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Zusammenfassung

Intensive, hochenergetische Teilchenstrahlen werden in der physikalischen Grundla-

genforschung, den Materialwissenschaften, der relativistischen Laborastrophysik sowie

der Industrie verwendet. Üblicherweise werden dichte, kollimierte Multi-GeV-Photonen-

und Elektronen-Positronenstrahlen durch Bremsstrahlung beziehungsweise Bethe-Heitler

(BH) Elektron-Positron-Paarbildung erzeugt. Die jüngste Forschung konzentrierte sich

auf Starkfeld-QED-Prozesse, um Fluss und Intensität der erzeugten Strahlen erheblich

zu verstärken. Zur Bestimmung der relativen Rolle von Kollisions- und Starkfeld-QED-

Prozessen haben wir Bremsstrahlung und BH-Paarproduktionsprozesse in den Particle-

in-Cell-Code Smilei implementiert. Mittels Simulationen zeigen wir, dass ein ultrarela-

tivistischer Hochstrom-Elektronenstrahl, der mit einer submikrometerdicken, leitenden

Folie wechselwirkt, starke Selbstfokussierung erfahren kann; begleitet von einer effizi-

enten Emission von Gammastrahlenphotonen. Wir untersuchen die Auswirkung variie-

render Elektronenstrahlform, Radius und Länge auf die endgültige Strahlungsenergie.

Wir zeigen, dass selbsterzeugte Felder stark genug sein können, dass eine Emission im

Starkfeld-QED-Regime auftritt, in dem ein einzelnes emittiertes Photon einen signifi-

kanten Teil der Energie des emittierenden Elektrons wegtragen kann. Wir legen dar,

dass wir, nach einer Strahlkollision mit mehreren Folien, femtosekunden-kollimierte

Elektronen- und Photonenstrahlen mit einer Anzahldichte gewinnen, die die eines Fest-

körpers übersteigen. Diese Arbeit ist zeitgemäß, da sie laserlose QED-Untersuchungen

in starken Feldern mit einem einzigen Hochstrom-Elektronenstrahl ermöglicht, die be-

sonders relevant für die künftige FACET II-Einrichtung sind.

Abstract

Intense high-energy particle beams are used in fundamental sciences, material sciences,

relativistic laboratory astrophysics, and in the industry. Traditionally, dense collimated

multi-GeV photon and electron-positron beams are generated via bremsstrahlung and

Bethe-Heitler (BH) electron-positron pair creation, respectively. Recent research has

focused on strong-field QED processes for greatly enhancing the flux and intensity of

the generated beams. To determine the relative role of collisional and strong-field

QED processes, we implemented bremsstrahlung and BH pair production processes in

the particle-in-cell code Smilei. Using simulations, we show that a high-current ultra-

relativistic electron beam interacting with a submicrometer-thick conducting foils can

undergo strong self-focusing accompanied by efficient emission of gamma-ray photons.

We study the effect of varying electron beam shape, radius and length on the final radi-

ated energy. We show that the self-generated fields can be strong enough that emission

occurs in the strong-field QED regime, where a single emitted photon can carry away

a significant fraction of the emitting electron energy. We demonstrate that, after beam

collision with multiple foils, femtosecond collimated electron and photon beams with

particle number density exceeding that of a solid are obtained. This study is timely as

it enables laserless strong-field QED investigations with a single high-current electron

beam, particularly relevant for the upcoming FACET II facility.
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Chapter 1

Introduction

1.1 Motivation

An important prediction of quantum electrodynamics (QED) is the "break-down" of vac-

uum in ultra-strong electromagnetic fields which results in the spontaneous generation

of electron-positron pairs. The field strength required to test this prediction is of the

order of the QED critical field Ec = 1.3× 1016 V/cm, which corresponds to an intensity

Ic = 4.6× 1029 W/cm2 (Sauter, 1931, Heisenberg and Euler, 1936, Schwinger, 1951).

In these strong fields, exotic phenomena such as vacuum polarisation, light-by-light

scattering, vacuum birefringence can also be tested (Toll, 1952, Antonino Di Piazza,

Karen Zaven Hatsagortsyan, and Christoph Helmut Keitel, 2005, Heinzl et al., 2006,

Marklund and Shukla, 2006, Fedotov and Narozhny, 2007, Di Piazza, Müller, et al.,

2012). Hitherto, fields of such intensities and above are observed only in astrophysical

environments such as magnetars (Kaspi and Beloborodov, 2017), binary neutron-star

mergers (Xue et al., 2019), and core-collapse supernovae explosions (Mösta et al.,

2015).

The journey to realise such fields in earth-based experiments gained momentum

with the advent of chirped pulse amplification (CPA) technique in 1985 (Strickland

and Mourou, 1985). With CPA, current high power laser facilities provide laser pulses

with peak intensities of the order of 1022 W/cm2, and next generation facilities such

as the ELI will provide peak intensities greater than or equal to 1023 W/cm2. Although

such intensities remain much below the critical QED intensity, it is still possible to make

use of presently available lasers to probe the strong-field QED regime. This is viable

if one considers ultra-relativistic particles and recalls that QED is a Lorentz invariant

theory. The field strengths in the rest frame of the ultra-relativistic particles are Lorentz

boosted and approach the QED critical field already at laser intensities I . 1022 W/cm2.

Thus, the onset of strong-field QED effects is governed by the quantum non-linearity

parameter χ = E∗/Ec which compares the electromagnetic field in the rest frame of

the particle (E∗) with the QED critical field (Di Piazza, Matteo Tamburini, et al., 2018).

To begin with, when a laser pulse with intensity 1018 W/cm2 interacts with mat-

ter, the plasma electrons reach relativistic velocities within one laser time period and

the electron motion becomes highly non-linear. In this relativistic regime, the quiver

momentum p0 of the plasma electrons is comparable to mec where me is the electron
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rest mass and c is the speed of light. The onset of relativistic effects is thus governed

by the classical non-linearity parameter a0 = p0/(mec) = eE/(meωc), where e is the

charge of electron, E and ω are the laser electric field amplitude and frequency respec-

tively (Di Piazza, Müller, et al., 2012). For a laser pulse with intensity 1018 W/cm2 and

wavelength λ = 1µm, a0 & 1.

A further increase in the laser intensities to the order of 1019−21 W/cm2 generates

relativistic electrons that can emit MeV bremsstrahlung photons which, in turn, can de-

cay into Bethe-Heitler electron-positron pairs in the Coulomb field of a high Z nuclei.

Both these collisional processes of radiation and pair production are strongly dependent

on the atomic number Z of the target nuclei and on the incoming electron or photon en-

ergy. This led to the availability of new laser-assisted bremsstrahlung radiation sources

and also in the generation of electron-positron pair plasmas. The laser field plays an

indirect role here in the pair production process by serving solely as a particle accelera-

tor, i.e., accelerates electrons that emits photons. In particular, dense electron-positron

pair plasmas play a fundamental role in the dynamics of most powerful astrophysical

systems such as blackholes, pulsars and quasars. The gamma-ray bursts observed from

these pair plasmas are still poorly understood. Recently, the interaction of a laser gen-

erated electron beam with a solid lead (Pb) target was shown to produce high density

(1016 cm−3) pair plasmas with a small divergence of approximately 10-20 mrad (Sarri

et al., 2015). These experimental findings open up the possibility of studying astro-

physical environments in a controlled laboratory experiment. (Kmetec et al., 1992,

Cowan et al., 2000, Santala et al., 2000, C. Chen et al., 2008, Compant La Fontaine,

Courtois, and Lefebvre, 2012, Cipiccia et al., 2012, Courtois et al., 2013, Hui Chen,

Scott C Wilks, et al., 2009, Hui Chen, S. Wilks, et al., 2010, Liang, 2010, Hui Chen,

Fiuza, et al., 2015).

With the next upgrade of laser intensities (I > 5×1022 W/cm2, Powell, 2013), in

addition to the Coulomb fields, the laser fields experienced by the electrons in their rest

frame is strong enough to trigger photon emission via non-linear Compton scattering

(J.-X. Li, Karen Z. Hatsagortsyan, et al., 2015, Di Piazza, Müller, et al., 2012). This

implies, the quantum non-linearity parameter χ of the electrons approaches unity. This

opened up a new channel to generate laser based photon sources. Furthermore, pair

production by photons propagating in a strong laser field (non-linear Breit-Wheeler

pair production) also becomes viable when the χ parameter of the photon is approxi-

mately greater than unity. Thus the value of quantum non-linearity parameter χ & 1

marks the onset of quantum regime during laser-matter interaction (Di Piazza, Müller,

et al., 2012). Based on these mechanisms of photon emission and pair production, dif-

ferent groups have proposed various configurations to generate intense photon beams

and dense pair plasmas. The laser accelerated electrons are able to generate photons

in a wide range of energy ranging from the extreme ultraviolet (XUV) to the gamma

rays. These sources were seen as a potential alternative to conventional synchrotron

sources, due to their compact size, potential for high brightness, and femtosecond du-

ration. Such ultrashort, compact, high-energy gamma beams attract attention for their
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numerous applications in fundamental science, industry, medicine, biology, chemistry

and material science. For example, to resolve the timescales of atomic or nuclear tran-

sitions (Habs et al., 2009), for probing hot dense matter (Ben-Ismaïl et al., 2011), and

for synthesising materials (Seguchi et al., 2002). Laser based photon sources that rely

on triggering non-linear Compton scattering has attracted attention recently. Ridgers

et al., 2012 show that during the interaction of 10 PW laser with a solid density alu-

minium target, dense electron-positron pair plasma is generated. Their simulations

reported a positron density of 1026 /m3 and approximately 35% conversion of laser

energy into synchrotron photons. Nakamura et al., 2012 also propose the use of 10

PW lasers with tailored targets to convert approximately 32% of laser energy into high

energy gamma photons. Ji et al., 2014 performed simulations to understand the laser

energy absorption via different processes such as absorption via electrons, ions, pho-

tons and concluded that conversion efficiency of laser energy into collimated photons

increases as the relativistic transparency regime of interaction is reached. J.-X. Li,

Karen Z Hatsagortsyan, et al., 2015 propose the collision of intense laser pulse with

electron beam to generate attosecond gamma-ray pulses. Similar proposals to further

increase attainable photon energy and flux focus on laser-plasma interactions (Chang

et al., 2017, W.-M. Wang et al., 2018, Huang et al., 2019, Vranic, Thomas Grismayer,

Sebastian Meuren, et al., 2019, Jirka, Ondrej Klimo, Gu, et al., 2020, Zhu et al., 2020).

Furthermore, Magnusson et al., 2019 propose the collision of high energy electron

beams with strong laser fields generated by the collision of multiple laser pulses to

generate intense photon beams.

A unique phenomena that can be triggered during collisions of multiple laser pulses

is the formation of QED cascades. QED cascades are avalanche processes of hard pho-

ton emission and electron-positron pair creation driven by ultra-strong electromag-

netic fields. They play an essential role in extreme astrophysical scenarios (Remington,

Drake, and Ryutov, 2006). This complex cyclical process of hard photon emission and

electron-positron pair production leads to an exponential growth in the number of par-

ticles. For example, in magnetars, strong-field QED cascades fill the magnetosphere

with a relativistic electron-positron pair plasma (Medin and Lai, 2010, A. Y. Chen,

Cruz, and Spitkovsky, 2020 Timokhin and Harding, 2019). Magnetars are rotating

magnetized neutron stars with strong surface magnetic field strengths. In particular,

the field strengths are up to 1015 G, well above the QED critical field strength (Bc = 4.4

× 1013 G). It is pertinent to note that a pure magnetic field can exceed the QED critical

field strength as it cannot spontaneously create pairs in vacuum. Surrounding these

stars, there are electrons that emit hard photons which convert into electron-positron

pairs, which in turn emit photons, leading to the initiation of QED cascades. Magne-

tars were recently suggested as the most promising progenitors of the mysterious "Fast

Radio Bursts" (FRBs) (Tavani et al., 2020, Lin et al., 2020, Ridnaia et al., 2020, C. Li

et al., 2020, Bochenek et al., 2020, Andersen et al., 2020). Hence, understanding this

new dense electron-positron-gamma plasma regime will pave way for the rendering

of earth-based astrophysical experiments. The formation of QED cascades was also
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demonstrated as a possible route to efficiently generate GeV photon source (Gonoskov

et al., 2017).

The necessary criteria for using lasers for the spontaneous creation of pairs from

vacuum is that the laser field invariant E =

√
(F2 + G2)1/2 + F must approach the

QED critical field strength Ec. F ≡
(
E2 −B2

)
/2 and G ≡ E ·B are the electromag-

netic field invariants, with E and B being the electric and magnetic field, respectively.

One of the simplest configuration for satisfying this condition is during the collision of

multiple laser pulses. Bell and Kirk, 2008 proposed the use of seed electrons during

the collision of two counter-propagating laser pulses to initiate a cascade. Recently, the

effect of laser parameters such as the intensity, polarisation, waist radius, the spatial

and temporal gradients of the pulse on the development of cascades have been thor-

oughly investigated (Bulanov, Mur, et al., 2010, Elkina et al., 2011, Bashmakov et al.,

2014 , A. Mironov, Narozhny, and Fedotov, 2014, Gelfer et al., 2015, Thomas Gris-

mayer, Vranic, Joana Luis Martins, et al., 2016, Vranic, Thomas Grismayer, Fonseca, et

al., 2016, Thomas Grismayer, Vranic, Joana L Martins, et al., 2017, Matteo Tamburini,

Antonino Di Piazza, and Christoph H Keitel, 2017, Jirka, Ondrej Klimo, Vranic, et al.,

2017, Sampath and Matteo Tamburini, 2018). In fact, Matteo Tamburini, Antonino Di

Piazza, and Christoph H Keitel, 2017 demonstrated both the possibility of onset of QED

cascades and prevention of QED cascades during the collision of laser pulses. They

show that even at very high laser intensities 1026 W/cm2, tightly focused laser pulses

and low-Z gases prevent the onset of cascades, while high-Z gases and large focal waist

triggers the onset of cascades at lower intensities (1024 W/cm2). Understanding the

prevention of cascade formation is crucial as the development of these dense electron-

positron-gamma plasma is predicted to deplete the complete laser energy in vacuum.

The formation of these QED cascades thereby impose a threshold on the attainable laser

intensities (Fedotov, Narozhny, et al., 2010). The role of high Z elements to support ini-

tiation of QED cascades was further investigated by Artemenko and Kostyukov, 2017.

The literature mentioned above focused on using two or more laser pulses with or with-

out seed particles for the initiation and development of QED cascades. Alternatively, A.

Mironov, Narozhny, and Fedotov, 2014, and Arsenii Antonovich Mironov, Aleksandr

Mikhailovich Fedotov, and Narozhnyi, 2016 propose the collision of an ultra-relativistic

GeV electron beam with an intense laser field. Here the Lorentz boosted electric field

in the rest frame of the electron aids in the development of QED showers. Recently, Qu,

Sebastian Meuren, and Fisch, 2020 propose the use of a 3PW laser with a 30 GeV elec-

tron beam to observe the collective plasma effects that develop during the formation

of QED showers when the generated particle density approaches the critical plasma

density.

Based on the above, we observe that the generation of intense high energy par-

ticle beams and photon beams, along with the production of dense electron-positron

pair plasmas are being investigated vigorously using laser beams within the scientific

community. In general, we have two major channels for novel radiation sources and
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for the generation of electron-positron-gamma plasmas. The collisional processes of

bremsstrahlung emission and Bethe-Heitler pair production, and the strong-field pro-

cesses of non-linear inverse Compton scattering and multiphoton-Breit Wheeler pair

production. On the one hand, the competition between these two channels have been

studied extensively by Martinez, 2018 in the context of laser-plasma interactions. Their

works have shown that the efficiency of bremsstrahlung emission is comparable with

that of synchrotron emission during the interaction between a laser pulse with intensity

1022 W/cm2 and a one-micron thick copper foil. On the other hand, the relative role of

collisional and strong-field processes is largely unexplored in the context of high cur-

rent electron beam interaction with matter. Within the context of this thesis, we would

like to address this question and also explore the possibility of accessing strong-field

QED regimes with a single high-current electron beam.

The interaction of dense ultra-relativistic electron beams with matter has gained

attention in the recent times. Specifically their potential to generate collimated pho-

ton sources is being explored. It was demonstrated by Benedetti, Matteo Tamburini,

and Christoph H Keitel, 2018 that the interaction of an ultra-relativistic electron beam

with millimetre thick aluminium targets trigger electromagnetic instabilities when the

electron beam density is above 3×1019/cm3. The ultra-relativistic electrons traverse

through strong self-generated fields resulting in the production of collimated gamma-

ray pulse with photon energies ranging from 200 keV to GeV and upto 60% conversion

of electron energy into photons. Another viable route for photon beam generation and

strong-field QED investigations is during the collision of particle beams. Beamstrahlung

emission occurs during the collision of particle beams. Physically, the particles of the

first beam experience the strong electromagnetic fields of the second beam and get

deflected and emit beamstrahlung radiation. Although this process was previously con-

sidered detrimental, more recently, research has focused on the use of beamstrahlung

emission as a viable gamma beam source (Matteo Tamburini and Sebastian Meuren,

2019, Del Gaudio et al., 2019). Collision of tightly compressed and focused electron

beams to explore the non-perturbative QED regime has also been proposed recently by

Yakimenko, Meuren, et al., 2019.

All these proposals to understand the strong-field QED regime in the context of

laser-plasma or electron beam-plasma are innovative and necessary. Through the course

of this thesis, we explore an unique possibility of accessing strong-field QED regime in

a laserless setup, with a single high current electron beam (Sampath, Davoine, et al.,

2020). This timely study is relevant for the upcoming FACET II facility.

1.2 Key results and thesis outline

1.2.1 Key results

In our work, we use Particle-In-Cell (PIC) simulations to investigate the role of colli-

sional and strong field processes in electron-beam plasma interactions. We show that
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an ultra-relativistic electron beam during the interaction with a conductor foil(s), un-

dergoes strong self-focusing accompanied by efficient gamma-ray emission. We discuss

the physical origin for both self-focusing and photon emission as near field transition

radiation that arises during beam-foil collision. We show that these effects can be en-

hanced during the collision of the electron beam with a series of conducting foils and

approximately 30% energy of the electron beam can be efficiently converted into a

dense collimated gamma beam. In this interaction, we show that the quantum pa-

rameter χe that determines the strength of strong-field QED effects approaches ∼ 3,

indicating the possibility of accessing the strong field QED regime (χ > 1) with a single

electron beam and without external super intense laser fields.

1.2.2 Outline

This thesis is organised in the following way.

In Chapter 2, we describe the Maxwell-Vlasov model, which provides the basic gov-

erning equations for studying a collisionless plasma. Subsequently, we provide an

overview of the numerical tool used to solve the Maxwell-Vlasov equations, i.e., the

Particle-In-Cell (PIC) codes. We also mention the latest additions to PIC method which

enables one to study electron beam-plasma interactions with these codes.

In Chapter 3, we discuss the modelling of Monte Carlo processes in a PIC code.

We implement collisional processes such as bremsstrahlung emission and Bethe-Heitler

pair production which are important during the interaction of laser or electron/photon

beam with matter in the PIC code SMILEI. We consider the ultra-relativistic regime for

both these processes and and describe the cross-sections used within our implementa-

tion. Moreover, as bremsstrahlung emission and Bethe-Heitler pair production occur in

the field of a nucleus, the screening of nuclear field by surrounding electrons can be

significant depending on the beam and target plasma parameters of interaction. Hence,

we implement the two limiting cases of nuclear field screening, the non-screened and

completely screened regime. We then present results of our test simulations validating

these models against theoretical predictions.

In Chapter 4, we discuss the interaction of an ultra-relativistic electron beam with

a sub-micrometre thick aluminium foil. We discuss our analytical model based on the

method of images to understand the key phenomena of self-focusing and photon emis-

sion during this interaction. We conduct parametric scans for understanding the de-

pendence of total radiated energy on electron beam length, beam radius, beam shape

and beam energy. We extend this study to put forward a relatively simple setup for

the generation of dense collimated electron and photon beam. For this, we propose

the interaction of an ultra-relativistic electron beam with a periodic array of aluminium

foils. We show the legitimacy of 2D and 3D simulation results with the aid of analytical

predictions.

Finally in Chapter 5, we provide a summary of our work and its future prospects.
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Chapter 2

Theoretical Background

In this chapter we give an introduction to the basic equation and numerical
tools that will be used throughout this thesis. We begin with a brief description
of the relativistic Maxwell-Vlasov model and then discuss the numerical tool
used to solve these equations for plasmas: the Particle-In-Cell method. These
PIC codes have been used for decades to gain deeper insights into relativistic
laser beam or electron beam interactions with plasma.

2.1 Maxwell-Vlasov model

The starting point to describe a collisionless plasma is the Maxwell-Vlasov description.

In this description, a particle species s with charge qs and mass ms is described by it’s

distribution function fs(x,p, t). This distribution function fs ≡ fs(x,p, t) represents

the particle density in phase space at point (x,p) and at time t. The time evolution of

fs under the influence of a collective electromagnetic field created in the point x at a

time t field is given by the Vlasov equation,

∂tfs + vs(p) · ∇fs + FL · ∇pfs = 0 (2.1)

where ∇ and ∇p represent the gradients of fs with respect to the position and momen-

tum variables respectively. The velocity is related to the momentum of the particle by

vs(p) = p
msγs

, where γs is the Lorentz factor given by γs =
√

1 + |p|2
m2
sc

2 .

FL is the Lorentz force given by,

FL = qs

[
E +

(
vs(p)/c

)
×B)

]
(2.2)

The fields E and B follow the Maxwell’s system of equations given by:

∇ ·B = 0

∇ ·E = 4πρ

∇×E = −1

c

∂B

∂t

∇×B =
1

c

∂E

∂t
+

4π

c
j

(2.3)
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where the source terms ρ and j are the charge density and current density respectively.

They can be obtained from the distribution function of the particles using the relations,

ρ(x, t) =
∑
s

qs

∫
fs(x,p, t)dp

j(x, t) =
∑
s

qs

∫
fs(x,p, t)vs(p)dp

(2.4)

The Vlasov equation 2.1 when it takes into account the self-consistent electromagnetic

field generated by the particles in the plasma, is coupled to the Maxwell equations 2.3.

These coupled system of equations enables us to describe the self-consistent dynamics

of a collisionless plasma. For any real system, solving these coupled partial differential

equations is non-trivial and requires the use of numerical tools. In the next section, we

describe a well established numerical method, based on finite element approach called

the Particle-In-Cell (PIC) method.

2.2 Particle-In-Cell

A plasma in reality is an ensemble of many charged particles which are interacting

with each other via their self-consistently generated fields. It is challenging to follow

the evolution of all these real particles using the Maxwell-Vlasov coupled system of

equations. In a PIC code, this is addressed by using the concept of a numerical macro-

particle that is a representative of many real particles. In short, we follow the evolution

of a numerical plasma consisting of heavy macro-particles that have the same charge-

to-mass ratio as the real plasma particles (electrons or ions) on a discretised grid (Refer

Figure 2.1).

FIGURE 2.1: A schematic of the two dimensional discretised PIC spatial
domain with grid resolution ∆x and ∆y. The numerical plasma distribu-
tion in the figure is represented by 5 macro-particles each representing

6 real particles.
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The resolution of the discretised grid (∆x,∆y and ∆z in 3D) sets a lower limit

to the spatial resolution of particle-particle or particle-field interaction. In general,

the common length scales that define the characteristics of a plasma are the plasma

electrons’ skin-depth and the Debye length. The skin-depth governs the distance up-

to which electromagnetic radiations can penetrate within a plasma and is given by

lskin = c/ωpe where ωpe is the plasma electrons’ oscillation frequency. For a plasma

with electron density ne,

ωpe =

(
4πnee

2

me

) 1
2

(2.5)

The Debye length (λD) determines the length scale at which electric fields are screened

out by a redistribution of the plasma electrons,

λD =

(
kBTe

4πnee2

) 1
2

(2.6)

Similarly, the size of time step ∆t is decided based on the time scale of the physical

phenomena we are interested in. Usually, this is determined by either the laser beam

or electron beam time scale or the target plasma time scale.

The mathematical representation of the PIC method is obtained by assuming that

the distribution fs is given by the superposition of Ns macro-particles.

fs(x,p, t) =

Ns∑
p=1

wpS (x− xp(t)) δ (p− pp(t)) (2.7)

where wp is the numerical weight of the macro-particle, (x,p) it’s position and momen-

tum at time t, S (x− xp(t)) is the shape function for the macro-particles (spatial form

of the macro-particles) and δ (p− pp(t)) represents the Dirac distribution for momen-

tum.

The shape functions for the macro-particles have the following properties.

• Symmetric with respect to their argument x, implies, S (x− xp) = S (xp − x)

• They are compact such that they describe a small portion of the spatial grid, i.e.,

it is zero outside a small range.

• Their integral is normalised to unity, i.e.,
∫∞
−∞ S (x) dx = 1

For a species (plasma electron or ions) with number density ns, the weights of the

macro-particles present in a computational cell of size dV = dxdydz with Nppc macro-

particles per cell is defined as,

wp =
nsdV

Nppc
(2.8)

By taking a partial time derivative of the discrete distribution function fs in Equa-

tion 2.7, we obtain
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∂tfs = −wp
Ns∑
p=1

{δ(p− pp(t))ẋp(t) · ∇S(x− xp(t))

+S(x− xp(t))ṗp(t) · ∇pδ(p− pp(t))}

= −wp
Ns∑
p=1

{∇ · (ẋp(t)S(x− xp(t))δ(p− pp(t)))

+∇p · (ṗp(t)S(x− xp(t))δ(p− pi(t)))}

(2.9)

Substituting Equation 2.7 and Equation 2.9 in Equation 2.1,

Ns∑
p=1

{∇ · [(vs(p)− ẋp(t))S(x− xp(t)) δ(p− pp(t)) ] +

+∇p · [(FL − ṗp(t))S(x− xp(t)) δ(p− pp(t))]} = 0

(2.10)

On integrating Equation 2.10 over all p gives,

Ns∑
p=1

∇ · [(vs(pp(t))− ẋp(t))S(x− xp(t))]

=

Ns∑
p=1

[(vs(pp(t))− ẋp(t))] · ∇S(x− xp(t)) = 0

(2.11)

as the flux of [(FL − ṗp(t))S(x− xp(t))δ(p− pp(t))] is zero when p→ ±∞. As the

gradient of the spatial shape function is not zero, one obtains from Equation 2.11,

ẋp(t) = vs(pp(t)) (2.12)

On integrating Equation 2.10 over all x and as the flux of

[(vs(pp(t))− ẋp(t))S(x− xp(t))δ(p− pi(t))] is zero when x→ ±∞, one obtains

Ns∑
p=1

∇p ·
[∫

(FL − ṗp(t))S(x− xp(t))δ(p− pp(t))dx
]

=

=

Ns∑
p=1

∇p ·
[∫

FLS(x− xp(t))δ(p− pp(t))dx− ṗp(t)δ(p− pp(t))
]

=

=

Ns∑
p=1

[∫
FLS(x− xp(t))dx− ṗp(t)

]
· ∇pδ(p− pp(t)) = 0

(2.13)

and we obtain the relativistic equations of motion for the macro-particles.

ṗp(t) =

∫
FLS (x− xp(t)) dx

=⇒ ∂tpp = qs (Ep + v ×Bp)

(2.14)
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where,
Ep =

∫
dxS (x− xp(t))E(x)

Bp =
∫

dxS (x− xp(t))B(x)
(2.15)

In essence, the macro-particles evolve as a set of real particles. This shows that the

PIC method is a fully consistent approximation to the Maxwell-Vlasov model.

Now that we described the basic equations which we solve for the fields and the

particles, we briefly present the basic PIC algorithm. It consists of the following steps:

• At time t = 0, initialise all the macro-particles with their charge, mass, weight,

spatial and momentum distribution.

• At t = 0, project the charge density and current density on to the computational

grid.

• At t = 0, using the source charge and current densities, compute the initial elec-

tric and magnetic fields at the grid points.

• PIC time loop begins:

– Interpolate the electric and magnetic fields at the particle position.

– Push the particles according to the equations of motion 2.12 and 2.14 . One

of the commonly used method to integrate these equations of motion is the

leap frog method.

– Project the new current and charge densities onto the grid.

– Compute the new electric and magnetic fields on the grid (Equation 2.15).

The PIC algorithm described so far is accurate for a collisionless plasma and the

propagation of the corresponding electromagnetic fields. Different groups across the

world have immensely contributed in the development and scaling of these codes. It

does not include physical effects that will arise during the interaction of plasma with

external electromagnetic fields, lasers, and matter. The most common physical pro-

cesses that occur during these interactions are described below. We briefly mention

their implementation in

1. Binary Coulomb collisions: The trajectory of a charged particle is influenced by

the Coulomb force exerted on it by the background charges present in the plasma.

The effect of this Coulomb interaction between charged particles can be taken

into account in PIC codes via Monte-Carlo algorithm. The general algorithm is

further described in section 3.1. The modelling of relativistic collisions and colli-

sional ionisation is thoroughly described by Nanbu, 1997, Nanbu and Yonemura,

1998, Sentoku and Kemp, 2008, Pérez et al., 2012.

2. Ionisation: Ionisation of the atoms present in target material occur both through

collisions of charged species, or due to the presence of an external field (such
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as laser). With appropriate knowledge of ionisation cross-sections, Monte-Carlo

algorithms are again used to incorporate their effect in PIC codes. The field and

collisional ionisation models implemented in PIC codes are described in the works

of Nuter et al., 2011 and Pérez et al., 2012 respectively.

3. Radiation: When charged particles are accelerated they emit radiation. If the

acceleration is very large, then the charge particle also experiences a significant

effect of recoil. In the classical regime, it can be treated as a continuous friction

force acting on the particles. In PIC codes, these radiation reaction force can

be treated using Landau and Lifshitz, 1980 model, and are implemented in the

particle pusher using a splitting technique proposed by Tamburini et al., 2010.

4. Strong field emission and pair production: When the emitted radiation is due to a

strong electromagnetic field, the process of photon emission and pair production

are probabilistic and can be treated stochastically. These are implemented via the

Monte-Carlo algorithm within the PIC code (Duclous, Kirk, and Bell, 2010, Lobet,

2015, Duclous, Kirk, and Bell, 2010).

5. Nuclear field emission and pair production: Similar to strong-field processes, the

scattering of an electron and the subsequent emission of bremsstrahlung pho-

ton, and the decay of a photon into electron-positron pairs in Coulomb field are

treated as stochastic processes within the PIC code. They are also implemented

via the Monte-Carlo algorithm. As a part of this thesis, we implement these nu-

clear field processes in a PIC code and this is further explained in Chapter 3.

In summary, we have described the basic numerical tool that we will be using for all our

simulations performed during the course of this thesis. In particular, we use the open-

source PIC code SMILEI developed by Derouillat et al., 2018 for our investigations.
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Chapter 3

Bremsstrahlung Emission and
Bethe-Heitler Pair Production

The process of bremsstrahlung emission by charged particles and Bethe-Heitler
pair creation by photons are probabilistic. The differential cross-sections for
both the processes vigorously grows with the atomic number of the target nu-
clei, and is dependent on the energy of the charged particle (photon) and the
newly generated photon (electron-positron pair). In general, in PIC simula-
tions, these two processes are treated as binary collision processes. At every
time-step within each computational cell, for each pair of macro-particles, one
computes the probability of the event and obtains the resultant photon/pair
energy via the inverse transform sampling method.

3.1 Monte-Carlo processes in Particle-in-Cell codes

3.1.1 Algorithm

In this section, we briefly describe the well established Monte-Carlo algorithm for the

simulation of stochastic processes. Using this technique, we implement bremsstrahlung

emission and Bethe-Heitler pair production processes within PIC code SMILEI (Derouil-

lat et al., 2018). We treat both emission and pair production under the binary collision

approximation, i.e., they are separated into a series of distinct two-particle encounters.

Inside the main PIC time-loop, at every time-step and inside every computational cell

of the PIC grid, the macro-particles are shuffled and randomly paired. For each pair of

macro-particles, we

1. identify the beam (b) and the target (t) particle,

2. calculate the collision rate Wtotal for the event (bremsstrahlung emission and/or

Bethe-Heitler pair creation) given by (Akhiezer and Berestetskii, 1986),

Wtotal =
∆P

∆t
= σ(ε)vrelnt (3.1)
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where ∆P
∆t gives the probability of the event per time-step per beam particle, nt is

the target particle number density, σ(ε) is the total cross-section for the process

and vrel, the velocity of beam (target) particle in the rest frame of target (beam)

particle. σ(ε) and the relative velocity vrel are given by

σ(ε) =

∫ xmax

xmin

dσ(ε, x)

dx
dx

vrel =

√
(pbip

i
t)

2 −m2
bm

2
t

εbεt

(3.2)

where x is the energy of the particle that is a result of this collision (photon for

bremsstrahlung emission and positron or electron for Bethe-Heitler pair produc-

tion), pib/t andmb/t are the four momenta and mass of the relevant beam or target

particle.

3. The probability of the event W∆t is then compared with a random number r

between 0 and 1. If W∆t > r, the collision occurs.

4. The corresponding photon (pair) energy is computed by solving the sampling

equation, ∫ x

xmin

dW (x)

dx
dx = rWtotal (3.3)

where r is a new random number between 0 and 1.

3.1.2 Different Weights for Beam and Target Macro-particles

The algorithm in the previous section works as such without modifications for collisions

between real particles. As PIC codes make use of macro-particles (refer Section 2.2),

we account for their numerical weights by using the technique proposed by Nanbu

and Yonemura, 1998. They modify the effective interaction time-step ∆t experienced

by each macro-particle during collisions to compensate for artificial numerical effects

arising from macro-particle weights. We explain their method with the help of an

example.

Consider two species (beam (b) and target (t)) colliding within a single cell of the

computational grid. Let the number of macro-particles corresponding to the beam and

target species within this cell be Nb and Nt, and the corresponding numerical weights

of each macro-particle be Wb and Wt. The first step is to shuffle and pair the macro-

particles within a PIC cell. If Nb = Nt, each beam and target macro-particles are given

unique collision partners. While, if Nb > Nt (Nt > Nb), certain target (beam) particles

must undergo repeated collisions. As a result, necessary duplicates of macro-particles

are created to ensure all macro-particles have pairs (Refer Figure 3.1(a)-(c)). Thus the

total number of macro-collisions within any PIC cell is always equal to max(Nb, Nt). In

our discussions, a macro-collision corresponds to the collision between macro-particles
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in the simulation and a real collision corresponds to the collision between real physical

particles.

FIGURE 3.1: A schematic of Monte-Carlo pairing process. (a) Beam and
target macro-particles are distributed in a 2D PIC grid. (b) Illustration of
two example cells where different numbers of target and beam macro-
particles are present. (c) The macro-particle pairing process when there
are equal and unequal number of macro-particles of different species.
The green background indicates macro-particle duplication. (d) An ex-
ample of differently weighted beam and target macro-particle pair un-

dergoing collision.

Specifically, let us analyse the macro-collision between a beam and target macro-

particle with weight Wb = 5 and Wt = 2, i.e., each beam and target macro-particle

represents five and two real physical particles respectively (Refer Figure 3.1(d)). In

this case, the probability for a real beam particle to collide with a real target particle is

2/5, while the probability for a real target particle to collide with a real beam particle

is 5/5. Thus during one macro-collision in this example, the number of real physical

collisions experienced by beam and target macro-particle is

Pb =
Wt

max(Wb,Wt)
and Pt =

Wb

max(Wb,Wt)
(3.4)

respectively. This implies, the macro-particle with the lower weight undergoes the

correct number of collisions, while the other macro-particles experiences too many

collisions.

Now, the key idea is that the time increment experienced per real particle (beam

or target) must be the same. This physical argument must hold during the simulation

on average, i.e., the average time increment experienced by a beam and target particle

must be the same. This is ensured by modifying the time increment experienced during

each macro- collision by the beam and target macro-particle to ∆tb = Pb∆t and ∆tt =

Pt∆t respectively. The average time increment experienced by the real beam or target

particle is,

∆tb/t =
Number of colliding beam or target particles× Time increment for each particle

Total number of particles
(3.5)



16 Chapter 3. Bremsstrahlung Emission and Bethe-Heitler Pair Production

The number of macro-particles colliding within a cell is max(Nb, Nt) which corresponds

to max(Nb, Nt) ×Wb real beam particles and max(Nb, Nt) ×Wt real target particles.

The total number of real beam and target particles is

nb = NbWb and,

nt = NtWt

(3.6)

respectively. The average time increment per real beam particle is

∆tb = max(Nb, Nt)Wb ×
Pb∆t

NbWb

= max(Nb, Nt)×
WbWt

max(Wb,Wt)

1

nb
∆t

= max(Nb, Nt)×
min(Wb,Wt)

nb
∆t

=
nbt
nb

∆t

(3.7)

where nbt ≡ max(Nb, Nt)×min(Wb,Wt) and the average time increment per real target

particle is

∆tt = max(Nb, Nt)Wt ×
Pt∆t

NtWt

= max(Nb, Nt)×
WtWb

max(Wb,Wt)

1

nt
∆t

= max(Nb, Nt)×
min(Wb,Wt)

nt
∆t

=
nbt
nt

∆t

(3.8)

is kept to be equal to the simulation time-step, i.e., ∆tb = ∆tt = ∆tPIC . This ensures

that we conserve energy and momentum on a large number of collisions, and we restore

the symmetry of collisions between species with different numerical weights.

Hitherto, we have presented the basic Monte-Carlo algorithm required for the im-

plementation of collisional processes inside a PIC code. In particular, we use this al-

gorithm to implement bremsstrahlung emission and Bethe-Heitler pair production in

the PIC code SMILEI. These two processes are discussed individually in the following

sections.

The following notations are used henceforth:

• σbs is the total bremsstrahlung emission cross-section,

• σpp is the total Bethe-Heitler pair production cross-section,

• εγ is the photon energy,

• εe− is the electron energy,

• εe+ is the positron energy,
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• dσbs
dεγ

is the differential bremsstrahlung cross-section as a function of energy of the

emitted photon,

• dσbs
dεe+

is the differential Bethe-Heitler pair production cross-section as a function

of energy of the emitted positron,

• Z is the target nucleus atomic number, and

• f(Z) is the Coulomb correction to the Born approximation worked out by Davies,

Bethe, and L. Maximon, 1954:

f(Z) = (αZ)2Σ∞n=1n(n2 + (αZ))

≈ 1.202(αZ)− 1.0369(αZ)2 + 1.008
(αZ)2

(1 + (αZ))

(3.9)

3.2 Bremsstrahlung emission in the ultra-relativistic regime

FIGURE 3.2: Bremsstrahlung emission in the field of an atomic nucleus
which is (a) not screened (b) fully screened by the surrounding elec-

trons.

During the collision of high energy electrons with an atomic nucleus, the electrons de-

celerate and lose a portion of their kinetic energy via bremsstrahlung photon emission.

Calculations for predicting the bremsstrahlung radiation properties can be made by

using cross-sections tabulated in the paper by Koch and Motz, 1959. The differential

cross-sections in the ultra-relativistic regime in their paper have been derived by H.

Olsen, L. C. Maximon, and Wergeland, 1957 and H. Olsen and L. C. Maximon, 1959.

In general, the cross-section is proportional to the square of the target atomic num-

ber (Z2). Depending on the extent of screening of the nuclear field by the surround-

ing electrons, the cross-section for bremsstrahlung emission varies. In the following

subsections, we consider bremsstrahlung emission in the ultra-relativistic regime, i.e.,

when the initial and final electron energy, and outgoing photon energy is greater than

the electron rest mass energy. We consider two limiting cases of screening, the non-

screened and the completely screened nucleus bremsstrahlung cross-sections. For each

of the above two considerations, we derive the cumulative cross-sections and provide

some test results for showing the validity of the implementation.
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3.2.1 Non-screened cross-section

The differential cross-section for bremsstrahlung emission without accounting for the

screening effects is taken from Koch and Motz, 1959 (Eq. 3CN).

dσbs
dεγ

=
4Z2αr2

0

εγ

{[
1 +

(
εe− − εγ
εe−

)2

− 2

3

εe− − εγ
εe−

]
(

ln

(
2εe−(εe− − εγ)

εγ

)
− 1

2
− f(Z)

)} (3.10)

where Z is the atomic number of the nuclei, α is the fine-structure constant and r0 is

the classical electron radius. The cumulative cross-section is obtained by integrating

Eq. 3.10 with respect to the photon energy,

σbs =

∫ εe−1

εLPM

dσbs
dεγ

dεγ

=

∫ εe−−1

εLPM

c0

εγ

{[
1 +

(
εe− − εγ
εe−

)2

− 2

3

εe− − εγ
εe−

]
(

ln

(
2εe−(εe− − εγ)

εγ

)
− 1

2
− f(Z)

)}
dεγ

=

∫ εe−−1

εLPM

c0

εγ

{[
1 +

(
εe− − εγ
εe−

)2

− 2

3

εe− − εγ
εe−

]
(

ln

(
2εe−(εe− − εγ)

εγ

)
− c
)}

dεγ

=
1

6ε2
e−

[
− 8cε2

e− ln(εγ)+

ln(
2εe−(εe− − εγ)

εγ
)(8ε2

e− ln(εγ)− 8εe−εγ + 3ε2
γ)

+ 8ε2
e−Li2(

εe−

εγ
)− 8ε2

e− ln(εγ) ln(1− εe−

εγ
)

+ 8ε2
e− ln(εγ − εe−)

+ 8εe−cεγ − 3εe−εγ − 3cε2
γ

]εe−−1

εLPM

(3.11)

where c0= 4Z2αr2
0, c = 1

2 − f(Z), and Li2 is the dilogarithm function. We set a lower

energy limit εLPM to account for Landau–Pomeranchuk–Migdal (LPM) effect (Migdal,

1956, Aurenche, Gelis, and Zaraket, 2000). The LPM effect is the suppression of the

bremsstrahlung and pair production cross-sections at high energies or high matter den-

sities due to interference effects from multiple-scattering sites.

Figure 3.3 shows the differential cross-section as a function of emitted bremsstrahlung

photon energy obtained during the interaction of electrons with "bare" lead (Pb) nu-

cleus for three different initial electron energies. In the plot, we show the data obtained

via 107 photon emissions by the electrons and the corresponding analytical (Eq. 3.10)

result. The figure shows that the obtained photon energy distribution matches very
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well with the expected differential cross-section distribution function.
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FIGURE 3.3: The bremsstrahlung photon energy distribution in the field
of a completely screened nucleus obtained from numerical trials and

corresponding analytical distribution function (Eq. 3.10).

We now illustrate the numerical validation of the implemented cross-section in

the case of arbitrarily weighted macro-particles. We performed 2D test simulations

where we consider the interaction of a mono-energetic electron beam with density

nb = 1e−/m3 through a neutral lead (Pb) target atom with electron density ne =

3.3×1028e−/m3. At such low beam density, the collective plasma effects are negligible.

For this test scenario, the expected theoretical number of photons is obtained from the

relation between cross section and number of events,

ν = σbsvrelntnbV t (3.12)

where ν gives the number of events (macro photon emissions), vrel is the relative ve-

locity between two colliding particles, V is the volume of interaction (area in 2D simu-

lations) and t is the time of interaction. We perform the tests for three different initial

electron energies. The area of interaction is kept to be 0.1 µm2. The number of target

macro-particles is varied and the number of beam macro particles is kept constant to

change the ratio of numerical weights Wt/Wb. Wt,Wb represent the target and beam

macro-particle weights respectively. The results of these tests are given in Table 3.1.

The simulation outcomes (macro-particle emissions) match very closely with the ex-

pected theoretical result.

Wt
Wb

ν

(theory)

ν (computation)

Trial 1 Trial 2 Trial 3

k 6679 6678 6732 6620

2k 6679 6701 6724 6699
k
2 6679 6663 6560 6773

TABLE 3.1: Validation of non-screened bremsstrahlung module for ar-
bitrarily weighted macro-particles. ν is the number of macro photon
emissions obtained during the collision of an electron beam with energy

ε− = 100 MeV on neutral lead atoms (k is a constant).
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3.2.2 Completely screened cross-section

The formula (equation 3.10) used in the previous section is accurate when the in-

coming electron sees the nuclear field from distances smaller than the radius of the

K-shell of the atom. At greater distances the field of the nucleus is partially or com-

pletely screened by the field of the atomic electrons. The differential cross-section for

bremsstrahlung emission by considering complete screening of the nuclear field by the

atomic electrons is tabulated in Koch and Motz, 1959 and is also available in Tsai, 1974

as,
dσbs
dεγ

=
4Z2αr2

0

εγ

{[
1 +

(
ε− − εγ
ε−

)2

− 2

3

ε− − εγ
ε−

]
c0(Z)

+
1

9

ε− − εγ
ε−

} (3.13)

where c0(Z) = ln(183Z−1/3)− f(Z).

In order to compute the probability for emitting a bremsstrahlung photon, we obtain

the cumulative cross-section by integrating Eq(3.13):

σbs =

∫ κ0

ε∗γ

dεγ
dσbs
dεk

= 4Z2αr2
0

{(
4c0(Z)

3
+

1

9

)[
ln
(
κ0

ε∗γ

)
−
κ0 − ε∗γ
ε−

]
+
c0(Z)

2ε2
−

(κ2
0 − ε∗γ2)

} (3.14)

Similar to the non-screened bremsstrahlung emission scenario, we perform tests to

verify the implemented cumulative cross-section for different initial electron energies.

The electron beam now interacts with a "screened" lead (Pb) nucleus. In Figure 3.4, we

present the differential cross-section as a function of emitted bremsstrahlung photon

energy. We show the data obtained via 107 photon emissions by the electrons and

the corresponding analytical (Equation 3.14) result. From the figure, it is evident that

the obtained photon energy distribution matches closely with the expected differential

cross-section distribution function.
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FIGURE 3.4: The bremsstrahlung photon energy distribution in the field
of a completely screened nucleus obtained from numerical trials and

corresponding analytical distribution function (Equation 3.14).
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To elucidate the validity of the completely screened bremsstrahlung module to han-

dle arbitrarily weighted macro-particles, we perform the same 2D test simulations as

done in the previous section, but with a fully screened lead target nucleus. The theoret-

ical number of outcomes (macro photon emissions) were obtained from Equation 3.12.

The results of the tests are tabulated in table 3.2. The obtained number of macro-

particle emissions match very closely with the expected theoretical results for different

macro-particle weight ratios.

Wt
Wb

ν

(theory)

ν (computation)

Trial 1 Trial 2 Trial 3

k 6679 6674 6727 6646

2k 6679 6569 6742 6733
k
2 6679 6676 6580 6765

TABLE 3.2: Validation of completely screened bremsstrahlung module
for arbitrarily weighted macro-particles. ν is the number of macro pho-
ton emissions obtained during the collision of an electron beam with

energy ε− = 100 MeV on neutral lead atoms (k is a constant).

3.2.3 Screening Effects

To understand importance of screening effects, we show in Figure 3.5, the non-screened

and fully screened bremsstrahlung cross-section as a function of ultra-relativistic initial

electron energies in the presence of different target nuclei (lead (Pb) with Z= 82 and

aluminium (Al) with Z= 13). The first conclusion seen in the figure is that cross-section

is two orders more in Pb in comparison to Al nuclei. This is expected from to the Z2

dependence of the cross-section. Secondly, as screening effects reduce the strength of

the nuclear field, the completely screened cross-sections values are always lower than

the non-screened cross-sections. This will result in the reduction of effective number of

electron-nucleus collisions, consequently leading to a reduced bremsstrahlung photon

yield. This trend is consistent with both lead and aluminium nuclei. The difference

between the two limiting cross-sections for a particular target nuclei is present for

electron energies greater than 50 MeV and increases with the increase in initial electron

energy.
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FIGURE 3.5: The completely screened and non-screened cross-section
for lead (Pb) and aluminium (Al) nucleus.

As a final check, we compare the results from our module implemented in SMILEI

with the bremsstrahlung module in a different particle-in-cell code, EPOCH (Arber et

al., 2015). Their routines are based on the algorithm used in the Monte-Carlo code

PENELOPE (Salvat, Fernández-Varea, Sempau, et al., 2008). It was implemented by

Vyskočil, Ondřej Klimo, and Weber, 2018. They use cross-sections tabulated by Seltzer

and Berger, 1985.

We let a bunch of 500 MeV electrons with density = 1019e−/m3 propagate through

bulk neutral Au target for approximately 30 fs. From the Figure 3.6, we can see

that the photon distributions from both the codes agree very well. The results from

EPOCH match better with the completely screened cross-section. As discussed previ-

ously in Figure 3.5, the non-screened cross-section over estimates the probability of

bremsstrahlung photon emission.



3.3. Bethe-Heitler pair production in the ultra-relativistic regime 23

100 101 102

Eγ (MeV)

0.00

0.05

0.10

0.15

0.20

0.25
d
N
/d
E γ

(a
rb

.
u

n
it

s)

Non-screened σbs, SMILEI

Completely screened σbs, SMILEI

EPOCH

FIGURE 3.6: Comparison of photon spectra of bremsstrahlung radiation
generated by a 500MeV electron bunch propagating through an Au tar-

get for 30 fs from a PIC simulations.

Hitherto we presented the obtained cumulative cross-section for bremsstrahlung

emission for the two extreme limits of nuclear field screening. We compared the sim-

ulation outcomes with the expected theoretical results and benchmarked the module.

We also analysed at which initial electron energy range one can expect the effect of

screening to be significant for bremsstrahlung emission.

3.3 Bethe-Heitler pair production in the ultra-relativistic regime

We now discuss the creation of electron-positron pairs by a photon in the field of atomic

nucleus, the Bethe-Heitler pair production. The calculations for predicting the proper-

ties of created pairs can be made by using the cross- sections tabulated in the paper by

Motz, H. A. Olsen, and Koch, 1969. We use the differential cross-sections in the ultra-

relativistic regime. Analogous to bremsstrahlung emission, the Bethe-Heitler pair pro-

duction cross-section also grows fast with the atomic number of the target nuclei due

to the Z2 dependence. The effect of screening of nuclear field is discussed again in the

two limiting cases; the non-screened and the fully screened field of the nucleus.



24 Chapter 3. Bremsstrahlung Emission and Bethe-Heitler Pair Production

Nucleus
(Non-screened)

ℯ-

ℯ-

Bremsstrahlung 
photon

Nucleus
(Screened)

ℯ-

ℯ-

Bremsstrahlung 
photon

(b)(a)

Nucleus
(Non-screened)

Nucleus
(Screened)

ℯ-

ℯ+

ℯ-

ℯ+

Photon Photon
Bethe-Heitler 

Pair
Bethe-Heitler 

Pair
(b)(a)

FIGURE 3.7: Bethe-Heitler pair production in the field of an atomic nu-
cleus which is (a) not screened (b) screened by the surrounding elec-

trons.

3.3.1 Non-screened cross-section

The differential pair production cross-section integrated over angles is provided by

Davies, Bethe, and L. Maximon, 1954 which corresponds to Formula 3D-1007 from

Motz, H. A. Olsen, and Koch, 1969.,

dσpp
dε+

= 2
Z2α3

m3

1

ε3
γ

(ε2
+ + ε2

− +
2

3
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(3.15)

Total cross-section integrated over all photon energies without screening is given by

σpp =
28

9
Z2αr2

e [ln(
2ω

m
)− 109

42
− f(Zα)] (3.16)

By using the differential cross-section, one obtains the cumulative cross-section as fol-

lows:

σpp =
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where C = 4Z2αr2
0 and c = 1

2 + f(Z).
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In Figure 3.3, we show the non-screened Bethe-Heitler pair production differential

cross-section as a function of created positron energy. In particular we show the data

obtained via 107 pair creations obtained during the interaction of high energy photons

with "bare" lead (Pb) nucleus for three different initial photon energies. We also plot

the corresponding analytical (Equation 3.17) function. We see that the numerical and

analytical distributions match closely.
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FIGURE 3.8: Differential cross-section for non-screened pair production
obtained from numerical conversions and corresponding analytical re-

sult.

We perform 2D test simulations with a "bare" lead target, and compare the obtained

number of pairs with the expected outcomes. The test simulation consisted of a photon

beam with density nγ = 1020/m3, target electron density ne = 3.3 × 1028e−/m3, an

interaction volume (area in 2D) of 0.1 m−2 and an interaction time of ∼ 0.6 fs.

ν = σppvrelntnbV t (3.18)

The theoretical number of outcomes (macro photon emissions) were obtained using

Equation 3.18. The results of the tests are tabulated in Table 3.2. The obtained num-

ber of macro-particle pairs match very closely with the expected theoretical results for

different macro-particle weight ratios.

Wt
Wb

ν

(theory)

ν (computation)

Trial 1 Trial 2 Trial 3

k 611 620 650 642

2k 611 636 676 652
k
2 611 592 665 593

TABLE 3.3: Validation of non-screened Bethe-Heitler pair production
module for arbitrarily weighted macro-particles. ν is the number of
macro electron/positron particles created during the collision of a pho-
ton beam with energy εγ = 100 MeV on neutral lead atoms (k is a con-

stant).
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3.3.2 Completely screened cross-section

If we take nuclear field screening into consideration, the cross-section for Bethe-Heitler

production (Formula 3D-1009 in Motz, H. A. Olsen, and Koch, 1969,Akhiezer and

Berestetskii, 1986) is available in the literature as,
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9
ε+ε−
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In the case of complete screening, the total cross-section

σpp =
28

9
Z2αr2

e [ln(183Z−1/3)− 1

42
− f(Zα)]. (3.20)

It is pertinent to note that the total cross-section is independent of the incoming photon

energy and solely depends on the atomic number of the target material. The corre-

sponding cumulative cross-section

σpp =
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2
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(3.21)

where c1 = 4αZ2r20
k3

, c2 =ln(183Z−1/3) - f(Z) , k= εγ .

Similar to the previous sections, the results obtained in Figure 3.9 and Table 3.4

elucidate the validity of the implemented Bethe-Heitler pair production cross-section.
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FIGURE 3.9: Differential cross-section for screened pair production ob-
tained from numerical conversions and corresponding analytical result.
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Wt
Wb

ν

(theory)

ν (computation)

Trial 1 Trial 2 Trial 3

k 667 669 676 659

2k 667 677 671 667
k
2 667 679 658 660

TABLE 3.4: Validation of completely screened Bethe-Heitler pair pro-
duction module for arbitrarily weighted macro-particles. ν is the num-
ber of macro electron/positron particles created during the collision of
a photon beam with energy εγ = 100 MeV on neutral lead atoms (k is a

constant).

3.3.3 Screening effects

To examine the importance of screening effects, we plot the fully screened and the non-

screened cross-section as a function of target nuclei atomic number for different initial

photon energies in Figure 3.10. For photon energies around 100 MeV, we see that the

difference between the two cross-sections is not relatively significant for all values of

Z. As we increase the initial photon energies to 1 or 10 GeV, one can notice that the

difference between non-screened and fully screened cross-section increases sharply for

high Z materials. Hence depending on the setup, we may not be able to ignore the

effect of screening, although the possibility of full ionization in high Z materials is slim.
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FIGURE 3.10: Variation of non-screened and completely screened cross-
section σ (m2) with atomic number Z and photon energy εγ .
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3.4 Conclusion

In conclusion, we briefly presented the Monte-Carlo algorithm used to model collisional

radiation and pair production processes. The numerical implementation was validated

through comparison with theoretical predictions. To analyse the effect of nuclear field

screening by the surrounding electrons, we implemented the bremsstrahlung emis-

sion and Bethe-Heitler pair production in the two limiting cases of screening, the non-

screened and completely screened nucleus. We conclude that for both bremsstrahlung

emission and Bethe-Heitler pair production in the field of high Z nucleus, the differ-

ence between non-screened and completely screened cross-section is significant when

the incoming electron energy or photon energy is greater than 50 MeV or 1 GeV respec-

tively.

In electron-beam plasma or laser-beam plasma interactions, although various de-

grees of ionisation is achieved by the plasma ions, the possibility of full ionisation of

the target material is slim. In conclusion, the models presented until now cannot be

considered fully complete and have some limitations. One can also implement these

processes to ensure that all ranges of incoming electron or photon energies are dis-

cussed in the thesis of Martinez, 2018. In the following chapter, we use this enriched

version of particle-in-cell code SMILEI, in particular the completely screened nuclear

cross-sections, to study the interaction of an ultra-relativistic electron beam with a thin

conducting aluminium foil.
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Chapter 4

Extremely Dense Gamma-Ray
Beams in Electron-Conductor
Collision

We propose a method for the efficient generation of gamma photons through
the interaction of an ultra-relativistic electron beam with multiple conducting
foils. The electron beam undergoes strong self-focusing and emits hard photons
that originate from the beam interaction with the near-field transition radia-
tion accompanying the beam-foil collision. This near field radiation is of an
amplitude comparable with the beam self-field, and can be strong enough such
that a single emitted photon can carry away a significant fraction of the emit-
ting electron energy. Approximate analytic models and fully 3D particle-in-cell
simulations were used to explore the dynamics of the electron beam and the
emitted radiation during this interaction. This principle could be employed for
constructing a dense collimated femtosecond photon source and also for strong-
field QED investigations. The relatively simple model in this work along with
the outcomes arising out it aids in extending the boundaries of fundamental
and applied research. The key results of this chapter have been submitted for
publication and available online in arXiv (Sampath, Davoine, et al., 2020).

4.1 Introduction

In this chapter we study the interaction of an ultra-relativistic electron beam with a thin

conducting foil which aids in the generation of a dense photon beam. The basic idea of

our setup stems from the fact that a conductor in the vicinity of an electron beam acts

like a lens that focuses the beam via image charges. The beam in the presence of this

focusing field emits copious amount of photons. This mechanism of electron beam fo-

cusing and photon emission can be enhanced by using a series of thin conducting foils.

This approach of placing periodic array of foils transverse to the beam propagation axis

were studied in the realm of particle accelerators ( Adler, 1982, Stanley Humphries,
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1983, Humphries Jr and C. B. Ekdahl, 1988, S. Humphries, C. Ekdahl, and Woodall,

1989, Fernsler, Hubbard, and Slinker, 1990).

This chapter is organised as follows. In Sec 4.2, we briefly present the approximate

equations for the self-fields of an ultra-relativistic electron beam in vacuum. In Sec 4.3,

we discuss the key consequences, i.e, the electron beam self-focusing and synchrotron-

like emission that arises during the collision of an ultra-relativistic beam with a perfect

conductor (aluminium). Using the method of images, in Sec 4.4 we derive approximate

equations for predicting the dependence of total radiated energy on various beam pa-

rameters. In Sec 4.5 we present the 2D simulations results. We investigate the scalings

of radiated energy with respect to the electron beam parameters such as the beam ra-

dius, the beam shape and the beam energy. We extend the study by investigating the

collision of the electron beam with multiple aluminium foils. In Sec 4.6 we show 3D

simulations results in which we analyse the effect of beam radius, length and shape

on the radiated energy and also illustrate the results of electron beam collision with

multiple foils.

4.2 Beam self-fields and equations of motion

Let us consider a cold ultra-relativistic bunch of charged particles with a gaussian den-

sity distribution ρ centred at x0. Let us suppose that the bunch propagates in vacuum

with velocity v = cβ and with Lorentz factor γ along x̂. We assume that the bunch has

cylindrical symmetry around the propagation axis x̂. Hence it is convenient to approach

the problem in cylindrical coordinates (r, θ, x) with r =
√
y2 + z2, θ = arctan(y/z) and

x being the radial, azimuthal and vertical directions respectively. As a result of cylin-

drical symmetry, only the radial and longitudinal components of the electric field (Er
and Ex) and the azimuthal components of the magnetic field (Bθ) are different from

zero (Eθ = Br = Bx = 0).

The solutions to the electron beam self-fields can be obtained by solving the Maxwell

equations in vacuum.

∇ ·Bb = 0

∇ ·Eb = 4πρb

∇×Eb = −1

c

∂Bb

∂t

∇×Bb =
1

c

∂Eb

∂t
+

4π

c
jb

(4.1)

where the superscript b corresponds to "beam" and jb = ρbv = ρbvx̂.

As a result of imposing cylindrical symmetry, Gauss’s law for magnetic fields is directly

fulfilled.
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From the Faraday’s law of induction,

∇×Eb = −1

c

∂Bb

∂t(
∂Er
∂x
− ∂Ex

∂r

)
= −1

c

∂Bb
θ

∂t

=
v

c

∂Bb
θ

∂x
=
v2

c2

∂Ebr
∂x(

∂Er
∂x
− ∂Ex

∂r

)
=

(
1− 1

γ2

)
∂Ebr
∂x

∂Ex
∂r

=
1

γ2

∂Ebr
∂x

(4.2)

where we have used the assumption that for a cold electron beam B = β × E which

implies Bθ = vEr/c.

From the radial component of Maxwell-Ampere’s law,

1

c

∂Ebr
∂t

= −v
c

∂Ebr
∂x

= −∂B
b
θ

∂x
(4.3)

and the corresponding simplification of the vertical component gives the Gauss’s law

for electric fields,

1

c

∂Ebx
∂t

=
1

r

∂

∂r
(r
v

c
Ebr)− 4π

v

c
ρb

=⇒ −∂E
b
x

∂x
=

1

r

∂

∂r
(rEbr)− 4πρb

=⇒ ∂Ebx
∂x

+
1

r

∂

∂r
(rEbr) = 4πρb

≡ ∇ ·Eb = 4πρb.

(4.4)

Thus, the relevant equations to be satisfied for the beam fields are:

1

c

∂Ebr
∂t

= −∂B
b
θ

∂x
∂Ebx
∂r

+
1

r

∂

∂r
(rEbr) = 4πρb

∂Ebx
∂r

=
1

γ2

∂Ebr
∂x

(4.5)

From the above equation, for electron beams with energy in the order of few hundred

MeV, the resultant γ factor becomes large, and the longitudinal electric field component

can be safely neglected in comparison to the radial electric field (Ebx � Er ∼ 0 when

γ >> 1). Thus, this indicates that the resultant electron beam self-fields are confined

in a disk perpendicular to the direction of propagation of the beam.
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In addition, for ultra-relativistic beams magnitude the net defocusing transverse force,

f⊥ = e(E⊥ + β ×B)

= eE⊥/γ
2

(4.6)

is suppressed by a factor of 1/γ2 resulting in the ballistic propagation of the beam for

large distances.

An approximate solution of the beam self-fields for ultra-relativistic beams with γ �
1 can be obtained by modulating the uniform longitudinal density solution. For an

electron beam with Gaussian charge distribution (ρb ≡ ρ) with Ne particles, RMS beam

length σ‖, RMS beam radius σ⊥, initial position x0, and velocity v along x,

ρ(x, r, t) =
eNe

2
√

2π3/2σ2
⊥σ‖

exp(
−r2

2σ2
⊥

) exp

(−(x− x0 − vt)2

2σ2
‖

)
(4.7)

the corresponding self-fields are given by,

Ebr(r, x, t) =
2eNe√
2πσ‖

1

r

(
1− exp(

−r2

2σ2
⊥

)

)
exp

(−(x− x0 − vt)2

2σ2
‖

)
Ebx = 0

Bb
θ =

v

c
Ebr(r, x, t)

(4.8)

where the subscripts ⊥ and ‖ denote the vector components perpendicular and parallel

to v, respectively. The beam field Equations 4.8 provide an approximate solution to

Maxwell equations up to terms of order γ−2 around the beam. Having obtained the

electron beam self-fields in vacuum, we move on to discuss the presence of a perfect

conductor in the vicinity of this beam.

4.3 Collision with a conductor foil

When the self-fields of the electron beam encounter an conductor (foil), the surface

currents and charge densities are excited at the boundary, leading to the emission of

coherent transition radiation. One can understand the basic physics behind this radi-

ation via either virtual (pseudo) photon method or via the method of images. In the

former method, the electron beam self-fields are considered to be made of virtual pho-

tons that are then converted into real photons via reflection at the electron beam-foil

boundary. On the other hand, in the method of images, the electron beam is visualised

as colliding with it’s own image that is present on the other side of the conductor.

When the real electron beam and the image electron beam reach the foil boundary,

they "annihilate" and generate photons.

We employ the latter method of images to obtain approximate analytical expres-

sions for the final radiated energy during the electron beam-foil collision. A schematic

of the well-established image charge method is given in Figure 4.1.
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Perfect conductorVacuum

q -q

Charge q moving
 with velocity v

Image charge -q moving 
with velocity -v

FIGURE 4.1: A charge q colliding with its image charge −q at the bound-
ary of vacuum and a perfect conductor.

The prerequisite for employing this method is that the boundary must be a flat

surface with infinite conductivity. The method of images then takes advantage of the

fact that the tangential electric field at the boundary of a perfect conductor vanishes.

This enforces a change in sign of the beam and the image charge electric fields, i.e.,

Eimager (r, 0, t) = −Ebr(r, 0, t) In addition, as electromagnetic energy cannot penetrate a

perfect conductor, it is necessary that the Poynting vector of the image beam is equal

and opposite to that of the real electron beam

c

4π
Eb ×Bb = −

(
c

4π
Eimage ×Bimage

)
. (4.9)

This condition can be attained if the transverse magnetic field of both the real beam and

the image beam is of the same sign, i.e., Bimage
θ (r, 0, t) = Bb

θ(r, 0, t) at the boundary. In

other words, the beam fields collide with its reflected self-fields at the boundary.

Hence, within these constraints, we consider the collision of the ultra-relativistic

electron beam and a flat perfect conductor with it’s front surface at x = 0 as shown in

Figure 4.2. In particular, we use the method of images to find the conductor fields, i.e,

the fields generated at the surface of the conductor during collision (Hammond, 1960).

In the following, the superscript c denotes "conductor".

FIGURE 4.2: Schematic setup of an electron beam interaction with a
conductor (Al) foil

The conductor fields (Ec,Bc) satisfy source-free Maxwell equations outside the

conductor in the region x < 0.
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It is pertinent to note that the method of images cannot be applied when the beam

enters the foil, because the image would be located in (x < 0 region), where conductor

fields must satisfy source-free Maxwell equations. However, we use this reflected field

model obtained via method of images to obtain the total fields at the boundary at

all times, i.e., even when the electron beam penetrates the target foil. This could be

considered reasonable due to the fact that in all our simulations the beam length is not

much greater than the beam radius, i.e., σ‖ � σ⊥. In this regime, the "reflected beam"

approximation holds because the emitted radiation, i.e., coherent transition radiation,

which has a transverse size σ⊥ and typical wavelength σ‖, undergoes weak diffraction

over a Rayleigh length of approximately σ2
⊥/σ‖ � σ‖ from the boundary.

To further elucidate this, we show in Figure 4.3 the beam density ρ and radial

electric field profile Er as a function of the radial distance r. The source of the fields,

i.e, the beam particles are majorly located at the region r = 0, while the peak radial

field is approximately reached at r ≈ 1.5σ⊥. Thus, when σ⊥ � σ‖, during the collision

of the beam with the conducting foil, the current neutralisation effects do not have

sufficient time to propagate from the central region of the beam, where most of the

beam particles that are the sources of the field are located, to the region r ≈ 1.5σ⊥
where the fields are stronger. In this case, the reflected beam fields approximation

holds because the longitudinal extent of the radiation is σ2
⊥/σ‖ and it is greater than σ‖

when σ⊥ � σ‖, i.e., the non-stationary case.
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FIGURE 4.3: The radial dependence of beam density and transverse elec-
tric field.

On the other hand, when σ⊥ � σ‖, fields weakly change in time close to the con-

ductor surface and have relaxed to their stationary values for most of the interaction.

This stationary limit implies that magnetic and electric fields in Maxwell’s equations de-

couple. This corresponds to the magnetostatic approximation, yielding a vanishing Bc
θ
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and a surface-localised Ecr . B
b
θ of an ultra-relativistic beam are determined by the elec-

tron beam density per unit length N/σ‖ (refer Equation 4.8), and are approximately

invariant if part of the beam is removed (e.g., if N → N/2 and σ‖ → σ‖/2). This is

rigorously true for σ‖/σ⊥ → ∞ and to very good accuracy if the beam with σ‖ � σ⊥
is ultra-relativistic. Thus the boundary conditions are approximately time independent

and Bθ ≈ Bb
θ. In this stationary field model, field imbalance basically arises purely from

the uncompensated beam magnetic field that extends longitudinally within a region σ⊥.

The Maxwell equations for the conductor in x < 0 source-free region are:

∇ ·Bc = 0

∇ ·Ec = 0

∇×Ec +
1

c

∂Bc

∂t
= 0

∇×Bc − 1

c

∂Ec

∂t
= 0.

(4.10)

We assume that cylindrical symmetry is preserved during the complete interaction

of electron beam with the conductor foil. This implies that Ecθ = Bc
r = Bc

x = 0. By

virtue of method of images, the fields of the conductor are,

Ecr(r, x, t) = −Ebr =
−2eN√

2πσ‖

1

r

(
1− exp(

−r2

2σ2
⊥

)

)
exp

(−(x+ x0 + vt)2

2σ2
‖

)
Bc
θ = Bb

θ =
v

c
Ecr(r, x, t)

(4.11)

The radial component of Maxwell-Ampere’s equation for the conductor is identically

satisfied.

∇×Bc =
1

c

∂Ec

∂t
(4.12)

1

c

∂Ecr
∂t

= −∂B
c
θ

∂x

v

c

∂Ecr
∂x

= −∂(−vc E
c
r)

∂x

(4.13)

And the vertical component,

1

c

∂Ecx
∂t

=
1

r

∂(rBc
θ)

∂r

=
1

r

∂(r−vc E
c
r)

∂r

=⇒ ∂Ecx
∂t

=
−v
r

∂(rEcr)

∂r
.

(4.14)

While ∇ ·Ec = 0 implies,
∂Ecx
∂x

= −1

r

∂(rEcr)

∂r
(4.15)
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Thus the longitudinal and temporal dependence of Ecx is determined by the radial

dependence of (rEcr).
∂(rEcr)

∂r
= Ecr + r

∂Ecr
∂r

(4.16)

which implies, Ecx ≈ Ecr .
Based on the above, we can conclude that there is a presence of a strong longitudinal

electric field associated with the surface charge distribution of the conductor. However,

this strong longitudinal field does not play any role in electron beam focusing and

photon emission.

With this, we have obtained the beam and the conducting foil fields that provide an

approximate solution to the Maxwell equations.

The total transverse electromagnetic fields at the boundary can be written as a

linear superposition of the beam and conductor fields.

Er(r, x, t) = Ebr(r, x, t) + Ecr(r, x, t)

Bθ(r, x, t) = Bb
θ(r, x, t) +Bc

θ(r, x, t)
(4.17)

Within the reflected field model, at the foil surface the total electric field is contin-

uous and Er = Ebr + Ecr ≈ 0, whereas the total magnetic field is discontinuous and

Bθ = Bb
θ + Bc

θ ≈ 2Bb
θ. Effectively with respect to Er and Bθ, the electron beam is

colliding with its own image. This results in a net non-zero transverse Lorentz force

f⊥ = e(Er −Bθ)r̂ = e(2Bb
θ)r̂ , and due to this force, the beam undergoes self-focusing

and emits synchrotron like photon emission. This is analogous to a laser pulse hitting

the conductor and getting reflected at the target surface.

4.4 Estimation of the radiated energy

With the information about the fields at the boundary, we proceed to estimate the total

radiated energy. The electron quantum parameter χe primarily controls the amount of

emission per unit time.

χe =
γ

Bcr

√(
E +

v

c
×B

)2

−
(
E · v

c

)2

(4.18)

For the total electromagnetic fields obtained in Equation 4.17,(
E +

v

c
×B

)2

−
(
E · v

c

)2

=

(
Er −

v

c
Bθ

)2

+ E2
x − E2

x

v2

c2

=

(
Er −

v

c
Bθ

)2

+
E2
x

γ2

(4.19)
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Since the electron beam is ultra-relativistic, γ � 1,

χe ≈
γ|Er −Bθ|

Bcr
where

Er = Ebr + Ecr

Bθ = Bb
θ +Bc

θ

(4.20)

The average energy radiated per particle per unit time as given in Katkov, Strakhovenko,

et al., 1998 :

ε̇γ =
dεγ
dt

=
e2m2

ec
3

3
√

3π~2

∫ ∞
0

u(4u2 + 5u+ 4)

(1 + u)4
K2/3

(
2u

3χ

)
du

=
1

3
√

3π

e2

~c
mec

2

~
mc2

∫ ∞
0

u(4u2 + 5u+ 4)

(1 + u)4
K2/3

(
2u

3χ

)
du

≈ 2

3

α

τc
mec

2

[
χ2

(1 + 4.8(1 + χ loge(1 + 1.7χ) + 2.44χ2)2/3

] (4.21)

If f(r, x,p, t) = ρ(r, x, t)δ3(p − p0)/e is the electron particle distribution function,

then total initial energy of the beam is given by,

2π

∫
f(r, x,p, t)εe(p)dxrdrd3p = εe(|p0|)Ne = γmec

2Ne (4.22)

And the total average of the emitted energy by the electron beam is given by,

2π

∫
f(r, x,p, t)ε̇γdxrdrd3pdt (4.23)

where we have assumed that all the beam electrons have the same initial energy

and momentum.

If we neglect energy loses during the interaction via other processes such as colli-

sions, the fraction of emitted energy is,

2π
∫
f(r, x,p, t)ε̇γdxrdrd3pdt

γmec2N
=

2π
∫
ρ(r, x, t)ε̇γ(χe(|p0|), r, x, t)dxrdrdt

γmec2N
(4.24)

The electron to photon conversion efficiency is

η =
2π
∫ +∞
−∞ dt

∫ 0
−∞ dx

∫∞
0 rdr ρ(r, x, t)ε̇γ(χe(|p0|), r, x, t)
γmec2eN

(4.25)

We perform the integration in the above equation numerically.

In a nutshell for the analytical modelling, we consider a cold ultra-relativistic electron

beam with cylindrical symmetry around its propagation axis. The foil is considered

to be thin and infinitely conducting. We assume that cylindrical symmetry is preserved

throughout the beam-foil interaction. The total electromagnetic fields were written as a

linear superposition of beam and conductor fields. We use the method of images where

applicable to determine the conductor fields. The key physical arguments considered in

the analytical models are the continuity of total tangential electric field at the boundary
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and zero within the conductor, and electromagnetic energy cannot be transferred across

a surface of infinite conductivity. With this model we now aim to find the scaling

laws that govern the dependence of the conversion efficiency η with respect to beam

parameters such as (a) beam radius (σ⊥) , (b) beam length σ‖ and (c) beam mean

energy γ.

4.5 2D simulation results

Having elaborately discussed the analytical models, we now present the results of the

interaction of ultra-relativistic beam with thin aluminium (conductor) foil. For all our

simulations, we use the particle-in-cell code SMILEI developed by Derouillat et al.,

2018.

4.5.1 Simulation setup

The chosen electron beam parameters are within the reach of existing accelerator fa-

cilities such as FACET II (Yakimenko, Alsberg, et al., 2019). The beam has 2 nC

charge, a Gaussian spatial and momentum distribution with 10 MeV mean energy,

212 MeV full width at half-maximum (FWHM) energy spread, and 3 mm-mrad nor-

malised emittance. The target consists of 0.5 µm thick aluminium foil with initial

charge state set to +3. We estimate the target thickness by considering an analogy

with the reflectivity condition in light-sail acceleration (Macchi et al., 2010). The in-

teraction of the laser and target is similar to the electron beam-target interaction with

λlaser ≈ 2(2
√

2 ln 2σ‖). Within the light-sail acceleration model, the thin target plasma

foil is modelled as a "mirror" foil that acts as perfectly reflecting surface during the inter-

action of the laser beam with the foil. The optimal target thickness l is chosen according

to the reflectivity condition l = a0ncλlaser/(πnt), where a0 = (eEr/(mec
2))λlaser/(2π),

nc = me(2πc/λlaser)
2/(4πe2) and nt corresponds to the plasma electron density of the

conductor foil. Recall that Er corresponds to the radial electric field of the electron

beam. In light-sail acceleration, the laser fields are reflected by the thin target, while

in our simulations, the electron beam self-fields are reflected from the target surface.

Our simulation domain depends on the size of the beam and is chosen as given in

Figure 4.4. We ensure that boundary effects do not affect the simulation results. We

use 16 particles-per-cell (ppc) for target ions, 196 ppc for target plasma electrons, and

for the beam electrons we vary the ppc according to the beam size and the total beam

macro-particles was kept approximately constant (∼ 2.4 ×107) across all simulations.

The spatial resolution of our simulation grid is given by 2∆x = ∆y = 0.025 µm. The

electron beam enters the simulation box from the left and propagates in the x direction.

We take into account the effect of field ionisation and collisional processes such as

collisional ionisation, binary Coulomb collisions, bremsstrahlung emission and Bethe-

Heitler pair production. We also consider field emission and pair production (stochastic
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high-energy synchrotron photon emission and multiphoton Breit Wheeler) in all our

simulations.

FIGURE 4.4: Schematic of the computational domain used in our 2D
simulations

With the described simulation setup we conduct a series of simulations to explore

the dependency of radiated energy on the (a) transverse size of the beam, (b) the shape

of the beam, and (c) the energy of the beam. In sec 4.5.4, we extend our studies to

investigate the collision of a round electron beam with multiple aluminium foils which

are separated by 10 µm. Our 2D simulations shed light both on the radiated energy

and the electron beam focusing.

4.5.2 Beam dynamics in the vicinity of a single foil

In this subsection, we briefly present the key phenomena underpinning the interaction

of an ultra-relativistic electron beam with a sub-micrometer thin conductor foil. Our

goal is to present the root mechanism that occurs in all our simulations. In Figure 4.5

we show different stages of electron beam interaction with the foil: (i) beam in vacuum

(column 1 in Figure 4.5), (ii) beam centre hits the target front (column 2 in Figure 4.5),

and (iii) beam exits the target (column 3 in Figure 4.5 ). In the vacuum, the beam

electric and magnetic fields compensate each other perfectly as expected. In the second

stage, when the beam centre reaches the the target front, the electromagnetic self-fields

of the beam are shielded by the conducting foil surface, consequently the transverse

magnetic field is doubled ((b2) in Figure 4.5) and the transverse electric field goes to

zero ((c2) in Figure 4.5) just in front of the target surface. The beam rear experiences

the transverse force induced due to this field imbalance and experiences slight self-

transverse focusing and emits a lot of photons. As the beam exits the conductor fully

((a3) in Figure 4.5), the beam starts to regenerate it’s own self-fields. In 2D simulations,

the self-fields extend infinitely transversely due to the infinite z length. The beam loses

energy considerably to this extensive field recreation artefact. It is important to also
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note that the beam emits photons as it exits the conductor. This can be explained as

the radial electric field is zero also at the rear foil surface, and the magnetic field grows

gradually during the beam exit. However all our simulations indicate that stronger

fields at present at the beam entrance and photon emission is dominated by beam

emission at the foil entrance.
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FIGURE 4.5: Snapshots of beam with σ‖ = 1.5 µm and σ⊥ = 0.2 µm
evolution during the interaction with a single aluminium foil.

4.5.3 Variation of the radiated energy with the beam parameters

To investigate the effect of beam parameters on the amount of radiated energy, we

consider a reference beam with σ‖= 1.5 µm and σ⊥= 0.2 µm. The chosen parameters

are very close to the expected beam parameters at FACET II. We then vary (a) σ⊥, (b)

beam shape by keeping the self-fields constant and (c) mean energy of beam γ and

study the variation in the obtained total radiated photon energy. It is important to

note that in 2D geometry, the beam and the foil are considered to be infinite in the z

direction, and therefore all values are independent of z. Both the beam density and the

fields depend on time t and coordinates x and y.

Effect of the transverse size of the beam

For our investigations reported in Table 4.1, we keep the bunch length σ‖, mean energy

γ and total number of beam particles Ne to be constant, and increase σ⊥ by ∆σ⊥ =
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0.1 and 0.2 µm. This implies that the beam density and the fields depend only on

the transverse coordinate y which controls r. In particular, the total transverse fields

in general are proportional to the inverse of radial distance (Equation 4.8). Hence

qualitatively we can expect the transverse force (f⊥ ≈ (Er − vx/cBθ)) to decrease

as the beam radius σ⊥ increases. The quantum parameter χe ∝ f⊥ governs photon

emission and changes significantly with beam radius as shown in Figure 4.6.
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FIGURE 4.6: The quantum parameter χe obtained from 2D PIC simula-
tions as a function of the longitudinal distance for three different beam
radius. The beam centre has propagated a distance of x = 9.2 µm before

hitting the target front surface.

The obtained electron to photon conversion efficiency is reported in Table 4.1. From

the figure and the table we see that with increase in beam radius, the fields and sub-

sequently the radiated energy decreases. Therefore, for a fixed short beam length,

compression of beam transversely increases the final radiated energy.

σ‖ (µm) σ⊥ (µm) Conversion efficiency (η %)

1.5 0.2 η1= 2.6

1.5 0.3 η2= 1.8

1.5 0.4 η3= 1.4

TABLE 4.1: Variation of electron to photon conversion efficiency η ob-
tained from 2D PIC simulations with respect to the transverse size of the

beam.
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Effect of beam shape

We now discuss the effect of shape of the beam on the radiated energy. The shape of

an electron beam depends on both the beam length and the beam radius. A round

electron beam has a length equal to it’s radius, while, an oval electron beam has a

radius greater than it’s length, and a disc like electron beam has a length greater than

it’s radius. We vary the beam shape by changing the beam length and the beam radius

such that the product of σ‖ × σ⊥ is a constant value. This in turn ensures that the

maximum amplitude of transverse fields that controls χe and thereby photon emission

is also a constant. Recall that the transverse electric field is ∝ 1/(rσ‖). The emission

of photons depends primarily on the number of electrons in an intense field region.

Firstly, although we keep the maximum amplitude of the initial self-field constant in our

simulations, the value of σ⊥ determines the location of the maximum field. Secondly,

it is important to have a large number of electrons experience this "maximum" field

region. In other words, we need a substantial amount of electrons in the intense field

region. An optimal combination of σ‖ × σ⊥ for a constant perpendicular field ensures

the most efficient conversion of electron energy into photons. The values for conversion

efficiency as we vary the beam shape is reported in Table 4.2.

σ‖ (µm) σ⊥ (µm) Conversion efficiency (η %)

1.5 0.2 2.6

1.0 0.3 2.9

0.75 0.4 3.0

0.55 0.55 2.7

0.4 0.75 2.2

0.3 1.0 2.2

TABLE 4.2: Variation of electron to photon conversion efficiency η ob-
tained from 2D PIC simulations with respect to the shape of the beam.

Effect of varying beam energy

Now we discuss the effect of mean beam energy on photon emission for the beam with

σ‖ = 1.5 µm and σ⊥ = 0.2 µm. From Table 4.3, we can conclude that although the total

radiated energy increases with increasing γ of beam, it is not drastically dependent on

γ.

Mean beam energy Conversion efficiency (η %)

10 GeV 2.6

20 GeV 3.4

30 GeV 3.8

TABLE 4.3: Variation of electron to photon conversion efficiency η ob-
tained from 2D PIC simulations with respect to mean energy of the

beam.
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In conclusion, from the 2D beam parameter scans, we show that the beam shape

(the product σ‖ × σ⊥) plays a key role in the amount of particles that are present in

a strong-field region, and since these focusing effects only act on the transverse pro-

file of the beam, it is pragmatic to start with a beam that has short length. In addi-

tion, given the sub-micron foil thickness in the reported simulations. We confirm that

the effect of collisional processes is (binary Coulomb collisions, collisional ionisation,

bremsstrahlung emission and Bethe-Heitler pair production) negligible.

4.5.4 Multiple foil interaction

Having discussed the electron beam-foil interaction dynamics for a single foil, we now

extend the idea to multiple foils. In particular, we study the interaction of a round

electron beam (0.55 µm × 0.55 µm) with a periodic array of 20 Al+3 foils. The foil

thickness is 0.5 µm and distance between the rear and front of two consecutive foils is

set as 10 µm. This distance is chosen to allow the electron beam to recreate it’s own

self-fields to it’s vacuum value before colliding with the subsequent foil. The inter-foil

distance is not large enough to lead to a significant beam expansion.

From the 2D simulations, we observe a total of conversion of ∼19% of initial elec-

tron beam energy into energy of photons. The conversion efficiency η as a function

of the number of foils crossed by the beam is reported in Figure 4.8. Specifically the

electron beam energy in 2D simulations is burnt out both by photon emission and self-

field reproduction after interaction with each foil. The self-fields extend infinitely in

the transverse direction in 2D simulations which is a numerical artefact.

To further grasp the complex electron dynamics during this multiple-foil interac-

tion we show in Figure 4.7, some snapshots of beam evolution. The first column in

the Figure 4.7 corresponds to the initial time. The electron beam displays a gaussian

density profile (Figure 4.7(a1)), and as expected the transverse fields (Figure 4.7(b1))

is zero as the focusing magnetic field and the defocusing electric fields cancel almost

perfectly for an ultra-relativistic beam. The second column of Figure 4.7 shows the

instant when the beam centre collides with the fourth foil. By now, the rear of the

beam, which experiences the most focusing force accompanied by photon emission is

significantly compressed (Figure 4.7(a2)). We can also see that there is a net strong

focusing transverse force (Figure 4.7(b2)), and the generated photons are displayed in

Figure 4.7(c2). With further collisions, the density of the rear drops as one part of the

beam crosses and overshoots the other transversely (Figure 4.7(a3)). And finally, the

beam dynamics becomes complex as the beam experiences longitudinal modulations.

This is due to the presence of a longitudinally inhomogeneous transverse force as seen

in Figure 4.7(b4).
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FIGURE 4.7: Electron beam evolution. First column, initial electron
beam density (a1), the transverse field (b1), and the initial photon den-
sity (c1). Second to fourth column, same quantities as in the first col-
umn but at the 4th (a2)-(c2), the 7th (a3)-(c3), and the 15th (a4)-(d4),

beam-foil interaction, respectively.
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FIGURE 4.8: The electron to photon conversion efficiency η obtained
from 2D PIC simulations as a function of number of foils crossed by the

electron beam.
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4.6 3D simulation results

The extension of self-fields infinitely in the transverse direction in 2D simulations in-

terferes with the physics being studied, and therefore it is crucial to use fully 3D PIC

simulations to enable the accurate modelling of ultra-relativistic electron beam interac-

tion with sub-micron thick conductor foils. In this section, we investigate the scalings of

electron energy conversion into photons with respect to beam emittance, bunch length

σ‖ and bunch radius σ⊥ and finally electron beam interaction with multiple foils.

4.6.1 Simulation setup

As in 2D simulations, we initialise the electron beam with gaussian spatial and momen-

tum distribution σ‖, σ⊥ being the RMS beam length and radius, 10 GeV mean energy,

212 MeV FWHM energy spread and 3 mm-mrad emittance. The aluminium target is

initially in Al+3 charge state with 0.5 µm thickness. The simulation domain is cho-

sen such that boundary effects do not affect the region of interest; i.e., the full beam

region. Unless otherwise specified, the resolution dx = 0.5dy = 0.5dz = 0.0125µm.

The temporal resolution dt ∼ 1.96 × 10−17s. In the simulations, we also take into

account the effect of binary Coulomb collisions between charged particle species, col-

lisional and field ionisation, synchrotron radiation and multiphoton-Breit-Wheeler pair

production. Bremsstrahlung emission and Bethe-Heitler pair production are considered

as necessary.

4.6.2 Beam-Single Foil Interaction

We first illustrate the beam self-focusing and photon emission mechanism during the

collision of the beam with a single aluminium foil. The model beam is chosen such that

the reflected field model (obtained via method of images) fully holds, i.e., σ⊥ � σ‖. We

consider an electron beam with σ‖ = 0.55µm and σ⊥ = 1.25µm. Figure 4.9(a) displays

a snapshot of the electron beam density when the beam centre has reached the front

surface of the foil. Figures 4.9(b) and 4.9(c) show the transverse magnetic B⊥ and

electric field E⊥, respectively. As seen in 2D simulation results, and expected from

the analytical model, at the boundary surface of collision, B⊥ is amplified and its peak

value doubles with respect to the beam self-field (3.1 × 104 T),E⊥ is suppressed and is

much smaller than the beam self-field (9.4 × 1012 V/m). Thus, when an electron beam

collides with a conductor, the focusing magnetic term of the Lorentz force overcomes

the de-focusing electric term, leading to a net result of beam self-focusing.
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FIGURE 4.9: (a) Electron beam density, (b) transverse magnetic field,
and (c) transverse electric field in the collision of an electron beam with
0.5 µm thick aluminium foil. The electron beam has 2 nC charge, 10

GeV energy, σ‖ = 0.55 µm and, σ⊥ = 1.25 µm

4.6.3 3D scalings with respect to beam parameters

In this subsection, we study the effect of beam elongation and focusing individually in

both directions and compare with the predictions of analytical models.

Transverse modulation

We transversely modulate a beam with σ‖= 0.55 µm and compare the conversion effi-

ciency with and without beam emittance. In addition as photon emission occurs when

the beam crosses any boundary, i.e., when the beam enters or exits the target, we record

the contribution from both entrance and exit phase separately.

In Table 4.4, we report the conversion efficiency η obtained from the simulations for a

beam with and without emittance as we increase σ⊥ from 0.275− 1.25 µm. It is clearly

evident that the obtained radiated energy is robust with respect to beam emittance. We

also report in Table 4.4 η obtained solely from the beam entrance phase. We obtain

this by using a 2 µm target which ensures that there is no overlap of entrance and exit

emission signals. It can be concluded that the dominant contribution to emission comes

from the beam entrance phase. Specifically, when σ⊥ ≥ 0.55 µm (i.e., σ⊥ � σ‖), more

than 75% of the total emission recorded in the simulations is from the beam entrance

phase.
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σ⊥ Conversion efficiency η (%)

(µm) Cold beam Beam emittance6= 0 Beam entrance

0.275 1.94 % 1.94 % 1.23%

0.55 1.14 % 1.14 % 0.86 %

0.75 0.81 % 0.81 % 0.66 %

1.00 0.56 % 0.56 % 0.48 %

1.25 0.44 % 0.44 % 0.37 %

TABLE 4.4: Variation of conversion efficiency of η with respect to σ⊥
with and without beam emittance. The conversion efficiency obtained

during beam entrance phase is also reported.

In Figure 4.10, we present η as a function of σ⊥ for the reflected (blue circles) field

model, and the corresponding PIC simulation results (black circles). As discussed in

Section 4.3, when σ⊥ � σ‖ (for example, σ⊥ = 0.275µm and σ‖ = 0.55µm), the

current neutralisation effects propagate from the beam centre to r ≈ σ⊥ reducing the

value of total reflected fields from the conductor boundary. The results obtained for

σ⊥ = 0.275µm show more difference with respect to the analytical expectation in com-

parison to σ⊥ = 1.25µm. This corresponds to the magnetostatic approximation, which

implies a vanishing Bc
θ, and the result focusing field is majorly from the uncompensated

electron beam self-fields.

The obtained simulation results agree more with the reflected field approximation

with increasing σ⊥. To further validate the effect of current neutralisation, we report in

Table 4.5, the ratio of transverse peak magnetic field observed when the beam centre

hits the target front to the initial beam transverse magnetic field Bcenter,peak
B(t=0) for different

values of σ⊥. It is clear from the table that the peak amplitude of total transverse

fields increases with increasing σ⊥, thereby supporting the validity of the reflecting

field model.
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FIGURE 4.10: Conversion efficiency η in electron beam-foil collision as a
function of σ⊥. Results from 3D PIC simulations (black circles), reflected

field (blue circles) model predictions.

σ⊥
Bcenter,peak
B(t=0)

(µm) Simulations Reflected field model Relative error

(S) (RF) RF−S
RF × 100

0.275 1.3 2 35%

0.55 1.6 2 20%

0.75 1.8 2 10%

1.00 1.8 2 10%

1.25 1.9 2 5%

TABLE 4.5: The ratio of peak transverse magnetic field observed when
beam centre hits the target front to the initial beam transverse magnetic

field Bcenter,peak

B(t=0) as function of σ⊥.

Longitudinal modulation

We move on to discuss the effect of longitudinal modulation of the electron beam for

a constant σ⊥ = 0.55 µm. We use a cold beam in our simulations as it was already

shown that beam emittance does not affect the physics being discussed in our work.

In Figure 4.11, we show η as a function of σ‖ for the reflected (blue circles) field

model, and the corresponding PIC simulation results (black circles). As explained for

transverse elongation, the ratio of σ⊥/σ‖ is crucial in determining the effects of current

neutralisation. The results for longitudinally compressed beam fit well with reflected

field approximation, and the difference between analytical predictions and simulation

results increase for longitudinally elongated beams. We report the ratio of the peak
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σ‖
Bcenter,peak
B(t=0)

(µm) Simulations Analytical Relative error
(S) (A) A−S

A × 100

0.275 1.7 2 15%
0.55 1.6 2 20%
0.75 1.5 2 25%
1.00 1.3 2 35%
1.25 1.2 2 40%

TABLE 4.6: Effect of σ‖ on the amount of reflection of fields by the
target.

transverse magnetic field observed when beam centre hits the target front to the ini-

tial beam transverse magnetic field Bcenter,peak
B(t=0) for different values of σ‖ in Table 4.6,

It is clear from the table that the peak amplitude of total transverse fields (Bc
θ + Bb

θ)

decreases with increasing σ‖ (i.e., σ⊥ � σ‖), thereby elucidating the decrease in con-

ductor fields Bc
θ, which corresponds to the magnetostatic approximation.
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FIGURE 4.11: Conversion efficiency η in electron beam-foil collision as
a function of σ‖. Results from 3D PIC simulations (black circles), and

reflected field (blue circles) field model predictions.

4.6.4 Beam-Multiple foil interaction

We now move onto the interesting and novel idea of the interaction of an ultra-relativistic

electron beam with multiple-foils. The goal is to use full 3D PIC simulations will enable

to capture the rich dynamics of the electron and gamma beam evolution without any

numerical artefacts. A schematic of our setup is given in Figure 4.12. The beam and

target parameters are chosen to be exactly the same as in 2D simulations (Refer subsec-

tion 4.5.4). Note that, in both 2D and 3D simulations, the distance between two foils
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(inter-foil distance) is kept to be 10 µm. For efficient self-focusing, this distance must

be sufficiently large to allow for the restoration of beam-fields around its propagation

axis (r ∼ σ⊥), which requires the inter-foil distance to be greater than σ⊥. Addition-

ally, it needs be short enough to prevent beam expansion. This can be estimated by

considering the effect of |f⊥| ≈ |2eBθ| calculated at x ≈ x0+vt and r ∼ σ⊥, i.e., where

the focusing is stronger. For σ⊥ � σ‖, the coherent transition radiation extends ap-

proximately over a distance σ2
⊥/σ‖, which is larger than the beam length σ‖. Thus, |f⊥|

lasts for approximately σ‖/c, and the deflection angle is θ ≈ |f⊥|σ‖/γmec
2 . Hence, to

prevent defocusing the inter-foil distance must be much smaller than σ⊥/θ.

In total we observe a conversion of ∼ 30% of the initial electron energy into dense

collimated photon beam production.

FIGURE 4.12: Schematic setup of beam interaction with multiple alu-
minium foils.

Finite beam emittance

We first study the interaction of the electron beam with multiple foils when the beam

emittance is equal to 3 mm-mrad. Figure 4.13 snapshots of the electron and gamma

beam evolution. During the collision of the beam from the first to sixth foil, the beam

interacts with the field "reflected" by each foil. As explained previously, this leads to

the self-focusing of the beam accompanied by synchrotron-like photon emission. This

self-focusing of the beam, gradually increases the beam density from its initial value

of 4.7 × 1027 m−3 to 8.2 × 1028 m−3 after the 6th foil (see first to third column of

Figure 4.13). The corresponding maximum photon number density and the peak value

of χe of the electrons are 2.9 × 1028 m−3 and 0.8 respectively. A transition occurs in

the interaction with the 7th foil, where the electron beam density reaches 3.8 × 1029

m−3 exceeding the foil density 1.8 × 1029 m−3. (see Figure 4.13(a3)-(d3)). Thus,

the foil is unable to reflect the fields of the beam, and a channel is created inside the

foil. Within this channel (localised at the beam location), the plasma electrons are

expelled. The field strengths observed in this channel were strong enough to cause

rapid field ionisation and also trigger strong-field QED effects. Here χe and the photon

beam density rise up to 3 and 4.1 × 1029 m−3, respectively. Moreover, approximately

10−4 photons convert into electron-positron pairs via multi-photon Breit-Wheeler pair

production. At this stage, when the electron beam density is greater than the plasma

electron density, the beam does not interact with reflected fields at the target boundary,
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and subsequently the focusing effects stop. Instead of focusing, the beam undergoes

longitudinal modulation (see Figure 4.13(a5)-(a6)). The modulation arises because

both reflected and channeling fields are stronger around the rear part of the beam,

which yields in the longitudinal inhomogeneous focusing force. (see Figure 4.13(b4)-

(c4)). The effect of the computational grid resolution when the beam density increases

is reported in the upcoming subsection 4.6.4.

FIGURE 4.13: Beam evolution. First column, initial electron beam den-
sity (a1), its magnetic (b1) and electric (c1) field, and the initial photon
density (d1). Second to sixth column, same quantities as in the first col-
umn but at the 3rd (a2)-(d2), the 6th (a3)-(d3), the 7th (a4)-(d4), the
12th (a5)-(d5), and the 16th (a6)-(d6) beam-foil interaction, respec-

tively.

Figure 4.14(a) reports the initial (black dashed line) and final (blue line) electron

beam energy distribution after the interaction with 20 consecutive foils. The final en-

ergy distribution shows a residual peak around the initial electron beam energy, which

is indicative of the relatively small energy loss of the front part of the beam, both due to

synchrotron emission and collisional processes. The broad distribution around 5 GeV

results from the intense synchrotron emission occurring in the central and rear part

of the beam. Figure 4.14(b) reports the final photon spectrum and the conversion effi-

ciency η (inset) as a function of the number of crossed foils. The sudden increase of η at

the 7th foil is explained by the transition from the field reflection to the field channel-

ing regime. After colliding with 20 foils, more than 30% percent of the electron beam

energy is converted into a collimated (5 mrad rms photon energy angular distribution),

4 femtosecond FWHM duration, 2.8 × 1029 m−3 density gamma-ray pulse.
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FIGURE 4.14: Panel (a), initial (black dashed line) and final (blue line)
electron beam energy distribution. Panel (b), final pho- ton spectrum.
The inset displays the conversion efficiency η as a function of the number

of foils crossed by the electron beam.

Convergence of results

As reported previously, the beam density during interaction with the seventh foil in-

creases up to 3.8 × 1029 m−3 exceeding the foil density 1.8 × 1029 m−3. In our

simulations, the grid was designed to resolve a maximum of foil plasma electron den-

sity, which is much greater than the initial beam electron density. Hence, in order to

check the robustness of the results, we performed convergence tests. In order to do

so, we extract the beam density profile data just after beam interaction with the 6th

foil, approximately at 57.6 µm propagation distance. We then input this data into new

simulation grid with increased resolution. The beam is allowed to interact with one

foil with 0.5 µm thickness. Since these are fully 3D PIC simulations, the computational

resources needed are very demanding. Due to the sub micro-meter foil thickness, and

from the trends observed in all our simulations, we know that collisional processes and

multiphoton Breit-Wheeler pair production is negligible. Hence, we do not incorporate

these effects in our new simulation with increased resolution. In particular, since the

beam is compressed transversely, we increase the transverse resolution of the compu-

tational grid. We check the effect of numerical grid resolution only for beam-single foil

interaction as the beam expands after interacting with the seventh foil. We report the

tests for convergence in Table 4.7. The obtained data in the first row corresponds to the
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computational grid resolution used in our beam-multiple foil simulations. The relative

error between the first row and the highest resolution we approach within the limits of

our cluster facility is 29%. The results presented in the second row show a relative dif-

ference of approximately 7% with respect to the third row results (highest achievable

resolution). Therefore, we state that we underestimate the conversion efficiency during

the beam interaction with the seventh foil in our beam-multiple foil interactions.

Resolution of

the computational PIC grid

Conversion efficiency η (%)

(after interaction with foil number 7)

dx= 0.0125 µm, dy= dz= 2dx 3.54

dx= 0.0125 µm, dy= dz= 1dx 4.61

dx= 0.0125 µm, dy= dz= 0.5dx 4.96

TABLE 4.7: Convergence of results with respect to numerical grid reso-
lution. The conversion efficiency obtained by taking the beam data after
interaction with the sixth foil and inputting the data into a computa-

tional grid with higher resolution.

In addition, we performed simulations with varying numerical resolution during

the interaction of a cold electron beam with σ‖ = 0.55µm and σ⊥ = 0.027µm. The

transverse size of the beam is chosen such that the resultant peak beam density is

comparable with the peak beam density observed during beam interaction with seventh

foil. In these simulations, we reduce both the transverse and longitudinal grid size

thereby increasing grid resolution along both directions. The results presented in the

first row of the table correspond to the grid resolution we use in our beam-multiple

foil collisions. The relative error between the first row and the third row (highest

numerical grid resolution we achieved) is approximately 24%. The results presented

in the second show a relative difference of approximately 7% with respect to the third

row results (highest achievable resolution). The beam parameters although chosen

here are extreme, we restate that we underestimate the conversion efficiency of energy

transferred from the electron beam into photon emission during the beam interaction

with the seventh foil.

Resolution of

the computational PIC grid
Conversion efficiency η(%)

dx= 0.0125 µm, dy= dz= 2dx 18.91

dx= dy= dz= 0.0125 µm 23.20

dx= dy= dz= 0.00625 µm 24.83

TABLE 4.8: Variation of conversion efficiency η (%) as we increase the
computational grid resolution.
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Cold beam

In the previous section, the electron beam emittance was chosen to be 3 mm-mrad,

a value expected at the FACET II beam facility. Here, we repeat the simulation in

the previous section with a cold electron beam, and without collisions and collisional

ionisation. We let a cold electron beam collide with 16 sub-micrometer thick aluminium

foils.
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FIGURE 4.15: Scalings of conversion efficiency of electron beam energy
into photon energy as a function of number of foils.

Figure 4.15 presents conversion efficiency of electron beam energy into photon en-

ergy as a function of number of foils. We plot the results obtained with a initially cold

electron beam and when beam emittance was equal to 3 mm-mrad. The results match

very closely, which implies that the mechanism of beam self-focusing and photon emis-

sion is robust with respect to beam emittance, binary Coulomb collisions and collisional

ionisation. We also confirm that there are no numerical artefacts as we performed tests

using different fields solvers and different boundary conditions.

4.7 Conclusions

Using self-consistent 2D and 3D PIC simulations, we have extensively studied the inter-

action of an ultra-relativistic electron beam with sub-micron thin aluminium foil. The

key outcomes of this interaction are electron beam self-focusing and photon emission.

We have then investigated the effect of transverse and longitudinal beam size on this

mechanism and we have compared the simulation results with approximate analytical

models. To summarise, the root mechanism of beam self-focusing and photon emis-

sion is robust for a wide range of σ‖ and σ⊥ parameters. We have extended the idea
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to electron beam interaction with multiple foils. In this interaction, we have observed

extreme electron beam self-focusing and the production of a dense collimated GeV pho-

ton beam. We have reported an efficient conversion ∼ 30% of electron beam energy

into the gamma photons. Specifically, the obtained electron and photon beams have a

number density that exceeds that of a solid. From all our simulations, we have con-

cluded that the obtained results are robust with respect to beam emittance. Another

interesting feature is the observation of "channelling" regime when the electron beam

density becomes greater than the target foil density. The electron beam self-fields chan-

nel into the target and enables the creation of strong-fields such that the χe parameter

of the electron rises to ≈ 3 within the target. This implies that the field strengths in the

rest frame of electron beam rises up to approximately 3 times the critical QED field.

Collisional processes were not significant so far in all our simulations. This opens up

the possibility of accessing the strong field QED regime with a single electron beam

and without external super intense laser fields. Overall, our relatively simple setup

is promising, and we have illustrated the generation of extremely dense collimated

gamma-ray pulses with applications both in fundamental and applied physics.
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Chapter 5

Summary and Outlook

5.1 Summary

We have first discussed the Maxwell-Vlasov equations that govern the self-consistent

evolution of plasmas and the numerical method employed to solve these equations,

namely, the Particle-In-Cell (PIC) technique. In order to determine the role of collision

assisted radiation and pair production in electron beam-plasma interactions, we have

implemented bremsstrahlung emission and Bethe-Heitler pair production in the ultra-

relativistic regime within the PIC code SMILEI. The cross-section of both these processes

varies with respect to the effect of nuclear field screening by the surrounding electrons.

Therefore, we have implemented both these processes in the two extreme limits of

screening, i.e., the non-screened and completely screened cross-sections. Furthermore,

we have systematically validated the implemented cross-sections against theoretical

predictions, and we have briefly reviewed the effect of screening. We have observed

that screening effects gain importance when the electron energy is greater than 50 MeV

for bremsstrahlung emission and when the photon energy is of the order of GeV in the

presence of a target nucleus with high atomic number.

With this enriched PIC code, we have studied the interaction of a multi-GeV electron

beam with aluminium foil(s). Based on the simulation results, we have shown that

the electron beam undergoes strong self-focusing accompanied by efficient emission of

gamma-ray photons. We have discussed the physical origin of beam self-focusing and

high-energy photon emission, which arises from the beam interaction with the near-

field transition radiation accompanying the beam-foil collision. We have also shown

that the self-generated fields can be strong enough that emission occurs in the strong-

field QED regime, where a single emitted photon can carry away a significant fraction of

the emitting electron energy. Due to the submicrometre thickness of the target foil(s),

the effect of collisional processes has been negligible in our simulations.

For a fixed electron beam charge of 2 nC and initial beam energy of 10 GeV, we

have investigated the effect of the electron beam shape, radius and length on the total

radiated photon energy. These beam parameters are expected to be available at the

FACET II facility. Overall, for a fixed short beam length, we have demonstrated that

transversely compressed electron beams convert their initial energy into synchrotron

photons more efficiently. The simulations have also confirmed that both the beam
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self-focusing and the photon emission mechanisms are robust for a range of beam pa-

rameters that could soon be explored in the existing accelerator facilities such as FACET

II.

Furthermore, we have shown that the self-focusing and photon emission effects

could be systematically enhanced during the collision of the electron beam with multi-

ple submicrometre thick conducting foils. As a result of self-focusing, when the electron

beam density increases to values greater than the target foil density, we observe that

the beam fields channelled into the target and target plasma electrons are expelled

from this region. We have observed an increase in the conversion efficiency during this

channelling regime, and the χe parameter of the beam electrons grows up to a peak

of approximately 3, i.e., the electric field experienced by beam electrons in their rest

frame is three times the QED critical field. This indicates the possibility of accessing

the QED regime (χe>1) without employing high- power and ultra-intense laser pulses,

but only a single high-current ultra-relativistic electron beam.

Specifically, we have found that this scheme of electron beam-multiple foil inter-

action converts 30% of its electron energy into a dense collimated photon beam. The

resultant high-energy photon beam is found to have a duration comparable to that

of the electron beam (∼4 fs FWHM) and is highly collimated (the photon energy is

radiated in a cone with 5 mrad rms opening angle).

5.2 Outlook

In addition to our findings above, we also identify potential areas of further explo-

rations based on our study.

5.2.1 Thick Targets

From the beam-multiple foil collisions, we observe that the beam undergoes strong

compression, until it reaches the seventh foil. The process of photon emission and beam

self-focusing during these collisions occur via the beam interaction with reflected fields

from the conductor surface. On the other hand, when the beam reaches the seventh

foil surface, the beam density is greater than the target plasma electron density and

hence the target foil fails to reflect the beam self-fields. The beam self-fields channel

into the target expelling all the electrons in that region. From this point, the observed

photon emission is due to the fields present in the channel within the target, and not

due to interaction of the beam with the fields reflected at the target boundary surface.

Due to the expulsion of plasma electrons, the created channel has field strengths that

are strong enough to trigger strong-field QED effects.

To understand this new channelling regime further, we investigate the collision of

a transversely compressed Gaussian beam with thick targets. One can engineer these

Gaussian beams with varying beam radius by carefully varying the number of initial

electron-beam foil collisions. Here, we start our investigation from the channelling
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regime which starts from the seventh foil and continues until the twentieth foil. The

total accumulated target thickness is 0.5 µm × 14 (remaining foils) = 7 µm. We there-

fore let the electron beam interact with a thick target of 7 µm to further explore the

channelling regime. Additionally, in order to investigate the role of collisional processes

during these collisions, we choose targets with varying atomic number Z. In particular,

we investigate the electron beam interaction with lithium (Z = 3), aluminium (Z = 13)

and lead targets (Z = 82). This idea is schematically represented in Figure 5.1. In our

simulations the beam has 2 nC charge, Gaussian spatial and momentum profile with

σ‖= 0.55 µm, σ⊥= (a) 0.216, (b) 0.108, and (c) 0.054 µm, 10 GeV mean energy, 212

MeV full-width at half maximum (FWHM) energy spread, and 3 mm-mrad normalised

emittance. The resolution of our simulation grid is dx = dy = dz=0.0125µm. As these

3D simulations are computationally very expensive, for our initial investigations, we do

not increase the resolution further. With further increase in the resolution of the grid,

we expect a difference of approximately 7% in the reflection regime and between 20%

and 30% for channeling regime. The effect of numerical resolution on the obtained val-

ues for transversely compressed beams was already discussed in the subsection 4.6.4.

FIGURE 5.1: A schematic of electron beam interaction with 20 Al foils
(top row) and beam interaction with a thick target after initially being

compressed by multiple thin foils (bottom row).

The results obtained via these investigations are reported in the tables below. The

electron beam density ne in comparison to the plasma electron density npe determines

the regime of interaction. If ne < npe, the beam self-fields are reflected at the boundary

of collision, and if ne > npe, the beam self-fields channel into the target material result-

ing in an expulsion of plasma electrons in that region. This generates a field in the rest

frame of the electron beam that is strong enough to trigger strong-field QED effects.

The plasma electron densities are npe = for Li, Al and Pb respectively. For the values

reported in Table 5.1, the electron beam has an initial density of ne(0) = 3.1 × 1028
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electrons/m3 which is less than the plasma electrons’ density initially in all three tar-

gets. Hence, we observe the reflection of beam self-fields during this interaction. Col-

lisional processes such as bremsstrahlung emission and Bethe-Heitler pair does not

contribute to electron beam energy loss during this interaction for both lithium and

aluminium targets, and is negligible during electron-beam interaction with the thick

lead target.

Li Al Pb

Regime Reflection Reflection Reflection

η

Synchrotron photons ∼ 1.5% ∼1.4% ∼1.4%

Multiphoton Breit-Wheeler pairs ∼ 0% ∼ 0% ∼0%

Bremsstrahlung photons ∼ 0% ∼ 0% ∼ 6× 10−2%

Bethe-Heitler pairs ∼ 0% ∼ 0% ∼ 1.2× 10−3%

χe ∼0.09 ∼0.03 ∼0.03

TABLE 5.1: The conversion efficiency η of electron beam energy into
strong-field QED processes and collisional processes. The regime of field
interaction and also the obtained maximum value of χe of electrons is
reported. The electron beam has 2 nC charge, 10 GeV energy, σ‖= 0.55

µm and σ⊥= 0.216 µm.

With a slightly more compressed electron beam such that σ‖ = 0.55 and σ⊥ = 0.108

µm (refer Table 5.2), resulting in an initial electron beam density of ne(0) = 1.23×1029

electrons/m3, the beam density is greater than the plasma electrons’ density in lithium

target. The beam fields channel into the target, and we observe enhanced synchrotron

photon emission in this "channelling" regime. The fields in the rest frame of the elec-

tron beam is almost three times the QED critical field, χe = 3. Collisional processes

are still negligible during beam interaction with lithium target. On the other hand,

both aluminium and lead target’s plasma electrons’ are still approximately greater than

the electron beam density. The synchrotron photon emission in this regime is limited

majorly to the initial beam-target colliding phase. The collisional processes are still

negligible in comparison to strong-field processes in both aluminium and lead targets.

Li Al Pb

Regime Channeling Reflection Reflection

η

Synchrotron photons ∼ 38% ∼ 2.38% ∼ 1.96%

Multiphoton Breit-Wheeler pairs ∼ 0.1% ∼ 0% ∼ 0%

Bremsstrahlung photons ∼ 0% ∼ 1× 10−2% ∼ 1.4× 10−2%

Bethe-Heitler pairs ∼ 9× 10−5% ∼ 2× 10−4% ∼ 3× 10−3%

χe ∼ 3 ∼ 0.4 ∼ 0.2

TABLE 5.2: The conversion efficiency η of electron beam energy into
strong-field QED processes and collisional processes. The regime of field
interaction and also the obtained maximum value of χe of electrons is
reported. The electron beam has 2 nC charge, 10 GeV energy, σ‖= 0.55

µm and σ⊥= 0.108 µm.
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Finally, we investigate the interaction of an electron beam with σ‖ = 0.55 µm and

highly compressed σ⊥ = 0.054 µm, and initial electron density ne(0) = 4.95 × 1029

electrons/m3 with thick targets (refer Table 5.3). All three targets enter the channelling

regime of interaction and result in approximately more than 50% conversion of initial

electron energy into gamma-photons. The χe value of electrons rises up to a peak

value of approximately 8 and 9 in Al and Pb target. Once more, although the effect

of collisional processes is enhanced in comparison to the previous two beams (σ⊥ =

0.108, and 0.216 µm), it is still less significant than strong-field QED photon emission

and pair production.

Li Al Pb

Regime Channeling Channeling Channeling

η

Synchrotron photons ∼ 58.2% ∼58.9% ∼49.2%

Multiphoton Breit-Wheeler pairs ∼ 1.8% ∼ 8.8% ∼ 8.3%

Bremsstrahlung photons ∼ 0% ∼ 1× 10−2% ∼ 0.13%

Bethe-Heitler pairs ∼ 0% ∼ 1.8× 10−3% ∼ 2.63× 10−2%

χe ∼ 3 ∼ 8 ∼ 9

TABLE 5.3: The conversion efficiency η of electron beam energy into
strong-field QED processes and collisional processes. The regime of field
interaction and also the obtained maximum value of χe of electrons is
reported. The electron beam has 2 nC charge, 10 GeV energy, σ‖= 0.55

µm and σ⊥= 0.054 µm.

The results obtained indicate that the density of the electron beam with respect to

the plasma electron density of the target plays a crucial role in determining if the fields

of the beam get "reflected" or if the fields channel into the target. This channeling

regime paves way a unique way for strong-field QED investigations with a single high-

current electron beam. For computing the collisional processes of emission and pair

production we have used cross-sections which account for complete screening of the

nuclear field. In all the simulations, we do not observe full ionisation of the target ma-

terial, and hence the cross-section underestimates the strength of collisional processes

such as bremsstrahlung emission and Bethe-Heitler pair production. Having said that,

since the role of collisional processes so far has not been significant, the underestima-

tion of collisional processes should not affect the key physical results.

5.2.2 Dense collimated gamma beams

Another intriguing prospect is in relation to dense collimated gamma beams in the

generation of high-Z-catalysed QED cascades or showers. QED cascades are complex

physical phenomena that shed light on the interplay between strong-field QED and

collective plasma effects. To summarise, QED cascades are continuous cyclical series

of photon emissions and pair creations that lead to an exponential growth of number

of particles. The growth rate Γ of the particles is governed by a parameter r = Wr
Wpp
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(Thomas Grismayer, Vranic, Joana L Martins, et al., 2017) where Wr and Wpp deter-

mine the rate of photon emission and pair-production respectively,

Γ '


2Wr if r � 1

Wpp ∼Wr if r ∼ 1√
2WrWpp if r � 1.

(5.1)

Most of the proposals for the initiation and development of these cascades focus

on the use of multiple colliding laser pulses or collision of laser pulses with electron

beam. (Bell and Kirk, 2008, Bulanov, Mur, et al., 2010, Fedotov, Narozhny, et al.,

2010, Sokolov et al., 2010, Bulanov, Schroeder, et al., 2013). The interaction of highly

energetic (GeV) and highly collimated photon beam with a high atomic number target

provides a unique possibility of studying QED cascades through the interplay of non-

linear inverse Compton scattering (SFQED process) and Bethe-Heitler pair production

(collisional process). In this setup, there are two routes for both photon emission and

pair production, namely, the strong-field and the collisional processes (Figure 5.2).

FIGURE 5.2: Photon emission and pair creation in the field of an atomic
nucleus and in an external strong electromagnetic field.

To estimate the growth of particles in this setup, we analyse the growth rates for

estimating how these processes compete in different situations. Firstly, we compare

the rates for strong-field emission (non-linear inverse Compton scattering, NICS) and
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bremsstrahlung (B) emission, Wr,NICS and Wr,B

Wr,NICS ∼
1.45αmec

2

~
χe
γe
∼ 8.2× 1018

(
χe
γe

)
,

Wr,B ∼ σBnionsvrel,
(5.2)

where χe and γe are the electron quantum parameter and Lorentz factor respectively,

σB corresponds to the bremsstrahlung emission cross-section, nions is the target ion

density and vrel is the velocity of the electron in the ion rest frame.

For an electron with γ=100 in the nuclear field of Pb+2 plasma ions with density

3.3 × 1028 ions/m−3 and in a moderate background field such that χe = 0.1, the for-

mation time for NICS is about one tenth of a femtosecond (Wr,NICS = 8.2× 1015 s−1),

and for bremsstrahlung emission, it is in the order of few picoseconds (Wr,B = 3.5 ×
1011 s−1). Hence, we can reasonably conclude that strong-field emission will dominate

over collisional emission in the scale of few tens of femtoseconds up to picoseconds.

Similarly, we analyse the rates for pair creation via non-linear Breit WheelerWpp,BW

and Bethe-Heitler pair production Wpp,BH

Wpp,BW ∼ 0.38αm
2
ec

4

~εγ χ
2/3
γ for χγ � 1

Wpp,BW ∼ 0.23αm
2
ec

4

~εγ χγe
−8
3χγ for χγ � 1

Wpp,BH = σpp,BHnionsc,

(5.3)

where χγ and εγ are the photon quantum parameter and the normalised photon en-

ergy, and σpp,BH corresponds to the Bethe-Heitler pair production cross-section. In our

discussed setup, non-linear Breit-Wheeler pair production is exponentially suppressed

as χγ � 1. On the other hand, for photons with energy ≥ 1 GeV, Wpp,BH ∼ 4.2× 1010

s−1, corresponding to a formation time of few tens of picoseconds. Hence for pair

production, Bethe-Heitler dominates over non-linear Breit-Wheeler process. In conclu-

sion, the dominating channels for photon emission and pair production are NICS and

Bethe-Heitler pair production when χγ . 0.5.

With this information, we estimate for the growth rate (Γ) of the number of particles

in the system. From the estimates ofWr,NICS andWpp,BH , we get r ∼Wr,NICS/Wpp,BH �
1 which implies Γ ∼

√
2Wr,NICSWpp,BH s−1 ∼ 1.8 × 1013 s−1. This growth rate corre-

sponds to a net formation time and length of ∼54 fs and ∼16 µm respectively. In short,

the "fast" photon emission (femtoseconds) compensates for the "slow" pair production

(picoseconds) time scale with the extremely abundant production of photons, resulting

in a comparatively small formation length. This implies that if an external driving field

leads to the production of copious gamma rays in the presence of high-Z nuclei, the

high-Z nuclei may substantially contribute to the formation of pairs and to the cyclic

creation of new particle generations when the χγ parameters of photons is sufficiently

small (χγ . 0.3) such that the multiphoton-Breit-Wheeler channel is blocked, practi-

cally. Based on all of the above, we have demonstrated a feasible route to reproduce
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extreme conditions present in astrophysical environments that is determined by a com-

plex interplay of strong-field QED and multi-particle dynamics.
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