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Hochpräzise Messung der atomaren Masse von Deuteron
Zusammenfassung - Im Rahmen dieser Doktorarbeit wurde am
Penningfallen-Experiment Liontrap (Light-Ion TRAP) eine Messkam-
pagne zur Bestimmung der atomaren Masse von Deuteron, dem Atomkern von
Deuterium, durchgeführt. Dafür wurden wesentliche Teile der ursprünglichen
Experimentieranlage umgebaut und verbessert.
Das Messprinzip im Liontrap-Experiment basiert auf dem Vergleich der Zyk-
lotronfrequenz eines zu messenden Ions mit der Zyklotronfrequenz eines Kohlen-
stoffions, woraus die Masse in atomaren Masseneinheiten extrahiert wird. Dabei
ist Liontrap optimiert auf die speziellen Anforderungen von leichten Ionen,
da bei diesen Inkonsistenzen in der Kombination verschiedener Messungen die
Verwendung der Massenwerte für Anwendungen beispielsweise in der Neutrino-
physik erschweren.
In der Messkampagne gelang es, die atomare Masse von Deuterium mit einer
relativen Genauigkeit von 8,5 · 10−12 zu bestimmen. Dabei handelt es sich
um die bislang genaueste Massenmessung in atomaren Masseneinheiten über-
haupt. Der Wert ist um einen Faktor 2,4 genauer als die bislang weltweit
genaueste Massenmessung von Deuteron und zeigt eine Diskrepanz von 5 Stan-
dardabweichungen. Zusätzlich wurde eine Massenmessung am Molekülion HD+

durchgeführt. Die Masse dieses Molekülions kann aus der bereits von Liontrap
gemessenen atomaren Masse des Protons und der atomaren Masse von Deu-
terium abgeleitet werden, da die atomare Masse des Elektrons und die moleku-
lare Bindungsenergie hinreichend genau bekannt sind. Die Übereinstimmung
beider Werte für die atomare Masse von HD+ stellt einen starken Konsisten-
zcheck unserer Messmethoden dar.

High-precision measurement of the deuteron’s atomic mass
Abstract - In the framework of this thesis, a measurement campaign on the
atomic mass of the deuteron, the nucleus of deuterium, was conducted at the
Penning-trap experiment Liontrap (Light-Ion TRAP). For this purpose, major
parts of the original experimental facility were rebuilt and improved.
The measurement principle at Liontrap is based on a comparison of the cy-
clotron frequency of the ion to of interest and the cyclotron frequency of a
carbon ion. From this, the mass in atomic mass units is deduced. Liontrap
is optimized on the special requirements of light ions, as inconsistencies in the
combination of different measurements hamper the use of their mass values for
applications for example in neutrino physics.
In the measurement campaign, it was possible to measure the atomic mass
of deuteron with a relative precision of 8.5 · 10−12. This is the most precise
measurement in atomic mass units to date. The value is a factor 2.4 more
precise than the previously most precise measurement and shows a discrepancy
of 5 standard deviations. Additionally, a measurement of the molecular ion HD+

was conducted. The mass of this molecular ion can be derived from the masses
of the deuteron and the proton, previously also measured at Liontrap. The
atomic mass of the electron and the molecular binding energy are sufficiently
known to not add an additional uncertainty. Both values for the atomic mass
of HD+ agree, giving a strong confidence check of the measurement methods
used at Liontrap.
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1 Introduction
The rest mass is among the fundamental properties of all atomic and subatomic
particles. Although in principle, only the masses of the elemental particles are
considered truly fundamental [1], it is currently impossible to relate these masses
to the mass of e.g. the proton on a satisfactory level of precision [2]. However,
atomic mass ratios are needed as input parameter in a wide range of experiments
especially in atomic physics. This starts with the hydrogen atom, one of the
simplest and at the same time best studied atomic systems, where the electron-
to-proton mass ratio influences the electronic level structure [3, 4, 5]. In this way,
masses, transition frequencies and other fundamental constants shape a network
of parameters. In this network, new measurements are constantly used to test
our understanding of the fundamental interactions and look for phenomena, which
cannot be explained within our models yet.

1.1 Content of the Thesis
The main topic of this thesis is the measurement of the deuteron mass in atomic
mass units at Liontrap [6, 7, 8]. After a general introduction, where I discuss
the motivation for light ion mass measurements, especially the so-called “light
ion mass puzzle”, the basic principles of mass measurements of a single ion in a
Penning trap are reviewed. In chapter 3, I present the Liontrap setup, with a
special focus on the improvements carried out in the framework of this thesis. In
chapter 4, several measurements performed in preparation for the deuteron mass
campaign are presented. There, the improvements of the setup are evaluated and
important parameters for the measurement of the deuteron mass, such as tem-
perature and the extend of field imperfections, are determined. The measurement
of the deuteron atomic mass, which is also published in [6], is described in detail
in chapter 5, including an evaluation of the systematic uncertainties. Besides the
mass measurement of deuteron, a mass measurement of the HD+ molecular ion
allows to show consistency within the measurements reported in this thesis and
the proton mass measured previously at Liontrap [8, 7]. The implication of the
findings of this measurement campaign in the context of other, high-precision mass
measurements and recent spectroscopy results are presented. Finally, the limit-
ing factors of the deuteron mass campaign are analyzed. In chapter 6, I give an
outlook on two measurement concepts, which can potentially improve future mass
measurements at Liontrap, but could not yet be realized for the deuteron mass
measurement. Finally, I summarize the findings of this thesis.
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6 Chapter 1. Introduction

1.2 Motivation for Light Ion Mass Measurements
The motivations for light ion mass measurements have been reviewed recently, see
[9, 10]. However, the motivation for measuring the mass of deuteron is strongly
dependent on the interplay with other masses in the sector of light ions, especially
the mass difference between tritium (T) and helium-3 (3He). Here, I explain the
role of this mass difference in the context of neutrino physics and review recent
discrepancies in the literature known as “light ion mass puzzle”, which hinder
the use of these mass value in fundamental physics applications. Furthermore,
I highlight the special role of the mass of deuteron for the determination of the
neutron mass and in the context of tests of the mass-energy equivalence principle
E = mc2.

1.2.1 The Masses of Tritium and Helium-3
During the beta decay of tritium, an electron e− and an electron-antineutrino ν̄e
are emitted. Therefore, the kinematic beta-decay spectrum contains information
on the effective rest mass of neutrinos. The fact that neutrinos have mass is well
known since the evidence for neutrino oscillations was found in atmospheric [11]
and solar [12, 13] neutrino fluxes. However, neutrino oscillations are not sensitive
to the mass values itself, but to the squared mass difference ∆mij = |m2

i + m2
j |,

where the indices i and j indicate the mass eigenstate (i, j ∈ {1, 2, 3}). The direct
determination of neutrino rest masses by analyzing radioactive reaction kinematics
provides access to the mass values themselves and is less model dependent than
other approaches like cosmological observations and the search for neutrino-less
double beta decay [14, 15].
The most recent limit for the absolute mass scale of neutrinos is 1.1 eV (90 % con-
fidence level) [16] and comes from the KATRIN collaboration (Karlsruhe Tritium
Neutrino experiment). In this experiment, a windowless gaseous molecular tritium
source is combined with a large MAC-E filter to record the energy spectrum of the
decay electrons close to its endpoint of approximately 18.6 keV.
In figure 1.1, the expected beta decay spectrum is shown. The region close to the
endpoint of the spectrum is of interest. As the electrons carry nearly all the kinetic
energy and the neutrino almost none, this region is sensitive to the neutrino rest
mass. A neutrino rest mass > 0 has two effects:

1. The endpoint of the spectrum is shifted towards lower energy than one would
expect from the masses of the involved particles.

2. The shape of the spectrum close to the endpoint changes qualitatively. For
increasing neutrino rest mass, the spectrum ends more abruptly.

At the KATRIN experiment, the limit of the neutrino rest mass is primarily ex-
tracted from the shape of the spectrum. However, the endpoint can be used as
an important consistency check, as the mass difference between T and 3He can
be used to predict the theoretical endpoint of the spectrum. When comparing
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Figure 1.1: Beta-decay spectrum of tritium. Close to its endpoint, the maximum
observable energy as well as the shape of the spectrum depend on the mass scale
of neutrinos.

both values, one has to take various systematic effects into account, like the use
of molecular instead of atomic tritium, rear-wall potentials and plasma effects. As
all these effects potentially also influence the shape of the spectrum, a possibility
to cross-check the modeling of these effects is of utmost importance.
The value with the lowest reported uncertainty for the mass difference of T and
3He comes from the group of Ed Myers in the Florida State University (FSU)[17]
and is (

M(T)−M(3He)
)
c2 = 18 592.01 (7) eV. (1.1)

There, the mass difference was deduced using mass ratios of T and 3He with the
HD+ molecular ion. However, plugging in the measured masses of the proton,
the deuteron, the electron and the calculated molecular binding energy, this also
allowed for a determination of the mass of 3He in atomic mass units, which was
discrepant with a direct measurement by the University of Washington (UW) [18]
by 7.0 (2.2) · 10−9 u, a bit more than 3σ. This hints towards underestimated un-
certainties in at least one of the involved measurements, undermining the intended
use as a consistency check for KATRIN.

1.2.2 The Puzzle of Light Ion Masses

This discrepancy was called “3He puzzle” or “puzzle of light ion masses” in the
literature [19, 8, 9]. Instead of expressing this inconsistency in terms of the mass
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Figure 1.2: Puzzle of light ion masses. In (a), an overview of the involved nuclei
and the measurements interlinking them is shown, together with the measurements
presented in this thesis. Double headed arrows indicate measurements color coded
by group, with the measurements reported in this thesis drawn thicker. The mass
of HD+ can be deduced from the mass of the proton and the deuteron, as the
mass of the electron and the involved binding energy is known sufficiently well
to not result in a loss of precision. The link between 3He and T is needed for
KATRIN. With the measurements in this thesis, the masses in the green area are
consistent. This is no longer the case when taking into account the measurements
involving 3He. In (b) the values for ∆ = mp + md − mh taken from mass ratio
measurements of HD+/3He+ (∆FSU) and from direct mass measurements (∆C) are
shown. Currently both values differ by 5σ. For details and references see text.

of 3He, one can also inspect the quantity ∆ defined as

∆ := mp +md −mh, (1.2)

wheremh denotes the mass of hellion, the helium-3 nucleus, andmp andmd denote
the mass of the proton and the deuteron, respectively. This value, which is related
to the proton separation energy of helium-3, can be deduced from the mass ratio of
HD+ and 3He reported by the FSU (∆FSU), or by using the direct measurements
of the involved masses in atomic mass units (∆C). In figure 1.2(a), an overview
of the involved nuclei and the measurements interlinking them is shown, together
with a plot on how both the values for ∆FSU and ∆C developed over the past few
years. The 2015 value for ∆C was solely given by measurements of the UW [18,
20]. For the 2017 value, the mass of the proton measured by Liontrap [8] was
used for mp. In 2019, this value was corrected by 15 pu=̂0.5σ [7]. The value for
∆FSU was measured in 2015 [17] and remeasured with reduced uncertainty in 2017
[19]. With the measurements available in 2019, both values differed by

∆C −∆FSU = 484 (97) pu. (1.3)
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While the new measurements reduced the discrepancy in absolute units, the re-
duced uncertainties resulted in a discrepancy of about 5σ. To resolve this discrep-
ancy, measurements of deuteron and helion are needed.

1.3 The Deuteron Mass
The second isotope of hydrogen was discovered in 1931 by Harold Urey using
spectroscopic methods [21, 22]. Before that, Birge and Menzel [23] outlined that
discrepancies in mass measurements using chemical methods [24] and a mass spec-
trograph [25] can be explained by the existence of a hydrogen isotope with mass
two and an abundance of about 1/4500. It was named deuterium by its discoverer
and colleagues [26]:

“[...] we might reserve the name hydrogen for the natural mixture
of the hydrogen isotopes, or for any other mixture where the isotopic
composition is not important, and then give special names to both the
H1 and H2 isotopes. [...] We wish to propose that the names for the
H1 and H2 isotopes be protium and deuterium, respectively, from the
Greek words protos and deuteros, meaning first and second.“

- Urey, Murphy and Brickwedde in [26], p. 513.

Interestingly, in this paper they also proposed the name deuteron for the nucleus
of deuterium, although they disliked the idea of using that name, arguing that the
deuteron was not a fundamental particle, while the proton and neutron were. Of
course, it later turned out, that the proton and neutron are also not fundamental
particles, at least not in the sense physicists believed back then, and the name
deuteron is now frequently used. Although not yet discovered in 1933, the name
tritium is already proposed in this paper.
Nowadays, the properties of deuteron like its mass [18], charge radius [27] and
magnetic moment [28] are precisely measured and are used as input parameters
in a range of experiments, among them hydrogen spectroscopy [27] and the spec-
troscopy of hydrogen molecular ions [29, 30, 31, 32].
Here, I want to highlight another application, where the deuteron mass is espe-
cially important: Its implication for the mass determination of the neutronmn and
tests of special relativity. The mass of the neutron is taken from the masses of the
proton mp, the deuteron md and a measurement of the neutron separation energy
Sn, using mn = md−mp +Sn(d)/c2. Such separation energies can be measured at
neutron beam facilities [33, 34] by using the GAMS4 crystal spectrometer. There,
the γ ray(s) following a neutron capture reaction are measured using Bragg spec-
troscopy. The neutron separation energy of deuteron of about Sn(d) ≈ 2.2 MeV
was measured at the Institut Laue-Langevin (ILL) with a relative uncertainty of
δSn(d)/Sn(d) = 1.8 · 10−7 [33, 35], corresponding to a mass uncertainty of about
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4.3 · 10−10 u. Currently, the separation energy measurement is limiting the deter-
mination of mn, however, new measurements of Sn are planned in the future [36]
using a newly developed spectrometer GAMS6.
By comparing the masses of heavier isotopes, which differ by one neutron, and
measuring their neutron separation energy, one can test the equivalence of energy
and mass, E = mc2. This was done in the reactions 32S + n→33 S + Sn(33S) and
28Si + n→29 Si + Sn(29Si) [37]. In the equation(

m(AX)−m(A+1X) +md −mp

)
c2 = Sn(A+1X)− Sn(d), (1.4)

the left hand side is determined via mass measurements, the right hand side via
measurements of the γ energies. The test using silicon and sulfur isotopes yielded
a fractional difference between the measured energies E and the mass difference
∆mc2 of 1 −∆mc2/E = −1.4 (4.4) · 10−7 [37]. It should be noted, that although
on the right hand side of equation (1.4) there is a difference of binding energies,
the binding energy of the silicon and sulfur isotopes is with ≈ 8.6 MeV much
higher than for deuteron, which is why these isotopes are suited for testing special
relativity rather than extracting the neutron mass.
Chlorine-36 has a neutron separation energy comparable to 29Si and 33S, but a
significantly larger cross section for neutron capture, which makes it a feasible
candidate for a future improvement of the E = mc2 test [38]. The current un-
certainty for this separation energy is Sn(36Cl) = 1.8 eV, which corresponds to a
relative precision of 2.1 · 10−7. In the future, relative precisions at the level of
1 · 10−8 are expected, corresponding to mass uncertainties of 92 pu. For the neces-
sary mass measurements of 36Cl and 35Cl, this translates into a relative precision
of 2.6 ·10−12, which will be a challenge for future mass measurements. But even in
the sector of light masses, this precision is challenging. The proton mass reported
by Liontrap was differing by the UW value by 292 pu and for the deuteron mass
reported in this thesis and the UW value [18] the difference is 292 pu, outlining
the importance of these masses for future tests of E = mc2.



2 Physics of a Single Particle in a
Penning Trap

The tool used to reach the extreme precisions described in this thesis is a Penning
trap. In these traps it is possible to store single ions in a nearly perfect vacuum,
allowing storage times in the order of months. In this chapter I introduce the
necessary background knowledge to understand our measurements. While the
Liontrap setup is presented in detail only in chapter 3, where applicable I already
introduce some numbers here, to allow the reader to get a grasp for the quantities
introduced.
This chapter starts with an introduction of the Penning trap in section 2.1, begin-
ning with an ideal Penning trap in section 2.1.1, the so-called invariance theorem in
section 2.1.2 and a discussion of the effect of field inhomogeneities in section 2.1.3.
The description of image current detection in section 2.2, one of the measurement
methods used at Liontrap, is followed by an overview of different kinds of excita-
tions and their applications in Penning traps in section 2.3. In section 2.4 I discuss
the definition of the temperature of a single particle used throughout this thesis.
With the techniques described in section 2.5 and section 2.6 the measurement
techniques used in Liontrap are complete. The chapter closes with an overview
of systematic frequency shifts.

2.1 The Penning Trap
In a Penning trap, particles are confined by a superposition of two static fields. A
homogeneous magnetic field ~B confines the ion’s motion in a plane perpendicular
to the direction of the field, called radial plane. In a pure homogeneous magnetic
field, the radial motion is circular with frequency

ωc = q

m
B, (2.1)

called the cyclotron frequency. Here, q and m are the ion’s charge and mass. In
the direction of the magnetic field, commonly referred to as axial direction, the ion
could escape unhindered.
In a Penning trap, this escape along the magnetic field lines is prevented by a
harmonic electrostatic potential, which confines the ion in the axial direction. For
an overview of Penning-trap developments and applications the reader is referred
to the articles by e.g. Blaum [39].

11
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Figure 2.1: Ideal Penning trap. (a) In the classic Penning-trap geometry hyper-
bolically shaped electrodes with distances r0 =

√
2z0 produce an electric potential

which approximates the harmonic potential of an ideal Penning trap. The ge-
ometry is symmetric with respect to rotation around the z-axis. The coordinate
origin is located in the trap center, the orientation of the coordinate system is
illustrated in the bottom right. (b) The motion of an ion in a Penning trap can be
described as a superposition between three eigenmotions as described in the text.
A fast cyclotron motion shown with amplitude r+ (black), a slower axial motion
with amplitude ẑ (blue) and an even solower magnetron motion with amplitude
r− (red). In the sketch, r− > ẑ > r+, however, this generally does not have to be
the case.

2.1.1 The Ideal Penning Trap
The mathematics of the ideal Penning trap have been treated extensively in the
literature, see e.g. [40]. Here, the derivation and discussion of the equations of
motion is shown briefly and the notation used throughout this thesis is introduced.
To discuss the ideal Penning trap the system of coordinates is chosen such that
the magnetic field is pointing along the z-direction,

~B = B0êz. (2.2)

Here, B0 denotes the magnitude of the magnetic field and êz is a unit vector
pointing along the z-direction of the coordinate system, see also figure 2.1a. The
electrostatic quadrupolar potential has the form

Φ (z, r)ideal = UrC2

2d2
char

(
z2 − r2

2

)
, (2.3)

where Ur is the voltage applied to the central ring electrode, r2 = x2 + y2 and
dchar is a characteristic trap length. C2 is a dimensionless constant describing
the geometry of the penning trap. While in principle only the ratio C2/d

2
char

is entering the formula and the definition of both values is to some extend up to
convention, this notation simplifies handling of equation (2.3) and related formulas
to be introduced in section 2.1.3. For the original design of a hyperbolical Penning
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trap as shown in figure 2.1a, the characteristic trap length is defined as half the
distance between endcaps dchar = z0 and C2 = −0.5. Typically, even for modern
traps with different designs, dchar is related to the physical dimensions of the trap
and C2 ≈ −0.5.
The motion of a charged particle in these potentials can be derived analytically
using non-relativistic mechanics. Relativistic corrections will be discussed in sec-
tion 2.7.
From the potentials, one can derive the force acting on a particle with charge q
and mass m using

~F = m~̈x

= −q~∇Φ + q~̇x · ~B,
(2.4)

where ~x is the vector of coordinates, ~x = (x, y, z) and ~∇ is the gradient operator.
The dot denotes a time derivative. Explicitly, this results om

ẍ− ωcẏ −
1
2ω

2
zx = 0, (2.5a)

ÿ + ωcẋ−
1
2ω

2
zy = 0, (2.5b)

z̈ + ω2
zz = 0. (2.5c)

Here, the axial frequncy ωz has been introduced:

ωz =
√
qUrC2

md2
char

. (2.6)

The solution in the axial direction is a harmonic oscillator with frequency ωc. The
radial components can be analyzed by introducing the complex quantity u = x+iy.
This allows combining equation (2.5a) and equation (2.5b) into

ü+ iωcu̇−
1
2ω

2
zu = 0. (2.7)

A general solution can be found using the ansatz u = e−iωt, resulting in

ω2 − ωωc + 1
2ω

2
z = 0. (2.8)

The solutions for ω in equation (2.8) are the radial frequencies present in the
system. These are the modified cyclotron frequency

ω+ = 1
2

(
ωc +

√
ω2
c − 2ω2

z

)
(2.9)

and the magnetron frequency

ω− = 1
2

(
ωc −

√
ω2
c − 2ω2

z

)
. (2.10)
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To obtain bound solutions, the square root term must be real valued, resulting in
the trapping condition

ω2
c − 2ω2

z > 0. (2.11)

The electric field is pushing the ion outwards in the radial direction, and this
force cannot be greater than the force from the magnetic field trapping the ion.
In typical trapping conditions, there is a strong hierachy between frequencies,
ωc ≈ ω+ � ωz � ω−.
The general solution for equation (2.7) is then

u(t) = u+e
−iω+t + u−e

−iω−t, (2.12)

where u+ and u− are complex constants. Rewriting into the original coordinates
yields (

x
y

)
= r+

(
cos(ω+t+ φ+)
− sin(ω+t+ φ+)

)
+ r−

(
cos(ω−t+ φ−)
− sin(ω−t+ φ−)

)
, (2.13)

where the starting conditions are expressed in a slightly different manner. This
shows, that in the radial plane a superposition of two circular motions with radii
r+ and r− and frequencies ω+ and ω− occurs. The concept of describing the radial
motion of an ion in a Penning trap as superposition of two eigenmotions or modes
is very fundamental and will be used throughout this thesis. The eigenmotions are
sketched in figure 2.1b.
One frequently used relation between the eigenfrequencies is

ω+ωz = 1
2ω

2
z . (2.14)

The energy associated with these modes can be calculated [41, Appendix A] as

E+ = 1
2mω+ (ω+ − ω−) r2

+ ≈ 1
2mω

2
+r

2
+, (2.15a)

E− = −1
2mω− (ω+ − ω−) r2

− ≈ −
1
4mω

2
zr

2
−, (2.15b)

Ez = 1
2mω

2
z ẑ

2, (2.15c)

where ẑ is the maximum amplitude of the axial oscillation. The energy associated
with the magnetron motion E− is always negative. This is because for the slow
magnetron motion the kinetic energy is much smaller than the potential energy in
the electric field. Therefore, the magnetron motion is metastable, any kind of loss
mechanism results in an increase of the magnetron radius r− and eventually in a
loss of the ion.
While for ions at typical cryogenic temperatures a classical description usually
suffices, a quantum mechanical approach yields essentially the same result. The
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motion is described as a superposition of three independent harmonic oscillators
with energies

E+ =
(
n+ + 1

2

)
h̄ω+, (2.16a)

E− = −
(
n− + 1

2

)
h̄ω−, (2.16b)

Ez =
(
nz + 1

2

)
h̄ωz. (2.16c)

The quantum numbers n+, n−, nz ∈ N0 are typically large, which will be discussed
in section 2.4, justifying a classical treatment. However, introducing them here
will turn out to be useful in the discussion of excitations in section 2.3. While the
observable quantities are the eigenfrequencies, in the end one is interested in the
free space cyclotron frequency ωc, which needs to be extracted from the measured
eigenfrequencies.

2.1.2 Invariance Theorem
To extract the free space cyclotron frequency ωc from the three measurable eigen-
frquencies, various approaches are possible. One obvious choice would be using
the formula ωc = ω+ +ω−, which is done in various online facilities [39, 42, 43]. In
FTICR trace analysis [44], just ω+ is measured, and the effect of the trapping field
is calibrated using known masses. In precision physics with stable ions, the use of
a so-called invariance theorem [40] has been established. There, the free cyclotron
frequency is derived using

ωc =
√
ω2

+ + ω2
z + ω2

−. (2.17)
While it is easy to check that equation (2.17) is true for an ideal trap, it also holds
if there is an angle between the axes of the electric and the magnetic field and
if the electric field has an ellipticity. More explicitly, it can be shown that the
potential can always be written as

Φ (x, y, z) ∝ z2 − 1
2
(
x2 + y2

)
− 1

2ε
(
x2 − y2

)
, (2.18)

see e.g. [45]. The parameter ε describes the ellipticity of the electric field and
the x- and y-axis are chosen such that they correspond to the minor and major
semi-axis of the elliptical field, respectively. Such an ellipticity can easily origin in
geometric imperfections of the trap electrodes in use.
In this system of coordinates, the homogeneous magnetic field can be written with
two angles θ and φ. The angle between the magnetic field and the z-axis of the
electrostatic field is described with θ, the angle φ describes the orientation of the
magnetic field with respect to the semi-axes of the elliptical electric field,

~B = B0

 cos(θ)
sin(θ) cos(φ)
sin(θ) sin(φ)

 . (2.19)
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For small imperfections θ � 1 and ε� 1, the eigenfrequencies shift in the following
way (see appendix A.1):

∆ω+ =
ω2
z,0

ω+,0

3
4θ

2
(

1 + 1
3ε cos(2φ)

)
+

ω2
−,0

2ω+,0
ε2, (2.20a)

∆ωz = −3
4ωz,0θ

2
(

1 + 1
3ε cos(2φ)

)
, (2.20b)

∆ω− = 3
4ω−,0θ

2
(

1 + 1
3ε cos(2φ)

)
+ 1

2ω−,0ε
2. (2.20c)

Throughout this thesis, frequency shifts use the sign convention

ωshifted = ωunshifted + ∆ω, (2.21)

where ωshifted is the frequency measured and ωunshifted is the frequency one would
measure in an ideal trap. The frequencies marked with an index "0" refer to
the unshifted frequency. However, when actually calculating the value of these
frequency shifts one can without problems use the measured frequencies and the
index is often omitted.
One way to get information on the angle is to compare the cyclotron frequency
determined by the invariance theorem with the sum of the radial mode frequencies.
This yields [42]

ω+ + ω− −
√
ω2

+ + ω2
z + ω2

− = ω−

(9
4θ

2 − 1
2ε

2
)
. (2.22)

Usually one then assumes ε to be small from geometric considerations and at-
tributes the remaining difference to the angle.

2.1.3 Field Imperfections
In real Penning traps, the electric and magnetic fields only approximate the ideal
situation introduced in section 2.1.1. The effect of field imperfections is discussed
for example in [46]. Here, the main results are briefly summarized.
Generally, inhomogeneities and anharmonicities lead to motional sidebands at
higher harmonics of the fundamental frequency and a shift of the fundamental
frequency. These effects depend on the motional amplitudes of the ion. For small
perturbations, the motional sidebands can be neglected and only the frequency
shifts need to be considered.

Electrostatic Imperfections

To describe the effect of electrostatic imperfections, one utilizes that the electrodes
are in good approximation cylindrical-symmetric. Therefore, also the electrostatic
potential has to be cylindrical-symmetric. This information can be used to write
the potential as a series. Additionally, the Penning trap is usually operated with
voltages symmetric with respect to a mirror transformation z → −z, which allows
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neglecting the odd order terms. The potential then can be written in a series
expansion having the following form:

Φ(r, z) = Ur
2

[
C2

d2
char

(
z2 − r2

2

)

+ C4

d4
char

(
z4 − 3z2r2 + 3

8r
4
)

+ C6

d6
char

(
z6 − 15

2 z
4r2 + 45

8 z
2r4 − 5

16r
6
)

+ ...] .

(2.23)

The anharmonicity of the electric field is effectively described by the coefficients
Cn, i ∈ 4, 6, ..., which will be extensively used in section 4.2.
For the leading order anharmonicity described by the coefficient C4, the first order
frequency shifts are [46]

∆ωz = ωz
C4

C2

3
4d2

char

(
ẑ2 − 2r2

+ − 2r2
−

)
, (2.24a)

∆ω± = ∓C4

C2

3
2d2

char

ω+ω−
ω+ − ω−

(
2ẑ2 − r2

± − 2r2
∓

)
. (2.24b)

In equation (2.24b) the upper index describes the frequency shift of ω+, the lower
index describes ω−. The overall amplitude of the frequency shifts is determined
by the ratio C4/C2, which is typically small (< 10−5). The shifts scale with the
motional amplitudes divided by the characteristic trap length dchar. For motional
amplitudes approaching dchar, the series expansion approach is no longer valid.
The first order frequency shifts caused by the next to leading order even anhar-
monicity are [46]

∆ωz = ωz
C6

C2

15
16d4

char

(
ẑ4 + 3r4

+ + 3r4
− − 6r2

+ẑ
2 − 6r2

−ẑ
2 + 12r2

+r
2
−

)
, (2.25a)

∆ω± = ∓C6

C2

15
8d4

char

ω+ω−
ω+ − ω−

(
3ẑ4 + r4

± + 3r4
∓

−6r±ẑ2 − 12r2
∓ẑ

2 + 6r2
+r

2
−

)
.

(2.25b)

Again, the ratio of the coefficient describing the inhomogeneity C6 and C2 deter-
mines the overall strength of the frequency shifts. However, now with the motional
amplitudes going into the equation in 4th order, cross-terms appear. In practical
applications, it often suffices to consider only the amplitude of one of the three
modes and put the others as zero. For example, the shift of the axial frequency
ωz as function of the magnetron radius r− then becomes

∆ωz
ωz

= −C4

C2

3
2

(
r−
dchar

)2
+ C6

C2

45
16

(
r−
dchar

)4
, (2.26)

where the terms are grouped slightly different to clarify the meaning of equa-
tion (2.26). One essentially has a power series in even powers of r−/dchar, with the
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coefficients Cn/C2. This equation can be used to optimize the trap potential as
discussed in section 4.2.
It is noteworthy, that situations can occur where the assumption of an axially
symmetric trap potential do not hold and odd orders in the potential need to be
considered. This is especially the case when asymmetric voltages are intentionally
applied to shift the ion position in a controlled way: adding a linear term to the
harmonic potential will lead again to a harmonic potential with a shifted minimum.
The first anharmonicity to be discussed is then the order corresponding to the C3
coefficient. Using the ideas discussed above, the potential then can be written as

Φ (z, r) = Ur
2

[
C2

d2
char

(
z2 − r2

2

)
+ C3

d3
char

(
z3 − 3

2r
2z
)]
. (2.27)

Here, only the effect on the axial frequency ωz as function of the motional ampli-
tudes in the axial and magnetron mode shall be discussed, as this is used for trap
optimization.
When only looking at the axial dependence (r = 0), one has an anharmonic
oscillator with a potential Φ ∝ z2 + C3

C2dchar
z3. The equation of motion in such

a potential can be solved analytically [47]. For small pertubations C3/C2 � 1
and small motional amplitudes ẑ � dchar, the resulting motion is essentially again
a harmonic oscillation with shifted equilibrium position and frequency, z(t) ≈
ẑ cos((ωz + ∆ωz)t) + ∆z, with

∆z ≈ −3
4

C3

C2dchar
ẑ2, (2.28)

∆ωz
ωz
≈ −15

16
C2

3
C2

2d
2
char

ẑ2. (2.29)

A particle with significant amplitude in the magnetron motion and small axial am-
plitude will experience an axial confinement with potential Φ ∝ z2 − 3

2
C3

C2dchar
r2
−z,

neglecting the z3 term. The linear term again leads to a shifted equilibrium po-
sition. A series expansion of the potential around this new equilibrium potential
yields the frequency shift

∆ωz
ωz

= 9
8

C2
3

C2
2d

2
char

r2
−. (2.30)

This calculation is instructive for two reasons: First of all, it becomes clear that
the leading order frequency shift from odd order coefficients is proportional to the
field coefficient squared, further justifying neglecting them above. Secondly, when
optimizing the trap potential, this is usually done by looking at axial frequency
shifts as function of the magnetron radius r−. Then the potential is altered, until
the term proportional to r2

− becomes zero. In the presence of a significant C3 this
will still be possible, however, this optimization will not result in C4 = 0 as desired,
but in C4 = 3C2

3
4C2

. When reinserting this into equation (2.30) and equation (2.24a),
it becomes apparent that the axial frequency ωz is not anymore independent of the
axial amplitude ẑ. If one is going to perform measurements in such a situation,
this would result in significant errors.
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Magnetostatic Inhomogeneities

Magnetostatic inhomogeneities can be written in a general form using similar ar-
guments as for the electric field. For the general form, see [46], here the explicit
form of the most relevant contributions is discussed. Again, only the even order
contributions lead to a shift in first order.
The quadratic inhomogeneity B2 can be written in cylindrical coordinates as

~B2 = B2

[(
z2 − 1

2r
2
)
êz − zrêr

]
, (2.31)

where B2 is a parameter describing the strength of the inhomogeneity in units
tesla per meter squared. This inhomogeneity leads to shifted eigenfrequencies

∆ω+

ω+
= B2

2B0

ω+ + ω−
ω+ − ω−

(
ẑ2 − r2

+ −
(

1 + ω−
ω+

)
r2
−

)
, (2.32a)

∆ωz
ωz

= B2

4B0

ω+ + ω−
ω+ω−

(
ω+r

2
+ + ω−r

2
−

)
, (2.32b)

∆ω−
ω−

= − B2

2B0

ω+ + ω−
ω+ − ω−

(
ẑ2 −

(
1 + ω+

ω−

)
r2

+ − r2
−

)
. (2.32c)

The structure of the formulas is very similar to the frequency shifts arising from
the first order electric anharmonicity C4 described in equation (2.24). Now the
magnitude of the shift is described by the ratio B2/B0, to be compared with C4/C6.
However, in B2 the unit length is already absorbed, for the electric anharmonicities
this was covered by the characteristic trap length dchar.
The next higher order is

~B4 = B4

[(
z4 − 3z2r2 + 3

8r
4
)
êz +

(
−2z3r + 3

2zr
3
)
êr

]
, (2.33)

leading to frequency shifts

∆ω+

ω+
=3B4

8B0

ω+ + ω−
ω+ − ω−

(
r4

+ + ẑ4 +
(

1 + 2ω−
ω+

)
r4
−

−4r2
+ẑ

2 − 4
(

1 + ω−
ω+

)
r2
−ẑ

2 + 4
(

1 + ω−
2ω+

)
r2

+r
2
−

]
, (2.34a)

∆ωz
ωz

=3B4

8B0

ω+ + ω−
ω+ω−

(
−ω+r

4
+ − ω−r4

−

+ω+r
2
+ẑ

2 + ω−r
2
−ẑ

2 − 2(ω+ + ω−)r2
+r

2
−

)
, (2.34b)

∆ω−
ω−

=− 3B4

8B0

ω+ + ω−
ω+ − ω−

((
1 + 2ω+

ω−

)
r4

+ + ẑ4 + r4
−

−4
(

1 + ω+

ω−

)
r2

+ẑ
2 − 4r2

−ẑ
2 + 4

(
1 + ω+

2ω−

)
r2

+r
2
−

]
. (2.34c)
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Unlike for the electric imperfections, there is no argument for the odd order co-
efficients naturally being small. Indeed it turns out, that on the scale of typical
motional amplitudes the linear imperfection is bigger than the quadratic one. Al-
though the corresponding shift is only of order B2

1 , it still needs to be checked.
The linear inhomogeneity can be written as

~B1 = B1

(
zêz −

r

2 êr
)
. (2.35)

The dominating frequency shift from B1 comes from the magnetic moment associ-
ated with the cyclotron motion |µ|= qr2

+ω+
2 . This leads to a force in the inhomogenic

magnetic field and thus a new equilibrium position shifted by ∆z = −B1
B0

ω+ωc

2ω2
z
r2

+.
The magnetic field at this new equilibrium position is different, leading to a fre-
quency shift

∆ω+

ω+
≈ B1∆z

B0
= −

(
B1

B0

)2 ω+ωc
2ω2

z

r2
+. (2.36)

2.2 Image Current Detection
In the previous section I discussed the motion of a single ion in a Penning trap,
how the motion can be describedy by three eigenmotions and how they are affected
by field imperfections. However, we still did not discuss how we actually measure
the eigenfrequencies at Liontrap. This section introduces the image current
detection, which is used at Liontrap not only to measure the axial frequency ωz,
but also ω+ and ω− through couplings to the axial motion. The basic idea is to
transform tiny image currents induced by the ion into measurable voltages using
a resonator. There, the ion appears as a distinct feature called dip in the Fourier
transformed signal of the thermal noise spectrum of the resonator. In the following
sections I will explain the concepts behind this in detail.

2.2.1 Image Currents
An ion sitting above a conducting surface induces charges into this surface. For
a flat surface this happens in a way that the field looks as if there was an image
charge of the same size but with the opposite sign on the other side of the surface
[48]. This simple principle is sketched in figure 2.2a and builds the basis on how we
detect the axial motion of ions at Liontrap. The motion of ions induces currents
in the electrodes of the Penning trap.
To calculate the currents induced by an ion in the vicinity of an electrode, we
can use the Shockley-Ramo theorem [49]. It states that the electric current iind
induced by an ion with charge q moving with velocity ~v is

iind = q~v · ~Ew(~x(t)). (2.37)
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(a)

el

Φ

Φ

(b)

Figure 2.2: (a) An ion close to a conducting surface induces a charge density in
the surface, such that the electric field lines look like there is an image charge with
the surface as mirror axis. (b) Illustration of the effective electrode distance. The
potential from the electrode of interest is simulated with the other electrodes on
ground. In the range of axial motion, this potential is linearly approximated.

Here, · denotes the dot product between vectors and ~Ew(~x(t)) = ~E(~x(t))/Uel is
the so called weighting field, the field produced by the electrode normalized to 1 V.
This means for the axial motion, we look at the derivative in z-direction of the
potential created by this electrode. For the center electrode this would be zero,
that is why we have to use an off-center electrode as shown in figure 2.2b. The
electric potential usually can be approximated linearly in the range of the axial
motion, so the field is a constant. Often, the inverse of the weighting field, the so
called effective electrode distance, is used,

D = 1
|Ew,z(~x = 0)| . (2.38)

While in this section the effective electrode distance always refers to the z-component
of the weighting field Ew,z, this does not have to be the case for example for the im-
age current detection of the radial modes or excitations as described in section 2.3.
Inserting the ion’s axial motion as z(t) = ẑ cos(ωzt) into equation (2.37) yields

iind(t) = q

D
ż(t) = −qωz

D
ẑ sin(ωzt)

→ 〈iind(t)〉 = irms
ind = q

D

ẑ√
2
ωz.

(2.39)

In our measurement trap, we have D = 9.6 mm. For a deuteron with charge
q = 1 e, frequency ωz ≈ 2π ·460 kHz and a motional amplitude of about ẑ ≈ 10 µm,
this results in a current of only 0.3 fA (femtoampere). To transform such a small
current into a measurable voltage, according to Ohm’s law U = ZI the absolute
value of the impedance Z at the axial frequency should be as high as possible.
However, the capacitances between traps in the order of a few picofarad (pF)
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would limit the useful range for a resistor to some kiloohms, which is by far not
sufficient. Therefore, a resonant tank circuit as described in the following section
is commonly used.

2.2.2 Tank Circuit

A tank circuit or resonator is essentially a coil connected to the trap electrode.
Together with the capacitance of the trap, sometimes some additionally added
capacitance, and the capacitance in the coil, this forms an LC-circuit as shown in
figure 2.3. Usually, the coil is made from superconducting material. Effects like
dielectric losses in the isolation, losses in the normal conducting connection to the
trap electrode or even AC losses in normal conducting material close by limit the
fidelity of the system and are modeled as a resistor parallel to the coil. In this
model, the impedance of the detection system can be written in the form

Z = 1
1
iωL

+ iωC + 1
RP

= RP

1 + iQ
(

ω
ωres −

ωres
ω

) . (2.40)

The real part of this impedance as a function of frequency ω forms a resonance
curve and has a maximum at the resonance frequency ωres = 1√

LC
, at which the

circuit acts as a pure ohmic resistor with efffective resistance Rp. The width of
this resonance is described by the quality factor or Q-value, Q = ωres/∆ω, with
the full width at half maximum (FWHM) ∆ω of the real part of the impedance.
In practice, one tries to minimize the losses as far as possible. How well exactly
this worked, one then can estimate by measuring the Q-value with the LC-circuit
installed in the experiment. The effective parallel resistance RP can be calculated
as

RP = QωresL. (2.41)

2.2.3 Thermal Noise Spectrum

Even without any external voltage applied, the resonator described in section 2.2.2
will always produce a thermal voltage noise. The fact, that any electronic circuit
produces such a voltage, has been discovered by John Johnson [50] and explained
by Harry Nyquist [51], and is called Johnson Noise or Johnson-Nyquist Noise. The
rms (root mean square) voltage un at a frequency bandwidth ∆ν is given by

un =
√

4kBT Re(Z)∆ν, (2.42)
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C LRP

u

l1

l2

Figure 2.3: Schematic sketch of an LC- or tank circuit. The capacitance C, in
which the trap capacitance and any additional capacitance are absorbed, builds
together with the inductance L a resonant circuit. The losses in this circuit are
modeled as a parallel resistance RP . To limit the effect of noise from the following
amplifier chain, the voltage is usually tapped towards the grounding end of the
coil, at Liontrap l1 = 10l2.

where kB is the Boltzmann constant and T is the temperature of the electrons in
the circuit. Plugging in equation (2.40) for the impedance, one arrives at

uresn =
√√√√√ 4kBTRP∆ν

1 +Q2
(

ω
ωres −

ωres
ω

)2 . (2.43)

In practice, the frequency bandwidth ∆ν is given by the resolution of the Fourier
transform. This voltage is amplified by a low-noise cryogenic amplifier developed
by Sven Sturm in our group [52]. In the room temperature section, the signal
is further amplified, mixed down into the audio range and Fourier transformed.
To get the finally observed lineshape, we have to include several other effects.
The cryogenic amplifier adds a noise level uampl

n . This noise has several frequency
components, which scale differently with the frequency. There are for example
white noise components and 1/ν components. However, for the relatively small
frequency range of at most a few kHz we are interested in, this can be taken as
white noise denoted as uampl

n . Additionally, we allow for the transfer function of
the system to have a slight frequency dependence, which we approximate linearly
with slope κdet in the region around ωres. Finally, the complete signal is amplified
by a parameter A. The lineshape we get on our fast Fourier transform (FFT)
device then reads

ures,FFTn = A (1 + κdet(ω − ωres))
√

(uresn )2 + (uampl
n )2. (2.44)

This lineshape is usually displayed and fitted in logarithmic units (dBVrms). This



24 Chapter 2. Physics of a Single Particle in a Penning Trap

has the advantage, that the weights during fitting are automatically correct 1. To
get to dBVrms, one has to take the logarithm with basis 10 and multiply with 20.
The lineshape in dBVrms can be rewritten as

20 log10 u
res,FFT
n ≈ 10 log10

[
ÃRe(Z)/RP + (ũampl

n )2
]

+ κ̃det(ω − ωres), (2.45)

using log10 (1 + κ(ω − ωres)) ≈ κ(ω− ωres)/ln(10). The newly defined parameters

Ã = A24kBTRP∆ν,
ũampl
n = Auampl

n ,

κ̃det = 20κdet/ln(10),
(2.46)

are together with Q and ωres fitted parameters. The resistance is kept explicitly
in equation (2.45) because in this way Re(Z)/RP is dimensionless.

2.2.4 Interaction between the Ion and the Tank Circuit
In this section an analysis of the interaction between the detection system intro-
duced in section 2.2.2 and a single trapped ion will be presented. We will see, that
the ion’s motion is damped and thermalizes with the tank circuit. This resistive
cooling was first demonstrated by Wineland and Dehmelt in 1975 [53]. To describe
the interaction we need to find an expression which relates the ion’s motion to the
electric field originating in the current induced in the electrode with the resonator
attached.
In equation (2.39) the current iind induced by the ion was calculated. The electric
field produced by a voltage uind at the resonator electrode is Ez = −uind

D
from

equations (2.37) and (2.38). However, relating the induced voltage to the current
by using uind = Ziind is tricky, as the physical quantities described are real valued,
but the concept of the electric impedance Z uses a complex quantity to describe
phase shifts. To solve this rigorously, one needs to describe both the voltage in
the LC-circuit and the motion of the ion as differential equations. The current
induced by the ion acts as a source term for the LC-circuit, and the voltage in
the LC-circuit acts as a drive for the ion’s motion. Solving this system of coupled
differential equations becomes rather lengthy. However, using the phase relation
between a sinusoidal current and the resulting voltage for a complex impedance,
one can convince oneself that the force acting on the ion can be written as

Fz = qEz = −quind
D

= − q2

D2 Re(Z)ż + q2

D2 Im(Z)ωzz.
(2.47)

1As a noise quantity, the uncertainty of un is proportional to its value. The uncertainty of
log un is then δ log un = 1

un
δun = const.
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Adding this to the differential equation 2.5c, one arrives at

z̈ + 2γż + ω̃2
zz = 0, (2.48)

where γ = q2 Re(Z)
2mD2 and ω̃2

z = ω2
z −

q2ωz Im(Z)
mD2 . This is the standard equation of

motion for a damped harmonic oscillator, with shifted frequency

ω̃z − ωz ≈ −
q2 Im(Z)

2mD2 . (2.49)

The amplitude of the ion’s motion is damped with damping constant γ. Usually,
one defines the cooling time constant

τ = 1
2γ = mD2

q2 Re(Z) , (2.50)

such that the energy, which is proportional to the amplitude squared, has a damp-
ing proportional to exp(−t/τ). This timing constant depends on the involved
frequencies. Since the strongest damping occurs at resonance, we define

τ̃ = τ(ωz) = ωres = mD2

q2Rp

. (2.51)

At Liontrap the damping constant for a single deuteron is about τ̃ = 0.3 sec,
much slower than the axial oscillation. Therefore, the effect of the damping on
the frequency can be safely neglected, the shift described in equation (2.49) is
dominant. This shift is referred to as image current shift.
After a few seconds, the ion will get into thermal equilibrium with the resonator,
which at Liontrap is at 4.2 K. To describe the signal one gets from an ion
which is in thermal equilibrium with a tank circuit, it is useful to develop a circuit
representation of the ion. Therefore, we rewrite the equation of motion to

0 = z̈ + ω2
z + uindq

mD
. (2.52)

Now we can solve this for uind, and substitute the coordinate z by the current
induced by the ion iind = q

D
ż, resulting in

uind = ω2
zmD

2

q2︸ ︷︷ ︸
=:C−1

ion

∫
i dt+ mD2

q2︸ ︷︷ ︸
=:Lion

∂i

∂t
. (2.53)

This calculation shows that the ion effectively acts as a series circuit with capacity
Cion and inductance Lion. It is noteworthy, that these values would be very uncom-
men in electronics, for example for a deuteron in our trap these values evaluate to
Lion ≈ 107 H and Cion ≈ 10−20 F. The impedance of such a series circuit is

Zion = iωLion −
i

ωCion

= iωRpτ̃

(
1− ω2

z

ω2

)
.

(2.54)
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Figure 2.4: Dipsignal of a single deuteron. In (a), the plotted frequency range is
wider than the width of the resonator, the Johnson noise of the resonator is clearly
visible. The zoomed in spectrum in (b) shows the dip in detail, together with a
fitted lineshape. The resonator appears flat on this scale. The y-axis is scaled to
dbVrms/

√
Hz, which removes the dependency of the frequency resolution ∆ν.

We can use this, to calculate the total impedance of the system of ion and res-
onator, and then get the lineshape in the same way we got the lineshape for the
resonator only outlined in section 2.2.3. The total impedance is

Ztot = 1
1

ZLC
+ 1

Zion

= Rp
ωresω (ω2 − ω2

z)
ωresω (ω2 − ω2

z) + iQ (ω2 − ω2
res) (ω2 − ω2

z)− iωresω2/τ̃
,

with the real part

Re(Ztot) = Rp
(ωresω (ω2 − ω2

z))
2

(ωresω (ω2 − ω2
z))

2 + (Q (ω2 − ω2
res) (ω2 − ω2

z)− ωresω2/τ̃)2 . (2.55)

The resulting noise density is calculated from equation (2.42). After transforming
into logarithmic units and considering the same effects as in section 2.2.3, the
lineshape reads

20 log10 u
dip,FFT
n = 10 log10

[
ÃRe(Ztot)/RP + (ũampl

n )2
]

+ κ̃det(ω − ωres). (2.56)

This lineshape is typically referred to as a dip. At the ion’s axial frequency, the
ion effectively shortens the thermal noise of the resonator, resulting in a dip in the
noise spectrum. One example for such a dip signal is shown in figure 2.4
When having multiple ions of the same species in the trap, above analysis holds
for the common motion, but the dip signal is widened. For N ions, the −3dB
width of the dip ∆νz is

∆νz = N

2π
1
τ
. (2.57)
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From this, one can verify that there indeed is a single ion in the trap.
In this model, the dip always reaches to the noise floor given by the amplifier.
However, in practice this is not always the case due to instabilities in the axial
frequency. To factor such instabilities in, the lineshape in equation (2.56) can be
convoluted with a Gaussian distribution for the axial frequency ωz, resulting in a
slightly wider and less deep dip signal.

2.3 Excitations
In a Penning trap, several kinds of excitations are used to manipulate the motion
of the ions. These excitations are driven by applying an AC-voltage to an elec-
trode or to a split electrode. Since the motional frequencies are in the order of
< 30 MHz, the corresponding wavelengths are much larger than the dimensions of
the trap. Therefore, it suffices to threat these excitations quasi static in a near
field approximation.

2.3.1 Dipolar Excitation
The dipole excitation is used to directly and coherently excite one motional mode.
For the axial mode, the field component which is associated with a dipole excitation
is given by a potential

Φ ∝ Uexc sin(ωrft+ φ0)z, (2.58)

where ωrf is the frequency of the excitation and φ0 an arbitrary phase. The voltage
used for the excitation is denoted as Uexc. Such an oscillating potential can be
achieved by applying the oscillating voltage to any off-center electrode. Adding
the force resulting from such a field to the equation of motion (2.5c) results in
a driven harmonic oscillator. Usually, this excitation is applied for a short time
T and ωrf ≈ ωz. This results in an amplitude depends linearly on the excitation
time. However, the initial phase relation between the ion and the excitation plays
a role. If the amplitude before the dipole excitation was z0, the amplitude zexc
after excitation is [54]

z2
exc = (κzTUexc)2 + z2

0 + (2κzTUexcz0 cos(∆φ)). (2.59)

Here, κz is a constant which has to be calibrated, and ∆φ is the phase difference
between the excitation and the inital phase of the ion. Usually, this phase difference
is random. Note, that this is only true for excitations, where ωrf − ωz � 1/T .
Otherwise the excitation strength decreases with sin(ωrf−ωz)

ωrf−ωz
, and even has minima

at ωrf − ωz = ±2πN
T

, with N ∈ N .
These results also hold for the radial modes. There, one has to use a potential
Φ ∝ x or Φ ∝ y. At Liontrap, this is done by applying the oscillating voltage to
one half of a split electrode.
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2.3.2 Quadrupolar Excitation
The quadrupolar excitation is used to couple the motional modes. Coupling be-
tween both radial modes can be achieved by using a potential Φ ∝ xy. To ef-
fectively generate such a potential, one can again use a split electrode. However,
the mirror symmetry of a half-split electrode does not allow this excitation. For
example, one can use an electrode which is split in a way that the voltage can
be applied to one quarter of the electrode. Such an electrode is not available at
Liontrap at the moment.
To couple one radial mode with an axial mode, one needs a potential Φ ∝ xz (or
yz), which can be achieved by using an off-center electrode, which is split in half.
For now I focus on coupling between the modified cyclotron motion and the axial
motion. There are two important cases to be distinguished:

1. A coupling with frequency ωrf ≈ ω+ − ωz leads to a coherent exchange of
energy between the modes. This can be used for the coherent measurement
technique PnP (see also section 2.6), and also in the incoherent detection
technique called double dip (see also section 2.5).

2. When coupling with frequency ωrf ≈ ω+ +ωz, this results in an amplification
of both modes. Simply put, the amplitude in one mode determines the
drive strength in the other mode. This is used in the coherent measurement
technique PnA, which is discussed in section 2.6.

Coupling the magnetron motion to the axial motion works in the same way. How-
ever, the exchange of energy occurs at the coupling frequency ωrf ≈ ωz + ω−,
which is a non-trivial consequence from the fact that the energy associated with
the magnetron motion is negative. It is important to note, that the field generated
by an off-center split electrode is of course not a pure quadrupolar field. Especially
dipole excitations of both radial and axial modes are also possible. In fact, the
same electrode is used for both quadrupolar and dipolar excitation through a wide
range of measurements performed at Liontrap.

2.3.3 Electronic Feedback
Electronic Feedback is a form of excitation, which is not applied directly to the
ion, but to a resonator as introduced in section 2.2.2. The Johnson noise of the
resonator is amplified, phase shifted and fed back capacitively to the resonator.
Without going too much into details, which are extensively described in [52, 54],
there are three cases to be distinguished, depending on the phase:

1. So called 90 degree feedback, where the phase is ±90◦, shifts the apparent
resonance frequency of the resonator. This form of feedback is currently not
used at Liontrap.

2. At a phase shift of 0◦, the Q-value and the effective temperature of the
resonator increase. This is called positive feedback. Positive feedback is
currently also not used at Liontrap.
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3. For a phase shift of 180◦, negative feedback occurs. The Q-value of the
resonator decreases, together with the effective temperature of the resonator.
This is used routinely at Liontrap to decrease the temperature of the ions
below the environment temperature of about 4.2 K.

2.4 Temperatures
Usually, temperature describes the distribution of energies for a sample of particles.
So what is meant by the temperature of a single ion? If there is a damping
mechanism, for example through a tank circuit as described in section 2.2.4, after
a few cooling time constants τ , the ion can be considered in thermal equilibrium
with the tank circuit. If one measures the ion’s energy, then waits for a few
cooling time constants and repeats this process several times, the resulting energy
distribution will be the one expected from the temperature of the tank circuit.
In principle, this is an application of the ergodic hypothesis: The temperature
is not measured as an average over an ensemble, but as a time average over a
single particle in thermal equilibrium with that ensemble. For an ion in thermal
equilibrium with a tank circuit, the ensemble would be the combination of the
electron gas in the tank circuit and the ion in the Penning trap.
At Liontrap, typically the axial motion is in thermal equilibrium with a tank
circuit. The temperature of the circuit is at the environmental temperature of
T = 4.2 K, or slightly lower by means of electronic feedback. The average axial
energy is then

< Ez > = kBT

=: kBTz,
(2.60)

where Tz is defined as the axial temperature. Comparing this with the quantum
mechanical expression for the axial energy in equation (2.16), one sees that the
mean quantum number is 〈n〉 ≈ 2 · 105, justifying a classical treatment. At Li-
ontrap, we cool the radial modes by coupling them to the axial mode using
the resonant exchange of energy described in section 2.3.2. This results in equal
quantum numbers [54]. The temperatures are then given by the axial temperature
times the frequency ratio,

T+ = ω+

ωz
Tz =:< E+ > (2.61a)

T− = −ω−
ωz
Tz =:< E− > . (2.61b)

If the axial temperatures during the coupling of magnetron and cyclotron motion
were equal, this means especially, that the modified cyclotron radius r+ and the
magnetron radius r− are equally distributed, see equation (2.15). I define the
temperature of the magnetron motion as negative, T− < 0. Since the energy
associated with the magnetron motion is also negative, this allows the Boltzmann
factor to be written in the usual manner, exp( E−

kbT−
). However, this should not be
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Figure 2.5: Example of a double dip of a single deuteron (blue), together with a
fitted lineshape model (red). The signal amplitude as function of the frequency is
shown.

confused with other mentions of negative temperature in the literature [55], where
the term negative energy describes a situation where the probability for a given
kinetic energy is higher for higher energies, up to a cut-off energy.

2.5 Incoherent Detection Techniques
At Liontrap, two incoherent detection techniques are used: The dip as described
in section 2.2.4 and the double dip already mentioned in section 2.3.2. Here I
describe the technique of the double dip in more detail. The basic idea of this
technique was found by later Nobel laureate Eric Cornell [56] in 1990, however,
there he was looking at a double peak signal, not a double dip.
As previously mentioned, the coupling drive with frequency ωrf ≈ ω+ − ωz leads
to a coherent exchange of energy between the axial and the modified cyclotron
mode. This can be seen as analogous to a driven quantum mechanical two level
system. The cyclotron mode and the axial mode correspond to the excited and
ground state, the energy in the modes corresponds to the probability of the states.
The corresponding Hamiltonian can be diagonalized and the eigenvalues can be
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identified, see for example [57].
In the laboratory frame, the axial frequencies of the dressed system are

ωr,l = ωz −
δ

2 ±
1
2
√
δ2 + Ω2, (2.62)

often denoted with indices l and r for left and right. Here, δ is the detuning of the
radio-frequency drive, defined as

δ = ωrf − (ω+ − ωz) . (2.63)

The coupling strength is described through the Rabi-frequency Ω. The dip splits
into two dips with frequencies given by equation (2.62). From a fit to this lineshape,
the axial frequency typically measured beforehand using the dip technique and the
known coupling frequency, one can deduce the modified cyclotron frequency using

ω+ = ωrf + ωl + ωr − ωz. (2.64)
For small detunings δ ≈ 0, the left and right dip are symmetrical with respect to
the position of the dip without coupling, and they are split by the Rabi-frequency
Ω. This allows a calibration of the strength of the quadrupolar excitation and
a cross-check with the excitation strength expected from the technical setup, by
using [56]

Ω = qE0

2m√ωzω+
, (2.65)

where E0 is the electric field used for the excitation ~E = E0 cos(ωrft) (xẑ + zx̂).
This field can be related to the applied voltage by a simulation of the trap geometry.
An example for such a double-dip measurement with a Rabi-frequency of about
Ω = 2π · 25 Hz and a fitted lineshape is shown in figure 2.5. The lineshape is very
similar to the dip lineshape derived in section 2.2.4, for more details see e.g. [58].
The width of these dips can also be derived from the quantum mechanical analogy
[41]. The amplitudes of the states are given in terms of a mixing angle θ, which
fulfills

tan(2θ) = −Ω
δ
. (2.66)

The width of the left and right dip, expressed as a time constant in the same
manner as the dip, can then be evaluated to

τl = τ

sin(θ)
τr = τ

cos(θ) ,
(2.67)

with
sin(θ) = 1

2

(
1 + δ√

Ω2 + δ2

)

cos(θ) = 1
2

(
1− δ√

Ω2 + δ2

)
.

(2.68)
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The same principle can be transferred to a measurement of the magnetron fre-
quency ω−. However, a few subtleties have to be considered. There, one needs
to use the other sideband ωrf ≈ ωz + ω− because of the negative energy associ-
ated with the magnetron motion. Therefore, the magnetron frequency needs to be
extracted using

ω− = ωrf − ωl − ωr + ωz. (2.69)
For typical frequencies, the drive frequency is relatively close to axial frequency,
resulting in three complications. First of all, the dipolar portion of the driving field
will drive the axial motion directly, giving effectively an increased temperature.
Secondly, the excitation can saturate the amplifiers, and thirdly, the excitation
can introduce noise to the resonator. Therefore, one typically needs to take sev-
eral double dip spectra with decreasing coupling strength and to extrapolate the
resulting magnetron frequency to zero coupling strength.
The double-dip method has been used for a variety of great results in different
groups using Penning traps, for example the proton/antiproton charge-to-mass
comparison [59], the proton/antiproton g-factor measurements [60, 61] and various
g-factor measurements on highly-charged ions [58, 62]. One major advantage is,
that as the ion is in thermal equilibrium during the measurement, one has to deal
with low energy dependent systematic shifts. However, especially when trying to
compare ions with different charges and masses, the understanding of the lineshape
model becomes a critical and potentially limiting factor. This is one reason for
using coherent detection techniques as described in the next section.

2.6 Coherent Detection Techniques
The principle of coherent detection techniques is to measure a phase, rather than
just the frequency. This can be done with any of the motional modes. For mass
measurements, the measurement of the modified cyclotron frequency is of the high-
est importance. Therefore, I focus on the phase-sensitive measurement techniques
of this mode in this section.
All phase-sensitive techniques follow the following steps:

1. Imprint a starting phase to the ion’s motion. Usually this is done by a dipolar
excitation.

2. Wait a well-defined time period, called evolution time Tevol.

3. Read out the phase of the ion. Here the techniques differ.

For very high-excitation radii the phase could in principle be read-out directly
using a cyclotron resistor. However, the systematic uncertainties associated with
such a high excitation make this approach unfeasible for the level of precision we
are aiming at.
Another approach is to transfer the phase to the modified cyclotron amplitude
by a second dipolar pulse and read out the amplitude by deliberately introducing
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Figure 2.6: Principle of the PnA technique. The modified cyclotron mode is excited
slightly above its thermal amplitude by a diploar excitation at frequency ω ≈ ω+.
The phase evolves freely for a phase evolution time Tevol, which varies between
10 ms to 40 sec. The phase of the cyclotron mode is transferred to the axial mode
by a pulse at ω ≈ ω+ + ωz, which also amplifies both the cyclotron mode as well
as the axial mode.

anharmonicities. This approach has been used for the magnetron frequency at
Liontrap [63]. However, for the cyclotron mode one would need relatively large
amplitudes, making this method less suited.

The approach used at Liontrap is to transfer the phase of the cyclotron mode to
the phase of the axial mode. This idea was first realized in the group of David E.
Pritchard at the Massachusetts Institute of Technology (MIT). There, they used
a π-pulse with frequency ωrf ≈ ω+ − ωz to coherently transfer the energy and the
phase of the cyclotron mode to the axial mode. This technique is called PnP for
Pulse aNd Phase [56].

In our group, this approach was slightly altered by using a parametric amplification
with frequency ωrf ≈ ω+ +ωz instead of the π-pulse. This technique is called PnA
for Pulse and Amplify [64]. Such an amplification can also transfer the phase of
the modified cyclotron motion to the axial motion, if the following condition is
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fulfilled:
γr+,0 � z0,

γ =
√
ω+ − ω−

ωz
≈
√
ω+

ωz
.

(2.70)

Here, r+,0 and z0 denote the motional amplitudes of the modified cyclotron and
axial mode before parametric amplification, respectively. Note, that the factor γ
matches the factor between the thermal radii of an ion, whose modified cyclotron
mode has been thermalized by coupling it to the axial mode. In this case, the
condition in equation (2.70) is automatically fulfilled as long as one excites signif-
icantly above the thermal radius, which one in any case needs to do in order to
reliably imprint a phase. The principle of this technique is sketched in figure 2.6.
This method has the big advantage, that the amplitude of the axial signal, where
the phase is read-out, is adjustable independently from the dipolar excitation
amplitude which imprints the phase. This allows to vary the excitation amplitudes
to a much higher degree than in the PnP method, extending the range accessible
to account for the dipolar excitation amplitude as a source of systematic shifts.

2.7 Additional Systematic Shifts
In this section, I introduce various further systematic shifts which also play an
important role for precision measurements in Penning traps. These are relativistic
shifts, the image charge shift and polarization shifts.

2.7.1 Relativistic Shifts
The ion’s motion leads to a relativistic mass increase, which influences the motional
frequencies. For Liontrap, this is especially important, as the lighter the ions are,
the bigger are these shifts. While a detailed analysis on the relativistic frequency
shift can be found in [65] it turns out, that only the energy in the modified cyclotron
motion plays a role.
Neglecting the energy in the axial and magnetron modes, the modified cyclotron
frequency shifts as

∆ω+

ω+
= − ω2

+E+

mc2(ω+ − ω−)2

≈ − E+

mc2

= −ω
2
+r

2
+

2c2 .

(2.71)

The shifts of the other modes can be neglected. The energy of deuteron at a
modified cyclotron radius of r+ = 100 µm, the highest excitation radius used during
the deuteron measurement campaign, is about E+ ≈ 3.4 eV. This is to be compared
with the rest mass, which is mdc

2 ≈ 1.9 GeV. In this scenario, the shift is in
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the range of 1.9 · 10−9 and thus very relevant. How this is treated in the mass
measurement is shown in section 5.3.1. In section 4.3.2, this shift is used to
calibrate the excitation strength in the modified cyclotron mode.

2.7.2 Image Charge Shift
In section 2.2, I described how the image charges the ion induces in the trap
surfaces can be used to detect its axial frequency. However, there is also a quasi-
static effect related to these image charges. In our cylindrical traps, this effect
occurs mostly in the radial direction. An ion on its radial motion induces image
charges in the surfaces, which create an outward electrical force. This effectively
lowers the modified cyclotron frequency and increases the magnetron frequency by
the same amount.
For measurements utilizing the ωc = ω+ + ω− to deduce the free space cyclotron
frequency, this effect hence does not play a role. When using the invariance theo-
rem however, one needs to correct for this effect. This can be done by simulations
of the trap geometry. Such simulations have been performed for our setup and
checked to a relative precision of 5% with measurements of the magnetron fre-
quency difference of a proton and a 12C6+ ion as reported in [63]. Since this effect
scales with the number of ions in the trap, this gives another method of measuring
it. This was done in [66].
While for the analyses done in this work I used the value ∆vc = −475.4 Hz e−1,
it is still instructive to see how this scales with the involved quantities. Generally
speaking, the relative shift of the cyclotron motion scales as

∆ωc
ωc
≈ −1.95 m

8πε0r3B2
0
, (2.72)

where r is the trap radius. A bigger trap thus reduces this shift, but it also reduces
the signal for image current detection, making measurements more difficult. For
the electron mass measurement performed at the predecessor of Liontrap, this
image charge shift was the leading systematic uncertainty at 14 ppt. To reach the
10−12 range we decided at Liontrap to increase the trap radius from rold = 3.5 mm
to rnew = 5 mm. This pushes the uncertainty of the image charge shift to about
5 · 10−12, while still giving enough signal strength even for the lightest ions as the
proton, the deuteron and the HD+ molecular ion.

2.7.3 Polarization Shift
The polarization shift in a Penning trap was first observed in the MIT group [67].
This effect occurs when measuring the cyclotron frequency of a particle with a
significant polarizability, like a molecular ion. The motional electric field induces
an electric dipole pointing towards the trap center of the cyclotron motion. This
dipole has an energy in the motional electric field, which leads to an effective mass
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increase, but only in the radial direction. This shift can be calculated to

∆ωc
ωc

= −αpol
B2

0
m
, (2.73)

where αpol is the polarizability of the electronic state of the (molecular) ion of
interest [68]. Since the polarizability is often given in atomic units and the mass
in atomic mass units, equation (2.73) can be rewritten to

∆ωc
ωc

= −9.929 · 10−15αpol/[a.u.]
(B0/[T ])2

m/[u] . (2.74)

For the HD+ molecular ion used in this work, the ground-state polarizability is
αpol = 395.30 a.u. [69], leading to a shift of ∆ωc/ωc = −1.84 · 10−11 compared
to a hypothetical particle with the same charge and mass, but no polarizability,
making it a relevant shift. Since αpol is calculated with sufficient precision, this
effect can be corrected for on a level which is much better than our current level
of precision.



3 The LIONTRAP-Setup
In this chapter, I describe the Liontrap-setup. Parts of the setup are based
on the former g-factor experiment on highly-charged ions located in Mainz [70,
52, 54]. There, the setup was continuously improved, resulting in a range of
excellent results. The g-factor measurements demanded heavier and more highly
charged ions, which were increasingly difficult to provide in the relatively small
setup in Mainz. Therefore, it was decided to shift focus to mass measurements.
To achieve this, large parts of the setup were replaced in 2016 prior to the first
mass measurement campaign on the proton’s atomic mass [8, 7]. A brief overview
of the setup and a detailed description of further improvements carried out in the
framework of this thesis are given in the following.

3.1 Overview
An overview of the experiment is shown in figure 3.1. The heart of the experiment
is a stack of Penning-trap electrodes. These electrodes make up in total five traps.
These are two storage traps ST1 and ST2, the precision trap PT, in which the mass
measurements are performed, a trap which is intended to monitor the magnetic
field called magnetometer trap MT, and a trap used for the production of ions
called creation trap CT. I give more details on the traps in section 3.4. The
traps are located in a so-called trap chamber. This is a vacuum vessel, which is
pumped to ≈ 10−7 mbar and hermetically sealed at room temperature. In the
experiment, the trap chamber is at a temperature of 4.2 K, lowering the pressure
to < 10−17 mbar, measurable only by the lack of charge exchange losses.
Located above the trap chamber is a cryogenic electronics section. The cryogenic
amplifiers are located here, as well as filter boards for DC voltages and switches
for excitations. These parts are cryocooled to liquid helium temperature by a LHe
tank. The transition to the room temperature region works through the helium
filling tube. There, a so-called 20K-shield cooled by the boil-off helium gas is
attached, wich covers the lower part of the setup against thermal radiation. This
shield is designed to be at 20 K, however, it turned out to be at a much lower
temperature only slightly above liquid helium temperature.
On top of all of this, there is a so-called hat, consisting of further electronics and
the necessary electronic feedthroughs.
This central part of the setup is lowered into the bore of a 3.8 T superconducting
magnet, with a maximum field strength of 6 T. The magnet bore and the hat build
a vacuum vessel for an isolation vacuum. Our magnet was charged in 1995 and
since then the current is untouched.

37
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Figure 3.1: Overview of the setup. The setup consists of an elongated central part,
which is lowered into the warm bore of a 3.8 T magnet. Several external devices
produce the voltages and signals necessary to operate the experiment. They are
remotely controlled by a computer with a labview control system. For details see
text.

Already implemented in the warm bore is a liquid nitrogen shield, which is con-
nected to a liquid nitrogen tank on top of the magnet. Its thermal connection
to the setup happens at the helium filling tube, above the connection of the 20K-
shield. Further details on the cryosetup can be found in [71]. The magnet is housed
in a thermally insulated box. The box is temperature stabilized to a temperature
a few degrees above room temperature, for the deuteron measurement campaign
at 30 ◦C. Fans produce a constant airflow, reducing temperature gradients.
The voltage sources are also located in the temperature stabilized region. For the
trap voltages, we use two UM1-14 voltage sources by Stahl-Electronics. Other
voltages, for example for the biasing of the cryo-amplifiers, are provided by self-
built voltage sources.
Outside of the temperature stabilized region, there is a rack with a multitude of
external devices. These devices are:

• AWG. An arbitrary waveform generator, to produce arbitrary excitations,
connected to a quadrupolar excitation line.
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• FFT. An SR1 audio analyzer by Stanford Research, which is providing a fast
Fourier transformation of the ion signals.

• LO. A function generator which we call local oscillator. It is used to mix down
the axial frequency signals (≈ 500 kHz) into the audio region (≈ 15 kHz).

• BNC. A pulse generator BNC555 from Berkeley Nucleonics used to trigger
time-critical measurements.

• FB. Another function generator used for the application of electronic feed-
back.

• Clock. A 10 MHz rubidium frequency standard FS725 by Stanford Research
Systems. All devices are locked to this frequency standard.

• For specific situations, several other devices where used. For example addi-
tional function generators for dipolar excitations or a spectrum analyzer to
take wide range mass spectra during ion production.

All external devices are controlled from a computer, on which control programs
written in labview are executed.

3.2 Pressure Stabilization
The boiling temperature of liquid helium and liquid nitrogen is pressure dependent.
Temperature changes can influence the magnetic field and thus our measurement,
since the magnetic susceptibility of all materials is temperature dependend. The
materials used in our setup have been chosen to have as little as possible suscepti-
bility, however, some susceptibility, which then also depends on the temperature,
remains.
In the past, the temperature in the range around the boil-off point of liquid helium
was even defined by its pressure dependency. While this International Temperature
Scale of 1990 ITS-90 [72] has officially been replaced in the context of the new SI
[73], the scale still provides a convenient way to measure the temperature around
4 K. In the atmospheric pressure range, the scale can be linearly approximated.
The temperature T as a function of the pressure P then reads

T = 4.20814 K + 1.06 (P − 1000 mbar) mK mbar−1. (3.1)

Without further measures, the pressure in the LN2 tank follows the ambient pres-
sure. The LHe tank is connected to a recovery line. There, the helium is collected
in a ballon to be re-liquified. The pressure in this recovery line is usually slightly
above ambient pressure. However, situations like filling of other experiments also
connected to the recovery line or work at the liquifier can lead to significant pres-
sure fluctuations.
The ambient pressure can vary significantly in the range of ≈ 980 mbar to ≈
1030 mbar, resulting in temperature changes of up to≈ 50 mK. While this does not



40 Chapter 3. The LIONTRAP-Setup

seem like a lot, significant effects on the motional frequencies have been observed
in the past [54].
At Liontrap, there is an additional complication, since the experiment is mechan-
ically supported only by the helium filling tube. This tube is at room temperature
at the top of the experiment, and at 4 K when it enters the helium tank. The
temperature profile along the tube is largely determined by the boil-off rate of
liquid helium, which mostly reacts to pressure changes. Therefore, changes in the
boil-off rate will lead to the tube expanding or contracting, effectively changing
the position of the trap in the magnet.
All these considerations in mind, we decided to implement a pressure stabilization
for our cryo reservoirs. Here, I present the setup, its effect on the ions is evaluated
in section 4.6.

3.2.1 Design Requirements

When evaluating, how stable the pressure actually has to be, the dependency of the
modified cyclotron frequency ν+ on the pressure is the quantity of interest. In [54],
this quantity has been measured for all four reservoirs of the predecessor experi-
ment of Liontrap. There, the measured coefficients were between ≈ 4 ppb/mbar
and < 40 ppt/mbar. For the deuteron campaign, we were aiming at a statisti-
cal precision better than 10 ppt. In order to not significantly contribute to the
statistical uncertainty, the pressure thus needs to be stable in the range of a few
µbar, assuming that these coefficients are in the same order of magnitude despite
significant changes in the setup.
One should note, that this is absolute pressure, and measuring an absolute pressure
to a relative precision of 10−6 is challenging. At other experiments this problem was
tackled by building a pressure reference cell and measuring the pressure difference
[74, 75, 20]. However, this translates the difficulty in measuring absolute pressure
to a difficulty in keeping the pressure in the reference cell stable. Therefore, we
decided to use absolute pressure sensors and stabilize to a pressure slightly above
ambient pressure, usually 1050 mbar.
The pressure should be regulated by regulating the flow through a controlled valve.
At Liontrap, we have a LHe consumption of about 900 sccm (standard cubic
centimeters) for the apparatus and about 750 sccm for the magnet. For LN2, we
have about 3200 sccm for the apparatus and 2500 sccm for the magnet. We decided
to connect the exhausts of apparatus and magnet and stabilize these together, so
that in total only two instead of four stabilization systems will be needed. The
controlled valve thus needs to be able to effectively regulate a flow of 1650 sccm
(LHe) or 5700 sccm (LN2) with a pressure difference between 30 to 70 mbar at
about 1000 mbar absolute pressure.
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Figure 3.2: Pressure sensor comparison BMP388/Baratron 120AA. Shown is a
comparison between the sensors BMP388 and the Baratron 120AA, while both
sensors are connected to the LHe reservoir stabilized with the BMP388. The
Baratron 120AA shows digital steps corresponding to 40 µbar. On a time scale
of several hours, drifts between sensors are on the order of one digital step of the
Baratron and thus on an acceptable level.

3.2.2 Pressure Sensors and Regulated Valves
The first attempts were done using the pressure sensor Baratron 120AA by MKS
Instruments. This sensor has a pressure range of 1 torr ≈ 1.33 mbar and is specified
to have an accuracy of 0.12 % and a resolution of 1 ·10−6. The pressure is indicated
by an analog voltage. However, while comparing with a second pressure sensor we
noticed that the voltage shows digital steps corresponding to pressure changes of
about 40 µbar, making regulations below this threshold impossible, see figure 3.2.
The second pressure sensor we used is the BMP388 by Bosch Sensortec. This sensor
is usually meant to be used as a pressure altimeter in drones, and is as a mass
product very cheap. We used the version supplied by adafruit, which includes a
board containing electronics for digital communication and only costs about 10e.
To use the BMP388 at our experiment, we needed to enclose it in a vacuum vessel
with the necessary feedthroughs. The read-out is done by an Arduino controller.
At the highest resolution setting, this pressure sensor has a specified resolution of
85 µbar and a specified absolute accuracy of only 50 mbar. However, the absolute
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Figure 3.3: Pressure sensor comparison BMP388/6000-23A. Allan Deviation Plot
of the pressure read-out by the BMP388 (blue) and the 6000-23A (red). Both sen-
sors were connected to the stabilized LHe reservoir, the stabilization was using the
BMP388 as sensor. On timescales above a few seconds, the regulated sensor’s allan
deviation has a maximum of about 4 µbar. The 6000-23A confirmes this value. On
shorter timescales, the passive stability of the reservoir becomes significant. One
longer timescales, the comparison of both sensors confirms that the drift between
sensors is below 10 µbar for 100 s.

accuracy is not very important for a pressure regulation and can be improved
easily by a calibration measurement. The resolution performed much better than
specified and at least better than 4 µbar as one can see from figure 3.3. Giving
an exact number is hard however, since one would need a reservoir which is more
stable than the resolution of the sensor, which was not available. A possible
problem would be a drift of the sensor with time. To check for this we performed
a measurement where the Baratron 120AA and the BMP388 were connected to the
same stabilized pressure reservoir. On the time scale of three days, drifts could be
excluded up to the level of one digital step of the Baratron. The high resolution,
the absence of drifts on relevant time scales, the easy digital read-out and the low
cost make the BMP388 a good choice for a pressure stabilization sensor.
For the LHe stabilzation we additionally bought a 6000-23A pressure sensor by
Paroscientific. This pressure sensor has a specified accuracy of 80 µbar, a long-
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term stability better than 0.1 mbar per year and a resolution in the parts-per-billion
range, significantly outperforming the previous two sensors (see figure 3.3). It has
a range of about 1600 mbar and is easily damaged by over-pressure, which needs to
be considered when filling the reservoirs. Since this sensor was only delivered after
the data taking for the measurement of the deuteron’s atomic mass was started
and the BMP388 was performing good enough for us to not expect an additional
benefit by a better stabilization, we decided against replacing the sensor at that
time.
As regulated valves we used devices by Bronkhorst. These can be addressed digi-
tally and are available for the flow and pressure ranges stated in section 3.2.1.

3.2.3 Implementation
For the implementation of the pressure stabilization we used an Arduino controller.
This Arduino reads the pressure of the BMP388 sensor with a frequency of 3.8 Hz.
A PID control loop operates the opening of the bronkhorst regulated valve. For
manual control, adjustment of the setpoint and PID parameters and logging of
the pressure, the Arduino controller can be connected to a computer. To increase
the short-term passive stability of the system, we connected buffer volumes to the
cryo reservoirs. For these, we used old cans for cryo-liquids, as these are thermally
well insulated. The performance of this system was validated with the 6000-23A,
the result is shown in figure 3.3.

3.3 Tilting Mechanism
At the measurement campaign on the Image Charge Shift (ICS) [63], one limiting
factor was the limited knowledge of the angle θ and the trap ellipticity ε. The
usual approach to get θ is the use of equation (2.22), where ε is assumed to be
small from geometric considerations. However, this is associated with relatively
large uncertainties, and one would like to verify these geometric considerations
in the experiment. One way to do this would be to vary the angle θ during the
experiment.
A tilting mechanism allows such an adjustment of the angle θ. After adjusting the
angle to θ = 0, equation (2.22) can be used to gain access to the ellipticity ε.
During the ICS measurement, the ellipticity was estimated to be ε < 0.015 and
the angle was measured to be θ = 0.56(8)◦. It is noteworthy, that such an angle
cannot come from an overall tilt of the experiment, since over the length of the
experiment (≈ 1.5 m) such an angle would amount to several centimeters of hori-
zontal displacement, much more than the clearance in the magnet’s bore. Possible
sources of such an angle can be a missalignment between the magnetic field and
the magnet’s bore, or when our trap tower is not totally straight, but more shaped
like a banana.
The basic idea of the tilting mechanism is to tilt the whole trap chamber using a
mechanical feedthrough. The feedthroughs are placed at the bottom side of the
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Figure 3.4: Principle of the tilting mechanism. There are two types of screws
needed for the tilting mechanism. In (a), their distribution is shown as seen from
the cryogenic electronic section. In (b), the functionality of both types of screws is
sketched. The vacuum flange and the body of the trap chamber are held together
by holding screws. These holding screws also hold the trap chamber to the lower
end of the electronics section. There, a spring pushes the trap chamber up. Ad-
justment screws use the thread in the vacuum flange and a blunt end pressing in
a sink hole to push the trap chamber and the lower part of the electronics section
apart. One screw whole is used to create a thermal connection from the cryogenic
electronics section to the trap chamber.

magnet, since in this direction there is more space available. The LN2- and the
20K-shield need to be passed. Between the LN2- and the 20K-shield there is a
separable connection, as also shown in figure 3.1. When the tilting mechanism is
not in use, this connection is separated to limit the heat transfer from the room
temperature to the 4K section. The connection is realized as a ball-point hexagonal
head and a hexagonal socket with a guiding system. The elongated parts of the
mechanism are made from fiberglass.
The mechanical feedthroughs are used to operate screws which press the trap
chamber away from the bottom part of the cryogenic electronic section. In total,
three mechanical feedthroughs are implemented to allow moving the trap at an
arbitrary angle, see also figure 3.4(a). When one loosens the adjustment screws,
springs supporting the holding screws in the cryogenic electronic section reverse
the tilting process. This is sketched in figure 3.4(b).
In figure 3.5, photos of the implementation of the tilting mechanism are shown.
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(a) Separable connection

(b) Feedthroughs at the LN2 shield

(c) Complete tilting mechanic

Figure 3.5: Photos of the tilting mechanism in a test assembly outside of the
magnet. In (a) one can see the ballpoint hexagonal head and the corresponding
socket of the separable connection. In (b) the bottom end of the LN2 shield is
shown. The visible screws are to be connected with the mechanical feedthroughs
in the bottom flange of the experiment. The complete mechanism put together is
shown in (c).

3.4 Trap Tower
The heart of the experiment is the trap tower, which consists of in total seven
sections. From top to bottom, these are the cone section, a first storage trap
(ST1), the precision trap (PT), a second storage trap (ST2), the magnetometer
Trap (MT), a third storage trap (ST3) and the creation section (mEBIS). An
overview of the complete trap tower is shown in figure 3.6.
The cone section was intended as a novel method to prepare single particles. How-
ever, this did not work as intented while the established methods described in
section 4.1 led to sufficient results. Therefore, this section was not used for the
measurements described in this thesis.
The storage traps, the magnetometer trap and the creation section are reused from
the former bound electron g-factor experiment.

3.4.1 Precision Trap
The precision trap was newly designed for Liontrap, for details see [54, 7]. It
has an increased trap diameter of r = 5 mm compared to r = 3.5 mm for the
reused electrodes, to reduce the image charge shift and improve the harmonicity.
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Figure 3.6: Overview of the trap tower. The tower is oriented vertically in our
setup with the cone on top. For details and explanations of the acronyms see text.

To further improve the harmonicity, this trap has a second pair of correction
electrodes. This allows tuning the coefficients C4 and C6 to zero by adjusting the
voltage of the correction electrodes. The next order coefficients C8 and C10 are
nominally zeroed through the optimized length of the electrodes. The endcaps
are segmented into three parts to allow for easier transport. The most outer part
provides the transition from r = 5 mm to r = 3.5 mm. This trap configuration is
referred to as seven-electrode trap, counting two pairs of correction electrodes, the
central ring and a pair of endcaps.
To our knowledge, this is the first seven-electrode trap used as a precision trap,
although a seven-electrode trap was used as "preparation trap" in the ISOLTRAP
experiment [43]. Connected to this trap are three excitation lines:

1. Dx: This excitation line is connected to one half of the split ring-electrode.
It is intended for strong dipolar excitations in the radial direction and used
during ion preparation. For the deuteron mass measurement, this excitation
line was grounded.

2. Dz: This excitation line is connected to the outer upper correction electrode.
It is intended for strong dipolar excitations in the axial direction and also
used during ion preparation. This excitation line was also grounded during
the deuteron mass measurement.

3. Qxz: This excitation line is connected to one half of the inner upper correc-
tion electrode. It is intended for quadrupolar excitations, which couple the
axial and radial directions. It has dipolar components in both the radial and
axial direction and can hence be used universally. This excitation line has
been used exclusively during the deuteron mass measurement.

As detection system, one axial resonator is connected to this trap. This axial
resonator has an inductance of L = 3.363 mH. Its resonance frequency can be
tuned by applying a voltage to a built-in varactor diode in the range of ωres

2π ≈
3 kHz. The Q-value is Q ≈ 4000. The resonator is connected directly to the first
lower endcap electrode, and the outer lower correction electrode as well as one half
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of the inner lower correction electrode are connected capacitively. This results in
an effective electrode distance of D = 9.6 mm. All other electrodes are grounded
AC-wise.
The DC voltages are supplied by two UM1-14 voltage sources by Stahl-electronics.
There, the outer correction electrodes share a precision mode channel, however,
these can be set asymmetric by voltage mixing. The voltages are filtered, once in
the room temperature region, once in the 4 K section.

3.4.2 Magnetometer Trap
The magnetometer trap (MT) is intended to monitor magnetic field changes. If
these field changes are uniform over the distance between the MT and the PT,
which is about 4.2 cm, one can use this monitoring to potentially improve the
statistical precision of mass measurements as outlined in [7].
This trap is a five-electrode trap and the reused analysis trap of the Liontrap
predecessor experiment, with the ferromagnetic ring replaced.
The upper correction electrode is split and has an excitation line connected to one
half of it. Connected to the trap are in total three axial resonators. Two of these
resonators are intended as axial resonators for ions connected to the lower correc-
tion electrode and the lower endcap, respectively. One resonator connected to the
upper endcap is intended as axial resonator for trapped electrons, see section 6.2
for details. The DC-voltages are supplied by UM1-14 precision channels, with the
correction electrodes sharing one precision mode channel as in the MT.

3.4.3 Storage Trap One
While the other storage traps only consist of three electrodes and have no opti-
mized harmonicity, the storage trap 1 (ST1) is different in that regard. It is a
five-electrode trap and the reused precision trap of the Liontrap predecessor ex-
periment. The trap has an excitation line connected to one half of a split correction
electrode. The resonator connected to the lower endcap of the MT is capacitively
connected to the lower correction electrode of the ST1, which allows this trap to
be operated with ions as well. Additionally, an amplifier and a feedback line in-
tended to be used with trapped electrons are connected to this trap, for details
see section 6.2.
In this trap, we tested an idea to potentially increase the stability of the DC
voltage. To this end, the DC voltage supplied by the fast mode channels of an
UM1-14 passes through a transistor of type BF545B. This transistor is based on
silicon and as such it becomes essentially insulating at 4 K. However, for this
specific transistor the transition temperature is only slightly above 4 K. The idea
is to heat the board of the transistor, apply a voltage to the trap, and then let the
transistor freeze out. In this manner, the voltage is "frozen-in", and potentially
more stable than before. The performance of this system is evaluated in section 4.7.
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Figure 3.7: Production section. In (a) a sketch of the mEBIS is shown, together
with a qualitative plot of the voltages used for ion production. An electron micro-
scope image of the target with the printed layer of deuterated molecules visible is
shown in (b), a photo of it in (c).

3.4.4 Production Section

The bottom part of the trap tower is the section used to produce ions. This
is done using a miniature electron beam ion source (mEBIS) [76, 77]. There, a
field emission point (FEP) emits electrons. These electrons are accelerated and
reflected multiple times by a high voltage, until they hit a target, get reabsorbed
and ablate atoms. The atoms are ionized by the electron beam and captured in
the capture trap (CT), see also figure 3.7(a). This method has already been used
at the predecessor experiment of Liontrap and is able to reliably produce ions
in charge states with ionization energies of up to ≈ 1 keV [54].
The available ion species depend on the target material. Therefore, the target
material needs to contain the elements of interest. Additionally, it has to be
machinable and it has to be electrically conducting, otherwise the electrons would
build up electric charges interfering with the function of the mEBIS. For the proton
mass measurement campaign, we used a target made from carbon-nanotube-filled
PEEK called TECAPEEK [78]. PEEK (polyether ether ketone) is a polymer, as
an organic compound it contains plenty of carbon and hydrogen. It is machinable,
and the carbon-nanotubes ensure electrical conductivity.
For deuterium however, the natural abundance on earth is only about 0.015% [79]
making a production from the bulk material of the target unlikely. To improve the
odds of getting deuteron into our trap, we printed a layer of deuterated molecules
on top of the target surface using a Drop-on-Demand inkjet printing system in
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Figure 3.8: Timing System. All devices are locked to an rubidium frequency stan-
dard FS725 by Stanford Research Systems and triggered by the BNC. For details
see text.

cooperation with the Institute for Nuclear Chemistry [80]. This target is shown in
figure 3.7(b) and figure 3.7(c).

3.5 Timing System
For the phase-sensitive measurements, a precise timing system is necessary. This
system is sketched in figure 3.8.
All devices are locked to a 10 MHz rubidium frequency standard FS725 by Stanford
Research Systems. This clock also provides a 1 pulse per second (pps) reference.
Trigger pulses given by a pulse generator BNC555 from Berkeley Nucleonics are
synchronized with the 1 pps reference. Since the local oscillator (LO) and the
Oscillator used for Feedback (LO FB) produce a sinusoidal signal with a frequency,
which is a multiple of 1 Hz, their phase is constant relative to the 1 pps pulse.
Therefore, the local oscillators can be triggered independently from the rest of the
system.
Signals from the trap are in the axial frequency range of about 460 kHz. They
are mixed with a sinusoidal signal of the local oscillator into the audio frequency
range of about 15 kHz, which is then analyzed on the FFT device, an SR1 audio
analyzer. This has the advantage, that the triggering of the FFT device is much
less critical than it would have been without the down-mixing process.
The only signal in the frequency range of the modified cyclotron motion (≈
30 MHz), is the excitation used in the PnA technique. There, a dual channel
arbitrary waveform generator (AWG) is used. The two pulses including the delay
Tevol are programmed as arbitrary waveforms for the two channels of the AWG,
and the AWG is triggered only once. In this manner, the timing of the pulses
only depends on the internal timing of the AWG, avoiding problems with trigger
accuracy entirely.
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Figure 3.9: In-situ shim coil. In (a) the number, direction and position of the
windings is shown. They produce the field shown in (b), once simulated, once
measured in a test setup using a hall probe. The black bars indicate the positions
of the MT and the PT. There, the magnetic field from the coil is designed to be
close to zero.

3.6 In-Situ Shim Coil
For the proton mass measurement campaign, the limiting uncertainty was caused
by the quadratic component of the magnetic field inhomogeneity B2. As discussed
in section 2.1.3, the modified cyclotron frequency shifts proportional to B2ẑ

2. Since
ẑ is thermally distributed during the PnA measurement, this leads to a shift ∆ν+ ∝
B2Tz. The uncertainty of this shift is thus

δ∆ν+ ∝
√

(δB2Tz)2 + (B2δTz)2, (3.2)

where δ denotes the uncertainty of a quantity and assuming both quantities are
measured independently. In the Proton campaign, there first term in equation (3.2),
B2∆Tz was dominant. Since a significant improvement of the measurement of the
ions temperature was not expected, in order to improve the uncertainty of this
systematic shift it was necessary to reduce the magnetic inhomogeneity by imple-
menting a superconducting shim coil.
Originally, such a shim coil was already planned and implemented for the proton
mass measurement, many details on the coil can also be found in [7, Appendix F].
However, it turned out, that the current necessary to compensate for the B2 in
the trap would quench the shim coil, making it impossible to use the coil in the
measurement campaign. Additionally, we noticed that attaching a current supply
to the coil introduced noise to our detection system. Therefore, we decided to
implement a superconducting connection. In this way, the coil can be charged,
the power supply disconnected and the inhomogeneity stays compensated without
the need of a power connection. To this end, the coil has to supply connections,
and the short part in between is wound around a heating resistor. To charge
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Figure 3.10: Photo of the shim coil. The coil is wound on a coil holder, which is
placed around the trap chamber. It is fixed by a layer of PTFE. A copper band
ensures that heat can be dissipated efficiently. The connection to the 4K section
is done by a thick copper wire, which is soldered to the 4K section as well as the
copper band.

the coil, a current is fed through the heating resistor, heating the part of the
coil wound around the resistor and breaking the superconductivity there. The
current is applied through the supply connections and gets increased slowly, until
the desired current is reached. Then, one stops the heating and waits for a few
seconds. Afterwards, the supply is disconnected, and one can check if the process
worked by measuring the magnetic field.
The field produced by this coil is shown in figure 3.9. It has nominally zero field
at the positions of the PT and the MT (black lines). In this way, the cyclotron
frequency does not change too much after charging the coil, which simplifies han-
dling. Also, slight changes in the current in the superconducting coil have their
influence on the cyclotron frequency suppressed. Such changes can occur, since the
coil is closed superconducting, and therefore, the magnetic flux in the coil stays
constant.
A series expansion of the simulated field of the coil around the minimum where
the PT is to be placed yields:

B(z) ≈ (B0,I +B2,Iz
2 +B3,Iz

3)Icoil, where
B0,I ≈ 5 nT mA−1

B2,I ≈ 3.6 nT mA−1 mm−2

B3,I ≈ 19 pT mA−1 mm−3.

(3.3)

The biggest source of error in these coefficients is the alignment of the coil with
respect to the trap. If one assumes that the coil is displaced by an amount of
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z0 = ±2 mm, this results in coefficients:

B̃0,I = B0,I +B2,Iz
2
0 +B3,Iz

3
0 ≈ ±20 nT mA−1

B̃2,I = B2,I + 3B3,Iz0 ≈ 3.6± 0.1 nT mA−1 mm−2.
(3.4)

During the proton mass measurement campaign, the residual magnetic inhomo-
geneity B2 was measured to B2 = 0.270(15) µT mm−2. To compensate such an
inhomogeneity with this shim coil one would need a current of 75 mA. The coil
was tested in a cold-head to sustain a current of up to 200 mA, which we deemed
sufficient. In figure 3.10, a photo of the built-in coil is shown.



4 Trap Characterization and
Preparatory Measurements

In this chapter, I describe measurements and operations performed in preparation
of the deuteron mass measurement. This starts with the production of ions in
section 4.1.

4.1 Ion Production
The ions of interest have been produced in the mEBIS introduced in section 3.4.4.
To create ions with different ionization energies, the FEP voltage was set accord-
ingly. The electron beam energies were chosen to be −100 V for deuteron or HD+,
−350 V for 12C4+ and −1000 V for 12C6+. The reflector voltage was always set to
a voltage about 1.15 times the FEP voltage.
The ions are captured in the CT, which after charge breeding is set to −100 V
for a few seconds. This makes all ions with a mass-to-charge ratio of m/q &
16 u e−1 unstable, see equation (2.11). Especially large, singly charged molecules
are removed in this way, which would otherwise potentially form a hard to detect
contamination.
The ions are transported into the PT, where a single ion of interest needs to be
prepared. To this end, different techniques can be used:

1. Axial cleaning: Here, a strong broadband excitation through the axial dipolar
excitation line Dz strongly excites the axial motion of unwanted ions. The
trap potential is subsequently lowered, which allows a large portion of the
excited ions to escape.

2. Magnetron cleaning: A broadband noise in the frequency region of the mag-
netron motion is applied to the radial dipolar excitation line Dx. This heats
the magnetron motion of unwanted ions until they are lost eventually. At
the same time, the magnetron motion of the ion of interest is cooled by
continuous sweeps in the frequency range ω ≈ ωz + ω−.

In practice, we mostly used axial cleaning, since using the Dx excitation line
introduced significant noise into our detection system. This makes it hard to
quantify whether the cooling works properly.
The particle composition in the trap can to some degree be analyzed by taking
mass spectra. For this, the trap voltage is swept over the accessible range while
simultaneously monitoring the voltage in a frequency window around the resonator.

53
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Figure 4.1: Mass Spectra. In (a) three mass spectra illustrate the cleaning process
after the production of 12C6+. The difference in the baseline is artificially intro-
duced for better visibility. In (b) the visibility of deuteron in the mass spectrum is
enhanced by applying a pulse on ν+ and adiabatically transfering this excitation
to the axial mode.

If an ion comes into resonance with the tank circuit, it dumps part of its axial
energy into the circuit leading to an increased voltage. To increase the axial
energy, an excitation slightly above (when sweeping from high to low voltage) the
frequency of the axial resonator can be applied. In figure 4.1(a) three mass spectra
documenting the cleaning process after the production of 12C6+ are shown. When
one wants to be sensitive to a particle species with low abundance like in our case
deuterium, one can also apply a pulse at the modified cyclotron frequency of the
ion of interest prior to taking the mass spectrum. During the mass spectrum, a
sinusoidal excitation with frequency slightly above ν+ + νres is applied. When the
axial frequency of the ions is swept from high to low, the excitation will be resonant
with the sideband ν+ + νz shortly before the ion of interest is resonant with the
tank circuit. For sufficiently strong excitations, this results in an adiabatic transfer
of the energy in the cyclotron mode to the axial mode, and thus to an increased
signal for only the ion species, whose modified cyclotron motion has been excited.
In figure 4.1(b), a sequence of mass spectra visualizing this process in the pro-
duction of deuteron is shown. In the axial mode, deuteron is hard to distinguish
from H+

2 , the axial frequencies are only ≈ 180 Hz apart, which is not much in a
trap loaded with clouds of ions. However, the modified cyclotron frequencies are
≈ 22 kHz apart, which is easily distinguishable.
In this way, it was possible to produce and isolate single deuterons without too
much effort. Whether the observed deuteron ions actually originate from the
deuterated material placed on the target is unfortunately hard to say, since there
are no comparable data without the target built-in available. Using the same
method, a single HD+ molecular ion was also produced and isolated during the
deuteron measurement campaign.
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Figure 4.2: Electric field optimization. In (a), the axial frequency shift ∆νz is
taken as a function of the magnetron excitation strength and fitted with a function
f(x) = ax2 + bx4 for different tuning ratios. In (b), the coefficient a is plotted
versus the tuning ratio T. The intersection of the resulting linear function with
zero gives the tuning ratio where C4 = 0, and the slope gives a calibration of the
excitation strength.

4.2 Electrostatic Field Optimization
The optimization of the electrostatic field is of great importance. Anharmonicities
do not only lead to frequency dependent shift as described in section 2.1.3, but
also to difficulties when reading out the phase in a PnA measurement. For the
optimization, axial frequency shifts are measured as a function of the magnetron
excitation. This process needs to be repeated after every particle production,
since the electron beam or ions removed from the trap can potentially charge up
non-conducting patches on the electrode surfaces. This can be described as so
called patch potentials and has been evaluated in our trap to be in the order of
Upatch < 10 mV [7].
In this section, I present one exemplary optimization process and give an overview
over the electrostatic inhomogeneities during the deuteron mass measurement cam-
paign.
In the seven-electrode trap, there are two parameters which can be used to adjust
the harmonicity of the trap. These are the voltage of both pairs of correction
electrodes (UC1 and UC2), often expressed as tuning ratio T1 and T2,

T1 = UC1

Uring
=: T T1,start

T2 = UC2

Uring
=: T T2,start.

(4.1)

Here, Uring is the voltage applied to the ring electrode. For easier handling, the
combined tuning ratio T is used, since the axial frequency νz is in first order inde-
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pendent of this parameter. One expects the first order anharmonicity to depend
on the tuning ratio in the following way:

C4 = E4 + T1D4,1 + T2D4,2

:= E4 +D2T.
(4.2)

For our PT, the value for D2 can be taken from a simulation of the trap geometry,
which yields D2 = 0.79 [54, 7]. From the manufacturing precision of the trap, this
value has an uncertainty of about 10%. However, I will omit this uncertainty here,
as it will be discussed in section 4.4.
The optimization process then works in the following way:

1. Measure the axial frequency shift as a function of the magnetron excitation
energy, for different combined tuning ratios.

2. Fit a low order polynomial with only even orders to the data. The coefficients
in this polynomial are proportional to the coefficients of the anharmonicity,
see also equation (2.24a).

3. Plot the coefficient proportional to the quadratic term of the polynomial
as a function of the combined tuning ratio. This gives a linear function as
expected from equation (4.2). The slope of this function can be compared
with theory to give a calibration of the excitation strength. The intersection
with zero corresponds to the tuning ratio where C4 = 0.

4. Evaluate higher order terms, especially C6, by looking at the higher order
coefficients of the polynomial. If these are too large, change either T1,start or
T2,start and repeat the optimization process.

One example of this process is shown in figure 4.2. There, the optimal tuning
ratio coming from the fit was T = 0.999595, the uncertainty on the leading order
anharmonicity δC4 ≈ 1 · 10−6, and the C6 value at the optimal tuning ratio C6 =
3.2(1.6) · 10−4. Using the theory value for the slope given above, one can derive
the calibration constant

κ− = 74 µm
#cycle Vpp . (4.3)

While the uncertainties of the values for C4 and C6 are relatively small, this treat-
ment is, of course, incomplete. It is not clear, how many orders of the polynomial
should be considered, or how far one should excite the particle to be as sensitive as
possible to the coefficients C4 and C6, which are relevant to the systematic effects
in the mass measurement. An analysis on this topic is shown in figure 4.3.
There, the tuning ratio was fixed to the value determined to be optimal in the
manner described above. Then, the frequency shift once again was measured
as a function of the magnetron excitation strength expressed as the numbers of
cycles n ∝ r− used for the excitation, as shown in figure 4.3(a). Analogously to the
proceeding above, these frequency shits are fitted with a polynomial with only even
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Figure 4.3: Electric field optimization II. Dependence of C4, C6 and the reduced
χ2 on the fitrange and the order of the used polynomial. For details see text.
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orders, but with the maximum order of the polynomial and the fitrange varied.
This is shown in figure 4.3(b-e). In figure 4.3(b-e), polynomials up to order r4

−, r6
−,

r8
− and r10

− have been used, respectively. For each order, the extracted values for
C4 and C6 and the reduced χ2 of the fit are shown as a function of the fitrange. For
polynomial fits up to r8

−, the reduced χ2 starts to increase significantly at about
20 cycles ≈̂ 1.6 mm. In our PT, the series expansion parameter r−/dchar is then in
the order of ≈ 0.3, making it hard to use this series expansion approach, where
only contributions up to a certain order of r−/dchar are considered. When looking
at the C4 and C6 coefficients, a clear dependency on the fitrange is visible for all
the used models.
Such measurements were repeated for all the ions used in the deuteron measure-
ment campaign. The resulting C4 values were in the range of ±1 · 10−5, with
the measurement shown here being closer to −1 · 10−5. For the analysis of the
deuteron and HD+ data, we wanted to use one value for each C4 and C6 for the
whole campaign. Therefore, we used the following values:

C4 = 0± 1 · 10−5

C6 = 1(1) · 10−4.
(4.4)

As shown in section 5.3.2, these values are more than sufficient to not limit mass
measurements. However, they will play a role in the optimization of the magnetic
field homogeneity presented in the next section 4.3.

4.3 Magnetostatic Field Optimization
In this section, I describe how the in-situ shim coil was used to optimize the
magnetic field homogeneity.
The probe to measure the magnetic field homogeneity is the axial frequency νz as
a function of the modified cyclotron radius r+. Taking into account the quadratic
magnetic inhomogeneity B2, the leading order electric anharmonicty C4 and rela-
tivistic shifts, this shift is given by

∆νz
νz

=

 B2

4B0

ν+ + ν−
ν−︸ ︷︷ ︸

magnetic

−C4

C2

3
2d2

char︸ ︷︷ ︸
electric

−
ω2

+
4c2︸ ︷︷ ︸

relativistic

 r2
+. (4.5)

It is instructive to insert numbers to get a feeling for the orders of magnitude
involved here. For the B2 = 0.27 µT mm−2 during the proton mass campaign, the
first term of equation (4.5) evaluates to a frequency shift of 16 Hz at an excitation
amplitude of r+ = 500 µm. In an optimized trap with C4 < 10−5 the corresponding
shift evaluates to < 60 mHz. This is small enough to not play an important role
while adjusting the current in the coil. However, from this evaluation it already
becomes clear that this will limit the precision, with which B2 can be measured in
the end. The relativistic shifts are even smaller and about 10 mHz for this scenario.



4.3. Magnetostatic Field Optimization 59

1 2 3 4 5 6 7 8
-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

6.40e-07

1.44e-06
7.84e-06

1.60e-05

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

10-5

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005(a) (b)

Figure 4.4: Cyclotron radius calibration. To calibrate the cyclotron radius, shifts
of the cyclotron frequency ν+ of a single deuteron as a function of the cyclotron
radius r+ are evaluated with the PnA method. In (a), the data for different
excitation strengths are shown. The data exhibit a linear drift, which is removed
by a moving average. The resulting dependency on the cyclotron radius is shown
in (b). In this mode, relativistic shifts are dominant, which allows to calibrate the
excitation strength r2

+ = κ2
+(Ut)2 from the fitted slope. In this measurement, the

result is κ+ = 0.01904(62) m/Vpp/s.

4.3.1 First Operation

The first attempt of charging the shim coil was also done at a time, where we
did not have a calibration for the excitation in the modified cyclotron motion.
There, the modified cyclotron motion was excited such that a shift of ∆νz =
−9.8 Hz was observed. Then the coil was charged to 51 mA, which changed the
shift to ∆νz = 10.9 Hz, demonstrating that the coil was working. Despite the
still lacking calibration, we were already able to see, that the current necessary
to compensate our B2 was about 25 mA. Together with equation (3.4), this hints
at an uncompensated B2 ≈ −0.09 µT mm−2, significantly lower than measured
during the proton mass campaign.

Charging the coil to this value also shifted the modified cyclotron frequency by
−7.4 Hz =̂ 260 nT, suggesting that the accuracy goal of 2 mm was fulfilled.

A later measurement with the B2 coil quenched shortly before the measurement
confirmed an uncompensated value of B2,uncomp = −0.122(11) µT mm−2. It is
not obvious that the B2 produced by the coil in a test-setup matches the B2
produced in the magnet. The magnetic flux produced by the coil will, of course,
also induce currents in the various shim coils of the magnet. Their exact geometry
is a corporate secret of the magnet’s manufacturer, which makes it hard to estimate
such an effect.
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Figure 4.5: Magnetic field optimization. The magnetic field homogeneity is evalu-
ated by measuring axial frequency shifts as a function of the radius in the modified
cyclotron motion. In a plot with the modified cyclotron motion squared as the
x-axis, a B2-term corresponds to a linear dependency. In (a), a measurement with
deuteron in our trap is shown together with two other systems: Our setup dur-
ing the proton mass campaign, and the Penning trap at the MIT, where in-situ
shimming using the coils of the magnet was performed [81]. In (b), a zoom-in into
our data is shown. The remaining dependency can be easily explained by residual
electric anharmonicities shown as grey lines.

4.3.2 Calibrating the Cyclotron Radius
To further quantify the residual value of B2, one needs to calibrate the modified
cyclotron radius r+. To this end, the modified cyclotron frequency ν+ is measured
as a function of the excitation strength, which is a product of the excitation am-
plitude U and the excitation time t. In this motional mode, relativistic shifts are
completely dominant, especially for a B2 close to zero, see also equation (2.71) and
equation (2.32).
This can be achieved by varying the strength of the dipolar excitation in the PnA
method. Such a measurement for a single deuteron is shown in figure 4.4. There,
the ν+ frequency is measured with four different excitation settings, and this is
repeated eight times as shown in figure 4.4(a). To account for the slow drift of
the magnetic field, a moving average was used. After preparing the data in this
manner, the frequency shifts can be plotted as a function of the excitation radius
squared, as shown in figure 4.4(b). There, one expects a linear dependency, and
from the fitted slope and equation (2.71) one can deduce the calibration constant.
If the fitted slope is denoted as k in units Hz Vpp−2 s−2, the calibration constant
κ+ is given by

κ+ =

√√√√− 2kc2

ω2
+ν+

. (4.6)

The cyclotron radius can then be easily calculated as r+ = κ+Ut =: κ+A, where
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U is the used excitation voltage and t the excitation time. The product of both
is abbreviated as A and will become especially important in section 5.3.1. In this
particular measurement, the resulting value for κ+ was κ+ = 0.01904(62) m/Vpp/s.

4.3.3 Estimating the Residual B2

With an exact calibration of the cyclotron radius at hand, one can now estimate
the remaining B2. Such a measurement is shown in figure 4.5. There, the cyclotron
radius squared is shown on the x-axis. In this way, a linear dependency corresponds
to B2 and a quadratic dependency to B4. Even for excessively large excitation
amplitudes of about 1 mm, the frequency shifts are still well below 1 Hz. From a
polynomial fit to the data, the value for B2 can be extracted using equation (4.5)
and assuming C4 = 0. This yields for this measurement B2 = 0.0026(3) µT mm−2.
In figure 4.5(a), this measurement is compared to two reference values. One is the
B2 = 0.27 µT mm−2 in our trap during the proton mass campaign. Compared to
this value, the shimmed B2 is smaller by about a factor of 100. The other reference
value is a measurement by the Penning trap group at the MIT [81]. There, in-
situ shimming using the shim coils of the magnet has been attempted. However,
inserting the charging rod led to significant drifts in the coils, limiting the resulting
magnetic inhomogeneity to the shown value1.
In figure 4.5(b), a zoom-in on the data is shown. A linear dependency is still re-
maining. However, the gray lines illustrating the contribution of a residual electric
anharmonicity C4 and C6 show, that further optimization of the magnetic field
homogeneity is only possible, if the uncertainty in the electric anharmonicity is
reduced.
During the deuteron mass campaign, several measurements of κ+ and B2 were
repeated, showing consistent results. To evaluate the systematic shifts as shown
in section 5.3.2 and section 5.4.2, we used a global value of

B2 = 0.0024(24) µT mm−2. (4.7)

For a small B2, the shift of the axial frequency as function of the modified cyclotron
radius r+ is no longer dominated by magnetic inhomogeneities, rather electric
anharmonicities become relevant. One then can measure the axial frequency shifts
as a function of the cyclotron radius at a well defined tuning ratio. Since the
modified cyclotron radius r+ can be independently calibrated as described above,
this allows to check the simulated value for D2 used in the calibration of the
constant for the magnetron excitation κ−, which is is presented in section 4.4.
The linear magnetic field gradient was not minimized. With the B2 coil charged, it
was measured to be B1 = 0.00234(12) mT mm−1 by applying asymmetric voltages.
The corresponding effect on the cyclotron frequency is negligible.

1To compare the MIT inhomogeneity to ours, the relevant parameter is the ratio of B2 to
B0. For the curve shown in figure 4.5(a), the value of B2/B0 reported by the MIT [81] was used.
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4.4 Temperature Measurement
The basic idea of how we measure an ion’s temperature at Liontrap is to amplify
temperature related frequency shifts. In equation (2.59) it is shown, that the
amplitude of an ion’s motion after a dipolar excitation depends on the phase
relation between the excitation pulse and the ion’s motion. For the cyclotron
motion, this can be written as

r2
+ = r2

exc + r2
thermal + 2rexcrthermal cos(∆φ), (4.8)

where ∆φ is typically random for repeated excitations, rexc is the excitation ampli-
tude expressed as a radius. The thermal motional amplitude rthermal is a random
variable distributed according to a Boltzmann distribution, with probability den-
sity

p(E+)dE+ = 1
kBT+

e
− E+

kBT+ dE+

p(r+)dr+ = mω2
+r+

kBT+
e

−mω2
+r2

+
2kBT dr+

(4.9)

where E+ is the energy in the modified cyclotron mode, E+ = mω+r
2
+/2 and T+

the corresponding temperature. One can examine the expectation value and the
standard deviation of the frequency shifts ∆νz arising from such an excitation.
These are typically proportional to r2

+, the constant of proportionality is denoted
as P1. The expectation value is then given by

< ∆νz > = P1 < r2
+ >

= P1(< r2
exc > + 2 < rexcrthermal cos(∆φ)︸ ︷︷ ︸

=0

> +< r2
thermal >︸ ︷︷ ︸

negligible

)

≈ P1r
2
exc,

(4.10)

and the standard deviation (denoted as δ):

δ(∆νz) = P1δ(r2
+)

= P1(δ(r2
exc >)︸ ︷︷ ︸
=0

+2rexcδ(rthermal cos(∆φ)) + δ(r2
thermal)︸ ︷︷ ︸

negligible

)

≈ 2P1rexc

√
< rthermal >2

2 + 1
2(δ(rthermal))2

= 2P1rexc

√
πkBT+

2mω2
+

√
4
π
− 1

2︸ ︷︷ ︸
≈0.88

:= P2rexc.

(4.11)

For the expression in the last line, the probability density given in equation (4.9)
was evaluated. The constants P1 and P2 can be measured in the experiment.
For this, the axial frequency shift ∆νz is measured as a function of the modified
cyclotron radius r+, but for every setting the measurement is repeated multiple
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Figure 4.6: Temperature Measurement with a 12C4+ ion. For this measurement,
the trap tuning ratio was detuned by about 3 · 10−3, resulting in a large C4. This
results in a frequency shift which was measured and is plotted as a function of the
modified cyclotron radius squared r+ in (a). From the fitted slope, the parameter
P1 can be extracted. In (b), the standard deviations of the frequencies for each
excitation are plotted together with the fitted function described in the text. This
gives the parameter P2. From both, one can derive an equivalent axial temperature,
resulting in Tz = 1.3(3) K for this measurement.

times to be able to extract the spread of measured axial frequencies. This spread
or frequency jitter is determined by two parts. A technical part originating in for
example voltage fluctuations or the precision of the dip measurement, which is
independent2 from the excitation amplitude and a part originating in the thermal
distribution of the ion proportional to the excitation amplitude. Both contribu-
tions add quadratically, and one can fit the measured frequency jitter using a
function δ(∆νz) =

√
(P2rexc)2 + P 2

0 . The frequency shift is fitted with a function
∆νz = P1r

2
exc + P3r

4
exc, and the parameter P1 is extracted. For this method, the

excitation and the tuning ratio are chosen such, that the frequency shift described
with P3 is small compared to the one from P1. From equation (4.11) one can then
deduce the temperature using

T+ = 2mω2
+

πkB

1
4
π
− 1

2

P 2
2

4P 2
1
. (4.12)

Usually, the temperature is given as an equivalent axial temperature, Tz = ωz

ω+
T+.

This approach has the advantage, that the physical origin of the frequency shift
does not play a role for the determination of the temperature, only the scaling

2In principle, large excitation amplitudes can reduce the precision of the dip measurement.
For example, the dip can "wash-out" in a large C4, and a C4 can be mimicked by a C6 together
with an excited radius, see equation (2.23). However, such effects become significant only at
much larger excitation amplitudes than the ones used during temperature measurements.
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with r2
+. However, one can, of course, compare with the values one would expect

from the measured field parameters B2 and C4.
In figure 4.6, such a temperature measurement with a 12C4+ ion is shown, resulting
in Tz = 1.3(3) K. For this measurement, the trap tuning ratio was detuned.
Using the simulated value for D2 = 0.79 for the used tuning ratio and the chosen
detuning one expects an anharmonicity of C4 = 3.43 · 10−4. Considering this
and evaluating equation (4.5), one expects a slope of 152(2) Hz mm−2, where the
uncertainty originates in the uncertainty assigned to the compensated value for
B2. The slope in figure 4.6(a) is fitted to P1 = 144(1) Hz mm−2. Both values
differ by about 5 %. Since an uncertainty of about 10 % for D2 can be expected
[7], the comparison of both values is in good agreement. This crosscheck further
strengthens our trust in our model of systematics.
Such temperature measurements were performed at various times during the mea-
surement campaign, with all involved particles and both with and without elec-
tronic feedback. One expects the same temperature for all the ions, since the same
detection system is used. The measurements scatter slightly more than statistical
in the range between 0.7 K and 1.7 K. Such a scatter can in principle occur when
electric noise increases the effective temperature of the detection system. Since
this scatter was not significant enough to justify assigning different temperatures
to different stages of the measurement campaign, we decided to assign a conserva-
tive uncertainty to the temperature, which covers this scatter. The final value for
the temperatures with and without feedback are then:

Tz,FB = 1.2(5) K
Tz,no FB = 3.7(5) K.

(4.13)

For the temperature without feedback one expects in principle the ambient tem-
perature of 4.2 K. However, the cryogenic amplifier used intrinsically has some
weak negative feedback, which can result in a temperature slightly lower than
ambient temperature [52].
Another way to crosscheck the temperature is to compare the resonator parameters
with and without feedback. Example spectra for both are shown in figure 4.7.
There, the signal-to-noise ratio (SNR) is 19.1 dB without feedback, and 4.3 dB with
feedback. If one assumes the temperature without feedback in equation (4.13) as
given, the feedback temperature expected from these SNR levels is Tz,FB = 0.7 K,
which is compatible with the direct measurement.

4.5 Aligning the Trap
Prior to the measurement campaign, we used the tilting mechanism to adjust the
trap alignment with the magnetic field. To this end, all the available adjustment
screws were tightened to maximize the axial frequency. During this process, the
following points became clear:
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Figure 4.7: Resonator spectrum with and without feedback. Shown are two exam-
ple spectra of the resonator during the deuteron measurement campaign. The over-
all level of the signal is decreased by 6 dB when feedback is applied, since the mixer
used for the feedback changes impedance depending if there is a local oscillator con-
nected or not. Without feedback, the signal-to-noise ratio (SNR) is about 19.1 dB,
with feedback this decreases to 4.3 dB. For a temperature of Tz,no FB = 3.7 K one
expects from these spectra a feedback temperature of Tz,FB = 0.7 K, compatible
with the direct measurement.

1. Using the tilting mechanism results in significant noise on the detection sys-
tem. Even after disconnecting the joints, the resonator is shifted to an appa-
rantly random position, up to a few 100 Hz from the original position. This
can be explained by changes of the capacitance in the resonator. There, a
change of only 0.1 pF relates to a shift of the resonator frequency of about
300 Hz. Since a significant contribution to this capacitance comes from the
surfaces of the trap electrodes, such a small change in capacity is expect-
eded when moving the trap. To measure the axial frequency after using the
tilting mechanism, one has to disconnect the joint and adjust the resonator
frequency using the varactor.
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2. Due to the limited stiffness of the used fiberglass, one can turn the room
temperature handles for the adjustment screws by about 90◦, before the
adjustment screws in the 4 K section start turning. However, one can feel this
process fairly well, roughly estimated up to about 30◦. Since the adjustment
screws have a pitch of 0.8 mm and the distance between the adjustment
screws’ pressure point and the opposite side of the lower part of the electronic
section is 90 mm, this translates into a precision limit of about 0.08◦.

3. When trying to loose the adjustment screws, there is a lot of hysteresis
involved. The push-back of the springs does not occur smoothly. Therefore,
it was best to start in a position with all the screws relaxed, and then only
tighten the screws.

In the tilting process before the deuteron measurement campaign, the axial fre-
quency of a 12C6+ ion shifted by +29.3 Hz out of 461 kHz. Inserting this into
equation (2.20b), this corresponds to an angle of θ = 0.53◦. During the ICS mea-
surement campaign, an angle of θ = 0.56(7) was measured [63], in agreement with
the value from the axial frequency shift during angle adjustment. Although large
portions of the experiment were reworked, this agreement was expected: The most
likely sources for this tilt, a misalignment between the magnet’s field and bore,
or a bending of the stack of Penning-trap electrodes were unchanged. From the
measurements taken during the adjustment process we estimate that the maxi-
mum of the axial frequency was hit to about 1 Hz. Since the frequency shift scales
quadratically with θ, a shift of 1 Hz still corresponds to an angle of about 0.1◦,
relatable to the limit from the stiffness given above.
To evaluate the situation after the adjustment more closely, one can use equa-
tion (2.22), and solve for the trap parameters, which yields

9
4θ

2 − 1
2ε

2 = 1
ω−

(
ω+ + ω− −

√
ω2

+ + ω2
z + ω2

−

)
. (4.14)

The uncertainty of this expression is dominated by the measurement absolute
uncertainty of the magnetron frequency. Therefore, the magnetron frequency was
measured using the phase-sensitive method described in [63]. This yields

9
4θ

2 − 1
2ε

2 = −4.30(17) · 10−5. (4.15)

The value is negative, indicating that the angle θ is at least so small that the
contribution by an ellipticity ε is dominant. Solving this for ε and assuming an
angle of 0.05(5)◦, one arrives at

ε = 9.46(18)+0.53
−0.18 · 10−3, (4.16)

where the uncertainty in brackets comes from the frequency measurement and the
asymmetric uncertainty from the uncertainty of the angle.
This is larger than what one would expect from the manufacturing precision of our
trap, which is about 10 µm. Compared to the trap diameter of 10 mm, one expects
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an ellipticity of ε ≈ 1 · 10−3. One possible explanation is the fact that the inner
electrodes were split in half. With ε measured to this level of precision, this will
not give a limitation for future measurements of the image charge shift anymore.

4.6 Evaluating Pressure Dependencies
In this section, I present measurements on the impact of pressure changes in the
cryo-reservoirs. The measurements are shown in figure 4.8. They were taken with
the final pressure stabilization systems as described in section 3.2 operational. For
both the LHe and the LN2 reservoirs, the magnet and the apparatus are connected
and stabilized together. To measure the impact on the magnetic field as fast
as possible, repeated PnA measurements with an evolution time of Tevol = 15 s
were performed. Every 10 cycles, a PnA measurement with Tevol = 10 ms was
performed to exclude a possible impact of voltage fluctuations on the measurement.
In this way, one can potentially measure relatively fast and with a high resolution.
However, the absolute frequency is not resolved, and for fast changes it is possible
to make mistakes of multiples of 360◦.
In figure 4.8(a), a relatively small change of 0.5 mbar resulted in a change of the
modified cyclotron frequency of about −50 mHz. Note, that at this measurement
time, a frequency jump of 67 mHz corresponds to a phase shift of 360◦. Therefore,
it would also be possible that the frequency jump is in reality only +17 mHz. If one
assumes the worse case of −50 mHz, this translates into a pressure dependency of
≈ 100 mHz/mbar. For the pressure fluctuations evaluated in section 3.2 of 4 µbar,
one arrives at a frequency jitter of δν+/ν+ = 1.4 · 10−11. With this stability,
pressure fluctuations in the LHe reservoir do not play a role for the statistical
resolution of mass measurements anymore.
When changing the pressure by a larger amount as in figure 4.8(b) or even more
extreme in (c), one cannot rely on the absolute value of the frequency anymore,
as errors of multiples of 360◦ become increasingly probable. However, it becomes
clear that not only the frequency changes as a function of the pressure, but that
also drifts after changing the pressure value occur. A possible explanation would
be that the changed helium boil-off rate changes the temperature of the helium
filling tube, which also mechanically supports the experiment. This can result in
a changed position of the trap and thus a changed magnetic field. As the boil-off
rate is in first order independent of the pressure, one mostly expects the derivative
of the pressure to play a role for this effect. When one goes to a higher set point for
the pressure, the valve closes, no helium can boil off. When going for a lower set
point, the valve opens and a lot of helium starts to boil. Therefore, one expects
large pressure changes, where the boil-off rate changes significantly, to behave
differently than small pressure changes. However, one should keep in mind that
the level of LHe in the magnet might also alter the temperature gradient in the
boil-off tube. As the level is not stabilized at the moment, this might also lead to
drifts in the magnetic field, which needs to be investigated in the future.
In the position marked as (I) in figure 4.8(b), an automatic measurement of the liq-
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Figure 4.8: Pressure dependencies measured with 12C6+. On the left y-axis, the
absolute pressure in (mbar) for the LHe reservoir (a-c) or the LN2 reservoir (d)
is given. The frequency shift is measured by subsequent PnA measurements with
Tevol = 15 s, therefore, the offset on the right y-axis is not resolved, and 360◦ errors
can occur. In the spot marked as (I) in (b), an automatic measurement of the
LHe reservoir took place, clearly resulting in a frequency response. For details, see
text.

uid helium level in the magnet reservoir took place, clearly resulting in a frequency
jump and a subsequent drift back. These measurements occur approximately once
a day and are at the moment not controlled by our control system. They poten-
tially constitute a form of non Gaussian frequency jitter and need to be taken care
of in the future.

In figure 4.8(d), a similar measurement with the LN2 reservoir is shown, dur-
ing which the LHe reservoir was stabilized as well. There, a pressure change of
−10 mbar leads to a frequency change of 85 mHz. The impact of pressure fluctu-
ations in the LN2 reservoir with ≈ 8.5 mHz/mBar is much smaller than for the
LHe reservoir. Therefore, one does not expect pressure fluctuations in the LN2
reservoir to pose a limit for the statistical precision of mass measurements, as long
as the reservoir is stabilized. However, the stabilization is needed, as atmospheric
pressure changes over several mbar can occur.
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4.7 Transistor Board

The transistor board introduced in section 3.4.3 is supposed to use the freeze-out
of silicon based transistors to separate the voltage supply from the ST1 electrodes
in order to improve the voltage stability. To significantly beat the stability of the
currently used UM1-14, one would need a voltage stability of better than 1 · 10−7.
In order to test this, the transistor board was heated first. In this manner, the
voltages applied to the electrodes are not hindered by the transistors, in this state
they have a resistance of about 150 Ω. Then, a single 12C6+ ion was transported
into this trap. It was in resonance with the detection circuit at a voltage of
−5.43 V at a resonance frequency of νz ≈ 600.9 kHz. While the transistor board
was heated, the dip was only barely visible, because fast mode channels of the
UM1-14 with insufficient voltage stability were used to bias the electrodes in the
ST1. We stopped heating the transistor board and after a few minutes the dip
became visible much more clearly, indicating that the transistor board works to
some degree. We proceeded to do a long time measurement of the axial frequency,
which is shown in figure 4.9. There are large drifts in particular in the first few
hours after the measurement started. These drifts could be a result of the heating,
which was only removed shortly before, or be a result of leakage currents.
The linear drift in the first two hours of the measurement corresponds to a voltage
drift of the ring electrode of about 1.6 · 10−7 V s−1, if one would assume the other
voltages to be constant. Since the capacitance after the transistor is about 22 nF,
this corresponds to a leakage current in the order of 3.5 fA, or a leakage resistance
of R = 1.5 · 1015 Ω. In a test setup, the resistance of the frozen-out transistor was
measured to be > 500 GΩ, which proved to be true also in the trap. It should
be noted, that such a leakage could realistically come from the 22 nF capacitance.
The capacitance’s insulation resistance is rated for room temperature to be > 3 GΩ
[82], which one expects to increase significantly at cryogenic temperatures.
In figure 4.9, three spots are marked where the trap voltage was changed. For
small voltage changes in the mV range as in (I) and (II), no frequency shift was
observed, although a change of 1 mV corresponds to an expected frequency shift
of 55 Hz. The transistor board shields the voltage change from the electrode as
intended. Since there is no change in the axial frequency drift visible, leakage
currents through the transistor are at least much smaller than the other leakage
currents described above. At the position marked as (III), the ring voltage was
changed by 0.5 V, which should change the axial frequency by 27 kHz. However, the
observed frequency jump is only about 2.5 Hz, corresponding to a voltage change
at the electrode of 4.5 · 10−5 V. This can be explained by modeling the transistor
as a very small parasitic capacity of about 17 fF. Again, no change in the drift
was observed, confirming the lack of leakage currents through the transistor seen
before.
In conclusion, the transistor board works as intended. However, the intended use
as a voltage stabilization is prohibited by leakage currents in the capacitance or
the electrode. In the future, this might be solved by using capacitors with less
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leakage, for example by using vacuum gap capacitors, for which leakage currents
corresponding to a resistance > 1019 Ω were reported [83]. Because of these too
large leakage currents, the transistor board was not used during the deuteron
measurement campaign. To avoid undefined voltages, the transistors were heated
constantly. While the intended use of the transistor board is at the moment
not possible, the successful test of the transistor as a switch opens up further
applications like the use as a high fidelity switch to add capacitance to a resonator
will be investigated.
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Figure 4.9: Performance of the transistor board. The axial frequency of a 12C6+ ion,
after heating of the transistor board was stopped, is plotted as a function of time.
The frequency drifts significantly, more towards the start of the measurement. At
the position marked with (I), the voltage channels connected to the inner trap
electrodes were changed by ≈ 7 mV. For this voltage change, one expects a fre-
quency shift of ≈ 390 Hz. At (II), the voltage source was switched into "shutdown"
mode, resulting in a voltage change of similar order to the channels connected to
the endcaps. For both changes, there was no jump in the axial frequency visible.
At (III), the voltage of the channel connected to the ring electrode was changed
from −5.423 V to −5.923 V, resulting in a frequency jump of ≈ 2.5 Hz. For details
see text.



5 Deuteron Measurement Campaign
In this chapter, I describe the measurement campaign on the deuteron’s atomic
mass in detail. The results of this campaign are also published in [6]. In the
following I start with an explanation of the measurement principle, followed by a
description of the measurement cycle in section 5.2.

5.1 Measurement Principle
The measurement principle of mass measurements in Penning traps is based on
a comparison of the cyclotron frequency ωc = q

m
B. Building the ratio of the

cyclotron frequencies of the ion of interest and a reference ion and solving for the
mass of the ion of interest yields

m(d) = 1
6

ωc,d
ω
c,12C6+︸ ︷︷ ︸
=:R

m(12C6+). (5.1)

Here I give this formula for the deuteron as the ion of interest, and a 12C6+ ion as
a reference, with cyclotron frequencies ωc,d and ωc,12C6+ , respectively. The charges
give a ratio of integers, in this case 1/6. The reference ion is chosen such that its
mass m in atomic mass units is well known, see also section 5.3. The frequency
ratio R is the quantity which needs to be measured in the experiment.
It is important to note that in order to get equation (5.1), one has to assume that
both ions are measured in the same magnetic field B. This ideal measurement
condition is very hard to fulfill in practice, since the ions will interact via Coulomb
interaction, which results in large systematic shifts. One measurement where this
difficulty was overcome was performed at the MIT [81, 84, 67], where two ions
in the same trap were prepared in a common magnetron orbit. However, this
technique only works for ion pairs with very similar charge-to-mass ratios. The
difference between deuteron and 12C6+ in charge to mass ratio makes the use this
technique very tricky, which is why we decided against using it for now.
At Liontrap, we approximate the ideal measurement condition by preparing the
ion of interest and the reference ion at the same time in our trap tower, but in
separated traps. In this manner, the ions can be measured one after the other in the
PT. The measurement cycle is optimized such that the ν+ measurements, which are
most susceptible to magnetic field drifts, are measured as close by as possible, see
section 5.2. In principle it is not necessary to keep the electric potential identical
for both ions, because it drops out in the invariance theorem. Measurements, where

71
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the electric potential was altered to bring the axial frequency of ions with different
charge-to-mass ratio in resonance with the same resonator have been performed
in the past [20, 18]. However, a change of the electric potential typically leads to
shifts of the ion’s equilibrium position due to patch potentials, which causes the ion
to probe a different magnetic field. Such a shift is very hard to control, since even
very small changes of 20 nm can lead to relative magnetic field shifts in the order
of 1 · 10−11. Therefore, we have decided to keep the trapping potential constant
for both ions, and to shift the resonator’s frequency using a varactor diode.

5.2 Measurement Cycle
The measurement cycle is essentially unchanged from the one used in the proton
mass campaign [7, 8] and the same for both the measurements of the deuteron and
the HD+, respectively. The data is taken in runs. For each run, the settings, such
as the used trap voltages or the excitation amplitudes during the PnA, are kept
fixed. In the beginning of the run, the resonator spectra are taken and the precision
voltages as well as all the bias voltages are set. The ion to be measured first is
chosen randomly. If the chosen ion is not already in the PT, it is transported there
and the other ion is stored in its storage trap. In the PT, the first ion’s motional
modes are thermalized with the tank circuit (precooling) and its frequencies are
measured. This starts with a measurement of the modified cyclotron frequency
ν+ with the double-dip method. While the result of this measurement does not
enter the final mass value due to its large systematic uncertainties, the resulting
value for ν+ is used as a starting point for the PnA measurement. After the
double dip measurement, the axial frequency νz is measured with the dip method,
followed by a ν+ measurement with the PnA method. There, the measurements
with a shorter evolution time Tevol are performed first, since they are less prone
to magnetic field drifts. Afterwards, the ions are exchanged, i.e. the first ion is
transported into a storage trap and the second ion is transported into the PT,
where the measurements are repeated in inverse order. For the next cycle, the
starting ion is again chosen randomly, and a transport occurs only if the chosen
ion is not already in the PT. This measurement cycle is visualized in figure 5.1. A
run typically contains 27 frequency ratios and spans the time between two fillings
of the liquid Helium reservoir, which is typically 2− 3 days.
The length of the longest evolution time during the PnA was varied between
20 and 30 seconds. Both for this maximum evolution time and for the starting
phase taken at an evolution time of 10 ms, six measurements each were taken. To
unwrap the phases, measurements at evolution times of 0.5 s, 1 s, 2 s, 5 s and 10 s
were performed. For the double dip and dip measurements, the average times
were between 205 s and 270 s, respectively. There, FFT spectra with a length of
32.8 s were used, corresponding to a bin-width of ≈ 30 mHz. Between 6 to 8 of
these were averaged to improve the visibility of the dip. The precooling times
were chosen to be relatively long, 30 s for the magnetron motion and 60 s for the
modified cyclotron motion. This is because they also served as a settling time for
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Figure 5.1: Illustration of the measurement cycle. In the beginning of each run, the
spectra of the empty resonators are taken and the trap parameters such as the used
voltages are set. The first ion is chosen randomly and transported into the PT,
where its frequencies are measured after precooling its motional modes and waiting
for the voltage to settle after transport. Afterwards, the other ion is transported
into the PT, and the measurements are performed in reversed order, such that the
most critical ν+ measurements are close together and thus the impact of magnetic
field drifts is minimized. This cycle is repeated typically until the liquid helium
reservoir needs to be filled, which occurs every 2− 3 days. For further details see
text.
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Table 5.1: Ionization energies of carbon. The values are given in eV and are taken
from [86].
Ionization energy Value in eV
I 11.260 2880 (11)
II 24.383 154 (16)
III 47.887 78 (25)
IV 64.493 52 (19)
V 392.090 515 (25)
VI 489.993 194 (7)

the voltages to settle again after transport. For the last pair of particles used in
the deuteron campaign, these cooling times were reduced to both 5 s to explicitly
search for effects of the voltage settling.

5.3 Deuteron Mass
For the deuteron measurement campaign, a 12C6+ ion was used as a reference mass.
The mass of this ion can be given in atomic mass units using the formula

m(12C6+) = 12− me +
6∑
i=1

Bi

= 11.996 709 626 412 46 (35) u.
(5.2)

Here, me = 5.485 799 090 65 (16) · 10−4 u is the electron mass in atomic mass units
[85], and Bi is the atomic binding energy of the electron with index i [86]. The
binding energies are summarized in table 5.1. The fractional uncertainty of the
mass of 12C6+ in atomic mass units is only 0.03 ppt and thus does not limit the
precision of the deuteron mass given in atomic mass units.
The data set consists of four pairs of ions. For the first pair of ions, the deuteron
was above the 12C6+ ion, for the other ion pairs this was reversed in order to check
for systematic effects. For the first two ion pairs, the excitations were generated by
a dual channel arbitrary waveform generator Keysight 33600A 80 MHz (AWG1).
For the second pair of ions, an Agilent 33522A 30 MHz (AWG2) was used. Both
data sets were statistically evaluated separately.

5.3.1 Statistical Evaluation
For the statistical analysis, for each run the resonator parameters were fitted.
These fixed resonator parameters were used for a fit of the dip and double dip.
The phases in the PnA measurement are unwrapped and analyzed. Where this
is not unambiguously possible or the fit does not converge properly, the cycle is
excluded from the analysis.
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Figure 5.2: Surface fit for deuteron measurement campaign. In (a), data for the
AWG1 is shown, in (b) for AWG2. The scatter plot on the left indicates the
excitation radii used. The area of the circles is proportional to the number of
cycles N taken at this excitation. This number, together with the corresponding
excitation radii, is also given on the x-axis of the plot on the right side. There,
the residuals of the surface fit are shown. The gray band corresponds to the 1σ
confidence level of R0 extracted from the fit.
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In the measurement campaign, different excitation energies during the PnA mea-
surement and thus different motional amplitudes of the ion were probed, resulting
in a variation of the relativistic shift during the PnA measurement. Rather than
treating this as a systematic uncertainty, we used a method we call surface fit,
already employed during the proton mass campaign [7]. To this end, runs with
equal excitation settings were grouped. For each of these groups, a value for the
frequency ratio R = νc(12C6+)/νc(d) was generated by taking the mean R̄ over the
individual ratios Ri. The associated uncertainty was estimated by building the
standard error of the mean,

δR =
√√√√ 1
n− 1

n∑
i=1

(Ri − R̄), (5.3)

where n is the number of ratios in this group. Since the relativistic shift scales
with the energy in the modified cyclotron mode, the expected frequency ratio is
a linear function of both the squared excitation strength of the deuteron and the
12C6+, as can be seen from the following calculation:

R = νc(12C6+)
νc(d)

= νc,0(12C6+) + ∆νc(12C6+)
νc,0(d) + ∆νc(d)

≈ νc,0(12C6+)
νc,0(d)

(
1 + ∆νc(12C6+)

νc,0(12C6+)
− ∆νc(d)
νc,0(d)

)

= R0 −R0
ω4

+,Cr
2
+(12C6+)

2c2(ω+,C − ω−,C)2 +R0
ω4

+,dr
2
+(d)

2c2(ω+,d − ω−,d)2

= R0 + aA2(12C6+) + bA2(d).

(5.4)

Here, A is the dipolar excitation strength during the PnA measurement, where
r+ = κ+A, see also section 4.3.2. For the frequency shift δνc, the expression for
the relativistic frequency shift in equation (2.71) was used, which is dominant
for excitations in r+, and δνc/νc ≈ δν+/ν+. For the highest used excitations
amplitudes of r+ ≈ 100 µm, the shift is in the order of 1.9 · 10−9, which justifies
neglecting higher orders. One can fit a plane to the tuples (Ai(12C6+), Ai(d), Ri),
where i denotes the grouped runs mentioned above. From this planar fit, one can
extract the frequency ratio extrapolated to zero excitation energy R0. Additionally,
the coefficients a and b can be used as a cross check by comparing them to the
dedicated κ+ measurements performed prior to the measurement campaign. This
surface fit has to be performed for the data with the two arbitrary waveform
generators separately. In figure 5.2, the residuals of this surface fit for both data
sets are shown, together with a scatter plot indicating the excitation radii used.
The resulting frequency ratios are:

RAWG1 = 1.007 052 737 831 3 (86)
RAWG2 = 1.007 052 737 831 8 (70).

(5.5)
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Table 5.2: Calibrations of the excitation strength from the surface fits.

slope
(1/Vpp2/sec2)

κ+ surface fit
(m/Vpp/sec)

κ+ direct
(m/Vpp/sec)

AWG1, 12C6+ −1.198 (12) · 10−4 2.547 (13) · 10−2 2.515 (62) · 10−2

AWG1, d 1.155 (18) · 10−4 2.518 (20) · 10−2

AWG2, 12C6+ −6.38 (24) · 10−5 1.858(37) · 10−2

AWG2, d 6.24 (25) · 10−5 1.850(35) · 10−2 1.904 (62) · 10−2

Both values agree well within their uncertainties. Since one also does not expect
a systematic difference here, we averaged both values, resulting in our statistical
ratio

Rstat = 1.007 052 737 8316 (54). (5.6)

Using the slopes taken from the surface fit and equation (5.4) results in new val-
ues for κ+. These are summarized in table 5.2 and compared with direct mea-
surements, of which one was presented in more detail in section 4.3.2. Since the
frequencies of deuteron and 12C6+ are relatively close together and the excitation
lines at Liontrap are designed such that there are no sharp resonances in the
transfer function, one expects the κ+ to be very similar for both deuteron and
12C6+. This is the reason, why the direct measurement was for each arbitrary
waveform generator performed only for one ion species. Indeed, the κ+ values
resulting from the surface fit are very similar for both ions. For AWG1, the differ-
ence between the values is about 0.6% corresponding to 1.2σ. Both values agree
with the less precise direct measurement on a 1σ level. For AWG2, the uncer-
tainties are slightly larger, since no points with very asymmetric radii were taken
(see figure 5.2(b)). Within the uncertainties, both values agree with each other
and with the direct measurement on a 1σ level. Between both arbitrary waveform
generators, the values differ significantly. This is an effect of a lower sampling
rate of the AWG2, which resulted in the actual output voltage being smaller than
the nominal value. The observed difference stresses the importance of treating the
data sets separately.

5.3.2 Evaluation of Systematic Shifts
The frequency ratio Rstat, derived in the way described above, is the extrapolation
of the ratio measured with PnA to zero cyclotron excitation energy. This ex-
trapolation contains any (known and unknown) shifts that are linear in the ex-
citation energy. However, there are still a number of relevant systematic shifts
which need to be accounted for. These shifts are, together with their respective
uncertainties, summarized in table 5.3.
The by far biggest shift is the image charge shift, which is treated in section 2.7.2.
However, this shift can be corrected for with an uncertainty of 5 % of the absolute



78 Chapter 5. Deuteron Measurement Campaign

value of the shift, resulting in a relative uncertainty of the frequency ratio δR/R =
4.1·10−12. The entry Special relativity (thermal) corresponds to the thermal energy
in the modified cyclotron mode before excitation. While the excitation radius is
accounted for with the surface fit, the thermal radius still leads to a residual
relativistic shift. Due to the inverse scaling with mass, this effect affects mostly
the deuteron, rather than the heavier carbon ion. With the temperature given in
section 2.4, this evaluates to a shift of the frequency ratio of −2.9 ppt, and an
uncertainty of 1.2 ppt.
The term associated withMagnetic inhomogeneity was the dominating uncertainty
in the measurement of the proton’s atomic mass. As described in section 3.6, the
finite axial amplitude due to the ion’s thermal energy, combined with a magnetic
inhomogeneity B2, leads to a frequency shift. By using the newly developed shim
coil, it was possible to reduce this shift and the corresponding uncertainty to
0.3(6) ppt. It is thus small enough to not play a significant role in the systematic
evaluation of this measurement. The electrostatic anharmonicity represents the
uncertainty coming from the residual C4 and C6 terms evaluated in section 4.2.
The uncertainty of 0.4 ppt is negligible compared to other systematic uncertain-
ties. This small value also justifies taking one global value for C4 and C6 rather
than individual measurements for each ion pair, since the expected dependency
of the frequency ratio is much smaller than the statistical variation between mea-
surements. In the analysis, the contributions special relativity, magnetic inhomo-
geneity and electrostatic anharmonicity were considered taking correlations into
account.
The main contribution to the systematic uncertainty of the dip measurement orig-
inates from the uncertainty of the resonance frequency of the resonator. The
transfer function of the amplifier chain is in section 2.2.2 approximated to have a
linear frequency dependence. In reality this is more complex. Therefore, varying
the range included in the fit leads to a variation of the LC circuits fitted resonance
frequency. By varying the fitted range between 500 Hz, where the noise floor is
not yet completely reached, and 2000 Hz, where a significant part of the spectrum
consists of the noise floor, we found a conservatively estimated uncertainty of 2 Hz
on the resonator frequency νres. Evaluating the dependency of the dip fitting result
on this parameter for a number of example spectra throughout the campaign led
to a dependency of

∆νz,C = −3.2 mHz Hz−1 ∆νres
∆νz,d = −1.0 mHz Hz−1 ∆νres

(5.7)

for 12C6+ and deuteron, respectively. Here, ∆νres is the difference between the
resonator frequency entered as parameter of the fitting routine and the resonator
frequency taken from the resonator spectrum. The relevant quantity for the dip
width is q2/m, which is e2/(2u) for the deuteron and 6 e2/u for 12C6+, leading
to this asymmetry. While in principle the uncertainty of this shift should cancel,
because the sign in equation (5.7) is equal for both particles, we decided against
including this correlation into our analysis. Although the resonator at both the
varactor settings for 12C6+ and deuteron is fitted with the same frequency range
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Table 5.3: Systematic shifts and their uncertainties after extrapolation to zero
excitation amplitude. All values are relative and in parts-per-trillion. For details
see text.

Shift of νc for Correction Uncer-
Effect d 12C6+ to RCF tainty
Image charge −16.6 −98.7 82.1 4.1
Special relativity (thermal) −3.4 −0.6 −2.9 1.2
Magnetic inhomogeneity 0.4 0.1 0.3 0.6
Electrostatic anharmonicity 0 0 < 0.1 0.3
Dip lineshape 0 0 0 4.7
Magnetron frequency 0 0 0 0.4
Total −19.6 −99.2 79.6 6.5

and the frequencies are relatively close together, there is no guarantee for the
transfer functions to be equal, and we wanted to give a conservative estimate of
this uncertainty. The relative uncertainty for the cyclotron frequency was then
calculated as

δνc
νc

= νzδνz
ν2
c

(5.8)

for both ions, where δνz is taken as the full shift one would expect according to
equation (5.7) for a fit with a resonator frequency parameter, which is 2 Hz off
the correct value. Then, the absolute values of the two respective uncertainties
are summed linearly. This systematic effect does not lead to any shift, however,
using the calculations outlined above it results in a systematic uncertainty on the
frequency ratio of 4.7 ppt. The dip lineshape together with the image charge
shift give the dominating systematic uncertainties of the deuteron measurement
campaign.
The last systematic effect listed in table 5.3 is the magnetron frequency. The
magnetron frequency was not measured every cycle, but at various points during
the measurement campaign using the double-dip method. Since the magnetron
frequency is only ν− ≈ 3.7 kHz, the corresponding sideband frequency νz + ν− is
very close to the axial frequency. The coupling can thus potentially heat the axial
motion and influence the amplifier chain. This made it necessary to measure the
magnetron frequency at different coupling strengths and to linearly extrapolate to
zero excitation energy. It is important to notice that fluctuations of the magnetron
frequency affect both ions, and thus drop out in the cyclotron frequency ratio to a
large extend, which is why the magnetron frequency does not need to be monitored
constantly. It turns out, that the difference between the magnetron frequencies
of both ions is much more relevant for the cyclotron frequency ratio than the
magnetron frequencies themselves. In the ICS campaign, the difference between
the magnetron frequencies of a single proton and a single 12C6+ ion were measured
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and compared with theory on a sub mHz level [63]. Utilizing such a measurement
or a theory value for the magnetron frequency would eliminate the magnetron
frequency as a systematic effect for the deuteron measurement campaign. Such
data were taken after the deuteron measurement campaign and were partly used in
this thesis in section 4.5. However, for the deuteron measurement campaign, these
data were not available yet. We decided against using a theory value and stuck to
the double dip measurement. The measurement of the magnetron frequency using
the double dip resulted in a conservatively estimated uncertainty on the difference
of the magnetron frequencies of 0.1 Hz, which translates into an uncertainty of the
cyclotron frequency ratio of 0.4 ppt.
When applying all these systematic corrections, one arrives at the final frequency
ratio

Rfinal = 1.007 052 737 9117 (54)stat(65)sys(85)tot, (5.9)
where the brackets denote the statistical, systematic and combined uncertainty,
respectively.

5.3.3 Final Mass Value
This frequency ratio can be used together with equation (5.1) to obtain the atomic
mass of deuteron md, resulting in

md = 2.013 553 212 535 (11)stat(13)sys(17)tot u. (5.10)

With a relative precision of 8.5 ppt, this is to my knowledge the most precise mass
measurement in atomic mass units. In figure 5.3, this value is compared with other
high-precision values available for the deuteron’s atomic mass. The previous most
precise value for the deuteron’s atomic mass was reported by the University of
Washington (UW) [18], with a relative precision of 20 ppt. The value reported
in this work is a factor of 2.4 more precise and deviates by 4.8σ or 210 (43) pu
(combined uncertainty) from the value reported by the UW, which was also giving
the CODATA literature value since the 2014 adjustment [85, 88]. The deuteron
mass can also be obtained by combining a recent deuteron-to-proton mass ratio
reported by the Florida State University [87] with a proton mass value. If one uses
the Liontrap value [7] for this, the resulting value for the deuteron mass agrees
with the one reported in this work on a 1σ level. However, the deviation from the
UW value is about 1.9σ and hence not conclusive. When inserting the current
CODATA literature value [85] for the proton’s atomic mass, which has a slightly
increased uncertainty, the resulting deuteron mass agrees with both the UW and
the Liontrap value on a 1σ level.
The mass of deuterium m(D) can be derived by adding the electron mass [85] and
the ionization energy [86]. This yields

m(D) = 2.014 101 777 842 (17) u, (5.11)

where the uncertainty is dominated by the uncertainty of the deuteron mass.
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Figure 5.3: Comparison of the deuteron mass with literature. The value obtained
in this work is compared to a mass value reported by the University of Washington
(UW) [18] and to a combination of the deuteron-to-proton mass ratio reported by
the Florida State University (FSU) [87] and a value for the proton mass, either
the one reported by Liontrap [7] or the CODATA 2018 literature value [85]. The
gray band with dashed borders denotes the literature value for md, which coincides
with the value reported by the UW since the 2014 adjustment [88]. Our value is
discrepant with the UW value, the discrepancy is 4.8σ. The deuteron-to-proton
mass ratio by the FSU is compatible with both values.
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5.4 Measurement of the HD+ Molecular Ion

During the deuteron measurement campaign, the discrepancy to the UW value
[18] became apparent while measurements with the first ion pair were running.
Owing to the existent inconsistencies in the light mass region (see section 1.2.2),
a discrepancy to the UW value did not come as a surprise. Still, we were look-
ing for possibilities to cross-check and validate our measurement. For the proton
mass campaign, where also a 3.3σ discrepancy was revealed [8, 7], we measured
the mass ratio of 12C6+ compared to 12C3+. This mass difference can be calcu-
lated with negligible uncertainty, since the electron mass and the binding energies
are well known, making this comparison a good cross-check. However, this mea-
surement was more relatable to the proton mass measurements, since there the
charge-to-mass ratio of the ions also differed by a factor of ≈ 2.To closely resem-
ble the deuteron measurement, we were looking into measurements with hydrogen
molecular ions.
The H+

2 molecular ion has a mass, which is very similar to the mass of deuteron.
Also, it is easily available in our trap setup (see figure 4.1). Its mass is known from
our previous proton mass measurement, making this system a suitable candidate
for a validation measurement. However, owing to the symmetry of this molecular
ion, its rovibrational states decay on very long time scales. Since the energy in
these states leads to a mass shift on a relevant level, this makes measurements using
the H+

2 molecular ion tricky. In the FSU deuteron-to-proton mass measurement
[87], this was tackled with great effort, utilizing Stark-quenching of the vibrational
levels and modeling the rotational level distribution. However, this was still the
leading uncertainty for the deuteron-to-proton mass ratio at 16 ppt.
To avoid such difficulties, we decided to attempt a measurement of HD+, as its
mass can also be derived from the masses of its constituents, see section 5.5. With
a charge-to-mass ratio of e/(3u), its frequencies are significantly different from
deuteron. It is unlikely, that a potentially overlooked systematic effect happens to
scale in a manner, that they cancel out in the combination of the measurements
of the proton, the deuteron and HD+ with different frequencies and systematics.
It was unclear whether producing HD+ would work. In the mass spectrum in
figure 4.1, one can see that the amount of H+

2 and the amount of deuterons was
in the same order of magnitude, and the amount of protons was many orders of
magnitude higher. Therefore, one expects there to be even less HD+ then deuteron
ions to be produced. However, by using the same production process as for the
production of deuterons and looking at an expected trap voltage of −11.4 V, it
was possible to produce and isolate a single HD+ ion. For HD+, the rovibrational
states pose much less of a problem. The first excited rovibrational state has a
lifetime of 149 s and a transition energy of 5.4 meV [89]. This corresponds to a
temperature of 63 K. Since the mass measurements started about a week after the
production of the HD+ ion, it can be assumed to be in its rovibrational groundstate
in our 4.2 K environment. Averaging over the thermal distribution is in this case
not necessary, as the resulting effect on the frequency ratio is negligible. As a
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Figure 5.4: Surface fit for the HD+ measurement. The scatter plot on the left
indicates the excitation radii used. The area of the circles is proportional to the
number of cycles N taken at this excitation. This number, together with the
corresponding excitation radii, is also given on the x-axis of the plot on the right
side. There, the residuals of the surface fit are shown. The gray band corresponds
to the 1σ confidence level of R0 extracted from the fit.

reference ion, 12C4+ was used, since this also has a charge-to-mass ratio of e/(3u).
Its mass in atomic mass units is given by

m(12C4+) = 11.997 805 839 274 83 (34) u. (5.12)

The ionization energies used for the calculation of this value are given in table 5.1.
With a relative precision of 2.8 · 10−14, this mass is sufficiently well known to not
limit a mass measurement of HD+.

5.4.1 Statistical Evaluation
Prior to starting the data taking, the trap potential was optimized in the same
way as for the deuteron ions. Preparatory measurements like a calibration of the
cyclotron excitation κ+, a measurement of the ions temperature and a check of
the magnetic inhomogeneity B2 were performed. For B2 and the temperature,
the values were in agreement with the ones measured for the deuteron. For HD+,
only one pair of ions trapped for about seven weeks was used. Again, the PnA
excitation amplitudes were varied and the data was analyzed using the surface fit
method, as shown in figure 5.4. The statistical frequency ratio Rstat resulting from
the fit is

Rstat = 1.007 310 263 850 (19). (5.13)

From the fitted slopes, values for the excitation calibrations for deuteron, and for
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Table 5.4: Systematic shifts and their uncertainties after extrapolation to zero
excitation amplitude for HD+. All values are relative and in parts-per-trillion.

Shift of νc for Correction Uncer-
Effect HD+ 12C4+ to RCF tainty
Image charge −24.9 −98.7 73.8 3.7
Special relativity (thermal) −1.5 −0.4 −1.1 0.5
Magnetic inhomogeneity 0.2 0.1 0.2 0.3
Electrostatic anharmonicity 0 0 < 0.1 0.4
Lineshape 0 0 0 6.75
Magnetron frequency 0 0 0 2.1
Polarization −18.4 0 −18.5 < 0.1
Total −44.6 −99.0 54.3 11.4

carbon,
κ+,d = 1.350 (37) · 10−2 m/Vpp/sec
κ+,C = 1.362 (17) · 10−2 m/Vpp/sec,

(5.14)

can be derived. These values are to be compared with the direct measurement
performed with a 12C4+ ion, which yielded

κ+ = 1.340(35) · 10−2 m/Vpp/sec. (5.15)

All three values agree within their uncertainties.

5.4.2 Evaluation of Systematic Shifts
The systematic shifts and their uncertainties were evaluated in the same manner
as for the deuteron. The only difference is the polarization shift introduced in
section 2.7.3. The values for the systematic shifts are listed in table 5.4. The
uncertainty originating in the image charge shift is slightly reduced, owing to the
mass of HD+ being ≈ 1 u higher than for deuteron. This increased mass is also
the reason the term special relativity (thermal) becomes even smaller. On the
other hand, the reduced cyclotron frequency of about 20 MHz is now closer to
the axial frequency, which is why uncertainties during the dip measurement have
an increased impact on the uncertainty of the cyclotron frequency ratio. This
resulted in the dip lineshape being the dominant systematic uncertainty for the
HD+ measurement. The final ratio correct for systematic shifts is

R
(

12C4+
/HD+

)
= 1.007 310 263 905 (19)stat(8)sys(20)tot, (5.16)

where the brackets again denote the statistical, systematic and combined uncer-
tainty, respectively. The measurement is strongly limited by statistics.
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5.5 Mass Value and Comparison with Expectation

From this measured frequency ratio and the mass of 12C4+ given in equation (5.12),
the directly measured value for the mass of the HD+ molecular ion becomes

m
(
HD+

)
direct

= 3.021 378 241 561 (56)stat(24)sys(61)tot u. (5.17)

The mass of HD+ can also be derived by using the mass of its constituents. The
atomic binding energy of the three body system electron, deuteron, and proton,
which is about 16.3 eV, can be calculated theoretically to a precision where it
does not contribute to the uncertainty anymore [90]. Converted into atomic mass
units, the binding energy becomes B(HD+) = 17.4663 · 10−9 u with negligible
uncertainty. Together with the proton mass previously reported by Liontrap
(mp = 1.007 276 466 598 (33) u), the deuteron mass given in equation (5.10), and
the electron mass [85, 62] (me = 5.485 799 090 65 (16) · 10−4 u), the expected mass
of HD+ becomes

m
(
HD+

)
p+d

= 3.021 378 241 576 (37) u. (5.18)

Both values agree on a 1σ level, m(HD+)p+d − m(HD+)direct = 15 (71) pu. The
comparison is limited by the statistical precision of the direct measurement of HD+.
This is because the data taking with HD+ was stopped when the uncertainty
for Rstat taken from the preliminary analysis was on a comparable level to the
uncertainty arising from the proton mass. However, the uncertainty in the final
analysis turned out slightly larger. The agreement between both values opens up
the possibility for a least square adjustment as described in the next section.

5.6 Least Square Adjustment
When taking the mass of the electron and the involved binding energies as fixed,
one has a situation with more experimental links than underlying physical quanti-
ties. In such a situation, one can perform a least square adjustment to get the best
possible estimates for the values of the underlying physical quantities. How this
can be realized for mass measurements is described for example in [91]. Following
a least square approach on a consistent data set results in adjusted values with
reduced uncertainties. However, one needs to be careful, since the resulting values
are correlated.
In this section, two least square adjustments are evaluated. An adjustment with
only the results of Liontrap gives a best guess for a deuteron-to-proton mass
ratio. This can then be compared with the one measured directly by the FSU
[87]. Since both values agree, the FSU value can be included in a subsequent
adjustment.
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5.6.1 LIONTRAP internal adjustment
The quantities for which we are interested in adjusted values are the proton mass
mp and the deuteron mass md. The available input values are the direct measure-
ments of both of these masses as well as the measurement of the HD+ molecular
ion. All three values are assumed to be uncorrelated. The proton mass was limited
by the residual magnetic inhomogeneity, which does not play a relevant role for
the deuteron and the HD+. The HD+ measurement was limited by statistics, for
the deuteron mass both the statistical as well as the systematic uncertainty play
a relevant role. While parts of the systematic uncertainties, most obviously the
image charge shift, are correlated, the different limitations justify neglecting the
correlations.
Performing this least square adjustment results in adjusted values

mp,lsq1 = 1.007 276 466 595 (29),
md,lsq1 = 2.013 553 212 534 (17),

(5.19)

with correlation coefficient r(mp,md) = −0.13. Since the uncertainty of the HD+

measurement was significantly larger than for the direct measurements, this results
only in a slight decrease of the uncertainties. From these adjusted values, the
deuteron-to-proton mass ratio

md

mp

(Liontrap) = 1.999 007 501 228 (58) (5.20)

can be deduced. Here, the uncertainty including the correlation coefficient is cal-
culated using the standard formula,

δ

(
md

mp

)
=

√√√√(δ(mp)
md

)2

+
(
mpδ(md)
m2
d

)2

+ 2cov(mp,md)
md

m3
p

, (5.21)

where cov(mp,md) = r(mp,md)δ(mp)δ(md). Since r(mp,md) < 0, taking into
account the correlation actually reduces the uncertainty of the deuteron-to-proton
mass ratio slightly.

5.6.2 Consistency Across Groups
This deuteron-to-proton mass ratio can be compared with the one derived from a
measurement comparing H+

2 and deuteron reported by the FSU [87]. Their value

md

mp

(FSU) = 1.999 007 501 274 (38) (5.22)

agrees with the value from the Liontrap adjusted values on a 1σ level. This
consistency between different Penning-trap groups on such a level of precision does
not only constitute a great cross-check for the involved measurement methods, it



5.6. Least Square Adjustment 87

also allows including this proton-to-deuteron mass ratio as another link in the least
square adjustment, resulting in

mp,lsq2 = 1.007 276 466 580 (17)
md,lsq2 = 2.013 553 212 537 (16).

(5.23)

There, the reduced chi-squared of χ2
red = 0.43 stresses the consistency between

these four measurements. The main benefit of this adjustment is a reduced uncer-
tainty of the value for the proton mass of only 17 ppt. Compared to the Liontrap
measurement, the uncertainty is reduced by a factor of two, compared to the cur-
rent CODATA literature value [85] even by a factor of three. The correlation
coefficient is r(mp,md) = 0.26.

5.6.3 Implications on the Neutron Mass
The atomic mass of the neutron cannot be measured using conventional mass spec-
trometry in Penning traps, as it has no charge. Therefore, its mass is determined
by a combination of Penning-trap mass measurements on isotopes, which differ by
one neutron, and a measurement of the neutron seperation energy Sn. This seper-
ation energy can be measured at neutron beam facilities [33, 34] by using Bragg
spectroscopy. There, an absolute wavelength measurement of the gamma-ray of
the neutron capture is performed.
Traditionally, one uses the proton and the deuteron for this measurement. Owing
to their low mass, the Penning-trap mass measurements do not pose a strong limi-
tation on the determination of the neutron mass when using proton and deuteron.
The reaction rate of the neutron capture process is decent and the energy of the
gamma ray is with 2.2 MeV not too high. This principle was used in a 1999
measurement using the the GAMS4 flat crystal spectrometer [34], resulting in a
value for Sn with a relative precision of about 1 · 10−7 [33]. Up to this date, this
measurement is still the only one at this level of precision.
In this bragg measurement, the actually observed quantity is the scattering angle of
the gamma photon. To translate this angle into a wavelength, the lattice constant
of the used crystal is needed. This crystal is referred to in the literature as ILL2.5.
Its lattice constant had to be updated in 2006 [35] and recently in 2017 [92]. The
2017 and 2006 values for the lattice constant are

dnew = 192.015 5721 (64) · 10−12 m,
dold = 192.015 5822 (96) · 10−12 m.

(5.24)

While there are different approaches on how to translate the angle measurement
into a wavelength measurement, all approaches yield the same dependency for
small angle changes,

λmeasnew = dnew
dold

λmeas
old (5.25)

= 0.557 671 299 (97) · 10−12 m. (5.26)
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Here, λmeas
old = 0.557 671 328 (99) · 10−12 m [35] was used. This corresponds to an

energy of

Emeas = 2 223 248.69 (39) eV. (5.27)

Both these values refer to the measured quantities, but to extract the binding
energy, one has to correct for nuclear recoil [33]. This yields

Sn = Emeas + (Emeas)2

2mdc2

= 2 224 566.35 (39) eV
= 2.388 170 08 (42) · 10−3 u.

(5.28)

Here, mdc2 is the atomic mass of deuteron expressed in eV using the conversion
factor (1u)c2 = 9.314 941 024 2 (2 8) · 108 eV [85]. The discrepancies in md reported
in this work as well as the conversion to eV do not play any role at the level of
precision needed for the recoil correction.
Using value for the neutron binding energy given above and the masses for the
proton and the deuteron after the least-square adjustment given in this work, the
neutron mass becomes

mn = 1.008 664 916 04 (42) u, (5.29)

with a relative precision of 4.2 · 10−11. The precision is strongly limited by the
precision of the gamma-ray measurement. The neutron mass mn also has a cor-
relation coefficient with both the proton mass mp and the deuteron mass md,
r(mp,mn) = −0.03 and r(md,mn) = 0.03.
The value for the neutron mass given above is heavier by 9 · 10−11 u compared to
the CODATA 2018 literature value [85]. It is noteworthy that the new value for
the deuteron mass leads to an increase of the neutron mass calculated with this
method by 2.1 ·10−10. The difference between the Liontrap proton mass and the
CODATA 2018 value gives rise to a shift in the neutron mass of −0.4 · 10−11 and
the difference between the 2006 and 2017 binding energies to a shift of −1.3 ·10−10,
which does not add up to the 9 ·10−11 u difference given above. The reason for this
is that CODATA treats the lattice constant of the crystal used in this measurement
as an adjusted value in their least-square adjustment [88]. However, as this value
is not a fundamental constant, it is a so-called hidden parameter, and the 2018
value is not available yet.

5.6.4 Comparison with Molecular Spectroscopy
Recently, the spectroscopy of hydrogen molecular ions made a lot of progress [29,
30, 31, 32]. Precision measurements of the rovibrational transitions in HD+ can
be used to test three body calculations in quantum electrodynamics (QED). At
a certain level of precision, one can also assume QED to be correct and extract
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fundamental constants. The transitions in HD+ are sensitive to a combination of
the Rydberg constant R∞ and the involved masses.
In the group of Stephan Schiller in Düsseldorf, the frequency of the fundamental
rotational transition (ν,N) : (0, 0) → (0, 1) at 1.3 THz is measured [31]. Here,
ν and N denote the quantum numbers of the vibrational and rotational levels,
respectively. From this, they extract a value

R∞

(
me

mp

+ me

md

)
Schiller

= 8 966.205 150 50 (17) m−1. (5.30)

When inserting the values from the least square adjustment in section 5.6.2 and the
CODATA 2018 value for the Rydberg constant Rinf = 10 973 731.568 160 (21) m−1

[85], this yields

R∞

(
me

mp

+ me

md

)
mass lsq & CODATA

= 8 966.205 150 96 (28) m−1. (5.31)

Both values differ by 46 (33) · 10−8 m−1, which corresponds to 1.4σ.
In the group of Jeroen Koelemeij in Amsterdam, the transition (ν,N) : (0, 3) →
(9, 3) is measured using two photons at 1.4 µm each [32]. The transition frequency
depends on the masses, the Rydberg constant, the rms charge radii of the proton
and the deuteron. The measured transition frequency is

νexp = 415 264 925 500.5 (1.2) kHz. (5.32)

This agrees well with the theory prediction, where the CODATA 2018 constants
were used, νCODATA2018 = 415 264 925 496.2 (7.4) kHz. When instead using the
adjusted masses of section 5.6.2, the theory frequency becomes

νmass lsq & CODATA = 415 264 925 505.1 (5.2) kHz. (5.33)

This value still agrees with the experimentally measured one, however, it has a
slightly improved uncertainty. The mass ratios from Penning traps are now limited
by the electron mass, which is known with a relative precision of 2.9 · 10−11. One
can now either extract fundamental constants from the spectroscopy results, or
use independent values for these constants and set limits on physics beyond the
standard model by the fact, that both values agree [31].

5.6.5 The Puzzle of Light Ion Masses
The puzzle of light ion masses was introduced in section 1.2.2 Using the mass
values from the least square adjustment above, the term ∆ = mp + md − mhe
becomes

∆C = 0.005 897 432 449 (50). (5.34)
Here, the mass of the 3He nucleus mhe is still the value reported by the University
of Washington (UW) [18]. The masses of the proton and the deuteron are from the
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adjustment including the direct mass measurements of the proton, the deuteron,
HD+ by Liontrap and the deuteron-to-proton mass ratio by the FSU [87], where
a consistency between different measurement groups was shown. Comparing this
value to the one derived by a mass ratio measurement of HD+ and 3He reported
by the FSU [19] (∆FSU) yields a discrepancy of

∆FSU −∆C = 258(86) pu. (5.35)

Since a consistency between Liontrap and the FSU was already shown, and
discrepancies to the values reported by the UW were observed both for the proton
mass and the deuteron mass, this leaves 3He as the most likely candidate to explain
the remaining 3σ discrepancy. A mass measurement of 3He will be among the next
projects at Liontrap.

5.7 Limitations of the Deuteron Mass Campaign
In this section, I analyze the statistical limitations of the deuteron mass campaign.
In total, 1100 cycles were used to reach the final statistical precision of 5.4 · 10−12.
Without increasing the shot-to-shot precision, achieving statistical precisions in
the low 10−12 range seems infeasible. Therefore, the cause of the jitter of our
frequency ratio needs to be investigated.

5.7.1 Modeling PnA Resolution
The resolution achievable with the PnA measurement is one of the major factors
in determining the possible statistical precision achievable in a mass measurement
campaign. The frequency resolution δν is connected to the phase resolution δφ by

δν

ν
= δφ

ν Tevol 180◦ , (5.36)

where δφ is given in degrees. The physical effects limiting this resolution can be
divided into frequency and phase jitter. The following effects contribute a phase
jitter:

1. Imprinting the phase. The phase is imprinted by a dipolar excitation. It is
well defined, if the thermal radius is negligible compared to the excitation
radius, rexc � rthermal. However, to avoid systematic shifts, a small excitation
radius is desirable, so some phase jitter from imprinting the phase is accepted.

2. Phase jitter from the transfer to the axial motion. As described in section 2.6,
the ions amplitude in the cyclotron mode must be significantly larger than
the axial amplitude multiplied with

√
ωz

ω+
(equation (2.70) therein). If this

condition is met to a lesser degree the axial phase will influence the measured
phase more. As the axial phase has no phase relation to the cyclotron phase
we want to measure, this leads to an additional jitter. Because both modes
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are thermalized to the same axial resonator, this jitter and the one detailed
above are related.

3. Read-out jitter. In reading-out the phase in the axial mode, the limited
signal-to-noise ratio leads to a phase jitter. For the PnA-technique, the am-
plitude of the second PnA pulse can be optimized in order to minimize this
effect.When increasing the amplitude of the second pulse, the read-out jitter
is reduced until the amplitudes become big enough for field inhomogeneities
to introduce an additional read-out jitter. The read-out jitter can be nu-
merically simulated, the validity of this simulation was checked in [54, 93].
The phase-jitter occurring when the second PnA pulse is too strong is not
easily modeled as it originates in high order field inhomogeneities which are
hard to access. However, usually one uses excitation amplitudes, where this
phase-jitter does not play a significant role yet.

4. Residual dipolar excitation of the second PnA pulse. The second PnA pulse,
which is supposed to be a quadrupolar excitation at ν+ + νz can inhibit a
residual off-resonant dipole component. If the phase relation between the
first and the second PnA pulse are constant, this can lead to a systematic
shift of the measured phase. This effect was measured to be < 1◦ [54]. In
order to not have a systematic effect, the phase of the first PnA pulse was
chosen randomly in every cycle, translating the potential phase shift in a
phase jitter. However, this phase jitter can be neglected compared to the
other sources of jitter presented here.

5. Jitter from the used Devices. In principle, the timing system and the read-
out devices also contribute to the phase jitter. However, in our system these
contributions are < 0.1◦ and thus negligible.

On the other hand, the following frequency jitter can occur:

1. Special relativity. The motional amplitude during the PnA gives rise to a
relativistic shift. In the same manner as described in section 2.4, the motional
amplitude and thus the shift varies depending on the random phase relation
between the excitation pulse and the initial phase of the ion. The frequency
jitter from this effect depends on the proportions between the thermal radius
and the excitation radius. For ions excited to the same radius, the jitter
decreases for increasing mass.

2. Field imperfections. In the same manner as in the previous point, field imper-
fections also lead to a frequency shift dependent on the excitation amplitude.
For the magnetic homogeneity and the electric harmonicity at Liontrap,
the jitter originating from this effect is negligible compared to the relativistic
jitter.

3. Magnetic field drifts. Magnetic field drifts limit the resolution available to
mass measurements. However, for the purpose of evaluating the frequency
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Table 5.5: Examples of the measured phase jitter during the deuteron mass cam-
paign and comparison with a Monte-Carlo simulation. All phase jitters are given
in degrees. For details see text.

Measurement Model
Ion rexc Tevol δφ SNR δφtech. δφtherm. δφrel. δφtot.

C6+
10 µm 10 ms 11.6 20.1 5.8 10.2 < 0.1 11.7

30 s 19.4 1.5 11.8

100 µm 10 ms 4.3 23.2 3.9 1.0 < 0.1 4.0
25.2 s 19.6 12.2 12.8

d
10 µm 10 ms 27.1 17.3 8.1 28.5 < 0.1 29.6

30 s 28.2 3.7 29.9

100 µm 10 ms 10.6 15.4 10.0 2.5 < 0.1 10.3
25.2 s 35.3 29.3 31.1

resolution, constant linear magnetic field drifts can be eliminated to a large
extend by examining the standard deviation of the difference between subse-
quent PnA measurements. For normally distributed data exhibiting a slow
drift, this standard deviation of the differences is about

√
2 times the stan-

dard deviation of the original sample without drift.

4. Jitter of the atomic clock. When the frequency standard given by the atomic
clock jitters, this does not affect the particle. However, the read-out phase
will jitter, because the evolution time Tevol will differ depending on the actual
frequency of the atomic clock. Our model was specified to have an Allan
variance of better than 1 · 10−11 on a time scale of 10 s, which is comparable
to the evolution time. On longer time scales, this becomes even better. In
test measurements, where the clock used at Liontrap was compared to a
different clock of the same manufacturer, no excess instabilities were seen,
indicating that the effect of the atomic clock can be neglected for now.

In principle one can increase the evolution time, until the phase-unwrap can no
longer be performed unambiguously. To this end, the maximally accepted phase
jitter is typically about 40◦. When increasing the evolution time, the impact of
phase jitter on the frequency resolution is reduced, while the impact of frequency
jitter is not affected.
In table 5.5, the phase jitter measured during the deuteron mass campaign for
different settings are compared to a Monte-Carlo simulation taking into account
the effects detailed above.
There, δφtech. corresponds to the read-out phase jitter originating in the limited
SNR. δφtherm. denotes the phase jitter from imprinting the phase onto the thermal
ion and δφrel. denotes the mostly relativistic frequency jitter expressed as a phase
jitter. The quadratic sum of all three gives the total phase jitter expected in this
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model δφtot., which is to be compared with the measured phase jitter δφ. The
statistical uncertainty of the stated measured phase jitter is about 2◦. For the
modeled phase jitter, various sources of uncertainty play a role. For the technical
read-out jitter, it is hard to give a valid estimate of uncertainty, as this is a very
simplified model. However, the agreement between model and measurement for
both ions at rexc = 100 µm and Tevol = 10 ms, where the read-out jitter is dominant,
suggests that uncertainties are below a few degrees. The jitter from imprinting the
phase δφtherm. and from relativistic shifts δφrel. depend heavily on the temperature
of the ion. In section 2.4, the uncertainty for the temperature measurement was
given as T = 1.2 (5) K. This translates for example in an uncertainty for the
combination of δφtherm. and δφrel. of ≈ 7◦ for deuteron at both 10 µm and 100 µm.
For carbon, the respective uncertainty is lower and about 2.2◦ at 10 µm and ≈ 0.2◦
at 100 µm.
In the examples shown in table 5.5, the modeled phase jitter δφtot agrees with
the measured phase jitter δφ for short evolution times Tevol = 10 ms within the
uncertainties given above. Although the uncertainties of the model for the phase
jitter are hard to estimate, the agreement with the measured phase jitters shown
here suggests that the model accurately describes the involved jitter. Furthermore,
the value for the temperature is indeed accurate and the uncertainty might even
be slightly overestimated.
For the long evolution times, the magnetic field jitter adds to the modeled phase
jitter. To estimate this, we compare the measured phase jitter of the long evo-
lution times, with the measured phase jitter for Tevol = 10 ms. For carbon at
100 µm this difference is the largest. The 30 s phases show an additional jitter
of
√

19.62 − 4.32 = 19.1◦. The modeled phase jitter suggests a contribution of
12.2◦ from the relativistic frequency jitter. Subtracting this in squares results in
a remaining phase jitter of 14.7◦. If one attributes this to magnetic field jitter,
this corresponds to a stability of the magnetic field of δB/B = 4.7 · 10−11. For
carbon at 10 µm, the same calculation yields a remaining phase jitter of 15.5◦, in-
dicating that the magnetic field was similarly stable throughout the measurement
campaign.
For the deuteron, the magnetic field jitter barely contributes to the observed phase
jitter. When averaging over PnA cycles, one thus averages mostly over the thermal
distribution of the ion. Therefore, a decreased temperature would not only result
in reduced systematic uncertainties, but also in a reduced phase jitter and with
that an improved statistical precision.
From the phase jitters given in table 5.5, one can estimate the expected resolution
of the PnA measurement. For 12C6+ at 10 µm, the uncertainty of the 10 ms phase
is 11.6◦/

√
6 = 4.7◦, as this phase was measured six times during each cycle. The

phase with long evolution time was also measured six times, however, there the
most outer cycle was disregarded to avoid the influence of potential voltage drifts
after transport. This phase uncertainty is thus 19.4◦/

√
5 = 8.7◦. This results in

a resolution for the modified cyclotron frequency of δν+/ν+ ≈ 4.3 · 10−11. For
the deuteron at 10 µm, the same consideration yields to a resolution of δν+/ν+ ≈
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7.6 · 10−11. For the ratio, both resolutions can be added in squares as they can be
assumed to be independent, yielding a resolution for the frequency ratio of(

δR

R

)
PnA, 10 µm

= 8.9 · 10−11. (5.37)

Throughout the measurement campaign the measured stability of the frequency
ratio for the data taken with radii of 10 µm was about 2.0 · 10−10. For the whole
data set, this value was a bit better with 1.6 · 10−10. Therefore, other factors need
to play a role in the statistical limitation of the frequency ratio.

5.7.2 Magnetic Field Drifts
In the last section we found, that magnetic field jitter does not play a major role for
the statistical limitation in the deuteron measurement campaign, and one averages
mostly over the thermal energy distribution of the ion. However, in the analysis of
the magnetic field jitter, slow magnetic field drifts drop out because the standard
deviation of the phase differences were considered per cycle. For the cyclotron
frequency ratio, these drifts nevertheless play a role, and as shown in figure 5.5,
slow drifts did occur during the measurement campaign, even though a decay of
the magnetic field as observed in freshly charged magnets does not occur in our
magnet anymore, as it was charged 25 years ago in 1995. However, between runs
and between ion pairs, jumps in the cyclotron frequency can be observed, owing to
different used settings and the filling of cryo-reservoirs which occurs between runs.
During runs drifts of the cyclotron frequency of typically 8 mHz per cycle occur.
The origin of these drifts is not yet understood. The most likely explanation are
long term effects of the thermalization after filling, but other effects like the level
of the cryo-reservoirs might also play a role.
The measurement cycle is, depending on the exact settings used, between 63 min
minutes and 76 min long. The measurement of the phases with long evolution
time, which are sensitive to magnetic field variations take in total ≈ 10 min per
ion, the transport and pre-cooling took ≈ 330 s. In the analysis, the most inner
PnA cycle was disregarded to exclude potential drifts of the voltage after trans-
port1. Therefore, the center times of the used PnA cycles were ≈ 17 min apart,
approximately 1/4 of the total time of a measurement cycle. When combining this
with the 8 mHz typical drift between cycles above, one expects the magnetic field
to drift an amount of typically δB/B ≈ 7 · 10−11 between the measurements of
deuteron and carbon. As the order of the ions is random, and the drift at least to
some extend, too, this effect does not give rise to a systematic shift, but rather a
jitter of the frequency ratio R of(

δR

R

)
magnet drift

≈ 7 · 10−11. (5.38)

1For simplicity, the most inner PnA cycle of both ions was disregarded, although for the first
ion in each measurement cycle no transport occurred immediately before the PnA measurements.
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Figure 5.5: Magnetic field drifts. Plotted are the cyclotron frequencies of 12C6+

throughout the measurement campaign, the four ion pairs are color coded. Es-
pecially in the beginning of the measurement campaign, significant variations of
the cyclotron frequency of up to ≈ 3.5 Hz are observed, corresponding to magnetic
field shifts of δB/B ≈ 1 · 10−7. There, the temperature stabilization parameters
were varied, possibly explaining these large jumps. With ion pairs three and four,
the magnetic field scatter is about 1 Hz, corresponding to δB/B ≈ 3 · 10−8. A
linear drift as seen with freshly charged magnets is no longer visible. The inset
shows a zoom-in to a part of the data taken with ion pair two. The magnetic
field shows jumps in the gaps between runs, where filling occurred, and otherwise
relatively smooth drifts.
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Figure 5.6: Axial frequency of 12C6+ during the whole measurement campaign.
The axial frequency νz is shown as a function of the cycle number. The frequency
stayed relatively constant during the measurement campaign. Large jumps within
each ion pair are marked with roman numbers. In (I), a number of devices unused
in the mass measurement were disconnected. The fans used to circulate the air
inside our temperature stabilized volume were off in the data marked with (II) and
(III), leading to increased temperature gradients across the magnet. In (IV) and
(V), the set-temperature of the temperature stabilization was changed from 33◦C
to 30◦C and from 30◦C to 32◦C, respectively. At the position marked with (VI),
the voltage was changed by 0.13 mV≈̂4 Hz.

However, this jitter does not necessary have to be Gaussian distributed. In the
extreme case of a perfectly constant drift and in absence of any other jitter, one
would just observe two distinct frequency ratios, which jitter around the true
frequency ratio by ±7 · 10−11, depending on which ion was chosen to be measured
first.

5.7.3 Axial Frequency Determination
The determination of the axial frequency can also play a role in the statistical pre-
cision of the cyclotron frequency ratio. However, due to the use of the invariance-
theorem, the impact of the axial frequency is reduced, δνc/νc = δνzνz/ν

2
c . The

axial frequency of 12C6+ throughout the measurement campaign is shown in fig-
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ure 5.6. Large jumps are marked with their causes given in the caption. When
disregarding jumps between runs, the axial frequency scatters about 75 mHz for
carbon and 72 mHz. The fact, that these numbers are so close while the width of
the dip differs by a factor 6 suggests that voltage fluctuations cause this frequency
scatter. If uncorrelated, such a scatter leads to a jitter of the frequency ratio of(

δR

R

)
voltage drift

= 5.1 · 10−11. (5.39)

One should note that if this was just the voltage being different after each trans-
port, it would not affect the free space cyclotron frequency at all, as the modified
cyclotron frequency would shift accordingly and the magnetron frequency’s impact
can be neglected in the invariance theorem. However, if the axial frequency jitter
is an expression of a voltage jitter far from the trap center, this could result in a
shifted equilibrium position, and in combination with a linear magnetic field gradi-
ent in a cyclotron frequency jitter. In the magnetic field gradient measured in the
PT (B1 = 0.00234(12) mT mm−1), a displacement of 16 nm would be needed. This
may not sound like a lot, but it is hard to draw a scenario where on the one hand,
the axial frequency is as stable as observed, and on the other hand, the position
jitters on a level which would result in a sizable cyclotron frequency jitter. For
example, a voltage of 1 mV on the last endcap of the PT would result in a shift of
the equilibrium position of only 1.6 nm, but shift the axial frequency by 0.2 Hz.

5.7.4 Conclusion of the Limitations of the Deuteron Mass
Campaign

In this section, three main contributions to the statistical uncertainty were identi-
fied and analyzed. The resolution of the PnA, drifts of the magnetic field and the
axial stability. However, when adding these in squares, one would expect a jitter
for the ratio of 1.2 · 10−10, to be compared with the measured jitter of 2.0 · 10−10

(both values for 10 µm). To explain the measured statistical jitter using these
three contributions, one would need to assume that they are correlated, which
seems unreasonable. However, it is possible, that the voltage jitter causes an addi-
tional magnetic field jitter. Any change in the trap potential can potentially lead
to a slightly shifted equilibrium position of the ion. In combination with a residual
magnetic field gradient, this would lead to a magnetic field jitter. While this jitter
in principle would appear in the analysis in section 5.7.2, there we assumed the
magnetic field jitter to be suppressed by a factor of four due to the timings in the
measurement cycle. When a significant portion of the magnetic field jitter is cause
by the transport, this suppression is no longer justified, and could lead to above ef-
fect. To check for this effect, a distinct voltage source just for ion transport, which
is completely disconnected during measurements, is in planning at Liontrap.
In summary it can be stated, that many effects play a role for the stability of
the measured frequency ratio on a relevant scale. To improve, the first step is
to eliminate the transport as a potential source of jitter. Then, one can improve
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the resolution of the PnA by achieving lower temperatures. This would also allow
to use less PnA measurements at long evolution times, potentially also reducing
the impact of magnetic field drifts. A potential further step is to improve the
measurement of the axial frequency. This could be done either by measuring
peaks, which is a lot faster, but prone to systematic errors, or by taking the dip
spectra during the evolution time of the PnA. Alternatively, the two-ion balance as
implemented by the MIT [81, 84, 37] can potentially remove influences of magnetic
field instabilities to a large extend and make ion transport unnecessary. However,
when having two ions in the trap the motion of the ions becomes much more
complex, resulting in systematic shifts, which one would need to carefully evaluate
to see, if this technique would be feasible at Liontrap.



6 Outlook and Summary
In this chapter, I give an outlook on future projects at Liontrap and briefly
summarize the findings in this work. The outlook begins with a discussion of
measurements with simultaneous PnA in two traps and is followed by a description
of a proposed new cooling method using electronic feedback cooling of the axial
motion of a cloud of ions. The summary forms the final section of this chapter.

6.1 Simultaneous PnA in Two Traps
As outlined in section 3.4.2, one of the ideas to improve the statistical precision
in mass measurements was the use of a magnetometer trap (MT). Under the
assumption that changes of the magnetic field are homogeneous over both traps,
the monitored magnetic field can be used to correct for such magnetic field changes
and potentially improve the statistical precision of mass measurements, see also
[7]. To investigate this possibility, various measurements were performed with
both the MT and the ST1, while the transistor board was constantly heated and
precision mode channels were used for the voltage supply.
In section 5.7.1, we saw that even for long evolution times of Tevol ≈ 30 s, magnetic
field jitter only played a minor role in the observed phase stability in PnA measure-
ments in the PT. In both the MT and the ST1, the stabilities were unfortunately
much worse. As the phase jitter was also clearly scaling with the evolution time,
the following explanations for this are possible:

1. Significantly worse field homogeneities or an increased temperature. As
the trap setup is designed such that the PT is positioned in the most ho-
mogeneous region of the magnetic field and the homogeneity of the mag-
netic fields there is optimized by the B2 coil, the magnetic inhomogene-
ity was significantly worse in the MT (B2 ≈ 1.3 µT mm−2) and the ST1
(B2 ≈ 0.5 µT mm−2) compared to the PT (B2 = 0.0024 (24) µT mm−2). Also,
due to a technical problem, there was no electronic feedback available in the
MT and ST1, resulting in an axial temperature of ≈ 4.2 K, which is signifi-
cantly higher than what was achievable in the PT (T = 1.2 (5) K). Although
a detailed modeling of the involved phase jitter was not performed yet, this
is a likely explanation for the observed phase jitter. However, if this is the
origin of the phase jitter, at least for short term fluctuations one cannot hope
to gain a benefit from comparing short term data.

2. The magnetic field jitter is actually higher. This could possibly be caused by
magnetic material somewhere close to the traps, or by external fluctuations,
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Figure 6.1: PnA in two traps. Shown are two example measurements, where si-
multaneous PnA measurements were performed in the PT and the MT. In (a), the
pressure in the LHe reservoir was increased step-wise over a wide range, and the
impact on the modified cyclotron frequency is measured with a relatively short
evolution time of Tevol = 2 s. The magnetic field in both traps behaves differently
on magnetic field changes. In (b), the LHe pressure was stabilized, and the LN2
pressure was unstabilized. However, the PID increasing the opening the exhaust
valve hints to an increased ambient pressure towards the end of the measurement,
which seems to have a large influence on the MT, but not on the PT.

which are shielded differently for the different traps. To measure this, a
Helmholtz-coil was wound around the magnet and the shielding factor for
homogeneous magnetic field changes was measured to be ≈ 146 in the PT
and about the same in the neighboring ST1. In the MT, the shielding factor
was lower by ≈ 25%. The difference is too small for external field jitter to
play a role in the MT, but not in the PT.

From above considerations it is unlikely that we see any short term correlations of
the magnetic field in neighboring traps. But what about long term drifts?
In figure 6.1, two example measurements, where simultaneous PnA measurements
were performed in the PT and the MT are shown. There it becomes clear that
both traps react differently to environmental changes. In order to benefit from
this monitoring of the magnetic field, all environmental parameters which act
differently on both traps need to be sufficiently stable. As this would probably
increase the stability of the magnetic field in each of the traps and the drift of the
magnetic field as estimated in section 5.7.2 was not limiting the statistical ratio,
it is unclear if this technique can be used in a beneficial way in the near future.

6.2 Cooling Ions with Electrons
In section 5.7.1, we saw that the resolution of the PnA measurements is is lim-
ited by its temperatur, especially for the deuteron. Therefore, mass measurements
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would greatly benefit from a reduced ion temperature. There are various ap-
proaches to achieve this, e.g. sympathetic cooling with laser cooled ions [94] or
cooling with a cyclotron resonator [60], each with its own advantages and disad-
vantages. In the framework of this thesis a novel approach was started, where the
axial motion of a cloud of electrons is cooled via electronic feedback and coupled
to the cyclotron motion of an ion. Here, I want to sketch the idea behind this
approach, present the measurements done in this direction and give a perspective
for the future.

6.2.1 Equation of motion
A sketch of the principle is shown in figure 6.2. Electrons and the ion to be cooled
are stored in independent Penning traps. The trap electrodes have capacitances Ci
and effective electrode distances Di = |Ui/∂Ui

∂z
|z=0|. The N electrons with charge

Nq induce an image current on electrode 1, which is given by

iind = Nq

D1
ż, (6.1)

with the electrons axial velocity ż. Here, the electrons are described in a simplified
model as one particle with charge Ne and mass Nme. This implicitly assumes that
only the collective motional mode of the cloud is in the considered frequency range
and interactions with the internal modes are negligible. This current is translated
into a voltage by the impedance Z = −i/(ωC1) of the trap capacitance. It is then
amplified by a factor A, phase shifted and fed back onto a second electrode. Both
voltages cause a force on the electrons, given by

Fi = qUi
Di

, where

U1 = −iqN
ωC1D1

ż,

U2 = −Ae
iφqN

ωC1D1
ż.

(6.2)

The resulting equation of motion is then given by

z̈(t) = −ω2z(t) +
(
−iq2N

ωC1D2
1m

+ A ∗ eiφq2N

ωC1mD1D2

)
ż. (6.3)

An imaginary part of the coefficient in front of ż leads to a frequency shift. There-
fore, one has an indicator to tune the phase such that eiφ = 1. This equation of
motion results in a damping with rate

τeff = meω

q2N

D1D2C1

ARe (eiφ) . (6.4)

The damping rate scales as 1/N , so using more electrons will lead to faster damp-
ing. Therefore, using as many electrons as possible is desirable. However, one has
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Figure 6.2: Scetch of the setup for cooling ions with electrons. The electrons are
axially by feeding the amplified and phase shifted signal they induce in electrode 1
back to electrode 2. Another electrode picks the electron signal up and is connected
to a split electrode (4) of a neighboring trap, where an ion is stored. The coupling
leads to an exchange of energy of the axial mode of the electrons with the cyclotron
mode of the ion.

to guarantee that inside the volume filled by the electrons the electric field is suf-
ficiently harmonic in order to have a coherent center of mass motion, which gives
a practical limitation on the number of electrons. For the example calculations
shown here, I used an estimate of N = 1 · 104 electrons.

6.2.2 Temperature Limitation
The temperature reachable using this method is limited by the signal-to-noise ratio
of the signal, which is fed back onto the second electrode. Here, I assume the use
of a low-noise semiconductor amplifier based on a field-effect transistor. While a
SQUID in principle can yield better signal to noise ratios, its use close to a high
magnetic field is challenging.
The noise of a semiconductor amplifier in this frequency range can be modeled as
consisting of two parts [52], noise that is present at the output stage and noise
that is present at the input stage of the amplifier. The noise at the output stage
is referred to as voltage noise. It is convenient to express it as a noise density
at the input of the amplifier en. However, the voltage is not actually there, but
added during the amplification process. Noise at the input stage can originate
from currents in the gate or from voltage noise, which is fed back to the input
through the Miller capacitance. It is referred to as current noise, and also denoted
as a voltage noise density at the input stage en,I . This voltage can potentially be
correlated to en, however, for the treatment shown here they are assumed to be
uncorrelated. In the situation with feedback applied, both noise sources can heat
the ions motion. However, Voltage noise can be reduced by cooling more slowly,
while current noise provides a constant heating rate. Therefore, it is immediately
clear that one has to adjust the amplification A and thus the cooling rate in order
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to to minimize the temperature.
To quantify this and get an effective temperature caused by these noise sources,
one can model the system as a resistor connected to electrode 1. The voltage noise
density un of an resistor is given by

un =
√

4kbTR, (6.5)
with kb being the Boltzmann constant and R the resistance. A system of N
particles in a Penning trap dumping energy into an ohmic resistance has a cooling
time constant of

τR = mD2

Nq2R
. (6.6)

To get an effective temperature, the first step is comparing τR with τeff, which
yields an effective resistance

Reff = A∗

ωzC1
, (6.7)

with A∗ = AD1/D2. As a second step, one needs to model all heating processes
as from electrode 1 and then compare the effective noise density to the one of a
an ohmic resistor given in equation (6.5).
The force acting on the electrons caused by a voltage on electrode 2 is described
by equation (6.2). The same force originating from a voltage on electrode 1 would
thus be caused by a voltage U1 = D1U2

D2
. The noise voltage Aun on electrode 3 can

be written as effective noise voltage en,eff on electrode 1, which is given by

en,eff = AD1en
D2

= A∗en. (6.8)

The noise originating from currents in the gate en,I is added in quadrature to
the voltage noise, assuming both to be uncorrelated. Combining this with equa-
tion (6.5) and equation (6.7) one gets an effective temperature

Teff. = ωzC1

4kb

(
A∗e2

n +
e2
n,I

A∗

)
. (6.9)

As expected, one is able to adjust A∗ in order to get a minimal effective tempera-
ture. This minimal temperature is given by

Tmin = ωzC1

2kb
enen,I , (6.10)

and is reached for
A∗ = en,I

en
. (6.11)

Interestingly, this minimal temperature is independent of the number of electrons
used. However, for more electrons, the minimal temperature is reached faster.
While the noise density of the cryo-amplifiers in use at Liontrap is in the order
of en ≈ 500 pV/

√
Hz, the current noise is hard to estimate. However, as we do



104 Chapter 6. Outlook and Summary

not observe an impact of current noise on the temperature of our resonators, it is
justified to assume this to be small. When taking a value of en,I/en = 0.01 = A∗,
a trap capacitance of C1 = 10 pF and an axial frequency of ωz = 2π · 30 MHz, one
arrives at a lower limit for the temperature of≈ 170 mK. The cooling time constant
corresponding to this temperature can be estimated using D1 = D2 = 10 mm and
N = 1 · 104 to be τeff ≈ 67 ms, which is feasible. However, this stresses that
an ensemble of electrons is needed, because for N = 1 this cooling time constant
would be in the order of 11 min, which is unfeasible long. One should note that
this can be shortened by increasing the amplification A, at the cost of an increased
temperature.

6.2.3 Coupling of Electrons and Ions
The coupling between particles in adjacent traps has been proposed and theoreti-
cally treated by Heinzen and Wineland [95]. In their treatment they consider one
of the particles as being laser-cooled to the quantum mechanical ground state and
ask if it is possible to prepare the other particle also in the quantum mechanical
ground state. When we translate his ideas into our concept, one has to replace the
laser-cooled ion with a number of electrons being cooled by electronic feedback.
In the case of both particles having identical frequencies ω, this results in an
oscillatory exchange of energy with a frequency Ω given by

Ω = g2

2ω , where

g2 = q1q2
√
N

CcD3D4
√
m1m2

.

(6.12)

Here, q1 and q2 are the charges of an electron and the ion to be cooled, respectively.
CC is the capacitance of the connected electrodes, through which the coupling
occurs, and D3 and D4 are the respective effective electrode distances. Note that
D4 refers to the effective electrode distance in radial direction, in order to cool
the modified cyclotron mode of ions. Assuming D3 = D4 = 5 mm and a single
deuteron, this exchange of energy occurs on a timescale of 2π/Ω ≈ 13 s. Note that
this effective electrode distance for the radial motion is not achievable in the PT of
Liontrap, where the radial effective electrode distance of the split ring electrode
is ≈ 38 mm, but would require a dedicated coupling trap.
In the analytical treatment in [95] it is assumed that the cooling is turned off
during the coupling and vice versa. While this switching is necessary to achieve
ground-state cooling, it is technically very hard to achieve. If the coupling is
constantly there, and much slower than the cooling of the electron cloud τ � 1/Ω,
solving the coupled equations of motion yields and effective cooling time constant
for the ion of

τion = ω2

τg4 ≈ 15 s. (6.13)
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For the scenario outlined here, this is only slightly larger than the time constant of
the exchange of energy without feedback. This damping time is faster than typical
damping constants for a cyclotron resonator. The electrons can furthermore be
put easily in resonance with any ion by changing the trap voltage. Also, the mod-
ified cyclotron mode is directly thermalized, not through the axial mode. When
transferring the T+ ≈ 170 mK to the axial mode, with the frequency conditions
at Liontrap a temperature of Tz = νz

ν+
T+ ≈ 2.7 mK, which would be a factor of

≈ 400 lower than the current temperature.

6.2.4 Experimental Steps and Limitations
From above considerations the technique looks promising, but can we implement
it in the experiment? One obvious limitation is voltage stability. In order for the
cooling to work, the electrons’ axial frequency needs to jitter less than approxi-
mately the inverse cooling time. For the cooling time of 67 ms given above, this
would at νz = 30 MHz translate into a voltage stability of better than 8 · 10−7. If
one aims to couple to ions, the 15 s becomes the relevant timescale, corresponding
to a voltage stability of better than 4 · 10−9. The UM1-14 can achieve stabilities
in the 10−7 range, however, reaching stabilities of 10−9 is very challenging. That
is the reason why the transistor board described in section 3.4.3 and evaluated in
section 4.7 was implemented. As described there, it was not possible to stabilize
the voltage to the desired extend. However, with new ideas on how to stabilize
the trap voltage, one can investigate this electron cooling further. An optimized
coupling sequence might also significantly shorten the time scale of the coupling
and thus relax the demands on voltage stability, as shown in a recent work [96] at
Alphatrap [97] in the context of laser-cooled ions.
We showed at Liontrap that we can produce and store clouds of electrons, which
were detected by using a cyclotron resonator for ions, connected to an off center
electrode. However, during these test productions, another problem became clear:
at least in resonance with the tank circuit, the electrons get lost after a few minutes.
When the electrons are produced, detected and shifted out of resonance, their
life-time is significantly prolonged. One possible explanation would be that the
problem lies in the more complicated mode structure of the electrons’ axial motion.
If and how this will affect the proposed cooling method needs to be investigated
in future measurements.

6.3 Summary
In this thesis, I presented various experimental improvements and measurements
culminating in the measurement of the deuteron’s atomic mass with an unprece-
dented precision. One of the highlights is the in-situ tuning of the residual magnetic
inhomogeneity B2. With the reduced B2, the systematic effect which was so far
limiting mass measurements at Liontrap was reduced to a negligible level. The
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mass measurement of the deuteron was a factor of 2.4 more precise then the pre-
vious best value. The Liontrap value presented here and the previous best value
deviate by 4.8σ. With a direct measurement of the mass of HD+ also presented in
this thesis, I was able to show consistency between the masses of the proton, the
deuteron, and HD+, all reported by Liontrap. This is a profound consistency
check substantiating our measurement methods. Furthermore, the consistency
with the deuteron-to-proton mass measurement by the FSU allowed for a least
square adjustment in the light ion mass sector, yielding a reduction of the uncer-
tainty of the proton mass by a factor of 2 compared to our direct measurement
[7]. I discussed the implications of these new values on the mass of the neutron
and the spectroscopy of rovibrational states in HD+.
The analysis of the data in the deuteron campaign yielded starting points to im-
prove on further mass measurements at Liontrap. Among these, one of the next
projects will be a measurement of 3He, in order to clear up the remaining tension
in the light ion mass puzzle.



Publications
While working on this thesis, I contributed to the following publications:

1. S. Rau et al. “Penning trap mass measurements of the deuteron and the
HD+ molecular ion”. In: Nature 585.7823 (2020), pp. 43–47. url: https:
//doi.org/10.1038/s41586-020-2628-7. [6]
- I was responsible for the experimental setup, the data taking, the sub-
sequent analysis and wrote the manuscript. The data and findings of this
article are fully presented in this thesis.

2. F. Heiße et al. “High-Precision Measurement of the Proton’s Atomic Mass”.
In: Phys. Rev. Lett. 119 (3 2017), p. 033001. url: https://link.aps.org/
doi/10.1103/PhysRevLett.119.033001. [8]
- I took part in the data taking, the analysis and the revision of the manuscript.
In this thesis, only the main results of this article are used.

3. F. Heiße et al. “High-precision mass spectrometer for light ions”. In: Phys.
Rev. A 100 (2 2019), p. 022518. url: https://link.aps.org/doi/10. 1103/Phys-
RevA.100.022518. [7]
- I took part in the data taking, the analysis and the revision of the manuscript.
In this thesis, only the main results of this article are used.

4. M. Schuh et al. “Image charge shift in high-precision Penning traps”. In:
Phys. Rev. A 100 (2 2019), p. 023411. url: https://link.aps.org/doi/
10.1103/PhysRevA.100.023411. [63]
- In this article, an extensive theoretical analysis of the image charge shift
is presented together with a measurement of this shift at Liontrap. I
contributed in the experimental part of the paper, where I took part in the
data taking and analysis. Additionally, I discussed the whole manuscript
with the other authors.

5. D. A. Glazov et al. “g Factor of Lithiumlike Silicon: New Challenge to
Bound- State QED”. In: Phys. Rev. Lett. 123 (17 2019), p. 173001. url:
https: //link.aps.org/doi/10.1103/PhysRevLett.123.173001. [98]
- The data taking for this article occurred before I joined Liontrap. I took
part in the analysis of systematic shifts and discussed the manuscript with
the other authors.
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A Appendix

A.1 Approximation Formulas Invariance Theorem
In this section, I describe the derivation of the approximation formulas in equa-
tion (2.20) of section 2.1.2.
Starting point are the equations (9-11) of reference [40]. With the notations used
within this thesis, they are:
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Here, ω+, ωz and ω− denote the frequencies of the imperfect trap, ωc is the free
space cyclotron frqeuency and ωz,0 is the axial frequency for ε = 0 and θ = 0.
The formulas in equation (A.1) are exact, in a sense that they do not contain
any approximation. However, solving them is not straight forward. To get the
dependence for small angles θ � 1 and small deformations ε � 1, I used the
following ansatz:

ω+ = ω+,0 + ∆ω+ (A.2a)
ωz = ωz,0 + ∆ωz (A.2b)
ω− = ω−,0 + ∆ω−. (A.2c)

Again, ω±,0 denotes the corresponding frequency for ε = 0 and θ = 0. Putting this
ansatz into equation (A.1) and using ω2

z,0 = 2ω+,0ω−,0 yields

ω2
+∆ω+ + ω2

z∆ωz + ω2
−∆ω− = 0 (A.3a)

∆ω+ + ∆ωz + ∆ω− = −ε2 (A.3b)
∆ωz

(
2ω2

+ + 2ω2
−

)
+ ∆ω+

(
ω2
z/2 + 2ω2

+

)
+ ∆ω−

(
ω2
z/2 + 2ω2

−

)
=

ω2
c

(
−3

2 sin2(θ)− 1
2ε sin2(θ) cos(2φ)

)
− 1

4ω
2
zε

2, (A.3c)

where I omitted the zeroes since all quantities without zero have been eliminated.
This system of equation can be solved analytically, giving rather lengthy expres-
sions for the frequency shifts. However, for ωc ≈ ω+ � ωz � ω− they reduce to
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equation (2.20) in section 2.1.2, repeated here for convenience:

∆ω+ =
ω2
z,0

ω+,0

3
4θ

2
(

1 + 1
3ε cos(2φ)

)
+

ω2
−,0

2ω+,0
ε2 (A.4a)

∆ωz = −3
4ωz,0θ

2
(

1 + 1
3ε cos(2φ)

)
(A.4b)

∆ω− = 3
4ω−,0θ

2
(

1 + 1
3ε cos(2φ)

)
+ 1

2ω−,0ε
2. (A.4c)

Here, I included the index zero for the frequencies just to make clear, that there
is no dependence on the trap imperfections hidden in the frequencies. In equation
(15) of [40], a relatable formula for the frequency shift of ωz is given:

ωz = ωz,0

√
1− 3

2 sin2(θ)
(

1 + 1
3ε cos(2φ)

)
. (A.5)

A series expansion of the square root and using sin(θ) ≈ θ for θ � 1 reproduces
equation (A.4b).
For the frequency shift of ω+, there is no comparable formula given in [40].
However, neglecting the third term of equation (17) therein, multiplying with ω+
and using equation (A.5) gives

ωc = ω+

1 + 1
2

(
ωz,0α

ω+

)2
 , (A.6)

using the short notation α =
√

1− 3
2 sin2(θ)

(
1 + 1

3ε cos(2φ)
)
. This can be solved

for ω+ and then approximated:
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(A.7)

This reproduces equation (A.4a)
For the frequency shift of ω−, equation (16) in [40] gives

ω− = ω2
z

2ω+

√
1− ε2

[
1− 3

2 sin2(θ)
(

1 + 1
3ε cos(2φ)

)]−3/2
. (A.8)
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Again, the dependency of the axial frequency on the trap imperfection needs to be
inserted into this formula. In principle, the dependency of the modified cyclotron
frequency needs to be considered as well. However, it turns out that, the axial
dependency is dominating. A series expansion again reproduces equation (A.4c).
To measure the angle of a trap in practice one can use the formula

ω+ + ω− − ωc = ω−

(9
4θ

2 − 1
2ε

2
)

(A.9)

derived in [42]. This formula can be reproduced by adding equation (A.4a) and
equation (A.4c), neglecting cross terms of order θ2ε and the contribution of ε2 to
∆ω+, which is supressed by the quantity ω−/ω+.
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