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2 Summary 

Since the 1980s, the human immunodeficiency virus 1 (HIV-1) has been acknowledged as the 

trigger for AIDS, the acquired immunodeficiency syndrome. Every year, worldwide 

approximately 700,000 people die from late effects of HIV-1 infection and AIDS (UNAIDS, 

2018). Thus, continuous research is important to better understand the interaction of the virus 

with the human host and to develop a cure. Host cell proteins that promote or fight infection 

are referred to as co- and restriction factors, respectively. Innate immunity restriction factors 

are, for example, TRIM5 or tetherin and some of them are induced by interferons (IFNs). 

Cyclophilin A (CypA), a small protein that influences the folding and thus the function of 

several cellular proteins, is a co-factor for HIV-1 infection. According to current knowledge, 

CypA shields cellular HIV-1 capsid cores form restriction factors after viral cell entry and thus 

ensures the safe transport of the virus genome into the cell nucleus. There, the HIV-1 genome 

can integrate into the host genome.   

In addition to CypA, the protein family of cyclophilins (Cyps) contains at least 16 other proteins 

in humans, all of which have similar cyclophilin domain structures, but have diverse cellular 

functions. While the role of CypA during HIV-1 infection is reasonably well characterized, 

almost no information is available for the other Cyps. This work investigated the influence of 

Cyps on early HIV-1 infection events in connection with the antiviral effects of type I IFNs. In 

general, some type I IFN-stimulated cells exert a significantly reduced HIV-1 infection. 

Interestingly, this early block to infection is amplified in CypA deficient cells. This indicates a 

role of CypA in the immune defense against HIV-1. Furthermore, an increase in infection after 

treatment with a cyclophilin inhibitor, Cyclosporin A (CsA) was observed. This can also be 

observed in the absence of CypA, the supposedly main target of CsA inhibition. This suggested 

the presence of CsA-sensitive factors that affect HIV-1 infection in type I IFN treated cells. 

Since both, CsA and type I IFNs have been proposed and tested as possible therapy strategies, 

however with little success, this observation warrants further investigation to reveal the 

underlying mechanisms, which could lead towards an adapted therapeutic strategy.   

The most obvious candidate targets are other members of the cyclophilin family. Therefore, 

CypB, CypC, CypD, CypE and CypH deficient THP-1 cells were generated using 

CRISPR/Cas9, and the effect of type I IFN treatment and CsA stimulation on HIV-1 infection 

was examined. While knockout of CypB, CypC and CypD modulated infection but showed no 

effect in response to IFN or CsA, CypE and CypH knockout cells showed a significantly 

increased sensitivity of HIV-1 infection to type I IFN-induced blocks. Due to these different 
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phenotypes, the interplay of several Cyps was examined by generating double knockout cell 

lines. Depletion of CypB alone had no effect on HIV-1 infection, but a significantly increased 

sensitivity to type I IFN-induced post entry blocks was observed in the absence of both, CypA 

and CypB. The same could be observed for the double knockout of CypA and CypE. This 

suggests that Cyp functions on early HIV-1 infection events are complex and that some 

functions may depend on other members of this protein family. Furthermore, the results of this 

study show that CypA is not the only member of this family that has a function during early 

HIV-1 infection.  

The results from this study suggest that knockout of single cyclophilin genes was insufficient 

to render THP-1 cells insensitive to the CsA-induced increase in HIV-1 infection in type I IFN-

induced cells, i.e. the phenotype could not be explained by one the candidates tested. To conduct 

a more unbiased approach, a mass spectrometry screen based on thermal protein stability was 

carried out covering the entire cellular proteome. In addition to known CsA targets, several new 

factors could be identified for which protein stability was sometimes dramatically altered upon 

CsA treatment of cells, indicating possible functional sensitivity to CsA. Some of these were 

IFN-induced proteins, such as members of the Retinoic Acid inducible gene I (RIG-I) signaling 

pathway. RIG-I recognizes viral RNA and induces an antiviral signaling cascade within the 

cell, which among other things leads to type I IFN production. Since this signaling pathway has 

been already associated with HIV-1 infection in the literature, some members of this signaling 

pathway were examined in more detail regarding HIV-1 infection and sensitivity to type I IFN 

and CsA. Knockout of RIG-I, MDA5, MAVS, TRADD or IRF3 in CypA deficient THP-1 cells 

showed increased sensitivity to type I IFN-induced early infection blocks. In addition, an 

increased infection in IRF3 knockout cells was observed, which indicates a function of IRF3 in 

the restriction of HIV-1. It was also seen that the CsA-induced effects in CypA knockout cells 

were no longer observable when either RIG-I, MDA5, MAVS or IRF3 were knocked out on 

top. While a mechanism of action of CsA on the RIG-I signaling pathway could unfortunately 

not be identified due to time limitations, the generated cell lines in this study are excellent tools 

for future studies that will aim to reveal mechanistic insights. The complex interplay between 

HIV-1 co-factors and type I IFN-induced cellular restriction factors in early infection events 

may yet again underline how perfectly well HIV-1 has adapted to exploit cellular pathways. 
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3 Zusammenfassung 

Seit den 1980er Jahren gilt das humane Immunschwächevirus 1 (HIV-1) als der Auslöser von 

AIDS, dem Acquired Immunodeficiency Syndrom. Da weltweit jährlich ca. 700 000 Menschen 

an den Spätfolgen der HIV-1 Infektion und AIDS sterben (UNAIDS, 2018), ist die 

kontinuierliche Forschungsarbeit zum besseren Verständnis der Interaktion des Virus mit  dem 

humanen Wirt wichtig. Wirtszellenproteine, die eine Infektion fördern, werden als Co-Faktoren 

und Proteine, die dagegen ankämpfen werden als Restriktionsfaktoren bezeichnet. 

Restriktionsfaktoren sind beispielsweise TRIM5 und Tetherin, wobei die Expression einiger 

Restriktionsfaktoren durch Interferone (IFNs) induziert wird. Cyclophilin A (CypA), ein 

kleines Protein, das die Faltung und somit die Funktion anderer zellulärer Proteine beeinflussen 

kann, ist ein solcher Co-Faktor der HIV-1 Infektion. Nach aktuellem Kenntnisstand schirmt 

CypA zelluläre HIV-1 Kapsid Strukturen nach dem viralen Zelleintritt vor Restriktionsfaktoren 

ab und stellt somit den sicheren Transport des Virusgenoms in den Zellkern sicher. Dort kann 

das HIV-1 Genom sich in das Wirtsgenom integrieren.   

Neben CypA beinhaltet die Proteinfamilie der Cyclophiline beim Menschen noch mindesten 16 

weitere Proteine, die alle CypA ähnliche Cyclophilin Domänenstrukturen aufweisen, jedoch 

zahlreiche zelluläre Funktionen besitzen. Während die Rolle von CypA während der HIV-1 

Infektion einigermaßen gut charakterisiert ist, fehlt für die andern Cyclophiline nahezu jegliche 

Information. Diese Arbeit untersuchte den Einfluss von Cyclophilinen auf Ereignisse direkt 

nach der Infektion von HIV-1, die im Zusammenhang mit der antiviralen Wirkung von Typ I 

IFNs stehen. Im Allgemeinen weisen einige Typ I IFN stimulierten Zellen eine signifikant 

reduzierte HIV-1 Infektion auf. Interessanterweise ist dieser frühe Block der Infektion in CypA 

defizienten Zellen verstärkt. Dies deutet auf eine Funktion von CypA in der Immunabwehr 

gegen HIV-1 hin. Des Weiteren konnte eine Erhöhung der Infektionsrate nach Stimulation mit 

einem Cyclophilin Inhibitor, Cyclosporin A (CsA) beobachtet werden. Dies ist auch in 

Abwesenheit von CypA, dem vermeintlich hauptsächlichen Ziel der CsA Inhibition, zu 

beobachten. Dies deutet auf einen weiteren CsA-sensitiven Faktor hin, der die HIV-1 Infektion 

in Type I IFN stimulierten Zellen beeinflusst. Dies stellt die Grundlage für weiterführende 

Untersuchungen dar, da sowohl CsA als auch type I IFN als möglich HIV-1 Medikamente 

untersucht worden sind, leider jedoch mit wenig Erfolg. Das Verständnis der 

zugrundeliegenden Mechanismen könnte jedoch wichtige Erkenntnisse für eine angepasste 

HIV-1 Therapie bieten.   

Die naheliegendsten alternativen CsA-Targets waren weitere Mitglieder der Cyclophilin 
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Familie. Deshalb wurden CypB, CypC, CypD, CypE und CypH defiziente THP-1 Zellen mit 

Hilfe der CRISPR/Cas9 Technologie generiert und der Effekt von Typ I IFNs und CsA 

Stimulation auf die HIV-1 Infektion untersucht. Während ein Knockout von CypB, CypC und 

CypD zwar die Infektion beeinflusste aber keinen Effekt bei IFN oder CsA Stimulation hatte, 

zeigten CypE und CypH knockout Zellen eine signifikant erhöhte Sensitivität der HIV-1 

Infektion für den Typ I IFN induzierten Infektionsblock. Durch diese unterschiedlichen 

Phänotypen wurde das Zusammenspiel mehrerer Cyps mit Hilfe von Doppelknockoutzelllinien 

untersucht. Knockout von CypB alleine zeigte keinen Effekt auf die HIV-1 Infektion, allerdings 

konnte eine signifikant erhöhte Sensitivität gegenüber Typ I IFNs in Abwesenheit von CypA 

und CypB beobachtet werden. Ähnliches konnte auch für den doppelten Knockout von CypA 

und CypE beobachtet werden. Dies deutet darauf hin, dass Cyclophilin-Funktionen während 

eins frühen Stadiums der HIV-1 Infektion in komplexen Zusammenhang stehen und eventuell 

einige Funktionen von anderen Mitgliedern dieser Proteinfamilie abhängen. Des Weiteren 

zeigen die Ergebnisse dieser Studie, dass CypA nicht das einzige Mitglied der Cyclophilin 

Familie mit einer Funktion während der frühen HIV-1 Infektion ist. Die Ergebnisse dieser 

Studie legen nahe, dass der Knockout eines einzelnen Cyclophilins nicht ausreichend ist, um 

die CsA-induzierte erhöhte HIV-1 Infektion in Typ I IFN stimulierten THP-1 Zellen zu 

verhindern, beziehungsweise konnte dieser Phänotyp durch keinen der hier untersuchten 

Kandidaten erklärt werden.   

Zur Identifizierung weiter möglicher CsA-sensitiven Faktoren wurde ein neutraler Ansatz 

gewählt, bei dem das gesamte zelluläre Proteom auf seine thermische Proteinstabilität mit Hilfe 

von Massenspektrometrie untersucht wurde. Neben bekannten CsA Targets konnten auch 

einige neue Faktoren identifiziert werden, deren Proteinstabilität deutlich durch die Zugabe von 

CsA beeinflusst wurde und somit eine mögliche Sensitivität dieser Kandidaten für CsA gegeben 

ist. Einige dieser Kandidaten waren type I IFN-induzierte Proteine, wie Mitglieder des Retinoic 

acid inducible gene (RIG-I) Signalweges. RIG-I erkennt virale RNA und induziert eine 

antivirale Signalkaskade innerhalb der Zelle, die unter anderem zur Typ I IFN-Produktion führt. 

Da dieser Signalweg in der Literatur bereits im Zusammenhang mit der HIV-1 Infektion 

beschrieben ist, wurden einige Mitglieder dieses Signalweges genauer in Bezug auf die HIV-1 

Infektion und die Sensitivität gegenüber Typ I IFNs und CsA untersucht. Knockout von RIG-

I, MDA5, MAVS, TRADD und IRF3 in CypA defizienten THP-1 Zellen zeigten alle eine 

erhöhte Sensitivität gegenüber dem Typ I IFN-induzierten frühen Block der HIV-1 Infektion. 

Zusätzlich konnte eine erhöhte Infektion in IRF3 Knockout Zellen beobachtet werden, was auf 

eine Funktion von IRF3 in der Restriktion von HIV-1 hindeutet. Zudem konnten die CsA-
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induzierten Effekte in CypA knockout Zellen nicht mehr beobachtet werden, wenn entweder 

RIG-I, MDA5, MAVS oder IRF3 zusätzlich ausgeknockt waren. Ein Wirkmechanismus von 

CsA auf den RIG-I Signalweg konnte leider aus Zeitgründen nicht identifiziert werden. 

Allerdings stellen die in dieser Studie hergestellten Zelllinien exzellente Werkzeuge für 

zukünftige Studien zur Aufdeckung der zugrunde liegenden Mechanismen dar. Das komplexe 

Zusammenspiel zwischen Ko-Faktoren der HIV-1 Infektion und den zellulären Typ I IFN-

induzierten Restriktionsfaktoren während den frühen Phasen der Infektion zeigt wieder einmal, 

wie gut HIV-1 an die humanen zellulären Prozesse angepasst ist.  
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5 Introduction 

5.1 Human Immunodeficient Virus Type 1 (HIV-1) 

Human immunodeficient virus type 1 (HIV-1) was first isolated and characterized in 1983 [1], 

[2] and named HIV-1 three years after its first isolation [3]. HIV-1 infection causes the acquired 

immunodeficiency syndrome (AIDS), a condition characterized by the progressive failure of 

the immune system. This makes patients susceptible to life-threatening opportunistic infections, 

which eventually lead to a patient’s death. Transmission of the virus occurs from person to 

person by transfer of blood, breast milk, pre-ejaculate, semen or vaginal fluid. HIV-1 infects a 

subset of human immune cells, mainly CD4+ T cells and macrophages but also myeloid cells 

[4]. The infection can be categorized into three stages [5]: First, the acute early infection, in 

which the virus replicates rapidly. The initial phase is characterized by a dramatic depletion of 

CD4+ T cells, accompanied by the production of large quantities of proinflammatory cytokines 

including type I interferons (IFNs) [6]. Secondly, in the clinical latency phase a rebound of T 

cell count occurs. The virus remains silent and no viral replication is detectable thus, the virus 

evades the immune system, which can last for several years. The last stage is marked by the 

onset of AIDS. The viral load increases accompanied by CD4+ T cell depletion.   

Despite intensive research, 37.9 million people are infected with HIV-1 worldwide as by the 

UNIDAS report form 2019 and since the discovery of the virus approximately 32 million 

patients died from AIDS related illnesses [7]. In 2018 alone, 1.7 million new infections were 

recorded and recent data from June 2019 indicate that 65 % of infected people are currently 

undergoing highly active antiretroviral therapy (HAART) [7]. HAART is a cocktail of at least 

three different antiviral drugs, blocking HIV-1 replication and resulting in a decreased viral 

load. So far, there is no cure for HIV-1 and AIDS, despite two singular cases (see below). The 

required life-long therapy, the high mutation rates of the virus and its latency promote the 

evolution of drug-resistant virus variants and side effects of drug toxicity over the long 

treatment period [8]. At the current stage, no vaccine is available, and treatment and diagnostics 

remain expensive.   

Recently, a promising breakthrough was discovered. The total remission of HIV-1 was not only 

achieved in the “Berlin patient”, but also in the “London patient”. Both received allogeneic 

hematopoietic stem-cell transplantations from a homozygous CCR5Δ32 donor [9], [10]. The 

32 base-pair deletion in the C-C motif chemokine receptor 5 (CCR5) gene prevents the 

interaction of the virus with its host coreceptor, leading to HIV-1 resistance of these cells [11]. 
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These are very promising results. However, suitable donors are uncommon, and this therapy is 

not applicable for everybody. The goal for the current HIV-1 research is the complete 

understanding of the viral life cycle, its latency and the development of an affordable 

commercial cure for HIV-1 infection and AIDS.  

5.1.1 Classification, genome organization and virion structure 

HIV-1 is an enveloped virus belonging to the family of Retroviridae and the genus Lentivirus. 

The genome contains two copies of a single stranded positive-sense ribonucleic acid (RNA) of 

9.7 kilo bases (kb) in size [12], [13]. A unique feature of the virus family Retroviridae is the 

viral enzyme reverse transcriptase (RT), which transcribes the viral RNA into double stranded 

deoxyribonucleic acid (dsDNA). Until now, two types of human immunodeficiency viruses 

have been discovered: HIV-1 and HIV-2. Both versions share around 50 % sequence homology, 

but HIV-2 shows lower virulence and infectivity [14]. Worldwide multiple HIV-1 strains 

circulate and are divided into four groups: M (major), N (non-M-non-O), O (outlier) and P 

(putative) [15]. Members of the M group are responsible for 90 % of infections, while the 

majority of strains belonging to the remaining groups are mostly locally restricted to sub regions 

of the African continent [15], Portugal and France [16]–[18].  

 

Figure 1: Genomic organization of HIV-1. 

The HIV-1 genome is flanked by 5’ and 3’ LTRs. The ORFs for gag, pol and env genes are represented as 

rectangles at the respective position in the HIV-1 genome. HIV-1 accessory and regulatory genes are represented 

by dark grey rectangles and the introns of tat and rev are depicted as horizontal lines. The gag ORF encodes for 

matrix (MA), capsid (CA), nucleocapsid (NC) and p6 protein.  The viral proteins protease (PR), reverse 

transcriptase (RT) and integrase (IN) are encoded by the pol ORF. HIV-1 glycoproteins gp120 (surface) and 

gp41 (transmembrane) are encoded by the env ORF. Modified from [19]. 

The HIV-1 genome is depicted in Figure 1. The genome is flanked by long terminal repeats 

(LTRs), which are duplicated during reverse transcription. The 5’LTR contains the active 

promotor, which is essential for viral gene transcription from the provirus integrated in the host 

genome. Viral proteins are encoded from nine open reading frames (ORFs). The first one is the 

group specific antigen (gag) ORF, encoding for the structural polyprotein, which is processed 
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during maturation by the viral protease (PR) into matrix (MA), capsid (CA), nucleocapsid (NC) 

and the p6 protein [20]. The polymerase (pol) ORF encodes the viral enzymes PR, RT and 

integrase (IN). The structural glycoproteins are encoded by the envelope (env) ORF: surface 

protein gp120 and transmembrane protein gp41. These two glycoproteins define the host 

tropism and mediate virus entry dependent on two human cell surface receptors: CCR5 or C-

X-C motif chemokine receptor type 4 (CXCR4), which are differentially expressed on HIV-1 

target cells [21]. The remaining six ORFs encode the accessory and regulatory proteins of HIV-

1, the virion infectivity factor (Vif), viral protein R (Vpr), viral protein U (Vpu), negative factor 

(Nef), transactivator of transcription (Tat) and regulator of infection (Rev), [22]. HIV-1 virions 

are spherical particles with a diameter of 120 - 140 nm [23], [24]. The lipid envelope is 

generated from host cell plasma membrane during the budding process [23]. Budded particles 

are immature. Maturation is initiated upon PR activation in the viral particle. After the PR 

processes the Gag-polyprotein, the structural proteins MA, CA and NC undergo major 

reorganization leading to a cone shaped CA core inside the virion. These mature, infectious 

particles contain in addition the viral genome, IN, RT, Vpr, Nef and Env as well as host cell 

proteins [25] 

5.1.2 HIV-1 life cycle 

Like all viruses, HIV-1 is an intracellular obligate parasite that hijacks the host cell machinery 

during its life cycle (full cycle is shown in Figure 2). HIV-1 facilitates the host cell entry by 

binding of the viral surface glycoprotein Env to the CD4 receptor of its target cell [26], [27]. 

The Env protein forms a trimer of heterodimers containing the gp120 and gp41 proteins and 7-

14 trimers are incorporated into each virion [28], [29]. Virion attachment is facilitated by the 

binding of gp120 to the CD4 receptor as an essential prerequisite for major structural 

rearrangements of gp41. This process is required for the engagement of the CCR5 or CXCR4 

co-receptor [30], [31]. Binding of the co-receptor induces a conformational change in gp41 

enabeling the fusion peptide, a N-terminal hydrophobic region, to insert into the host cell 

plasma membrane [32]–[34]. A fusion pore is formed by a six-helix bundle that brings the 

opposing membranes into close proximity. In the process of fusion the viral core containing the 

ribonucleoprotein complex as well as viral proteins being relevant for replication and virion 

structure are released into the cytoplasm [35], [36].   

The early HIV-1 infection steps include processes occurring in the cytoplasm, such as the 

reverse transcription of the viral genome by the viral enzyme RT and the formation of the pre-

integration complex (PIC). Reverse transcription of the viral single stranded RNA genome into 

dsDNA takes place in reverse transcription complexes [37]. These complexes contain the viral 
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genome, ribonucleoproteins, IN, RT and cellular host factors. RT also harbors a ribonuclease 

H (RNasH) activity, important for transfer RNA (tRNA) primer processing used to start minus-

strand DNA synthesis [38]. After viral DNA flanked with LTRs is generated, the PIC is formed. 

It contains the newly synthesized viral DNA, several viral proteins (RT, IN, CA, Vpr) as well 

as cellular proteins. The PIC is shuttled to the nucleus [39].   

 

Figure 2: HIV-1 life cycle. 

HIV-1 virions attach to the cell surface of their host cells by CD4 receptor and co -receptor binding. Fusion with 

the plasma membrane releases the viral core into  the cytoplasm of the host cell. Uncoating of the viral core is 

induced and the viral RNA genome can be reverse transcribed into the dsDNA provirus. Host and viral proteins 

form the PIC. The provirus is imported into the nucleus and integrated into the hos t cell genome by the viral 

protein IN. The provirus is used as template during t ranscription of the viral genes resulting in viral mRNA and 

viral genome generation. Translation of viral mRNA into viral proteins takes place in the cytosol. Some of the 

accessory and regulatory proteins are imported into the nucleus and regulate viral transcription. Novel immature 

viral particles assemble at the plasma membrane. After budding with the help of the cellular endosomal sorting 

complex required for transport (ESCRT) machinery, the viral PR incorporated into viral particles becomes 

active, processes the structural proteins and thus, mature viral particles are formed. Adapted from [40]. 

The early post-entry steps of HIV-1 infection are accompanied by a process referred to as 

uncoating, during which parts or the entire viral capsid core break down, so that the viral PIC 

can traffic across the nuclear membrane. While under certain circumstances also entire viral 

capsid cores can be seen in cells (unpublished work from Robin Burk in the Kräusslich lab, 

personal communication 2017 - 2019), uncoating before nuclear entry is still considered to be 

the predominant way of HIV-1 nuclear import. After nuclear entry through nuclear pores [41] 
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a characteristic hallmark of retroviruses takes place, the viral DNA is integrated into the host 

cell genome. This process is catalyzed by the viral enzyme IN and is preferably found in 

transcriptionally active regions of the host genome [42], [43]. The integrated viral genome is 

referred to as provirus and becomes part of the cellular genome for the cell’s lifespan. The 

provirus serves as a template for viral messenger RNA (mRNA) transcription and remains in 

the host genome, either as a latent provirus or transcriptionally active [44], [45]. Transcription 

of viral mRNA is dependent on the recruitment of transcription factors to the viral promoter 

sitting in the 5’LTR region of the provirus. This leads to the initiation of proviral gene 

expression starting with a single viral transcript. It encodes the accessory proteins Tat, Rev and 

Nef. Transcribed RNA is spliced multiple times and exported by the nuclear export pathway as 

cellular mRNAs. Tat enhances the viral transcription efficiency by binding to the 

transactivation response RNA structure (tar) and thereby facilitating the recruitment of the 

cellular RNA polymerase II [46], [47]. Rev is responsible for the export of viral unspliced and 

partially spliced mRNAs, which cannot take the cellular export route. These mRNA variants 

encode Gag, Gag-Pol, Env, Vpr, Vif and Vpu [48]–[50].   

After translation of viral proteins by the cellular machinery, Env is transported to the plasma 

membrane via the secretory pathway [51]. Gag and Gag-Pol are recruited to the plasma 

membrane after binding two copies of the ssRNA genome initializing the assembly of novel 

HIV-1 particles. Gag binding to the plasma membrane mediates Env, viral Gag-Pol, Nef, Vpr 

and Vif recruitment. These viral proteins are all incorporated into viral particles [52]. Hijacking 

the cellular endosomal sorting complex required for transport (ESCRT) machinery an immature 

viral particle is pinched off the plasma membrane [53]. The formation of infectious particles 

relies on a maturation process after virion budding [54], [55] which is initiated by the activation 

of the viral PR. At six distinct sites PR cleaves Gag and Gag-Pol into their components CA, 

NC, MA, p6, PR, RT and IN, in a concerted order. Major structural rearrangements of the Gag 

subunits and Env take place [56]. The mature HIV-1 particles are formed consisting of a viral 

core formed by CA encapsulating the RNA-NC complex. 

5.1.3 HIV-1 and the type I interferon (IFN) response 

The human immune system is comprised of two arms, the innate and adaptive immune system. 

Both arms are essential for the protection from infections caused by pathogens as well as for 

resolving infections. The innate immune system acts immediately after bacteria or viruses enter 

the host. This includes for example the activation of the complement system or the production 

of interferons (IFNs). IFNs are small molecules belonging to the cytokine family, that can 

induce an antiviral state by promoting the expression of interferon stimulated genes (ISGs) [57]. 
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IFNs are signaling molecules produced and released by the host cell upon pathogen infection 

to heighten antiviral senses of the surrounding cells and activate immune cells. IFNs can be 

divided into three classes based on their signaling receptor: type I IFNs (IFN / receptor 

(IFNAR)), type II IFNs (IFN receptor (IFNGR)) and type III IFNs [58]. The innate system acts 

rapidly and limits virus replication. Therefore, it provides time for the organism to induce the 

second arm of defense, the adaptive immune system. This includes the selection and expansion 

of specific B- and T cells as well as the production of specific antibodies directed against a 

particular pathogen. The innate immune system comprises a heterogeneous group of 

intracellular factors, called restriction factors. These factors counteract viral infection in 

multiple ways. Many restriction factors are IFN induced and usually upregulated during early 

infection [59], [60]. They also share some characteristics as self-sufficient activity, a cell type 

specific expression, their ability to decrease viral infection and the antagonistic effects of viral 

proteins against them [61].    

Type I IFNs (from here on referred to as IFNs) are released during the acute phase of an 

infection and signal through the heterodimeric interferon alpha receptor [58]. This group 

includes at least 13 distinct IFN subtypes as well as IFN, IFN, IFN and IFN [62]. IFN 

subtypes are genetically and structurally very similar. They lack introns, are clustered on 

chromosome nine and share an amino acid sequence similarity between 75 - 99 % [63]. After 

recognition by its receptor, IFNs trigger the Janus kinase/signal transducers and activators of 

transcription (JAK-STAT) pathway and induce the expression of hundreds of ISGs. These 

antiviral genes can reduce infection of many viruses including HIV-1. ISGs inhibit HIV-1 

replication in cell culture systems [64]–[67] and impair reverse transcription and nuclear import 

of the viral genome [68]. In monocyte derived macrophages (MDM) or lymphocytic cells HIV-

1 infection is blocked prior or during reverse transcription upon IFN treatment, but some 

factors involved in the IFN response to HIV-1 are still unknown [69]–[72]. However, in vitro, 

different cell types respond differently to IFN treatment while the timing of IFN treatment 

and viral infection plays a crucial role. For example, an inhibition of viral protein synthesis 

could only be detected in T cells, when they were treated with IFN prior to infection or 10 h 

post infection at the latest [69]. Recombinant IFN therapy has been tested in clinical trials, 

leading to a reduction in viral load, but viral rebound overtime was detected. Thus, HIV-1 can 

overcome effects of IFN induced restriction factors [73], [74]. What exactly the viral 

determinants for overcoming the IFN induced block to HIV-1 infection are, is unknown. To 

date all what is known is that IFN exerts a dual role in HIV-1 infection. IFN is produced during 

HIV-1 infection but is not able to inhibit early infection effectively. The negative effects of IFN 
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on progression to disease are most evident in the chronic phase of the infection. Constant high 

levels of ISG lead to a more rapid CD4+ T cell depletion and increased viremia [75], [76]. This 

is probably due to the activation of a IFN-related desensitization mechanism [6]. Consequently, 

it is of great interest to identify host cell effectors induced by ISGs to understand the interplay 

between host and virus after IFN treatment. 

5.1.4 HIV-1 restriction factors 

Antiviral factors expressed by the host cell are also called restriction factors. These are usually 

constantly expressed at low doses. However, when incoming viruses are sensed expression of 

these restriction factors is enhanced. Host restriction factors are usually virus specific and their 

goal is to block viral replication and viral life cycle propagation. For HIV-1 a variety of 

restriction factors are known and have been deeply investigated over the last decades. Many of 

the known restriction factors are known to be antagonized by at least one HIV-1 accessory 

protein and a few are described below [61]. These restriction factors are highly regulated, 

expression levels vary between cell types and it is not astonishing, that HIV-1 infectivity differs 

amongst target cells at least to some degree due to the variety of restriction factors.  

The apolipoprotein B mRNA-editing enzyme catalytic polypeptide like (APOBEC) 3G protein 

[77] belongs to the apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like family 

of cytidine deaminase enzymes. APOBEC3G is a major player in innate anti-viral immunity, 

as it induced G-to-A hypermutations by deamination of cytosine residues in single stranded 

viral DNA. Therefore, both proteins restrict a broad variety of viruses including hepatitis B 

virus (HBV), human T cell leukemia virus type 1, endogenous retroviruses and HIV-1 [78]–

[80]. In the HIV-1 life cycle, APOBEC3G becomes catalytically active during reverse 

transcription of the viral RNA. Amino acid substitutions and the incorporation of premature 

STOP codons as result of hypermutation by APOBEC3G in the newly transcribed single 

stranded DNA occur and lead to the production of defective viral proteins [81]–[83]. A second, 

perhaps the more important mechanism by which APOBEC3G interferes with viral reverse 

transcription is by binding to viral DNA and to RT directly and thus, blocking reverse 

transcriptase [81]. This leads to vastly reduced viral reverse transcription products in the 

presence of APOBEC3G when Vif is absent. Furthermore, APOBEC3G is encapsulated into 

newly produced HIV-1 virions when they lack the viral protein Vif. HIV-1 counteracts the 

activities of APOBEC3G through its accessory protein Vif. Vif recruits a ubiquitin ligase 

complex that facilitates proteasomal degradation of APOBEC3G, thus preventing its 

incorporation into HIV-1 virions [84].  

Another restriction factor induced by IFN is tetherin/BST-2 (tetherin). It is an unusual type II 
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single-pass transmembrane protein incorporated into the plasma membrane. It carries a 

transmembrane anchor at its N-terminus and a glycophosphatidylinositol lipid anchor at its C-

terminus [85]. With this anchor it blocks the budding of various viruses from different families, 

indicating that its function is independent of viral protein structure or sequence [86], [87]. Most 

likely tetherin hinders HIV-1 virions from budding by attaching its C-terminal glycosyl-

phosphatidylinositol group to the viral membrane, whereas its N-terminal anchor remains in the 

plasma membrane. Virions are eventually internalized and degraded via the 

endosomal/lysosomal pathway. The effects of this protein are encountered by the viral protein 

Vpu, which colocalizes with tetherin and reduces its levels at the cell surface [88].   

The interferon-induced transmembrane (IFITM) protein family contains three members with 

immune-related functions: IFITM1, IFITM2 and IFITM3 [89]. These proteins do not only 

restrict HIV-1 but also Dengue virus, Influenza A virus (IAV), West Nile virus, SARS 

coronavirus, Ebola virus and Vesicular Stomatitis virus (VSV) [59], [90]–[93]. The mechanism 

by which IFITMs inhibit HIV-1 are not completely understood and experimental evidence is 

providing contradicting results. Overexpression of IFITMs in TZMbl cells does not impede 

HIV-1 entry [91] but in Huh and SupT1 cells IFITM2 and IFITM3 do inhibit HIV-1 replication 

[59], [90]. In viral producer cells IFITM2 and IFITM3 antagonize Env by impairing Env 

processing and its incorporation into virions. Interestingly, upon IFITM overexpression in these 

cells, Env mutants arise, that overcome IFITM restriction [94], indicating an important function 

for the viral life cycle.  

Myxovirus resistance (Mx) proteins are dynamin-like guanosine triphosphate hydrolases 

(GTPases). In human there are two gene variants: MX1 and MX2 (Haller and Kochs 2011). 

MX1 and MX2 differ in their cellular localization and activity. MX1 shows a broad antiviral 

activity against RNA and DNA viruses [95], [96], whereas MX2 has a potent antiviral activity 

only against a few viruses like VSV [97] and HIV-1 [98], [99]. MX2 is localized at the 

cytoplasmic site of the nuclear pore complex [100]. It possesses a C-terminal GTPase domain 

and an N-terminal triple-arginine motif. Crucial for its antiviral activity is only the N-terminal 

region. [98], [99]. It has been suggested that MX2 targets the HIV-1 CA protein, as CA can 

bind to those motifs [101], [102]. Interestingly the antiviral function of MX2 is linked to 

Cyclophilin A (CypA) and/or cleavage and polyadenylation specific factor 6 (CPSF6). CypA 

can bind HIV-1 CA and is incorporated into HIV-1 virions as will be explained in chapter 5.2.2. 

CPSF6 is also an HIV-1 CA binding protein. For both proteins, HIV-1 specific CA mutants 

unable to interact with the respective protein exist. These mutants have been shown to be less 

sensitive to MX2 inhibition and the depletion of CypA terminates the antiviral activity of MX2 
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[103] as CypA binding to CA might alter its conformation and makes it more accessible for 

MX2 binding. Overexpression of MX2 inhibits HIV-1 replication and MX2 silencing decreases 

the IFN-induced block to HIV-1 infection in some cell types. CypA and CPSF6 are both bound 

to CA until nuclear entry, therefore, a function of MX2 at the stage of nuclear import [72], [99] 

or integration [104] is likely.   

Tripartite motif-containing protein 5 (TRIM5), specifically the alpha isoform (TRIM5), is 

another IFN inducible retrovirus restriction factor, blocking early infection [105], [106]. The 

TRIM protein family is a large protein family which members have diverse functions. A shared 

feature between all family members is the tripartite motif, a domain containing the RING, the 

B-box and a coiled-coil domain. TRIM5 also has a C-terminal PRY-SPRY domain, which is 

responsible for the antiviral function, as dimeric TRIM5 complexes bind viral capsids with 

this domain. TRIM5 blocks HIV-1 infection before reverse transcription is complete [107], 

but its effects on reverse transcription can be abrogated by inhibition of the proteasome [108]. 

TRIM5 is also a good example for the co-evolution theory of host and retroviruses. Many 

species-specific TRIM5 variants have been found [109], [110] and viruses evade TRIM5 

restriction by changing their CA sequence. Rhesus TRIM5 for example strongly blocks HIV-

1 infection, whereas the human TRIM5 shows only weak inhibition [105]. Recent studies 

identified TRIM5a as a HIV-1 CA-specific Cyclophilin A sensitive restriction factor. In the 

absence of CypA, TRIM5a potently restricts HIV-1 prior to reverse transcription [60], [111]. 

Furthermore, other members of this family have also been investigated as restriction factors. 

TRIM22 can decrease HIV-1 production [112], [113] and TRIM11 as well as TRIM15 can 

inhibit HIV-1 virus release [114].  

5.2 Peptidylprolyl cis trans isomerases (PPIases) 

Peptidylprolyl cis-trans isomerases (PPIases) are highly conserved proteins, that are 

ubiquitously expressed in all organisms, prokaryotic and eukaryotic [115]–[117], which 

indicates an important cellular function. However, until now the assignment of specific cellular 

functions to specific members of this protein family has been proven difficult [118], as sequence 

similarity amongst them is high and experiments investigating redundancy are missing. PPIases 

can be classified into three distinct groups: Cyclophilins (Cyps), FK506 binding proteins 

(FKBPs) and parvulin like PPIases. FKBPs and Cyps are also referred to as immunophilins, as 

they can suppress immune responses in a complex with their inhibitors, FK506 and cyclosporin 

A (CsA), respectively. Many members of all three classes carry out an enzymatic activity, after 
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which this protein family is named. They catalyze the adenosine triphosphate (ATP)-

independent isomerization of specific bonds in oligopeptides or proteins. These bonds must be 

N-terminal of a proline residues and in case of parvulins the amino acid N-terminal of the 

proline has to be phosphorylated which can be seen in Figure 3: Prolyl cis-trans isomerase 

activity of PPIases. [119].  

 

Figure 3: Prolyl cis-trans isomerase activity of PPIases. 

PPIases can be divided into two groups by their substrate specificity into phosphorylation -independent and 

phosphorylation-dependent enzymes. The first group catalyzes the isomerization of Xxx-Pro motifs. Xxx stands 

for three amino acids except Xxx being phosphorylated Serine or Threonine. All Cyps and all FKBPs belong to 

this group. The second group is the phosphorylation-dependent group containing Pin1. A phosphorylated Serine 

or Threonine residue followed by a Proline is required. Figure adapted from [120]. 

The enzymatic activity has been first shown in 1989 [121] and leads to accelerated protein 

folding, as PPIases catalyze one of the rate limiting steps in protein folding [122]. Known 

substrates are for example ribonuclease T1 and collagen [123], [124]. In addition, PPIases can 

also impact the secondary structure of proteins by the isomerization of peptide bonds which 

include prolines. This might serve as a timed trigger for proteins involved in signal transduction 

[120]. PPIases execute their enzymatic function as monomers but how exactly remains elusive 

[120], [125], [126]. They most likely bind the substrate in the binding pocket and lower the 

transition barrier by desolvating the substrates. PPIases can catalyze the reaction from cis to 

trans and vice versa. Since the free energy of the cis state is higher than the one of the trans 

state the catalyzed reaction from trans to cis is more likely. Cyclophilins are named after their 

ability to bind the immunosuppressive drug CsA. In fact, the first Cyp was discovered by an 
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affinity purification using a CsA column in 1984 [127]. This protein group is evolutionary well 

conserved, as members can be found in all eukaryotes, prokaryotes, archea and even a virus 

encoded Cyp (Mimicyp) has been found [128]. This provides evidence for their conserved and 

important functions and discriminates them from FKBP. Cyps and FKBP differ in their 

sequences between species and might have species-specific functions [129]. In human cells at 

least 17 different proteins harboring a cyclophilin domain are expressed. CypA, the most 

prominent member and predominant CsA target, is an 18 kilo Dalton (kDa) cytosolic and 

nuclear protein. The biggest protein categorized as Cyp is the nuclear pore protein Nup358, also 

called RanBP2 with 358 kDa. All have the common cyclophilin domain structure, consisting 

of an eight-strand b-barrel forming a hydrophobic pocket, which is shown in Figure 4. In this 

pocket a loop containing aromatic residues is localized [130]. Cyps share a high sequence 

similarity in this domain and differ in their N- and C-terminal sequences flanking the core 

domain. These contain for example signaling peptides which locate them to certain cell 

compartments.  

The second group of PPIases are FKBPs, a protein family which was discovered approximately 

at the same time as Cyps. In humans, 16 different FKBPs can be found ranging from 12 to 132 

kDa in size. They are all inhibited by FK506 or rapamycin and exert a gain-of-function 

mechanism when bound to their inhibitor. FK506 and CsA are immunosuppressant molecules, 

which are used to treat patients after organ transplantations [131]. The binding of FKBP to 

FK506 inhibits calcineurin, a phosphatase involved in signal transduction of lymphatic T cells. 

This leads to the delayed production of interleukin 2 and blocks T cell activation by preventing 

the dephosphorylation of the nuclear factor of activated T cells (NFAT) [132]. The complex of 

CsA with Cyclophilins has the same effect on calcineurin and both effects are independent of 

the PPIase activity [133]. FKBPs share only little sequence homology with Cyps but their 

domain structure is conserved over all members and consists of a curved five-stranded 

antiparallel b-sheet that wraps around a short a-helix [130]. The second inhibitor of FKBPs is 

rapamycin, also an immunosuppressant which signals through the target of rapamycin (TOR) 

signaling pathway. This pathway is essential for cell growth and cell proliferation [134].   

The third group of PPIases is the smallest one with only three members found in humans. These 

parvulin-like PPIases (parvulins) are not sensitive to inhibition by CsA or FK506 and only seem 

to be present in higher organisms. Parvulins can be inhibited by juglone [135] and encode small 

proteins (10-20 kDa) which have a preference for phosphorylated residues preceding the proline 

as their substrates [136]. The most prominent member is Pin1, which was first identified as the 

protein interacting with never-in-mitosis-A (NIMA) in a two-hybrid assay. Dysfunction of Pin1 
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influences immune response, apoptosis, cancer and Alzheimer’s disease [137], [138]. The 

structure of Pin1 reveals not only a PPIase domain but also a WW domain, which might 

facilitate substrate binding. Thereby Pin1 influences catalytic activity, subcellular localization 

and protein stability of its substrates [138], [139]. As Pin1 recognizes only phosphorylated 

substrates, a role in cell signaling is suggested, as phosphorylation is the most common post-

translational modification and a crucial mechanism of signal transduction [140]. 

5.2.1 Cyclophilin A 

CypA is the most prominent member of the Cyp family. It can be found extracellularly as well 

as intracellularly in the cytosol and nucleus and its function has been studied in different 

research fields for decades. A role of CypA in viral infection, cardiovascular and inflammatory 

diseases as well as a link of CypA to various types of cancers has been described [141]–[143]. 

In 1984 CypA was originally purified from bovine thymocytes by CsA affinity purification 

identifying it as the primary binding protein of this immunosuppressive drug [127]. The nuclear 

magnetic resonance (NMR) structure of this complex was solved ten years later [144] and is 

shown in Figure 4. 

 

Figure 4: Cyclophilin A in complex with the inhibitor cyclosporin A. 

NMR structure of human cyclophilin A (CypA, depicted in green) complexed with the drug cyclosporin A (CsA, 

depicted in red). The structure was obtained from PDB file 3CYS and  was analyzed with Pymol. The binding 

site for CsA is a pocket formed by flexible loops of CypA. The bottom of the binding pocket is formed by a 

signature feature of Cyps: a base formed by five -sheets, which are conserved within all members of the Cyp 

family.  
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CsA is a cyclic undecapeptide that binds to the active site of Cyps inhibiting their enzymatic 

function as PPIases. Although CsA can inhibit every Cyp, its predominant target is CypA. In 

complex with CsA, CypA can bind to Calcineurin, a Ca2+/calmodulin-dependent protein 

phosphatase. As Calcineurin targets NFAT, this complex formation leads to suppression of T 

cell activation after antigen recognition and interleukin 2 production [133]. This immune 

modulating effect is independent of the PPIase activity and has been used in clinical approaches 

since the early eighties to suppress rejection after organs transplantation.  

The NMR structure of CypA (Figure 4) reveals, that additionally to the Cyp domain structure 

described in section 5.2, the protein contains two additional -helices and a -sheet. These 

additional structural features do not influence the catalytic activity of CypA as a PPIase. 

However, a clear mechanism how CypA isomerizes and recognizes its substrates is unknown. 

It is conceivable, that the recognition sequence is flexible but the suggested consensus sequence 

FGPXL can be found in various cellular proteins [145]. The PPIase activity is crucial for the 

function of CypA as a molecular chaperone, its involvement in protein folding and trafficking 

and signal transduction. CypA acts most likely as a molecular chaperone for one of the cellular 

most basic components, the actin skeleton. It has been shown that neural Wiskott-Aldrich 

syndrome protein (N-WASP), which is crucial for the nucleation of actin via the actin-related 

protein 2/3 (Arp2/3) complex, has a binding motif for CypA.Knockdown experiments resulted 

in a disruption of the F-actin structure and an enhanced degradation of N-WASP via the 

proteasomal pathway [146].   

Another important function of CypA is the inhibition of signal transduction in CD4+ T cells via 

interleukin-2-inducible T cell kinase, a interleukin 2 tyrosine kinase crucial for CD4+ T helper 

cells [147]. Additionally, CypA can act as a modulator of transcription, as it has been identified 

as an interaction partner of YY1, a zinc finger transcription factor [148]. Furthermore, CypA 

influences dependent of its PPIase activity nuclear factor kappa-light-chain-enhancer of 

activated B cells (NFB) signaling by promoting the nuclear translocation of NFB/p65. This 

plays for example a critical role in chondrogenic differentiation [149], [150]. The ability of 

CypA to regulate the transcriptional activity of NFB is also important for macrophage 

polarization towards a pro-inflammatory phenotype with significantly elevates levels of several 

cytokines [151]. Notably not all functions of CypA are dependent on its PPIase activity. CypA 

is also involved in apoptosis regulation through the direct binding to apoptosis signaling-

regulating kinase 1 (ASK1), a member of mitogen-activated protein kinase (MAPK) family 

which activates the c-Jun N-terminal kinase (JNK) and the p38 signaling pathway. CypA 

negatively regulates the phosphorylation of ASK1 and inhibits ASK1-mediated apoptosis by 
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decreasing the caspase 3 activity [152]. In addition CypA seems to be upregulated in response 

to oxidative stress, hypoxia and viral infections in macrophages and is involved in the regulation 

of autophagy and apoptosis in these cells [153]. Another pathway which seems to be regulated 

by CypA is the WNT/-catenin signaling pathway [154]. CypA as well as Pin1 can bind -

catenin. CypA increases the interaction of -catenin with the transcription factor TCF4, which 

enhances transcriptional activity of WNT target genes. Furthermore, the involvement of CypA 

not only in protein folding but also in cell cycle progression, regulation of apoptosis, and cell 

migration and invasion makes it a central player of the cellular metabolism [146], [155], [156]. 

Therefore, it is not surprising that CypA is overexpressed in several human cancers types 

including non-small lung cancer, pancreatic adenocarcinoma, hepatocellular carcinoma and 

glioblastoma [154], [157]–[160]. As the function of CypA is manifold, an overview is shown 

in Figure 5.  

 

Figure 5: Intra- and extracellular CypA activities.  

CsA can pass the cell membrane and intracellular binding to CypA f orms a complex with calcineurin. This 

complex inhibits the NFAT mediated T cell activation. Various cell types secrete CypA. Extracellular CypA 

induces inflammatory pathways by signaling through CD147 or unidenti fied other receptors. Intracellular CypA 

exerts many functions like protein folding, signaling and an involvement in viral  infection. Figure adapted from 

[161].  

Besides its broad cellular activity and the immunosuppressive effect in complex with CsA, 

CypA is secreted by various cell types including macrophages [162], [163] to exert signaling 

through its receptor EMMPRIN/CD147 or a currently unknown novel receptor. CD147 is an 

extracellular matrix metalloproteinase inducer important for tumorigenesis, metastasis and 
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tumor invasion [159], [164] or chemotaxis of activated CD4+ T cells and leukocytes [143], 

[165]. CypA might be marked for secretion by acetylation in response to inflammatory stimuli 

[166]. Through its signaling via the cell surface receptor CD147, which is apparently dependent 

on the PPIase activity [167], CypA promotes proinflammatory signaling pathways. 

Extracellular CypA leads to the activation of MAPK including ERK1/2, JNK and p38 [168].  

The functions of CypA described above and the conserved distribution across several species 

would indicate that this protein is essential for cell, but several knockout experiments in 

different cell lines and the existence of knockout CypA mice show the opposite [151], [169]. 

This might be explained by redundancy amongst Cyps and/or more than 50 processed 

pseudogenes as revealed by a computer based analysis [170]. This makes CypA one of the top 

five proteins with the highest number of processed pseudogenes in the human genome [170]. 

Some of them have intact ORF and might be expressed, as for example some fusion proteins 

show (e.g. TRIMCyp) [171], but how this affects the function of CypA and impacts its function 

in disease progression is currently unknown and unstudied. As CypA is involved in several 

cellular processes it is not astonishing, that various viruses have evolved to use CypA during 

their life cycle including Vaccinia virus, VSV, Cytomegalovirus, Hepatitis C virus (HCV), IAV 

and HIV-1 [172]–[176]. A study from 2012 identifies CypA as a major component for human 

cytomegalovirus reactivation from a non-productive infection state in THP-1 cells [177]. 

Furthermore, CsA treatment revealed an immunosuppressive and antiviral effect for 

Cytomegalovirus infection [178]. For HCV infection PPIase activity of CypA seems to be 

involved in double membrane vesicle formation, a crucial step for the virus life cycle [179]. In 

context of HCV infection variants of the gene coding for CypA have been found, that destabilize 

CypA and prevent HCV replication and infection [180]. A function of CypA as an inhibitor of 

viral replication in case of IAV has also been reported [173] as well as a function as co-factor 

that stimulates viral replication for example in HCV and HIV-1 infection [174], [181]. 

5.2.2 CypA and HIV-1  

Since the early nineties, the role of CypA as a co-factor for HIV-1 infection has been discussed. 

A yeast-two hybrid screen identified not only CypA but also CypB as HIV-1 Gag binding 

proteins [182]. In fact, additional studies showed that CypA is incorporated into newly 

produced HIV-1 particles (Franke, Yuan, and Luban 1994b; Luban et al. 1993). A crystal 

structure solved in 1996 showing CypA in complex with the N-terminal domain of HIV-1 CA 

[184] can be seen in Figure 6. An exposed proline rich CA loop facing the exterior of the capsid 

shell harboring the amino acids AGPIA can bind CypA at its active site, which is also the CsA 

binding site. This loop is referred to as Cyp-binding loop [181]. Interestingly, these amino acids 
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differ from the previously assumed substrate recognition motif discussed in 5.2.1, indicating a 

flexibility in the CypA binding motif. The crystal structure revealed the proline residue P90 in 

an unprecedented trans conformation, which suggest a catalytic function of CypA on CA P90 

isomerization [183], [185], [186]. Further studies of the HIV-1 virion revealed a packaging of 

CypA into HIV-1 virions in a ratio of 1:10 to CA molecules [183].   

A comparison with other lentiviruses showed, that all lentiviruses have a CypA binding loop in 

their CA protein structure, however not all package CypA into their virions or require CypA 

for efficient replication [141], [182], [187]. This might indicate, that although HIV-1 virions 

incorporate CypA, the cellular effects in the target cell are more important for viral replication 

than the packaging of CypA into virions [188], [189]. In fact, virions depleted of CypA showed 

no defects in infectivity [190]. 

 

Figure 6: CypA in complex with HIV-1 CA protein. 

HIV-1 CA protein (depicted in red) is bound to the active site of human CypA (depicted in green). The structure 

is obtained from PDB file 1AK4. The Cyp-binding loop of HIV-1 CA is highlighted in orange and the P90 

residue of HIV-1 CA is shown with its side chain. The structure was obtained with Pymol.  

A crucial step for HIV-1 infectivity is uncoating, a process where the conical capsid core 

undergoes morphological changes resulting in the disassociation of CA from the viral genome 

[191], [192]. This process is not yet fully understood, but uncoating seems to be directly linked 

to HIV-1 infectivity efficiency and CA stability. Therefore, it is not surprising, that cellular 

binding of CypA to CA influences this process. Contradictory results show on the one side a 

destabilizing effect of CypA on CA-NC complex or HIV-1 CA assembly [193], [194] and on 
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the other side HIV-1 core stabilizing effects [195], which results in a delayed uncoating of the 

virion [196], [197]. A model suggests that the binding of CypA causes steric hindrance to 

adjacent CA hexamers in the CA core. This could lead to accelerated disassembly of the viral 

core [194]. Interestingly the infection promoting activity of CypA seems to be cell type 

dependent [188], [198].   

The interaction of CypA with the Cyp-binding loop of CA could be prohibited by CsA, and 

hence CsA was investigated as an antiviral drug. CsA treatment of CD4+ Hela cells resulted in 

reduced HIV-1 DNA levels and reduced infectivity in peripheral blood mononuclear cells 

(PBMCs) and Jurkat cells which indicate an involvement in uncoating [199], [200]. Yet, in H9 

T cells HIV-1 replication was not blocked by CsA [201] pointing at a cell type specific effect 

of CsA [196]. To exclude that the effects of CsA on HIV-1 infectivity are related to its 

immunosuppressive function, non-immunosuppressive analogues unable to interact with 

calcineurin were used. These analogous inhibited or promoted HIV-1 infection as well leading 

to the assumption that the interaction of CypA with HIV-1 CA plays a crucial role in HIV-1 

infection independent of a immunosuppressive role of CsA [199], [202], [203]. This 

observation was reassured by the finding of resistant CA variants, which arise when HIV-1 is 

propagated in the presence of CsA [187], [204], [205]. These variants (A92E and G94D) could 

still bind CypA but efficient viral replication is dependent on CypA inactivation by CsA. Hence, 

the effects on viral replication are dependent on CypA expression levels, which differ amongst 

cell lines. Consequently, CsA was required for replication in HeLa and H9 T cells but not in 

Jurkat or 293T cells [197], [201], [206]. Until now, this cell-type specific effect and the 

differences in HIV-1 restriction are not fully understood. Interestingly most of these variants 

were unable to infect non-dividing cells, usually a feature of lentiviruses [201], [205], [206].  

The binding of CypA to HIV-1 CA could also be abrogated by mutations in the CypA binding 

loop of HIV-1 CA. The P90A CA variant can still bind CypA but is resistant to isomerization 

by it and, therefore infects cells independently of CypA enzymatic activity [187], [189], [198]. 

This caused reduced viral replication efficiencies in macrophages and CD4+ T cells 

accompanied by a retargeted integration site selection, but did not block HIV-1 infection 

completely [187], [207]. Furthermore, manipulating the CypA cellular levels by knockdown or 

genetic deletion of the CypA gene inhibits an early HIV-1 infection step and alters reverse 

transcription [181], [187], [189], [198], [200], [202]. A CypA knockout (CypA -/-) in Jurkat 

cells could impair viral infectivity [181], [208], [209] and furthermore, deletion of CypA in 

CD4+ T by homologous recombination decreased HIV-1 replication, which could not be further 

decreased by CsA treatment. Re-expression of CypA restored HIV-1 replication in these cells 
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[181]. Taken together, a single role for CypA in uncoating could not be demonstrated. It is more 

likely that CypA will influence almost every post-entry step by altering CA stability and 

competing with other host factors for CA binding.   

Further studies identified that the CypA-CA interaction not only affects reverse transcription or 

impacts integration site selection, but also regulates the utilization of other HIV-1 co-factors, 

like Nup358, MX2, CypB and Pin1, two other PPIases, PDZD8 or TRIM5 and TRIM11 [196], 

[207], [210]–[213]. However, CypA alone does not function as a potent restriction factor of 

HIV-1. In some new world owl monkeys a fusion protein of CypA with TRIM5 has been 

found. Through alternative splicing and retrotransposition CypA was inserted into intron 7 of 

TRIM5 [214], [215]. This TRIMCyp fusion protein potently restricts not only HIV-1 but also 

feline immunodeficiency virus (FIV). A treatment of owl monkey infected cells with CsA 

rescues HIV-1 infectivity, indicating that binding of TRIMCyp is responsible for viral 

restriction [216]. Furthermore, a second fusion protein of TRIM5 with CypA has been found 

in rhesus, pigtail and cynomolgus macaques [217]–[219]. The insertion of CypA into TRIM5 

occurred downstream of exon 8 [220] and independently by LINE-1 mediated 

retrotransposition. This second fusion protein is not able to restrict HIV-1 but restricts HIV-2 

and FIV potently.   

The ability of lentiviruses to infect non-dividing cells was genetically mapped to the CA protein 

[221], [222]. It was shown that HIV-1 infection of macrophages or dendritic cells is not 

accompanied by activation of the innate immunity through pathogen-associated molecular 

patterns (PAMPs) [203], [223], [224]. This lack of immunity in myeloid cells could be linked 

to CA, more specifically to the CypA-CA interaction. CsA treatment or the CA mutants P90A 

and G89V resulted in an innate immune response in these cells indicating a mechanism for 

HIV-1 to escape immune sensing in a CypA-CA dependent manner [203], [224]. Infecting non-

dividing cells with different CA mutants upregulated the cytoplasmic DNA sensor cyclic GMP-

AMP synthase, which is responsible for interferon regulatory factor 3 (IRF3) nuclear 

translocation. IRF3 is a member of the interferon regulated transcription factor family. It signals 

through the retinoic-acid-inducible gene 1 (RIG1) signaling pathway and induces the 

expression of IFN, IFN and ISGs [203], [223]. ISGs play a critical role in HIV-1 restriction. 

So does MX2 restrict HIV-1 in a CA dependent manner [98], [99], [103], resulting in reduced 

viral DNA amounts and integration. Interestingly this effect appears to be CypA dependent, as 

CypA depletion prevented MX2 mediated restriction [103]. Another factor involved in innate 

sensing and interferon production is CPSF6. Depletion of CPSF6 triggers innate sensing and 

interferon production which might also be regulated by CypA-CA binding [203], [225]. 
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Altogether, CypA can regulate pathways directly by binding to HIV-1 CA protein or indirectly 

by mediating signaling through its extracellular binding receptor CD147 [167] or the effect on 

other host restriction factors. However, these effects and implications on the virus life cycle 

remain poorly characterized and understood. 

5.2.3 Other Cyclophilins and PPIases 

The human genome alone contains at least 17 different Cyps. All of them harbor the cyclophilin 

domain core structure described in 5.2.1 but they differ in their subcellular localization. This is 

mostly due to additional N- or C-terminal accessory domains carrying protein localization 

signals and specific target recruitment domains.   

Cyclophilin B (CypB) for example is a 22 kDa protein, that shares 64% sequence homology 

with CypA and has an additional N-terminal hydrophobic leader sequence, which is responsible 

for its endoplasmic reticulum (ER) localization [117]. The high sequence homology can be 

explained by the conserved Cyp domain structure. It is therefore not surprising, that CypB can 

also be inhibited by CsA [117]. As this region is mainly responsible for HIV-1 CA protein 

binding, an interaction that is sensitive to CsA could be observed [182]. In vitro studies showed 

an even higher affinity to CA for CypB compared to CypA and surprisingly CA mutants exist, 

that only bind to CypB but not to CypA [141], [182]. The differences in the binding capacity 

of HIV-1 are mainly due to the leader sequence, since deletion of this sequence did not show 

any altered binding compared to CypA [226]. For that reason, a function of CypB on the HIV-

1 life cycle is under discussion. Although increased CypB amounts in human plasma from HIV-

1 positive patients has been found [227], no further involvement of CypB in HIV-1 infectivity 

could be shown. However, CypB is associated with the secretory pathway and can be released 

into biological fluids like milk, plasma or cell culture supernatants [228]–[230], which indicates 

a role in signaling. It has been found, that CypB can specifically bind to human peripheral T-

lymphocytes and might function as an inflammatory mediator [231]. This is consistent with the 

finding, that both CypB and CypA appear to be involved in tumor development. CypB is highly 

elevated in pancreatic cancer patient sera. CypB silencing inhibited cell proliferation, migration 

and invasion via inhibition of the signal transducer and activator of transcription 3 (STAT3) 

pathway [232]. This is consistent with the finding, that CypB plays a role in STAT3 

phosphorylation and translocation to the nucleus [233]. As CypB is located in the ER, it is not 

surprising, that CypB functions in attenuating oxidative stress and thereby inhibits hypoxia-

induced apoptosis, which is also a stimulating factor for tumor growth and can be used to evade 

viral infection [234], [235].   

Cyclophilin C (CypC) is a primarily cytoplasmic member of the PPIase family [236]. The 33 
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kDa protein can also be secreted and is found in the ER[236], [237]. Like CypB, CypC seems 

to be involved in mediating ER protein folding and regulating the oxidative status [238]. 

However, CypC might play a role in immune evasion, as it seems to be involved in the 

degradation of major histocompatibility complex class I molecules (MHC I). This degradation 

is induced by the immune evasion protein US2, marking newly synthesized MHC I molecules 

for degradation by the endoplasmic-reticulum-associated protein degradation machinery 

(ERAD) [239]. The involvement of CypC in innate immunity is also supported by the binding 

of calcineurin in presence of CsA [133], [237] and possible expression induction by interferons. 

Furthermore, CypC binds to Mac-2BP, which was originally identified as CypC binding protein 

in mice and interaction with it can be disrupted by CsA [240], [241]. It belongs to the scavenger-

receptor cysteine-rich domain superfamily and the secreted glycoprotein modulates the host 

response to endotoxins [241]. Mac-2BP is upregulated in tumor cells and by HIV-1 and HCV 

infection [242], [243]. Mac-2BP stimulates MHC I expression which in turn can be suppressed 

by a non-immunosuppressive analogue of CsA [237] linking the function of Mac-2BP to US2. 

In addition, a binding of Mac-2BP in complex with CypC to NFAT was shown and a function 

in dephosphorylation of NFAT mediating macrophage activation was suggested [244].   

A two-domain Cyp is Cyclophilin D (CypD), also often referred to as Cyp40. It is a 40 kDa 

cytosolic protein, that carries an additional heat shock protein 90 (Hsp90) binding domain 

including three tetratricopeptide repeat motifs [245]. Hsp90 is involved in protein folding and 

protein degradation. Interestingly, it can also bind other immunophilins like FKBPs and a 

glucocorticoid receptor. An isolated complex of Hsp90 with the glucocorticoid receptor had 

also bound CypD, suggesting a role for CypD in transcriptional activity of steroid receptors by 

controlling steroid ligand binding [246], [247]. The TRP domains facilitates CypD to interact 

with a variety of ligands additional to the PPIase binding capacity. A tandem affinity 

purification approach identified several new CypD interacting proteins including a hypoxia-

inducible factor and receptor for activated C kinase 1 (RACK1), which is involved in translation 

[248]. All findings indicate putative activities of cytosolic CypD but lack evidence of a clear 

function.   

Cyclophilins are also located in the nucleus. A 33 kDa member originally purified from T cells 

is called CypE [249]. It shares 83 % sequence similarity with CypA in the core domain and 

harbors an additional N-terminal RNA binding domain [250]. With this RNA binding domain, 

CypE can bind specifically poly(A)+RNA and binding of RNA stimulates the PPIase activity 

[251]. Furthermore, CypE has been identified as part of the spliceosome complex. This is a 

highly dynamic, macromolecular machinery required for the removal of introns from nascent 
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transcripts [252]. In this context it is not surprising that CypE also has been identified as an 

interaction partner of mixed lineage leukemia 1 (MLL1) protein, a histone methyltransferase 

[253]. So does CypE binding mediate the downregulation of MLL1 target genes like HOXC8 

and c-myc in a PPIase dependent manner [254]. HOXC8 and c-myc are transcription factors 

involved in cell proliferation and morphogenesis. In context of viral infection, CypE has been 

discussed as a possible host factor for HIV-1, HCV and IAV infection. CypE plays a role in 

HCV replication and can bind the nucleoprotein of IAV which results in the inhibition of viral 

replication and transcription [237], [255]. For HIV-1 CypE has been identified in a yeast two-

hybrid screen as a CA interaction partner like CypA and CypB [256]. If CypE is involved in 

the splicing of HIV-1 gene products, is currently unknown.  

CypF is a small cyclophilin located in mitochondria. Its expression is upregulated in response 

to IFN. It is often also referred to as CypD although it is expressed from the PPIF gene. CypF 

is known to play a critical role in mitochondrial homeostasis and cell death. It is located at the 

membrane permeability transition pore in the inner mitochondrial membrane [257]. An opening 

of this pore leads to mitochondrial swelling and release of small molecules like calcium, 

apoptotic mediators and reactive oxidative species, which induce cell death. This swelling is 

not possible in CypF knockout mice suggesting CypF as an important mediator of apoptosis 

[257], [258]. If CypF is involved in viral infection and plays a role in the HIV-1 life cycle is 

currently unknown.   

Cyclophilin G (CypG), also called SR-Cyp or CARS-Cyp, is an 89 kDa large member of the 

Cyp family, which is involved in mRNA mediated gene expression. It has a CypA-like N-

terminal domain, two Nopp140 repeats that are important for nuclear import and a C-terminal 

arginine/serine rich (RS-) domain. The protein was first identified in a yeast two-hybrid screen 

using CDC28/cdc2-like-kinase (CLK) [259]. CLK is involved in pre-mRNA splicing as it 

phosphorylates RS rich splicing factors. This observation was confirmed by co-localization of 

CypG and nuclear pinin, a SR-related protein involved in pre-mRNA splicing. Interestingly the 

modulation of CypG expression levels resulted in altered nuclear distribution of SR proteins, 

indicating an important role for CypG in splicing [260]. Furthermore, CypG interacts directly 

via the RS domain with the phosphorylated C-terminal domain (CTD) of RNA Pol II [261].  

Cyclophilin H (CypH) is a 19 kDa cytoplasmic and nuclear protein with a single Cyp domain. 

However, its PPIase activity is significantly reduced compared to CypA [262]. It is reported to 

be a component of the U4/U6 small nuclear ribonucleoprotein particle (snRNP) suggesting an 

involvement in splicing events [263], [264]. The binding of CypH to U4/U6 snRNP leaves the 

PPIase active side unaffected, allowing CypH to mediate interactions with other proteins inside 
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the spliceosome and initiate chaperoning activities.   

Another protein is worthwhile to mention, even if it is not a classical cyclophilin. Nup358 is a 

nuclear pore protein, which has a C-terminal Cyp domain. It is the largest member of the PPIase 

family and named Ran-binding protein 2 (RanBP2) as well. Nup358 most likely binds HIV-1 

CA due to its Cyp domain [265], [266], however one study suggests otherwise [267]. The 

current understanding of Nup358 function is an involvement in synchronizing HIV-1 uncoating 

and nuclear import. A depletion of Nup358 resulted in reduced HIV-1 infectivity, 2-LTR circle 

formation and proviral integration, indicating an involvement in nuclear entry of HIV-1 [207], 

[266], [268].   

For FKBPs little is known about their ability to affect HIV-1. FKBP12 can bind the Env protein 

[227] and FKBP4 interacts with HIV-1 protease [269]. An RNAi mediated knockdown of 

FKBP6 resulted in a moderately increased HIV-1 infectivity which might makes FKBP6 a 

negative regulator in HIV-1 infection [270]. Taken together, there is no indication for the 

involvement of FKBPs in early HIV-1 infection steps and a crosstalk with Cyps.  

Another PPIase involved in the HIV-1 life cycle is Pin1, a parvulin-like PPIase. Pin1 was 

suggested to bind the CA protein and isomerize the peptide bond between S16 and P17. In fact 

CA mutations at these positions severely reduced HIV-1 infectivity and downregulation of Pin1 

by RNAi inhibited HIV-1 infection in certain studies [210], [271]. Furthermore, a 

phosphorylation of HIV-1 IN by JNK generates an additional target for Pin1 in CD4+ T cells. 

Phosphorylation of IN increases its stability and thereby modulates infectivity and proviral 

DNA integration [272]. Pin1 could therefore execute a dual role in HIV-1 infectivity and a 

crosstalk between Cyps and Pin1 has been proposed [273]. However, every direct effect of Pin1 

on HIV-1 infection is independent of CsA, as CsA exclusively inhibits Cyps.  

5.3 RIG-I Signaling pathway 

The most efficient way to control viral infection is the innate immune system. It is essential for 

infection control and every virus has evolved measures to fight against it. It is a very complex 

system, varies within different cell types and the various pathways involved are highly 

crosslinked. The RIG-I-like receptors (RLRs) signaling pathway is one of them, triggering IFN 

production and expression of antiviral genes. RLRs are DExD/H box RNA helicases that 

function as cytoplasmic sensors for PAMPs of viral RNA. Retinoic-acid-inducible gene 1 (RIG-

I) and myeloma differentiation-associated protein 5 (MDA5) are two of these receptors, that 

detect viral RNA in the cytoplasm. They are highly active in myeloid and epithelial cells, but 

not in plasmacytoid dendritic cells and their expression is linked to IFN exposure and viral 
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infection. RLRs have two caspase activation and recruitment domains (CARDs), a helicase 

domain and a CTD. The helicase and CTD are essential for dsRNA binding [274], and signaling 

occurs through the CARDs by binding to mitochondrial antiviral signaling protein (MAVS) 

[275]–[277]. It is known that RIG-I and MDA5 both recognize certain viruses exclusively, 

whilst other viruses like Dengue virus or reovirus are recognized by both RLRs [278], [279].  

RIG-I was initially found to bind dsRNA and trigger IFN induction. Later it was identified as a 

major factor involved in HCV replication [276]. RIG-I recognizes shorter ssRNA or dsRNA 

sequences marked with at least one phosphate at the 5’ end of the RNA, but full signaling 

capacity is fulfilled with 5’triphosphorylated ends [280], [281]. MDA5 on the other hand 

recognizes longer dsRNA fragments.   

 

Figure 7: Schematic overview of the RIG-I signaling pathway.  

Upon viral infection, viral RNA is sensed in the cytosol by MDA5 or RIG-I. Activation of their CARD domains 

facilitate complex formation with the mitochondrial protein MAVS which recruits other proteins to the 

signalosome. Through TNF receptor type 1-associated DEATH domain protein (TRADD) either apoptosis or a 

pro-inflammatory response is  facilitated. The recruitment of kinases leads to activation of the transcription 

factors IRF3/7 and NFB. These travel to the nucleus and stimulate ISG production as well was IFN  

production. Figure adapted from [282].  

TANK-binding kinase 1 (TBK1) is another kinase, that phosphorylates IRF3 facilitating its 

transport to the nucleus. As IRF3 is expressed constitutively a function in the immediate early 

antiviral transcription is suggested. IRF3 is activated through phosphorylation by the non-
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canonical IB kinases IKK- or TBK1 and translocated to the nucleus, where it drives gene 

transcription [283]. The activation of NFB requires the phosphorylation of its inhibitory 

subunit by IB kinases, which is degraded by the proteasome. Activated NFB is imported to 

the nucleus, where it activates the expression of several ISGs and IFN production which leads 

to autocrine and paracrine IFN receptor signaling through JAK-STAT. The components 

involved in the RIG-I signaling pathway are also shared with other cellular pathways involved 

in cellular immunity. MAVS can also be activated through transmembrane toll-like receptor 3 

(TLR3) signaling upon viral infection and IRF3 and NFB play a role in tumor necrosis factor 

receptor I (TNFRI) and TLR signaling pathways.  

To shed some light on the involvement of the RIG-I signaling pathway in HIV-1 signaling 

macrophages were stimulated with a synthetic dsRNA known to signal through RIG-I. RIG-I 

expression was induced as well as IFN production. Furthermore, RIG-I activation resulted in 

the expression of several HIV-1 restriction factors including several ISG, APOBEC3 and 

tetherin, all able to at least partly inhibited HIV-1 replication [284]. These results have been 

recently confirmed by a study, that identified a 58 nucleotide-long capped RNA that emerges 

from abortive HIV-1 transcripts to induce IRF3 and NFB through RLR signaling [285]. In 

addition, HIV-1 derived dimeric and monomeric forms of viral RNA were shown to be 

recognized by RIG-I [286]. In addition, for primary human PBMCs and macrophages it was 

shown that genomic HIV-1 secondary structured RNA was able to induce an innate immune 

response through RIG-I-dependent signaling [287]. However, HIV-1 can inhibit this signaling 

pathway by protease mediated sequestration of RIG-I [286]. Furthermore, IRF3 or TBK1 can 

be marked for cellular degradation. The HIV-1 accessory proteins Vpr and Vif have been shown 

to bind TBK1 and prevent signaling [288]. Another accessory protein involved in preventing 

the pro-inflammatory state of an infected cell is Vpu. Its involvement in the IFN response by 

degradation of IRF3 is discussed controversially. Some studies indicate that Vpu facilitates 

IRF3 degradation through a lysosome-dependent pathway and/or induces a caspase-dependent 

cleavage of IRF3 [289], [290]. Other studies find IRF3 unaffected by HIV-1 infection. 

However, Vpu is able to inhibit NFB activity [291], [292]. How exactly HIV-1 interferes with 

the Rig-1 signaling pathway remains elusive. The ability of HIV-1 RNA recognition by RLRs 

is given, but at which stages of the viral replication cycle the pathway inhibits replication or 

integration remains unknown.  



25 

5.4 CETSA-Cellular thermal shift assay 

Thermal shift assays (TSAs) have long been used as a biochemistry method to investigate 

thermostability of proteins based on their unfolding behavior with increasing temperatures 

[293]. Correctly folded proteins are only stable until a certain protein-specific temperature, their 

melting temperature (Tm). Protein exposure at higher temperatures results in unfolding and 

aggregation. These heat-dependent unfolding processes can be trailed by measuring intrinsic 

protein fluorescence intensity over time. The aromatic amino acid Tryptophan possesses an 

autofluorescence. Due to its apolarity, Tryptophan is often buried in the protein core, to avoid 

electrostatic interactions with the surrounding medium. Upon unfolding processes, the 

surroundings of Tryptophans change thus affecting their autofluorescence resulting in a shift in 

fluorescence intensity. Alternatively, to measure heat-induced unfolding processes in proteins 

with a low Tryptophan content, it is possible to use fluorescent dyes that only bind to correctly 

folded proteins [294], [295]. Changes in fluorescence intensity can be measured for example 

with a real-time cycler or differential static light scattering or differential scanning fluorometry. 

All mentioned detection methods provide sigmoidal melting curves resulting in a distinct Tm. 

The thermal shift assay (TSA) is often used in protein characterization studies as well as for 

protein engineering and drug design studies, as binding of additional components to the protein 

of interest frequently stabilizes the protein. These additional components can be small 

molecules like drugs, lipids or even DNA or other proteins. Small molecule or drug binding to 

a protein target results in thermal stabilization or destabilization and thus in a melting curve 

shift and consequently a shift in Tm (Tm) [293]. Thus, TSAs are frequently applied to 

investigate protein-protein, protein-DNA, protein-lipid and protein-drug interactions as it is an 

easy to use method which requires no specific technical equipment or chemically modified 

ligands. However, these basic assays rely on purified proteins and can only characterize binding 

effects of known interaction partners.   

The cellular thermal shift assay (CETSA) is a novel variant of TSAs, using cell culture systems 

instead of purified proteins (Figure 8). Molina and colleagues showed a similar heat-dependent 

behavior of proteins in vivo as known for purified proteins, thus providing a more natural 

insight of protein interactions [296]. For CETSA experiments, cells are treated with the 

compound of interest or a vehicle control. After heat treatment cell lysis occurs followed by 

precipitation of aggregated proteins. Initial protocols used immunoblotting as a quantification 

method of stabilization events for the remaining soluble proteins, thus limiting target evaluation 

to suitable antibody availability. Melting curves and Tm shifts are inferred from blotting the 

amount of soluble protein against the temperature.  
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Figure 8: Cellular thermal shift assay (CETSA).  

Cells are incubated with a compound or a vehicle control. Afterwards , cells are aliquoted and heated at ten 

different temperatures. Post-heating cells are lysed to separate denatured and soluble protein fractions by 

centrifugation. The remaining soluble protein fraction is analyzed by immunoblotting or mass spectrometry 

(MS). For MS-analysis soluble fractions are enzymatically digested and labeled with a specific mass -tag 

according to the heating temperature. MS-analysis provides a parallel readout for thousands of proteins using 

thermal proteome profiling (TPP) experiments  as well as isothermal-dose-response relation (ITDR) or time-

resolved ITDR experiments. Figure adapted from [297]. 

Therefore, a quantitative mass spectrometry (MS) approach has been developed. This MS-

based detection method enables parallel binding studies for the whole cellular proteome in an 

unbiased approach, called thermal proteome profiling (TPP) [298]. Isobaric tandem-mass-tag 

(TMT) labeling allows simultaneous quantification of proteins from up to ten different 

experimental conditions, e.g. varying temperatures. A common temperature range from 37°C 

to 67°C was suggested, as most human proteins show sigmoidal melting curves for this 
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temperature range [298]–[300].  

First experimental setups used a fixed compound concentration and ten different temperature 

points. The used compound concentration should ideally be sufficient to saturate all binding 

sites to ensure maximal stabilization of the compound target proteins, resulting in maximal 

melting curve shifts and consequently maximal Tm shifts. Another experimental setup 

employs a compound concentration range at a fixed temperature, ideally the Tm, providing 

information about an isothermal-dose response relation (ITDR). At low compound 

concentrations most proteins should be denatured while most proteins should be present upon 

compound treatment. Thus, ITDR experiments could also be used to determine ligand affinities 

in living cells. With a slightly altered experimental setup cellular compound uptake can be 

investigated by measuring different time intervals upon compound treatment. At early time-

points intracellular compound concentration should be low, resulting in no protein stabilization 

whereas high intracellular compound concentration and major stabilization should occur at later 

time-points. Therefore, no increase in Tm is observed after reaching the maximal intracellular 

compound concentration.   

Some major limitations of this method are the restriction to soluble proteins. However, modified 

protocols use mild detergent during protein extraction to stabilize membrane or membrane 

associated proteins [300], [301]. Overall behavior of soluble proteins is almost not affected 

allowing detection of cytosolic and membrane bound proteins in parallel. However, low 

abundance proteins are hard to detect due to instrument limitations and small proteins might 

not aggregate in the used temperature range (Savitski 2014). Furthermore, detergents reduce 

MS instrument capacity and specificity [302]. A few limitations remain as not all ligand binding 

events result in changes in thermal stability especially in large proteins. However, in theory 

melting curves for the whole human genome containing ~ 20,000 proteins could be obtained in 

a single experiment [303]. 
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6 Objectives of this study 

CypA is a known co-factor of HIV-1 infection (reviewed in [304]). Furthermore, Cyps are 

known immune modulators for several other viruses including HCV and IAV [172], [174]–

[176], [305] and play crucial roles in organ rejection after transplantation [133]. Previous 

studies showed the involvement of CypA in type I IFN-mediated immunity against HIV-1 and 

interestingly, CsA could increase HIV-1 infection in THP-1 CypA knockout cells after a type I 

IFN-induced early block [209]. Therefore, the aim of this study was to identify the CsA-

sensitive target responsible for the observed effects. To investigate the influence of other Cyps, 

several cyclophilin CRISPR/Cas9 knockout cells were generated. In addition, an unbiased mass 

spectrometry screen for cellular proteins that change in thermal stability after CsA treatment of 

cells was employed to reveal possible candidates that could be involved in the observed 

infection phenotype and to understand the interplay of cyclophilins with HIV-1. This screen not 

only revealed many cellular proteins as yet unknown to shift in thermal stability in cells treated 

with CsA but also identified members of the RIG-I pathway as possible candidates involved in 

early HIV-1 infection steps. 

 

The project proposal was reviewed and funded by the Deutsche Forschungsgemeinschaft 

(DFG) within the priority program SPP1923 ‘Innate sensing and restriction of retroviruses’.  
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7 Material and Methods 

7.1 Material 

7.1.1 Laboratory equipment 

Name Company 

Bacteria Incubator (IN75) Memmert, Schwabach, Germany 

C1000 Touch Thermal Cycler BioRad, Hercules, USA 

Cell culture Centrifuge (MegaFuge 40R) Heraeus, Hanau, Germany 

Centrifuge J2HS with JA-10 rotor Beckman Coulter, Brea, USA 

CFX 96 Real Time PCR detector  BioRad, Hercules, USA 

Electrochemiluminescence (ECL) ChemoCam 

Imager system 

INTAS Science Imaging, Göttingen, 

Germany 

Flow Cytometer fluorescence-activated cell 

sorter (FACS) Verse 

BD Biosciences, Franklin Lakes, USA 

Flow Cytometer FACS Celesta BD Biosciences, Franklin Lakes, USA 

Gel iX Imager (Agarose gel ultra violett (UV)-

imager) 

INTAS Science Imaging, Göttingen, 

Germany 

Ice Maker AF 103 Scotsman, Sprockhövel 

Incubator C200 Labotect , Rosdorf, Germany 

L8-70M Ultracentrifuge with SW32 rotor Beckman Coulter, Brea, USA 

Leica DMIL Led Fluorescent Microscope Leica Microsystems, Wetzlar, Germany 

Light Microscope EL WD 0.3 T1-SNCP Leica Microsystems, Wetzlar, Germany 

NanoPhotometer Implen, München, Germany 

Neubauer Counting Chamber Marienfeld, Lauda-Köngshofen, 

Germany 

PCR Cycler BioRad, Hercules, USA 

pH-Meter (FiveEasy) Mettler-Toleda, Columbus, USA 

Plate Reader Infinite M200 Pro Tecan, Männedorf, Switzerland 

Thermoblock Eppendorf ThermoMixer® 

comfort 

Eppendorf, Hamburg, Germany 

Standard equipment, such as freezers, balances or gel chambers are not listed here and were 

purchased from commercial sources. 
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7.1.2 Laboratory materials 

Name Company 

Blotting paper 3MM Chr Whatman, Dassel, Germany 

Cell Culture Dishes (100 x 20 mm) 

CELLSTAR® 

Greiner Bio-One, Kremsmünster, Austria 

Cell Culture Flasks (25, 75, 175 cm2) 

CELLSTAR® 

Greiner Bio-One, Kremsmünster, Austria 

Cell Culture Multiwell Plates (6, 12, 24, 48, 96 

well) CELLSTAR® 

Greiner Bio-One, Kremsmünster, Austria 

Fluid aspiration system BVC professional VACUUBRAND, Wertheim, Germany 

polyvinylidene fluoride (PVDF) membrane, 

Immobilon-FL 0.45µm 

Merck Milipore, Billerica, USA 

Surgical disposable scalpel B. Braun, Melsungen, Germany 

Syringe filters units (0.22 µM) Millex Merck, Millipore, Billerica, USA 

Syringe filters units (0.45 µM) Rotilabo® 

KH55.1 

Carl Roth, Karlsruhe, Germany 

Syringes (1 ml – 60 ml) BD Luer-Lok™ Becton Dickinson, Franklin Lakes, USA 

Standard laboratory materials, such as gloves or filter tips are not listed here and were purchased 

from commercial sources. 

7.1.3 Kits 

Name Company 

Acrylamide Solutions TGX™ Fast Cast™ BioRad, Hercules, USA 

DC™ Protein Assay BioRad, Hercules, USA 

DNeasy® Blood & tissue Kit Qiagen, Hilden, Germany 

MycoAlert Mycoplasma Detection Kit Lonza, Basel, Switzerland 

NucleoBond® Xtra Midi EF Macherey-Nagel, Düren, Germany 

NucleoSpin® Gel and PCR Clean-up Macherey-Nagel, Düren, Germany 

QIAamp DNA Mini  Qiagen, Hilden, Germany 

 

7.1.4 Chemicals and reagents 

Name Company 

Agarose Fisher Bio Reagents, USA 
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Ammonium persulfate (APS) Sigma-Aldrich, St. Louis, USA) 

-Mercaptoethanol Sigma-Aldrich, St. Louis, USA 

Blasticidin ThermoFisher Scientific, Rockford, USA 

Bovine Serum Albumin (BSA) Carl Roth, Karlsruhe, Germany 

Bromophenol blue Chroma, Fürstenfeldbruck, Germany 

Clarity Western ECL Substrate BioRad, Hercules, USA 

Dimethyl sulfoxide (DMSO) Merck, Darmstadt, Germany 

GeneRuler 1kb Plus DNA Ladder ThermoFisher Scientific, Rockford, USA 

Deoxynucleotide triphosphate (dNTP) Set ThermoFisher Scientific, Rockford, USA 

Ethylenediaminetetraacetic acid (EDTA) Merck, Darmstadt, Germany 

Gel Loading Dye, Purple (6x) for DNA New England Biolabs (NEB), USA 

Glycerol AppliChem GmbH, Darmstadt, Germany 

MIDORIGreen Advance Nippon Genetics, Dueren, Germany 

Paraformaldehyde (PFA) Merck, Darmstadt, Germany 

Phosphate buffered saline (PBS) Dulbecco 

Powder 

Biochrom GmbH, Berlin, Germany 

Polyethylenimine (PEI) Sigma-Aldrich, St. Louis, USA 

cOmplete protease inhibitor, EDTA-free Roche, Mannheim, Germany 

Prestained PageRuler™  ThermoFisher Scientific, Rockford, USA 

Puromycin Merck Millipore, Darmstadt, Germany 

Sodium dodecyl sulfate (SDS) Applichem, Karlsruhe, Germany 

SYBR Green ThermoFisher Scientific, Rockford, USA 

Triton X-100 Sigma-Aldrich, St. Louis, USA 

Tween 20 Carl Roth, Karlsruhe, Germany 

All standard chemicals and reagents not listed above were purchased form Carl Roth, Karlsruhe, 

Germany, Sigma-Aldrich, St. Louis, USA or Merck, Darmstadt, Germany.  

7.1.5 Buffers, solutions and drugs 

Name Component Concentration 

PBS 1x ddH20 

NaCl 

KCl 

Na2HPO4 

 

140 mM 

2.7 mM 

8 mM 
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KH2PO4 1.8 mM 

PBST PBS 1x 

Tween-20 

 

0.05 % (v/v) 

SDS blotting buffer ddH20 

Tris 

Glycine 

Methanol 

 

48 mM 

39 mM 

20 % (v/v) 

SDS running buffer ddH20 

Glycine 

SDS 

Tris-HCl 

 

190 mM 

0.1 % (w/v) 

25 mM 

SDS sample buffer 3x ddH20 

Tris-HCl pH 6.8 

SDS 

Glycerol 

Bromophenol blue 

-Mercaptoethanol 

 

150 mM 

6 % (w/v) 

30 % (w/v) 

0.02 % (w/v) 

5 % (v/v) 

SYBR Green based PCR 

enhanced reverse transcription 

assay (SG-Pert)  

dilution buffer 1x (pH 8.0) 

ddH20 

(NH4)2SO4 

KCL 

Tris-HCl 

 

5 mM 

20 mM 

20 mM 

SG-Pert  

reaction buffer 2x 

SG-Pert dilution buffer 

MgCl2 

BSA 

dNTPs 

Primer RT-Assay-fwd 

Primer RT-Assay-rev 

MS2 RNA 

SYBR Green 

GoTaq Hotstart Polymerase 

 

10 mM 

0.2 mg/ml 

400 µM 

1 pmol 

1 pmol 

8 ng  

1: 10000 

0.5 U 

SG-Pert lysis buffer  

(pH 7.5 with HCl) 

ddH20 

Tris 

 

25 mM 
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EDTA 

EGTA 

NaCl 

Triton X-100 

NP40 

1 mM 

1 mM 

100 mM 

1 % (v/v) 

0.5 % (v/v) 

tris-acetate 

ethylenediaminetetraacetic acid 

(TAE) buffer, 50x, pH 8.3 

ddH20 

EDTA 

NaAc 

Tris 

 

0.1 M 

1 M 

2 M 

Western blot (WB) stripping 

buffer 

pH 2.5 

ddH20 

Glycine 

SDS 

 

200 mM 

1 % (w/v) 

WB blocking buffer 1x PBS 

Milk powder 

 

5 % (w/v) 

 

Name Company 

Cyclosporin A Sigma-Aldrich, St. Louis, USA 

IFN2  Dr. Kathrin Sutter (Universitätsklinikum Essen) 

 

7.1.6 Bacterial strains and culture media 

For plasmid preparation and cloning, the chemo competent E. coli strain Stbl2 (Invitrogen, 

genotype F- mcrA (mcrBChsdRMSmrr) recA1 endA1 lon gyrA96 thi supE44 relA1 - (lac-

proAB)) was used.  

Name Component Concentration 

Luria broth (LB) medium H2O 

NaCl 

Tryptone 

Yeast extract 

Adjust to pH 7.2, autoclave 

 

5 g/l 

10 g/l 

5 g/l 
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LB agar plates Agar 

LB 

12.5 g/l 

For selection, Ampicillin (0.1 mg/ml) was added to the medium or LB-agar plates.  

7.1.7 Cell lines and culture media 

Name Description Growth mode Reference 

HEK293T human embryonic kidney cell 

line expressing large T antigen of 

SV40 

adherent [306], [307] 

RRID:CVCL_0063 

THP-1 wild 

type (wt) 

human peripheral blood 

monocyte cell line 

suspension ATCC® TIB-202™ 

 

Name Medium Supplements 

DMEM+++ Dulbecco’s Modified Eagle 

Medium (DMEM), high glucose 

(GIBCO) 

10% heat inactivated fetal calf 

serum (FCS) 

100 U/ml penicillin 

100 µg/ml streptomycin 

RPMI+++ Roswell Park Memorila Institute 

1640 (RPMI) (GIBCO) 

10% FCS heat inactivated 

100 U/ml penicillin 

100 µg/ml streptomycin 

Freezing media Heat inactivated FCS 10% DMSO or glycerol based 

on cell type 

Optimem OptiMem (GIBCO)  

Selection media RPMI (GIBCO) 1 µg/ml Puromycin 

or 

5 µg/ml Blasticidin 

All adherent cell lines were cultured in DMEM+++ and frozen in freezing media supplemented 

with DMSO. All suspension cell lines were cultured in RPMI+++ and frozen in freezing media 

supplemented with glycerol. Cell lines were grown from mycoplasma free liquid nitrogen 

stocks. Cultured cells were checked for mycoplasma contamination four times a year. All cell 

lines used were contamination free.  
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7.1.8 Plasmids 

Name Description Source 

pGSGW HIV-1 vector encoding green 

fluorescent protein (GFP) 

[308] 

pCSxW HIV-1 vector [309] 

pCMVR8.91 HIV GagPol encoding plasmid [310] 

plentiCRISPRv2 puromycin resistance marker to 

express guide RNAs (gRNAs) 

constructs for CRISPR-mediated 

genome editing 

Addgene, Cambridge, 

USA 

plentiCRISPRv2bla blasticidin resistance marker to 

express gRNA constructs for CRISPR-

mediated genome editing 

gift from Steeve Boulant 

plentiCRISPR-

CypAg1 

plentiCRISPRv2 expressing gRNA 

targeting CypA 

Luis Apolonia, (UCL, 

London, UK) 

plentiCRISPR-

CypBg1 

plentiCRISPRv2 expressing gRNA 

targeting CypB 

Luis Apolonia, (UCL, 

London, UK) 

plentiCRISPR-

CypCg1 

plentiCRISPRv2 expressing gRNA 

targeting CypC 

Luis Apolonia, (UCL, 

London, UK) 

plentiCRISPR-

CypDg1 

plentiCRISPRv2 expressing gRNA 

targeting CypD 

Luis Apolonia, (UCL, 

London, UK) 

plentiCRISPR-

CypEg1 

plentiCRISPRv2 expressing gRNA 

targeting CypE 

Luis Apolonia, (UCL, 

London, UK) 

plentiCRISPR-

CypFg1 

plentiCRISPRv2 expressing gRNA 

targeting CypF 

Luis Apolonia, (UCL, 

London, UK) 

plentiCRISPR-

CypGg1 

plentiCRISPRv2 expressing gRNA 

targeting CypG 

Luis Apolonia, (UCL, 

London, UK) 

plentiCRISPR-

CypHg1 

plentiCRISPRv2 expressing gRNA 

targeting CypH 

Luis Apolonia, (UCL, 

London, UK) 

plentiCRISPRbla-

CypBg1 

plentiCRISPRv2bla expressing gRNA 

targeting CypB 

this study 

plentiCRISPRbla-

CypEg1 

plentiCRISPRv2bla expressing gRNA 

targeting CypE 

this study 

plentiCRISPRbla-

RIG-Ig1 

plentiCRISPRv2bla expressing gRNA 

targeting RIG-I 

this study 

plentiCRISPRbla-

MDA5g1 

plentiCRISPRv2bla expressing gRNA 

targeting MDA5  

this study 
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plentiCRISPRbla-

MAVSg1 

plentiCRISPRv2bla expressing gRNA 

targeting MAVS 

this study 

plentiCRISPRbla-

IRF3g1 

plentiCRISPRv2bla expressing gRNA 

targeting IRF3 

this study 

plentiCRISPRbla-

TRADDg1 

plentiCRISPRv2bla expressing gRNA 

targeting TRADD 

this study 

plentiCRISPRbla-

Cas10g1 

plentiCRISPRv2bla expressing gRNA 

targeting Caspase 10 

this study 

pNL4.3GFP Full-length HIV-1 encoding GFP in 

place of Nef followed by an IRES-Nef 

cassette 

Torsten Schaller (UCL 

London, UK) 

pMD.G2 VSV-G expression plasmid Didier Trono lab 

 

7.1.9 Oligonucleotides 

Name Sequence Purpose Publication 

SB1 aaacCGTCTCCTTTGAGGTCGGGCc gRNA vs CypA fwd  

SB2 caccgGCCCGACCTCAAAGGAGACG gRNA vs CypA rev  

SB3 aaacCTCCGAACGCAACATGAAGGc gRNA vs CypB fwd  

SB4 caccgCCTTCATGTTGCGTTCGGAG gRNA vs CypB rev  

SB5 aaacgGTCACCTTGGCCGTCACCGAc gRNA vs CypC fwd  

SB6 caccCAGTGGAACCGGCAGTGGCT gRNA vs CypC rev  

SB7 aaacCCCTCGAGTCTTCTTTGACGc gRNA vs CypD fwd  

SB8 caccgGGGAGCTCAGAAGAAACTGC gRNA vs CypD rev  

SB9 aaacCCAAGCGCGTCTTGTACGTGc gRNA vs CypE fwd  

SB10 caccgCACGTACAAGACGCGCTTGG gRNA vs CypE rev  

SB11 aaacTGATGTCAGTATTGGCGGTCc gRNA vs CypH fwd  

SB12 caccgGACCGCCAATACTGACATCA gRNA vs CypH rev  

SB13 aaacGCCCTGGCTGGTGTCGCAGCc gRNA vs IRF3 fwd  [311] 

SB14 caccgGCTGCGACACCAGCCAGGGC gRNA vs IRF3 rev  

SB15 aaacATAAGTATATCTGCCGCAATc gRNA vs MAVS fwd  

SB16 caccgATTGCGGCAGATATACTTAT gRNA vs MAVS rev [311] 

SB17 aaacTCTCCATCGTTTGAGAACGCc gRNA vs MDA5 fwd [312] 

SB18 caccgGCGTTCTCAAACGATGGAGA gRNA vs MDA5 rev  
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SB19 aaacGGATTATATCCGGAAGACCCc gRNA vs RIG-I fwd [313] 

SB20 caccgGGGTCTTCCGGATATAATCC gRNA vs RIG-I rev  

SB21 aaacGTCGGATGCCTACGCGCACCc gRNA vs TRADD fwd  

SB22 caccgGGTGCGCGTAGGCATCCGAC gRNA vs TRADD rev  

SB23 
caccgGCACTACCAGAGCTAACTCA 

non targeting gRNA 

fwd 

 

SB24 aaacTGAGTTAGCTCTGGTAGTGCc non targeting gRNA rev  

SB25 ACTGTCACTCTGGCGAAGTC PCR CypA fwd  

SB26 CTAGGCAGAGGGACAATCGG PCR CypA rev  

SB27 GGCTTCCGTCTATAGGCCAG Sequencing CypA  

SB28 GAGCCCAATGAGGGAGCAAT PCR CypB fwd  

SB29 GTTGCGGGGAAATTTCTTCGA PCR CypB rev  

SB30 ACGTSTTTHCTAACCTCAAGCG Sequencing CypB  

SB31 CTTTAGGTTCGCCGGAATCC PCR CypD fwd  

SB32 GCATTGARACAAGGGGCTG PCR CypD rev  

SB33 CATGGCTTCCGGTTCTTG Sequencing CypD  

SB34 GGACCACGTCCCTTGGTTTA PCR CypE fwd  

SB35 AGAGGATCCGAAGGGCCATA PCR CypE rev  

SB36 CCACGTCCCTTGGTTTACCA Sequencing CypE  

SB37 ACCCTAGCAGTCTCAGCACA PCR CypH fwd  

SB38 TGCATGGAGGAATCAGGTCT PCR CypH rev  

SB39 CTTTAGGTTCGCCGGAATCC Sequencing CypH  

SB40 
GACTATCATATGCTTACCGTAAC 

Sequencing CRISPR 

Vector 

 

SB41 TCCTGCTCAACTTCCTGTCGAG SG-Pert fwd  

SB42 CACAGGTCAAACCTCCTAGGAATG SG-Pert rev  

SB43 aaacGGGGGTCCAAGATGTGGAGAc gRNA vs Casp10 fwd [314] 

SB44 caccgTCTCCACATCTTGGACCCCC gRNA vs Casp10 rev  

SB45 
aaacTCCCGTTGGCGTCCACGTCCc 

 
gRNA vs CypF fwd  

SB46 caccgGGACGTGGACGCCAACGGGA gRNA vs CypF rev  

SB47 aaacACGAAAGTTCTCGCATGTTTc gRNA vs CypG fwd  

SB48 caccgAAACATGCGAGAACTTTCGT gRNA vs CypG rev  
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7.1.10 Enzymes 

Name Company 

BsmBI New England Biolabs, USA 

EcoRI New England Biolabs, USA 

GoTaq Hot Start DNA Polymerase Promega, USA 

HindIII New England Biolabs, USA 

NotI New England Biolabs, USA 

Phusion High Fidelity DNA Polymerase New England Biolabs, USA 

RiboLock RNAse Inhibitor ThermoFisher Scientific, Rockford, USA 

T4 DNA Ligase New England Biolabs, USA 

 

7.1.11 Antibodies 

Name Company Application 

-Actin AC-74 (mouse) Sigma-Aldrich, St. Louis, USA 1:2000 WB 

CypA (rabbit) Enzo Life Sciences, Farmingdale, USA 1:3000 WB 

CypB k2E2 (mouse) Santa Cruz Biotechnology, Dallas, USA 1:1000 WB 

CypC (rabbit) ThermoFisher Scientific, Rockford, USA 1:1000 WB 

CypD (rabbit) ThermoFisher Scientific, Rockford, USA 1:1000 WB 

CypE (rabbit) ThermoFisher Scientific, Rockford, USA 1:1000 WB 

CypH (rabbit) ThermoFisher Scientific, Rockford, USA 1:1000 WB 

IRF3 SL-12 (mouse) Santa Cruz Biotechnology, Dallas, USA 1:1000 WB 

MAVS AT107 (rabbit) Enzo Life Sciences, Farmingdale, USA 1:1000 WB 

MDA5 AT113 (rabbit) Enzo Life Sciences, Farmingdale, USA 1:1000 WB 

Peroxidase goat anti-mouse Jackson ImmunoResearch, Ely, UK 1:10000 WB 

Peroxidase goat anti-rabbit Jackson ImmunoResearch, Ely, UK 1:10000 WB 

RIG-I (mouse) AdipoGen Life Sciences, Liestal, 

Switzerland 

1:1000 WB 

TRADD A-5 (mouse) SantaCruz Biotechnology, Dallas, USA 1:1000 WB 

 

 



39 

7.1.12 Software 

Name Company 

CFX Manager Biorad, Herkules, USA 

DNA Dynamo BlueTractorSoftware Ltd 

Excel Microsoft, Redmond, USA 

FACSDiva BD, Franklin Lakes, USA; RRID:SCR_001456 

FACSSuite BD, Franklin Lakes, USA; ???? 

FIJI (Schindelin et al., 2012); RRID:SCR_002285 

FlowJo V10 FlowJo LLC, Ashland, USA; RRID:SCR_00852 

Graph Pad Prism 5 GraphPad Software, Inc., La Jolla, USA; RRID:SCR_002798 

 

7.2 Molecular biology methods 

7.2.1 Bacteria and DNA preparation 

20 µl to 80 µl chemically competent E. coli Stbl2 bacteria were thawed on ice and subsequently 

mixed with 1 µl of plasmid DNA or 5 µl of ligation mix. The solution was kept on ice for 

10 min or 40 min, respectively. Heat shock was performed in a water bath at 42°C for 90 sec, 

followed by incubation on ice for 2 min or 15 min for a ligation mix. Transformed bacteria were 

plated on pre-warmed LB agar plates containing 0.1 mg/ml ampicillin and incubated at 37°C 

overnight.  

To amplify plasmid DNA, a single cell colony was picked to inoculate LB medium 

supplemented with 0.1 mg/ml ampicillin at 37°C overnight. For small scale productions 2 ml 

bacterial culture was grown and purification was performed with QIAamp DNA Mini Kit 

(Qiagen, Hilden, Germany) according to the manufacturers protocol. For large scale 

productions 100 ml bacterial culture was grown and purification was performed with 

NucleoBond® Xtra Midi EF Kit (Macherey-Nagel, Düren, Germany) according to the 

manufacturers protocol. Concentration and purity of the produced plasmid DNA was controlled 

using a NanoPhotometer (Implen, München, Germany). Sufficient DNA quality was archived 

by an OD260 nm/280 nm ratio between 1.8 and 2.0.  

7.2.2 Polymerase chain reaction (PCR) 

Reaction mixtures were prepared on ice and the following components were mixed in a 0.2 ml 

PCR tube: 
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Name Final concentration 

Nuclease-free water to 50 µl 

5x Phusion HF or GC buffer 1x 

10 mM dNTPs 250 µM each 

10 µM Forward Primer 10 pmol 

10 µM Reverse Primer 10 pmol 

DMSO 3 % 

Phusion Polymerase 1 U 

Template DNA 100 ng – 1 µg 

Annealing temperatures and elongation times were set depending on the primer compositions 

and the length of the amplified sequence, respectively. Usually 35 reaction cycles of the 

following thermocycling protocol were performed: 

Step Temperature Duration 

1) Initial denaturation 98°C 30 sec 

2) Denaturation 98°C 10 sec 

3) Annealing variable 30 sec 

4) Elongation 72°C 15 - 30 sec per kilo bp 

Repeat steps 2-4 35 times   

5) Final extension 72°C 10 min 

6) store 12°C  

Lid temperature 105°C  

All nucleotide sequences of PCR production were gel purified and confirmed by sequencing 

(Eurofins Genomics, Ebersberg, Germany). 

7.2.3 DNA separation by agarose gel electrophoresis and purification 

DNA fragments were separated by electrophoresis using gels containing 1 % agarose in 

1 x TAE buffer supplemented with MIDORIGreen Advance to stain DNA (5 µl for a 100 ml 

agarose gel prior to polymerization). DNA samples were mixed with DNA loading buffer and 

loaded into the wells. Gels were run at 80 V for 30 min. A DNA standard (DNA ladder 1kb 

Plus) was used to compare DNA fragment sizes. Loaded DNA was visualized under UV light 

and analyzed with a Gel iX Imager.  

Extraction of DNA bands was performed using surgical disposable scalpels and purification 
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was performed with NucleoSpin® Gel and PCR Clean-up kit (Macherey-Nagel, Düren, 

Germany) according to the manufacturers protocol. Purified DNA was eluted from the column 

with 30-50 µl of water.  

7.2.4 Ligation of DNA fragments 

For ligation 2-4 µg plasmid DNA was digested with appropriate restriction enzymes according 

to the manufacturer’s protocols. Digested DNA was gel purified and eluted with 50 µl of water. 

1 µl purified vector DNA was mixed with 5 µl of insert DNA, 2 µl 10 x ligase buffer, 1 µl (3 U) 

T4 ligase and water to a final volume of 20 µl. After 20 min incubation at room temperature 

5 µl of the ligation mix was added directly to 80 µl competent bacteria for transformation. 

7.2.5 Analysis of DNA with restriction enzymes 

Restriction digests were conducted using 1 µg plasmid DNA, 0.5 µl of each restriction enzyme 

and 2 µl 10 x NEB buffer recommended for the respective enzyme used. Reactions were filled 

up with water to 20 µl and incubated at the optimal temperature for each enzyme. 

7.2.6 Cloning of gRNAs into retroviral vector plentiCRISPRv2 

10 µg of FWD and REV gRNA sequence was mixed with 2.5 µl of 2 M NaCl and filled up with 

water to a final reaction volume of 22.5 µl in a 0.2 ml PCR tube. After incubation at 98°C for 

5 min the mixture was subsequently cooled down at a rate of 0.1°C/s. The annealed oligos were 

transferred to a 1.5 ml reaction tube and mixed with 40 µl 3 M NaAC, 1 ml of absolute ethanol 

(EtOH) and 350 µl water. After brief vortexing, the sample was placed at -80°C for 30 min or 

overnight. To pellet the DNA, the ice-cold sample was centrifuged with 14000 rpm for 15 min 

at 4°C, the DNA pellet was air dried and resuspended in 50 µl water.   

8 µg of the CRISPR backbone vector plentiCRISPRv2 or plentiCRISPRv2bla was digested 

with 1 µl BsmbI, 2 µl 3.1 buffer in a final reaction volume of 18 µl for 1.5 h at 55°C. 1 µl of 

the cut vector was mixed with 5 µl of annealed oligos. For ligation 2 µl of T4 ligation buffer 

and 1 µl of T4 ligase was added and filled up with water to 20 µl. The reaction was performed 

at room temperature for 10 min followed by transformation in E. coli. The next day at least 5 

clones per plate were picked for a small-scale production of plasmid DNA. Successful cloning 

was confirmed by digestion with HindIII and EcoRI and sequencing.  
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7.3 Cell biology methods 

7.3.1 Cell culture 

THP-1 wt cells and their CRISPR/Cas9 derivates were grown in RPMI+++ medium at 37°C. 

Passaging of the cells was performed every 2-4 days in a ratio of 1:5. HEK293T were grown in 

DMEM+++ at 37°C. Passaging of these cells was performed every 2-3 days. Cells were washed 

once with PBS followed by detachment from the cell culture dish surface by 0.05 % 

Trypsin/EDTA in PBS for 5-10 min. Cells were resuspended in fresh medium and diluted in 

1:4 (2 days) or 1:6 (3 days).   

Cell line stocks were maintained by cryo-conservation. Therefore, cells were pelleted 

(1200 rpm for 5 min) and resuspended in freezing medium supplemented with 10 % DMSO 

(adherent cells) or 10 % glycerol (suspension cells). Cells were transferred into a cryo-

conservation tube and slowly cooled to -80°C in freezing Styrofoam boxes. For long term 

storage, tubes were transferred to a liquid nitrogen tank. Cells were thawed rapidly and 

transferred into 75 cm² flasks (suspension cells) containing 15 ml fresh, pre-warmed RPMI+++ 

or 10 cm dishes (adherent cells) with 10 ml fresh, pre-warmed DMEM+++. Medium was 

changed after 6 h (suspension cells) or 18 h (adherent cells). 

7.3.2 Virus and vector preparation 

HEK293T cells were seeded in 10 cm dishes. After 24 h at 75 % confluency cells were 

transfected with 4 µg PEI per µg DNA in 1 ml Optimem. For lentiviral vector (LV) production 

4.5 µg of HIV-1 viral plasmid (pGSGW, plentiCRISPRv2 or plentiCRISPRv2bla vectors, 

encoding the gRNA od interest), 3 µg of pCMVR8.91 GagPol encoding plasmid and 3 µg of 

VSV-G Env expression plasmid pMD.G2 per plate were mixed into a reaction tube with 0.5 ml 

Optimem. PEI was mixed with 0.5 ml Optimem in a separate reaction tube. Both were 

combined and mixed by vortexing and incubated at room temperature for 15 min. The mixture 

was added dropwise to 8 ml fresh DMEM+++ on top of HEK293T cells. For VSV-G 

pseudotyped full-length HIV-1 GFP reporter virus production 8 µg pNL4.3GFP was 

cotransfected with 2 µg of pMD.G2 per plate. For all productions, the media was replaced with 

6ml fresh medium 24 h post transfection. Supernatant was harvested 48 h and 72 h post 

transfection. Both collections were pooled and filtered using a 0.45 µm cellulose filter to 

remove cell debris. All viral supernatants were subjected to sucrose purification as described 

before [315].   

Analysis of RT activity in concentrated supernatants was performed by SG-PERT [316]. 

Concentrated supernatant and a RT standard were diluted 1:500 and 1:1000 and 5 µl of each 
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dilution was lysed by incubation with 5 µl SG-Pert lysis buffer containing 2 U Ribolock RNAse 

inhibitor. Subsequently, 90 µl SG-Pert dilution buffer were added. From this mixture 10 µl 

were mixed with 10 µl SG-Pert reaction buffer containing 0.5 U GoTaq Hot Start DNA 

Polymerase. RT-PCR was performed, using a CFX 96 Real Time PCR detector (BioRad, 

Hercules, USA) with the following conditions: 42°C for 20 min, 95°C for 2 min, 40 cycles of 

95°C for 5 sec, 60°C for 5 sec, 72°C for 15 sec and 80°C for 7 sec. A final melting curve step 

was included. Results were analyzed with the CFX Manager software (BioRad, Hercules, 

USA).  

7.3.3 Generation of CRISPR/Cas9 THP-1 knockout cell lines 

THP-1 wt or THP-1 CypA -/- cells were transduced with VSV-G pseudotyped HIV-1 LV 

delivering plentiCRISPR vectors with the respective gRNA against the target proteins in a 12-

well format. A medium change was performed 24 h post transduction and selection for at least 

2 weeks either with 1 µg/ml puromycin or 5 µg/ml blasticidin was started 48 h post 

transduction. Single cell clones were generated by limiting dilution and grown in 96 well plates 

for at least 4 weeks in the absence of selection medium. Afterwards, cells were expanded, and 

expression of the targeted proteins was analyzed by Western blot. Genomic DNA from cell 

clones with no detectable protein expression was isolated, the corresponding gene amplified by 

PCR (used oligonucleotides are listed in 7.1.9). PCR products were gel purified and send for 

sequencing at Eurofins Genomics. Used oligonucleotides are listed in 7.1.9. 

7.3.4 Infection assays 

100 µl containing 1x105 THP-1 based cells were plated per well in a 96-well plate and treated 

or not with 500 U IFN2 in a final volume of 200 µl for 24 h. The next day 100 µl of 

supernatant was removed and cells were treated or not with 2.5 µM CsA. Purified VSV-G 

pseudotyped GFP-reporter lentiviral vector or NL4.3GFP reporter virus (see 7.3.2) 

corresponding to 100 mU of RT activity were added to each well. Cells were fixed 48 h later in 

4 % PFA. Infectivity was determined from the percentage of GFP positive cells by flow 

cytometry using a FACSVerse or FACSCelesta (BD Biosciences, Franklin Lakes, USA). 

7.4 Biochemistry methods 

7.4.1 SDS-polyacrylamide-gel electrophoresis (SDS-PAGE) 

Samples for SDS-PAGE were boiled in SDS sample buffer at 98°C for 10 min. Polyacrylamide 

gels were generated using Acrylamide Solutions TGX™ Fast Cast™ (BioRad, Hercules, USA) 
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according to the manufacturers protocol using an acrylamide concentration of 10 % or 12 % for 

the separating and 4 % for the stacking gel. For the separation gel 3 ml Resolver A was mixed 

with 3 ml Resolver B, 3 µl N’-tetramethylethylenediamine (TEMED) and 30 µl of 20 % APS 

and quickly poured into the gel chamber of the Biorad PAGE gel casting system. Air bubble 

formation was prevented by overlaying the separation gel with a thin layer of isopropanol. After 

polymerization, isopropanol was discarded. The stacking gel was prepared by mixing 1 ml of 

Stacker A with 1 ml of Stacker B, 2 µl TEMED and 10 µl APS. The stacking gel solution was 

transferred quickly in the gel chamber on top of the polymerized separation gel. After 

polymerization, the glass slides were installed into the running chamber which was filled with 

SDS running buffer. 10 µl of boiled protein samples was loaded per lane. Gel electrophoresis 

was performed between 80 V and 120 V for 60 min.  

7.4.2 Western Blot 

SDS-gels were transferred after gel electrophoresis to a 0.45 µm PVDF membrane (Merck 

Milipore, Billerica, USA) using the Electrophoretic Transfer Cell Mini Trans-Blot® system 

(BioRad, Hercules, USA) at 100 V for 60 min in a cold room (4°C). After transfer, membranes 

were incubated for at least 20 min in PBST supplemented with 5 % non-fat milk powder to 

saturate non-specific binding sites. Membranes were washed three times for at least 5 min with 

PBST. Primary antibodies were diluted in PBST in the respective concentrations and incubated 

with the membrane at 4°C over-night. After washing three times with PBST, the membrane 

was incubated with the secondary antibody in PBST shaking at room temperature for 1 h. After 

three times washing with PBST, membrane bound secondary antibody was detected with 

Clarity Western ECL Substrate (BioRad, Hercules, USA) at an ECL ChemoCam Imager system 

(INTAS Science Imaging, Göttingen, Germany). 

7.4.3 Cellular thermal shift assay 

10 ml containing 1x107 THP-1 based CypA -/- cells were seeded in T25 flasks and stimulated 

or not with 500 U IFN2 for 24 h. The next day one IFN treated flask was stimulated with 2.5 

µM CsA and a second one with DMSO for 1.5 h. In parallel, an infection assay with full-length 

HIV-1 GFP reporter virus using THP-1 cells described in 7.3.4 was conducted for quality 

control.  

After treatment, cells were centrifuged with 300 rpm for 5 min and washed once with PBS. CsA 

and DMSO treated samples were each resuspended in 1.5 ml PBS containing a protease 

inhibitor cocktail. Samples were aliquoted in 10 PCR tubes containing 150 µl sample each. 

Tubes were placed in a PCR Cycler (BioRad, Hercules, USA) and each tube was heated to one 
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temperature between 37°C and 67°C for 3 min followed by cooling to 20°C for 3 min. Samples 

were placed directly in liquid nitrogen and three cycles of freeze/thaw were performed, using a 

water bath at 25°C. Between each cycle cells were kept on ice and briefly vortex. Afterwards, 

samples were kept on ice and transferred into a 1.5 ml reaction tube. Denatured proteins were 

separated by centrifugation at 21xg for 2 min at a pre-cooled centrifuge at 4°C. The supernatant 

(100 µl) was carefully transferred to a new pre-cooled PCR tube without disruption of the 

protein pellet and placed on ice. 10 µl were transferred to a new tube and mixed with SDS-

sample buffer for Western blot analysis. Another 10 µl were used to determine the protein 

concentration using DC™ Protein Assay (BioRad, Hercules, USA) and a Plate Reader Infinite 

M200 Pro (Tecan, Männedorf, Switzerland) following the manufacturers protocol. The 

remaining sample was frozen in liquid nitrogen, stored at –(80°C), and shipped for further 

sample processing and mass spectrometry (MS) analysis to SciLifeLab at the Carolinska 

Institutet, Soln, Sweden. Sample processing and MS was performed as published previously 

[298], [299].  

7.5 Statistical analysis 

Statistical analysis was performed using Graph Pad Prism software. Datapoints are plotted as 

mean ± SD. Statistical significance was calculated using two-tailed unpaired t-tests. Values of 

p < 0.05 are considered as significant. 
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8 Results 

8.1 The role of Cyclophilins in a type I IFN-induced block of HIV-1 

infection 

To test the hypothesis, that Cyclophilins play a role in the type I IFN related innate immunity 

against HIV-1 infection, several Cyp knockout THP-1 cell lines were generated using 

CRISPR/Cas9. THP-1 cells are human monocytic suspension cells, derived from peripheral 

blood of a one-year-old infant male with acute monocytic leukemia. They are used as an easy 

accessible cell model for human monocytes and macrophages [317]. Except CypA -/- cells, all 

knockout cell lines were generated in the course of this study. For all experiments several single 

cell clones have been tested and at least two individual experiments for one representative clone 

are shown in all presented experiments.  

8.1.1 CypA modulates HIV-1 infectivity 

CypA has been thoroughly investigated as a co-factor for HIV-1 infection. However, its role in 

type I IFN-mediated innate immunity against HIV-1 infection is not well understood. Therefore, 

we used CypA knockout (CypA -/-) THP-1 cells to investigate the response to IFN2.  

 

Figure 9: Validation of CRISPR/Cas9 CypA knockout cell line.  

A: THP-1 parental cells (THP-1 wt) and a THP-1 based CypA knockout cell  line (CypA -/-) were analyzed by 

Western blot for CypA or -actin expression. B: PCR amplification of the CypA gene from genomic DNA of 

THP-1 wt and CypA -/- cells revealed disruption of the CypA gene in CypA -/- cells. Data was analyzed by ICE 

analysis from synthego.com as well as with DNADynamo.  
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CypA -/- single cell clones were generated previously [209]. However, full evaluation of the 

knockout clones was missing. Therefore, gene disruption was validated by immunoblotting and 

sequencing across the gRNA target site. To this end, genomic DNA was isolated and the CypA 

gene was amplified by PCR. The product was purified and sent for sequencing. Sequencing 

results were analyzed with the ICE tool from synthego.com and DNADynamo.   

 

Figure 10: Cyclophilin A (CypA) knockout THP-1 cells show hypersensitivity to the type I IFN-induced block of HIV-

1infection.  

A: THP-1 wt cells or CypA -/- cells were treated or not with 500 U/ml IFN2. 24 h post IFN stimulation cells 

were treated with 2.5 µM CsA. At the time of CsA addition, cells were infected with VSV-G pseudotyped HIV-

1 8.91 GFP reporter lentiviral vector (HIV-1 LV) for 48 h. Percentage of GFP positive cells was determined by 

flow cytometry. Bars indicate the average infectivity determined from t hree independent experiments and error 

bars indicate standard deviation. Unpaired two-tailed t test was performed (*, p< 0.05; **, p< 0.01; ***, p< 

0.001). B: Calculated fold changes of IFN2 induced block to HIV-1 LV infection. Bars indicate the average 

fold changes and error bars indicate standard deviation. Unpaired two -tailed t test was performed (**, p< 0.01). 

C: Calculated fold changes of the rescue from the IFN-induced block to HIV-1 LV infection by CsA. Bars 

indicate the average fold changes and error bars indicate standard deviation. Unpaired two -tailed t test was 

performed (**, p< 0.01). D: THP-1 wt cells or CypA -/- cells were treated or not with 500 U/ml IFN2. 24 h 

post IFN stimulation cells were treated with 2.5 µM CsA. At the time of CsA addition, cells were infected with 

VSV-G pseudotyped HIV-1 NL4.3 GFP reporter virus (NL4.3) for 48 h.  Percentage of GFP positive cells was 

determined by flow cytometry. Bars indicate the average infectivity determined from at least three independent 

experiments and error bars indicate standard deviation. Unpaired two -tailed t test was performed (**, p< 0.01; 

***, p< 0.001; ns, not significant). E: Calculated fold changes of IFN2 induced block to NL4.3 infection. Bars 

indicate the average fold changes and error bars indicate standard deviation. Unpaired two -tailed t test was 

performed (***, p< 0.001). F: Calculated fold changes of the rescue from the IFN-induced block to NL4.3 

infection by CsA. Bars indicate the average fold changes and error bars indicate standard deviation. Unpaired 

two-tailed t test was performed (***, p< 0.001). 

Alignment of wt and knockout sequences revealed an eight-nucleotide deletion in the first exon 

of the CypA gene (Figure 9B). The induced frameshift destroyed the first splicing site and 

generated an early stop codon preventing full-length protein expression. This can be seen on 

the Western blot in Figure 9A. An anti-CypA antibody, produced with full CypA protein as 
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immunogen, was used to detect cellular CypA protein (7.1.11). Immunoblotting against -actin 

served as a loading control for THP-1 parental and knockout cells. Next, the involvement of 

CypA on HIV-1 infection in THP-1 cells was investigated. Therefore, THP-1 wt cells and CypA 

-/- cells were challenged with equal doses of (i) VSV-G pseudotyped HIV-1 GFP lentiviral 

vector (HIV-1 LV) or (ii) VSV-G pseudotyped HIV-1 full-length NL4.3 GFP virus (NL4.3). 

Pseudotyping with VSV-G was necessary, as THP-1 cells do not express sufficient CD4 and 

the corresponding co-receptors for either CXCR4 or CCR5 HIV-1 strains. Thus, detectable 

infection with natural HIV-1 Env proteins was not achieved. The used LV reporter virus lacks 

all HIV-1 accessory proteins and therefore, served as a reduced and easier model of HIV-1 

infection. However, HIV-1 accessory proteins play essential roles during immune evasion. 

Therefore, the NL4.3 full-length virus was investigated as well, in particular since some 

accessory proteins have been associated with CypA [318]–[320]. To provide better comparison 

between the two used HIV-1 constructs (i) HIV-1 LV and (ii) NL4.3, equal viral doses 

measured in RT activity (see 7.3.2) were used for all infection assays. Infected cells were 

identified as GFP positive cells 48 h post viral infection by FACS analysis and percentages of 

GFP-positive cells were determined.   

To exclude general effects of the knockout procedure a previously generated CRISPR/Cas9 

control cell line (Ctr) utilizing a non-targeting gRNA [209] was infected in parallel to THP-1 

parental and THP-1 CypA -/- cells. This cell line was generated along with the used CypA -/- 

cell line. Likewise, for every other cell line produced in this study a corresponding 

CRISPR/Cas9 control cell line was generated, using the same non-targeting gRNA used for the 

Ctr cell line shown in Figure 11. For all Ctr cell lines, no changes in infectivity compared to the 

corresponding THP-1 wt cell lines were observed (data not shown). In Figure 11A one 

exemplary dataset is shown. CypA -/- increased the permissivity of cells to HIV-1 LV and HIV-

1 NL4.3 infection. THP-1 parental cells showed 38.8 % HIV-1 LV and 12.6 % NL4.3 infection, 

whereas Cyp A -/- cells showed 46.8 % HIV-1 LV infection and 22.3 % NL4.3 infection 

(Figure 10A and D), indicating a role for CypA in cellular immunity against HIV-1 infection in 

THP-1 cells. To investigate whether this is related to the type I IFN response, cells were treated 

with 500 U IFN2 24 h prior to infection. Infection was significantly reduced in THP-1 wt and 

CypA -/- cells for both viral constructs (Figure 10A and D). However, the block of infection by 

type I IFN was explicitly stronger in NL4.3 infection for both cell lines. For THP-1 wt cells a 

1.8-fold IFN-induced block to HIV-1 LV infection was observed and full-length HIV-1 

infection was reduced by 6.6-fold. There was a significantly enhanced blocking effect for CypA 
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-/- cells (Figure 10B and E). For NL4.3 infection a reduction in infectivity upon IFN treatment 

of 14.7-fold was monitored for CypA -/- cells.  

 

Figure 11: Effects of CsA are independent of its immunosuppressive role.  

A: THP-1 wt cells, CRISPR/Cas9 control cells (Ctr) or CypA -/- cells were treated or not with 500 U/ml IFN2. 

24 h post IFN stimulation cells were treated with 2.5 µM CsA or 2.5 µM Debio -025 (Debio). At the time of 

CsA/Debio addition, cells were infected with VSV-G pseudotyped NL4.3 for 48 h. Percentage of GFP positive 

cells was determined by flow cytometry. Bars indicate the average infectivity determined from two independent 

experiments and error bars indicate standard deviation. Unpaired two -tailed t test was performed (**, p< 0.01). 

B: Calculated fold changes of IFN2 induced block to HIV-1 NL4.3 infection. Bars indicate the average fold 

changes and error bars indicate standard deviation. Unpaired two -tailed t test was performed (***, p< 0.001; 

ns, not significant).C: Calculated fold rescue of the IFN-induced block to NL4.3 infection by CsA or Debio, 

respectively. Bars indicate the average fold changes and error bars indicate standard deviation. Unpaired two -

tailed t test was performed (**, p< 0.01; ns, not significant). 

To confirm the involvement of CypA in the type I IFN-induced block of HIV-1 infection, cells 

were treated at the time of HIV-1 LV or NL4.3 challenge with CsA, an inhibitor that targets 

Cyclophilins, however its main cellular target is believed to be CypA [127], [321]. CsA 

treatment without previous IFN stimulation had no effect on any investigated cell line, as can 

be seen for THP-1 parental, CRISPR/Cas Ctr cells and CypA -/- cells in Figure 11 (compare no 

IFN and CsA columns). In THP-1 wt cells CsA treatment could increase HIV-1 LV infection 

from the type I IFN-induced block by a factor of 1.5-fold (Figure 10C). This indicates a 

protective role of CypA against IFN induced cellular restriction factors, as inhibiting CypA 

increased HIV-1 LV infection. Indeed, in CypA -/- cells this rescue ability was significantly 

reduced (Figure 10C). For HIV-1 NL4.3 the response to CsA treatment was quite different. In 

THP-1 wt cells CsA treatment resulted in a further reduction of infection. With IFN stimulation 

1.7 % infected cells could be detected, whereas additional CsA stimulation resulted in 0.8 % 

infected cells (Figure 10D). Given that CypA is the main cellular target for CsA, CsA treatment 

of CypA knockout cells should not affect HIV-1 infection of CypA -/- cells. However, in CypA 

-/- cells a rescue from the type I IFN-induced HIV-1 infection block upon CsA treatment of 

2.6-fold was observed (Figure 10F). These results reveal differences between the two used viral 

constructs and a possible involvement of HIV-1 accessory proteins. Furthermore, these results 

confirm a role of CypA in protecting HIV-1 from type I IFN-induced host restriction factors 
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and moreover suggest another CsA target aside from CypA being involved in protecting HIV-

1 from IFN induced restriction factors.   

To exclude a contribution of the immunosuppressive function of CsA, a non-

immunosuppressive analogue of CsA, Debio-025 was used in the infection assays. THP-1 wt 

cells, THP-1 Ctr and CypA -/- cells were stimulated with IFN2 as previously described (7.3.4). 

Cells were then treated with either CsA or Debio-025 followed by HIV-1 NL4.3 infection. No 

difference between CsA or Debio-025 treatment was observed for any investigated cell line 

(Figure 11), which is in agreement with the literature [199]. These findings exclude an impact 

of the immunosuppressive role of CsA on the type I IFN-induced block to HIV-1 infection and 

support the hypothesis, that an additional CsA target aside from CypA is involved in HIV-1 

infection. 

8.1.2 Knockouts of CypB, CypC or CypD in THP-1 cells do not influence the type I IFN-

induced block to HIV-1 infection 

Further, the influence of additional members of the cyclophilin family on the type I IFN-

induced block of HIV-1 infection was investigated. To this end, CRISPR/Cas9 knockout cell 

lines of CypB, CypC, CypD, CypE and CypH were generated. Respective gRNA encoding 

DNA sequences (listed in 7.1.9) were cloned into plentiCRISPRv2 vector and the vector RNA 

was packaged into lentiviral vectors (described in 7.2.6). If possible, gRNAs targeted the first 

exon of the respective protein. This ensures the introduction of early frame shifts upon 

CRISPR/Cas9 editing and avoids the production of partly functional shorter protein versions. 

THP-1 target cells were transduced with the respective lentiviral constructs and after puromycin 

selection single cell clones of CypX -/- cells were generated.   

For CypB -/- cells, the knockout was validated by Western blot. An exemplary blot is shown in 

Figure 12A. The gRNA used (SB3/SB4; 7.1.9) targeted CypB within the first 15 amino acids, 

thus the epitope of the used antibody is C-terminal of the CRISPR/Cas9 editing site, making it 

unlikely that a destroyed epitope is responsible for the absent CypB band in the presented 

immunoblot analysis of the tested knockout cells (Figure 12A). Further validation through 

sequencing failed due to the lack of suitable primer sets. Although several different primer pairs 

for shorter and longer amplification products were tested, no specific PCR product could be 

obtained. Changing the polymerase, varying annealing temperatures and DMSO concentrations 

as well as switching to a high GC-content DNA optimized buffer and testing several gDNA 

samples was likewise unsuccessful.  

Upon infection with HIV-1 LV (Figure 12B) CypB knockout cells showed 27.5 % infection, 

whereas for THP-1 wt cells 38.8 % infection was detected. However, a reduced permissivity to 
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HIV-1 NL4.3 for CypB -/- cells compared to THP-1 parental cells could not be observed. In 

fact, for CypB -/- cells 16.7 % GFP positive cells could be obtained whereas THP-1 wt cells 

showed an infection of 12.6 % (Figure 12E). 

 

Figure 12: Cyclophilin B knockout does not influence the IFN-induced block to HIV-1 infection or its rescue by CsA. 

A: THP-1 wt, CypA -/- and THP-1 based Cyclophilin B knockout cell lines (CypB -/-) were analyzed by Western 

blot for CypB or -actin expression. B: THP-1 wt cells or CypB -/- cells were treated or not with 500 U/ml 

IFN2. 24 h post IFN stimulation cells were treated with 2.5 µM CsA. At the time of CsA addition, cells were 

infected with VSV-G pseudotyped HIV-1 LV for 48 h. Percentage of GFP-positive cells was determined by flow 

cytometry. Bars indicate the average infectivity determined from three independent experiments and error bars 

indicate standard deviation. Unpaired two-tailed t test was performed (**, p< 0.01; ***, p< 0.001). C: Calculated 

fold changes of IFN2 induced block to HIV-1 LV infection. Bars represent the average fold changes and error 

bars indicate standard deviation. Unpaired two-tailed t test was performed (ns, not significant). D: Calculated 

fold changes of the rescue from the IFN-induced block to HIV-1 LV infection by CsA. Bars represent the average 

fold changes and error bars indicate standard deviation. Unpaired two -tailed t test was performed (ns, not 

significant). E: THP-1 wt cells or CypB -/- cells were treated or not with 500 U/ml IFN2. 24 h post IFN 

stimulation cells were treated with 2.5 µM CsA. At the time of CsA addition, cells were infected with VSV -G 

pseudotyped NL4.3 for 48 h. Percentage of GFP positive cells was determined by flow cytometry. Bars represent 

the average infectivity determined from at least three independent experiments and error bars indicate standard 

deviation. Unpaired two-tailed t test was performed (*, p< 0.05; **, p< 0.01; ***, p< 0.001). F: Calculated fold 

changes of IFN2 induced block to NL4.3 infection. Bars indicate the average fold changes and error bars show 

standard deviation. Unpaired two-tailed t test was performed (ns, not significant). G: Calculated fold changes 

of the rescue from the IFN-induced block to NL4.3 infection by CsA. Bars indicate the average fold changes 

and error bars indicate standard deviation. Unpaired two-tailed t test was performed (ns, not significant). 
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Yet, IFN2 and CsA treatment showed the same effect in CypB -/- cells than for THP-1 wt 

cells, independently of the virus construct used (Figure 12C, D, F and G). This indicates no 

function of CypB in the type I IFN-induced block of HIV-1 infection or the rescue phenotype 

observed in CypA -/- cells upon CsA treatment (Figure 10). Next, CypC was examined. 

Analogous to the analysis performed for CypB, knockout validation was limited to Western 

blot analysis (Figure 13A). Based on the protein size of CypC, the lowest band observed for 

THP-1 wt cells using an anti-CypC antibody was the corresponding CypC band. This band was 

absent for CypC -/- cells suggesting a successful CypC knockout in these cells. Given that the 

gRNA used (SB5/SB6; 7.1.9) targeted the first exon of CypC, it is unlikely, that only the epitope 

of the antibody in the second exon is destroyed and thus responsible for the missing signal in 

the CypC knockout cells.   

 

Figure 13: Cyclophilin C does not influence the IFN2 induced block to HIV-1 infection. 

A: THP-1 wt and THP-1 based Cyclophilin C knockout cell lines (CypC -/-) were analyzed by Western blot for 

CypC and -actin expression. B: THP-1 wt cells or CypC -/- cells were treated or not with 500 U/ml IFN2. 

24 h post IFN stimulation cells were treated with 2.5 µM CsA. At the time of CsA addition, cells were infected 

with VSV-G pseudotyped HIV-1 LV for 48 h. Percentage of GFP positive cells was determined by flow 

cytometry. Bars indicate the average infectivity determined from three independent experiments and error bars 

represent standard deviation. Unpaired two-tailed t test was performed (**, p< 0.01; ***, p< 0.001; ns, not 

significant). C: Calculated fold changes of IFN2 induced block to HIV-1 LV infection. Bars indicate the 

average fold changes determined from three independent experiments and error bars indicate standard deviation. 

Unpaired two-tailed t test was performed (ns, not significant). D: Calculated fold changes of the rescue from 

the IFN-induced block to HIV-1 LV infection by CsA. Bars indicate the average fold changes and error bars 

indicate standard deviation. Unpaired two-tailed t test was performed (ns, not significant). 

HIV-1 LV infection of CypC -/- cells showed a phenotype similar to CypB -/- cells. Infection 

of CypC -/- cells was reduced compared to THP-1 parental cells (18.2 % and 25.7 %, 

respectively, Figure 13B). Indeed, the response of CypC -/- cells to IFN2 and CsA stimulation 
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showed no significant changes compared to THP-1 wt cells as seen for CypB -/- cells (Figure 

13 B - D).   

After CypB and CypC have been tested and are most likely not the searched for CsA target 

responsible for the CsA induced effects observed in CypA -/- cells (Figure 10), CypD was 

evaluated as the responsible CsA target. CRISPR/Cas9 CypD knockouts were generated as 

described above (7.3.3). Sequencing of one exemplary cell clone revealed a heterozygous 

knockout phenotype. One allele of CypD shows a deletion of 17 nucleotides and the second one 

a deletion of 29 nucleotides as shown in Figure 14B. Both deletions resulted in frameshifts of 

the CypD ORF and generated premature stop codons. Therefore, synthesis/translation of full-

length CypD failed in both cases. This was confirmed by Western blot analysis (Figure 14A). 

The used anti-CypD antibody targeted an epitope within the amino acids 356 and 370 of human 

CypD protein. The gRNA used (SB7/SB8; 7.1.9) targeted the amino acids 15 to 22, thus the 

antibody binds C-terminal of the CRISPR/Cas9 editing site and a destroyed antibody epitope is 

unlikely for the missing CypD protein band in immunoblot analysis (Figure 14A).  

 

Figure 14: Validation of CRISPR/Cas9 Cyclophilin D knockouts (CypD -/-) in THP-1 cells. 

A: THP-1 wt and a THP-1 based CypD knockout cell line (CypD -/-) were analyzed by Western blot for CypD 

or -actin expression. B: PCR amplification of the CypD gene from genomic DNA of THP-1 wt and CypD -/- 

cells revealed the disruption of the CypD gene in CypD -/- cells. Analysis was performed with the ICE tool 

from synthego.com and DNADynamo. 

Like CypB and CypC knockout cells, CypD -/- and THP-1 wt cells were challenged with HIV-

1 LV with equal viral doses. Comparison of CypD -/- cells with THP-1 parental cells revealed 
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an elevated infection rate for CypD -/- cells (38.8% for THP-1 wt and 47% for CypD -/- cells; 

Figure 15A), indicating an involvement of CypD in HIV-1 infection. Roughly the same increase 

in infection was observed for CypA -/- cells (Figure 10A). However, the response to IFN2 

stimulation revealed no involvement of CypD in the type I IFN-induced block to HIV-1 LV 

infection (Figure 15B). Furthermore, CypD is presumably not the CsA target responsible for 

the rescue phenotype observed for CypA -/- cells, as no significant changes were observed 

between CypD -/- cells and THP-1 wt cells in response to CsA (Figure 15C). 

 

Figure 15: CypD is not involved in the type I IFN-induced block to HIV-1 infection.  

A: THP-1 wt or CypD -/- cells were treated or not with 500 U/ml IFN2. 24 h post IFN stimulation cells were 

treated with 2.5 µM CsA. At the time of CsA addition, cells were infected with VSV -G pseudotyped HIV-1 LV 

for 48 h. Percentage of GFP positive cells was determined by flow cytometry. Bars indicate the average 

infectivity determined from three independent experiments and error bars represent standard deviation. Unpaired 

two-tailed t test was performed (*, p< 0.05; **, p< 0.01; ***, p< 0.001). B: Calculated fold changes of IFN2 

induced block to HIV-1 LV infection. Bars represent the average fold change and error bars indicate standard 

deviation. Unpaired two-tailed t test was performed (ns, not significant). C: Calculated fold changes of the 

rescue from the IFN-induced block to HIV-1 LV infection by CsA. Bars indicate the average fold changes and 

error bars indicate standard deviation. Unpaired two-tailed t test was performed (ns, not significant). 

8.1.3 CypE -/- cells show reduced infectivity and hypersensitivity to type I IFN-induced 

block of HIV-1infection 

CRISPR/Cas9 mediated CypE knockout in THP-1 cells was successfully achieved. Sequencing 

of the corresponding cell clone revealed an insertion of one nucleotide resulting in a frameshift 

and the generation of an early stop codon (Figure 16B). This result was confirmed by 

immunoblot analysis (Figure 16A). CypE expression was only observed for THP-1 wt but not 

for CypE -/- cells, whereas -actin expression was not altered in CypE -/- cells. The gRNA 

against human CypE protein used targeted the protein within the first 10 amino acids 

(SB9/SB10; 7.1.9) and the used CypE antibody was generated using a recombinant fragment 

corresponding to the region within amino acids 1 to 249 of human CypE. Despite the overlap 

between the CRISPR/Cas9 editing site and the used immunogen used for antibody production, 

it is unlikely that a destroyed epitope is responsible for the different band pattern observed for 

CypE -/- and THP-1 parental cells in Western blot analysis (Figure 16A).   
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To investigate whether CypE is involved in HIV-1 infection, CypE -/- cells were infected with 

VSV-G pseudotyped HIV-1 GFP LV or HIV-1 NL4.3 GFP as described above (7.3.4). 

 

Figure 16:Validation of CRISPR/Cas9 CypE knockout (CypE -/-) in THP-1 cells.  

A: THP-1 wt and a THP-1 based CypE -/- were analyzed by Western blot for CypE -actin expression. B: PCR 

amplification of the CypE gene from genomic DNA of THP-1 wt and CypE -/- cells revealed disruption of the 

CypE gene in CypE -/- cells. Analysis was performed with the ICE tool from synthego.com and DNADynamo.  

HIV-1 LV infected CypE -/- cells showed a reduced infection by 10 % to 15.8 % compared to 

what was observed for THP-1 wt cells (25.7 %) (Figure 17A). A similar phenotype was 

observed for CypB and CypC knockout cells (Figure 12B and Figure 13B, respectively). The 

type I IFN-induced block of HIV-1 LV infection was significantly increased to 2.6-fold in CypE 

-/- cells compared to THP-1 parental cells (1.8-fold; Figure 17B). Interestingly, IFN2 had a 

greater effect in CypE -/- cells than observed for CypA -/- cells (2.2-fold infection block; Figure 

10B), indicating an involvement of CypE in the type I IFN response to HIV-1 infection. CsA 

treatment of CypE -/- cells resulted in a rescue of the IFN-induced block to HIV-1 LV infection 

up to infection rates observed without IFN treatment (Figure 17C, 15.8 % without treatment, 

16.8 % with IFN and CsA stimulation). This suggests the complete inhibition of the type I IFN-

induced CsA sensitive factor in CypE -/- cells. Thus, it is unlikely that this factor is CypE. 

However, reduced HIV-1 infection of CypE -/- cells suggests a contribution of CypE to HIV-1 

infection.   

To confirm these results in a more relevant context, CypE -/- cells were infected with the HIV-

1 full-length virus NL4.3 (Figure 17D). Again, infection was reduced in CypE -/- cells 

compared to THP-1 parental cells (12.6 % for THP-1 wt and 9.8% for CypE -/- cells; Figure 

17D). As shown for all used knockout cell lines, the capacity of IFN2 to block HIV-1 infection 
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was intensified for HIV-1 NL4.3 compared to HIV-1 LV infection (compare Figure 17B and 

E). Although the capacity of IFN2 to block NL4.3 infection was not significantly changed 

between THP-1 wt and CypE -/- cells, a tendency of increased sensitivity in CypE -/- cells can 

be observed (6.6-fold compared to 7.2-fold; Figure 17E). For HIV-1 LV infection a 

significantly increased block of infection in CypE -/- cells was detected (1.8-fold for THP-1 

and 2.6-fold for CypE -/- cells; Figure 17B). This argues for HIV-1 accessory proteins possibly 

playing a role in impeding IFN-induced antiviral mechanisms during HIV-1infection and 

highlights the complexity of the Cyclophilin-IFN interplay. 

 

Figure 17: CypE -/- show reduced infectivity of HIV-1 and hypersensitivity to CsA. 

A: THP-1 wt or CypE -/- cells were treated or not with 500 U/ml IFN2. 24 h post IFN stimulation cells were 

treated with 2.5 µM CsA. At the time of CsA addition, cells were infected with VSV -G pseudotyped HIV-1 LV 

for 48 h. Percentage of GFP positive cells was determined by flow cytometry. Bars represent the average 

infectivity determined from three independent experiments and error bars indicate standard deviation. Unpaired 

two-tailed t test was performed (**, p< 0.01; ***, p< 0.001, ns, not significant). B: Calculated fold changes of 

IFN induced block to HIV-1 LV infection. Bars indicate the average fold change and error bars represent 

standard deviation. Unpaired two-tailed t test was performed (*, p< 0.05). C: Calculated fold changes of the 

rescue from the IFN-induced block to HIV-1 LV infection by CsA. Bars indicate the average fold changes and 

error bars indicate standard deviation. Unpaired two-tailed t test was performed (**, p< 0.01). D: THP-1 wt 

cells or CypE -/- cells were treated or not with 500 U/ml IFN2. 24 h post IFN stimulation cells were treated 

with 2.5 µM CsA. At the time of CsA addition, cells were infected with VSV -G pseudotyped NL4.3 for 48 h. 

Percentage of GFP positive cells was determined by flow cytometry. Bars indicate the average infectivity 

determined from three independent experiments and error bars indicate standard deviation. Unpaired two-tailed 

t test was performed (**, p< 0.01; ***, p< 0.001; ns, not significant). E: Calculated fold changes of IFN 

induced block to HIV-1 NL4.3 infection. Bars represent the average fold change and error bars indicate standard 

deviation. Unpaired two-tailed t test was performed (ns, not significant).  F: Calculated fold changes of the 

rescue from the IFN-induced block to HIV-1 NL4.3 infection by CsA. Bars indicate the average fold changes 

and error bars indicate standard deviation. Unpaired two-tailed t test was performed (ns, not significant). 



57 

To better understand the individual roles of Cyps on HIV-1 infection, knockouts of CypF and 

CypG in THP-1 cells were carried out. CRISPR/Cas9 lentivectors with gRNAs targeting CypF 

(SB45/SB46; 7.1.9) or CypG (SB47/SB48; 7.1.9), respectively, were cloned as described 

previously (7.2.6). Unfortunately, a CypF specific antibody was not available due to frequent 

unspecific cross-reactions with the similar CypA protein. This is not unsurprising, as CypF has 

the highest similarity of all Cyps with CypA and the immunogen used for CypF antibody 

production was a recombinant fragment within amino acids 21 and 207 of human CypF, which 

is almost the complete protein. As knockout clone pre-screening by Western blot was 

unsuccessful, validation of possible knockout clones via sequencing could be tried in future 

studies. Validation of CypG knockout cells was likewise unsuccessful. The tested CypG 

antibody directed towards the C-terminal region of human CypG produced no signal in diverse 

cell lines for all tested conditions. Thus, like for CypF, a pre-screening of possible CypG 

knockout cells by Western blot was not possible and a sequencing approach could be tried in 

future studies. With lacking information about the knockout status of the produced single cell 

clones, no further experiments using CypF and CypG knockout cells were conducted. However, 

these are interesting candidates as mentioned below (9.2) and should be investigated in future 

studies.  

8.1.4 Knockout of CypH has no effect on HIV-1 infection 

 

Figure 18: Validation of CRISPR/Cas9 CypH knockout (CypH -/-) in THP-1 cells. 

A: THP-1 wt and THP-1 based CypH -/- cells were analyzed by Western blot for CypH or -actin expression. 

B: PCR amplification of the CypH gene from genomic DNA of THP-1 wt and CypH -/- cells revealed disruption 

of the CypH gene in CypH -/- cells. Analysis was performed with the ICE tool from synthego.com and 

DNADynamo.  
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The generation of CypH knockout in THP-1 cells was successfully validated via Western blot 

and sequencing analysis (Figure 18). The gRNA used binds between amino acids 16 and 22 of 

human CypH (SB12/SB13; 7.1.9) and the antibody used for detection was produced by taking 

the full CypH protein as an immunogen. Thus, no information on the exact antibody epitope 

was available and the missing protein band observed for CypH -/- cells could be due to an 

destroyed epitope and not due to successful CRISPR/Cas9 editing (Figure 18A).   

However, the knockout was confirmed by sequencing. A 13 nt deletion within the first exon 

coding for CypH was found. In-depth sequence analysis revealed a frame shift leading to the 

generation of an early stop codon within exon one and thus, an incomplete translation (Figure 

18B). Therefore, CypH detection by immunoblot analysis was impossible in CypH -/- cells. 

To investigate the role of CypH in HIV-1 infection, CypH -/- cells were infected with HIV-1 

LV. As can be seen in Figure 19A, CypH knockout did not influence HIV-1 infection. The same 

percentage of GFP positive cells could be obtained for CypH -/- cells as for THP-1 parental 

cells. Although the comparison of the type I IFN-induced infection block was significant as 

shown in Figure 19B, the observed values are similar (1.8-fold for THP-1 wt cells and 2.1-fold 

for CypH -/- cells), suggesting no involvement of CypH in the type I IFN-mediated block to 

HIV-1 infection. CsA treatment increased HIV-1 infection of IFN stimulated CypH -/- cells to 

a similar extend than THP-1 parental cells, thus no significant changes between wt and 

knockout could be observed. eased infection rates. Therefore, it is unlikely, that CypH is the 

responsible CsA target.  

 

Figure 19: CypH -/- cells show hypersensitivity to the IFN2 induced infection block. 

A: THP-1 wt or CypH -/- cells were treated or not with 500 U/ml IFN2. 24 h post IFN stimulation cells were 

treated with 2.5 µM CsA. At the time of CsA addition, cells were infected with VSV -G pseudotyped HIV-1 LV 

for 48 h. Percentage of GFP positive cells was determined by flow cytometry. Bars indicate the average 

infectivity determined from three independent experiments and error bars indicate standard deviation. Unpaired 

two-tailed t test was performed (**, p< 0.01; ***, p< 0.001, ns, not significant). B: Calculated fold changes of 

IFN2 induced block to HIV-1 LV infection. Bars indicate the average fold change and error bars indicate 

standard deviation. Unpaired two-tailed t test was performed (*, p< 0.05). C: Calculated fold changes of the 

rescue from the IFN-induced block to HIV-1 LV infection by CsA. Bars indicate the average fold changes and 

error bars indicate standard deviation. Unpaired two-tailed t test was performed (ns; not significant). 
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8.1.5 CypA-CypB -/- results in a hypersensitive IFN-induced block of HIV-1 infection 

Cyclophilins share a high sequence similarity due to the conserved cyclophilin core domain. 

Although investigated in diverse research fields, a clear distinction on functions for single Cyps 

remains elusive. To shed some light on redundancy within Cyps, double knockout cell lines 

based on the used CypA -/- cell line were generated. In Figure 20A the Western blot analysis 

of CypA-CypB -/- double cell clones can be seen. For Western blot analysis the antibodies 

described above were used (8.1.1 and 8.1.2), thus antibody epitopes were C-terminal from the 

respective CRISPR/Cas9 editing positions. Parental THP-1 wt cells expressed CypA and CypB. 

CypA -/- cells showed only CypB expression as well as a CRISPR/Cas9 double knockout 

control cell line based on CypA -/- cells (CRISPR Ctr). Interestingly, CypB expression levels 

were not changed in CypA -/- cells compared to THP-1 wt or Ctr cells, which were generated 

in parallel to the double knockout cells using a non-targeting gRNA (SB23/Sb24; 7.1.9). CypB 

single knockout cells showed only CypA expression in comparable amounts to THP-1 wt cells. 

The generated CypA-CypB -/- cell bulk after blasticidin selection already showed a strong 

reduction in CypB expression levels and indeed single cell clones that were negative for CypA 

and CypB expression could be obtained. Unfortunately sequencing of this double knockout cell 

line was not possible due to the reasons mentioned for the CypB single knockout cell line 

(8.1.2).   

Next, the influence of the double knockout on HIV-1 infection was investigated. In Figure 20B 

a comparison of HIV-1 LV infected THP-1 wt, CypA -/- and CypA-CypB -/- cells is shown. 

Whereas CypA -/- cells showed an increase in infection from 38.8 % to 46.8 % compared to 

THP-1 parental cells, a slight reduction of infection to 35.5 % was observed for the double 

knockout cell line compared to THP-1 wt cells. However, CypB single knockout cells showed 

only 27.5 % HIV-1 LV infection (Figure 12B). Therefore, the changes in infection might be 

explained by the contribution of the other Cyp, respectively. However, the response to IFN2 

and CsA of CypA-CypB -/- cells in HIV-1 LV infection was comparable to CypA -/- cells. 

CypA single knockout and CypA-CypB double knockouts both showed a significantly 

increased type I IFN-induced block of HIV-1 LV infection (Figure 20C) and a significantly 

lower rescue of this block with CsA treatment compared with THP-1 wt cells (1.5-fold 

compared to 1.2-fold; Figure 20D). However, no changes were observed between single and 

double knockouts in response to IFN2 and CsA (Figure 20C and D). For CypB single 

knockout cells, no significant changes to THP-1 wt cells were detected. This suggests an 

involvement of CypB in HIV-1 infection only but not in the type I IFN-induced block to HIV-

1 LV infection. 
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Figure 20: CypA-CypB double knockout enhances hypersensitivity of IFN2 induced block to HIV-1 infection. 

A: THP-1 wt, CypA -/-, CypB -/-, CRISPR control cells and THP-1 based CypA-CypB double knockout cell 

lines (CypA-CypB -/-) were analyzed by Western blot for CypA, CypB and -actin expression. B: THP-1 wt, 

CypA -/- or CypA-CypB -/- cells were treated or not with 500 U/ml IFN2. 24 h post IFN stimulation cells were 

treated with 2.5 µM CsA. At the time of CsA addition, cells were infected with VSV -G pseudotyped HIV-1 LV 

for 48 h. Percentage of GFP positive cells was determined by flow cytometry. Bars indicate th e average 

infectivity determined from at least two independent experiments and error bars indicate standard deviation. 

Unpaired two-tailed t test was performed (*, p< 0.05; **, p< 0.01; ***, p< 0.001; ns, not significant). C: 

Calculated fold changes of IFN2 induced block to HIV-1 LV infection. Bars indicate the average fold change 

and error bars represent standard deviation. Unpaired two-tailed t test was performed (*, p< 0.05; **, p< 0.01; 

ns, not significant). D: Calculated fold changes of HIV-1 LV infection levels upon CsA treatment compared to 

IFN stimulated cells. Bars indicate the average fold change and error bars indicate standard deviation. Unpaired 

two-tailed t test was performed (**, p< 0.01; ns, not significant). E: THP-1 wt, CypA -/- or CypA-CypB -/- 

cells were treated or not with 500 U/ml IFN2. 24 h post IFN stimulation cells were treated with 2.5 µM CsA. 

At the time of CsA addition, cells were infected with VSV-G pseudotyped HIV-1 NL4.3 for 48 h. Percentage of 

GFP positive cells was determined by flow cytometry. Bars indicate the average infectivity determined from 

three independent experiments and error bars indicate standard deviation . Unpaired two-tailed t test was 

performed (**, p< 0.01; ***, p< 0.001; ns, not significant). F: Calculated fold changes of IFN2 induced block 

to NL4.3 infection. Bars indicate the average fold change and error bars indicate standard deviation. Unpaired 

two-tailed t test was performed (*, p< 0.05; ***, p< 0.001). G: Calculated fold changes of NL4.3 infection upon 

CsA treatment. Bars indicate the average fold change and error bars indicate standard deviation. Unpaired two -

tailed t test was performed (***, p< 0.001; ns, not significant). 
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To determine the role of the HIV-1 accessory proteins, THP-1 parental, CypA single and CypA-

CypB double knockout cells were infected with VSV-G pseudotyped full-length NL4.3 GFP 

HIV-1. As can be seen in Figure 20E the double knockout cell line showed the same infection 

as THP-1 wt cells (12.3 % compared to 12.6 %, respectively), whereas CypA knockout showed 

22.3 % infection. For CypB single knockout 16.6 % infection was observed, which was slightly 

higher than for parental cells (Figure 12E). This suggests that antiviral activity of CypA is 

higher than the one of CypB, but both Cyps contribute to the effects. Stimulation of cells with 

IFN2 24h prior to infection with NL4.3 GFP resulted in a significant reduction of infection 

for all cell lines. As observed for all knockout cell lines, reduction in infection was stronger for 

NL4.3 infection than for HIV-1 LV infection (compare e.g. Figure 20C and F). For CypB single 

knockouts no significant changes in response to IFN2 for NL4.3 infection in comparison to 

THP-1 wt cells was observed (Figure 12F), indicating no involvement of CypB in the type I 

IFN-induced block to infection. Interestingly, for CypA-CypB double knockouts a significant 

increase of the infection block caused by type I IFN treatment even compared to CypA -/- cells 

was obtained. For CypA -/- cells a 14.7-fold block and for double knockouts a 18.8-fold type I 

IFN-induced infection block to HIV-1 NL4.3 was observed (Figure 20F). Thus, absence of 

CypB alone has no effect on the type I IFN-induced block, but parallel knockout of two Cyps 

heightens restriction of HIV-1 NL4.3 infection by type I IFN-induced antiviral factors. This 

suggests that CypB contributes to protecting HIV-1 from the type I IFN-induced block and that 

CypA can compensate for this effect since no increase was observed in CypB -/- cells (Figure 

12).   

To confirm, that this effect was induced by a CsA sensitive factor, IFN2 stimulated NL4.3 

infected cells were treated with CsA. For THP-1 wt cells and CypB single knockout cells a 

significant reduction of infection compared to IFN2 stimulated cells was observed (Figure 

12E and G), indicating the inhibition of a CsA target promoting HIV-1 infection, which most 

likely is CypA. Interestingly, CsA treatment of CypA -/- cells showed an increased infection 

by 2.6-fold. A similar effect was observed for CypA-CypB -/- cells (1.8-fold infection increase; 

Figure 20E and G). The difference between CypA -/- and double knockout cells was not 

significant, suggesting a similar effect of CsA in both cell lines. If CypA is the only CsA target 

involved in HIV-1 infection, no difference upon CsA treatment in infection levels would be 

expected resulting in infection fold changes around 1, but even double knockouts showed an 

infection increase upon CsA treatment. Thus, another CsA target besides CypA and CypB is 

likely to be involved in an early step of HIV-1 infection.  
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8.1.6 CypA-CypE -/- show hypersensitivity to IFN-induced block of HIV-1infection 

Therefore, a double knockout of CypA and CypE based on CypA knockout cells was generated. 

Figure 21A shows the Western blot analysis of the double knockout cell line using the same 

antibodies discussed above (8.1.3). THP-1 wt cells served as control for both CypA and CypE 

expression. CypA -/- cells served as a control for CypE expression and served as an input for 

the double knockout cell line production. CypE -/- cells were a control for CypA expression. 

The CypA–CypE double knockout cell line showed no expression of either Cyp. For 

comparison of the input material, -actin expression levels were detected. As this study shades 

some light on Cyp redundancy, it is worthwhile to mention, that knockout of one Cyp did not 

alter the expression levels of other Cyps as shown in Figure 21A as well as in Figure 20A. 

Further immunoblot analysis of CypA -/- cells for several other Cyps confirmed this 

observation (data not shown).   

Figure 17A shows that CypE single knockout cells had a reduced infection (15.8 %) of HIV-1 

LV compared to THP-1 parental cells (25.7 %). Furthermore, a higher potency of IFN2 to 

block infection (2.6-fold) and an increased ability of CsA to rescue infection from the IFN-

induced block for HIV-1 LV infection (2.7-fold) was observed for CypE -/- cells. In CypA-

CypE double knockout cells an intermediate phenotype between CypA and CypE single 

knockouts was observed in response to HIV-1 LV challenge (Figure 21B). Infection levels were 

increased for CypA -/- (46.8 %) compared to the double knockout cell line (35.3 %). Thus, the 

opposite effects of CypA and CypE single knockouts were almost compensated for in the 

double knockout cell line. IFN2 again had a higher potency to block HIV-1 LV infection in 

the absence of at least one Cyp. CypA -/- cells showed the smallest increase in the infection 

block (2.2-fold compared to 1.8-fold for THP-1 wt cells) whereas CypE -/- showed an 2.6-fold 

block to HIV-1 LV infection and CypA-CypE double knockout cells showed a 2.4-fold 

reduction of infection (compare Figure 17B and Figure 21C). The double knockout showed a 

significantly enhanced rescue ability compared to THP-1 wt cells, but not significantly different 

to single knockout cells (Figure 21C). However, an additive effect, as observed for infection 

without any additional treatment, was not observed. Interestingly, the rescue ability of CsA on 

the type I IFN-induced block of HIV-1 LV infection was neither intermediate nor additive to 

the single knockouts. The double knockout cell line copied the CypA -/- phenotype showing a 

1.1-fold and 1.2-fold rescue, respectively (Figure 21C). CypE -/- knockout however showed a 

significantly increased rescue ability of 2.7-fold (Figure 17D). These results indicate an 

involvement of both proteins on HIV-1 LV infection and the type I IFN-mediated block to HIV-

1 LV infection. 
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Figure 21: CypA-CypE -/- cells show enhanced hypersensitivity to the type I IFN-induced block. 

A: THP-1 wt, CypA -/-, CypE -/- and THP-1 based CypA-CypE double knockout (CypA-CypE -/-) cell lines 

were analyzed by Western blot for CypA, CypE and -Actin expression. B: THP-1 wt, CypA -/- or CypA-CypE 

-/- cells were treated or not with 500 U/ml IFN2. 24 h post IFN stimulation cells were treated with 2.5 µM 

CsA. At the time of CsA addition, cells were infected with VSV -G pseudotyped HIV-1 LV for 48 h. Percentage 

of GFP positive cells was determined by flow cytometry. Bars indicate the average infectivity determined from 

at least three independent experiments and error bars indicate standard deviation. Unpaired two -tailed t test was 

performed (*, p< 0.05; **, p< 0.01; ***, p< 0.001). C: Calculated fold changes of IFN2 induced block to HIV-

1 LV infection. Bars indicate the average fold change and error bars indicate standard deviation. Unpaired two-

tailed t test was performed (**, p< 0.01; ns, not significant). D: Calculated fold changes of HIV-1 LV infection 

levels upon CsA treatment compared to IFN stimulated cells. Bars indicate the average fold change and error 

bars indicate standard deviation. Unpaired two-tailed t test was performed (*, p< 0.05; **, p< 0.01; ns, not 

significant). E: THP-1 wt cells, CypA -/- or CypA-CypE -/- cells were treated or not with 500 U/ml IFN2. 24 

h post IFN stimulation cells were treated with 2.5 µM CsA. At the time of CsA addition, cells were infected 

with VSV-G pseudotyped HIV-1 NL4.3 for 48 h. Percentage of GFP positive cells was determined by flow 

cytometry. Bars indicate the average infectivity determined from three independent experiments and error bars 

indicate standard deviation. Unpaired two-tailed t test was performed (**, p< 0.01; ***, p< 0.001; ns, not 

significant). F: Calculated fold changes of FN2 induced block to NL4.3 infection. Bars indicate the average 

fold change and error bars indicate standard deviation. Unpaired two-tailed t test was performed (**, p< 0.01; 

***, p< 0.001). G: Calculated fold changes of NL4.3 infection upon CsA treatment. Bars indicate the average 

fold change and error bars indicate standard deviation. Unpaired two -tailed t test was performed (***, p< 0.001; 

ns, not significant). 

NL4.3 infection had the same effect on infectivity in CypE depleted cells as observed for HIV-

1 LV infection. THP-1 parental cells showed 12.6 % infection, CypE single knockout cells 
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9.8 % infection and CypA-CypE double knockout cells 19.7 % infection (compare Figure 17D 

and Figure 21E). For CypA single knockout cells 22.3 % HIV-1 NL4.3 infection was observed, 

and assuming an additive effect in the CypA-CypE double knockout cells as observed for LV 

infection, roughly 19 % infection was expected and was observed for the double knockouts 

(Figure 21E). However, in response to IFN2, an alternate phenotype to HIV-1 LV infection 

could be detected. As observed before, IFN- induced infection blocks were greater in HIV-1 

NL4.3 full-length infection, than observed for HIV-1 LV infection. For HIV-1 LV infection, 

IFN2 treatment showed the highest potency to block infection in CypE single knockout cells 

(2.7-fold; Figure 17B). For NL4.3 infection the highest reduction of infection upon IFN2 

treatment was observed for CypA-CypE -/- cells, where a reduction of 22.1-fold was monitored 

(Figure 21F). In CypE single knockout cells, which showed the strongest effect in LV infection, 

type I IFN blocked NL4.3 infection by 7.2-fold, which was a non-significant increase compared 

to THP-1 wt cells. In contrast to LV infection, for HIV-1 NL4.3 full-length virus the potency 

of IFN2 to block infection in single Cyp knockout cells was additive in double knockouts 

(7.2-fold for CypE -/- and 14.7-fold for CypA -/- compared to 22.1-fold, respectively). 

Therefore, CypA and CypE may likely play different roles in HIV-1 early infection steps.  

CsA treatment of CypA-CypE -/- cells showed for both viral constructs no significant changes 

compared to CypA -/- cells (Figure 21D and G) and the fold change of infection levels observed 

was 1.2-fold. However, the response of CypA-CypE -/- cells to CsA was significantly different 

for both viral constructs to what was observed for THP-1 parental cells. This makes CypE a 

possible candidate for the CsA target contributing to the CsA induced increase in infection after 

type I IFN treatment observed in CypA -/- cells.  

Taken together, I have shown that various cyclophilins are able to modulate the type I IFN 

response to HIV-1 and are therefore immune modulators of HIV-1 infection. An overview of 

the various responses to the two viral HIV-1 strains of cyclophilin knockout cells used are listed 

in Table 1. CypA, CypD and CypH knockout increased HIV-1 LV infection compared to the 

THP-1 parental control experiment. Involved in the type I IFN-induced block to HIV-1 LV 

infection are most likely all tested Cyps except CypC and CypD and for CypE knockout cells 

the biggest impact for CsA on HIV-1 LV infection was found (2.7-fold infection increase upon 

CsA addition, see Table 1 and Figure 17C). For full length HIV-1 NL4.3 infection Cyp 

knockouts showed alternate phenotypes, indicating an involvement of HIV-1 accessory proteins 

on the functions of Cyps. Except for CypE knockout cells all tested cell lines showed increased 

HIV-1 NL4.3 infection compared to THP-1 cells. Furthermore, the block to infection by IFNa2 

was greater than observed in HIV-1 LV infection. CypA single and the two double knockout 
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cell lines showed the highest impact on the type I IFN response to HIV-1 NL4.3 infection. CsA 

treatment increased HIV-1 NL4.3 infection for all tested knockout cell lines compared to THP-

1 parental cells with the highest impact observed for CypA -/- cells. 

Table 1: Overview of HIV- 1 infection phenotypes in Cyclophilin knockout cells.  

Summary of all observed effects in the above discussed CRISPR/Cas knockout cells. Listed are % GFP positive cells for the 

indicated condition of HIV-1 LV and HIV-1 NL4.3 infection or the calculated fold changes in response to IFN2 and CsA. 

Knockout indicates, which protein is knocked out. CypA-B is the double knockout of CypA and CypB, CypA-E is the double 

knockout of CypA and CypE. - = infection without any stimulation; IFN = infection with previous IFN2 stimulation (see 

7.3.4); IFN + CsA = infection with IFN2 and CsA stimulation (see 7.3.4); Fold block = calculated fold block to infection 

upon IFN2 treatment; Fold rescue = calculated change of infection between IFN2 and IFN2-CsA stimulated cells. Bold 

numbers indicate an increase compared to THP-1 parental cells. 

Knock-

out 

HIV-1 LV infection HIV-1 NL4.3 infection 

 - F F 

+ 

CsA 

Fold 

block 

Fold 

rescue 

- F F 

+ 

CsA 

Fold 

block 

Fold 

rescue 

CypA 46.8 21.3 24.0 2.2 1.1 22.3 1.5 3.8 14.7 2.6 

CypB 27.5 14.3 20.3 1.9 1.4 16.7 3 1.6 5.6 0.6 

CypC 18.2 10.0 19.8 1.8 1.8      

CypD 47.0 24.0 32.5 1.8 1.4      

CypE 15.8 7.5 16.8 2.6 2.7 9.8 1.4 0.9 7.2 0.6 

CypH 26.3 13.0 19.5 2.1 1.6      

CypA-B 35.5 16.8 19.5 2.1 1.2 12.3 0.7 1.2 18.8 1.8 

CypA-E 35.3 14.5 17.5 2.4 1.2 19.7 0.9 1.1 22.1 1.2 

These varying phenotypes lead to the assumption, that another type I IFN-induced CsA 

sensitive factor except cyclophilins is involved in modulating the immune response against 

HIV-1. Therefore, we performed a recently developed unbiased mass spectrometry screen to 

identify novel CsA sensitive targets based on their thermal stability [322], [323].  

8.2 CETSA identifies possible novel CsA targets 

Thermal protein stability is measured as a protein melting point. Binding of drugs, co-factors 

or interacting proteins can stabilize or destabilize a protein and affect thermal protein stability, 

thus causing an increase or decrease of the protein melting point [322], [323]. Exactly this effect 

was used as a readout for the conducted cellular thermal shift assay (CETSA) experiments. 

THP-1 CypA -/- cells were treated with 500 U/ml IFN2 for 24 h. The next day, cells were 

treated with CsA or DMSO for 90 min, respectively. The CypA -/- cells were used, as an 
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increase of HIV-1 NL4.3 GFP infection by CsA from an IFN-induced block was observed, 

although CypA is absent in these cells (Figure 10F).  

 

Figure 22: Cellular thermal shift assay (CETSA). 

A: CypA -/- cells were treated or not with 500 U/ml IFN2. 24 h post IFN stimulation cells were treated with 

2.5 µM CsA. At the time of CsA addition, cells were infected with VSV-G pseudotyped HIV-1 NL4.3 for 48 h. 

Percentage of GFP positive cells was determined by flow cytometry. Bars indicate the average infectivity 

determined from two experiments with three replicates, respectively. Error bars indicate standard deviation. 

Unpaired two-tailed t test was performed (*, p< 0.05; ***, p< 0.001). B: Fold changes of IFN2 induced block 

to NL4.3 infection and the fold rescue from this block by CsA were calculated. Bars indicate the average fold 

changes determined from three technical replicates. C: CypA -/- cells were treated with 500 U/ml IFN2 for 24 

h, followed by incubation with 2.5 µM CsA or DMSO in duplicates for 90 min. Cells were aliquoted and 

incubated at 10 different temperatures ranging from 37°C to 67°C for 3 min followed by 3 min at 25° C. 

Denatured proteins were removed by centrifugation. CETSA supernatants were used for Western blot analysis. 

CypB and −actin protein expression was analyzed at each temperature for DMSO and CsA treated samples. D: 

CypB expression from C was normalized to  b-actin expression and quantified. The fold stabilization of CypB 

by CsA was calculated and is shown for each temperature. Calculations were performed with ImageJ.  E: Total 

protein concentration at the corresponding temperature for each CETSA supernatant was measured by BCA 

assay. 

To control if the stimulation with IFN2 and CsA resulted in the above described phenotype 

(Figure 10), an aliquot of treated cells was infected with HIV-1 NL4.3 and an infection assay 

was performed. Figure 22A shows infection rates of CypA -/- cells similar to those observed 
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before (Figure 10D). Fold changes of infection upon IFN2 and CsA stimulation were 

calculated and are shown in Figure 22B. These are comparable fold changes to what was 

detected in Figure 10 and Figure 11. Non-infected, IFN2-treated and DMSO or CsA-

stimulated cells were aliquoted into ten fractions for each stimulation condition and heated for 

3 min at a specific temperature in the range of 37°C to 67°C. After heating, proteins were 

isolated by three cycles of freeze and thaw in liquid nitrogen. Afterwards, denatured proteins 

were separated from soluble proteins by centrifugation. In a next step sample handling and 

separation of correctly folded and denatured proteins was controlled for. Total protein 

concentration in the soluble fractions was measured and as expected numbers decreased at 

higher temperatures (Figure 22E). As a control, total protein was measured by a bicinchoninic 

acid (BCA)-based assay (7.4.3). No difference in total protein concentration at any temperature 

could be observed between CsA and mock (DMSO) treated samples. To demonstrate the 

stabilizing effect of CsA on Cyps, a Western blot sample form each treated aliquot was taken 

and analyzed for CypB and -actin protein expression (Figure 22C). The remaining CETSA 

supernatants containing only soluble proteins were send for MS analysis to Rozbeh Jafari, a 

collaborator in Sweden1.  

 

Figure 23: CETSA identifies novel CsA affected proteins.  

A: CETSA supernatants containing the soluble protein fractions from two individual experiments were sent for 

mass spectrometry (MS) analysis. An overview of all detected proteins for DMSO and CsA treatment for both 

experiments is shown. B: All detected proteins from MS analysis are plotted for their calculated melting point 

shifts induced by CsA against the minimal slop of the respective melting curves. Proteins with a minimal slope 

greater than -0.06 are shown in grey. Highlighted in red are known CsA targets or non -targets as well as 

interesting hits. Marked in green is the area are proteins with a melting point shift lower than +/- 1°C.  

 
1 Division of Biophysics, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 

Sweden 
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Protein abundances for DMSO and CsA treated samples at all analyzed temperatures were 

measured by MS as described in 7.4.3. These data were used to calculate melting curves for 

each condition for all individual proteins detected. The melting temperature (Tm) of individual 

proteins for each treatment condition is defined as the temperature, where the protein abundance 

is half of the reference protein abundance at 37°C. To assess, whether CsA influences a 

protein’s thermal stability, the difference of Tm between DMSO and CsA was calculated 

(Tm). An overview of all proteins detected for each treatment condition can be seen in Figure 

23A. 4307 proteins could be detected in all four analyzed data sets and overall 6,962 proteins 

could be identified in at least one data set (DMSO 1, DMSO 2, CsA 1 or CsA 2). Not all signals 

from detected proteins could be used to calculate reliable melting curves and a Tm between 

DMSO and CsA treated samples. As the experiment was conducted in duplicates, two Tm 

values for each protein where obtained, when the respective protein was detected in all four 

datasets.  

Table 2: Calculated Tm shifts for PPIases identified by CETSA.  

Shown are calculated shifts in melting temperatures (Tm) induced by CsA compared to DMSO mock treated samples in two 

parallel experiments (Exp.1 and Exp.2). For proteins marked with a * the protein could only be detected for mock and CsA 

treatment in one experiment or Tm calculation was not possible for one experiment. 

Cyclophilins  Other PPIases 

Target name Tm Exp.1 Tm Exp.2 Target name Tm Exp.1 Tm Exp.2 

CypB -1.41 -3.07 PPIL1 0.71 1.40 

CypC*  1.53 FKBP2 1.66 1.45 

CypD -0.03 -0.26 FKBP3 0.35 2.44 

CypE*  2.00 FKBP5 -0.30 -1.62 

CypF 3.72 4.49 FKBP7* 2.34  

CypG 1.49 -1.09 FKBP9*  4.99 

CypH 1.65 1.51 Pin1 -0.13 -0.29 

   Nup358 0.06 0.79 

In Figure 23B a dot plot is shown, where the minimal slope of the melting curve for each 

detected protein is plotted against the resulting melting point difference (exemplary for dataset 

1). The bigger the minimal slope of the melting curve is, the vaguer the resulting data. 

Therefore, smaller minimal slopes give more accurate data than bigger slopes despite the Tm 

value. Detected proteins with a minimal slope above -0.06 are depicted with grey dots, most 

likely representing unreliable values and these proteins were excluded from any further 

analysis. Highlighted in Figure 23B are proteins detected by MS analysis, which are interesting 
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for several reasons: (i) all detected Cyp family members as known CsA targets, (ii) other 

PPIases as known non-targets for CsA and (ii) proteins which belong to an type I IFN signaling 

pathway that show high calculated Tm values in at least one experiment analyzed. The most 

obvious targets were cyclophilins. These are known targets for CsA binding, and an effect on 

thermal protein stability upon CsA treatment was expected. CypA could not be detected, as 

CypA -/- cells were used to perform the experiment. The calculated Tm shifts for all other 

detected PPIases are listed in Table 2. For CypB an effect on thermal protein stability by CsA 

was observed. Western blot analysis revealed a clearly visual stabilization of CypB by CsA at 

various temperatures (Figure 22C and D). Relative protein amounts were obtained and 

normalized to -actin expression levels.  

 

Figure 24: CsA influences the thermal stability of Cyclophilins. 

CypA -/- cells were stimulated with 500 U/ml IFN2 and 2.5 µM CsA or DMSO, respectively. The experiment 

was conducted in duplicates and LC-MS/MS - CETSA was performed. For each temperature protein fold changes 

were computed relative to the protein abundance at 37°C. These fold changes represent the relati ve amount of 

non-denatured protein at the corresponding temperature. CETSA derived melting curves for individual proteins 

are shown in A-I. DMSO control samples are shown with triangles, CsA treated samples are represented in 

squares. The first dataset is represented in red, the second in black. The intersections of the melting curves with 

the dashed horizontal line indicates the melting point of the corresponding protein under the used conditions.  
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The fold stabilization by CsA in immunoblot analysis was calculated compared to DMSO 

treated controls. This resulted in a maximal stabilization of 5-fold for CypB by CsA at 56°C 

(Figure 22D). MS data for CypB revealed a calculated Tm of at least -1.4°C, thus confirming 

the data obtained by Western blot analysis (Tm values for the two MS experiments are shown 

in Table 2). Notably, Western blot results indicate a protein stabilization of CypB by CsA 

whereas the MS data suggest a destabilizing effect (negative Tm values). However, this 

seemingly contradicting results could be explained by the melting curves obtained from the MS 

analysis. The melting curves for CypB obtained in the MS experiments are shown in Figure 

24A. Under ideal conditions, protein abundance at the highest temperature used should be 

towards zero. For CypB, especially in the DMSO controls, roughly 40 % of the CypB amount 

detected at 37°C was still present. This makes Tm calculations more difficult and imprecise. 

Ideally, one more dataset at higher temperatures would confirm a lower CypB abundance at 

high temperatures. For example, the melting curve observed for CypD clearly shows low 

protein abundancy at high temperatures making these calculations more precise (Figure 24C). 

Therefore, the differences between stabilization of CypB observed by Western blot analysis 

and apparent destabilization observed in MS analysis can be explained by the relatively high 

protein abundance of CypB protein at 67°C in the DMSO control. It is notable to mention, that 

overall, most detected proteins had a Tm shift around 59°C. This is in agreement with results 

from other CETSA experiments and justified the chosen temperature range [322], [323]. The 

seemingly contradicting results between MS and immunoblot analysis for CypB also make 

clear, that a visual comparison of the melting curves must be done to control for those samples 

with high protein abundance.   

For -actin no effect of CsA on protein stability could be observed independently of the 

methods used. Western blot analysis (Figure 22C) showed no alterations in -actin protein 

stability between DMSO and CsA treatment. This was confirmed by the melting curves (Figure 

24I) and the calculated Tm for -actin in MS analysis (0.98°C and 0.2°C for the two 

experiments, respectively; Table 4).  

8.2.1 Various proteins are affected by CsA 

The CETSA experiment detected a lot of proteins of the human proteome. The most obvious 

candidates to be detected in the CETSA experiment were Cyps, as they are known targets for 

CsA. Therefore, Cyps should be stabilized or destabilized by CsA resulting in a detectable Tm 

shift upon CsA treatment. The largest Cyp, Nup358, has been suggested to be insensitive to 

CsA binding [207], [265], [266] and also in the MS analysis shown small Tm shifts below 
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1°C were observed (Table 2), arguing, that CsA does not bind and effect the Cyp domain of 

Nup358. Other PPIases like FKBPs and parvulin like PPIase on the other hand should be 

unaffected by CsA and melting curves for these proteins should not differ in the DMSO control 

or the CsA treated samples. In Table 2 all calculated Tm values for detected PPIases are listed. 

For Cyps and Pin1 all melting curves are shown in Figure 24. A stabilization or destabilization 

was observed for all Cyps except CypD (Tm is -0.03°C and -0.26°C) and as mentioned above 

Nup358 (Tm is 0.06°C and 0.79°C; melting curve not shown). CypD -/- cells also did not 

show any changes in the type I IFN-induced block of HIV-1infection and its rescue by CsA 

compared to THP-1 wt cells (Figure 15). Why CypD does not show a Tm shift in response to 

CsA is unclear. However, previous studies clearly identified CypD as a CsA binding protein 

[257], [324], [325]. The biggest difference in Tm is observed for CypF (Tm is 3.72°C and 

4.49°C; Table 2) as can be seen in the obtained melting curved shown in Figure 24E. Although 

CypF shows the highest homology to CypA, it located in the mitochondrion and is therefore 

unlikely, to resume CypA functions in the cytoplasm. Unfortunately, no CypF knockout data is 

available, thus a comparison with the HIV-1 related phenotype is not possible.  

Table 3:Targets identified in CETSA with the highest calculated Tm shifts.  

Shown are calculated shifts in melting temperatures (Tm) induced by CsA compared to DMSO mock treated samples in two 

parallel experiments (Exp.1 and Exp.2). Restraints for target identification were a.) calculated Tm has the same sign b.) 

minimal slope is less than -0.06 c.) the plateau of each melting curve is lower than 0.3 and d.) Tm in both experiments of 

CsA vs. control is greater than Tm for control 1 vs. control 2.  

Target name Tm Exp.1 Tm Exp.2 Target name Tm Exp.1 Tm Exp.2 

AP4B1 -3.33 -3.47 PRPS1L1 -2.77 -9.17 

CENPU 6.75 3.75 RAB31 2.20 3.30 

CFD 9.04 7.83 RBM47 -3.21 -4.21 

EIF4G1 -3.45 -5.40 SASS6 2.82 7.09 

ENGASE 3.51 3.19 TMEM165 -4.84 -7.11 

FAM49A -4.93 -5.96 TTC5 12.61 8.51 

MACF1 -5.44 -4.29 UBTD2 2.94 3.47 

CypF 3.72 4.49 VAT1 3.23 3.99 

Apparently not only known Cyps are influenced by CsA. Some Cyp pseudogenes were also 

identified in the CETSA experiment. Peptidyl-prolyl peptidase like protein 1 (PPIL1) is one of 

them showing a slight stabilizing effect induced by CsA (Tm is 0.71°C and 1.40°C as listed 

in Table 2). For other PPIase family members no effect of CsA is known so far. Surprisingly 

all detected FKBPs which should be unaffected by CsA showed a CsA induced Tm shift.  
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Figure 25: Melting curves of proteins with the highest Tm shift upon CsA treatment identified by CETSA.  

CypA -/- cells were stimulated with 500 U/ml IFN 2 and 2.5 µM CsA or DMSO, respectively. The experiment 

was conducted in duplicates (1 and 2, respectively) and LC-MS/MS-CETSA was performed. For each 

temperature protein fold changes were computed relative to the protein abundance at 37°C. These fold changes 

represent the relative amount of non-denatured protein at the corresponding temperature. CETSA derived 

melting curves for individual proteins are shown (A-O). DMSO control samples are shown with triangles, CsA 

treated samples are represented in squares. The first dataset is represented in red, the second in black. The 

intersections of the melting curves with the dashed horizontal line indicates the melting point of the 

corresponding protein under the used conditions. Calculated Tm values can be found in Table 3. 
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However, not all known FKBPs could be detected. All detected FKBPs with a Tm shift greater 

than ± 1°C for at least one experiment are listed in Table 2.   

For other proteins like the PPIase Pin1 belonging to the CsA independent parvulin-like PPIases 

no Tm shift was observed. The melting curves for Pin1 can be seen in Figure 24H. No 

discrimination between DMSO and CsA treated curves can be detected and calculated Tm 

shifts are -0.13°C and -0.29°C as listed in Table 2. In the overview of all detected proteins in 

Figure 23B, Pin 1 is highlighted and positioned in the green shaded area. This marks proteins 

whose thermal stability is not influenced by CsA and which therefore, most likely are not 

affected by CsA and thus not the searched for type I IFN-induced CsA sensitive factor affecting 

HIV-1 infection.  

After evaluating the MS dataset with known CsA targets and off-targets, proteins that showed 

the highest Tm shift upon CsA treatment and met all quality control restrains were identified. 

These restrains are (i) the calculated Tm shift had the same direction; (ii) the minimal slope 

of any melting curve was -0.06; (iii) the plateau of each melting curve was below 0.3 at the 

highest measured temperature and (iv) the Tm in both experiments between DMSO and CsA 

was greater than the Tm for DMSO1 vs DMSO2. The proteins identified by CETSA with the 

highest Tm shifts are listed in Table 3. These proteins fulfilled all quality control parameters 

but were not chosen as candidates for knockout cell lines. For some of them specific functions 

are unknown like FAM49A, a family with sequence similarity 49 member, RBM47, a RNA 

binding motif containing protein, or UBTD2, a ubiquitin domain containing protein as well as 

TTC5, a tetratricopeptide domain containing protein that is involved in the formation of large 

protein complexes. Other proteins are involved in vesicular transport like AP4B1, RAB31, 

TMEM165 and VAT1 or cell division like CENPU or SASS6 protein. The other highly affected 

proteins are CFD, complement factor D, which activates complement factor B to facilitate 

proliferation of pre-activated B-lymphocytes, EIF4G1, a translation initiation factor, MACF1, 

a protein that crosslinks actin and microtubules, ENGASE, an acetyl-glycosaminidase involved 

in the production of free oligosaccharides and PRPS1L1, a phosphoribosyl pyrophosphate 

synthase. Interestingly, of the known CsA targets only CypF made this list. As mentioned above 

(8.2), other cyclophilins are affected as well, but do not meet all four stringent criteria. Melting 

curves of the proteins listed in Table 3 are shown in Figure 25 except the one for CypF, which 

is shown in Figure 24E along with melting curves for all other detected cyclophilins.  

To better understand the complex interplay of Cyps and HIV-1 the CETSA experiments were 

further analyzed in respect to PPIase interaction partners mentioned in this study (see section 

5.2). These proteins and their corresponding Tm shifts are listed in Table 5. Most of these 
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proteins are not affected by CsA like Arp2 or MEK7. Other proteins known to play a crucial 

role in HIV-1 infectivity were detected during MS, but Tm shifts only occurred in one 

experiment like for CPSF6 or MX2. Other proteins, like e.g. APOBEC3G, APOBEC3F, ASK1 

and TRIM5 were only detected by MS in one of the two experiments.  

Table 4: Selected additional identified proteins in CETSA relevant for this study.  

Shown are calculated shifts in melting temperatures (Tm) induced by CsA compared to DMSO mock treated samples in two 

parallel experiments (Exp.1 and Exp.2). For proteins marked with a * the protein could only be detected for mock and CsA 

treatment in one experiment or Tm calculation was not possible for one experiment. ** individual proteins of this protein 

family could not be identified clearly, shown data is for IFITM1, IFITM2 and IFITM3 combined.  

Target name Tm Exp.1 Tm Exp.2 Target name Tm Exp.1 Tm Exp.2 

APOBEC3F*  -2.06 MEK7 0.18 -0.14 

APOBEC3G* 1.11  MEKK1 1.82 2.82 

Arp2 0.83 0.36 MEKK2 -0.47 -1.58 

Arp3 1.18 1.17 MTK1 0.60 -0.36 

ASK1* -0.44  MX2 -1.84 -0.07 

-actin 0.98 0.20 NFAT 3.25 1.47 

-catenin 5.33 1.29 NFB -2.22 -0.98 

Casp1 -0.27 -0.95 N-WASP 0.26 1.20 

Casp2 -0.34 -3.77 p65 -0.89 0.01 

Casp4 0.30 0.86 Pinin 2.01 4.23 

Casp7 0.29 2.35 PDZD8 -0.18 -4.15 

CPSF6 1.91 0.47 STAT2 -1.84 -1.30 

Calcineurin 1.24 1.47 STAT3 -0.40 -0.55 

ERK1 1.58 0.22 STAT5A 5.30 1.64 

ERK2 0.29 0.32 STAT5B -0.80 -9.50 

IFITIMs** 1.36  TRIM11 2.57 1.29 

IRF5 0.11 0.88 TRIM21 -0.61 -0.60 

IRF8 0.96 0.66 TRIM22 1.85 2.76 

IRF9 -0.76 -1.30 TRIM24 0.48 1.75 

MAP3K3 1.75 0.71 TRIM28 -0.32 -0.53 

MAP3K7 1.25 -0.01 TRIM32 -3.64 -1.30 

MAP4K5* -6,17  TRIM38* 6.72  

MEK5* -2.08  TRIM5* -0.69  

MEK6 3.23 0.28 WNT -1.51 -2.72 
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The known CsA binding proteins calcineurin and NFAT were both stabilized by CsA (Table 

4), which was expected. Interestingly, -catenin was stabilized and WNT was destabilized. It 

was shown that -catenin interacts with CypA but no other Cyp and thereby enhances WNT 

target genes. In the absence of CypA these results are unexpected and might indicate that -

catenin may have other Cyp binding partners than CypA. More Cyp interaction partners were 

identified as positive hits, like Pinin, a CypG interacting protein [260] with a positive Tm shift 

or several STAT proteins that have been described before as CypB interacting partners [326]. 

In the infection assays with HIV-1 LV and HIV-1 NL4.3 a possible type I IFN-dependent 

function of CsA was observed, as CsA was able to rescue HIV-1 infection from a type I IFN-

induced block in CypA -/- cells (Figure 10). Therefore, the CETSA data were carefully analyzed 

and cross referenced with known type I IFN-induced proteins. This analysis revealed amongst 

other pathways an enrichment of affected proteins involved in the RIG-I-signaling pathway. An 

schematic overview of the signaling pathway is shown in Figure 7 and proteins involved in this 

signaling pathway detected in the CETSA experiments are listed with their corresponding Tm 

values in Table 5.  

Table 5:Calculated melting temperature shifts from CETSA experiment for Rig-1 signaling pathway proteins.  

Shown are calculated shifts in melting temperatures (Tm) induced by CsA compared to DMSO mock treated samples in two 

parallel experiments (Exp.1 and Exp.2). For proteins marked with a * the protein could only be detected for mock and CsA 

treatment in one experiment or Tm calculation was not possible for one experiment.  

Target name Tm Exp.1 Tm Exp.2 Target name Tm Exp.1 Tm Exp.2 

RIG-I 0.92 0.31 IRF3 0.07 1.36 

MDA5 -1.00 -1.06 IRF7 -2.45 -0.28 

TRIM25 0.01 0.07 TRAF2 0.89 0.15 

MAVS 4.44 8.42 TRAF6 0.83 0.02 

TRADD -3.17 -1,67 Casp8 -0.01 0.29 

FADD -2.50 -0.17 Casp10* -13.93  

RIP1 -1.21 -0.07 p38 1.17 0.63 

NFB -2.22 -0.98 JNK 0.04 -0.88 

Tbk1 -0.58 -1.30    

Upon viral infection viral RNA is detected by cytosolic pattern recognition receptors and the 

innate immune response is initiated including type I and type III IFN expression and NFB-

dependent pro-inflammatory cytokine expression. The most affected proteins of the RIG-I 

signaling pathway detected were MDA5 with Tm shifts of -1.00 and -1.06°C, MAVS with 

Tm shifts of 4.44°C and 8.42°C, TRADD with Tm shifts of -3.17°C and -1.67°C, NFB 
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with Tm shifts of -2.22°C and -0.98°C and Caspase10 (Casp10) with a Tm shift of -13-93°C, 

respectively. In addition to these five proteins, which showed a great Tm shift in all detected 

experiments, a few other pathway members were affected in at least one experiment. These 

were RIG-I, MAVS, FADD, RIP1, IRF3, IRF7 and p38. MDA5 is involved in PAMP 

recognition, TRADD is the first protein recruited by MAVS, the major scaffold protein at the 

mitochondria to induce downstream signaling. NFB, a well-known transcription factor 

regulating expression of various ISGs and Casp10, a procaspase that is activated by Casp8 and 

that activates Casp3 and Casp7 to induce apoptosis, are two late acting proteins in the RIG-I 

signaling pathway.  

 

Figure 26: Melting curves of CETSA hits from the RIG-I signaling pathway chosen for in-depth analysis. 

CypA -/- cells were stimulated with 500 U/ml IFN2 and 2.5 µM CsA or DMSO, respectively. The experiment 

was conducted in duplicates (DMSO1/CsA1 and DMSO2/CsA2, respectively) and LC -MS/MS-CETSA was 

performed. For each temperature protein fold changes were computed relative to the protein abundance at 37°C . 

These fold changes represent the relative amount of non-denatured protein at the corresponding temperature. 

CETSA derived melting curves for individual proteins are shown (A -F). DMSO control samples are shown with 

triangles, CsA treated samples are represented in squares. The first dataset is represented in red, the second in 

black. The intersections of the melting curves with the dashed horizontal line indicates the melting point of the 

corresponding protein under the used conditions. Calculated Tm values can be found in Table 5. 

The biggest shifts were observed for MAVS with 8.42°C Tm change upon CsA treatment and 

for Casp10 (Tm = -13.93°C, Table 5, melting curves in Figure 26). Although the minimal 

slope for Casp10 was just slightly over the threshold of -0.06 the resulting Tm was big enough 

to assume reliable data (Figure 23B). Unfortunately, this protein could only be detected in one 

of the two experiments as shown in Table 5 and Figure 26F. However, some proteins involved 

in this pathway were unaffected by CsA. For example, TRIM25, which plays a role in RIG-I 

activation is unaffected as no Tm shift could be observed (0.01°C and 0.07°C). Other 
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unaffected proteins were TNF receptor-associated factor 2 (TRAF2) and TRAF6 or Casp8. 

These proteins are involved in signal transduction facilitated through the MAVS protein.   

After careful evaluation of the CETSA data for RIG-I signaling pathway proteins a few targets 

were chosen for CRISPR/Cas9 knockout cell lines based on CypA -/- cells. The chosen 

candidates were RIG-I and MDA5 as sensing proteins of viral RNA, MAVS, as a highly 

affected protein and the central point of signal transduction in the pathway. Furthermore, IRF3 

and TRADD as two downstream proteins representing different signaling routes and Casp10 

with one of the greatest shifts in melting points induced by CsA treatment. Melting curves of 

all chosen targets are shown in Figure 26. Taken together, the CETSA experiment could identify 

several interesting hits. In this study the aim was to identify a type I IFN-induced target protein 

affected by CsA that might be involved in the CsA-mediated increase of HIV-1 infection in 

type I IFN-stimulated THP-1 cells. Therefore, the RIG-I signaling pathway with several 

affected IFN-induced proteins was chosen to be investigated further. 

8.2.2 Knockout of Rig-1 in CypA -/- cells reduces effects of CypA -/- to HIV-1 infection 

Several members of the RIG-I signaling pathway could be identified as interesting candidates 

in the CETSA experiments as described above. Initially 6 key players of this pathway were 

chosen for in depth analysis. To further study the effects of these proteins, CRISPR/Cas-

induced knockout cell lines were generated. Unfortunately, knockout of Casp10 in THP-1 

CypA -/- could not be achieved, although the used gRNA has been previously used (7.1.9, 

[314].   

The other chosen targets were RIG-I, MDA5, MAVS, IRF3 and TRADD. All these proteins 

are key players of the RIG-I signaling pathway. RIG-I, a cellular sensor for viral RNA, which 

is involved in initiation of the signaling cascade was investigated first. Its expression is 

regulated by IFNs and the recognition of HIV-1 derived RNA fragments by RIG-I was 

previously proposed [327]. Although in the CETSA experiments only minimal differences 

could be observed for Tm (0.92°C and 0.31°C, see Table 5) RIG-I was chosen as a target. The 

calculated melting curves for RIG-I are shown in Figure 26A. As can be seen, the relative low 

Tm of around 50°C indicates, that more data points at lower temperatures would be needed for 

a more precise result. Therefore, the low changes of Tm did not exclude RIG-I as a possible 

CsA affected protein.   

In a next step RIG-I CRISPR/Cas9 knockouts of THP-1 CypA -/- were generated. Figure 27A 

shows the Western blot analysis of CypA-RIG-I -/- cells and several control cells.  
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Figure 27: Knockout of RIG-I in CypA -/- cells shows enhanced infectivity and increased sensitivity to type I IFN and 

CsA. 

A: THP-1 wt, CypA -/- and THP-1 based CypA and RIG-I double knockout (CypA-RIG-I -/-) cell lines were 

analyzed by Western blot for CypA, RIG-I and -actin expression. A569 parental cells and a RIG-I -/- in these 

cells served as controls. B: THP-1 wt, CypA -/- or CypA-RIG-I -/- cells were treated or not with 500 U/ml 

IFN2. 24 h post IFN stimulation cells were treated with 2.5 µM CsA. At the time of CsA addition, cells were 

infected with VSV-G pseudotyped HIV-1 LV for 48 h. Percentage of GFP positive cells was determined by flow 

cytometry. Bars indicate the average infectivity determined from at least three independent experiments and 

error bars indicate standard deviation. Unpaired two-tailed t test was performed (*, p< 0.05; **, p< 0.01; ***, 

p< 0.001). C: Calculated fold changes of IFN2 induced block to HIV-1 LV infection. Bars indicate the average 

fold change and error bars indicate standard deviation . Unpaired two-tailed t test was performed (*, p< 0.05; 

***, p< 0.001). D: Calculated fold changes of HIV-1 LV infection levels upon CsA treatment compared to IFN 

stimulated cells. Bars indicate the average fold change and error bars indicate standard devi ation. Unpaired two-

tailed t test was performed (**, p< 0.01; ***, p< 0.001).E: THP-1 wt cells or CypA-RIG-I -/- cells were treated 

or not with 500 U/ml IFN2 for 24 h. Prior to infection with VSV-G pseudotyped HIV-1 NL4.3 for 48 h, cells 

were treated with 2.5 µM CsA. Percentage of GFP positive cells was determined by flow cytometry. Bars 

indicate the average infectivity determined from at least three independent experiments and error bars indicate 

standard deviation. Unpaired two-tailed t test was performed (**, p< 0.01; ***, p< 0.001; ns, not significant). 

F: Calculated fold changes of IFN2 induced block to NL4.3 infection. Bars indicate the average fold change 

and error bars indicate standard deviation. Unpaired two-tailed t test was performed (*, p< 0.05; ***, p< 0.001). 

G: Calculated fold changes of NL4.3 infection levels upon CsA treatment compared to IFN stimulated cells. 

Bars indicate the average fold change and error bars indicate standard deviation. Unpaired two -tailed t test was 

performed (*, p< 0.05; ***, p< 0.001). 
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A549 and A549 RIG-I-/- cells served as a control for antibody specificity. These cells lysates 

were a kind gift from the group of Marco Binder2 and were previously evaluated and are 

confirmed parental and knockout cells [328], [329]. In these cells and THP-1 wt cells CypA 

levels were not altered. Therefore, these served as controls and expression level comparison for 

single cell knockout clones. CypA -/- cells served as a control for normal RIG-I expression. 

CypA-RIG-I -/- clearly showed no CypA or RIG-I expression (Figure 27A). After knockout 

cell generation the above described infection assays (7.3.4) were performed. HIV-1 LV infected 

CypA-RIG-I -/- cells showed slightly reduced infection (31.5 %) compared to CypA -/- cells 

(36 %) (Figure 27B). However, both cell lines showed increased infection compared to THP-1 

wt cells (23.6 %). The type I IFN-induced block to infection was also significantly reduced 

compared to CypA -/- cells (2.3-fold for CypA -/- compared to 2.1-fold in RIG-I -/- cells, Figure 

27C), although significantly increased compared to THP-1 parental cells (1.8-fold; Figure 27C). 

In response to CsA, a similar phenotype to IFN2 stimulation was observed. CypA-RIG-I 

double knockout cells showed significantly different responses compared to THP-1 and CypA 

single knockout cells Figure 27D. However, the response in CypA-RIG-I -/- cells was closer to 

wild type than CypA -/- cells (Figure 27D).   

For HIV-1 NL4.3 infection higher infection in CypA-RIG-I double knockout cells was 

observed compared to THP-1 wt and CypA single knockout cells, however the differences to 

CypA -/- cells were only minor (23.6 % compared to 22.3 %, Figure 27E). For the response to 

IFN2 and CsA stimulation a similar trend as for HIV-1 LV infection was observed. Figure 

27F shows significant changes in the fold IFN-induced infection block compared to THP-1 and 

CypA -/- cell lines. As seen before, the fold changes of infection were much higher than 

observed for HIV-1 LV infection (compare Figure 27C and F). Knockout of RIG-I in CypA -/- 

cells significantly reduced the ability of IFN2, to block NL4.3 infection compared to CypA 

single knockout cells. In CypA -/- cells a 14.7-fold block was observed whereas CypA-RIG-I 

double knockouts showed a 8.3-fold reduction. Interestingly, CsA treatment of the double 

knockout cells had almost no effect on the infection (Figure 27E and G). In CypA -/- cells CsA 

rescued infection from the type I IFN-induced block by 2.6-fold, indicating an additional IFN-

induced target for CsA. As the effect is diminished by knocking out RIG-I in CypA -/- cells, 

this candidate could be involved in the CsA-induced increase of HIV-1 infection in type I IFN-

stimulated THP-1 cells. 
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8.2.3 Knockout of MDA5 reverses CypA -/- effects on HIV-1 infection 

The second protein of interest was MDA5. Together with RIG-I it senses viral RNA in the 

cytoplasm and initiates the signaling cascade to produce IFNs and induce ISG expression. The 

CETSA experiments revealed Tm shifts of -1.00°C and -1.06 °C in the two experiments, 

respectively (Table 5). The calculated melting curves shown in Figure 26B revealed a clear 

destabilizing effect of CsA on MDA5. The generation of CRISPR/Cas9 knockouts in THP-1 

based CypA -/- cells was successful, as was judged in Western blot analysis shown in Figure 

28A. As for RIG-I knockout cells, A549 cell lines served as a reference for MDA5 knockout in 

immunoblotting (Figure 27A and Figure 28A). These cells were previously characterized for 

MDA5 knockout (unpublished work by the group of Marco Binder3) and indicate that the lower 

band observed in the anti-MDA5 blot is the MDA5 corresponding band. As can be seen for 

THP-1 and CypA -/- control cells, MDA5 expression was observed in THP-1 cells, however to 

a lesser extent than observed in A549 cells. Based on CypA -/- THP-1 cells a MDA5 double-

knockout was created. As can be seen in Figure 28A not all single cell clones had the knockout 

phenotype, but some CypA-MDA5 -/- cell lines could be created (Figure 28A).   

Infection assays were performed with several MDA5 knockout clones to control for clonal 

effects (data not shown). For the following infection assays, one representative double knockout 

cell line is shown (Figure 28 B-G). In HIV-1 LV infection a reduced infection of CypA-MDA5 

double knockout cells compared to the two reference cell lines could be observed (15.1 % 

infection), as shown in Figure 28B. Infection of CypA -/- resulted in 36 % infection and THP-

1 parental cells showed 23.6 % infection. Additional knockout of MDA5 reverses this effect 

and infectivity was lower than in THP-1 wt cells. Infection of IFN2 and CsA stimulated cells 

was also lower compared to CypA single knockouts or THP-1 parental cells (Figure 28C and 

D, respectively). Infection after IFN2 pre-stimulation was almost completely lost in double 

knockout cells resulting in a 12.9-fold block to HIV-1 LV infection, indicating strong effects 

of MDA5 in the type I IFN response to HIV-1 infection. This magnitude of infection block by 

IFN2 was only observed in HIV-1 NL4.3 infection in this study. The effects of CsA were also 

enhanced in the double knockout cell line. CypA-MDA5 -/- cells showed a rescue of 4.1-fold 

(see Figure 28D) whereas CypA single knockouts only showed a rescue of HIV-1 LV infection 

of 1.4-fold. This suggests an inhibiting effect of CsA on MDA5, which might be direct or 

indirect.   
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Figure 28: CypA-MDA5 -/- show reduced HIV-1 infectivity, a strong response to IFN and hypersensitivity to the rescue 

of this block by CsA. 

A: THP-1 wt, CypA -/- and CypA and MDA5 double knockout (CypA-MDA5 -/-) cell lines were analyzed by 

Western blot for CypA, MDA5 and -actin expression. A569 parental cells and MDA5 -/- in these cells served 

as controls. B: THP-1 wt, CypA -/- or CypA-MDA5 -/- cells were treated or not with 500 U/ml IFN2 for 24 h. 

Prior to infection with VSV-G pseudotyped HIV-1 8.91 LV for 48 h, cells were treated with 2.5 µM CsA. 

Percentage of GFP positive cells was determined by flow cytometry. Bars indicate the average infectivity 

determined from three independent experiments and error bars indicate standard deviation. Unpaired two -tailed 

t test was performed (*, p< 0.05; ***, p< 0.001). C: Calculated fold changes of IFN2 induced block to HIV-1 

LV infection. Bars indicate the average fold change and error bars  indicate standard deviation. Unpaired two-

tailed t test was performed (***, p< 0.001). D: Calculated fold changes of HIV-1 LV infection levels upon CsA 

treatment compared to IFN stimulated cells. Bars indicate the average fold change and error bars indicate 

standard deviation. Unpaired two-tailed t test was performed (***, p< 0.001). E: THP-1 wt cells or CypA-

MDA5 -/- cells were treated or not with 500 U/ml IFN2. 24 h post IFN stimulation cells were treated with 2.5 

µM CsA. At the time of CsA addition, cells were infected with VSV -G pseudotyped NL4.3 for 48 h.  Percentage 

of GFP positive cells was determined by flow cytometry. Bars indicate the average infectivity determined from 

independent experiments and error bars indicate standard deviation . Unpaired two-tailed t test was performed 

(**, p< 0.01; ***, p< 0.001; ns, not significant). F: Calculated fold changes of IFN2 induced block to NL4.3 

infection. Bars indicate the average fold change and error bars indicate standard deviation. Unpaired two -tailed 

t test was performed (***, p< 0.001). G: Calculated fold changes of NL4.3 infection levels upon CsA treatment 

compared to IFN stimulated cells. Bars indicate the average fold change and error bars indicate standard 

deviation. Unpaired two-tailed t test was performed (**, p< 0.01; ***, p< 0.001). 
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Surprisingly, these effects were reversed in HIV-1 NL4.3 infection, pointing to a possible 

involvement of HIV-1 accessory proteins. A reduction of infection was observed in CypA-

MDA5 -/- cells compared to CypA -/- cells (14.3 % compared to 22.3 %) but no difference in 

infection to THP-1 wt cells was found (12.6 %; Figure 28E). Interestingly, the type I IFN-

induced block to infection was only 4.7-fold for CypA-MDA5 double knockout cells, which 

was significantly lower than the block observed in parental THP-1 cells or CypA -/- cells (6.6-

fold and 14.7-fold, respectively; Figure 29F). Additionally, no rescue of this type I IFN-induced 

block to infection was observed upon CsA treatment in CypA-MDA5 -/- cells whereas CsA 

treatment of THP-1 parental cells reduced HIV-1 NL4.3 infection further. As CsA has no effect 

on IFN2 treated CypA-MDA5 double knockout cells, MDA5 is a possible candidate for a type 

I IFN-induced CsA affected protein involved in HIV-1 infection. However, CypA-MDA5 -/- 

cells were less sensitive to the type I IFN-mediated HIV-1 infection block and effects of CsA 

could be masked due to the smaller IFN-induced block. Nonetheless, MDA5 is an interesting 

candidate for further analysis. MDA5 effects could be investigated more thoroughly with 

MDA5 single knockout cells, which were already generated but remain to be screened. 

8.2.4 CypA-MAVS -/- and CypA-IRF3 -/- cells show hypersensitivity to type I IFN-

induced block of HIV-1infection 

The central player of the RIG-I signaling pathway is MAVS, an antiviral signaling molecule 

located at the mitochondria. MAVS serves as a scaffold protein which links all involved players 

together. Dependent on which downstream factors are recruited, either apoptosis, IRF3-

mediated or NFB-mediated signaling can be induced. As downstream signaling is activated 

independent of the viral RNA sensing factor involved, MAVS serves as the bottleneck of this 

pathway making it an ideal candidate to investigate.   

In the CETSA experiments a clear influence of CsA on MAVS thermal stability was observed. 

As shown in Figure 23B and Figure 26C major Tm shifts were observed for MAVS (4.44°C 

and 8.42°C in the two experiments, respectively, see also Table 5). However, a few more data 

points at higher temperatures would be ideal for a more substantiated statement as there is a 

relative high protein abundance left at 67°C. Nevertheless, CypA -/- based CRISPR/Cas9 

CypA-MAVS double knockout cells were created. In Figure 29A the Western blot analysis of 

the generated knockout cell lines is shown. A confirmed knockout in A549 cells served as 

MAVS knockout control (lane 2 and wt cells in lane 11, a kind gift from Binder lab4; [329]). 

CypA expression was observed for THP-1 wt cells and A549 based cells, but not in CypA single 
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knockout or CypA-MAVS -/- double knockout cells (Figure 29A). Parental THP-1 and CypA 

-/- cells as well as A549 cell served as controls for MAVS expression. As can be seen in Figure 

29A several single cell clones with a CypA-MAVS -/- could be generated. Thus, the following 

infection assays were conducted with one representative single cell clone. For HIV-1 LV 

infection (Figure 29B), CypA-MAVS double knockout cells showed 32.7 % infection while 

only 23.6 % of THP-1 parental cells were infected. However, the infection of CypA -/- cells 

was not fully matched (36 % infection). The same was observed for HIV-1 NL4.3 infection 

(Figure 29E). Additional knockout of MAVS in THP-1 based CypA -/- cells enhanced the 

capacity of IFN2 to block HIV-1 LV infection. HIV-1 LV infection was reduced 7.5-fold by 

IFN2 treatment (Figure 29C), which is significantly more than observed for THP-1 parental 

or CypA single knockout cells (1.8-fold and 2.3-fold, respectively). This is in line with the 

involvement of MAVS in type I IFN-mediated signaling. In response to CsA treatment, a high 

rescue ability of CsA for the double knockouts was observed. CsA rescued HIV-1 LV infection 

from the IFN2 induced infection block in CypA-MAVS double knockout cells by 2.6-fold. 

This is significantly more than what was observed for THP-1 wt or CypA -/- cells (1.7-fold and 

1.4-fold, respectively).  

As observed before, the phenotype was different upon HIV-1 NL4.3 infection. Infection of 

CypA-MAVS double knockout cells was not significantly changed upon CsA stimulation 

(Figure 29E). Unlike what was observed for CypA-MDA5 double knockout cells (Figure 28E 

and F), the IFN2-induced block for CypA-MAVS double knockout cells was as high as 

observed for CypA single knockout cells (Figure 28F). Therefore, it is unlikely, that effects of 

CsA were masked. No further reduction of infection was observed upon CsA treatment, but a 

rescue of the IFN-induced block of HIV-1 NL4.3 infection as seen for CypA single knockout 

cells was also not observed (Figure 29G). This further punctuates the importance of the RIG-I 

signaling pathway on HIV-1 infection and a possible role in the CsA-induced increase of HIV-

1 infection in the presence of a type I IFN-induced early block to infection.  

Another protein involved in the RIG-I signaling pathway is IRF3, an IFN-induced transcription 

factor. IRF3 is activated upon MAVS and TRADD signaling. Activated IRF3 induces ISG 

expression and facilitates an antiviral state after infection of various viruses (reviewed in 

Mogensen 2019). CRISPR/Cas9 IRF3 double knockouts based on CypA -/- cells were obtained 

as described in section 7.3.3. In Figure 30A the Western blot analysis of CypA-IRF3 -/- cells is 

shown. A549 and A549 IRF3 -/- served as wt and knockout controls and were obtained from 

the lab of Marco Binder5 (unpublished). THP-1 wt and CypA -/- cells served as controls for 
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CypA and IRF3 expression, respectively. As can be seen in lanes 4 to 9 several different single 

cell clones could be obtained. Infection assays were performed with all of them and the results 

of one representative cell line is shown in Figure 30B - G. HIV-1 LV infection of CypA-IRF3 

double knockout cells showed increased infection compared to THP-1 wt cells (35.8 % and 

23.6 %, respectively; Figure 30B), but no difference to CypA single knockout cells could be 

observed (Figure 30B).  

 

Figure 29: CypA-MAVS knockout (CypA-MAVS -/-) cells are hypersensitive to the type I IFN-induced block of HIV-

1infection. 

A: THP-1 wt, CypA -/- and THP-1 based CypA and MAVS double knockout (CypA-MAVS -/-) cell lines were 

analyzed by Western blot for CypA, MAVS and -actin expression. A569 parental cells and MAVS -/- in these 

cells served as controls. B: THP-1 wt, CypA -/- or CypA-MAVS -/- cells were treated or not with 500 U/ml 

IFN2 for 24 h. Prior to infection with VSV-G pseudotyped HIV-1 8.91 LV for 48 h, cells were treated with 

2.5 µM CsA. Percentage of GFP positive cells was determined by flow cytometry. Bars indicate the average 

infectivity determined from two independent experiments and error bars represent standard deviation. Unpaired 

two-tailed t test was performed (*, p< 0.05; ***, p< 0.001). C: Calculated fold changes of IFN2-induced block 
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to HIV-1 LV infection. Bars indicate the average fold change and error bars indicate standard deviation. 

Unpaired two-tailed t test was performed (***, p< 0.001). D: Calculated fold changes of HIV-1 LV infection 

levels upon CsA treatment compared to IFN stimulated cells. Bars indicate the average fold change and error 

bars indicate standard deviation. Unpaired two-tailed t test was performed (***, p< 0.001). E: THP-1 wt cells 

or CypA-MAVS -/- cells were treated or not with 500 U/ml IFN2. 24 h post IFN stimulation cells were treated 

with 2.5 µM CsA. At the time of CsA addition, cells were infected with VSV -G pseudotyped NL4.3 for 48 h. 

Percentage of GFP positive cells was determined by flow cytometry. Bars indicate the average infectivity 

determined from three independent experiments and error bars indicate standard deviation . Unpaired two-tailed 

t test was performed (**, p< 0.01; ***, p< 0.001; ns, not significant). F: Calculated fold changes of IFN2 

induced block to NL4.3 infection. Bars indicate the average fold change and error bars indicate standard 

deviation. Unpaired two-tailed t test was performed (***, p< 0.001; ns, not significant). G: Calculated fold 

changes of NL4.3 infection levels upon CsA treatment compared to IFN stimulated cells. Bars indicate the 

average fold change and error bars indicate standard deviation. Unpaired two -tailed t test was performed (*, p< 

0.05; ***, p< 0.001). 

Stimulation with IFN2 prior to HIV-1 LV infection resulted in a 7.3-fold infection block, 

which is significantly higher than the block observed for the two control cell lines (Figure 30C, 

1.8-fold for THP-1 wt and 2.3-fold for CypA -/- cells). The increased effect of the stimulating 

drug on the double knockout cells compared to the two control cell lines could also be observed 

for CsA treatment. In THP-1 parental cells and CypA single knockout cells a rescue of a type I 

IFN-induced block to HIV-1 infection of 1.7- and 1.4-fold, respectively was observed. In 

CypA-IRF3 double knockout cells CsA treatment resulted in a 2.9-fold higher infection than 

monitored for type I IFN treated cells. The obtained fold changes are alike the ones observed 

for CypA-MAVS -/-. This might indicate that the phenotype observed for MAVS and IRF3 

knockouts masks the actual searched for target, as it is a protein acting downstream of both. 

NL4.3 GFP infection of CypA-IRF3 double knockout cells was more than doubled compared 

to THP-1 parental cells. THP-1 cells showed 12.6 % infection whereas CypA-IRF3 double 

knockout cells showed 28.7 % infection, which is also higher than what was shown for CypA -

/- cells (22.3 % infection, Figure 30E). Double knockout cells also showed an enhanced 

response to IFN2 stimulation compared to THP-1 wt cells (10.1-fold compared to 6.6-fold), 

however a 14.7-fold reduction of infection as observed for CypA single knockout cells could 

not be shown (Figure 30F). The response to CsA stimulation was similar to what was observed 

for other RIG-I signaling pathway knockout cell lines. Indeed, no reduction or enhancement of 

infection could be observed for the double knockout cells as observed for THP-1 parental cells 

or CypA single knockout cells, respectively (Figure 30G). However, a 10.1-fold type I IFN 

block to HIV-1 NL4.3 infection should be sufficient, that CsA effects are not masked by a minor 

IFN-induced block.  

These results confirm the importance of the RIG-I signaling pathway for the innate immune 

response against HIV-1. The increased infection rates in absence of IRF3 indicate a direct 

involvement of IRF3 in restricting HIV-1.  
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Figure 30: CypA-IRF3 knockout cells (CypA-IRF3 -/-) show hypersensitivity to type I IFN-induced block of HIV-

1infection and the rescue of this block by CsA. 

A: THP-1 wt, CypA -/- and CypA and IRF3 double knockout (CypA-IRF3 -/-) cell lines were analyzed by 

Western blot for CypA, IRF3 and -actin expression. A569 parental cells and an IRF3 -/- in these cells served 

as controls. B: THP-1 wt, CypA -/- or CypA-IRF3 -/- cells were treated or not with 500 U/ml IFN2. 24 h post 

IFN stimulation cells were treated with 2.5 µM CsA. At the time of CsA addition, cells were infected with VSV -

G pseudotyped HIV-1 LV for 48 h. Percentage of GFP positive cells was determined by flow cytometry. Bars 

indicate the average infectivity determined from three independent experiments and error bars indicate standard 

deviation. Unpaired two-tailed t test was performed (*, p< 0.05; ***, p< 0.001). C: Calculated fold changes of 

IFN2 induced block to HIV-1 LV infection. Bars indicate the average fold change and error bar s indicate 

standard deviation. Unpaired two-tailed t test was performed (***, p< 0.001). D: Calculated fold changes of 

HIV-1 LV infection levels upon CsA treatment compared to IFN stimulated cells. Bars indicate the average fold 

change and error bars indicate standard deviation. Unpaired two-tailed t test was performed (***, p< 0.001). E: 

THP-1 wt cells or CypA-IRF3 -/- cells were treated or not with 500 U/ml IFN2. 24 h post IFN stimulation 

cells were treated with 2.5 µM CsA. At the time of CsA addition, cells were infected with VSV-G pseudotyped 

NL4.3 for 48 h. Percentage of GFP positive cells was determined by flow cytometry. Bars indicate the average 

infectivity determined from three independent experiments and error bars indicate standard dev iation. Unpaired 

two-tailed t test was performed (**, p< 0.01; ***, p< 0.001; ns, not significant). F: Calculated fold changes of 

IFN2 induced block to NL4.3 infection. Bars indicate the average fold change and error bars indicate standard 

deviation. Unpaired two-tailed t test was performed (***, p< 0.001). G: Calculated fold changes of NL4.3 

infection levels upon CsA treatment compared to IFN stimulated cells.  Bars indicate the average fold change 

and error bars indicate standard deviation. Unpaired two -tailed t test was performed (**, p< 0.01; ***, p< 

0.001). 
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Interestingly, a higher IFN-induced block to infection was observed. As IRF3 induces type I 

IFN production, the maintenance of the IFN-induced antiviral state should be diminished or at 

least reduced. However, the cell has various ways to induce IFN production, which could 

explain the stronger response to IFN2 

8.2.5 CypA-TRADD double knockout shows increased hypersensitivity to type I IFN-

induced block of HIV-1 infection.  

The last protein investigated in relation to this study is another adaptor protein of the RIG-I 

signaling pathway. TRADD is directly recruited by MAVS and facilitates the binding of several 

proteins to the MAVS-induced signaling platform and therefore facilitates downstream 

signaling of the RIG-I signaling pathway. In the CETSA experiments a clear destabilization of 

TRADD upon CsA treatment was observed. As listed in Table 5 Tm shifts of -3.17°C and -

1.67°C were observed in the two experiments, respectively. The corresponding calculated 

melting curves are shown in Figure 26E. TRADD CRISPR/Cas9 knockout cells were generated. 

Unfortunately, no other TRADD knockout cell line was available as a control for Western blot 

analysis. Therefore, only THP-1 wt and CypA -/- cells served as controls for immunoblotting 

as can be seen in Figure 31A. The used gRNA against human TRADD targets the DNA 

sequence corresponding to amino acids 28 to 35 and the TRADD antibody used was generated 

with a C-terminal protein fragment. Therefore, a destroyed epitope is unlikely responsible for 

the absent protein bands for TRADD in the generated knockout clone. TRADD expression 

could not be detected for the CypA-TRADD double cell line but was observed in THP-1 and 

CypA -/- cells.   

Next the knockout cell lines were infected with HIV-1 LV or full-length HIV-1 NL4.3, 

respectively. For HIV-1 LV infection lower infection than for wt cells was observed (Figure 

31B, 18.7 % for the double knockout compared to 36 % for CypA -/- cells) and infection of 

NL4.3 in CypA-TRADD double knockout cells was in the range of what was observed for wt 

cells (13.3 % and 12.6 %, respectively; Figure 31E). Interestingly, infection of both used virus 

variants was almost completely prohibited upon IFN2 treatment in the double knockout cells 

(0.9 % and 0.4 % for HIV-1 LV and HIV-1 NL4.3, respectively). This is also represented in the 

fold block induced by IFN2 to HIV-1 infection. In Figure 31C and F the calculated fold 

changes in infection upon type I IFN treatment in response to HIV-1 LV and NL4.3 infection 

are shown, respectively. Both viruses showed over 20-fold reduced infection upon IFN2 

stimulation, an effect observed in this magnitude only for CypA-CypE -/- cells for NL4.3 

infection (Figure 21F). For both virus variants, infection increased upon CsA treatment.  
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Figure 31: CypA -TRADD knockout cells shows strong hypersensitivity to the type I IFN-induced block of HIV-

1infection and an enhanced rescue from this block by CsA. 

A: THP-1 wt, CypA -/- and CypA and TRADD double knockout (CypA-TRADD -/-) cell lines were analyzed 

by Western blot for CypA, TRADD and -actin expression. B: THP-1 wt, CypA -/- or CypA-TRADD -/- cells 

were treated or not with 500 U/ml IFN2. 24 h post IFN stimulation cells were treated with 2.5 µM CsA. At the 

time of CsA addition, cells were infected with VSV-G pseudotyped HIV-1 LV for 48 h. Percentage of GFP 

positive cells was determined by flow cytometry. Bars indicate the average infectivity determined from three 

independent experiments and error bars indicate standard deviation. Unpaired two-tailed t test was performed 

(*, p< 0.05; ***, p< 0.001; ns, not significant). C: Calculated fold changes of IFN2 induced block to HIV-1 

LV infection. Bars indicate the average fold change and error bars indicate standard deviation. Unpaired two -

tailed t test was performed (***, p< 0.001). D: Calculated fold changes of HIV-1 LV infection levels upon CsA 

treatment compared to IFN stimulated cel ls. Bars indicate the average fold change and error bars indicate 

standard deviation. Unpaired two-tailed t test was performed (***, p< 0.001). E: THP-1 wt cells or CypA-

TRADD -/- cells were treated or not with 500 U/ml IFN2. 24 h post IFN stimulation cells were treated with 

2.5 µM CsA. At the time of CsA addition, cells were infected with VSV -G pseudotyped NL4.3 for 48 h. 

Percentage of GFP positive cells was determined by flow cytometry. Bars indicate the average infectivity 

determined from at least three independent experiments and error bars indicate standard deviation . Unpaired 

two-tailed t test was performed (**, p< 0.01; ***, p< 0.001; ns, not significant). F: Calculated fold changes of 

IFN2 induced block to NL4.3 infection. Bars indicate the average fold change and error bars indicate standard 

deviation. Unpaired two-tailed t test was performed (***, p< 0.001). G: Calculated fold changes of NL4.3 

infection levels upon CsA treatment compared to IFN stimulated cells.  Bars indicate the average fold change 

and error bars indicate standard deviation. Unpaired two-tailed t test was performed (***, p< 0.001; ns, not 

significant). 
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Thus, CsA rescued HIV-1 infection in CypA-TRADD double knockout cells from a type I IFN-

induced block. This effect was more pronounced in HIV-1 LV infection (4.6-fold compared to 

2.3-fold for NL4.3 infection, see Figure 31D and G). This demonstrates, that TRADD is most 

likely not the CsA target involved in the phenotype observed for CypA -/- cells.   

Table 6: Overview of all observed phenotypes discussed above for CypA- RIG-I signaling pathway double knockout 

cell lines.   

Summary of all observed effects in the above discussed CRISPR/Cas knockout cells. Listed are % GFP positive cells for the 

indicated condition of HIV-1 LV and HIV-1 NL4.3 infection or the calculated fold changes in response to IFN2 and CsA. 

Knockout indicates, which protein is knocked out. THP-1 are parental cells, CypA is a single CypA -/- in THP-1 cells. *= all 

cells are THP-1 double knockout cells with CypA -/-. - = infection without any stimulation; IFN = infection with previous 

IFN2 stimulation (see 7.3.4); IFN + CsA = infection with IFN2 and CsA stimulation (see 7.3.4); Fold block = calculated 

fold block to infection upon IFN2 treatment; Fold rescue = calculated change of infection between IFN2 and IFN2-CsA 

stimulated cells. Bold numbers indicate an increase compared to THP-1 parental cells. 

Knockout HIV-1 LV infection HIV-1 NL4.3 infection 

 - F IFN 

+ 

CsA 

Fold 

block 

Fold 

rescue 

- F IFN 

+ 

CsA 

Fold 

block 

Fold 

rescue 

THP-1 23.6 11.8 16.5 1.8 1.7 12.6 1.7 0.8 6.6 0.5 

CypA 36.0 15.6 22.3 2.3 1.4 22.3 1.5 3.8 14.7 2.6 

RIG-I* 31.5 14.8 23.6 2.1 1.6 23.6 2.9 3.1 8.3 1.1 

MDA5* 15.1 1.2 4.9 12.9 4.1 14.3 4.7 4.3 3.1 0.9 

MAVS* 32.7 4.5 11.0 7.5 2.6 16.7 1.3 1.5 13.2 1.2 

IRF3* 35.8 5.0 14.2 7.3 2.9 28.7 2.7 2.5 10.1 1.0 

TRADD* 18.7 0.9 4.0 22.2 4.6 13.3 0.4 0.9 25.9 2.3 

Taken together, a lot of different knockout cell lines could be generated within this study. These 

cell lines are excellent tools to study various functions of cellular proteins involved in innate 

immune signaling pathways and the involvement of the targeted proteins not only in viral 

infection but every disease related function. Double knockouts of Cyps can be used to study 

redundancy amongst Cyps and might shed some light on cellular functions of specific Cyps. 

The effects of targeted cyclophilins on HIV-1 infection are summarized in Table 1. Most Cyps 

increased the type I IFN-induced block to HIV-1 infection, thus modulate immunity against 

HIV-1. However, some like CypA or CypE are more relevant to HIV-1 infection than others. 

Interestingly, a CsA-sensitive factor aside from CypA is involved in modulating the type I IFN-

induced responses to HIV-1 infection. Further knockouts of RIG-I signaling pathway proteins 

showed an increased IFN2 block compared to parental cells. An overview of the observed 

phenotypes is shown in Table 6. As the CETSA experiments identified RIG-I signaling proteins 

as possible CsA-sensitive factors, it was not surprising, that knockout of these proteins 
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influenced the responses to CsA stimulation in an IFN2 dependent manner. The double 

knockout cell lines provided an interesting insight into crosstalk between proteins and 

pathways, but further experiments are necessary to provide a concluding statement regarding 

their effects in HIV-1 infection. 
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9 Discussion and perspective 

In the early nineties CypA was found to be incorporated into HIV-1 particles [141]. Since then, 

extensive research regarding the role and function of CypA in HIV-1 infection was conducted. 

Several studies found that despite CypA is incorporated into HIV-1 virions during virus 

production, target cell CypA is crucial for viral infection [188], [189]. However, cell type 

specific differences were observed and evidence that CypA influences HIV-1 infection at 

multiple stages was found. Interestingly, up until now, the involvement of other cyclophilins 

on HIV-1 infection was investigated only briefly. With this study we provide evidence, that 

besides CypA at least one other CsA sensitive factor is involved in early post-entry events 

during HIV-1 infection. With a CRISPR/Cas9 based approach different members of this protein 

family were investigated as possible HIV-1 host factors and factors involved in innate antiviral 

immune pathways. Furthermore, an unbiased proteomics approach was used to identify novel 

IFN-induced CsA-sensitive factors. Besides possible candidates involved in the IFN-induced 

block and the CsA-induced increase of HIV-1 infection under IFN-stimulated conditions, many 

other cellular factors were identified for the first time to change in protein thermo-stability in 

the presence of CsA, indicating possible new direct or indirect targets of CsA.  

9.1 CypA -/- show hypersensitivity to IFN during HIV-1 infection  

I have shown that a homozygous knockout of CypA in THP-1 cells slightly elevates HIV-1 

infection in THP-1 cells (Figure 10). These effects are independent of general CRISPR/Cas9 

effects, as CRISPR control cells do not show an altered response to HIV-1 infection (Figure 

11). Many studies observed stabilizing effects of CypA on HIV-1 CA [194], [195]. In CD4+ T 

cells CypA binding to the CA core prevents premature uncoating, circumvents innate sensing 

of retroviral DNA, and thus ensures normal infection levels [197]. Furthermore, a study on a 

South African patient cohort revealed upregulation of CypA following HIV-1 infection. This 

was accompanied by enhanced viral replication suggesting an involvement of CypA in HIV-1 

uncoating [331]. Knockout of CypA in THP-1 cells did not reduce HIV-1 infection upon CypA 

depletion [209]. The differences in infection might be explained by cell type specific differences 

and the amount of virus used. It was proposed, that knockout of CypA only reduced infection 

levels at low viral loads [189], hence differences in viral loads used in the independent studies 

may account for the different results.   

Many groups have discovered the potency of type I IFNs to suppress viral infections, amongst 

other viruses also HIV-1. IFN pretreatment could block HIV-1 infection during reverse 
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transcription in CD4+ T-cells and MDMs [72]. Furthermore, reduction of viral load was 

observed in clinical trials during IFN treatment. Unfortunately, HIV-1 RNA rebound after 

several weeks indicated an escape or desensitization to IFN-induced antiviral effectors [332]. 

Recent studies suggest that IFN may induce two early blocks to HIV-1 infection, the first one 

at the level of reverse transcription and a second one at the level of nuclear import. The first 

block is sensitive to changes in CA [72], the second one is most likely dependent on MX2 [98]. 

Bulli and colleagues observed an increased MX2-independent sensitivity of HIV-1 to type-I 

IFN treatment in CypA -/- cells [209]. Here I show that IFN2 stimulation of CypA -/- cells 

reduced HIV-1 infectivity by more than 8-fold compared to wt cells (Figure 10). This 

magnitude is similar to published data and suggests a protective role of CypA against IFN-

induced cellular restriction factors during reverse transcription also proposed by the previous 

study [209]. This might be due to alterations in the capsid structure upon CypA loss and may 

provoke or alter interactions with IFN-induced antiviral effectors. Preventing these stabilizing 

effects of CypA by introducing the CypA-binding deficient CA mutant P90A also increased 

sensitivity of HIV-1 to the IFN-induced infection block. Furthermore, depletion of CypA had 

no additional effects on HIV-1 P90A infection confirming CypA as the responsible factor [209].  

Additionally, CypA binding to HIV-1 CA can be prevented by CsA, a cyclophilin inhibitor. 

Here I have shown, that without IFN2 stimulation, CsA treatment had no effect on any tested 

cell line (Figure 11). However, upon IFN2 treatment, HIV-1 infection could be increased by 

CsA treatment in CypA knockout cells at least partially rescuing HIV-1 infection from the 

IFN2-induced infection block (Figure 10). This is consistent with previous observations 

showing a rescue of HIV-1 P90A infection [209]. An impact of the immunosuppressive 

function of CsA was excluded, as a non-immunosuppressive analogue of CsA, Debio-025, 

showed the same results (Figure 11). These data suggest that an additional host cell cyclophilin 

other than CypA may directly or indirectly be involved in the type I IFN-induced block to early 

HIV-1 infection.  

Interestingly, the two viral constructs used in the infection assays showed varying results. For 

infection assays a HIV-1 lentiviral vector lacking the accessory proteins Vpr, Vpu, Vif and Nef 

and the full-length HIV-1 laboratory strain NL4.3 were pseudotyped with VSV-G. Without 

pseudotyping, no detectable infection was observed due to low expression levels of CD4 and 

CCR5 in the cell line used (data not shown). Therefore, switching to an R5 tropic virus strain 

failed as well. Although the route of entry was altered by pseudotyping, previous results suggest 

effects of CypA or other CsA targets in the cytosol after cell entry up until nuclear import [72], 

[98], thus possibly independent of the route of entry. Differences in the viral constructs used 
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may be explained by 23-point mutations in the HIV-1 GagPol sequence. Some of these 

mutations are silent. However, three mutations are found in the CA coding region. Given that 

two of them are silent, an amino acid substitution on position 83 from Leucin in NL4.3 to Valin 

in 8.91 LV may explain the differences observed between the investigated virus strains. HIV-1 

CA is a crucial component for effective viral infection and restriction of HIV-1 by host factors. 

CA L83 is in close proximity to the CypA-binding loop. Fischer et al. identified the L83V 

change as causative for differences in HIV-1 NL4.3 and HIV-1 Lai infection differences and 

apparently residue 83 is crucial for the modulation of TRIM5 restriction [333], [334]. Human 

TRIM5 was reported to restrict HIV-1 infection dependent on CypA levels [111], [335]. CypA 

may shield the HIV-1 capsid from human TRIM5 and in CypA depleted cells infection is 

blocked at a step prior to reverse transcription [111]. However, TRIM5 directly is not likely 

to be affected by CsA, as it does not show a Tm difference in the CETSA experiment performed 

within this study (Table 4). Whether the differences between the used virus variants are due to 

the L83V amino acid change or the HIV-1 accessory proteins are causative for the altered 

behavior of the used virus variants may be solved by creating CA identical strains of the used 

viruses and/or constructs with added accessory proteins. However, this was beyond the scope 

of this study. 

9.2 Impact of other Cyclophilins 

In human cells at least 17 different Cyps can be expressed. For some Cyps, interaction with 

HIV-1 proteins has been suggested like CypB [182], CypE and CypF [256] as well as for CypH 

[336]. Additionally, genome wide screens discovered a high number of Cyp related 

pseudogenes [171], [337]. Some of these pseudogenes have intact open reading frames and may 

be expressed under certain conditions [171], [338]. High sequence similarity amongst human 

Cyp proteins provided an additional challenge. For this study I used a CRISPR/Cas9 based 

approach to individually target different Cyps in THP-1 cells. THP-1 cells were chosen as a 

surrogate model for monocyte/macrophage infection of human cells. Unfortunately, CypF and 

CypG knockouts could not be verified due to the lack of suitable antibodies to detect protein 

expression. Furthermore, overexpression and knockout of PPIAL4, a CypA pseudogene, 

remained unsuccessful (data not shown). For the cyclophilins B, C, D, E and H single cell 

knockout clones could be generated although confirming the genomic phenotype by sequencing 

proved to be difficult for some of them. For some Cyps gene amplification was impossible, 

despite several attempts. For others, sequencing results remained ambiguous, as several 

overlaying sequencing traces could be detected (Figure 9; Figure 14 ;Figure 16; Figure 18). The 
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parental THP-1 cell line has diploid chromosomes, thus polyploidy effects can be ruled out 

[339]. However, sequence variations between the two alleles and pseudogenes have not been 

considered during analysis. Additionally, heterozygous CRISPR/Cas9 knockouts are quite 

common. The CRISPR/Cas9 approach used in this study generated sequence-specific double 

strand breaks in the host genome, which are repaired by nonhomologous end joining. This is an 

error-prone process leading to diverging repairs for the two alleles [340]. For all experiments 

performed within this study, eliminating functional protein expression of the respective proteins 

was crucial. This was achieved independent of a homozygous or heterozygous knockout as 

shown for every cell line used by Western blotting.  

Systematic infection of Cyp knockout cell lines revealed variable effects not only on infectivity 

and sensitivity to IFN but also on the ability of CsA to increase HIV-1 infection from the IFN-

induced block. Interestingly, the observed effects were dependent on the viral construct used 

(e.g. Figure 10) as discussed above. Here I have shown, that despite slight changes in HIV-1 

infection, type I IFN and CsA had no influence on infection of CypB knockout cells (Figure 

12). However, in the past decades, CypB was reported in various studies to impact HIV-1 

infection. CypB can bind to HIV-1 CA [182] and increased nuclear CypB amounts were 

detected in HIV-1 infected cells [341]. DeBoer and colleagues found that increased CypB but 

not CypA expression enhanced HIV-1 infection [211]. Furthermore, it was found that CsA 

treatment reduces the PPIase activity of CypB and promotes CypB secretion [228], [342]. This 

agrees with our finding, that CsA stimulation affects the thermal stability of CypB (Table 5 and 

Figure 24). This is reasonable, as CsA is a general PPIase inhibitor and CypB shares high 

sequence similarity with CypA apart from N- and C-terminal flanking sequences containing an 

endoplasmic reticulum signal sequence and an nuclear translocation signal [342], [343]. These 

findings suggest a role of CypB in HIV-1 biology independent of CypA. It was suggested, that 

CypB increases nuclear import of HIV-1 DNA, as the N-terminal region containing the nuclear 

localization sequence is crucial for its effects on HIV-1 infection [211], [326]. Using the newly 

created CypA-CypB double knockout cell line, additive effects of CypA and CypB as well as 

redundancy amongst these Cyps were investigated. For both viral constructs used (lentiviral 

vector as well as full-length NL4.3 HIV-1 lab strain), no changes in infection compared to 

parental THP-1 cells or CRISPR/Cas9 control cells could be observed, whereas for single 

knockout cells slight differences were observed (Figure 20). In response to type I IFN and CsA, 

double knockout cells behaved like CypA single knockout cells. This may agree with the 

finding, that CypB may have a CypA independent role on HIV-1 nuclear import [211]. These 

effects are most likely only dependent on the nuclear translocation signal of CypB, thus 
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independent of the CsA binding site. To substantiate these observations, further experiments 

regarding the impact of CypA, CypB and knockout of both proteins on reverse transcription 

and nuclear import are necessary. One could use reverse transcription and nuclear import 

inhibitors as well as 2-LTR circle quantification experiments, a readout for sufficient nuclear 

import. However, the data presented here provide evidence, that CypB can be excluded as the 

factor responsible for the CsA-induced HIV-1 infection increase in CypA knockout cells, as in 

double knockout cells HIV-1 infection is still increased by CsA from the IFN-induced block to 

infection (Figure 20).   

For the cyclophilin family member CypC no direct interaction with HIV-1 is known. CypC is 

found in the cytosol and a specific function for CypC in ER-redox homeostasis has been 

proposed [236], [238]. Furthermore, CypC was suggested to modulate immunity by degrading 

MHC I [239] and CypC was shown to be inhibited by CsA and to form the CsA-dependent 

complex with Calcineurin [236], [237]. I could confirm this by the Tm shift observed for CypC 

upon CsA stimulation in the CETSA experiment, although CypC could only be detected in one 

of the two datasets analyzed (Table 5). Therefore, CypC was included within this study as the 

potential CsA target responsible for CsA effects observed in CypA knockout cells after type I 

IFN stimulation. Knockout of CypC in THP-1 cells was successfully accomplished although 

several sequencing attempts of the obtained knockout clones failed, likely for the reasons 

discussed above (Figure 13). A reduction in HIV-1 LV infection by nearly 20 % was observed. 

However, IFN or CsA did not alter the response to HIV-1 compared to THP-1 wt cells (Figure 

13). These results imply a function of CypC on HIV-1 infection independent of ISGs or the 

PPIase domain of CypC. Therefore, it is unlikely that CypC is the CsA-sensitive factor 

responsible for the rescue effects observed in CypA knockout cells. This could be analyzed 

with a CypA-CypC double knockout cell line. To further investigate the inhibitory effects of 

CypC depletion on HIV-1 infection, quantification of reverse transcription products and 

efficiency of nuclear import in these cells could provide interesting insights into HIV-1 kinetics 

in the absence of CypC. For CypD, another cytosolic cyclophilin, no distinct function and so 

far, no evidence for an involvement in HIV-1 infection is known. CypD knockout cells were 

successfully created and genomic information confirming gene disruption by sequencing was 

successfully obtained (Figure 14). CypD knockout cells showed a slight increase in HIV-1 

infection compared to THP-1 parental and CRISPR/Cas9 control cells. However, no changes 

in response to IFN2 or CsA by contrast with parental and control cells were observed (Figure 

15). Like CypC, CypD was shown to bind CsA, thus depletion of CypD could potentially have 

altered the response to CsA [344]. However, CETSA results do not reveal thermal stabilization 
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of CypD by CsA indicating no effect of CsA on CypD. Given that CypD knockout had only 

mild effects on HIV-1 infection, CypD can likely be excluded as the CsA sensitive factor this 

study tried to identify.   

Cyclophilin E is an interesting candidate as it shares over 80 % sequence identity with CypA 

[250]. The size difference between both Cyps is mainly due to a N-terminal RNA binding 

sequence in CypE, enabling poly(A)+RNA binding [250], [251]. Knockout of CypE in THP-1 

cells strongly reduced infection for both, LV as well as full-length NL4.3 (Figure 17). Besides 

CypA, CypB and CypF, CypE was found to bind HIV-1 CA [256], [345] thus varying responses 

to altered CA sequences are reasonable. As shown for all used knockout cell lines discussed so 

far, the capacity of IFN2 to block HIV-1 infection is intensified for HIV-1 NL4.3 compared 

to HIV-1 LV and this is also the case in CypE knockout cells. Thus, independent of the cell line 

used, HIV-1 NL4.3 is more sensitive to type I IFN-induced factors than LV. CypE is a nuclear 

protein inhibited by CsA as several studies have proposed [237], [249]. Here, I indirectly 

confirmed the influence of CsA on CypE, as CypE was stabilized in one out of two data sets in 

the CETSA experiment (Table 5). Therefore, it was not surprising that for LV infection an 

increase of HIV-1 infection by CsA for CypE knockouts was observed (Figure 17). However, 

CsA treatment did not increase HIV-1 NL4.3 infection as observed for THP-1 parental cells 

(Figure 17). This is a reversed effect to what was observed for CypA -/- cells where a 2.6-fold 

increase was observed. One might speculate that HIV-1 accessory proteins counteract CsA 

targets, as the effects of CsA were much lower for HIV-1 NL4.3. CypE was previously 

identified as part of the spliceosome complex [252], but so far evidence for CypE participating 

in HIV-1 RNA processing is lacking. However, all HIV-1 mRNAs provide the CypE binding 

feature, a Poly(A) tail [346]. Besides small differences in the CA protein between the two viral 

constructs used, the NL4.3 genome codes for all HIV-1 accessory proteins, including Vpr. Vpr 

has been shown to promote viral gene expression [347], [348]. Thus, one can speculate whether 

Vpr actions make CypE inactivation by CsA irrelevant. Despite the fact that so far no evidence 

for an involvement of CypE in HIV-1 infection is known, CypE has been discussed as a possible 

host factor for HCV and IAV infection. CypE plays a role in HCV replication and can bind the 

nucleoprotein of IAV which results in the inhibition of viral replication and transcription [237], 

[255]. Interestingly double knockout of CypA and CypE in THP-1 cells provided a phenotype 

varying only slightly from the one observed for CypA knockouts (Figure 21). CypA-CypE -/- 

cells showed the strongest block to HIV-1 infection by IFN2 treatment of all generated Cyp 

knockout cells, possibly indicating that both Cyps play differential roles in protecting HIV-1 

against IFN-induced restriction factors. As CypA is predominately cytoplasmic and CypE is a 
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nuclear Cyp, these two could therefore execute protective roles in these two cellular 

compartments. The absent increase of NL4.3 infection by CsA is surprising, as CsA binding to 

CypE was shown [237] and thus CsA treatment should either increase or decrease HIV-1 

infection in CypE knockout cells. However, I found that infection of CypA-CypE knockout 

cells did not show a phenotype significantly different to THP-1 parental and CypA single 

knockout cells except in response to IFN2 (Figure 21). Although CypE is mainly present in 

the nucleus, it was recently found in human plasma, similar to CypA [324]. Furthermore, 

unpublished data from Luis Apolonia indicate redundancy between these two Cyps (L. 

Apolonia, personal communication, May 2018). The knockout cells created within this study 

provide an interesting tool to investigate cellular localization of these Cyps. Given the 

availability of functional and specific antibodies for CypA and CypE in immune fluorescence, 

changes in cellular localization of these Cyps in the presence or absence of the other could 

indicate relevant modes of function. As sequence similarity between these Cyps is high, one 

could also use HA- or Flag-tagged constructs to re-express these proteins in the knockout cell 

lines. To establish endogenous protein levels, a doxycycline inducible or similar system could 

be used for controlled protein expression, however, this was beyond the scope of this study.  

Knocking out CypF and CypG proved to be difficult. Although suitable gRNAs against these 

two proteins were available, judging protein expression by Western blot was impossible due to 

the lack of working antibodies. However, CypF expression is upregulated upon IFN treatment 

(dataset IFM30) [349] making it a suitable candidate responsible for the effects of CsA in type 

I IFN treated cells. For CypG the effects observed in the CETSA experiment were unclear. In 

the first dataset analyzed a stabilization of CypG was observed, whereas the second data set 

suggested a destabilization of CypG by CsA (Table 5). Nonetheless, CypG is influenced by 

CsA, which is in agreement with previous studies [344], [350]. Furthermore, literature suggests 

a function of CypG in splicing events [260], [261]. The nuclear localization and a CypG-

dependent localization of several SR-rich proteins as well as the direct binding of CypG to RNA 

Pol II suggest a role in splicing events [260], [261]. Interestingly, TNPO3, a nuclear import 

receptor for SR-rich proteins promotes HIV-1 infection in an CsA-sensitive manner. Upon CsA 

addition in TNPO3 depleted Hela cells an HIV-1 infection increase of 4-fold could be observed 

[195]. Shah and colleagues demonstrate a dependence of TNPO3 function on CypA, but 

whether another nuclear Cyp may be involved remains elusive [195]. Furthermore, it would be 

interesting to know if the functions of CypE and CypG are redundant or whether these Cyps 

influence viral gene expression. Thus, a CypG knockout cell line could be used as a tool to 

address these questions. The last Cyp of interest for this study was CypH, a cytoplasmic and 
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nuclear PPIase. Like CypE and CypG its suggested function lies within splicing events [263], 

[264]. Thus, it may possibly execute a role in HIV-1 gene expression. In line with these results 

is the significantly reduced HIV-1 infection observed in CypH knockout cells (Figure 19). As 

these knockout cells do not show an altered infection increase by CsA compared to parental 

THP-1 cells, a function of CypH independent of its PPIase domain could be possible. Previous 

studies of CypH revealed additional functions beside its PPIase activity. Although CypH is 

equally small as CypA, it has a differential binding site for the U4/U6 snRNP complex [264]. 

Working with CypH knockout cells revealed the importance of suitable antibodies for knockout 

validation. Starting with single knockouts of CypH a specific antibody for Western blot was 

available to identify knockout clones. These results could be confirmed by a successful genome 

sequencing approach across the gRNA target site, verifying the knockout (Figure 18). In the 

progress of this study CypA-CypH double knockout cells were created. Unfortunately, 

knockout validation by Western blot was no longer possible due to a new aliquot of the 

previously used antibody. Using CypA knockout cells as a specificity control, no CypH specific 

signal could be obtained from the second antibody aliquot used (data not shown). As PCR 

amplification followed by sequencing of PPIases was not straight forward, this approach was 

very time consuming and not feasible to use as a first screening method. Therefore, this 

technique was only applied to confirm Western blot results. Previous studies reported a 

significantly reduced PPIase activity of CypH compared to CypA possibly indicating a reduced 

affinity for CsA [262]. This observation could not be confirmed here, as CETSA results 

revealed a stabilization of CypH for both data sets (Table 5). These results are confirmed by a 

study from Gaither and colleagues demonstrating the comparative inhibition by CsA and non-

immunosuppressive analogues [237]. HIV-1 LV infection of CypH -/- cells revealed an 

increased sensitivity to type I IFN, indicating a possible involvement of CypH in type I IFN-

mediated immunity against HIV-1. So far CypH has not been reported to be upregulated upon 

IFN stimulation or to exert a function in immunity. Unfortunately, due to time limitations and 

instrument malfunction, experiments with full-length HIV-1 for CypC, CypD and CypH 

knockout cells were not possible within the time of this project. These infection assays would 

provide a better understanding of the differences between the two viral constructs used and give 

a better understanding for the roles of the respective cyclophilins.  

9.3 CETSA identifies novel CsA sensitive factors 

To identify the IFN-inducible CsA sensitive factor involved in HIV-1 early infection events, 

we applied the previously developed cellular thermal shift assay (CETSA). It provides an 
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excellent unbiased approach for this task [299], [322], [351]. This method has been proven to 

reveal the proteotype of diverse cell lines, a term reflecting the proteomic state of a cell that 

links the genotype to the cellular phenotype. As an in situ method, this approach can be used to 

determine the influences of splice isoforms, post-translational modifications, and alternate 

subcellular localizations, as well as mutational differences and ligand bound states on drug 

targets. Especially the possibility to detect alternate splicing variants could provide insight into 

the contribution of pseudogenes or alternatively processed cyclophilin variants to the observed 

knockout phenotypes. Furthermore, CETSA is an interesting method to reveal effects of a 

specific drug on the whole proteome containing more than 10,000 expressed gene products at 

varying expression levels [303]. These findings agree with the results presented here, as almost 

7,000 proteins could be successfully detected in the CETSA experiment. Performing the 

experiment in duplicates as recommended in previous publications [299], [322] enabled more 

reliable data evaluation and increased the level of certainty for the generated hits. However, the 

experiment performed here did not include any detergent during cell lysis. As improvements of 

the originally published workflow showed, using mild detergents during the workflow increases 

the number of detected membrane proteins greatly without affecting the complete proteome 

[300]. However, the detergent influence needs to be carefully evaluated for every drug 

investigated and so far, no CETSA studies for CsA have been performed. Furthermore, the 

presence of detergent is not suitable for every available mass spectrometer and thus has to be 

carefully evaluated. The majority of known CsA target proteins are not membrane bound, so a 

straightforward detergent free approach was chosen. The absent detergent in the used approach 

resulted indeed in reduced membrane protein detection (e.g. IFITMs could not be detected 

individually (Table 4)), leaving an important group of proteins unconsidered.   

For all proteomics studies, careful and stringent data processing is crucial for reliable 

conclusions of any kind. Following the advanced protocol from Franken and colleagues, several 

criteria must be fulfilled for significant thermal stability changes [299]. Experiments should be 

performed in duplicates, P values for each conducted experiment should be lower than 0.1, each 

protein detected for both experiments should shift in the same direction, the Tm difference of 

the two vehicle controls should be lower than the smallest shift observed for the vehicle versus 

drug experiments, and the calculated melting curves should have a certain steepness and reach 

a plateau below 0.3 compared to the protein amount detected at 37°C. However, using these 

stringent restrictions only 16 proteins could be identified to be affected by CsA (listed in Table 

3). Except UBTD2 and PRPS1L1 all listed proteins have been reported to be IFN-induced, as 

they can be found in the interferome database. However, a link to HIV-1 infection could only 
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be identified for 3 proteins: CFD, EIF4G1 and VAT1. CFD expression is upregulated by HIV-

1 env in mesenchymal stem cells [352], an effect most likely irrelevant for the phenotype 

investigated in this study here. VAT1 expression is upregulated in the presence of HIV-1 Tat 

or Vpr [353], [354] and the translation initiation factor EIF4G1 has been reported several times 

in the literature to interact with various HIV-1 proteins. EIF4G1 can be incorporated into HIV-

1 Gag virus like particles and is required for the synthesis of the Gag polyprotein [355]–[357]. 

Furthermore, HIV-1 Tat is found to co-localize with EIF4G1 [358] and HIV-1 protease cleaves 

EIF4G1 leading to inhibition of protein synthesis [359]–[362]. Of the known CsA targets only 

PPIF was within this group. PPIF is a known type I and type II IFN-inducible cyclophilin 

inhibited by CsA (interferome database, entry IFM30, IFM108; IFM30 and IFM53). 

Unfortunately, CypF knockouts could not be obtained, but with PPIF being the strongest hit 

amongst all Cyps detected, it would be worthwhile to investigate the role of CypF on HIV-1 

infection in future studies. Expression of HA- or Flag-tagged protein variants could overcome 

the lacking antibody availability, although one has to consider over-expression artefacts. In 

addition, the generated possible CypF knockout cells could be evaluated by establishing 

amplification PCR of CypF for sequencing. Although this approach is more time consuming 

and expensive, with no available antibody it might be the only solution. However, several 

attempts to amplify the CRISPR/Cas9 targeted gene region failed for the reasons discussed 

above (8.1.2 and 9.2). Another interesting hit which was not analyzed further within this study 

is SASS6. It is a type I and type II IFN-induced protein involved in cell division (interferome 

database, entry IFM59 and IFM35). Previous studies identified SASS6 as an antiviral factor for 

human papilloma virus infection [363], [364]. Furthermore, an interaction of SASS6 with TAR 

(HIV-1) RNA binding protein 1 (TARBP) has been proposed [365]. TARBP disengages RNA 

polymerase II binding from TAR, the HIV-1 Tat binding element to activate viral gene 

transcription. Thus, SASS6 is an interesting candidate to investigate in future analyses.   

The obtained data were carefully analyzed a second and third time with less stringent 

restrictions providing several additional interesting candidates. For some proteins, e.g. for 

CypG and CypB, the chosen temperature range was not optimal (Figure 24). The protein 

concentration at high temperatures was still not low enough to reach the plateau required for 

the stringent parameters used for the first data analysis. Nonetheless, CypG and CypB were 

likely affected by CsA in the CETSA experiment, as Tm shifts upon CsA addition were 

detectable in both data sets (Figure 24 and Table 5) and this could be recapitulated by 

immunoblotting. For other known targets, no shift in Tm could be observed as seen for example 

for CypD. Despite inhibition of CypD by CsA has been previously shown [350], these results 
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suggest no change in thermal stability after CsA addition. However, ligand binding to a protein 

only results in a thermal shift when binding affects thermal stability of the protein. Especially 

for large proteins, binding of a small ligand often stabilizes only the binding domain rather than 

the whole protein per se, thus resulting in low Tm shifts [351]. Another explanation for a 

missing Tm shift is that unfolding of the ligand binding domain does not promote protein 

aggregation, thus although the ligand is binding the new protein state does not aggregate with 

increasing temperatures. Therefore, despite being affected by the drug, no changes in thermal 

stability in response to drug treatment are observed [296]. Furthermore, the drug concentration 

used is critical. Ideally it should be high enough to fully saturate all available binding sites. If 

the concentration is too low, the maximal stabilization effects cannot be detected and 

competition of several binding sites for one ligand can falsify the results. A simple drug titration 

experiment to identify the highest possible drug concentration without any cytotoxic effects on 

cell viability suffices. Although up to 5 µM CsA is suitable for THP-1 cells [366], [367], 2.5 µM 

CsA was used similar to the infection assays performed within this study, as this CsA 

concentration is adequate to affect the IFN-inducible CsA sensitive factor during HIV-1 

infection.    

Interestingly, I found that thermo stability of at least three FKBPs seemed to be affected by 

CsA as well (see Table 5). Usually, FKBPs are inhibited by rapamycin or FK506 but not CsA 

[368]. The effect of CsA on FKBPs could be through indirect interaction of CsA with this 

protein family. CsA clearly influences Cyps and by stabilization or destabilization of 

cyclophilins all their interaction partners can be affected as well. This should cause smaller 

shifts in Tm as observed for indirect binding partners of the used drug [299]. One binding 

partner of the Cyp-CsA complex is calcineurin, which can also bind FKBPs [369]. Therefore, 

CsA could indirectly affect FKBPs. The experimental approach used for this study only 

investigated one CsA concentration in living cells. To distinguish between direct and indirect 

binding partners of CsA amongst the possible target list, a repetition of the experiment with cell 

extracts could be feasible. In contrast to the performed experiment, previously generated cell 

extracts are treated with the drug. The remaining workflow is not altered. Thus, only direct 

binding partners of CsA are identified. This approach could be used in future experiments to 

reassure the identified targets and discriminate between early and late acting candidates in the 

CsA pathway. To further evaluate interesting candidates, dose-response curves for interesting 

targets should be obtained. Therefore, shifts in thermal stability for the respective protein are 

obtained using a series of varying drug concentrations. To reduce costs, analysis could be 

performed by immunoblotting, given that suitable antibodies against the chosen targets are 
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available.   

The generated lists of candidates using diverse restriction parameters where analyzed in terms 

of gene ontology and pathway enrichment. To this end the GOrilla6 and Enrichr7 online tools 

were used. Amongst others, several members of the RIG-I signaling pathway seemed to be 

affected in their thermal stability upon CsA treatment. The involvement of this pathway in 

restricting several viruses like West Nile Virus, Influenza A Virus and Coronaviruses [286], 

[370] as well as the involvement of RIG-I in type I IFN signaling [59], [278] made it an 

interesting pathway for further analysis in search of a novel type I IFN-inducible CsA target.  

9.4 RIG-I pathway and HIV-1 

Overall, 17 out of 23 members of the RIG-I signaling pathway were detected in the CETSA 

experiment, and five of them showed strong Tm shifts upon CsA addition (Table 5), making 

them candidates to be involved in the CsA-induced increase of HIV-1 infection in type I IFN-

stimulated THP-1 cells (pathway overview shown in Figure 7). After careful pathway analysis 

and with respect to the observed Tm shifts, initially seven targets were chosen for further 

analysis. RIG-I and MDA5 as the two cytosolic viral target sensors to initiate the pathway, 

although RIG-I was only mildly affected (see Table 5 and Figure 24). MAVS and TRADD, as 

two highly affected proteins and key players of the pathway as well as the three downstream 

proteins IRF3, Caspase8 and Caspase10. For all chosen candidates CRISPR/Cas9 knockouts 

based on THP-1 CypA -/- cells were generated. This cell line was chosen to better evaluate the 

effects of these proteins on HIV-1 infection and their response to CsA in the absence of CypA. 

In parallel single knockouts for each gene in THP-1 cells were generated. However, due to time 

limitations single cell clones were not investigated for their genotype or phenotype. Except for 

TRADD, all used gRNAs were previously published, thus knockout cells for all targets were 

expected to be generated [311]–[314], [371]. For the caspase targets, evaluation of the knockout 

status was difficult as multiple bands occurred on Western blots and despite testing over 20 

clones for each target, no candidate with clearly reduced protein amounts could be obtained 

(data not shown). This was surprising, as the used gRNAs have been shown to work well in 

HeLa and Saos2 cells [314], [371]. Especially for Caspase 10, one of the highest Tm shifts of 

the whole data set was observed after CsA treatment, although the protein was only detected in 

one experiment. Establishing Caspase10 amplification to sequence the obtained single cell 

clones could overcome the difficult Western blot detection. Furthermore, repeating the 

 
6 http://cbl-gorilla.cs.technion.ac.il/ 
7 http://amp.pharm.mssm.edu/Enrichr/ 
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approach with another gRNA set could generate Caspase10 knockouts for further analysis. As 

Caspase8 does not show Tm shifts induced by CsA, the effort of generating a Caspase 8 

CRISPR/Cas9 THP-1 knockout cell line probably not worth the effort. For the remaining five 

targets single cell clone evaluation by immunoblot was successful. All used single cell clones 

did not show protein expression on Western blot, however genotypic information remains 

elusive. To confirm gene disruption, gene amplification and sequencing should be established 

for RIG-I, MDA5, MAVS, TRADD and IRF3.   

Infecting RIG-I, MDA5, MAVS, TRADD and IRF3 CRISPR/Cas9 knockout cells with HIV-1 

revealed, that knockout of MDA5 and TRADD showed clearly reduced infection levels for both 

viral constructs used compared to THP-1 parental and CypA single knockout cells (Figure 28 

and Figure 31, respectively), thus indicating an involvement of these two proteins in HIV-1 

infection. A recent study revealed, that HIV-1 TAR and the Rev-response element interact with 

a complex that facilitates post-transcriptional RNA modifications to evade recognition by 

MDA5 and consequently avoid the induction of an antiviral state [372]. Furthermore, for 

TRADD and MDA5 a mRNA upregulation in response to HIV-1 is known [373]–[375]. To my 

knowledge, no connection between TRADD and CypA is known so far. However, CypA was 

recently reported to boost RIG-I mediated antiviral signaling by affecting RIG-I, MDA5 and 

MAVS [376]. It was shown for Sendai virus infection, that CypA knockout impaired RIG-I-

mediated type I IFN production [376]. Furthermore, viral replication was promoted, and an 

enhanced TRIM25 activity was observed. TRIM25 mediates ubiquitination of RIG-I and 

MAVS, thus ensures the binding of RIG-I to MAVS and downstream signaling [376]. 

Furthermore, CypA is reported to activate the transcription factor IRF3, another RIG-I signaling 

pathway member affected by CsA (Table 5 and Figure 24) [224]. Repeating the infection assays 

in the presence of CypA, as for example with THP-1 based knockout cells, may reveal CypA-

independent or CypA-dependent effects of these RIG-I signaling pathway proteins on HIV-1 

infection. Whether MDA5 executes a CypA dependent function could also be investigated by 

observing the phosphorylation status of MDA5 during HIV-1 infection in the presence and 

absence of CypA, as MDA5 activity is strongly controlled by phosphorylation [377]–[379]. 

Furthermore, I observed a highly increased HIV-1 infection block after IFN2 treatment in 

cells, in which members of the RIG-I signaling pathway were knocked out. At first glance, these 

findings are counterintuitive, as disruption of an IFN-signaling pathway should possibly not 

increase viral restriction upon IFN stimulation. However, IFN production and ISG expression 

is highly regulated, the pathway is very complex and exhibits various signaling cascades and 

alternative routes. The RIG-I knockouts showed the smallest block to HIV-1 LV infection 
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induced by type I IFN for all RIG-I signaling pathway knockout cells used. One could speculate, 

if MDA5, the second cytosolic viral recognition protein could compensate RIG-I signaling 

function, whereas vice versa RIG-I is unable to resume MDA5 function. Interestingly, CypA-

MDA5 double knockout cells are the only cell line investigated in course of this study that 

showed a higher IFN-induced block to HIV-1 infection for LV than for NL4.3 (12.9-fold for 

HIV-1 LV, compared to 3.1-fold for NL4.3 infection, Figure 28). This is the smallest block to 

HIV-1 NL4.3 infection observed within all investigated cell lines and it is significantly lower 

than observed in THP-1 parental cells. The differential response of MDA5 -/- cells to type I 

IFN suggests the involvement of HIV-1 accessory proteins in MDA5 function during infection. 

How exactly type I IFN stimulation modifies the response of RIG-I signaling pathway knockout 

cells to HIV-1 should be evaluated by quantifying ISG production in future studies. Changes 

between the individual cell lines and the two viral constructs could provide interesting insights 

into this complex signaling pathway and its function in HIV-1 infection.   

Despite altered sensitivity to IFN2, RIG-I signaling pathway knockouts showed differential 

responses to CsA stimulation. Only for TRADD knockouts, a significant rescue of infection 

upon CsA stimulation could be observed in NL4.3 infection (Figure 31). Thus, TRADD can be 

excluded as the IFN-inducible CsA sensitive factor responsible for the phenotype observed in 

IFN-stimulated THP-1 CypA -/- cells by CsA treatment. However, RIG-I, MDA5, MAVS and 

IRF3 knockout cells did not show a significant effect on HIV-1 infection upon CsA treatment 

compared to IFN treated cells, it is likely that the IFN-induced CsA-sensitive factor responsible 

is a member of this signaling pathway. Though, as the early acting proteins MDA5 and RIG-I 

are equally affected in comparison to the late acting protein IRF3, presumably downstream 

members of this pathway could be implicated in the investigated effect of CsA. Another 

interesting member of the RIG-I signaling pathway affected by CsA according to the CETSA 

experiment is NFB (Table 5), a key transcription factor involved in immunity. In future studies 

NFB activity could be measured in all knockout cell lines by amplification of NFB target 

genes. This would not only provide insights into the effects of the investigated proteins on 

antiviral gene expression, but also how CsA and IFN stimulation change expression patterns. 

Taken together I created many excellent tools to characterize the functions of cyclophilins and 

RIG-I signaling pathway members in THP-1 cells. Furthermore, the CETSA provides novel 

insights into the complex functions of CsA in IFN stimulated THP-1 cells, which can be useful 

for any future study on cyclophilins.  
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10 Conclusion 

I showed that some members of the cyclophilin protein family are immune modulators of HIV-

1 early infection events and that cyclophilins may play differential roles in HIV-1 infection. 

First, I investigated the impact of CypA, a long-known HIV-1 co-factor, on type I IFN-mediated 

cellular immunity. Therefore, CRISPR/Cas9 THP-1 CypA knockout cells were infected with 

HIV-1. I could observe an increased infection of CypA -/- cells compared to parental or control 

THP-1 cells, indicating a role of CypA in HIV-1 infection. IFNa2 treatment prior to infection 

showed an increased block to HIV-1 infection compared to THP-1 parental cells, suggesting an 

involvement of CypA in type I IFN-mediated immunity against HIV-1. Interestingly, I could 

observe an increased HIV-1 infection upon additional treatment with CsA, a cyclophilin 

inhibitor. This led us to believe, that another CsA-sensitive possible type I IFN-induced factor 

may be involved in modulating HIV-1 infection. Therefore, CRISPR/Cas9 THP-1 CypB, CypC, 

CypD, CypE and CypH knockout cells were generated. Infection assays of these single 

knockout cells revealed that knockout of CypD could increase HIV-1 infection compared to 

parental THP-1 cells. However, no changes could be observed in response to IFN or CsA, thus 

effects of CypD on HIV-1 infection are most likely independent of IFN-induced factors. 

Depletion of CypB, CypC, CypE and CypH using CRISPR/Cas9 showed increased HIV-1 

infection compared to parental THP-1 cells, indicating the potential involvement of several 

Cyps in HIV-1 infection. However, IFN or CsA treatment did not result in significant changes 

in HIV-1 NL4.3 infection in those cell lines compared to THP-1 parental cells. To exclude a 

masking effect of CypA, CRISPR/Cas9 double knockouts of CypA and CypB or CypE were 

generated and infected. Both cell lines showed a strong increased sensitivity to IFN treatment 

compared to parental THP-1 or single knockout cells, indicating a complex interplay between 

Cyps in modulating type I IFN-induced factors involved in HIV-1 infection. CRISPR/Cas9 

single cell clones for CypF and CypG were generated, however these clones are not validated 

regarding their knockout status. As suitable antibodies were not available, single cell clones 

could be sequenced to disclose the respective genomic phenotypes and use these cell lines as a 

tool to investigate the role of CypF and CypG in HIV-1 infection. Furthermore, one should 

investigate at which stages of the HIV-1 life cycle cyclophilins play a role by observing the 

effect of Cyp knockout on reverse transcription, nuclear import, integration, and viral gene 

expression.   

Since none of the investigated cyclophilins could be identified as the CsA-sensitive possibly 

type I IFN-inducible factor responsible for increased HIV-1 infection upon CsA treatment in 
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CypA knockout cells, a unbiased proteomic screen based on altered protein thermal stability 

upon ligand binding was conducted. Overall, 4307 proteins could be identified in all acquired 

data sets and several possible novel CsA targets could be identified. However, not all interesting 

hits could be investigated within the course of this study, but candidates like SASS6 or the 

previously HIV-1 related proteins CFD, EIF4G1 and VAT1 are interesting proteins for future 

investigations on their impact on HIV-1 infection and type I IFN modulated immunity against 

HIV-1.   

Since several proteins of the RIG-I signaling pathway could be identified as possible IFN-

inducible CsA-sensitive factors. THP-1 CypA knockout cell based CRISPR/Cas9 knockout 

cells for RIG-I, MDA5, MAVS, IRF3 and TRADD were generated. I could show, that MDA5 

and TRADD knockout reduced HIV-1 infection, indicating an involvement of these two 

proteins in HIV-1 infection. Furthermore, TRADD knockout showed the highest block to HIV-

1 infection compared to any other cell line used within this study, indicating TRADD is a key 

play in type I IFN signaling. In contrast, MDA5 knockout cells were less sensitive to IFN 

treatment compared to CypA single knockout or THP-1 parental cells, suggesting an 

involvement of MDA5 in sensing HIV-1. CsA treatment of IFN stimulated HIV-1 infected 

knockout cells had no impact on infection, except for CypA-TRADD double knockout cells. 

Thus, knocking out members of the RIG-I signaling pathway diminishes a CsA-induced rescue 

from an type I IFN induced block to HIV-1 NL4.3 infection in THP-1 CypA knockout cells, 

suggesting at least one CsA-sensitive member of the RIG-I signaling pathway, although I could 

not identify one factor. However, I created so far uncharacterized single cell clones for RIG-I, 

MDA5, MAVS, IRF3 and TRADD knockout in THP-1 parental cells, which could provide 

useful tools for further studies regarding the involvement of these proteins in HIV-1 infection 

and their function in modulating immunity.  
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