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Zusammenfassung 

Die Tröpfchen-basierte Mikrofluidik kombiniert wissenschaftliche Prinzipen mit 

technologischen Ansätzen und ermöglicht ihrem Nutzer die präzise Verarbeitung und 

Manipulation von Wasser-in-Öl Tröpfchen. Dabei repräsentiert jedes Tröpfchen einen in sich 

geschlossenen Mikroreaktor, der zur Beobachtung interner chemischer und biologischer 

Reaktionen geeignet ist. Des Weiteren erfordert die Technologie nur minimalen Eingriff des 

Nutzers, ist sparsam im Probenverbrauch und ermöglicht hohe Analysegeschwindigkeiten bei 

erhöhter Präzision. Diese Vorteile verdeutlichen das enorme Potential dieser Technologie für 

die Miniaturisierung und Automatisierung biomedizinischer Tests. Trotz der in den letzten 

Jahren erzielten Fortschritte befindet sich die Tröpfchen-basierte Mikrofluidik immer noch im 

Entwicklungsstadium. Ziel meiner interdisziplinären Doktorarbeit ist es, die Tröpfchen-basierte 

Mikrofluidik für automatisierte Anwendungen in der biophysikalischen und biochemischen 

Grundlagenforschung weiterzuentwickeln. Zu diesem Zweck habe ich während meiner 

Promotion mehrere Chip-basierte Tröpfchenmanipulationseinheiten entwickelt und optimiert. 

Insbesondere wandte ich grundlegende physikalische und chemische Prinzipien an, um ihre 

Leistung zu verbessern. Unter anderem führten meine Entwicklungen zu einer Erhöhung der 

Tröpfchen-Produktionsrate, indem ich die Geometrie der Tröpfchenmanipulationseinheit 

modifizierte. Darüber hinaus habe ich die mikrofluidische Tröpfcheninjektionseinheit 

optimiert, die für die nachträgliche Manipulation des Tröpfcheninhhalts eingesetzt wird. Ich 

entwickelte ein neuartiges Design zur Destabilisierung der schützenden Tensidschicht ohne 

Notwendigkeit eines elektrischen Feldes. Die Injektion wird infolge einer schnellen 

Verformung des Tröpfchens und der damit verbundenen Bildung von Poren in der 

Tensidschicht ermöglicht. Hervorzuheben ist die Entwicklung einer Einheit zur kontrollierten 

Freisetzung des Tröpfcheninhalts. Durch das Anlegen eines elektrischen Feldes war es mir 

möglich, eingekapselte Suspensionszellen in eine kontinuierliche wässrige Phase freizusetzen 

und somit den Inhalt von der umgebenden Ölschicht zu trennen. Eine Kombination der 

entwickelten Einheit mit programmierbarer DNA-Funktionalisierung der inneren 

Tröpfchenfläche ermöglichte die kontrollierbare Filtration des Tröpfcheninhaltes durch 

kontrollierte Freisetzung der eingekapselten Materialien. Ein weiterer Fokus meiner Arbeit lag 

in der Entwicklung optischer Verfahren zur Echtzeitüberwachung der Wasser-in-Öl Tröpfchen. 

Zusammen mit Kollegen habe ich zwei entsprechende Techniken entwickelt. Eine dieser 

Techniken nutzt eine veränderte Auslesemethode der Fluoreszenzkorrelationsspektroskopie 

(FCS). Durch Neuinterpretation der Autokorrelationskurve können Aussagen über die 
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Tröpfchenflussrate, deren Homogenität und sogar über den Tröpfcheninhalt getroffen werden. 

Im zweiten Ansatz wurde eine empfindliche optische Vorrichtung zur markierungsfreien 

Beobachtung, Charakterisierung und aktiven Manipulation vorbeifließender Tröpfchen 

entwickelt. Die fortschrittlichen Eigenschaften des entwickelten optischen Geräts wurden durch 

Messung verschiedener Tröpfchen-Produktionsparameter sowie durch den markierungsfreien 

Nachweis von eingekapselten Zellen bewiesen. Zusätzlich kann anhand gemessener Parameter 

eine aktive Manipulation der Tröpfchen durch die Vorrichtung ausgelöst werden. Dies wurde 

anhand einer markierungsfreien Tröpfchensortierung verdeutlicht. Zusammenfassend konnte 

ich die Leistung einzelner mikrofluidischer Einheiten verbessern und Anwendungsbereiche 

aufzeigen. Darüber hinaus verfügt das entwickelte optische Gerät über das Potential zur aktiven 

Überwachung und Steuerung zusammengeschalteter funktioneller Einheiten, wodurch eine 

gesamte Prozesskette auf einem einzigen mikrofluidischen Chip durchgeführt werden kann. 
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Abstract 

Droplet-based microfluidics combines principles of science and technology, and enables the 

user to process and manipulate water-in-oil droplets of picoliter volumes. Each droplet 

represents a self-contained microreactor that is suitable for the high-throughput observation of 

its internal chemical and biological reactions under defined conditions. Microfluidic technology 

requires minimal manual user intervention and sample consumption, and allows for increased 

analysis speed combined with a high precision. Due to these advantages, the potential of this 

technology for the miniaturization and automation of biomedical assays is vast. Despite the 

progress made in recent years, this technology is still being considered to be in the 

developmental state. Therefore, the major aim of my interdisciplinary Ph.D. research is to 

bridge the gap between the development of droplet-based microfluidics, and its application in 

fundamental biophysical and biochemical research. Towards this end, during my Ph.D. research 

I have developed and optimized several droplet manipulation units. Particularly, I applied basic 

physical and chemical principles to improve their performance. My developments resulted in 

efficient generation of droplets at high production rates by modifying the geometry of the 

droplet production unit. Moreover, I optimized the microfluidic droplet injection unit that is 

important for droplets content manipulation. Particularly, I focused on the development of a 

novel design for a high-throughput mechanical-mediated injection device without the need of 

an electric field. Hereby, reactants can be injected into the droplets following the pore formation 

in the stabilizing surfactant layer as a consequence of its rapid elongation. Notably, I also 

developed a microfluidic device for the efficient electric-field-mediated controlled release of 

the droplet content. For instance, I was able to release encapsulated suspension cells into the 

continuous phase by applying an electric field to separate them from the surrounding oil phase. 

Moreover, by combining the controlled release function of the microfluidic device with 

programmable DNA functionalization of the inner droplet surface, I achieved the chemical 

segregation of the bio-content within the droplets and hence the controlled release of the 

encapsulated materials. Finally, together with my colleagues, we designed and developed two 

optical techniques for the real-time monitoring of passing water-in-oil droplets. In the first 

approach, by reconceptualizing the readout of the autocorrelation curve I extended the 

applicability of fluorescence correlation spectroscopy (FCS) for the sensitive monitoring of the 

droplet flow rates, detection of variability and analysis of the content. In the second approach, 

a sensitive optical device has been developed for the label-free observation, characterization 

and active manipulation of passing droplets. The advanced properties of the developed optical 
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device have been presented by measuring different droplet production parameters as well as the 

label-free detection of encapsulated cells. Moreover, the developed technology was used for 

subsequent manipulation of the monitored droplets based on the measured and defined 

parameters. As a proof-of-principle experiment, I performed electric field-mediated, label-free 

sorting of cell-containing droplets. In this context, I also designed and optimized a droplet 

sorting device to achieve higher sorting frequencies with high sorting efficiency. In my Ph.D. 

research I could improve the performance of some microfluidic functional units and introduced 

several application areas. Furthermore, I could show the potential of the developed optical 

device to active surveillance and control a real multi-purpose lab-on-a-chip device that is able 

to contain an entire process chain. 
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1 Introduction 

1.1 Microfluidics 

Microfluidic technology allows for the precise manipulation of fluids on the submillimeter scale 

[1, 2]. The technique miniaturizes macroscale bulk experiments whereby the volume of 

reagents and reaction time can be decreased [3]. Progress in the semiconductor industry made 

the photolithography approach cost efficient. Together with the development of the soft-

lithography the production of fluidic chips with micrometer sized structures in high quantities 

became available for the usage in scientific laboratories [4-8]. By parallelization and 

miniaturization, multiple laboratory functions with high complexity can be merged on a single 

chip with a size of a few centimetre. Such lab-on-a-chip technologies can improve medical 

diagnostic tools [9-14], biological analysis [15-17] and chemical synthesis [18, 19]. As an 

example, for the potential of such lab-on-a-chip assays, Chin et al. [13] have developed an easy-

to-use point-of-care (POC) assay for the simultaneously diagnosis of human immunodeficiency 

virus (HIV) and syphilis using only 1 ml of unprocessed blood. The assay did not require 

external pumping systems and the optical readout was performed with cheap photodetectors. 

On the fundamental level, the behavior of fluid dynamics on the microscale level is different in 

comparison to the macroscale. When designing and building a microfluidic chip, various fluid 

dynamics phenomena must be considered and can be exploited for the controlled manipulation 

of the fluids. In the following section of my thesis, I will first explain some of the key physical 

parameters for microfluidics, which have been necessary for the execution of my work. I will 

then discuss emulsions and surfactants to introduce the droplet-based microfluidic technique. 

Additionally, I give some examples of functional units which are common in droplet-based 

microfluidics and show examples for their application in the field of single cell analysis. 

1.1.1 Reynolds number 

A basic understanding of fluid dynamics is important for designing microfluidic devices. In this 

regard, the Reynolds number (Re) is an important dimensionless quantity to describe the flow 

pattern in the microchannels at different flow conditions. This value help to distinguish between 

the laminar and turbulent flows. Turbulent flows are chaotic and making it difficult to predict 

the position of a particle in the fluid as a function of time [20]. Furthermore, turbulences can 

cause mixing in the fluid. The Reynolds number can be calculated by: 
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 𝑅𝑒 =
𝜌𝜐𝐷'
𝜇  (1) 

 

where 𝞺 is the fluid density, 𝞾 is the mean velocity of the fluid, 𝝻 is the fluid viscosity and DH 

is the hydraulic diameter. Whereby, the hydraulic diameter is a computed value that depends 

on the diameter of the channel: 

 

 𝐷' =
4𝐴
𝑃  (2) 

 

where A is the cross-sectional area and P the wetted perimeter of the channel. The Reynolds 

number represents a combination of fluid properties with geometric properties and flow 

velocity [21]. In general, when Re > 4000 the flow is considered to be turbulent in the 

microfluidic channels (see Figure 1 B). At numbers Re < 2300, the flow is considered to be 

laminar (see Figure1 A) [20]. At the intermediate Re numbers (i.e 4000>Re>2300) transition 

between the two flow regimes is expected. Because of the small channel dimensions in the 

microfluidic technique the flow regime is almost always laminar. The laminar flow will be 

explained in more detail in the next section.  

1.1.2 Laminar flow 

In an pressure driven flow between two parallel walls the velocity flow profile of the fluid in 

the channel is parabolic, with a maximum velocity in the center of the channel [21]. Thereby, 

particles flowing in the channel are always deflected into the middle of the channel. As can be 

seen in Figure 1 A, the characteristic of such a flow is that the fluid flows in parallel layers that 

do not mix with each other. This enables a laminar co-flow of two or more fluids flowing in 

contact with each other without mixing except by diffusion processes at the fluid interfaces.  

 
Figure 1: Schematic i llustration of different flow profiles. A) Pressure dr iven laminar flow 
in the microfluidic channel. The velocity varies parabolically in perpendicular position to 
the flow direction. B) Pressure driven turbulent flow in the microfluidic channel.  

A laminar flow Re < 2300 B turbulent flow Re > 4000
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1.1.3 Fluidic resistance 

Designing microfluidic chips for the manipulation of fluids also requires knowledge about the 

hydraulic resistance in the microfluidic channels to estimate the effect that a change in the 

geometry has onto the fluid flow. The flow rate Q within a microfluidic channel can be 

calculated by: 

 

 𝑄 =
∆𝑃
𝑅  (3) 

 

where ∆P is the pressure drop across the channel and R is the channel resistance. The following 

formula shows the calculation of the fluidic resistance in a circular geometry:  

 

 𝑅 =
8𝜇𝐿
𝜋𝑟5 (4) 

 

where 𝝻	is the fluid viscosity, L is the channel length and r is the channel radius. As the channel 

structures in my experiments are rectangular, the fluidic resistance can be calculated as follows, 

considering a low aspect ratio where the channel height (h) is almost the same like the channel 

width (w):  

 

𝑅 =
12𝜇𝐿
𝑤ℎ; <1 −

ℎ
𝑤
>
192
𝜋@ 	 A

1
𝑛@

C

DEF,;,@

𝑡𝑎𝑛ℎ J
𝑛𝜋𝑤
2ℎ K

LM

NF

 (5) 

 

The fluid resistance for a rectangular structure with a high aspect ratio (w ≫	h	or	w	≪	h) can 

be simplified to:	

 

 𝑅 =
12𝜇𝐿
𝑤ℎ;  (6) 

 

since the error is less than 10 % for h/w ≤ 0.7 [20, 21]. 
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1.1.4 Surface tension 

Microfluidic systems are characterized by their large surface area to volume ratio, whereby the 

surface tension profoundly influences the fluid behavior [22]. Surface tension results in 

cohesion between liquid molecules at the interface and gets determined by the surface free 

energy of a liquid. To reduce surface free energy, the area of the interface is always minimized. 

With the Young-Laplace equation the pressure generated by a liquid surface with perpendicular 

radii of curvature R1 and R2 can be calculated: 

 

 ∆𝑝 = 𝛾 W
1
𝑅F
+
1
𝑅Y
Z (7) 

 

where ∆p is the Laplace pressure, 𝛄	 is the surface free energy. For a spherical surface (for 

example a water droplet R1 = R2) the Laplace pressure reduces to: 

 

 ∆𝑝 =
2𝛾
𝑅  (8) 

 

It allows for the calculation of the applied pressure on a water droplet. The pressure rises with 

decreasing size of the droplet. 

1.2 Emulsion 

Having explained key physical parameters that determine the fluid flow inside microfluidic 

channels, I will now move on to features that are of particular interest for droplet-based 

microfluidics. Droplet-based microfluidics relies on the formation of emulsions. By definition, 

an emulsion is a colloidal mixture of two immiscible liquids. They form a two-phases system 

in which one liquid represents the continuous phase and the other liquid the dispersed phase 

[23]. The dispersed phase forms droplets in the surrounding continuous phase for example when 

water is dispersed in oil, the water forms droplets in the surrounding oil, a so-called water-in-

oil emulsion. The reverse case is also possible where oil forms droplets in a surrounding water 

phase, a so-called oil-in-water emulsion. Both systems are examples for single emulsions. There 

is also the possibility to form double or multiple emulsions, for example water-in-oil-in-water 

systems [24, 25]. Due to the distinct intermolecular interactions between the molecules of the 

respective phase, emulsions do not form spontaneously [26]. Energy is required to create an 

emulsion and can be provided by shaking vigorously or with the help of intersecting fluids in 
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microfluidic channels. Unfortunately, the emulsion tends to separate over time into the primary 

phases. To stabilize the emulsion, surface-active agents, so-called surfactants (emulsifiers) are 

required. Surfactants reduce the interfacial tension at the phase boundary and therefore stabilize 

the emulsion. In the following section, I will describe in detail the functionality and the 

chemical nature of the surfactants used in this thesis.  

1.3 Surfactants 

Surfactants can be used to stabilize emulsions [27]. They consist of hydrophilic and 

hydrophobic parts, which can differ in their length, molecular weight and functional groups. 

Due to their amphiphilic nature, the surfactant molecules aggregate at the interface of the two 

immiscible phases and reduce the surface tension of the interfacial area. This, in turn, lowers 

the surface free energy and stabilizes the emulsion [28, 29]. The decrease of surface tension 

depends on the amount of adsorbed surfactant molecules at the interface of the two immiscible 

phases and is defined by the Gibbs adsorption isotherm for dilute solutions: 

 

 Γ = −
𝑐
𝑅𝑇

𝑑𝛾
𝑑𝑐`

 (9) 

 

where 𝛤 is the surface concentration, R is the gas constant, T is the temperature, 𝛄 is the surface 

tension and cb the surfactant concentration in bulk.  

 

The hydrophobic part of the surfactant mainly consists of hydro-carbon or perfluorinated 

carbon chains and is selected according to the chemical properties of the oil. In this thesis, I 

mainly implemented fluorinated oil, therefore fluorosurfactans were the appropriate choice. In 

contrast to hydrogen-based surfactants the fluoro-based surfactants with the same chain length 

and hydrophilic head group are more effective in stabilizing the emulsion [30, 31]. For 

biological applications, the hydrophilic part of the surfactant mostly consists of nonionic 

polyethylene glycol (PEG) groups. The PEG molecules passivate the inner droplet periphery 

and therefore minimize unspecific adhesion of proteins or other biological compounds [32, 33]. 

Figure 2 shows a sketch of such a surfactant stabilized water-in-oil droplet.  
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Figure 2: Schematic illustration of a surfactant stabilized water-in-oi l droplet. Above the 
crit ical micellar concentration (CMC) the surfactant monomers form micelles in the 
continuous phase (left side). Below the CMC the surfactant monomers are dissolved as 
monomers. The water-in-oi l droplet represents a self-contained microreactor. During the 
droplet production, different components, from single molecules (red dots) to micrometre-
sized objects like cel ls (black dot), can be encapsulated. 

 

During the droplet formation of the dispersed phase in the continuous phase, the surfactant 

molecules self-assembly at the interface and create a dense monolayer which serves as a steric 

barrier against droplet coalescence [34]. The surfactant induced stability mostly depends on the 

structure, length and chemical composition of the hydrophobic part and can be quantitatively 

described with the hydrophilic-lipophilic balance (HLB): 

 

 𝐻𝐿𝐵 = 20
𝐻e

𝐻e + 𝐿e
 (10) 

 

where Hw is the molecular weight of the hydrophilic part and Lw is the molecular weight of the 

hydrophobic part [35]. The HLB value ranges from 0 for a hydrophobic and 20 for a hydrophilic 

molecule [36]. To stabilize water-in-oil droplets with surfactant molecules dissolved in the oil 

phase, the HLB value have to be adjusted between 1 to 10 [30]. 

> CMC < CMC
Perfluorinated carbon chain

Polyethylene glycol Cell

Proteins, DNA, beads...
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The critical micelle concentration (CMC) is another factor which influences the stabilization of 

the droplets in the continuous phase. It represents the lowest concentration of a surfactant in 

solution at which micelles are formed [35]. Below the CMC surfactants are dissolved as 

monomers in the continuous phase. If the CMC value is exceeded, the surfactant forms micelles 

while the concentration of solved surfactants in the continuous phase remains constant (see 

Figure 2). The CMC of the surfactants get influenced by the concentration of hydrophobic 

chains, their constitution (e.g., deblock or triblock), the type of continuous phase (solvent) and 

the temperature. A high droplet stability can be achieved by using surfactants with long 

hydrophobic fluorocarbon chains which closely overlap and form a dense layer with 10-50 nm 

thickness [33].  

1.4 Droplet-based microfluidics  

Droplet based microfluidics exploits the advantages of the microfluidic technology and expands 

it by the controlled high-throughput formation of surfactant-stabilized monodisperse emulsions 

[37-40]. The technology has been implemented for the miniaturization and automation of 

biological assays at high-throughputs [41]. Microfluidic devices are used for the controlled 

encapsulation of an aqueous phase in an inert carrier fluid (oil phase). The droplet diameter can 

be adjusted precisely between few and hundreds of micrometers leading to femtoliter or 

nanoliter droplets in volume. The droplet production can be ranged from a slow hertz rate to 

megahertz rates [42, 43]. During the droplet production, different components, from single 

molecules to micrometer-sized objects like cells, can be encapsulated [33, 44]. Following 

encapsulation, each microfluidic water-in-oil droplet represents a self-contained microreactor 

that is suitable for the high-throughput observation of its internal chemical and biological 

reactions under defined conditions [45-52]. The combination of small volumes (short diffusion 

distances in the droplet) with the high production rates increases the chance of observing rare 

events or to test a variety of different reaction conditions. Since reaction rates increase with 

higher concentrations, reaction times which would take hours in bulk may decrease to seconds 

or minutes in droplets [53-55]. Due to mechanical and chemical stability of the surfactant-

stabilized droplets the off-chip time-lapse analysis of the collected droplets is a common 

practice. For further manipulation steps, the collected droplets can be re-injected into functional 

droplet manipulation units. Figure 3 shows an overview of several functional units for the 

droplet manipulation, separation and observation which have been developed over the last 

decade in the field of droplet-based microfluidics. In the following subsection, I will discuss 
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the design and operation mechanism of the most important on-chip modules, some of which 

were used and modified for this thesis. 

 
Figure 3: Common functional units in droplet-based microfluidics. A) Two microfluidic 
devices for the compartment formation. B) Several units for the manipulation of previously 
produced water-in-oil droplets. Adapted and reprinted with permission from Kerstin 
Göpfrich. Trends in Biotechnology (2018) [56]. 
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1.4.1 Droplet production device 

Droplet-based microfluidics allows for the controlled production of monodisperse droplets at 

high rates [57]. There are three common droplet formation geometries. The T-junction [39, 58, 

59] and flow-focusing junction [37, 60, 61] are produced with the soft-lithography approach 

(see section 3.2.3) and consisting of polydimethylsiloxane (PDMS) (see Figure 3 A, left), while 

the co-flow geometry [24, 62, 63] consists of nested glass capillaries (see Figure 3 A, right). 

 

In the capillary co-flow device, droplets are generated by the viscous shear of the continuous 

phase over the dispersed phase. In the case of surfactant stabilized water-in-oil droplets the 

continuous phase is the surfactant-containing oil while the dispersed phase is the aqueous 

solution. The droplet formation mechanism depends mainly on the surface tension and viscous 

shear and is independent of the diameter of the outer capillary [58]. During the production, the 

water droplet grows at the inner capillary, simultaneously the viscous drag of the oil phase 

increases. It increases until the viscous drag is equal to the interfacial tension force which is 

responsible for the adhering of the water droplet to the capillary tip. At this point the water 

droplet is cut off and encapsulated in the stabilizing oil phase [59]. The disadvantage of this 

cylindric device is the difficult fabrication process which requires a lot of experience. Also, the 

diameter of the capillary and the arrangement of the geometry is not so flexible and precise. 

 

Easier in terms of fabrication and operation and therefore widely used in droplet-based 

microfluidics are the PDMS-based devices. In the T-junction geometry (see Figure 4 A), the 

dispersed phase (aqueous solution) gets injected into a microfluidic channel perpendicular to 

the continuous phase (surfactant-containing oil) containing channel. Both phases come together 

at the T-junction and form an interface. The shear forces and the pressure gradient of the 

continuous phase lead to an elongation and narrowing of the dispersed phase. If the capillary 

number reaches a critical value a droplet cuts off from the dispersed phase [3, 64].  

 

The geometry of the flow-focusing junction is quite similar to the T-junction geometry. It only 

differs in that the continuous phase surrounds the dispersed phase from two sides (see Figure 4 

B). Both phases are pushed through a narrow nozzle in the microfluidic device which leads to 

an symmetric shearing of the continuous phase onto the dispersed phase [3]. Formation of the 

droplet starts as a pinching of the dispersed phase by the applied capillary force of the 

continuous phase. The pressure of the continuous-phase flow narrows the dispersed phase and 

forces it away from the constricted area. If the capillary number reaches a critical value a droplet 
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cuts off from the dispersed phase [61, 65]. The narrow nozzle and its geometry improve the 

pinch-off of the droplet.  

 
Figure 4: PDMS-based droplet formation devices. A) T-junction device. The continuous 
phase (ocher) cause the head of the dispersed phase (blue) to elongate until a droplet  
pinches off. B) Flow-focusing junction. The continuous phase narrows the dispersed 
phase down unti l a droplet pinches off. 

 

The droplet size and production frequency are related to the inlet flow rates and viscosity of the 

injected phases [66-69], surfactants and their concentrations [40, 70-72], channel dimensions 

and geometry of the T- and flow-focusing junction [73-75], to name just a few factors which 

can influence the droplet production. The flow-focusing design offers better monodispersity 

and higher achievable production frequencies in comparison to the T-junction design. 

Furthermore, the encapsulation of delicate objects (such as cells) works better with that design 

[57]. Taking together these considerations, for the purpose of this thesis I used the flow-

focusing junction geometry for almost all experiments that involve microfluidic droplets 

formation. Whereby, I implemented the T-junction geometry for spatial separation of 

preformed droplets. Spatial droplets separation is important for droplet manipulation steps 

where a controlled distance between the droplets is required. The soft-lithography technique 

makes it easy to produce these structures and to change the dimensions and geometry of the 

microfluidic channels. For the droplet production the surface properties of the PDMS 

microchannels are important [76-78]. The channel surface has to be wetted by the continuous 

phase to guarantee the production of homogeneously droplets. PDMS normally shows 

hydrophobic properties and can be used without chemical treatment for the production of water-

in-oil droplets. If there is an interest in producing oil-in-water droplets the microchannels have 

to be functionalized [79]. 

  

A BT-junction flow-focusing junction

dispersed phase continuous phase
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1.4.2 Microfluidic device for mechanical droplet division  

After droplet formation, there are various on-chip functions to manipulate preformed droplets, 

some of which I will introduce in the following sections. To create droplets of less than 5 µm 

in diameter, high flow rates are required. However, at very high inlet flow rates the design of 

the droplet production devices tends to jetting. During the jetting the dispersed phase elongates 

through the microfluidic channel and breaks up downstream due to the Rayleigh-plateau 

instability [69, 80, 81]. The jetting limits the droplet production frequency and the homogeneity 

in the droplet size. Furthermore, the production of small droplets (< 5 µm) requires very narrow 

channels in the geometry of the production devices. As described in section 1.1.3. the resistance 

in the channel rises with decreasing channel dimensions. In order to overcome the described 

problems and to form small droplets at high production frequencies, the microfluidic unit for 

mechanical droplet division has been established [82, 83]. The geometry of the division device 

consisting of several Y-junctions arranged behind each other (see Figure 3 B, Division) [83]. 

The division depends on the critical capillary number which in turn depends on the flow 

conditions, channel dimensions / geometry and the surface tension at the surfactant stabilized 

droplet interface. Below the critical capillary number, the droplet will not divide and randomly 

flow in one of the side channels. To create very small droplets, several splitting units can be 

installed behind each other to divide the droplet multiple times, whereby each division reduces 

the volume of the droplet by half. It has to be considered to decrease the channel cross-section 

after each division by the half to keep the capillary number constant [83]. As an example, for 

the application of such a device, the droplet division can be used for the high throughput 

production of very small and homogenously sized giant unilamellar vesicles (GUVs). The 

vesicles are used as biological membranes to mimic cell membranes and per definition the size 

of GUVs range between 1-200 µm [84]. 

1.4.3 Microfluidic device for droplet deformation 

The droplet deformation device (Figure 3 B, Deformation) can be used as a validation tool for 

different surfactants and their effect on the droplet stability. Through several rapid changes in 

the microfluidic channel dimensions, for example by a constriction, the shape of the passing 

droplet alternates between spherical and elongated. As described in Section 1.1.3, the flow rate 

in the channel decreases with increasing channel dimensions. The rate of deformation and its 

velocity is related to the surface tension of the surfactant-stabilized water-in-oil droplet. The 

interfacial properties can be analyzed, by recording the deformation profile of the droplet. As 

an example, in [85] the adsorption kinetics of different surfactant molecules at the water-oil 
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interface were measured. In another application microencapsulation dynamics were monitored 

by measuring the difference in the deformation in between several deformation units during the 

shell formation as a result of the reaction of isocyanates, dissolved in the oil, with amines 

dissolved in the aqueous phase [86].  

1.4.4 Microfluidic device for droplet injection 

The use of water-in-oil droplets as self-contained miniature reactors for biochemical reactions 

benefits from the high throughput and the reduced reagent volumes. The encapsulated aqueous 

phase is protected from its environment by the stabilizing surfactant shell and can be specific 

manipulated, which makes it possible to initiate different reactions within the encapsulated 

droplet content. For some reactions, it is necessary to keep reagents separated prior to mixing 

or to perform sequential addition of reagents. One possibility to influence the droplet aqueous 

phase is the controlled fusion of droplet pairs through mechanical treatment [87] or 

electrocoalescence [88] (see the following section 1.4.5). The destabilizing effect on the 

surfactant shell by applying an electric field is also used in the direct droplet injection approach 

[89, 90]. The electric field induces a thin-film instability at the water-oil interface leading to 

pore formation at the surfactant membrane whereby the reagent (in aqueous solution) can 

directly be injected into the aqueous phase of the droplet through an injection nozzle [91]. A 

typical pico-injection microfluidic unit is presented in Figure 3 B. As can be seen, the injection 

nozzle is positioned perpendicular to the main channel in which the droplets are flowing. The 

electrodes are located on the opposite side of the spot where the injection nozzle merges with 

the main channel. To prevent leakage at the injection nozzle the channel is narrowed to a small 

slit, which leads to a high curvature at the interface of the injection aqueous phase with the oil 

in the main channel and therefore creates a high-pressure differential between the channels. The 

pressure differential can be determined by the Laplace pressure:  

 

 𝑃fD − 𝑃ghi =
2𝛾
𝑟  (11) 

 

Where Pin is the pressure of the injection aqueous phase, Pout the pressure in the main channel, 

𝛄	the water / oil surface tension and	r	is the radius of curvature of the fluid interface at the slit.  

 

The forces at the interface are in a static equilibrium. If the pressure at the injection phase is 

increased, the phase bulges further into the oil phase in the main channel, adopting a shape of 

higher curvature which leads to an increase in the Laplace pressure and the static equilibrium 
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is maintained. The passing droplets cause a pressure fluctuation and therefore the interface must 

move to maintain the equality of the Laplace law [89, 92]. The problem of the pressure 

fluctuation has been solved by installing a pressure stabilizer before the injection nozzle [93]. 

Once the passing droplet is destabilized by the electric field and gets in contact with the curved 

interface, the injection of the aqueous phase starts. During the injection process, the droplet 

continues to flow and remains connected to the aqueous phase in the nozzle by a narrow fluid 

bridge. After passing the injection nozzle the fluid bridge breaks and the droplet regains its 

stability. By placing several pico-injectors in a row, multiple reagents can be added sequentially 

for multi-step reactions. Generally, the injection device is a robust technique for the precise and 

specific addition of reagents into preformed surfactant stabilized water-in-oil droplets. In the 

context of this thesis, I used electric field mediated droplet injectors to inject magnetic beads 

(see section 4.2) into surfactant stabilized water-in-oil droplets. Furthermore, I designed a 

mechanical deformation induced droplet injection device (see section 4.3) and characterized his 

functionality. 

1.4.5 Droplet fusion  

The droplet fusion technique shows similarities to the droplet injection technique. Its main 

purpose is the initiation of reactions in the aqueous phase of the surfactant stabilized droplets 

by adding new reagents (see Figure 3 B, Fusion). The control of the volume and the reaction 

initiation is provided by fusing previously produced droplets with a precisely defined volume, 

containing different reagents. It also provides a mechanism to grow preformed droplets.  

 

Droplet coalescence by using special channel geometries and flow conditions is mainly used 

for surfactant free droplets systems or for droplets with very low surfactant concentrations. This 

technique requires direct contact between individual droplets, which can be achieved using 

specifically designed channel geometries [94-96] or particular liquid properties. Droplets 

consisting of the same liquid but with different size have different velocities. The same applies 

for equally sized droplets consisting of liquids with different viscosity [97]. Droplet pairs are 

formed because one of the droplets flows faster than the other. The droplets get continuously 

pushed against each other, which causing the surrounding oil lamella to thin down. The rupture 

of the oil lamella leads to the droplet fusion if the contact time is long enough [57, 97, 98]. In 

the case of surfactant stabilized droplets, different mechanisms exist to achieve droplet fusion. 

They are mainly based on mechanical and electric field mediated processes.  
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The electrocoalescence approach, on the other hand, relies on the application of an altering 

current (AC) electric field onto the passing droplets [46, 99-104]. In comparison to the 

mechanical induced approach, this technique is not so much depended on the direct contact 

between the droplets. The applied electric field induces dipoles in the aqueous phase of the 

droplets which in turn creates an attraction between the droplets due to the Coulomb force [57]. 

The droplet coalescence is prevented due a combination of repulsive and attractive stress which 

is called disjoining pressure. The presence of surfactant molecules increases that energy barrier. 

However, this barrier can be overcome by applying a high electric field which leads to the 

coalescence between the surfactant stabilized droplets [105-107]. In the context of this thesis, I 

used the principles of electrocoalescence to release the content of water-in-oil droplets into the 

continuous aqueous phase (see section 4.5). 

1.4.6 Microfluidic device for droplet trapping and incubation 

The high flow rate of droplets in microfluidic channels makes it challenging to observe 

reactions within the aqueous phase of the droplets for an extended period of time. Moreover, 

some biological assays require incubation steps such for letting cells, bacteria growing or to 

perform polymerase chain reaction (PCR) amplification of nucleic acids [64]. In droplet-based 

microfluidics there is always the possibility to collect and store the droplets in a reaction tube 

outside the microfluidic chip, but for some further manipulation steps, like droplet sorting 

related to their content (see section 4.7.3) it can be of advantage to perform the incubation and 

observation in the microfluidic chip itself. On-chip incubation normally is achieved by flushing 

the droplets through long channels or by trapping them in microfabricated pockets. If short 

incubation times are sufficient the droplets can be passed through a channel with controlled 

length [108]. The advantages of this simple approach are that the droplets stay in their initial 

order and can be differentiated from each other. The disadvantages are that the incubation time 

depends on the channel length. Long channels with a small diameter show a high fluidic 

resistance (see section 1.1.3) and require large input pressures to ensure flow in the microfluidic 

channel.  

 

Longer incubation times can be achieved by using a delay line. This consists of a wide and tall 

channel in which a high number of droplets can be stored [109]. The large diameter of the delay 

line shows a smaller fluidic resistance whereby smaller input pressures are needed. The tall 

channel dimension of the delay line causes the droplets to stack on top of each other which 

disrupts the order of the droplets and they can no longer be distinguished from each other. 
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Furthermore, the channel dimension can also lead to variations in the single droplet incubation 

time due to different flow conditions in the channel.  

 

The observation and homogeneously incubation of several droplets was improved by the 

implementation of static trapping geometries into the microfluidic device. In the so-called 

“Dropspots” device (see Figure 3 B, Incubation and observation) the droplets are trapped in 

spherical chambers which are connected with each other via small channels [110, 111]. Once 

the chambers are loaded with droplets, the inlet flow can be decreased or even stopped and the 

droplets stay immobilized in the chamber. The principle behind this trapping is based on the 

different fluidic resistances between the small channel and the spherical chamber (see section 

1.1.3). Once the droplet is trapped in the big chamber, a higher inlet flow is required to push 

the droplet through the narrow connection channels. By applying a lower inlet flow the droplets 

stay in the chambers and can be flushed with different continuous phases, for example oil with 

changing pH value. Over time, the trapping geometry of the chambers was modified (see Figure 

3 B, Trap and flush) to ensure easier flushing and releasing of the trapped droplets for further 

manipulation steps [112-115]. The entire microfluidic PDMS device can be incubated under 

desired conditions while the observation of the reactions within the droplets takes place. PDMS 

has gas-permeable properties, the gas exchange through the channel walls can be used to 

enhance the survival of encapsulated cells [48]. 

1.4.7 Microfluidic device for droplet mixing 

To observe the kinetics of chemical and biological reactions in the droplets, a homogeneous 

distribution of the reaction molecules is required. Due to the laminar flow conditions in 

microfluidic applications, mixing between two fluidic streams only occurs by diffusion. Despite 

the small length scales in the microfluidic system, the time required to completely mix the two 

fluids through diffusion is still long [3]. Even after the encapsulation of different aqueous 

solutions into surfactant stabilized water-in-oil droplets they can stay separated and build phase 

interfaces in the droplet [116]. For example, if an droplet with two different encapsulated 

aqueous phases moves through an straight microfluidic channel, the contact of the droplet to 

the channel wall leads to a recirculating flow in each half of the droplets aqueous phase [117]. 

Thereby, each aqueous phase half is mixed but the different phases remain separated from each 

other. As can be seen in Figure 3 B, the mixing between the different aqueous phases can be 

enhanced by the implementation of a winding (smooth turns) or zigzag (sharp turns) geometry 

into the microfluidic channel [18, 108, 118-122]. When the described droplet with the two 
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different aqueous phases passes through the winding channel geometry, the recirculation flows 

in the two halves of the droplet become irregular. One half of the droplet faces the inner side of 

the channel, due to the smaller channel length in comparison to the opposite outer side a smaller 

recirculating flow is generated. The droplet half facing the outer channel shows a bigger 

recirculating flow. The irregular motion in the different encapsulated aqueous phases promotes 

the mixing of the phases.  

1.4.8 Microfluidic device for droplet sorting  

The ability for high-throughput separation of specific droplets from a large population is an 

important technique in droplet-based microfluidics. The sorting efficiency of specific droplets 

depends on the optical detection of the droplet properties and the construction of the 

microfluidic sorting device. The sorting mechanism itself can be triggered by different forces, 

such as magnetic [123-126], pneumatic [127-131], acoustic[132-135], thermal [136, 137] and 

electric forces [138-146]. Electric field-mediated sorting is considered as the most efficient 

technique because of its fast response operation, high accuracy and relatively low experimental 

setup costs [147]. In general, the droplets are sorted at a switch-junction in the microfluidic 

device with two or more outlet channels. At the switch-junction the principle of the fluidic 

resistance (see section 1.1.3) is implemented by designing one of the outlet channels narrower 

compared to the other one. This ensures that the droplets exit the device through the bigger 

channel when no sorting force is applied on them. Droplets of interest are separated from the 

others by applying the appropriate force which moves them into the narrow channel. 

 

Figure 3 B shows a sketch of the droplet sorting triggered by an electric field, which I used as 

the mechanism for the droplet separation in the experiments for my thesis (see sections 4.4 and 

4.7). The principle of electric field mediated droplet sorting is based on dielectrophoretic forces. 

If the droplets have a sufficient difference in the electrical conductivity compared to the 

surrounding continuous phase, the application of a non-uniform electric field causes a net force 

onto the droplet which emerges from the interaction of the electric field with induced dipoles 

in the inner droplet aqueous phase [148, 149]. This net force can be used to move droplets 

against the present flow in the microfluidic channel for example into a desired outlet channel.  
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The force 𝐹⃗ grows with the gradient of the square of the electric field ∇m𝐸o⃗ m
Y
, and is independent 

of the field direction. For spherical droplets, the force is given by [148, 150]: 

 

 𝐹⃗ = 2𝜋𝜀q𝜀r𝐾𝑅;∇m𝐸o⃗ m
Y
 (12) 

 

with 𝐾 ≡
𝜀u − 𝜀r
𝜀u + 2𝜀r

 (13) 

 

Where 𝛆0 is the vacuum permittivity, 𝛆c is the relative permittivity of the continuous phase, 𝛆d 

is the relative permittivity of the inner droplet aqueous phase and R is the droplet radius. The	

efficiency	 of	 an	 electric	 field	mediated	 droplet	 sorting	 device	 depends	 on	 the	 applied	

electric	field	and	the	geometries	of	the	electrodes	and	the	microfluidic	device	[150].	Over 

the last decade several channel and electrode geometries got developed with very high sorting 

frequencies ranging from 300 Hz to 30 kHz [141, 142, 147, 151]. One problem at high sorting 

frequencies still looms in the efficiency of the droplet separation and the related amount of false 

sorted droplets, therefore I developed different sorting device geometries and tested their 

sorting efficiency (see section).	

1.4.8.1 Fluorescence-activated droplet sorting (FADS) 

As previously described, the sorting efficiency is also related to the optical detection which 

regulates the trigger for the droplet deflection. The most common technique relies on the 

readout of fluorescence labeled droplets [53, 142, 144]. For example, cell-containing droplets 

can be distinguished from empty ones by the fluorescence signal of cell-expressed proteins 

[142, 152-154]. In another approach, cell secreted antibodies can be detected by binding them 

at the surface of a co-encapsulated bead. The droplet contains homogenously distributed 

fluorescent peptides which binding to the cell secreted antibodies and thereby increasing their 

fluorescence signal [53, 144].  

 

Figure 5 shows an example of the optical setup, the fluorescence readout and corresponding 

droplet sorting [142]. The optical setup (Figure 5 A) consists of a laser light source (LAS, 488 

nm), formed into a laser line (LL) and directed through a multi-edge dichroic beam splitter 

(DBS) to a microscope. Inside the microscope the laser light passes through a beam splitter 

(BS) and gets reflected into the objective by a mirror (M). The laser beam gets focused across 

the sorting channel in the microfluidic device (CHIP) and excites the passing droplets. 
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Figure 5: Fluorescence-activated droplet sorting (FADS). A) Schematic representation of  
the optical setup. B) A plot of the pixel intensity (fluorescence) of the passing droplets.  
C) Y-junction of the droplet sorting device with and without applied electric field. Scale 
bars: 1 mm. Republished with permission of Royal Society of Chemistry, from 
Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sort ing based 
on enzymatic activity, Baret at al., 9, Lab Chip 2009; permission conveyed through 
Copyright Clearance Center, Inc [142]. 

 

The fluorescence emission from each droplet passes back and gets reflected to the sensor of the 

photomultiplier tube (PMT) by a dichroic beam splitter (DBS) via a bandpass filter (F2). 

Filtered light from a halogen lamp (LAMP) gets used for simultaneous monitoring of the 

passing droplets with a high-speed camera (CAM). [142]. The readout of the emission signal at 

the PMT is normally performed in multifunctional intelligent DAQ card executing a program 

written in LabView. Figure 5 B shows a plot of the pixel intensity (fluorescence) at the junction 

entrance over a period of 20 ms (1000 camera frames collected at a frequency of 5 kHz). Sorted 

droplets ending up in the narrow or wide arms of the Y-shaped junction are depicted in the plot 

with green and red markers, respectively. In Figure 5 C the droplets get sorted based on the 

fluorescence signal. To sort a particular droplet, the DAQ card provides a signal to an amplifier, 

connected to the electrodes of the microfluidic device. The electric field gets activated each 

time a droplet with a higher fluorescence signal gets detected.  

  

	

A B

C
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1.5 Label-free droplet monitoring tools  

Fluorescence imaging is a powerful tool for analyzing processes in the droplet-based 

microfluidics. Unfortunately, the fluorescence labeling processes can affect cell behavior or 

even can be toxic to them and thereby compromise potential clinical use in biomedical 

applications [155-159]. To overcome the drawbacks related to fluorescence-based detection, 

several label-free monitoring methods have been developed. The easiest way to monitor a 

process in the droplets is the usage of brightfield-microscopy together with a high-speed 

camera. Using the camera, videos of different manipulation steps can be recorded and evaluated 

offline. There are some software-based analysis tools including Droplet Morphometry and 

Velocimetry (DMV) and Automated Droplet Measurement (ADM) [160, 161], in which 

different droplet parameters like velocity, area and shape deformation can be analyzed from 

recorded high-speed camera videos. Intensity measurements using a photodiode as a camera 

trigger have been applied in an attempt to achieve real-time monitoring of the passing droplets 

[162]. However, this approach has limitations, as image processing time and transmission 

delays in the order of milliseconds are common. Other label-free methods are based on real-

time, electrical impedimetric measurements [163, 164]. This method allows for monitoring of 

the droplet content in a high throughput manner. For example, by applying impedimetric 

measurements it is possible to distinguish between cell-containing and empty droplets as well 

as detect the ion concentration in the droplets. Another label-free, real time monitoring method 

relies on the measurement of light absorbance. Differential photothermal spectroscopy (DDPI) 

detection relies on the measurement of light absorbance and has been adapted as a detection 

scheme for in-droplet colorimetric assays [165]. In the context of label-free cell monitoring it 

is also important to mention a method that is based on opto-acousto-fluidic microscopy. By 

sensing acoustic waves induced by the intrinsic light-absorbance of matter this method allowed 

for three-dimensional detection of droplet shape and its content [166]. 
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1.6 Droplet-based microfluidics for single-cell analysis 

Ensemble measurements are a common technique for the observation of cell processes, where 

the average behavior of a cell population gets analyzed. However, this type of measurement 

neglects the behavior of individual cells, whereby strategies for the analysis and interpreting of 

cellular heterogeneity are required [167]. Droplet-based microfluidics serves as a perfect 

technique for the high-throughput analysis of single cells. In the following section I will discuss 

the advantages of the droplet-based microfluidic technology for cellular investigation. As 

already described, cells can be encapsulated into the inner droplet’s aqueous phase in a 

controlled manner and stored there for several days [44, 168, 169]. Different droplet 

manipulation units like direct injection (see section 1.4.4) or fusion (see section 1.4.5) of the 

droplets can be used to overcome problems which are related to the compartmentalization, like 

the supply of nutrients from culture medium. Furthermore, by these manipulation techniques 

reactants can be added which induces reactions in the droplets. The induced reaction can be 

analyzed in the microfluidic incubation and observation devices (see section 1.4.6). Following 

analysis, the droplet sorting device (see section 1.4.8) enables the separation of cell-containing 

droplets based on defined parameters. By combining the mentioned manipulation units different 

biochemical and medical experiments with encapsulated cells have already been performed.  

 

As already mentioned in section 1.4.8.1 single cells can be detected in the droplets through 

fluorescence signals, similar to flow cytometry. This can for instance be done by the expression 

of green fluorescence protein (GFP) in the encapsulated cells [152]. Another common technique 

involves the detection of fluorescence antibodies attached to target cells. An example of this 

technique has been shown in the distinction of rare progenitor cells from a sample of human 

periosteal cells [170]. The encapsulation into surfactant stabilized droplets can be also used as 

a cage for the collection of cell secreted molecules, such as antibodies from hybridoma [48]. 

By such antibody labeling techniques, the immune response from T-cells can be located and 

separated by sorting the droplets which show a response from the non-reacted ones (see Figure 

6). 
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Figure 6: Droplet-based ant ibody screening. Antibody producing cells are co-
encapsulated with a mix of target-covered beads and fluorescent peptides that bind to al l  
secreted antibodies. Before incubation the fluorescent peptide is homogenously 
distributed in the inner aqueous phase of the droplet. In the droplets containing cells 
which produced antibodies after the incubation, the antibodies will bind to the bead 
together with the fluorescent peptide which wil l lead to a br ight f luorescent spot within 
the droplet. In droplets containing non-specifically binding antibodies, the fluorescence 
will remain homogeneously distributed. Droplets are then screened for antibody binding 
and can be sorted due to their difference in the fluorescence signal. Republished with 
permission of Royal Society of Chemistry, from Droplet microfluidics for high-throughput 
biological assays, Guo at al., 12, Lab Chip, 2012; permission conveyed through Copyright  
Clearance Center, Inc [53]. 

 

1.6.1 Single-cell enzyme expression  

Due to the compartmentalization it is also possible to analyze cell-expressed enzymes on a 

single-cell level. Of importance are the cases where the protein is directly expressed or where 

the protein analysis is performed using an unbound extracellular reporter molecule which is co-

encapsulated into the droplet. In this regard the encapsulation into droplets provides the 

possibility to link the genotype of the cell with the phenotype (generated fluorophores or 

secreted biomolecules) [169]. By doing so the expression of alkaline phosphatase (AP) [154] 

and 𝛽-gal [142] from E.coli. cells were analysed. In another example the secreted cytokine (IL-

2, IFN-𝛾, TNF-𝛼) of activated T-cells was detected by their binding to a co-encapsulated 
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cytokine capture bead [171]. In another approach, the droplet based microfluidic technology 

was applied to direct evolution, for identifying new mutants of the enzyme horseradish 

peroxidase (HRP) that are more than 10-fold faster than their parent [141]. As can be seen in 

Figure 7, co-encapsulated yeast cells (S. Cerevisiae) displayed copies of the single mutant HRP 

protein on their surface. 

 
Figure 7: Droplet-based enzyme activ ity improvement. Workflow for the enzyme 
improvement of horseradish peroxidase (HRP) expressed in Saccharomyces Cerevisiae.  
A) The HRP gene gets encoded on a plasmid. B) A library of mutated HRP plasmids is 
generated. C) The library gets transformed into yeast strain EBY100. Upon induction with 
galactose, each cell displays on its surface ∼10,000 copies of a single mutant HRP 
protein (μHRP). D) The yeast and non-fluorescent substrate are co-encapsulated into 
droplets on the microfluidic platform. The number of encapsulated mutants var ied 
between the first generation and fol lowing encapsulations. Active mutants convert the 
Amplex Ultrared (AUR) (gray) to its fluorescent oxidation product (pink) in an incubation 
line. F) In the droplet sorting device, the bright  droplets were sorted. The cells from the 
sorted droplets were released, replicated and then the growth, induction, and sorting 
process were repeated. Adapted from Agresti at al. PNAS. 2010 [141]. 

 

1.6.2 Single-cell drug screening  

Besides the fact that drug screens require long incubation times, droplet-based microfluidics 

have been used in early drug discovery stages as model screens for cytotoxicity [46], nuclear 

receptor activation [172] and enzyme inhibition [173]. For example, the screening of the 

cytotoxicity [174] was performed with a compound library of eight concentrations of the 

chemotherapeutic mitomycin C on encapsulated human cell line U937 cells. The library was 

co-encapsulated with a fluorescence optical code. Afterwards, the library containing droplets 

got fused with droplets containing single cells and incubated for 24 hours. In a second droplet 
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fusion, positive and negative viability stains were added for the fluorescence analyzing. 

Another mentioned example explains the screening of the nuclear receptor activation for 

different concentrations of the hormone 20-hydroxyecdysone in Bombyx mori cells. The 

simultaneous detection of green fluorescent protein expressed by the reporter gene together 

with an added fluorescent label enables the measurement of the dose-response profile of the 

hormone at the single cell level [172]. Another study aimed an inhibition screen of an enzyme 

(𝛽-gal) in sub-microliter plugs [173]. An autosampler aspirates samples from microtiter plates 

and converts them into plugs separated by fluorinated oil in a capillary tubing. The plugs contain 

droplets with different inhibitor concentrations which were split in multiple small volume 

copies and fused with the enzyme and a fluorogenic enzyme substrate (FDG). After incubation, 

fluorescence readout of 96 conditions were performed automatically.  

1.6.3 Single-cell genetic analysis  

The ability of combining several manipulation steps in droplet-based microfluidics is a clear 

advantage for controlled polymerase chain reactions (PCR). The high-throughput and 

controlled compartmentalization enables the sequencing and monitoring of thousands of 

different conditions using fewer reagents. It is therefore not surprising that most functional PCR 

variations have already been performed with droplet-based microfluidics. This includes real-

time PCR analysis [175], reverse transcription PCR (RT-PCR) [51] and quantitative PCR 

(qPCR) by fluorescence imaging [50]. For example, the techniques mentioned were used for 

the quantitative detection of rare mutations in the kirsten rat sarcoma viral (KRAS) oncogene 

within a large excess of wild-type sequences [176] and multiplex PCR of samples from patients 

with spinal muscular atrophy [177]. Genetic analysis of single cells requires the lysis of 

encapsulated cells for DNA extraction and subsequent DNA amplification and detection [169]. 

The following examples show the application possibilities of droplet-based microfluidics for 

the genetic analysis of single cells and creation of libraries [178-182].  

 

Klein et al. [178] developed a droplet based, high throughput approach for barcoding the RNA 

from thousands of individual cells for their subsequent analysis (see Figure 8). They analyzed 

mouse embryonic stem cells and could pointing out in detail the population structure and the 

heterogeneous onset of differentiation after leukemia inhibitory factor (LIF) withdrawal. The 

reproducibility of this high-throughput single-cell data allowed for the deconstruction of the 

cell populations and could be used to infer gene expression relationships. 
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Figure 8: Droplet-based RNA barcoding. A) Encapsulation of cells into droplets, together 
with lysis buffer, reverse-transcript ion mix and hydrogel microspheres carrying barcode 
primers. B) After the encapsulation the primer is released. C) cDNA in each droplet is 
tagged with a barcode during reverse transcript ion. D) Droplet content gets released and 
material from all cells is l inearly amplif ied before sequencing. Reprinted from Cell, 161,  
Klein at al., Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem 
Cells, 1187-1201, 2015, with permission from Elsevier [OR APPLICABLE SOCIETY 
COPYRIGHT OWNER] [178]. 

 

In another approach, Grosselin at al. [179] profiled chromatin landscapes of thousands of cells 

at single-cell resolution (see Figure 9). Intra-tumor heterogeneity of chromatin states was 

investigated with droplet based single-cell chromatin immune-precipitation and sequencing 

(scChIP-seq). Using patient-derived xenograft models with purchased resistance to 

chemotherapy and targeted breast cancer therapy they found out that a subset of cells within 

untreated drug-sensitive tumors share a common chromatin signature with resistant cells, which 

would be undetectable with bulk approaches. This single-cell chromatin immunoprecipitation 

followed by sequencing approach allows for study the role of chromatin heterogeneity during 

cellular development and differentiation. 

 
Figure 9: Overview of the microfluidic scChIP-seq wokflow. Two different populations of  
droplets get produced and fused with each other. One droplet contains cel ls together with 
MNase and lysis and the other population contains barcoded beads with the ligation 
reagent. Reprinted by permission from Springer Nature, Nature Genetics, High-
throughput single-cell ChIP-seq identif ies heterogeneity of chromatin states in breast 
cancer, Grosselin at al., 2019 [179] . 
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2 Motivation 

Despite the progress made in recent years, it seems that droplet-based microfluidics still 

remains in its development stage. To bring this technology to the next stage, it must become 

adapted and optimized to solve end-user problems, rather than remain a field based on proof-

of-concept experiments. In the previous part I introduced droplet-based microfluidics as a tool 

for the micro-compartmentalization of reactions under defined conditions and with high-

throughput. The technology permits the integration of multiple laboratory functions into one 

single microfabricated chip with an average dimension of few centimetres. Furthermore, I 

introduced some of the physical laws which are relevant for the development of functional 

microfluidic units and have shown several examples of on-chip units and their application for 

the droplet manipulation. Therefore, the major aim of my Ph.D. research was to ensure a more 

efficient performance of some of the functional units and to bridge the gap between the 

development of microfluidics and their application for biomedical and synthetic biology 

approaches. 

 

Long term culture of cells in microfluidic droplets requires supply of nutrients from the medium 

and removal of toxic factors produced by the cell before their concentration reaches a growth-

limiting or cell-death-inducing level. The droplet injection device can be implemented to 

deliver the required nutrients by the injection of fresh medium. To destabilize the protecting 

surfactant layer and to allow for the injection, a high electric field is applied onto the passing 

droplets. The need of an electric field limits the applications of the injection device when the 

droplet content is sensitive against it. Therefore, I aimed to develop a microfluidic unit for the 

controlled droplet injection without applying electric fields. The development of such a device 

is presented in section 4.3. 

 

Despite the process in the development of droplet sorting devices one problem still looms in 

achieving a high sorting efficiency at high droplet passing frequencies. The accuracy of the 

sorting process is affected by wrongly deflected droplets. For this reason, I designed a droplet 

sorting unit and optimized its geometry to achieve a maximum sorting efficiency (see section 

4.4) 
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The controlled and efficient release of encapsulated biological content is still challenging in 

droplet-based microfluidic approaches. The droplet content can be released into a continuous 

aqueous phase with bulk techniques by using chemical destabilizing agents. In this thesis I 

aimed to optimize the release devices in terms of efficiency and precision. Moreover, by 

combining droplet-based microfluidics and DNA nanotechnology I achieved a precisely control 

about the release of the droplet content. Section 4.5 describes the development of such a device. 

 

To date, several real-time monitoring techniques have been developed to obtain precise 

information about droplet content and production parameters. As introduced in the previous 

section most high-speed monitoring methods rely on fluorescence labelling of the droplets or 

their content. To avoid affecting encapsulated cells by the fluorescence labelling, several label-

free monitoring methods have been developed for analysing passing droplets. However, despite 

the remarkable progress, these technologies are either slow in the detection rate or highly 

advanced and therefore complex to set up. Moreover, due to their complexity most of these 

techniques would require substantial efforts for their integration towards active droplet 

manipulation. There is a need for powerful and easy-to-use optical methods for online detection, 

analysis and active manipulation of passing water-in-oil droplets. I will discuss this in more 

details in section 4.6 and 4.7 of this Thesis. 
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3 Materials and Methods 

In the following subsection, I describe the materials and methods I used for the microfluidic 

experiments in my thesis. It will start with a description of the used surfactants, followed by 

explaining the production of the microfluidic devices. Furthermore, the developed functional 

droplet manipulation devices will be shown together with the conditions for the respective 

experiments. Finally, different methods for analysing the droplets will get explained.  

3.1 Surfactants 

At the beginning of my research, I used a triblock copolymer surfactant for the stabilization of 

water-in-oil droplets that have been synthesized by a former colleague (Dr. Jan-Willi Janiesch). 

The fluorosurfactant consists of hydrophobic perfluorinated polyether (PFPE) blocks and 

polyethylene glycol (PEG) hydrophilic blocks. The hydrophilic PEG blocks serve as 

biocompatible inert droplet interface for the inner aqueous phase, whereas the hydrophobic 

blocks ensure stability by preventing coalescence of the droplets [33]. At some point in my 

research I changed to a commercial Perfluoropolyether-polyethylene glycol (PFPE-PEG) 

block-copolymer fluorosurfactant from RAN biotechnologies (USA). For stable droplet 

production the PEG-based fluorosurfactant got solved in a fluorinated oil (HFE-7500, 3M, 

USA) at different concentrations (the exact concentrations for the respective experiments are 

listed in the droplet production section 3.3). 

3.1.1 PFPE-PEG-PFPE triblock surfactant synthesis 

Following a previously published [33] and modified protocol [31], the synthesis of the PFPE 

(7000 g/mol)-PEG (1400 g/mol)-PFPE (7000 g/mol) triblock-copolymer was carried out under 

argon atmosphere in dry THF solvent (tetrahydrofuran, 99.8 %, Carl Roth, Germany) in a 

heated Schlenk-flask.  

 
Figure 10: Sketch of PFPE-PEG-PFPE triblock-copolymer surfactant synthesis [31].  



  Materials and Methods 

 32 

First 1 mmol PEG (1400 mg, 1400 g/mol molecular weight, Sigma-Aldrich, Germany) was 

solved in 90 ml dry THF and cooled to -78 °C. At this temperature, 1.25 ml N-butyl lithium 

(1.6 M solution in hexane, 2 mmol, Sigma-Aldrich, Germany) was added dropwise over 1 hour 

and stirred for additional 30 minutes. Under continuous stirring the reaction was slowly heated 

to room temperature and stirred for another 30 minutes. 14 g Krytox FSH (PFPE-carboxylic 

acid, 2 mmol, 7000 g/mol molecular weight, DuPont, Netherlands) was added dropwise over 

30 minutes and stirred for 2 hours. THF solvent with unreacted PEG was removed by a 

separatory funnel. After two THF washing steps the product was dissolved in methanol (99.8 

%, Carl Roth GmbH, Germany) and dried with a rotary evaporator at 40 °C. Figure 10 shows a 

sketch of the synthesis of the triblock surfactant.  

3.1.2 Destabilizing surfactant 

Destabilizing surfactant is a demulsifier which can be used for releasing the aqueous content of 

water-in-oil droplets. Mostly this process happens under bulk conditions [3, 4] where on the 

top of collected droplets an aqueous layer together with the demulsifer is added. The demulsifier 

molecules replace the stabilizing surfactant in the polymer shell of the droplet and destabilizing 

it. At a certain point the droplet coalescence with the added aqueous layer and releases its 

content. For my experiments I used 1H,1H,2H,2H-perfluoro-1-octanol (Sigma-Aldrich, 

Germany) as destabilizing surfactant.  

3.2 Microfluidic device production 

Microfluidic devices were designed using the computer-aided design (CAD) software QCAD-

pro (Ribbonsoft, Switzerland). Afterwards the designs were transferred into a photoresist layer 

on a silicon wafer (master wafer) by using photo- and Laser lithography. The final 

polydimethylsiloxane (PDMS) (Sylgard 184, Dow Corning, USA) microfluidic devices were 

produced with the soft lithography method. The single steps of the production of a microfluidic 

device will be explained in more detail in the following sections.  

3.2.1 Photolithography 

At the beginning of my research I used the photolithography method [183] for producing the 

master wafers. The resolution of this method is around 1 µm. First, the CAD designs got etched 

into chrome-coated soda lime glass (JD-Photodata, UK) which serves as photomask. Note that 

most of the protocol has been published in Zamir, E.*; Frey, C.*. Analytical Chemistry (2017), 

[184] and can be added into my thesis with permission from the authors. For the 

photolithography process a negative photoresist (SU8-3025, MicroChem, USA) was spin-
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coated (Laurell Technologies Corp., USA) onto a silicon wafer at 2600 rpm to get an uniform 

coating of 30 µm thickness. The wafer was then placed on a hot plate for a 5 min soft bake at 

65 °C, then ramped slowly to 95 °C and held for 15 min to evaporate the organic solvents in 

the photoresist and harden it. Following this, the photoresist was exposed for 7.5 s to ultraviolet 

(UV) light through the corresponding photomask using a mask aligner (MJB4, SÜSS MicroTec, 

Germany). The UV light passes the etched designs of the photomask and polymerizes the 

channel structures into the photoresist. For the post exposure bake, the wafers were placed for 

1 min on a hot plate at 65 °C and 5 min at 95 °C. Afterwards, the part of the photoresist which 

was covered from the photomask and therefore unexposed and unpolymerized was removed 

with mr-DEV 600 developer (MicroChemicals, Germany). Figure 11 shows a sketch of the 

single photolithography steps.  

 
Figure 11: Schematic illustration of the microfluidic master wafer production. A) A silicon 
wafer gets coated with negative SU8 photoresist. B) Two different methods to expose the 
microfluidic design into the photoresist. BI) At the Photolithography technique the CAD 
design get etched into a photomask and exposed through UV light into the negative 
photoresist. The UV radiat ion triggers the polymerization of the photoresist and thus 
transfers the CAD design into the photoresist coating. BII) At the Laser lithography 
technique the CAD design get directly exposed into the photoresist by a write head with 
an integrated laser. C) The unexposed and therefore unpolymerized photoresist areas 
get washed away with a developer solution whereby the CAD design remains on the 
wafer. 

 

The final hard bake was carried out in an oven at 150 °C for 15 min and served the stability of 

the channel structures onto the silicon wafer. All steps of the photolithography protocol were 

performed under clean room conditions (class 100). A profilometer (DektakXT, Bruker, 

Germany) was used to analyse the exact thickness of the developed structures. In the explained 
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protocol, I show the specific production parameters for a 30 µm thick layer of SU8-3025 

photoresist. Several photoresists can be used at different spinning rates for creating a desired 

photoresist thickness. Table 1 shows an overview of the usual parameters and photoresists for 

the respective thicknesses of our master wafers. 

 
Table 1: Coating parameters for the master wafer production. Spin speed, soft bake and 
hard bake for different photoresists and the associated thickness.  

photoresist thickness (µm) spinning rate 
(rpm) 

soft bake (min) 

65 °C / 95 °C 

post exp. (min) 

65 °C / 95 °C 

SU-8 3005 10 1000 1 / 3 1 / 5 

SU-8 10 10 3000 2 / 5 1 / 5 

SU-8 3025 30 2800 1 / 15 1 / 5 

SU-8 3050 80 1700 1 / 30 1 / 5 

SU-8 2075 80 2750 3 / 6 1 / 5 

 

3.2.2 Laser lithography 

At a certain stage of my research I aimed to improve the efficiency and the resolution of the 

master wafer production. Therefore, I developed a protocol which implements a micro Pattern 

Generator µPG 101 (Heidelberg Instruments, Germany) for the production of my master 

wafers. It allowed me to directly write my CAD designs into the spin-coated photoresist layer 

on the silicon wafer. Due to that improvement small modifications in the design and new ideas 

can directly be tested without ordering a new photomask. Our µPG 101 system is equipped with 

a 375 nm diode laser that allows to work with the SU-8 photoresist, keeping the same 

production parameters from Table 1. There are four exchangeable writing modes available with 

different resolutions and writing speeds. With the write mode I, under perfect conditions the 

resolution of the system can achieve a minimum structure size of 0.6 µm at a write speed of 1 

mm2/min. In comparison the biggest write mode (IV) reaches a minimum structure size of 5 

µm at a write speed of 90 mm2/min. For each write mode, type of photoresist and the 

corresponding thickness the dose (deposited energy per area) that is required to get a sufficient 

exposure have to be adjusted. The amount of energy can be controlled by either adjusting the 

power or by determining the time span over which the laser illuminates the photoresist. In the 

exposure wizard of the Pattern Generator the output power of the laser (in mW) and the pixel 

pulse duration (in %) can be adjusted. The regulation of the energy mode allows the system to 
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do multiple exposures or reducing the speed at which it exposes. This is useful when the power 

of the installed laser is not sufficient enough. The entire production process of a master wafer 

with the Pattern Generator got published in Frey et al. ACS Omega (2020) [107], and can be 

added into my thesis with permission from the authors. A 30 µm thick photoresist-coated silicon 

wafer get loaded onto the middle of the stage, manually aligned, and fixed in place using 

vacuum. By clicking the “Focus” button in the software the write head moves down towards 

the substrate until the focal point is on the substrate surface. The integrated pneumatic autofocus 

system makes sure that during the exposure the distance between the write lens and substrate 

surface stays constant regardless of the substrate thickness. The recommended maximum 

thickness of the substrate is 6 mm. Writing mode II with the exposure conditions of 50 mW for 

the output power of the laser, and 20% for the pixel pulse duration were used for a 30 µm thick 

coating. Table 2 shows an overview about usual energy settings with the writing mode II for 

the respective photoresist thickness. For the post exposure bake, the wafer was placed on a hot 

plate for 1 min at 65 °C and then ramped and held at 95 °C for 5 min. The unexposed parts of 

the resist were removed with mr-DEV 600 (MicroChemicals, Germany). The hard bake was 

carried out in an oven at 150 °C for 15 min. Figure 11 shows a sketch of the single laser 

lithography steps. 

 
Table 2: Energy settings for different photoresist coatings with the writing mode II. 

photoresist thickness (µm) output power (mW) pixel pulse duration (%) 

SU-8 3005 10 70 25 

SU-8 10 10 70 25 

SU-8 3025 30 50 20 

SU-8 3050 80 50 30 

SU-8 2075 80 50 30 

 

3.2.3 Soft lithography 

The entire soft lithography [6, 185-189] protocol for producing my PDMS devices/molds got 

published in Frey et al. ACS Omega (2020) [107], and can be added into my thesis with 

permission from the authors. Polydimethylsiloxane (PDMS) (Sylgard 184, Dow Corning, USA) 

was prepared by mixing the oligomer with the polymerization catalyst at a 9:1 (w/w) ratio. The 
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stirred PDMS was poured over the silicon wafer, degassed for several minutes in a desiccator, 

and cross-linked for 2 h at 65 °C in an oven. After hardening, the PDMS gel was peeled off the 

wafer and a biopsy puncher was used (World Precision Instruments, USA) to punch the holes 

(0.5 mm) for the inlet and outlet polytetrafluoroethylene (PTFE)-tubing connections (0.4 × 0.9 

mm, Bola, Germany) and electrodes (1.0 mm). Following punching, the holes in the PDMS 

were cleaned with ethanol and pressurized nitrogen gas to remove residual PDMS particles. 

Prior to the attachment of PDMS to a coverslip, the structured side of the PDMS and the clean 

coverslip (#1, Carl Roth, Germany, 24 × 60 mm) were activated using an oxygen plasma (PVA 

TePla 100, PVA TePla, Germany; 0.45 mbar, 200 W, 20 sec). After activation, the PDMS was 

pressed on the coverslip and heated for at least 1 h at 65 °C. Figure 12 shows a sketch of the 

single soft lithography steps. Before their experimental usage, Sigmacote® (Sigma-Aldrich, 

Germany) was applied to the microfluidic channels of the device to render it hydrophobic. For 

droplet manipulation some of the devices have to be equipped with electrodes. To insert them 

into the microfluidic chip, the device was heated to 80 °C on a hot plate and a low melting-

point alloy (51IN-32.5BI-16.5SN, Indium Corporation of America, USA) was melted inside 

the microchannels designed for the electrodes [190]. Electric wires were connected to the 

melted solder and fixed with UV hardening glue (Loctite 352, Henkel, Germany).  

 
Figure 12: Schematic il lustration of the steps to produce the microf luidic PDMS device.  
AI) PDMS gets poured on the silicon wafer with the developed CAD design. BI) The cured 
PDMS cast gets peeled of the master wafer. CI) A glass slide and the PDMS get briefly 
activated using an oxygen plasma and then pressed against each other. AII, BII and CII 
showing the described steps from the side view to illustrate the imprint of the microfluidic 
channels.  
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3.3 Microfluidic devices for droplet production and 

manipulation 

In this section of my thesis I will give an overview about different microfluidic devices and 

their application for water-in-oil droplet production and manipulation. I will also summarize 

the optimizations and adjustments I have made over several generations of the respective 

designs and show the used parameters in the single experiments.  

3.3.1 Droplet production device 

Each microfluidic droplet represents a self-contained compartment with prescribed content. 

The droplet size and shape can be controlled by the geometry of the microfluidic channels and 

the injection flow rates of the oil and aqueous phases. As described in section 1.4.1, stable 

water-in-oil droplets get formed if, an oil phase consisting of a defined concentration of a block-

copolymer fluorosurfactant dissolved in a fluorinated oil get together with an aqueous phase at 

the flow-focusing junction of the droplet production device. The Surfactant molecules 

immediately diffuse to the water-oil interface and hence stabilize the droplets [58, 191]. The 

corresponding phases get injected into the droplet production device with 1 ml syringes 

(Omnifix®-F, B.Braun, Germany) connected by a cannula (Sterican®, 0.4 x 20 mm, BL/LB, 

B.Braun, Germany) and PTFE-tubing (0.4 x 0.9 mm, Bola, Germany). The injection flow rates 

get controlled with syringe pumps (11 PicoPlus Elite, Harvard Apparatus, USA). Following 

production, droplets were collected in an Eppendorf tube (Eppendorf, Germany). In this Thesis 

I used three different designs of the production device to form stable water-in-oil droplets.  

3.3.1.1 Component encapsulation into water-in-oil droplets 

During production, different components can be encapsulated into the inner aqueous phase of 

the droplets [44, 168]. The size can vary from single molecules to micrometre sized objects 

such as cells or polystyrene beads. For experiments with encapsulated cells I used CHO 

(chinese hamster ovary, Public Health England) suspension cells. This type of cells was 

cultured with a protein-free medium (EXCELL ACF DHO Medium, Sigma-Aldrich, Germany) 

supplemented with 4 mM L-glutamine (Gibco L-glutamine, Thermo Fisher, USA) in an 

incubator (Thermo Scientific, USA) at 37 °C and 5 % CO2. 
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3.3.1.2 Functionalization of water-in-oil droplets 

Besides serving as passive containers for biocontent, water-in-oil droplets can additionally 

provide custom functionalities on their inner periphery. For example, by using cholesterol-

tagged DNA [192] or gold-linked [31] functional surfactants, the inner periphery of the droplets 

can be functionalized with reactive groups and components. In the first method, during the 

droplet production the cholesterol-tagged DNA self-assembles at the inner droplet periphery 

and serves as an anchor point for the complementary DNA strand. The complementary DNA 

can carry diverse functional groups like amine groups, DNA nanostructures, microspheres, a 

minimal actin cortex or leukemia cells [192].  

3.3.1.3 Droplet production device I 

The first device (Figure 13) was designed by a former PhD student of the microfluidic group 

(Dr. Johannes Frohnmayer) and got used for the experiments in, E. Zamir*, C. Frey*. et al, 

Analytical Chemistry (2017) [184].  

 
Figure 13: Droplet production device I. A) Technical drawing of the device with its liquid 
inlets, the droplet outlet and the flow-focusing junction marked with the red square. The 
filters prevent from blocking the microchannels. The scale bar is 2 mm. B) Enlargement 
of the flow-focusing junction. The droplet production nozzle (where the aqueous phase 
gets together with the oil phase) is 30 µm wide. The constriction at the end of the junction 
measures 20 µm. C) Bright-field image of the droplet production at an inlet f low rate of  
200 µl/hr for the aqueous phase (blue arrow) and 400 µl/hr for the surfactant containing 
oil phase (ocher arrow). The scale bar is 60 µm.  

 

For the quantification of different droplet flow rates by the auto-correlation (see section 4.6.2), 

I used for the oil phase a 5 mM solution of the self-synthetized triblock (PFPE (7000 g/mol)-

PEG (1400 g/mol)-PFPE (7000 g/mol)) dissolved in HFE-7500 oil (3M, USA). The aqueous 
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phase consisted of phosphate-buffered saline (1xPBS, GibcoTM, ThermoFisher, USA) with 2 

µM, 20 nM or 2 nM Alexa Fluor 647 (C2-maleimide, A20347, Molecular Probes) for the 

fluorescence detection. Different droplet production frequencies between 2 - 20 kHz were 

generated by adjusting the flow rates of the aqueous and oil phases ranging from 400 to 1000 

µl/hr and 800 to 3000 µl/hr, respectively. 

 

For analyzing the variability of the droplet passing time by the auto-correlation (see section 

4.6.2), empty and cell loaded droplets have been analyzed. Before cells got encapsulated into 

the droplets, they were centrifuged for 5 minutes at 700 rpm from the media and resuspended 

in phosphate-buffered saline (PBS) containing 8 µM Hoechst 33342 (Trihydrochloride, 

ThermoFisher, USA). Following 10 min incubation, the cells were washed three times by 

centrifugation and resuspension with PBS. Finally, the cells were suspended in PBS containing 

2 µM Alexa Fluor 647 (C2-maleimide, A20347, Molecular Probes) to a concentration of 40 x 

106 cells per ml and encapsulated at a flow rate of 1000 µl/hr for the aqueous phase and 3000 

µl/hr for the fluorosurfactant containing oil phase. It has to be mentioned that for a successful 

encapsulation of cells the filter structure got punched for entering the aqueous inlet tube. This 

prevents the cells from blocking the filter structure and therefore the entire channel. 

 

The droplets for the electric field mediated droplet injection experiments in section 4.2 were 

also produced with this device. The flow rate for the 3 wt% commercial fluorosurfactant 

containing oil phase was set to 100 µl/hr. The flow rate for the aqueous phase (pure milli-q 

water) was the same.  
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3.3.1.4 Droplet production device II 

Several flow-focusing junctions were designed to compare their performance in terms of the 

droplet size and production rate. Figure 14 shows production devices with differently directed 

connection angles between the oil channels and the aqueous channel. To analyze their influence 

onto the droplet size and the production rate, different flow rates were used during the droplet 

production.  

 
Figure 14: Droplet production devices with different connection angles between the 
aqueous channel and the oil channels at the flow-focusing junction. AI), BI), CI) Technical 
drawings of the devices with its liquid inlets, the droplet outlet and the flow-focusing 
junction marked with a red, green and blue square respectively. The scale bars are 1 
mm. AII) Enlargement of the flow-focusing junction. The droplet production nozzle is 42 
µm wide. The angle between the aqueous channel and the oil channels is 90 ° and the 
constriction at the end of the junction is 30 µm wide. BII) Enlargement of the flow-focusing 
junction. The droplet production nozzle is 42 µm wide. The angle between the aqueous 
channel and the oil channels is 75 ° and the constriction at the end of the junction is 26 
µm wide. CII) Enlargement of the flow-focusing junction. The droplet production nozzle 
is 42 µm wide. The angle between the aqueous channel and the oil channels is 60 ° and 
the constriction at the end of the junction is 24 µm wide. AIII), BIII), CIII) Bright-field 
images of the droplet production at a flow rate of 200 µl/hr for the aqueous phase (blue 
arrow) and 400 µl/hr for the oi l phase (ocher arrow). The scale bars are 40 µm. 

 
The flow rates of the aqueous and oil phases range from 200 to 1000 µl/hr and 400 to 3000 

µl/hr, respectively. For the experiments, the oil phase contained 5 mM of the self-synthetized 

triblock dissolved in HFE-7500 oil and the aqueous phase consisted of pure Milli-Q water. The 

corresponding results for determine the influence of different connection angles onto the droplet 

production are shown in section 4.1.  



  Materials and Methods 

 41 

The device as shown in Figure 15 was implemented for the mechanical induced droplet 

injection experiments in section 4.3 and for the droplet content release experiments in section 

4.5. It only differs from the previous design (Figure 14) in the channel width of the flow-

focusing junction (32 µm instead of 42 µm).  

 
Figure 15: Droplet production device II. A) Technical drawing of the device with its l iquid 
inlets, the droplet outlet and the flow-focusing junction marked with a red square.  
Additives l ike cholesterol-tagged or Cy5-labelled DNA or even CHO suspension cells can 
be injected into the aqueous phase inlet channel to be encapsulated into droplets. The 
scale bar is 1 mm. B) Enlargement of the flow-focusing junction. The droplet production 
nozzle is 32 µm wide and the constriction at the end of the junction is 20 µm wide. The 
angle between the aqueous channel and the oil  channels is 90 ° and the narrow channel 
at the end of the junction is 20 µm wide. C) Bright-field image of the droplet production 
at a flow rate of 200 µl/hr for the aqueous phase (blue arrow) and 400 µl/hr for the oi l  
phase (ocher arrow). The scale bar is 40 µm.  

 

For the droplet injection experiments based on the mechanical deformation, different surfactant 

concentrations of the self-synthetized triblock surfactant (PFPE (7000 g/mol)-PEG (1400 

g/mol)-PFPE (7000 g/mol)) have been used for the droplet production. The tested 

concentrations have been: 5 mM, 0.5 mM, 0.25 mM, 0.15 mM and 0.10 mM. In the case of 

droplets stabilized with 5 mM and 0.5 mM surfactant concentrations the flow rates for the oil 

and aqueous phases were set to 800 and 400 µl/hr, respectively. For the other surfactant 

concentrations, the flow rates for the oil and aqueous phases were set to 600 and 400 µl/hr, 

respectively. 

 

For the content release experiments the HFE 7500 oil phase contained 3 wt% of the commercial 

fluorosurfactant. The aqueous phase varied between the single experiments. For the controlled 

release of the aqueous content from water-in-oil droplets in section 4.5.1, pure Milli-Q water 

was used for the droplet production. For the biocompatibility assessment experiment in section 

4.5.2, the aqueous phase contained 4 x 106 CHO cells in 200 µl of the appropriate medium. The 

aqueous phase for the DNA-mediated segregation of the biochemical content within the 

droplets in section 4.5.3, contained equimolar concentrations (2 µM) of the complementary 

DNA strands in PBS, supplemented with 10 mM MgCl2. One strand had a 3’ cholesterol-

modification (DNA sequence: 5' TGATGCATAGAAGGAA-CholTEG 3’), another one an 

added 5’ Cy5 (DNA sequence: 5' Cy5-TTCCTTCTATGCATCA 3') and the last one had added 
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a 5’ 6-FAM (DNA sequence: 5' 6-FAM-TTTTTTTTTTTTTTTTTTTT 3'). All DNA sequences 

were generated randomly and optimized for minimal secondary structure formation with 

NUPACK (http://www.nupack.org/) and purchased from Integrated DNA Technologies, Inc. 

(HPLC purified). The flow rates during the droplet production for the single experiments were 

set to 400 µl/hr for the oil phase and for the corresponding aqueous phase.  

3.3.1.5 Droplet production device III 

The droplets production design (Figure 16) as described in this section was implemented for 

the optimization of different sorting devices (see section 4.4) and for the experiments with the 

optical sensor in section 4.7. Noticeable changes to previous designs can be seen in the 

arrangement of the filter structure at the aqueous inlet and the relaxation chamber after the flow-

focusing junction. In the relaxation chamber the passing droplet gets rapidly deformed from its 

elongated form within the channel into his spherical form in the chamber. As been described in 

section 1.4.3 the droplet deformation can be used as a validation tool for different surfactants 

and their effect on the droplet stability. 

 

To test the sorting speed and efficiency of different channel dimensions and their influence onto 

the laminar flow in, droplets with a diameter of 38 µm have been produced. The flow rate for 

the oil phase (containing 3 wt% of the commercial fluorosurfactant) was set to 500 µl/hr and 

for the continuous aqueous phase (CHO cell medium) to 400 µl/hr.  

 

For the method validation of the developed optical sensor in section 4.7.1, different droplet 

production rates, droplet sizes, and distances between the droplets were generated by adjusting 

the flow rates of the continuous aqueous and oil phases between 100-250 and 200-500 µl/hr, 

respectively. The oil phase contained 3 wt% of the commercial fluorosurfactant dissolved in 

HFE 7500 oil. The aqueous phase consisted of pure Milli-Q water.  
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Figure 16: Droplet production device III. A) Technical drawing of the device with its l iquid 
inlets (where the aqueous inlet has an integrated filter structure), the droplet outlet, the 
red marked flow-focusing junction and the green marked relaxation chamber. The scale 
bar is 1 mm. BI) Enlargement of the flow-focusing junction. The droplet production nozzle 
is 32 µm wide. The angle between the aqueous channel and the oil channels is 90 ° and 
the constriction at the end of the junction is 20 µm wide. BII) Bright-field image of the 
droplet production at a flow rate of 200 µl/hr for the aqueous phase (blue arrow) and 400 
µl/hr for the oil phase (ocher arrow). The scale bar is 30 µm. CI) Enlargement of the 
relaxation chamber. CII) Bright-field image of the relaxation chamber at a flow rate of  
200 µl/hr for the aqueous phase and 400 µl/hr for the oil phase. The scale bar is 30 µm. 

 

For the analysis of the droplet content and their subsequent sorting in section 4.7.2, 

approximately 2 x 106 cells in 100 µl medium as aqueous phase were encapsulated into water-

in-oil droplets at a flow rate of 600 µl/hr. The associated flow rate for the oil phase (containing 

3 wt% of the commercial fluorosurfactant dissolved in HFE 7500) was set to 500 µl/hr. 

Furthermore, two populations of water-in-oil droplets were generated for sorting according to 

the droplet size. Droplets of 35 µm diameter were generated using flow rates of 400 and 500 

µl/hr for the aqueous and oil phase, respectively. The bigger droplets with a diameter of 42 µm 

were generated with flow rates of 600 and 500 µl/hr for aqueous and oil phase, respectively. 
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3.3.2 Droplet injection device 

The inner aqueous phase of each water-in-oil droplet is protected from its environment by the 

surrounding surfactant containing oil phase. For some applications it can be useful to 

sequentially add reagents into already formed water-in-oil droplets.  

3.3.2.1 Electric field mediated droplet injection 

By applying an electric field onto passing droplets it is possible to inject a controlled volume 

of aqueous liquid into the surfactant stabilized water-in-oil droplets [89, 90]. The electric field 

induces destabilization of the surfactant layer and allows the fusion between the inner droplet 

aqueous phase and the injection liquid which leads to a controlled injection. For more details 

about the injection mechanism see section 1.4.4. The following device (Figure 17) for the 

electric field mediated injection of water-in-oil droplets was designed by the former colleague 

Dr. Johannes Frohnmayer. 

 
Figure 17: Electric field mediated microfluidic droplet injection device. A) Technical 
drawing of the device with the appropriate inlets, droplet outlet, the channels for the 
electrodes and the red marked inject ion area. Previously produced droplets can be 
injected into the droplet inlet channel. Droplet spacing can be controlled by introducing 
an additional separation liquid. The scale bar is 3 mm. B) Enlargement of the injection 
area of the device with information about the corresponding channel sizes. C) Bright-field 
image of the injection area at an inlet pressure of 200 mbar at the droplet inlet, 195 mbar 
at the separation liquid inlet and 130 mbar at the injection l iquid inlet. By applying an 
electric field, the surfactant layer of droplet gets ruptured and the injection liquid (blue 
arrow) flows into the droplet. The scale bar is 30 µm. 

 

All liquids and the previously produced water-in-oil droplets (see section 3.3.1.3) get injected 

into the respective inlet channels of the droplet injection device by a pneumatic flow controller 

(MFCSTM-EZ, Fluigent). To avoid electric field-mediated droplet fusion the droplets must 

maintain a sufficient distance to each other. Therefore, pure HFE 7500 oil is introduced into 

the separation oil inlet channel to separate the droplets. The electric field get generated by a 
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function generator (HM8150, Rohde & Schwarz, Germany) and amplified by an amplifier 

(Model 2210, Trek, USA). I used that device for the injection of magnetic beads into water-in-

oil droplets at an electric field of 400 V and 600Hz (see section 4.2). The injection liquid 

consisted of 1 x 105 magnetic beads per µl milli-q water. Before injection, the magnetic beads 

were treated in a sonicator to avoid their clustering.  

3.3.2.2 Mechanical deformation mediated droplet injection 

To avoid high electric fields for the destabilization of the surfactant layer, I tried to develop an 

injection device which is based on the mechanical deformation of the passing droplets. A fast 

deformation of the droplet should induce defects in the surfactant arrangement, leading to an 

injection of the aqueous phase. In order to achieve this aim, the idea was to let the droplets pass 

through a constriction with an integrated injection nozzle. Based on the Venturi effect, a rapidly 

reduction in the channel width should lead to an increase of the pressure field before the 

constriction and at the same time to a reduction of the pressure field in the constriction. This 

pressure distribution will lead to an increase of the velocity in the constriction and therefore 

elongate the passing droplet. [193]. I designed and tested several devices with different 

geometries. The following designs I-III (Figure 18-20) got optimized based on the observations 

of the performed injection experiments (see section 4.3). 

 
Figure 18: Mechanical deformation mediated droplet injection, device I. AI), BI) Technical 
drawings of the devices with the appropriate inlets, droplet outlets and the injection area 
marked with the corresponding square. Previously produced droplets can be injected into 
the droplet inlet channel. Droplet spacing can be controlled by injecting an additional 
separation liquid. The scale bar is 2 mm. AII), BII) Enlargement of the injection area of  
the device with information on the corresponding channel sizes. The difference between 
the injection areas is the width of the constriction (10 µm for A and 15 µm for B). AIII), 
BIII) Bright-field image of the injection area. The scale bar is 20 µm. 
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Figure 19: Mechanical deformation mediated droplet injection, device II. AI), BI) 
Technical drawing of the devices with the appropriate inlets, droplet outlets and the 
injection area marked with the corresponding square. Previously produced droplets can 
be injected into the droplet inlet channel. In comparison to the previous generation the 
droplet inlet channel contains a filter structure to prevent blockage of the microchannels.  
The scale bar is 2 mm. AII), BII) Enlargement of the injection area of the device with 
information of the corresponding channel sizes. The difference between the designs is 
the width of the main channel before and after the constriction (40 µm for A and 50 µm 
for B). In comparison to the previous generation the constriction is in both designs 15 µm 
wide. AIII), BIII) Bright-field image of the injection area. The scale bar is 20 µm. 

 

 
Figure 20: Mechanical deformation mediated droplet injection, device III. A) Technical 
drawing of the device with the appropriate inlets, droplet outlet and the injection area 
marked with the red square. In comparison to the previous generations the oil inlet  
channel and injection channel contains a structure which mechanically regulated 
fluctuations in the flow. The scale bar is 2 mm. BI), BII) Enlargement of the injection area 
of the device with information on the corresponding channel sizes. The nozzle design 
changed to force the droplet to get in contact with the injection liquid. Additionally, BI) 
Contains a side channel for the pressure field regulation.  
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Rapid deformation requires fast droplet flow rates. Therefore, previously produced droplets 

(section 3.3.1.4) with different surfactant concentrations have been injected by a pneumatic 

flow controller (OB1 MK3+, Elveflow, France), able to operate under maximum pressure of 8 

bar. The droplets where injected at ranges between 100 and 3000 mbar and separated by pure 

HFE 7500 oil at an appropriate pressure. For better visualization, black ink or fluorescence dye 

got used as injection liquid. The pressure in the injection liquid channel had to be adjusted to 

the pressures presented in the droplets channel to ensure the contact between the passing 

droplets and the injection liquid. The exact pressure conditions and the corresponding results 

as well as the discussion for the geometry optimization and their reasons can be found in section 

4.3. 
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3.3.3 Droplet sorting device 

As already described in section 1.4.8, dielectrophoretic forces allow droplet movement against 

the laminar flow conditions in the microfluidic channels. They can be used for droplet sorting 

by moving selected species into a certain channel [142, 144, 146, 150, 151]. Droplet sorting 

enables the possibility to identify and select rare events among large droplet populations and 

finds application in microorganism screening [46, 143] and in protein engineering [141, 194]. 

Droplet based microfluidics technology with its high throughput requires fast droplet sorting 

devices, since fast sorters can screen bigger numbers of droplets. I designed three devices with 

different channel dimensions to optimize the sorting speed based on the laminar flow conditions 

in the microfluidic device and the strength of the applied electric field (see section 4.4). 

3.3.3.1 Droplet sorting device I 

The first designed droplet sorting device (Figure 21) has a 50 µm wide main channel which get 

expanded to 70 µm at the sorting area of the device. This area is 300 µm long and ends in a Y-

shaped junction. If the electrodes are activated the dielectrophoretic forces pull the droplets into 

the narrow “sorted outlet channel”, without the electric field the droplets passing the channel 

into the “unsorted outlet channel”. 

 
Figure 21: Droplet sorting device I. A) Technical drawing of the device with the 
appropriate inlets, outlets for the sorted and unsorted droplets, the red marked sorting 
area of the microf luidic device and electrode channels. Previously produced droplets can 
be injected into the droplet inlet channel. Droplet spacing can be controlled by injecting 
an additional separation liquid. The scale bar is 3 mm. B) Enlargement of the sorting area 
of the device with information on the corresponding channel sizes. C) Bright-field image 
of the sorting area with a droplet inlet pressure of 100 mbar and separation oi l inlet  
pressure of 150 mbar. The electric field was set to 700 V and 1 kHz. If the electric field 
is activated, dielectrophoret ic forces pull the droplets into the narrow “sorted outlet  
channel”. The scale bar is 50 µm. 

 

For testing the efficiency of this design previously produced droplets (see section 3.3.1.5) were 

injected into the microfluidic device (Pneumatic flow controller MFCSTM-EZ, Fluigent, 

Germany) with different inlet pressures ranging from 65 to 140 mbar. To avoid electric field-

mediated droplet coalescence and to achieve high sorting efficiency, a sufficient distance 
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between the droplets is required. Therefore, pure HFE 7500 oil was injected into the separation 

oil inlet channel of the microfluidic device at a range between 100 and 200 mbar. The settings 

of the electric field were also tested in this experiment, the corresponding results can be found 

in section 4.4.1. 

 

The same device was used for the sorting experiments with the optical sensor in section 4.7.3. 

For label-free droplet sorting based on their content, previously generated droplets with 

encapsulated CHO cells (from section 3.3.1.5) were injected into the microfluidic device at 145 

mbar. The pressure for the separation oil was set to 180 mbar. Two populations of water-in-oil 

droplets were generated for sorting according to droplet size. Droplets of 35 µm diameter and 

42 µm were produced (see section 3.3.1.5), mixed and injected into the microfluidic device at 

90 mbar. The pressure for the separation oil was set to 125 mbar. For real-time, label-free 

sorting by the optical device, the region of interest (ROI) for detecting passing droplets was set 

into the main channel, before the electrodes and the Y-shaped junction. The electric field was 

set to 900 V at 4 kHz. The field was generated using a function generator (HM8150, Rohde & 

Schwarz, Germany) gated by the trigger signal of the optical device, which had a sine output 

of 4.5 V amplitude and 4 kHz at 4.5 V DC offset amplified by a 100x piezo amplifier (Model 

2210, Trek, USA).  

3.3.3.2 Droplet sorting device II 

The second designed droplet sorting device (see Figure 22) has a 30 µm wide channel which 

gets expanded to 90 µm at the sorting area of the device. In this design the sorting area is 520 

µm long. 

 
Figure 22: Droplet sorting device II. A) Technical drawing of the device with the 
appropriate inlets, outlets for the sorted and unsorted droplets, the red marked sorting 
area of the microfluidic device and electrode channels. The scale bar is 3 mm. B) 
Enlargement of the sorting area of the device with information about the corresponding 
channel sizes. C) Bright-field image of the sorting area at a droplet inlet pressure of 240 
mbar and separation oi l inlet pressure of 300 mbar. The electric field was set to 950 V 
and 1 kHz. If the electric field is activated, dielectrophoretic forces pull the droplets into 
the narrow “sorted outlet channel”. The scale bar is 50 µm. 
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The previously produced droplets (from section 3.3.1.5) were injected into the microfluidic 

device at 140 and 240 mbar. The separation oil was injected at 300 mbar. The settings of the 

electric field were also tested in this experiment, the corresponding results can be found in 

section 4.4. 

3.3.3.3 Droplet sorting device III 

The third designed droplet sorting device (see Figure 23) has a 30 µm wide channel which get 

expanded to 60 µm at the sorting area of the device. In this design the sorting area is 520 µm 

long. In this design, the droplet inlet channel has an integrated filter structure.  

 
Figure 23: Droplet sorting device III. A) Technical drawing of the device with the 
appropriate inlets, outlets for the sorted and unsorted droplets, the red marked sorting 
area of the microfluidic device and electrode channels. The droplet inlet channel contains 
an integrated filter structure. The scale bar is 3 mm. B) Enlargement of the sorting area 
of the device with information about the corresponding channel sizes. C) Bright-field 
image of the sorting area at a droplet inlet pressure of 300 mbar and separation oi l inlet  
pressure of 370 mbar. The electric field was set to 900 V and 1 kHz. If the electric field 
is activated, dielectrophoret ic forces pull the droplets into the narrow “sorted outlet  
channel”. The scale bar is 50 µm. 

 

The previously produced droplets (from section 3.3.1.5) were injected into the microfluidic 

device at a pressure range of 75 to 240 mbar. To ensure a good separation the oil was injected 

at a range between 100 and 300 mbar. The settings of the electric field were also tested in this 

experiment, the corresponding results can be found in section 4.4. 
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3.3.4 Droplet content release device 

As already mentioned in section 1.4.5, electrocoalescence gets used to fuse droplets with each 

other and thus mixing their content [98, 104, 195]. Electrocoalescence of droplets is of 

particular importance for biomedical applications in which the release of cells or other 

biocontent from the droplets is necessary. This can be achieved by fusing the droplets with a 

continuous aqueous phase in a suitable microfluidic device [105, 196, 197]. In Frey et al., ACS 

Omega. (2020) [107], I designed a bifunctional microfluidic device for the controlled release 

of the droplet content (see Figure 24). By combining the physical release based on 

electrocoalescence with the programmable DNA-functionalization of the inner droplet 

periphery I was able to segregate the droplet content and control its release into a continuous 

aqueous phase.  

 
Figure 24: Droplet content release device. A) Technical drawing of the device with the 
appropriate inlets, outlets for the oil- and continuous phase, the red marked release area 
of the microfluidic device and electrode channels on both sides of the release area.  
Previously produced droplets can be injected into the droplet inlet channel. Droplet  
spacing can be controlled by injecting an addit ional separation liquid. The scale bar is 3 
mm. B) Enlargement of the sorting area of the device with information about the 
corresponding channel sizes. C) Bright-field image of the release area with an inlet  
pressure of 200 mbar at the droplet inlet, 195 mbar at the separation liquid inlet and 130 
mbar at the continuous aqueous phase. The oil-surrounded droplet get together with the 
continuous aqueous phase and separated again at a Y-junction. If the electric field is 
activated the droplet fuses with the continuous aqueous phase. The phase interface 
between the oi l phase (ocher arrow) and the aqueous phase (blue arrow) is clearly vis ible.  
The scale bar is 110 µm. 

 

For determining the release efficiency of the droplets aqueous content with the developed 

microfluidic device (see section 4.5.1), all liquids and the previously produced water-in-oil 

droplets (from section 3.3.1.4) were injected with the pneumatic flow controller (MFCSTM-

EZ, Fluigent, Germany). The continuous aqueous phase consisted of PBS. To avoid electric 

field-mediated droplet coalescence a sufficient distance between the droplets is required. The 

separation liquid for the electric-mediated release was pure HFE 7500 oil and for the chemical 

destabilization method pure destabilizing surfactant solution. The applied pressures in the 
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experiments ranged from 50 to 300 mbar for the different inlet channels and were adjusted 

according to the following consequence. Starting from a droplet inlet pressure of 50 mbar, the 

inlet pressure of the separation liquid is adjusted until the droplets flow separately through the 

microfluidic channel. Then the continuous inlet pressure is adjusted to the aqueous phase until 

a stable, homogeneous phase interface is formed in the release channel. Detailed information 

on the experimental pressure rates can be found in Table S 4 in the Appendix. To release the 

content of the droplets into the continuous aqueous phase, an electric field of 800 V and 1 kHz 

was applied to the electrodes of the microfluidic device.  

 

For the release of CHO suspension cells out of surfactant stabilized droplets (see section 4.5.2), 

the droplet inlet pressure was set to 400 mbar, for the separation liquid and the aqueous phase 

I chose 395 and 255 mbar, respectively. The electric field was set to 800 V at 1 kHz. To test 

the impact of the electric field on the CHO cells, I prepared four different cell samples 

consisting of: 1) CHO suspension cells kept in culture medium without encapsulation; 2) CHO 

cells stored in PBS buffer without encapsulation; 3) cells stored in medium that were 

encapsulated into droplets and released by the electric field into PBS in the microfluidic device 

and; 4) cells kept in medium that were encapsulated into droplets and released by adding 

destabilizing surfactant to the droplets in bulk. Cell numbers in all samples were determined 

after centrifugation (1000 rpm for 2 minutes) followed by resuspension of the pellets in 100µl 

fresh PBS buffer. For the viability assay, 10 µl of cells were mixed with 10 µl of trypan blue 

and counted with a hemocytometer using a microscope (Axiovert 40 CFL, Zeiss, Germany). 

Triplicates of counts from the same vial were performed. To obtain live/dead percentages, the 

number of living cells was divided by the total cell number. The remaining cells were seeded 

in a T-75 flask (Greiner, Germany) and total cell numbers were obtained 1, 2 and 5 days after 

seeding. 

 

For the DNA-mediated segregation of the droplet content in section 4.5.3, the previously 

generated DNA-functionalized droplets (from section 3.3.1.4) were released in the microfluidic 

chip. Therefore, the droplet inlet pressure was set to 600 mbar, pressures for the separation 

liquid and the aqueous phase were adjusted to 580 and 650 mbar, respectively. The electric 

field was set to 800 V at 1 kHz. 
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Additionally, I designed another droplet content release device (see Figure 25) in which I made 

some modifications based on the experimental experience with the previous design (see Figure 

24). Based on my experience it is unnecessary to install electrodes on the oil-phase side, as the 

electrodes adjacent to the aqueous phase are generally more efficient for achieving the droplet 

content release. Besides that, the distance between the electrodes and release channel got 

increased while the channel length was shortened for a better control over the phase interface.  

 
Figure 25: Modified droplet content release device. A) Technical drawing of the device 
with the appropriate inlets, outlets for the oi l  and continuous phase, the red marked 
release area of the microfluidic device and electrode channels at the continuous aqueous 
phase side of the release area. Previously produced droplets can be injected into the 
droplet inlet channel. Droplet spacing can be control led by injecting an additional 
separation liquid. The scale bar is 2 mm. B) Enlargement of the sorting area of the device 
with information on the corresponding channel sizes. C) Bright-field image of the release 
area with an inlet pressure of 200 mbar at the droplet inlet, separation liquid inlet and at  
the continuous aqueous phase. The phase interface between the oil phase (ocher arrow) 
and the aqueous phase (blue arrow) is clearly visible. The scale bar is 60 µm. 
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3.4 Droplet analysis 

In the following part, I explain the methods that I used for the water-in-oil droplet observation 

and analysis. Furthermore, the technical background of a newly developed droplet analysis 

sensor, for the label-free observation and manipulation of passing droplets gets described.  

3.4.1 High speed camera 

High speed cameras serve as common tool for the observation of the high-throughput method 

of droplet based microfluidic. The camera can be easily mount into the light path of a 

microscope and record videos of the experiments. For most of my experiments I used the 

Phantom v7.2 (Vision Research, USA) and the Phantom v2511 (Vision Research, USA) high-

speed camera. For the evaluation of several experimental results like droplet production 

frequency, passing frequency, droplet length, injection rate, sorting rate etc. the recorded high-

speed camera videos were analysed manually with ImageJ (NIH, USA). 

3.4.2 Confocal microscopy 

To visualize the binding of the complementary DNA with the cholesterol tagged DNA at the 

inner droplet periphery (see section 4.5.3), confocal fluorescence imaging was performed with 

a Leica TCS SP5 confocal laser scanning microscope (Leica Microsystems GmbH, Germany). 

The microscope is equipped with a white light laser as well as an Argon laser. Imaging was 

carried out using a 40x water immersion objective (HC PL APO 40x/1.10 w, CORR CS2, Leica 

Microsystems GmbH, Germany). Droplets were collected from the microfluidic chip and sealed 

in a custom-made observation chamber. This chamber consisted of two different sized cover 

slips glued together by a double-sided sticky tape (Tesa, Germany). The droplets in the chamber 

got filled up with surfactant containing oil solution and sealed with two-component dentist glue 

(Twinsil, Picodent GmbH, Germany). For image acquisition, the pinhole aperture was set to 

one Airy Unit and experiments were performed at room temperature. The recorded images were 

adjusted for optimal brightness and contrast and analyzed with ImageJ. 

3.4.3 Fluorescence spectroscopy 

The concentration of the fluorescence labeled DNA strands in the continuous aqueous phase 

after their release (see section 4.5.3) was analyzed by measuring the fluorescence signal. 

Fluorescence spectroscopy was performed using a Tecan Infinite M200 plate reader (Tecan 

trading AG). 15 µl samples of each continuous aqueous phase were deposited in a 384-well 

plate (Grainer Bio-One, black, flat bottom) for analysis. For the fluorescence intensity scan, the 
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excitation wavelength was set to 596 nm and fluorescence emission spectra were collected from 

630 to 800 nm in steps of 2 nm. 

3.4.4 Monitoring and analyzing periodically passing droplets by FCS 

The fluorescence correlation spectroscopy (FCS) monitoring of passing droplets in section 4.6 

was performed with a Zeiss LSM880 confocal laser scanning microscope (Carl Zeiss, 

Germany). Auto-correlation curves of the experimental FCS data were calculated by the LSM 

software (ZEN, Carl Zeiss, Germany) in parallel with the FCS data acquisition. For further 

analyses, the ConfoCor3 raw data files, listing time intervals between detected photons, were 

converted using a C++ program to csv files indicating the number of photons detected during 

each time bin (here 1 µs) along the measurement hence obtaining FD(t) and FC(t). The single 

droplets were identified along FD(t) by segmentation. To derive cell signals within each droplet, 

the FC(t) in its corresponding period was segmented by a modified one-dimensional watershed 

algorithm. The time domain analyses of FD(t) and FC(t) were done with Matlab (Mathworks, 

USA).  

3.4.5 Label-free detection with a newly developed optical device 

I developed in cooperation with a research group of the Ulm University a very sensitive optical 

device for the label-free observation, characterization and active manipulation of passing water-

in-oil droplets (see section 4.7). The following description of the working principle of the 

developed optical device was submitted and accepted in the journal VIEW and can be added 

into my thesis with permission from the authors, C. Frey *, J. Pfeil *. The characterization with 

the here introduced optical device relies on the real time analysis of taken bright-field images 

were the amount of data gets reduced to a minimum by smart algorithms. The optical device 

consists of an image sensor (PYTHON1300, ON-Semiconductor, USA) in which different 

freely configurable regions of interest (ROI) can be selected. In order to reduce the amount of 

data and to analyze the reduced dataset in real time, the image data is processed directly on a 

field-programmable gate array (FPGA, XC7Z020CLG400-1, Xilinx, USA). Figure 26 

illustrates the workflow. After the sensor captures an image, to reduce the amount of data the 

background image is subtracted. Dynamic background subtraction is done automatically based 

on the last 128 pictures. This reduces the susceptibility of the image to slow changes, 

particularly in the occurrence of background illumination changes or slow vibrations and drift. 

Subsequently, two different data processing branches are computed in parallel to reduce the 

data rate.  
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Figure 26: Schematic sketch of the data analysis flow. A) The overview illustrates the 
entire workflow of the device. Images are captured by the optical device at a rate of 288 
MB/s. An orthogonal projection of the intensity, either with or without prior binarization,  
reduces the data rate to 4MB/s. After signal analysis and parameter calculation, the rate 
is reduced to 0.5 MB/s and enables further real-time processing. B) An example of the 
binarization, projection, and height signal analysis for height detection of a cel l  
containing droplet is shown. The threshold for the binarization needs to be set by the 
user. Modified and reprinted with permission from the authors, Frey et al, submitted and 
accepted, VIEW (2020). 

 

The projection of the intensity is performed by integrating the pixel values of the preprocessed 

images (with the background subtracted and optionally binarized) row by row horizontally and 

column by column vertically, leading to two orthogonal intensity vectors. This reduces the 

dimensionality of the data stream from:  

 

data rate ∝ image height x image length x frame rate 

to 

data rate ∝ (image height + image length) x frame rate 

 

Where the length is the dimension of the passing objects (droplets) in flow direction and the 

height is the dimension perpendicular to the flow direction. By this operation, all relevant 
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information of the passing object is conserved and the amount of data which has to be analyzed 

gets significantly reduced. The set of four intensity vectors is analyzed in the signal analysis 

step. For example, the area or size of the object can be determined by calculating the sum of 

the elements in either one of the vectors obtained from the binarized image. Parameter 

extraction from the image is shown exemplarily in Figure 26 B where the height of an object is 

calculated, by application of a threshold to the signals and intersection calculations based on 

these. As an additional parameter and excellent marker of a particle (for example a cell 

containing droplet) within the field of view, the summed squared difference (SSD) between the 

image and the background is determined. To achieve this, the squared intensity difference 

between the image and the background is calculated pixelwise and summed over the whole 

field of view. High values indicate that an object moves through the ROI. Furthermore, the total 

value of this measure is directly related to the optical contrast present in an image such that for 

a given object size the SSD is a sensitive marker for the content or filling of an object. In total, 

the device is able to calculate more than 30 values (e.g. size, shape, position, morphology, 

velocity, orientation, brightness, absorption and granularity) for each object simultaneously. 

For more complex detection tasks, the single calculation values can be flexible combined with 

each other. The entire measurement is documented and the analysis results for each passing 

object and each parameter is stored in a permanent memory. The sensor also contains a bypass 

of the analysis pipeline, thus enabling the recording of a short movie of the raw image sensor 

data. The high data rates limit the length of such movies to several seconds. The movies can 

later be used to validate the correct functioning of the sensor, as the results of the image pipeline 

are saved simultaneously. 

 

For droplet manipulations like label-free sorting, the resulting scalar parameters are transmitted 

to a real-time softcore processor. This enables deterministic runtimes, since it runs entirely on 

SRAM memory and, therefore, has no uncontrollable latencies. Any parameter range and 

combination that differentiate the objects can be chosen for the manipulation. For example, 

droplets with cells and without cells are clearly separated by their size and SSD value (see the 

description in the analysis of the content of water-in-oil-droplets part). The device automatically 

creates, based on chosen parameters, a program that runs on the real-time softcore processor, 

which then provides a gating signal (3.3 V TTL) to an external output. The duration and delay 

of the trigger signal can be manually adjusted. 
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4 Results and Discussion 

In this section I will present and discuss the main results of the performed experiments. I divided 

this section into two parts. 

 

In the first part I will show the development of several functional units for the water-in-oil 

droplet manipulation. It will start with the optimization of the droplet production device. 

Different contact angles between the oil channels and the aqueous channel at the flow-focusing 

junction have been tested for their influence onto the droplet production rate and the droplet 

size. Following, I will discuss the implementation and optimization of the mechano- and electric 

field-mediated injection devices. I will follow with the optimization of the droplet sorting 

device. I designed three different sorting devices and compared their sorting efficiency at 

different flow rates and electric fields to achieve the highest possible sorting efficiency. Finally, 

I will present a developed device for the electric field mediated droplet content release. The 

release device got combined with DNA-nanotechnology to control the release of the bio content 

by only releasing selected molecules. 

 

In the second part, I will present two analysis techniques developed for in situ monitoring of 

rapidly passing water-in-oil droplets. One of these optical analysis techniques got developed in 

strong collaboration with Dr. Eli Zamir and uses the autocorrelation function of fluorescence 

correlation spectroscopy measurements (FCS) for the interpretation of periodically passing 

water-in-oil droplets. The second technique got developed in cooperation with Dr. Tobias 

Neckernuss, Dr. Daniel Gaiger and Mr. Jonas Pfeil from the group of Prof. Dr. Marti in the 

experimental physics department of the Ulm University. The developed optical device enables 

the label-free detection, real-time analysis and manipulation of rapidly passing water-in-oil 

droplets. For the controlled manipulation, an electric field can be triggered based on preselected 

droplet analysis parameters. 
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4.1 Impact of the contact angle at the flow-focusing junction on 

the droplet production 

As already mentioned in the introduction section (1.4.1), the droplet production can be realized 

by several microfluidic device geometries. The most common geometries for droplet 

production are the T-junction [58, 198] and the cross junction (the latter was used for my 

experiments). In both geometries, the aqueous phase is segregated into droplets by shear forces 

between the two immiscible phases. The fluorosurfactant molecules in the oil phase ensure the 

stabilization of the water-in-oil droplets. They organize at the interphase of the water-in-oil 

droplets and thereby reduce the interfacial tension. In the following experiment, I tested 

different connection angles between the oil channels and the aqueous channel at the production 

nozzle of the device, to achieve higher droplet production rates. I compared three designs (For 

detailed information about the geometry of the three production devices see section 3.3.1.4) 

with different connection angles and their influence onto the droplet production rate and the 

size of the droplets at different inlet flow rates.  

 

Figure 27 shows representative bright-field images of the droplet production with the different 

connection angles (90 ° red frames, 75 ° green frames and 60 ° blue frames) in the microfluidic 

device.  

 
Figure 27: Droplet production with different device geometries. The connection angles 
between the aqueous and oi l channels were varied. AI) Connection angle: 90 °, f low rates 
of 200 µl/hr for the aqueous- and 400 µl/hr for the oil phase. AII) Connection angle: 90 °,  
f low rates of 1000 µl/hr for the aqueous- and 3000 µl/hr for the oil phase. BI) Connection 
angle: 75 °, f low rates of 200 µl/hr for the aqueous- and 400 µl/hr for the oil phase. BII) 
Connection angle: 75 °, f low rates of 1000 µl/hr for the aqueous- and 3000 µl/hr for the 
oil phase. CI) Connection angle: 60 °, f low rates of 200 µl/hr for the aqueous- and 400 
µl/hr for the oil phase. CII) Connection angle: 60 °, f low rates of 1000 µl/hr for the 
aqueous- and 3000 µl/hr for the oi l phase. Scale bars: 40 µm. 
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On the left side, the flow rates for the aqueous and the oil phase are set to 200 µl/hr and 400 

µl/hr, respectively. The right side shows the highest tested droplet production flow rate with 

1000 µl/hr and 3000 µl/hr for the aqueous and the oil phase respectively. The bright-field 

images of the droplet production show that with higher inlet flow rates the droplet size is 

decreasing while the number of droplets and therefore the production rate is increasing. The 

same effect can be observed with the more pointed angles between the aqueous- and oil 

channels. In comparison to the design with a connection angle of 90 ° there are more and smaller 

droplets at the 75 ° and 60 ° contact angle with the same flow conditions. For the better 

interpretation of this observation I collected droplets from each production flow rate, sealed 

them into a custom-made observation chamber and measured their size (diameter) based on 

captured images with ImageJ (Images of the collected droplets can be found in Figure S1 in the 

Appendix). The measured size distribution of the differently produced droplets is compared in 

Figure 28 A. Additionally, I determined the respective droplet production rate by counting the 

number of passing droplets at a certain time from taken high-speed camera videos of each flow 

rate. The results are plotted in Figure 28 B. Dashed lines are drawn to guide the eye. 

 
Figure 28: Droplet production rate and size at  different inlet f low rates with changing 
connection angles in the microfluidic devices. The first number represents the inlet f low 
rate for the aqueous phase in µl/hr and the second number the inlet f low rate for the oi l  
phase in µl/hr. Dashed lines are drawn to guide the eye. A) Droplet size after production 
with the different devices. With rising flow rates the droplet size decreases. The droplet  
size for the 90 ° (red dots) and 75 ° (green dots) devices is for every flow rate condition 
almost the same, while the droplets made with the 60 ° (blue dots) connection angle 
device are always smaller. For the production rate one video with 20 sequent ial droplets 
for each flow rate was analyzed. For determining the droplet size of each flow rate, the 
diameter of 20 collected droplets were measured. Mean values and their standard 
deviation for the droplet size are given. B) Production rate of the different devices. With 
rising flow rates the droplet production rate increases. The production rate for the 90 ° 
(red dots) and 75 ° (green dots) devices is for every flow rate condition almost the same, 
while the device with a connection angle of 60 ° (blue dots) is always faster. 
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For detailed information regarding the experimental conditions, see Table S 1 (Appendix) in 

which I summarized the results for the corresponding flow rates. In principle the droplet 

production rates are rising by increasing the inlet flow rates. For the lowest inlet flow rate (200 

µl/hr for the aqueous phase and 400 µl/hr for the oil phase) the production rate at the different 

connection angles are 0.3 kHz for the 90 ° device (red dots Figure 28 B), 0.4 kHz for the 75 ° 

device (green dots Figure 28 B) and 1.2 kHz for the 60 ° device (blue dots Figure 28 B). The 

production rates for the devices with 90 ° and 75 ° connection angles are almost the same while 

the device with the 60 ° angle shows a much higher droplet production rates at the 

corresponding flow rates. This effect gets confirmed at the highest tested inlet flow rates (1000 

µl/hr for the aqueous phase and 3000 µl/hr for the oil phase). There the production rate for the 

60 ° device is 19.7 kHz while the production rate for the 90 ° and 75 ° device is 12.3 kHz and 

14.5 kHz respectively.  

 

Figure 28 A shows that it behaves inversely for the droplet size. By increasing the inlet flow 

rate, the droplet size decreases. For the lowest flow rate the average droplet size for the 90 ° 

(red dots), 75 ° (green dots), and 60 ° (blue dots) device is 66.3 ± 1.3 µm, 64.5 ± 1.2 µm and 

43.5 ± 0.8 µm respectively. Also, in this case, the individual droplet sizes between the 90 ° and 

75 ° device are almost the same while the droplet sizes for the 60 ° device is always smaller. In 

comparison to the 65 ° device the droplet size difference for the 90 ° and 75 ° device between 

the lowest and second lowest flow rate is huge (66.3 ± 1.3 µm to 45.8 ± 1.0 µm and 64.5 ± 1.2 

µm to 46.9 ± 0.8 µm respectively). The reason for this can be the fluctuations of the liquid inlet 

flow and their higher impact onto the droplet production under low inlet flow rates. 

 

In total I could prove that a sharper contact angle between the aqueous channel and the oil 

channels at the flow focusing junction increases the shear forces. Therefore, the droplets are cut 

off earlier, which results in smaller droplets and hence faster production rates. This can be 

useful when considering that the droplet-based microfluidic approach is a high throughput 

method. 
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4.2 Electric field-mediated injection of magnetic beads into 

water-in-oil droplets 

By applying an electric field, it is possible to inject components into preformed water-in-oil 

droplets. The size of the components can range from single molecules to micrometer sized 

objects. This injection technique has been implemented in various synthetic biology and 

biomedical applications. For example, in our department the injection was used for the bottom-

up assembly of synthetic cells [13] in order to sequentially deliver transmembrane and 

cytoskeletal proteins into the preformed droplet-based synthetic cells. In another application 

target DNA is injected for DNA sequence analysis in the droplets [32]. However, in most of 

these studies no analysis has been done on the efficiency and possibility of injecting big (several 

microns) subjects. Therefore, in the following part of my thesis I investigated the injection of 

magnetic beads into water-in-oil droplets. Magnetic beads normally get implemented for DNA 

immobilization and isolation at the polymerase chain reaction (PCR) [199-201] or for 

heterogeneous immunoassays [202]. Figure 29 shows the injection area of the microfluidic 

device for an electric field mediated injection of magnetic beads.  

 
Figure 29: Electric field mediated injection of water-in-oi l droplets. By applying an electric 
field, the surfactant layer of droplet gets ruptured and the injection l iquid flows into the 
droplet. Scale bar: 30 µm. 

 

When the electric field is switched off, the water-in-oil droplet passes the injection nozzle 

without an interaction. By applying an electric field, the stabilizing surfactant layer of the 

droplet gets ruptured and the injection liquid with its content flows into the droplet. While the 

droplet passes the injection nozzle, the injection is maintained due to a liquid bridge between 

the inner droplet aqueous phase and injection aqueous phase. The injection stops after the 

droplet passed the nozzle and the surface tension is increasing. Figure 30 I-IV shows the single 

steps of the magnetic particle injection in more detail.  



  Results and Discussion 

 69 

 
Figure 30: Electric field mediated injection of magnetic beads into a water- in-oi l droplet.  
For better visibility the magnetic beads are marked with coloured circles.  I) The droplet 
enters the injection area of the microfluidic device were the electrodes and the injection 
nozzle are located. The beads stay in the injection l iquid. II) The inner droplet aqueous 
phase fuses with the injection l iquid which leads to the injection of the magnetic beads.  
The magnetic beads start to move. III) The magnetic beads in the liquid get injected into 
the droplet. IV) The liquid bridge breaks after the droplet passed the injection nozzle. No 
beads get injected anymore. Scale bar: 30 µm.  

 

The microfluidic injection device allows for a precise injection of the magnetic beads. By 

adjusting the liquid inlet pressures the amount of injected volume can be controlled [89]. Higher 

droplet and separation liquid inlet pressures lead to an increase of the droplet flow in the 

microfluidic channel. The droplet passes the injection nozzle faster, whereby the contact time 

with the injection liquid and therefore the injected volume decreases. On the other hand, a 

higher inlet pressure at the injection nozzle leads to more injected volume. Figure 31 shows 

injected magnetic beads in a droplet which get mobilized by an external magnetic field 

(permanent magnet).  

 

 
Figure 31: Injected magnet ic beads, mobil ized by an external magnetic field. I) The 
magnetic beads are attached with each other.  By holding a permanent magnet to the 
lower edge of the sample, the beads move through the inner aqueous phase of the droplet  
into the direction of the magnetic field (II, III, IV).  

 

The magnetic beads stay in the droplets water phase and cannot be pulled out by the applied 

magnetic field. I could prove that the µm sized magnetic beads can be injected with the 

microfluidic injection device. Furthermore, their movement in the droplet by an external 

magnetic field could be shown.  
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By changing the width of the injection nozzle, considering the Laplace pressure (see section 

1.4.4) and the related production of secondary droplets, even bigger objects like living cells 

could be encapsulated into the passing droplets. Summarized, the electric field mediated 

injection device provides a precise tool for the subsequent droplet manipulation in which the 

injected volume can be controlled by the inlet pressure rates. The controlled injection into 

selected droplets and the mobilisation of magnetic beads open new possibilities for several 

biomedical applications were magnetic beads can be used for the filtration of specific proteins. 

By turning the electric field automatically on and off, only selected droplets can be injected. 

This switch could be controlled from the developed optical device which is explained in section 

4.7. 
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4.3 Mechanical deformation mediated injection of water-in-oil 

droplets 

To avoid the need for high electric fields for the injection of content into the water-in-oil 

droplets, I developed a microfluidic device which uses rapid mechanical deformation of the 

droplets. The idea behind this approach was based on the implementation of the Venturi effect 

[193, 203, 204]. The Venturi effect describes the pressure reduction and associated acceleration 

of a fluid when it passes through a channel constriction. Figure 32 shows a schematic 

illustration of the envisioned droplet injection based on its mechanical deformation in a 

constriction of the microfluidic channel. 

 
Figure 32: Schematic i llustration of the mechanical deformation mediated injection of a 
water-in-oil droplet. T0) The surfactant stabilized water-in-oil droplet passes through the 
microfluidic channel. T1) A constriction in the microfluidic channel leads to an 
accelerat ion of the droplet and ruptures pores into the stabil izing surfactant layer. The 
green l iquid can be injected through the pores into the droplet. T2) The pores in the 
surfactant layer are closed again. The volume of the droplet increased due to the injected 
liquid.  

 

The black dashed boxes in Figure 32 highlight different time points (T0-T2) in the mechanical 

deformation induced droplet injection. The surfactant stabilized water-in-oil droplet flows 

through the microfluidic channel (T0). At the injection area of the device (T1) the droplet has 

to pass a constriction with an integrated injection nozzle. The constriction leads to an 

acceleration of the droplet and elongates it. This deformation should rupture pores in the 

stabilizing surfactant layer whereby the liquid (marked in green) in the nozzle is injected into 

the droplet. After passing the constriction the non-bounded surfactant molecules in the 

surrounding oil phase diffuse into the pores and support the droplet stabilization. The size of 

the droplet increased due to injected liquid (T2).  
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4.3.1 Installation of the mechanical deformation mediated injection 

device I 

The first generation (For detailed information about the geometry of the injection devices see 

section 3.3.2.2) of the mechanical deformation mediated injection devices consist of two 

different designs. In both designs the microfluidic channel before and after the constriction is 

40 µm wide. The constriction itself is 20 µm long (length of the narrowed area) and has a central 

2 µm wide injection nozzle. The designs only differ in the width of the constriction, which is 

once 10 µm and once 15 µm wide. These devices were implemented to test the magnitude of 

deformation on the injection efficiency. Towards this end, droplets stabilized with 5 mM 

surfactant were passed through these two designs and the possible injection of an aqueous phase 

was analysed by recorded high-speed-camera videos. 

 
Figure 33: Mechanical deformation of a droplet with a surfactant concentration of 5 mM 
in two different designs of the injection devices I. A) Shows the device with a main 
channel width of 40 µm and a constriction which is 10 µm wide and 20 µm long. A I) The 
water-in-oil droplet enters the injection area of the device. AII and AIII) The droplet gets 
split into two droplets in the 10 µm wide constriction. B) Shows the device with a main 
channel width of 40 µm and a constriction which is 15 µm wide and 20 µm long. B I) The 
water-in-oil droplet enters the injection area of the device. BII and BIII) The droplet  
passes the 15 µm wide constriction without gett ing injected. Scale bars: 40 µm.  

 

Figure 33 shows representative examples for the observations in the designed devices. For 

better visualization I used a black dye (conventional ink) as an injection liquid. In the 10 µm 

wide device (Figure 33 A) the droplet is split into two droplets due to the dynamic pressure in 

the constriction. In the design with the 15 µm wide constriction (Figure 33 B) the droplets were 

observed passing the injection device without being injected. Note as a separation liquid I used 

the same 5 mM surfactant containing oil which I used for the previous droplet production. In 

addition, the constriction is very susceptible to particle blockages, especially the 10 µm wide 

constriction. Therefore and because of the droplet splitting, I decided to use for further 

experiments the design with the 15 µm wide constriction.  

 

 



  Results and Discussion 

 73 

It seems like the surfactant concentration has an influence onto the injection process. With a 

higher surfactant concentration, the droplet is more stable and therefore it is not possible to 

rupture pores into the stabilizing surfactant layer by mechanical deformation. Also, the high 

concentration of non-bounded surfactant molecules in the surrounding oil phase could prevent 

the injection. Besides that, it seems like the droplet size and the injection pressures could also 

have an influence onto the destabilization of the surfactant layer. Higher inlet pressures lead to 

faster flow rates and therefore to a higher acceleration and elongation of the droplet in the 

constriction. 

4.3.2 Determination of a suitable surfactant concentration for the 

mechanically-mediated injection 

Based on these assumptions, I used for the next experiment a 0.5 mM surfactant concentration 

and tested different inlet pressure rates. Furthermore, I used the design with the 15 µm wide 

constriction, to avoid droplet splitting and to reduce the risk of possible blockages. I adjusted 

the pressure range between the corresponding inlet channels and went up with the pressures 

until I achieved an injection into the passing droplets (Figure 34 A).  

 
Figure 34: Mechanical deformation of a droplet with a surfactant concentration of 0.5 mM 
and two different injection pressure rates. The main channel of the device is 40 µm wide 
and the constriction is 15 µm wide and 20 µm long. A) The inlet pressure at the droplet  
inlet channel was 640 mbar, at the separation liquid inlet channel 700 mbar and at the 
injection liquid channel 450 mbar. AI, AII, AIII) The droplet gets injected in the 
constriction. There is a visible fluid bridge between the inner aqueous phase of the 
droplet and the injection liquid (green rectangle). B) The inlet pressure at the droplet  
inlet channel was 600 mbar, at the separation liquid inlet channel 600 mbar and at the 
injection l iquid channel 420 mbar. BI, BII, BIII) There is no visible fluid bridge between 
the inner aqueous phase of the droplet and the injection liquid (red rectangle). Therefore,  
there is no injection into the passing droplet. Scale bars: 20 µm. 

 

The pressure at the droplet inlet channel was set to 640 mbar, at the separation liquid inlet 

channel to 700 mbar and at the injection liquid channel to 450 mbar, respectively. With this 

pressure range the surfactant layer of the droplet got mechanically destabilized and the injection 

liquid could build a liquid bridge with the inner aqueous phase of the droplet which lead to its 

injection (Figure 34 A, green rectangle). When reducing the pressures to 600 mbar at the droplet 
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inlet channel, 600 mbar at the separation liquid inlet channel and 420 mbar at the injection 

liquid channel, the injection into the droplets stopped (Figure 34 B, red rectangle). Maybe an 

increase of the injection liquid pressure would lead to another injection into the droplet but the 

injection mechanism seems to be in a sensitive equilibrium. By changing one injection pressure 

the others have to be adjusted to that change. As separation liquid I used the same 0.5 mM 

surfactant containing oil which I used for the droplet production. As injection liquid I used a 

fluorescent dye (pyranine, excitation wavelength 488 nm). To get an idea about the number of 

injected droplets, I collected and sealed them into the custom-made observation chamber (see 

section 3.4.2) to observe them with a confocal fluorescence microscope.  

 
Figure 35: Representative overlays of confocal f luorescence and brightfield images of  
collected droplets after passing the mechanical deformation mediated injection device.  
Green droplets containing the injected fluorescent dye (pyranine, excitation wavelength:  
488 nm). Scale bars: 60 µm. 

 

By doing so, it is possible to differentiate between injected and non-injected droplets (Figure 

35). Droplets without fluorescence signal (grey) were not injected, while green droplets 

containing the fluorescent dye were successfully injected. It has to be distinguished between 

three different kinds of green droplets. The huge non-spherical droplets are unstable droplets 

which fused with each other. The medium sized droplets are the injected ones. The small 

droplets are secondary formed (daughter) droplets which were produced at the injection nozzle 

due to the pressure difference, which is determined by the Laplace pressure (see section 1.4.4). 

A smaller injection nozzle width would lead to a higher-pressure difference and therefore 

prevent the formation of secondary droplets at the injection nozzle. Such a nozzle would, 

however, also be more prone to clogging. 

 

To achieve a higher percentage of injected droplets, I wanted to use lower surfactant 

concentrations due to the lower stability of the droplets. I compared three different surfactant 

concentrations (0.25 mM, 0.15 mM and 0.10 mM) regarding the stability of the droplets and 
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the injection rate under two different inlet pressure rates. For the following experiment, 

previously produced droplets with the appropriate surfactant concentration were injected into 

the design with the 15 µm wide constriction. For the low-pressure rate the corresponding inlet 

pressures were set to 880 mbar at the droplet inlet channel, 810 mbar at the separation liquid 

inlet channel and 700 mbar at the injection liquid channel. For the high-pressure rate the 

corresponding inlet pressures were set to 1030 mbar at the droplet inlet channel, 1030 mbar at 

the separation liquid inlet channel and 850 mbar at the injection liquid channel. To get a better 

knowledge about the injection efficiency I calculated the injection rate for the described 

experiments with the changing conditions. The injection rate was determined by analyzing 

high-speed camera videos were the number of injected droplets got counted from the total 

number of passing droplets. The results for the injection rate with the corresponding surfactant 

concentration are presented in Figure 36.  

 
Figure 36: Mechanical deformation mediated droplet injection rate at different surfactant 
concentrations (0.25 mM, 0.15 mM and 0.10 mM) and inlet pressure rates. A) Under the 
low-pressure rate the droplets with 0.10 mM surfactant concentration were injected the 
most while none of 0.25 mM droplets got injected. B) With the high-pressure rate the 
droplets with 0.15 mM surfactant concentration were injected the most, closely followed 
by the 0.10 mM droplets. Also, with the high-pressure rate none of the 0.25 mM droplets 
got injected. Note, that 21, 63 and 61 droplets were analysed for the surfactant 
concentration of 0.10 mM, 0.15 mM and 0.25 mM, respectively at the low-pressure rate.  
31, 43 and 27 droplets were analysed for the surfactant concentration of 0.10 mM, 0.15 
mM and 0.25 mM, respectively at the high-pressure rate.  

 

At the low-pressure rate (Figure 36 A) 38 % of the 0.10 mM concentrated droplets, 19 % of the 

0.15 mM concentrated droplets and 0 % of the 0.25 mM concentrated droplets were injected. 

At the high-pressure rate (Figure 36 B) 45 % of the 0.10 mM concentrated droplets, 47 % of 

the 0.15 mM concentrated droplets and 0 % of the 0.25 mM concentrated droplets were injected. 
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In contrast to the low-pressure rate, the injection rate for the 0.15 mM and 0.10 mM 

concentrated droplets is almost the same at the high-pressure rate. In both cases the mechanical 

deformation was not enough to inject into the 0.25 mM concentrated droplets. The experiment 

shows that with decreasing surfactant concentration and increasing injection pressures, the 

number of injected droplets rises. For detailed information regarding the calculation of the 

injection rate, see Table S 2 (Appendix) in which I summarized the results for the corresponding 

surfactant concentrations. At too low surfactant concentrations, the droplets are not stable 

anymore and start to fuse with each other. This was observed in the outlet channel of the 

microfluidic device, for some of the droplets with the 0.10 mM surfactant concentration. For 

this reason, I decided to use a surfactant concentration of 0.15 mM for further experiments.  

4.3.3 Evaluation of the injection rate with the modified mechanically-

mediated injection device II 

Based on the previous observations and results, I designed the second generation of the 

mechanical deformation mediated droplet injection device (see section 3.3.2.2) to optimize the 

injection process. The following modifications compared to the previous generation were done: 

A filter structure was integrated into the droplet inlet channel to minimize particle blockages at 

the constriction. To reduce the amount of secondary produced droplets at the injection nozzle I 

changed the dimensions of the nozzle. A narrower injection nozzle will lead to a higher-pressure 

difference in the constriction and prevent the formation of secondary droplets. This is important 

especially when the injected fluid is expensive or difficult to prepare. In the previous design, 

the nozzle at the connection to the constriction was 2 µm wide and expands directly afterwards. 

Due to the design of the injection nozzle the PDMS stamp could not reproduce the narrow 

dimensions and the nozzle width was in reality bigger than in the technical drawing (see section 

3.3.2.2). To avoid the deformations in the PDMS stamp, the width of the revised injection 

nozzle at the connection to the constriction was designed to 3 µm and spreads further back in 

the channel. To increase the injection rate by the mechanical deformation I changed the width 

of the main channel before and after the constriction to 50 µm. Besides that, I extended the 

channel length in the constriction to 30 µm. This should lead to a higher elongation of the 

droplet and support rupturing pores into the stabilizing surfactant layer of the droplet. The 

constriction is 15 µm wide like in the previous design.  
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In the following experiment I tested the second generation of the mechanical deformation 

mediated injection devices to achieve a better injection rate. For the experiment I used the 

previously determined surfactant concentration of 0.15 mM for the production of the droplets. 

The droplets were injected at various inlet pressure rates into the different sized deformation 

devices. Figure 37 AI shows a representative bright-field image of the injection of black dye 

(conventional ink) into a passing droplet with an inlet pressure of 1510 mbar at the droplet inlet 

channel, 1560 mbar at the separation liquid inlet channel and 950 mbar at the injection liquid 

channel. The main channel before and after the constriction is 40 µm wide while the channel in 

the constriction is 15 µm wide and 30 µm long. The injection efficiency of this device at three 

different pressure rates is presented in Figure 37 AII.  

 
Figure 37: Mechanical deformation mediated droplet injection rate at different pressure 
rates and microfluidic channel dimensions. AI) Bright-field image of a droplet injection in 
the design with the 40 µm wide main channel and the 15 µm wide and 30 µm long 
constriction. AII) The number of injected droplets at three different pressure rates in the 
design with the 40 µm wide main channel. The first number of the pressure rate 
represents the pressure at the droplet inlet channel, the second number the pressure at  
the separation l iquid inlet channel and the third number the pressure at the injection 
liquid inlet channel. Note, that for this design 26, 110 and 90 droplets were analysed for 
the lowest, middle and highest tested pressure rate, respectively. BI) Bright-field image 
of a droplet injection in the design with the 50 µm wide main channel. BII) The number 
of injected droplets at three different pressure rates in the design with the 50 µm wide 
main channel. The number of injected droplets at the three different pressure rates is 
always above 60 %. Note, that for this design 27, 52 and 108 droplets were analysed for 
the lowest, middle and highest tested pressure rate, respectively. Scale bars: 40 µm.  
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With increasing pressure rates the number of injected droplets rises. At the lowest-pressure rate 

(510 mbar at the droplet inlet channel, 560 mbar at the separation liquid inlet channel and 420 

mbar at the injection liquid channel) 0 % of the passing droplets got injected with the dye while 

29 % of the droplets got injected at the highest tested pressure rate (1510 mbar at the droplet 

inlet channel, 1560 mbar at the separation liquid inlet channel and 950 mbar at the injection 

liquid channel). The injection rate was determined by analyzing high-speed camera videos in 

which the number of injected droplets was counted from the total number of passing droplets. 

For detailed information regarding the calculation of the injection rate, see Table S3 (Appendix) 

in which I summarized the results for the corresponding inlet pressure rate. 
 

Figure 37 BI shows another injection of black dye into a passing droplet. In this case the main 

channel before and after the constriction is 50 µm wide while the dimensions in the constriction 

are the same like in the other device of this generation. The pressure at the droplet inlet channel 

was set to 1450 mbar, at the separation inlet channel to 1440 mbar and at the injection liquid 

channel to 840 mbar. The injection efficiency of this device at three different pressure rates is 

presented in Figure 37 BII. In comparison to the device with the 40 µm wide main channel the 

number of the injected droplets at the three different pressure rates is always above 60 %. At 

the lowest-pressure rate (410 mbar at the droplet inlet channel, 440 mbar at the separation liquid 

inlet channel and 370 mbar at the injection liquid channel) 63 % of the passing droplets got 

injected with the dye while 92 % of the droplets got injected at the highest-pressure rate (1450 

mbar at the droplet inlet channel, 1440 mbar at the separation inlet channel and 840 mbar at the 

injection liquid channel). In general, the risk of particle blockage of the constriction was 

reduced due to the installation of the filter structure in the droplet inlet channel. This enabled 

the usage of the device over a long time period and several times in a row. By enlarging the 

size of the main channel before and after the constriction (to 50 µm) the injection rate into the 

droplets was increased. With lower inlet pressure rates, it was possible to inject over 60 % of 

the passing droplets. The rapid resizing in the constriction leads to a higher elongation of the 

droplet and therefore to a more efficient destabilizing of the surfactant layer.  

 

I could show that with the right surfactant concentration and geometry in the microfluidic 

device it is possible to inject passing droplets without using an electric field to destabilize the 

protecting surfactant layer. Higher inlet pressure rates increase the deformation of the droplet 

by an acceleration in the constriction based on the Venturi effect. This effect can be intensified 

by increasing the size difference between the main channel and the constriction. The fine-tuning 
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of the inlet pressure rate is still challenging. Each inlet pressure has to be adjusted with respect 

to each other. If the pressure in one inlet channel is increased, for example in the droplet inlet 

channel, the other two inlet channels have to be adjusted to the higher pressure otherwise the 

injection into the droplets stops. That is the reason for the secondary droplet production at the 

injection nozzle of the microfluidic device. The pressure at injection liquid channel must be set 

so high that the injection liquid can get in contact with the passing droplet to ensure a controlled 

injection into the droplet. If the pressure in the main channel is too high the injection liquid will 

be pushed back into its channel. If the pressure in the main channel is too low, secondary 

droplets will be produced at the injection nozzle due to the Laplace equation (see section 1.4.4). 

To avoid the production of secondary droplets and enable the injection into droplets with higher 

surfactant concentration I designed another generation of the mechanical deformation mediated 

injection device (For detailed information about this design see section 3.3.2.2) which still has 

to be tested. In this design the injection nozzle was modified to ensure that the injection liquid 

gets in contact with the passing droplet due to the geometry at the injection nozzle. Furthermore, 

the length of the constriction was increased and the main channel after the constriction opens 

more softly. Due to the Venturi effect the inner pressure in the constriction is low and increases 

with increasing channel width. At the same time with rising inner pressure the velocity 

decreases. The idea is to decrease the acceleration and elongation of the droplet after the 

constriction more slowly and therefore keep the pores in the surfactant layer until the entire 

droplet passed the constriction. In the previous designs the droplet got compressed immediately 

after passing the constriction, so that the velocity of the entire droplet decreased and the pores 

closed. Additionally, a side channel was implemented in one of the designs as a kind of pressure 

stabilizer for the injection nozzle regulating the Laplace pressure fluctuations [93]. 

Furthermore, after finishing the optimization of the design and achieving reproducible 

conditions in the droplet injection mechanism more data have to be collected and analyzed. 
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4.4 Droplet sorting device 

Droplet based microfluidic technology, with its high throughput, requires fast droplet sorting 

devices, since fast sorters can screen bigger numbers of specific droplets and therefore analyze 

more events. Towards this end, several microfluidic sorting devices have been developed [142, 

144, 146, 150, 151]. Despite recent developments there is still a need in achieving even higher 

sorting speeds with consistently high efficiency, so that each droplet exits through the provided 

outlet channel. The designed droplet sorting device for the experiments with the optical sensor 

in section 4.7 have shown limitations regarding the sorting speed. Therefore, I characterized 

the performance of this sorting device and additionally designed two other sorting devices with 

changing channel dimensions to improve the sorting speed based on the laminar flow conditions 

in the microfluidic device and on the strength of the applied dielectrophoretic forces. 

4.4.1 Droplet sorting device I 

Dielectrophoretic forces allows for droplet movement against laminar flow conditions in 

microfluidic channels. These forces can be used for droplet sorting by deflecting the selected 

droplet into a certain channel. Figure 38 shows a representative bright-field image of the sorting 

area in the first designed droplet sorting device. The white boxes indicate positions, and hence 

different time points (T0-T2) in the droplet sorting process.  

 
Figure 38: Bright-field image of the sorting area in the droplet sorting device I with a 
droplet inlet pressure of 100 mbar and 150 mbar at the separation oil inlet channel. T0) 
The water-in-oi l droplet enters the sorting area of the microfluidic device. T1–T2) By 
applying an electric field the droplet gets pul led into the narrow “sorted outlet channel”.  
Scale bar: 50 µm. 

 

The water-in-oil droplet enters the sorting area of the device in which the channel width opens 

up from 50 µm to 70 µm into the direction of the electrodes (Figure 38 T0). At the end of the 

sorting area a Y-shaped junction leads to droplet separation. The junction divides the 70 µm 

channel up into a 50 µm wide “unsorted outlet channel” and a 40 µm wide “sorted outlet 

channel” (Figure 38 T1). Without applying an electric field, the droplet flows into the wider 

“unsorted outlet channel” because of a higher hydraulic resistance in the narrow channel (see 

section 1.1.3). By applying an electric field, the droplet moves into the direction of the 
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electrodes due to the dielectrophoretic forces and gets pulled into the narrow “sorted outlet 

channel” (Figure 38 T2). To get a better understanding of the dielectrophoretic induced sorting 

process in the microfluidic sorting device of the first generation, I tested different injection 

pressure rates and electric fields. It has to be mentioned that I chose the same droplet diameter 

(38 µm) for all experiments to exclude the influence of the size on the sorting process.  

 

Figure 39 shows the influence of different electric fields onto the sorting process of the water-

in-oil droplets at a constant inlet pressure rate. The droplet inlet pressure was set to 100 mbar 

and the pressure for the separation oil inlet channel was set to 150 mbar. The electric field was 

permanently switched on for this experiment. 

 
Figure 39: Bright-field images of the sort ing area in the droplet sorting device I at different  
electric field intensities and a constant inlet pressure rate (100 mbar at the droplet inlet  
channel and 150 mbar at the separation liquid channel). A) The electric field was set to 
500 V / 1 kHz. The dielectrophoretic force is not  strong enough to pull the droplet against  
the laminar flow into the direction of the narrow “sorted outlet channel” (T0-T2). B) The 
electric field was set to 600 V / 1 kHz. The passing droplet gets more pulled into the 
direction of the narrow channel (T0-T2). C) The electric field was set to 700 V / 1 kHz. 
The dielectrophoretic forces are strong enough to pull most of the droplet surface into 
the direction of the narrow channel before it bumps against the tip of the Y-junction.  
Scale bars: 50 µm. 
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At an electric field of 500 V / 1 kHz the dielectrophoretic pulling force is not strong enough to 

deflect the droplet into the narrow “sorted outlet channel”. The droplet bumps against the tip of 

the Y-shaped junction and gets carried away with the flow into the “unsorted outlet channel” 

(Figure 39 A T1). It seems like, that with the applied pressure rate the flow has a stronger 

influence on the droplet movement at the tip of the Y-junction than the pulling force of the 

electric field. However, longer observation revealed that some of the droplets get correctly 

sorted into the narrow “sorted outlet channel”. It depends on how the droplet bumps against the 

tip and where most of its surface is located after the impact. The droplet normally moves into 

the direction where most of its surface is located. At first glance, an increase of the voltage to 

600 V (Figure 39 B) has not improved the sorting process of the droplets. Again, the droplet 

bumps against the tip of the Y-junction and moves into the direction where most of its surface 

is located (Figure 39 B T1). By increasing the voltage to 700 V, the dielectrophoretic force is 

strong enough to force the droplet into the direction of the narrow “sorted outlet channel” and 

against the laminar flow in the microfluidic channel. The droplet still bumps against the tip of 

the Y-junction, however most of its surface is already in the direction of the narrow channel 

(Figure 39 B T1) and the droplet gets pushed into it by the flow (Figure 39 B T2). To get a 

better idea about the sorting efficiency of this device at different electric fields, I determined 

the sorting rate (number of droplets that are deflected into the provided channel) and sorting 

frequency (number of droplets passing through the sorting area of the device in a certain time 

window) by analyzing high-speed camera videos. Figure 40 shows the results for the 

determined sorting rate. 

 
Figure 40: Sorting rate ( in %) of the droplet sorting device I at different electric fields and 
the same inlet pressure rates (100 mbar at the droplet inlet channel and 150 mbar at the 
separation l iquid channel). Note, that for this experiment: 10, 50 and 50 droplets were 
analysed for the lowest, middle and highest tested electric field intensity, respectively.  
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By increasing the electric field intensity, the number of droplets which have been pulled into 

the narrow “sorted outlet channel” increases (see Figure 40). While only 18 % of the passing 

droplets were sorted effectively with 500 V / 1 kHz, 100 % got sorted with 700 V / 1 kHz. The 

determined sorting frequency for the different electric fields is almost the same (46 Hz at 500 

V, 48 Hz at 600 V and 43 Hz at 700 V). For detailed information about the data see Table S5 

(Appendix). 

 

To determine the maximum sorting frequency of this design, I observed in the following 

experiment the sorting process at different inlet pressure rates with a constant electric field (700 

V / 1 kHz). Figure 41 shows representative bright-field images of the sorted droplets, obtained 

with a high-speed camera.  

 
Figure 41: Bright-field images of the sort ing area in the droplet sorting device I at different  
inlet pressure rates and a constant electric field (700 V, 1 kHz). A) The droplet inlet  
pressure is set to 50 mbar and the separation liquid inlet pressure to 60 mbar. The 
passing droplet gets pulled into the direction of the narrow “sorted outlet channel” (T0-
T2). B) The droplet inlet pressure is set to 100 mbar and the separation liquid inlet  
pressure to 150 mbar. The passing droplet is pulled less into the direction of the narrow 
“sorted outlet channel” (T0-T2). C) The droplet inlet pressure is set to 100 mbar and the 
separation l iquid inlet pressure to 150 mbar. The dielectrophoretic force is no longer 
strong enough to pull the droplet against the laminar flow into the direction of the narrow 
channel (T0-T2). Scale bars: 50 µm.  
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Ones again the electric field was permanently switched on for this experiment. By increasing 

the inlet pressure rates the flow in the microfluidic channels also increases. At a certain point 

the dielectrophoretic forces will no longer be sufficient to pull the droplets into the narrow 

“sorted outlet channel”. At an inlet pressure rate of 50 mbar for the droplet inlet channel and 60 

mbar for the separation liquid channel the pulling force of the electric field intensity is obvious 

(Figure 41 A T1). The droplet bumps against the tip of the Y-junction but most of its surface is 

already pulled into the direction of the narrow “sorted outlet channel”. At the next higher tested 

inlet pressure rate (100 mbar at the droplet inlet channel and 150 mbar at the separation liquid 

channel) the droplet is pulled less into the direction of the narrow channel. However, the electric 

field intensity is still strong enough to force most of the droplet surface into the direction of the 

“sorted outlet channel” before it bumps against the tip of the Y-shaped junction (Figure 41 B 

T1). With the highest tested inlet pressure rate (200 mbar at the droplet inlet channel and 250 

mbar at the separation liquid channel) the flow in the microfluidic channel is so strong that the 

droplet is less influenced by the dielectrophoretic forces. The droplet bumps almost at the half 

of his surface onto the tip and can be directed in both outlet channels through the flow (Figure 

41 C T1). To get a better idea about the sorting efficiency at different inlet pressure rates, I 

calculated the sorting rate and sorting frequency as previously described. Figure 42 shows the 

results. Dashed lines are drawn to guide the eye. 

 
Figure 42: Sorting efficiency of the droplet sorting device I at different inlet pressure 
rates and a constant electric field (700 V, 1 kHz). A) Sorting rate (in %) of the successfully 
sorted droplets into the “sorted out let channel” of the device. B) Sorting frequency (in 
Hz) as the number of droplets passing through the sorting area of the microfluidic device 
in a certain time window. Dashed lines are drawn to guide the eye. Note, that for this 
experiment: 10, 50 and 50 droplets were analysed for the lowest, middle and highest  
tested inlet pressure rate, respectively. 

A electric field: 700 V / 1 kHz
sorting rate (%) at the sorted outlet channel for different inlet
pressure rates

B electric field: 700 V / 1 kHz
sorting frequency (Hz) at the sorted outlet channel for different 
inlet pressure rates
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An increase of the inlet pressure rate under a constant electric field, leads to a decrease in the 

number of droplets which are pulled into the narrow “sorted outlet channel” (Figure 42 A). At 

the highest tested inlet pressure rate with 200 mbar at the droplet inlet channel and 250 mbar at 

the separation liquid channel the sorting rate is 24 %. The previous observation in the bright-

field image of Figure 41 C T1 can be proven by this. At this high inlet pressure rate the laminar 

flow in the microfluidic channel is stronger in comparison to the strength of the 

dielectrophoretic force. The other tested inlet pressure rates were lower and for both the sorting 

rate was 100 %. In these cases, the dielectrophoretic force was strong enough to pull the droplet 

against the flow in the microfluidic channel. The increase of the inlet pressure rates leads to an 

increase in the sorting frequency. The sorting frequency for the lowest tested inlet pressure rate 

was 38 Hz and increased to 43 Hz at the second lowest inlet pressure rate. The sorting frequency 

went up to 266 Hz for the highest inlet pressure rate, this means that 266 droplets per second 

passed through the sorting area of the device. Unfortunately, the sorting rate was not efficient 

at the highest inlet pressure rate. For detailed information about the data see Table S5 

(Appendix).  

 

It appears that the sorting process is a sensitive equilibrium from different factors. The droplet 

size has to fit with the dimensions of the microfluidic channels. The entire structure and 

arrangement of the microfluidic channels can influence the sorting rate and frequency of the 

device. The leading factors for an effective sorting process depend on the applied electric field 

and the resulting dielectrophoretic forces which are in competition to the laminar flow in the 

microfluidic channels. At a certain inlet pressure rate above 100 mbar for the droplet inlet 

channel and 150 mbar for the separation liquid inlet channel the geometry and dimensions for 

the chosen droplet sizes is not efficient anymore and the amount of right positive sorted droplets 

went down. Therefore, I decided to optimize the geometry of the sorting device.  

4.4.2 Droplet sorting device II 

Figure 43 A shows a representative bright-field image of the sorting area in the second designed 

droplet sorting device. The white boxes indicate positions, and hence different time points (T0-

T2) in the process of droplet sorting. The preformed water-in-oil droplet enters the sorting area 

of the device in which the channel width opens up from 30 µm to 90 µm (Figure 43 T0). In 

comparison to the previous design the channel opens up into both directions, not only to the 

side of the electrodes. Also, the length of the sorting area was extended to 570 µm length. The 

idea was to slow down the velocity of the flow in the sorting area by reducing the hydraulic 
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resistance in the channel. This enables the dielectrophoretic force to have a stronger influence 

onto the passing droplets and therefore the possibility to achieve an 100 % sorting rate at a high 

sorting frequency. At the end of the sorting area a Y-shaped junction leads to the droplet 

separation. The junction divides the 90 µm channel up into a 50 µm wide “unsorted outlet 

channel” and a 40 µm wide “sorted outlet channel” (Figure 43 A, T1). 

 
Figure 43: Bright-field images of the sorting area in the droplet sorting device II under 
different condit ions. A) The droplet inlet pressure is set to 240 mbar and the separation 
liquid inlet pressure to 300 mbar. The water-in-oil droplet enters the sorting area of the 
microfluidic device. T1–T2) By applying an electric f ield the droplet gets pulled into the 
narrow “sorted outlet channel”. Scale bar: 50 µm. B) The electric field was set to 950 V / 
1 kHz (blue frames). The dielectrophoretic force is not strong enough to pull the droplet  
against the laminar flow into the direction of the narrow “sorted outlet channel” (T0-T2). 
C) No electric field is applied (orange frames). The passing droplet is not affected by 
dielectrophoretic forces and exits the sorting area of the microfluidic channel through the 
“unsorted outlet channel”.  

 

By applying an electric field, the droplet moves into the direction of the electrodes due to the 

dielectrophoretic forces and get pulled into the narrow “sorted outlet channel” (Figure 43 A, 

T2). Without electric field the droplet will flow into the wider “unsorted outlet channel”. Figure 

43 B shows the different time points (T0-T2) when an electric field (950 V / 1 kHz) was applied 

onto the passing droplets. The inlet pressure rate was set to 240 mbar at the droplet inlet channel 

and 300 mbar at the separation liquid inlet channel. When the droplet passes the sorting area of 
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the microfluidic device it gets affected by the dielectrophoretic forces and pulled into the 

direction of the narrow “sorted outlet channel” without bumping against the tip of the Y-shaped 

junction (Figure 43 B T1). Figure 43 C shows the different time points (T0-T2) under the same 

inlet pressure rate when no electric field was applied onto the passing droplets. In this case the 

droplet flows in the middle of the channel through the sorting area of the device and bumps 

against the tip of the Y-shaped junction. The droplet bumps almost at the half of his area onto 

the tip and can be directed in both outlet channels through the flow (Figure 43 C T1).  

 

To evaluate the sorting efficiency of this design, I tested three different inlet pressure rates and 

determined the sorting rate (number of droplets which are deflected) for the narrow “sorted 

outlet channel” while an electric field was applied (950 V / 1 kHz) and without applying an 

electric field. By doing so, I wanted to evaluate the chance of false positive sorted droplets at 

the “sorted outlet channel”. By definition this stands for the droplets which exit the device 

through the “sorted outlet channel” even though there are no dielectrophoretic forces which 

affect them. Also, the sorting frequency for both cases under different inlet pressure rates was 

calculated. Figure 44 shows the results. Dashed lines are drawn to guide the eye. 

 
Figure 44: Sorting efficiency of the droplet sorting device II at different inlet pressure 
rates, with constant electric field (950 V, 1 kHz) and without. A) Sorting rate (in %) of the 
successfully sorted droplets into the “sorted out let channel” of the device by applying an 
electric field. B) Sorting rate (in %) of the false positive sorted droplets at the “sorted 
outlet channel” without applying an electric field. C) Sorting frequency (in Hz) as the 
number of droplets passing through the sorting area of the microfluidic device in a certain 
time window. With applying an electric field (blue) and without (orange). Dashed lines 
are drawn to guide the eye. Note, that for this experiment with applied electric field, 11,  
16 and 50 droplets were analysed for the lowest, middle and highest tested inlet pressure 
rate, respectively. Without electric field, 9, 16 and 50 droplets were analysed for the 
lowest, middle and highest tested inlet pressure rate, respectively.  
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When applying the electric field (950 V / 1 kHz) the sorting rate at the “sorted outlet channel” 

for all the tested inlet pressure rates is 100 %. This means that all of the passing droplets got 

sorted right positive (Figure 44 A). Even by higher inlet pressure rates (in comparison to the 

experiments with the sorting device I) the sorting rate remains at 100 %. When the electric field 

is switched off the droplets should exit through the “unsorted outlet channel”. In case of the 

lowest inlet pressure rate (75 mbar droplet inlet pressure, 100 mbar separation liquid inlet 

pressure) 100 % of the droplets did so. In detail, the determined sorting rate at the narrow 

“sorted outlet channel” without applying an electric field (Figure 44 B) was 0 % which means 

that 100 % of the droplets exit the device through the “unsorted outlet channel”. With higher 

inlet pressure rates the amount of false positive sorted droplets increases. At the second highest 

inlet pressure rate (140 mbar droplet inlet pressure, 200 mbar separation liquid inlet pressure) 

31 % of the passing droplets exit the device through the narrow “sorted outlet channel” which 

means that only 69 % of the droplets exit through the provided “unsorted outlet channel”. With 

the highest tested inlet pressure rate the sorting rate for the false positive droplets is 30 %. There 

is no significant difference between the analyzed sorting frequencies with and without applied 

electric field. At the highest inlet pressure rate (240 mbar droplet inlet pressure, 300 mbar 

separation liquid inlet pressure) the sorting frequency was 217 Hz with applied electric field 

and 215 Hz without electric field. For detailed information about the analyzed data see Table 

S6 (Appendix).  

 

In principle the amount of correctly positive sorted droplets with the sorting device II seems to 

be robust towards higher inlet pressure rates. Unfortunately, when there is no electric field 

applied the increase of the inlet pressure rate leads to a higher amount of false positive sorted 

droplets. Instead of leaving through the “unsorted outlet channel”, the droplets bumping against 

the tip of the Y-junction and is pushed into the direction of the “sorted outlet channel” by the 

flow in the microfluidic channel. By using bigger droplets, the channel geometry would 

promote their right separation into the “unsorted outlet channel” and therefore decrease the 

amount of false positive sorted droplets. To overcome the problem with the droplet separation 

into the correct outlet channels, I decided to design another, modificated sorting device.  
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4.4.3 Droplet sorting device III 

Figure 45 A shows a bright-field image of the sorting area in the third designed droplet sorting 

device. The white dashed boxes indicate positions, and hence different time points (T0-T2) in 

the droplet sorting process. The water-in-oil droplet enters the sorting area of the device in 

which the channel width opens up from 30 µm to 60 µm (Figure 45 T0). At the end of the 

sorting area a Y-shaped junction leads to droplet separation. The junction divides the 60 µm 

channel up into a 47 µm wide “unsorted outlet channel” and a 40 µm wide “sorted outlet 

channel” (Figure 45 T1). By applying an electric field, the droplet moves into the direction of 

the electrodes due to the dielectrophoretic forces and get pulled into the narrow “sorted outlet 

channel” (Figure 45 T2). Without electric field the droplet will flow into the wider “unsorted 

outlet channel”. In comparison to the previous design the channel opens up only on the side 

where no electrodes are located. The idea behind this design was to reduce the amount of false 

positive sorted droplets by using laminar flow conditions in the microfluidic channels. The 

laminar flow leads to a droplet movement into the middle of the channel. By opening the 

channel into the direction where no electrodes are located the droplet should automatically 

move into the direction of the “unsorted outlet channel” if there is no electric field applied. 

 

Figure 45 B shows the different time points (T0-T2) when no electric field (orange frames) was 

applied onto the passing droplet. The inlet pressure rate was set to 300 mbar at the droplet inlet 

channel and 370 mbar at the separation liquid inlet channel. Due to the laminar flow conditions 

in the microfluidic channel the droplet flows in the middle of the channel. Shortly before the 

Y-shaped junction the droplet gets pushed into the direction of the narrow “sorted outlet 

channel” (Figure 45 B T1). When the droplet bumps against the tip of the Y-junction, most of 

its surface is already directed into the “unsorted outlet channel” which leads to his exit through 

this channel. Figure 45 C shows the different time points (T0-T2) when an electric field of 700 

V / 1 kHz (blue frames) was applied onto the passing droplet. When the droplet passes through 

the release area of the microfluidic device it gets affected by the dielectrophoretic forces and 

pulled into the direction of the narrow “sorted outlet channel”. The droplet still bumps against 

the tip of the Y-junction, however most of its surface is already in the direction of the narrow 

channel (Figure 45 C T1) and the droplet gets pushed into it through the flow (Figure 45 C T2). 

The increase of the electric field to 950 V / 1 kHz (turquoise frames) in Figure 45 D leads to a 

stronger dielectrophoretic force and therefore pulls the droplet more into the direction of the 

electrodes and the narrow “sorted outlet channel”. The droplet almost does not touch the tip of 

the Y-shaped junction.  
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Figure 45: Bright-field images of the sorting area of the droplet sorting device III at 
different electric fields and a constant inlet pressure rate. A) The droplet inlet pressure 
is set to 300 mbar and the separation liquid inlet pressure to 370 mbar. The water-in-oil  
droplet enters the sorting area of the microfluidic device. T1–T2) By applying an electric 
field the droplet is pul led into the narrow “sorted outlet channel”. Scale bar: 50 µm. B) 
No electric field is applied (orange frames). The passing droplet is not affected by 
dielectrophoretic forces and exits the sorting area of the microfluidic channel through the 
“unsorted outlet channel”. C) The electric field was set to 700 V / 1 kHz (blue frames). 
The dielectrophoretic forces are strong enough to pull most of the droplet surface into 
the direction of the narrow channel before it bumps against the tip of the Y-junction. D) 
The electric f ield was set to 950 V / 1 kHz (turquoise frames). The droplet is more pulled 
into the direction of the narrow channel due to a higher dielectrophoretic force.  

 

To evaluate the sorting efficiency of this design, I tested different inlet pressure rates and 

determined the sorting rate (number of droplets which got deflected) for the narrow “sorted 

outlet channel” while an electric field was applied (700 V / 1 kHz) and without applying an 

electric field. By doing so, I wanted to evaluate the chance of false positive sorted droplets at 

the “sorted outlet channel”. In addition, I calculated the sorting frequency (number of droplets 

passing through the sorting area of the device in a certain time window) for both cases, at the 
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different inlet pressure rates. At the highest inlet pressure rate, I went up with the electric field 

to 950 V / 1 kHz to increase the sorting rate of the sorting device III.  

 
Figure 46: Sorting efficiency of the droplet sorting device III at different inlet pressure 
rates and different electric fields. A) Sorting rate (in %) of successfully sorted droplets 
into the “sorted outlet channel” of the device by applying different electric fields. B) 
Sorting rate (in %) of the false positive sorted droplets at the “sorted outlet channel”  
without applying an electric field. C) Sorting frequency (in Hz) as the number of droplets 
passing through the sorting area of the microfluidic device in a certain time window. With 
applying an electric field (blue) and without (orange). Dashed lines are drawn to guide 
the eye. Note, that for each condition 50 droplets got analysed. Only for the lowest  
pressure rate the number of analysed droplets was 32 with applied electric field and 30 
without electric field.  

 

Figure 46 A proves again how an increase of the inlet pressure rates under a constant electric 

field (700V, 1 kHz, blue bars) leads to a decrease in the number of droplets that are pulled into 

the narrow “sorted outlet channel”. While the sorting rate is 100 % for the lowest inlet pressure 

rate (80 mbar droplet inlet pressure, 100 mbar separation liquid inlet pressure) it decreases to 

64 % at the highest tested inlet pressure rate (300 mbar droplet inlet pressure, 370 mbar 

separation liquid inlet pressure). At the highest inlet pressure rate, the laminar flow in the 

microfluidic channel has a stronger influence on the droplet motion in comparison to the 

dielectrophoretic force. To increase the sorting rate under this inlet pressure rate, I set the 

electric field to 950 V / 1 kHz (turquoise bar). Due to the higher electric field intensity the 

dielectrophoretic forces in the sorting device get stronger which pulls the droplet more into the 

direction of the narrow “sorted outlet channel”. By doing so, the sorting rate went up from 64 

% to 92 %. When the electric field is switched off the droplets should exit trough the “unsorted 

outlet channel”. Figure 46 B shows the sorting rate of the false positive sorted droplets at the 

“sorted outlet channel” when there is no electric field applied. Due to changes in the channel 

geometry of the sorting area in the device the amount of false positive sorted droplets could be 

improved for high inlet pressure rates. There were almost no false positive events as visible in 

A electric field
sorting rate (%) at the sorted outlet channel B no electric field

sorting rate (%) at the sorted outlet channel C sorting frequency (Hz) at the sorted outlet 
channel
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Figure 46. The increase of the inlet pressure rates leads to an increase in the sorting frequency 

as can be seen in Figure 46 C. The sorting frequency for the lowest tested inlet pressure rate 

(80 mbar droplet inlet pressure, 100 mbar separation liquid inlet pressure) was 58 Hz with 

applied electric field and 54 Hz without electric field. At the highest inlet pressure rate (240 

mbar droplet inlet pressure, 300 mbar separation liquid inlet pressure) the sorting frequency 

went up to 276 Hz with applied electric field and 306 Hz without electric field. For the first two 

inlet pressure rates there is not much difference in the sorting frequencies with and without 

applied electric field. At an inlet pressure rate of 200 mbar at the droplet inlet channel and 250 

mbar at the separation liquid inlet channel the sorting frequency upon applying an electric field 

was 170 Hz while without electric field it was 200 Hz. For detailed information about the data 

see Table S7 (Appendix). The difference between the sorting frequency with electric field and 

without persists for the following higher inlet pressure rates. These variations could be of 

technical nature, like effects of the elastic elements in the microfluidic system, friction in 

mechanical components and instabilities of the pumps. Another failure can be attributed to the 

manual counting and determination of the passing droplets from the high-speed-camera videos.  

 

In principle with the optimizations in the geometry of the sorting device III, I could achieve a 

better sorting efficiency in comparison to the previous designs. The amount of false positive 

droplets could be minimized, while at the same time the sorting frequency could be increased 

to more than 270 Hz. The sorting efficiency could be still improved by reducing the channel 

width of the “sorted outlet channel” while the size of the “unsorted outlet channel” is enlarged. 

Due to the increase of the hydraulic resistance by reducing the channel size of the “sorted outlet 

channel”, the passing droplet will move more easily into the “unsorted outlet channel”. This 

will be encouraged by additionally enlarging the size of the “unsorted outlet channel”. The 

sorting process is sensitive to a variety of different factors. The droplet size has to match the 

dimensions of the microfluidic channels. The governing factors for an effective sorting process 

depend on the applied electric field and the resulting dielectrophoretic forces which are in 

competition to the laminar flow in the microfluidic channels. Another possibility to improve 

the sorting efficiency could be achieved by changing the design of the electrodes for better 

deflection of the passing droplets [150]. 
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4.5 Controlled content release from water-in-oil droplets 

The controlled release of the water-in-oil droplet content can be of particular importance for 

biomedical applications in which the release of selected cell populations or selected chemical 

species, as opposed to the entire content of the droplet, is necessary. In the following part of 

my thesis I will describe a microfluidic device for the controlled release of the droplet content 

into a continuous aqueous phase by applying an electric field. By combining the release of the 

droplet content with the cholesterol-tagged DNA functionalization [192] of the inner periphery, 

it is possible to provide a selective attachment handle for species contained within the droplet. 

By recruiting the species to the droplet periphery, its release into the continuous aqueous phase 

can be prevented. This can be used for the segregation of the droplet content. Note that the 

results of this section have been published in Frey et al. ACS Omega. (2020). Figures and parts 

of the text were adapted with permission from the authors. Figure 47 shows a schematic 

illustration of the droplet content release into a continuous aqueous phase by applying an 

electric field.  

 
Figure 47: Schematic illustration of the release area of the microfluidic device. T0) The 
water-in-oil droplet enters the release area of the microfluidic device. T1) The oil-
surrounded droplet gets in contact with the continuous aqueous phase. T2) By applying 
an electric field the droplet fuses with continuous aqueous phase. T3) The phases get 
separated at the Y-junction of the device into the appropriate outlet channels. Adapted 
and reprinted with permission from all authors, Frey et al., ACS Omega (2020) [107]. 

 

The black boxes in Figure 47 indicate positions, and hence different time points (T0-T3) in the 

process of droplet fusion with the continuous aqueous phase and consequent release of their 

content. At T0 the water-in-oil droplet enters the release area of the microfluidic device and 

comes in contact with the continuous aqueous phase. Because of the laminar flow conditions 

[205, 206] and the use of immiscible fluids a stable fluid interface between the continuous 

aqueous phase and droplet-containing oil-phase is created (T1). By applying an electric field, 

the inner aqueous phase of the passing droplet fuses with the continuous aqueous phase. At T3 

the phases get separated from each other at the Y-shaped junction of the device and exit into 

the appropriate outlet channels. 

T0 T1 T2 T3 aq-phase

oil-phase
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4.5.1 Release of the aqueous content from surfactant-stabilized water-in-

oil droplets 

Figure 48 shows representative bright-field images of the aqueous content release process from 

surfactant-stabilized water-in-oil droplets. The images match with the previously described 

time points (T0-T3) and visualize the single steps of the release process.  

 
Figure 48: Representative bright-field images show different time points as the droplet  
passes the release area of the microfluidic device. Electric field-mediated release (800 
V, 1 kHz) is shown in the top row (green frames) while in the bottom row (orange frames) 
there is no electric field applied and the droplet passes down the channel. Scale bares:  
30 µm. Adapted and reprinted with permission from all authors, Frey et al., ACS Omega 
(2020) [107].  

 

The water-in-oil droplets enter the release area of the microfluidic channel and get in contact 

with the continuous aqueous phase (T0 and T1). By applying an electric field (800V, 1 kHz), 

the inner aqueous phase of the passing droplet fuses with the continuous aqueous phase in the 

microfluidic device (T2, green outline) due to electrocoalescence [98, 104, 195]. The applied 

electric field allows to overcome the disjoining pressure (combination of repulsive and 

attractive stress) which prevents the surfactant stabilized water-in-oil droplet from coalescence 

with the continuous aqueous phase at the phase interface [105, 106]. In absence of an electric 

field, the droplets remain stable and passes through the oil channel (T2 and T3, orange outline). 

Final separation between the aqueous and oil phases occurs at the Y-shaped junction of the 

microfluidic release device (T3).  
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In a first step the efficiency of the droplet content release device has been determined. I 

quantified the release efficiency (i.e. the proportion of successfully fused droplets) as a function 

of the release rate (i.e. the number of droplets released in a certain time window). By counting 

the number of droplets in a certain passing time I calculated the passing frequency of the device. 

Injecting the liquids with different pressures into the microfluidic device changes the passing 

frequency and hence the release rate of the droplets. Figure 49 shows a summary of the release 

efficiency under various conditions to compare the release triggered by an applied electric field, 

without electric field and by chemical destabilization at different passing frequencies (6 to 190 

Hz). 

 
Figure 49: Release rate as a function of the release frequency. Green data points mark 
the release triggered by an electric field, orange data points show the same inlet  
pressures without the electric field and blue data points represent the release using a 
destabilizing surfactant (1H,1H,2H,2H-Perfluoro-1-octanol). Error bars indicate the 
standard deviation of 3 independent experiments. Adapted and reprinted with permission 
from all authors, Frey et al., ACS Omega (2020) [107]. 

 

For the chemical release of the droplet content, pure 1H,1H,2H,2H-Perfluoro-1-octanol, which 

acts as a droplet destabilizing agent by displacing the stabilizing PEG-based surfactant from 

the droplet interface, was injected into the separation liquid channel. This destabilizing 

surfactant has previously been used to release the content of the aqueous phase of droplets in 
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bulk [115, 207]. It should be noted that due to the higher density of the destabilizing surfactant 

(1.65 g/ml) in comparison to the HFE 7500 oil (1.60 g/ml), the droplet passing frequency in the 

released area went down despite identical pressures applied in the inlet channels. Therefore, to 

get comparable frequencies, the pressure of the aqueous phase inlet had to be adjusted. As 

shown in Figure 49, chemical destabilization can lead to successful fusion of the droplets at 

passing frequencies of around 5 Hz. At higher passing frequencies, however, the efficiency 

drops significantly (blue data points). The reduction of efficiency at high frequencies can be 

attributed to the fact that the destabilizing surfactant needs time to displace the stabilizing 

surfactant at the droplet shell. The release of the content by an electric field is more efficient 

compared to the chemical destabilization. It is possible to release at frequencies from 6 Hz to 

more than 190 Hz at the efficiency of above 95 % (green data points). In the contrary, 

independent of the frequency with which the droplets passed, no droplet fusion was observed 

when the electric field was turned off (orange data points). For detailed information see Table 

S4 (Appendix) in which I summarized all inlet pressures and the corresponding results. 

4.5.2 Release of CHO suspension cells out of surfactant-stabilized water-

in-oil droplets 

Droplet-based microfluidics can be used for single-cell assays to study, for example, gene 

expression or to perform immunological assays [168]. Encapsulated cells have been shown to 

survive over several days in the nutrient-limited space inside the water-in-oil confinement 

[208]. However, for further use and long-term culture, the cells have to be released from the 

droplet into a physiological environment. Therefore, I aimed to assess the possibility to release 

encapsulated cells with the designed device and to test their viability.  

 

Previously produced droplets with encapsulated cells were injected into the content release 

device. The droplet inlet pressure was set to 400 mbar, for the separation liquid and the aqueous 

phase I chose 395 and 255 mbar, respectively. The electric field was set to 800 V at 1 kHz. As 

shown in Figure 50 (green outline), the cell-containing droplet coalescence with the continuous 

aqueous phase and releases the cell into it upon application of an electric field. If the electric 

field is turned off, the cell remains encapsulated and flows within the oil phase to the outlet 

channel (Figure 50, orange outline). To test the influence of the electric field on the viability of 

CHO suspension cells, live/dead staining with trypan blue was performed under four different 

conditions (For detailed information about the conditions see section 3.3.4)  



  Results and Discussion 

 97 

 
Figure 50: Representative bright-field images obtained with a high-speed camera 
showing different t ime points during cell release: electric f ield-mediated release (800 V,  
1kHz) is shown in the upper row (green frames) and release without an electric field in 
the lower row (orange frames). Scale bars are 30 µm. Adapted and reprinted with 
permission from all authors, Frey et al., ACS Omega (2020) [107]. 

 

As shown in Figure 51 A, the released CHO cells (E-field, 96.27 % ± 1.35 %) showed similar 

viability as the CHO cells which were kept in the culture medium and left untouched during the 

duration of the encapsulation and release process (con. med., 96.40 % ± 2.56 %). To exclude 

any influence of buffer conditions on cell viability, I also stored control cells separately in PBS 

over the duration of the encapsulation and release process (con. PBS). The live/dead assays 

revealed that the untouched cells cultured in PBS showed similar viability (con. PBS, 94.08 ± 

2.64%) to the cells released by applying an electric field (96.27 ± 1.35%) and similar to that of 

the cells after chemical-mediated bulk release (bulk rel., 96.67 ± 1.30%). Moreover, to assess 

possible long-term effects of the release process on cell viability, 1 x 105 of the released and 5 

x 104 of the control cells were cultured in fresh media over 5 days (Figure 51 B). The counted 

cells after 2 and 5 days revealed no difference in the cell proliferation. I can hence conclude 

that the electric field as applied during the release process do not affect cellular viability and 

proliferation of CHO cells. 
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Figure 51: Cell viabi lity and growth. A) Cell viability as determined by l ive/dead staining 
with trypan blue of the CHO cells before and after the release. The green bordered bar 
indicates the viabil ity for the cells after the release by the electric field. Their viabi lity is 
not reduced compared to the controls (from left to right: con. med.: cells left in medium; 
con. PBS: cells stored in PBS during the time of the release process; E-field: cells after 
the release by the electric field; bulk rel.: cells after the chemical bulk release with 
destabilizing surfactant. Error bars indicate the standard deviation of three independent 
live/dead stains of each sample. B) Cell growth over 5 days after the release, showing 
that the cells remain viable. Adapted and reprinted with permission from all authors, Frey 
et al., ACS Omega (2020) [107]. 

 

4.5.3 DNA-Mediated segregation of the content from water-in-oil 

droplets for selective release 

To enhance the specificity of the release process by electric fields, I developed a strategy for 

chemical separation of the droplet aqueous phase content. Towards this end, I functionalized 

the inner droplet periphery with cholesterol-tagged DNA, which serves as a programmable 

anchoring point for a complementary DNA strand which can carry an arbitrary functional 

group. Note that cholesterol self-assembles at the droplet interface by hydrophobic interaction 

with the hydrophobic part of the polymer-stabilizing surfactant [192]. 

 

To prove the principle of the selective DNA binding and filtration of the droplet content I 

performed an experiment with labelled DNA strands. In Figure 52 A and B, confocal 

fluorescence images of functionalized and unfunctionalized water-in-oil droplets (For detailed 

information about the droplet production parameters and the DNA sequences see section 

3.3.1.4) can be observed. The inner aqueous phase of the droplets contains Cy5 labelled DNA 

A Bcell viability cell growth
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(lex = 596 nm) strands. In the absence of the cholesterol-tagged DNA, the Cy5 labelled DNA 

is homogeneously distributed in the aqueous phase of the droplet (Figure 52 A). When the inner 

periphery of the droplet is functionalized with cholesterol-tagged DNA, the complementary 

Cy5 labelled DNA binds to it creating a fluorescent ring on the droplet interface (Figure 52 B).  

 

Figure 52: Electric field-mediated content  release from DNA-functionalized and 
unfunctionalized water-in-oi l droplets. A) Confocal f luorescence images of water-in-oi l  
droplets containing Cy5 labelled DNA only (le x  = 569 nm) B) Cy5 labelled DNA in the 
presence of complementary cholesterol-tagged DNA. Scale bars: 20 µm. Schematic 
illustration of different time points in the selective microfluidic release from 
unfunctionalized droplets (top row, AI-AIII) and droplets functionalized with cholesterol-
tagged DNA (bottom row, BI-BIII). AI) Unfunctionalized droplet: Cy5-labeled DNA strands 
are homogeneously distributed in the inner aqueous phase of the droplet. AII) During the 
electric field mediated coalescence the Cy5-labeled DNA strands get released into the 
continuous aqueous phase. AIII) The Cy5-labeled DNA strands get separated at the Y-
junction of the microfluidic device into the continuous phase out let channel. BI)  
Functionalized droplet: the Cy5-labeled DNA binds to the complementary cholesterol-
tagged DNA at the inner droplet surface. BII) During the electric field mediated 
coalescence the Cy5-labeled DNA strands remain bound to the cholesterol-tagged DNA 
at the oil/water interface. BIII) The bounded Cy5-labeled DNA strands get separated at  
the Y-junction of the microfluidic device into the oil outlet channel. Adapted and reprinted 
with permission from all authors, Frey et al., ACS Omega (2020) [107].  

 

AI-AIII and BI-BIII in figure 52 show a schematic illustration of the DNA-mediated filtering 

process of the inner droplet aqueous phase within the microfluidic release device. In the top 

row, the unfunctionalized droplet containing homogeneously distributed Cy5-labeled DNA 

passes the oil/water interface at the release area of the microfluidic device (Figure 52 AI). Due 

to the electric field, the DNA is released into the continuous aqueous phase of the device (Figure 

52 AII) and hence separated from the oil-phase at the Y-junction of the outlet channels (Figure 

52 AIII). In the case of droplets functionalized with cholesterol-tagged DNA (Figure 52, bottom 
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row), the Cy5-labeled DNA in the aqueous phase is complementary to the associated DNA 

strand on the droplet interface, leading to Watson-Crick base pairing of the two strands (Figure 

52 BI). Therefore, during the electric field-mediated release process, the inner aqueous phase 

of the droplet is released into the continuous aqueous phase and the Cy5-labeled DNA remains 

bound to the cholesterol-tagged DNA at the oil/water interface (Figure 52 BII). Note that to 

ensure chemical separation of the Cy5-labeled DNA from the continuous aqueous phase, it is 

necessary to create a thin water film in the oil outlet channel (Figure 52 BIII). 

 

Figure 53 shows the fluorescence readout of the corresponding aqueous phase released from 

the unfunctionalized and cholesterol-tagged DNA droplets under the same conditions (i.e. same 

pressures, electric field and volumes of the collected liquid at the outlet channel).  

 

Figure 53: Cy5 fluorescence emission spectrum of the continuous aqueous phase after 
the release process. The blue line shows the continuous aqueous phase of the 
unfunctionalized droplets after the release, while the red line indicates the continuous 
aqueous phase of the DNA-functionalized droplets. The Cy5 labelled DNA was effectively 
removed from the aqueous phase in the presence of the cholesterol-tagged DNA handles.  
Adapted and reprinted with permission from all  authors, Frey et al., ACS Omega (2020) 
[107]. 
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It should be noted that the content of the released aqueous phase is diluted by the continuous 

aqueous phase, which leads to a lower fluorescence signal for both, the functionalized and the 

unfunctionalized droplets. The blue and red data points indicate the fluorescence signal of the 

collected released content from the unfunctionalized and DNA-functionalized droplets, 

respectively. Only in the released continuous aqueous phase of the unfunctionalized droplets, I 

observe the characteristic fluorescence emission spectrum for the Cy5-labeled DNA. In the 

released aqueous phase of the functionalized droplets there is no significant signal, which 

means that most of the Cy5 labeled DNA strands were bound to the cholesterol-tagged DNA at 

the inner periphery of the droplets and were successfully filtered out into the oil outlet channel. 

 

To prove the specificity of the DNA-mediated filtration, I performed release experiments of 

two different DNA strands in which only one is complementary to the cholesterol-tagged DNA. 

Towards this end, 2 µM of complementary Cy5-labelled and non-complementary 6FAM-

labelled DNA were encapsulated into the DNA functionalized droplets and released with the 

microfluidic device. Figure 54 A shows a confocal fluorescence image of a water-in-oil droplet 

containing randomly distributed non-complementary 6-FAM-labelled DNA (lex =450 nm, 

green coloured) in the aqueous phase and Cy5-labelled DNA (lex =596 nm, blue coloured) 

binding to the complementary cholesterol-tagged DNA strand attached to the droplet interface. 

The electric field-mediated selective content release in the microfluidic device is illustrated in 

Figure 54 BI-BIV.  

 
Figure 54: Electric field-mediated selective content release from DNA-functionalized 
water-in-oil droplets. A) Representative confocal f luorescence image of a water-in-oi l  
droplet containing randomly distributed non-complementary 6-FAM-labelled DNA (lex = 
450 nm, green coloured) in the aqueous phase and Cy5-labelled DNA (lex = 596 nm, blue 
coloured) binding to the complementary cholesterol-tagged DNA strand attached to the 
droplet interface. Scale bar: 20 µm. BI-IV) Schematic illustration of different time points 
in the selective microfluidic release from cholesterol-tagged DNA functionalized droplets.  
Adapted and reprinted with permission from all  authors, Frey et al., ACS Omega (2020) 
[107]. 
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Directly after droplet production the encapsulated cholesterol-tagged DNA (red tail with red 

head) attaches to the droplet interface while the complementary Cy5-labelled DNA strand (red 

tail with blue head) and non-complementary 6-FAM-labelled DNA strand (black tail with green 

head) are randomly distributed in the droplet aqueous phase (Figure 54 BI). Gradually the Cy5-

labelled DNA binds to the complementary cholesterol-tagged DNA while the non-

complementary 6-FAM-labelled DNA strands stay unbounded in the droplet aqueous phase 

(Figure 54 BII). During the electric field-mediated release process, the inner aqueous phase of 

the droplet with the randomly distributed 6-FAM-labelled DNA strands is released into the 

continuous aqueous phase, whereas the Cy5-labeled DNA remains bound to the cholesterol-

tagged DNA at the oil/water interface (Figure 54 BIII). The continuous aqueous phase with the 

released 6-FAM-labelled DNA strands get separated from the oil/water interface and the 

attached Cy5-labelled DNA at the Y-junction of the release device and thus filtered from each 

other (Figure 54 BIV). 

 
Figure 55 AI and BI show the normalized fluorescence emission spectra of the labelled DNA 

strands for three different aqueous solutions. “pure solution” consist of a DNA mixture with 2 

µM Cy5-labelled DNA (lex  = 596 nm), the same amount of 6-FAM-labelled DNA (lex = 450 

nm) and 2 µM cholesterol-tagged DNA and got measured without any treatment as a control. 

This solution shows the highest measured fluorescence intensity of all samples. The aqueous 

solution “bulk segregation” contained the same DNA mixture and got measured after layering 

it onto an oil-surfactant-phase for 10 minutes. This solution served as a kind of bulk control 

where the segregation of the complementary Cy5-labelled DNA with the cholesterol-tagged 

DNA from the non-complementary 6-FAM-labelled DNA should be achieved at the phase-

interface of the DNA mixture with the oil-surfactant-phase. In comparison to the pure solution 

the fluorescence intensity for both labelled DNA strands is a bit lower after the bulk segregation. 

Whereby the fluorescence intensity difference of the complementary Cy5-labelled DNA for the 

pure solution and bulk segregation is higher in comparison to the intensity difference of the 6-

FAM-labelled DNA in the same solutions. “device segregation” represents the continuous 

aqueous phase after the electric field-mediated selective content release process in the 

microfluidic device. 
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Figure 55: Normalized fluorescence emission spectra of the labelled DNA strands. AI)  
Fluorescence intensity of the 6-FAM-labelled DNA for three different aqueous solutions.  
BI) Fluorescence intensity of the Cy5-labelled DNA for three different aqueous solutions.  
“pure solution” shows a mixture of a DNA-containing aqueous solut ion with 2 µM 6-FAM-
labelled DNA, the same amount of Cy5-labelled DNA as well as cholesterol-tagged DNA. 
“bulk segregation” the same DNA-solution after layering it onto an oil-surfactant-phase 
for 10 minutes and “device segregation” the continuous aqueous phase after the electric 
field-mediated selective content release process. AII and BII) Enlargement of the 
corresponding fluorescence intensity spectra for the 6-FAM-labelled DNA (AII) and Cy5-
labelled-DNA after device fi ltration. Adapted and reprinted with permission from all  
authors,  Frey et al., ACS Omega (2020) [107]. 

 

The release into the continuous aqueous phase leads to a dilution of the labelled DNA strands, 

which affects the fluorescence signal and explains the comparably low intensity in Figure 55 

AI, BI. To overcome this problem the emission spectra for the device filtration is shown 

enlarged in Figure 55 AII for the 6-FAM-labelled DNA (green spectrum) and in figure 55 BII 

for the Cy5-labelled DNA (blue spectrum). The fluorescence intensity measurements of the 

released droplet aqueous phase revealed a lower signal for the Cy5-labelled DNA in comparison 

to the 6 FAM-labelled DNA. It demonstrates the selective binding and filtration of the desired 

DNA strand. 
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As can be seen in the fluorescence intensities of the previous experiment the droplet-based 

microfluidic approach for selective release benefits from the large surface-to-volume ratio and 

short diffusion distances that molecules have to pass inside the picoliter volume droplets in 

comparison to bulk methods. To verify this, I performed another control experiment where I 

compared the efficiency of DNA-based filtration in bulk conditions (see Figure 56). For the 

first bulk condition, a DNA-containing aqueous solution, consisting of 2 µM complementary 

Cy5-labeled DNA and non-complementary 6-FAM-labeled DNA was layered on top of a 

surfactant-containing oil phase for 10 minutes (bulk DNA release, blue spectrum). In a second 

condition, the same DNA-containing aqueous solution passed together with a surfactant-

containing oil phase through the microfluidic release device without encapsulation into droplets 

(device DNA release, red spectrum). Both methods should prove the segregation of the 

complementary Cy5-labelled DNA with the cholesterol-tagged DNA from the non-

complementary 6-FAM-labelled DNA at the phase-interface of the DNA solution with the oil-

surfactant-phase. The fluorescence analysis of the control samples in Figure 56 revealed a 

minor reduction of Cy5 intensity in comparison to the same DNA-containing aqueous solution 

prior filtration (pure solution, green spectrum). 

 
Figure 56: Fluorescence spectroscopy reveals the low release efficiency of bulk sorting.  
Left: f luorescence emission of 6-FAM-labelled DNA (not complementary to the 
cholesterol-tagged DNA); Right: f luorescence emission of Cy5-labelled DNA 
(complementary to the cholesterol-tagged DNA). The graph shows a comparison of a 
DNA-containing aqueous solution with 2 µM 6-FAM-labelled DNA, the same amount of  
Cy5-labelled DNA as well as cholesterol-tagged DNA (“pure solution”, green), the same 
DNA-solution after layering it onto an oil-surfactant-phase for 10 minutes (“bulk DNA 
release”, blue) or after passing the release area of the microfluidic device without being 
encapsulated into a droplet (“device DNA release”, red). Adapted and reprinted with 
permission from all authors, Frey et al., ACS Omega (2020) [107]. 
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In comparison to the 6-FAM spectrum the emission for the Cy5 in the “device DNA release” 

and “bulk DNA release” is lower, what is due to the binding of the Cy5-labelled DNA with the 

complementary cholesterol-tagged DNA at phase interface. In all three samples the 

characteristic fluorescence emission spectrum of Cy5 can be detected, unlike after selection 

using DNA-functionalized droplets (see Figure 55). These experiments underscore that the 

enlarged surface-to-volume ratio and lower diffusion distance within the droplets are essential 

for effective content filtration. Concluding, the combination of DNA functionalization with 

electric field-mediated release utilizing a microfluidic device creates a highly efficient method 

for the selective filtration and release of droplet content. 

 

I was able to demonstrate that with the developed microfluidic content release device, by 

applying an electric field it is possible to release at passing frequencies up to more than 190 Hz 

at a success rate of above 95 %. I realized the separation of previously encapsulated suspension 

cells from the surrounding oil phase of the droplets without affecting the cell viability. By 

combining the controllable release function of the microfluidic device with programmable 

DNA functionalization of the inner periphery, it is also possible to filter the aqueous content of 

the droplet. Relying on the sequence-specific and programmable function of the cholesterol-

tagged DNA, a variety of components could be filtered out of the inner aqueous phase of the 

droplets. By linking proteins or aptamers to the DNA, filtered components could range from 

small molecules to macromolecular objects including living cells. 
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4.6 Monitoring of periodically passing water-in-oil droplets by 

fluorescence correlation spectroscopy 

The following description of the reconceptualization of FCS (fluorescence correlation 

spectroscopy) for monitoring and analysing periodically passing objects got published by E. 

Zamir*, C. Frey*. et al., Analytical Chemistry (2017) [184] and can be added into my thesis 

with permission from all authors. Fluorescence correlation spectroscopy (FCS) records the 

intensity fluctuations generated by labelled particles passing through a confocal volume by 

diffusion and flow. The usual sampling rate here is around > 10 MHz. The fundamental analysis 

of FCS data is the auto-correlation function G(t) ─ calculated as the correlation of the recorded 

intensity trace with a delayed copy of itself as a function of the delay, t [209]. Accordingly, the 

interpretations of G(t) relies largely on the assumption that the labelled particles are been 

stochastically displaced due to Brownian motion [210]. Such stochasticity implies that the 

number of molecules in the confocal volume distributes in a Poisson manner among the various 

time points. Since the variance of a Poisson distribution equals to its mean, the concentration 

of the labeled particles can be inferred from the amplitude of the autocorrelation. Additionally, 

the stochastic particles displacement implies that G(t) will decay as a function of t, gradually 

approaching a baseline corresponding to zero correlation (Figure 57 A). The decay of G(t) 

reflects the gradual and independent entry and exit of labelled particles in the observed volume. 

Accordingly, from this decay the mobility mechanism of the particles and its parameters such 

as diffusion and flow speeds can be inferred. By reconceptualization, FCS can be also used for 

measuring non-stochastic systems. One type of non-stochastic displacements is a constant flow 

of equally spaced objects. Such a flow mode is typical in droplet-based microfluidics. The auto-

correlation function, G(t), of the recorded fluorescence intensity fluctuation trace F(t) can be 

written as:  

 𝐺(𝜏) =
[𝛿𝐹(𝑡) ∗ 𝛿𝐹(𝑡 + 𝜏)]

[𝐹(𝑡)]Y + 1  (14) 

 

where 𝛿𝐹(𝑡) = 𝐹(𝑡) − [𝐹(𝑡)] (15) 

 

While the derivation of G(t) from F(t) is a straightforward calculation, the interpretation of 

G(t) depends on the mechanism underlying the fluorescence fluctuations. In the case of droplet 

flow, fluctuations along the intensity trace of the droplet marker, FD(t), are caused mainly by 
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the constant flow of periodically passing droplets (Figure 57 B). This periodicity in FD(t) is 

manifested by oscillations in GD(t). 

 
Figure 57: Fluorescence correlation spectroscopy (FCS) monitoring A) FCS monitoring 
of stochastically passing objects. Autocorrelation curve of labelled particles passing 
through a confocal volume by diffusion and flow. The concentration of the labelled 
particles can be inferred from the amplitude of  the auto-correlation. From the decay of  
the autocorrelation function the diffusion and flow speeds of the passing objects can be 
determined. B) FCS-based monitoring of periodical ly passing droplets. Intensity 
fluctuations of a droplet marker with the associated autocorrelation curve. The amplitude 
of the autocorrelation function indicates changes in the ratio (mean droplets fluorescence 
intensity) / (mean gaps fluorescence intensity). The period indicates the droplet f low rate 
and the damping can give an information about fluctuations in droplets size or speed. 
Adapted and reprinted with permission from all authors, E. Zamir*, C. Frey*. et al., 
Analytical Chemistry (2017)[184].  

  

A B 
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4.6.1 Interpreting the auto-correlation curve of periodically passing 

droplets 

The influence of the periodically passing droplets onto the auto-correlation curve can be 

described as follow. The auto-correlation function, G(t), of the recorded fluorescence intensity 

fluctuation trace F(t) can be written as: G(t)=ádF(t)•dF(t+t)ñ/áF(t)ñ2+1, where dF(t)=F(t)-áF(t)ñ. 

While the derivation of G(t) from F(t) is a straightforward calculation, the interpretation of 

G(t) depends on the mechanism underlying the fluorescence fluctuations. In the case of droplet 

flow, fluctuations along the intensity trace of the droplet marker are caused by the constant flow 

of the periodically passing droplets. This periodicity is manifested by oscillations in GD(t) and 

shown in Figure 58. Three parameters can be identified in the auto-correlation curve G(t).  

 
Figure 58: Autocorrelation curve of passing droplets. From this curve the following 
parameters can be derived: (1) The period of GD(t) oscillations, t f p equals to 1/(droplet  
f low rate), (2) The extent of damping in GD(t) oscillations indicates the variabil ity of  
droplets size or speed, (3) The amplitude of GD(t) can indicate changes in the (mean 
droplets fluorescent intensity) / (mean gaps fluorescent intensity) ratio. Adapted and 
reprinted with permission from all authors, E. Zamir*, C. Frey*. et al., Analytical 
Chemistry (2017) [184]. 

 

1: The t value (tfp), at which GD(t) reaches the first oscillation peak, indicates the average time 

period that is needed for a droplet and its subsequent gap to fully pass the confocal observation 

volume. This means that the period (1/tfp) represents the flow rate of the droplets in the 

microfluidic channel (Figure 58 red marking). 2: In the case of homogenous flowing droplets 

and gaps between the droplets, GD(tfp) should be equal to the amplitude of the autocorrelation 
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curve, GD(0). As 1-GD(tfp)/GD(0), variation in the droplet or gap sizes would cause damping of 

the GD(t) oscillations, by which the damping of the oscillation gives information about 

irregularities in the droplet flow (Figure 58 green marking). 3: With the autocorrelation 

amplitude, GD(0), the droplet intensity can be determined. The mathematical operation for the 

calculation can be found in the Appendix (Interpretation of GD(t) amplitude). Changes in the 

amplitude, provides a possibility to monitor changes in the droplet fluorescence intensity due 

to biological or chemical processes (Figure 58 brown marking). 

4.6.2 Experimental determination of periodically passing droplets 

monitored by FCS 

In the following section, I show the experimental determination for the three described 

parameters. First, I produced droplets containing 2 µM Alexa Fluor 647 at different flow rates 

(see section 3.3.1.3) and measured the production rates by the change in the autocorrelation 

curve. FCS data acquisition of the droplet production flow was performed at a spot after the 

cross junction of the droplet production device. As a control, high-speed camera videos of the 

droplet production with the different inlet flow rates were recorded. Figure 59 A shows 

representative images of these videos. The images show that an increase of the flow rates leads 

to more droplets in the same area and therefore to higher droplet production rates. This could 

be confirmed by the autocorrelation monitoring. The analysis of the recorded intensity traces 

shows that the values of tfp get smaller as the input flow rates increase, hence indicating a higher 

droplet flow rate (Figure 59 B). As a control, the FCS obtained droplet flow rates were 

compared with manually determined production rates from the high-speed camera videos. The 

manually determined production rates are summarized in Table S 8 in the appendix. The 

comparison of both measurements in a scatter plot confirmed the capability of autocorrelation 

analysis (Figure 59 C) as an accurate measure for droplet flow rate. Dashed line indicates the 

line of equality. Error bars indicate the standard deviation (n= 6 and n ≥ 3 for the horizontal and 

vertical axes, respectively). 



  Results and Discussion 

 113 

 
Figure 59: Accurate quantif ication of droplet f low rates by autocorrelation. A) High-speed 
camera images of the droplet generation with the different input flow rates. Scale bar: 30 
µm. B) The autocorrelation, GD(t), curves obtained for different rates of droplet f low. C) 
A scatter plot comparing the quantif ications of droplet f low rates by autocorrelation and 
manually counting. The color-coding matches each data point in (C) with the 
corresponding example of autocorrelation curve in (B). Adapted and reprinted with 
permission from all authors, E. Zamir*, C. Frey*. et al., Analytical Chemistry (2017) [184].  
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Together with my colleague Dr. Eli Zamir we wanted to test the effect of inhomogeneity in the 

droplet flow on the autocorrelation curve GD(t). By high-speed camera imaging we observed 

that cell encapsulation affects the speed of the droplets. At a certain droplet size, encapsulated 

cells can increase the droplet volume and size. By touching the walls of the microfluidic channel 

their velocity decreases and therefore affects the gap size between the following droplet. Figure 

60 A shows representative high-speed camera images of this effect. It turns out that cell 

encapsulation provides an experimental system to induce and measure inhomogeneity in the 

droplet flows. In order to generate flow variability, we added Hoechst-labelled cells into the 

input aqueous phase, leading to encapsulation of cells into the forming droplets (for detailed 

information about the encapsulation see section 3.3.1.3).  

 
Figure 60: Quantifying the variabil ity of droplet passing time by autocorrelation. FD(t) was 
recorded for droplets produced with or without cell encapsulation. A) High-speed camera 
images of droplets generated with or without stochastic encapsulation of cells. Scale bar:  
30 µm. B) Representative autocorrelation curves obtained with or without cel l  
encapsulation. C) A plot showing the mean ± standard deviation of the inferred level of  
periodicity noise. Error bars indicate standard deviation (n ≥ 6). Adapted and reprinted 
with permission from all authors, E. Zamir*, C. Frey*. et al., Analytical Chemistry (2017) 
[184]. 
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To study the effect of induced inhomogeneous droplet flow on GD(t), the density of cells was 

adjusted so that encapsulations were occurring stochastically. As predicted, the damping of 

GD(t) oscillations was found to be much stronger for the droplet production which included 

cells encapsulation (Figure 60 B and C) and therefore proof the assumption that the damping in 

autocorrelation curve indicates inhomogeneities in the droplet flow.  

 

In order to experimentally assess the effects of droplet/gap intensity ratios on the 

autocorrelation curve, we produced droplets containing a concentration of 20 nM and 2 nM 

Alexa 647 and measured the corresponding auto-correlation curve.  

 
Figure 61: The effect of droplets relative fluorescence intensity on their autocorrelation 
curve. A) Droplets were generated under the same flow conditions, with aqueous phase 
containing a f luorescent dye at 20 nM or 2 nM in PBS as indicated. The autocorrelation 
curves GD(t) obtained for each measurement repeat of 10 s (thin lines) and their average 
(n = 3, thick line) are shown. B) Autocorrelation curves and their averages (n = 3) of  
droplets containing PBS alone, or of f lowing PBS without droplets formation (due to lack 
of oil-phase flow into the cross-junction). The applied laser excitation intensity in (B) was 
higher than in (A). Dashed and thick curves correspond to the measurement repeats and 
their mean (n = 3), respectively. Adapted and reprinted with permission from all authors,  
E. Zamir*, C. Frey*. et al., Analytical Chemistry (2017) [184].  
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As expected and shown in Figure 61 A, the results show that for given flow conditions and 

excitation intensity, the autocorrelation amplitude GD(0) decreases as the mean droplets 

intensity decreases. Importantly, the autocorrelation provided an accurate measure of the 

droplet flow rates even if their fluorescence intensity is marginal. Moreover, autocorrelation 

captures the flow of droplets and its rate even if the droplets are unlabelled (Figure 61 B). This 

highly sensitive detection is possible since the auto-correlation integrates the slight periodic 

intensity distortions, due to marginal auto-fluorescence or diffraction/refraction at the oil-water 

interface, as droplets are passing through the observed volume. 

4.6.3 Analysis of the droplet content by FCS data acquisition 

FCS provides fast sampling rates, typically > 10 MHz, in order to captures accurately the 

residence time of diffusing particles in the confocal volume. This provides high spatial 

resolution for resolving signals of encapsulated cells within fast flowing droplets. Figure 62 

shows an example of the intensity fluctuation trace when fluorescence labelled droplets and 

encapsulated cells pass the confocal volume of the FCS data acquisition.  

 
Figure 62: FCS-based monitoring of fast-flowing droplets and their content. A) An 
example of droplet-marker and cell-marker intensity traces recorded for droplets flowing 
at a rate of 17 kHz (for clarity, a 3.5 ms segment from these traces is shown). B) Plots 
of FD(t) and FC(t) along the first 350 µs part of the recorded period shown in (A) binned 
to a temporal resolution of 10 µs or 1 µs. Adapted and reprinted with permission from all  
authors, E. Zamir*, C. Frey*. et al., Analytical Chemistry (2017) [184]. 
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Segmentation of the droplets along FD(t) identifies the start and end of each droplet along the 

trace, hence enables analyzing its content along the corresponding part of the cell-marker 

intensity trace FC(t). The subsequent segmentation of the droplets was done with a customized 

algorithm (see Figure S2 in the Appendix). The algorithm scans the droplet-marker intensity 

trace, FD(t), which lists the total number of photons detected within each time bin (here 1 µs) 

along the recorded period. Encapsulated cells within each flowing droplet can be detected and 

counted by segmenting them along the corresponding FC(t) fragments with a watershed 

algorithm (Figure 63).  

 
Figure 63: Detection of encapsulated cells in flowing droplets. Droplets were produced 
with cell encapsulation at a droplet f low rate of 17 kHz. A) An example of a short interval 
out of the recorded droplet-marker and cell-market intensity traces is shown. B) Examples 
of droplets for which the watershed algorithm identif ied 0, 1, 2 and 3 cells (ordered 
clockwise from top-right). The dashed l ine in all  plots indicates the masks of the droplets 
of the cells as generated by the respective segmentation algorithm. Adapted and 
reprinted with permission from all authors, E. Zamir*, C. Frey*. et al., Analytical 
Chemistry (2017) [184]. 
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Dr. Zamir and me could show that FCS can be effectively applied for the study of periodically 

passing objects. For this we reconfigured the manner by which the autocorrelation is analysed. 

By doing so we were able to use the FCS data acquisition to monitor the microfluidic production 

of water-in-oil droplets and their content. We showed that, in contrast to segmentation-based 

methods, auto-correlation can monitor and quantify ultrafast droplet flow rates accurately, even 

with very faint fluorescence signals. Additionally, FCS monitors heterogeneity among 

sequentially passing droplets, at high temporal resolution and sensitivity.  
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4.7 Label-free monitoring and manipulation of water-in-oil 

droplets 

Droplet-based microfluidic technology offers several benefits: the integration of multiple 

functional units into a single chip, manual intervention possibilities, minimal sample 

consumption and increased analysis speed and data precision. The observation and evaluation 

of these high throughput technology requires a powerful and easy to use method for the real-

time analysis of passing water-in-oil droplets. Towards this end, I developed in cooperation 

with a research group of Ulm University a sensitive optical device for the label-free observation, 

characterization and active manipulation of passing droplets. The characterization is based on 

the real-time analysis of taken bright-field images were only necessary information gets 

extracted from the images by smart algorithms (developed by my colleagues from Ulm 

University). This extraction reduces the data amount and allows real-time image analysis with 

ultra-short and fixed latency (less than 200 µs) of only a few microseconds at frame rates of 

more than 10 000 fps over unlimited time ranges (A detailed description of the working 

principle can be found in section 3.4.5).  

 

In the following section I will show the potential and the application possibilities of the 

developed optical device. I determined the sensitivity and error rate of the device by analysing 

the droplet production rate, droplet size, and distance between droplets and comparing the 

values to manually analysed high-speed camera videos. Moreover, I employed the developed 

device for label-free droplet content analysis, including the distinction between empty and cell-

loaded droplets. Furthermore, I demonstrate the ability of direct droplet manipulation through 

the optical device. If a droplet with previous selected physical parameters passes the region of 

interest (ROI), the device sends out a trigger signal. This signal can be used to activate an 

electric field in the microfluidic device via a function generator. Note that the following results 

were submitted and accepted in the journal VIEW and can be added into my thesis with 

permission from all authors, C. Frey *, J. Pfeil *. 

4.7.1 Validation of the optical device 

To validate the functionality and sensitivity of the developed optical device I analyzed droplet 

production parameters under different flow rates and compared the online measured results of 

the device with manually analyzed high-speed camera videos of the same experiment. Figure 

64 A representative bright-field images of the droplet production with different injection flow 

rates. Comparing the lowest rate (100 µl/hr for the aqueous-phase, 200 µl/hr for the oil-phase, 
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blue outlined) with the highest (250 µl/hr for the aqueous-phase, 500 µl/hr for the oil-phase, 

violet outlined) shows, that an increase of the flow leads to more droplets in the same area and 

therefore to higher droplet production rates. Additionally, the size (length of the squeezed 

droplet in the microfluidic channel) and the distance between the droplets decreases (More 

detailed bright-field images are provided in Figure S 3 in the Appendix). 

 
Figure 64: Quantif ication of different droplet production parameters. a) Representative 
bright-field images obtained with the optical device show droplets produced at different  
oil and aqueous flow rates. The corresponding oil and aqueous flow rates can be found 
in the image and the plot markers for the scatter plots are shown to the left of each image. 
Increase of the flow leads to more droplets in the same area and therefore to higher 
droplet production rates. Additionally, the length and the distance to each other 
decreases. Scale bar: 30 µm. B), C), and D) Show scatter plots of the quantif ication of  
droplet production rates, droplet size, and the distance between consecutive droplets 
obtained by optical device measurements as well as manual droplet counting from high-
speed camera videos at the different f low rates. Mean values and their standard deviat ion 
for the droplet production parameters are given. Modified and reprinted with permission 
from the authors, Frey et al, submitted and accepted, VIEW (2020).  
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Bright-field signals of each flow rate were detected online with the optical device, to determine 

the different droplet production rates, droplet sizes and the changes in the distance to each other. 

The results of the measurements are compared with the manually evaluated results of the high-

speed camera videos. Figure 64 B shows the results of the different droplet production rates. 

For the highest flow rates, the production rate obtained with the optical device was 1740 Hz 

similar to the 1756 Hz of the manually counted ones. The measured values for the production 

rate of the other flow rates was 694 Hz and 694 Hz for the second highest, 285 Hz and 277 Hz 

for the third highest and 193 Hz and 194 Hz for the lowest. Also, the compared data for different 

droplet lengths in Figure 64 C showing no significant difference between the two methods. For 

example, at the highest tested flow rates the optical device measured droplet length was 46.9 ± 

0.8 µm and 46.8 ± 0.8 µm for the manually measured. The highest deviation between both 

methods is at the lowest flow rate where the optical device measured length of 142.4 ± 2.7 µm 

shows a difference of 3.4 µm (2.4%) in comparison to the manually measured length (139.0 ± 

1.0 µm). In contrast to this, showed the measured values of the droplet population densities (in 

other words, the space between droplets) the biggest difference at the highest flow rate. (Figure 

64 D). The measured droplet space by the optical device and manual measurements were 40.2 

± 0.8 and 51.3 ± 2.0 µm, respectively. For detailed information about the data and number of 

analyzed droplets see Table S 9 (Appendix). The differences between the manually counted 

and automatically determined values can be attributed to flow instabilities in the experiment. 

Figure 65 shows the spectrogram of the SSD signal during the measurement with the highest 

flow rates and visualizes instabilities of the flow in the microfludic device during the droplet 

production. 

 
Figure 65: Spectrogram of the droplet production rate over a measurement time of 5 
seconds obtained with the optical device: It shows the instabilit ies of the flow in the 
droplet production device and highl ights the sensitivity of the optical device. Modified 
and reprinted with permission from the authors, Frey et al, submitted and accepted, VIEW 
(2020).  
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The main peak (attributed to the droplet production frequency) varies by about 50 droplets per 

second over the measurement time. These variations are caused by combined effects of all 

elastic elements in the microfluidic system, friction in mechanical components, and instabilities 

of the pumps. This explains the relatively large error bars for the automatic frequency counting 

since it is averaged over the complete measurement time including 9233 droplets while for 

manual counting only 50 droplets were considered. This continuous quality monitoring of 

microfluidic systems is not possible with conventional techniques within reasonable time and 

opens a wide range of applications for the here presented system. 

 

Summarized, the results of the droplet production parameters obtained with the optical device 

matched well with those obtained from the manual counted high-speed camera videos. It proves 

the reliability and high sensitivity of the optical device for real-time analysis of droplet-based 

microfluidic processes. 

4.7.2 Analysis of the water-in-oil droplet content 

The produced water-in-oil droplets form self-contained, stable microcompartments which are 

suitable for single-cell assays to study gene expression or to test immunological approaches. 

By the transparency of the emulsion it is possible to image previously encapsulated cells in the 

droplets with bright-field microscopy. This condition opens the possibility for real-time 

analysis of the droplet content with the developed optical device. In particular, I aimed to 

determine the percentage of droplets containing cells, the exact number of encapsulated cells 

and, if possible, their conditions. The simplest method to determine the content of a droplet 

with the optical device is shown in Figure 66, where the summed squared difference (SSD) 

between the image and the background is plotted over the measurement time. The Figure 

represents a cut-out of the real-time monitoring of passing water-in-oil droplets, in which some 

of them include encapsulated CHO suspension cells and some are empty. Each droplet passing 

the ROI leads to a significant increase in the SSD signal. The height of the peak indicates the 

amount of brightness in the captured and processed bright-field image. Because cells appear as 

bright spots in bright-field images, droplets containing cells have higher peaks in comparison 

to empty droplets. The SSD signal strength not only depends on the droplet content, it can be 

also influenced by variations in the droplet size and the optical properties of the encapsulated 

cells. 
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Figure 66: Determination of the droplet content: Signal of the summed squared difference 
(SSD) over the measurement time of passing water-in-oi l droplets. Insets show the 
corresponding images of cell- laden droplets. Droplets containing a cell show a higher 
signal than empty droplets. Modified and reprinted with permission from the authors, Frey 
et al, submitted and accepted, VIEW (2020). 

 

To visualize the influence of those variations, I plotted the SSD signal together with the 

obtained binarized size, which is mostly insensitive to the optical contrast. By doing so, the 

parameter range for droplets containing a cell can be clearly distinguished (Figure 67). It has to 

be mentioned that for more complex detection tasks, the single calculation values can be 

flexible combined with each other. Empty droplets and droplets containing a cell are marked as 

blue spots and green crosses, respectively. The insets show the corresponding images, 

demonstrating that a very large SSD and a large binarized size corresponds either to multiple 

cells in a single droplet or to a cell with comparably large contrast. On the other hand, a very 

low SSD and a large binarized size correspond to a big cell or an image with low optical 

contrast, which could, for example, correspond to a cell that lost membrane integrity due to 

apoptosis. During the online monitoring and analysis, a physical parameter space (threshold, 

yellow polygon) can be adjusted into the plot, to select a specific droplet population.  
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Figure 67: Determination of the droplet content: Scatterplot of the SSD signal with the 
binarized size of measured passing droplets. Blue spots visualize the binar ized size and 
associated SSD signal of empty droplets. Green crosses indicate the same parameters 
for droplets containing cells. The marked polygon visualizes droplets that are of interest  
for further manipulation, e. g., label-free droplet sorting based on their content. Modified 
and reprinted with permission from the authors, Frey et al, submitted and accepted, VIEW 
(2020).  

 

The selected parameter space can be used for the active droplet manipulation by triggering 

electric fields in the microfluidic device via a function generator. For example, a label-free 

droplet sorting can be achieved by triggering the required dielectrophoretic forces only when a 

drop with the specific pre-selected parameters (yellow polygon in Figure 67) is detected in the 

ROI. It is important to mention that there is complete flexibility in choosing the polygon area 

(i.e., parameter space of SSD and binarized size thresholds) and the chosen values of the sorting 

parameters can be optimized during the real-time sorting process. In the following section I 

want to describe the label-free droplet sorting as an example for a controlled droplet 

manipulation, triggered by the developed optical device. 

4.7.3 Label-free sorting of water-in-oil droplets 

Droplet sorting enables the possibility to identify and select rare events among large droplet 

populations and finds application in cell and microorganism screening [46, 143]. Most of these 

sorting techniques are based on fluorescence labelling of the droplets content. The fluorescent 

dyes can influence the cell behaviour, thereby it can be from advantage if the cells are sorted in 
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their native, pure state. Therefore, I used the developed optical device with its ability to 

manipulate selected species by generating a trigger signal, for real-time and label-free droplet 

sorting. Figure 68 shows a schematic sketch of the experimental setup for the label-free droplet 

sorting with the optical device. 

 
Figure 68: Experimental setup for label-free droplets analysis, triggering and droplet  
sorting with the developed optical device: The previously produced droplets and 
separation oil were injected into the microfluidic device via the flow controller. To observe 
the passing droplets, the sensor is installed into the light path of a microscope in which 
the light path gets spl it 50/50. One part is directed towards the sensor and further 
processed, the other part is directed towards a high-speed camera for standard 
confirmation of the working operation of the sensor. The sensor evaluates the signal and 
analyses the parameters in real-time. According to the desired droplet parameters, a 
trigger signal is sent to the function generator where it gets converted and amplif ied. The 
amplif ier is connected to the sorting electrodes in the microfluidic device. If a droplet of  
interest passes the ROI, the optical device sends out the trigger which then leads to an 
automatical ly sorting of the droplet by dielectrophoret ic forces. Modified and reprinted 
with permission from the authors, Frey et al, submitted and accepted, VIEW (2020).  

 

To demonstrate the capabilities of the optical device for label-free, cell-laden droplet sorting, I 

prepared a droplet mixture consisting of empty and cell-laden droplets. The mixture was 

injected into microfluidic sorting device I (see section 3.3.3.1) and the cell-laden droplets were 

separated from the empty ones by triggering dielectrophoretic forces onto the passing droplets. 

Figure 69 shows representative bright-field images of the cell-laden sorting process and a 

calculation of the relative concentration before and after sorting. In Figure 69 A, a cell-laden 

droplet passes the ROI (yellow rectangle) in the sorting area of the device. The optical device 

recognizes the cell in the droplet and triggers the electric field, based on the previous determined 

selection criteria (see Figure 67). The induced dielectrophoretic forces pull the droplet into the 

narrow “sorted outlet channel”. If an empty droplet passes the ROI, the optical device is not 
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triggering the electric field and the droplet exit the sorting device through the “unsorted outlet 

channel” (Figure 69 B). An additional high-speed camera was used to simultaneously monitor 

both output channels and to control the correctness of the sorting process. In addition, with the 

recorded high-speed camera videos the sorting efficiency (number of sorted droplets) and 

sorting frequency (number of droplets passing through the sorting area of the device in a certain 

time window) got determined.  

 
Figure 69: Real-time and label-free droplet sorting of cell-laden and empty droplets with 
the developed optical device. A) The cell-laden droplet passes the ROI, where the optical 
device recognizes the cel l and activates the electrodes. The dielectrophoretic forces pull  
the cell- laden droplet into the direction of the narrow “sorted outlet channel”. B) The 
empty droplet passes the ROI and the optical device leaves the electrical f ield switched 
off. The empty droplet exits the sorting device through the “unsorted outlet channel”. C) 
Relative concentration of empty and cell- laden droplets before passing the sorting area 
of the device and after sorting at the corresponding outlet channels. Scale bars: 50 µm. 
Modified and reprinted with permission from the authors, Frey et al, submitted and 
accepted, VIEW (2020). 

 

The measured sorting frequency for the applied inlet pressure rates was 131 Hz, which means 

that 131 droplets per second got separated from each other. The relative concentrations of the 

corresponding droplet populations are shown in Figure 69 C. A total of 370 droplets were 

evaluated, of which 70 were cell-laden (19 %) and 300 were empty droplets (81 %). A number 

of 58 droplets has been sorted into the “sorted outlet channel” and all of them contained a cell. 

This corresponds to an enrichment of the cell-laden droplet concentration to 100% and a false 

positive sorting rate of 0 % at the “sorted outlet channel”. A total of 312 droplets passed the 

channel without getting forced into the narrow channel and exit the sorting area through the 

“unsorted outlet channel”. Detailed analysis of these unsorted droplets revealed that 300 (96 %) 

of these were empty, which is equivalent to a false negative rate of 4 %. When comparing the 

amount of false negative sorted droplets with the results of the determination of the efficiency 

sorted outlet ch
ann

el

unsorted outlet channel

sorted outlet ch
ann

el

unsorted outlet channel

drop.: 145 mbar, oil: 180 mbar 

A cell-laden droplet passes the sorting area of the device
active electric field (900 V / 4 kHz), triggered by the optical device

drop.: 145 mbar, oil: 180 mbar 

B empty droplet passes the sorting area of the device
no electric field, triggered by the optical device

C relative concentration before and after 
sorting at the corresponding outlet channel

ROI

ROI



  Results and Discussion 

 127 

of the sorting device I in section 4.4.1, it gets clear that the reason for the false negative sorted 

droplets is not the optical device, it is related to the device geometry and its sorting efficiency 

under high inlet pressure rates. 

 

The trigger of fluorescence activated droplet sorting depends on the presence of a fluorescence 

signal from the stained cells in the inner aqueous phase of the droplets. In the developed label-

free image-based method I can distinguish between the droplet sizes by the difference in the 

emitted bright-field intensity of the droplets. To demonstrate the flexibility of the developed 

optical device for active droplet manipulation based on different detection parameters, I show 

label-free sorting of small droplets from large droplets. Towards this end, a droplet mixture 

containing 45 % small (35 µm in diameter) and 55 % large droplets (42 µm in diameter) was 

injected into the sorting device and triggered utilizing the developed optical device. Figure 70 

shows a cut-out of the real-time monitoring of passing water-in-oil droplets, with two different 

sizes. The summed squared difference (SSD) between the image and the background is plotted 

over the measurement time. 

 
Figure 70: Signal of the summed squared difference (SSD) over the measurement time 
of small (35 µm) and large (42 µm) passing water-in-oi l droplets. Insets show the 
corresponding images of different sized droplets. The SSD signal of the large droplets is 
marginally higher than the signal for the small droplets. The high peaks mark multiple 
droplets inside the microfluidic channel. Modified and reprinted with permission from the 
authors, Frey et al, submitted and accepted, VIEW (2020).  
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The SSD signal shows only little difference between the different sized droplets. Higher peaks 

are related to multiple droplets within the ROI while the small and large droplets show very 

similar peak heights. A better distinction between the small and large droplet size was achieved 

using the length and size of the binarized image of the droplet. The parameters (yellow polygon 

in Figure 71) were selected to trigger the electrodes each time a small droplet passes the ROI.  

 
Figure 71: Determination of different sized droplets: Scatterplot of the the binarized size 
with the width of the binarized droplets. The yellow polygon shows the selection 
parameters for triggering the electrodes and therefore sorting droplets which only match 
to the selected parameters. Clearly visible are the two populations and a few outl iers 
(mostly consisting of multiple droplet clusters). The inset, marked by the green out line,  
shows the lower images after background subtraction and mark-up to show the size 
difference. Modified and reprinted with permission from the authors, Frey et al, submitted 
and accepted, VIEW (2020).  

 

Figure 72 A and B shows representative bright-field images of the size related sorting process 

and a calculation of the relative concentration before and after sorting for the corresponding 

outlet channel. In Figure 72 A. a small droplet passes the ROI (yellow rectangle) in the sorting 

area of the device. Based on the previous determined selection criteria, the optical device 

recognizes the small droplet and triggers the electric field. The dielectrophoretic forces pull the 

droplet into the narrow “sorted outlet channel”. The optical device also recognizes when a large 

droplet passes the ROI and therefore leaves the electrical field switched off. The droplet gets 

not affected and exit the sorting area through the “unsorted outlet channel” (Figure 72 B). An 

additional high-speed camera was used to simultaneously monitor both output channels and to 
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control the correctness of the sorting process. In addition, with the recorded high-speed camera 

videos the sorting efficiency (number of sorted droplets) and sorting frequency (number of 

droplets passing through the sorting area of the device in a certain time window) got determined.  

 
Figure 72: Real-time and label-free droplet sorting of small and large droplets with the 
developed optical device. A) A small droplet passes the ROI, in which the optical device 
recognizes the difference in size and activates the electrodes. The dielectrophoret ic 
forces pull the small droplet into the direction of the narrow “sorted outlet channel”. B) 
The large droplet passes the ROI where the optical device recognizes the difference in 
the size and leaves the electrical f ield switched off. Therefore, the large droplet exits the 
sorting device through the “unsorted out let channel”. C) Relative concentration of empty 
and cell- laden droplets before passing the sorting area of the device and after the sorting 
at the corresponding outlet channels. Scale bars: 50 µm. Modified and reprinted with 
permission from the authors, Frey et al, submitted and accepted, VIEW (2020). 

 

The measured sorting frequency for the applied inlet pressure rates was 118 Hz. The relative 

concentrations of the corresponding droplet populations are shown in Figure 72 C. A total of 

624 droplets were traced manually, of which 283 were small (45 %) and 341 were large droplets 

(55 %). 265 droplets have been sorted into the “sorted outlet channel”. From these droplets, 263 

have been small droplets (99 %) which corresponds to a false positive sorting rate of 1 % at the 

“sorted outlet channel”. A total of 359 droplets passed the channel without getting forced into 

the narrow channel and exit the sorting area through the “unsorted outlet channel”. Detailed 

analysis of these unsorted droplets revealed that 339 (94 %) of them were large droplets and 

the remaining 20 droplets small, which is equivalent to a false negative rate of 6 %. 

 

The geometry in the sorting area of the microfluidic device is a reason for the false sorted 

droplets. Optimizations in the channel width and arrangement can improve that and also rise 

the sorting rate of the device. The developed “sorting device III“ section 4.4.3 could help to 

improve the sorting efficiency. A brief look at the selected parameter space in Figure 67 and 
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Figure 71 reveals that the sorting efficiency could be easily improved by choosing a more 

precise parameter space. For further experiments the polygon can be adjusted such that only 

droplets with exactly one cell are sorted or apoptotic cells are neglected.  

 

With the developed optical device, I could show the label-free observation, characterization and 

active manipulation of passing water-in-oil droplets in real-time. In the first step, I validated 

the functionality and sensitivity of the device by measuring different droplet production 

parameters and compared them with manually measured results from high-speed camera videos 

of the same experiment. The results of the real-time measurements with the optical device 

matched well with the results obtained from high-speed camera videos and thus proves the right 

functioning of the developed optical device. Moreover, I showed the ability of the developed 

optical device for label-free droplet content monitoring by distinguishing between empty and 

cell-laden droplets. The analysis of the obtained data allowed me to define droplet parameters 

that can be selected as a trigger for further manipulation of specific droplets populations. I 

defined a parameter space for a very efficient label-free droplet sorting of a mixture from empty 

and cell-laden droplets. 96.15 % of the cell-laden droplets were successfully separated from the 

empty droplets at a sorting frequency of 131 droplets per second. Additionally, to assess the 

flexibility of the developed optical device for droplets sorting based on different droplets 

parameters I applied the optical device to trigger size-dependent droplet sorting. Towards this 

end, droplets with a diameter of 35 µm were separated from 42 µm sized droplets at a frequency 

of 118 droplets per second. The obtained separated populations had 99.25 % and 94.42 % purity 

for small and big droplets, respectively.  
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5 Summary and Outlook 

5.1 Summary 

The structure of this thesis is divided into two experimental parts. The first part explains the 

optimization and development of several microfluidic functional units for manipulating 

surfactant-stabilized water-in-oil droplets. In this part of the thesis I aimed to achieve an 

improved performance of several droplet manipulation units by optimizations based on physical 

principles of microfluidics. In the second part I showed the development of two novel 

techniques for the real-time observation and analysis of passing droplets.  

 

First, I started with the optimization of the droplets production device (see section 4.1). Since 

faster droplet production rates are highly desirable for diverse high-throughput assays, I varied 

the contact angles (90 °, 75 ° and 60 °) between the aqueous channel and the oil channels at the 

flow focusing junction of the device to achieve an increase in the droplet production rate. 

Testing several liquid inlet flow rates has shown that a sharper contact angle between the 

aqueous channel and the oil channels increases the shear forces that cut off the droplets. Thus, 

leads to faster production rates with smaller droplet diameters. For the highest tested flow rate 

the production rate at the different contact angles were 12.3 kHz for the 90 ° device, 14.5 kHz 

for the 75 ° device and 19.7 kHz for the 60 ° device with an average droplet size of 33.0 µm, 

29.9 µm and 27.2 µm, respectively. By decreasing the nozzle width, the production rate could 

be even more increased and reducing the droplet diameter at the same time.  

 

Second, I optimized the droplet injection device that finds application in various biomedical 

and synthetic biology applications. By applying an electric field, it is possible to destabilize 

preformed water-in-oil droplets and inject components into them. Using that technique, I was 

able to inject magnetic beads into droplets and moved them through the inner aqueous phase 

by an external magnetic field without affecting the stability of the droplet (see section 4.2). 

Furthermore, I designed and optimized a microfluidic device for the droplet injection by 

mechanical deformation. I could show that with the right surfactant concentration and geometry 

in the microfluidic device it is possible to inject passing droplets without using an electric field 

to destabilize their protecting surfactant layer. Moving the droplets through a constriction in the 

microfluidic channel leads to their elongation and ruptures pores into the stabilizing surfactant 

layer. Several surfactant concentrations and channel geometries were tested to increase the 

injection efficiency. It could be shown that higher inlet pressure rates increase the deformation 



  Summary and Outlook 

 134 

of the droplet by the acceleration in the constriction. This process was enhanced by increasing 

the size difference between the main channel and the constriction so that it was possible to reach 

injection rates of up to 92% in the absence of an electric field (see section 4.3). 

 

Droplet based microfluidic technology, with its remarkable high throughput, requires fast 

droplet sorting devices, since fast sorters can screen bigger numbers of droplets and therefore 

analyze more selected events. I designed and optimized a droplet sorting device to achieve a 

better sorting rate regarding the correct deflection of the droplets under high passing 

frequencies. Dielectrophoretic forces allows droplet movement against laminar flow conditions 

in microfluidic channels and can be used for droplet sorting by moving selected species into a 

certain channel. The experiments with different geometries and changing inlet pressure rates 

have shown that higher electrical fields lead to higher dielectrophoretic forces and therefore to 

better deflection of the droplets into the narrow “sorted outlet channel” (see section 4.4.1). It 

has been shown that the geometry in the microfluidic device plays an important role for a high 

sorting efficiency. Using an appropriate channel geometry, it is possible to ensure that the 

droplet exits through the correct channel depending on the presence or absence of an electrical 

field. With my latest droplet sorting device, the highest sorting frequency I could use with an 

acceptable droplet deflection, was 276 Hz. With active electrodes, 92 % of the droplets exit the 

sorting device through the “sorted outlet channel” and without electric field 100 % of the 

droplets exit through the “unsorted outlet channel” (see section 4.4.3). 

 

In some processes it can be of advantage to release the content of individually selected droplets. 

For example, any toxic factors produced by the cell have to be removed from the droplet before 

the concentration reaches a growth-limiting or cell-death-inducing level. Based on the 

electrocoalescence which has mainly been used to fuse droplets with each other, I developed a 

microfluidic device for the controlled and selective release of the inner droplet aqueous phase 

into a continuous aqueous phase and its separation from the droplet surrounding oil phase. I 

could show that with the developed microfluidic device it is possible to release at droplet 

passing frequencies up to more than 190 Hz at a success rate of above 95 % (see section 4.5.1). 

I realized the separation of previously encapsulated suspension cells from the surrounding oil 

phase of the droplets without affecting the cell viability (see section 4.5.2). By combining the 

controllable release function of the microfluidic device with programmable DNA 

functionalization of the inner periphery, it is also possible to filter the aqueous content of the 

droplet. By doing so, I was able to chemically filtrate a complementary DNA strand 
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(fluorescence labeled with Cy5) out of a DNA mixture that has been encapsulated within the 

water-in-oil droplets (see section 4.5.3). The diverse toolbox for chemical functionalization 

available for DNA in principle allows for the filtration of any molecule or component which 

can be linked to DNA. I could also show that the large surface area of the microfluidic droplets 

leads to a high separation efficiency compared to bulk approaches. Relying on the sequence-

specific and programmable function of the cholesterol-tagged DNA, a variety of components 

could be filtered out of the inner aqueous phase of the droplets  

 

In the second part of my thesis I deal with the development of techniques for the real-time 

analysis of passing water-in-oil droplets. In the first approach I could show that fluorescence 

correlation spectroscopy (FCS) can be reconfigured to study periodically passing droplets. I 

was able to use the FCS data acquisition to monitor the microfluidic production of droplets at 

flow rates ranging from 3.5 kHz to 18.5 kHz. Furthermore, by analysing the changes in the 

autocorrelation curve droplets with encapsulated cells could be identified from empty droplets. 

I showed that, in contrast to segmentation-based methods, auto-correlation can monitor and 

quantify ultrafast droplet flow rates accurately, even with very faint fluorescence signals. 

Additionally, FCS monitors heterogeneity among sequentially passing droplets, at high 

temporal resolution and sensitivity (see section 4.6).  

 

The other analysis technique is based on the real time analysis of bright-field images, from 

which the required information is extracted by smart algorithms leading to short latencies. By 

doing so, I achieved the label-free observation, characterization and active manipulation of 

passing water-in-oil droplets. In the first step, I validated the functionality and sensitivity of the 

optical device by measuring different droplet production parameters and comparing them with 

manually measured results from high-speed camera videos of the same experiment (see section 

4.7.1). The results of both methods matched well and thus prove that the developed optical 

device works as designed. The maximum achievable analysis rate of the optical device is 10 

000 Hz. Moreover, I showed the possibility to use the developed optical sensor for label-free 

droplet content monitoring by distinguishing between empty and cell-laden droplets (see 

section 4.7.2). The analysis of the obtained data allowed for the definition of droplet parameters 

that can be selected as a trigger for further manipulation of specific droplets populations. By 

triggering electrodes with the optical device, I showed very efficient label-free sorting of cell-

laden droplets. I demonstrated that 96 % of the cell-laden droplets were successfully sorted at 

a frequency of 131 droplets per second. To additionally assess the flexibility of the developed 
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optical device for droplet sorting based on different droplet parameters, I employed the optical 

device to trigger size-dependent droplet sorting. Towards this end, droplets with a diameter of 

35 µm were separated from those 42 µm in size at a frequency of 118 droplets per second. The 

obtained separated populations had 99 % and 94 % purity for small and big droplets, 

respectively (see section 4.7.3). 

 

In summary I developed and modified different functional units for the controlled manipulation 

of surfactant stabilized water-in-oil droplets. Furthermore, I could show two methods for the 

online detection of passing droplets and their contents. With the developed optical device, it is 

even possible to trigger the controlled manipulation of specific droplet populations, like 

droplets containing encapsulated cells.  
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5.2 Outlook 

In this section I will discuss further optimization steps for a better performance of the developed 

functional units and the possibility of combining them onto one single microfluidic chip for the 

automation of an entire assay. I will also provide a vision for possible future directions and 

applications of the designed on-chip functions. 

 

Droplet injection device. As already mentioned, the mechanical injection device (see Section 

4.3) still has to be optimized to ensure a high and robust injection efficiency. Furthermore, it 

should be also possible to inject droplets with higher surfactant concentrations. I already 

designed another mechanical deformation-mediated injection device (For detailed information 

about the design see section 3.3.2.2) which still has to be tested. In this design the injection 

nozzle was modified to ensure that the injection liquid gets in contact with the passing droplet 

due to the geometry at the injection nozzle. Furthermore, the length of the constriction was 

increased and the main channel after the constriction opens more smoothly. Due to the Venturi 

effect the inner pressure in the constriction is low and increases with increasing channel width. 

At the same time with rising inner pressure the velocity decreases. The idea is to decrease the 

acceleration and elongation of the droplet after the constriction more slowly to keep the pores 

in the surfactant layer longer open. Additionally, a side channel was implemented in one of the 

designs as a kind of pressure stabilizer for the injection nozzle regulating the Laplace pressure 

fluctuations and therefore to avoid the production of secondary droplets at the injection nozzle.  

 

Droplet sorting device. To achieve a higher sorting efficiency of the sorting device (see 

Section 4.4), i.e. higher sorting frequencies with a robust deflection of the droplets into the 

correct outlet channel, the current microfluidic device (droplet sorting device III) could be 

easily modified. On the one hand, the channel dimensions could be modified, enlarging the 

width of the main channel of the sorting area while decreasing the channel width of the “sorted 

outlet channel”. This could solve one of the main problems encountered in the experiments, 

namely that without electric field and under higher inlet pressures some of the droplets exit 

through the “sorted outlet channel” instead of the “unsorted outlet channel”. Due to the increase 

of the hydraulic resistance by reducing the channel dimensions, the passing droplet will move 

more easily into the “unsorted outlet channel”. Therefore, higher inlet pressure rates could be 

employed without loss of sorting accuracy. On the other hand, the geometry and arrangement 

of the electrodes could be changed, to generate a better dielectrophoretic force onto the droplet 

and therefore deflect them more easily.  
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Droplet content release device. The possibility of the controlled release of the droplet content 

by the cholesterol-tagged DNA functionalization could be investigated in more detail (see 

Section 4.5). Relying on the sequence-specific and programmable functionalization of the 

complementary DNA binding to the cholesterol-tagged DNA, a variety of components could 

be separated from the inner aqueous phase of the droplets. By linking proteins or aptamers to 

the DNA, separated components could range from small molecules to macromolecular objects 

including living cells. This is groundbreaking for droplet-based microfluidics, as secondary 

products of chemical reactions or contaminants could be easily removed from the aqueous 

phase. Furthermore, the binding to the inner droplet periphery could be detected by the 

developed optical device, which could trigger the electrodes only for specific bindings. 

 

Label-free monitoring and manipulation of droplets. The efficiency of the droplet sorting 

depends not only on the microfluidic device. It is also related to the optical detection and the 

duration of the readout. With the developed optical sensor, the maximum achievable analysis 

rate is 10 000 Hz which leads to a sorting capacity of more than 3000 droplets per second (when 

considering that for the analysis of the passing droplet three images have to be taken and 

analyzed by the algorithm). Besides the demonstrated droplet sorting, the developed optical 

device can be also used to trigger electrodes for other functional manipulation units. For 

example, the introduced droplet injection device (see section 4.2) or the content release device 

(see section 4.5) could be triggered by the optical sensor. By doing so it would be possible to 

only inject or release droplets which contain cells. In further experiments it could be tested if it 

is possible to distinguish between different encapsulated cell types by analyzing the change in 

the brightfield signal of differently sized or shaped cells. It would be possible to only 

manipulate selected cell species in the droplets. A combinatorial approach between 

fluorescence and brightfield detection of encapsulated objects by the optical device would open 

even more possibilities and will pave the way for hitherto impossible approaches towards 

droplet-based screening for fundamental studies and clinical high-value applications. Another 

technique which could be interesting to implement is the online control of the liquid injection 

pumps. By online measuring of the droplet size the pumps could be automatically regulate their 

flow rates and therefore control the droplet diameter and the production rate.  
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Automation of a multi-purpose lab-on-a chip device. Control over the droplet production 

and flow is the last step towards a real multi-purpose lab-on-a-chip device that is able to contain 

an entire process requiring active surveillance. Figure 73 shows an explorative first design of 

such a multi-purpose lab-on-a-chip device with several functional units. It could be employed 

for cell-based drug screening assays as follows: In a first step (Figure 73 A) the encapsulation 

of cells into droplets is monitored online with the optical device (see Section xx). Based on the 

desired droplet production parameters the inlet pressures at the microfluidic pumps can be 

automatically adjusted via a feedback loop. For studying the effect of specific substances on 

the cells in the droplets, a treatment drug is introduced in a controlled manner by the droplet 

injection unit (Figure 73 BI and BII). The injected volume could be monitored and actively 

controlled with the optical device. Afterwards the droplets can be incubated in the 

corresponding device and the effect of the drug onto the cell could be observed over a long time 

period (Figure 73 C). Cells which show a response on the treatment could be separated from 

the non-effected cells via droplet sorting. The sorting is controlled with the optical device where 

specific sorting parameters can be defined (Figure 73 D). In the last step the cells in the droplets 

can be released and separated from the surrounding oil phase in controlled conditions with the 

developed content release device (Figure 73 E).  

 

All in all, the integration of the developed on-chip systems into automated screening platforms 

is the obvious next step. Such an approach has the potential to be a game changer in 

pharmaceutical and medical research as well as in basic biological research. 

 



  Summary and Outlook 

 140 

 
Figure 73: Construction of a multi-purpose lab-on-a-chip device with several functional 
units for the automation of an entire assay. Oil phases are injected through the inlets 
marked in red and aqueous phases through the inlets marked in blue. A) Cells are 
encapsulated into the water- in-oil droplets at a microfluidic flow-focusing junction. BI,  
BII) A drug can be injected into the cell containing droplet, either by applying an electric 
field or through mechanical deformation. C) The treated droplet is incubated and the 
interaction with the drug can be monitored optically. D) Cell  containing droplets of interest  
can be separated from the others by the droplet sorting device. E) The encapsulated cells 
are released into a continuous aqueous phase and separated from the droplet  
surrounding oil phase. They can be cultured for further experiments. All manipulat ion 
steps can be imaged and controlled with the developed optical sensor. 
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6 Appendix 

6.1 Supplementary Figures and Tables 

 
Figure S 1: Bright-field images of droplets produced at two different flow rates and three 
different connection angles between the aqueous and oil  channels in the device. Droplet  
production with different connection angles between the aqueous and oi l channels at two 
different flow rates. AI) connection angle of 90 °, f low rates of 200 µl / hr for the aqueous- 
and 400 µl/hr for the oil phase. AII) connection angle of 90 °, f low rates of 1000 µl/hr for 
the aqueous- and 3000 µl/hr for the oil phase. BI) connection angle of 75 °, f low rates of 
200 µl / hr for the aqueous- and 400 µl/hr for the oi l phase. BII) connection angle of 75 
°, f low rates of 1000 µl/hr for the aqueous- and 3000 µl/hr for the oil phase. CI) connection 
angle of 60 °, f low rates of 200 µl / hr for the aqueous- and 400 µl/hr for the oi l phase. C 
II) connection angle of 60 °, f low rates of 1000 µl/hr for the aqueous- and 3000 µl/hr for 
the oil phase. The scale bars are 100 µm. 
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Table S 1: Droplet production rate and size at different flow rates with changing 
connection angles in the microfluidic devices. For the production rate one video with 20 
sequent ial droplets for each flow rate was analyzed. For determining the droplet size of  
each flow rate, the diameter of 20 collected droplets were measured. Mean values and 
their standard deviation for the droplet size are given.  

flow rates  connection angle 90 ° connection angle 75 ° connection angle 60 ° 

aq-phase 
(µl/hr) 

oil-phase 
(µl/hr) 

prod. rate 
(kHz) 

drop. size 
(µm) 

prod. rate 
(kHz) 

drop. size 
(µm) 

prod. rate 
(kHz) 

drop. Size 
(µm) 

200 400 0.3  66.3 ± 1.3 0.4 64.5 ± 1.2 1.2 43.5 ± 0.8 

400 800 1.7  45.8 ± 1.0 1.4 46.9 ± 0.8 2.4 40.5 ± 0.6 

600 1200 3.8 41.2 ± 1.4 3.2 43.9 ± 1.0 4.4 38.8 ± 0.6 

800 1600 5.6 40.6 ± 0.6 5.3 41.0 ± 0.7 6.6 37.8 ± 0.8 

1000 2000 7.7 38.2 ± 0.8 7.5 37.3 ± 0.9 10.3 35.2 ± 0.9 

1000 3000 12.3 33.0 ± 0.9 14.5 29.9± 0.8 19.7 27.2 ± 0.9 

 
 

Table S 2: Mechanical deformation mediated droplet injection rate for different surfactant  
concentration with changing inlet pressure rates. The main channel before and after the 
constriction is 40 µm wide. The constriction itself is 15 µm wide and 20 µm long. 

pressure rate (mbar) surfactant 
concentrati

on (mM) 

total number 
analysed 
droplets 

 number 
injected 
droplets  

injection rate (%) 

drop. 
inlet 

sep. 
inlet 

inject. 
inlet injected not 

injected 

880 810 700 0.10 21 8 38 62 

1030 1030 680 0.10 31 14 45 55 

880 810 700 0.15 63 12 19 81 

1030 1030 680 0.15 43 20 47 53 

880 810 700 0.25 61 0 0 100 

1030 1030 680 0.25 27 0 0 100 
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Table S 3: Mechanical deformation mediated droplet injection rate for two different 
devices (main channel_ constriction width_ constriction length), at a 0.15 mM surfactant 
concentration and changing inlet pressure rates. 

pressure rate (mbar) channel 
dimensions 

(main _const. 
width_const.leng

th) 

total 
number 

analysed 
droplets 

number 
injected 
droplets  

injection rate (%) 

drop. 
inlet 

sep. 
inlet 

inject. 
inlet injected not 

injected 

510 560 420 40_15_30 26 0 0 100 

1010 1060 670 40_15_30 110 14 13 87 

1510 1560 950 40_15_30 90 26 29 71 

410 440 370 50_15_30 27 17 63 37 

450 440 370 50_15_30 52 34 65 35 

1450 1440 840 50_15_30 108 99 92 8 
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Table S 4: Passing frequencies and release rates of droplets subjected to different 
treatments (see left column for specifics). Three videos of 18 to 50 sequential droplets 
each were analyzed. Mean and standard deviat ion values are given.  

release 
condition 

pressure rate (mbar) 
passing 

frequency (Hz) release rate (%) 
drop. inlet sep. inlet inject. inlet 

80
0 

V,
 1

kH
z 

50 45 70 6.44 ± 0.12 100.00 ± 0.00 

100 95 110 31.75 ± 5.65 96.97 ± 4.16 

150 145 155 51.70 ± 4.63 98.00 ± 0.00 

200 195 180 90.18 ± 2.57 96.67 ± 3.06 

250 245 215 134.92 ± 5.00 98.67 ± 1.15 

300 295 260 196.09 ± 4.28 99.33 ± 1.15 

no
 e

-fi
el

d  

50 45 70 11.78 ± 0.72 0.00 ± 0.00 

100 95 110 36.29 ± 5.73 0.00 ± 0.00 

150 145 155 53.03 ± 1.43 0.00 ± 0.00 

200 195 180 88.85 ± 4.25 0.00 ± 0.00 

250 245 215 132.71 ± 0.13 0.00 ± 0.00 

300 295 260 190.06 ± 2.35 0.00 ± 0.00 

de
st

ab
. s

ur
f. 50 45 40 6.25 ± 0.77 95.58 ± 5.19 

90 95 90 6.88 ± 0.19 65.38 ± 5.44 

100 95 100 19.38 ± 0.02 0.00 ± 0.00 

130 145 110 8.74 ± 0.09 15.07 ± 3.64 

150 145 95 33.47 ± 0.03 0.00 ± 0.00 
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Table S 5: Sorting rate and frequency for the sorting device I with different inlet pressure 
rates and applied electr ic fields. The results show the number of droplets which got  
deflected into the “sorting out let channel”.  

pressure rate 
(mbar) electric field 

( V / kHz) 
total number 

analysed 
droplets 

 number 
sorted 

droplets  

sorting rate (%) sorting 
frequency 

(Hz) drop. 
inlet 

sep. 
inlet sorted unsorted 

50 60 700 / 1 10 10 100 0 38 

100 150 500 / 1 50 9 18 82 46 

100 150 600 / 1 50 35 70 30 48 

100 150 700 / 1 50 50 100 0 43 

200 250 700 / 1 50 12 24 76 266 

 
 

Table S 6: Sorting rate and frequency for the sorting device II with different inlet pressure 
rates, with and without applying an electric field. The results show the number of droplets 
which got deflected into the “sorting outlet channel”.  

pressure rate 
(mbar) electric field 

( V / kHz) 
total number 

analysed 
droplets 

 number 
sorted 

droplets  

sorting rate (%) sorting 
frequency 

(Hz) drop. 
inlet 

sep. 
inlet sorted unsorted 

75 100 950 / 1 11 11 100 0 46 

75 100 no e-field 9 0 0 100 39 

140 200 950 / 1 16 16 100 0 65 

140 200 no e-field 16 5 31 69 65 

240 300 950 / 1 50 50 100 0 217 

240 300 no e-field 50 15 30 70 215 
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Table S 7: Sorting rate and frequency for the sorting device III with different inlet pressure 
rates, with and without applying an electric field. The results show the number of droplets 
which got deflected into the “sorting outlet channel”.  

pressure rate 
(mbar) electric field 

( V / kHz) 
total number 

analysed 
droplets 

 number 
sorted 

droplets  

sorting rate (%) sorting 
frequency 

(Hz) drop. 
inlet 

sep. 
inlet sorted unsorted 

80 100 700 / 1 32 32 100 0 58 

80 100 no e-field 30 0 0 100 54 

160 200 700 / 1 50 40 80 20 160 

160 200 no e-field 50 1 2 98 148 

200 250 700 / 1 50 38 76 24 170 

200 250 no e-field 50 0 0 100 200 

250 310 700 / 1 50 42 84 16 252 

250 310 no e-field 51 0 0 100 284 

300 370 700 / 1 50 32 64 36 276 

300 370 no e-field 50 0 0 100 306 

300 370 950 / 1 50 46 92 8 259 

 

 

 

 

 

 

 

 

 

 

 

 

 



  Appendix 

 149 

Interpretation of GD(t) amplitude 
 

The amplitude of the auto-correlation curve of FD(t) at the origin (t = 0) can be calculated as: 
 

𝐺�(0) =
〈�𝛿𝐹�(𝑡)�

Y〉
〈𝐹�(𝑡)〉Y

+ 1 =
〈(𝐹�(𝑡) − 〈𝐹�(𝑡)〉)Y〉

〈𝐹�(𝑡)〉Y
+ 1 = 

= ���f�Dr��� (i)�
〈� (i)〉¡

+ 1 = 〈� (i)¡〉N〈� (i)〉¡

〈� (i)〉¡
+ 1 = 〈� (i)¡〉

〈� (i)〉¡
  .    (1) 

 

 
 

For a flow of droplets that are homogenously labeled with intensity ID, the fraction PD of the 

time at which FD(t) equals ID is 
 

 𝑃� =
u�g¢£�i	¢�¤¤fD¥	if¦�

u�g¢£�i§¥�¢	¢�¤¤fD¥	if¦�
              (2) 

 

and the fraction time at which FD(t) equals the gap intensity, IG, is 1-PD. Accordingly, the mean 

of the trace is 

 〈𝐹�(𝑡)〉 = 𝐼�𝑃� + 𝐼©(1 − 𝑃�) .        (3)

          

Combining equations (1) and (3) gives 
 

𝐺�(0) =
〈� (i)¡〉
〈� (i)〉¡

= ª « ¡§(FNª )«¬¡

(« ª §«¬(FNª ))¡
 .    (4) 

 

By defining the intensity in the droplets as its fold increase in respect to the background 

intensity in the gaps, ID = g×IG, we get: 
 

   	𝐺�(0) =
ª (FNª )(­NF)¡

�F§ª (­NF)�
¡  +1    .    (5) 

Period

Droplet passing time

Time

FD(t)
Droplets 
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The derivative of this GD(0) in respect to g is 
 

 	𝜕­𝐺�(0) =
Y(­NF)(FNª )ª 
(F§(­NF)ª )¯

     .    (6) 

 

By definition, g > 1 and 0 < PD < 1. Therefore, ¶g GD(0) > 0. This implies that for a given PD, 

the amplitude of the auto-correlation curve of FD(t) increases as the ratio between the droplets 

intensity and the background intensity increases. This increase in monotonous but not linear. 

If g = 1 (i.e. the droplets intensity is as the gaps intensity) then GD(0)=0 while for g®¥, GD(0) 

converges to (1-PD)/PD. Accordingly, flow conditions with lower PD’s enable a higher dynamic 

range for detecting changes in g. 
 

 
Table S 8: Droplet production frequencies were determined by counting 20 - 32 
sequent ial droplets at the beginning, middle and end of two high-speed camera videos 
from each experiment. Mean frequencies values and their standard deviation are shown.   

flow rates (µl/hr) 

droplet prod. rate (kHz) aq-phase oil-phase 

400 800 3.52 ± 0.02 

600 1200 5.59 ± 0.06 

800 1600 8.97 ± 0.14 

1000 2000 11.58 ± 0.05 

1200 2400 16.75 ± 0.46 

1000 3000 18.50 ± 0.50 
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Figure S 2: A flowchart of the droplet segmentation algor ithm. The algorithm scans the 
droplet-marker intensity trace, FD(t), which lists the total number of photons detected 
within each time bin (here 1 µs) along the recorded period. In addition to FD(t), the input 
parameters include: (i) I thr - an intensity threshold to distinguish gap background intensity 
from droplet intensity levels, (i i) Pthr - a persistency threshold defining how many 
sequent ial t ime bins have to be above or below Ithr in order to init iate or terminate a 
droplet mask, respectively, (ii i) Wthr - a width threshold, defining the minimal passing 
time below which an identif ied droplet mask can be assumed to be related to noise rather 
than to an actual droplet. The output of the algorithm is a binary mask indicat ing the 
periods along FD(t), that correspond to the individual droplets 
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Figure S 3: Representative bright-field images obtained with a high-speed camera,  
showing the droplet size (A: left side) and spacing between droplets (B: right side) at 
different droplet production flow rates. Comparing the lowest flow rate (100 µl/hr 
aqueous-phase, 200 µl/hr oil-phase, green outlined) with the highest (250 µl/hr aqueous-
phase, 500 µl/hr oi l-phase, black outl ined) reveals that an increase of the flow leads to 
more droplets in the same area and therefore to higher droplet production rates.  
Additionally, the size (length) of the squeezed droplet inside the microfluidic channel and 
the distance to other droplets decreases. Scale bars are 30 µm. 

 
Table S 9: Measured droplet production parameters at different flow rates for the optical 
device and as obtained from high-speed camera (HSC) videos. 3 videos of each flow 
condition including 50 droplets per video were manually measured from high-speed 
camera videos. The number of analyzed droplets with the sensor for the respective flow 
rates (µl/hr) were: 100aq/200oil: 2033 droplets, 150aq/300oil: 2980 droplets,  
200aq/400oil: 8798 droplets, 250aq/500oil: 13307 droplets. Mean values and their  
standard deviation are shown. 

flow rates (µl/hr) droplet prod. rate (Hz) droplet size (µm) distance between 
droplets (µm) 

aq-phase oil-phase optical 
device HSC optical 

device HSC optical 
device HSC 

100 200 193 194 142.4 ± 2.7 139.0 ± 1.0 208.7 ± 2.7 205.9 ± 1.2 

150 300 285 277 126.3 ± 5.3 127.5 ± 1.2 200.6 ± 5.3 201.0 ± 1.2 

200 400 694 694  79.5 ± 2.2 79.9 ± 0.6 103.6 ± 2.2 105.4 ± 2.0 

250 500 1740 1756 46.9 ± 0.8 46.8 ± 0.8 40.2 ± 0.8 51.3 ± 2.0 
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