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We introduce the notion of a conditionally free product and 

conditionally free convolution. We describe this convolution 

both from a combinatorial point of view, by showing its con­

nection with the lattice of non-crossing partitions, and from 

an analytic point of view, by presenting the basic formula for 

its R-transform. We calculate explicitly the distributions of 

the conditionally free Gaussian and conditionally free Poisson 

distribution.

1. Introduction.

In [BSp], we introduced a generalization with respect to two states of the 

reduced free product of Voiculescu [Voil, VDN] and gave some prelimi­

nary results on this concept. Here, we want to examine this notion more 

systematically, in particular, we want to investigate the corresponding con­

volution. We describe this convolution both from a combinatorial point of 

view - by showing its connection with the lattice of non-crossing partitions 

- and from an analytic point of view - by presenting the basic formula for 

its R-transform, which is the replacement of the classical Fourier-transform. 

We calculate explicitly the distributions of the corresponding Gaussian and 

Poisson law by a careful examination of the structure of the non-crossing 

partitions.

Instead of the terms “^’-independence” and “V’-product” of [BSp], we will 

use here the more precise expressions “conditionally free” and “conditionally 

free product”, or just the abbreviation “c-free”.

Let us start with a motivation for our concept of “c-freeness”. Consider 

a group G = which is the free product of groups Gi (i G /), i.e. each 

element g e of G can be written uniquely in the form g = gr ... gn, where 

e gj G Gqj) and z(l) i(2) • • • 7^ i(n). To see the nature of this
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decomposition of G more clearly, we state it in a more abstract way by using 

the functions Vk = on Gi, i.e. Vk : G*. -> C with [g E Gi)

Then the above decomposition has the form: Each element g ± e can be 

written as g = gi-..gn, where gj E G^y, i(l) ± z(2) 0 z(n) and

V’i(J)te) = 0 for all j = 1,.. .,n.

If we are now given functions : Gi —> C with = 1, then we 

can form their c-free product in the canonical way, namely we define a new 

function <p = *iei(<Pi, i^) on G by <p(e) = 1 and

if g e has the above representation. The key property of this construction 

is the fact that, if the are positive definite on Gi, then <p is positive definite 

on G = *iEiGi, see [Bozl, Boz2].

As an example of such a c-free product one can take each Gi as a copy of 

Z and (pi as <Pi(k) = exp( —A|A?|) (A: E Z) for some A > 0. Then G is the free 

group on \I\ generators and <p is given by <p(g) := exp(—A|g|), where g i—> \g\ 

is the canonical length function on the free group. Since the p>i are positive 

definite functions on Z, this ip is also positive definite. This property of the 

length function on the free group was proven by Haagerup [Haa].

If we translate the above description of <p from groups to group algebras, 

then it reads in the following way: Let Ai := CGi and A := CG be the 

group algebras of Gi and G, respectively. Then, given linear functionals <pi 

on Ai with = 1, we can define a linear functional p = V’f) on

A by 9^(1) = 1 and the characterizing property

(1) (® 1) • •

whenever a,j E A^j), z(l) z(2) i(n) and = 0) where is

now the linear extension of 6e to Ai.

In this formulation it is unnatural to restrict to Ai = CGi and to V’i = 

one can now consider the above c-free product for arbitrary unital algebras 

Ai and arbitrary states Vk on Ai. One of the main results in [BSp] was that 

also in this general case p is a state if the pi are. This was proved by an 

explicit construction of the corresponding c-free product. We will give in 

Sect. 2 another, purely algebraic, proof of this basic fact.

After this basic considerations we will then switch to the corresponding 

notion of c-free convolution, the main topic of our investigations. Since 



C-FREE RANDOM VARIABLES 359

compactly supported measures on R are determined by their moments, 

such measures can be identified with states on the polynomial algebra C(X). 

Thus we can characterize our convolution in the following way. Given pairs 

of compactly supported probability measures (^1,^1) and (yu2, zz2), we define 

their c-free convolution by the following prescription: Consider = CpG) 

and A2 = C(X2). Then A = Ax * X2 = C(Xi,X2). We have on Ai the 

states /^i and 14, thus our construction of a c-free product gives a state 95 = 

(/z1? Vx) * (/z2, ^2) on A If we restrict this state to C(X), where X = Xx + V2, 

then the distribution of X determines a measure which we call the c-free 

convolution of (jix,vx) and (/i2,z/2), denoted by fi = (/Zi,^) EH (//2,z/2). The 

name “c-free convolution” indicates that /j, is the distribution of the sum 

of Xx and X2, which are distributed according to /ix and yu2 and which 

are c-free. If z/,- = (z = 1,2), then our construction reduces to the free 

convolution of Voiculescu [Voi2].

To be able to talk about associativity, we should also define a new measure 

z/ and it turns out that the natural candidate for this is the free convolution 

Vx EE z/2 of i^x and z/2, thus

(^,z/) = (/ii,z/i) ffi (M2, ^2),

where

M = (/h,^) ffl (^2,^2), = ZA ffi ^2.

In Sect. 3, we will examine this c-free convolution from a combinatorial point 

of view and show that it is, similarly as in the case of the free convolution 

[Spe2], determined by the lattice of non-crossing partitions.

In Sect. 4, we treat the c-free central and Poisson limit theorem by a care­

ful analysis of the structure of the non-crossing partitions. We will thereby 

derive some combinatorial identities for these partitions which also have 

some interest of their own.

In Sect. 5, we present a systematic machinery for an analytic description 

of c-free convolution, namely the generalization of Voiculescu’s jR-transform 

[Voi2].

2. Definition and positivity of the c-free product.

We shall work in the category of unital *-algebras and states. By a state 7? 

on a unital *-algebra A we will always mean a linear functional </> : A —> C, 

which is normalized (99(1) = 1), hermitian (</?(a*) = 95(a) for all a £ A) and 

positive (9?(aa*) > 0 for all a € A).
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Let now (i £ I) be unital ^-algebras equipped with a pair of states 

Then we want to define a new state p = *iEl(pi, 'iff) on the algebraic 

free product A = *iEiAi (identification of the units is assumed). Observing 

that with the decompositions Ai — Cl ®A°, where A° := kerV’i, one can 

identify A as a vector space with

oo
C1 ® (J) ® A?(l) ® ® A°(n) ,

it is clear that we can define uniquely and consistently a linear functional 

p = on A by = 1 and the following characterization:

</?(«! . ..an) = Pi^af) .. .^(n)(an),

whenever

aj 6 Ai(j), z(l) i(2) i(^), = 0-

Such elements .. .an £ Avi)®’' ’®A?(n) wbl be called elementary elements 

in the following.

Of course, the main problem is now to see that p is positive. In [BSp], 

this was proven by an explicit construction of the GNS representation of A 

with respect to p. Here, we want to give a purely algebraic proof of this 

fact. For this we need a lemma about the calculation of p.

Lemma 2.1. Consider two elementary elements

yx = and y2 = a(x2) . • • 0$.

(1) If a^ and a^ do not belong to the same A° then

(2) Consider a G Ai for some i G I- If and do not belong to A° 

then

p{y{ayA) - 'ifi(a)pfy\y2) - ^i(ofp(yf)pfyf) + pMp(yf)p{yf).

Proof. (1) Clear, since

p(jfM = p (a ( (1)*A ( (2) 
.. .p 1 ax 1 p ( of7
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(2) This follows from

p(y*ay?) = <p(y*(a -

= 99(3/*)^ (a - + ^(aj<p(y*y2)

= ^^(a^yf) - ^y^i{a)^y-2) + ^(aMfe)-

□

Theorem 2.2. If tpi and 'ifi are states for all i E I, then 99 = *ier(9?t-, -00 

is a state, too.

Proof. We will show

99(2*2) > 199(3?)|2 for all x E A.

We can write each x E A in the form

k

where a E C and a[k^ .. .afy) are elementary elements (with n(A?) > 1) for 

all k. It suffices to prove the asserted inequality for x without term of the 

form cvl, i.e. we can assume x to be of the form

x = a^y^

k

with

a{k}:=a? and y{k> := a^ ... a^k).

Our proof will be by induction on the length of x (i.e. the maximal n(A?) in 

the above representation), and we assume now the validity of the assertion 

for elements of a smaller length than x, in particular for the y^ and linear 

combinations of them.

Put now

xi := 52 a^yw- 

k with 
a(k)eA

Then it suffices to prove the assertion for all 2,, because this implies, by the 

first part of Lemma 2.1.

<92(2*2) =

i,3
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i=j i^j

’■=j i/j

= M<-

So let us consider the case of a?,- = ^d^y^ with all aA'1 C Ai- Then the 

second part of Lemma 2.1. gives

</>(xixi)

k,l

— ^2^ (a^*a^ ip (y^*y^1^ — ^2 V’i [a^*cS1^ ip (y(k^ ip 

k,l k,l

+ ipi p’M) ip (y^ <p (y^ .

k,l

By positivity of pi and V’i we can write

Vi (a<fc>-a<'>) =£«<*>«('), V>.- (a(‘”a(,)) = EZSJ1’/?'0

for some a^k\ (3^ G C. By using our induction hypothesis for ^k f^r^y^ 

this implies

12^
(>>•</')) v (y^y^ (y<k>‘vA

k,l,r

. k

>e Jew)
r \ k /

= Y,^{aW'aA^(y(Aif,^m')- 

k,i

But then, again by our induction hypothesis

^x*xi') > ^ipi 

k,l

(a^a^ ip [y^k^ <p (y^
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r k,l

k,l

k,l

= M^-)l2-

ip (a^y^

□

Remarks.

(1) If we have py = for all i 6 I, then we recover the case of the 

free product [Voil, VDN] and we obtain an algebraic proof for the 

positivity also in this case, thus giving a positive answer to a question 

posed in [Spe2].

(2) If we want to make our construction associative, then we should extend 

also the ipi to a new state V’ on A. It is clear that ip should be the free 

product of the ipi, in our notations ip := *iEi(ipi, ipi)■ This together 

with ip := V’J will be denoted by

(^, V’) =

(not to be confused with our notation of a symmetrized product in 

[BSp]). With these definitions one gets directly the associativity of 

our c-free product: If I = U /2 with A Z2 = 0, then

*iEi(p>i,ipi) = V’i)} *

(3) Commutativity of our construction is clear.

(4) Cabanal-Duvillard [CDu] introduced a generalization of our construc­

tion from two to infinitely many states. However, his product ceases 

to be associative.

3. Combinatorial description of the c-free convolution.

Let A4 be the set of all compactly supported probability measures on R. 

Since such a measure p is determined by its moments we can identify it with 

a state on the *-algebra C(X) (where X* = X) via

p(Xn) = [ tndp(t) (n > 0).
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Let now /Zi, /z2, ^2 E Xi be given. We identify /z», z/,- with states on

(i = 1,2) and get, by our results from Sect. 2, the c-free product 

V3 — (^1,^1) * (^2,^2) on C(Xi) * C(X2) = C(Xi^X2) (the latter being the 

algebra of polynomials in the non-commuting variables Xx and X2\ The 

c-free convolution

= (Mi^i) S (^2,^2) e Xi

is then given as the distribution of X := Xx + X2, i.e.

j tndp.(t) = ^(X”) = ^((X, + X2)n) (n > 0).

For fii = (i = 1,2) this reduces to the free convolution of Voiculescu 

[VDN].

As in Remark 2 of Sect. 2, we define also a measure z/ as the free convo­

lution of zq and z/2, i.e.

= 01, ^1) ffl (^2, ^2) = L ffi ^2,

and denote this situation by

(//, z/) = (/Zi,zq) ffl (^2,^2).

Then our mapping ES : Ad2 X Ad2 —> XI2 is commutative and associative.

Our aim is now to extend the combinatorial description of the free con­

volution with the help of the lattice of non-crossing partitions [Spe2] to our 

case.

For a /z E Ad we denote its moments by

m„W :=^(X") = y

and we want to understand (at least in principle) the connection between 

(mn(/z),mn(z/))neN and (mn(^i), mn(z/1))n6N, (mn(/z2), mn(z/2))ngN.

As in the case of the free convolution this connection is quite complicated 

and it is advantageous to introduce new quantities, called cumulants, which 

linearize the convolution. These cumulants are connected with the notion of 

non-crossing partitions.

Definitions. Let tv = {Vf,..., Vp} be a partition of the linear ordered 

set {l,...,n}, i.e. the V0 are ordered and disjoint sets whose union 

is {1,.. ., n}. Then tv is called non-crossing if a, c E Vi and b, d E Vj with 
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a < b < c < d implies i = j.

The sets Vi € 7r are called blocks. A block Vi of a non-crossing partition 

7r = {Vi,..., Vj,} is called inner, if there exists a Vj E tv and a, b E Vj such 

that a < v < b for at least one (and hence for all) v E V. A block V E tv 

which is not inner is called outer.

We will denote the set of all non-crossing partitions of the set {1,..., n} by 

NC(n). By A/'C'2(2n) we denote those non-crossing partitions tv = {Vi,.. 

Vn} E NC(2ri) where each block Vi E tv consists of exactly two elements.

The notion of non-crossing partition was introduced by Kreweras [Kre], 

the distinction between outer and inner blocks was considered in [BSp].

After this preparations we can now introduce the notion of cumulants. 

For the description of v = zq EE z/2 we have to use the free or non-crossing 

cumulants rn = rn(y) (see [Spe2, NSpl, NSp2]), defined recursively in 

terms of the moments mn = mn(y) by

n

mn = 12 rkmi^...mi^.

k = 1 Z(l),...,Z(fc)>0

Z(1)H- - pZ(fc)=n —/c

This definition may be indicated symbolically by

IQjo

and it is equivalent to 

(1)

= £ rVl...rVp = II :'v‘
7r={Vi,...,Vp} 7reVC(n) V/Grr

eNC(n)

or

(2) r„ T, mV1 ■ ■ .mVr ■ - y /z(jr, 1„) fj mv„

ir={V1,...,Vp} irENC(n') VfG’r

eNC(n)

where we have used the notation mv := 77i|y| and ry := qv| for some set 

V (with |V| being the number of elements in V). The function /z(tt, ln) 

is the Mobius function of the lattice of non-crossing partitions and is just 

determined by resolving (1) for the rn in terms of the m,.
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Free convolution is then described by [Voi2, Spe2]

Mh EB z/2) = rn(z/i) + rn(z/2) for all n > 1.

For our c-free convolution we have, for a given pair (/z, z/), to introduce, 

in addition to rn = rn(z/), also c-free cumulants Rn = 7?n(/z,zz), which do 

not only depend on the moments of p, but also on those of v. The most 

instructive definition is again by recursion, namely

n

= E E Rk • • • • • • • mi[k)(A

k~1 Z(l),...,/(fc)>0

Z(l)-|- - — k

pictorially

z E |O|Oi |O| •

Note that the “inner” moments are given by z/, only the “outer” one is 

connected with p. Of course, the free cumulants are recovered from this by 

rn(z/) = Rn(v, zz).

The above definition is equivalent to a generalization of (1), namely

= 12 II rv‘ II Rv^ 
irENC(n) y,e7r yfc€7r 

V/ inner outer

The following example shows that the analogue of formula (2) is not true for 

the c-free cumulants.

Example. We have

m3(v) = r3(z/) + 2r2(z/) • rx(z/) + ri(z/)3 + r2(z/) • n(z/)

m3(/z) = R3(p, v) + 2R2(p, v) ■ Ri(p, p) + -Ri(/T v)3 + Rzt/E v) • ri(p), 

but

r3(y) = m3(z/) — 2m2(zz) • mi(zz) — m2(zz) • + 2m1(p)3

#3(/z, z/) = m3{p) - 2m2 (/z) • mx (/z) - m2 {p) • (/z)3

+ (/z)2 • (z/).

But nevertheless we have the following theorem.

Theorem 3.1. The c-free convolution

(p, z/) = (/ZnZ/J ffl (^2, ^2)
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is described by

rn(v) = rn(zq) + rn(z/2)

and

V) = Rntdu Vl) + ^2)

for all n > 1.

Proof. The proof follows the same line of arguing as in [Spe2]. Given (</?, 

on some unital ^-algebra ^4, we define more general cumulant functions r = 

(rn) and R = (Rn) with

rn, Rn : 4 X • • • X 4 4 C (n > 1)

n-times

by

(A)

n — 1

V’fai.. ,an) = E E ^fc+i • • • •>

k — 0 1 <Z( 1 )<•••< Z (A: )< n

• V’ (®2 • • • «Z(1)_ 1) • • • 'if (az(fc-i)+i • • • az(A:)_ 1) 0 (flz(fc)+i • • • an)

and

(B)

n — 1

...an) = E E Rk + l [&1, ®Z(1), • • •,

A: = 0 l<Z(l)<---<Z(A)<n

• 0 (a2 • • • «Z(1)-1) • • • 0 (a/(fe_i)+i... az(fc)_i) (aq^+i . • • an)

for all cq,...,(zn G A. These equations can recursively be resolved for the 

definition of rn[ai,..., an] and Rn[ari..., an].

Let now on Ai = for i = 1,2 be given. Then we obtain in 

the above way the functions r(/z,) and R(jJ>i, uf) on IJ“=1 Afn. On U^°=i(^iU 

^42)xn C * AA)*™ we define their direct sum

r := rlX) ® r(yz2) and R := z/J © #(^2, G>)

if all 6 Ai 

if all a; G Az 

otherwise
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and

■^n[®l; • • • , ®rj —

■^n (/^l, Fl) [®1 » • • • »

< Rn (M2j ^2) [®1, • • • i > 

.0.

if all ft, € >li 

if all di G A2 

otherwise

for all fti,... , ftn G A lU2 C A * A2. Note that there is no ambiguity in 

this definition because in the case that some ft,- G Ai A>l2 = Cl, both values, 

Rn{/ix^vx') and Bn(//2,i/2), are the same.

Now we use the recursion formulas (A) and (B) for the definition of the 

states V’ and (p on A = Ai * A2. One has to check that this is well-defined 

because there are different possibilities for writing elements a G A as sums of 

products ftx .. .an with ft1;... , an G AiUA2. But since this ambiguity comes 

only from relations inside Ai and relations inside >t2, which are respected 

by r and R (because they are respected by r(i/,) and R(//,-, z/,)), no problem 

occurs; for more details on this, see [Spe2].

It only remains to see that (<£, VO on A = C(X1,X2) is indeed the c-free 

product of (jfti,^) and (//2,z/2), i.e. we have to check that it fulfills the 

characterizing property of the c-free product. For V’ this follows from the 

results of [Spe2]. So consider a G A of the form a = .. .an with ftj G A(j)>

^(1) 7^ ^(2) 7^ ' ‘ ‘ 7^ F’(j)(aj) = 0-

Note that in (B), because of the definition of R and the fact that -0 is the 

free product of Vh and -02, only the term with k = 0 survives, i.e.

(^(fti .. .ftn) = Biffti] • v?(ft2.. .ftn) = <A-(i)(ai) ’ v(a2 • ■ -an), 

which gives, by induction, the wanted factorization for <f>.

To get the assertion of the theorem, one has now to use the definition of 

R as the direct sum of RfjihVi) and B(//2,p2)

RntjJ’, v)=Rn[Xi + X2, • • •, Xi + X2]

=Rn[Xi,..., Xi] + Rn[X2,..., X2]

= Rn(^l, ^1) + Bn(/i2, p2),

and the same for r. O

Remarks.

(1) The description of the c-free convolution in terms of cumulants can, 

analogously to the free case [Spe2], be generalized to a description of



C-FREE RANDOM VARIABLES 369

the c-free product. Indeed, in our proof we had to use the correspond­

ing machinery for the c-free product on C(Xi, W2) = * C(W2).

(2) An interesting special case of the c-free convolution is given if we put 

= 50. Then only outer sets survive in the definition of the c-free 

cumulants. This leads to a description in terms of interval partitions, 

which were introduced by von Waldenfels [vWa]. The corresponding 

convolution (^, <50) = (//i,50) EB (yu2,^0) shares a lot of properties with 

the usual and the free convolution. This “boolean” convolution was 

investigated in [Won], the results will be published in [SpW].

4. Limit theorems for the c-free convolution.

To become familiar with the connection between non-crossing partitions and 

the c-free convolution, we will now calculate quite explicitly the c-free cen­

tral and Poisson limit distribution. A more systematic machinery for the 

treatment of such questions will be presented in the next section.

We will see (comp. [BSp]) that the moments of the limit distributions 

are calculated with the help of the partitions in NC^n) or NC{n). Thus, 

before presenting the limit theorems, we collect all relevant information on 

the combinatorics of the respective partitions in two lemmas. These com­

binatorial statements have also some interest of their own. Although there 

has been an increasing interest in the lattice of non-crossing partitions in 

the last time [Edel, Ede2, Pou, Sim, SiU, Bia, Nic], we have not found 

any investigation on this subject related to the distinction between “inner” 

and “outer”.

First, for the central limit theorem, we have to consider 7VC2(2n). We 

will need the numbers (n £ N, 0 < k < n)

cn := #7VC2(2n)

a% := #{?r £ NC^n) | the number of inner sets of 7? is equal to k}.

Of course, we have a” = 0.

For the investigation of these quantities it is advantageous to use the 

well known bijection between partitions ir £ 7VC2(2n) and n-Catalan paths 

A (see, e.g., [HiP]). An n-Catalan path A={s1,..., s2n} is a graph in Z2, 

starting at (0, 0), ending at (n, n), with possible steps 3; = (0,1) or s, = (1, 0) 

(z = 1,..., 2n), such that no part of the path lies above the diagonal. The 

above bijection is given as follows: To each tt = {Vi,..., Vn} £ NCztyn) 

we assign a A(tt)A{s1, ..., §2n} in the way that s2- = (1,0) if i is the first 

element in one of the Vj, and s, = (0,1) if i is the second element in one of 

the Vj. The number of outer sets of 7r corresponds thereby to the number of 

points (?,z) (1 < i < n), where A(tt) meets the diagonal.
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Example. For 7r = {(1, 4), (2, 3), (5, 6)} we have

A(zr) = {(1,0), (1,0), (0,1), (0,1), (1,0), (0,1)},

which corresponds to the following graph:

It is a well known fact [HiP] that the number of all n-Catalan paths is 

given by the

v 1 / 2n \

Catalan number cn := — ,
n \ n — 1I

hence 

„ 1 / 2n \ 1 /2n\

cn — c — — I I — - - - I
— I 1 I iil

n \ n — 1J n + lyny

This follows quite easily from the recursion formula

n

cn = ck~1cn~k, where c° := 1, 

k-i

which is the recursion for the Catalan numbers.

It seems that a^ has not received any interest so far. We collect their 

basic properties in the next lemma.

Lemma 4.1.

(i) We have for n > 1

(ii) We have for n > 2

1 2n- 2

n \ n — 1

(iii) We have for n > 2 and 0 < k < n — 2 
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Proof, (i) There is only one n-Catalan path which meets the diagonal n- 

times, namely A={(1, 0), (0,1), (1, 0), (0,1),...}.

(ii) Shifting the diagonal one unit to the right induces a bijection between 

the set of all n-Catalan paths which meet the diagonal once and the set of 

all (n — 1)-Catalan paths. Hence n”_1 = cn-1.

For n”_2 we have, denoting with (A?, k) the first intersection point with 

the diagonal,

n—1 n—1

n  k n-k  k-1 n-k-1  „n-l

Un-2 — / 4 Uk-lUn-k-l — / 7 C C — C

fe=l k — 1

by the recursion formula for the Catalan numbers.

(iii) We prove this by induction on n. For n = 2, the assertion is true, 

namely for k = 0 we have

ao + ai — 1 + 0 = 1 = ttp

Now assume the assertion to be true for all n' with 2 < n' < n. We want to 

show it for n.

First, consider k with 0 < k < n — 4. Again we use the general decompo­

sition

k + 2

ak + l = ai-iak-l + 2i

l-l

which results from the splitting of an n-Catalan path into two parts, the 

first one from (0, 0) to its first intersection point (Z, Z) with the diagonal (this 

part thus gives rise to Z — 1 inner sets) and the remaining (n — Z)-Catalan 

path, which has to produce the remaining (A; + 1) — (Z — 1) inner sets. The 

decomposition (*) is true for all n > 2 and k with 0 < k < n - 3. Since 

0 < k < n - 4, we have 0<A?-Z+l<n — Z — 3 < n — I — 2 and, for all Z 

with 1 < I < k + 1, we can use our induction hypothesis for n' = n — I to 

obtain

A> + 1

an — \ a1 nn~l 4- + 2 ■ 1

k + 1 ~ Z-^Ujl-lU'{k-l + l) + l ' Uk + 1 1
( = 1

k + 1
— \ A nl (nn~l I nn~I ,7+2 1

— / 7 ai-l \ak-l + l + ak-l + 2 J + Cc + l 1 

l-l

k+1 k+2

~ y? ai-iak~i+i+1 d2-ii+2

i-i i-i 
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— ak + a
n — 1 

k 4-1 ’

the last equality again by application of (*).

Now consider k = n - 3. Then the same arguments as before apply, but 

now = 0 for I = 1,..., k + 1, thus

A: 4-1

<+1 = E
Z=1

For A? = n-2, the assertion reduces to ii), because ak+} = ann_\ = 0. 

For the treatment of the c-free Poisson distribution we will need some 

specific information on the combinatorics of the sets NC(n), namely we will 

use (n > 1, 1 < k < n, 0 < I < n — 1)

tk := NC(n) | tv consists precisely of k sets}

£ NC(n) | tv consists precisely of k outer and I inner sets}.

In addition, we define := 0 for n > 1 and := 1. Similarly, we put 

s£ z := 0 if the indices are out of their natural domain, with the only exception 

s0’ — 1 
*o,o — x-

Lemma 4.2.

(i) We have for n > 1 and 1 < k < n

f; = c; + £Erc.
r=2 i=l

(ii) We have for n >2 and 0 < I < n — 1

n _ y.n-1

*1,Z ” bl+l •

(iii) We have for n > 1 and k,l > Q

Sk+l,l =

r = l j=0

Proof, (i) Let tt = { V},..., Vk} E NC(ri} consist of k sets, with 1 6 Then 

there are two disjoint possibilities: either V} = (1) or V} (1). In the first 

case, tv i—> 7r\(1) gives a bijection onto all non-crossing partitions of {2,..., n} 

consisting of A? — 1 sets. In the second case, let r 1 be the maximal element 

of Vi. Then, removing r from Vx, tv splits into a non-crossing partition of 
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{1,..., r — 1} (which may consist of i sets, where possibly 1 < i < r — 1) 

and a non-crossing partition of {r + 1, . . ., n} (which has to consist of the 

remaining k — i sets). If r = n, then k = i, and we need the special definition

:= 1. The formula is also true for n = 1, since then t\ = t% = 1.

(ii) If 7r G NC(n) has I inner sets and only one outer set kj, then l,n E 

Vi and the removing of n (n ± 1) gives a bijection onto all non-crossing 

partitions of {1,..., n - 1} consisting of I + 1 sets.

(iii) Let r be the maximal element of the first set in tt G NC(n).

Then tt decomposes into a non-crossing partition of {l,...,r} with as 

the only outer set (and possibly j inner sets) and a non-crossing partition of 

{r + 1,..., n} which has to yield the remaining k outer and I — j inner sets. 

If k = 0 and r = n, then j = 0, and we need Sq o = 1. 

Remark. Kreweras [Kre] gives the following explicit formula for t%

n (n — l)!n!

k (A? — l)!Ad(n — ky.(n — k + 1)! ’

but for our investigations the recurrence formula of our lemma is much more 

useful.

Now we have finished the presentation of all needed combinatorial tools 

and we can start our investigations on limit theorems for the c-free convo­

lution.

Let us denote, for A > 0, by D\ the dilation of probability measures on IK 

by the factor A, i.e.

(£h//)(A) := /^(A-1 A) for A C R measurable,

and

D\(lL v} := (DAp,,DAp).

Under the weak convergence

w-lim (/zN,z/N) = Gu*7) 
N —>oo

we will understand the componentwise weak convergence

w-lim /iN = /j, and w-lim vN = v.
N —>oo N—>oo

Theorem 4.3 (c-free central limit theorem). Let G A42 with

/a(X} = v(X) = 0 and /a(X2') = a2, v(X2) = /32 (a, ft > 0) 
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be given. Then we have

w-Jjm ffl • • • ffl (IT ")) = (va,p,»p,p\

N — times

where

with

^a,P — C

1
1 a2 — 2p2

4 a2 — /?2 ’

0,

\ / x 1 a2a/4/32 - t2 ,
d^At) =

In particular

dvpAt} = X[-2/3,2/?] W^^-\/4/32 - Pdt.

Remark. Of course, the statement about the convergence of the second 

component is nothing else but the free central limit theorem [Voi2, VDN], 

[Spel, Maa, Gir].

Proof. Since va,p and Vptp have compact support, it suffices to check that 

the moments of DB • • • B (^, ^)} converge to the corresponding 

moments of (z7a /?, vp,p). Note that

rn(Dxv) = Anrn(p) and Rn(Dxp, Dx") = AnRn(/2,z/)

for all n > 0. This shows that the limiting measures (ft, v) are determined 

by

0

r2(^) = A

n 2

72 — 2

Rn(jpv)
f°,
\r2(ji,i/) = a2,

n 2

n = 2,
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or in terms of their moments

/x f 0, I odd

mJP) = <
[cn/32n, I = 2n

|0, I odd

= ' = 2n.

This formula for the moments of jj, was also derived in [BSp].

Now consider the generating power series

oo oo

/0) := 22 F(z) := ^m2n(ji)z2n.

n—0 n—0

The recursion formula for the Catalan numbers yields [Spe2, VDN]

(32z2f[z)2 = f(z) - 1, thus f(z) = -—24^ Z •

For the determination of F(z), we use part (iii) of Lemma 4.1 to observe 

(o2 - /32)m2(n+1)(/l)

= ^ank+1a2{n+2~k}(32k - ^2a”+1Q2(n+1-^/32(fc+1) 

fc=0 fc=0

= E - <+‘) + aJ+1a2<"+2> - a"+1a2/32<"+1>

/c=0

= 22 afc+icv2(n+1-fe)/32(fc+1) + a2(n+2) - <+1ci2/32(n+1) 

k = 0

= ^anka2^2~k^2k - a2f32{n+^ann+r 

k=0

= Q4m2n(/1) - a2/32(n+1)cn, 

which implies

(a2 - /?2)F(z)

OO

= («2 — Z^2) + 22 m2(n+l)(A)^2(n+1)

71 = 0

oo oo

= (a?2 - /32) + a4^2 ^2 m2n^z2n - a2(32z2 ^2 cn(J3z)2n

n—0 n—0
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= (a2 - /32) + q4z2F(z) — a2(32z2 f(z).

This can be resolved for F(z),

(a2 — /32) — a2/32z2f(z) (a2 - /32) — |a2 (1 - y/1 — 4/32z2)

(a2 — /32) — a4 z2 (a2 — /32) — adz2

In terms of the Cauchy-transform G(z} of /} this reads

c, \ _ ^2ft2 ~ fi2) + ~ 4fi2

z \z ) z2 (a2 — /32) — a4

The Stieltjes inversion formula (see, e.g., [AG1]) gives then the distribution

as stated in the theorem. 

fc=l

z- - -

z —

Remarks.

(1) An instructive way to write the Cauchy-transforms

g(z} = l/zf^l/z) and G(z) = l/zF(l/z)

of 1^/31/3 and respectively, are the following continued fraction ex­

pressions

1

~T2 '

~ I2

/32

z- - - - -
z — • • •

1

z'} a2

z- - - - - - ~

z- - - - - F~

z- - - - -
z — • • •

These expansions follow directly from the relations

/32z2f(z)f(z) = f(z) - 1 

a2z2F(z)f(z) = F(z) - 1.

The second identity can be checked with our explicit form of f and F 

or it may be derived directly by the recursion formula

=—G.
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(2) The sequence of orthogonal polynomials corresponding to satisfies 

the following recurrence relations:

p0(z) = 1 

Pi (a?) = x 

pfix) = x2 - a2

Pn+i(x) = xpn(x) -/32pn_fix) (n>2).

For a2 — (32 = 1 we obtain the Tchebyscheff polynomials of the sec­

ond kind, whereas for a2 = 1 and (32 = 1/2 we get the Tchebyscheff 

polynomials of the first kind.

(3) It may be interesting to note that in the limit a, (3 —> oo under the 

restriction (3/a2, = const = 7, the distribution vap converges to the 

Cauchy distribution p with density

1 7
dp\t\ = — - - - — di.
m ’ tv 1 + 72C

(4) In Fig. 1, we have plotted the density of vatp for fixed (3 = 1 and for 

six different values of a.

Theorem 4.4 (c-free Poisson limit theorem). For a, [3 > 0 define for 

all N> 1

Fn ( 1 — 77 I ^0 + 77

Then we have

w-lim{(^, z/N) EB ... ffl (mat,

A —times

where 

+ bdZQ + TVa,p

with

lz±

V+a-P’

0,

/3z0-a2

t) — J ^o(/?-«) ’

Io,
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and

(+\- a^4/3- (t- +

- «) + a(l - /3 + o')]

In particular

I (1 ~ M + ^p,pi 

nP,P - ) ~

0 < (3 < 1 

l</3 .

d*l>At) = X[(1_^Hi(I+^)3J«^V/4/3 -(«-(! + /?))'dt.

Remark. Again, the statement about the second component reduces to 

the free Poisson limit theorem [Maa, VDN, Spel, Gir].

Proof. Again, it is sufficient to check the convergence of all moments. Since 

for n > 1

and mn(jiN) =

we have

MM
^ + o(W2)

and Rn(jiN, vN) — — + O(l//V2),

from which it follows that the limiting measures (/}, z>) are determined by

M^) = (3 for all n > 1

for all n > 1,

or equivalently, for all n > 1,

mAA=P.t"Ak 

fc = l

For z>, this gives the free Poisson distribution, see [VDN, Maa, Spel]. The 

formula for the moments of jj, was also derived in [BSp].

As before, we want to calculate the generating power series in the moments

co 00

f(z) := and F(z) := M mn(jj,)zn.

n-0 ri-0
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Since /(z) is of eminent importance for the determination of F(z), we will 

briefly derive its form, although this may also be found in [Maa, VDN], By 

part (i) of Lemma 4.2, we obtain

oo n / n r— 1 \

= i + E E +E E
n — 1k — 1 \ r~2 i — 1 /

oo n

= i + + h(z)

n=lfc=i

= 1 + (3zf(z) + h(z\

where

oo n n r — 1

vu = EEE£VtrtNr^“-’ = - imu,
n=lfc = lr = 2 i = l

thus

/W = 1 + fizf(z) + z(J(z) - l)f(z).

This can be resolved to give (note /(0) = 1)

f^ =

1 - (/3 - l)z - ^/(l - (/3 - l)^)2 ~ 4z

2z

or

, 1 /1 \ z + (1 - (3} - ^(z - (1 + /?)) - 4/5

9W = -/ - = - - - - - - - - - - - - - - - - - - - - •
z \zJ 2z

For the determination of F(^), we use part (iii) and (ii) of Lemma 4.2. We 

have

= i + E E
n=l Z,/c>0

oo n I

=1 + E E EE
n = l l,fc>0 r = l j=0 

j>0r>1
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[j>0 " j>0 r>2

= 1 + F(^) l™ + ^z(f(z) - 1)1 ,

which implies

(3 - az(f(z) - 1 + /3)'

This yields for the Cauchy-transform G(z) = l/zF^l/z) of ft after some 

calculations the expression

n _ z{2(3 - a) + a(l - /3) - - (1 + /3))2 - 4/?

2z[z(/3 — a) + cv(l — (3 + a)]

The Stieltjes inversion formula [AG1] gives then, after some computations, 

the distribution as stated in the theorem. 

Remarks.

(1) Again, it is quite instructive to write the Cauchy-transforms as infinite 

continued fractions, namely

=- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

* + (1 - /?)- - - - - - - - - - - - - - - - - - -

^ + (1-/3)- - - - - - - - - - -

z
z + (1 -/3) - —

and

1
G(0 - - - - - - - - - - - - - - - - - ~z- - - - - - - •

- + >(i - «- - - - - - - - - - 11- - - - ;- - - -

2 + (i - /?)- - - - - - - - - - -

(2) Note that our formula for G(z) in [BSp] was wrong.

(3) In Fig. 2, we show the Poisson limit distribution 7va,p for a = 1 and 

for six different values of (3.
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5. Analytic description of the c-free convolution.

In Sect. 3, we described the c-free convolution from a combinatorial point of 

view by presenting the connection between moments and free and c-free cu­

mulants; the convolution is then characterized by the fact that the cumulants 

are linear under convolution.

For an analytic description one wants to translate this connection into a 

functional relation between the corresponding power series, i.e. instead of a 

collection of moments or cumulants one prefers to deal with one respective 

analytic function containing the same information. This has the advantage 

that an analytic machinery is usual more powerful than a mere combinatorial 

description and it may serve as a starting point for the treatment of measures 

with unbounded support.

Thus, given a pair (//, v) £ A42, we define the following power series 

(formally, we put r0 = Ro = 0)

A(z) := S rn(^Zn

n — \

oo oo

B(z) := = 1 + 22

n=0 n=l

oo

C(z) '•=

n = l

oo oo

D(z) '•= 22 = 1 + 22 mn(^Zn.

n—0 n=l

Since rn and Rn are additive under c-free convolution, one has for (/z, v) = 

(/h^i) EH (/z2,r2)

A, (2) = AP1(z) + A^(z)

= ^(^1,^1) (+) + ^(^2,^2)

and it remains to derive the connection between A(z) and C(z) on one side 

and B(z) and D(z) on the other side. Since v — EH v2 is nothing else 

than the free convolution, the relation between A(z) and B(z~) is given in 

[Voi2, Spe2],

Theorem 5.1. With the above definitions we have 

A[zB(z)] + 1 = B(z) or
1 + A(z)

= 1 + A(z)

and

C[zB(z)] ■ D(z) = (D(^) - 1) • B(z}.
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Proof. We only have to show the relation between B(z), C(z), and D(z). 

The crucial relation is the definition of the c-free cumulants Rk = Rk(jj,,iA) 

by

n

= 1 Z(l),...,Z(fc)>0

Z(1)H- - — k

Now define 
q OO

C(z) := -C(z) = 

n = l

Then we have

C[zB(z)]-D(z)

OO / OO \ 1 / OO \

= ^Rk I ^m^iPfZ1 j mi(k)(p)zl(R> I/-1
fc = l \Z=0 / \/(/c) = 0 /

OO

= 52^ 52 • • • • • • ^z(1)+■+z(/’)+(fc"1)
k = l Z(l),...,Z(/c)>0

oo n

= EE E Rk • ™Z(1) W • • • • • ™Z(fe-l)M • ^Z(fc) W • 1

n = l/c=:l Z(l),...,Z(A:)>0

Z(l)-|- - \-l(k)=n — k

oo

= ^mn^Zn-X 

n = l

= |(DW-1), 

z

hence

—L-c[^b(z)].o(2) = 1(d(z)-i),

zB[z) z

which gives the assertion. 

Instead of dealing with the generating power series B(^) and D(z) in the 

moments it is usually more convenient to replace them by the corresponding 

Cauchy-transforms

g[z) = 1/z ■ B{l/z) and G(z) = 1/z ■ D(l/z).

If we also replace the series A(z) and C(z) by the r/B-transforms

r(z) = A(z) / z and R(^z) = C(z) = C(z)/z,
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then our main result can be rewritten as follows.

Theorem 5.2. With the notations as above we have

and

g(z} = - - - T7W or + z x] = z

= - - or (
- R[g(z)\

Examples.

1) Gaussian distribution as in Theorem 4.3.

We have 

r(z) = (32z and R(z} = a2 z,

which gives

g(z) = - - 1 \ and G(z) = - - - - - WTT’

z ~ P g[z) z — org\z)

which agrees with our calculations in Sect. 4. Note that in our proof of 

Theorem 4.3 we used other combinatorial identities than here. Our current 

machinery does not reproduce the proof of 4.3, but it specializes to the 

formulas given in the remark after 4.3.

2) Poisson distribution as in Theorem 4.4.

We have

^0) = Z5;- -
1 — Z

which gives

and

G(z)
1

z — co \ .

and R(z) = a- - -
1 — z

/ x 1
or q\z] = - - -- - —- - - —

z+(l-/3)-zS(z)

z+jV-t3)-jzg(z)'
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in agreement with our calculations in Sect. 4.

Remark. In the case of the boolean convolution (//, <50) = <$o) EB (/^2, <$o),

which we mentioned in Remark 2 in Sect. 3, we have g(z) = <7<50(z) = 1/z 

and our formula in Theorem 5.2 reduces to

G(z) = - - Tr. . with K(z) = R(l/z).
v ’ z- K(z) K 7 7

This simple formula reflects the simple structure of the underlying lattice 

of interval partitions and offers the possibility for a far reaching analytic 

treatment of the boolean convolution, in this respect see [Wor, SpW].
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0.70-

Figure 1. c-free Gaussian distribution va<p for fixed = 1 and 

six different values of a; vertical double lines indicate 5-peaks.
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Figure 2. c-free Poisson distribution 7ratp for fixed a = 1 and six 

different values of (3\ vertical double lines indicate 5-peaks; note 

that the 5-peak at z0 lies first on the right side of the continuous 

spectrum, then it dissapears and reappears again on the left side 

of the continuous spectrum.
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