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Abstract

In this thesis, we construct a residue map and a Poisson kernel between holomorphic
discrete series representations on the Drinfeld period domain and harmonic cocycles
with certain non-trivial coefficients on the Bruhat-Tits building for GL3 over a local field
of any characteristic. In order to construct the Poisson kernel, we find a new locally
analytic kernel function that can be integrated against general boundary distributions.
Assuming the existence of certain boundary distributions attached to bounded har-
monic cocycles, we prove that the Poisson kernel is a right inverse of the residue map
for bounded harmonic cocycles. Moreover, we show that the existence of the needed
boundary distributions follows from a non-criticality statement for a new class of auto-
morphic forms. We prove a control theorem that implies this non-criticality statement
for trivial coefficients. Finally, we apply our constructions to relate spaces of Drinfeld
cusp forms for certain congruence subgroups of GL3 and spaces of harmonic cocycles
extending work of Teitelbaum to GL3.

Zusammenfassung

In dieser Arbeit konstruieren wir eine Residuenabbildung und einen Poisson-Kern
zwischen holomorphen diskreten Reihendarstellungen auf dem Drinfeldschen Peri-
odenraum und harmonischen Kozykeln mit gewissen nicht-trivialen Koeffizienten auf
dem Bruhat-Tits Gebäude für GL3 über einem lokalen Körper von beliebiger Charak-
teristik. Um den Poisson-Kern zu konstruieren, finden wir eine neue lokal analytische
Kernfunktion, die gegen allgemeine Rand-Distributionen integriert werden kann. Unter
Annahme der Existenz von gewissen Rand-Distributionen zu beschränkten harmoni-
schenKozykeln zeigenwir, dass der Poisson-Kern für beschränkte harmonischeKozykel
rechts-invers zur Residuenabbildung ist. Darüber hinaus zeigen wir, dass die Existenz
der benötigten Rand-Distributionen aus einer Nicht-Kritikalitäts-Aussage für eine neue
Klasse von automorphen Formen folgt. Wir beweisen ein Kontrolltheorem, welches die
Nicht-Kritikalität für triviale Koeffizienten impliziert. Schließlich wenden wir unsere
Konstruktionen an, um Beziehungen zwischen Räumen von Drindfeldschen Spitzen-
formen zu gewissen Kongruenzuntergruppen vonGL3 und Räumen von harmonischen
Kozykeln zu erhalten, was eine Arbeit von Teitelbaum auf GL3 verallgemeinert.
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Introduction

At the heart of modern arithmetic geometry lies the Langlands program, a network of
conjectures and links between number theory, representation theory and geometry. In
its essence it seeks to relate two very distinct classes of mathematical objects: On the
one side there are Galois groups from number theory, on the other automorphic forms
and representations attached to algebraic groups. The Langlands program generalizes
classical class field theory and is one of the biggest ongoing research projectswithin pure
mathematics. One of the most famous instances where a link between Galois groups
and automorphic forms has been proved is Wiles’ proof of the modularity theorem
(formerly the Taniyama–Shimura conjecture).
Much current research goes into variants of the Langlands program such as the local
Langlands program for general reductive groups and itsmodern cousin, the p-adic local
Langlands program. A common theme within these is the study of the cohomology
of locally symmetric spaces. It turns out that the cohomology of these spaces has an
extremely rich structure, it is a source of both automorphic and Galois representations.
This has been very successfully exploited to prove several instances of a conjectural
Langlands correspondence.
In this thesis, we focus on the automorphic side of the Langlands program. In the
classical theory of modular and automorphic forms it has proven to be of great use
to realize analytic spaces of such forms in a more combinatorial or algebraic way. A
very famous instance of such a description goes back to Birch in [Bir71] and Manin in
[Man72] and is given by so called modular symbols. To associate a modular symbol to
a classical modular form, one needs to consider certain period integrals associated to
the modular form. The precise relation between modular forms and modular symbols
is given by the Eichler-Shimura isomorphism. Modular symbols are of great use for
doing explicit computations with modular forms. Their role within the Langlands
program becomes apparent upon realizing that they “know” special values of classical
L-functions of modular forms.
It became a natural question whether this theory could be extended to a p-adic situa-
tion, i.e., if there is a p-adic analogue of the space of modular symbols which contains
information about p-adic families of modular forms and p-adic L-functions. One pos-
sible answer is provided by the theory of so called overconvergent modular symbols,
which were first introduced by Stevens in [Ste94]. Applications and generalizations of
overconvergent modular symbols play a central role in modern number theory. These
include Heegner point computations, overconvergent cohomology and the theory of
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ii INTRODUCTION

eigenvarieties.
It turns out that in various situations, it is natural to consider a second analogue of
classical modular symbols in the p-adic setting, the so called harmonic cocycles, which
play a central role in this thesis. The starting point for this theory is the so calledDrinfeld
period domain X for GLn over a (non-archimedean) local field K. When n � 2 it has been
first observed by Mumford in [Mum72] and Čerednik in [Čer76] that a large class of
algebraic curves over K can by uniformized by quotients of X under certain groups.
More generally, Rapoport and Zink have shown that quotients of X appear as p-adic
uniformizations of certain Shimura varieties of unitary type, see [RZ96]. This is in
analogy with the classical complex uniformization of Shimura varieties. Over function
fields, Drinfeld realized that X is the central object when studying moduli spaces of
Drinfeldmodules, see [Dri74]. Moreover, he showed thatX can be obtained as amoduli
space of formal groups, see [Dri76], which hints at the important role that X plays in
the local Langlands program. All of this makes it clear that forms on X are directly
linked to various types of modular and automorphic forms both over number fields and
function fields.
To obtain a combinatorial description for such forms on X, one exploits the fact that
the rigid analytic spaceX is deeply connected to the Bruhat-Tits building T for GLn (K)
via a reduction map red: X → T . Over a local field of characteristic zero, Schneider
in [Sch84] (for n � 2) and Schneider-Teitelbaum in [ST97] (for general n) have used this
link to construct a so called residue map

Res0 : Ωn−1
X
→ Char(T , K),

where the space on the right hand side is the space of harmonic cocycles, whose elements
are certain K-valued functions on the pointed chambers of T that satisfy harmonicity
conditions. This residue map should be viewed as an analogue of the period integrals
used to associate modular symbols to classical modular forms. The applications of this
construction are plentiful. For example, the residue map can be used to construct L-
invariants attached to modular forms on certain Shimura varieties of unitary type, see
[BdS16], which are of great interest in the p-adic local Langlangs program. However,
if one is interested in L-invariants of modular forms of higher weight, it becomes
necessary to replaceΩn−1

X
by more general geometric GLn (K)-representations, so called

holomorphic discrete series representations. It can also be used to obtain a p-adic
Eichler-Shimura isomorphism, see [deS89]. Going in a different direction, it is a natural
question whether this construction can be extended to local fields of any characteristic.
For n � 2, this is due to Teitelbaum, see [Tei91], and has broad applications in the theory
of Drinfeld modular forms. For example, it is a central ingredient in the construction of
an Eichler-Shimura isomorphism for Drinfeld modular forms, see [Böc02]. Moreover, it
can be used to gain a better understanding for the Hecke-module structures of spaces
of Drinfeld modular forms, see [BGP19] and for explicit computations, see [BB12].
The aim of this thesis is to provide simultaneous generalizations of the residue map
and of its surrounding constructions to more general holomorphic discrete series rep-
resentations and to local fields of any characteristic for GL3(K), the first interesting case
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going beyond GL2(K). Our method is completely independent of the characteristic of
the underlying local field which is a very rare feature within the Langlands program.
Before we explain our results, let us mention a further application of the residue map,
namely how it fits into the ongoing investigation of the cohomology ofX (and of its étale
coverings). By work of de Shalit, see [deS01], the map Res0 induces an isomorphism

Hn−1
dR (X) → Char(T , K).

The existence of an abstract isomorphism between the two spaces has been known prior,
see [SS91]. In fact, in their pioneering work [SS91], Schneider and Stuhler computed the
cohomology of X for all cohomology theories satisfying a natural set of axioms such as
`-adic and de Rham cohomology. One source for the interest in the cohomology of X
and of its étale coverings is a (now proven) conjecture of Drinfeld. It asserts that the
`-adic cohomology of the étale coverings of X realizes the supercuspidal part of the
local Langlands correspondence. But also the p-adic cohomology seems to contain a
wealth of arithmetic information. Recently Colmez, Dospinescu and Nizioł have com-
puted the p-adic étale cohomology ofX in [CDN20b]. Moreover, in [CDN20a] they have
shown that for n � 2 the p-adic local Langlands correspondence for de Rham Galois
representations of dimension 2 (of weight 0 and 1) can be realized in the p-adic étale
cohomology of the étale coverings of X.

Let us now explain the history and our results in more detail. The Drinfeld period
domain for G � GLn (K) is the rigid space obtained by removing all K-rational hyper-
planes from the projective space Pn−1

K , i.e.,

X � Pn−1
K \

⋃
H∈H

H,

where H denotes the set of all K-rational hyperplanes in Pn−1
K . The holomorphic dis-

crete series representations of weight k is then just the space of rigid analytic functions
on X with a weight k action, denoted by OX (k). In particular, via the well-known
isomorphism OX (n) � Ωn−1

X
, this includes the special case discussed in the previous

paragraph. Correspondingly, one needs to consider harmonic cocycles onT with values
in more general representations, namely the space Char(T ,Vk ), where Vk is the dual of
a symmetric power representation Pk of weight k. While the holomorphic discrete se-
ries representation is a purely analytic object, harmonic cocycles are very combinatorial
objects. A third central object is related to the boundary G/B of T , where B denotes the
Borel subgroup of upper triangular matrices in G. This is the so called locally analytic
Steinberg representation Stann (k). Elements of its continuous dual Stann (k)′ are often re-
ferred to as boundary distributions.

For n � 2, the general residue map is due to Schneider in [Sch84]. It is a G-equivariant
map

Resk : OX (k + 2) → Char(T ,Vk )
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constructed by taking the residues of a rigid analytic function along the annuli in X
attached to the edges of T via the reduction map. In order to understand its properties,
a central idea is due to Teitelbaum in [Tei90]: He constructed the so called Poisson
kernel, a G-equivariant map

Ik : Stan2 (k)′→ OX (k + 2).

It is given by integrating an explicit locally analytic kernel function against the boundary
distributions in Stan2 (k)′. There is a natural subspace Cb

har(T ,Vk ) of Char(T ,Vk ), con-
sisting of so called bounded harmonic cocycles, which plays a central role in the theory.
By a theorem of Amice-Velu and Vishik, there is a third map Cb

har(T ,Vk ) → Stan2 (k)′

which is constructed by extending certain distributions attached to bounded harmonic
cocycles to allow integration of a larger class of locally analytic functions. If one sets
OX (k + 2)b � Res−1k (Cb

har(T ,Vk )), the composition with Ik becomes a right inverse of
Resk ,

OX (k + 2)b Cb
har(T ,Vk ) 0.

Resk

Ik

An excellent overview of the above constructions can be found in [DT08]. For local
fields of positive characteristic the analogous theorem has been proved by Teitelbaum
in [Tei91].
One of the primary applications of these constructions is the following. If one takes
invariants under certain arithmetic subgroups Γ ⊂ GL2(K), the boundedness condi-
tion is automatically satisfied. In favorable situations, Resk then induces isomorphisms
between spaces of rigid analytic forms on X satisfying invariance properties for the
action of Γ and spaces of Γ-invariant harmonic cocycles. This is the key ingredient for
constructing L-invariants attached to classical and Hilbert modular forms as in [Tei90],
[IS03] and [CMP15] or for the applications in the theory of Drinfeld modular forms
mentioned above.

When going beyond n � 2, the starting point is the work of Schneider and Stuhler in
[SS91], which shows that there is an abstract isomorphism

Hn−1
dR (X) → (St∞n )′,

where St∞n denotes the locally constant Steinberg representation of G, i.e., the space
of locally constant functions on the flag variety G/B, modulo functions factoring over
some G/P, where P is a parabolic subgroup strictly containing B. Building on the
work of Schneider and Stuhler, in analogy with the case n � 2, in [ST97] Schneider and
Teitelbaum construct maps

Res0 : OX (n) → Char(T , K) and I0 : (St∞n )′,b → OX (n).

One should note the fact that here the locally constant Steinberg representation is con-
sidered. This feature is already present in the theory for n � 2: A bounded distribution
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on the locally constant Steinberg representation can easily be extended to integrate even
elements of the continuous Steinberg representation Stcon3 , i.e., continuous functions on
the K-analytic manifold G/B modulo functions that factor over some G/P with P as
above. This is a dichotomy between the cases k � 0 and k > 0 which plays a central role
in the theory. Since Cb

har(T , K) � (St∞n )′,b , one obtains

OX (n)b Cb
har(T , K) 0,

Res0

I0

as in the case n � 2. Another construction of I0 can be found in [IS01]. For a more
detailed analysis of the situation see [ST02b].

While the work of Schneider and Teitelbaum covers GLn for any n ≥ 2, it only con-
siders trivial weight k � 0 and local fields of characteristic zero. The aim of Part I
of this thesis is to provide an extension to higher weights k and to local fields of any
characteristic in the case n � 3. However, we should point out that, contrary to [ST97],
due to some technical issues, we primarily work over a fixed completion of an algebraic
closure of K. There are three main difficulties one has to overcome.
(a) Most prominently in [ST02b] and in the extension [Orl08] due to Orlik, the p-adic

representation theory developed by Schneider and Teitelbaumplays a central role.
At present, there is no analogous theory for representations over local fields of
positive characteristic.

(b) As indicated above, for weights k > 0 one needs a finer integration theory com-
pared to the case k � 0. Namely, to construct the map Cb

har(T ,Vk ) → Stan3 (k)′, a
higher dimensional analogue of the theorem of Amice-Velu and Vishik is needed.

(c) The kernel function used to define I0 in [ST97] is not locally analytic everywhere,
but only on the big cell. As soon as one considers weights k > 0 this becomes a
major obstacle as it is unclear how to integrate this kernel function against elements
of Stan3 (k)′. In [ST02b], Schneider and Teitelbaum show that one can work with
the class of the kernel function in the space of locally analytic vectors of Stcon3 .
At least for K � Qp , this space is just Stan3 (0). Nevertheless one lacks an explicit
locally analytic representative for this class. Even worse, over other base fields,
and particularly function fields, the situation is completely unclear.

In order to address (a), we compensate the lack of theoretical framework by a more
explicit study of the objects involved. The first central step is to extend the residue map
Res0 of Schneider and Teitelbaum to

Resk : OX (k + 3) → Char(T ,Vk ).

We are able to construct this extension by analysing the relationship between different
holomorphic discrete series representations, see Chapter 3 for details. The next step is
to construct the Poisson kernel Ik . Due to (c) this is significantly more involved. We
prove the following.
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Theorem A (Theorem 4.17, Theorem 4.22 and Theorem 4.26).

(i) There is an explicit locally analytic representative for the class of the kernel function in
Stcon3 .

(ii) Integrating the representative in (i) induces, for each k ≥ 0 with 3 | k, a G-equivariant
map

Ik : Stan3 (k)′→ OX (k + 3).

For precise statements see Theorem 4.17, Theorem 4.22 and Theorem 4.26. The con-
struction of this new kernel function is based on geometric considerations: It turns out
that the singular locus of the kernel function of Schneider-Teitelbaum is a projective line
inside the flag variety G/B. We are able to remove these singularities by modifying the
kernel function in a very natural way on an open neighbourhood of this projective line.
The proof of (ii) uses detailed knowledge of the relations between various holomorphic
discrete series and locally analytic principal series representations.
Point (b) has proven to be quite difficult. In analogy with the theorem of Amice-Velu
and Vishik for n � 2, this boils down to extending bounded distributions on locally
polynomial functions to certain locally analytic functions. One would like to construct
such an extension in a canonical and organized way. We realized that one can use
certain automorphic forms to construct such extensions systematically. This is inspired
by [Gre06], [FM14] and [Grä19], where similar automorphic forms for n � 2 are used
to compute moments of the corresponding distributions after their existence is already
known. But only this thesis makes use of them as a way of extending distributions.
Let us describe our setup in more detail. A new and distinctive feature of the automor-
phic forms we define is that they do not need to satisfy an invariance property under
the action of an arithmetic subgroup, but instead we require a boundedness condition.
This means that our automorphic forms are purely local objects. However we should
note that after taking invariants under such arithmetic subgroups, one recovers global
automorphic forms for this arithmetic subgroup, justifying the term automorphic form.
The upshot of this new approach is twofold: First of all, one realizes that the control
theorems for automorphic forms such as in [Gre06] are completely independent of the
arithmetic group under consideration and can be extended to our automorphic forms,
see Theorem 5.55. One can then recover the known control theorems by taking invari-
ants. This makes our approach very broadly applicable. Even more importantly for
us, it turns out that the space of bounded harmonic cocycles is naturally isomorphic to
such a space of automorphic forms A(Vk )newb , whose elements are eigenforms for four
Hecke operators: Uπ,i and Wπ,i for i ∈ {1, 2} with explicit eigenvalues, see Proposition
5.43. Such automorphic forms are called non-critical if they admit unique lifts to spaces
of (partially) overconvergent automorphic forms. We are able to prove the following
theorem which links (b) to a non-criticality statement for automorphic forms.

Theorem B (Theorem 5.48 and Corollary 5.50). Assume that every automorphic form in
A(Vk )newb is non-critical. Then there is a G-equivariant map

Cb
har(T ,Vk ) → Stan3 (k)′
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with additional nice properties.

For the precise properties see Conjecture 5.49. Unfortunately, the control theorem we
are able to prove is not strong enough to verify the assumptions of TheoremB aside from
the case k � 0, see Theorem 5.52. This is consistent with the bounds in the literature, see
for example [BC09] or [Wil18]. Nevertheless we are able to prove a conjectural analogue
of the result of Schneider and Teitelbaum.

TheoremC (Theorem4.31). Assume that there is aG-equivariantmapCb
har(T ,Vk )→Stan3 (k)′

as in Theorem B. Then the composition of this map with Ik is a G-equivariant right inverse of
Resk . Consequently,

Resk : OX (k + 3)b
→ Cb

har(T ,Vk )

is surjective.

The precise assumptions can be found in Conjecture 4.29 (or a stronger version in Con-
jecture 5.49). As indicated above for k � 0, by our control theorem, the assumptions of
Theorem C are satisfied. Thus, in this case, our results extend the results of Schneider
and Teitelbaum in the case n � 3 to local fields of any characteristic. While this has been
known to the experts, we give the first full proof.

In Part II of this thesis, we consider an application of our theory over function fields,
namely to Drinfeld modular forms of rank 3. In recent years, Basson, Breuer and Pink
and independently Gekeler have initiated the systematic study of Drinfeld modular
forms of higher rank, i.e., of certain arithmetic forms on X for GLn over a local field of
positive characteristic, see in particular [BBP18a], [BBP18b] and [BBP18c]. In analogy
with the work of Teitelbaum, [Tei91], one expects that Drinfeld cusp forms for a con-
gruence subgroup Γ are isomorphic to Γ-invariant harmonic cocycles. Let A � Fq[t]. If
we denote the space of Drinfeld cusp forms of weight k and type ` for a congruence
subgroup Γ ⊆ GL3(A) by Sk ,` (Γ), we are able to prove the following theorem.

Theorem D (Theorem 8.9 and Corollary 8.12). Assume that there is a G-equivariant map
Cb
har(T ,Vk ) → Stan3 (k)′ as in Theorem B and let Γ ⊆ GL3(A) be a congruence subgroup such

that Γ(t) ⊆ Γ. Then Resk induces a Hecke-equivariant isomorphism

Sk+3,` (Γ) → Char(T ,Vk ,`)Γ ,

where Vk ,` � Vk ⊗K det`−1−k/3.

The proof follows the ideas of Teitelbaum in [Tei91]: We show that Γ-invariant harmonic
cocycles are automatically cuspidal and in particular bounded, which makes the theory
developed in Part I of this thesis applicable in this situation. A key difference compared
to [Tei91] is that in the higher rank situation, one has formulas for the dimension of
spaces of Drinfeld modular and cusp forms only in a few special cases, see for example
[Pin19]. This is the reason for the restriction on the congruence subgroups we consider.
To obtain similar dimension estimates for the space of Γ-invariant harmonic cocycles,
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we use knowledge of a fundamental domain of the action of the congruence subgroup
Γ(t) on T . Theorem D lays the groundwork for extending the results of [Böc02] and
[BGP19] to Drinfeld cusp forms of rank 3.

There are several natural follow-up questions we would like to mention. The first
and most pressing is whether one can prove a stronger control theorem to remove the
conjectural assumptions in Theorem C and Theorem D. While there have been lifting
results in the critical slope case, see [PS13], our situation seems to be fundamentally
different and new techniques are needed. The second natural question is whether our
results can be extended to general GLn . The bottleneck here lies in the construction
of our kernel function in Theorem A. Our explicit geometric considerations need to be
generalized to flag varieties of higher dimension. Finally, as an application over num-
ber fields, we expect that our results can be used to construct L-invariants attached to
modular forms of higher weight on certain Shimura varieties of unitary type, similarly
to [BdS16].

Outline of the thesis

Part I – Boundary Distributions for GL3

InChapter 1, we recall somebasic facts on theDrinfeld perioddomainX forG � GL3(K),
where K is a non-archimedean local field of any characteristic.

Chapter 2 is devoted to studying the Bruhat-Tits building T attached to G. After
introducing various basic notions, the focus lies on the reduction map as well as study-
ing the boundary G/B of T , where B denotes the Borel subgroup of upper triangular
matrices in G.

In Chapter 3, we first introduce harmonic cocycles on T . The aim of the remainder
of this chapter is the construction of the residue map. For this, we introduce holo-
morphic discrete series representations and construct natural filtrations on them. This
enables us to construct the residue map first for k � 0 and then extend the construction
to general weights.

Chapter 4 is the theoretical heart of this thesis. After introducing locally analytic prin-
cipal series representations, we construct our new kernel function. We then proceed to
construct the Poisson kernel, first for k � 0 and then for general weights. Finally, we
show that the Poisson kernel is a right inverse of the residuemap for bounded harmonic
cocycles assuming that an analogue of the theorem of Amice-Velu and Vishik holds.

In Chapter 5, we want to relate the missing map from the previous chapter to a lifting
theorem for certain automorphic forms. We begin by introducing various coefficient
modules which are built out of the locally analytic principal series representations from
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Chapter 4. After defining our automorphic forms and the relevant Hecke operators on
them, we proceed to prove the link between these forms and the boundary distributions.
Finally, we prove an abstract control theorem, which we then apply in our situation to
show that for k � 0 we obtain the needed analogue of the theorem of Amice-Velu and
Vishik.

In Appendix A we quickly develop some terminology on locally analytic manifolds
and representations which has been missing for local fields of positive characteristic.

Part II – Application to Drinfeld modular forms of rank 3

In Chapter 6, we recall the basic constructions needed to define Drinfeld modular forms
of rank 3. Moreover, we state various dimension formulas for spaces of Drinfeld mod-
ular and cusp forms and introduce Hecke operators acting on them.

In Chapter 7, we study the action of congruence subgroups on the Bruhat-Tits building
in more detail. We explicitly compute various stabilizers and find a fundamental do-
main for the action of the congruence subgroup Γ(t) on T .

In the final Chapter 8, we prove an analogue of Teitelbaum’s isomorphism between
Drinfeld cusp forms and harmonic cocycles in our situation. For this, we first show
that harmonic cocycles that are invariant under the action of a congruence subgroup
are automatically cuspidal. We proceed to give a dimension estimate for the space of
harmonic cocycles invariant under the action of Γ(t). This is based on our knowledge of
the fundamental domain constructed in Chapter 7. By combining this with the results
from Part I we are then able to prove our main theorem.
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CHAPTER1
The Drinfeld period domain

Throughout this thesis, we denote by K a non-archimedean local field of any characteris-
tic with ring of integers OK and residue field κ. Let p be the characteristic of the residue
field κ and q its (finite) cardinality. Furthermore, let π denote a uniformizing parameter
in K, let ν be the normalized valuation on K such that ν(π) � 1 and let | · | � q−ν(·) be
the associated absolute value. Moreover, we fix the completion of an algebraic closure
of K anddenote it byCK . We denote the extension of ν and | · | toCK by the same symbols.

In this chapter, we quickly recall the construction of the Drinfeld period domain as a
rigid space over K. We follow [SS91, Section 1]. However, our normalizations are closer
to [DT08]. Let G � GL3(K) and let V be a fixed 3-dimensional vector space over K,
viewed as the space of row vectors [x1 , x2 , x3] with xi ∈ K for i ∈ {1, 2, 3} on which
g ∈ G acts on the left via

g([x1 , x2 , x3]) � [x1 , x2 , x3]g−1.

In the sequel, we denote by P2 the projective space P(V) with the induced G-action. We
denote elements of P2 by z � [z1 : z2 : z3].

Let Ξ1, Ξ2 and Ξ3 denote the dual elements in V∗ � HomK (V, K) to the standard basis
elements b1 � [1, 0, 0], b2 � [0, 1, 0] and b3 � [0, 0, 1] of V . We act with g ∈ G on Ξ ∈ V∗

by
(g∗Ξ)(v) � Ξ(g−1v) for v ∈ V.

We define a coordinate function ω � (ω1 , ω2) via

ωi �
Ξi

Ξ3
, i � 1, 2.

Then, g � (gi j)1≤i , j≤3 ∈ G acts on ω by

g∗(ω)[x1 , x2 , x3] � ω(g−1([x1 , x2 , x3])) � ω([x1 , x2 , x3]g)
� ω([g11x1 + g21x2 + g31x3 , g12x1 + g22x2 + g33x3 , g13x1 + g23x2 + g33x3])

�

(
g11ω1 + g21ω2 + g31

g13ω1 + g23ω2 + g33
,

g12ω1 + g22ω2 + g32

g13ω1 + g23ω2 + g33

)
.

3
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In the remainder of this chapter, we regard P2 as a rigid space over K. The above action
by G is by rigid analytic automorphisms of P2.

1.1. Definition. LetH denote the set of all K-rational hyperplanes in P2. The Drinfeld
period domain over K is (as a set)

X � P2(CK) \
⋃

H∈H

H.

In this chapter, we choose unimodular coordinates for points z ∈ X, i.e., we pick rep-
resentatives z � [z1 : z2 : z3] such that max1≤i≤3 |zi | � 1. Following [SS91], the space
X is an admissible open subset of P2 and thus an open rigid analytic subvariety. To
prove this, Schneider and Stuhler construct an explicit family (Xn)n≥0 of open affinoid
subvarieties of P2 with the properties

(i) X �
⋃

n≥0Xn ,

(ii) Any K-morphism f : Y → P2 from a K-affinoid variety with f (Y) ⊆ X factors
through some Xn .

The subvarieties Xn are realized by removing certain neighbourhoods of K-rational
hyperplanes. For a fixed hyperplane H ∈ H , we choose a unimodular linear form `H
such that

H �

{
z ∈ P2(CK) ��� `H (z) � 0

}
.

Here, unimodular means that `H has coefficients in OK and at least one coefficient
is a unit. In particular, `H is determined up to multiplication by a unit in OK and
consequently, |`H (z) | is independent of the choice of `H for z ∈ P2(CK).

1.2. Definition. Let ε ∈ Q>0. The set

H(ε) �
{
z ∈ P2(CK) ��� |`H (z) | < ε

}

is called the ε-neighbourhood of the hyperplane H ∈ H .

Note that this differs from the definition in [SS91]. We consider a strict inequality, which
proves to be more useful in our later computation, compare also [DT08, Section 1.2.1]
or [ST02b, Section 0].

1.3. Proposition. The sets

Xn � P2(CK) \
⋃

H∈H

H(q−n)

are admissible open in P2 and the collection (Xn)n≥0 satisfies properties (i) and (ii) above.
Consequently, X is an admissible open subspace of P2.

Proof. See [SS91, Section 1]. �
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1.4. Remark. The key observation in the above proposition is that each Xn is in fact
defined by only finitely many hyperplanes, see [SS91, Section 1, Lemma 2]. An alterna-
tive approach to proving the above proposition involves the Bruhat-Tits building of G.
We will get back to this approach in Section 2.2. In a third approach, one constructs a
formal scheme X̂ over Spf(OK) realizing X as its rigid analytic generic fibre. For details
see [Dri76].

Clearly the action of G on P2 induces an action of G on X by rigid analytic automor-
phisms. Note that for z ∈ X by definition the coordinate function ω(z) has no zeros in
the denominator. Hence, we can always represent elements of X via ω. More precisely,
if z is a point inX, we can always renormalize it such that z � [z1 : z2 : 1]. Then we have
ωi (z) � zi for i ∈ {1, 2}. Thus, in the sequel we often do not distinguish between ω and
ω(z).

We denote by OX the ring of rigid analytic functions on X over CK , i.e., the global
sections of the structure sheaf ofX over CK . By abuse of notation we do not distinguish
between X and its base change to CK . Note that by our construction of X, we have

OX � lim
←−−

n

OXn ,

where each OXn is an affinoid algebra. The restriction maps between these affinoid
algebras are compact.

1.5. Proposition. The restriction maps OXn+1 → OXn have dense image. Thus, X is a Stein
space.

Proof. See [SS91, Section 1, Proposition 4]. �





CHAPTER2
The Bruhat-Tits building for G � GL3(K)

In this chapter, we recall some standard facts on the Bruhat-Tits building T for the
group G � GL3(K). Of particular importance for us are the reduction map relating T
to the Drinfeld period domain constructed in the previous chapter as well as a detailed
study of its boundary.

2.1. The Bruhat-Tits building T

We follow [deS01, Section 1] and [ST97]. LetV be as inChapter 1. Recall thatG � GL3(K)
and let T denote the diagonal torus in G. We fix the Borel subgroup of upper triangular
matrices B in G and its unipotent radical U. Similarly, B− and U− denote the Borel
subgroup of lower triangular matrices and its unipotent radical. The Weyl group W of
G is the symmetric group S3. It is generated by the two elementary reflections s1 and
s2, which are explicitly given by

s1 �
*.
,

0 1 0
1 0 0
0 0 1

+/
-
∈ G and s2 �

*.
,

1 0 0
0 0 1
0 1 0

+/
-
∈ G.

Then w0 B s1s2s1 � s2s1s2 ∈ W is the element of maximal length. Furthermore, we
denote by I the Iwahori subgroup of GL3(OK) of matrices which are upper triangular
mod π.

2.1. Definition. The Bruhat-Tits building T of G is the simplicial complex given as
follows. The vertices T0 consist of homothety classes [Λ] of lattices Λ ⊂ V∗. The n-cells
Tn for n ∈ {1, 2} consist of sets {[Λ0], . . . , [Λn]} where

πΛ0 ( Λn ( Λn−1 ( · · · ( Λ0.

A pointed n-cell is an n-cell with a distinguished vertex v0 � [Λ0]. Equivalently, a pointed
n-cell is given by a tuple σ � ([Λ0], . . . , [Λn]) where the Λi are as above. We shall write

σ � (πΛ0 ( Λn ( · · · ( Λ0) ,

where [Λ0] is the distinguished vertex. The set of pointed n-cells is denoted by T̂n . The
1-cells T1 are also called edges. The 2-cells T2 are also called chambers.

7
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Recall that Ξ1, Ξ2 and Ξ3 denote the dual elements in V∗ to the standard basis of V and
put

[i1 , i2 , i3] � [〈πi1Ξ1 , π
i2Ξ2 , π

i3Ξ3〉OK ] ∈ T0 for (i1 , i2 , i3) ∈ Z3.

Note that since we consider homothety classes of lattices, we have

[i1 , i2 , i3] � [i1 + n , i2 + n , i3 + n] for n ∈ Z.

The standard apartment A0 is the maximal simplicial subcomplex of T based on the
vertices

{[i1 , i2 , i3] | i1 , i2 , i3 ∈ Z} .
It can be viewed as a triangulation of R2. The standard chamber σ0 is given by

σ0 � {[0, 0, 0], [0, 0, 1], [0, 1, 1]} ∈ T2.

The standard pointed chamber is σ0 with distinguished vertex v0 � [0, 0, 0]. Finally, the
standard sector S0 is the sector based in σ0, i.e., the maximal simplicial subcomplex based
on

{[i1 , i2 , i3] | i1 ≤ i2 ≤ i3} .

Similarly, for any ordered basis B of V∗, we may define the apartment AB and sector SB
attached to B by replacing the ordered basis (Ξ1 ,Ξ2 ,Ξ3) with B in the above construc-
tion.

Note that the group G acts on the lattices in V∗, which induces an action on T . Then
one has StabG (v0) � K×GL3(OK). This induces a bĳection

G/K×GL3(OK) � T0.

In the following proposition, we collect some important facts on the action on (pointed)
chambers.

2.2. Proposition.

(i) We have StabG (σ0) � K×I.

(ii) The map g 7→ gσ0 induces a bĳection between G/K×I and T̂2.

(iii) Let σ ∈ T2. The group Hσ stabilizing σ modulo the group fixing σ pointwise is cyclic of
order 3.

Proof. See [ST97, Lemma 5 and Lemma 7]. �

We also need the standard parahoric subgroups Ii B I ∪ IsiI ⊂ G for i ∈ {1, 2}. Let

e1 B {[0, 0, 0], [0, 0, 1]} ∈ T̂1 and e2 B {[0, 0, 0], [0, 1, 1]} ∈ T̂1 ,

both with distinguished vertex v0. Then we have the following.

2.3. Proposition. We have
StabG (ei) � K×Ii .

Proof. See [deS01, Section 1.4]. �
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2.2. The reduction map

The building T is closely related to X through the reduction map, whose construction
we recall in this section. We follow [ST97], [deS01, Section 6.1] and [DT08, Section
1.3]. In the sequel, we denote by |T | the topological realization of T , i.e., the topological
simplical complex associated to T .

2.4. Definition. A norm on V∗ is a map γ : V∗ → R such that

(i) γ(x + y) ≤ max{γ(x), γ(y)},

(ii) γ(ax) � |a | · γ(x) for a ∈ K,

(iii) γ(x) � 0 if and only if x � 0.

We say that two norms γ and γ′ on V∗ are homothetic if there is a constant C ∈ R>0 such
that

γ(x) � C · γ′(x) for all x ∈ V∗.

There is an explicit bĳection between homothety classes of norms on V∗ and points of
|T | given as follows: For a lattice Λ ⊂ V∗ we set

γΛ(x) B inf
{
|a | ��� a ∈ K× , a−1x ∈ Λ

}
.

More generally, if σ � (πΛ0 ( Λn ( · · · ( Λ0) is a pointed n-cell, the points in |σ | can
be uniquely written as

t �
n∑

i�0
ti[Λi], where ti ≥ 0 and

n∑
i�0

ti � 1.

We set
γt (x) B max

{
γΛ0 (x), q−t0γΛ1 (x), . . . , q−

∑n−1
i�0 tiγΛn (x)

}
.

It is easy to check that the homothety classes of these norms are independent of the
chosen representing lattice and the choice of the distinguished vertex. By [BT72], this
sets up the bĳection between homothety classes of norms on V∗ and points in |T |. This
enables us to define the reduction map. Let z ∈ X. We define a norm γz on V∗ via

γz (`) B |`(z) | for ` ∈ V∗ ,

where we use unimodular coordinates for z ∈ X as in Chapter 1. The following fact is
well known, see [DT08, Lemma 1.3.7] in the GL2(K)-case.

2.5. Proposition. The map
red: X → |T |

given by z 7→ γz is G-equivariant.
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We need to study certain fibers of the reduction map, which become important in order
to define the residue map in Chapter 3. For this, let

R0 �
{
z ∈ X ��� q−1 < |ω1(z) | < |ω2(z) | < 1

}
⊂ X.

Then R0 is an admissible open subset. In fact, it can be realized as the direct limit of the
affinoid subdomains R0,N , where by definition z ∈ X belongs to R0,N if the following
conditions are satisfied:

(i) |ω2(z) | ≤ q−1/N ,

(ii) |ω1(z) | ≥ q−1+1/N ,

(iii) |ω1(z) |q1/N ≤ |ω2(z) |,

see [ST97, p. 405] after taking into account the different normalizations.

2.6. Proposition. Denote by |σ0 |◦ the interior of the chamber |σ0 | in |T |. Then we have
red−1(|σ0 |◦) � R0. Consequently, for each σ ∈ T2 the set R(σ) � red−1(|σ |◦) is admissible
open.

Proof. See [ST97, Lemma 16]. �

2.3. The boundary of T

The boundary of T plays a crucial role in the construction of the Poisson kernel in
Chapter 4. In this section, we study it in detail and fix various coordinates which will
be of great use for explicit computations.

2.3.1. Cell decompositions

Before we study the boundary in more detail, we need some elementary facts about the
decomposition of G and the quotient G/B into various cells. All of this is standard and
well known. We keep the notation from the previous sections.

2.7. Proposition (Bruhat-Decomposition). We have

G �

⊔
w∈W

BwB �

⊔
w∈W

Uw wB,

where Uw � U ∩ (wU−w−1).

Proof. See [Spr98, Theorem 8.3.8] �

In particular, if we set n(w) � l(w)(l(w) − 1)/2 for w ∈ W we have G/B �
⊔

w∈W C(w),
where C(w) � Uw wB/B is an affine space of dimension n(w), see [Spr98, Lemma 8.3.6].
Let w0 ∈ W denote the element of maximal length. The affine space C(w0) is called the
big cell of G/B. We also set Co (w) � w0C(w) for w ∈ W . Note that Co (w0) � U−B/B,



2.3. THE BOUNDARY OF T 11

the so called opposite big cell.

We are also interested in the parabolic subgroups Pi � B ∪ BsiB ⊂ G for i ∈ {1, 2}.
By definition, the Weyl group Wi ⊂ W of Pi is cyclic of order 2 generated by si . We
set W i B W/Wi . In the sequel, we regard W i as a subset of W by picking minimal
representatives: In each class in W i there is a unique permutation w ∈ W such that
the length of w is minimal among the wv with v ∈ Wi . Then we also have a Bruhat
decomposition with respect to Pi .

2.8. Proposition. We have

G �

⊔
w∈W i

BwPi �
⊔

w∈W i

Uw wPi ,

with Uw as in Proposition 2.7.

Proof. See [Bri05, Section 1.1]. �

Note that we have G/Pi � P2(K) for i ∈ {1, 2}. In particular, these are K-analytic
manifolds in the sense of Appendix A.We also need the Bruhat-Iwahori decomposition.

2.9. Proposition (Bruhat-Iwahori-Decomposition). We have

G �

⊔
w∈W

IwB �

⊔
w∈W

Iw wB,

where Iw � I ∩ (wU−w−1).

Proof. See [Sch11, Proof of Lemme 2.13]. �

The above decompositions allow us to define coordinates on the various cells. The
coordinates we will use throughout this thesis are given explicitly in Table 1. For later
use, we set

D(w) B w0Iw wB/B ⊂ G/B. (1)

The sets D(w) are compact open in G/B. Via the coordinates in the last column of Table
1, every set D(w) can be regarded as a compact open subset of O3

K . We can make the
following definition.

2.10. Definition. For u ∈ Iw and r ∈ R sufficiently big, we denote by Bw (u , r) ⊆ D(w)
the open subset corresponding to the closed polydisc D(u , r) in O3

K , see Appendix A.

This defines the structure of a K-analytic manifold on the quotient G/B.
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w ∈ W Uw Iw

w0

( 1 x3 x2
0 1 x1
0 0 1

)
[xi ∈ K]

( 1 x3 x2
0 1 x1
0 0 1

)
[xi ∈ OK]

w1 B s1s2
( 1 x2 x3
0 1 0
0 0 1

)
[x2 , x3 ∈ K]

( 1 x2 x3
0 1 0
0 x1 1

)
[x2 , x3 ∈ OK , x1 ∈ πOK]

w2 B s2s1
( 1 0 x1
0 1 x2
0 0 1

)
[x1 , x2 ∈ K]

( 1 0 x1
x3 1 x2
0 0 1

)
[x1 , x2 ∈ OK , x3 ∈ πOK]

s1
( 1 x1 0
0 1 0
0 0 1

)
[x1 ∈ K]

( 1 x1 0
0 1 0
x3 x2 1

)
[x1 ∈ OK , x2 , x3 ∈ πOK]

s2
( 1 0 0
0 1 x3
0 0 1

)
[x3 ∈ K]

( 1 0 0
x2 1 x3
x1 0 1

)
[x3 ∈ OK , x1 , x2 ∈ πOK]

id
(
1 0 0
0 1 0
0 0 1

) ( 1 0 0
x1 1 0
x2 x3 1

)
[xi ∈ πOK]

Table 1. Bruhat- and Bruhat-Iwahori-cells for G � GL3(K)

2.3.2. The flag variety G/B and the Plücker embedding

The K-analytic manifold G/B can be viewed as the boundary of the building T . In order
to understand its geometry, we recall some facts on flag varieties. We follow [Ful97,
Chapter 9] and [Bri05]. Let F denote the flag variety over K whose K-points are given by

F (K) �
{
0 ( W2 ( W1 ( V∗ �� W1 ,W2 are K-linear subspaces of V∗

}
.

Furthermore, for i ∈ {1, 2}, let Gi (V∗) denote the Grassmannian of K-linear subspaces of
V∗ of codimension i. Then the assignments 〈v1 , v2〉 7→ 〈v1 ∧ v2〉 and 〈v1〉 7→ 〈v1〉 set up
isomorphisms

Gi (V∗) → P(
∧3−i V∗)

In particular, Gi (V∗) is projective. Let g ∈ G and denote its columns by v1 , v2 , v3. The
maps G → Gi (V∗) given by

g � (v1 , v2 , v3) 7→ 〈v1 , v2〉 and g � (v1 , v2 , v3) 7→ 〈v1〉

induce isomorphisms G/Pi → Gi (V∗).

2.11. Proposition. The so called Plücker embedding F → G2(V∗) × G1(V∗) given on K-
valued points by

(W2 ⊆ W1) 7→ (W2 ,W1)

is a closed immersion. Consequently, F is projective. It is of dimension 3.

Proof. See [Ful97, Chapter 9]. �

As above, let g ∈ G and denote its columns by v1 , v2 , v3. The map G → F (K) given by

g � (v1 , v2 , v3) 7→ (〈v1〉 ( 〈v1 , v2〉)
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induces an isomorphism G/B → F (K). Let pl : G/B → G2(V∗) × G1(V∗) denote the
composition of this isomorphism with the Plücker embedding. Then, we can make
all of the above maps explicit as follows: For g ∈ G, we define coordinates αi (g) and
βi (g) for i � 1, 2, 3. The column vector (α1(g), α2(g), α3(g)) is the first column of g.
Additionally, let βi (g) be the determinant of the 2 × 2 submatrix of g consisting of the
first two columns and row 4 − i removed. We obtain the following.

2.12. Proposition. The maps G/P2 → P2(K) and G/P1 → P2(K) given by

g 7→ [α1(g) : α2(g) : α3(g)] and g 7→ [β1(g) : β2(g) : β3(g)]

are isomorphisms. Moreover, the map pl : G/B → P2(K) × P2(K) is given by

g 7→
(
[α1(g) : α2(g) : α3(g)], [β1(g) : β2(g) : β3(g)]

)
and is a closed immersion. We have

im(pl) �
{
(α, β) ∈ P2(K) × P2(K) ��� α3β1 − α2β2 + α1β3 � 0

}
.

Proof. All assertions are clear except for the description of im(pl). For this, see [Ful97,
Chapter 9, Lemma 2]. �

The images of the cells D(w) under the Plücker embedding are given in Table 2. These
explicit descriptions will be very useful in Chapter 4.

w ∈ W Iw pl(D(w))

w0

( 1 x3 x2
0 1 x1
0 0 1

)
[xi ∈ OK] ([1 : x1 : x2], [1 : x3 : x1x3 − x2])

w1 � s1s2
( 1 x2 x3
0 1 0
0 x1 1

)
[x2 , x3 ∈ OK , x1 ∈ πOK] ([x1 : 1 : x2], [−1 : x1x3 − x2 : x3])

w2 � s2s1
( 1 0 x1

x3 1 x2
0 0 1

)
[x1 , x2 ∈ OK , x3 ∈ πOK] ([1 : x2 : x1], [x3 : 1 : x2 − x1x3])

s1
( 1 x1 0

0 1 0
x3 x2 1

)
[x1 ∈ OK , x2 , x3 ∈ πOK] ([x2 : 1 : x1], [−x3 : x2 − x1x3 : 1])

s2
( 1 0 0

x2 1 x3
x1 0 1

)
[x3 ∈ OK , x1 , x2 ∈ πOK] ([x1 : x2 : 1], [x1x3 − x2 : −1 : −x3])

id
( 1 0 0

x1 1 0
x2 x3 1

)
[xi ∈ πOK] ([x2 : x1 : 1], [x2 − x1x3 : −x3 : −1])

Table 2. Bruhat-Iwahori-cells under the Plücker embedding

2.3.3. Chambers and compact open subsets of G/B

In this subsection, we relate G/B to T ; more precisely we want to see how to associate
compact open subsets of G/B to pointed chambers in T . This construction is crucial for
the construction of the Poisson kernel. We follow [AdS02, Section 1.6].
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2.13. Definition. Let σ � (πΛ0 ( Λ2 ( Λ1 ( Λ0) ∈ T̂2. A flag W � (W2 ( W1) ∈ F (K)
is called compatible with σ if

Λi � πΛ0 + (Wi ∩Λ0) for i � 1, 2.

We denote by U (σ) ⊂ F (K) the set of all flags which are compatible with σ.

2.14. Proposition.

(i) U (σ) ⊂ F (K) is compact open. Every compact open set in F (K) can be written as a
finite disjoint union of subsets of the form U (σ), σ ∈ T̂2.

(ii) We have U (gσ) � gU (σ) for all g ∈ G.

(iii) Under the identification F (K) � G/B we have U (σ0) � IB/B.

Proof. Property (i) follows from (ii) and (iii) by [SS91, Section 4, Proposition 8]. Proper-
ties (ii) and (iii) are straightforward from the definitions. �

If we let

y B *.
,

1 0 0
0 π 0
0 0 π2

+/
-
∈ G,

then it is shown in [SS91, Section 4, Proposition 8] that in (i) it suffices to consider sets
of the form g ynU (σ0) with g ∈ GL3(OK) for n ≥ 0 big enough.

2.15. Remark. We want to mention that property (iii) in the above proposition can be
interpreted geometrically as follows: We pick the standard sector S0 which is based at
v0 and contains σ0. This sector determines a chamber σ∞ in the spherical building at
infinity in the Borel-Serre compactification of T , see [BS76]. Its stabilizer is given by
B and thus, U (σ0) is given by the orbit StabG (σ0)StabG (σ∞) in G/B. This holds for all
chambers σ ∈ T̂2, see [ST97, Proposition 8].

Let Z[T̂2] denote the free abelian group on the pointed chambers of T . By the above
proposition we obtain a G-equivariant surjective homomorphism

ψ : Z[T̂2]→ C∞(G/B,Z),
σ 7→ 1U (σ) ,

where the right hand side denotes the locally constant functions on G/B with values in
Z. Let

y1 B
*.
,

1 0 0
0 1 0
0 0 π

+/
-
∈ G and y2 B

*.
,

1 0 0
0 π 0
0 0 π

+/
-
∈ G.

Then we have y � y1 · y2 � y2 · y1. We obtain the following description of ker(ψ).



2.3. THE BOUNDARY OF T 15

2.16. Proposition. Let I be the G-submodule of Z[T̂2] generated by Iyiσ0 − σ0 for i ∈ {1, 2}.
Then I � ker(ψ).

Proof. See [SS91, Section 4, Proposition 11]. �

Note that Iyiσ0 is a finite sum of chambers for i ∈ {1, 2}, so the above is well-defined.





CHAPTER3
The residue map

In this chapter, we construct the residue map relating rigid analytic functions on X
to harmonic cocycles on T . This is due to Schneider and Teitelbaum in the case of
trivial coefficients. Building on Schneider’s theory of so called holomorphic discrete series
representations, we construct a natural analogue for more general coefficients. This is
inspired by a construction of Schneider and Stuhler in [SS91] for GL2(K).

3.1. Harmonic cocycles

We begin by introducing harmonic cocycles on T and the coefficients we are primarily
interested in. We fix a complete extension L of K insideCK and denote its ring of integers
by OL. In the sequel, by an L[G]-module we always mean a left L[G]-module.

3.1. Definition. Let M be an L[G]-module. A function c : T̂2 → M is called a harmonic
cocycle with values in M if the following conditions are satisfied:

(i) Let σ ∈ T̂2 and let ρσ be a generator of the group Hσ as in Proposition 2.2. Then

c(ρσσ) � c(σ).

(ii) Let e ∈ T1. Then ∑
σ 7→e

c(σ) � 0,

where the sum is over all pointed chambers σ ∈ T̂2 sharing the face e, each with
distinguished vertex opposite to e.

The space of harmonic cocycles with values in M is denoted by Char(T ,M). It carries a
natural L-vector space structure. Moreover, if we set

(g · c)(σ) � g · c(g−1σ) for g ∈ G, σ ∈ T̂2 , c ∈ Char(T ,M),

it itself becomes an L[G]-module.

17
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An alternative, more representation-theoretic description of the space of harmonic co-
cycles can be found in [ST97, Definition 9].

3.2. Remark. We should mention that a funny new phenomenon appears in the def-
inition of harmonic cocycles when working with GL3(K) instead of GL2(K): Part (i)
of the definition implies that one can directly regard harmonic cocycles as functions
on the set of chambers T2. This will be a convenient point of view for various explicit
computations in Part II of this thesis.

The coefficients we are primarily interested in are given as follows. Let Pk (L) denote
the L[G]-module (Symk (V∗)⊗K det−k/3)⊗K L for k ≥ 0 with 3 | k. In the sequel, it will be
very useful to have the following concrete description of this module. Using the basis
of V∗ from Chapter 1, we have Pk (L) � L[X1 ,X2 ,X3]deg�k with the G-action given by

(g∗F)(X1 ,X2 ,X3) �
det(g)−k/3F(g11X1+g21X2+g31X3 , g12X1+g22X2+g32X3 , g13X1+g23X2+g33X3).

We denote the L-vector space dual of Pk (L) by Vk (L) and equip it with the left action
(g · v)(F) � v((g−1)∗F) for v ∈ Vk (L), F ∈ Pk (L) and g ∈ G. In the sequel, we suppress
L from the notation and just write Pk and Vk instead of Pk (L) and Vk (L). Both Pk and
Vk are in fact algebraic representations of the algebraic group underlying G.

3.3. Remark. Note that if char(K) � 0 both Pk and Vk are irreducible algebraic repre-
sentations. This is not true in general in positive characteristic, see [Jan03, II.2.16].

The following fact is simple combinatorics.

3.4. Lemma. We have

dimL Pk � dimL Vk �

(
k + 2
2

)
�

(k + 2)(k + 1)
2

.

The representation Pk has highest weight (2k/3,−k/3,−k/3) with respect to B.

In the sequel, we write Char(T , k) B Char(T ,Vk ). Next, we want to define the subspace
of bounded harmonic cocycles. For this, we need some preparations. Let c ∈ Char(T , k).
We define a function ϕc : K×\G → Vk by

ϕc (g) � g−1 · c(gσ0),

where σ0 is the standard pointed chamber. Since StabG (σ0) � K×I, by Proposition 2.2,
we have ϕc (gh) � h−1 · ϕc (g) for g ∈ G, h ∈ I. Now, we set

V int
k B

{
v ∈ Vk

��� v(X i1
1 X i2

2 X i3
3 ) ∈ πi1+i2OL for i1 + i2 + i3 � k

}
.

One easily verifies that V int
k is an I-stable OL-module, see also the proof of Proposition

5.25.
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3.5. Definition. A harmonic cocycle c ∈ Char(T , k) is called bounded if there exists
α ∈ OL \ {0} such that αϕc (g) ∈ V int

k for all g ∈ G.

3.6. Remark. Note that for k � 0, we have V0 � L and V int
0 � OL, both with the trivial

G-action. Then, a harmonic cocycle c ∈ Char(T , 0) is bounded if and only if its image
{c(σ) | σ ∈ T̂2} ⊆ L is bounded.

We denote by Cb
har(T , k) the set of bounded harmonic cycles in Char(T , k).

3.7. Proposition. The space Cb
har(T , k) is an L[G]-submodule of Char(T , k).

Proof. It is clear from the definition that Cb
har(T , k) is an L-subvector space. To see that

Cb
har(T , k) is G-stable, let c ∈ Cb

har(T , k) and g ∈ G. Then we have

ϕg·c (h) � h−1 · (g · c)(hσ0) � (h−1g) · c(g−1hσ0) � ϕc (g−1h)

for all h ∈ G. In particular, c is bounded if and only if g · c is bounded. �

3.8. Remark. We should point out that the above definition of boundedness looks
different than the one considered in [DT08, Section 2.3]: There, one works with an
I-equivariant norm on Vk . The two approaches can be linked by observing that the
space V int

k defines an I-equivariant norm on Vk via

γ(v) B inf
{
|a | ��� a ∈ L× , a−1v ∈ V int

k

}
.

as in Section 2.2. Then boundedness with respect to V int
k and with respect to γ are

equivalent. Wewill also give a very natural interpretation of the notion of boundedness
when passing from harmonic cocycles to certain automorphic forms in Chapter 5. We
should also mention that in many applications one is in fact interested in harmonic
cocycles invariant under certain (arithmetic) subgroups Γ ⊂ GL3(K). For cocompact
groups, boundedness is then automatic.

3.2. Filtrations on Pk and Vk

In the sequel, we also need to consider both Pk and Vk as modules for the parabolic
subgroup P1. In particular, we construct a filtration of L[P1]-submodules on both spaces.
Let

J B
{
(i1 , i2 , i3) ∈ Z3

≥0
��� i1 + i2 + i3 � k

}
.

To shorten the notation, we write XI
� X i1

1 X i2
2 X i3

3 for I � (i1 , i2 , i3) ∈ J . We set

F j
Pk B

〈
XI ��� I ∈ J , i3 ≤ k − j

〉
L
⊆ Pk for j ∈ {0, . . . , k}.

We also set Fk+1
Pk � 0.
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3.9. Proposition. Each F j
Pk is P1-stable. We have

Pk � F0
Pk ) F1

Pk ) · · · ) Fk
Pk �

〈
X i1

1 X i2
2

��� i1 + i2 � k
〉

L
) Fk+1

Pk � 0,

i.e., (F j
Pk )0≤ j≤k+1 is a decreasing filtration of Pk by L[P1]-submodules.

Proof. This is immediate from the definitions. �

3.10. Remark. Note that F0
Pk/F1

Pk is one-dimensional, i.e., given by a character of P1.
Explicitly, it is given by

χk : P1 → K× ⊆ L× ,

p �

( p11 p12 p13
p21 p22 p23
0 0 p33

)
7→ det(p)−k/3pk

33.

This character plays an important role in Section 4.1.

By duality, we also obtain a filtration on Vk . It is given as follows. Let

F jVk B ker(Vk → (Fk+1− j
Pk )∗) for j ∈ {0, . . . , k + 1}.

We immediately obtain the following corollary.

3.11. Corollary. As above, (F jVk )0≤ j≤k+1 is a decreasing filtration ofVk by L[P1]-submodules.

3.3. Holomorphic discrete series representations

Recall that we have defined a coordinate function ω on X in Chapter 1, whose com-
ponents ωi can be regarded as elements of OX . We have seen that if z is a point in X,
we can always renormalize it such that z � [z1 : z2 : 1]. Then we have ωi (z) � zi for
i ∈ {1, 2}. For g ∈ G we set

j(g , ω) B g13ω1 + g23ω2 + g33 ∈ OX ,

the factor of automorphy. Clearly, it satisfies the usual cocycle relation

j(gh , ω) � j(g , ω) · j(h , g∗ω) for g , h ∈ G.

The ring OX of global rigid analytic functions on X carries the structure of a left CK[G]-
module via g∗ f � f (g∗ω) for f ∈ OX and g ∈ G. We are interested in various other
G-actions on this space, which are given as follows.

3.12. Definition. For k ∈ Z≥0 with 3 | k we denote by OX (k) the ring OX equipped
with the following weight k action,

g∗ f � det(g)k/3 j(g , ω)−k f (g∗ω),

where g ∈ G and f ∈ OX .
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3.13. Remark. Note that OX (0) � OX and in the case k � 3 we have an isomorphism

OX (3) → Ω2
X
,

f 7→ f (ω)dω B f (ω)dω1 ∧ dω2 ,

where Ω2
X
denotes the global sections of the sheaf of two-forms on X.

Each of the spaces OX (k) in fact carries a structure of an OX[G]-module by left multi-
plication with elements in OX .

The following construction is crucial and essentially a special case of [Sch92, Section
3]. However, since we work over a local field of any characteristic and use different
conventions, we redevelop all necessary constructions in our situation. See also [SS91,
p. 95 ff.] for a similar construction for GL2(K). In the remainder of this section, we work
with L � CK . We are interested in the CK-vector space OX ⊗CK Vk equipped with the
diagonal left G-action, which we denote by

g · ( f ⊗ v) � g∗ f ⊗ g · v for f ∈ OX , v ∈ Vk , g ∈ G.

We will also view this space as the base-change of the algebraic representation Vk from
CK to OX . In particular, it also carries a second action by the group GL3(OX), whose
restriction to G is different from the diagonal action of G. For g ∈ GL3(OX) and
m ∈ OX ⊗CK Vk , we write gm for the element obtained by acting with g on m. We set

u(ω) B *.
,

1 0 0
0 1 0
−ω1 −ω2 1

+/
-
∈ GL3(CK (ω1 , ω2)) ⊂ GL3(OX)

and define a projection
θ : GL3(OX) → P2(OX),

g 7→ [0 : 0 : 1]g−1.

Then θ is equivariant with respect to the action defined in the beginning of Chapter 1.
It induces an isomorphism

GL3(OX)/P1(OX) � P2(OX).

We have
θ(u(ω)) � [ω1 : ω2 : 1].

In particular, we obtain
θ(g−1u(ω)) � θ(u(g∗ω)).

Hence we find pg ∈ P1(OX) such that u(g∗ω) � g−1u(ω)pg . Note that the entries
of θ(g−1u(ω)) and θ(u(g∗ω)) differ precisely by a renormalization with the factor of
automorphy j(g , ω).
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3.14. Lemma. Let M ⊆ Vk be a CK[P1]-submodule. Then

u(ω)(OX ⊗CK M) ⊆ OX ⊗CK Vk

is a CK[G]-submodule.

Proof. Let g ∈ G. For f ∈ OX and m ∈ M we have

g · (u(ω)( f ⊗ m)) � (gu(g∗ω))(g∗ f ⊗ m) � u(ω)(pg (g∗ f ⊗ m))

for some pg ∈ P1(OX) by the discussion above. Since M is P1-stable, this completes the
proof. �

Consequently, we obtain a decreasing filtration by CK[G]-modules on OX ⊗CK Vk by
setting

F j (OX ⊗CK Vk ) B u(ω)(OX ⊗CK F jVk ) for j ∈ {0, . . . , k + 1}.

In the following, we need an explicit description of this filtration. For this purpose, let
vI ∈ Vk be given by

vI (F) � coefficient of XI in F,

for F ∈ Pk . Then by construction, we have

F jVk �
〈
vI �� I ∈ J , i3 ≥ j

〉
K .

Now, let DI B u(ω)vI ∈ OX ⊗CK Vk , where, here and in the sequel, we write vI for the
element 1 ⊗ vI ∈ OX ⊗CK Vk . Then we have

F j (OX ⊗CK Vk ) �
〈
DI �� I ∈ J , i3 ≥ j

〉
OX
.

We define the following order on the set J .

3.15. Definition. Let I , J ∈ J . We say I is less or equal than J and write

I ≤ J if and only if (i1 ≤ j1 and i2 ≤ j2).

This defines a partial order on J .

3.16. Proposition. We have

DI �
∑
I≤ J

(
j1
i1

) (
j2
i2

)
ω

j1−i1
1 ω

j2−i2
2 v J .

Proof. We compute

(u(ω)vI )(X J ) � vI (u(ω)−1X J ) � vI ((X1 + ω1X3) j1 (X2 + ω2X3) j2X j3
3 )

�




(
j1
i1

) (
j2
i2

)
ω

j1−i1
1 ω

j2−i2
2 , if i1 ≤ j1 , i2 ≤ j2 ,

0, otherwise.

By linearity, we obtain the result. �
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3.17. Remark. The above formula shows that the maps DI behave similarly to classical
hyperderivatives.

We also need the following corollary.

3.18. Corollary. In OX ⊗CK Vk we have

vI �
∑
I≤ J

(
j1
i1

) (
j2
i2

)
(−ω1) j1−i1 (−ω2) j2−i2DJ .

Proof. Let f ∈ Pk . By definition, we have

DI (u(ω) f )(ω) � vI ( f ).

By substituting ω with −ω and observing that u(−ω) � u(ω)−1, we obtain

vI ( f ) � DI (u(ω)−1 f )(−ω).

Now we apply Proposition 3.16 to obtain

vI ( f ) �
∑
I≤ J

(
j1
i1

) (
j2
i2

)
(−ω1) j1−i1 (−ω2) j2−i2v J (u(ω)−1 f ),

which gives the desired formula. �

Let m ≥ 3. We are also interested in the CK[G]-modules OX (m) ⊗CK Vk . We obtain a
filtration of CK[G]-modules by observing that

OX (m) ⊗CK Vk � OX (m) ⊗OX (OX ⊗CK Vk )

as CK[G]-modules and setting

F j (OX (m) ⊗CK Vk ) B OX (m) ⊗OX F j (OX ⊗CK Vk ) for j ∈ {0, . . . , k + 1}.

The explicit description of the filtration above Definition 3.15 is directly transferred
to this situation. The following result is crucial and the primary reason why we are
interested in this filtration.

3.19. Proposition. The translation map

tk ,m : OX (k + m) → OX (m) ⊗CK Vk ,

f 7→ f D(0,0,k) ,

is G-equivariant and injective with image Fk (OX (m) ⊗CK Vk ).
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Proof. The only statement requiring a proof is the G-equivariance. For this, observe that
by Proposition 3.16,

D(0,0,k) (F)(ω) � F(ω1 , ω2 , 1) for F ∈ Pk .

Now let g ∈ G and f ∈ OX (k + m). We have

g · (tk ,m ( f ))(F) � g · ( f (ω)D(0,0,k) (ω))(F)

� det(g)m/3 j(g , ω)−m f (g∗ω)D(0,0,k) (g−1∗ F)(g∗ω)

� det(g)m/3 j(g , ω)−m f (g∗ω)(g−1∗ F)((g∗ω)1 , (g∗ω)2 , 1)

� det(g)m/3 j(g , ω)−m f (g∗ω) det(g)k/3 j(g , ω)−kF(ω1 , ω2 , 1)
� tk ,m (g∗ f )(F),

completing the proof. �

3.20. Remark. The above construction is inspired by the so called translation principle
in classical Lie algebra representation theory. In the non-archimedean situation, this
first appeared in [SS91, p. 95 ff.] for GL2(K).

3.4. The residue map

We have now developed all necessary tools to construct the residue map. We first
consider the case k � 0 and then extend the construction to more general weights using
the translation map. Throughout this section, we always work with L � CK .

3.4.1. The case k � 0

We recall the construction of the residue map from [ST97]. A source in the GL2(K)-
case that uses similar normalizations to ours is [DT08, Section 2.2]. We first need
to understand the space OR0 of rigid analytic functions on R0. For this, recall that
R0 � red−1(|σ0 |◦) is the direct limit of the affinoid subdomains R0,N constructed in
Section 2.2.

3.21. Lemma. Let N ≥ 3. We have

OR0,N �




∑
i�(i1 ,i2)∈Z2

a(i)ωi1
1 ω

i2
2

�����
a(i) ∈ CK , |a(i) |q−`N (i)

→ 0 for |i1 | + |i2 | → ∞


,

where

`N (i) �




2
N

i1 +
1
N

i2 , for i1 ≥ 0, i1 + i2 ≥ 0,(
1 −

1
N

)
i1 +

(
1 −

2
N

)
i2 , for i2 ≤ 0, i1 + i2 ≤ 0,(

1 −
1
N

)
i1 +

1
N

i2 , for i1 ≤ 0, i2 ≥ 0.
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Proof. See [ST97, Lemma 17] or, in the GL2(K)-case, [DT08, Subsection 2.2.1]. �

The rather complicated convergence conditions stem from the inequalities defining the
affinoid subdomain R0,N , see Section 2.2. As a consequence of Lemma 3.21, we obtain
that OR0 consists of Laurent series of the above form, where the convergence conditions
are satisfied for each N ≥ 3. We are now able to make the following definition.

3.22. Definition. Let η ∈ Ω2
X
. Then, by the above, on the annulus R0 we can expand η

as
η �

∑
i�(i1 ,i2)∈Z2

aη(i)ωi1
1 ω

i2
2 dω.

with the convergence conditions from above. We define the residue of η at σ0 to be
resσ0 (η) B aη(−1,−1) ∈ CK .

3.23. Lemma. Let η ∈ Ω2
X
and g ∈ K×I. Then

resσ0 (g∗η) � resσ0 (η).

Proof. See [ST97, Lemma 20]. �

The above lemma ensures that the following construction is well-defined.

3.24. Definition. Let σ ∈ T̂2 and η ∈ Ω2
X
. Choose g ∈ G such that gσ � σ0. The residue

of η at σ is defined to be
resσ (η) B resσ0 (g∗η).

Note that by Remark 3.13, we have OX (3) � Ω2
X
. We obtain the following key result.

3.25. Proposition. The map

Res0 : OX (3) → Char(T , 0)

given by Res0( f (ω)dω)(σ) � resσ ( f (ω)dω) for σ ∈ T̂2 and f ∈ OX (3) is well-defined,
CK-linear and G-equivariant.

Proof. See [ST97, Proposition 22]. �

3.4.2. Extension to general weights

Extending the residue map to allowmore general weights is now straightforward using
the constructions in Section 3.3. This approach is due to Schneider and Stuhler in the
GL2(K)-case, see [SS91, p. 97]. Recall that we have the G-equivariant translation map
tk ,3 : OX (k + 3) → OX (3) ⊗CK Vk . We also have a G-equivariant map

sk : Char(T , 0) ⊗CK Vk → Char(T , k),
c ⊗ v 7→ [σ 7→ c(σ)v],

where the left hand side is equipped with the diagonal G-action.
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3.26. Definition. The residue map of weight k is defined as

Resk B sk ◦ (Res0 ⊗ id) ◦ tk ,3 : OX (k + 3) → Char(T , k).

By construction, Resk is G-equivariant.

We need the following explicit description.

3.27. Proposition. Let f ∈ OX (k + 3), σ ∈ T̂2 and F ∈ Pk . Then

Resk ( f )(σ)(F) � resσ (F(ω1 , ω2 , 1) f (ω)dω).

Proof. By Proposition 3.16 we have

Resk ( f ) � (sk ◦ (Res0 ⊗ id))( f D(0,0,k))

� (sk ◦ (Res0 ⊗ id)) *.
,

∑
J∈J

(ω j1
1 ω

j2
2 f ⊗ v J )

+/
-

�

∑
J∈J

Res0(ω j1
1 ω

j2
2 f )v J .

Now by definition of Res0, plugging in σ and F gives the desired result. �

3.28. Remark. One can also take the above formula as the definition of the map Resk
and check the G-equivariance directly. Since we need the translation map tk ,3 for the
construction of an integration map later, we took the approach above.

Now, let OX (k + 3)b B Res−1k (Cb
har(T , k)) ⊆ OX (k + 3), the space of rigid analytic functions

on X with bounded residues of weight k + 3. The aim of the subsequent chapter is to show
that (under some additional assumptions) the induced map

Resk : OX (k + 3)b
→ Cb

har(T , k)

is surjective and has a G-equivariant right inverse. We will construct this right inverse
explicitly, it is given by the so called Poisson kernel.

3.29. Remark. We should point out that our definition of OX (k + 3)b differs from the
standard literature, where a similar space is considered for k � 0, see [IS01, Definition
4.6] and [BdS16, Subsection 2.1.4]. The relationship between the two notions is clarified
in Remark 4.33.



CHAPTER4
The Poisson kernel

In this chapter, we construct the Poisson kernel, an explicit right inverse of the residue
map constructed in the previous chapter. The crucial step in the construction is finding
an appropriate locally analytic kernel function, which we can then integrate. The kernel
function in [ST97] is not locally analytic everywhere, which makes integration very
delicate as soon as one moves away from the trivial coefficients in [ST97]. Using our
knowledge of the geometry of the boundary G/B of T , we are able to construct such a
kernel function. We first integrate it in the case of trivial coefficients and then extend
to general coefficients using the holomorphic discrete series representations studied in
the previous chapter. For this, we also need certain locally analytic principal series
representations.

4.1. Locally analytic principal series representations

This section is inspired by [Sch11]. Let L be a complete extension of K insideCK . We use
the notation and the results fromAppendix A. Let k ∈ Z≥0 with 3 | k and let χk : T → K×

denote the algebraic character given by

t �
( t11 0 0

0 t22 0
0 0 t33

)
7→ det(t)−k/3tk

33.

We extend χk to a character of B by letting U act trivially. The following representation
is a central object throughout this thesis. Let

Ak B IndG
B (χk ) �

{
f ∈ Can(G, L) ��� f (gb) � χk (b−1) f (g) for g ∈ G, b ∈ B

}
, (2)

a locally analytic G-representation in the sense of Appendix A, where g ∈ G acts via
(g∗ f )(h) � f (g−1h) for g , h ∈ G and f ∈ Ak . By Proposition A.16, Ak is of compact
type. Our first aim is to relate Ak to the algebraic representation Pk studied in the
previous chapter.

4.1. Proposition. We have a G-equivariant embedding ι : Pk → Ak given by

ι(F)(g) � det(g)k/3F([0, 0, 1]g−1) for F ∈ Pk and g ∈ G.

27
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Proof. Let g ∈ G and F ∈ Pk . Then for b ∈ B one has

ι(F)(gb) � det(gb)k/3F([0, 0, 1]b−1g−1)

� det(b)k/3b−k
33 ι(F)(g) � χk (b−1)ι(F)(g)

and for h ∈ G we compute

ι(h∗F)(g) � det(g)k/3h∗F([0, 0, 1]g−1)

� det(g)k/3 det(h)−k/3F([0, 0, 1]g−1h) � ι(F)(h−1g),

proving the well-definedness and G-equivariance. The injectivity is obvious. �

4.2. Remark. Note that χk extends to a character of P1, see Remark 3.10. In fact, one
has that Pk � IndG,alg

B (χk ) ⊗K L � IndG,alg
P1

(χk ) ⊗K L under the above map, see [Jan03,
II.2.16]. Moreover, by [Jan03, I.3.5], we have Pk � IndG(L),alg

B(L) (χk ), where we regard χk
as an L-algebraic character.

We also need the following construction. Let

FPi ,k B IndPi ,alg
B (χk ) ⊗K L � IndPi (L),alg

B(L) (χk ).

We want to describe these spaces more explicitly. For this purpose, we need some
notation. Note that P2 � L2 · U2, where L2 denotes the standard Levi-component and
U2 the unipotent radical of P2. Explicitly,

L2 �
*.
,

∗ 0 0
0 ∗ ∗

0 ∗ ∗

+/
-

and U2 �
*.
,

1 ∗ ∗

0 1 0
0 0 1

+/
-
.

In particular L2 � GL1(K) × GL2(K). Since U2 is normal in P2, if M is an algebraic
representation of L2, we can view it as a representation of P2 by letting U2 act trivially.

4.3. Proposition. We have

FPi ,k �




χk , for i � 1,

((1GL1(K) ⊗K Symk ((K2)∗)) ⊗K det−k/3) ⊗K L, for i � 2,

where we regard 1GL1(K) ⊗K Symk ((K2)∗) as a representation of P2 as explained above.

Proof. We first observe that by definition it suffices to consider the case L � K. Let i � 1.
Note that χk is in fact a character of P1 by Remark 3.10. We have

FP1 ,k � IndP1 ,alg
B (χk |B) � χk ⊗K IndP1 ,alg

B (1B)

by the tensor product identity, see [Jan03, I.3.6]. Now by [Jan03, I.5.10] we have

IndP1 ,alg
B (1B) � H0(P1/B,OP1/B) � K.
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This concludes the case i � 1. Now consider the case i � 2. By definition, we have

FP2 ,k �

{
f : P2 → A

1
K K-algebraic ��� f (pb) � χk (b−1) f (p) for p ∈ P2 , b ∈ B

}
.

But since U2 ⊆ B ∩ ker(χk ) and (L2 ∩ B) ·U2 � B, this can be rewritten as

FP2 ,k �

{
f : L2 → A

1
K K-algebraic ��� f (pb) � χk (b−1) f (p) for p ∈ L2 , b ∈ L2 ∩ B

}
.

Now, since L2 � GL1(K) × GL2(K) and L2 ∩ B � GL1(K) × B2, where B2 ⊆ GL2(K)
denotes the Borel subgroup of upper triangular matrices, we can apply [Jan03, II.2.16]
to obtain the desired description. �

4.4. Remark. We can also realize the space FP2 ,k as a quotient of Pk as follows. It is
easy to check that

〈XI
| I ∈ J , i1 ≥ 1〉L ⊆ Pk

is P2-stable. The quotient by this submodule is isomorphic to FP2 ,k . In fact this is the
top graded piece of a filtration of Pk by P2-submodules analogous to the one studied in
Section 3.2 for P1.

Now, we can define the locally analytic representations

APi ,k B IndG
Pi

(FPi ,k ) for i ∈ {1, 2}. (3)

By the transitivity of the induction functor, see Proposition A.19, and since the K-points
ofPi lie dense in the algebraic groupunderlyingPi , these are naturally L[G]-submodules
of Ak . By the same reasoning, Pk is naturally a L[G]-submodule of APi ,k for i ∈ {1, 2}.
We are now able to define the object we are primarily interested in.

4.5. Definition. The locally analytic Steinberg representation of G of weight k is the L[G]-
module

Stan3 (k) � Ak/(AP1 ,k +AP2 ,k ).

4.6. Remark. Note that our definition of the locally analytic Steinberg representation
looks slightly more complicated than the usual one, as defined for example in [Sch11,
Section 2.4]. There, the spaces FPi ,k are replaced with the irreducible representation
of highest weight (k , 0, 0) of the corresponding Levi-components. If char(K) � 0 both
definitions agree, however if char(K) � p > 0 this is not the case anymore. Weused the so
called ∇-modules of weight (k , 0, 0) as the replacement here (and twisted with det−k/3).
This is inspired by the GL2(K)-case studied by Teitelbaum in positive characteristic,
where this turns out to be the correct point of view.

The following proposition is an analogue of [Sch11, Lemme 2.23] and will become very
important.
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4.7. Proposition. There is a natural commutative diagram of topological L[G]-modules

(AP1 ,0 +AP2 ,0) ⊗L Pk AP1 ,k +AP2 ,k

A0 ⊗L Pk Ak

with surjective horizontal arrows. This induces a G-equivariant continuous surjective map
Tk : Stan3 (0) ⊗L Pk → Stan3 (k). Explicitly, Tk is given by

[ f ] ⊗ F 7→ [g 7→ ι(F)(g) f (g) � det(g)−2k/3F(β3(g),−β2(g), β1(g)) f (g)],

where βi for i ∈ {1, 2, 3} are the coordinate functions from Proposition 2.12.

Proof. Let P ∈ {B, P1 , P2} and write FB,k B χk . Then, we need to construct a continuous
map

IndG
P (1P) ⊗L Pk → IndG

P (FP,k ).

But by the tensor product identity for the locally analytic induction we have

IndG
P (1P) ⊗L Pk � IndG

P (Pk |P)

The isomorphism is given by f ⊗ F 7→ [g 7→ f (g)g−1F]. We also have a natural P-
equivariant surjection Pk |P → FP,k by Remark 3.10 and Remark 4.4. By Proposition
A.20 we obtain the desired surjection by composition. Clearly, these constructions are
compatible with the vertical arrows in the diagram, making it commutative. By taking
quotients, we obtain the map Stan3 (0) ⊗L Pk → Stan3 (k). The explicit formula can now be
read off by construction; we only need to compute the coefficient of Xk

3 in g−1F, or in
other words, det(g)k/3F([0, 0, 1]g−1), i.e., we need to compute the last row of the matrix
g−1. It is a simple computation to see that it is given by

det(g)−1(β3(g),−β2(g), β1(g)),

proving the explicit formula. �

4.2. The kernel function

In this section, we define the central object of this chapter, the kernel function. Fol-
lowing [ST97], we first define a continuous kernel function, locally analytic only on
the (opposite) big cell. We then describe how this kernel function can be modified
in natural way to make it locally analytic everywhere. This uses the geometry of the
flag variety G/B and the Plücker embedding: We realize that the singular locus of the
kernel function is a projective line inside the flag variety. We then construct an explicit
open neighbourhood of this projective line and modify the kernel function on this open
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neighbourhood. We should note that our normalizations differ from [ST97]. For the
remainder of this chapter, we set L � CK .

Let ξ ∈ OX be given by ξ(ω) � 1
ω1·ω2

.

4.8. Definition. The (continuous) kernel function θ : G/B×X → CK is defined as follows.
For u ∈ U− we set

θ(u , ω) � (u∗ξ)(ω).

Following [ST97], we extend θ to a function on G/B × X as follows:

θ(g , ω) �
{
0, for g < Co (w0),
θ(u , ω), for g � ub ∈ Co (w0).

By adapting [ST97, Lemma 31] to our choice of Plücker coordinates in Proposition 2.12,
we can rewrite this as

θ(g , ω) � θ1(g , ω) · θ2(g , ω),

where

θ1(g , ω) �
α1(g)

α1(g)ω1 + α2(g)ω2 + α3(g)
and θ2(g , ω) �

β1(g)
β1(g)ω2 + β2(g)

.

In the sequel, an even more explicit description on the opposite big cell will be useful.
We work with the coordinates in Table 1. Explicitly, this means we fix the embedding
u : K3

→ G given by x � (x1 , x2 , x3) 7→ u(x), where

u(x) � *.
,

1 0 0
x1 1 0
x2 x3 1

+/
-
∈ w0Uw0w0 � U− ⊂ G.

By definition, the partial kernel functions θi (·, ω) : G/B → CK for i � 1, 2 satisfy

u(x)∗ω � (θ1(u(x), ω)−1 , θ2(u(x), ω)−1).

More explicitly,

θ1(u(x), ω) �
1

ω1 + x1ω2 + x2
and θ2(u(x), ω) �

1
ω2 + x3

.

This description resembles the kernel function used in the GL2(K)-case, see [Tei90,
Section 2]. We have the following.

4.9. Lemma. The function θ(·, ω) : G/B → CK is continuous. Moreover, it is locally analytic
on Co (w0).

Proof. See [ST97, Proposition 29 and Proposition 47]. �

We can analyze the singular locus in more detail.
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4.10. Lemma. The singular locus of the kernel function θ(·, ω) : G/B → CK is

Co (s1) ∪ Co (id) � w0P1/B ⊂ G/B.

Proof. The partial kernel function θi (·, ω) are quotients of locally analytic (even al-
gebraic) functions. In particular, they are locally analytic except at the zeros of the
denominators. Since ω ∈ X, such zeros can only occur if the corresponding Plücker
coordinates appearing in the denominators simultaneously vanish. More precisely, fix
g ∈ G, then, since g is invertible, the functions αi for i ∈ {1, 2, 3} do not have a common
zero, hence θ1(·, ω) is locally analytic everywhere. The singular locus of θ2(·, ω) is
given by {

g ∈ G �� β2(g) � β1(g) � 0
}
�

{
g ∈ G �� β2(w0g) � β3(w0g) � 0

}
.

Let S �
{
g ∈ G �� β2(g) � β3(g) � 0

}
. It is easy to check that S is left- and right-B-

invariant, hence S is a union of Bruhat cells. Now, one verifies that w ∈ W is in S if and
only if w ∈ W1 � {id, s1}, completing the proof. �

We need the following object, where for a topological space M, we denote by C(M,CK)
the space of CK-valued continuous functions on M.

4.11. Definition. The continuous Steinberg representation of G is the CK[G]-module

Stcon3 B C(G/B,CK)/Cinv(G/B,CK),

where
Cinv(G/B,CK) B C(G/P1 ,CK) + C(G/P2 ,CK)

and G acts via (g∗ f )(h) � f (g−1h) for g , h ∈ G and f ∈ C(G/P,CK) for P ∈ {B, P1 , P2}.

4.12. Remark. Note that we have a natural inclusion Stan3 (0) → Stcon3 as locally analytic
functions are continuous.

To build a suitable integration theory, we are interested in the class [θ(·, ω)] ∈ Stcon3 .
We want to show that there exists a representing function for this class which is locally
analytic everywhere. By the above, we need to modify the kernel function only on an
open neighbourhood of Co (s1) ∪ Co (id) in G/B. Recall from Proposition 2.8 that we
have

G �

⊔
w∈W1

Uw wP1.

Note that the minimal representative for the class of w0 in W1 is w1 � s1s2. We define a
kernel function with respect to P1 as follows. For u ∈ Uw1 , we set

θinv(w0uw0 , ω) B ((w0uw0)∗ξ)(ω) ∈ CK .

As above, we extend θinv(·, ω) to G/P1 by 0 outside w0Uw1w0P1. We need the following
simple topological lemma.
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4.13. Lemma. Let Y be a topological space and Z be a closed subset of Y. Let f : Y → CK
be continuous such that f vanishes along Z and h : Y \ Z → CK be bounded and continuous.
Then the product f h defines a continuous function on Y, which vanishes along Z.

Proof. See [ST97, Lemma 34]. �

4.14. Proposition. We have

θinv(g , ω) �
β1(g)

β1(g)ω1 − β3(g)
·

β1(g)
β1(g)ω2 + β2(g)

for g ∈ G.

Consequently, θinv(·, ω) is continuous on G/P1.

Proof. We claim that for g � w0uw0p ∈ w0Uw1w0P1 we have

u �
*.
,

1 β2(g)/β1(g) −β3(g)/β1(g)
0 1 0
0 0 1

+/
-
.

First off, we observe that

βi (g)
β1(g)

�
βi (w0uw0)
β1(w0uw0)

for i � 2, 3.

Now, the matrix w0uw0 is of the form

*.
,

1 0 0
0 1 0
x2 x3 1

+/
-

and we compute that

β3(w0uw0)
β1(w0uw0)

� −x2 and
β2(w0uw0)
β1(w0uw0)

� x3 ,

which proves our claim. Since the opposite big cell with respect to W1 is the Zariski
open set where β1 is non-zero, the formula in the proposition now follows by applying
the definition of θinv(·, ω). The continuity can be proved analogously to the reasoning
in [ST97, Lemma 33]: The two factors entering into θinv(·, ω) are bounded outside the
common zeros of β1 , β3 and β1 , β2 respectively. But since the functions β1 , β2 , β3 can not
simultaneously vanish, we can apply Lemma 4.13 twice to complete the proof. �

To finish the construction and for Section 5.1, we need the following. Let i ∈ {1, 2} and
recall that Ii � I ∪ IsiI. Note that by Lemma 2.3 the set K×Ii is the stabilizer of the
edge ei ∈ T̂1. Recall that U (σ0) � IB/B. We set

Ui (σ0) B IiU (σ0) ⊆ G/B.

Note that this is a finite disjoint union of compact open subsets of G/B, hence compact
open.
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4.15. Lemma. We have
Ui (σ0) � IPi/B.

Proof. Recall that by Proposition 2.9, we have

Ui (σ0) � IidB/B ∪ IsiIidB/B.

But since siIidsi ⊆ I, we obtain, again by Proposition 2.9,

Ui (σ0) � IB/B ∪ IsiB/B � IidB/B ∪ Isi siB/B.

Thus, to show that IPi/B ⊆ Ui (σ0), it suffices to show that IidB ∪ Isi siB is right Pi-
stable. Since Pi � Pi (OK)B, it further suffices to show that IidB(OK)∪Isi siB(OK) is right
Pi (OK)-stable. Let t : G(OK) → G(κ) be the canonical projection. Let p ∈ Pi (OK) and
denote by rp and rt(p) the right multiplications by p on G(OK) and by t(p) on G(κ). The
following diagram commutes:

G(OK) G(OK)

G(κ) G(κ)

rp

t

rs(p)

t

Note that by definition Iw wB(OK) � t−1(Uw (κ)wB(κ)) for all w ∈ W . Now, for w ∈ Wi ,
we obtain

rp (Iw wB(OK)) � rp (t−1(Uw (κ)wB(κ))) ⊆ t−1(rt(p) (Uw (κ)wB(κ)))

⊆ t−1(Uid(κ)B(κ) ∪Usi (κ)siB(κ)) � IidB(OK) ∪ Isi siB(OK).

since Pi (κ) is a group. For the other inclusion, recall that Pi � B ∪ BsiB. Hence we have

Ui (σ0) ⊆ IB/B ∪ IBsiB/B � IPi/B,

which completes the proof. �

We setU B w0U1(σ0) ⊂ G/B, a compact open neighbourhood of w0P1/B. Now we can
define our modified kernel function.

4.16. Definition. We define the locally analytic kernel function θ̂ : G/B × X → CK by

θ̂(g , ω) � θ(g , ω) − 1U (g) · θinv(g , ω) for g ∈ G.

The following theorem justifies the term locally analytic kernel function.

4.17. Theorem. The function θ̂(·, ω) is locally analytic everywhere. We have

[θ̂(·, ω)] � [θ(·, ω)]

in Stcon3 .
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Proof. First note that by construction θ̂(·, ω) is continuous. Moreover, by Lemma 4.15
and Proposition 4.14, we have 1U (g) · θinv(g , ω) ∈ C(G/P1 ,CK) proving the second
assertion. To prove the local analyticity, note that by Lemma 4.10, we only need to show
that θ̂(·, ω) is locally analytic onU . For this purpose, let g ∈ U . Then, by the Plücker
relation in Proposition 2.12, we have

θ̂(g , ω) �
β1(g)

β1(g)ω2 + β2(g)

[
α1(g)

α1(g)ω1 + α2(g)ω2 + α3(g)
−

β1(g)
β1(g)ω1 − β3(g)

]

�
β1(g)

β1(g)ω2 + β2(g)

[
−α1(g)β3(g) − α3(g)β1(g) − α2(g)β1(g)ω2

(α1(g)ω1 + α2(g)ω2 + α3(g)) · (β1(g)ω1 − β3(g))

]

�
β1(g)

β1(g)ω2 + β2(g)

[
−α2(g)β2(g) − α2(g)β1(g)ω2

(α1(g)ω1 + α2(g)ω2 + α3(g)) · (β1(g)ω1 − β3(g))

]

�
α2(g)

α1(g)ω1 + α2(g)ω2 + α3(g)
·

−β1(g)
β1(g)ω1 − β3(g)

.

Thus, we only need to show that β1 and β3 do not simultaneously vanish on U . This
can be done explicitly. Recall that in the proof of Lemma 4.15 we have seen that
U � w0(IidB ∪ Is1 s1B)/B � D(id) ∪ D(s1). Therefore, Table 2 implies that we have
β3(g) , 0 for all g ∈ U . �

From the formula in the above proof we immediately obtain the following corollary.

4.18. Corollary. The modified kernel function is explicitly given by

θ̂(g , ω) �




α2(g)
α1(g)ω1 + α2(g)ω2 + α3(g)

·
−β1(g)

β1(g)ω1 − β3(g)
for g ∈ U ,

α1(g)
α1(g)ω1 + α2(g)ω2 + α3(g)

·
β1(g)

β1(g)ω2 + β2(g)
for g ∈ Uc.

We need the following constructions. For h ∈ G we let

Eh (g , ω) B θ(g , h∗ω) − det(h)−1 j(h , ω)3θ(h g , ω) for g ∈ G,

Êh (g , ω) B θ̂(g , h∗ω) − det(h)−1 j(h , ω)3θ̂(h g , ω) for g ∈ G,

and
Einf

h (g , ω) B Êh (g , ω) − Eh (g , ω) for g ∈ G.

Then we have Êh (·, ω) ∈ Can(G/B,CK) and Einf
h (·, ω) ∈ C(G/P1 ,CK) by Proposition 4.14

and Theorem 4.17. Moreover, the cocycle relation of the factor of automorphy implies
that

Êh1h2 (g , ω) � Êh2 (g , (h1)∗ω) + det(h2)−1 j(h2 , (h1)∗ω)3Êh1 (h2g , ω). (4)

The same relation holds for the functions Eh (g , ω) and Einf
h (g , ω).
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4.19. Lemma. We have the following.

(i) Eh (·, ω) � 0 for h ∈ B−.

(ii) Esi (·, ω) ∈ C(G/Pi ,CK) for i ∈ {1, 2}.

Proof. See [ST97, Proposition 29]. �

The following proposition will be very useful.

4.20. Proposition. Let h ∈ G. We have

Êh (·, ω) ∈ Can(G/P1 ,CK) + Can(G/P2 ,CK).

Proof. First of all, we observe that by (4) and the Bruhat-Decomposition (with respect to
B−) it suffices to show

Êh (·, ω) ∈ Can(G/P1 ,CK) + Can(G/P2 ,CK) for h ∈ B− ∪ {s1 , s2}.

We begin with the case h ∈ B−. Then by Lemma 4.19 (i) we have

Êh (·, ω) � Einf
h (·, ω) ∈ Can(G/B,CK) ∩ C(G/P1 ,CK) � Can(G/P1 ,CK).

Thus, we are left with the considering h ∈ {s1 , s2}. We observe that by Lemma 4.19 (ii)
we have

Ês1 (·, ω) � Es1 (·, ω) + Einf
s1 (·, ω) ∈ Can(G/B,CK) ∩ C(G/P1 ,CK) � Can(G/P1 ,CK).

Finally, we need to consider the reflection s2. For this, we need a finer result than Lemma
4.19 (ii). We begin by computing the function Es2 (·, ω) explicitly. Let g ∈ G. Then it is
easy to verify that

[α1(s2g), α2(s2g), α3(s2g)] � [α1(g), α3(g), α2(g)]

and

[β1(s2g), β2(s2g), β3(s2g)] � [β2(g), β1(g),−β3(g)].

Thus, we compute

θ(s2g , ω) �
α1(g)

α1(g)ω1 + α3(g)ω2 + α2(g)
·

β2(g)
β2(g)ω2 + β1(g)

.

Moreover, we obtain

θ(g , (s2)∗ω) �
α1(g)

α2(g) ω1
ω2

+ α2(g) 1
ω2

+ α3(g)
·

β1(g)

β1(g) 1
ω2

+ β2(g)

�
α1(g)ω2

α1(g)ω1 + α3(g)ω2 + α2(g)
·

β1(g)ω2

β2(g)ω2 + β1(g)
.
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Upon observing that det(s2) � −1 and j(s2 , ω) � ω2, we can put all of this together to
obtain

Es2 (g , ω) �
α1(g)ω2

2
α1(g)ω1 + α2(g)ω2 + α3(g)

.

But since the functions αi for i ∈ {1, 2, 3} do not have a common zero, this means that in
fact we have Es2 (·, ω) ∈ Can(G/P2 ,CK). It follows that

Einf
s2 (·, ω) � Ês2 (·, ω) − Es2 (·, ω) ∈ Can(G/B,CK) ∩ C(G/P1 ,CK) � Can(G/P1 ,CK).

Hence we obtain Ês2 (·, ω) ∈ Can(G/P1 ,CK) +Can(G/P2 ,CK) which completes the proof.
�

4.21. Remark. We should explain our motivation for finding a locally analytic kernel
function: First of all, the phenomenon of singularities in the kernel function is not
present in the theory for GL2(K), where the kernel function is naturally locally analytic
everywhere. But more importantly, in [ST02b], it is shown that one can work with
the class of the kernel function in the space of so called locally analytic vectors of the
continuous Steinberg representation. If K � Qp , the functor “taking locally analytic
vectors” is exact by [ST03, Theorem 7.1]. This means that the locally analytic vectors
of the continuous representation are just the locally analytic Steinberg representation.
Thus, in this situation we already know that there is locally analytic representative,
but we have no explicit description. Even though the functor “taking locally analytic
vectors” is not exact in general, see [Sch09], and not even defined for local fields of
positive characteristic, it seemed natural that the definition of the kernel function should
be independent of the base field, as in the GL2(K)-case.

4.3. The integration map

In this section, we prove that by integrating the locally analytic kernel function against
continuous linear formson the spaces Stan3 (k), we obtain elements of the spacesOX (k+3).
We first do this in the case k � 0 and then extend the result to general k by using the
representation theory we developed in the previous chapter.

4.3.1. The case k � 0

Since our kernel function is locally analytic everywhere, we can work with the locally
analytic Steinberg representation instead of the continuous one as in [ST97]. The fol-
lowing theorem is the adaptation of [ST97, Theorem 42] to this situation. Since we do
not impose any boundedness conditions, the proof becomes more involved. Our proof
is inspired by [DT08, Proof of Proposition 2.2.6]. We write

Stan3 (k)′ B Homcont(Stan3 (k),CK).

In the proof we use the notation from Appendix A.
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4.22. Theorem. Let λ ∈ Stan3 (0)′. Then the function fλ : X → CK given by

fλ (ω) � λ(g 7→ θ̂(g , ω))

is in OX . The map I0 : Stan3 (0)′→ OX (3) given by λ 7→ fλ is G-equivariant.

Proof of Theorem 4.22. The main idea of the proof can be summarized as follows: We
need to show that the restriction of fλ to each Xn is rigid analytic. If we choose a cov-
ering of G/B by compact open balls, we realize that the denominators of the function
θ̂(g , ω) are essentially just given by hyperplane equations. But since we cut out balls
around each hyperplane in the definition of Xn , we can ensure that we can expand into
a convergent series if we choose the covering fine enough. The resulting series can then
integrated term by term after observing that the restriction of λ to each compact open
ball is bounded by [Bos14, Appendix B, Lemma 1].

We make the approach above explicit as follows: Fix n ≥ 0. Since by Proposition 2.9,
the Bruhat-Iwahori cells D(w) from (1) cover G/B disjointly, it suffices to show that
λ(θ̂(g , ω)1D(w) (g)) is rigid analytic on Xn for all w ∈ W . Moreover, by using the coor-
dinates as in Table 1 for g ∈ G, we can simplify the situation even further. Let u ∈ Iw
with coordinates (u1 , u2 , u3) as in Table 1 and consider the polydisc Bw (u , 2n+1). Since
we can cover D(w) disjointly by finitely many polydiscs of this form, it suffices to show
that λ(θ̂(g , ω)1Bw (u ,2n+1) (g)) is rigid analytic. Observe that, for g ∈ Bw (u , 2n + 1) with
coordinates as in Table 1, we have |xi − ui | ≤ q−2n−1 for i ∈ {1, 2, 3}.

We first consider the case w � w0. By Table 2 we have

θ̂(g , ω) �
1

f1(g , ω)
·

1
f2(g , ω)

,

where f1(g , ω) � ω1 + x1ω2 + x2 and f2(g , ω) � ω2 + x3. Then, for g ∈ Bw0 (u , 2n + 1) we
write

f1(g , ω) � f1(u , ω) + (x2 − u2) + (x1 − u1)ω2.

Then, by definition of Xn , we have | f1(u , ω) | ≥ q−n . Moreover, we have |ω2 | ≤ qn .
Consequently,

|(x2 − u2) + (x1 − u1)ω2 | ≤ q−n−1

uniformly on Bw0 (u , 2n + 1). Thus, we can expand

1
f1(g , ω)

�
1

f1(u , ω)

(
1 +

(x2 − u2) + (x1 − u1)ω2
f1(u , ω)

)−1
,

as a uniformly convergent power series on Bw0 (u , 2n + 1). In an analogous way, we
can expand f2(g , ω) as a uniformly convergent power series on Bw0 (u , 2n + 1). By
multiplying these series expansions, we obtain

θ̂(g , ω) �
∑

I

cI
ωi1
2

f1(u , ω) i1+i2+1 f2(u , ω) i3+1
(x − u)I



4.3. THE INTEGRATIONMAP 39

with cI ∈ OK . Now, since the restriction of λ to the Banach space ACK (Bw0 (u , 2n + 1)),
see Appendix A, is bounded, we find a constant C > 0 depending only on u and n such
that

|λ((x − u)I
1Bw0 (u ,2n+1)) | ≤ C · ‖(x − u)I

1Bw0 (u ,2n+1) ‖Bw0 (u ,2n+1) � Cq (−2n−1) |I |

Putting all of this together, we see that this exhibits λ(θ̂(g , ω)1Bw0 (u ,2n+1) (g)) as an
element of OXn .

Next we consider the case w � w1. Again, by Table 2, we have

θ̂(g , ω) �
x1

f1(g , ω)
·

1
f2(g , ω)

,

where f1(g , ω) � x1ω1 +ω2 + x2 and f2(g , ω) � ω2 + x2 − x1x3. As above we can expand

1
f1(g , ω)

�
1

f1(u , ω)

(
1 +

(x2 − u2) + (x1 − u1)ω1
f1(u , ω)

)−1
,

and
1

f2(g , ω)
�

1
f2(u , ω)

(
1 +

x2 − x1x3 − (u2 − u1u3)
f2(u , ω)

)−1
.

Consequently, we have

θ̂(g , ω) �
∑

I

cI
ωi1
1

f1(u , ω) i1+i2+1 f2(u , ω) i3+1
x1(x1−u1) i1 (x2−u2) i2 (x2−x1x3−(u2−u1u3)) i3

with cI ∈ OK . Now, observe that

|λ(x1(x1 − u1) i1 (x2 − u2) i2 (x2 − x1x3 − (u2 − u1u3)) i31Bw1 (u ,2n+1)) |

≤ C · ‖(x1(x1 − u1) i1 (x2 − u2) i2 (x2 − x1x3 − (u2 − u1u3)) i31Bw1 (u ,2n+1))‖Bw1 (u ,2n+1)

≤ Cq (−2n−1) |I | .

Thus, as in the previous case, we obtain an element of OXn .

The remaining cases can be proved analogously after observing that by Table 2 we have

θ̂(g , ω) �




1
ω1 + x2ω2 + x1

·
x3

x3ω2 + 1
, w � w2 ,

1
x2ω1 + ω2 + x1

·
−x3

x3ω1 + 1
, w � s1 ,

x1
x1ω1 + x2ω2 + 1

·
x2 − x1x3

(x2 − x1x3)ω2 + 1
, w � s2 ,

x1
x2ω1 + x1ω2 + 1

·
x1x3 − x2

(x2 − x1x3)ω1 + 1
, w � id.
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The key observation being that contrary to the kernel function in [ST97], the linear
forms appearing in the denominators are always unimodular. We still need to show the
G-equivariance. But this follows directly from Proposition 4.20. Let h ∈ G. Then we
have

fh·λ (ω) � (h · λ)(θ̂(g , ω)) � λ(θ̂(h g , ω))

� det(h) j(h , ω)−3λ(θ̂(g , h∗ω)) � h∗ fλ (ω).

This completes the proof. �

4.23. Remark. Note that it follows from combining the work of Orlik and of Schraen,
see [Orl08] and [Sch11] that in general I0 cannot be an isomorphism. This is a stark
contrast to the situation for GL2(K), where the analogous map in fact turns out to be an
isomorphism, see [DT08, Theorem 2.2.1].

4.3.2. Extension to general weights

The aim of this subsection is to construct, for any k ≥ 0 with 3 | k, a G-equivariant
integration map Ik : Stan3 (k)′ → OX (k + 3) building on the case k � 0 studied in the
previous subsection. Our approach is inspired by [Sch11, Section 6]. For this purpose,
recall that by Proposition 4.7 we have an explicit G-equivariant continuous surjection
Tk : Stan3 (0) ⊗CK Pk → Stan3 (k). By duality, we obtain a G-equivariant injection

ηk : Stan3 (k)′→ Stan3 (0)′ ⊗CK Vk .

The following lemma is just the dual of the formula in Proposition 4.7.

4.24. Lemma. Let λ ∈ Stan3 (k)′, f ∈ Stan3 (0) and F ∈ Pk . Then

ηk (λ)( f ⊗ F) �
∑
I∈J

λ
(
g 7→ det(g)−2k/3β3(g) i1 (−β2(g)) i2β1(g) i3 f (g)

)
· vI (F).

Recall the filtration (F i (OX (3) ⊗CK Vk ))0≤i≤k+1 on OX (3) ⊗CK Vk from Section 3.3. The
following observation is the central ingredient for the construction of Ik .

4.25. Proposition. We have an inclusion(
(I0 ⊗ id) ◦ ηk

) (
Stan3 (k)′

)
⊆ Fk (OX (3) ⊗CK Vk ).

Proof. Let λ ∈ Stan3 (k)′. By Lemma 4.24 and the definition of I0, we have

((I0 ⊗ id) ◦ ηk )(λ) �
∑
I∈J

λ
(
g 7→ det(g)−2k/3β3(g) i1 (−β2(g)) i2β1(g) i3 θ̂(g , ω)

)
⊗ vI .

Now, by Corollary 3.18, we have

vI �
∑
I≤ J

(
j1
i1

) (
j2
i2

)
(−ω1) j1−i1 (−ω2) j2−i2DJ .
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By simple algebraic manipulations, we arrive at

((I0 ⊗ id) ◦ ηk )(λ) �
∑
J∈J

λ
(
g 7→ f J (g , ω)

)
DJ ,

where

f J (g , ω) B det(g)−2k/3β1(g) j3 (β3(g) − β1(g)ω1) j1 (−β2(g) − β1(g)ω2) j2 θ̂(g , ω).

Thus, we are left with showing that

f J (g , ω) ∈ AP1 ,k +AP2 ,k for J , (0, 0, k).

Assume first that J � (1, 0, k − 1). Then,

f J (g , ω) � det(g)−2k/3β1(g)k−1(β3(g) − β1(g)ω1)θ̂(g , ω)

�




β1(g)k

det(g)2k/3
α2(g)

α1(g)ω1 + α2(g)ω2 + α3(g)
for g ∈ U ,

β1(g)k

det(g)2k/3

α1(g)(β3(g) − β1(g)ω1)
(α1(g)ω1 + α2(g)ω2 + α3(g))(β1(g)ω2 + β2(g))

for g ∈ Uc.

Now, using the Plücker relation in Proposition 2.12, we may write

f J (g , ω) � det(g)−2k/3β1(g)k ( f J,1(g , ω) + f J,2(g , ω)),

where

f J,1(g , ω) B



−β1(g)
β1(g)ω2 + β2(g)

for g ∈ Uc ,

0 for g ∈ U ,

and

f J,2(g , ω) B
α2(g)

α1(g)ω1 + α2(g)ω2 + α3(g)
.

Again, by Proposition 2.12 and sinceU is right P1-stable, we see that f J,i (g , ω) ∈ APi ,0
for i ∈ {1, 2}. Now consider the commutative diagram from Proposition 4.7:

(AP1 ,0 +AP2 ,0) ⊗CK Pk AP1 ,k +AP2 ,k

A0 ⊗CK Pk Ak

Our computation shows that f J (g , ω) is in the image of (AP1 ,0 +AP2 ,0) ⊗CK Pk , hence
by commutativity inAP1 ,k +AP2 ,k .
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Assume now that J � (0, 1, k − 1). Then,

f J (g , ω) � det(g)−2k/3β1(g)k−1(−β2(g) − β1(g)ω2)θ̂(g , ω)

�




β1(g)k

det(g)2k/3

α2(g)(β2(g) + β1(g)ω1)
(α1(g)ω1 + α2(g)ω2 + α3(g))(β1(g)ω1 − β3(g))

for g ∈ U ,

β1(g)k

det(g)2k/3
−α1(g)

α1(g)ω1 + α2(g)ω2 + α3(g)
for g ∈ Uc.

As above, by using the Plücker relation in Proposition 2.12, we may write

f J (g , ω) � det(g)−2k/3β1(g)k ( f J,1(g , ω) + f J,2(g , ω)),

where

f J,1(g , ω) B



β1(g)
β1(g)ω1 − β3(g)

for g ∈ U ,

0 for g ∈ Uc ,

and

f J,2(g , ω) B
−α1(g)

α1(g)ω1 + α2(g)ω2 + α3(g)
.

We see again that f J,i (g , ω) ∈ APi ,0 for i ∈ {1, 2} and we conclude exactly as in the first
case.

Now, for the general case, let J , (0, 0, k). Then,wehave (1, 0, k−1) ≤ J or (0, 1, k−1) ≤ J
with respect to the partial order from Definition 3.15. For simplicity, assume that we
are in the first case. We have

f J (g , ω) � β1(g) j3−k+1(β3(g) − β1(g)ω1) j1−1(−β2(g) − β1(g)ω2) j2 f(1,0,k−1) (g , ω)

and thus again by invoking the above commutative diagram, f J (g , ω) ∈ AP1 ,k +AP2 ,k .
This completes the proof. �

Consequently, by invoking the translation map constructed in Proposition 3.19, we may
set

Ik B t−1k ,3 ◦ (I0 ⊗ id) ◦ ηk : Stan3 (k)′→ OX (k + 3).

The following theorem is now an easy consequence.

4.26. Theorem. The map Ik : Stan3 (k)′ → OX (k + 3) is G-equivariant. Explicitly, it is given
by

Ik (λ)(ω) � λ
(
g 7→ det(g)−2k/3β1(g)k θ̂(g , ω)

)
.

Proof. The G-equivariance is a consequence of Proposition 3.19. The explicit description
can be read off in the proof of Proposition 4.25. �
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4.27. Remark. Note that the analogous theorem in the GL2(K)-case can be easily
proved by a direct computation, see for example [DT08, Theorem 2.2.1]. The key
difference is that in this case the locally analytic Steinberg representation Stan2 (k) is
much better understood: It can be described explicitly as locally analytic functions
on P1(K) with a pole of order at most k at ∞ modulo global polynomial functions of
degree less or equal to k. This is also the reason why, contrary to [DT08, Theorem
2.2.1], a scaling factor depending on k appears in our formula: We work directly with
the locally analytic induction. If we were to pull back to the opposite big cell via an
explicit embedding as in [DT08, Section 2.1.2] to obtain functions on G/B with certain
singularities, this factor would disappear. Describing the functions one obtains this way
explicitly for the spaces APi ,k for i ∈ {1, 2} has proven to be very complicated, which is
why we developed a different approach.

4.28. Remark. We should remark that in fact the constructions of I0 and Ik for k > 0
should descent to K, i.e., one should be able to construct analogous maps between
locally analytic Steinberg representations over K and holomorphic discrete series repre-
sentations over K. In order to do this, one should use the integrationmap constructed in
[ST02a, Theorem 2.2], see also [Eme17, Proposition 2.2.10]. As in the proof of Theorem
4.22 one can show that themap g 7→ [ω 7→ θ̂(g , ω)] defines an element of Can(G/B,OX)
wheneverOX is endowedwith the topology coming from a fixedXn . Thesemaps should
glue (for varying n) and give rise to an integration map I0, defined over K. However,
showing that this map is G-equivariant when restricted to the dual of the Steinberg
representation and the extension procedure to obtain Ik require further developments.
In particular, various compatibilities need to be established.

4.4. The main theorem

In this section, we prove our main theorem, which states that the residue map is surjec-
tive on functions with bounded residues and has a G-equivariant right inverse. It relies
on a conjecture regarding the existence of an extension of the distribution attached to a
bounded harmonic cocycle. In the next chapter, we will see how this conjecture can be
interpreted as a non-criticality statement for certain automorphic forms.

4.29. Conjecture. For each c ∈ Cb
har(T , k) there exists λc ∈ Stan3 (k)′ with the following

properties:

(i) λc ([1U (σ)] ⊗ F) � c(σ)(F) for all F ∈ Pk , σ ∈ T̂2, where we regard [1U (σ)] ⊗ F as an
element of Stan3 (k) via the map in Proposition 4.7.

(ii) The map Cb
har(T , k) → Stan3 (k)′ given by c 7→ λc is CK-linear and G-equivariant.

4.30. Remark. The above conjecture should be viewed as an analogue of a theorem of
Amice-Velu-Vishik, see for example [DT08, Theorem 2.3.2] for an analogous statement
in the GL2(K)-case. Note however that we do not require uniqueness here. Moreover,
we do not require a strong estimate as in [DT08, Theorem 2.3.2 (3)]. We will see in
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the next chapter that requiring a similar estimate is very natural and in fact makes the
distribution unique. But we do not need this to prove the main theorem. The stronger
version including uniqueness will be stated later in Conjecture 5.49.

4.31. Theorem (Main theorem). Assume that Conjecture 4.29 holds and let c ∈ Cb
har(T , k).

Then we have
Resk (Ik (λc)) � c.

Consequently, the residue map Resk : OX (k + 3)b
→ Cb

har(T , k) is surjective.

In order to prove Theorem 4.31, we need the following proposition, whose proof is a
lengthy and technical computation. An analogous statement for k � 0 can be found in
[ST97, Lemma 49].

4.32. Proposition. Let λ ∈ Stan3 (k)′. Then we have

Resk (Ik (λ))(σ0)(F) � λ([1U (σ0)] ⊗ F)

for all F ∈ Pk .

Proof. First off, we can assume that F � XI , where i1 + i2 + i3 � k. Secondly, we may
write

Resk (Ik (λ))(σ0)(F) � resσ0 (ωi1
1 ω

i2
2 Ik (λ)(ω)dω).

Now note that by Theorem 4.26, we may write

Ik (λ)(ω) � λ
(
det(g)−2k/3β1(g)k θ̂(g , ω)

)
�

∑
w∈W

λ
(
det(g)−2k/3β1(g)k θ̂(g , ω)1w0Iw wB (g)

)
,

as in the proof of Theorem 4.22. By Proposition A.17, we have an isomorphism of
topological vector spacesAk � Can(G/B,CK) induced by the splitting

ι : G/B �

⊔
w∈W

D(w) → G

given by picking the unique representatives g � w0uw with u ∈ Iw in each cell, see
(1). By composition with the natural surjectionAk → Stan3 (k) and duality, we obtain an
injective map

Stan3 (k)′→ Can(G/B,CK)′.

This enables us to regard λ as an element of the space on the right hand side, which by
abuse of notation we also denote by λ. Under this identification, each summand in the
above sum becomes

Sw (ω) B λ
(
β1(g)k θ̂(g , ω)1w0Iw w (g)

)
At this point we are in a similar situation as in the proof of Theorem 4.22. We need to
find a covering of w0Iw w such that we can expand Sw (ω) into a convergent Laurent
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series on R0. Then we can read off the residues. Note that this is simpler than the
series expansion in Theorem 4.22, where we needed convergence on Xn not just on R0.
As in the proof of Theorem 4.22, we will describe the covering explicitly, but will only
compute the series expansion in a few cases. The remaining cases can be computed
analogously. We use the coordinates x � (x1 , x2 , x3) from Table 1. The coverings are
then given in Table 3.

w ∈ W Covering {Ui (w)}i of w0Iw w
w0 U1(w0) �

{
|x1 | ≤ q−1 , |x2 | ≤ q−1 , |x3 | ≤ q−1

}

U2(w0) �
{
|x1 | ≤ q−1 , |x2 | ≤ q−1 , |x3 | � 1

}

U3(w0) �
{
|x1 | � 1, |x2 | ≤ q−1 , |x3 | ≤ q−1

}

U4(w0) �
{
|x1 | � 1, |x2 | ≤ q−1 , |x3 | � 1

}

U5(w0) �
{
|x1 | ≤ 1, |x2 | � 1, |x3 | ≤ q−1

}

U6(w0) �
{
|x1 | ≤ 1, |x2 | � 1, |x3 | � 1

}

w1 U1(w1) �
{
|x1 | ≤ q−1 , |x2 | ≤ q−1 , |x3 | ≤ 1

}

U2(w1) �
{
|x1 | ≤ q−1 , |x2 | � 1, |x3 | ≤ 1

}

w2 U1(w2) �
{
|x1 | ≤ q−1 , |x2 | ≤ q−1 , |x3 | ≤ q−1

}

U2(w2) �
{
|x1 | � 1, |x2 | ≤ 1, |x3 | ≤ q−1

}

U3(w2) �
{
|x1 | ≤ q−1 , |x2 | � 1, |x3 | ≤ q−1

}

s1 U1(s1) �
{
|x1 | ≤ q−1 , |x2 | ≤ q−1 , |x3 | ≤ q−1

}

U2(s1) �
{
|x1 | � 1, |x2 | ≤ q−1 , |x3 | ≤ q−1

}

s2 U1(s2) �
{
|x1 | ≤ q−1 , |x2 | ≤ q−1 , |x3 | ≤ 1

}

id U1(id) �
{
|x1 | ≤ q−1 , |x2 | ≤ q−1 , |x3 | ≤ q−1

}

Table 3. Explicit coverings

We first study the covering of w0Iw1w1. Note that by Table 2, we have

θ̂(g , ω) �
x1

f1(g , ω)
·

1
f2(g , ω)

,

where f1(g , ω) � x1ω1 + ω2 + x2 and f2(g , ω) � ω2 + x2 − x1x3.

(i) On U1(w1) we may write

x1
f1(g , ω)

�

∑
n≥0

(−1)n x1(x1ω1 + x2)nω−n−1
2 �

∑
n≥0

(−1)n
n∑

j�0

(
n
j

)
x j+1
1 xn− j

2 ω
j
1ω
−n−1
2 ,

which converges on R0 as |x1ω1 + x2 | < |ω2 |. Similarly, we have

1
f2(g , ω)

�

∑
m≥0

(x1x3 − x2)mω−m−1
2 ,
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which converges on R0 as |x1x3 − x2 | < |ω2 |. Thus, after combining all factors and
applying λ(·), we obtain

λ
(
β1(g)k θ̂(g , ω)1U1(w1) (g)

)
�

∑
n≥0

∑
m≥0

(−1)n+k
n∑

j�0

(
n
j

)
λ(x j+1

1 xn− j
2 (x1x3 − x2)m)ω j

1ω
−n−m−2
2

�

∑
m1≥0

m2≤−m1−2

*...
,

∑
n≥m1

n≤−m2−2

(−1)n+k
(

n
m1

)
λ((xm1+1

1 xn−m1
2 (x1x3 − x2)−n−2−m2 )

+///
-

ωm1
1 ωm2

2 .

If we denote the coefficients of the above series expansion by a(m1 ,m2), we see
that |a(m1 ,m2) | ≤ Cqm2+1 for some constant C > 0 by the continuity of λ as in the
proof of Theorem 4.22. Thus, we have

|a(m1 ,m2) |q−`N (m1 ,m2)
≤ Cqm2+1−(1−1/N)m1−(1−2/N)m2

with the notation as in Lemma 3.21. But since

m2 + 1 − (1 − 1/N)m1 − (1 − 2/N)m2 ≤ 1 − 2/N (|m1 | + |m2 |)

for N ≥ 3, the above expansion converges and defines an element of OR0 .

(ii) On U2(w1) we may write

x1
f1(g , ω)

�

∑
n≥0

(−1)n x1(x1ω1 + ω2)n x−n−1
2 �

∑
n≥0

(−1)n
n∑

j�0
x j+1
1 x−n−1

2 ω
j
1ω

n− j
2 ,

which converges on R0 as |x1ω1 + ω2 | < |x2 |. Similarly, we have

1
f2(g , ω)

�

∑
m≥0

ωm
2 (x1x3 − x2)−m−1 ,

which converges on R0 as |ω2 | < |x1x3 − x2 |. Thus, after combining all factors and
applying λ(·), we obtain

λ
(
β1(g)k θ̂(g , ω)1U2(w1) (g)

)
�

∑
n≥0

∑
m≥0

(−1)n+k
n∑

j�0

(
n
j

)
λ(x j+1

1 x−n−1
2 (x1x3 − x2)−m−1)ω j

1ω
m+n− j
2

�

∑
m1≥0
m2≥0

*...
,

∑
n≥m1

n≤m1+m2

(−1)n+kλ(xm1+1
1 x−n−1

2 (x1x3 − x2)−m2−m1−1+n)
+///
-

ωm1
1 ωm2

2 .
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If we denote the coefficients of the above series expansion by a(m1 ,m2), we see
that |a(m1 ,m2) | ≤ Cq−m1−1 for some constant C > 0 by the continuity of λ. Thus,
we have

|a(m1 ,m2) |q−`N (m1 ,m2)
≤ Cq−(m1+1+2m1/N+m2/N)

with the notation as in Lemma 3.21. But since

−(m1 + 1 + 2m1/N + m2/N) ≤ −1/N (|m1 | + |m2 |)

for N ≥ 3, the above expansion converges and defines an element of OR0 .

Now, we observe that none of the above series expansions involve terms of the form
ωn1
1 ω

n2
2 with n1 < 0 and n2 < 0. By definition of the residue, see Definition 3.22, this

means that
resσ0 (ωi1

1 ω
i2
2 Sw1 (ω)dω) � 0.

This completes the computation for w0Iw1w1. Now, in all other cases, except w � w0, a
similar computation yields

resσ0 (ωi1
1 ω

i2
2 Sw (ω)dω) � 0.

Now we consider the case w � w0. The interesting part is the first open ball in the
covering, U1(w0), which by definition corresponds precisely to U (σ0). By Table 2 we
have

θ̂(g , ω) �
1

f1(g , ω)
·

1
f2(g , ω)

,

where f1(g , ω) � ω1 + x1ω2 + x2 and f2(g , ω) � ω2 + x3. We may write

1
f1(g , ω)

�

∑
n≥0

(−1)n x1(x1ω2 + x2)nω−n−1
1 �

∑
n≥0

(−1)n
n∑

j�0

(
n
j

)
x j
1xn− j

2 ω−n−1
1 ω

j
2 ,

which converges on R0 as |x1ω2 + x2 | < |ω1 |. Similarly, we have

1
f2(g , ω)

�

∑
m≥0

(−1)m xm
3 ω
−m−1
2 ,

which converges on R0 as |x3 | < |ω2 |. Thus, after combining the all factors and applying
λ(·), we obtain

λ
(
β1(g)k θ̂(g , ω)1U1(w0) (g)

)
�

∑
n≥0

∑
m≥0

(−1)n+m
n∑

j�0

(
n
j

)
λ(x j

1xn− j
2 xm

3 )ω−n−1
1 ω

−m−1+ j
2

�

∑
m1≤−1

m2≤−m1−2

*......
,

∑
n≥0

n≥m2+1
n≤−m1−1

(−1)m1+m2−n
(
−m1 − 1

n

)
λ(xn

1 x−m1−1−n
2 xn−1−m2

3 )

+//////
-

ωm1
1 ωm2

2 .



48 CHAPTER 4. THE POISSON KERNEL

Denote the coefficients of the above series expansion by a(m1 ,m2). We consider two
separete cases. Assume first that m2 ≤ −1. Then we see that |a(m1 ,m2)) | ≤ Cqm1+m2+2

for some constant C > 0 by the continuity of λ as in the proof of Theorem 4.22. Thus,
we have

|a(m1 ,m2) |q−`N (m1 ,m2)
≤ Cqm1+m2+2−(1−1/N)m1−(1−2/N)m2

with the notation as in Lemma 3.21. Assume now that m2 ≥ 0. Then we obtain
|a(m1 ,m2) | ≤ Cqm1+1 and we see that

|a(m1 ,m2) |q−`N (m1 ,m2)
≤ Cqm1+1−(1−1/N)m1−(1/N)m2 .

Combining both cases, we obtain

|a(m1 ,m2) |q−`N (m1 ,m2)
≤ Cq2−1/N (|m1 |+|m2 |)

which tends to 0 for all N ≥ 3. Consequently, the above expansion defines an element
of OR0 . Now, by analogous computations to the above cases, or, alternatively since these
computations happen inside the (opposite) big cell, as in [ST97, Lemma 49], we obtain
that

resσ0 (ωi1
1 ω

i2
2 Sw0 (ω)dω) � λ *.

,

i1∑
n�0

(−1) i1+i2−n
(
i1
n

)
xn
1 x i1−n

2 x i2+n
3 1U (σ0)

+/
-

� λ
(
(−x2 + x1x3) i1 (−x3) i21U (σ0)

)
,

where we just read off the residue in the above series expansion. Combining all of the
above yields

Resk (Ik (λ))(σ0)(F) � λ([1U (σ0)] ⊗ F)

via the map in Proposition 4.7, which completes the proof. �

Now we can prove Theorem 4.31

Proof of Theorem 4.31. Let σ ∈ T̂2 and F ∈ Pk . Then we find g ∈ G such that gσ � σ0. By
Proposition 4.32 we have

Resk (Ik (λc))(σ)(F) � Resk (Ik (λc))(g−1σ0)(g−1∗ g∗F)
� (g · Resk (Ik (λc)))(σ0)(g∗F)
� Resk (g∗(Ik (λc)))(σ0)(g∗F)
� Resk (Ik (g · λc))(σ0)(g∗F)
� Resk (Ik (λg·c))(σ0)(g∗F)
� (g · c)(σ0)(g∗F) � c(σ)(F)

by applying Conjecture 4.29 and the G-equivariance of Resk and Ik , see Subsection 3.4.2
and Theorem 4.26. �
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4.33. Remark. We should clarify why our main theorem looks different than for ex-
ample [BdS16, Theorem 2.2] where (for k � 0) the space of rigid analytic functions with
bounded residues of weight k +3 is isomorphic to Cb

har(T , k) under the residue map. The
point is that the space OX (k + 3)b is defined differently in [IS01, Definition 4.6]. In our
notation, the analogue would be

OX (k + 3)b
IS B

{
Ik (λc) ��� c ∈ Cb

har(T , k)
}
⊆ OX (k + 3)b .

By Conjecture 4.29 (ii), this is a G-invariant CK-subvector space of OX (k + 3)b . It follows
directly from Theorem 4.31 that Resk induces an isomorphism

OX (k + 3)b
IS → Cb

har(T , k).

We chose to work with the space OX (k+3)b instead as this space can be definedwithout
assuming Conjecture 4.29.

We will apply the above theorem in Part II of this thesis to realize certain spaces of
Drinfeld cusp forms of rank 3 via harmonic cocycles of the type above.





CHAPTER5
Overconvergent automorphic forms and distributions

The aim of this chapter is to lay the foundations for studying extensions of distributions
as in Conjecture 4.29 from a more conceptual point of view, namely as classicality
statements for certain overconvergent automorphic forms. This is inspired by the ideas
in [FM14] and [Grä19], where these types of automorphic forms are used to explicitly
compute values of these distributions when their existence (and uniqueness) is already
established. Our aim is to go in the opposite direction: We show that by lifting certain
automorphic forms, we can construct the needed distributions. This reformulation
sheds some light on the complexity of Conjecture 4.29, as the question of liftability is
quite delicate. We also feel that this is the correct setting to study Conjecture 4.29 in.
Most of the notation and framework in this chapter is new and tailored to specifically
to address questions such as Conjecture 4.29, even in more generality. Throughout this
chapter, L denotes an arbitrary complete extension of K in CK . Its ring of integers is
denoted by OL.

5.1. Coefficient modules

We begin by introducing the coefficients for our automorphic forms. Roughly speaking,
these are local building blocks of the representations studied in Section 4.1, similarly to
the GL2(K)-case, where this role is played by the Tate algebra, see [Gre06]. We define a
monoid Σ′ ⊆ G by

Σ′ B
{

g ∈ G ��� g−1U (σ0) ⊆ U (σ0)
}
.

Then, since StabG (σ0) � K×I, we have K×I ⊆ Σ′. Moreover, we let

Σ′i B
{

g ∈ G ��� g−1Ui (σ0) ⊆ Ui (σ0)
}

for i ∈ {1, 2}. Then Σ′i is again a monoid. By definition, we have K×Ii ⊆ Σ
′

i .

5.1. Lemma. For i ∈ {1, 2} we have Σ′ ⊆ Σ′i .

Proof. Let g ∈ Σ′, then by definition g−1U (σ0) ⊆ U (σ0), i.e., g−1IB ⊆ IB. Thus,
g−1IPi ⊆ IPi and by Lemma 4.15, g−1Ui (σ0) ⊆ Ui (σ0) �

51
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By Proposition 2.16, we have y−1i ∈ Σ′ for i ∈ {1, 2}. The following monoids play a
central role in this chapter.

5.2. Definition.

(i) We denote by Σ be the submonoid of Σ′ generated by y−11 , y−12 and I.

(ii) We denote byΣi be the submonoid ofΣ′i generated by y−11 , y−12 and Ii for i ∈ {1, 2}.

By definition, we have Σ ⊆ Σi for i ∈ {1, 2}.

5.3. Definition.

(i) A coefficient module is an L-vector space endowed with a right-action by Σ.

(ii) Let i ∈ {1, 2}. A Pi-admissible coefficient module is an L-vector space endowed with
a right-action by Σi .

We also need to consider integral structures on our coefficient modules which are
defined as follows.

5.4. Definition. Let M be a coefficient module. An integral structure on M is a tuple
(Mint , (ni)i∈{1,2}), where Mint is an OL-submodule of M and (ni)i∈{1,2} is a tuple of
elements of Z≥0, such that the following conditions are satisfied:

(i) Mint
⊗OL L � M.

(ii) Mint is I-stable.

(iii) For i ∈ {1, 2} we have

πni (m · y−1i ) ∈ Mint for all m ∈ Mint.

5.5. Remark. Let (Mint , (ni)i∈{1,2}) be a tuple that satisfies conditions (ii) and (iii) in
the above definition. Then Mint

⊗OL L becomes a coefficient module by extending the
I-action in (ii) naturally and setting

(m ⊗ x) · y−1i B πni (m · y−1i ) ⊗ (xπ−ni ) for m ∈ Mint , x ∈ L,

which is well-defined by (iii).

We also need a stronger version of an integral structure on Pi-admissible coefficient
modules.

5.6. Definition. Let M be a Pi-admissible coefficient module. A Pi-admissible integral
structure on M is a triple (Mint , (n j) j∈{1,2} ,mi), where Mint is an OL-submodule of M,
(n j) j∈{1,2} is a tuple of elements of Z≥0 and mi is another element of Z≥0, such that the
following conditions are satisfied:

(i) (Mint , (n j) j∈{1,2}) is an integral structure on M.
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(ii) We have
πmi (m · si) ∈ Mint for all m ∈ Mint.

Recall that the space Pk carries a left G-action. Then the dual Vk naturally becomes a
coefficient module by taking the dual right action. It is Pi-admissible for i � 1, 2. We
also obtain an integral structure on Vk by considering the OL-module

V int
k �

{
v ∈ Vk

��� v(XI ) ∈ πi1+i2OL for all I
}
.

as in Section 3.1. Because Vk is finite-dimensional, condition (i) in Definition 5.4 is
trivially satisfied. The optimal constants ni in condition (iii) can be explicitly computed
as follows. We have

(v · y−1i )(XI ) � v((y−1i )∗XI ) �



πk/3−i3v(XI ), for i � 1,

π2k/3−i2−i3v(XI ), for i � 2,

for all v ∈ V . Thus, we see that n1 � 2k/3 and n2 � k/3 satisfy (iii). Moreover, V int
k can

be turned into a Pi-admissible integral structure for i ∈ {1, 2}. We compute the optimal
constants via

(v · si)(XI ) � v((si)∗XI ) �



v(X i2
1 X i1

2 X i3
3 ), for i � 1,

v(X i1
1 X i3

2 X i2
3 ), for i � 2,

which shows that we can choose m1 � 0 and m2 � k.

The other coefficient modules we are primarily interested in are constructed from the
G-representationsAk andAPi ,k for i ∈ {1, 2}, which were introduced in Section 4.1, see
(2) and (3).

5.7. Definition. We set

Ak (σ0) B
{

f ∈ Ak �� supp( f ) ⊆ U (σ0)
}
,

APi ,k (σ0) B
{

f ∈ APi ,k
�� supp( f ) ⊆ Ui (σ0)

}
,

for i ∈ {1, 2}.

These spaces are closed subspaces ofAk respectivelyAPi ,k , see [Fea99, Subsection 2.3.1].

5.8. Remark. We should remark that the B-equivariance of elements of Ak implies
that the notion of support is well-defined on the quotient G/B. The set U (σ0) � IB/B
is open and closed in G/B. Hence the functions in Ak (σ0) are just the elements of Ak
that vanish outside IB. Similarly, the functions in APi ,k (σ0) are the elements of APi ,k
that vanish outside IiB � IPi .
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We often regard elements of both Ak (σ0) and APi ,k (σ0) for i ∈ {1, 2} as functions on
IB. Note that by the Pi-equivariance of elements of APi ,k (σ0) the restriction to IB is
injective. Observe that by definition of Σ, the left action of G on Ak then induces a left
action of Σ onAk (σ0). Similarly, Σi acts from the left onAPi ,k (σ0). We should point out
that the action by si ∈ Ii on APi ,k (σ0) is then given by extending the function to IiB,
acting with si and then restricting back to IB.

We have Σi-equivariant inclusions ιi : Pk → APi ,k (σ0) given by

ιi (F)(g)(p) � det(gp)k/3F([0, 0, 1](gp)−1) for g ∈ IB, p ∈ Pi ,

as in Proposition 4.1. Furthermore we define maps ιi : APi ,k (σ0) → Ak (σ0) by

ιi ( f )(g) � f (g)(id) for f ∈ APi ,k (σ0), g ∈ IB.

5.9. Proposition. The maps ιi : APi ,k (σ0) → Ak (σ0) are Σ-equivariant, injective and con-
tinuous for i ∈ {1, 2}. The diagram

AP1 ,k (σ0)

Pk Ak (σ0)

AP2 ,k (σ0)

ι1

ι2

ι1

ι2

commutes.

Proof. Let f ∈ APi ,k (σ0). Then for g ∈ Σ, we have by definition

ιi (g∗ f )(h) � f (g−1h)(id) � (g∗ιi ( f ))(h).

Moreover, if ιi ( f ) � 0, we have f (g)(id) � 0 for g ∈ IB. Let h ∈ IB and p ∈ IB ∩ Pi .
Then we have

f (h)(p) � f (hp)(id) � 0.

Hence, the algebraic morphism f (h) : Pi (L) → A1
L vanishes on the dense subsetIB∩Pi ,

see [Mil17, Proposition 1.11], and is therefore globally zero, i.e., we have f (h)(p) � 0 for
all p ∈ Pi , which shows that f � 0. To show continuity, observe that we can write ιi as

APi ,k (σ0) ⊆ APi ,k → Ak → Ak (σ0),

where themiddle arrow is the natural inclusion and the last arrow is given by f 7→ f 1IB.
It is immediate that this map is continuous proving the continuity of ιi . We still need to
show that the diagram commutes. For this, let F ∈ Pk . Then we have

ιi (ιi (F))(g) � det(g)k/3F([0, 0, 1]g−1) for g ∈ IB,

which is independent of i and thus completes the proof. �
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5.10. Remark. It isworth pointing out that ιi is not just induced by the natural inclusion
APi ,k → Ak . In fact, this observation will become important later on. In the sequel, we
write ι0 B ιi ◦ ιi : Pk → Ak (σ0).

We need a more explicit description of the above spaces. Following Table 1, we identify
U (σ0) with (πOK)3 as follows:

x � (x1 , x2 , x3) 7→ u(x)−1 , where u(x) � *.
,

1 0 0
x1 1 0
x2 x3 1

+/
-
∈ I ∩U− � Iid. (5)

Note that in contrast to Table 1, we are taking the inverse of u(x) here, the reason
being that one obtains significantly simpler formulas using this normalization, see also
[DT08, Section 2.1.2] and, in the sequel, Remark 5.13. Now, let g ∈ Σ. Under the above
identification, g−1 acts on (πOK)3. Explictly, we define u(g−1x) ∈ Iid by

g−1u(x)−1 � u(g−1x)−1bg ,x , with bg ,x ∈ B unique.

The computation in the following lemma is analogous to [PP09, Lemma 2.1].

5.11. Lemma. We denote by mi j the i j-th minor of g. Then we have

u(g−1x) �
*..
,

1 0 0
m32(x1x3−x2)+m22x1+m12
m31(x1x3−x2)+m21x1+m11

1 0
g11x2+g21x3+g31
g13x2+g23x3+g33

g12x2+g22x3+g32
g13x2+g23x3+g33

1

+//
-

and χk (b−1g ,x) � det(g)−k/3(g13x2 + g23x3 + g33)k .

Proof. We compute

h B u(x)g �
*.
,

g11 g12 g13
g11x1 + g21 g12x1 + g22 g13x1 + g23

g11x2 + g21x3 + g31 g12x2 + g22x3 + g32 g13x2 + g23x3 + g33

+/
-
.

Let b ∈ B. Then,

bh �
*.
,

b11h11 + b12h21 + b13h31 b11h12 + b22h21 + b13h32 b11h13 + b12h23 + b13h33
b22h21 + b23h31 b22h22 + b23h32 b22h23 + b23h33

b33h31 b33h32 b33h33

+/
-
.

Since bg ,x is the unique b ∈ B such that bh ∈ Iid, we obtain b33 � 1/h33. We can solve
the resulting equations for the entries of b and obtain in particular

b22 �
h33

h22h33 − h23h32
, b23 �

−h23
h22h33 − h23h32

and b11 �
h22h33 − h23h32

det(g)
.

Now, it is straightforward to compute

b22h21 + b23h31 �
m32(x1x3 − x2) + m22x1 + m12
m31(x1x3 − x2) + m21x1 + m11

,

which completes the proof. �
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Now, we can pull back elements of Ak (σ0) to functions on U (σ0) � Iid � (πOK)3 via
(5).

5.12. Proposition. We keep the notation as in Lemma 5.11. Under the above identification,
we have

Ak (σ0) � Can(U (σ0), L)

as topological vector spaces. Here, g ∈ Σ acts on the space on the right hand side by

(g∗ f )(x) � det(g)−k/3(g13x2 + g23x3 + g33)k

· f
(

m32(x1x3 − x2) + m22x1 + m12
m31(x1x3 − x2) + m21x1 + m11

,
g11x2 + g21x3 + g31

g13x2 + g23x3 + g33
,

g12x2 + g22x3 + g32

g13x2 + g23x3 + g33

)
.

Proof. Since elements ofAk (σ0) are locally analytic, we obtain locally analytic functions
on U (σ0). Moreover, since elements of Ak (σ0) are completely determined by their
values on Iid and every locally analytic function on Iid can be extended uniquely to
an element of Ak (σ0), the association is bĳective. That we obtain an isomorphism of
topological vector spaces can be verified as in [Fea99, Satz 4.3.1] or [Eme07, Lemma
2.3.3]: We have implicitly already constructed an inverse, but we need to verify that it is
continuous. For this, note that since Iid ∩ B � {id}, we can regardAk (σ0) as a subspace
of Can(Iid×B, L). The inverse can then be described as the composition of the twomaps

Can(U (σ0), L) → Can(B, L) × Can(Iid , L),

f 7→ (χ−1k , f ),

and

Can(B, L) × Can(Iid , L) → Can(Iid × B, L),
(χ, f ) 7→ [(g , b) 7→ χ(b) f (g)].

The continuity of the first map is immediate. That the second map is well-defined and
continuous follows from [Fea99, Satz 2.4.3]. The formula for the Σ-action is a direct
consequence of Lemma 5.11. �

5.13. Remark. Let F ∈ Pk . Then, as we have seen in Section 4.1, we can regard F
as an element of Ak by considering the map g 7→ F([0, 0, 1]g−1). If we pull back the
function g 7→ F([0, 0, 1]g−1)1IB (g) to U (σ0), we obtain by construction the function
f ∈ Can(U (σ0), L) given by

f (x) � F(x2 , x3 , 1)

with the above Σ-action. This is precisely the action one obtains by dehomogenizing
with respect to the variableX3 in the definition ofPk , an operation frequently considered
in the GL2(K)-case, which further justifies our normalization.
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Next, we want to consider the spacesAPi ,k (σ0) for i ∈ {1, 2}, and derive similar explicit
descriptions. For this, observe that we may write

u(x) � *.
,

1 0 0
x1 1 0
0 0 1

+/
-
·

*.
,

1 0 0
0 1 0
x2 x3 1

+/
-
�

*.
,

1 0 0
0 1 0
0 x3 1

+/
-
·

*.
,

1 0 0
x1 1 0

x2 − x1x3 0 1

+/
-
. (6)

We denote this factorization by u(x) � pi (x) · ui (x) for i ∈ {1, 2}, where p1(x) and u1(x)
are the matrices in the first factorization and p2(x) and u2(x) are the matrices in the
second factorization. Note that pi (x) ∈ Pi . If we denote by I i

⊂ Iid the subgroup of
matrices of the same form as ui (x), i.e.,

I
1 B

*.
,

1 0 0
0 1 0
∗ ∗ 1

+/
-

and I
2 B

*.
,

1 0 0
∗ 1 0
∗ 0 1

+/
-
,

we have I iPi � IPi and I i
∩ Pi � {id}. This enables us to obtain the following.

5.14. Proposition. Let i ∈ {1, 2}. We have

APi ,k (σ0) � Can(I i , FPi ,k )

as topological vector spaces.

Proof. This is completely analogous to the proof of Proposition 5.12. �

We want to define certain rigid analytic counterparts of these spaces, which resemble
the spaces considered in [PP09, Section 2] and [Wil18, Section 4]. Automorphic forms
with coefficients in (the duals of) these spaces are the ones for which we shall first prove
certain lifting theorems. We use the notation fromAppendixA, in particular, AL (U (σ0))
denotes the space of rigid analytic functions on U (σ0) � (πOK)3.

5.15. Definition. We set
A

rig
k (σ0) B AL (U (σ0))

andArig
Pi ,k

(σ0) B AL (I i) ⊗L FPi ,k for i ∈ {1, 2}.

Note that by definition we have continuous inclusions

A
rig
k (σ0) → Ak (σ0) and A

rig
Pi ,k

(σ0) → APi ,k (σ0)

for i ∈ {1, 2}. Moreover, we have a continuous map

A
rig
Pi ,k

(σ0) → Arig
k (σ0),

f 7→ [x 7→ f (ui (x)−1)(pi (x)−1)].

We obtain the following.
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5.16. Proposition. Let i ∈ {1, 2}. The diagram

A
rig
Pi ,k

(σ0) A
rig
k (σ0)

APi ,k (σ0) Ak (σ0)
ιi

commutes.

Proof. This follows directly from (6) since by definition we have

f (u(x)−1)(id) � f (ui (x)−1 · pi (x)−1)(id) � f (ui (x)−1)(pi (x)−1)

for f ∈ APi ,k (σ0). �

Hence, the map Arig
Pi ,k

(σ0) → Arig
k (σ0) is injective. In the sequel, we denote this map

also by ιi . We want to study the image ofArig
Pi ,k

(σ0) under ιi in more detail. For this, we
need some preparations.

5.17. Definition.

(i) A function f ∈ AL (U (σ0)) is calledP1-analytic if there is a function f1 ∈ AL ((πOK)2)
with f (x) � f1(x2 , x3).

(ii) A function f ∈ AL (U (σ0)) is called P2-analytic if there is a collection of functions
f2, j ∈ AL ((πOK)2) for j ∈ {0, . . . , k} with

f (x) �
k∑

j�0
f2, j (x1 , x2 − x1x3)x j

3.

For i ∈ {1, 2} we denote the L-vector space of Pi-analytic functions by AL,i (U (σ0)).

It is immediate from the definition that the spaces AL,i (U (σ0)) for i ∈ {1, 2} are closed
subspaces of the Banach spaceArig

k (σ0), hence also Banach spaces.

5.18. Remark. The space AL,1(U (σ0)) is very similar to the space considered in [Wil18,
Proposition 4.3]. The key difference is that we only consider a more restricted class of
weights.

The following proposition is of central importance.

5.19. Proposition. Let i ∈ {1, 2}. Then ιi induces an isomorphism of topological vector spaces

A
rig
Pi ,k

(σ0) � AL,i (U (σ0)).
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Proof. By definition, we have (ιi ( f ))(u(x−1)) � f (ui (x)−1)(pi (x)−1). By the explicit
description of FPi ,k in Proposition 4.3, we see that ιi ( f ) ∈ AL,i (U (σ0)) for i ∈ {1, 2}. The
other inclusion is proved separately for i � 1 and i � 2. We begin with the case i � 1.
Let f ∈ AL,1(U (σ0)). Then, since FP1 ,k � χk , we can directly regard f as a function
f ′ : I1

→ FP1 ,k . Clearly, it is rigid analytic. By definition, we have ι1( f ′) � f . The case
i � 2 is slightly more complicated. Let f ∈ AL,2(U (σ0)). Then we may write

f (x) �
k∑

j�0
f2, j (x1 , x2 − x1x3)x j

3.

with f2, j ∈ AL ((πOK)2) for j ∈ {0, . . . , k}. Note that we can identify FP2 ,k � L[y]deg≤k .
Then we may define f ′ : I2

→ FP2 ,k by

f ′ �
k∑

j�0
f2, j y j .

Since the functions f2, j are rigid analytic, so is f ′. By definition, we have ι2( f ′) � f .
Thus, for both i ∈ {1, 2} we have constructed a continuous bĳection

A
rig
Pi ,k

(σ0) → AL,i (U (σ0)).

But as both spaces are Banach spaces, we can apply the open mapping theorem, see for
example [Sch02, Corollary 8.7], to conclude that it is a topological isomorphism. �

Now, we can study the action by Σ and Σi for i ∈ {1, 2} on these spaces.

5.20. Lemma. The subspaceArig
k (σ0) ⊂ Ak (σ0) isΣ-stable for the action in Proposition 5.12.

Proof. For the elements y−1i for i ∈ {1, 2} this is easily verified by the formula in Propo-
sition 5.12. For g ∈ I, the only possibly problematic terms in Proposition 5.12 are
(m31(x1x3 − x2) + m21x1 + m11)−1 and (g13x2 + g23x3 + g33)−1. But since g33 ∈ O

×

K and
m11 ∈ O

×

K , the power series expansion of these functions is again rigid analytic on
U (σ0). �

5.21. Lemma. The subspaces AL,i (U (σ0)) ⊂ AL (U (σ0)) for i ∈ {1, 2} are Σ-stable for the
action in Proposition 5.12.

Proof. For i � 1, this is immediate from the definition and the description of the action
in Proposition 5.12. For i � 2, we need to do more computations. Let g ∈ Σ and
f ∈ AL,2(U (σ0)). We use the notation as in the proof of Lemma 5.11. Then

(g∗ f )(x) � det(g)−k/3hk
33 f

(
h33h21 − h23h31
h22h33 − h23h32

,
h31
h33

,
h32
h33

)
� det(g)−k/3

k∑
j�0

f2, j

(
h33h21 − h23h31
h22h33 − h23h32

,
h33h21 − h23h31
h22h33 − h23h32

h32
h33
−

h31
h33

)
h j
32hk− j

33
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We have already seen that the first argument of f2, j involves only the variables x1 and
x2 − x1x3. For the second argument, we compute

h33h21 − h23h31
h22h33 − h23h32

h32
h33
−

h31
h33

�
h32h21 − h22h31
h22h33 − h23h32

�
m33(x1x3 − x2) + m23x1 + m13
m31(x1x3 − x2) + m21x1 + m11

,

which again only involves x1 and x2 − x1x3. Now, we have

h j
32 � (g12x2 + g22x3 + g32) j

� (g12(x2 − x1x3) + (g22 + g12x1)x3 + g32) j

hk− j
33 � (g13x2 + g23x3 + g33)k− j

� (g13(x2 − x1x3) + (g23 + g13x1)x3 + g33)k− j

and we see that the product can be written as a polynomial in x3 of degree less than or
equal to k with coefficients polynomials in x1 and x2 − x1x3. Putting all of this together
completes the proof. �

Note that via Proposition 5.14, similarly to Lemma 5.20, the spaceArig
Pi ,k

(σ0) inherits aΣi-
action from APi ,k (σ0). Going back through the definitions, one sees that the inclusion
A

rig
Pi ,k

(σ0) → Arig
k (σ0) is Σ-equivariant. Moreover, we see that si acts on the image

AL,i (U (σ0)). This action can be made explicit as follows:

5.22. Lemma.

(i) Let f ∈ AL,1(U (σ0)). Then we have

((s1)∗ f )(x) � f (x1 , x3 , x2).

(ii) Let f ∈ AL,2(U (σ0)) be given by

f (x) �
k∑

j�0
f2, j (x1 , x2 − x1x3)x j

3

with f2, j ∈ AL ((πOK)2) for j ∈ {0, . . . , k}. Then we have

((s2)∗ f )(x) �
k∑

j�0
f2,k− j (x2 − x1x3 , x1)x j

3.

Proof. We observe that

si u(x)−1 � si ui (x)−1pi (x)−1 � (si ui (x)−1si)(si pi (x)−1).

for i ∈ {1, 2}. We have si ui (x)−1si ∈ I
i and si pi (x)−1 ∈ Pi . Thus, we obtain

ιi ((si)∗ f )(u(x)−1) � f (si ui (x)−1si)(si pi (x)−1).
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Now, we see that s1u1(x)−1s1 � u(0, x3 , x2)−1. Since FP1 ,k � χk , we obtain (i). For part
(ii), we see that s2u2(x)−1s2 � u(x2 − x1x3 , x1 , 0)−1. Since

FP2 ,k � ((1GL1(K) ⊗K Symk ((K2)∗)) ⊗K det−k/3) ⊗K L,

we only need to see how s2 acts on this space, which can be computed directly by
Remark 4.4 and gives the desired formula. �

Our constructions can be summarized as follows. The maps ιi and ιi for i ∈ {1, 2} give
rise to the following commutative diagram:

A
rig
P1 ,k

(σ0)

Pk A
rig
k (σ0)

A
rig
P2 ,k

(σ0)

ι1

ι2

ι1

ι2

All of the above maps are topological embeddings. Now we set

D•
∗,k (σ0) B Homcont(A•∗,k (σ0), L) for • ∈ {∅, rig}, ∗ ∈ {∅, P1 , P2}.

By the above, all of these spaces are naturally coefficient modules by endowing them
with the dual right action byΣ. For ∗ � Pi , they are Pi-admissible. We also set Vrig

k B Vk

and denote the maps induced by ιi and ιi by πi and πi for i ∈ {1, 2}. All natural
diagrams of maps between these various coefficient modules commute. In the sequel,
we refer to D•k (σ0) as overconvergent coefficients and to D•Pi ,k

(σ0) for i ∈ {1, 2} as partially
overconvergent coefficients.

5.23. Lemma. The maps

πi : Drig
k (σ0) → Drig

Pi ,k
(σ0) and πi : D

rig
Pi ,k

(σ0) → Vrig
k

are surjective.

Proof. The Banach spaces Arig
k (σ0) and Arig

Pi ,k
(σ0) are by definition of countable type,

i.e., they contain a countable subset whose linear span is dense. Thus, we can apply
the theorem of Hahn-Banach, see [Sch86, Theorem 4.2 and Theorem 4.4], to obtain the
result. �

5.24. Remark. A more explicit proof of Lemma 5.23 is given as follows: Each of the
(continuous) maps ιi and ιi for i ∈ {1, 2} has a continuous splitting given by truncation,
i.e., by removing terms from the series expansion to obtain an element of the relevant
subspace. Since all spaces are endowed with the topology from AL (U (σ0)), it is clear
that these splittings are continuous.
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Now, we want to construct integral structures on our rigid analytic coefficient modules.
For this, let

Dint
k (σ0) B

{
µ ∈ D

rig
k (σ0) ��� µ(xI ) ∈ π |I |OL for all I

}
,

in analogy with the definition of V int
k .

5.25. Proposition. Let n1 � 2k/3 and n2 � k/3. Then (Dint
k (σ0), (ni)i∈{1,2}) is an integral

structure on Drig
k (σ0).

Proof. We need to verify the properties in Definition 5.4. We begin with property (i).
Let µ ∈ Drig

k (σ0). Then µ is bounded, i.e., we find a constant C > 0 such that

|µ(xI ) | ≤ C‖xI
‖U (σ0) � Cq−|I | for all I .

This shows that we find α ∈ OL \ {0} such that αµ ∈ Dint
k (σ0), which proves (i). To prove

(ii), note that we have

I � (I ∩U−) · (I ∩ B) � Iid · (I ∩ B).

We consider matrices in the two factors in the product above separately. Let

g �
*.
,

1 0 0
g21 1 0
g31 g32 1

+/
-
∈ Iid.

For µ ∈ Dint
k (σ0) we compute

(µ · g)(xI ) � µ((x1 + g21) i1 (x2 + g21x3 + g31) i2 (x2 + g32x3) i3 ).

Since we have g21 , g31 , g32 ∈ πOK it is easy to see that (µ · g)(xI ) ∈ π |I |OL. Let now

g �
*.
,

g11 g12 g13
0 g22 g23
0 0 g33

+/
-
∈ I ∩ B.

For µ ∈ Dint
k (σ0) we compute

(µ · g)(xI ) � µ(det(g)−k/3 fg (x)(g11(g23(x1x3−x2) + g33x1)) i1 (g11x2) i2 (g12x2 + g22x3) i3 ),

with

fg (x) � ((g12g23 − g22g13)(x1x3−x2) + g12g33x1 + g22g33)−i1 (g13x2 + g23x3 + g33)k−i2−i3 .

Observe that fg (x) is a (convergent) power series in x since g22 , g33 ∈ O
×

K . This shows
that (µ · g)(xI ) ∈ π |I |OL. Finally, to prove (iii), we compute

(πni y−1i · µ)(xI ) �



πi2+i3µ(xI ), for i � 1,
πi1+i2µ(xI ), for i � 2,

which completes the proof. �
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5.26. Remark. It is worth noting that we have µ ∈ Dint
k (σ0) if and only if

µ(x i1
1 (x2 − x1x3) i2x i3

3 ) ∈ π |I |OL for all I .

This will be useful in the following.

Now we set
Dint

Pi ,k
(σ0) B πi (Dint

k (σ0)) ⊂ Drig
Pi ,k

(σ0)

for i ∈ {1, 2}. Explicitly, we have

Dint
P1 ,k

(σ0) �
{
µ ∈ D

rig
P1 ,k

(σ0) ��� µ(xI ) ∈ π |I |OL for all I
}

and
Dint

P2 ,k
(σ0) �

{
µ ∈ D

rig
P2 ,k

(σ0) ��� µ(x i1
1 (x2 − x1x3) i2x i3

3 ) ∈ π |I |OL for all I
}

by the remark above.

5.27. Proposition. Let n1 and n2 as above and set m1 � 0 and m2 � k. Let i ∈ {1, 2}. Then
the triple (Dint

Pi ,k
(σ0), (n j) j∈{1,2} ,mi) is a Pi-admissible integral structure on Drig

Pi ,k
(σ0).

Proof. Since the projectionmaps πi defined above are surjective, it is immediate that the
tuple (Dint

Pi ,k
(σ0), (n j) j∈{1,2}) is an integral structure. The second property can be easily

checked by Lemma 5.22 and the explicit description above. �

5.28. Remark. Note that we have πi (Dint
Pi ,k

(σ0)) � V int
k for i ∈ {1, 2} and that the choices

for (ni)i∈{1,2} and (mi)i∈{1,2} are compatible with our choice for V int
k . In the sequel, we

always fix these choices when working with any of the above coefficient modules.

5.2. Automorphic forms

With the preparations of the previous section we can now define the spaces of automo-
prhic forms we are interested in and various operators acting on them.

5.29. Definition. Let M be a coefficient module. An automorphic formwith coefficients
in M is a left K×-invariant and right I-equivariant map ϕ : G → M. The L-vector
space of automorphic forms is denoted by A(M). It becomes an L[G]-module via
(gϕ)(h) � ϕ(g−1h) for g , h ∈ G, ϕ ∈ A(M).

5.30. Remark. Let (Mint , (ni)i∈{1,2}) be an integral structure on M. Then we can define
the space A(Mint) by requiring the same conditions. This space is a G-stable OL-
submodule of A(M).

Note that, contrary to the notion of automorphic forms in [Gre06, Section 4] and [Grä19,
Section 3], we do not require invariance under a subgroup Γ ⊂ G. This is due to the
fact that we want to study general bounded harmonic cocycles, not just Γ-invariant
ones. By taking invariants A(M)Γ, one obtains the usual spaces of automorphic forms.
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In particular, one can obtain global descriptions for these automorphic forms, see for
example [Gre06] for such a description in the GL2(K)-case. We think that this justifies
using the term automorphic form here. One downside of this approach is that our space
of automorphic forms is not finite-dimensional, even if the coefficient module M is. To
remedy this, we need the notion of bounded automorphic forms.

5.31. Definition. Let M be a coefficient module that admits an integral structure
(Mint , (ni)i∈{1,2}). An automorphic form ϕ ∈ A(M) is called bounded (with respect
to Mint) if there exists α ∈ OL \ {0} such that αϕ ∈ A(Mint). Clearly, the bounded
automorphic forms form an L[G]-submodule of A(M), which we denote by A(M)b .

The notion of boundedness depends strongly on the chosen integral structure by defi-
nition. The following operators play a central role.

5.32. Definition. We fix a coefficient module M together with an integral structure
(Mint , (ni)i∈{1,2}). Write

IyiI �

⊔
j

yi , jI

for i ∈ {1, 2}. The Uπ,i-operator on A(M) is the L-linear map Uπ,i : A(M) → A(M) given
by

(Uπ,iϕ)(g) � πni
∑

j

ϕ(g yi , j) · y−1i , j for ϕ ∈ A(M), g ∈ G.

It is easy to check that these operators are well-defined and independent of the choice
of coset representatives. Note that by definition Uπ,i preserves A(Mint) and A(M)b .

If the coefficient module is Pi-admissible, we have another operator acting on the space
of automorphic forms.

5.33. Definition. Let i ∈ {1, 2} and let M be a Pi-admissible coefficient module with
a Pi-admissible integral structure (Mint , (n j) j∈{1,2} ,mi). Let si ∈ Σi as in the previous
section. Write

IsiI �

⊔
j

si , jI.

The Atkin-Lehner Wπ,i-operator onA(M) is the L-linear map Wπ,i : A(M) → A(M) given
by

(Wπ,iϕ)(g) � πmi
∑

j

ϕ(gsi , j) · s−1i , j for ϕ ∈ A(M), g ∈ G.

As above, it is easy to check that these operators are well-defined and independent of
the choice of coset representatives. Note that by definition Wπ,i preserves A(Mint) and
A(M)b .
More generally, if M is any coefficient module without a fixed integral structure, one
can still define the Uπ,i-operators for i ∈ {1, 2} as above with arbitrary choices of n1 and
n2. Of course the operators then depend on these choices. The same holds true for the
Wπ,i-operator and the choice of mi for a Pi-admissible coefficient module.
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5.34. Remark. We should point out that the above definition of the Atkin-Lehner
operators is different than the one considered in [Grä19, Definition 13] in the GL2(K)-
case. Geometrically, the difference can be described as follows: The operator in [Grä19]
flips the orientation on a chamber, whereas here we take the sum over all chambers
sharing a specified face with the given chamber. In the GL2(K)-case this just means
taking all edges with the same target as the given edge. If one requires harmonicity,
these conditions are equivalent. However, in the GL3(K)-case the present condition
seems to be the natural one if one is in interested in the attached distributions following
[ST97]. We should also remark that the presence of the scalar factors πmi makes the
name Atkin-Lehner operator a bit misleading as these operators are involutions only up
to scalar, which follows from s2i � 1 for i ∈ {1, 2}.

5.35. Remark. It is easy to verify that the number of cosets in the disjoint union used
in the definition of Wπ,i is q, whereas for Uπ,i there are q2 coset representatives. In the
latter case, one natural choice for the coset representatives are the matrices

*.
,

1 0 0
0 1 0
πa πb π

+/
-

for i � 1 and *.
,

1 0 0
πa π 0
πb 0 π

+/
-

for i � 2,

where a , b run through a set a representatives in OK of the q residue classes in κ.

5.36. Lemma. We have Uπ,1◦Uπ,2 � Uπ,2◦Uπ,1 and Wπ,i ◦Uπ,i � Uπ,i ◦Wπ,i for i ∈ {1, 2}.

Proof. This follows directly from y1 · y2 � y2 · y1 and yi si � si yi for i ∈ {1, 2}. �

Now, we turn to the coefficient modules constructed in Section 5.1. By functoriality of
the formation of automorphic forms, we have commutative diagrams

A(D•P1 ,k
(σ0))

A(D•k (σ0)) A(V•k ),

A(D•P2 ,k
(σ0))

ρ1

ρ2

ρ1

ρ2

for • ∈ {∅, rig, int}, where the maps are induced by πi and πi for i ∈ {1, 2}. We refer
to the maps in the above diagram as specialization maps. All specialization maps are
G-equivariant. For all of the rigid coefficient modules we fix the integral structures
from the previous section, in particular n1 � 2k/3 and n2 � k/3. We also fix m1 � 0 and
m2 � k. Then the specialization maps preserve boundedness. We use the same con-
stants to define the Uπ,i-operators and Wπ,i-operators on the locally analytic coefficient
modules. Then whenever one of the above operators Uπ,i and Wπ,i for i ∈ {1, 2} is de-
fined on the source and target of a specialization map, the respective map is equivariant
for the actionof this operator. Wealso set ρ0 B ρi◦ρi (which is independent of i ∈ {1, 2}).
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Space of automorphic forms Uπ,1 Uπ,2 Wπ,1 Wπ,2
A(V•k ) 3 3 3 3

A(D•P1 ,k
(σ0)) 3 3 3 7

A(D•P2 ,k
(σ0)) 3 3 7 3

A(D•k (σ0)) 3 3 7 7

Table 4. Uπ,i- and Wπ,i-operators on automorphic forms

In Table 4, we summarizewhich of the above operators act on our spaces of automorphic
forms.
Our first aim is to compare eigenforms with locally analytic and rigid analytic coeffi-
cients. The proof of the following theorem is an extension of [PS13, Lemma 5.3] to the
GL3(K)-case.

5.37. Theorem. Let α1 , α2 ∈ OL \ {0}. Then, the natural maps D∗,k (σ0) → Drig
∗,k (σ0) for

∗ ∈ {∅, P1 , P2} induce isomorphisms

Ψ : A(Dk (σ0))(Uπ,i�αi )i∈{1,2} → A(Drig
k (σ0))(Uπ,i�αi )i∈{1,2}

and
Ψi : A(DPi ,k (σ0))Uπ,i�αi → A(Drig

Pi ,k
(σ0))Uπ,i�αi

for i ∈ {1, 2}.

Proof. We begin with the first map and start by proving its injectivity. For this, let
Φ ∈ A(Dk (σ0))(Uπ,1�αi )i∈{1,2} such that the image of Φ in A(Drig

k (σ0))(Uπ,i�αi )i∈{1,2} is 0. This
means that for each g ∈ G, the distribution Φ(g) ∈ Dk (σ0) vanishes on Arig

k (σ0). We
need to show that it vanishes on the whole space Ak (σ0). For this, let f ∈ Ak (σ0). By
examining the action of the matrices yi , j from the definition Uπ,i-operators on U (σ0) as
in Remark 5.35, we see that we can choose m ∈ Z≥0 big enough such that we have

(h−1)∗ f ∈ Arig
k (σ0)

for each element h ∈ G of the form

*
,

m∏
n�1

y1, jn y2, j′n +
-

with jn , j′n ∈ {0, . . . , q2 − 1} for all n ∈ {1, . . . ,m}. But since Φ ∈ A(Dk (σ0))(Uπ,1�αi )i∈{1,2} ,
if we put Ũ B α−11 α

−1
2 Uπ,1Uπ,2, we obtain

Φ(g)( f ) � (ŨmΦ)(g)( f ).

By definition of the Uπ,i-operators, the right hand side is a linear combination of ele-
ments of the form

Φ(gh)((h−1)∗ f )



5.2. AUTOMORPHIC FORMS 67

with h as above, which are all zero since (h−1)∗ f ∈ Arig
k (σ0). Thus, we have proved the

injectivity. We have also derived a strategy to prove the surjectivity: Let f ∈ Ak (σ0)
and ϕ ∈ A(Drig

k (σ0))(Uπ,i�αi )i∈{1,2} . We choose m (depending on f ) as above. We define
Φ(g)( f ) bywriting (Ũmϕ)(g) as a sum of elements of the form ϕ(gh) · h−1 with h of the
above form. Then the value (ϕ(gh) · h−1)( f ) makes sense. It is now easy to check that
this does not depend on the choice of m and defines an element ofA(Dk (σ0))(Uπ,i�αi )i∈{1,2} .
For the second statement, observe that by Proposition 5.14 for f ∈ APi ,k (σ0), it suffices
to apply products of the matrices yi , j to f to obtain a rigid function. From here on, the
proof is exactly as in the first case by considering just the Uπ,i-operator. �

5.38. Remark. In fact, the above proof shows that one can also work directly with an
eigenform for the operator Uπ B Uπ,1 ◦Uπ,2 in the first case and obtain the analogous
result in this situation.

Even though we do not have integral structures on the coefficient modules D∗,k (σ0) for
∗ ∈ {∅, P1 , P2}, if we just consider eigenforms, we can transfer the notion of boundedness
via the above theorem.

5.39. Definition. Let α1 , α2 ∈ OL \ {0}. We define

A(Dk (σ0))(Uπ,i�αi )i∈{1,2}
b B Ψ−1(A(Drig

k (σ0))(Uπ,i�αi )i∈{1,2}
b )

and
A(DPi ,k (σ0))Uπ,i�αi

b B Ψ−1i (A(Drig
Pi ,k

(σ0))Uπ,i�αi
b )

for i ∈ {1, 2}.

The following notion is of central importance.

5.40. Definition. Let α1 , α2 ∈ OL \ {0}. We say that the pair (α1 , α2) is non-critical (for
the weight k) if the following conditions hold:

(i) The map ρ0 : A(Dk (σ0))(Uπ,i�αi )i∈{1,2}
b → A(Vk )(Uπ,i�αi )i∈{1,2}

b is an isomorphism.

(ii) The maps ρi : A(DPi ,k (σ0))Uπ,i�αi
b → A(Vk )Uπ,i�αi

b are isomorphisms for i ∈ {1, 2}.

Similarly, we make the following definition.

5.41. Definition. Let ϕ ∈ A(Vk )(Uπ,i�αi )i∈{1,2}
b , where αi ∈ OL \ {0} for i ∈ {1, 2}. We

say that ϕ is non-critical if there exist unique elements Φ ∈ A(Dk (σ0))(Uπ,i�αi )i∈{1,2}
b and

Φi ∈ A(DPi ,k (σ0))Uπ,i�αi
b which lift ϕ.

By definition, if the pair (α1 , α2) is non-critical, then every element of A(Vk )(Uπ,i�αi )i∈{1,2}
b

is non-critical.
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5.3. Distributions attached to automorphic forms

In this section, we see how the theory of automorphic forms developed in the previous
section is related to the distributions studied in Section 4.4. In particular, we show that
the non-criticality of a certain class of automorphic forms implies Conjecture 4.29. In
the next section we will then investigate the question which forms are non-critical fur-
ther. We should remark that the relation between automorphic forms and distributions
studied here is similar to [Grä19, Section 3.4]. The objective if rather different though:
Whereas in [Grä19] the extension of the relevant distributions is already known and
automorphic forms provide a good framework for explicit computations, here we want
to promote the standpoint that automorphic forms provide a better framework towards
proving results for distributions.

Recall that n1 � 2k/3 and n2 � k/3. To shorten the notation we set

A(Vk )eig B A(Vk )(Uπ,i�πni )i∈{1,2} , A(Dk (σ0))eig B A(Dk (σ0))(Uπ,i�πni )i∈{1,2}

and
A(Dk (σ0))eigb B A(Dk (σ0))(Uπ,i�πni )i∈{1,2}

b .

Moreover, we define

A(Vk )new B
{
ϕ ∈ A(Vk )eig �� Wπ,iϕ � −πmiϕ for i ∈ {1, 2}

}
,

where m1 � 0 and m2 � k. Our first aim is to connect harmonic cocycles to automorphic
forms. The following construction is an analogue of [Grä19, Proposition 10]. Let
c ∈ Char(T , k). We define

ϕc : K×\G → Vk

by ϕc (g) � g−1 · c(gσ0) � c(gσ0) · g.

5.42. Lemma. We have ϕc ∈ A(Vk )new.

Proof. Let x ∈ K× and h ∈ I. Then we have

ϕc (x gh) � c(x ghσ0) · (x gh) � c(gσ0) · (gh) � ϕc (g) · h ,

since StabG (σ0) � K×I and K× acts trivially on Vk . This shows that ϕc ∈ A(Vk ). Now,
by [ST97, Definition 9 and Lemma 10], we have that c satisfies

c(gσ0) �
∑

j

c(g yi , jσ0) and c(gσ0) � −
∑

j

c(gsi , jσ0)

for i ∈ {1, 2} and g ∈ G. These conditions directly translate to the above relations. �

5.43. Proposition. The map Char(T , k) → A(Vk )new given by c 7→ ϕc is a G-equivariant
isomorphism. Moreover, c ∈ Char(T , k) is bounded if and only if ϕc is bounded.
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Proof. We just need to show that the map is an isomorphism. The remaining statements
are just a rephrasing of Proposition 3.7. Let ϕ ∈ A(Vk )new. We define cϕ : T̂2 → Vk by

c(σ) � ϕ(g) · g−1 ,

where we choose g ∈ G such that σ � gσ0. It is straightforward to check that cϕ is
well-defined and satisfies

cϕ (gσ0) �
∑

j

cϕ (g yi , jσ0) and cϕ (gσ0) � −
∑

j

cϕ (gsi , jσ0)

for i ∈ {1, 2} and g ∈ G. But then we have cϕ ∈ Char(T , k) by [Aït06, Theorem 3.3]
(see also [ST97, Proposition 11]). It is immediate from the definitions that ϕcϕ � ϕ and
cϕc � c for c ∈ Char(T , k) and ϕ ∈ A(Vk )new. �

Our next aim is to relate elements ofA(Dk (σ0))eig to certain distributions. Recall that we
denote byA′k and Stan3 (k)′ the continuous duals ofAk and Stan3 (k). LetΦ ∈ A(Dk (σ0))eig,
f ∈ Ak and g ∈ G. We set

λΦ( f 1gIB) B Φ(g)((g−1)∗( f 1gIB)) ∈ L,

where we observe that (g−1)∗( f 1gIB) � ((g−1)∗ f )1IB ∈ Ak (σ0).

5.44. Proposition. The function λΦ can be uniquely extended to an element ofA′k .

Proof. We want to define the extension by

λΦ( f ) �
∑

g

λΦ( f 1gIB),

where the sum is over any finite set of matrices g ∈ G such that the corresponding open
sets gIB form a disjoint covering of G. Once this well-defined, it is clear that this is the
unique extension. In order to see the well-definedness, we first observe that

λΦ( f 1gxhIB) � Φ(gxh)(((gxh)−1)∗( f 1x ghIB))

� (Φ(gh) · h−1)((g−1)∗( f 1gIB)) � λ( f 1gIB)

for x ∈ K, h ∈ I, which shows that each summand is independent of the choice of g.
Thus, we are left with showing the independence of the chosen covering. For this, we
define

µΦ, f : Z[T̂2]→ L

by µΦ, f (σ) � λΦ( f 1gIB) for σ ∈ T̂2, where g ∈ G is chosen such that σ � gσ0. Our
previous computation ensures that this is independent of the choice of g. Assume that
µΦ, f satisfies

µΦ, f (gIyiσ0 − gσ0) � 0 for g ∈ G, i ∈ {1, 2}.
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Then, by Proposition 2.16, µΦ, f defines a linear functional on C∞(G/B,Z). But going
back through the definition this just means that

λ( f 1gIB) �
∑

g′
λ( f 1g′IB),

whenever the sets g′IB cover gIB disjointly, which proves the independence of the
chosen covering. Thus, we need to show that µΦ, f (gIyiσ0−gσ0) � 0 for g ∈ G, i ∈ {1, 2}.
If we write

IyiI �

⊔
j

yi , jI

and set fg B (g−1)∗( f 1gIB) ∈ Ak (σ0), we compute

µΦ, f (gIyiσ0 − gσ0) � *.
,

∑
j

µΦ, f (g yi , jσ0)+/
-
− µΦ, f (gσ0)

�
*.
,

∑
j

Φ(g yi , j)(((g yi , j)−1)∗( f 1g yi , jIB))+/
-
−Φ(g)( fg)

�
*.
,

∑
j

(Φ(g yi , j) · y−1i , j )( fg)+/
-
−Φ(g)( fg)

� π−ni Uπ,iΦ(g)( fg) −Φ(g)( fg) � 0.

The continuity of λΦ follows directly from the fact that Φ(g) ∈ Dk (σ0) is continuous for
each g ∈ G. �

5.45. Proposition. The map A(Dk (σ0))eig → A′k given by Φ 7→ λΦ is a G-equivariant
isomorphism.

Proof. We first show the G-equivariance. By definition of λΦ, it suffices to show that

(g · λΦ)( f 1hIB) � λg·Φ( f 1hIB)

for f ∈ Ak , g , h ∈ G. We compute

(g · λΦ)( f 1hIB) � λΦ((g−1)∗( f 1hIB))

� λΦ(((g−1)∗( f ))1g−1hIB)

� Φ(g−1h)((h−1g)∗(((g−1)∗( f ))1g−1hIB)

� (g · Φ)(h)((h−1)∗( f 1hIB))
� λg·Φ( f 1hIB).

To show that Φ 7→ λΦ is an isomorphism, we construct an explicit inverse. Let λ ∈ A′k .
We define Φλ : K×\G → Dk (σ0) by

Φλ (g)( f ) � λ(g∗ f ) ∈ L
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for g ∈ G and f ∈ Ak (σ0), where we regard f as an element of Ak by extending
with zero. A similar but simpler computation as in Proposition 5.44 then shows that
Φλ ∈ A(Dk (σ0)eig. It is easy to check that the two maps are inverse to each other,
completing the proof. �

By requiring stronger conditions on Φ, we can restrict the distribution λΦ even further.

5.46. Proposition. Let Φ ∈ A(Dk (σ0))eig such that

Wπ,iρ
i (Φ) � −πmiρi (Φ) for i ∈ {1, 2}.

Then we have λΦ ∈ Stan3 (k)′.

Proof. We need stow that λΦ vanishes onAPi ,k for i ∈ {1, 2}. Fix i ∈ {1, 2} and f ∈ APi ,k .
Observe that we can cover G disjointly by sets of the form gIiB � gIPi , see [SS91,
Section 4, Lemma 14 and Proposition 8’]. Let fg B (g−1)∗( f 1gIB) and note that by
definition we have fg ∈ APi ,k (σ0). Then we may write

λΦ( f ) �
∑

g

λΦ( f 1gIi B) �
∑

g

*.
,
λΦ( f 1gIB) +

∑
j

λΦ( f 1gsi , jIB)+/
-

�

∑
g

*.
,
Φ(g)( fg) +

∑
j

(Φ(gsi , j) · s−1i , j )( fg)+/
-
,

where IsiI �
⊔

j si , jI as in the proof of Proposition 5.44. By the assumption and the
definition of the Wπ,i-operator, we have

(ρi (Φ))(g) +
∑

j

(ρi (Φ))(gsi , j) · s−1i , j � 0.

But since fg ∈ APi ,k (σ0), this means that each summand in the above sum is zero, hence
λΦ( f ) � 0. �

5.47. Remark. In the above proof we show more: If Wπ,iρi (Φ) � −πmiρi (Φ) for one
i ∈ {1, 2}, then λΦ vanishes onAPi ,k .

We are now able to prove the following theorem.

5.48. Theorem. Let L � CK and assume that every automorphic form in A(Vk )newb is non-
critical. Then Conjecture 4.29 holds.

Proof. Let c ∈ Cb
har(T , k) and consider the automorphic form ϕc ∈ A(Vk )newb as in

Proposition 5.43. Then by assumption ϕc is non-critical, i.e., there exist unique auto-
morphic forms Φc ∈ A(Dk (σ0))eigb and Φc ,i ∈ A(DPi ,k (σ0))Uπ,i�πni

b with ρ(Φc) � ϕc and
ρi (Φc ,i) � ϕc for i ∈ {1, 2}. By uniqueness, we then have

ρi (Φc) � Φc ,i for i ∈ {1, 2}.



72 CHAPTER 5. OVERCONVERGENT AUTOMORPHIC FORMS AND DISTRIBUTIONS

Moreover, we obtain

ρi (π−mi Wπ,iΦc ,i +Φc ,i) � π−mi Wπ,iϕc + ϕc � 0.

But sinceWπ,i◦Uπ,i � Uπ,i◦Wπ,i , we haveπ−mi Wπ,iΦc ,i ∈ A(DPi ,k (σ0))Uπ,i�πni

b . Hence by
uniqueness we obtain Wπ,iΦc ,i � −πmiΦc ,i . This shows thatΦc satisfies the assumptions
of Proposition 5.46. We claim that λΦc ∈ Stan3 (k)′ satisfies the properties in Conjecture
4.29. For this, let F ∈ Pk and σ ∈ T̂2. Write σ � gσ0. Then we have

λΦc ([1U (σ)] ⊗ F) � λΦc (ι(F)1gIB) � Φc (g)((g−1)∗(ι(F)1gIB))

� Φc (g)(ι0((g−1)∗F)) � ϕc (g)((g−1)∗(F))

� (ϕc (g) · g−1)(F) � c(σ)(F)

by Proposition 4.7 and Proposition 5.43. This shows property (i) in Conjecture 4.29.
Property (ii) is immediate as all maps involved are L-linear and G-equivariant. �

Note that we have not explicitly used the boundedness of the lift Φc in the above proof.
In fact, by incorporating this boundednesswe can strengthen Conjecture 4.29 as follows.
Note also that we can generalize everything to arbitrary L, i.e., we do not need to assume
L � CK .

5.49. Conjecture. For each c ∈ Cb
har(T , k) there exists a unique λc ∈ Stan3 (k)′ with the

following properties:

(i) λc ([1U (σ)] ⊗ F) � c(σ)(F) for all F ∈ Pk , σ ∈ T̂2, where we regard [1U (σ)] ⊗ F as an
element of Stan3 (k) via the map in Proposition 4.7.

(ii) The map Cb
har(T , k) → Stan3 (k)′ given by c 7→ λc is L-linear and G-equivariant.

(iii) There exists a constant C > 0 such that we have |λ(g∗(xI )) | ≤ Cq−|I | for all I, where we
regard xI

∈ A
rig
k (σ0) as an element ofAk by extending with zero.

We obtain the following immediate consequence.

5.50. Corollary. Assume that every automorphic form in A(Vk )newb is non-critical. Then
Conjecture 5.49 holds.

Proof. We keep the notation from the proof of Theorem 5.48. We first show how the
boundedness of Φ translates to the estimate in (iii). For this, note that by construction
we have

λΦ(g∗(xI )) � Φ(g)(xI ).

But since xI
∈ A

rig
k (σ0), the right hand side is just Ψ(Φ)(g)(xI ), see Theorem 5.37.

The definition of boundedness implies that we find an element α ∈ OL \ {0} such that
αΨ(Φ)(g) ∈ Dint

k (σ0) for all g ∈ G. Let C B |α−1 |. Putting all of this together, we obtain

|λΦ(g∗(xI )) | ≤ Cπ−|I | .
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We are left with showing uniqueness. For this, let λ ∈ Stan3 (k)′ be any distribution
satisfying properties (i), (ii) and (iii). By Proposition 5.45, we find a corresponding
automorphic form Φλ ∈ A(Dk (σ0))eig. But property (i) then translates to the fact that
Φλ lifts ϕc and as above property (iii) translates to the fact that Φλ is bounded. This
shows that Φλ � Φc by non-criticality. �

5.4. Non-critical slopes

The aim of this section is to prove non-criticality for a certain class of Uπ,i-eigenvalues.
More precisely, we prove thatUπ,i-eigenvalueswhose valuations are bounded by certain
explicit constants are non-critical. While these bounds are not good enough to obtain
the non-criticality of the forms needed to proveConjecture 4.29 in general, we still obtain
the needed bounds for k � 0. We follow [Wil18].

5.51. Definition. Let α1 , α2 ∈ OL \ {0}. We say that the pair (α1 , α2) has small slope if

ν(αi) ≤ νcriti where νcriti �

{
k , i � 1,
0, i � 2,

for i ∈ {1, 2}.

We will prove the following theorem.

5.52. Theorem. Let α1 , α2 ∈ OL \ {0} be such that the pair (α1 , α2) has small slope. Then
(α1 , α2) is non-critical in the sense of Definition 5.40.

We obtain the following corollary.

5.53. Corollary. Let k � 0. Then Conjecture 4.29 holds.

Proof. For k � 0 the forms in A(Vk )new are Uπ,i-eigenforms with eigenvalue 1 for both
i ∈ {1, 2}. Hence these eigenvalues are small in the sense of the above definition. The
result then follows from the above theorem and Theorem 5.48. �

5.54. Remark. We should remark that the bound in Theorem 5.52 is consistent with
the standard literature, see for example [Wil18, Theorem 5.13], [BW20, Theorem 4.4]
or [BC09, Proposition 7.3.5]. We find that it is a very interesting observation that,
in stark contrast to the GL2(K)-case, the above bounds are not strong enough to prove
Conjecture 4.29 aside from the trivial case k � 0. In factwe think that this leads to a rather
deep underlying question, even for K � Qp : It seems to indicate that, when considering
groups of higher rank, a large class of formswhomonewould naturally expect to be non-
critical, namely the space of forms new at the prime under consideration, lies outside
the proven range of non-criticality. This means that the geometry of the corresponding
eigenvarieties is much less understood. This raises many questions, for example on how
to construct corresponding p-adic L-functions attached to these forms and other natural
objects of deep arithmetic interest. In fact we view the link to distributions proved in the
previous section as evidence towards the fact these forms should in fact be non-critical.
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The remainder of this section is devoted to proving Theorem 5.52. This will be done in
several steps. The first step is proving an abstract control theorem.

5.4.1. An abstract control theorem

The aim of this subsection is to prove a general control theorem, whichwill be applied to
our situation in the subsequent subsections. Our theorem is an adaptation of the ideas
in [Wil18, Section 1] to the setting of automorphic forms. All of this is based on [Gre06]
and [Gre07]. Let M be a coefficient module with integral structure (Mint , (ni)i�1,2).
Assume that there is a decreasing I-stable filtration (Fn Mint)n≥0 on Mint,

Mint
⊃ F0Mint

⊃ F1Mint
⊃ . . .

with
⋂

n≥0 Fn Mint � 0 and Mint � lim
←−−n

An Mint, where An Mint B Mint/Fn Mint. We
denote the natural projection Mint

→ An Mint by prn .

5.55. Theorem (Control theorem). Let M be a coefficient module and let (Mint , (ni)i�1,2)
and (Fn Mint)n≥0 as above. Fix α ∈ OL \ {0} and i ∈ {1, 2}. Assume that for all n ≥ 0 and
µ ∈ Fn Mint we have

πniµ · y−1i ∈ αFn+1Mint. (7)

Then pr0 induces an isomorphism

ρ : A(M)Uπ,i�α
b → A(A0Mint

⊗OL L)Uπ,i�α
b .

5.56. Remark. We need to explain what we mean by the space on the right hand side.
Note that since we have

πniµ · y−1i ∈ αF1Mint
⊆ F0Mint for µ ∈ F0Mint.

by taking quotients, the same condition holds in A0Mint. This means that A0Mint
⊗OL L

carries a natural structure of a coefficient module by Remark 5.5. The natural projection
M → A0Mint

⊗OL L is then G-equivariant and compatible with the chosen integral
structures.

Proof. We observe first that since yi , j ∈ IyiI, we can replace yi with any yi , j in (7). We
begin by proving the injectivity. LetΦ ∈ A(M)Uπ,i�α

b with ρ(Φ) � 0. SinceΦ is bounded,
after rescaling we may assume that Φ ∈ A(Mint)Uπ,i�α. But then ρ(Φ) � 0 translates to
Φ ∈ A(F0Mint). Recall that

(Uπ,iΦ)(g) � πni
∑

j

Φ(g yi , j) · y−1i , j .

Then (7) implies Uπ,iΦ ∈ αF1Mint. Since Φ ∈ A(Mint)Uπ,i�α and Mint is torsion-free, it
follows that Φ ∈ A(F1Mint) and inductively, we obtain Φ ∈ A(

⋂
n≥0 Fn Mint). But since
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⋂
n≥0 Fn Mint � 0, we have Φ � 0, hence we have proved the injectivity.

To prove the surjectivity, let ϕ ∈ A(A0(Mint) ⊗OK K)Uπ,i�α
b . Since ϕ is bounded, after

suitable rescaling, we may assume that ϕ ∈ A(A0(Mint))Uπ,i�α. Now we set

Mint
α B αMint + F0Mint.

This is an I-stable submodule of Mint. Moreover, by (7) we have

πniµ · y−1i ∈ αMint for µ ∈ Mint
α . (8)

We also have Mint
α � lim

←−−n
An Mint

α , where An Mint
α B Mint

α /Fn Mint. By definition of Mint
α ,

we have
αA0Mint

� pr0(αMint) � pr0(Mint
α ) � A0Mint

α .

Hence, we can even assume that ϕ ∈ A(A0Mint
α )Uπ,i�α. Now, assume that we have

already constructed a lift Φn
∈ A(An Mint

α )Uπ,i�α of ϕ. We want to show that then
there is a lift Φn+1

∈ A(An+1Mint
α )Uπ,i�α compatible with Φn . For this, we fix coset

representatives yi , j as in the definition of the Uπ,i-operator. For each j, we pick a lift of
Φn to a map

Φ̃ j : K×\G → Mint
α .

Then we may define another map Φ̃ : K×\G → Mint
α by

Φ̃(g) B πni
∑

j

Φ̃ j (g yi , j) · y−1i , j .

Now (8) implies that Φ̃(g) ∈ αMint. Hence, we may define

Φn+1 : K× \ G → An+1Mint

by Φn+1(g) � prn+1(α−1Φ̃(g)). By definition α−1Φ̃ and Φn+1 lift Φn , which implies
that they take values in Mint

α and An+1Mint
α . We claim that Φn+1 is independent of the

choices of (Φ̃ j) j in the construction. For this, let (Φ̃′j) j be another set of lifts. Then by
construction

Φ̃ j (g) − Φ̃′j (g) ∈ Fn Mint.

Hence, the claim follows directly by (7). Next, we claim that in factΦn+1
∈ A(An+1Mint

α ).
For this, let h ∈ I. Then

Φn+1(gh−1) · h � prn+1(α−1Φ̃(gh−1) · h)

� prn+1(α−1πni
∑

j

Φ̃ j (gh−1yi , j) · (y−1i , j h))

� prn+1(α−1πni
∑

j

Φ̃ j (g(h−1yi , j)) · (h−1yi , j)−1).
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Since h ∈ I, by using the double coset decomposition in the definition of the Uπ,i-
operator, we find elements h j ∈ I and a permutation τ such that∑

j

Φ̃ j (g(h−1yi , j)) · (h−1yi , j)−1 �
∑

j

Φ̃τ( j) (g yi , j h j)) · h−1j y−1i , j

Now, since we assume that Φn
∈ A(An Mint

α ), every Φ̃τ( j) (·h j) · h−1j is again a lift of Φn .
Hence, by our first claim, we see that

Φn+1(gh−1) · h � prn+1(α−1πni
∑

j

Φ̃ j (g yi , j) · y−1i , j ) � Φn+1(g).

Now, wewant to show thatΦn+1
∈ A(An+1Mint

α )Uπ,i�α. But this follows directly from our
first claim since (α−1Φ̃) j is another set of lifts ofΦn . By induction, we obtain a compatible
system (Φn)n≥0 of eigenformsΦn

∈ A(An Mint
α )Uπ,i�α lifting ϕ. Since Mint

α � lim
←−−n

An Mint
α ,

these glue to Φ ∈ A(Mint
α )Uπ,i�α, proving the surjectivity. �

5.4.2. From algebraic to partially overconvergent coefficients

In this section, we apply Theorem 5.55 to our situation. We want to prove the following
theorem, which implies part (ii) of the definition of non-criticality.

5.57. Theorem. Let i ∈ {1, 2} and α ∈ OL \ {0} such that ν(α) ≤ νcriti . Then

ρi : A(Drig
Pi ,k

(σ0))Uπ,i�α
b → A(Vrig

k )Uπ,i�α
b

is an isomorphism.

We prove the theorem by verifying the assumptions of Theorem 5.55. This has to be
done separately for i � 1 and i � 2. In both cases, by Proposition 5.25, we can work
with the integral structure Dint

Pi ,k
(σ0). Thus, in order to apply Theorem 5.55, we need to

construct appropriate filtrations of Dint
Pi ,k

(σ0) for i ∈ {1, 2}. We begin with the case i � 1,
which is also studied in [Wil18, Section 5.1]. For this, for n ∈ Z≥0 let

FnDint
P1 ,k

(σ0) B
{
µ ∈ Dint

P1 ,k
(σ0) ��� µ(xI ) ∈ πn

OL for all I
}
∩ ker(π1).

Clearly, we have Fn+1Dint
P1 ,k

(σ0) ⊆ FnDint
P1 ,k

(σ0) and
⋂

n≥0 FnDint
P1 ,k

(σ0) � 0. The following
lemma is based on [PP09, Proposition 4.4] and [Wil18, Proposition 5.4 and Lemma 5.7].

5.58. Lemma.

(i) The filtration (FnDint
P1 ,k

(σ0))n≥0 is I-stable.

(ii) For µ ∈ FnDint
P1 ,k

(σ0) we have πn1µ · y−11 ∈ π
kFn+1Dint

P1 ,k
(σ0).

(iii) We have Dint
P1 ,k

(σ0) � lim
←−−n

AnDint
P1 ,k

(σ0) and A0Dint
P1 ,k

(σ0) � V int
k .
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Proof. For property (i), note that since π1 is I-equivariant, ker(π1) is I-stable. That the
other condition is I-stable clear from the definition. To show (ii), we compute

(πn1µ · y−11 )(x i2
2 x i3

3 ) � πi2+i3µ(x i2
2 x i3

3 )

for µ ∈ FnDint
P1 ,k

(σ0). But since µ ∈ ker(π1), we have µ(x i2
2 x i3

3 ) � 0 for i2 + i3 ≤ k. Hence,
it follows that

(πn1µ · y−11 )(x i2
2 x i3

3 ) ∈ πk+1πn
OL � πkπn+1

OL ,

which completes the proof of (ii). For (iii), observe that Lemma 5.23 implies

V int
k � Dint

P1 ,k
(σ0)/ker(π1) � A0Dint

P1 ,k
(σ0).

Weneed to show thatDint
P1 ,k

(σ0) � lim
←−−n

AnDint
P1 ,k

(σ0). The injectivity follows directly from⋂
n≥0 FnDint

P1 ,k
(σ0) � 0. To prove the surjectivity, let (µn)n≥0 ∈ lim

←−−n
AnDint

P1 ,k
(σ0) and fix

lifts µ̃n ∈ D
int
P1 ,k

(σ0) of µn for each n. By definition, we have

µ̃n − µ̃m ∈ FmDint
P1 ,k

(σ0)

for all n ≥ m. This means the the sequence (µ̃(xI ))n≥0 ⊂ π |I |OL is Cauchy for each I,
say converging to some cI ∈ π |I |OL. Let µ ∈ Dint

P1 ,k
(σ0) be the unique distribution that

satisfies µ(xI ) B cI for each I. Then µ projects to µn for each n ≥ 0. �

5.59. Remark. We would like to point out that the condition µ(xI ) ∈ πn
OL in the

definition of FnDint
P1 ,k

(σ0) is in fact only a restriction on the moments µ(xI ) with |I | ≤ n
as elements ofDint

P1 ,k
(σ0) satisfy µ(xI ) ∈ π |I |OL by definition. This makes it clear that this

filtration is the exact analogue of the filtration considered in [Wil18, Section 5.1]. The
difference being that we consider spaces of functions on (πOK)3 whereas in [Wil18] the
functions are defined on O3

K .

The lemma above shows that the assumptions of Theorem 5.55 are satisfied which
proves Theorem 5.57 in the case i � 1.

Next, we consider the case i � 2. We follow the same strategy as in the case i � 1 and set

FnDint
P2 ,k

(σ0) B
{
µ ∈ Dint

P2 ,k
(σ0) ��� µ(x i1

1 (x2 − x1x3) i2x i3
3 ) ∈ πn

OL for all I
}
∩ ker(π2)

for n ∈ Z≥0. Clearly, we have Fn+1Dint
P2 ,k

(σ0) ⊆ FnDint
P2 ,k

(σ0) and
⋂

n≥0 FnDint
P2 ,k

(σ0) � 0.

5.60. Lemma.

(i) The filtration (FnDint
P2 ,k

(σ0))n≥0 is I-stable.

(ii) For µ ∈ FnDint
P2 ,k

(σ0) we have πn2µ · y−12 ∈ Fn+1Dint
P2 ,k

(σ0).

(iii) We have Dint
P2 ,k

(σ0) � lim
←−−n

AnDint
P2 ,k

(σ0) and A0Dint
P2 ,k

(σ0) � V int
k .
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Proof. Properties (i) and (iii) can be checked in complete analogy with Lemma 5.58. For
(ii), we compute

(πn2µ · y−12 )(x i1
1 (x2 − x1x3) i2x i3

3 ) � πi1+i2µ(x i1
1 (x2 − x1x3) i2x i3

3 )

for µ ∈ FnDint
P2 ,k

(σ0). But since µ ∈ ker(π2), we have µ(x i1
1 (x2 − x1x3) i2x i3

3 ) � 0 for
i1 � i2 � 0. Hence, it follows that

(πn2µ · y−12 )(x i1
1 (x2 − x1x3) i2x i3

3 ) ∈ ππn
OL � πn+1

OL ,

which completes the proof of (ii). �

Again we see that all assumptions in Theorem 5.55 are satisfied proving Theorem 5.57
in the case i � 2.

5.4.3. From partially overconvergent to overconvergent coefficients

To prove Theorem 5.52, we need to lift from partially overconvergent to overconvergent
coefficients. It suffices to do this in the case i � 1. We want to prove the following
theorem by applying Theorem 5.55.

5.61. Theorem. Let α ∈ OL \ {0} such that ν(α) � 0. Then

ρ1 : A(Drig
k (σ0))Uπ,2�α

b → A(Drig
P1 ,k

(σ0))Uπ,2�α
b

is an isomorphism.

5.62. Remark. Similarly, one can prove that

ρ2 : A(Drig
k (σ0))Uπ,1�α

b → A(Drig
P2 ,k

(σ0))Uπ,1�α
b

is an isomorphism for α ∈ OL \ {0} such that ν(α) ≤ k. As this is not needed for our
application, we omit the proof.

For the proof, by Proposition 5.25, we can work with the integral structure Dint
k (σ0).

Thus, in order to apply Theorem 5.55, we need to construct an appropriate filtration of
Dint

k (σ0). This is similar to [Wil18, Section 5.2]. For n ∈ Z≥0 let

FnDint
k (σ0) B

{
µ ∈ Dint

k (σ0) ��� µ(xI ) ∈ πn
OL

}
∩ ker(π1).

Clearly, we have Fn+1Dint
k (σ0) ⊆ FnDint

k (σ0) and
⋂

n≥0 FnDint
k (σ0) � 0.

5.63. Lemma.

(i) The filtration (FnDint
k (σ0))n≥0 is I-stable.

(ii) For µ ∈ FnDint
k (σ0) we have πn2µ · y−12 ∈ Fn+1Dint

k (σ0).
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(iii) We have Dint
k (σ0) � lim

←−−n
AnDint

k (σ0) and A0Dint
k (σ0) � Dint

P1 ,k
(σ0).

Proof. Properties (i) and (iii) can be checked in complete analogy with Lemma 5.58. For
(ii), we compute

(πn2µ · y−12 )(xI ) � πi1+i2µ(xI )

for µ ∈ FnDint
k (σ0). But since µ ∈ ker(π1), we have µ(xI ) � 0 for i1 � 0. Hence, it follows

that
(πn2µ · y−12 )(xI ) ∈ ππn

OL � πn+1
OL ,

which completes the proof of (ii). �

We see that the assumptions of Theorem 5.55 are satisfied, which proves Theorem 5.61.

Now, we have all the tools needed to prove Theorem 5.52.

Proof of Theorem 5.52. First, we observe that by definition we can work with forms with
rigid analytic coefficients. Then by Theorem 5.57, part (ii) of Definition 5.40 is satisfied.
We need to show part (i). For this, observe that by Theorem 5.61 we have that

ρ1 : A(Drig
k (σ0))Uπ,2�α2

b → A(Drig
P1 ,k

(σ0))Uπ,2�α2
b

is an isomorphism. But since Uπ,1 ◦Uπ,2 � Uπ,2 ◦Uπ,1, this induces an isomorphism

ρ1 : A(Drig
k (σ0))(Uπ,i�αi )i∈{1,2}

b → A(Drig
P1 ,k

(σ0))(Uπ,i�αi )i∈{1,2}
b .

In the same way we obtain the isomorphism

ρ1 : A(Drig
P1 ,k

(σ0))(Uπ,i�αi )i∈{1,2}
b → A(Vk )(Uπ,i�αi )i∈{1,2}

b .

Composing these two isomorphisms and noting that ρ0 � ρ1 ◦ ρ1 shows that part (i) is
satisfied, completing the proof. �

5.64. Remark. We should remark that the proof of Theorem 5.55, applied to the specific
filtrations above, provides an algorithm for computing values of the (unique) lifts in
practice: One needs to take an arbitrary initial lift and the iterate the (rescaled) Uπ,i-
operator to compute the values of the lift to higher and higher precision. This method
has proven to be very effective for computations for GL2(K), see [Gre06] and [FM14].





APPENDIXA
Locally analytic manifolds and representations

In this appendix, we provide the all notions needed in order to define locally analytic
representations and the locally analytic induction functor. Since most of the standard
literature only considers only the case where K is a finite extension of Qp , we quickly
develop the necessary tools in more generality. We do not discuss duality and the oper-
ation of the Lie algebra here as we expect these constructions to behave very differently
over local fields of positive characteristic. However, the notion of a locally analytic
representations can be adapted without any difficulty. All of this is based on [Fea99],
[ST02a] and [Eme17].

A.1. Locally convex vector spaces

We follow [ST02a, Section 1] and [Fea99, Section 1], see also [Sch02]. Let L be a complete
extension of K inside CK .

A.1. Definition. Let V be a (not necessarily finite-dimensional) topological L-vector
space.

(i) V is called locally convex if it has a fundamental system of open neighbourhoods
consisting of OL-modules.

(ii) An OL-submodule of V is called a lattice if it L-linearly generates V .

Note that in a locally convex L-vector space any open OL-submodule is a lattice.

A.2. Definition. Let V be a Hausdorff topological L-vector space. An L-subvector
space U of V is called an FH-space if there exists a Fréchet-topology τ on U such that the
inclusion (U, τ) → V is continuous. It is called a BH-space if the topology τ is a Banach
topology.

A.3. Definition. Let V be a locally convex Hausdorff L-vector space.

(i) V is called barrelled if each closed lattice in V is open.

(ii) A subset B ⊆ V is called compactoid if for any open lattice Λ ⊂ V there are finitely
many vectors v1 , . . . , vn such that B ⊂ Λ + OLv1 + · · · + OLvn .
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(iii) A bounded OL-submodule B ⊆ V is called c-compact if it is compactoid and
complete.

(iv) Let W be another locally convex Hausdorff L-vector space and let f : V → W be
a continuous linear map. We call f compact if there is an open lattice Λ ⊂ V such
that the closure of f (Λ) in W is c-compact.

(v) V is called of compact type if it is the locally convex direct limit of a sequence

V1
ι1
−→ V2

ι2
−→ V3

ι3
−→ · · ·

of locally convex Hausdorff L-vector spaces Vn for n ∈ N with injective compact
linear maps ιn .

A.4. Remark. In part (v) of the above definition one can require the stronger condition
that the spaces Vn are Banach spaces, see [Eme17, Section 1.1]. Note that every vector
space of compact type is complete, see [Fea99, Theorem 1.2.8].

A.2. Locally analytic manifolds

With the preparations in the previous section we are now able to define locally analytic
manifolds and locally analytic functions on them. We follow [DT08, Section 2.1], [Bou67,
Section 5.1] and [ST02a, Section 2]. We keep the notation from the previous section. Fix
n ≥ 1. Let u � (u1 , . . . , un) ∈ Kn and r � (r1 , . . . , rn) ∈ Rn . Let D(u , r) be the closed
polydisc in Kn given by

D(u , r) �
{
x ∈ Kn ��� |xi − ui | ≤ q−ri for i ∈ {1, . . . , n}

}
.

For r ∈ R, we also write D(u , r) � D(u , (r, . . . , r)). Observe that the above polydiscs
form a basis for the topology of Kn . A K-analytic function on D(u , r) is given by a
convergent power series

f (x) �
∑

I

cI (x − u)I ,

where the sum is over n-tuples I � (i1 , . . . , in) with i j ≥ 0, cI ∈ L and

(x − u)I B
n∏

j�1
(x j − u j) i j .

The convergence condition is

|cI | · q
−

∑n
j�1 r j i j

→ 0 as |I | �
n∑

j�0
i j →∞.

We denote the L-vector space of such analytic functions by AL (D(u , r)). It becomes a
Banach algebra with respect to the norm

‖ f ‖D(u ,r) � sup
I

{
|cI | · q

−
∑n

j�1 r j i j
}
.
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A.5. Definition. Let U,V ⊆ Kn open. A map f : U → V is called K-analytic if for each
u ∈ U we find r ∈ Rn such that D(u , r) ⊆ U and such that each component of f is
K-analytic on D(u , r).

A.6. Definition. Let M be a paracompact topological space.

(i) A K-analytic chart (Mi , ϕi) for M is a tuple consisting of an open subset Mi ⊂ M
and a homeomorphism

ϕi : Mi → Di � D(0, r) ⊂ Kn

for some r ∈ Rn .

(ii) Two K-analytic charts (Mi , ϕi) and (M j , ϕ j) for M are called compatible if the map

ϕi ◦ ϕ
−1
j : ϕ j (Mi ∩M j) → ϕi (Mi ∩M j)

is K-analytic.

(iii) A collection of compatible K-analytic charts (Mi , ϕi) for M such that
⋃

i Mi � M
is called an atlas for M.

(iv) An atlasA for M is called maximal if there is no atlas B for M such thatA ( B.

(v) The pair (M,A), where A is a maximal atlas for M, is called a (locally) K-analytic
manifold.

Note that one can naturally define the notion of a K-analyticmapbetween two K-analytic
manifolds as in the classical theory.

A.7. Example. The following spaces can be naturally viewed as K-analytic manifolds:
The group GLn (K) and the projective space Pn (K) for any n ≥ 1.

Via the atlas A for M, we can identify the analytic functions on the set Mi with those
on Di for each chart (Mi , ϕi). We write AL (Mi , ϕi) for this space of functions. Note that
every covering of a K-analytic manifold can be refined to a disjoint covering.

A.8. Definition. Let M be a K-analytic manifold. The locally analytic functions on M
(with values in L) are defined as follows. For each covering of M by disjoint charts
(Mi , ϕi) we form the locally convex direct product

Can({Mi , ϕi }) B
∏

i

AL (Mi , ϕi).

We set
Can(M, L) B lim

−−→
Can({Mi , ϕi }),

where the limit is over finer and finer coverings. This space is equipped with the locally
convex direct limit topology.
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A.9. Proposition. Suppose that M is compact. Then the above limit realizes Can(M, L) as a
vector space of compact type in the sense of Definition A.16.

Proof. This follows from [Fea99, Satz 2.3.2]. �

We also need locally analytic functions withmore general coefficients. Let V be a locally
convex Hausdorff L-vector space. A V-index I on M is a family of triples (Mi , ϕi ,Vi)i∈I ,
where (Mi , ϕi)i∈I is an atlas for M and Vi → V are BH-spaces. We set

FVi (Mi , ϕi) B AL (Mi , ϕi)⊗̂LVi

and form the locally convex direct product

FV (I) B
∏

i

FVi (Mi , ϕi).

A.10. Definition. Let M be a K-analytic manifold. The locally analytic functions on M
with values in V are the elements of

Can(M,V) B lim
−−→
I

FV (I),

where we note that the V-indices on M form a directed set on which FV (I) is a directed
system. We equip the space with the locally convex direct limit topology.

This definition is compatible with the above definition for V � L. We can extend
Proposition A.9 as follows.

A.11. Proposition. Suppose that M is compact and that V is of compact type. Then
Can(M,V) is a vector space of compact type.

Proof. See [Eme17, Proposition 2.1.18]. �

A.3. Locally analytic representations

We are now able to define locally analytic representations. In this section, we follow
[Fea99, Section 4] and [ST02a, Section 3]. Let G be a locally analytic K-group, i.e., G is
a group that carries a structure as a K-analytic manifold such that all group operations
are analytic.

A.12. Definition. Let V be a barrelled locally convex Hausdorff L-vector space on
which G acts via continuous linear endomorphisms. Then V is called a locally analytic
G-representation if, for each v ∈ V , the orbit map ρv (g) B gv is a V-valued locally
analytic function on G.

The basic example is given as follows. Let V be a barrelled locally convex Hausdorff
L-vector space. We let G act on Can(G,V) via

(g∗ f )(h) � f (g−1h) for g , h ∈ G, f ∈ Can(G,V).

Then we obtain the following.
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A.13. Proposition. Let G be compact. Then Can(G,V) is a locally analytic G-representation.

Proof. See [Fea99, Satz 3.3.4]. �

Now we can define the locally analytic induction functor. Let H ⊆ G be a closed locally
analytic subgroup and ρ : H → Aut(V) be a locally analytic H-representation. We
define

IndG
H (ρ) B

{
f ∈ Can(G,V) ��� f (gh) � ρ(h−1) f (g) for g ∈ G, h ∈ H

}
.

This is a G-stable closed subspace of Can(G,V).

A.14. Proposition. The quotient G/H carries a natural structure of a K-analytic manifold.
The quotient map G → G/H splits. Each splitting induces an isomorphism of K-analytic
manifolds G/H × H → G.

Proof. See [Fea99, Satz 4.1.1]. �

A.15. Proposition. Assume that G/H is compact. Then IndG
H (ρ) is a locally analytic G-

representation.

Proof. See [Fea99, Satz 4.1.5]. �

A.16. Proposition. Assume that V is of compact type and that there is a compact open
subgroupK of G such that G � KH. Then IndG

H (ρ) is of compact type.

Proof. This follows from Proposition A.11 by the same arguments as in [Eme07, Section
2.1]. �

We need the following result.

A.17. Proposition. Assume that V is a Banach space. Then every splitting ι of the natural
projection G → G/H induces an isomorphism (of topological vector spaces)

ι∗ : IndG
H (ρ) → Can(G/H,V).

Proof. See [Fea99, Satz 4.3.1]. �

The locally analytic induction satisfies a version of Frobenius reciprocity.

A.18. Theorem (Frobenius reciprocity). Let W be a locally analytic G-representation. We
have a natural isomorphism

Homcont,G (W, IndG
H (ρ)) � Homcont,H (ResG

H (W ), ρ),

where ResG
H (·) is the usual restriction functor on representations.

Proof. See [Fea99, Theorem 4.2.6] and [OS10, Section 2.4]. �
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As an immediate consequencewe obtain that the functor IndG
H (·) is left-exact. Moreover,

we have the following.

A.19. Proposition. Let H ⊆ H′ ⊆ G such that the quotients are compact. Then we have a
natural isomorphism

IndG
H′ (Ind

H′
H (ρ)) � IndG

H (ρ).

We also need the following.

A.20. Proposition. Assume that G/H is compact and let 0→ U → V →W → 0 be an exact
sequence of finite-dimensional locally analytic H-representations. Then the induced sequence

0→ IndG
H (U) → IndG

H (V) → IndG
H (W ) → 0

is exact.

Proof. It suffices to check exactness on the right. For this, note that as the map in
Proposition A.17 is functorial, it suffices to show that Can(G/H,V) → Can(G/H,W ) is
surjective. But since G/H is compact and the coefficients are finite-dimensional, we
have Can(G/H,V) � Can(G/H, L) ⊗L V and Can(G/H,W ) � Can(G/H, L) ⊗L W and the
statement is clear. �

A.21. Remark. We should note that the above Proposition holds in much more gen-
erality, at least if L is spherically complete and of characteristic zero, see for example
[Sch11, Corollaire 4.14]. However, the proof relies on the duality theory of Schneider-
Teitelbaum which is not applicable in our situation.



PART II

Application to Drinfeld modular
forms of rank 3
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CHAPTER6
Drinfeld modular forms

The aim of the second part of this thesis is to apply the theory developed in Part I to
Drinfeldmodular forms of arbitrary weight for certain arithmetic subgroups of GL3(K).
We fix the following notation. Let A � Fq[t], F � Fq (t) and denote by ν the discrete
valuation on F given by ν( f /g) � deg(g) − deg( f ). Then the completion of F with
respect to ν is given by K � Fq ((1/t)). This is a local field of the type considered in Part I.
We keep the remaining notation from Part I. In particular, let OK � Fq~1/t�, the ring of
integers in K with residue field κ � Fq . Let CK be the completion of an algebraic closure
of K.

6.1. Basic definitions

We begin with basic constructions needed to define Drinfeld modular forms (of rank
3). We follow [BBP18a]. We should however note that we keep the normalizations
from Part I. In particular, our coordinates onX differ from the ones chosen in [BBP18a].
Wewill point out the differences that arise at the relevant places throughout this section.

In the sequel, let Γ ⊆ GL3(F) denote an arithmetic subgroup, i.e., a subgroup that is
commensurable with GL3(A). If furthermore Γ is contained in GL3(A) and contains
Γ(N) B ker(GL3(A) → GL3(A/N)) for some non-zero ideal N ⊆ A it is called a con-
gruence subgroup. As in the classical case, standard examples of congruence subgroups
are

Γ1(N) B
{

g ∈ GL3(A)
�����

g ≡
(
1 0 0
∗ 1 0
∗ ∗ 1

)
(mod N)

}
,

Γ0(N) B
{

g ∈ GL3(A)
�����

g ≡
(
∗ 0 0
∗ ∗ 0
∗ ∗ ∗

)
(mod N)

}
.

Note that usually the congruence conditions in the above definitions are transposed.
The reason for this change lies in the fact that we regard OX (k) as a left G-module,
whereas for example in [BBP18a] it is considered as a right G-module, see also Remark
6.3 below.
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6.1. Lemma. Let Γ ⊆ GL3(A) a congruence subgroup and g ∈ GL3(A). Then the subgroup
gΓg−1 ⊆ GL3(A) is again a congruence subgroup.

Proof. See [Bas14, Lemma 4.1.1]. �

The following definition is of central importance.

6.2. Definition. Let k , ` ∈ Z such that k ≥ 0 and 3 | k. A weak Drinfeld modular form of
weight k and type ` for Γ is an element of

Wk ,` (Γ) B
(
OX (k) ⊗CK det`−k/3

)Γ
.

We also abbreviateWk (Γ) BWk ,k/3(Γ).

6.3. Remark. There are several differences to the analogous definition in [BBP18a,
Definition 1.9], which we would like to address: First of all, the coordinates on X in
[BBP18a] are chosen such that the last entry is an unspecified (arithmetic) constant
ξ ∈ CK . In our situation, we chose ξ � 1. Secondly, we regard OX (k) as a left G-module,
whereas in [BBP18a], it is equipped with a right G-action denoted by ·|k ,` . The relation
between the two actions is given as follows. Let f ∈ OX (k). Then we have

g∗ f � f |k ,` gt for g ∈ G with ` � k
3 .

Now we turn to the expansions at infinity. This needs some preparations. We follow
[BBP18a, Section 4] closely. Recall that if z is a point in X, we can always renormalize
such that z � [z1 : z2 : 1]. Then we have ωi (z) � zi for i ∈ {1, 2}. By abuse of notation,
we simply write ω for points that are normalized in this manner. Let H denote the
subgroup of GL3(F) of matrices of the form

*.
,

1 0 0
∗ 1 0
∗ 0 1

+/
-

For any arithmetic subgroup Γ ⊆ GL3(F) we set ΓH B Γ ∩ H. We have a natural

isomorphism ι : F2
→ ΓH given by [x1 , x2] 7→

( 1 0 0
x1 1 0
x2 0 1

)
. By definition, every weak

modular form for Γ is a ΓH-invariant function. Since Γ is arithmetic, the subgroup

Λ B ι−1(ΓH ) ⊂ F2

is commensurable with A2. LetY � P1K \P
1(K), the Drinfeld period domain for GL2(K),

which is a rigid space over K by exactly the same arguments as in Chapter 1. We have a
natural inclusion of rigid spaces

X → A1
K ×Y ,

ω 7→ (ω1 , ω̃),
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where ω̃ � [ω2 : 1]. Observe that we have

ι(λ)∗ω � (ω1 + λω̃, ω̃) for λ ∈ Λ,

where λω̃ denotes the matrix product. This extends to an action of ΓH on A1
K × Y. We

define

e : A1
K ×Y → A

1
K ,

(ω1 , ω̃) 7→
∏

λ∈Λ\{0}

(
1 −

ω1
λω̃

)
.

We obtain the following.

6.4. Proposition. The function e : A1
K ×Y → A

1
K is well-defined and rigid analytic.

Proof. See [BBP18a, Proposition 4.7]. �

We define

E : A1
K ×Y → A

1
K ×Y ,

(ω1 , ω̃) 7→ (e (ω1 , ω̃), ω̃).

The following proposition is the key step towards the expansion at infinity.

6.5. Proposition. The action of ΓH on A1
K × Y is free and discontinuous and the quotient

ΓH\(A1
K ×Y) exists as a rigid space. The function E induces an isomorphism

E : ΓH\(A1
K ×Y) → A1

K ×Y ,

Proof. It follows from [BBP18a, Proposition 4.10] that the quotient exists and that E is
rigid analytic. Moreover, we obtain that the base change of E to CK which we denote
by ECK , is an isomorphism of rigid spaces over CK . To conclude that E is already an
isomorphism over K, we can apply [Con06, Theorem 4.2.3] since K → CK is faithfully
flat and quasi-compact. �

The following definitions are analogous to [BBP18a, Definition 4.12 andDefinition 4.13].

6.6. Definition.

(i) For n ∈ Z>0 and Rn > 0 let

I(n , Rn) B
{
ω ∈ X ��� ω̃ ∈ Yn , d(ω1 , K2ω̃) ≥ Rn

}
,

where d(·, ·) denotes the usual distance function onCK and the setsYn are defined
in analogy with Xn , see [BBP18a, Section 3]. Then I(n , Rn) is ΓH-invariant. A ΓH-
invariant admissible open subset N ⊆ X such that for each n > 0 there exists an
Rn > 0 with I(n , Rn) ⊆ N is called a neighbourhood of infinity.
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(ii) A subset of A1
K ×Y of the form

T �

⋃
n≥1

D(0, rn) ×Yn

with rn ∈ Z is called a tubular neighbourhood of {0}×Y, or just a tubular neighbourhood.
The intersection of a tubular neighbourhood with (A1

K \ {0}) ×Y is called a pierced
tubular neighbourhood.

Note that both tubular and pierced tubular neighbourhoods are admissible open. Ob-
serve that for ω ∈ X the function e has no zeros. Hence, we may form the inverse

u(ω) B
1

e (ω1 , ω̃)
.

We may set

ϑ : X → (A1
K \ {0}) ×Y ,

ω 7→ (u(ω), ω̃),

and obtain the following.

6.7. Theorem.

(i) The map ϑ induces an isomorphism of rigid analytic spaces from ΓH\X to an admissible
open subset of (A1

K \ {0}) ×Y.

(ii) For any neighbourhood of infinityN ⊆ X, the image ϑ(ΓH\N ) contains a pierced tubular
neighbourhood.

(iii) For any pierced tubular neighbourhood T ⊆ (A1
K \ {0}) × Y contained in the image of ϑ

there is a neighbourhood of infinityN ⊆ X such that ϑ induces an isomorphism

ϑ : ΓH\N → T.

Proof. This is proved exactly as [BBP18a, Theorem 4.16] using Proposition 6.5. �

Now we have all preparations needed to define the expansion at infinity. In the sequel,
whenever we refer to a rigid analytic function, we regard the underlying rigid space as
a rigid space over CK as we did for X in Chapter 1.

6.8. Lemma. Let T ⊆ (A1
K \ {0}) × Y be a pierced tubular neighbourhood. Then any rigid

analytic function f ∈ OT has a unique Laurent series expansion

f (ω1 , ω̃) �
∑
n∈Z

fn (ω̃)ωn
1

with fn ∈ OY which converges uniformly on every affinoid subset of T.
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Proof. See [BBP18a, Lemma 5.3]. �

This lemma and Theorem 6.7 have the following consequence.

6.9. Proposition. Let f ∈ OΓH
X

. Then there exist unique rigid analytic functions fn ∈ OY
such that

f (ω) �
∑
n∈Z

fn (ω̃)u(ω)n

on some neighbourhood of infinity. The convergence is uniform on each affinoid subset.

Proof. See [BBP18a, Proposition 5.4]. �

Let now LH denote the subgroup of GL3(F) of matrices of the form

*.
,

∗ 0 0
0 ∗ ∗

0 ∗ ∗

+/
-
,

so that LH is the Levi subgroup of the parbolic subgroup P B LH ·H of GL3(F). We set

Γ̃ B
{

g ∈ GL2(F) ���
(
1 0
0 g

)
∈ Γ ∩ LH

}
.

6.10. Theorem. Let f ∈ Wk ,` (Γ) and denote by fn the coefficients of the expansion in
Proposition 6.9. Then fn is a weak modular form of weight k − n and type ` for Γ̃ ⊆ GL2(F) for
each n ∈ Z, defined for example in [BBP18a, Definition 1.9].

Proof. See [BBP18a, Theorem 5.9]. �

We can now define the order at infinity as follows.

6.11. Definition. Let f ∈ OΓH
X

. Then the order at infinity of f is

ordΓH ( f ) B inf
{
n ∈ Z �� fn , 0

}
,

where fn denote the coefficients from Proposition 6.9. We say that f is holomorphic at
infinity if ordΓH ( f ) ≥ 0 and we say that f vanishes at infinity if ordΓH ( f ) ≥ 1.

We will use the following criterion to show that a ΓH-invariant function vanishes at
infinity. This criterion is due to Basson, Breuer and Pink and the proof has been
communicated to us. Since it is not publicly available yet, we quickly reprove their
criterion.

6.12. Proposition. Let f ∈ OΓH
X

. The following conditions are equivalent:

(i) f vanishes at infinity.

(ii) For all ε > 0 and n > 0 there exists Rn ,ε > 0 such that if ω ∈ I(n , Rn ,ε) we have
| f (ω) | < ε.
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(iii) For all ε > 0 and ω̃ ∈ Y there exists Rω̃,ε > 0 such that if d(ω1 , K2ω̃) > Rω̃,ε we have
| f (ω) | < ε.

Proof. By Proposition 6.9 we know that f has an expansion of the form

f (ω) �
∑
n∈Z

fn (ω̃)u(ω)n (9)

on some neighbourhood of infinity. By Theorem 6.7 (ii) this means that we find rm ∈ Z
such that (9) converges to a rigid analytic function on each

Um B
{
ω ∈ X �� (u(ω), ω̃) ∈ D(0, rm) ×Ym

}
.

We first prove that (i) implies (ii). If f vanishes at infinity, we obtain

f (ω) �
∑
n≥1

fn (ω̃)u(ω)n

Fix m ≥ 0 and pick Rm ≥ qrm . Then we have |u(ω) | < 1/Rm ≤ q−rn for ω ∈ I(m , Rm)
by [BBP18a, Proposition 4.7] and consequently (u(ω), ω̃) ∈ Um . Moreover, by [BBP18a,
Lemma 5.1] we have

lim sup
n→∞

‖ fn ‖
1/n
m < qrm < ∞.

Here ‖·‖m denotes the supremum norm of the affinoid algebra OYm . Consequently, we
have Nm B supn≥1‖ fn ‖

1/n
m < ∞. Note that Nm depends on m but is independent of the

auxiliary choice of Rm . Together this implies that

| fn (ω̃)u(ω)n
| < (Nm/Rm)n ,

which shows that for Rm > Nm , we obtain

| f (ω) | < Nm/Rm .

Thus, by choosing Rm large enough, we canmake | f (ω) | arbitrarily small andwe obtain
(ii). Note that (ii) implies (iii) since very ω̃ ∈ Y is contained in someYm . Thus, we need
to show that (iii) implies (i). We do this by contraposition. Assume that we find N ≤ 0
and ω̃ ∈ Y such that fN (ω̃) , 0. We choose m and Rm as above. Consider the Newton
polygon of the series expansion of f , i.e., the lower convex hull of the set of points(

n , ν( fn (ω̃))
)

n∈Z

in the Euclidean plane. By [BBP18a, Lemma 5.1] we have limn→−∞‖ fn ‖
−1/n
m � 0 and

consequently limn→−∞ | fn (ω̃) |−1/n � 0, which shows that the slopes of the Newton
polygon tend to −∞ for n → −∞. This means that the series either has a finite tail,
or infinitely many points lie on the Newton polygon for negative n. We consider the
line y � −ν(u(ω))x + c tangent to the Newton polygon. After possibly perturbing ω1,
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we may assume that this line touches the Newton polygon in exactly one point, say(
n , ν( fn (ω̃))

)
. But then we obtain

c � ν( fn (ω̃)u(ω)n) � ν( f (ω))

and ν( fN (ω̃)u(ω)N ) ≥ c, which shows that | f (ω) | ≥ | fN (ω̃) | > 0. Since this is inde-
pendent of Rm , this shows that (i) does not hold, completing the proof. �

6.13. Remark. There is an analogous criterion for showing that a ΓH-invariant function
is holomorphic at infinity. In the special case Γ � GL3(A) another such criterion is due
to Gekeler, see [Gek17, Proposition 1.8].

Now we can define modular and cusp forms in analogy with the classical case.

6.14. Definition. Let f ∈ Wk ,` (Γ) be a weak modular form of weight k and type ` for
an arithmetic group Γ.

(i) We say that f is a modular form if

ord(gΓg−1)H (g∗ f ) ≥ 0 for all g ∈ GL3(F).

(ii) We say that f is a cusp form if

ord(gΓg−1)H (g∗ f ) ≥ 1 for all g ∈ GL3(F).

The CK-vector spaces of modular forms and cusp forms are denoted byMk ,` (Γ) and
Sk ,` (Γ). Again we abbreviateMk (Γ) BMk ,k/3(Γ) and Sk (Γ) B Sk ,k/3(Γ).

6.15. Remark. We should remark that, as the map in Theorem 6.7 is defined over K,
one can define spaces of Drinfeldmodular and cusp forms as above in complete analogy
even over K.

We need the following proposition in which part (iii) is due to the fact that A has class
number one.

6.16. Proposition.

(i) We keep the notation fromDefinition 6.14. We have ord(gΓg−1)H (g∗ f ) � ord(hΓh−1)H (h∗ f )
for h ∈ ΓgP.

(ii) The double coset space Γ\GL3(F)/P is finite.

(ii) If Γ ⊆ GL3(A) is a congruence subgroup, the double cosets in Γ\GL3(F)/P can be
represented by elements of GL3(A).

Proof. See [BBP18a, Proposition 6.2 and Proposition 6.3]. �

Finally, we observe that if Γ1 is a normal subgroup of Γ, one has

Mk ,` (Γ1)Γ �Mk ,` (Γ) and Sk ,` (Γ1)Γ � Sk ,` (Γ).

In the case of modular forms this is [BBP18a, (6.7)]. The proof for cusp forms is
analogous.
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6.2. Dimension formulas

In order to link Drinfeld cusp forms and harmonic cocycles, it will be important to
investigate the dimensions of spaces of Drinfeld cusp forms in special cases. We begin
with the following general result.

6.17. Theorem. Let Γ ⊆ GL3(A) be a congruence subgroup.

(i) dimCKMk ,` (Γ) < ∞ for all integers k and `.

(ii) Mk ,` (Γ) � {0} for k < 0.

Proof. See [BBP18b, Theorem 11.1]. �

6.18. Remark. We should point out that the proof of the theorem above is deep. It
requires the theory of algebraic Drinfeldmodular formsdeveloped in [Pin13] and [BBP18b],
which rely on Satake compactifications of the (algebraic)moduli spaces ofDrinfeldmod-
ules with level structures. The analytifications of these moduli spaces are uniformized
by quotients of X.

The following formulas rely on [PS14].

6.19. Theorem. We have the following dimension formulas for all k ≥ 0.

(i) dimCKMk (Γ(t)) �
∑

i1 ,i2∈{0,1}

q
∑

n n·in

(
k∑
n in

)
.

(ii) dimCKMk (Γ1(t)) �
(
k + 2
2

)
.

Proof. See [BBP18c, Theorem 17.11] upon noting that there is a small typo in formula
(d) in this theorem. �

The following theorem will play a crucial role.

6.20. Theorem. Let n ≥ 1 and let Γ ⊂ GL3(K) be a subgroup such that Γ(tn) ⊆ Γ ⊆ Γ1(t).
Then we have

dimCK Sk (Γ) � [Γ1(t) : Γ] ·
(
k − 1
2

)
.

Proof. See [Pin19, Theorem 3.5.6]. �

6.21. Remark. The above theorems all rely on the explicit knowledge of the relevant
Satake compactifications, in particular for Γ � Γ(t). This is why at present, to our
knowledge, there are no proven formulas that work for general congruence subgroups.
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6.3. Hecke operators

In this section, we define (analytic) Hecke operators on Drinfeld modular forms. We
follow [Bas14, Chapter 4], [BBP18b, Section 12] and [Böc02, Chapter 6]. We need the
following proposition.

6.22. Proposition. Let Γ ⊆ GL3(A) be a congruence subgroup and let δ ∈ GL3(F). Then
the double coset ΓδΓ can be written as a finite disjoint union of left cosets

ΓδΓ �
⊔

i

δiΓ.

More precisely, the number of left cosets is [Γ : (Γ ∩ δ−1Γδ)].

Proof. See [Bas14, Proposition 4.1.2]. �

Let SΓ ⊆ GL3(F) be a semigroup containing Γ. We set

T(Γ, SΓ) B Fp[ΓδΓ | δ ∈ SΓ], (10)

theHecke algebra attached to the pair (Γ, SΓ). A priori, T(Γ, SΓ) is just an Fp-module. The
algebra structure is defined as follows. Write

ΓαΓ �
⊔

i

αiΓ and ΓβΓ �
⊔

j

β jΓ.

We define
(ΓαΓ) · (ΓβΓ) B

⊔
δ

aδ (α, β)ΓδΓ,

where the sum is over all double cosets ΓδΓ such that
⊔
δ ΓδΓ � ΓαΓβΓ and

aδ (α, β) B |{(i , j) | αiβ jΓ � δΓ}| (mod p).

This turns T(Γ, SΓ) into an algebra. In the sequel, we write

Tδ B ΓδΓ ∈ T(Γ, SΓ).

For a detailed study of the Hecke algebra in the important special case Γ � GL3(A)
and SΓ � GL3(F) ∩M3(A) see [Bas14, Section 4.2]. The action of the Hecke algebra on
modular and cusp forms is defined as follows.

6.23. Definition. Let Γ ⊆ GL3(A) be a congruence subgroup and let δ ∈ GL3(F). The
Hecke operator Tδ onMk ,` (Γ) is the CK-linear operator Tδ :Mk ,` (Γ) →Mk ,` (Γ) given by

Tδ f �

∑
i

(δi)∗ f ,

where we write ΓδΓ �
⊔

i δiΓ.
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Note that since f ∈ Mk ,` (Γ), this is independent of the choice of the δi andwell-defined.
Moreover, Tδ induces a map

Tδ : Sk ,` (Γ) → Sk ,` (Γ).

This defines a structure of a Hecke module for the Hecke algebra T(Γ, SΓ) on Sk ,` (Γ)
andMk ,` (Γ).

6.24. Remark. We should remark that in practice one chooses SΓ depending on Γ
such that the resulting Hecke algebra becomes arithmetically interesting and commu-
tative. This will however not be relevant for us as we will be able to prove the Hecke-
equivariance of the map that interests us in complete generality. For GL2(K), a more
systematic study of the Hecke algebras can be found in [Böc02, Chapter 6].



CHAPTER7
The action of congruence subgroups on T

In this chapter, we investigate the action of congruence subgroups on T . Our primary
focus lies on the group Γ(t). Understanding its action on T in great detail will turn out
to be crucial in the sequel.

7.1. The structure of T

Before we can study the action of congruence subgroups on T , we need to understand
the structure of T itself better. For this, we follow [Mül14] and [Geb96]. We start by
recalling the following standard facts on the structure of T .

7.1. Lemma. We have the following.

(i) Each vertex of T is a face of exactly 2(q2 + q + 1) edges.

(ii) Each vertex of T is a face of exactly (q + 1)(q2 + q + 1) chambers.

(iii) Each edge of T is a face of exactly q + 1 chambers.

Proof. See [Mül14, Lemma 1.33]. �

We also need to investigate the action of GL3(K) on T in more detail. We need the
following notion.

7.2. Definition. Let (b1 , b2 , b3) be a basis of V∗ and let v � [〈b1 , b2 , b3〉OK ]. We define
the type of v to be

type(v) B ν(det(b1 , b2 , b3)) (mod 3).

It is easy to see that this is well-defined (i.e., independent of the representing lattice and
the chosen basis) and invariant under the operation of

G+ B ker(ν ◦ det : G → Z) ⊂ G.

We have the following.

7.3. Lemma. Every chamber of T contains exactly one vertex of each type.

99
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Proof. This follows directly from the elementary divisor theorem. �

7.4. Proposition. Let g ∈ G+ and σ � {v1 , . . . , vn } ∈ Tn . Then g stabilizes σ if and only if
gvi � vi for i ∈ {1, . . . , n}.

Proof. We have gσ � σ if and only if {gv1 , . . . , gvn } � {v1 , . . . , vn }. But by the previous
lemma this means that gvi � vi for all i ∈ {1, 2, 3} since g preserves the types. �

We begin by computing the stabilizers of vertices in the standard apartment A0. Recall
that A0 is the maximal simplicial subcomplex of T based on the vertices

{[i1 , i2 , i3] | i1 , i2 , i3 ∈ Z} ,

see Section 2.1.

7.5. Lemma. We have

StabG ([i1 , i2 , i3]) � K× ·
{(
πim−in gmn

)
1≤m ,n≤3

�����
(
gmn

)
1≤m ,n≤3 ∈ GL3(OK)

}
.

Proof. Let h �

(
πi1 0 0
0 πi2 0
0 0 πi3

)
∈ G. Then we have [i1 , i2 , i3] � h[0, 0, 0]. Thus, g ∈ G

stabilizes [i1 , i2 , i3] if and only if

g ∈ hStabG ([0, 0, 0])h−1 � K×hGL3(OK)h−1.

The result follows directly. �

The following notion is standard and can be found in [AB08, Definition 1.53].

7.6. Definition. A gallery in T is a sequence of chambers (σ1 , . . . , σn) such that for each
i ∈ {2, . . . , n} the chambers σi−1 and σi are adjacent. The integer n is called the length
of the gallery. We say that the above gallery connects σ1 and σn . The minimal length of
a gallery connecting two chambers σ and τ is called the gallery distance of σ and τ and
is denoted by d(σ, τ). Similarly, an infinite gallery is an infinite sequence of chambers
(σ1 , σ2 , . . . ) such that for each i ∈ {2, . . . , n} the chambers σi−1 and σi are adjacent.

The following facts arewell known, see for example [Geb96, Satz 4.48 andKorollar 4.49].

7.7. Proposition. Let σ and τ be two chambers in T .

(i) There exists an apartment containing both σ and τ.

(ii) There exists a gallery connecting σ and τ.
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7.2. The action of GL3(A)

The action of GL3(A) on T can be described very explicitly. The following theorem
follows from [AB08, Subsection 11.8.6], see also [Geb96, Satz 3.18].

7.8. Theorem. The standard sector S0 is a fundamental domain for the action of GL3(A) on
T , i.e., for n ∈ {0, 1, 2} we have

(i) Each n-cell in T is GL3(A)-equivalent to an n-cell in S0.

(ii) Two distinct n-cells in S0 are not GL3(A)-equivalent.

Our aim is to study the growth of certain stabilizers when tending to the boundary inside
the standard sector S0. We first need to make precise what this means. Note that the
geometric realization of the standard apartment is just a triangulation of R2. Recall that
the standard chamber σ0 in S0 is given by

σ0 � {[0, 0, 0], [0, 0, 1], [0, 1, 1]} ∈ T2.

7.9. Definition. Let σ be chamber in S0.

(i) We say that σ has positive sign if there exists a vertex v of σ such that the unique
sector in A0 based in v containing σ is contained in S0. Otherwise we say that σ
has negative sign.

(ii) Let τ ∈ S0 be a chamber adjacent to σ. We say that τ is closer to the boundary than
σ if d(σ0 , τ) > d(σ0 , σ).

To keep the notation short, in the sequel we write vi , j B [0, i , j], where 0 ≤ i ≤ j. Then
each vertex vi , j belongs to S0. Figure 1 explains the geometric idea behind the definitions
above. The two different colors indicate the chambers of positive and negative sign:
Light colored chambers have negative sign, dark colored ones have positive sign. The
arrows show how one can move to an adjacent chamber that is closer to the boundary.
Note that Figure 1 is not completely accurate as the displayed triangles should be
equilateral.
The following lemma formalizes the observations in Figure 1.

7.10. Lemma. Let σ be chamber in S0.

(i) The chamber σ has positive sign precisely if it is of the form

σ �

{
vi , j , vi , j+1 , vi+1, j+1

}

where 0 ≤ i ≤ j. In this case, σ has exactly one adjacent chamber τ in S0 that is closer to
the boundary. It has negative sign and is given by

τ �

{
vi , j+1 , vi+1, j+1 , vi+1, j+2

}
.
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v0,0 v0,1

v1,1

v0,2

v2,2

v0,3 v0,4

v3,3

v4,4

v0,5

v5,5

Figure 1. The standard sector S0

(ii) The chamber σ has negative sign precisely if it is of the form

σ �

{
vi , j , vi+1, j , vi+1, j+1

}
,

where 0 ≤ i < j. In this case, σ has exactly two adjacent chambers τ1 and τ2 in S0 that
are closer to the boundary. They have positive sign and are given by

τ1 �
{
vi+1, j , vi+1, j+1 , vi+2, j+1

}
and τ2 �

{
vi , j , vi , j+1 , vi+1, j

}
.

Proof. Any chamber in S0 is of the form

σ �

{
vi (1) , j (1) , vi (2) , j (2) , vi (3) , j (3)

}
.

where 0 ≤ i (n)
≤ j (n) for n ∈ {1, 2, 3} and after possible reordering we have

i (1)
≤ i (2)

≤ i (3)
≤ i (1) + 1 and j (1)

≤ j (2)
≤ j (3)

≤ j (1) + 1.

Together these conditions leave only twopossible forms for σ, exactly the two forms in (i)
and (ii). It is also clear that chambers of the form in (i) have positive sign, whereas those
in (ii) have negative sign. Thus, we are left with proving the desired descriptions of the
adjacent chambers closer to the boundary. But this is an easy exercise by computing the
coordinates of the vertices of all adjacent chambers in A0 and observing which of these
lie in S0 and are closer to the boundary. �
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Nowwe turn to the computation of the stabilizers. This is based on the ideas in [Geb96],
[Mül14] and [Hof15]. We can use Lemma 7.5 to compute the stabilizers in GL3(A) of
cells in the standard apartment. Let h ∈ M3(Z) be a matrix. We define

S(h) B
{
g ∈ GL3(A) �� deg(gmn) ≤ hmn for all 1 ≤ m , n ≤ 3

}
.

7.11. Lemma. We have

StabGL3(A) ([i1 , i2 , i3]) � S(h[i1 ,i2 ,i3]),

where h[i1 ,i2 ,i3] � (in − im)1≤m ,n≤3.

Proof. We have

StabGL3(A) ([i1 , i2 , i3]) � StabG ([i1 , i2 , i3]) ∩GL3(A)
�

(
K×

{
g ∈ G | ν(gmn) ≥ im − in

})
∩GL3(A)

by Lemma 7.5. The claim then follows from

{x ∈ OK | ν(x) ≥ N } ∩ A � {a ∈ A | deg(a) ≤ −N },

which is obvious from the definitions. �

We can now extend this easily to edges and chambers as follows.

7.12. Proposition. Let σ �

{
[i (1)
1 , i (1)

2 , i (1)
3 ], . . . , [i (d)

1 , i (d)
2 , i (d)

3 ]
}
with d ≤ 3. Then we have

StabGL3(A) (σ) � S(hσ),

where hσ �
(
min1≤ j≤d

{
i ( j)
n − i ( j)

m

})
1≤m ,n≤3

.

Proof. Since GL3(A) ⊂ G+, this follows from Proposition 7.4 and Lemma 7.11. �

Now we turn our attention to the standard sector S0. The following lemma will be
needed later.

7.13. Lemma. Let e be an edge on the boundary of S0. Then StabGL3(A) (e) permutes the q + 1
chambers having e as a face transitively.

Proof. See [Mül14, Lemma 1.36 (ii)]. �

Tokeep thenotation short, for a congruence subgroupΓ ⊆ GL3(A) wesetΓσ B StabΓ(σ).
The following proposition is in the spirit of [Mül14, Lemma 1.36 (i)], but we need a
stronger result, i.e., a statement for general congruence subgroups.

7.14. Proposition. All but finitely many chambers σ of S0 satisfy the following: If τ ∈ S0 is
a chamber adjacent to σ such that σ is closer to the boundary than τ, we have |Γσ/Γτ | � q. The
set (γτ)γ∈Γσ/Γτ consists precisely of the q chambers other than σ sharing a face with σ and τ.
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Proof. We first consider the case Γ � Γ(N) for some non-zero monic polynomial N ∈ A.
Assume first that τ has positive sign. Then by Lemma 7.10, we have the following
explicit descriptions:

τ �

{
vi , j , vi , j+1 , vi+1, j+1

}
and σ �

{
vi , j+1 , vi+1, j+1 , vi+1, j+2

}
.

By Proposition 7.12, it is straightforward to compute the stabilizers of σ and τ in GL3(A).
We obtain

StabGL3(A) (τ) � S(hτ) and StabGL3(A) (σ) � S(hσ),

where

hτ �
*.
,

0 i j
−i − 1 0 j − i
− j − 1 i − j − 1 0

+/
-

and hσ �
*.
,

0 i j + 1
−i − 1 0 j − i
− j − 2 i − j − 1 0

+/
-
.

Thus, we see directly that the quotient GL3(A)σ/GL3(A)τ has order q. Assume that
j ≥ deg(N). Then Γσ/Γτ also has order q. The orbit-stabilizer theorem implies that

|Γσ | � |Γσ ◦ τ | · |Γτ |,

hence we obtain |Γσ ◦ τ | � q, which shows that the set (γτ)γ∈Γσ/Γτ consists precisely of
the q chambers other than σ sharing a face with σ and τ. This completes the proof for
τ of positive sign. For τ of negative sign, the argument is completely analogous using
the explicit descriptions in Lemma 7.10. We still need to consider general congruence
subgroups Γ. Note that by definition we find N ∈ A \ {0} such that Γ(N) ⊆ Γ. But then
we have

Γ(N)σ/Γ(N)τ ⊆ Γσ/Γτ ⊆ GL3(A)σ/GL3(A)τ

Hence the result for general Γ follows. �

7.15. Remark. In the proof we have seen that we can give an explicit bound after
which we can guarantee that the stabilizers behave as in Proposition 7.14. Namely, if
Γ(N) ⊆ Γ and n � deg(N), we have that the finite number of exceptions is contained in
the subcomplex on the vertices

{
vi , j �� 0 ≤ i ≤ j ≤ i + n − 1 and i ≤ n − 1

}
.

This subcomplex will play an important role later.

7.3. Quotient buildings

Since the quotient of a simplicial complex by a group acting on it is general not a
simplicial complex anymore, we need the following notion in order to make sense of the
quotient Γ\T for a congruence subgroup Γ ⊆ GL3(A). We follow [Hof15, Section 2.3].
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7.16. Definition. A ∆-set is a sequence of sets (Dn)n≥0 together with so called face maps

δi
n : Dn → Dn−1 , where n > 0, i ∈ {0, . . . , n},

such that δi
n−1 ◦ δ

j
n � δ

j−1
n−1 ◦ δ

i
n for n > 1 and i < j.

There is a natural notion of a morphism of ∆-sets, namely a sequence of maps of sets
that is compatible with all face maps. The notion of a ∆-set is a natural generalization
of a simplicial complex. As the notation suggests, the sets ∆n are the analogue of the
n-cells and the face maps associate to each n-cell its faces of dimension n − 1. We can
view T as a ∆-set in the following way. We set

D0(T ) B
{
[Λ] �� Λ is a lattice in V∗

}
,

Dn (T ) B
{
{[Λ0], . . . , [Λn]} �� πΛ0 ( Λn ( · · · ( Λ0

}
,

where the lattice classes are ordered by their type (regarded as a number in {0, 1, 2}).
We define the face maps δi

n by removing the homothety class [Λi] in {[Λ0], . . . , [Λn]}.

7.17. Definition. Let Γ ⊆ GL3(A) be a congruence subgroup. The quotient building
Γ\T is the ∆-set given by

Dn (Γ\T ) B
{
Γσ �� σ ∈ Dn (T )

}
together with the natural face maps as defined for T .

By definitionwe have natural morphism of∆-sets T → Γ\T . The following proposition
is now just a reformulation of Theorem 7.8.

7.18. Proposition. We have GL3(A)\T � S0.

7.4. The quotient Γ(t)\T

In this section, we investigate the quotient Γ(t)\T . This is based on [Geb96, Section 4.3]
and [Hof15, Section 2.3]. Since S0 is a fundamental domain for the action of GL3(A),
we may write T �

⋃
g∈GL3(A) gS0. Let Γ ⊆ GL3(A) be a congruence subgroup and let{

gi �� i ∈ I
}
⊆ GL3(A) be a (finite) set of representatives for Γ\GL3(A). We obtain

T �

⋃
i∈I

ΓgiS0.

7.19. Definition. Let σ be an n-cell in S0. We say that an n-cell τ is of level σ if
τ ∈ GL3(A)σ. We denote the set of n-cells of level σ by L(σ). Then we have

T �

⊔
σ∈S0

L(σ).
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For a congruence subgroup Γ ⊆ GL3(A), the morphism of ∆-sets

L : T → S0 � GL3(A)\T

factors over Γ\T . Thus, we may write

Γ\T �

⊔
σ∈S0

LΓ(σ),

where LΓ(σ) denotes the set of cells of Γ\T that are of level σ. Observe that we have a
bĳection

Γ\GL3(A)/GL3(A)σ → LΓ(σ),
ΓgGL3(A)σ 7→ Γgσ.

7.20. Proposition. Let Γ ⊆ GL3(A) be a congruence subgroup and choose a monic polynomial
N ∈ A such that Γ(N) ⊆ Γ. Let n � max{2, deg(N)} and denote by S0(n) the maximal
subcomplex of S0 on the vertices{

[i , j] �� 0 ≤ i ≤ j ≤ i + n − 1 and i ≤ n − 1
}
.

Then the quotient Γ\T is completely determined by the fibre of S0(n). There are no new
identifications in the fibres of cells in S0 \ S0(n).

Proof. See [Hof15, Lemma 2.32] or [Mül14, Satz 1.30]. �

With these preparations, we now specialize to the case Γ � Γ(t). This case has already
been studied in [Geb96, Section 4.3], but we need a slightly finer result. By Proposition
7.20, we are interested in the simplices in S0(2). Observe first that Γ(t) is normal in
GL3(A). We have Γ(t)\GL3(A) � GL3(Fq). It follows that

LΓ(t) (σ) � GL3(Fq)/((Γ(t)GL3(A)σ) ∩GL3(Fq)).

7.21. Lemma. We have

(Γ(t)GL3(A)v1,2 ) ∩GL3(Fq) � B(Fq),
(Γ(t)GL3(A)v1,1 ) ∩GL3(Fq) � P2(Fq),
(Γ(t)GL3(A)v0,1 ) ∩GL3(Fq) � P1(Fq),
(Γ(t)GL3(A)v0,0 ) ∩GL3(Fq) � GL3(Fq).

Proof. This follows easily from Lemma 7.11. �

Upon observing that this implies that

|LΓ(t) (v0,1) | � |LΓ(t) (v1,1) | � q2 + q + 1 and |LΓ(t) (v1,2) | � (q + 1)(q2 + q + 1),

we can describe the quotient Γ(t)\T as follows: There are (q + 1)(q2 + q + 1) copies of
the standard sector S0 parametrized by GL3(Fq)/B(Fq), each originating in the vertex
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v0,0. Along the boundary line originating in {v0,0 , v1,1} two such sectors are glued if and
only if they have the same image in GL3(Fq)/P2(Fq). Similarly, along the boundary line
originating in {v0,0 , v0,1} two such sectors are glued if and only if they have the same
image in GL3(Fq)/P1(Fq). That means along each boundary line exactly q+1 sectors are
glued together. Since P1(Fq) ∩ P2(Fq) � B(Fq), two sectors that would be glued along
two boundary lines are already equal.

The above description of the quotient Γ(t)\T shows that we can in fact realize it inside
T , i.e., obtain a fundamental domain for the action of Γ(t) on T . We make this precise
as follows. We have StabG (S0) � K×B(OK), see [Geb96, Satz 2.26]. Thus, we obtain

StabG (v0)/StabG (S0) � GL3(OK)/B(OK) � GL3(Fq)/B(Fq).

Hence any set of representatives g1 , . . . , gnq for GL3(Fq)/B(Fq) regarded as elements of
StabG (v0) stabilizes v0 andmaps S0 to a sector based in v0. Wehave nq � (q+1)(q2+q+1).
We arrive at the following.

7.22. Theorem. The set FΓ(t) B
⋃nq

i�1 giS0 is a fundamental domain for the action of Γ(t) on
T .

Proof. By construction FΓ(t) maps isomorphically to Γ(t)\T under the natural map
T → Γ(t)\T . �





CHAPTER8
Drinfeld cusp forms and harmonic cocycles

In this chapter, wewant to investigate the relationship between Drinfeld cusp forms and
harmonic cocycles. More precisely, we will show that (under various assumptions) the
residue map Resk induces an isomorphism between the space of Drinfeld cusp forms
of weight k + 3 for a congruence subgroup Γ and the space of Γ-invariant harmonic
cocycles on T with coefficients in Vk . This is the natural analogue of the main theorem
of [Tei91] in rank 3. Contrary to [Tei91], our theorem requires the congruence subgroup
Γ to satisfy Γ(t) ⊆ Γ. Moreover, we need to assume that Conjecture 5.49 holds.

8.1. Cuspidality

The aim of this section is to show that for any congruence subgroup Γ ⊆ GL3(A),
every Γ-invariant harmonic cocycle is Γ-cuspidal in the sense of Definition 8.1. This is
analogous to a result of Teitelbaum for GL2(K), see [Tei91, Theorem 3], and ensures that
the theory developed in Part I of this thesis is applicable in this situation. In the sequel,
we write

Char(Γ,M) B Char(T ,M)Γ ,

where M is a CK[G]-module and the group action is as in Section 3.1. From now on
we regard harmonic cocycles as functions on the chambers T2 (and not on the pointed
chambers T̂2) as explained in Remark 3.2.

8.1. Definition. Let M be a CK[G]-module. A harmonic cocycle c ∈ Char(T ,M) is
called Γ-cuspidal if there exists a finite set S of chambers of Γ\T such that c(σ) , 0 only
for σ ∈ pr−1

Γ
(S), where pr

Γ
: T → Γ\T denotes the canonical projection.

The aim of this section is to prove the following theorem, which is the natural extension
of [Tei91, Theorem 3] to our situation.

8.2. Theorem. Let Γ ⊆ GL3(A) be a congruence subgroup and let M be a CK[G]-module,
finite-dimensional over CK . Then there exists a finite set S of chambers of Γ\T such that for all
c ∈ Char(Γ,M) we have c(σ) , 0 only for σ ∈ pr−1

Γ
(S). Consequently, every c ∈ Char(Γ,M)

is Γ-cuspidal.

109
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The importance of this theorem becomes evident in the following corollary, which
ensures that the theory developed in Part I is applicable in this situation.

8.3. Corollary. Every harmonic cocycle c ∈ Char(Γ, k) is bounded.

Proof. Recall that c is bounded if the automorphic form ϕc : K×\G → Vk given by
ϕc (g) � g−1 · c(gσ0) is bounded. The fact that c is Γ-invariant means that ϕc factors
over K×Γ \ G. Now, by Theorem 8.2 (and since each chamber has only three possible
orientations), we find g1 , . . . , gn ∈ G such that c is supported on Γg1σ0 , . . . , Γgnσ0.
Choose α ∈ OCK \ {0} so that αϕc (gi) ∈ V int

k for all i ∈ {1, . . . , n} (which exists by
definition of an integral structure). Then, since ϕc is Γ-invariant, I-equivariant and V int

k
is I-stable, it follows that αϕc (g) ∈ V int

k for all g ∈ G, which completes the proof. �

Nowwe turn to the proof of Theorem 8.2, which relies on the results from the previous
chapter.

Proof of Theorem 8.2. We claim that it suffices to show that there is a finite set SΓ of
chambers in S0 such that every c ∈ Char(Γ,M) vanishes on all chambers in S0 outside
SΓ. To see this, note that because Γ is a congruence subgroup we may write

GL3(A) �
⊔
i∈I

Γgi

for some finite set I. Hence by Theorem 7.8, each chamber is Γ-equivalent to a chamber
in giS0 for some i ∈ I. Thus, it suffices to show that for each i ∈ I, there is a finite set
of chambers in giS0 such that every c ∈ Char(Γ,M) vanishes on all other chambers in
giS0. But the cocycle ci B gi · c is invariant under the group Γi B giΓg−1i , which is
again a congruence subgroup by Lemma 6.1. Hence, if ci vanishes on all chambers in
S0 outside SΓi , then c vanishes on all chambers in giS0 outside giSΓi .
Thus, we need to show that there is a finite set SΓ of chambers in S0 such that every
c ∈ Char(Γ,M) vanishes on all chambers in S0 outside SΓ. For this, we define a partial
order on the set of chambers of S0 by

σ ≤ τ if and only if Mτ
⊆ Mσ ,

where Mσ � MStabΓ(σ) . Then, since M is finite-dimensional, each chain with respect to
≤ becomes stationary. Thus, we find a maximal element σmax in S0 with respect to ≤,
i.e, we have Mσmax ⊆ Mσ for all σ in S0. In particular, we have Mσmax � Mσ for σ adjacent
to σmax and closer to the boundary. Thus, we may assume that σmax has positive sign.
Then we denote by Smax the subsector of S0 based in σmax. Our first aim is to show that
there is a finite set of chambers in Smax such that each c vanishes on all chambers in
Smax outside this finite set. By Proposition 7.14 and the harmonicity of c, we obtain for
σ and τ in Smax and as in Proposition 7.14 that

c(σ) � −
∑

h∈Γσ/Γτ

c(hτ) � −qc(τ) � 0,
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since c(τ) ∈ Mτ � Mσ by Γ-invariance. To conclude the proof, we still need to consider
the chambers inS0\Smax. Butweobserve that the collectionof chambers ofS0\Smax is just
a finite union of infinite galleries, where in each gallery, when going from one chamber
to the next, onemoves closer to the boundary, see Figure 2. Thus, after dropping finitely
many chambers in each gallery, we can assume that Mσ is independent of the chamber
σ in the gallery, and again we can use Proposition 7.14 to conclude by same argument
as above. �

v0,0 v0,1

v1,1

v0,2

v2,2

v0,3 v0,4

v3,3

v4,4

v0,5

v5,5

Figure 2. The decomposition of S0 into Smax and S0 \ Smax

We obtain the following corollary.

8.4. Corollary. Let Γ ⊆ GL3(A) be a congruence subgroup and let M be a CK[G]-module,
finite-dimensional over CK . Then we have

dimCK Char(Γ,M) < ∞.

In the next section, we want to inspect the dimension of Char(Γ,M) in more detail in the
special case Γ � Γ(t).

8.2. Dimension estimates

The aim of this section is to prove the following theorem. The proof relies on our
knowledge of the quotient building Γ(t)\T from Section 7.4.
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8.5. Theorem. Let M be a CK[G]-module, finite-dimensional over CK . We have

dimCK Char(Γ(t),M) ≥ q3 dimCK M.

Our proof is inspired by the proof of [Tei91, Theorem 16] due to Teitelbaum. The idea
being that a Γ(t)-invariant harmonic cocycle is completely determined by its values on
the so called stable part in a fundamental domain for the action of Γ(t) on T . We work
out a similar approach in our situation. We should note that Teitelbaum proves this
result in much more generality, i.e., for general congruence subgroups. We expect that
ourmethod can be expanded in similar fashion, but this requiresmore knowledge of the
boundary of Γ\T for general congruence subgroups Γ. The main reason for restricting
to the congruence subgroup Γ(t) lies in the fact that we later need to use Theorem 6.20,
which has similar restrictions.

8.6. Definition. Let Γ ⊆ GL3(A) be a congruence subgroup. We say an n-cell σ of T is
Γ-stable if Γσ � {id}. Otherwise, we say that σ is Γ-unstable.

Now, we can compute the set of Γ(t)-stable chambers in the fundamental domain
FΓ(t) . Recall that FΓ(t) B

⋃nq

i�1 giS0, where g1 , . . . , gnq is a set of representatives for
GL3(Fq)/B(Fq).

8.7. Proposition. The Γ(t)-stable chambers in FΓ(t) are precisely
{

giσ0
��� i ∈ {1, . . . , nq }

}
.

Proof. Since Γ(t) ⊂ GL3(A) is normal, we have Γ(t)giσ � giΓ(t)σg−1i . Thus, it suffices
to consider the stabilizers of chambers in S0. But these have already been computed in
Proposition 7.14, which proves the claim. �

Proof of Theorem 8.5. Let m1 , . . . ,md be a basis of M. Let I ∈ {m1 , . . . ,md }
q3 . We will

show that there are cocycles
cI ∈ Char(Γ(t),M),

such that the family (cI )I is linearly independent. We first define the values cI (giσ0).
By the discussion above, (giσ0)i are precisely the (q + 1)(q2 + q + 1) chambers in T
containing v0. Let e be any edge with face v0. Then the fact that cI is supposed to be
harmonic at e relates q + 1 of the values (cI (giσ0))i . Since there are 2(q2 + q + 1) edges
having v0 as a face this leaves us

(q + 1)(q2 + q + 1) − 2(q2 + q + 1) + 1 � q3

choices, where the last 1 comes from the observation that, after going though all but the
last edge, at the last edge does not impose any new conditions. Thus, we may define
the values (cI (giσ0))i from I so that cI is harmonic at each edge with face v0. Our next
aim is to extend cI to the chambers in FΓ(t) . For this, we set

cI (giσ) B
∑

g∈Γ(t)giσ

sgn(σ)(g · cI (giσ0)),
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where

sgn(σ) B
{
−1, if σ has negative sign,
1, if σ has positive sign.

This is well-defined because the chambers giσ0 are Γ(t)-stable. Finally, we extend cI to
all chambers by setting cI (σ) � γ · cI (τ), where σ � γτ with τ in FΓ(t) . This is well-
defined by Theorem 7.22. Thus, we have defined a Γ-invariant function cI : T2 → M.
Moreover, it is clear that the functions (cI )I are linearly independent. We are left with
showing that cI is harmonic. It is clear that is suffices to check harmonicity only at edges
e in FΓ(t) . We consider two separate cases.

(i) e is in the interior of some giS0.

(ii) e is on the boundary of some giS0.

We start with (i). There are exactly two chambers in S0 that contain g−1i e. Denote by
σ the chamber in S0 containing g−1i e that is closer to the boundary than the another
chamber τ in S0 sharing the face g−1i e. In particular, we have σ , σ0. Then we can apply
Proposition 7.14 to obtain that Γ(t)σ/Γ(t)τ has order q and permutes the chambers
containing g−1i e other than σ transitively. We obtain

cI (giσ) �
∑

g∈Γ(t)giσ

sgn(σ)(g · cI (giσ0))

�

∑
g∈Γ(t)σ

sgn(σ)((gi g g−1i ) · cI (giσ0))

�

∑
γ∈Γ(t)σ/Γ(t)τ

∑
g∈Γ(t)τ

sgn(σ)((giγg g−1i ) · cI (giσ0))

� −

∑
γ∈Γ(t)σ/Γ(t)τ

(giγg−1i ) · cI (giτ) � −
∑

γ∈Γ(t)σ/Γ(t)τ

cI (giγτ),

which proves the harmonicity at e. To prove harmonicity in case (ii) we need more
preparations. Namely, we need to compute the stabilizers of the chambers with face e
on the boundary of giS0. We claim the following. Let σ be any chamber with face e
(note that σ is then in some giS0, since (giS0)i consists of all sectors based in chambers
containing v0). Then we have Γ(t)σ � Γ(t)e . Since Γ(t) is normal in GL3(A), it suffices
to prove this for e being on the boundary of S0. Moreover, by Lemma 7.13, we may also
assume that σ is in S0. There are two separate cases for the two boundary lines of S0.
We either have

e � {vi ,i , vi+1,i+1} and σ � {vi ,i , vi ,i+1 , vi+1,i+1}

or
e � {v0,i , v0,i+1} and σ � {v0,i , v0,i+1 , v1,i+1}.

By Proposition 7.12, we have

StabGL3(A) (σ) � S(hσ) and StabGL3(A) (e) � S(he ),
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where

hσ �
*.
,

0 i i
−i − 1 0 0
−i − 1 0 0

+/
-
, he �

*.
,

0 i i
−i − 1 0 0
−i − 1 −1 0

+/
-

in the first case and

hσ �
*.
,

0 0 i
0 0 i

−i − 1 −i − 1 0

+/
-
, he �

*.
,

0 0 i
−1 0 i
−i − 1 −i − 1 0

+/
-

in the second case. By taking the intersection with Γ(t), we directly obtain the result.
With these preparations, we can now show the harmonicity of cI at e as in case (ii).
After reordering, we may assume that the chambers σi with face e are in the sectors
giS0, i ∈ {1, . . . , q + 1}. It follows that

∑
σ 7→e

cI (σ) �
q+1∑
i�1

cI (σi) �
q+1∑
i�1

*.
,

∑
g∈Γ(t)σi

g · cI (giσ0)+/
-

�

∑
g∈Γ(t)e

g · *.
,

q+1∑
i�1

cI (giσ0)+/
-
� 0,

since cI is harmonic at the edgeswith face v0. Here, we used that all boundary chambers
in S0 have positive sign. This completes the proof. �

8.3. Hecke operators

Let M be a CK[G]-module, finite-dimensional over CK and Γ ⊆ GL3(A) be a congruence
subgroup. We want to define an action of the Hecke algebra T(Γ, SΓ) on Char(Γ,M).
This is analogous to [Böc02, Section 6.3].

8.8. Definition. Let Γ ⊆ GL3(A) be a congruence subgroup and let δ ∈ GL3(F). The
Hecke operator Tδ on Char(Γ,M) is the CK-linear operator Tδ : Char(Γ,M) → Char(Γ,M)
given by

Tδc �

∑
i

δi · c ,

where we write ΓδΓ �
⊔

i δiΓ.

Note that we have
(δi g) · c � δi · c for g ∈ Γ,

since c ∈ Char(Γ,M), which shows thatTδ independent of the choice of the δi . Moreover,
we have

g · (Tδc) � g · *
,

∑
i

δi · c+
-
�

∑
i

(gδi) · c �

∑
i

δi · c � Tδc for g ∈ Γ,
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since (gδi) is a set of left coset representatives for ΓδΓ, which shows that Tδ is well-
defined. This defines a structure of a Hecke module for the Hecke algebra T(Γ, SΓ) on
Char(Γ,M), see (10). Nowwe have developed all the tools we need in order to formulate
the main theorem of Part II of this thesis.

8.4. An isomorphism à la Teitelbaum

The aim of this section is to prove the following theorem.

8.9. Theorem. Let Γ ⊆ GL3(A) be congruence subgroup such that Γ(t) ⊆ Γ. Assume that
Conjecture 5.49 holds. Then the map Resk induces a Hecke-equivariant isomorphism

Sk+3(Γ) → Char(Γ, k).

8.10. Remark. We should note that we expect this result to hold inmuchmore general-
ity, i.e., the assumption Γ(t) ⊆ Γ should be unnecessary. This would require dimension
formulas similar to Theorem 6.20 for more general groups. Going even further, we
expect the analogous theorem to hold for more general base rings A in analogy with
[Tei91, Theorem 16].

Let us explain the setup of the proof. We ignore the Hecke-equivariance for now. By
Theorem 4.31, we have the following diagram.

OX (k + 3)b Cb
har(T , k) 0

OX (k + 3) Char(T , k)

Resk

⊆

Resk

⊆
Ik

Since the splitting is G-equivariant, themap in the top row stays surjective after taking Γ-
invariants. Moreover, by Theorem 8.2, we have Cb

har(Γ, k) � Char(Γ, k), and consequently
(OX (k + 3)b)Γ � OX (k + 3)Γ. We arrive at the following situation.

OX (k + 3)Γ Char(Γ, k) 0

Sk+3(Γ)

Resk

⊆
Resk

The key step is now to show that the image of the spitting is in fact in Sk+3(Γ). This
implies that Sk+3(Γ) → Char(Γ, k) is surjective. Assume for now that we have already
shown this. Then specializing to Γ � Γ(t) by Theorem 6.20, Theorem 8.5 and Lemma
3.4 we have

dimCK Sk+3(Γ(t)) � [Γ1(t) : Γ(t)] ·
(
k + 2
2

)
� q3 dimCK Vk ≤ dimCK Char(Γ(t), k),
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which proves the injectivity for Γ � Γ(t). For general Γ, since Γ(t) is normal in Γ, we can
consider the commutative diagram

Sk+3(Γ) Char(Γ, k)

Sk+3(Γ(t))Γ/Γ(t) Char(Γ(t), k)Γ/Γ(t) ,

Resk

� �

Resk

where the left vertical arrow is an isomorphism by the discussion at the end of Section
6.1. For the right vertical arrow it is immediate from the definition. Since the bottom
horizontal arrow is an isomorphism by the above, we obtain the result for general Γ.
Thus, in order to complete the proof of Theorem 8.9, we need to prove the following
proposition. It boils down to another lengthy computation with the kernel function
similar to Theorem 4.22 and Proposition 4.32. The analogous result for GL2(K) is
[Tei91, Lemma 12]. We should stress that this proposition requires the strong bounds in
Conjecture 5.49. The weaker version stated in Conjecture 4.29 is not sufficient to prove
the proposition.

8.11. Proposition. Assume that Conjecture 5.49 holds and let c ∈ Char(Γ, k). Then we have

Ik (λc) ∈ Sk+3(Γ).

Before we begin the proof, we want to explain the main ideas and the new difficulties
compared to [Tei91, Lemma 12]. Our proof can be summarized as follows: First of all
it suffices to show that Ik (λc) vanishes at infinity. For this, we use the criterion from
Proposition 6.12 (ii). Thus, we need to estimate |Ik (λc)(ω) | on certain subsets of X.
In order to obtain the desired estimate, we follow the line of thought of the proof of
Theorem 4.22: We want to choose a covering of G such that, for the specific ω under
consideration, we obtain a “nice” convergent series expansion. Then we want use the
uniform estimate fromConjecture 4.29 (iii) to estimate the series expansion term by term.
So far, this is in complete analogy with [Tei91, Lemma 12].
In the GL2(K)-case, there are two cells to consider, the big cell and the cell at infinity. It
turns out that in this situation one can use the following recipe to construct the covering:
One removes a small ball around infinity depending on the size of |ω |. The complement
is then covered by balls of large radius. This is where the conditions on ω enter: Even
on these large balls one obtains a convergent series expansion with a good estimate.
Then one realizes that the bound one obtains on the ball around infinity can be chosen
independently of |ω |, hence one obtains the desired estimate.
When transferring this strategy to GL3(K), the first observation is that one now has six
cells instead of two. The locally analytic kernel function is not defined uniformly on
all cells, but is modified precisely on two such cells. Over the course of the proof we
will see that in fact it suffices to modify the continuous kernel function on a smaller
neighbourhood of its singular locus; the resulting integral remains unchanged. It turns
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that when constructing the covering, one needs to consider finer conditions than just
the size of |ω |. The role of the cell at infinity is played by the cells corresponding to
{id, s1} ⊂ W , exactly the cells where the kernel function is modified.

Proof of Proposition 8.11. Let fc B Ik (λc) ∈ OX (k + 3)Γ. First off, we observe that it
suffices to check that ordΓH ( fc) ≥ 1. This is because

ord(gΓg−1)H (g∗ fc) � ord(gΓg−1)H ( fg·c)

and g · c ∈ Char(gΓg−1 , k) for g ∈ GL3(A), which is sufficient by Proposition 6.16. To
check that ordΓH ( fc) ≥ 1, we use the criterion given in Proposition 6.12 (ii). We need
some preparations. As explained above, the key idea is to use the estimate in Conjecture
5.49 (iii) to obtain the desired estimate for fc . For this, we need to use a different covering
of G compared to the one used in the proof of Theorem 4.22. We set

t(a1 , a2) B *.
,

1 0 0
0 πa1 0
0 0 πa2

+/
-

for (a1 , a2) ∈ Z2.

Now, for w ∈ W and u ∈ U− we let

Bw (u; a1 , a2) B w0wut(a1 , a2)IidB ⊂ w0wU−B.

Observe that for (b1 , b2) ∈ Z2 such that b2 − a2 ≥ b1 − a1 ≥ 0 we have

Bw (u; a1 , a2) �
⊔

v

Bw (uv; b1 , b2), (11)

where v runs through the left cosets of t(b1 , b2)Iidt(b1 , b2)−1 in t(a1 , a2)Iidt(a1 , a2)−1.
Moreover, note that since

wIid ⊆ Iw w for all w ∈ W,

we have Bw (u; a1 , a2) ⊆ w0Iw wB for a2 ≥ a1 ≥ 0. In fact, the coordinates on D(w) as in
(1) andU (σ0) fromTable 1 are compatiblewith this inclusion. We extend the coordinates
x � (x1 , x2 , x3) from D(w) to w0wU−B/B so that the inclusion D(w) ⊂ w0wU−B/B is
just the natural inclusion of (a subset of) O3

K into K3. We want to use Conjecture 5.49
(iii) to bound certain values of λc . For this, let fI B xI regarded as an element of Ak
by extending with 0 outside IB. Let h � w0wut(a1 , a2) ∈ G. Then Conjecture 5.49 (iii)
implies that we find C > 0, independent of h, such that

|λc (h∗ fI ) | ≤ Cq−|I | .

Let g ∈ w0wU− ∩ Bw (u; a1 , a2). If we denote by gx �

( 1 0 0
x1 1 0
x2 x3 1

)
the unique matrix in U−

such that g � w0w gx , we have

(h∗ fI )(gb) � fI (t(a1 , a2)−1u−1gx b)

� χk (b−1)χk (t(a1 , a2)) fI (t(a1 , a2)−1u−1gx t(a1 , a2)) for b ∈ B.
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Let
fI ,u ,(a1 ,a2) (x) B πa1(i1−i3)+a2(i2+i3) fI (t(a1 , a2)−1u−1gx t(a1 , a2)).

Then, since t(a1 , a2)−1u−1gx t(a1 , a2) ∈ Iid, we can compute this function explicitly.
Note however that the coordinates chosen in (5) are obtained by taking the inverse of
the coordinate matrix in Table 1. We obtain

fI ,u ,(a1 ,a2) (x) � πa1(i1−i3)+a2(i2+i3) fI
*.
,

*.
,

1 0 0
π−a1 (x1 − u1) 1 0

π−a2 (x2 − u2 − u3(x1 − u1)) πa1−a2 (x3 − u3) 1

+/
-

+/
-

� (u1 − x1) i1 (u2 − x2 − x3(u1 − x1)) i2 (u3 − x3) i3 .

Upon observing that χk (t(a1 , a2)) � πa1(−k/3)+a2(2k/3) , we have

���λc
(
χk (b−1) fI ,u ,(a1 ,a2) (x)1Bw (u;a1 ,a2) (gb)

) ��� ≤ Cq−|I |+a1(i3−i1−k/3)+a2(−i2−i3+2k/3) . (12)

The constant C > 0 is independent of w, u and (a1 , a2). The estimate (12) is the first
central ingredient for the proof. The second is given as follows. Let a2 ≥ a1 ≥ 0 and put

U (a1 , a2) B w0t(a1 , a2)U1(σ0).

Then by Lemma 4.15 we haveU (a1 , a2) � w0t(a1 , a2)IP1/B ⊆ U . We may set

θ̂(a1 ,a2) (g , ω) B θ̂(g , ω) + 1U\U (a1 ,a2) (g)θinv(g , ω).

Then as in Proposition 4.17, one can show that θ̂(a1 ,a2) (g , ω) is locally analytic on G/B.
Even more is true: By construction one can replace the kernel function θ̂(g , ω) by
θ̂(a1 ,a2) (g , ω) in the construction of Ik . The resulting function fc remains unchanged.
With these preparations, we can now prove that fc vanishes at infinity. For this, we fix
n ≥ 0 and N ≥ 0. Let ω ∈ X such that ω̃ ∈ Yn and d(ω1 , K2ω̃) ≥ q4n+N . We will prove
that for such ω we have

| fc (ω) | ≤ Cq−N ,

where the constant C > 0 is independent of ω, n and N . Then Proposition 6.12 (ii)
implies that fc vanishes at infinity. Note that the above conditions imply in particular
that |ω1 | ≥ q4n+N . We assume for now that additionally we have ω ∈ Xm for some
m ≥ 4n + N . We choose a covering of G depending on m and n as follows: Write

G �

⊔
w∈W

Dn ,m (w),

where Dn ,m (w) B w0t(n ,m)Iw wB. This is just a rescaling of the Bruhat-Iwahori
decomposition. Note that we have

U (n ,m) � Dn ,m (id) ∪ Dn ,m (s1).

To keep the notation short, we put

Sw ,u ,(a1 ,a2) (ω) B λc
(
det(gb)−2k/3β1(gb)k θ̂(n ,m) (ω, gb)1Bw (u;a1 ,a2) (gb)

)
.
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While the following computations are quite technical, the idea is relatively simple: We
will cover each cell Dn ,m (w) by appropriately chosen balls Bw (u; a1 , a2) such that we
can expand Sw ,u ,(a1 ,a2) (ω) into a convergent series expansion. Then we can use (12) and
the various bounds on ω to obtain the needed estimate. We do this only in a few cases;
the remaining cells can be treated in a similar fashion.
We first consider the cell Dn ,m (id) � w0t(n ,m)IB � Bid(id; n ,m). As in the proof of
Theorem 4.22, we may write

Sid,id,(n ,m) (ω) �
∑

I

cIλc
(
χk (b−1)x i1+1

1 x i2
2 (x2 − x1x3) i3+k+1

1Bid(id;n ,m) (gb)
)
ωi2+i3
1 ωi1

2

with cI ∈ OK . Then a simple computation using (12) reveals that we have

|Sid,id,(n ,m) (ω) | ≤ C sup
I

(
q−|I |+n(−i1−1−k/3)+m(−i2−i3−k−1+2k/3)qni1+m(i2+i3)

)
≤ Cq−N .

Next, we consider the cell Dn ,m (s1). First off, we observe that under the coordinates on
U− chosen above, Dn ,m (s1) corresponds to the compact open subset

(π−n
OK) × (πm−n+1

OK) × (πm+1
OK) ⊂ K3.

Thus, by (11) we can choose a disjoint covering of Dn ,m (s1) by finitely many sets
Bs1 (u; m , 2m) where the coordinates of the matrices u can be chosen so that u3 � 0.
We compute

Ss1 ,u ,(m ,2m) (ω) �∑
I

cIλc
(
χk (b−1)(x1 − u1) i1 (x2 − u2) i2x i3+k+1

3 1Bs1 (u;m ,2m) (gb)
) ωi2+i3

1
f (u , ω) i1+i2+1

,

where cI ∈ OK and f (u , ω) � u2ω1 + ω2 + u1. Again, by using (12) and the fact that
ω ∈ Xm we obtain

|Ss1 ,u ,(m ,2m) (ω) | ≤ C sup
I

(
q−|I |+m(i3+k+1−i1−k/3)+2m(−i2−i3−k−1+2k/3)qm(i2+i3)+(m−4n−N)(i1+i2+1)

)
≤ Cq−N .

Finally, we consider the cell Dn ,m (w0). First off, we observe that under the coordinates
on U− chosen above, Dn ,m (w0) corresponds to the compact open subset

(πn−m
OK) × (π−m

OK) × (π−n
OK) ⊂ K3.

Thus,we can choose adisjoint coveringofDn ,m (w0) byfinitelymany setsBw0 (u;−2n ,−n).
As in the proof of Theorem 4.22, we have

Sw0 ,u ,(−2n ,−n) (ω) �∑
I

cIλc
(
χk (b−1)(x − u)I

1Bw0 (u;−2n ,−n) (gb)
) ωi1

2
f1(u , ω) i1+i2+1 f2(u , ω) i3+1
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with cI ∈ OK , f1(u , ω) � ω1 + u1ω2 + u2 and f2(u , ω) � ω2 + u3. Again, a computation
using (12) reveals that we have

|Sw0 ,u ,(−2n ,−n) (ω) | ≤ Cq−N .

Similar computations show that each of the remaining cells can be covered in an
analogous fashion to obtain the same estimate. Combining all of this shows that
| fc (ω) | ≤ Cq−N , independently of the auxiliary choice of m. This completes the
proof. �

Now, the final step in the proof of Theorem 8.9 is to check the Hecke-equivariance of
the map Resk .

Proof of Theorem 8.9. The only remaining point is the Hecke-equivariance, which is
straightforward from the definitions. Let δ ∈ GL3(F) and write ΓδΓ �

⊔
i δiΓ. We

have

Resk (Tδ f ) � Resk *
,

∑
i

(δi)∗ f +
-

�

∑
i

δi · Resk ( f ) � Tδ (Resk ( f )),

since Resk is G-equivariant as we have seen in Subsection 3.4.2. �

We can slightly extend Theorem 8.9 as follows. Let Vk ,` B Vk ⊗CK det`−1−k/3.

8.12.Corollary. Wekeep the assumptions fromTheorem8.9. Then there is aHecke-equivariant
isomorphism

Sk+3,` (Γ) → Char(Γ,Vk ,`).

Proof. By Theorem 8.9 we have the isomorphism Sk+3(Γ(t)) → Char(Γ(t), k). Since
Γ(t) ⊂ SL3(A), we obtain an isomorphism

Sk+3,` (Γ(t)) � Sk+3(Γ(t)) ⊗CK det`−1−k/3
→ Char(Γ(t), k) ⊗CK det`−1−k/3

of Γ/Γ(t)-modules. After observing that one has a natural isomorphism

Char(Γ(t), k) ⊗CK det`−1−k/3 � Char(Γ(t),Vk ,`),

we obtain the desired isomorphism by taking Γ/Γ(t)-invariants. Checking the Hecke-
equivariance is again straightforward. �

8.13. Remark. By construction, the Hecke-equivariant isomorphism above is given by
the same formula as the map Resk , see Proposition 3.27.
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