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Abstract. If G is a discrete group, the algebra CD(G) of convolution dominated operators on 

Z2(G) (see Definition 1 below) is canonically isomorphic to a twisted L1-algebra Z1 (G, Z°°(G), T). 

For amenable and rigidly symmetric G we use this to show that any element of this algebra is 

invertible in the algebra itself if and only if it is invertible as a bounded operator on Z2(G), i.e. 

GZ?(G) is spectral in the algebra of all bounded operators. For G commutative, this result is 

known (see [1], [6]), for G noncommutative discrete it appears to be new. This note is about 

work in progress. Complete details and more will be given in [3].

Let G be a discrete group. For x G G we denote by A(z) the operator of left translation 

on Zj(G) and on Z2(G), i.e. A(x)/(r/) = f(x~xy) for f G F(G) or f G F(G), x,y G G. By 

B(Z2(G)) we denote the algebra of bounded operators on Z2(G).

For an operator A : l2(G) Z2(G) let A(x,y) = (A8y,8x), x,y G G be its matrix,

where by 6Z we denote the characteristic function of the one point set {z} C G, and ( , ) 

is the usual scalar product of the Hilbert space Z2(G).

2000 Mathematics Subject Classification: Primary 47B35; Secondary 43A20.

Key words and phrases: convolution dominated operators, inverse-closed subalgebras, sym­

metry.

Karlheinz Grdchenig was supported by Marie-Curie Excellence Grant MEXT-CT 2004- 

517154.

[145] © Instytut Matematyczny PAN, 2007

mailto:gero.fendler@t-online.de


146 G. FENDLER, K. GROCHENIG AND M. LEINERT

Definition 1. The operator A is called convolution dominated if there exists some a G 

Z1 (G) such that

|A(z,y)\ < a(Ty-1), Vt, y G G.

We define its norm as

IMIIi := inftHII;1 : a & ^(G), |4f(DZ/)| < a(zz/-1) Vx,y G G}.

By CD(G) we denote the Banach space of all convolution dominated operators.

We remark that A G B(Z2(G)) is convolution dominated if the supremum norms of 

the side diagonals of its matrix are summable, i.e. if

J2 SUP H(z>2/)l < oo-

Z&G {x,y:xy~1=z}

Moreover this quantity just equals the norm ||A||i.

Since Z1 (G) is a convolution algebra it follows that the space of convolution dominated 

operators is an algebra under composition of operators. Moreover it is not hard to see 

that it becomes a Banach *-algebra (containing an identity) with respect to the usual 

involution of operators in B(Z2(G)).

We consider Z°°(G) as a G*-algebra (really, it is a von Neumann algebra) with re­

spect to pointwise multiplication and complex conjugation as involution. For x G G 

let Tx : Z°°(G) —> Z°°(G) denote the G*-automorphism of the algebra Z°°(G) given by 

left translation Txn(z) = n(x~1z), n G Z°°(G), so that x Tx is a representation of 

G in the group of G*-automorphisms of Z°°(G). With these data we form the twisted 

Zd-algebra in the sense of Leptin [7, 8, 9] (with trivial factor system), which we denote 

by Z1(G, Z°°(G), T), or simply by C. It consists of all functions f : G —> Z°°(G), such that 

II/II 12zeG 11/(^)1100 < The product (twisted convolution) is given by

h * f(x) = J2 Tyh(a;y)/(?/_1), for x G G, Zi, f G £ 

y

and the involution by

Zi*(x) = Tx-iZz(z-1), for x G G, h G £.

The G*-algebra Z°°(G) is isometrically represented as multiplication operators on 

Z2(G):

Dmf(x) = m(z)/(z), where x E G, f G Z2 (G), m G Z°°(G).

We have the covariance relation X(yv~1)DmX(x') j= DT* m, so from A : G —> B(Z2(G)) 

and D : Z°°(G) —> B(Z2(G)) we obtain a representation R of £ on Z2(G). An element 

f G £ may be uniquely written as

/ = 2Z mz5z^

z(=G

where mz = f(z') G Z°°(G). The representation R : l\G, 1°°{G), T) —> B(Z2(G)) is given 

by the prescription

Rf = '£x^D"'=-
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This means that we read f as an operator on Z2(G) by placing f(z) (which is an Z°°- 

function) on the 2th side-diagonal of the matrix defining the operator Rf. To be more 

precise

(Rf)(x, 7/) = f(xy~x)(?/), x,y&G,

i.e. the entry at position (m, £/), which lies on the zth side-diagonal (z = xy 1), is given 

by f(zfiy) = mz{y). We call R the canonical representation of £.

PROPOSITION 2. The map R : Z\G, Z°°(G),T) —> CD(CT) is an isometric *-isomorphism.

Recall that a Banach algebra A with involution is called symmetric if every positive 

element has its spectrum contained in the non-negative reals, i. e. sp(a*a) C [0, oo) 

Va G A. Accordingly, a locally compact group G is called symmetric if its convolution 

algebra L1(G) is symmetric. Various classes of groups are known to be symmetric, e. g. 

Abelian locally compact groups, compact groups, finite extensions of discrete nilpotent 

groups, compactly generated groups of polynomial growth.

Leptin and Poguntke [10] showed that the groups of the first three classes satisfy the 

stronger property of rigid symmetry. Namely for any C*-algebra C the projective tensor 

product ,Z0(G)®G is symmetric. Later Poguntke [11] showed that all nilpotent locally 

compact groups are rigidly symmetric.

Define a map

Q : Z1(G,ZCO(G),T) -► Z1(G)®B(Z2(G))

by

f = mv5v H-> G; ® X(v)Dmv.

V V

Proposition 3. The above defined map Q is an isometric ^-isomorphism of C onto a 

closed subalgebra of Z1(G)®B(Z2(G)).

Since symmetry passes to closed subalgebras, we have

Corollary 4. Let G be a discrete rigidly symmetric group, then £ and CD(G) are 

symmetric Banach *-algebras.

Recall that by D : m i—> Dm the G*-algebra Z°°(G) is faithfully represented by multi­

plication operators on Z2(G). On the Hilbert space Z2(G, Z2(G)), the D-regular represen­

tation XD of £ — Z1(G,ZOO(G),T) is defined (see [9, §3]) by

AD(/)?(x) = £ where £ e !2(G,!2(G)), f € £.

y

On the other hand R : £ -+ CD^G} C £>(Z2(G)) is a ^-representation of £ on Z2(G). We 

identify Z2(G, Z2(G)) with Z2(G x G) and define a multiple of the canonical representation 

by letting the operators R(f) = fTy X(y)D^y\ f e £, act in the first coordinate of the 

Z2(G x G)-functions only. The unitary operator Sf(x,z) — f{xz,zfi where f G Z2(G x G) 

actually intertwines these two representations, so we have

Proposition 5. The D-regular representation of £ is equivalent to a multiple of the 

canonical representation.
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These representations are faithful ^-representations of £. Hence the greatest C* semi­

norm

ll/ll* = sup{||7r(/)|| : % a ^-representation of £ on a Hilbert space}, f G £, 

is in fact a norm.

COROLLARY 6. Let G be an amenable discrete group, then the greatest C* semi-norm on 

C equals the operator norm on CD(G).

Proof. It follows from [9, Satz 6] of Leptin that for the representation D of l°°(G) the 

D-regular representation AD defines the greatest C* semi-norm on £. Denoting this norm 

by II • II* we have for f G £:

ll/ll. = l|AD(/)|| = l|J?(/)||s(1J(G)),

where the last equality follows from Proposition 5. ■

For an element a of a normed algebra A we denote by ^(a) its spectral radius.

Proposition 7. Let G be a discrete, amenable, and rigidly symmetric group. Then for 

f £

rdm = rcDiG)wfrRn = w)iiW»-

Proof. By Corollary 4 we know that £ and CD(G) are symmetric. By a theorem of 

Ptak [12] it follows that \\f\\l = rc(f*f) = rCD(^(R(jyR(Jf) (see e.g. [2, §41 Corol­

lary 8]). Corollary 6 now proves the assertion. ■

Theorem 8. Let G be a discrete, amenable, and rigidly symmetric group. If f G £ is 

such that R(f') E CD(G) has an inverse in B(l2(Gy) then f~^ exists in £ and R(f~ly) = 

B(J)-1 is in CD(Gf

Proof. If f G £ is hermitian, i.e. f = /*, then

’•£(/)2=r£(r/) = l|R(/)llL=<c»-

We apply Hulanicki’s Lemma [5, Prop. 2.5] and obtain that

^(/bw^Ra \/f = rel.

This implies

spdD = w^(G))(W)). V/e£,

(see Lemma [4, 3.7]). ■
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