac) can be used (Reyes-Palomares et al., 2020). By

integration with gene expression classification mode of this method is able to classify

TFs by their general mode of action to the transcriptional activators or repressors in

the pairwise comparisons.

The idea of summarizing genome-wide correlations between TF expression and

putative target genes followed by defining differential TF activity based on such

correlations was already described before (Boorsma et al., 2008; Bussemaker et

al., 2001). Recent advances in the chromatin accessibility sequencing techniques,

such as ATAC-seq development, entitle us to use chromatin readout instead of

gene expression to calculate TF activity. First, chromatin is an upstream cellular

phenotype compared to the gene expression. Chromatin takes into account TF

expression, posttranscriptional and posttranslational modifications, and ideally acts

as direct sensitive readout of the gene regulation. However, defining correct TF

binding patterning based on the DNA sequence (Movva et al., 2019) and chromatin

data is still a limitation and further research in this area is required. Also, usually

there are much more opened peaks than genes, therefore enabling us to use stronger

statistical methods and increasing signal-to-noise ratio. Third, compared to the

enhancers, which regulate gene expression and often not well-defined in each cell,

effects on chromatin are usually locally defined.

As we described in this chapter we designed different statistical methodologies

for the estimation of significance of differential TF activity for the datasets with

different sample sizes. We recommend to use, so-called permutation approach,

with the heterogeneous datasets containing at least 15 samples. For the small-

scale datasets, which are often generated nowadays, we recommend using an

analytical approach, that is summarizing differences in each CG bin. We extensively

tested diffTF by changing different internal (motif size extension; peakset with and

without differentially accessible regions) and external parameters (TF motif scanning

parameters; using ChIP-seq ReMap data as a source of TFBS) and demonstrated the

technical robustness of diffTF basic mode. For the tested dataset diffTF tackled

https://diffTF.readthedocs.io/
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expected technical noisiness of TFBS prediction by summarizing signals across many

binding sites genome-wide. Using the power of the big dataset we identified that

diffTF is more sensitive to the amount of samples in dataset compared to the

sequencing depth of the samples.

Compared to the analogous methods that use chromatin accessibility as readout

of TF activity (Baek et al., 2017; Schep et al., 2017), diffTF is specifically designed

to analyze bulk ATAC-seq data and can accept as input ChIP-seq data for the histone

marks. Apart from this, diffTF integrates gene expression and chromatin accessibil-

ity data and classifies TFs into activators or repressors. As diffTF operates with log2

fold changes of the accessibility for each TFBS, such information is saved and can be

used for the further downstream analyzes specific for single TFBS. Such fold changes

are calculated taking into account local read depth biases between conditions, thus

diffTF is insensitive to region-dependent and sequence biases. As we used the same

design formula as in DESeq2, diffTF also allows easy analysis of the time course

data by calculating TF-specific slope change. However, as a consequence of diffTF
extensive output and flexibility in parameter and approach choices, it is quite a

computationally exhaustive pipeline. It is written with the Snakemake (Köster and

Rahmann, 2012) functionality and optimized for running in a cluster environment.

In summary, in this chapter we presented a brand-new computational method,

that utilizes chromatin and gene expression data, calculates differential TF activity

and assigns in a data-driven way the molecular mode of action to the TFs. The

main goal of diffTF is to help users by integration of multiple cellular molecular

phenotypes to generate provable hypotheses regarding TF regulation. Ultimately this

method can improve our understanding of the gene regulation mechanisms through

the TF regulatory networks.



Chapter 3

Identifying TF regulatory changes
between two subtypes of CLL
In the following chapter I will describe in detail the application of diffTF to the CLL

multiomics dataset. We will highlight relevant TFs that distinguish two subtypes of

CLL and validate diffTF classification mode into activators and repressors. All the

analyses applied to the CLL dataset were conceived by me under the supervision

of Dr. Judith Zaugg. An independent CLL dataset used for validation purposes was

provided by Holly Giles under the supervision of Dr. Sascha Dietrich and Dr. Wolfgang

Huber (Giles et al., in preparation). I received help in the computational analysis on

the different stages of this project from Dr. Christian Arnold. The text in this chapter

has been originally written by myself and was taken and adapted from:

Ivan Berest†, Christian Arnold†, Armando Reyes-Palomares, Giovanni Palla, Kasper
Dindler Rasmussen, Holly Giles, Peter-Martin Bruch, Wolfgang Huber, Sascha Dietrich,
Kristian Helin & Judith B. Zaugg (2019) Quantification of Differential Transcription
Factor Activity and Multiomics-Based Classification into Activators and Repressors:
diffTF. Cell reports, 29(10), 3147–3159.e12. doi: 10. 1016/ j. celrep. 2019. 10.

106

doi:10.1016/j.celrep.2019.10.106
doi:10.1016/j.celrep.2019.10.106
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3.1 Introduction

In the previous chapter we described a novel computational framework diffTF,

that defines TF activity and provides TF activator/repressor classification. In this

chapter we will mostly focus on the application of this method to the largest at a

time multiomics (ATAC-seq, RNA-seq, histone marks ChIP-seq) dataset (Rendeiro et

al., 2016), generated from the B-cells of the chronic lymphocytic leukemia patients,

and show that diffTF recover known and novel transcription factors, which are

different between two divergent subtypes of the B-cell CLL.

CLL is a highly heterogeneous disease, originating mostly in the lymph nodes

and affecting lymphocytes, as well as lymph node microenvironment. It is one of the

most common cancers in the world, especially for adults. Based on the progression

of the disease and particularly on the molecular phenotypes of the cancer cells, there

are two major subtypes of CLL (mutated: M-CLL and unmutated: U-CLL), which

are described in detail in the research for the past 20 years (Cordoba et al., 2015;

Guièze and Wu, 2015; Strati and Shanafelt, 2015). This classification is purely

based on the mutation status of the IGHV locus in the B-cells, however, distinguish

different epigenetic programs in the CLL cells. In general, patients with M-CLL have

B-cells that proceed through normal affinity maturation and have high activity of the

BCR and NF-κB signaling pathways, that results in a longer survival rates (Neu and

Wilson, 2016). Patients with U-CLL do not reach the affinity maturation, potentially

due to the multiple genomic aberrations (Döhner et al., 2000), and overall have

shorter survival time and higher frequency of relapse after treatment (Furman et al.,

2014).

Here, while using chromatin accessibility and gene expression data as input to

diffTF, we discovered novel and already known in the literature TFs, associated

with CLL, that are differentially active between U-CLL and M-CLL. We also predicted

their mode of action with the diffTF classification mode, and validate these results

both experimentally, using external CLL dataset treated with Ibrutinib, and in silico.

By performing TF footprint analysis based on the ATAC-seq data we also highlight

the importance of the flank regions accessibility of the TFBS in the distinguishing

between activators and repressors.
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3.2 Methods

3.2.1 Data sources

We used CLL multiomics data (ATAC-seq and RNA-seq) previously published in

(Rendeiro et al., 2016), below referred as original CLL dataset, which was described

in detail in the previous chapter in the section 2.2.1. For the diffTF analysis below

we used HOCOMOCO v10 database with 640 human TF binding models (Kulakovskiy

et al., 2015). To compare our CLL TF classification for activators and repressors

we used available TF-target interactions database TRRUST v2 (Han et al., 2018)

[http://www.grnpedia.org/trrust/)]. For the chromatin state enrichment below

we downloaded 18-state model from the chromHMM (Ernst and Kellis, 2012) primary

B cells data (Kundaje et al., 2015).

For the independent validation of the AR classification we used paired ATAC-seq

and RNA-seq dataset, later called Ibrutinib CLL dataset, from different 4 CLL patients

(2 U-CLL versus 2 M-CLL), where all samples were treated with DMSO and Ibrutinib

(Giles et al., in preparation). The following 3 paragraphs about generation of ATAC-

seq and RNA-seq data for the Ibrutinib CLL dataset is a direct copy from (Berest et

al., 2019) and were provided by Holly Giles.

Cell source of the Ibrutinib CLL dataset

“Peripheral blood was taken from 4 CLL patients (2 male, 2 female, aged between

61 and 74) and separated by Ficoll gradient (GE Healthcare), mononuclear cells

were cryopreserved on liquid nitrogen. Samples were later thawed from frozen

as previously described (Dietrich et al., 2018) and MACS sorted for CD19 positive

cells (Milteny autoMACS®). The cells were resuspended in RPMI (GIBCO, Cat.No.

21875-034), with the addition of 2mM glutamine (GIBCO, Cat.No. 25030-24), 1%

Pen/Strep (GIBCO, Cat.No. 15140-122) and 10% pooled, heat-inactivated and sterile

filtered human type AB male off the clot serum (PAN Biotech, Cat.No. P40-2701,

Lot.No:P-020317). 5ml of cell suspension was cultured in 6-well plates (Greiner Bio-

One Cat.No. 657160). To prepare the treatments, Ibrutinib (Selleckchem, Cat.No.

S2680) was dissolved in Dimethyl sulfoxide (DMSO; SERVA, Cat.No. 20385) and

stored at -20°C. After thawing, Ibrutinib was prediluted in DMSO and was added to

the plates. Control wells were treated with DMSO in the same concentration as with

Ibrutinib treatment. In both treatment and control, the final DMSO concentration

was 0.2%. Cells were incubated at 37°C and 5% CO2 for 6 hours with or without

http://www.grnpedia.org/trrust/
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500nM ibrutinib. The final cell concentration was 2x10^6 cells/ml. After treatment,

cell viability and purity was assessed using FACS. All samples had a viability over

90% and over 95% of CD19+/CD5+/CD3- cells.”

Generation of ATAC-seq libraries for the Ibrutinib CLL dataset

“ATAC-seq libraries were generated as described previously (Buenrostro et al., 2013).

Cell preparation and transposition was performed according to the protocol, starting

with 5x10^4 cells per sample. Purified DNA was stored at -20°C until library

preparation was performed. To generate multiplexed libraries, the transposed DNA

was initially amplified for 5x PCR cycles using 2.5 µL each of 25 µM PCR Primer

1 and 2.5 µL of 25 µM Barcoded PCR Primer 2 (included in the Nextera index kit,

Illumina, San Diego, CA, USA), 25 µL of NEBNext High-Fidelity 2x PCR Master Mix

(New England Biolabs, Boston, Massachusetts) in a total volume of 50 µL. 5 µL of

the amplified DNA was used to determine the appropriate number of additional

PCR cycles using qPCR. Additional number of cycles was calculated through the

plotting of the linear Rn versus cycle, and corresponds to one-third of the maximum

fluorescent intensity. Finally, amplification was performed on the remaining 45

µL of the PCR reaction using the optimal number of cycles determined for each

library by qPCR (max. 13 cycles in total). The amplified fragments were purified

with two rounds of SPRI bead clean-up (1.4x). The size distribution of the libraries

was assessed on Bioanalyzer with a DNA High Sensitivity kit (Agilent Technologies,

Santa Clara, CA), concentration was measured with Qubit® DNA High Sensitivity

kit in Qubit® 2.0 Flurometer (Life Technologies, Carlsbad, CA). Sequencing was

performed on NextSeq 500 (Illumina, San Diego, CA, USA) using 75bp paired-end

sequencing, generating ~450 million paired-reads per run, with an average of 55

million reads per sample.”

RNA-seq library generation for the the Ibrutinib CLL dataset

“RNA was isolated using the miRNeasy Mini Kit (QIAGEN, Cat.No. 217004), starting

with 1x10^7 cells per sample. Cells were lysed in QIAzol Lysis reagent and homog-

enized using QIAshredder (QIAGEN, Cat.No. 79654), homogenized cell lysates were

stored at -80°C until RNA extraction. RNA extraction was performed according to

miRNeasy protocol and purified RNA was stored at -80°C until further processing.

RNA integrity was checked using the RNA Nano 6000 Assay Kit of the Bioanalyzer

2100 system (Agilent Technologies, Santa Clara, CA), and concentration was mea-
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sured with Qubit® RNA Assay Kit in Qubit® 2.0 Flurometer (Life Technologies,

Carlsbad, CA). Stranded mRNA-Seq libraries were prepared from 250ng of total RNA

using the Illumina TruSeq RNA Sample Preparation v2 Kit (Illumina, San Diego, CA,

USA) implemented on the liquid handling robot Beckman FXP2. Obtained libraries

that passed the QC step, which was assessed on the Agilent Bioanalyzer system, were

pooled in equimolar amounts. 1.8 pM solution of each pool of libraries was loaded

on the Illumina sequencer NextSeq 500 High output and sequenced uni-directionally,

generating ~450 million reads per run, each 85 bases long.”

3.2.2 Data processing

ATAC-Seq data processing

For both CLL datasets used in this chapter (original and Ibrutinib treated) we used

previously described in the section 2.2.2 in-house ATAC-seq processing pipeline. We

ran it using default parameters for the hg19 reference genome. Output diagnostic

plots showed a typical pattern for ATAC-seq data of retaining a number of reads across

processing steps, with major filtering at the removing duplicates and mitochondrial

reads procedures. The fragment length distributions for the CLL data showed peaks

with nucleosomal length periodicity and were similar to the quality check plots of

the ATAC-seq data described in the [buenrostro_2013]. As we observed for this data

that the amount of reads were biased by the GC content of the region, we used GC

bias removal procedure explained in detail in the section 2.2.2 to remove it from

the ATAC-seq samples. Lastly, for the original CLL dataset we generated PCA plots

for variables from the metadata and didn’t observe separation of the samples for

majority of them (batch, IGVH homology, gender, the patient age at data collection

or the patient age when diagnosed), except the IGVH mutational status separates

data clearly into U-CLL and M-CLL subgroups.

Running diffTF analysis

For the diffTF analysis of the original CLL dataset we used 52 samples (25 U-CLL

and 27 M-CLL) ATAC-seq samples from 88 downloaded, see Appendix A for full

dataset metadata. We filtered out samples with undefined IGVH mutational samples

and took only first (ending with "_1" extension) replicate per sample in order to

remove potential over representation individuals bias. First using DiffBind (Ross-

Innes et al., 2012) we made a consensus peakset, consisting of 48065 peaks, with
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the minimum overlap parameter of the unique samples defined as 5. We added 100

bp on each side of the predicted TFBS, as motif extension parameter. To calculate

differential chromatin accessibility signal at the TFBS and peaks we used following

design formula (“~ batch + IGVH mutational status”) and fitType “local” parameter.

Batch variable refers to the sequencing batch of the data and IGVH mutational status
to the U-CLL or M-CLL metadata. Finally, we used 10 GC bins parameter in our GC

binning approach, in order to remove additional GC related bias for the distribution

of TFBSs.

We performed diffTF analysis with the same parameters as described above for

the Ibrutinib CLL dataset, except changing of the design formula for the DESeq2
analysis: "~ treatment + IGVH mutational status. Treatment parameter refers to the

treatment of the cells with DMSO or Ibrutinib.

RNA-seq processing for CLL data and AR classification

We downloaded ten RNA-seq raw fastq files for the original CLL dataset with respec-

tive metadata. Similarly to the ATAC-seq processing pipeline we started with initial

quality control using FastQC and adaptor trimming with Trimmomatic [internal

parameters: ILLUMINACLIP:Truseq-2.fa: 1:30:4:5:true TRAILING:3 MINLEN:20].

After that we aligned cleaned RNA-seq fastq files to hg19 reference genome using

STAR algorithm (Dobin et al., 2013) [internal parameters: -outFilterMultimapNmax

2 -quantMode GeneCounts] with GENCODE (Harrow et al., 2012) v29 gene annota-

tion. Based on the resulted amount of reads for the bam files and quality controls

we removed 2 RNA-seq samples with low read counts (< 10 millions of reads). For

the remaining RNA-seq samples we used DESeq2 package with “~ IGVH mutational
status” design formula to define log2 fold changes for each gene. Afterwards we

filter out genes that have less than 5 reads on average in each condition, and have

a median expression of 0. Based on this filtering we removed 270 not-expressed

TFs from the used HOCOMOCO v10 640 human TFs. The resulting set of expressed

TF gene expression values were used to define TF mode of action with diffTF
classification mode. As default stringency percentile threshold we used 0.05/0.95

cutoff.

RNA-seq data for the Ibrutinib CLL dataset was analysed with the same tools and

parameters as described above, with only exception that we used “~ treatment +
IGVH mutational status” design formula for the DESeq2 analysis.
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3.2.3 Biological validation of the diffTF analysis

GO terms related with CLL differentially active TFs

Using org.Hs.eg.db Bioconductor annotation package v3.8.2 we assigned ENSEMBL

gene IDs for the TFs of interest from diffTF CLL analysis with GENCODE v29

(Frankish et al., 2019) annotation and associate them with the respective GO terms

for all biological processes. To define receiver operating characteristic curves for

all GO terms we used precrec (Saito and Rehmsmeier, 2017) v0.10.1 R package

with all significant TFs (FDR < 10%) from the diffTF analysis on the original CLL

dataset. After that we kept only GO terms with AUC > 0.6 and having not more

than 90 TFs and not less than 9 TFs, data is shown in the Appendix C.

PWM similarity clusters

We grouped HOCOMOCO v10 TF motifs based on their PWM similarity using

matrix-clustering (Castro-Mondragon et al., 2017) algorithm from the RSAT suite

(Medina-Rivera et al., 2015). For that we downloaded PWMs for all human TFs

from HOCOMOCO v10 database and input them to the web interface if the matrix-

clustering, which performed the clustering with the following parameters: ncor =

0.4, cor = 0.6 and average linkage rule. Described clustering resulted in 127 PWM

clusters [https://bit.ly/2J9TaaK], which we used to summarize the signal per

cluster for CLL diffTF analysis.

Differential TF activity correlation with target gene expression

To predict potential target genes for TFs of interest we used in silico predicted

TFBS obtained from diffTF and annotated each of them to the closest gene with

annotatePeak function from ChIPseeker (Yu et al., 2015) Bioconductor (Huber et

al., 2015) package using the annotation to the hg19 reference genome. Only TFBSs

located within a distance of -2kb to +500 bp from the transcription start sites of the

genes were used for further analysis. Using expression data for the target genes from

RNA-seq of the original CLL dataset, we calculated the median log2 fold changes of

the target genes per TF, using only unique target genes. For the final analysis we

filter out TFs that have less than 200 and more than 1500 unique target genes.

https://bit.ly/2J9TaaK
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Enrichment of chromatin states for CLL differentially active TFs

For every significant TF (adjusted p-value < 0.1) from diffTF analysis for the original

CLL dataset we extracted unique TFBSs per TF. After that we overlapped these TFBSs

with downloaded expanded 18-state model from the chromHMM (Ernst and Kellis,

2012) analysis of the primary B cells (Kundaje et al., 2015) with bedtools intersect
function. Then we calculated the fraction of the binding sites overlapping each

chromatin state per TF. Obtained data we subsequently grouped using predicted TF

mode of action (activator or repressor) and visualized the distributions as boxplots

for each chromatin state. Activator and repressor distributions of TFBS fractions

were compared using Wilcoxon rank sum test.

3.2.4 TF footprinting analysis

To perform in-house developed TF footprinting analysis for the original CLL dataset,

we first downsampled all 52 used for diffTF analysis samples to the sample with

lowest amount of reads (~14.5 millions of reads) and merged equal amount of

samples (25 samples) into the U-CLL and M-CLL bam file. For all 370 expressed

TFs that were used for diffTF classification mode, we took unique set of TFBSs,

excluding TFBSs that were overlapping between all activators and all repressors,

and used dnase_to_javatreeview.py script from the pyDNase software (Piper et al.,

2015). By doing so, we obtained a set of base-specific Tn5 insertions matrices for

all unique TFBS, importantly splitting activators and repressors, per each TF. We

removed regions overlapping with hg19 blacklisted regions and huge outliers having

more than 1000 counts per position. To normalize Tn5 insertions per base pair, we

calculated averaged amount of reads for all consensus peaks with featureCounts
function from the Subread (Liao et al., 2019) R package [internal parameters: -p -B

-d 0 -D 2000 -C -Q 10 -O -s 0].

To generate comparable genomic chromatin accessibility background, we binned

the consensus peaks in a 200 bp bins with a makewindows bedtools function and

randomly selected 10000 regions for which use the same dnase_to_javatreeview.py
script with the same parameters and normalization as described above. Using scaled

by each TFBS average Tn5 insertions per bp for all expressed TFs we performed a

PCA analysis and visualized comparison of the first two PC components covering

36% of the variance. To generate summarized footprint plots for each quadrant of

the obtained PCA plot we used the same scaled data.
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3.3 Results

3.3.1 Differentially active TFs between U-CLL and M-CLL

To gain more insights into the differences in the regulatory mechanisms between

U-CLL and M-CLL, we applied diffTF to the large multiomics dataset containing

almost equally these two subtypes of CLL, dataset described in detail in the section

3.2.1. After running diffTF basic mode we identified 68 differentially active TFs

[FDR < 10%] between respective cancer types, see Figure 3.1A. Taking into account

previously published research about TF regulatory networks of the CLL we anno-

tated 44% (30 TFs) of them as being already known with CLL, with 80% (24 TFs)

completely agreeing with the direction of the comparison (e.g. active in M-CLL or

U-CLL), see Appendix B for more details of this assignment and potential functions

of each TF. Independently, we also performed GO enrichment analysis of the dif-

ferentially active TFs, and found that they mostly reflected the known differences

in molecular regulation between M-CLL and U-CLL, such as cell-surface signaling,

immune response and leukocyte differentiation GO terms. Selected enrichments are

shown in the Figure 3.1B, as well as full list of enrichments in the Appendix C.

As our diffTF results completely rely on the TF motifs of interest and they show

a lot of similarities between each other (Lambert et al., 2019), we decided to group

used human TFs into the TF motif clusters based on the PWM similarities using

matrix-clustering RSAT tool (Castro-Mondragon et al., 2017) [clustering is available

here:https://bit.ly/2J9TaaK]. Most of the differentially active TFs from the CLL

analysis aggregated into ten clusters, see top plot in the Figure 3.2A.

For the U-CLL we identified cluster 40, which contains various IRF TFs and STAT2,

having the strongest TF activity compared to the M-CLL. All of these factors were

previously associated with U-CLL and are part of the Toll-like receptor signalling

pathway, that is known to have disrupted activity between U-CLL and M-CLL and

influences the rate of cell proliferation, affect cell cycle regulation and apoptosis

(Arvaniti et al., 2011; Havelange et al., 2011; Slager et al., 2013). U-CLL is known

to be very fast progressive cancer, therefore proliferation rates of it are much more

pronounced compared to M-CLL. Cluster 18, which is mostly active in the U-CLL,

includes MYC factors, that are known to increase proliferation in the cells (Landau

et al., 2015; Yeomans et al., 2016). Another known U-CLL identified TF is PAX5

which affects B-cell to plasma cell differentiation, that leads to overall decreased cell

survival and poor patient prognosis (Ghamlouch et al., 2015).

https://bit.ly/2J9TaaK
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Figure 3.1: diffTF results for the CLL dataset. (A) Volcano plot of differential TF activity between
U-CLL (n = 27 biological replicates) and M-CLL (n = 25 biological replicates). Significance threshold
(10% FDR) is indicated with a dotted line. TFBS, number of predicted TFBSs. p values are obtained
through diffTF using the empirical approach and adjusted by the Benjamini-Hochberg procedure (y
axis). (G) Receive-operator characteristic (ROC) curves for three selected Gene Ontology (GO) terms
with high area under the curve (AUC) based on all differentially active TFs (FDR < 10%) between
U-CLL and M-CLL. See Appendix C for the full list of significant GO terms. This figure was produced
by myself and was published in the (Berest et al., 2019).

In comparison to U-CLL, for M-CLL we found TFs that usually correspond to the

normal functionality of B cells and usually are parts of the B-cell receptor (BCR),

nuclear factor κB (NF-κB) and Wnt signaling pathways. TF clusters with the most
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activity for M-CLL resemble ROR factors, which are known to activate NF-κB and

Wnt pathways in CLL (Minami et al., 2010), and the GATA family of TFs, that are

essential factors of self-renewal mechanism in the hematopoietic stem cells and

priming towards lymphoid differentiation (Kikushige et al., 2011). Among known

TFs for M-CLL we also found EGR TF cluster, which regulates BCR signaling (Damm

et al., 2014) and is important for DNA methylation regulation in CLL (Oakes et

al., 2016). Interestingly, we also found an active GLI1 factor, which is downstream

regulator of the Hedgehog signaling pathway, supporting the known effect of this

factor on the apoptosis and survival of the B cells in M-CLL (Kern et al., 2015).

Recently, also identified for M-CLL with diffTF, PPARδ factor was linked to M-CLL

regulation through metabolic pathways (Li et al., 2017).

Apart from 30 TFs that were already associated with CLL regulation, we also

identified 38 novel TFs, that are significantly differentially active between U-CLL and

M-CLL, see Figure 3.1A. It seems that there is a disrupted regulation of the circadian

clock, as we have found several new TFs (BMAL1 and NR1D1) being differentially

active in both conditions, as well as it was known association of CLOCK with CLL

(Rana et al., 2013). In light of the recent research, suggesting that escaping of the

circadian clock is an emerging hallmark of cancer (El-Athman and Relógio, 2018),

such findings can lead to potential new discoveries in the CLL development. As

novel differentially active TFs more active in U-CLL we can highlight BHE40 (basic

helix-loop-helix family), which is a regulator of B-1a cells differentiation (Kreslavsky

et al., 2017); TFAP4 that affects mitotic division (D’Annibale et al., 2014); TFE3 and

TFEB factors that are known to be overexpressed in renal cancers, mainly because of

the chromosomal fusions (Kauffman et al., 2014); TF7L2 is regulating MYC activity

in the cancer cells (Hou et al., 2016). TFs that are active in M-CLL compared to

U-CLL are mostly associated with terms relevant for the differentiation of B-cells

and cancer cells maintenance, such as regulation of apoptosis by ZN784 (Kasim

et al., 2017), cell-cycle progression by ZBTB6 (Chevrier et al., 2014) and B-cell

lymphopoiesis regulated by ARI3A factor (Zhou et al., 2015). We also observed

that GFI family members(GFI1 and GFIB) are less active in U-CLL, therefore their

activation in M-CLL can affect regulation of apoptosis, that is decreased in the M-CLL

B cells (Coscia et al., 2011).

In summary, the described diffTF results from the original CLL dataset cover

much of the known biology of the differences between U-CLL and M-CLL and

identifies approximately the same amount of significantly differentially active novel

TFs, that have a functional relevance for the development and maintenance of CLL.
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3.3.2 Molecular function of the CLL differentially active TFs

In the previous section we showed that diffTF is able to identify differentially active

TFs between different types of CLL. However, it is important to know the molecular

mode of action of the TFs, if they activate or repress target genes expression. Using

known TF-target gene TRRUST database (Han et al., 2018) we were not able to

classify TFs by their mode of action, as the majority of TFs were annotated in the

published literature having both repressing and activating activity, see Figure 3.2C.
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Figure 3.2: Activator/repressor classification for the CLL dataset (A) Boxplots for the clustering
of TFs based on the similarity of their PWMs as defined in the section 3.2.3 for the differential
“TF activity” between U-CLL and M-CLL. The top cluster plot is based on the significant TFs only
(FDR < 10%), with all TFs being labeled. The bottom plot shows all remaining PWM clusters with
at least 2 members (TFs), with the distribution of activators, repressors, and undetermined TFs
displayed for each cluster at the right side. Only the most negative and most positive TFs are labeled
in each cluster,and all TFs are colored by their classification. (B) Difference between foreground and
background distributions for all TFs are displayed as a heatmap. Each horizontal line represents the
subtraction of the binned foreground minus the binned background correlation distributions (40 bins)
for one TF. TFs are sorted from strongest predicted activator to repressor. (C) Barplot of the number
of studies detected by text-mining for expressed TFs in CLL whose transcriptional activity on studied
target gene was classified as activator (green bars) or repressor (red). Panel A was produced by
myself and panels B-C were devised by Dr. Armando Reyes-Palomares. Shown graphs are published
in the (Berest et al., 2019).
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We decided to use the available CLL RNA-seq data and developed a data-driven

classification mode of diffTF, that integrates gene expression and chromatin acces-

sibility data and classify TFs into activators or repressors, described in the section

2.2.4 and visualised in the Figure 2.2. The main assumption of the method is that

TFs classified as activators will have increased chromatin accessibility of the target

sites when highly expressed, and repressors will have decreased chromatin profiles

of the target sites with increased abundance.

Upon employing diffTF classification mode to the original CLL dataset we

classified almost 40% of the expressed TFs (146 out of 370) as supposed activator or

repressor. Interestingly, when calculating distributions of devised functional classes

per TF cluster based on PWM similarity, we didn’t observe a single cluster with the

same role (Figure 3.2A). Such observation highlights that TFs from the same TF

cluster, even though might have redundant TFBS, are controlled differently on the

gene expression level. The heatmap in the Figure 3.2B summarizes the differences

between foreground (peaks with TFBS of specific TF) distributions of correlations

between TF expression and peaks accessibility as compared to the background

distributions (peaks without TFBS of specific TF) of correlations for all TFs. As this

heatmap is sorted by median correlation, we observe typical enrichment of signal

for activators in the top right part of the heatmap, and respective enrichment in the

bottom left part for the repressors. However, more than 200 TFs were not showing

significant differences between foreground and background correlation distributions

and classified as undetermined. As our classification is based on only gene expression

and chromatin accessibility it will be not able to assign activator or repressor role to

the TFs that are regulated on the posttranslational level and have low variation of

the expression level. Also if TF is acting relatively equally genome-wide as activator

or repressor, it would be classified as undetermined.

3.3.3 Validations of diffTF classification mode

As described above we tried to validate diffTF classification mode using text mining

on the external TF-target genes TRRUST database, but were not able to define

significantly prevalent mode of action for TFs of interest. Therefore, we started with

possible in silico validations of the method. First, based on the global assumption

of the classification mode we expected to observe significant correlation between

differential TF expression and differential TF activity from diffTF basic mode for

activators, and negative correlation for the repressors respectively.
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Figure 3.3: Experimental validation for the activator/repressor classification (A) Correlation of
differential TF activity and differential gene expression for predicted activators, undetermined TFs,
and predicted repressors for the comparison of U-CLL and M-CLL (top) and for CLL samples treated
with ibrutinib versus control treatment with DMSO (bottom). TF classifications were obtained from
the original CLL dataset. Spearman’s rho and p value, as well as the odds ratio (OR) and p value of
Fisher’s exact test, are reported in the figure. The number (n) of TFs is indicated for each quadrant.
For the bottom row, only TFs that were significant in diffTF in the CLL dataset (FDR < 10%) are
shown. Color shadings indicate the observed versus the expected ratio for each quadrant (blue, less
than expected; red, more than expected). (B) Fraction of TFBSs overlapping specific chromatin
states are shown for putative activators (green) and repressors (red). Only chromatin states with
significant differences between activators and repressors are displayed (Wilcoxon test, p < 0.05). (C)
Correlation of differential TF activity (diffTF U-CLL versus M-CLL) and the differential expression of
target genes (median log2 fold change U-CLL versus M-CLL) are shown. Color of TF labels represents
mode-of-action class (activator, green; repressor, red) on a continuous scale based on the correlation
strength (odds ratio [OR] and p value are given for Fisher’s Exact test; R and corresponding p value
are given for Pearson’s correlation).This figure was produced by myself and is published in the (Berest
et al., 2019).
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Using RNA-seq data from the original CLL dataset we calculated differential

TF expression for each of the expressed TF, and then compared these values with

differential TF activity obtained from the diffTF basic mode, with stratification of

the TFs based on the activator/repressor classification into 3 groups (activators,

undetermined and repressors). As expected we observed positive correlation for

activators (ρ=0.22; p-value=0.033), no significant correlation for undetermined

class(ρ=-0.04; p-value=0.51) and negative correlation for repressors(ρ=-0.37; p-

value=0.01), as shown in the Figure 3.3A top. As such validation is based on the

same data that diffTF classification mode used for the assignment of TF function, we

corroborated described CLL specific TF functional classification on the independent

data. We used ATAC-seq and RNA-seq dataset generated from four patients from a

separate CLL cohort treated with DMSO or Ibrutinib (data is provided by Holly Giles

and described in the section 3.2.1). Afterwards, we similarly compared differential

TF activity and differential TF expression between CLL samples treated with and

without Ibrutinib, however using activator/repressor classification from the original

CLL dataset described above. Out of 68 activators and repressors, which were

expressed both in the original CLL dataset and Ibrutinib dataset, 46 TFs followed

the expected relation (Figure 3.3A bottom). For remaining activators we observed

even stronger positive correlation (ρ=0.29; p-value=0.054), whereas for repressors

similar negative correlation (ρ=-0.4; p-value=0.05). Such results indicate that even

when using independent CLL data, e.g. perturbed by Ibrutinib, differentially active

TFs showed consistent functional mode of action predicted on the bigger CLL dataset.

On top of this we used known chromatin states data for primary B cells (Kundaje

et al., 2015) and overlapped with it unique combined activator or repressor TFBSs.

By comparing fraction of TFBSs in the state we observed that presumable repressors

have more regions in the chromatin repressive states, while activators are located

mostly to the active states (see Figure 3.3B).

Lastly, we decided to investigate the relationship of the differential TF activity

and target genes expression. For this we overlapped TFBS with the promoter regions

of the protein coding genes (-2kb/+500bp from TSS) and defined a list of target

genes for each CLL differentially active TF. By comparing median expression of

the target genes and TF activity we observed the expected positive correlation

(R=0.49; p-value=0.0011), shown in the Figure 3.3C. Interestingly, such correlation

was independent of the predicted TF mode of action, thus once more validating

diffTF classification mode based on the chromatin accessibility and corresponding

TF regulation of the target genes expression.
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In summary, using in silico and experimental validations described above, show

that diffTF classification mode is able to identify TFs mode of action by integrating

RNA-seq and ATAC-seq data. As shown, such classification is robust to cellular

perturbation by chemical drug and corroborates through the enrichment of the

chromatin states and effect on the target genes expression. However, we also

observed TFs that are not following the expected relation, which are potentially

regulated on posttranscriptional or posttranslational levels.

3.3.4 TF footprinting analysis reveals activator/repressor pat-

terns

After the observation from the validation with chromatin states that repressors are

located in the repressive chromatin, we decided to perform TF footprinting analysis

based on ATAC-seq data. We selected the well-known activator and repressor from

the expressed in CLL TFs, REST and STAT2 respectively. Interestingly, we observed

clear differences in their footprints (normalized amount of Tn5 insertions per bp)

between them, see Figure 3.4B. For the repressor TF REST, we observed increased

accessibility directly in the motif with overall low accessibility around the binding

site (lower than genome-wide average accessibility). STAT2 footprint showed the

opposite picture, with maximum accessibility outside the binding site (+/-25bp)

and slow decrease of accessibility to the genome-wide average over +/-100bp from

the center of motif. These findings provide additional validation to the diffTF
classification mode, showing that despite the local increase of accessibility in the

repressor motif center the surrounding chromatin for repressors are highly compact.

When combining footprints from all expressed TFs for the original CLL dataset

with PCA analysis we observe that PC1 resolve accessibility differences in the motif

center and PC2 explain accessibility differences on the surroundings of the binding

sites (see Figure 3.4A). Based on these 2 components we define four TF footprint

classes: class I and II contain a lot of predicted activators (53 out of 89), and class III

and IV mostly have repressors (37 out of 57). Typical I and II class activator footprint

for IRF2 showed increase of accessibility on the surroundings and decrease in the

center of the motif, both in M-CLL and U-CLL, see Figure 3.4C top. PAX5 footprint on

the other hand summarizes class III and IV, with increased accessibility in the center

and decreased flank accessibility (Figure 3.4C bottom). We observed similar shapes

and trends of the chromatin accessibility when plotting footprints for all predicted

with diffTF classification mode activators and repressors (Figure 3.4D).
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Figure 3.4: TF footprinting analysis for the CLL data (A) Scatterplot comparing PC1 and PC2 from
a PCA of the footprints of all expressed TFs (n = 370). The insets (classes I–IV) display the average
footprint across TFs in that quadrant. (B) Exemplary footprints (mean Tn5 insertions centered at
TFBS) for a well-known activator (STAT2, top) and a well-known repressor (REST, bottom). Tn5
insertions were normalized to the library size and numbers of samples between U-CLL and M-CLL.
The genome-wide average of insertions within accessible chromatin is shown as a solid gray line. (C)
Footprint analysis for one of the strongest putative activators (IRF2, right) and one of the strongest
putative repressors (PAX5.A, left). Footprints are shown separately for M-CLL (blue) and U-CLL
(orange) based on the normalized number of Tn5 insertions. (D) Average footprints for all significant
(FDR < 10%) activators (top) and repressors (bottom) are shown. This figure was produced by
myself and is published in (Berest et al., 2019).
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3.4 Discussion

In the previous chapter we discussed technical robustness of diffTF and advantages

in the comparison to the current state-of-the-art methods of defining sample/cell

TF activity. Applying our method on the large multiomics CLL dataset we were able

to find 68 differentially active TFs between U-CLL and M-CLL. As discussed before,

these subtypes of CLL have substantial epigenetic differences, that we were able

to recapitulate by summarizing our TF activity signal. Overall, by checking in the

published research, we observed that U-CLL had more active TFs that are responsible

for the repetitive genomic aberrations, high cell proliferation, disrupted cell cycle

and apoptosis. As for the M-CLL TFs that are downstream targets of BCR and Wnt

signaling were more active. Such activity results in the less severe damage to the

B-cells, decreased apoptosis and longer survival of the cells.

As our method is purely based on the TFBSs, which were predicted using PWM

binding models, there could be a lot of redundancy between the TFs that have

very similar PWM. Due to the constant variation of TF binding it is very difficult

to generate an evaluation golden set of TFBS (Jayaram et al., 2016), that are

experimentally validated for each sample for each TF specifically. Knowing this

limitation of the upstream data used in diffTF we checked the consistency of signal

between the TFs that have very similar PWM. As expected most of the differentially

active TFs (Figure 3.2A top) clustered together and showed similar TF activity, as

well as high level of common TFBS for each PWM cluster. However, by clustering

TF activities from all TFs we observed that some clusters (cluster 29,17,7) had

very different signals even in one cluster (Figure 3.2A bottom). Such graphs are

important to have to judge realistically TF activity changes between two conditions.

As diffTF provides log2 fold change value for each TFBS, this information can be

used to leverage out the effect of other TFs by removing regions that were predicted

to be TFBS of the different TFs from the same PWM cluster.

Using TF expression data from RNA-seq we were able to classify TFs into acti-

vators and repressors. This classification is based on the correlations of the peaks

chromatin accessibility signal containing TFBS of interest and TF expression. Sum-

marizing such correlations and comparing to the background correlations without

TFBS of interest we assign global genome-wide mode of action for the particular TF.

Importantly, each TF has both negative and positive correlations, therefore, might

have activating and repressing impact on the gene expression depending on the re-

gion and chromatin environment, but we define prevalent mode based on majority of
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the signals. Using independent CLL data we demonstrated that diffTF classification

mode can correctly predict the directionality of the TF abundance impact on the TF

activity, even upon stimulation with Ibrutinib. Almost 70% of differentially active TFs

from the original CLL dataset showed a similar relation between TF expression and

TF activity, as shown in the Figure 3.3A bottom. Such results suggest that even while

the TF regulatory network changed in the B-cells due to the treatment, the global

patterns of TF functional modes did not change significantly. We also observed

that TFBS of the classified activators are mostly located in the active chromatin

state, whereas repressor TFBS are significantly enriched in the repressive chromatin

(Figure 3.3B). Also TF activity was highly correlated with changes in expression of

the target TF genes, predicted by having at least one TFBS in the promoter region,

showing significant effect of the chromating changes on the gene expression of the

target genes.

Nevertheless, as a consequence of the methodological assumptions that we made

for classification mode algorithm we cannot classify TFs mode of action, if they are

regulated posttranslationally or RNA-seq data has low variation between samples

(correlations of gene expression and TF activity are not relevant). Also, because of

summarizing, diffTF is also not able to classify TFs separately that can act equally

as activators or repressors, however such observation can be made by looking at

the correlation plot of individual TFs. As discussed above quantified TF activities

are biased by the PWM similarity of the TFs, however such bias is not occurring

for the TFs in the gene expression data. TFs with similar TF activity from the same

PWM cluster can be expressed differently, e.g. PRDM1 and IRF PWM cluster 40,

and classified with different functional roles (PRDM1 - repressor; IRFs - activators).

Such cases should be taken into account and validated separately using biochemical

assays. Another way to handle this situation is to calculate TF activity for each TF

from the same PWM cluster using unique TFBS.

Finally, we performed TF footprinting analysis on top of the diffTF classifica-

tion mode and found out that TFs that were classified as activators are having

opened chromatin not directly at the binding site, but rather in the flanking regions.

Summarizing footprints from all expressed TFs for CLL dataset we observe that

the biggest sources of variation for the footprints are coming from the differences

in accessibility directly in the binding site and flanking regions, see PC1 and PC2

from Figure 3.4A. TFs classified as repressors, showed low chromatin accessibility

in the flanking regions with more pronounced changes directly in the motif center.

We hypothesize that activators, which are located in the active chromatin, have
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increase in the flanking regions due to the binding of other TFs or DNA transcrip-

tional machinery, whereas repressors have more pinpointed binding to the closed

chromatin. Repressors can be part of the silencers, which function for fine-tuning

gene regulation together with enhancers was described before using histone marks

data (Huang et al., 2019; Wang et al., 2012). Linking chromating TF footprinting

analysis and gene expression can provide more details about TF regulation of gene

expression and need further investigations in the future.

While we only uncover one layer of epigenetic differences with TFs between

U-CLL and M-CLL, we were able to recapitulate known CLL biology, and generate

new exciting hypothesis of the TF regulation in each CLL subtype. Apart from that

we found out that TF functional role is not changing significantly upon chemical

perturbation and uncover new observations about chromatin microenvironment

of the activators and repressors. Overall, identified new TFs and their predicted

functional role can lead to development novel precise treatments of the CLL.



Chapter 4

TF-mediated regulatory effects on
TET2 across hematopoiesis
In the current chapter I will present recent findings about the changes in TF regula-

tory dynamics in the hematopoietic differentiation upon deletion of the methylcyto-

sine dioxygenase TET2. Majority of the bioinformatical analysis was made by me

under the supervision of Dr. Judith Zaugg and Dr. Kasper Dindler Rasmussen. Data

was generated from the experiments performed by Dr. Kasper Dindler Rasmussen in

the lab of Prof.Dr. Kristian Helin. The text in this chapter has been originally written

by myself or was taken and adapted from:

Kasper Dindler Rasmussen†, Ivan Berest†, Sandra Kessler, Koutarou Nishimura,
Lucia Simon-Carrasco, George S. Vassilou, Marianne T. Pedersen, Jesper Christensen,
Judith B. Zaugg & Kristian Helin (2019) TET2 binding to enhancers facilitates tran-
scription factor recruitment in hematopoietic cells. Genome research, 29(4), 564-575.
doi: 10.1101/gr.239277.118



58 Chapter 4. TF-mediated regulatory effects on TET2 across hematopoiesis

4.1 Introduction

Over the last twenty years, a lot of research in the hematology field revealed asso-

ciation of the mutational status of the ten-eleven-translocation (TET) genes with

the development of various hematological malignancies (Scourzic et al., 2015).

TET enzymes start the process of demethylation of 5-methylcytosines and, overall,

regulate the DNA methylation turnover in the cell together with DNMT enzymes (Lio

et al., 2019; Rasmussen and Helin, 2016; Ross and Bogdanovic, 2019). TET triple-

knockout cells showed an increase in the global DNA methylation level, especially

in the enhancer regions (Dawlaty et al., 2014; Lu et al., 2014). Despite the impact

of TET1 function on the chromatin were shown (Gu et al., 2018), studies are only

starting to investigate the effect of TET2 on the epigenetic regulation through the

knockout systems. This is particularly interesting, because TET2 mutations are the

most frequent genomic aberrations associated with myeloid cancers, such as AML

(Delhommeau et al., 2009; Weissmann et al., 2011).

Surprisingly, in comparison to the TET1 and TET3 enzymes, TET2 protein does

not have direct DNA binding domain. It was demonstrated that TET2 DNA binding

can be facilitated through the zinc finger CxxC proteins, which are recepting non-

methylated DNA and attracting chromatin modifiers to the CpG islands (Long et

al., 2013), or with the help of specific TFs, such as PU.1, CEBPα and KLF4 (Lio et

al., 2016; Sardina et al., 2018). Eventhough, such results suggested the potential

binding of TET2 through described TFs, due to the lack of the high quality specific

TET2 ChIP-seq data, the accurate prediction of the impacted by TET2 TFs was not

possible till now.

In this chapter we discuss obtained via crosslinking of C-terminus of TET2 and

epitope tag (V5 or FLAG) novel set of the TET2 binding regions, show enrichment

of TET2 binding in the enhancers, and importantly, define multiple TFs and TF

families using diffTF that are regulated directly and indirectly by TET2. We obtain

such results not only from the samples from the different stages of steady-state

hematopoiesis (ES, MPP, GMP), but also from the mouse AML model with and

without TET2 knockout. Apart of that, we were able to benchmark diffTF on the

dataset with small number of sample (n=8), recapitulate validation of the diffTF
classification mode under the genetic perturbation and show similar principles of the

chromatin microenvironment dynamics for activators and repressors in mice with

footprinting analysis.
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4.2 Methods

4.2.1 Data sources

For this chapter we used paired ATAC-seq and RNA-seq data (4 samples each) from

mouse ES cells and three hematopoietic cell types (MPP, GMP and AML) from wild-

type and upon TET2 functional knockout. Also, for the ES and AML conditions TET2

ChIP-seq was performed in the wild type and TET2 knockout. For the diffTF specific

analyses we used HOCOMOCO v10 database with 421 mouse TF binding models

combined with HT-SELEX and Methyl-SELEX data from the previously published

dataset (Yin et al., 2017). These data and analyses are in detail described in the

following publication (Rasmussen et al., 2019). Following methods sections about

generation of ES cell lines, mouse model, FACS cell sorting and ATAC-seq,RNA-

seq,TET2 ChIP-seq libraries generation are direct copies from (Rasmussen et al.,

2019) and (Berest et al., 2019) methods and was provided by Dr. Kasper Dindler

Rasmussen.

ES cell lines

“Mouse ES cell lines were derived from blastocysts harvested from Tet2fl/fl animals

(Moran-Crusio et al., 2011). To generate a clean Tet2 knockout ES cell line (to

use as ChIP control), cells were transiently transfected with a Cre recombinase-

expressing plasmid and subcloned to identify a constitutive Tet2 knockout ES cell

line. Endogenous tagging of TET2 was performed using CRISPR homology-directed

repair with a single-stranded DNA oligonucleotide repair template. Briefly, a sgRNA

targeting the insertion site was cloned into pSpCas9(BB)-2A-GFP (PX458) (Addgene

#48138). This plasmid was cotransfected in ES cells with oligonucleotides encoding

either two copies of Flag (DYKDDDDKDYKDDDDK) or a single copy of V5 tag

(GKPIPNPL LGLDST) as well as homology arms (60 bp each). Transfected cells

were single-cell sorted, and the resulting clones were screened for stable expression

of epitope-tagged TET2 by Western blot. All mouse ES cell lines were cultured in

feeder-free, gelatinized plates in “Serum/2i/LIF” conditions: Dulbecco’s Modified

Eagle Medium (DMEM) supplemented with 15% fetal bovine serum, 2mM Glutamax

(Gibco), 0.1mM 2-Mercaptoethanol (Gibco), 1× nonessential amino acids (Gibco),

1×Pen/Strep (Gibco), 3 µM GSK3 inhibitor (CHIR99021), 1 µM MEK1 inhibitor

(PD0325901), and leukemia inhibitory factor (LIF)."
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Mice

“For analysis of aging-related Tet2-deficient hematopoiesis, cohorts of age-matched

litter mates (8-weeks old) of Tet2fl/fl or Tet2fl/fl;Mx1 − Cre+ mice (Quivoron

et al., 2011) were injected three times intraperitoneally with 250 µg polyinosinic-

polycytidylic acid (PolyI:C LMW, InvivoGen) at experimental days 0, 2, and 4.

The mice were subsequently allowed to age and sacrificed at 10 month of age.

To generate a Tet2 knockout AML model, the following genetically modified

mouse lines Npm1cA−F lox (Vassiliou et al., 2011), Flt3-ITD (Lee et al., 2007), and

Tet2fl/fl;Mx1−Cre+ were intercrossed and Npm1+/cA−F lox;Fl3+/IT D;Mx1−Cre+

or Npm1+/cA;Fl3+/IT D;Tet2fl/fl;Mx1 − Cre+ mice were monitored for disease

development. AML cells were harvested and 2.5Ö104 c − Kit+Gr1−Mac1− AML

splenocytes transplanted into sublethally irradiated (650Rad) Ly5.1 recipient

animals by tail vein injection. Ly5.1 mice were maintained on medicated water

(Ciprofloxacin 100 µg/mL) for 3 week following the irradiation procedure. To

establish in vitro culture of AML cells, c−Kit+Gr1−Mac1− splenocytes har- vested

from moribund mice were purified by FACS and cultured in suspension in nontissue

culture treated plasticware in StemPro-34 SFM media (Thermo Fisher Scientific)

supplemented with 2 mM GlutaMAX (Gibco), 1× Pen/Strep (Gibco), 0.1 mM

2-mercaptoethanol (Sigma-Aldrich), as well as the cytokines SCF (50 ng/mL), IL3

(10 ng/mL), and IL6 (10 ng/mL) (Peprotech). All animal work was carried out in

compliance with ethical regulation under license by the Danish regulatory authority.”

FACS sorting step for HSC cell types

“Single-cell suspensions of mouse bone marrow were erythrolysed, enriched for

Kit expression (CD117 microbeads, Miltenyi Biotech) and stained with antibodies

against surface markers: Lineage (B220-PECy5 (RA3-6B2, eBioscience), CD11b-

PECy5 (M1/70, eBioscience), Ter119, PECy5 (TER-119, eBioscience), CD3e-PECy5

(145-2C11, eBioscience), Gr1-PECy5 (RB6-8C5, eBioscience)), Sca1-BV421 (D7, BD

biosciences), cKit-AlexaFlour 780 (2B8, eBioscience), CD150-APC (TC15-12F12.2,

Biolegend), CD48-PE (HM48-1, eBiocience), CD16/32-PECy7 (93, eBioscience).

The following combination of surface markers was used to define hematopoietic

progenitor populations: MPP cells - Lin−cKit+Sca1+CD150−CD48+; GMP cells -

Lin−cKit+Sca1−CD16/32+. AML cells cultured in vitro were harvested and stained

with antibodies against the surface markers: CD11bPE (M1/70, eBioscience), Gr1-

AlexaFlour 700 (RB6-8C5, eBioscience), CD16/32-PECy7 (93, eBioscience), CD34-
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FITC (RAM34, eBioscience). The following combination of surface markers was

used to define the leukemic precursor population purified for ATAC-seq analysis:

CD11b−Gr1−CD16/32intCD34+. Total live bone marrow cells were stained with

CD317-FITC (PDCA-1, eBioscience) and B220-APC (RA3-6B2, eBioscience) to enu-

merated plasmacytoid dendritic cells (pDCs). Cells were sorted on FACSAria III (BD

Biosciences) and analyzed using the FlowJo software (Tree Star inc.).”

ATAC-seq libraries generation

"ATAC-Seq libraries were generated as described previously (Buenrostro et al.,

2013; Lara-Astiaso et al., 2014), with the following modifications. Briefly, 10.000

freshly isolated cells (MPP, GMP, AML and ES) from individual wild-type mice

were sorted into ice-cold FACS buffer (PBS + 2%FBS). The cells were pelleted

using a swinging bucket centrifuge (500 x g, 10min, 4°C) with settings for low

acceleration/deceleration and washed once in ice-cold PBS. The cell pellets were

resuspended in 50 muL lysis buffer (10mM Tris−HCl pH 7.4, 10mM NaCl, 3mM

MgCl2, 0.1% Igepal CA-630) by gentle pipetting and immediately centrifuged one

additional time (500 x g, 10min, 4°C). The supernatant was discarded and the

pellet containing released nuclei were resuspended gently in 25 muL 1xTD buffer

containing 1.25 muL Tn5 transposase (Nextera sample preparation kit, Illumina).

The transposition reaction was allowed to proceed for 45min at 37°C whereafter

DNA fragments were isolated using MinElute PCR purification columns (QIAGEN)

according to manufacturer’s instructions.

To generate multiplex libraries, the transposed DNA were initially amplified for

5x PCR cycles using 2.5 muL each of dual-index primers (Nextera index kit, Illumina)

and 2.5 muL PCR primer cocktail (PPC, Illumina) in a 25 muL reaction volume of

1x KAPA HiFi hot-start ready-mix (Kapa BioSystems). The hot-start polymerase was

activated prior to adding to the reaction mix by performing a brief pre-incubation

step of 3min at 95°C. The amplified fragments were size-selected with AMPure XP

beads (0.5X) to remove fragments larger than 600bp and an aliquot was quantified

to determine the optimal PCR cycle number to obtain 1/3 of maximum fluorescence

intensity (Library quantification kit, Kapa Biosystems). Finally, PCR amplification

was performed using the optimal number of cycles determined for each library

(max. 18 cycles in total), size-selected with AMPure XP beads (0.5X) and eluted in

resuspension buffer (Illumina). The size distribution of the libraries was evaluated

on Bioanalyzer (Agilent) and sequenced on NextSeq 500 (Illumina) using 75bp

paired-end sequencing with an average of 25 million reads per sample."
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RNA-seq libraries generation

“A proportion of total RNA (2 ng) isolated using RNeasy Micro Kit (Qiagen) from four

biological replicates (individual mice with wildtype or Tet2-deficient hematopoiesis)

was amplified and size-selected with the Ovation RNA amplification system v2 (Nu-

Gen, Cat: 7102) and sequencing adaptors were added to the resulting cDNA using

the Ovation Ultra Low v2 system (NuGen) according to manufacturer´s instruc-

tions. RNA-seq libraries were quality checked using a DNA 1000 Kit (Agilent) and

sequenced using an Illumina NextSeq 550 instrument (75bp single-end).”

ChIP-seq libraries generation

"ES cells or in vitro cultured hematopoietic cells were washed twice in ice-cold PBS

and pelleted by centrifugation. The cells were resuspended in 10 ml ice-cold PBS

and freshly prepared 0.25M disuccinimidyl glutarate (DSG) stock solution (dissolved

in DMSO) to obtain a final concentration of 2mM DSG in PBS (ThermoFisher

Scientific) and incubated at a rotating wheel for 30 min to allow equilibration

to room temperature. Then, formaldehyde (Sigma) was added to obtain a final

concentration of 1% and rotated for another 10 min at room temperature. Finally,

the crosslinking reaction was stopped by addition of glycine to a final concentration

of 125mM. The cells were spun down for 5 min at 350 x g at room temperature and

washed twice with ice-cold PBS. The cells were then resuspended in 5 mL SDS Buffer

(50mM Tris − HCl pH 8.1, 100mM NaCl, 5mM EDTA, 0.5% SDS) containing 1

mM Phenylmethylsulfonyl fluoride (PMSF) and allowed to rotate for another 5 min.

Finally, chromatin was pelleted and resuspended in IP buffer (100mM Tris−HCl

pH 8.6, 100mM NaCl, 5mM EDTA, 0.3% SDS, 1.7% TritonX-100) with proteinase

inhibitors according to pellet size. Chromatin dissolved in IP buffer was sheared

to an average size of 200-500 bp DNA fragments in a Bioruptor (Diagenode). The

sonicated chromatin was diluted in SDS-free IP buffer to achieve a concentration

of 0.1% SDS, spun down at 20,000 x g for 20 min to remove insoluble chromatin

fraction and precleared with protein G Sepharose beads (GE healthcare) prior to

immunoprecipitation.

For immunoprecipitation of endogenous TET2, 1µg affinity-purified rabbit poly-

clonal antibody raised against N-terminal TET2 protein (TET2-N) (as described

above) was incubated with 300µg chromatin (measured by Bradford assay) overnight.

The chromatin-antibody complexes were captured in a 3h incubation with protein-G

Sepharose beads (GE healthcare). For immunoprecipitation of 2xFL-TET2, 20µl of
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anti-FLAG M2 affinity gel (Sigma, A2220) was incubated with 300ug chromatin

for 3h. Washes of chromatin-antibody-bead complexes were performed as follows:

Three washes with ice-cold 150mM wash buffer (20mM Tris−HCl pH 8.0, 150mM

NaCl, 2mM EDTA, 0.1% SDS, 1% Triton X-100), two washes with ice-cold 500mM

wash buffer (20mM Tris-HCl pH 8.0, 500mM NaCl, 2mM EDTA, 0.1% SDS, 1% Triton

X-100), and one wash with ice-cold IP buffer with a final concentration of 0.1% SDS.

After the last wash, DNA from TET2-N immunoprecipitations was de-crosslinked by

overnight incubation at 65oC in decrosslinking solution (1% SDS, 0.1M NaHCO3).

In FLAG M2 immunoprecipitations, IP’ed chromatin was initially eluted by three

consecutive incubations (each 20 min on ice) in elution buffer (20mM Tris−HCl pH

8.0, 150mM NaCl, 2mM EDTA) with 0.5mg/ml FLAG peptide (DYKDDDDK, Peptide

2.0). The eluted fractions were pooled and de-crosslinked by overnight incubation

at 65oC in decrosslinking buffer. IP’ed DNA was purified using the QIAquick PCR

purification kit (Qiagen) according to manufacturer’s instructions.

ChIP-seq libraries for Illumina sequencing was prepared using the NEBNext Ultra

II DNA library preparation kit (New England Biolabs) using an input of 1-3ng of

IP’ed DNA (quantified using DNA HS assay kit (Qubit)) following the manufacturer’s

instructions. Adaptor-ligated fragments were size-selected using AMPure XP beads

(Beckman Coulter) to retain inserts of approximately 200bp prior to PCR amplifi-

cation. Equimolar amounts of sample, with compatible indexes, were pooled and

sequenced on Illumina NextSeq 550 (75bp single-end)."
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4.2.2 Data processing

ATAC-seq processing

For the GMP, MPP, AML and ES both for wild-type and TET2 knockout ATAC-seq

samples (each group n=4) we used described in the section 2.2.2 our custom ATAC-

seq processing pipeline with default parameters using mm10 reference genome.

Overall, about 60-70% of the reads were removed through different steps of this

pipeline. Majority of the removed reads were classified as optical PCR duplicates or

were aligned to the mitochondrial genome. We observed typical for ATAC-seq data

fragment length distributions with nucleosome size periodical peaks (~140 bp). We

also performed GC bias correction already on the bam files level to remove technical

sequencing GC bias.

RNA-seq processing

After sequencing, we trimmed adaptors from the obtained RNA-seq fastq files and

checked the quality of them using FastQC. Passing quality checks samples were

aligned to the mm10 reference mouse genome using STAR (Dobin et al., 2013)

aligner with default parameters. We assigned transcripts to genes using GENCODE

v7 gene annotation and calculated differential gene expression with DESeq2. For

each DESeq2 analysis we used four biological replicates for each condition. Finally,

for some visualization purposes gene counts were normalized by variance stabilizing

transformation (VST).

TET2 ChIP-seq processing

ChIP-seq single-end raw sequencing data for ES and AML cells were trimmed for

adapters with Trimmomatic and mapped to the mm10 mouse genome with Bowtie2
(Langmead and Salzberg, 2012) using –very-sensitive preset parameters. Then we

marked and removed duplicates using PicardTools markDuplicates function. All

these steps are included in the Snakemake in-house ChIP-seq processing pipeline.

For the ES cells we defined a confident set of TET2 binding sites from ChIP-

seq data by performing differential binding analysis between wild-type and TET2

knockout samples. First, we used MACS2 (Zhang et al., 2008) peal caller to define

significant (p-value < 0.05) peaks for each ChIP-seq sample with either TET2-N

or FLAG M2 antibodies compared to the samples treated only with IgG antibody.

Afterwards we used DiffBind Bioconductor package to assemble consensus peakset
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merging all peaks from rather TET2-N or FLAG M2 biological replicates with mi-

noverlap = 1 and removing peaks that has less than 5 reads on average. Resulted

counts for consensus peaksets were used as input to the DESeq2 workflow. Finally,

we identified for ES cells differentially bound TET2 binding sites (p-value < 0.1 and

minimum log2 fold change > 0.5) resulting in the 19466 peaks for samples with

TET2-N antibody and 15308 peaks for FLAG M2 ChIP-seq samples.

To identify differentially bound ChIP-seq regions corresponding for TET2 binding

in the AML cells, we used slightly lenient cutoffs in the MACS2 peak calling. We

called peaks with standard MACS2 parameters, adjusting only q-value threshold as

0.05 comparing wild type cells versus cells lacking TET2 upon functional knockout.

Afterwards, we overlapped all peaks across biological duplicates experiments and

merged the union of peaks overlapped at least by 1 bp. Using such procedure we

identified 7002 potential TET2 binding regions in the bulk AML cells. Potential

reason why we detect fewer peaks compared to the ES cells, is that we had a lower

signal-to-noise ratio for the AML ChIP-seq samples.

diffTF analysis

For the listed comparisons (TET2 KO versus WT; GMP versus MPP) we used diffTF
analysis with default parameters, always comparing 4 against 4 samples. We required

minimum 2 samples to have a common peak to be included in the consensus peakset.

Overall the amount of opened chromatin peaks for different conditions varied from

55098 peaks to 120765 peaks (GMP versus MPP comparison = 77678 peaks), later

labelled with “all” extension. For the TET2 knockout versus wild type comparisons we

splitted consensus peakset on several groups and for each of the resulted peaks ran

diffTF analysis: peaks overlapping with -1.5kb/+0.5kb from the TSS of the genes -

labeled “Pro”; peaks overlapping +100kb/-100kb from the TSS excluding promoter

regions - labeled “ProDist”; peaks overlapped with TET2 ChIP-seq binding sites for

ES and AML cells - labelled “CHIP”. To obtain p-values for the predicted TF activities

we used an analytical approach in diffTF, as discussed in the subsection “Estimation

of significance for differential TF activity” in the section 2.2.3. To integrate ATAC-seq

and RNA-seq data for the GMP versus MPP comparison we used only 268 expressed

TFs (minimum 5 reads in average for each condition and mean expression counts

bigger than 0).
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Defining TF clusters based on PWM similarity

Overall we proceed with a similar procedure, as for the CLL dataset, described in

detail in the section 3.2.3. For this project we used modified mouse HOCOMOCO v10

TF binding models. We replaced retracted from this database CDX4 and EVX1 PWM

motifs with 6 PWMs for CDX4 and EVX1 (labelled later as CDX4HT, CDX4MET1,

CDX4MET2, EVX1HT, EVX1MET1, EVX1MET2) from the methyl-SELEX study (Yin et

al., 2017). After that we clustered modified PWM dataset with matrix-clustering
(Castro-Mondragon et al., 2017) tool from RSAT suite [internal parameters: -lth Ncor

0.4 -lth cor 0.6] and obtained final 88 PWM clusters for the downstream analyses.

TF footprinting analysis

We performed TF footprinting analysis, similar as in the previous chapter for the

CLL data, for the 8 ATAC-seq samples from GMP and MPP cell types without TET2

knockout. First, we downsampled each of these bam files to the lowest one (~8.3

millions of reads) with the following merging by the condition. For all expressed

differentially active TFs (adjusted p-value < 0.05) from the GMP versus MPP diffTF
analysis we used dnase_to_javatreeview.py script from the pyDNase package (Piper

et al., 2015) to get for each base pair in 200 bp range Tn5 insertions for all TFBS.

For normalization we calculated amount of the reads per each cell type in the

consensus peakset with featureCounts function from Subread R package with the

same parameters as defined for CLL TF footprinting. Afterwards we scaled the

obtained data for each TF by dividing by the mean average Tn5 insertions in the

whole matrix. After PCA analysis on the scaled data we plotted first 2 PC components

(comprising 40% of the global variance). To define “gray” line on the footprint

plots we binned consensus peakset in 200 bp bins with makeWindows function

from samtools and randomly selected 10000 regions, which we used in the same

footprinting scheme as real TFBS. Afterwards we summarized the values of scaled

averaged Tn5 insertions across 200 bp into one value, which we plotted on the shown

plots, and referred later as background chromatin openness. For each quadrant

of the PCA plot, we generated separate footprint plots summarising data across

different TFs. For that we divided final Tn5 insertions for each base pair for each

TF by the mean of the Tn5 insertions in the whole matrix of the TFBS in the one

quadrant. This is done just for the visual representation and never was used for

further statistical analysis. In such a way we highlight stronger differences between

footprint signal in the center of the motif and its surroundings.
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4.3 Results

4.3.1 TET2 binding overlaps with enhancer regions

One of the key limitations of the TET2 biology is to obtain a set of genomic regions

where it can bind. Such TET2 binding is hypothetically facilitated by chromatin

modifiers or transcription factors, due to the lack of the DNA binding domain. In this

study we generated a high-quality genome-wide map of TET2 occupancy in myeloid,

AML and ES cells. Such ChIP-seq dataset in ES cells consists of data from experiments

with antibodies (1) to the endogenous TET2 (TET2-N) and (2) FLAG-tagged TET2

(FLAG M2), which was expressed endogenously. Obtained data showed a high level

of correlation between biological replicates (Figure D.1 A-B). To define a confident

set of TET2 binding sites we took peaks that were differentially bound either over

TET2 KO cells or cells without FLAG-tagged TET2. Overall, we were able to report

26512 differentially bound regions in both conditions, of which 8262 TET2 binding

sites were present in experiments with both antibodies (Figure 4.1 A; Figure D.1 E-F).

Out of the high-confident set of TET2 peaks, 90% of them are associated with DNase

hypersensitive sites (open chromatin accessibility peaks) and H3K27ac histone mark

signal, and almost half of them overlap with EP300 binding regions (Figure 4.1

B). Using repitools R package we also found that ES TET2 binding sites have a low

percentage of CpG dinucleotide compared to the CpG islands in mice (Figure D.1 G).

We downloaded previously published for ES cells dataset of 5-methylcytosine and

5-hydroxymethylcytosine changes under the TET2 knockout (Hon et al., 2014), and

observed increase of DNA methylation signal for ~80% and loss of hydroxymethyla-

tion for ~65% of the high confident TET2 binding sites upon TET2 loss. Interestingly,

we didn’t observe significant enrichment of our TET2 binding regions in the differ-

entially methylated regions from the same methylation/hydroxymethylation data (

more than 180000 regions). These results suggest that, even though TET2 binding

leads to active DNA demethylation through the transition to hydroxymethylation,

such binding cannot predict differential signal alone.

Apart from the ChIP-seq experiments in the ES cells, we also defined a set of

TET2 binding sites in the myeloid cells from mice immortalized with AML1-ETO

and with inducible promoter of TET2 (Rasmussen et al., 2015). For the ChIP-seq

biological duplicates samples with TET2-N antibody we identified 19706 significantly

differentially bound TET2 regions compared to the TET2 knockout control (Figure

D.1 C). Despite distribution of TET2 binding sites showed enrichment in the promoter
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distal regions, only 7.4% of these regions overlapped with TET2 binding sites from

ES cells. By comparing GO enrichments of ES and myeloid specific TF binding using

GREAT enrichment tool (McLean et al., 2010) we observed a lot of immune system

GO terms for myeloid TET2 regions, whereas for ES cells we found mostly GO terms

associated with stem cell maintenance. In summary, described above data show that

TET2 binds is facilitated to the chromatin active regions with enhancer potential and

regulate DNA methylation/demethylation turnover in these regions.

Figure 4.1: Summary of the TET2 binding regions in the ES cells. (A) Venn diagram showing
overlap of called peaks in TET2-N or FLAG M2 ChIP-seq experiments (left) as well as average ChIP
signal from replicate samples (right). High- and low-confidence TET2 binding sites are defined,
respectively, as regions showing evidence of TET2 binding in both peak sets (high) or only supported
by a called positive region in one peak set (low). (B) Heatmaps of ChIP-seq signal from wild-type
TET2 or TET2 with two copies of a FLAG tag (2xFL). Tracks of H3K27ac and EP300 enrichment as
well as regions of DHS in ES cells are also shown. The vertical axis contains all high-confidence TET2
binding sites defined in A, sorted by decreasing EP300 read counts. The horizontal axis is centered
on TET2 peaks. This figure was provided by Dr. Kasper Dindler Rasmussen and is published in the
(Rasmussen et al., 2019).
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4.3.2 Changes in the TF activity upon TET2 loss

For the further analyses we generated paired ATAC-seq and RNA-seq datasets from

the ES, GMP and MPP cells from the HSC differentiation path, and AML cells, that

recapitulate malignant hematopoiesis in the acute myeloid leukemia. For all of these

four conditions we obtained samples with and without TET2 knockout (n=4). We

preprocessed ATAC-seq data accordingly and defined open chromatin peaks for each

sample. Using obtained peaks we generated for each condition consensus peakset,

and found that the majority of differential accessible regions were specific for the

TET2 knockout samples and partially overlapped with the enhancer annotation

(Lara-Astiaso et al., 2014). After this we used described in the previous chapters tool

diffTF to determine changes in TF activity upon TET2 knockout. To test diffTF on

the comparatively low size dataset (8 samples in total), using analytical approach

to compute p-value (more in the section 2.2.3), we first compared GMP and MPP

wild-type conditions (Figure 4.2 A). We found, as expected, specific increased activity

of CEBP TFs for the GMP cells (Cirovic et al., 2017) and high activity of the IRF

family of TFs for MPP wild-type cells (Seré et al., 2012). Afterwards we ran diffTF
separately for MPP and GMP comparing samples with TET2 KO versus wild-type, and

identify cell-type agnostic set of TFs (ITF2,ZEB1) that were similarly downregulated

in TET2 KO samples upon loss of TET2 (Figure 4.2 B).
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Figure 4.2: diffTF results for the MPP and GMP. (A) Volcano plot of differential TF activity
between MPPs and GMPs. TFs are colored according to their predicted classification (red, repressors;
gray/black, undetermined; green, activators). P values are obtained through diffTF using the
analytical approach and adjusted by the Benjamini-Hochberg procedure (y-axis). (B) Scatterplot of
differential TF activities between MPP and GMP when comparing TET2 KO versus TET2 WT. Only
expressed TFs are shown (n = 268). Only the most significant TFs that are relevant for hematopoietic
stem cell differentiation are labeled. This figure was produced by myself and part of it (panel A) is
published in the (Berest et al., 2019).
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Although we were able to highlight potential individual TFs with altered activity

upon TET2 knockout, as we discussed in the previous chapter, high PWM similarity

between the TFs can lead to the biased interpretation of the effect of the single

TF from the shared PWM cluster. To summarize TF activity signal based on PWM

similarity we ran matrix-clustering tool (Castro-Mondragon et al., 2017) on the

combined HOCOMOCO v10 database (Kulakovskiy et al., 2015) and individual

motifs from CDX4 and EVX1 motifs from the recent methyl-SELEX paper (Yin et

al., 2017). We added these motifs, because original motifs of CDX4 and EVX1 were

retracted from the HOCOMOCO database, but they showed interesting changes of TF

activity in our dataset. In total, we obtained 88 TF clusters for which we compared

overall differential TF activity between TET2 wild-type and knockout states for each

condition (Figure 4.3).

We observed widespread significant changes in TF activity across TF clusters in all

analyzed cell types. For GMP cells (Figure 4.3 A), the most active clusters upon TET2

knockout are IRF (cluster 18) and STAT (cluster 27) TFs, with significant decrease of

activity for the GATA TF family (cluster 3). Whereas for MPP cells (Figure 4.3 B),

in the TET2 deficient state we observed an increase of TF activity for CEBP family

of TFs (cluster 23) and GATA TF cluster. In comparison to the normal epigenetic

differences between MPP and GMP wild-types, as shown in the Figure 4.2 A, such

changes suggest anomalous HSC lineage differentiation upon TET2 deficiency. For

the AML (Figure 4.3 C) and ES (Figure 4.3 D) cells we haven’t observed the same

ranges of TF activity in TET2 knockout and the majority of the TFs were more

active in the wild-type condition. Similar to GMP cells AML TET2 wild-type cells

showed increased activity of the GATA and RFX (cluster 36) TF family. ES cells

with TET2 knockout showed decreased activity of the PWM cluster 6, containing

nuclear receptors of steroid hormones (e.g. NR4A1). Finally, for all the cell types

we characterized decreased activity of the basic helix-loop-helix (bHLH; cluster 12)

family of TFs and HOX protein family (cluster 8), especially CDX4 and EVX1 SELEX

motifs upon TET2 knockout.

As we already showed previously that TET2 binding predominantly occurs in the

enhancer regions, we decided to split consensus peaks in each condition comparison

in four groups: all - correspond to the all peaks; Pro - peaks overlapped with the

promoter regions of the protein-coding genes, ProDist - all peaks without promoter

associated peaks (enhancer regions) and for ES and AML cell types we had also CHIP
categorie, that is basically overlapped set of regions between consensus peaks and

TET2 ChIP-seq data for these conditions.
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Figure 4.3: TF activity summarized by PWM similarity upon loss of TET2 . Box plot showing
weighted mean difference values obtained from diffTF analyses using all consensus peaks for each
TF cluster in GMP (A), MPP (B), AML (C) and ES (D) cells comparing Tet2 knockout versus wild
type. Individual TFs within a cluster are shown (black dots), and TFs passing a significance threshold
(p-value < 0.1) are highlighted (red dots). The predominant TF identity of selected clusters (12, 3,
and 23) are marked. This figure was produced by myself and part of it (panel B) is published in the
(Rasmussen et al., 2019).
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After that, for each condition and peaks group we ran diffTF to compare TF

activity changes between TET2 knockout samples and wild-type, grouped resulted TF

activity values by PWM clusters and visualized obtained results as heatmap (Figure

4.4 A). Intriguingly, we observed consistent changes of TF activity for several clusters,

that can explain impaired regulation of the HSC differentiation program under the

TET2 knockout.

For the cluster 12, containing mostly bHLH TFs, we observed the lowest median

TF activity across all conditions and other clusters, with specific decrease of signal

in AML.ProDist and AML.CHIP comparisons (Figure 4.4 C). This cluster consists of

22 TFs that facilitate the binding of E-box elements with a specific 5’-CANNTG-3’

binding sequence and initiate gene transcription (Massari and Murre, 2000). All

motifs of this cluster contain central CpG site, and it was shown before that altered

methylation/demethylation regulation of this site can impair in vitro DNA binding

(Yin et al., 2017). Also, we observed an unexpected increase of TF activity for

half of the TFs in this cluster for the ES and AML cells, suggesting that apart from

effects mediated by TET2 regulation they are also affected by other cell type specific

mechanisms in these conditions. Using gene expression data from RNA-seq in the

MPP cells we showed that MYC/MAX and HIF1A/ARNT heterodimers, as well as

ITF2 and ZEB1 TFs, are the most expressed TFs (Figure 4.4 D), suggesting that

the diffTF cluster 12 signal can be mostly influenced by the presence of these TFs.

However, none of the TFs from this cluster were significantly differentially expressed

between TET2 knockout and wild-type (Figure 4.4 E), thus revealing that TET2

absence is mostly affecting chromatin binding rather than TF expression.

Overall decrease of TF activity in the TET2 deficient state showed also cluster

8 TFs, containing TFs with homeobox domain (Figure 4.4 B). Summarized signal

across all TFs of this cluster was negative in the AML and GMP condition, suggesting

epigenetic changes of the regulation in normal and malignant hematopoiesis, and

specifically CDX4, PO3F2 and EVX2 motifs have decreased activity in almost all

cases. Interestingly, for AML.Pro, MPP.Pro and ES.pro comparisons TF activity of

these factors were not significantly decreased, but rather increased, proposing that

TET2 binding is affecting regulation of such TFs particularly in the enhancer regions.

Similarly to the cluster 12 TFs, we didn’t observe significant differences of the CDX4

and EVX2 TF expression between wildtype and TET2 knockout states.
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Figure 4.4: Summary of diffTF analysis of multiple cell types with loss of TET2. (A) The
heatmap represents the summary of diffTF analyses between Tet2 knockout and wild type across
multiple cell types. The color scale of the heatmap corresponds to the Z-scores of the weighted mean
difference values (TF activity) obtained from diffTF. Only TF clusters with three or more TFs are
shown. For each cell type, the analysis was run on different sets of peaks: promoter regions only (-1.5
kb/+500 bp from TSS; labeled celltype.Pro) and putative enhancer regions (+100 kb/-100 kb from
TSS excluding promoter regions; celltype.ProDist), in addition to the full set of peaks (celltype.all).
For the cell types for which we mapped TET2 binding sites by ChIP-seq (ES cells and AML cells),
diffTF was also run using ATAC-seq peaks intersected with TET2 ChIP in the corresponding cell type
(celltype.CHIP). Detailed heatmap for TF similarity clusters that showed consistent changes across
investigated cell types are shown, cluster 8 (B) and cluster 12 (C). (D) Histogram showing mean
normalized counts for Cluster 12 TFs obtained from RNA-seq data generated from wild-type and Tet2
knockout MPP cells. The TFs within Cluster 12 are ranked based on mean normalized abundance.
(E) DESeq2 log2 fold changes of Cluster 12 TFs ranked as in C. This figure was produced by myself
and part of it (panels A,D,E) is published in the (Rasmussen et al., 2019).
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4.3.3 TFs mode of action are conserved upon TET2 knockout

In order to test validity of activator/repressors diffTF classification mode for the

small size multiomics dataset (n=8), we compared TF specific changes in gene

expression and chromatin accessibility for the GMP versus MPP comparison and

GMP TET2 knockout versus wild-type case. We assigned TF mode of action relying

only on the GMP and MPP samples with normal TET2 functioning (Figure 4.5 A),

and observe expected highly significant correlation (ρ=0.69) for activators and

negative correlation for the repressors (ρ=-0.58). Afterwards, we transferred such

TF classification to the GMP specific TET2 knockout versus wild-type comparison

(Figure 4.5 B) and found similar direction of the correlations (activators: ρ=0.44;

repressors: ρ=-0.32). 63% of all expressed TFs (158) in GMP TET2 specific case

have similar to the HSC differentiation relation between expression and activity.
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Figure 4.5: TF classification through HSC differentiation. Correlation of differential TF activity
and differential expression (log2 fold changes obtained from DESeq) are shown for activators (left),
undetermined TFs (middle), and repressors (right) for the comparison of GMP versus MPP (A) and
GMP TET2 knockout versus wild type, which represents independent data (B). Color shadings in (A)
and (B) indicate the observed versus expected log2 ratio for each quadrant (blue, less than expected;
red, more than expected). TF classifications were obtained from the wild-type GMP and MPP samples.
Spearman’s rho and p value, as well as the odds ratio (OR) and p values of Fisher’s exact test, are
provided. The number of TFs is indicated in each quadrant. This figure was produced by myself and
is published in the (Berest et al., 2019).
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Figure 4.6: GMP/MPP TF footprinting analysis. Scatterplot comparing PC1 and PC2 from a PCA of
the footprints of all expressed TFs (n = 268). The insets (classes I–IV) display the average footprint
across TFs in that quadrant. This figure was produced by myself and is published in the (Berest et al.,
2019).

We also used obtained from GMP/MPP comparison TF classification and per-

formed TF footprinting analysis for all 268 expressed TFs in that conditions (Figure

4.6). Taking into consideration the first two PCs from the PCA analysis of footprinting

data, we observed comparable to the human CLL data (Figure 3.4 A) separation

of the mouse TFs. Similar to the described in the previous chapter results PC1

corresponds to the changes of chromatin accessibility in the motif center, and PC2 to

the openness of the flanking regions. Such results are very interesting, suggesting

that with footprinting analysis we characterize general TF biology, independent

of conditions and species. Highlighted above condition specific CEBP and IRF TF

families with huge differences in TF activity between GMP and MPP (Figure 4.2 A)

are classified as activators and showed typical activator footprints. However, the

strongest repressors JUN and KLF4 overall didn’t have a huge range of differences

in TF activity, therefore recapitulating the hypothesis that MPP to GMP transition

is mostly occurring through the activation of TF regulatory network (Cheng et

al., 2019). Surprisingly, TFs that were shown to be affected by TET2 regulation

(MYB,ITF2 and ZEB1) were classified as activators, but had a repressor footprint.

Overall, described analyses once more validate diffTF classification mode and

showed that it can be used even for datasets with low amounts of biological repli-

cates.
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4.4 Discussion

Despite multiple studies extensively characterizing the effect of TET2 on DNA methy-

lation dynamics (Hon et al., 2014; Rasmussen et al., 2015; Yamazaki et al., 2015),

there is still limited understanding of the regulatory mechanisms underlying the

impact of TET2 on the normal and malignant hematopoietic differentiation. In this

chapter we presented a novel, highly specific set of TET2 binding regions for the

ES and AML cells. We observed that the majority of TET2 binding is occurring in

enhancer regions and is highly overlapping with EP300 binding sites. Interaction

on the molecular level between EP300 and TET2 were shown before (Zhang et

al., 2017), as well as co-localization of EP300 binding sites with enhancer and

super-enhancer regions (Ebrahimi et al., 2019). Generation of the refined genome-

wide map of TET2 binding can lead to further linkage of DNA methylation and

chromatin histone marks for the cell-type specific gene regulation. Based on the

DNA methylation/hydroxymethylation data (Hon et al., 2014) we confirmed that

TET2 knockout leads to the increase of the DNA methylation and decrease of the

hydroxymethylation in the regions of binding. It is important to note that we didn’t

observe a linear relationship between ChIP-seq signal and DNA methylation signal,

suggesting that, although TET2 plays a key role in the demethylation cycle, binding

of it cannot fully determine methylation status. Low enrichment of CpG islands in

the TET2 binding sites also highlight the importance of additional, independent of

TET2, DNA methylation mechanisms regulating CpG islands function (Rasmussen

and Helin, 2016).

To characterize further molecular mediators of the TET2 regulation in

hematopoiesis we generated a complex dataset of paired chromatin accessibility and

gene expression data in multiple cell types. We characterize genome-wide chromatin

changes for multiple TFs at once upon TET2 knockout using differential TF activity

measure from diffTF. Taking into account PWM similarity bias of different TF

motifs we summarized the changes for each PWM cluster and identified groups of

TFs that showed changes in activity on different states of HSC differentiation in

the TET2 deficient state. Intriguingly, we didn’t observe any consistent activity of

the GATA TF family in all conditions, with decrease of the activity in the GMP and

AML cell types and increased activity for MPP and ES cell types. GATA TFs were

shown to bind methylated regions (Zhu et al., 2016), and we showed that upon

TET2 knockout DNA methylation overall increases, therefore expecting an overall

increase of GATA TFs activities. This discrepancy can be explained by the fact that
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in GMP, and similarly in AML cells, GATA TFs are not expressed. CEBPB TFs have

been reported to have a preference for binding to motifs with a methylated cytosine

(Mann et al., 2013), and showed more consistent signal of increased activity upon

TET2 knockout, with only difference in the ES cells.

Despite the cell-type specific signal, we found two potential TF families (HOX and

bHLH family) that have overall a similarly decreased activity across all conditions

upon TET2 knockout. Several studies suggested a potential relationship between

members of bHLH TFs and TET2. It was shown that TET2 is recruited to c-MYC

binding sites by SNIP1 (Chen et al., 2018), as well as increased DNA methylation

inhibits MYC binding in the ES cells from triple TET knockout mice (Yin et al., 2017).

Decreased activity of ITF2 and ZEB1 TFs can be explained by the involvement of

MYC in the regulation of the Wnt signalling pathway (Wong et al., 2014). These

observations in literature highlight dysregulation of activity for bHLH TFs in the

TET2 knockout hematopoietic cells and, hopefully, will stimulate further research of

their role in the malignant hematopoiesis. We also observed a decreased activity of

HOX TFs, in correspondence with observations that TET2 activity is responsible for

the expression of the HOXA cluster of genes (Bocker et al., 2012). Notably, as CDX4

was described to regulate early embryonic hematopoietic development (Wang et al.,

2008), the hypothesized binding of the TET2 to it, supported by our findings, can be

of a particular interest for future research. Together, these results suggest that loss

of TET2 catalytic activity, and the resulting aberrant DNA methylation turnover, has

pleiotropic consequences on chromatin accessibility and TF activity.

We also showed that upon genetic perturbation (TET2 knockout in this case)the

majority of the TFs keep their global mode of action. Apart from this we found

activator/repressor specific TF footprinting patterns of the surrounding motif flanking

regions. The latter observation is very exciting, as it highlights different chromatin

microenvironments for the activators and repressors. Additionally, with the increase

of research highlighting the ability of TFs to bind nucleosomes and closed chromatin

(Mayran et al., 2019), we need to refine further our footprinting analysis and

integrate it with more epigenetic molecular phenotypes.





Chapter 5

Conclusions and future perspectives
Tremendous technological developments of sequencing technologies combined with

novel experimental methods improved significantly our knowledge of chromatin biol-

ogy. In my opinion, chromatin is a very direct measure and a key for understanding

complex gene regulation mechanisms in the cell. Inevitably in the future, integration

of data from various chromatin related molecular phenotypes, such as information

about histone modifications or DNA methylation, will reveal fundamental basic

biological logic behind cell functioning. Important roles in the regulatory pathways

play TFs, as major source of reaction and adaptation of cellular internal encoded

program to the extra- and intracellular changes.

In the presented dissertation I tackled the problem of inferring TF activity from the

integrated multiomics data. We developed a novel computational tool diffTF (Berest

et al., 2019) that summarizes changes in chromatin accessibility for the estimated

sites of TF binding and through the extensive statistical workflow define differentially

active TFs in pairwise comparisons. Additionally, diffTF uses gene expression data

to predict global functional roles of TF in such comparisons. We benchmarked our

algorithm on one of the biggest multiomics dataset and defined potential biases

and limitations of our tool. Notably, diffTF is the first published computational

tool that integrates chromatin accessibility and gene expression to define TF activity

and function. It is important to note that on top of the development of methods

for assessing biological systems, there is also constant evolution of programming

algorithms and tools used in bioinformatics. We aimed to use up-to-date novel

computational approaches for the construction of our pipeline, such as Snakemake

workflow management system, that allowed to reduce diffTF complexity for the

user.
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We extensively used diffTF for many different projects, however, in this disser-

tation I focused on two main datasets. First we applied diffTF to the multiomics

dataset from CLL patients(Rendeiro et al., 2016) to define differences in TF regu-

latory landscapes between two subtypes of CLL. Using our approach we found 68

differentially active TFs, part of which (~40%) were already known to be involved in

the differential regulation between U-CLL and M-CLL. Importantly, we found novel

TFs and based on the published literature hypothesized about potential functions

of them in the progression of each subtype. We validated in silico data-driven clas-

sification into activators and repressors. We also used an external CLL multiomics

dataset for the experimental validations of the diffTF classification mode, and found

that our classification is robust to the perturbations caused by the drug treatment.

Defined TFs can be used in future to design novel chromatin-targeted strategies of

personalized CLL treatment.

In the chapter 4, we also applied diffTF to the multiomics dataset characterizing

the effects of DNA methylation turnover affected by TET2 on the chromatin changes

during hematopoietic system differentiation (Rasmussen et al., 2019). Using the first

high quality map of TET2 binding we defined two major classes of TFs regulated

by TET2 (bHLH and Hox family). We also showed that TF activity changes are also

occurring in AML cells, therefore confirming the vast impact of DNA methylation

on chromatin changes during leukemogenesis. For both datasets we performed

TF footprinting analysis, which highlight interesting dynamics between predicted

activators and repressors. Increased chromatin accessibility of the flanking regions

are specific for the activator TFs, whereas repressor TFs are mostly located in the

closed chromatin. This interesting observation can potentially explain different

mechanisms of binding of activator and repressors, possibly even dissecting the

roles of TF in different chromatin context. These statements, however, need further

careful evaluation and testing.

With the burst of the single cell technologies, we are aiming in the future to

add diffTF functionality to work with the single cell data. This will require change

of the technical aspects of the pipeline, as well as statistical methods behind the

method. We are also planning to transfer the diffTF pipeline to the R/Bioconductor

environment to make it easier to use for biologists around the world.



Appendix A

Original CLL dataset metadata

Patient ID name Gender Age IGVH, % IGVH status batch RNA-seq

50 ATAC_50 F 84 94.00 mutated 1 -

244 ATAC_244_1 M 61 89.22 mutated 2 -

244 ATAC_244_2 M 69 89.22 mutated 2 -

552 ATAC_552_1 M 72 100.00 unmutated 3 -

552 ATAC_552_2 M 75 100.00 unmutated 3 -

653 ATAC_653_1 F 76 99.65 unmutated 2 -

653 ATAC_653_2 F 82 99.65 unmutated 2 -

680 ATAC_680_1 M 52 92.00 mutated 2 +

680 ATAC_680_2 M 57 92.00 mutated 2 -

981 ATAC_981_1 M 79 91.39 mutated 3 -

981 ATAC_981_2 M 83 91.39 mutated 4 -

1125 ATAC_1125_1 M 61 93.40 mutated 2 -

1125 ATAC_1125_2 M 65 93.40 mutated 2 -

1303 ATAC_1303 M 90 93.75 mutated 1 -

1781 ATAC_1781 F 75 91.00 mutated 5 +

2132 ATAC_2132_1 F 54 100.00 unmutated 3 -

2132 ATAC_2132_2 F 56 100.00 unmutated 3 -

2459 ATAC_2459_1 M 58 93.00 mutated 5 -

2459 ATAC_2459_2 M 63 93.00 mutated 5 -

2483 ATAC_2483 F 90 100.00 unmutated 5 -

2613 ATAC_2613_1 M 82 96.60 mutated 3 -

2613 ATAC_2613_2 M 85 96.60 mutated 3 -*

2886 ATAC_2886_1 M 76 92.00 mutated 5 -

2886 ATAC_2886_2 M 77 92.00 mutated 5 -

2938 ATAC_2938_1 M 74 97.60 mutated 2 -

2938 ATAC_2938_2 M 77 97.60 mutated 2 -

2938 ATAC_2938_3 M 80 97.60 mutated 2 -

2938 ATAC_2938_4 M 82 97.60 mutated 2 -

2938 ATAC_2938_5 M 83 97.60 mutated 6 -

2977 ATAC_2977_1 M 60 97.58 mutated 6 -

2977 ATAC_2977_2 M 67 97.58 mutated 2 -

3069 ATAC_3069_1 F 66 100.00 unmutated 1 -

3069 ATAC_3069_2 F 71 100.00 unmutated 3 -

3142 ATAC_3142 F 82 99.30 unmutated 5 -

3156 ATAC_3156_1 F 65 100.00 unmutated 2 -

3156 ATAC_3156_2 F 72 100.00 unmutated 3 -

3215 ATAC_3215_1 M 73 89.90 mutated 5 -

3215 ATAC_3215_2 M 77 89.90 mutated 5 -

3215 ATAC_3215_3 M 82 89.90 mutated 5 -

3215 ATAC_3215_4 M 83 89.90 mutated 5 -

3240 ATAC_3240 M 84 100.00 unmutated 5 +
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3263 ATAC_3263_1 M 66 95.30 mutated 2 -

3263 ATAC_3263_2 M 73 95.30 mutated 2 -

3386 ATAC_3386 M 82 91.16 mutated 3 -

3439 ATAC_3439_1 F 88 96.88 mutated 5 -

3439 ATAC_3439_2 F 90 96.88 mutated 5 -

3439 ATAC_3439_3 F 95 96.88 mutated 5 -

3492 ATAC_3492_1 F 84 100.00 unmutated 5 -

3492 ATAC_3492_2 F 87 100.00 unmutated 6 -

3756 ATAC_3756 F 61 98.61 unmutated 6 -

3811 ATAC_3811 M 58 93.95 mutated 2 -

3823 ATAC_3823_1 M 66 95.92 mutated 3 -

3823 ATAC_3823_2 M 71 95.92 mutated 1 -

3873 ATAC_3873 F 49 98.00 unmutated 5 -*

3943 ATAC_3943 M 59 100.00 unmutated 5 -

3980 ATAC_3980 M 81 100.00 unmutated 5 -

4034 ATAC_4034 F 77 91.60 mutated 1 -

4078 ATAC_4078_1 F 77 100.00 unmutated 3 -

4078 ATAC_4078_2 F 80 100.00 unmutated 6 -

4080 ATAC_4080 M 79 90.50 mutated 2 +

4102 ATAC_4102_1 M 78 92.44 mutated 5 -

4102 ATAC_4102_2 M 82 92.44 mutated 5 -

4102 ATAC_4102_3 M 83 92.44 mutated 5 -

4189 ATAC_4189 M 84 100.00 unmutated 1 +

4251 ATAC_4251_1 M 61 100.00 unmutated 6 -

4251 ATAC_4251_2 M 64 100.00 unmutated 6 -

4333 ATAC_4333 M 54 100.00 unmutated 6 +

4621 ATAC_4621_1 M 66 91.32 mutated 3 -

4621 ATAC_4621_2 M 69 91.32 mutated 4 -

4621 ATAC_4621_3 M 69 91.32 mutated 3 -

4668 ATAC_4668_1 M 50 99.65 unmutated 5 -

4668 ATAC_4668_2 M 49 99.65 unmutated 6 -

4747 ATAC_4747 F 82 93.40 mutated 7 -

4784 ATAC_4784 F 82 93.40 mutated 6 +

4802 ATAC_4802 NA NA NA NA 6 -

4963 ATAC_4963 M 68 86.11 mutated 1 -

4989 ATAC_4989 M 72 100.00 unmutated 5 -

5019 ATAC_5019 F 74 NA NA 5 -

5044 ATAC_5044 M 73 97.22 mutated 6 -

5048 ATAC_5048 F 83 90.97 mutated 5 -

5129 ATAC_5129 F 86 100.00 unmutated 2 -

5147 ATAC_5147 M 47 100.00 unmutated 8 -

5170 ATAC_5170 F 88 NA NA 5 -

5199 ATAC_5199 M 59 100.00 unmutated 5 -

5204 ATAC_5204 M 76 98.98 unmutated 1 -

5229 ATAC_5229 M 65 100.00 unmutated 5 -

5263 ATAC_5263 M 71 100.00 unmutated 2 +

5277 ATAC_5277 NA NA NA NA 8 -
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CLL TFs literature annotation

TF motifs Mode of action DBD domain Function CLL association

ARI3A.S, ARI3A.D repressor ARID/BRIGHT Arid3a altering accessibility of IGVH genes to rearrangement in fetal

development. Impact selection of B-cells.

no

ASCL2 activator bHLH It activates transcription by binding to the E box (5’-CANNTG-3’). no

CLOCK repressor bHLH BMAL1:CLOCK regulate circadian cycles in CLL. yes

EGR3 undetermined C2H2 ZF Part of the BCR signaling pathway. Neriched in hypomethilated CpG

sites in CLL

yes

ERF undetermined ETS ETS repressor factor. no

ESR1.A undetermined Nuclear receptor Is repressed by mir-18a that bind to it mRNA at the 3’ UTR. yes

GATA2, GATA3 undetermined GATA HSCs in CLL have cell-intrinsic propensity to generate clonal

CLL-like B cells.

no

GCM1 undetermined GCM Key factor in the beta-catenin/GCMa/syncytin-1 pathway. no

GFI1, GFIB undetermined C2H2 ZF GFI-1 involved in B cell development no

GLI1, GLI3 undetermined C2H2 ZF Part of the HH signaling pathway. Inhibition of it results in reduced

apoptosis and bigger survival of the CLL cells.

yes

HESX1 undetermined Homeodomain HESX1 is differentially expressed gene comparing endothelocyte and

B-cell CLL.

no

HXB7 undetermined Homeodomain HoxB7 repress expression of the death-associated protein kinase 1

(DAPK1), which result in heritable predisposition to CLL.

yes

KAISO.S activator C2H2 ZF Overexpression of Kaiso significantly increased cell viability and

inhibited hydrogen peroxide-induced apoptosis. Also is effected by

miRNAs.

no

KLF16 repressor C2H2 ZF KLF16 is a novel regulator of metabolic genes by regulatable

coupling to Sin3-histone deacetylase complexes.

no

MUSC undetermined bHLH Suppressed activity by BLIMP-1(PRDM1). Repress E2A proteins.

Downstream gene of the B-cell receptor signal transduction pathway.

May play a role in regulating antigen-dependent B-cell

differentiation.

no

MYBB undetermined Myb/SANT Regulator of cell-cycle progression and cell survival. yes

NF2L1 undetermined bZIP Related to PAK Pathway and ERK Signaling. no

NR1D1 undetermined Nuclear receptor Circadian rhytms regulation. Repression of the BMAL1/CLOCK

complex.

no

NR1H2 repressor Nuclear receptor Regulate lipid and cholesterol metabolism. Promote apoptosis and

regulate cell proliferation.

yes

NR1I2.S undetermined Nuclear receptor Transcriptional regulator of the cytochrome P450 gene CYP3A4.

Hyperforin activates PXR and SXR and promote apoptosis in CLL.

yes

NR4A3 undetermined Nuclear receptor Affected by IgM stimulation and cAMP. yes

OVOL1 undetermined C2H2 ZF Critical for Mesenchymal to Epithelial Transition (MET) plasticity. no

P73.S repressor p53 Activate p53-mediated apoptosis mitochondrial apoptosis. yes

PO3F1 undetermined POU Regulate neural commitment from ES cells. no

PPARD undetermined Nuclear receptor Promotes survival of CLL in energetically unfavorable conditions. yes

PRRX1 undetermined Homeodomain Transcription co-activator, enhancing the DNA-binding activity of

serum response factor, a protein required for the induction of genes

by growth and differentiation factors.

no
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RARG.C undetermined Nuclear receptor Induce CD1d expression by CLL cells, which in combination with

iNKT cell agonist glycolipids could sensitize CLL cells forlysis by

iNKT cells.

yes

RORA undetermined Nuclear receptor A potent negative regulator of NF-KB signaling. yes

RREB1 activator C2H2 ZF Represses miR-143 and miR-145 Promoter. no

SMAD2 undetermined SMAD Phosphorylated by activated type I receptor for TGF-$beta$ and

associated with Activin (Act) pathway.

yes

TAL1.A activator bHLH Key marker of the T-cell acute lymphoblastic leukemia. no

ZBT49 undetermined C2H2 ZF Inhibits cell proliferation by activating either CDKN1A/p21

transcription or RB1 transcription.

no

ZBTB6 activator C2H2 ZF Involved in B-cell development have been associated with cell cycle

and cell survival control.

no

ZFHX3 repressor C2H2 ZF;

Homeodomain

Negatively regulate c-Myb, and transactivate the cell cycle inhibitor

cyclin-dependent kinase inhibitor 1A (also known as p21CIP1). This

gene is reported to function as a tumor suppressor in several cancer.

no

ZKSC1 undetermined C2H2 ZF This encoded protein may function as a transcription factor that

regulates the expression of GABA type-A receptors in the brain.

Transcripts from this gene have been shown to form stable and

abundant circular RNA.

no

ZN784 activator C2H2 ZF May be involved in transcriptional regulation. no

BC11A repressor C2H2 ZF T(2,14) translocation increase expression of the BC11A in U-CLL. yes

BHE40 activator bHLH Controls the development and self-renewal of B-1a cells. no

BMAL1 activator bHLH Circadian regulation; should be bigger in normal or in the treated

with radiology samples.

no

CEBPB repressor bZIP ATF6 and C/EBP-beta complex is required for the

IFN-gamma-induced expression of DAPK1. Defects in this pathway

fail to control growth of CLL.

yes

FOXO4 undetermined Forkhead TF target enrichment analysis (MsigDB database) on gene lists

retrieved from DNA methylation data showed FOXO4 TFBS enriched

for those genes.

no

IRF1, IRF2, IRF3,

IRF4, IRF5,

IRF7,IRF8, IRF9

activator,

undetermined

IRF IRF pathway is highly expressed and regulate cell proliferation and

apoptosis. Ma et al.: IRF4 suscept-locus for CLL, IRF 4 (+/-) mice

have shorter onset of CLL, increased B1 cell survival (precursors of

CLL cells), accellerated cell renewal and resistnace to apoptosis.

Injection of IRF4 inhibits their survival. Similar results in human.

High IRF4 supress AKT activity. NFKB, JNK/p38, NF/IL6 and IRF

pathways are intermediate to highly expressed (due to high

expression of TLRs).

yes

MAX, MYC activator,

undetermined

bHLH Several reports of c-Myc in CLL, high mRNA expression is associated

with poor prognosis. Mostly in un-mutated.

yes

PAX2.S undetermined Homeodomain

Paired box

PAX2 Protein Induces Expression of Cyclin D1 through Activating

AP-1 Protein and Promotes Proliferation of Colon Cancer Cells.

no

PAX5.A repressor Paired box Altered isoform expression of PAX5 is involved in lymphomagenesis. yes

PAX6 activator Homeodomain

Paired box

PAX6 dependent regulation of BCL6. no

PRDM1 repressor C2H2 ZF Suppresion of the PRDM1 supress differentiation. yes

STAT2 activator STAT STAT activation is a common characteristic of leukemias. yes

TAL1.S activator bHLH Aberrant activation by interchromosomal interactions. no

TF7L2 undetermined HMG/Sox Participates in the Wnt signaling pathway and modulates MYC

expression by binding to its promoter in a sequence-specific manner.

no

TFAP4 undetermined bHLH Misregulation contribute to genomic instability and tumorigenesis. no

TFE3, TFEB activator,

undetermined

bHLH TFE-fusion proteins are highly overexpressed in cancers. Mainly

because of the chromosomal rearrangements.

no

USF1, USF2 activator bHLH USF1 recruits histone modification complexes and is critical for

maintenance of a chromatin barrier.

no

ZBT18 repressor C2H2 ZF Cell movement and cell migration in leukemias. no
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GO enrichment results for CLL TFs

Gene Ontology term name AUC PRC TF count

defense response to other organism 0.918 0.563 9

response to interferon-gamma 0.886 0.729 9

interferon-gamma-mediated signaling pathway 0.886 0.729 9

cellular response to interferon-gamma 0.886 0.729 9

response to type I interferon 0.867 0.798 10

type I interferon signaling pathway 0.867 0.798 10

cellular response to type I interferon 0.867 0.798 10

response to biotic stimulus 0.827 0.516 16

response to external biotic stimulus 0.827 0.516 16

response to other organism 0.827 0.516 16

adaptive immune response 0.798 0.272 10

immune effector process 0.791 0.381 13

regulation of leukocyte differentiation 0.786 0.293 13

myeloid leukocyte differentiation 0.762 0.182 9

cytokine-mediated signaling pathway 0.760 0.664 13

immune response 0.756 0.642 26

innate immune response 0.751 0.636 17

regulation of leukocyte activation 0.740 0.207 11

regulation of cell activation 0.740 0.207 11

positive regulation of cytokine production 0.734 0.336 11

regulation of hemopoiesis 0.733 0.285 15

response to cytokine 0.726 0.582 18

cellular response to cytokine stimulus 0.726 0.582 18

immune system process 0.714 0.667 39

response to bacterium 0.714 0.185 9

response to molecule of bacterial origin 0.714 0.185 9

positive regulation of immune system process 0.714 0.321 17

regulation of innate immune response 0.710 0.294 10

symbiosis, encompassing mutualism through parasitism 0.697 0.413 16

interspecies interaction between organisms 0.697 0.413 16

regulation of immune response 0.693 0.296 14

regulation of immune system process 0.691 0.408 26

positive regulation of immune response 0.690 0.244 12

leukocyte differentiation 0.690 0.304 18

regulation of cytokine production 0.675 0.318 12

defense response 0.671 0.570 24

negative regulation of immune system process 0.670 0.155 10

fat cell differentiation 0.670 0.123 9

viral process 0.670 0.327 15

multi-organism cellular process 0.670 0.327 15

T cell activation 0.668 0.186 11
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activation of immune response 0.667 0.225 10

immune response-activating signal transduction 0.667 0.225 10

immune response-regulating signaling pathway 0.667 0.225 10

immune system development 0.667 0.404 27

hemopoiesis 0.667 0.404 27

hematopoietic or lymphoid organ development 0.667 0.404 27

T cell differentiation 0.665 0.178 10

myeloid cell differentiation 0.647 0.234 14

cytokine production 0.644 0.307 13

leukocyte cell-cell adhesion 0.644 0.156 9

single organismal cell-cell adhesion 0.644 0.156 9

regulation of cell-cell adhesion 0.644 0.156 9

cell-cell adhesion 0.644 0.156 9

regulation of leukocyte cell-cell adhesion 0.644 0.156 9

positive regulation of defense response 0.642 0.223 9

regulation of defense response 0.639 0.286 15

blood vessel morphogenesis 0.638 0.135 10

regulation of body fluid levels 0.636 0.246 10

cell surface receptor signaling pathway 0.629 0.556 31

response to external stimulus 0.628 0.492 33

response to organic substance 0.627 0.666 47

lymphocyte activation 0.626 0.182 12

cell adhesion 0.626 0.179 12

biological adhesion 0.626 0.179 12

multi-organism process 0.620 0.487 31

lymphocyte differentiation 0.620 0.174 11

membrane-enclosed lumen 0.620 0.858 76

nuclear lumen 0.620 0.858 76

organelle lumen 0.620 0.858 76

intracellular organelle lumen 0.620 0.858 76

leukocyte activation 0.613 0.196 14

regulation of cell adhesion 0.612 0.167 11

regulation of chromosome organization 0.609 0.109 9

cytosol 0.607 0.550 33

multicellular organismal process 0.606 0.825 75

single-multicellular organism process 0.606 0.825 75

positive regulation of multicellular organismal process 0.602 0.458 36
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Chapter 3 supplementary data

Figure D.1: Quality controls for TET2 ChIP-seq. (A-B) IDR analysis of replicate ES TET2 ChIP
samples generated with (A) TET2-N, or FLAG M2 (B) antibodies. (C) IDR analysis of replicate TET2
ChIP samples from myeloid hematopoietic cells. (D) IDR analysis of replicate TET2 ChIP samples
from AML cells. The number of reproducible peaks at different confidence levels are shown. (E)
Scatterplot showing correlation of log2 transformed normalized average TET2 ChIP-seq read counts
in peaks in ES cells from TET2-N and FLAG M2 ChIP experiments. High-confidence (red dots) TET2
binding sites are marked. (F) Same as (E), but for log2 transformed fold changes of TET2 ChIP-seq
reads over the background signal (noise) measured in Tet2 knockout cells (for TET2-N) or empty cells
(for FLAG M2). (G) Plot showing density of CpG sites in high-confidence TET2 binding sites as well as
CpG islands in the mouse genome. For the TET2 bindign sites the CpG density is significantly lower
as compared to CpG islands. This figure was produced by myself and is published in the (Rasmussen
et al., 2019).
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