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Abstract

The human induced pluripotent stem cells (h-iPSCs) are valuable and prom-
ising tools for regenerative medicine and disease modelling because of their ca-
pacity to differentiate into multiple types of cells. For the application of female
h-iPSCs, an important open question is whether they possess abnormal X chro-
mosome inactivation (XCI) levels which might result in the alteration of gene
expression and further downstream consequences.
This thesis investigates a population-level set of 273 female h-iPSCs from the
Human Induced Pluripotent Stem Cell Initiative (HipSci) and shows a clear line-
to-line variety in XCI levels, with four lines (1%) showing complete XCI loss.
XCI level is associated with the expression of 2,086 genes (q-value < 0.1), 85%
of which are on autosomes. XCI level is inherited in cells differentiated from
h-iPSCs. Therefore, the variance of XCI might have an impact on downstream
phenotypes, such as immune response. To allow researchers to quality control
their h-iPSCs and to maximize the utility of existing h-iPSC banks, methylation-
based and expression-based XCI metrics are proposed. These XCI metrics show
a clear association between each other and can be used as covariates in further
analysis.
To explore potential causal factors of XCI loss, variance component analyses are
carried out with multiple potential sources, including donor information and
technical or biological explanatory variables. These analyses reveal that culture
time explains little of the XCI variation, that the expression of XIST is one of the
most important explanatory factors, while still not a perfect marker, and that
there is a significant donor effect.
To identify potential genetic determinants of XCI level, a genome-wide associ-
ation study (GWAS) and a linear analysis with a subset of expression-related
genetic variants are carried out. With cross-check of two XCI metrics, a vari-
ant region, as well as a single variant rs3790598, which is associated with the
putative RNA helicase MOV10, are found as promising genetic sources of XCI
variation.
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Zusammenfassung

Die von Menschen induzierten pluripotenten Stammzellen (human indu-ced
pluripotent stem cells, h-iPSCs) sind aufgrund ihrer Fähigkeit, sich in verschiedene
Zelltypen zu differenzieren, wertvolle und vielversprechende Werkzeuge für
die regenerative Medizin und die Modellierung von Krank-heiten. Für die An-
wendung weiblicher h-iPSCs ist eine wichtige offene Frage, ob sie eine abnorme
X-Chromosomen-Inaktivierung (XCI) aufweisen, die zu einer Veränderung der
Genexpression und sogar zu weiteren nach-geschalteten Konsequenzen führen
könnte.
Diese Dissertation untersucht 273 weibliche h-iPSCs von HipSci, einem Daten-
satz auf Bevölkerungsebene, und zeigt einen klaren Unterschied von Linien zu
Linien bei den XCI-Niveaus, wobei vier Linien (1%) einen vollständigen XCI-
Verlust aufweisen. Das XCI-Niveau ist mit der Expression von 2.086 Genen (q-
Wert < 0, 1) assoziiert, von denen 85% auf Autosomen liegen. Der XCI-Spiegel
wird in Zellen vererbt, die sich von h-iPSCs differenzieren. Daher könnte die
Variation von XCI einen Einfluss auf nachgelagerte Phänotypen, wie z.B. die
Immunantwort, haben. Um Forschern die Qualitätskontrolle ihrer h-iPSCs zu
ermöglichen und den Nutzen der bestehenden h-iPSC-Banken zu maximieren,
werden methylierungs- und expressionsbasierte XCI-Metriken vorgeschlagen.
Diese XCI-Metriken zeigen eine klare Assoziation untereinander und können
als Kovariate in der weiteren Analyse verwendet werden.
Zur Untersuchung potenzieller kausaler Faktoren des XCI-Verlusts werden Var-
ianzkomponentenanalysen mit mehreren potenziellen Ursachen durch-geführt,
wozu Informationen zu Spendern und technische oder biologische Erklärungsvari-
ablen gehören. Diese Analysen zeigen, dass die Zeit in der Kultur wenig von der
XCI-Variation erklärt, dass die Expression von XIST einer der wichtigsten Fak-
toren zur Erklärung der XCI ist, obwohl sie noch immer kein perfekter Marker
ist, und dass es einen signifikanten Spendereffekt gibt. Zur Identifizierung poten-
zieller genetischer Determinanten des XCI-Spiegels werden eine genomweite
Assoziationsstudie (GWAS) und eine lineare Analyse mit einer Untergruppe
von expressionsbezogenen genetischen Varianten durchgeführt. Bei der Gegen-
probe von zwei XCI-Metriken auf Chromosom 1 werden eine Variantenregion
sowie eine einzige Variante rs3790598, die mit der mutmaßlichen RNA-Helikase
MOV10 assoziiert ist, als vielversprechende genetische Ursachen der XCI-Variation
gefunden.
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Chapter 1

Introduction

The scientific exploration is to keep answering open questions...and to keep
asking new ones.

In 2006 and 2007, Yamanaka’s lab published the induced pluripotent stem cell
(iPSC) technology which successfully reprogrammed mouse embryonic stem
(ES) cells and adult human dermal fibroblasts to pluripotent stem cells by trans-
duction of four defined transcription factors: Oct3/4, Sox2, c-Myc, and Klf4
(Takahashi and Yamanaka 2006, Takahashi, Tanabe, et al. 2007). Since then, a se-
ries of works repeated the stable generation of human iPSCs (h-iPSC) and mouse
iPSCs (m-iPSCs) with Yamanaka’s method (e.g. Hu et al. 2010a, S. P. Paşca et al.
2011, Pomp et al. 2011, Mekhoubad et al. 2012) and nominated experimental al-
terations which improved the generation of h-iPSCs (Esteban et al. 2010, Zhao
et al. 2008).

Since its development, iPSC technology has been of great interest for regener-
ative medicine because of its promises to derive multiple types of cells and for
its tremendous potential for personalized cell therapy.

The Yamanaka lab initially proved that the h-iPSC cells had the capacity to
differentiate into three germ layers, namely the endoderm, the mesoderm and
the ectoderm (Takahashi, Tanabe, et al. 2007), followed by other groups which
proved the differentiation ability of h-iPSCs to other cell types like neurons (Hu
et al. 2010a, Schwartzentruber et al. 2018), macrophages (Alasoo et al. 2018, H.
Zhang et al. 2015, Takahashi, Tanabe, et al. 2007), blood cells (Choi et al. 2009),
or brain oligodendrocyte progenitor cells (S. Wang et al. 2013).

H-iPSC derived cells have been widely used in disease modelling, including
the study of disease-related cellular phenotypes (S. P. Paşca et al. 2011, Y.-T. Lin
et al. 2018), cell-malfunctions (Imaizumi et al. 2012), the regulation of antigen-
receptors in tumor treatment (Y. Li et al. 2018), as well as the intervention for
spinal cord injury (Tsuji et al. 2019).
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For the application of h-iPSCs in biological and clinical research, open ques-
tions are whether there are genetic and/or expression variations in h-iPSCs from
their original cells and whether there are effects of these variations (Martins-
Taylor and R.-H. Xu 2012, Bilic et al. 2012). Previous studies discovered that
h-iPSCs contain sub-chromosomal copy number variations (CNVs) (Chin et al.
2009, Spits et al. 2008), trisomy of chromosome 12 and chromosome X (Martins-
Taylor, Nisler, et al. 2011, Taapken et al. 2011), as well as mutations relative to
protein coding (Gore et al. 2011).

An important genetic feature for female h-iPSCs is X chromosome inactivation
(XCI) status. XCI is the dosage compensation process in females that balances
sex-related gene expression between males and females (details in section 1.2).
Scientists have different observations and assumptions regarding the XCI in fe-
male h-iPSCs: some scientists observed two active X chromosomes and assumed
that there is a X-reactivation during the programming of h-iPSCs (Barakat et al.
2015, Kim, Hysolli, Tanaka, et al. 2014); while other scientists reported a variable
XCI level and assumed that a loss of XCI may happen on the inactive X chromo-
some in h-iPSCs during cell culture (Mekhoubad et al. 2012, Anguera et al. 2012,
Tchieu et al. 2010, Brenes et al. 2020, Nazor et al. 2012).

Previous studies of XCI in h-iPSCs have limitations in following aspects: the
limited number of h-iPSCs and donors for h-iPSCs used in the research (6 h-
iPSCs generated from 2 different types fibroblasts in Kim, Hysolli, Tanaka, et al.
2014, 12 h-iPSCs in Mekhoubad et al. 2012, 30 h-iPSCs in Tchieu et al. 2010 and
11 donors in Trokovic et al. 2015), the generation of multiple h-iPSCs from the
same donor (12 h-iPSCs from 2 patients in Pomp et al. 2011 and 7 h-iPSCs from
1 fibroblast line in Anguera et al. 2012), as well as multiple sources of h-iPSCs
(69 h-iPSCs in Nazor et al. 2012 were generated from 7 institutes and from 3 re-
programming methods, namely ’Episomal’, ’Lenti-virus’ and ’Retro-virus’).

This thesis investigates the XCI status in the data set of 273 female h-iPSCs
from 205 independent donors generated by the Human Induced Pluripotent
Stem Cell Initiative (HipSci, Kilpinen et al. 2017), including the prevalence of
XCI level in the population, effects of experimental variables, potential genetic
causes, as well as broad consequences of XCI variation in h-iPSCs and h-iPSC
derived cells (Alasoo et al. 2018, Schwartzentruber et al. 2018).

HipSci is one of the largest data bank of h-iPSCs in the world generated by the
same institute. There are three major advantages of using HipSci as the main
data source of this thesis: the population-level recruited donors, the large-scale
sample size and the uniform experimental and processing design. This uniform
data source can help to reduce the noise and bias in h-iPSCs caused by different
experimental methods (Newman et al. 2010, Volpato et al. 2018, Rao et al. 2012).
HipSci recruits both healthy donors and patients from particular rare disease
communities in the UK (www.hipsci.org). Compared with previous studies,
using HipSci helps the understanding of XCI at population level. Moreover, for

www.hipsci.org
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68 out of 205 female donors, there is a second independently generated h-iPSC
line available, making it possible to investigate the donor effect in the ’sibling’
h-iPSC lines.

Besides HipSci, a smaller data set by Banovich et al. 2018 which contains 32
female h-iPSCs generated from YRI lymphoblastoid cell lines (African popula-
tion in the 1000 Genome Project, 1000 Genomes Project Consortium et al. 2015)
is used to reproduce the XCI-prevalence and the computation of XCI metrics,
which demonstrates the existence of XCI heterogeneity in h-iPSCs regardless of
the cell’s origin.

1.1 HipSci, the world biggest h-iPSC bank from a single
institute

The HipSci project was established by four key partners: the Wellcome Trust
Sanger Institute, the European Bioinformatics Institute (EMBL-EBI), the King’s
college London and the University of Dundee. The motivation of the establish-
ment of HipSci was to generate a large-scale, high quality h-iPSC reference base
which is open to both academia and industry.
HipSci is a very important source for the study of h-iPSCs: firstly, mainly healthy
donors were included in the project cohort, plus several donors with inher-
ited genetic diseases, meanwhile the age and health condition (either healthy
or with a certain genetic disease) were recorded; secondly, h-iPSC lines were
generated from donors using a standardized experimental pipeline and went
through quality control on their pluripotency; thirdly, each h-iPSC which passed
the quality control was massively characterised on their genetics and genomics
level, including whole exome sequencing, methylation array, RNA-sequencing,
expression array and proteomics mass spectrometry (Kilpinen et al. 2017). Us-
ing h-iPSC lines from HipSci guarantees a uniform data source for the research.
This is important since using h-iPSCs from different laboratories might intro-
duce bias because of experimental settings and batch variables (Newman et al.
2010, Liang et al. 2013).

The major work of this thesis uses 273 h-iPSCs generated from 205 female donors
for the investigation of XCI level and uses 219 male h-iPSCs as reference (figure
1.2). Since the HipSci project uses the same experimental pipeline, genetics and
genomics screening methods, as well as data processing procedures, I summa-
rize these technical details from Kilpinen et al. 2017 and present them in section
1.1.1.
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Figure 1.1: Summary of the generation process of h-iPSCs in HipSci (adapted
from figure 1.a in Kilpinen et al. 2017).

1.1.1 Detailed experimental settings related to this thesis

Here, I summarize the ’Methods’ and ’Supplementary Information’ of Kilpinen
et al. 2017 and present the information which is related to the analytical work of
this thesis.

Generation and quality control of h-iPSCs

Volunteered donors of the HipSci project were recruited by the NIHR Cam-
bridge BioResource and fibroblasts of each donor were obtained by skin punch
biopsies. Yamanaka’s method (Takahashi and Yamanaka 2006, Takahashi, Tan-
abe, et al. 2007) was applied for the reprogramming of h-iPSCs from fibrobalsts
with transduction of human OCT3/4, SOX2, KLF4 and MYC using sendai vec-
tors.

Quality control was executed with h-iPSCs’ initial molecular data when they
were passaged on average 16 times (Tier 1, figure 1.1). In details, criteria for
the selection were: the level of pluripotency using the PluriTest assay (Müller et
al. 2011), number of copy number abnormalities and ability to differentiate into
each of three germ layers (endoderm, mesoderm and ectoderm). In the process
of quality control, one or two lines were selected from the same donor to mini-
mize the genetic abnormality between h-iPSCs and their progenitor fibroblasts.

This thesis includes 170 healthy donors, 21 donors with Bardet-Biedl syndrom
(bbs) and 14 donors with neonatal diabetes (nd), and makes use of 273 female
h-iPSC lines in total.

Important experimental differences in the cell culture of h-iPSCs

Culture media and culture time are two important experimental variables. The
summary of these two experimental variables for all 492 h-iPSCs involved in
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Figure 1.3: Summary of important cell culture experimental variables for 492
h-iPSCs involved in this thesis. a. Two cell culture media are used: feeder free
(FF) and feeder dependent (FD). Both male and female h-iPSCs have more lines
cultured in medium FF than in medium FD. b. The cell culture time varies from
24 days to 240 days.
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this thesis is shown in figure 1.3. For 273 female h-iPSCs used in this thesis, two
types of media were used: feeder-free (FF, 222 lines) and feeder-dependent (FD,
51 lines). Besides, the time of cell culture was also different: the h-iPSCs were
cultured from 24 days to 240 days (average cell culture time: 75 days). The 219
male h-iPSCs were cultured in the similar condition. Meanwhile the distribu-
tion of cell culture time was similar between male h-iPSCs and female h-iPSCs:
the average culture time was 78 days in female h-iPSCs and was 84 days in male
h-iPSCs (figure 1.3 b).

Multi-omics characterisation of h-iPSCs

All h-iPSCs in the HipSci were extensively screened. These data greatly help our
understanding of h-iPSCs and allow the large scale quantitative analysis with h-
iPSCs. Here, I present the screening methods, as well as major quality control
process after the screening, which are associated with the analysis of this thesis,
including the DNA methylation array, the RNA-sequencing, the expression ar-
ray, as well as the genotyping array.

DNA methylation array

Two types of array were used for the measurement of DNA methylation level:
the Illumina Human Methylation 450K (164 out of 273 female h-iPSCs and 125
out of 219 male h-iPSCs) and the Illumina Human Methylation 850K (109 out of
273 female h-iPSCs and 94 out of 219 male h-iPSCs). For these two methylation
arrays, batch effects come from the plate where the sample is located (below,
sample plate) and the exact position of this sample on the plate (below, sentrix).
In HipSci, 11 different sample plates and 63 different sentrix for either male or
female h-iPSCs were used.

The IlluminaHumanMethylation450kanno.ilmn12.hg19 Bioconductor annotation
package was used for the probe annotation (Hansen 2016). The stratified quan-
tile normalisation of samples was applied with preprocessQuantile function with
minfi Bioconductor package (Aryee et al. 2014). In total 9,257 probes are located
on the X chromosome.

RNA-sequencing

The RNA-sequencing of h-iPSCs in the HipSci project was executed using Il-
lumina HiSeq 2000 system (75-base paired-end). The alignment of raw RNA-
sequencing reads was done using STAR, version 2.4.0 (Dobin et al. 2013), with
human reference GRCh37 (ENSEMBL 2010). Mapped reads were quantified at
gene-level using HTSeq, version 0.6.1p1 (Anders et al. 2015) and were annotated
against Genecode version 19 (Harrow et al. 2012).

In HipSci, in total 54,410 genes were screened by RNA-sequencing, including
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2,190 X-located genes, 286 Y-located genes and 51,934 autosomal genes. The
RNA-sequencing data was available for all 492 h-iPSCs involved in this thesis.

Expression array

Gene expression profiles were measured by Illumina Human HT-12 v4 Expres-
sion BeadChips. Probes were re-mapped against the human genome GRCh37
(Harrow et al. 2012) using BWA, version 0.7.5 (Heng Li and Durbin 2009). Mapped
probes were filtered at two levels: probes whose minimum filtering quality
(MAPQ) was smaller than 10 and probes which overlapped with any variant
with minor alle frequency (MAF) greater than 0.05 in the main imputed data
set were removed. After filtering, 25,604 probes remained, standing for 17,116
unique genes. Variance stabilization of the expression array was carried out
with R/Bioconductor package vsn (Huber et al. 2002).

Genotyping and copy number alteration (CNA)

The genotypes of h-iPSC lines and fibroblasts were measured by an Illumina
HumanCoreExome-12 BeadChip. The internal Illumina Genome Studio soft-
ware was used for genotype calling. Following the initial quality control in
the Illumina system, the imputation of genotype was done with IMPUTE2, ver-
sion 2.3.1 (Howie et al. 2009), then haplotype estimation was carried out with
SHAPEIT, version 2.r790 (Delaneau et al. 2012). VCF files from single samples
were merged together while the INFO score was recalculated with posterior
probabilities of genotypes. Another quality control was executed so that vari-
ants with the INFO score smaller than 0.4 were excluded.

Copy number alterations (CNAs) between h-iPSCs and fibroblasts of the same
donor were called using the cnv function of Bcftools, version 1.9 (Heng Li 2011,
Danecek, S. A. McCarthy, et al. 2016). The filtering process of CNAs was ex-
ecuted at three levels: the quality score (not smaller than 2), the number of
deletions of markers (not smaller than 10) and the number of duplications of
heterozygous markers (not smaller than 10). To summarize the detected CNA
level in the initial result (711 h-iPSCs), 18% of h-iPSCs contained one or more
CNA, meanwhile, 22% of CNAs were observed in at least one line generated
from the same donor and 15% were observed in all replicates.

1.2 XCI, an open topic for h-iPSCs

XCI is a dosage compensation mechanism in mammals that balances the sex-
related genes in the two genders: since females have two copies of X chromo-
some (XX) while males have one copy of X chromosome and one copy of Y chro-
mosome (XY), XCI ensures that both females and males have similar expression
level of the X-located genes (Lyon 1961, Brockdorff et al. 2015, Heard et al. 1997,
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Avner et al. 2001).

The XCI process controls the silencing of the X chromosome in females and is a
key process in the development of early embryos. The initialization time of XCI
in humans is still not clearly known as in mouse, in which XCI is initiated at the
preimplantation stage following early whole-genome activation (Huynh et al.
2003, Okamoto et al. 2004, Erhardt et al. 2003, Costanzi et al. 2000, Hartshorn
et al. 2003, Johnson et al. 2004, Zernicka-Goetz 2002).

In both humans and mouse, the XCI process is believed to be controlled via
the X-chromosome inactivation center (Xic), which is found mandatory for this
process (J. T. Lee and Jaenisch 1997, J. Lee et al. 1999). The non-coding RNA
XIST, which is the abbreviation of the X inactive-specific transcript, is the most
important component of Xic and is seen as the key factor for the start of the XCI
process (Penny et al. 1996, C. J. Brown, Hendrich, et al. 1992, Berg et al. 2009,
Avner et al. 2001).

1.2.1 Previous studies have various conclusions about XCI level in h-
iPSCs

Most of our knowledge about XCI in iPSCs comes from mouse iPSC (m-iPSC)
lines: during the generation of m-iPSCs, the inactive X chromosome in mouse
stem cells get reactivated, thus two active X chromosomes can be observed in
m-iPSCs; once the m-iPSCs are differentiated to other cell types, the XCI takes
place to ensure that there is only one active X in the mouse stem cells (Lyon 1961,
Van den Berg et al. 2011, Liang et al. 2013, J. T. Lee and Bartolomei 2013, Galupa
et al. 2018, Janiszewski et al. 2019, Pasque et al. 2015).

However, the XCI regulation in human iPSCs (h-iPSCs) is still unclear. As pre-
sented at the beginning of this chapter, scientists have different observations in
previous studies: some scientists observe two active X chromosomes and believe
that in h-iPSCs there is also a reactivation of the X chromosome as in m-iPSCs
(Kim, Hysolli, and Park 2011, Tomoda et al. 2012, Barakat et al. 2015, Vacca et
al. 2016); while other scientists observe a loss of XCI level which might result
from the cell culture (Kim, Hysolli, Tanaka, et al. 2014, Mekhoubad et al. 2012,
Anguera et al. 2012, Pomp et al. 2011, Nazor et al. 2012).

Considering that h-iPSCs and iPSC-derived cells are widely used in disease
modeling and personalized cell therapy (S. P. Paşca et al. 2011, Hao Wu et al.
2014, S. Wang et al. 2013, Brix et al. 2005), to control the bias in research and in
clinical applications, it is essential to clarify the general status of XCI in h-iPSCs,
its inheritance in iPSC-derived and its consequences.
For example, a second active X chromosome might lead to misregulation of gene
expression, which is problematic in biological functions. Besides, since the X
chromosome contains the largest number of immune-related genes in human
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(Bianchi et al. 2012a, Libert et al. 2010), a second active X chromosome might
also result in immunological consequences.

1.2.2 XIST, the critical factor of the XCI process

The long non-coding RNA (lncRNA) XIST is identified as the mandatory factor
for the initialization of the XCI process in humans by researches to date (Pontier
et al. 2011, Simon et al. 2013, Galupa et al. 2018). In human embroynic stem (h-
ES) cells, XIST locates on both two X chromosomes and expresses only on the
inactive X chromosome (Xi, C. J. Brown, Hendrich, et al. 1992). The transcript
of XIST remains in the nucleus of the stem cell and coats the Xi (Avner et al.
2001, C. J. Brown, Hendrich, et al. 1992). After XIST coats the Xi, the repres-
sive marks (e.g. histone H3 lysine 9 dimethylation) accumulate and silencing
genes (Polycombcomplex 1 and 2) are recruited (Maduro et al. 2016, Galupa et
al. 2018). Several studies have presented the important role of DNA methylation
in maintaining the silence of Xi (Panning et al. 1996, Hellman et al. 2007, Tribioli
et al. 1992). Furthermore, once established, Xi is maintained and stably inherited
upon cell divisions (Duncan et al. 2018, Maduro et al. 2016, Galupa et al. 2018).

XIST is not the only key factor in the establishment of XCI. In fact, XIST and
its surrounding neighbourhoods formulate the X-inactivation center (Xic), while
the exact sequence of Xic in h-ES cells and its detailed mechanism is still unclear
(J. T. Lee and Jaenisch 1997, J. Lee et al. 1999). What is also unclear in terms of
XIST is how the XIST transcript binds to the Xi. So far, scientists believe that
XIST-RNA is a structural RNA in nucleus and it associates loosely with the nu-
clear matrix (Clemson et al. 1996, C. J. Brown, Hendrich, et al. 1992).

The XIST expression level in m-iPSCs has been found associated with culture
time (Janiszewski et al. 2019). The recent study by Briggs et al. 2015 with single-
cell technology also shows the loss of XIST expression in h-iPSCs with cell cul-
ture. These observations reveal the possibility that the XIST expression level, or
even the XCI status which is regulated by XIST, might change over time in cell
culture.

With the biological knowledge and the unsolved problems about the h-iPSC
generation and about the XCI, I have the following focus in the research de-
sign: the X-methylation level, which is the direct representation of XCI; the
XIST expression level, which controls and initializes the XCI; the time-effect in
X-methylation and in XIST-expression; as well as the X-located and autosomal
gene expression level, which might be major consequences of the XCI variation.

1.2.3 XCI escapees: the X-genes which are able to escape the XCI

On the X chromosome, a fraction of genes are able to escape from the XCI, which
are named XCI escapees. A typical XCI escapee is the XIST, as described in sec-
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tion 1.2.2, XIST expresses on the inactive X chromosome (Xi), which is seen as
the initialization of the XCI (C. J. Brown, Hendrich, et al. 1992,Pontier et al. 2011,
Simon et al. 2013, Galupa et al. 2018).

Besides XIST, a specific region is known to be XCI-escapees: the pseudoautoso-
mal regions (PAR1 and PAR2, Helena Mangs et al. 2007, Raudsepp et al. 2015).
The pseudoautosomal regions locate on both termini of the X chromosome and
the Y chromosome and recombine during the male meiosis (Helena Mangs et al.
2007, Balaton et al. 2015). Therefore, genes in the pseudoautosomal regions have
identical expression level between males (XY) and females (XX) and do not need
further dosage compensation (Helena Mangs et al. 2007, Raudsepp et al. 2015,
Balaton et al. 2015).

In human females, up to 25% of genes are able to escape from XCI, identified
by Carrel et al. 2005 with human fibroblasts: 15% of genes can escapes in all
samples while 10% of genes have a variable escape-pattern across samples. Fur-
thermore, the XCI escapees in human are found to be tissue specific by Tukiainen
et al. 2017 which investigated 29 types of tissues in 449 individuals and Cotton
et al. 2015 which studied 4 types of tissues in 95 individuals.

Since there is a lack of hard proof about which genes are h-iPSC specific XCI es-
capees, this thesis uses the list of genes which escaped XCI in all tissues (n = 99)
in Tukiainen et al. 2017 as a ’strict’ representation of XCI escapees (chapter 2),
and the list of genes which escaped XCI in at least one tissue (n = 200) in Tuki-
ainen et al. 2017 as a ’loose’ representation of the XCI escapees (chapter 5). Genes
in these two lists are checked in the analysis to remove the effect of known XCI
escapees in the result.

1.3 The motivation and research design of this thesis

The first and the most important question that I want to answer with this the-
sis is whether there is a variable XCI status in h-iPSCs from healthy donors at
population level. With the h-iPSCs generated and screened by HipSci, I use the
methylation level of the X chromosome as the direct read-out of the XCI and
firstly present its overview in all female h-iPSCs (chapter 2). To facilitate the es-
timation of XCI status, I show that the expression level can also be used as XCI
metric (chapter 2). Potential sources of XCI variation, including experimental
variables, donor age and health condition, XIST expression level as well as the
copy number alterations (CNAs), are estimated for their contribution to the XCI
variability (chapter 3). Autosomal genetic variants are also studied for their as-
sociation with XCI level (chapter 4). Besides, I also investigate the consequences
of XCI variation in h-iPSCs and its inheritance in iPSC-derived cells (chapter 5).
Finally, using a smaller data set of h-iPSCs generated from lymphoblastoid cell
lines (LCLs, n = 32), some part of analysis is reproduced to demonstrate the
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general XCI heterogeneity in h-iPSCs (chapter 6).

In this thesis, I carry out analytical research to answer open questions about
the XCI status in h-iPSCs. I expect that the work of this thesis will not only
expand the current biological knowledge about the h-iPSCs but also help the
clinical application of h-iPSCs and iPSC-derived cells.
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Chapter 2

Landscape of XCI in female
h-iPSCs

Is there variation of XCI level in female h-iPSCs?
Yes, at population level.

In this chapter, I answer the first and the most important question related to
the work of this thesis: what variation of XCI level is observable with female
h-iPSCs in HipSci, the population-level h-iPSC data bank?

As presented in chapter 1, regarding the XCI level in female h-iPSCs, previ-
ous studies had different conclusions: some studies showed stable XCI status
(Tchieu et al. 2010, Pomp et al. 2011) while others showed a various XCI level
(Kim, Hysolli, and Park 2011, Marchetto et al. 2010, Tomoda et al. 2012, Barakat
et al. 2015, Mekhoubad et al. 2012, Nazor et al. 2012). There are three major
limitations of previous studies referring to the prevalence of XCI in h-iPSCs: the
limited number of samples (typically within 30 h-iPSC lines and 15 donors), gen-
eration of multiple h-iPSCs from the same donor, as well as the usage of h-iPSCs
from multiple sources (chapter 1).

Thanks to HipSci (Kilpinen et al. 2017), this thesis is able to present the XCI
level in h-iPSCs using 273 female h-iPSC lines from 205 independent donors,
with the majority of lines (235 out of 273) generated from healthy donors. Mean-
while, all h-iPSCs were intensively screened for their multi-omics characters so
that I am able to present the overview of XCI with the methylation level of the X
chromosome, to summarize it with multiple screening results and to present the
consistency of XCI metrics obtained from different screening data in this chapter.

Since methylation is part of the mechanism of the silencing of the X chromosome
(Galupa et al. 2018), results from the methylation array (chapter 1) were firstly
used for the overview of XCI level in 273 female h-iPSCs (section 2.1), where I
show the existence of the line to line variability in XCI level for female h-iPSCs.
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To have a direct representation of XCI for a certain h-iPSC instead of using the
whole methylation matrix, section 2.2 introduces the definition of methylation
inactivation score (mIS) as XCI metric. To facilitate the estimation of XCI level
of h-iPSCs for laboratories where methylation level is not measured, I show that
expression level can also be used as XCI metrics which have good association
with mIS (section 2.3). Furthermore, using genes selected by penalized linear
regression can not improve the estimation of XCI level in h-iPSCs (section 2.5).
With the single cell data set generated by Linker et al. 2019, I present that single
cells display similar XCI level to the bulk level for female h-iPSC line joxm_1
(section 2.4).

2.1 Line-to-line variability of methylation level in female
h-iPSCs

As briefly introduced before, results from the methylation array were used for
the overview of X-chromosome methylation level in h-iPSCs. In the HipSci
project, the methylation level of all h-iPSCs were screened by either Illumina In-
finium Human Methylation 450K BeadChip or Illumina Infinium Human Methy-
lation 850K BeadChip, including 9,257 probes on the X chromosome.

2.1.1 Line-to-Line variability of methylation level in female h-iPSCs

To present the methylation level at each locus of the X chromosome, this section
introduces � value which represents the fraction of DNA molecules methylated
at a certain locus, with the formula:

� =
M

U+M+ 100
(2.1)

where M =methylated allele intensity, U = unmethylated allele intensity.

Usually, � falls into interval [0, 1). For probes on the X chromosome, a value of
� = 0 indicates that this locus is unmethylated in all molecules. When � > 0, a
certain proportion of molecules is methylated at this locus, for instance, � = 0.5
indicates that half of molecules is methylated. While a single � value presents
the fraction of methylation at a locus, for each h-iPSC, the distribution of � on
all X-located loci indicates the pattern of methylation in this h-iPSC line.

By presenting the � on all loci of X chromosome in all studied female h-iPSCs
and in a subset of male h-iPSCs, figure 2.1 clearly shows the line-to-line variabil-
ity of the methylation level in the female h-iPSC population.
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Figure 2.1: Heatmap of � on the X chromosome in 273 female h-iPSCs and 30
representative male h-iPSCs. H-iPSCs are placed in rows, labeled by their gen-
der (blue: male, purple: female). The four outlier female h-iPSCs which display
complete XCI loss are placed in the bottom rows. Probes are placed in columns,
ordered by their genomic positions. Probes which located in regions of known
XCI escapees are shown in red. � is written as Beta.

In figure 2.1, all 273 female h-iPSCs (in purple) and a representative subset of
30 male h-iPSCs (in blue) are placed in rows; probes on X chromosome and Y
chromosome are placed in columns and ordered by their genomic position. A
selection of probes were carried out for this figure: probes which were highly
methylated (median methylation > 0.4) in both female and male h-iPSCs were
removed since they were not relevant to the XCI (total number of probes in the
figure: 4, 285). As briefly introduced in chapter 1 (section 1.2.3), genes which
escaped XCI in all tissues in Tukiainen et al. 2017 (n = 99) are used as a ’strict’
representation of XCI escapees. Probes which located in regions of these genes
are labeled in red (n = 235). Among all escapee-targeting probes, 49% of probes
display relatively high methylation level (� > 0.25) while 51% of probes dis-
play low methylation level (� 6 0.25), indicating that in h-iPSCs, XCI might
also happen on genes where were identified as escapees in other human tissues
(Supplementary figure B.2).

Figure 2.1 clearly reveals the variance of � in female h-iPSCs: on one hand, for a
certain locus, different female h-iPSCs have different � value; on the other hand,
different female h-iPSCs have different overall � across the X chromosome. This
observation demonstrates the existence of XCI variability in the population of
female h-iPSCs from healthy donors by showing the variant methylation level
of the X chromosome.
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2.1.2 Three patterns of methylation level in female h-iPSCs

For all 273 female h-iPSCs studied, three patterns of distribution were observed
for � on the X chromosome: only one peak at � = 0.5, indicating that for this h-
iPSC half of X chromosome is methylated, which is the sign of proper XCI; only
one peak at � = 0, indicating that all X chromosome is unmethylated, which is
the sign of complete XCI loss; as well as two peaks at � = 0 and at � = 0.5,
indicating that this h-iPSC has part of X chromosome methylated, which is the
sign of incomplete XCI loss. � = 1 refers to the base of the methylation array
so is not included for the discussion and the analysis. These three patterns of
methylation level indicate the three different XCI level in the female h-iPSCs.
One example of each pattern is shown in figure 2.2 (a, b and c). In contrast with
the variable methylation level in female h-iPSCs, all 219 male h-iPSCs showed a
uniform distribution of �: only one peak at � = 0, shown in figure 2.2 (d). To
summarize, among the 273 female h-iPSCs, 4 lines (1%) have complete XCI loss
while the majority shows variable XCI level.

2.1.3 Lines from the same donor display a similar XCI level

Many previous studies used multiple h-iPSCs generated from the same donor
(Mekhoubad et al. 2012, Anguera et al. 2012, Pomp et al. 2011), whereas the
question arose: regarding the XCI level, are lines from the same donor (below,
sibling lines) more similar to one another than lines from different donors?

In HipSci (Kilpinen et al. 2017), a second independent h-iPSC line is available
for 68 out of 205 female donors. In the cell culture, it happened that 50 out of
68 donors had both two sibling-lines cultured with medium Feeder Free (FF),
8 donors had both two sibling-lines cultured with medium Feeder Dependent
(FD), while 10 donors had sibling-lines cultured in different media. To control
the experimental bias, I take 50 pairs of sibling lines which were generated in
medium FF, as well as 129 h-iPSCs from independent donors generated in the
same medium, then compute the correlation of � (formula 2.1) between paired
sibling lines and among all independent h-iPSCs (figure 2.3).
Figure 2.3 shows that the methylation level in sibling lines is higher correlated
(mean = 0.94, median = 0.95) than h-iPSCs from independent donors which
were generated in the same experimental condition (mean = 0.91, median =
0.91). This observation demonstrates that sibling lines are more similar to each
other when compared with h-iPSCs from different donors.

2.2 Methylation-based XCI metric: methylation inactiva-
tion score

The methylation inactivation score (mIS) is a summary of � values (formula 2.1)
over the X chromosome. As methylation of the X chromosome is directly related
to the XCI process, in this thesis, mIS is used as a standard representation of XCI.
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Figure 2.2: Distribution of X-related � indicates different methylation patterns
in female and male h-iPSCs. a, b and c. Three patterns of distributions of �

in female h-iPSCs, representing the proper XCI, complete XCI loss and incom-
plete XCI loss (airc_66, dons_1 and fpdj_3, respectively). d. An example of the
uniform distribution of � in male h-iPSCs (ffdc_1).

2.2.1 Definition of mIS

The mIS is defined as log transferred number of probes (loci) on the X chromo-
some which are unmethylated, with formula:

mIS

:= log10 (number of loci on X chromosome with� < 0.25) (2.2)

The mIS directly measures, for a certain h-iPSC line, how many probes on X
chromosome are unmethylated (threshold at � = 0.25). To identify whether
� = 0.25 could separate ’unmethylated probes’ and ’methylated probes’, a k-
means clustering, with k= 3 (represents for potential peak at 0, at 0.5 and at 1),
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Figure 2.3: Comparison of the correlation of � values in 129 independent h-
iPSCs (blue) and in 50 pairs of sibling h-iPSCs (red). Dashed lines label the
average of the correlation: 0.91 (blue) and 0.94 (red).

was applied to X-related � values in female h-iPSCs. Using the same female
h-iPSC lines in figure 2.2, figure 2.4 shows the distribution of � with the density
curve of three clusters.

Figure 2.4 shows that, for female h-iPSCs with XCI loss pattern as complete or
incomplete (figure 2.4 b and figure 2.4 c), � = 0.25 is able to separate two clus-
ters which represent unmethylation (peak at � = 0) and methylation (peak at
� = 0.5). For h-iPSCs with proper XCI (overlapping two clusters with peak at
� = 0.5, figure 2.4 a), � = 0.25 separates a small proportion of probes which
are unmethylated from major probes with proper methylation rate. The same
distribution plot with k-means clustering was applied to all 273 female h-iPSCs,
of which results showed a proper separation with � = 0.25. As the fixed � value
is able to serve as a proper threshold, it is unnecessary to apply a line-specific
threshold.

2.2.2 Correction of technical factors in methylation array

In section 1.1.1, technical details of DNA methylation array in HipSci (Kilpinen
et al. 2017) was presented. To briefly summarize, two types of array were ap-
plied: Illumina Human Methylation 450K (164 out of 273 female h-iPSCs) and Il-
lumina Human Methylation 850K (109 out of 273 female h-iPSCs). In the methy-
lation array, two other technical factors were also different for female h-iPSC
lines: the plate on which the sample is placed (below, sample plate, total num-
ber = 11) and the position of the sample on the plate (below, sentrix ID, total
number = 61).
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Figure 2.4: Histogram of � with density curves in 3-clusters (colors: red for
unmethylation cluster, green for proper XCI cluster, blue for technology base;
dash curves are density of clusters; vertical red and green dash lines are first
and second standard deviation for the representing cluster; vertical black line is
threshold � = 0.25). a. An example of proper XCI (airc_66). b. An example of
complete XCI loss (dons_1). c. An example of incomplete XCI (fpdj_3).

To adjust these technical factors, a linear model is fit, with formula:

mIS = 0 + sentrix ID + sample plate + array type. (2.3)

In formula 2.3, all three technical factors are categorical. Residuals of formula
2.3 are used as technical-corrected mIS values. The comparison of raw and
technical-corrected mIS for 273 female h-iPSCs is shown in figure 2.5.
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Figure 2.5: The distribution of mIS in 273 female h-iPSCs before (a) and after (b)
correction for three technical factors in DNA methylation array (type of array,
ID of sentrix and sample plate).
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Figure 2.6: Computation of aIS

2.3 Expression based XCI metrics

It is common practice for laboratories working with h-iPSCs to measure the ex-
pression level as it is part of pluripotency assay (Müller et al. 2011). To facilitate
the estimation of XCI status in female h-iPSCs, here I present two expression-
based XCI metrics and show that they are well associated with the methylation-
based XCI metric, mIS.

In this study, expression level from both RNA-sequencing and microarray as-
says are explored. Technical details and normalization process of these two
screens were presented in section 1.1.1. The two expression-based XCI metrics
are: the mean allelic bias expression inactivation score (aIS) and the expression
ratio inactivation score (rIS). For the computation of aIS, the genotyping data
and RNA-sequencing data are necessary; while for rIS, only expression data are
needed.

2.3.1 Definition and computation of aIS

The aIS is defined as the average of ratio of alternative allele expression on het-
erozygous positions on the X chromosome (figure 2.6). This exploration is in-
spired by the assumption that following loss of XCI, a bi-allelic expression on
heterozygous positions of the X chromosome can be observed.
As described in figure 2.6, for each h-iPSC line, the heterozygous positions on
the X chromosome are obtained by exome-sequencing data as described in Kilpinen
et al. 2017 (details in section 1.1.1). With RNA-sequencing data of one h-iPSC,
for each heterozygous position on the X chromosome, numbers of reads of ref-
erence allele and alternative allele are counted (N

A

and N

B

respectively).

The allelic bias ratio, r, is defined as the ratio of alternative allele reads to the sum
of reference and alternative reads (r = N

B

/(N
A

+N

B

)), which theoretically falls
into interval [0, 1]. When r = 0 or r = 1, there is expression of only one allele,
which means this position is mono-allelically expressed; when r ⇢ (0, 1), there
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is expression from both two alleles on this position, meaning that this position
is bi-allelically expressed; specifically when r = 0.5, the expression comes half
from the reference allele and half from the alternative allele. As the key ques-
tion is whether bi-allelic expression happens, the initial r value is converted to
an absolute r value, with:

absolute r =

�
r, if r > 0.5
1 - r, if r < 0.5.

(2.4)

The absolute r falls into interval [0.5, 1], while 0.5 stands for (balanced) bi-allelic
expression and 1 stands for mono-allelic expression. The aIS of one h-iPSC line
is defined as the average of absolute r on all heterozygous positions on X chro-
mosome. Theoretically, the median of absolute r could also be used for the com-
putation of aIS. The difference of these two measurement is that, when using
median, the small number of positions where bi-allelic expression happens is
ignored; in contrast, when using the average, all heterozygous positions are con-
sidered for their allelic expression level (figure 2.7).
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Figure 2.7: The comparison of aIS computed by the average or median. The
median-based aIS ignores the small number of positions with bi-allelic expres-
sion while the average takes all positions into the consideration for the activity
level of X chromosome.

Since the motivation is to measure the activation level of the entire X chromo-
some, the average of absolute r is used as the aIS for female h-iPSCs for the
association analysis between XCI metrics (section 2.4), as well as in further anal-
ysis of this thesis.
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2.3.2 Definition and computation of rIS

The XCI is a sex-chromosome dosage compensation mechanism that equalizes
the expression level of X chromosome in the two genders (Lyon 1961, Brockdorff
et al. 2015, Heard et al. 1997, Avner et al. 2001). XCI loss is assumed to result
in the increase of X-related expression level. With this assumption, the rIS is
defined as the ratio of mean expression level of genes on the X chromosome
over the mean expression level of genes on the autosomes, with formula:

rIS =
mean (expression of X chromosome)

mean (expression of autosomes)
. (2.5)

The microarray data were available for 148 independent female h-iPSCs lines.
Figure 2.8 shows the distribution of rIS computed by the RNA-sequencing data
and the microarray data (a and b), as well as the association of rIS computed by
these two technologies for 148 overlapping lines (c, Pearson correlation = 0.56,
adjusted R

2 in univariate linear regression = 0.31).
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Figure 2.8: The rIS value for female h-iPSC lines in HipSci. a. Computed by
microarray data. b. Computed by RNA-sequencing data. c. The association
between rIS computed by two technologies for the overlap 148 lines (Pearson
correlation = 0.56, adjusted R

2 in univariate linear regression = 0.31).

2.3.3 Biological conclusions

As mentioned in section 2.2, mIS is used as the standard representation of XCI.
Here, I present the association between two expression based metrics and the
mIS. For this analysis, I randomly selected one line per donor to remove donor
effect, making a data set of 205 independent female h-iPSCs.
Figure 2.9 shows the association between the two expression-based XCI metrics
and the mIS. By definition, aIS measures the ratio of bi-allelic expression on the X
chromosome. A higher aIS value refers to more mono-allelic expression (proper
XCI), while a smaller value refers to more bi-allelic expression (XCI loss). The
association between mIS and aIS is consistent with their definition, with Pearson
correlation value -0.50 (figure 2.9 a).

Positive correlation between mIS and rIS is observed in figure 2.9 (b and c) for
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Figure 2.9: The association between mIS and expression-based XCI metric. a.
Association between mIS and aIS for 205 female h-iPSCs. b. Association be-
tween mIS and RNA-seq-computed rIS for 205 female h-iPSCs. c. Association
between mIS and array-computed rIS for 148 female h-iPSCs.

rIS using either RNA-sequencing data or microarray data (Pearson correlation
= 0.55 and Pearson correlation = 0.52, respectively). This observed association
is consistent with the assumption that, the loss of XCI will result in more ex-
pression on the X chromosome (specifically, X

i

), proving the availability to use
expression ratio as XCI metrics.

To conclude, the expression level of h-iPSCs is able to represent the XCI status in
h-iPSC lines. For this usage, either the ratio of bi-allelic expressed genes on the
X chromosome, or the ratio of average gene expression on the X chromosome
over the average gene expression on the autosomes can be used. This result will
help to maximize the utility of data in laboratories and research groups using
female h-iPSC lines.

2.4 Similar XCI level in single cells of h-iPSC line joxm_1

Single-cell sequencing technology has greatly helped the cell-type classification,
the cell-lineage analysis, as well as studies of disease-related genomics since its
initial application (Gawad et al. 2016, Kalisky et al. 2011, Navin et al. 2011, De
Bari et al. 2006, Gawad et al. 2014). In this section, I investigate the following
question: What is XCI status at single cell level - do cells display a similar or a
dispersed XCI status?

With the single-cell profiling by Linker et al. 2019, I present that for female
line joxm_1, XCI patterns in 84 single cells are similar as in bulk level, using
expression-based XCI metrics aIS.
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2.4.1 Single cell data processing

The female h-iPSC line joxm_1 in HipSci (Kilpinen et al. 2017) shows an interme-
diate XCI loss level (aIS = 0.80; rank in 205 female h-iPSC lines: 70). Meanwhile,
there is no sibling-line of joxm_1 in HipSci. Linker et al. 2019 generated a set
of 84 cells from joxm_1, assayed by Smart-Seq2 (Picelli et al. 2014). Raw RNA-
sequencing data in fastq format of these 84 samples are available on EMBL-EBI
website with study ID PRJEB15062 (EMBL-EBI).

Data processing

The alignment of fastq files and variant calling were done by Dr. Angela Goncalves.
The alignment of fastq files used Genome Reference Consortium Human Build
37 (GRCh37) as human genome reference, based on ENSEMBL version 74, down-
loaded from the ENSEMBL website (ENSEMBL 2010). The alignment used Kallisto
version 0.43.0 (Bray et al. 2016). The variant calling process was carried out with
the function mpileup of samtools, version 1.9 (Heng Li, B. Handsaker, et al. 2009),
with minimum base quality more than 20. Heterozygous positions were ex-
tracted from exome sequencing of h-iPSC line joxm_1, which is the same as for
computation of aIS using bulk RNA-sequencing data. For single cell samples,
VCF files generated from variant call process contain 5000 variants on average,
among which around 300 are non-zero variants.

2.4.2 Distribution of XCI at single cell level

With the definition of aIS in section 2.3.1, the average of absolute r value on X
chromosome was used as aIS for single cell samples. The distribution of aIS in
84 single cell samples is shown in figure 2.10.

Figure 2.10 reveals that most cells of joxm_1 maintained similar XCI pattern as
found at bulk level (50% cells with aIS > 0.70). With the 84 cells profiled by
Linker et al. 2019, a similar pattern of XCI is observed for the female h-iPSC line
joxm_1. This is an inspiring result for the research of XCI because most studies
investigated the XCI level with a large number of cells. Meanwhile, since this
observation is based on one single line, I am very looking forward to further
studies which explore the XCI pattern and the XCI process at single cell level
with a larger sample size.

2.5 Predictor genes do not serve better than expression
matrix for XCI representation

In section 2.3.3, I present that the expression level of h-iPSCs can be used as XCI
metrics. The next question is, instead of using the entire expression level, is pos-
sible to use a couple of genes to estimate the XCI level in h-iPSCs?

https://www.ebi.ac.uk/ena/data/view/PRJEB15062
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Figure 2.10: Histogram of aIS for 84 single cell samples of female h-iPSC joxm_1
(mean = 0.70).

When talking about marker gene(s) of XCI level, XIST, the key regulator of XCI,
was widely used in previous studies as a single marker of XCI level and there is
a lack of study to explore the predictive performance of XCI by a group of genes
(C. J. Brown, Hendrich, et al. 1992, R. Brown et al. 1993, Anguera et al. 2012,
Mekhoubad et al. 2012).

The major motivation of this section is to get a balance between using the entire
expression level and using single-gene expression level for the representation of
XCI: to maintain a similar predictive performance as the expression level and to
avoid the bias of using a single predictor. To limit the number of genes used for
the estimation of XCI level can also reduce the work load for other laboratories
using h-iPSCs for scientific researches.

In this section, I used lasso regression, together with nested cross validation
method for the selection of marker genes (Tibshirani 1996). In the predictive
model, genome-wide expression level and X-linked expression level were used
respectively as data input for marker gene selection. The technical details of the
model and the predictive results are presented in section 2.5.1. The PEER cor-
rection method, which is a joint Bayesian framework, is applied to remove both
known and unknown batch factors in the expression level (Stegle, Parts, Durbin,
et al. 2010, Stegle, Parts, Piipari, et al. 2012).

The computational analysis and results visualization in this section was con-
ducted in R, version 3.4.0 (R Core Team 2017), with package glmnet (Friedman
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et al. 2010), package caret (Jed Wing et al. 2018), package ggplot2 (Wickham
2016) and package PEER (version 1.3, Stegle, Parts, Piipari, et al. 2012).

2.5.1 Using lasso regression and nested cross-validation for selection
of predictor genes

For predictive modelling with high dimensional data input, the penalized linear
regression is a widely used method, since it controls the number of variables in
the final model by minimizing the penalized residual sum of squares (Hastie
et al. 2009). The lasso regression is one of the most widely used penalized lin-
ear model because it sets the coefficients to exactly zero when variables are not
relevant in the predictive model, thus only a small number of truly important
variables among the enormous data input are included in the model (Hastie et
al. 2009, J. Fan et al. 2010, Kyung et al. 2010).

The Lagrangian form of lasso regression (Hastie et al. 2009) is written as for-
mula 2.6 :

�̂

lasso = argmin
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ij
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|). (2.6)

The lasso regression controls the size of predictors by the tuning parameter �,
which was set to 1, 000 in the analysis of this chapter. Since the lasso regression
is able to select a small number of variables from a large data input, it is impor-
tant to know the predictive performance of these variables in a different, unseen
data set. For this aim, the nested cross validation was applied in combination
with the lasso regression.

In brief, the nested cross validation is based on data split of the original data
set and is a recurrent model-fitting and model-validating process. To describe it
in details, the entire data set was split into 10 folds in a random manner with a
fixed initial seed in R (R Core Team 2017), labeled as fold 1, fold 2, ... fold 10.
While the fold k(k 2 [1, 10]) was used as the test set, the rest 9 folds were used as
the train set. In the train set, an internal 10-fold cross validation was applied, so
that a best model was selected. This best model was then validated on the test
set fold k and the predictive performance was measured with the RSS value. The
test fold moved from fold 1 to fold 10, with each fold being used only once as the
test set. The entire validation result makes it possible to estimate the predictive
performance of the lasso regression in the whole data set, meanwhile each vali-
dation result was obtained when this sample was not seen by the training model.

To control the donor effect, a random selection of one line per donor was ex-
ecuted, making a data set of in total 205 female h-iPSCs. The expression level of
these 205 h-iPSCs was used for gene-marker selection, including 2,190 X-located
genes and 52,220 autosomal genes. Before fitting the predictive model, a filter-
ing process was carried out to remove genes which standard deviation is smaller
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than 0.1 (figure 2.11).
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Figure 2.11: The standard deviation and the average of gene expression in 205
female h-iPSCs (random selection one line per donor). a. Genes on all chromo-
somes. b. Genes on the X chromosome (red horizontal line: standard deviation
= 0.1)

Figure 2.11 shows that genes with standard deviation smaller than 0.1 also tend
to have low average value in the entire data set (average expression value < 5),
meanwhile, most of these genes are X-located. Therefore, removing genes with
standard deviation smaller than 0.1 would remove X-located genes with small
expression level and slight variation among female h-iPSCs, which are assumed
to not have an important rule in the XCI status.

After the filtering, 39,856 autosomal genes and 1,580 X-located genes remained,
restricting the total number of genes to 41,436. The mIS value of these 205 female
h-iPSCs was used to represent XCI level and was included in the lasso regres-
sion as the dependent variable.

Figure 2.12 presents the prediction of lasso regression for 205 h-iPSCs. At the
same time, it helps us to visualize the different predictive performance on dif-
ferent h-iPSC samples: the prediction for h-iPSCs with either very low or very
high mIS values was not as good as the prediction for those with intermediate
mIS values. With the lasso regression, using either all genes or only X-located
genes have similar predictive results: the RSS of the prediction by all genes was
9.91 while by X-located genes was 9.47.

2.5.2 Using PEER method for batch effect correction in expression
level

Since the RNA-sequencing data in the HipSci project was generated by the sin-
gle institute and went through the same processing procedures (Kilpinen et al.
2017 and section 1.1.1 of this thesis), here, major concern is to remove the known
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Figure 2.12: The prediction of mIS value for 205 female h-iPSCs using lasso
method and nested cross validation (black: true mIS value; red: estimated mIS
value). X-axis is the h-iPSC lines in the ascending order by their true mIS value
and y-axis is numeric values. Each point stands for a true/estimated mIS for
one h-iPSC line, meanwhile the estimated mIS for this line is obtained when it is
not included in the train set in the nested cross validation. a. Using expression
level from all chromosomes as data input (RSS = 9.91). b. Using expression level
of X chromosome as data input (RSS = 9.47).

and unknown in-study batch factors in the expression data. As introduced be-
fore, the PEER method, which is abbreviation of probabilistic estimation of ex-
pression residuals, uses additive Bayesian network to infer hidden factors and
their effects in gene expression matrix (Stegle, Parts, Durbin, et al. 2010, Stegle,
Parts, Piipari, et al. 2012). In practice, PEER method uses general additive lin-
ear model, which contains three independent data (groups): the true expression,
the known factors and the unknown factors, assuming that the gene expression
is influenced in additive manner from different sources of batch factors (Stegle,
Parts, Durbin, et al. 2010, Stegle, Parts, Piipari, et al. 2012). The Bayesian learn-
ing (Jordan et al. 1999) is used for the parameter in PEER, thus the estimation of
one data group (i.e. known factors) would take all other parts of the model into
account (Stegle, Parts, Durbin, et al. 2010). The output of PEER correction con-
tains three parts: residuals, which is used as corrected expression level, weights
of the inferred confounders and precision (the inverse variance) of the weights
(Stegle, Parts, Piipari, et al. 2012).

The correction was executed on all 54,410 genes with RNA-sequencing data. As
suggested by the tutorial of the PEER package (Stegle, Parts, Piipari, et al. 2012),
the number of iterations was set to 1, 000 and the number of factors was initially
set to 50, as the tutorial recommended to use 25% of the number of individuals
as the initial number of factors (Stegle, Parts, Piipari, et al. 2012).

Figure 2.13 contains the standard plot-output of PEER package. It presents the
the posterior variance of the factor weights and the situation of convergence:
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Figure 2.13: PEER correction results for RNA-sequencing data of all 54,410
genes. The inverse variance showed an ’elbow-like’ change at the 9th factor,
revealing the model achieved convergence at this factor.

the inverse variance showed an ’elbow-like’ change at the 9th factor, represent-
ing that the inverse variance had fluctuation before this factor while had con-
stant increase afterwards, thus the model achieved convergence at this factor
(Stegle, Parts, Piipari, et al. 2012). The average and the standard deviation of
the corrected expression level is presented in figure 2.14, which shows a more
concentrated mean-sd association compared to figure 2.11, meaning that the dif-
ference between expression levels is reduced after the correction.

The predictive performance of corrected gene expression level is shown in fig-
ure 2.15. The RSS of the prediction by PEER-corrected all-chromosome genes is
10.9 and is 9.52 by PEER-corrected X-located genes. By comparing RSS values,
the new predictive results with PEER-corrected expression level are not signifi-
cantly better than previous results (RSS = 9.91 and RSS =9.41 using uncorrected
expression level of all genes and X-linked genes, respectively). The potential
reason for this observation is that the PEER method is a very powerful correc-
tion method that it removes all factors which might result in the alteration of
expression, including the XCI level. Therefore, it is unable to achieve a signifi-
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Figure 2.14: The standard deviation and the average of PEER-corrected gene
expression in 205 female h-iPSCs. a. Genes on all chromosomes. b. Genes on
the X chromosome (red horizontal line: standard deviation = 0.1)
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Figure 2.15: The prediction of mIS value for 205 female h-iPSCs using lasso
regression and nested cross validation with PEER-corrected expression level
(black: true mIS value; red: estimated mIS value). X-axis is the h-iPSC lines
in the ascending order by their true mIS value and y-axis is numeric values.
Each point stands for a true/estimated mIS for one h-iPSC line, meanwhile the
estimated mIS for this line is obtained when it is not included in the train set in
the nested cross validation. a. Using corrected expression level from all chro-
mosomes as data input (RSS = 10.9). b. Using corrected expression level of X
chromosome as data input (RSS = 9.52)

cant improvement of predictions.

To conclude, with and without batch effect corrected, the group of genes selected
by lasso regression show a mild predictive performance for mIS, especially for
h-iPSC lines with very low or very high mIS values. However, since that the
very low or very high mIS referring to a respectively proper XCI or complete
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XCI loss in female h-iPSCs, a non-accurate prediction of XCI level for these lines
is not helpful for their usage, particularly in disease modeling. Therefore, it is
recommended to use the two expression-based metrics, namely aIS and rIS, for
the XCI estimation (section 2.3).

2.6 Discussion: the XCI heterogeneity in female h-iPSCs

General conclusion

This chapter presents XCI heterogeneity in female h-iPSCs at population level
with DNA methylation level of the X chromosome and shows the utility of ex-
pression level for the representation of XCI status in h-iPSC lines.

Using 273 female h-iPSCs from HipSci (Kilpinen et al. 2017), the analysis was
executed with the data set from the single institute, with similar experimental
protocol and screening process for all h-iPSCs, which guaranteed a low-bias ini-
tial data set. Using the methylation level, I demonstrate that XCI heterogeneity
exists in this large-scale h-iPSC data set, showing as 1% h-iPSCs (4 out of 273 h-
iPSCs) display a complete XCI loss while the majority has a variable XCI level.
Meanwhile, h-iPSCs generated from the same donor have more similar XCI level
to one another than h-iPSCs from different donors.

The importance to include XCI variation in studies using female h-iPSCs

The XCI level is a genetic marker in h-iPSCs and has been found associated
with cell development, cellular functions and human diseases (R. Brown et al.
1993, Hao Wu et al. 2014, S. Wang et al. 2013, Brix et al. 2005, Santiwatana et al.
2018). Thus, when use h-iPSCs for disease modeling, cell therapy or drug de-
velopment, XCI variation might lead to alteration in genomics, transcriptomics,
or other downstream phenotypes. Another important point is that, in human,
the X chromosome contains the largest groups of immune related genes (Libert
et al. 2010), hence the XCI heterogeneity may lead to different immune activity
of h-iPSC lines. For these reasons, it is important to include the XCI level of h-
iPSCs as a covariate in biological and clinical researches.

Facilitation for other researchers: expression based XCI metrics

It is common to have expression level other than methylation level of h-iPSCs
in research groups who study h-iPSCs, since the expression level is required
for the pluripotency test, which is widely used during the generation of h-iPSC
lines (Müller et al. 2011). Considering this situation, this thesis introduced two
expression-based XCI metrics and demonstrated that they correlate well with
the methylation-based XCI metrics.
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The inspiration for the following analysis

Many questions rose up following the demonstration of XCI heterogeneity. What
are sources of this variation? Is it possible to control the variation by experimen-
tal settings? Do older females have more abnormal XCI status when compared
to younger females? What are the consequences of this heterogeneity? In this
thesis, these questions are studied, discussed and compared with previous ob-
servations. Based on HipSci (Kilpinen et al. 2017), the contribution of this thesis
to this research field is the presentation of the XCI heterogeneity in female h-
iPSCs and to answer these key questions concerning XCI heterogeneity.



Chapter 3

Sources of XCI heterogeneity in
female h-iPSCs

- What are the most important sources of XCI heterogeneity?
The donor effect and XIST, while XIST is not a perfect marker.

The observation of line-to-line variability of XCI in female h-iPSCs raises an im-
portant question: what are sources of this heterogeneity?

This question is also a key concern for scientists working with h-iPSCs since the
control of XCI heterogeneity will largely help the usage of h-iPSCs in disease
modeling and in drug development (Galupa et al. 2018, Schöndorf et al. 2014,
Y.-T. Lin et al. 2018). Below, I summarize potential sources in the ’life-stage’ of h-
iPSCs, as well as previous studies regarding their effects on XCI level in h-iPSCs.

Donor metadata

Donor is the root of h-iPSCs, therefore the donor information is an interesting
factor for the study of variation in h-iPSCs. Previous studies found a negative
effect of donor age in the induction of h-iPSCs from fibroblasts and age-related
DNA methylation at some CpG sites in h-iPSCs from blood cells (Trokovic et al.
2015, Mackey et al. 2018, Sardo et al. 2017, Mahmoudi et al. 2012, Mertens et al.
2018). In HipSci (Kilpinen et al. 2017), the age and the health status of donors
were collected, which allow the investigation of whether the XCI variation is
associated with the increase of age and whether the XCI variation is different in
h-iPSCs from healthy donors or from donors with genetic diseases (Bardet-Biedl
syndrome and neonatal diabetes).

Cell culture factors

The h-iPSC lines are cultured in cell culture media for a certain of passages
before usage. An observation of XCI loss and DNA methylation in h-iPSCs
with prolonged cell culture time was reported by several studies (Mekhoubad
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et al. 2012, Trokovic et al. 2015, Anguera et al. 2012, Nazor et al. 2012). Previous
studies had limits in following aspects: the number of h-iPSC lines was limited
(n = 11 in Trokovic et al. 2015 and n = 12 in Mekhoubad et al. 2012); XIST ex-
pression level was used as representation of XCI status (Mekhoubad et al. 2012,
Anguera et al. 2012) and culture time was limited to very early passages (pas-
sage 0-7, Anguera et al. 2012). HipSci (Kilpinen et al. 2017) applied much longer
and various culture time for h-iPSCs (min = 24 days, max = 240 days, details in
section 1.1), therefore this thesis is able to study the long-time-effect in XCI vari-
ation in a large-scale data set of h-iPSCs. Besides, two media (Feeder Free and
Feeder Dependent, below FF and FD) were used for cell culture. Kilpinen et al.
2017 reported the stratification of pluripotency score due to cell culture media in
711 h-iPSCs in HipSci. Therefore, this thesis investigates specifically the media
effect in XCI-heterogeneity for female h-iPSCs.

The key biological regulator, XIST

The long non-coding RNA XIST is the key regulation factor for the start of
the XCI process and has been intensively studied for its role in h-iPSCs (Lyon
1961, Penny et al. 1996, C. J. Brown, Hendrich, et al. 1992, Avner et al. 2001,
Galupa et al. 2018, Mekhoubad et al. 2012, Anguera et al. 2012). This thesis uses
population-size data set (Kilpinen et al. 2017) for the association study between
XIST expression and the XCI status in female h-iPSCs, as well as the time-effect
in XIST expression.

Genetic alterations during generation

Copy number alterations between h-iPSCs and their progenitor cells were ob-
served by previous studies (Laurent et al. 2011, Amps et al. 2011, Abyzov et al.
2012). In HipSci, Kilpinen et al. 2017 also reported genetic alterations between
h-iPSCs and progenitor cells (fibroblasts), including both trisomy of X chromo-
some and copy number alterations (CNAs) on all chromosomes. This chapter
summarizes the CNA level in female h-iPSCs and investigates the association
between recurrent CNAs with XCI level in female h-iPSCs. Here, I firstly present
the association between these potential sources and XCI level in female h-iPSCs
separately, then apply variance component analyses (VCAs) to investigate their
contributions to the XCI variability.

3.1 Strong effect of cell culture media and light effect of
culture time in XCI variation

Experimental factors can bring bias into induction rate, pluripotency level and
functions of h-iPSCs, thus to minimize batch variables is a key concern in the
field (Mekhoubad et al. 2012, Kilpinen et al. 2017, G. Chen et al. 2011, Liang et
al. 2013).
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For 273 female h-iPSCs in the analysis, 222 lines were cultured in media FF and
51 lines cultured in media FD. A strong stratification of XCI level by culture me-
dia was observed (p-value < 1.8⇥ 10

-12 for mIS and p-value < 3.0⇥ 10

-12 for
aIS, figure 3.1 a and b). With two XCI metrics, it is observed that h-iPSC lines
which were cultured in media FD display stronger XCI loss, showing as higher
mIS and lower aIS, when compared to lines cultured in media FF. Therefore, in
further analysis, the media effect is accounted either by including it as covariate
or by stratification.

Stratified by media, the XCI level is not associated with cell culture time in the
long cell culture up to 240 days, shown with two XCI metrics mIS and aIS (p
> 0.3, figure 3.1 c and d). Meanwhile, for h-iPSCs with relatively short culture
time (time < 50 days, 94 lines, all cultured with media FF), a slight erosion of
XCI is observed with prolongation of time, showing as the decrease of aIS with
culture time (p = 0.09, figure 3.2).

This result reveals that XCI status is not associated with cell culture time in
long term. Meanwhile, within relative short culture time (< 50 days in Hip-
Sci), a slight loss of XCI is accompanied with longer culture. 50 days of cell
culture refers to approximate passage 15 for lines cultured in media FF (all 94 h-
iPSC lines). Mekhoubad et al. 2012 observed an erosion of XCI in h-iPSCs from
low-passge (passage 5-6) to high-passage (passage 19-24) by loss of XCI mark-
ers (XIST cloud and H3-K27 tri-methylation). Briggs et al. 2015 also observed
the loss of XIST at late-passage (passage 20) compared to the initial stage (pas-
sage 0) at single cell level. To conclude the slight loss of XCI is expected with
prolongation of culture time in early-middle passages, however the XCI level
maintains the similar level when the culture time is significantly extended.

3.2 Donor age and health condition do not show associa-
tion with XCI variation

In HipSci (Kilpinen et al. 2017), the age information was recorded for 200 out of
205 female donors. Among these female donors, the youngest was 5-year-old
while the oldest was 80-year-old. The average and median of age for female
donors were both 55. The collection for health information for female donors
was successfully done on all 205 female donors. Even though most donors en-
rolled in this project were under general healthy situation (referred as ’normal’,
number = 170), 21 donors had Bardet-Biedl syndrome (bbs) and 14 donors had
neonatal diabetes (nd).

To test whether the age and health condition of female donor effect XCI level,
a linear regression is fit between mIS and donor’s age or donor’s health con-
dition, respectively, where no association is found between mIS and these two
donor meta factors (figure 3.3).
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Figure 3.1: Effects of cell culture on XCI-heterogeneity in female h-iPSCs using
XCI metrics mIS and aIS. a and b. Cell culture media has strong stratification
effect on XCI level, showing with mIS (a, p-value < 1.8⇥ 10

-12 ) and aIS (b, p-
value < 3.0⇥ 10

-12 ). c and d. Stratified by culture media, there is no association
between cell culture time and mIS (c) or aIS (d, p-value > 0.3).

This result reveals that the XCI heterogeneity widely exists in h-iPSCs, regard-
less of age and health condition of donors. For further researches with female
h-iPSCs, I recommend scientists to include XCI level in the study of h-iPSCs
regardless of the recruitment of donors.

3.3 The association and gap between XCI loss and XIST
expression

The long coding RNA XIST is a key factor in the establishment of XCI in mam-
mals (Penny et al. 1996, C. J. Brown, Hendrich, et al. 1992, Berg et al. 2009,
Avner et al. 2001). In human, XIST locates on both two X chromosomes and
is expressed specifically on the inactive X chromosome (Xi), which leads to the
silencing of Xi (C. J. Brown, Hendrich, et al. 1992, Avner et al. 2001, Wutz et
al. 2000, Galupa et al. 2018). Because of its XCI-related function, XIST has been
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Figure 3.2: For 94 h-iPSC lines with relatively short culture time (< 50 days), a
slight loss of XCI is observed with the increase of culture time (p-value = 0.09)
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Figure 3.3: The XCI variation exists in h-iPSCs generated from different age (a)
and different health conditions (b) of donors. The mIS is corrected by donor
effect, cell culture media and technical factors in the methylation array. The age
of donors is shown in 5-year interval (a). The abbreviations of health conditions:
’bbs’ stands for Bardet-Biedl syndrome, ’nd’ stands for neonatal diabetes and
’normal’ stands for healthy donors.
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used as an XCI marker and was intensively studied for its association with struc-
tural, genetics and disease-related characters of h-iPSCs (Mekhoubad et al. 2012,
Briggs et al. 2015, Ananiev et al. 2011, Splinter et al. 2011).

This section presents the general picture of XIST expression in h-iPSCs from
HipSci (Kilpinen et al. 2017): the prevalence of XIST expression in h-iPSCs of
both genders; the cell culture effects on XIST expression and the association be-
tween XIST expression and XCI level.

3.3.1 On and off mode of XIST in female h-iPSCs

XIST expression level is available for all 273 female and all 219 male h-iPSCs.
In female h-iPSCs, a clear bimodal distribution of XIST expression is observed,
compared to the uniform expression level in male h-iPSCs.
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Figure 3.4: XIST expression displays bimodal distribution in 273 female h-iPSCs,
compared with the unimodal expression level in 219 male h-iPSCs.

XIST expression level exhibits a clear bimodal distribution in 273 female h-iPSCs,
named as on/off mode (figure 3.4). The cluster of female h-iPSCs with ’on-
mode’ have an average XIST expression at 12.5 and the cluster of lines with
’off-mode’ have an average expression level at 5.9, which is similar to the XIST
expression level in 219 male h-iPSCs (mean = 5.9, standard deviation = 0.24, fig-
ure 3.4).

Since that XCI only takes place in cells with multiple X chromosomes (C. J.
Brown, Ballabio, et al. 1991), XIST is not expressed in male h-iPSCs, thus the
’off-mode’ in female h-iPSCs actually referring to the non-expression of XIST.
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This result reveals that at population level, female h-iPSCs can display two
modes of XIST expression. In section 3.3.2 and 3.3.3, I present the association
between XCI level and XIST expression under these two modes and the experi-
mental factor which is directly associated with the mode of XIST.

3.3.2 Association between XIST and XCI variation

Using k-means clustering method (Lloyd 1982, MacQueen et al. 1967), with k
= 2, 106 female h-iPSCs are grouped as on-mode, while 99 female h-iPSCs are
grouped as off-mode. XCI level is clearly stratified by the XIST mode: using
either mIS or aIS as XCI metric, h-iPSC lines with on-mode XIST display a more
proper XCI level, showing as lower mIS and higher aIS (p-value < 0.01 for both
XCI metrics). Figure 3.5 shows the association of XIST expression with two XCI
metrics, mIS (a) and aIS (b), with female h-iPSCs colored by the mode of XIST.
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Figure 3.5: The distribution of XCI level on on/off of XIST. a. Using mIS as XCI
metrics, which is corrected with donor effect, cell culture media and technical
factors in the methylation array. b. Using aIS as XCI metrics, which is corrected
by donor effect and cell culture media.

The association analysis between XIST expression and XCI variation was strati-
fied by the ’on/off’ mode of XIST. Female h-iPSCs with off-mode XIST display
a large variation of XCI level, from almost proper XCI to complete XCI loss,
shown with both mIS and aIS (red points in figure 3.5). On the other hand, for
female h-iPSCs with on-mode XIST at on-mode (mean = 12.5), there is a clear
association between XIST expression and XCI level: the Pearson correlation be-
tween XIST expression and mIS equals to -0.24 (p-value = 0.01, figure 3.5 a) and
the Pearson correlation between XIST expression and aIS equals to 0.31 (p-value
= 0.01, figure 3.5 b). When only looking into lines which are cultured with me-
dia FF, the association between on-mode XIST and aIS is stronger: the Pearson
correlation equals to 0.51 (p-value = 5.8⇥ 10

-8 , figure 3.6).
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Figure 3.6: The distribution of raw aIS value on XIST, stratified by the cell culture
media.

With current results, a number of h-iPSCs with on-mode XIST still display XCI
loss (cyan points with intermediate or low mIS/aIS value in figure 3.5). Mean-
while, h-iPSCs with off-mode XIST show a wide range of XCI level, shown as
various methylation and bi-allelic expression level (red points in 3.5). This result
indicates that XIST is not a perfect marker of XCI, regardless of its important role
in the initialization of the XCI process.

Some lines can be observed with intermediate level of XIST expression in fig-
ure 3.5. To have a detailed look at these lines, another k-means clustering was
applied with k = 3, resulting in 82 female h-iPSCs grouped as on-mode (mean =
13.0), 90 grouped as off-mode (mean = 5.6) while 33 grouped as middle (mean
= 10.1), shown in figure 3.7. Using mIS as XCI metrics, the association between
XCI and XIST expression is most clear in h-iPSCs in on-mode group (Pearson
correlation = -0.14), slightly less clear in h-iPSCs in off-mode group (Pearson
correlation = 0.09) and not observed in h-iPSCs in the middle (Pearson correla-
tion = -0.06).

Since the result based on the new grouping is consistent with the previous con-
clusion in general, to keep information brief, in the following analysis, the ex-
pression level of XIST is always described as on/off mode, using clustering re-
sult with k = 2.
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Figure 3.7: The distribution of XCI level with XIST in three clusters (on-mode:
82 h-iPSCs, average XIST expression = 13.0; middle: 33 h-iPSCs, average XIST
expression = 10.1; off-mode: 90 h-iPSCs, average XIST expression = 5.6)

3.3.3 XIST expression sharply drops with culture time while not ac-
companied by alteration in XCI level

Considering the important role of XIST in XCI, I investigated whether the donor
meta data or cell culture settings had an effect in XIST expression level in female
h-iPSCs. The most interesting observation is the time effect in XIST expression:
at approximately day 50 in cell culture, the XIST expression drops sharply from
’on-mode’ (mean = 12.5) to ’off-mode’ (average = 5.5), while is not accompanied
by an alteration in XCI level in female h-iPSCs (figure 3.8).

In HipSci (Kilpinen et al. 2017), all lines cultured shorter than 50 days were cul-
tured in medium FF, which means that cell culture media is not a confounding
factor of the drop of XIST expression level.

With the exception of cell culture time, XIST expression does not show asso-
ciation with donor age or donor health condition: female h-iPSCs of both ’on-
mode’ and ’off-mode’ can be found in any group of these two factors with more
than four lines (figure 3.9).

This section shows the bimodal distribution of XIST expression in 273 female h-
iPSCs and presents the association between XIST expression and XCI level. Sev-
eral studies reported similar observation of XIST expression loss with culture:
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Figure 3.8: The effect of cell culture time for female h-iPSCs. a. XIST expression
drops sharply at approximately day 50. b. mIS does not change significantly
with cell culture time, stratified by cell culture media.
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Figure 3.9: Similar XIST expression in age and health conditions of female
donors. a. For age groups with with more than four h-iPSCs, XIST of both modes
can be observed. b. Donors with neonatal diabetes (nd) show high and interme-
diate XIST expression level while donors with Bardet-Biedl syndrom (bbs) and
healthy donors (normal) show clear high and low XIST expression level.



3.4. RECURRENT GENETIC ALTERATIONS ARE NOT ASSOCIATED WITH
XCI VARIATION 43

Geens et al. 2016 using 10 human pluripotent stem cells (both h-iPSC and h-
ES cells); Mekhoubad et al. 2012 using h-iPSCs generated from fibroblasts from
donors with Lesch-Nyhan syndrome and Briggs et al. 2015 presenting XIST ex-
pression at single cell level. However, the observation that female h-iPSCs with
low XIST expression level exhibits various XCI level was unexpected. Consid-
ering these results, I assume that the culture time might change the interaction
pattern between XIST expression and the XCI process. Furthermore, the gap be-
tween XIST expression and the XCI process, shown as reactivation of X-linked
genes, were observed and reported by Vallot (Vallot, Huret, et al. 2013, Vallot,
Ouimette, et al. 2015, Vallot, Patrat, et al. 2017), indicating that XIST expression
is a relatively poor marker of XCI level, regardless of its critical role to trigger
the XCI process.

3.4 Recurrent genetic alterations are not associated with
XCI variation

HipSci (Kilpinen et al. 2017) used genotyping array to detect copy number al-
terations (CNAs) between h-iPSCs and their progenitor fibroblasts, defined as
genetic abnormalities of over 200 kilobase (kb) occurring in at least 20% of the
cells (technical details in section 1.1.1). For 711 h-iPSCs of both genders reported
by Kilpinen et al. 2017, 41% of generated lines and 18% of selected lines contain
one or more CNAs, including whole-chromosome duplication of the X chro-
mosome (hereafter, trisomy of X chromosome), duplications and deletions on
sub-chromosomal regions (hereafter, CNAs). Even though genetic alterations in
h-iPSCs were also reported by previous studies, there is a lack of study for the
association between these alterations and XCI level in h-iPSCs.

3.4.1 Trisomy of X chromosome

Among 273 female h-iPSCs, 14 lines (5.1%) exhibit trisomy of X chromosome,
whereas the maximum number of X chromosome copy is 3.12. The general dis-
tribution of XCI metrics on X chromosome trisomy is shown in figure 3.10 (a
and b). Even though there is a statistical association between X chromosome
trisomy and XCI level in general (p-value < 0.01 for both XCI metrics), this as-
sociation is confounded by the XIST mode: among 14 lines with X chromosome
trisomy, 12 of them have ’on-mode’ XIST (figure 3.10 c). When looking into h-
iPSC lines with ’on-mode’ XIST, XCI level is not associated with X chromosome
trisomy (p > 0.2 for both XCI metrics). Furthermore, the vast majority of lines
with X chromosome trisomy (12 out of 14) were generated from healthy donors,
thus X chromosome trisomy is not a disease-related alteration in the induction
of h-iPSCs (figure 3.10 d).
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Figure 3.10: Trisomy of X chromosome occurs in 14 (5.1%) female h-iPSC lines
in HipSci. a and b. The distribution of mIS (a) and aIS (b) with X chromosome
trisomy. c. 12 out of 14 lines with X chromosome trisomy display on-mode
XIST. Stratified by the mode of XIST, X chromosome trisomy is not associated
with XCI level (p > 0.2 for both XCI metrics). d. The vast majority of lines
(12 out of 14) with X chromosome trisomy were generated from healthy donors
(bbs: Bardet-Biedl syndrome; nd: neonatal diabetes; normal: healthy)
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3.4.2 Copy number alterations (CNAs) between h-iPSCs and fibrob-
lasts

As discussed at the beginning of this section, sub-chromosomal CNAs were
found in 41% of h-iPSCs generated from both genders, located on all chromo-
somes (Kilpinen et al. 2017). To study the association between XCI variation and
CNAs, it is important to know the recurrent level of CNAs in females h-iPSCs,
for the reason that the role of a common CNA is more useful in biological and
disease-related research than a rare one. For this research aim, a segmentation
of detected CNA regions was executed, with the workflow shown in figure 3.11.

This computational approach was executed on each chromosome, permitting
that each CNA region was counted for its occurrence in all lines. Among 273
female h-iPSCs, 91 h-iPSCs carry 146 CNA segments (16 on X chromosome; 130
on autosomes). Even though Kilpinen et al. 2017 observed 22% CNAs which
occurred in more than one line for 711 h-iPSCs, the recurrent level of CNAs is
lower in the studied 273 female h-iPSCs: 24 (16.4%) CNA segments occur in
more than one h-iPSC line, among which 3 (2%) segments occur in three lines.
This difference might result from a smaller sample size and/or the single gen-
der of lines in this thesis. The 24 recurrent CNA segments distribute on both X
chromosome (7 segments) and autosomes (22 segments), where the autosome
with most recurrent CNA segments are chromosome 7, 12 and 16 (4 segments
on each). One of three most recurrent CNA segments takes place on X chromo-
some whereas the other two on autosomes (chromosome 12 and 16).

Figure 3.12 clearly shows that, among all detected CNAs, the majority (80%)
is only detected in one h-iPSC line. The potential effect of these recurrent CNA
segments in the variability of XCI level is conducted with variance component
analysis (VCA), presented in section 3.5.

3.5 Variance component analysis (VCA) identifies donor
and XIST as the most important sources of XCI varia-
tion

In previous sections, the general association between multiple sources (experi-
mental, donor specific, XCI related and trisomy of X chromosome) and XCI level
was presented. Among all factors, cell culture media and XIST expression level
showed a clear association with XCI variation (figure 3.1 a and figure 3.5).

Different with single association test which examines the association between
one single factor (i.e. cell culture media) and XCI level, the variance compo-
nent analysis (VCA) is a method to assess the variance in a dependent variable
which is associated with one or multiple independent variables (Bland et al.
1986). VCA is commonly based on mixed linear model, which allows both cat-
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Figure 3.11: The process of CNA segmentation on one chromosome: order all
detected CNAs by their start position and cut the chromosome region with the
requirement that only one start position is allowed in one segmentation.

Figure 3.12: Overview of recurrent level of 146 CNA segments in 273 female h-
iPSCs: 16.4% (24) CNAs occur in more than one h-iPSC lines, at the same time,
3 CNAs occur in three h-iPSCs, which is the maximum recurrent level.
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egorical and continuous independent variables to be taken into account (X. Lin
1997, Kang et al. 2010). To limit the number of factors included in the mixed
linear model, in this study, VCA was conducted in two steps: firstly, all factors
presented in this chapter, except CNA segments, are fit in VCA model; secondly,
factors which showed highest variance proportions in the first step, together
with CNA segments were fit in VCA. The analysis was carried out with function
lmer in package lme4 (D. Bates et al. 2014) and function calcVarPart in package
variancePartition (Hoffman et al. 2016), with R version 3.4.0 (R Core Team 2017).

3.5.1 VCA without CNA segments

In the first step, VCA was carried out with mixed linear regression using follow-
ing factors: cell culture time, age and health condition of donors, XIST expres-
sion level, as well as trisomy of X chromosome. To estimate the potential donor
effect in h-iPSCs which were generated from the same donor, two VCA mod-
els were fit: the first one used all 273 female h-iPSCs and included the donor
of h-iPSC as random effect; the second one used 205 female h-iPSCs which was
randomly selected one line per donor thus the donor-effect was not included in
the model.
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Figure 3.13: Variance component analysis (VCA) without CNA segments (In-
cluded factors: cell culture time, age and health condition of donor, XIST ex-
pression level, as well as trisomy situation of X chromosome. The corrected mIS
value is used as XCI metrics. a. First model was fit for all 273 female h-iPSC
lines, including donor as random effect. The first model identifies XIST expres-
sion (> 25%) and donor (25%) as most important factors for XCI heterogeneity.
b. Second model was fit for 205 randomly selected h-iPSCs with one line per
donor. This model identifies XIST expression as the only important factor which
explains 30% of variance in XCI level.

The first VCA model explains around 65% of variance of the XCI variation:
among all tested factors, XIST (>25%) and donor effect (25%) are two factors
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with highest proportion of variance explained (figure 3.13 a). In the second VCA
model, XIST expression was identified as the only important factor (30% of vari-
ance), confirming the importance of XIST in XCI heterogeneity and the initial
conclusion that it is essential to take the same-donor effect into consideration
for researches using h-iPSCs (section 2.1.3). In these two VCA models, none of
other tested factors shows a proportion of variance explained greater than 8%.
As XIST expression and the same-donor effect showed their importance in the
first level VCA, they were included in the second level VCA, where their contri-
butions in the XCI heterogeneity were measured together with CNA segments.

3.5.2 VCA with CNA segments

The second step of VCA used all 273 female h-iPSCs and included XIST ex-
pression, donor effect, as well as 29 recurrent CNA segments as independent
variables. This model shows that none of CNA segment has a proportion of ex-
plained variance larger than 2.5%, meanwhile the donor effect counts for 35%
of variance in XCI and XIST expression counts for slightly less than 20% of vari-
ance (figure 3.14 a). Another VCA model was exclusively fit with the three most
recurrent CNA segments, XIST expression and donor effect, whereas all three
CNA segments also showed proportion of explained variance smaller than 2.5%
(figure 3.14 b).

Apparently, as shown in figure 3.14, compared with CNA segments, even with
the most recurrent ones, the donor effect and XIST expression level, which re-
spectively explained 30% and 20% of XCI variation in two models, count for
much more capacity in the variance explanation for XCI heterogeneity. The re-
sult reveals that, similar as trisomy of X chromosome, CNAs do not have a di-
rect association with the XCI heterogeneity in female h-iPSCs. At the same time,
the high proportion of explained variance by donor points to potential donor-
specific determinants for the XCI level, which inspires my further analysis into
the genetic variants.

3.6 Discussion: the expected and unexpected sources of
XCI variation

After presenting the XCI heterogeneity in female h-iPSCs in chapter 2, to an-
swer the question ’What causes the variation?’ became my key concern. There
has been a long time discussion about potential sources of XCI variation, mainly
covering XIST, the culture time, the reprogramming process and the chromoso-
mal variations (C. J. Brown, Hendrich, et al. 1992, Liang et al. 2013, Mekhoubad
et al. 2012, Geens et al. 2016, Anguera et al. 2012, Briggs et al. 2015). Limitations
of previous studies are clear: an insufficient number of samples and a lack of
h-iPSCs from healthy donors as the reference. HipSci (Kilpinen et al. 2017) is
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Figure 3.14: Variance Component Analysis used 273 female h-iPSCs and in-
cluded XIST expression, donor effect and recurrent CNA segments. a. None
of 29 recurrent CNA segments explains more then 2.5% of XCI heterogeneity.
b. The 3 CNA segments with highest recurrent level also shows a proportion of
explained variance less than 2.5% when they are included in VCA instead of all
29 CNA segments.
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a great opportunity to investigate the sources of XCI variation, since all h-iPSC
lines and all data were generated from the single institute, as well as that the
cohort allows a big range of values for several factors (i.e. cell culture time and
donor age). The result in this chapter can serve as the reference pool of causal
factors for XCI variation in h-iPSCs.

XIST: not the perfect marker of XCI level

The gap between XIST expression level and the XCI status, is an unexpected
result in this chapter. Particularly, when XIST expression is shut off, h-iPSC
lines display a various XCI level, from proper XCI to complete XCI loss (section
3.3.2). Also, when taking h-iPSCs with high XIST expression into account, there
are a certain number of lines with bi-allelic expression level, which is a sign of
XCI loss (figure 3.5 b right bottom corner). The sharp drop of XIST expression
during cell culture is a very interesting result. On one hand, it reveals that the
mechanism of XIST might be time related, thus, there might be a time-dependent
X chromosome activation mechanism. On the other hand, this result reproduces
the result of previous studies which observed the XIST loss with small number
of lines (Mekhoubad et al. 2012, Briggs et al. 2015, Anguera et al. 2012).

To summarize, even though there is a statistical association between XIST ex-
pression and XCI level, XIST is not a perfect marker for XCI, specifically for
h-iPSCs in long cell culture.

The strong effect from cell culture media and the light effect from culture time

Surprisingly, the cell culture factor which has a strong effect on XCI level is
the culture media, but not the long-discussed culture time. With HipSci, two
independent analysis have shown the significant effect of cell culture media in
h-iPSC lines. The first analysis shows the difference of pluripotency score by
PluriTest (Müller et al. 2011) for h-iPSCs cultured in media FF and media FD,
reported by Kilpinen et al. 2017. The second analysis shows the stratification of
XCI level by different cell culture media, shown in section 3.1 of this chapter.
These two results reveal that, the same culture media is necessary to maintain
the homogeneity of h-iPSC lines. For scientists who are using h-iPSCs for their
studies and who are going to reproduce a certain experiment with h-iPSCs, I
recommend to keep the same culture condition.

Previous studies reported an erosion of XCI level in h-iPSCs with culture time
(Mekhoubad et al. 2012, Anguera et al. 2012, Trokovic et al. 2015), however, this
thesis had a different observation. When looking into XCI level of h-iPSCs in
long culture time (up to 240 days), this thesis did not observe an erosion of XCI
with time. Meanwhile, a slight XCI erosion was observed for relatively shorter
cell culture (within 50 days, around passage 15 with cell culture FF, figure 3.2).
Compared to this thesis, previous studies which observed XCI loss in culture
included fewer number of h-iPSC lines (n = 11 in Trokovic et al. 2015 and n = 12
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in Mekhoubad et al. 2012) and used shorted culture time (up to passage 21 and
24 in Trokovic et al. 2015 and Mekhoubad et al. 2012). In the larger set of 273
female h-iPSCs, the XCI level is not effected by cell culture time in long term,
while at early passages, a slight loss of XCI with culture time is observed.

Genetic variations do not associate with XCI level

Female h-iPSCs with more than two copies of X chromosome display a vari-
ous XCI level, from proper XCI to partial XCI loss (figure 3.10). This observation
is consistent with the phenomenon that XCI process leaves one functional active
X chromosome in cells regardless of existence of multiple X chromosomes (C. J.
Brown, Ballabio, et al. 1991, Galupa et al. 2018). The other genetic variation, the
sub-chromosomal alterations have a relatively low recurrent level in female h-
iPSCs (only 20% occur in more than one line and the highest recurrent level is 3
lines) and do not show an association with XCI variation. Therefore, the genetic
variations during the reprogramming of h-iPSCs are not the source of XCI het-
erogeneity at a general level.

No effect on XCI level from age and health condition of the donor

The donor metadata has been long-term missing in the study of XCI status in
female h-iPSCs. Some studies with limited number of donors observed an ero-
sion of XCI level in h-iPSCs generated from old female donors (Trokovic et al.
2015, Sardo et al. 2017). Here, with a range of donors from 5-year-old to 80-year-
old, the XCI variation in h-iPSCs is found across all ages. This result reveals
that the XCI loss is not gained or associated with age. Besides, the XCI variation
exists in healthy donors of all ages, proving that the XCI heterogeneity is a gen-
eral and common phenotype in h-iPSCs, thus the XCI level of h-iPSCs should be
taken into account for further researches.

Inspiration: what is actually the donor effect?

VCA results show that there is a strong donor effect in the XCI heterogeneity
(figure 3.13 a and figure 3.14). Then what is this donor effect? As shown in sec-
tion 3.2, this donor effect is not age or health condition, then it might be genetics,
which is the ’root’ difference of human. Then I rephrase the previous question
to: are genetic variants of the donor related to the XCI level in h-iPSCs?

This is an important question because it tries to find the connection between the
genetic information on all chromosomes and the XCI, of which the understand-
ing of mechanism is still limited. When preparing for this analysis, I read the pa-
per by Luijk et al. 2018, which demonstrates the association between autosomal
genetic variants and the methylation levels of CpG islands near XCI-escapees
with large sample size (n > 1, 800). This previous discovery, as well as results of
this chapter inspired my investigation into the potential genetic determinants of
the XCI variation, which is presented in chapter 4.
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Chapter 4

Autosomal genetic determinants
of XCI variation

- Any promising autosomal variants for the regulation of XCI?
Yes, meanwhile validation experiments are necessary.

In chapter 3, multiple factors were investigated for their association with XCI
variability: major characteristics of donors (age and health condition); experi-
mental preparation of h-iPSCs (cell culture time and media); XCI related gene
expression level (XIST expression), as well as the genetic difference between h-
iPSCs and fibroblast cells where they were generated (trisomy situation of X
chromosome and copy number alterations on all chromosomes). In the analyses
in chapter 3, a strong donor effect was found for the XCI heterogeneity in female
h-iPSCs, meanwhile, this effect is not an ’outside’ factor such as the age or the
health condition of the donor. Inspired by these previous results, here I investi-
gate whether autosomal genetics associate with the XCI variability.

Some studies present the association between autosomal genetic variants and
the XCI level in females with sex-linked disease and in healthy females. For in-
stance, Vianna et al. 2020 reports autosomal variants which affect XCI escapees
in female intellectual disability patients with high level of XCI skewing (> 90%)
and Luijk et al. 2018 identifies autosomal loci associated with female specific X
chromosome methylation with large cohort of males and females (n > 1, 000
each group). In this chapter, instead of comparative analysis between proper
XCI and highly skewed XCI, I execute regression models to study the contribu-
tion of genetic variants in the XCI variability.

Previous studies of genetic variants in h-iPSCs include Schwartzentruber et al.
2018 which studies the functions of variants in iPSC-derived neurons (123 h-
iPSCs), Panopoulos et al. 2017 which presents disease-related variants based on
family structures (222 h-iPSCs from 41 families), as well as DeBoever et al. 2017
which presents the effect of genetic variants on gene expression level using 215
h-iPSC lines in Panopoulos et al. 2017. This study is a primary discovery of XCI
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related genetic variants in large-scale healthy and independent individuals.

The investigation of genetic determinants of XCI is conducted at two aspects:
firstly, whether an autosomal genetic variant can directly effect XCI loss level;
secondly, whether an autosomal genetic variant can regulate XCI loss via auto-
somal gene(s). The design of the first part is direct: for all 273 female h-iPSC
lines in the study, to execute a genome wide association study (GWAS) between
all autosomal variants and XCI metrics. In this GWAS model, two XCI metrics
are used as phenotypes respectively. Compared to the first part of analysis, the
second part is more ’targeted’. In Kilpinen et al. 2017, an expression quantita-
tive loci (eQTL) analysis was carried out to identify variants which are associ-
ated with genes. The XCI variation is associated with gene expression at whole
genome wide, with 85% of associated genes on autosomes (details in chapter 5).
I subset variants which are associated with XCI-related genes and apply a linear
model to test the association between each variant in this subset and XCI level.
When a genetic variant is identified to be significantly associated with XCI level
in this model, it might be possible to assume a causal path linking this genetic
variant, its associated gene and the XCI level.

4.1 The 166 female h-iPSCs is a good representation of the
female lines in HipSci

In chapter 1, I introduced that there were in total 273 female h-iPSCs from 205
independent donors enrolled in this project. In previous analysis, I have tried
to make the use of most possible h-iPSC lines. Here, limited by the data avail-
ability, the analysis was executed on a subset of 166 female h-iPSCs in HipSci.
Furthermore, all these 166 female h-iPSCs were enrolled in the eQTL analysis
which identified the gene-variants association by Kilpinen et al. 2017. To check
whether this subset is a good representation of the initial data set, I present the
distribution of three XCI related factors, namely mIS, aIS and XIST, of these 166
female h-iPSCs in figure 4.1 (a, b and c).

The subset of 166 female h-iPSCs included in the GWAS analysis is a good rep-
resentation of female h-iPSC population as lines with all three patterns of XCI
have been included: proper XCI (approximate minimum mIS or maximum aIS),
intermediate XCI loss level (intermediate value of mIS or aIS), or complete XCI
loss (approximate maximum mIS or minimum aIS). Figure 4.1 shows that the
distribution of mIS in these 166 females is similar to the distribution in 273 fe-
male h-iPSCs (figure 2.5 b). The association between mIS and aIS in this subset
(Pearson correlation -0.47, figure 4.1 d) is similar as the association in 205 fe-
male h-iPSCs selected by one line per donor (Pearson correlation = -0.5).
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Figure 4.1: Summary of XCI level in 166 female h-iPSCs studied in this chapter.
a. The distribution of mIS. b. The distribution of aIS. c. The distribution of
XIST expression. d. The association between mIS and aIS (Pearson correlation
= -0.47, p-value = 1.4⇥ 10

-10).

4.2 Use GWAS analysis to identify XCI associated autoso-
mal variants at genome-wide

A genome-wide association study (GWAS) is the analysis of the association be-
tween genetic variants and a trait at population level. The trait in GWAS can
refer to a disease or a phenotype in samples. In medical research, specifically in
oncological research (Freedman et al. 2011, Pharoah et al. 2013), GWAS is widely
used in the identification of disease related alleles.

Here, I apply GWAS to identify genetic variants which are associated with XCI
variation with 166 female h-iPSCs from healthy and independent donors. The
the number of samples involved in this analysis (n = 166) is limited, compared
to other GWAS research of human phenotypes (n > 3, 000 in Fadista et al. 2016,
Tennessen et al. 2012 and Jian Yang et al. 2010). To reduce the bias introduced
by the limited sample size, two XCI metrics were used respectively as the phe-
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notype in GWAS and the overlap of top-associated variants with these two XCI
metrics was extracted and interpreted. Considering that the effect of genetic
variants on XCI level might be relatively small, two XCI metrics are used to val-
idate the results. The expression level of XIST, the key factor of XCI process
(Lyon 1961, Pontier et al. 2011, C. J. Brown, Hendrich, et al. 1992), is also inves-
tigated with GWAS as a XCI-related phenotype.

The GWAS analysis was conducted with the tool PLINK, version 1.90 (Purcell
et al. 2007). The preparation of data input consisted of several steps: to convert
data format from VCF files to PLINK format (.map and .ped file), to prune vari-
ants based on linkage disequilibrium (LD), to filter variants by their minor allele
frequency (MAF) and to identify population structure by the principle compo-
nent analysis (PCA) for the correction of population structure. For each step of
preparation and the execution of GWAS, a Rmarkdown file together with a bash
script were written and will be published with the manuscript of this thesis.
These processes were executed on the HPC clusters of Wellcome Trust Sanger
Institute.

4.2.1 Data preparation and the execution of GWAS

The preparation of input files followed guidelines of PLINK (PLINK 2010). Vcftools
(version 0.1.17, Danecek, Auton, et al. 2011) was also used during preparation
process to transform VCF files of exome sequencing data to format required by
PLINK (.map and .ped files).

Preparation of phenotype data

As required by the PLINK manual (PLINK 2010), the phenotype file consists the
basic information of h-iPSCs (the family ID, the individual ID and the gender
of lines) and the three XCI related phenotypes. Since all 166 female h-iPSCs in
GWAS were from independent donors, the family ID was set the same as indi-
vidual ID, meaning that family was not a confounding factor in GWAS. Mean-
while, all 166 h-iPSCs were generated from females, so the sex information was
ignored in the phenotype file, using the function allow–no–sex in the execution
of PLINK.

Preparation of genotype data

The genotype of the h-iPSCs in this project were analysed by an Illumina Human-
CoreExome-12 BeadChip. The experimental process, as well as the genotype
calling and imputation process are presented in chapter 1 (section 1.1.1), sum-
marized from Kilpinen et al. 2017.



4.2. USE GWAS ANALYSIS TO IDENTIFY XCI ASSOCIATED AUTOSOMAL
VARIANTS AT GENOME-WIDE 57

The original VCF file of genotypes, which contains 8,600,656 variants, was trans-
formed to PLINK required format, using the function plink in vcftools (Danecek,
Auton, et al. 2011). The function recodeA was called to recode genotype matrix
for all 166 female h-iPSCs, where genotypes of each variant were recoded to
0, 1 or 2 according to the reference allele, meanwhile this reference allele was
added to the end of variant ID. For instance, rs1857-61220_G stands for the vari-
ant rs185761220 with allele G as the reference, whereas the genotype 0, 1 or 2
stands for the number of allele G in the h-iPSC line. In this chapter, this format
of variant ID is used for the presentation of results.

Filtering of variants

Filtering of variants was based on the minor allele frequency (MAF) of variants
in the data set of 166 female h-iPSCs. According to the definition by the National
Center for Biotechnology Information (NCBI, https://www.ncbi.nlm.nih.gov),
MAF is the frequency at which the second most common allele occurs in a given
population.

Common values of MAF threshold in previous population-based genetic re-
searches are 0.01 (i.e. Cassa et al. 2013), 0.05 (i.e. HapMap consium, Consortium
et al. 2005) and 0.1 (i.e. the study of human height by Jian Yang et al. 2010).
For this project, the MAF threshold was set to 0.05, which means that variants
of which the MAF is smaller than 0.05 were removed. After filtering, 6,449,949
variants were remained.

Pruning variants based on linkage disequilibrium

In population genetics, linkage disequilibrium (LD) refers to the non-random
association of alleles of different loci (Slatkin 2008). LD can occur on neighbour-
ing loci due to physical connection, as well as on loci on different chromosomes,
since it is influenced by multiple factors, for instance genetic recombination, the
mutation rate and the system of mating (Lewontin et al. 1960, Hill et al. 1968).
The existence of LD brings statistical problems in GWAS: single-nucleotide poly-
morphisms (SNPs) in strong LD tent to have similar p-values in the association
study which brings difficulty to the identification of true causal variant of the
phenotype or disease (Korte et al. 2013). Different computational approaches
have been developed to address this problem (Chapman et al. 2003, Balding
2006), whereas in PLINK the variance inflation factor (VIF) is used to identify
and to remove correlated variants.

By the definition of James et al. 2013, VIF is the quotient of the variance in a
model with multiple terms by the variance of a model with one term alone. VIF
measures the collinearity where multiple variables are correlated in the regres-
sion model and contain similar information of variance (Dormann et al. 2013). In
genetics, VIF is used to measure how independent SNPs are from one another,
with formula 4.1 in the manual of PLINK (PLINK 2010):

https://www.ncbi.nlm.nih.gov
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1
1 - R

2 , (4.1)

where R

2 is the multiple correlation coefficient for a SNP being regressed on all
other SNPs simultaneously.

For a certain SNP, when its VIF value equals to 1, which implies R2 = 0, this SNP
is completely independent of all other SNPs; when its VIF value is greatly larger
than 1, for instance, equals to 10 which implies R

2 = 0.9, this SNP is correlated
with other SNPs and has collinearity problems in the standard multiple regres-
sion analysis. The PLINK manual (PLINK 2010) recommends the use of a VIF
threshold value between 1.5 and 2, to remove correlated SNPs and to maintain
enough number of variants. Here, VIF threshold is set to 2 for pruning variants.

The function indep of PLINK pruned variants by recursively removing SNPs
within a sliding window of which VIF values are greater than the VIF thresh-
old. Parameters in the pruning process were set as follow: the window size in
SNPs as 50, the number of SNPs to shift the window at each step as 5 and the
VIF threshold as 2. After the filtering process and the pruning process, 1,241,616
variants were kept for further process from the original 8,600,656 variants.

Principle component analysis of 166 female h-iPSCs

As described in (Kilpinen et al. 2017), donors of h-iPSCs were research volun-
teers recruited from the National Institute for Health Research (NIHR) Cam-
bridge BioResource. In the cohort, the vast majority of recruited volunteers are
from the UK, while a small proportion are from other continents (i.e. Africa and
Asia).

The previous study with the same h-iPSCs by Kilpinen et al. 2017 used pop-
ulation structure as the random effect factor in the research of genetics. Here,
to investigate whether the population structure needs to be adjusted, the prin-
ciple component analysis (PCA) was carried out for 166 female h-iPSCs using
pruned and filtered variants, with the pca function in PLINK. The default set-
ting of the pca function extracts the top 20 principal components (PCs) of the
variance-standardized relationship matrix. Results of PCA include eigenvectors
which are written to .eigenvec file, and eigenvalues which are written to .eigen-
val file. The PCA result suggest that the vast majority of h-iPSCs (163 out of 166)
can be grouped in one cluster, while the remaining in the second cluster (figure
B.3). Therefore, the first component was used as a covariate in GWAS to adjust
for the population structure in 166 female h-iPSCs.
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Execution of GWAS analysis

GWAS analysis between processed variants and each of three phenotypes was
conducted with linear regression (function linear in PLINK). The linear regres-
sion contained PC1 of PCA results as a covariate to adjust for the population
structure in the data set. The adjust function of PLINK was applied to have re-
sults after multiple testing with six correction methods: Bonferroni (Bonferroni
1936, Dunn 1961), Holm step-down (Holm 1979), Sidak single-step (Šidák 1967),
Sidak step-down (Ludbrook 1998), Benjamini-Hochberg (BHcorrect), as well as
Benjamini and Yekutieli (Benjamini and Yekutieli 2001). To keep the consistency
in the whole analysis, results with Benjamini-Hochberg correction are used for
the interpretation.

4.2.2 Results of GWAS: no significant variant for single phenotype
but overlap top-associated variants across phenotypes

Results of GWAS are checked at three levels: firstly, an overview of result for
each of the tested phenotypes, including most XCI-associated variants and the
distribution of these variants on chromosomes; secondly, the overlapping of 100
most associated variants between proxy mIS and aIS; thirdly, the variance com-
ponent analysis with identified XCI-associated variants to test their capacity to
explain the variance of XCI.

Firstly, I investigate whether any variants are significantly associated with tested
phenotypes after multiple testing control (FDR < 10%) or with raw p-value
smaller than 10

-8 , which is the most commonly accepted threshold in human
genome analysis (C. Xu et al. 2014). Compared to previous human genome stud-
ies (Fadista et al. 2016 with 12,590 individuals, Jian Yang et al. 2010 with 3,925
individuals and Tennessen et al. 2012 with 15,585 individuals), the sample size in
this project is limited (166 individuals). Considering the bias that this small sam-
ple size brings to the statistical test, I also look into the overlap of 100 variants
with the smallest raw p-values in GWAS with two XCI metrics, as the overlap
variant(s) may also be informative for the effect of genetics on the XCI level.

The reason to check the overlap between mIS and aIS, but not XIST is that mIS
and aIS are both XCI metrics which summarize the XCI status of h-iPSCs from
different aspects (mIS: methylation; aIS: expression) and that they have shown a
good association between themselves (Pearson correlation = -0.5 in the data set
of 273 female h-iPSCs, figure 2.9 a). Even though high expression of XIST (on
mode) refers to proper XCI level in theory (Pontier et al. 2011), the correlation
between either mIS or aIS and XIST expression for h-iPSCs with on mode XIST
is weaker than the correlation between proxies (Pearson correlation between
mIS and on-mode XIST: -0.24; Pearson correlation between aIS and on-mode
XIST: 0.31, chapter 3). To avoid the potential bias, the GWAS result with XIST is
checked separately to identify variants related to ’on/off mode’ of XIST.



60 CHAPTER 4. AUTOSOMAL GENETIC DETERMINANTS OF XCI
VARIATION

GWAS result for XCI metric mIS

After multiple testing correction with Benjamini-Hochberg method (Benjamini
and Hochberg 1995), there was no variant significantly (FDR < 10%) associated
with mIS. The smallest p-value before multiple testing correction was 5.86⇥ 10

-7

(variant rs185761220, chromosome 4). Among the top six variants associated
with mIS, four of them had raw p-value smaller than 10

-6. These six vari-
ants locate on five chromosomes: two variants on chromosome 4 (rs185761220,
rs60320061) and one variant on each of chromosome 3 (rs12632135), chromo-
some 14 (rs34518442), chromosome 16 (rs11248915) and chromosome 17 (rs9904875).
Figure 4.2 shows the distribution of mIS on different genotypes of these six vari-
ants and figure 4.3 is the Manhattan plot to present the significance of genetic
variants in this GWAS.

Even though a differential distribution of mIS is observed on these variants,
specifically on variant rs185761220 (chromosome 4, raw p-value in GWAS =
3.4⇥ 10

-7) and on variant rs12632135 (chromosome 3, raw p-value in GWAS
= 4.7⇥ 10

-6), no evidence is found in previous studies which can support the
role of these variants in the XCI process in h-iPSCs. In section 4.2.3, variance
component analysis (VCA) is applied to estimate the contribution of these vari-
ants to the XCI variability.

GWAS result for XCI metric aIS

Similar to the GWAS result with mIS, no variant show significant association
(FDR < 10%) with aIS after multiple testing control (Benjamini-Hochberg method).
Before adjustment, all top six variants had raw p-value in GWAS at 10-6. These
six variants also locate on different chromosomes: one variant on chromosome
1 (rs357207, p-value = 1.1⇥ 10

-6), one variant on chromosome 9 (rs75781423,
p-value = 2.3⇥ 10

-6), one variant on chromosome 11 (rs112901333, p-value =
3.1⇥ 10

-6) and three variants on chromosome 2 (rs79068464, p-value = 3.4⇥ 10

-6;
rs145753116, p-value = 3.8⇥ 10

-6; rs199934696, p-value = 4.3⇥ 10

-6). The dis-
tribution of aIS on these variants is shown in figure 4.5 and the significance level
of all variants in this GWAS is shown in figure 4.4.

Similar to the section 4.2.2, no previous studies reported the role of these six
variants in the XCI process. The contributions of these six variants to the XCI
variability are estimated by VCA in section 4.2.3.

The overlap between most XCI-related variants

There are four variants overlapping between 100 variants most associated with
either mIS or aIS in GWAS analysis (ranked by raw p-value in GWAS), which
are rs79084431, rs79131540, rs75734556 and rs74554399. These four variants all
locate on chromosome 1, at nearby positions (from 218144672 to 218182410). The
distribution of two XCI proxies on these four variants is shown in figure 4.6.



4.2. USE GWAS ANALYSIS TO IDENTIFY XCI ASSOCIATED AUTOSOMAL
VARIANTS AT GENOME-WIDE 61

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.5

0.0

0 1 2
rs185761220_G

m
IS

(a)

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.5

0.0

0 1 2
rs12632135_A

m
IS

(b)

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.5

0.0

0 1
rs34518442_A

m
IS

(c)

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.5

0.0

0 1
rs11248915_A

m
IS

(d)

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.5

0.0

0 1 2
rs60320061_T

m
IS

(e)

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.5

0.0

0 1 2
rs9904875_A

m
IS

(f)

Figure 4.2: Distribution of mIS on genotypes of six variants which are most as-
sociated with mIS in GWAS using 166 female h-iPSCs. a. rs185761220, locates
on chromosome 4 (raw p-value in GWAS = 3.4⇥ 10

-7). b. rs12632135, locates
on chromosome 3 (raw p-value in GWAS = 4.7⇥ 10

-6). c. rs34518442, locates
on chromosome 14 (raw p-value in GWAS = 2.4⇥ 10

-6). d. rs11248915, locates
on chromosome 16 (raw p-value in GWAS = 6.0⇥ 10

-6). e. rs60320061, locates
on chromosome 4 (raw p-value in GWAS1.1⇥ 10

-5). f. rs9904875, locates on
chromosome 17 (raw p-value in GWAS1.1⇥ 10

-5).
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Figure 4.3: Manhattan plot showing the GWAS result when mIS is used as XCI
metric. The six variants with highest p-values in GWAS are colored in orange
and annotated.

Figure 4.4: Manhattan plot showing the GWAS result when aIS is used as XCI
metric. The six variants with highest p-values in GWAS are colored in orange
and annotated.
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Figure 4.5: The distribution of aIS on genotypes of six variants which are most
associated with aIS in GWAS using 166 female h-iPSCs. a. rs357207, locates on
chromosome 1 (raw p-value in GWAS = 1.1⇥ 10

-6). b. rs75781423, locates on
chromosome 9 (raw p-value in GWAS = 2.3⇥ 10

-6). c. rs112901333, locates on
chromosome 11 (raw p-value in GWAS = 3.1⇥ 10

-6). d. rs79068464, locates on
chromosome 2 (raw p-value in GWAS = 3.4⇥ 10

-6). e. rs145753116, locates on
chromosome 2 (raw p-value in GWAS = 3.8⇥ 10

-6). f. rs199934696, locates on
chromosome 2 (raw p-value in GWAS = 4.3⇥ 10

-6).
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According to ENSEMBL human genome reference, version GRCH37/hg19 (Har-
row et al. 2012), all four variants are located very close to gene AL355526.1
(ENSG00000230714), which is a long non-coding RNA (LncRNA). With version
GRCH38 (Harrow et al. 2012), gene AL355526.1 is mapped to a larger region,
which includes all these four variants. The close location of these four variants
also shows its effect on the distribution of XCI proxies: the distribution of ei-
ther mIS or aIS is very similar on these four variants (figure 4.6). Based on this
observation, these four variants are considered as one variant region which is
associated with XCI level.

Both ENSEMBL human genome website (www.ensembl.org) and GeneCards (www.
genecard.org) show that gene AL355526.1 is a long non-coding RNA, mean-
while neither of these two websites or other literature presents the association
between gene AL355526.1 and the XCI process or X chromosome related phe-
notypes. Similar with variants most associated with XCI metrics, the identified
overlapping variant region is included in VCA models (section 4.2.3) to test its
capacity to explain XCI variability.

GWAS result for XIST

After multiple testing control (Benjamini-Hochberg method, Benjamini and Hochberg
1995), five variants are found significantly associated with XIST expression (FDR
< 10%).
Four out of these five variants have raw p-value smaller than 10

-8. Locations
and corrected p-values of these five variants are listed as following: rs145753116
and rs199934696 (chromosome 2, 5⇥ 10

-6

and 5.4⇥ 10

-5 , respectively), rs2009-
5981 (chromosome 16, 5.4⇥ 10

-5), rs117389731 (chromosome 19, 1⇥ 10

-4) and
rs143-848756 (chromosome 12, 2⇥ 10

-2). The association between these five
variants and XIST expression is shown in figure 4.7.

Previous results present that XIST expression drops sharply at day 50 in culture
(chapter 3,figure 3.8 a). Therefore, I color h-iPSCs in previous result by culture
time (short: < 50 days; long: > 50 days), shown in figure 4.8. Unfortunately,
for all these five variants, the vast majority of h-iPSCs which have genotypes
associated with low XIST expression level was cultured in long culture time.
Therefore, considering the time effect on XIST (section 3.3.3), it is impossible to
draw the conclusion about the effect of these five variants on XIST expression.

4.2.3 Biological conclusion: estimation of genetic effects in XCI vari-
ation with VCA

In Chapter 3, I used variance component analysis (VCA) to study the proportion
of XCI variance explained by different non-genetic factors. Here, VCA models
are used to analyse the contribution of genetic variants to XCI variability. The

www.ensembl.org
www.genecard.org
www.genecard.org
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Figure 4.6: The distribution of mIS and aIS on four overlapping variants be-
tween XCI-related 100 variants with smallest raw p-values in GWAS analysis
(left: mIS; right: aIS), showing a consistent direction of effect of variants on two
XCI metrics.
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Figure 4.7: Five variants are significantly (FDR < 10%) associated with XIST ex-
pression in GWAS using 166 female h-iPSCs. a. rs145753116, locates on chromo-
some 2 (corrected p-value = 5⇥ 10

-6). b. rs199934696, locates on chromosome 2
(corrected p-value = 5.4⇥ 10

-5). c. rs20095981, locates on chromosome 16 (cor-
rected p-value = 5.4⇥ 10

-5). d. rs117389731, locates on chromosome 19 (cor-
rected p-value = 1⇥ 10

-4). e. rs143848756, locates on chromosome 12 (corrected
p-value = 2⇥ 10

-2).

investigation is carried out in two steps: in the first step, to study the six vari-
ants which are most associated with either of two XCI metrics; in the second
step, to study the overlapping variant region between XCI metrics. According
to results in chapter 3, all studied factors can explain approximately in total 60%
of variance of XCI. Among all studied factors, the donor effect and XIST expres-
sion were the only two factors which can explain more than 20% of the variance
of XCI loss. As 166 female h-iPSCs are all from independent donors, the donor
effect was not included in the VCA model in this section. Therefore, in this sec-
tion, VCA models are applied to estimate the effect of genetic variants and XIST
expression in the variance of XCI.

Before the analysis with genetic variants, I fit VCA models with only XIST ex-
pression for both two XCI metrics to study whether the XIST expression would
maintain the same capacity in variance explanation as the result in chapter 3,
where XIST expression counted for 27% of variance of mIS in the model with
273 female h-iPSCs and approximately 30% variance of mIS in the model with
205 female h-iPSCs (without donor effect). With 166 female h-iPSCs, the propor-
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Figure 4.8: The distribution of XIST on five variants which are found signifi-
cantly associated with XIST in GWAS using 166 female h-iPSCs, with each h-
iPSC colored by the cell culture time. The short culture refers to lines which
were cultured shorter than 50 days (cyan) and the long culture refers to lines
which were cultured more than 50 days (red).

tion of variance explained by XIST is reduced: XIST expression count for 15% of
variance in mIS and 16% of variance in aIS (figure 4.9).

This reduction is taken into account for the interpretation of further VCA mod-
els, specially for the comparison of different factors for their capacity to explain
the XCI variation. The detailed design of the VCA model is as follow: firstly the
VCA model was fit respectively for each of two XCI metrics, namely mIS and
aIS, with XIST expression and top six genetic variants which were most associ-
ated with this metrics in GWAS; secondly, another VCA model was fit for each
XCI metric using XIST expression and top six variants with either XCI metrics.
As there was no overlap between top six variants for two XCI metrics, the total
number of genetic variants involved in the second analysis was twelve. Results
of these two designs of models are shown in figure 4.10 (a and b: first VCA mod-
els; c and d: second VCA models).

The first-part VCA results show that, for a certain XCI metrics, top XCI-related
genetic variants identified by GWAS are able to explain a good proportion of
its variance: in total, all six variants explained approximately 62% of variance
for mIS and 49% of variance for aIS, meanwhile the most-associated variant ex-
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Figure 4.9: The result of VCA for 166 female h-iPSCs from independent donors
with only XIST expression. a. Using mIS as XCI metrics (XIST counts for 15% of
variance). b. Using aIS as XCI metrics (XIST counts for 16% of variance).

plained approximately 20% of variance for mIS and slightly more than 30% of
variance for aIS (figure 4.10 a and b).

When comparing the proportion of variance explained by each variant and by
XIST expression in the VCA model, all six variants associated with mIS and four
out of six variants associated with aIS counted for higher proportion than XIST
expression, which was the key factor to explain XCI in chapter 3. As shown in
the VCA results, the impact of genetic variants on XCI variation was surpris-
ingly high, even if the effect by XIST was taken into account.

In the first-part VCA model, the genetic variants which explained the high-
est proportion of XCI variance were rs185761220_G (approximately 20%) and
rs79068464_A (31%), respectively for mIS and aIS. The difference of propor-
tion explained by six variants in the VCA model for mIS is much smaller than
the difference in the model for aIS, where the proportion explained by variant
rs79068464_A is bigger than the sum of the proportion explained by all other
factors (approximately 21%).

Regardless of the high proportion of explained variance by genetic variants in
the first-part result, genetic variants failed to explain the variance of the other
XCI-metrics in the second-part VCA since no variant counted for more than 1%
of XCI-variance, shown in figure 4.10 (c and d). The failure of cross-explanation
of genetic variants reveals a gap for the study of genetic effects in XCI variation:
a true and significant XCI determinant should show its capability to explain the
XCI variation in both two XCI metrics, like donor effect and XIST in VCA results
in section 3.5.

To investigate whether there is any variant which explains a good proportion
of both two XCI metrics, another VCA model includes the overlap variant re-
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Figure 4.10: Unignorable effects from genetic variants for the XCI variation de-
tected by VCA in 166 female h-iPSCs. a. VCA for mIS using XIST and top 6
genetic variants associated with mIS in GWAS; b. VCA for aIS using XIST and
top 6 genetic variants associated with aIS in GWAS; c. VCA for mIS using XIST
and top 6 variants associated with mIS and top 6 variants associated with aIS in
GWAS; d. VCA for aIS using XIST and top 6 variants associated with aIS and
top 6 variants associated with aIS in GWAS
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gion, which refers to the four variants which are overlapped between top 100
variants associated with mIS and with aIS. As discussed in section 4.2.2 (figure
4.6), the four overlapping variants are considered as one genetic region given
that they are physically located next to each other and the distribution of mIS or
aIS is the same on them. The new VCA model includes top 6 variants associated
with single XCI metrics and the overlap variant region.

In the new model, the capability to explain the XCI variation of the overlap
region is quite different for mIS and aIS: for mIS, the overlap region counts for
around 2% of variance which is the least among all tested factors (figure 4.11 a);
while for aIS, this region counts for more than 5% which is slightly higher than
the proportion explained by XIST expression level (figure 4.11 b).
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Figure 4.11: The investigation of whether the overlap variant region is a com-
mon source of variance for two XCI metrics using VCA model. a. The overlap
region counts for 2% of variance of mIS. b. The overlap region counts for slightly
more than 5% of variance of aIS.

To study the potential reason behind this variance, I checked the correlation
between the overlap variant region and the twelve variants which were most
associated with two XCI metrics (figure 4.12). The overlap region has slight
correlation with two single variants, namely rs60320061 (Pearson correlation =
0.33) and rs112901333 (Pearson correlation = 0.20), respectively associated with
mIS and aIS (figure 4.10). Meanwhile, XIST correlate with two aIS-related vari-
ants (rs199934696 and rs145753116, Pearson correlation > 0.4), which might con-
found the VCA result (figure 4.12 b). Therefore, the VCA result for mIS would
be more trustful, which reveals a relatively small proportion of explained vari-
ance by the overlap variant region.

To summarize, VCA models show that these genetic variants count for unignor-
able proportion of XCI variation (in total 62% for mIS and 49% for aIS), at the
same time there is a failure of cross-explanation of variants for the other XCI
metrics (less than 5% explained by variants associated with the other XCI met-
rics). When the overlap variant region is included in the VCA model, it shows a
small capacity to explain the mIS (2%).
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Figure 4.12: Correlation matrix between factors in VCA models including XIST
expression, the overlapping region and six genetic variants most associated with
XCI proxies for mIS (a) and aIS (b).

The validation is always important for the genetics research. The common val-
idation is the proof by other researches and the validation experiment. For
genetic variants which are found most associated with XCI metrics by GWAS
and the overlap variant region between the top 100 variants identified by two
GWAS, no previous studies reported their effect in XCI process or potential role
in X-linked diseases. Among studied variants, three variants are most valu-
able for the validation experiment: rs185761220 (most associated variant with
mIS), rs79068464 (most associated variant with aIS) and the overlap variant re-
gion. The validation of the role of these variants can be executed with CRISPR-
CAS9 technology (Doudna et al. 2014, Ran et al. 2013, G. Wang et al. 2017) which
knocks off single or multiple variants. To achieve a reasonable statistical power,
the validation experiment requires a sufficient number of h-iPSC lines, as well
as a solid CRISPR-CAS9 application experiences in h-iPSC lines. An example of
sample size estimation is given in section 4.4.

Due to a limitation of these resources, the experimental validation work is not
done in this thesis, nevertheless, I am looking forward to further researches to
study the role of these genetic variants in the XCI process and to reveal the bi-
ological mechanism behind the association between autosomes and the X chro-
mosome. Results in this section also reveal the difference between methylation-
based XCI metric and expression-based metric, which is also observed in chapter
2. Since DNA methylation is part of the mechanism of the X-silencing (Moore
et al. 2013, Phillips et al. 2008), I expected a close association between these two
XCI metrics. However, according to studies of this thesis, an inconsistency be-
tween the methylation level and the expression level is observed, showing as the
biased correlation between metrics, as well as the different associated autosomal
genetic variants. For the XCI in h-iPSCs, there is still no consensus about the reg-
ulation of gene expression by the XCI-related methylation. I expect to see more
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biological researches to explore the mechanism and to answer this question with
h-iPSC lines.

4.3 The association test between XCI and important vari-
ants detected by eQTL

At the beginning of this chapter, I presented that there are two ways to identify
genetic determinants of XCI variation: the first one is to apply GWAS to look
for variants which are associated with XCI proxies at the whole genome level
(section 4.2); the second one is to firstly have a subset of variants who are indi-
rectly associated with XCI variation and then test the association between these
variants and the XCI level.

This section presents the process and the result of the second method, which
makes use of the list of XCI-associated genes (chapter 5) and the eQTL result
from Kilpinen et al. 2017. The eQTL analysis in Kilpinen et al. 2017 summarized
autosomal variants which are associated with autosomal genes for 239 h-iPSCs
(166 donors, RNA-sequencing data). After correction of donor effect and of mul-
tiple testing with Benjamini-Hochberg method (Benjamini and Hochberg 1995),
4,347 variants are found associated with 4,422 genes (Kilpinen et al. 2017). These
variants locate on all autosomes: most on chromosome 1 (426 variants) while
least genes on chromosome 21 (70 variants). The eQTL analysis reveals a direct
association between autosomal genetic variants and autosomal gene expression
levels. Since previous studies found DNA variants have an important role in the
regulation of gene expression level (Pai et al. 2015, Cheung et al. 2009), the eQTL
analysis in Kilpinen et al. 2017 reveals regulator-variants for these 4,422 genes.

With the work of this thesis, the XCI variation is found to be associated with
the expression of 1,757 autosomal genes using XCI metric mIS and 2,013 autoso-
mal genes using XCI metric aIS (FDR < 10%, details in chapter 5). In this section,
I extract the regulator-variants (n = 272 for mIS and n = 388 for aIS) of these
XCI-related genes from the eQTL result by Kilpinen et al. 2017 and study the
association between XCI level and this subset of genetic variants.

4.3.1 Extraction of genetic variants associated with XCI-related auto-
somal genes

The association analysis between gene expression and XCI level is presented
in chapter 5. Briefly, genes whose standard deviation across 273 h-iPSCs was
smaller than 0.1 were removed, leaving 41,353 genes for further analysis. Among
these 41,353 genes, 39,856 autosome genes were included in the association anal-
ysis with XCI proxies. With linear regression between expression level of each
gene and two XCI metrics (mIS and aIS), after multiple testing control (Dabney
et al. 2010, FDR < 10%), the number of autosomal genes associated with XCI
level is 1,757 for mIS and 2,013 for aIS.
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Among these genes, 261 mIS-related genes and 376 aIS-related genes were found
associated with autosomal variants (272 and 388, respectively) in the eQTL anal-
ysis by Kilpinen et al. 2017 (FDR < 10%). Unfortunately, six variants which were
found most associated with either of XCI metrics and five variants which are
found associated with XIST in section 4.2 are not significantly associated with
autosomal genes, thus not involved in this analysis.

The genotype matrix of these variants were extracted from plink-transfered files
of 166 female h-iPSCs (section 4.2.1). As written before, the genotype of each
variant was recoded to 0, 1 or 2 according to reference allele. Moreover, the ref-
erence allele was added to the end of variant ID. In the rest of this chapter, I use
this format of variant ID for discussion.

4.3.2 Association analysis between genetic variants and XCI proxies

The association analysis between genetic variants and XCI metrics was done
with univariate linear regression. After multiple testing correction (Dabney et
al. 2010), there is no variant significantly associated with either mIS or aIS: the
smallest q-value in the analysis is 0.49 for mIS and 0.32 for aIS.

Regardless of non-significant result, there are 22 variants overlapping among
100 variants which are most associated with the two XCI metrics. The variant
rs3790598, which has the smallest q-value among these 22 variants, shows a
good probability to have causal effect on XCI (figure 4.13).
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Figure 4.13: Distribution of mIS (a) and aIS (b) on different genotypes of variant
rs3790598.

This variant is located on chromosome 1 and is found associated with RNA he-
licase gene MOV10 (figure 4.14 a) according to eQTL analysis by Kilpinen et al.
2017. For variant rs3790598, 114 out of 166 female h-iPSCs have genotype 0, 48
h-iPSCs have genotype 1 while only 4 h-iPSCs have genotype 2. As the number



74 CHAPTER 4. AUTOSOMAL GENETIC DETERMINANTS OF XCI
VARIATION

of h-iPSCs with genotype 2 on variant rs3790598 is very limited, my study is
focused on the association between XCI level and the other two genotypes.

Figure 4.13 shows that the association between genotypes of the variant rs3790598
and XCI level is consistent between two XCI metrics: h-iPSCs with genotype 1
tend to have proper XCI, which appears as low mIS value and high aIS value,
respectively standing for higher methylation level and higher mono allelic ex-
pression level.

The expression of MOV10 is associated with variant rs3790598 with q-value
equals to 4.9⇥ 10

-5

in the eQTL result by Kilpinen et al. 2017, referring to 2.1⇥ 10

-7

in simple ANOVA test: h-iPSCs with genotype 0 of variant rs3790598 had higher
expression level of MOV10 (figure 4.14 a). Meanwhile, high expression level of
MOV10 is related to proper XCI, showing as low mIS (Pearson correlation =
-0.25) and high aIS (Pearson correlation = 0.21) in figure 4.14 (c and d). Since h-
iPSCs with genotype 0 of variant rs3790598, which is the genotype with higher
MOV10 expression level, show a higher mIS value, there is a conflict between
variant-XCI association and gene-XCI association. To investigate what might be
confounding factor in this association, I plot the distribution of XIST on geno-
types of variant rs3790598 where a higher XIST expression level is found in h-
iPSCs with genotype 1 (p-value = 0.09, ANOVA test, figure 4.14 b).

The association between MOV10 and XIST was observed by P. J. Kenny et al.
2014 using human embryonic kidney cells, where the knock-down of MOV10
by immunoprecipitation (IP) resulted in an enrichment of XIST, meanwhile the
MOV10-binding regions on XIST were observed by the individual nucleotide
resolution Cross-Linking and ImmunoPrecipitation (iCLIP). Combining this in-
formation and analyses in this section, I suppose that the regulation process of
genetic variant rs3790598 on XCI is complex, which might be a combination of
regulation via both MOV10 and XIST. To have a more detailed study of this
causal path of XCI, more data sources are necessary.

4.4 Discussion: a potential causal relation between auto-
somal variants and XCI

In this chapter, I use statistical methods to discover potential genetic determi-
nants of XCI variation in female h-iPSCs. Using genome wide association study
(GWAS), six variants which are most associated with either of two XCI prox-
ies are found promising, regardless of the non-significance level (FDR < 10%,
Benjamini-Hochberg method, Benjamini and Hochberg 1995). With variance
component analysis (VCA), I find that the variant rs185761220 which is most
associated with mIS in GWAS and the variant rs79068464 which is most asso-
ciated with aIS in GWAS explain the most portion of XCI variability (approxi-
mately 20% and slightly more than 30%, respectively). These two variants are
capable to explain the XCI variability slightly more than XIST expression, which
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Figure 4.14: Mechanism behind the association between genetic variant
rs3790598 and XCI loss. a. H-iPSCs with genotype 0 has higher expression level
of MOV10 (q-value = 4.9⇥ 10

-5, eQTL by Kilpinen et al. 2017). b. H-iPSCs with
genotype 1 has higher expression level of XIST (p-value = 0.09, ANOVA test). c.
The association between MOV10 expression level and mIS (Pearson correlation
= -0.25, p-value = 0.001). d. The association between MOV10 expression level
and aIS (Pearson correlation = 0.21, p-value = 0.05).
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was the most important factor in VCA models of chapter 3.

Using expression quantitative trait loci (eQTL) result by Kilpinen et al. 2017,
I extract autosomal genetic variants are associated with XCI-related genes (FDR
< 10%). With univariate linear regression, I identify the potential causal path
connecting variant rs3790598, gene MOV10 and XCI level. MOV10 is an RNA
helicase and is found to associate with XIST expression in human embryonic
kidney stells (P. J. Kenny et al. 2014). Therefore, the regulation of XCI via this
causal path would be an interesting topic.

Since this thesis is the first population-level study of XCI status in h-iPSCs from
the single data source (HipSci), it is difficult to validate results here with previ-
ous studies. To prove the causal or the regulative effect of these genetic variants,
biological experiment would be necessary. One of the most widely used tech-
nologies in similar type of researches would be the knock-off of variants using
the CRISPR-CAS9 technology (G. Wang et al. 2017, Ran et al. 2013, Doudna et al.
2014). The potential experimental validation could be the knocking-off of these
variants in h-iPSCs and the measurement of altered XCI loss level afterwards.
For such experiments, I estimate the minimum number of h-iPSCs to be included
to ensure a proper statistical power. Below is an example of the estimation for
the potential causal path.

This potential causal path is between variant rs3790598, gene MOV10 and XCI
level. To test this path, the variant rs3790598 needs to be knocked-off for h-iPSCs
whose genotype is 1 (one allele with A). The XCI level and expression level of
MOV10 need to be measured for these h-iPSCs before and after the knock-off.
In the previous analysis with all 166 female h-iPSCs, the average of aIS value
for h-iPSCs with genotype 0 is -0.01, while the average of aIS for h-iPSCs with
genotype 1 is 0.01. To observe such a reduction in aIS in the experiment, with
significance level ↵ = 0.05, statistical power 1 - � = 0.8, a minimum of 32 h-
iPSCs is needed. The average of MOV10 expression level is 11.0 in h-iPSCs with
genotype 1 and 11.2 in h-iPSCs with genotype 0, with the same statistical re-
quirement, a minimum of 17 h-iPSCs is needed for the experiment.

Either 32 or even 17 is a large number of lines required for experiments using
h-iPSCs, because the setting up of experiment is time consuming and because
either methylation array or RNA-sequencing needs to be done for all tested lines
before and after knock-off. The long lasting and large scale data measurement
would make the validation experiment an entire project. For this reason, the ex-
perimental validation of these variants is not executed in the work related to this
thesis. For the paper which I am going to publish for this project, I am seeking
for collaborations to carry out knock-down experiment of gene MOV10 on three
or four h-iPSCs to observe the alteration in XCI level. Furthermore, I expect to
see more experimental researches on the effect of autosomal variants on the XCI
process.



Chapter 5

Consequences of XCI
heterogeneity in female h-iPSCs

- What is the direct consequence of XCI variation?
The alteration of gene expression.
- Can XCI by inherited by h-iPSC derived cells?
Yes.

Chapter 2 presented XCI heterogeneity using 273 female h-iPSCs from HipSci
(Kilpinen et al. 2017): 1% (four) lines display a complete loss of XCI while other
lines have different XCI level, showing with variation in both methylation level
and bi-allelic expression level of the X chromosome. In h-iPSCs and in other
mammalian cells, XCI is the dosage compensation mechanism to balance the
sex-related genes in two genders, specifically to ensure the similar expression
level of X-located genes in males and females (Lyon 1961, Brockdorff et al. 2015,
Heard et al. 1997, Avner et al. 2001, Galupa et al. 2018). Therefore, regarding
the XCI heterogeneity in female h-iPSCs (chapter 2), two questions arise: does
this XCI variability have functional consequences in gene expression level and
to what extent are these consequences?

The overexpression of X-linked genes following the loss of XCI was observed
in h-ES cells by Bar et al. 2019 and in h-iPSCs by Brenes et al. 2020, which also
reported an increase level of protein but not messenger RNA (mRNA) for au-
tosomal genes. Inspired by these studies, this chapter studies the association
between XCI variation and genome wide expression alteration, especially the
difference of alteration pattern for X-linked genes and for autosomal genes.

H-iPSCs have the unique ability to differentiate to human somatic cells (Hu et
al. 2010b), which makes h-iPSCs and iPSC-derived cells very important tools
in regenerative medicine as well as in scientific research (S. M. Wu et al. 2011,
Knoepfler 2009, Singh et al. 2015, Castagné et al. 2011). Considering the vari-
ance of XCI in female h-iPSCs (chapter 2), it is very important to clarify whether
the XCI heterogeneity in h-iPSCs can be inherited by iPSC-derived cells and if
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yes, whether the XCI heterogeneity is associated with downstream features, for
instance, the immune-related expression alteration in iPSC-derived cells. This
chapter analyses 273 female h-iPSCs in HipSci (Kilpinen et al. 2017) and 43 iPSC-
derived macrophages by Alasoo et al. 2018, mainly using the expression level to
investigate the above questions.

5.1 XCI heterogeneity results in genome wide expression
alteration

The RNA-sequencing data of 273 female h-iPSCs (Kilpinen et al. 2017) is used
for the association analysis between the XCI variation and gene expression alter-
ation. To remove genes which have constant expression level in the population,
genes with standard deviation smaller than 0.1 are excluded, remaining 41,353
genes (39,856 autosomal genes and 1,497 X-linked genes) in the analysis.

The association test between gene expression and XCI level is done with a uni-
variate linear model, using mIS as XCI metric, with formula 5.1:

mIS = ↵ + �gene expression
i

, (5.1)

where ↵ and � stand for the intercept of the model and the coefficient of gene
expression, i stands for gene

i

to test in the model, with i 2 [1 : 41, 353].

For the genome wide association study, 41,353 independent models were fit for
mIS, with p-value of each model used as the significance level of association be-
tween the tested gene and mIS. After multiple testing correction (Dabney et al.
2010), the XCI loss level is found associated with 2,086 genes (FDR < 0.1), of
which 329 (15%) genes are on the X chromosome and 1,757 (85%) genes are on
autosomes, shown in figure 5.1. This result reveals that XCI variation leads to
genome-wide expression alteration and this effect is not limited to genes on the
X chromosome, but also genes on autosomes.

5.2 The XCI loss results in up-regulation of X-linked genes
and random alteration of autosomal genes

After observed that genes on both X chromosome and autosomes have signifi-
cant association with XCI loss (FDR < 0.1, 2,086 genes), the pattern of expression
alteration is studied, using the � value from the linear model 5.1.

Consistent with the mechanism behind XCI (C. J. Brown, Hendrich, et al. 1992,
Heard et al. 1997, Avner et al. 2001, Galupa et al. 2018) and with previous study
by Brenes et al. 2020, I find that the XCI loss results in a different pattern of
expression alteration in the X chromosome and in autosomes: on the X chro-
mosome, most XCI-associated genes are up-regulated (97%, 320 genes), while
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Figure 5.1: The genome wide gene alteration with XCI variation: 2,086 genes
are XCI-related, including 329 X-related genes (15%, cyan) and 1,757 autoso-
mal genes (85%, red). Each dot presents a gene included in the analysis, while
x-value of the dot is the log2FC value of this gene and y-value of the dot is
the -log10 of p-value of this gene in the univariate linear model (formula 5.1).
log2FC is defined as the log2 transformed ratio of the maximum expression level
of one gene over the minimum expression level of this gene in all female h-iPSCs
and converted to positive value for up-regulated genes with XCI loss, to nega-
tive value for down-regulated genes. Genes with larger absolute log2FC value
exhibit bigger range of expression in female h-iPSCs. The horizontal line stands
for p-value = 10-4. The known XCI-escapees are labeled by the shape of point
(triangle: known XCI-escapee; round: not known XCI-escapee, details in section
5.2).
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on autosomes, fractions of up- or down-regulated genes are almost equal (45%
up-regulated). As introduced in section 1.2.3, Carrel et al. 2005 found that up
to 25% of human X-linked genes can escape from the XCI process, namely XCI-
escapees, while 15% of them showed a constant capability to escape from XCI
across samples. Furthermore, Tukiainen et al. 2017 presented a systematic sur-
vey of XCI on 29 types of tissues from 446 individuals, where the incomplete XCI
was found to affect the expression level around 23% of X-chromosome genes.

To incorporate known XCI-escapees in my study of gene regulation in female
h-iPSC lines, 200 genes are taken from the study by Tukiainen et al. 2017, which
were identified as XCI-escapees in at least one tissue and were checked for their
overlap with XCI associated genes identified in 273 female h-iPSCs.

Figure 5.1 shows the regulation of genes with XCI-escapees labeled, where it
is observed that XCI-escapees are associated with XCI loss at various levels of
significance.

Among 329 X-linked genes which are found associated with XCI (FDR < 0.1,
section 5.1), 22% (72 genes) are known XCI-escapees. After the removal of these
known XCI-escapees, 257 X-linked genes are associated with XCI. In addition,
98% (251 out of 257) of X-linked genes are up-regulated (figure 5.1). Therefore, I
present that the XCI loss in female h-iPSCs results in genome wide alteration of
gene expression level. In addition, on the X chromosome the associated genes
are mostly up-regulated and on autosomes there is an equal rate of up- and
down-regulation.

5.3 Inherited XCI level in cells derived from h-iPSCs and
its immune-related effects

The inheritance of expression and genetic signatures from h-iPSCs to iPSC-derived
cells is a key concern for the use of h-iPSCs in disease modeling and cell thera-
pies (Tiscornia et al. 2011, Doss et al. 2019, Singh et al. 2015, D’Antonio-Chronowska
et al. 2019). The XCI of h-iPSC is an important X-related signature, thus whether
the XCI level can be stably inherited in iPSC-derived cells is an important ques-
tion for the research of h-iPSCs.

HipSci is a great opportunity to study the genetic similarities between h-iPSCs
and iPSC-derived cells: Kilpinen et al. 2017 reported the genetic characteristics
of 711 h-iPSCs and Alasoo et al. 2018 differentiated macrophages from 86 h-
iPSC lines to study their genetic features and molecular functions. These two
data sets enable the investigation of the inheritance stability of XCI level from
h-iPSCs to iPSC-derived cells with a reasonable sample size. Furthermore, using
iPSC-derived macrophages, it is possible to estimate the effect of XCI variation
on the immune-related expression alteration.
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5.3.1 XCI heterogeneity is stably inherited in iPSC-derived cells

The RNA-sequencing data are available for 43 over lapping h-iPSCs between
Alasoo et al. 2018 and 273 female h-iPSCs studied in this thesis. The rIS is com-
puted for iPSC-derived macrophages with the definition in section 2.3.2. Figure
5.2 presents the clear association between rIS of iPSC-derived macrophages and
of their progenitor h-iPSCs, indicating a stable inheritance of XCI level by iPSC-
derived cells (Pearson correlation = 0.61, p-value = 1.3⇥ 10

-5).
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Figure 5.2: The association between rIS of iPSC-derived macrophages and their
progenitor h-iPSCs (Pearson correlation = 0.61, p-value = 1.3⇥ 10

-5).

5.3.2 Potential association between immune response and XCI level

The X chromosome is known to contain the largest group of immune related
genes of the human genome (Bianchi et al. 2012b, Libert et al. 2010). In addition,
the X chromosome abnormality, including both alteration of X-locus and the
XCI variation, has been found associated with multiple diseases, for instance
the Chronic granulomatous disease and autoimmune thyroid disease (R. Brown
et al. 1993, Baehner et al. 1986, Santiwatana et al. 2018, Brix et al. 2005).

In human immune system, macrophages are widely distributed and play an
indispensable role in the innate and acquired immune response (Siamon Gor-
don 2003, Martinez et al. 2008). For disease modeling and immunotherapy, h-
iPSC derived macrophages have been seen as a promising tool and were used in
many studies (H. Zhang et al. 2015, Ackermann et al. 2018, C. Z. Lee et al. 2018,
Buchrieser et al. 2017).

Alasoo et al. 2018 generated iPSC-derived macrophages from HipSci lines (Kilpinen
et al. 2017) and measured the expression level of iPSC-derived macrophages un-
der different stimulus conditions. In this section, I use the data set from this
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study and HipSci (Kilpinen et al. 2017) to investigate the association between
XCI level and immune response.

In Alasoo et al. 2018, 86 h-iPSCs were used to derive macrophages and the
methylation data is available for 43 out of these 86 h-iPSC lines in HipSci (Kilpinen
et al. 2017). These 43 h-iPSCs were originated from independent female donors,
20 of which were cultured in medium Feeder Dependent (FD) while remaining
23 were cultured in medium Feeder Free (FF). Since section 5.3.1 showed the
consistent of XCI level between h-iPSCs and iPSC-derived cells, here, the mIS of
these 43 h-iPSCs is used as the XCI metrics for the association analysis between
XCI level and immune alteration.

Alasoo et al. 2018 cultured iPSC-derived macrophages under three different
stimuli conditions and one naive condition (labeled as condition A). The three
stimuli conditions were: Interferon-gamma (INFg, labeled as condition B), Salm-
onella typhimurium (SL1344, labeled as condition C) and a combination of INFg
and SL1344 (labeled as condition D). The expression level of the iPSC-derived
macr-ophages under each immune condition was measured by RNA-sequencing
(Alasoo et al. 2018). Raw RNA-seq counts were normalised with function vst in
R package DESeq2 (Love et al. 2014) and only genes with mean expression in at
least one of the conditions greater than 0.5 transcripts per million were kept for
the analysis, making the total number of genes after filtering to 15,797 (Alasoo
et al. 2018). The different expression level between a stimulus condition and the
naive condition (below BA, CA, DA), is used as the representation of the im-
mune alteration.

Before the computation of immune related expression alteration, a filtering pro-
cess was carried out to remove genes of which the number of read counts was
smaller than ten in each condition. After the filtering, 14,070, 14,084 and 13,549
genes were remained for the association analysis for condition BA, CA and DA,
respectively. For each condition, the association test between the expression al-
teration and XCI level is carried out using the univariate linear model 5.2:

mIS = log2
gene

i

(stimulus condition)
gene

i

(reference condition)
(5.2)

with
gene

i

2 list

XA

, (X 2 {B, C, D}).

Figure 5.3 shows the distribution of raw p-values of all linear models with for-
mula 5.2 under three stimuli conditions. In this figure, an overabundance is
observed for mid and high p-values for condition CA, accompanied by a valley-
like curve for low p-values. This abnormal distribution of p-values follows
neither normal distribution of independent tests nor the null hypothesis which
would lead to abundance for low p-values.

This abnormality in the association analysis implies that some model assump-
tions are not met. This might be caused by confounding factors, for instance, the
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Figure 5.3: Histogram of raw p-values for the univariate linear model for the
association analysis between XCI level and immune response under three stim-
uli conditions. The log2 transformed fold change of gene expression between
immune stimulus condition and reference condition is used as representative
of immune response and the mIS is used as representative of XCI level. The
analysis uses univariate linear model (formula 5.2). a. Condition BA: alteration
between stimulus condition B (INFg) and the naive condition. b. Condition CA:
alteration between stimulus condition C (SL1344) and the naive condition. c.
Condition DA: alteration between stimulus condition D (INFg and SL1344) and
the naive condition.

date of salmonella infection. For 43 macrophages in the study, salmonella infec-
tion was done on 27 different dates, various from 3rd June 2014 to 4th December
2015. Taking salmonella infection date as a random effect factor, linear model
5.2 is updated to mixed linear model 5.3:

mIS = log2
gene

i

(stimuli condition)
gene

i

(reference condition)
+ (1| samonela date). (5.3)

Figure 5.4 shows the distribution of p-values for model 5.3 for each immune
condition. It appears that the abnormality of distribution of p-values for condi-
tion CA is not solved even when the date of salmonella infection is included in
the model. Furthermore, compared to model 5.2, the distribution of p-values for
condition DA is worse.

Since including the date of salmonella infection as random effect does not solve
the problem of abnormal distribution of p-values, I assume that this abnormal-
ity might be caused by other unknown confounding factors.
To include all possible confounding factors in the association analysis might be
unrealistic. Instead, similar as in section 2.5.2, these factors can be corrected
from expression level by PEER correction method (Stegle, Parts, Piipari, et al.
2012, Stegle, Parts, Durbin, et al. 2010).

The PEER method, which is the abbreviation of probabilistic estimation of ex-
pression residuals, uses additive Bayesian network to infer hidden factors and
their effects in gene expression matrix (Stegle, Parts, Durbin, et al. 2010, Ste-
gle, Parts, Piipari, et al. 2012). Using expression data matrix as input, PEER
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Figure 5.4: Histogram of raw p-values for mixed linear model 5.3 under three
stimuli conditions. In mixed linear model 5.3, the date of salmonella infection is
included as a random effect factor for the association analysis between immune-
related expression alteration and the XCI level. a. Condition BA: alteration be-
tween stimulus condition B (INFg) and the naive condition. b. Condition CA:
alteration between stimulus condition C (SL1344) and the naive condition. c.
Condition DA: alteration between stimulus condition D (INFg and SL1344) and
the naive condition.

method outputs residuals, which can be used as the corrected expression data,
posterior mean, weights of the inferred confounders and precision (the inverse
variance) of the weights (Stegle, Parts, Durbin, et al. 2010, Stegle, Parts, Piipari,
et al. 2012). Here, I use package PEER, version 1.3 (Stegle, Parts, Piipari, et al.
2012) in R, version 3.4.0 (R Core Team 2017) to correct expression data of iPSC-
derived macrophages (Alasoo et al. 2018). The PEER correction is applied on
normalised RNA-sequencing counts of each condition, with number of itera-
tion = 1, 000 and number of factor = 15 (factors suggested by the tutorial of
PEER package). Residual variance alteration with number of factors in the cor-
rection is shown in figure 5.5, where it can be observed that for all conditions,
the residual variance is continuously decreasing after 9th iteration meanwhile
factor weights smoothly increase with larger factor numbers (for conditions A
and B, variance of factor weights start to smoothly increase at factor 12 and 8
respectively). These correction results reveal that PEER correction results with
15 factors and 1, 000 iterations are sufficient to remove confounding factors in
these gene expression data.

After correction, log2 transformed fold change between expression level under
stimulus condition and under reference condition is computed, following by
association analysis with linear model 5.2. The distribution of p-values in this
linear model is shown in figure 5.6.
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(a) Condition A (b) Condition B

(c) Condition C (d) Condition D

Figure 5.5: PEER correction for expression level under four immune conditions.
Condition A. The naive condition (reference). Condition B. Interferon-gamma
(INFg). Condition C. Salmonella typhimurium (SL1344). Condition D. The com-
bination of INFg and SL1344.
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Figure 5.6: Histogram of raw p-values for the univariate linear model 5.2 for the
association analysis between XCI level and immune response under three stim-
uli conditions using PEER corrected expression data as the immune response.
a. Condition BA: alteration between stimulus condition B (INFg) and the naive
condition. b. Condition CA: alteration between stimulus condition C (SL1344)
and the naive condition. c. Condition DA: alteration between stimulus condi-
tion D (INFg and SL1344) and the naive condition.

Accounted for multiple testing (Benjamini and Hochberg 1995), there is no
genes significantly associated with XCI in any of immune conditions B, C or D
(FDR < 10%). Condition D (INFg + SL1344) has more genes associated with XCI
level than condition A and B, as it is the condition with more immune stimuli.
The association between XCI level and immune related gene alteration for six
genes with smallest adjusted p-values in condition D is shown in figure 5.7.

This result reveals that although many genes have altered expression due to XCI
loss (section 5.1), the magnitude of such changes is small in comparison to the
changes induced by strong external stimuli such as infection. As this association
study is carried out with limited sample size (n = 43), there is still a possibil-
ity to observe association between XCI level and immune-related activities of
macrophages with bigger data set. Also, I expect to see further studies which
investigate the role of XCI heterogeneity in other iPSC-derived immune cells
(i.e. natural killer cells), to have a better understanding about how the X chro-
mosome activation of h-iPSCs regulates the biological functions in their derived
cells.

5.4 Discussion: broad consequences of XCI heterogeneity
in h-iPSCs and iPSC-derived cells

Knowing that the XCI heterogeneity generally exists in female h-iPSCs, it is im-
portant to know what are direct consequences and to what extent are these con-
sequences: are they limited to h-iPSCs themselves, or do they also have a power
in iPSC-derived cells?

Since that XCI is the dosage compensation mechanism to balance expression
level between genders (Lyon 1961, Brockdorff et al. 2015, Heard et al. 1997,
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Figure 5.7: The association between XCI level (mIS) and expression alteration
under condition DA for six genes with the lowest p-value in model 5.2 after
multiple testing control. The x-axis is the mIS value. The y-axis is the log2 trans-
formed fold change of PEER-corrected expression between condition D (INFg
and SL1344) and condition A (reference).
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Avner et al. 2001, Galupa et al. 2018), the investigation starts from the expres-
sion level of h-iPSCs, where I find a genome-wide expression level along with
the XCI variation. Specifically, the consequence of XCI loss is different on the
X chromosome and on autosomes: among genes which are associated with
XCI, most of X-linked genes are up-regulated (97%), while the fraction of up-
regulated genes on autosomes is around half (47%).
This result is consistent with previous studies which reported overexpression
of X chromosome linked with XCI erosion (Bar et al. 2019, Brenes et al. 2020),
proving that the loss of XCI results in an increase of X-linked expression level.
Meanwhile, the consequence is not limited to the X chromosome, as shown in
section 5.1, 85% of XCI-associated genes locate on autosomes, revealing that the
effect of XCI loss is genome-wide.

Another interesting result is that the XCI level in h-iPSCs is inheritable by iPSC-
derived cells. This result can be interpreted from two aspects. Firstly, the XCI
variability is inherited by iPSC-derived cells. Therefore, in the research of dis-
ease modeling, specifically X-linked disease (i.e. Rett syndrome), the XCI level
needs to be taken into account when h-iPSCs and iPSC-derived cells are used.
Secondly, as one of epigenetic signatures, the inheritance of XCI shows the ho-
mogeneity between h-iPSCs and iPSC-derived cells. Considering that An et al.
2012 also presented the inheritance of gene correction from h-iPSCs to iPSC-
derived neurons, there is a high possibility that iPSC-derived cells can inherit
genetic features from h-iPSCs, thus it is potential to execute genetic modifica-
tions in h-iPSCs and apply iPSC-derived cells, which contain these modifica-
tions, for a certain cell therapy.

Using iPSC-derived macrophages (Alasoo et al. 2018) to explore the association
between XCI level and immune response is another investigation of this the-
sis for the usage of h-iPSCs and iPSC-derived cells in clinical research. Knowing
that X chromosome contains the largest group of X chromosome genes in human
(Bianchi et al. 2012b, Libert et al. 2010), the concern is about potential immune
alteration or even immune disorder with XCI variation. With the data included
in this thesis, I do not observe a significant association between XCI level and
the immune response. Since that the data size is till limited (n = 43), I am look-
ing forward to further studies which investigate the immune related activities
regarding the XCI heterogeneity in larger size of h-iPSCs and/or iPSC-derived
cells.

With the work in this chapter, I demonstrate the broad consequences of XCI
heterogeneity, showing as the expression alteration in h-iPSCs and as an inher-
itable signature to iPSC-derived cells. I hope this result will encourage further
studies to explore downstream consequences of XCI heterogeneity and to ex-
plore whether these consequences have an effect in the medical usage of h-iPSCs
and/or iPSC-derived cells.



Chapter 6

Validation of XCI-related analysis
in h-iPSCs from LCL data set

- Can we observe XCI heterogeneity in h-iPSCs from different origins?
Yes.

Previous chapters of this thesis presented the general XCI heterogeneity, the
methylation based and expression based metrics to represent the XCI level, sources
of XCI variation, as well as consequences in h-iPSCs and iPSC-derived cells
(Kilpinen et al. 2017). A question following these interesting discoveries is whether
they are universal conclusions, regardless of origins of h-iPSCs.

HipSci (Kilpinen et al. 2017) recruited donors who are mostly UK citizens. The
principle component analysis (PCA) in chapter 4 also showed the homogeneity
of the donor population structure: the vast majority of h-iPSCs were clustered
in the same group (163 out of 166 h-iPSCs). Meanwhile, in HipSci, all h-iPSC
lines were generated from fibroblasts which were obtained from the skin biopsy
of donors (Kilpinen et al. 2017).

To answer the above question, I make use of the data set generated by Banovich
et al. 2018, where h-iPSC lines were generated from lymphoblastoid cell lines
(LCLs) of African population Yoruba included by the 1000 Genome Project (1000
Genomes Project Consortium et al. 2015, population YRI). The major difference
between this new data set and HipSci are the population of donors and the pro-
genitor cells of h-iPSCs. Therefore, it is able to investigate whether XCI hetero-
geneity exists in h-iPSCs from a different population and different starting cells.
Hereinafter, I use YRI-LCLs to refer to LCLs from the population YRI in the 1000
Genome Project and use LCL-iPSCs to refer to h-iPSCs which were generated
from these LCLs.

The establishment of LCL samples has been well developed by Heidemarie
Neitzel in 1986, with the application of Epstein-Barr virus (EBV) for the trans-
formation from peripheral B lymphocytes to permanent growing LCLs (Neitzel
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1986). Other antigens have also be used in the establishment process, for in-
stance the Cyclosporine A (Anderson et al. 1984) and the 2-mercaptoethanol
(2-ME, Steel 1972), whereas Neitze’s method has been most widely applied for
the establishment of LCLs. Since the initial development, LCLs have been seen
with a great practical value in clinical research and for human genetics research
because of relatively easy establishment, genetic stability in long passage and
permanent source of re-sampling (Neitzel 1986, Wheeler et al. 2012, Talebizadeh
et al. 2008, Quinn et al. 2013, Choy et al. 2008, Monks et al. 2004, Choy et al. 2008,
Niu et al. 2010).

The 1000 Genome Project collected LCL samples from populations across differ-
ent continents (Europe, Africa, Asia, America) and executed multiple screening
on these samples (i.e. exome-sequencing and RNA-sequencing) (1000 Genomes
Project Consortium et al. 2015, Sudmant et al. 2015). In the 1000 Genome Project,
the subset of population YRI contains LCL samples from 32 independent fe-
males and 26 independent males.

Banovich et al. 2018 generated 58 h-iPSCs from YRI-LCL samples, of which the
methylation level and RNA expression level of both autosomes and the X chro-
mosome were measured, using the 450k methylation array and Illumina HiSeq
2500 respectively. With Banovich et al. 2018 and the 1000 Genome Project, I am
able to reproduce following XCI-related analysis with LCL-iPSCs: the overview
of XCI level, the consistency between XCI metrics mIS and aIS, as well as the
consistency of XCI level between LCL-iPSCs and their progenitor cells (YRI-
LCLs). To keep the consistency with previous analysis, the analysis in this chap-
ter follows the same data preparation pipeline, filtering and computation pro-
cess as in previous analysis.

6.1 The XCI heterogeneity in LCL-iPSCs

Similar as in chapter 2, the � value is used to represent the methylation level
of the X chromosome, with the definition in formula 2.1.As described in sec-
tion 2.1, the � value falls into interval [0, 1). For probes on the X chromosome,
when � = 0, this locus is unmethylated in all molecules; when � = 0.5, hall of
molecules is methylated at this locus.

Similar as h-iPSCs in HipSci (section 2.1, figure 2.2), LCL-iPSCs also display
three patterns of XCI level: the proper XCI where there is no peak at � = 0.5,
the complete XCI loss where there is no peak at � = 0 and the incomplete XCI
loss where there are peaks at both � = 0 and � = 0.5 (figure 6.1 a, b and c). The
distribution of � in 26 male LCL-iPSCs is uniform (figure 6.1 d), which is also
similar as the previous discovery with male h-iPSC lines in HipSCi (figure 2.2
d).
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Figure 6.1: The distribution of � on the X chromosome in female and male LCL-
iPSCs. a, b and c. The three patterns of distributions of � in female LCL-iPSCs,
representing the proper XCI, the complete XCI loss and the incomplete XCI loss
(NA18511, NA18508 and NA18520, respectively). d. An example of the uniform
distribution of � in male LCL-iPSC (NA18486).
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6.2 The strong correlation between mIS and aIS in LCL-
iPSCs

The mIS and aIS are computed for LCL-iPSCs to have an overview of XCI level
in this data set and to investigate the capacity of the expression level to estimate
the XCI status in h-iPSCs. The definition and computation process of these two
XCI metrics are presented in section 2.2 and section 2.3.

The methylation and RNA-sequencing data of 58 LCL-iPSCs in Banovich et
al. 2018 are available on Gene Expression Omnibus (GEO), with series num-
ber GSE89895. The raw methylation data was downloaded from GEO with
sub-series number GSE110544 and raw RNA-sequencing data was downloaded
from SRA with series number SRP126289. The raw RNA-sequencing data of
YRI-LCL samples was downloaded from the 1000 Genome Project, release ver-
sion of May 2013 (1000 Genomes Project Consortium et al. 2015). All down-
loaded data used human reference GRCh37/hg19 (Harrow et al. 2012) for the
alignment and mapping, which is the same with the genome reference in HipSci
(Kilpinen et al. 2017).

6.2.1 Computation of mIS for LCL-iPSCs

In chapter 2, 9,257 probes on the X chromosome were used for the computation
of mIS in h-iPSC lines. By checking the downloaded methylation data, I found
that all these 9,257 probes were included in the methylation array for LCL-iPSCs
so that the exact same probes as the previous analysis (section 2.2) were used for
the computation of mIS for LCL-iPSC lines. The distribution of raw mIS value
for 32 LCL-iPSCs generated from female YRI-LCLs is shown in figure 6.2 (a).

0

1

2

3

2.50 2.75 3.00 3.25 3.50
mIS

N
um

be
r o

f h
−i

PS
C

s

(a)

0

5

10

15

20

25

2.6 3.0 3.4
mIS (raw)

N
um

be
r o

f h
−i

PS
C

s

(b)

Figure 6.2: The same range of mIS in 32 female LCL-iPSCs (a) and in 273 female
h-iPSCs from HipSci (b).

The raw mIS of 32 female LCL-iPSCs falls into the interval of [2.54, 3.67], which is
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similar as the interval of raw mIS in 273 female h-iPSCs from HipSci ([2.38, 3.70],
figure 6.2 b). This similarity shows a consistent XCI level in female h-iPSCs re-
gardless of origins.

In contrary with the correction process for raw mIS values in HipSci (section
2.2 and section 3.1), here, the meta data of 58 YRI-LCLs and the information in
Banovich et al. 2018 show that it is unnecessary to adjust raw mIS values for
LCL-iPSCs.

According to the information on the 1000 Genome Project (1000 Genomes Project
Consortium et al. 2015) and Banovich et al. 2018, LCLs are from 58 independent
donors and each LCL-iPSC line was generated from one single YRI-LCL. Fur-
thermore, these 58 LCL-iPSCs were all cultured in feeder-free (FF) condition.
These information reveal that the two most important confounding factors of
mIS in previous analysis, namely the cell culture media and type of methylation
array, do not confound the methylation data of LCL-iPSCs. Three other techni-
cal factors are recorded for the methylation array of LCL-iPSCs: the accession,
the place where samples were placed (sentrix ID) and the exact place of sample
on the plate (sentrix position). All 32 female LCL-iPSCs were measured with
different accession so that this is not a confounding factor. In total eight sentrix
IDs and eight sentrix positions were used in the methylation array. The Shapiro-
Wilk normality test (J. Royston 1982, J Patrick Royston 1982, P. Royston 1995)
gives a non-significant result for the raw mIS values of 32 LCL-iPSCs (p-value
= 0.63), showing that these two technical factors did not have a confounding ef-
fect on the distribution of mIS in this data set. Therefore, the raw mIS is used for
further analysis of LCL-iPSCs.

6.2.2 Computation of aIS for LCL-iPSCs

The aIS is defined as the average of ratio of bi-allelic expression on heterozygous
positions on the X chromosome, with the computation workflow shown in fig-
ure 2.6. The RNA-sequencing data is available for 25 out of 32 female LCL-iPSCs
and the data download process is described at the beginning of this chapter.

Data processing

The processing pipeline contained four steps, leading from raw fastq files to
VCF files with high quality bases. The pipeline was written in bash scripts and
Rmarkdown files (R, version 3.4.0, R Core Team 2017) and was executed on HPC
clusters of Wellcome Trust Sanger Institute.

The alignment of fastq files

The software bwa, version 1,9.0 was used for the mapping of fastq files. The
human reference genome GRCh37/hg19 (Harrow et al. 2012) was used as the
reference for the mapping. The mapped bam files were then sorted and indexed
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with software samtools, version 1.9.0 (Heng Li, B. Handsaker, et al. 2009).

Generation of bed file

The bed file of each sample, which contained heterozygous positions on the X
chromosome, was generated from the whole genome sequencing data of YRI-
LCLs, downloaded from the 1000 Genome Project website, using function tabix
of samtools (version 1.9.0).

The variant call

The function mpileup of bcftools, version 1.9 (Danecek, Schiffels, et al. 2014), was
called to execute the variant calling process. During this process, flag AD and
DP were added, which stand respectively for the allelic depth and read depth,
which stands for number of high-quality bases. These flags were used in the
following analysis for the computation of aIS and for the filtering of loci.

Filtering of VCF files based on the number of high quality bases (DP)

During the data processing, the bed file containing all heterozygous positions
was generated for each sample. I firstly computed the r value of each posi-
tion, which stands for the ratio of the number of alternative allele over the total
number of alleles detected at a certain locus according to the definition in the
flowchart for the computation of aIS (figure 2.6). The distribution of r values for
heterozygous positions on the X chromosome show a clear enrichment of posi-
tions at r = 1.0 (figure 6.3 a). When plotting the association between the r value
and the number of high quality bases (DP, flag added in VCF file), it is observed
that many enriched positions with r = 1.0 had a DP value smaller than 10 (red
vertical line in figure 6.3 b).

To check whether this enrichment is caused by the small number of high quality
bases, the same data processing was ran on the chromosome 1 for all LCL-iPSCs.
The distribution of r values on the chromosome 1, as well as the association be-
tween r values and the number of high quality bases on all heterozygous posi-
tions are shown in figure 6.4.

Similar as on the X chromosome, the enrichment of r values can be observed at
r = 1.0 for heterozygous positions on chromosome 1. Since the chromosome 1
is the longest chromosome in human and is bi-allelically expressed, the distri-
bution of r values should be close to normal distribution. Therefore, figure 6.4
show the abnormality of the enrichment of positions at r = 0.1. Compared with
figure 6.4, figure 6.5 shows that, for sample NA18489, the removal of positions
which DP < 10 results in a reduction of the enriched positions at r = 1.0, mean-
while, the distribution of r values appears to be closer to normal distribution.

The same filtering process was conducted on the chromosome 1 of 25 female
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Figure 6.3: Enrichment of r = 1.0 on heterozygous positions on the X chromo-
some in LCL-iPSC sample NA18489. a. The histogram of r values on all het-
erozygous positions. b. The association between the r value and the coverage of
RNA-seq on all heterozygous positions, using the number of high quality bases
as the coverage (DP, an added flag in VCF files). The red vertical line refers to
DP = 10.
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Figure 6.4: Enrichment of r = 1.0 on heterozygous positions on the chromosome
1 in LCL-iPSC sample NA18489. a. The histogram of r values on all heterozy-
gous positions. b. The association between the r value and the coverage of
RNA-seq on all heterozygous positions, using the number of high quality bases
as the coverage (DP, an added flag in VCF files). The red vertical line refers to
DP = 10.
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Figure 6.5: Enrichment of r = 1.0 on heterozygous positions on chromosome 1
in LCL-iPSC sample NA18489 after filtering positions of which DP is smaller
than 10. a. The histogram of r values on all heterozygous positions. b. The
association between the r value and the coverage (DP) of RNA-seq on filtered
heterozygous positions.

LCL-iPSCs. The number of heterozygous loci on chromosome 1 was reduced
from 5,350 to 1,467 on average. Meanwhile, the enriched values were signifi-
cantly reduced in the histogram of r values, similar as figure 6.5 (a). I specifi-
cally checked sample NA18912, which contain the largest number of heterozy-
gous loci on the chromosome 1, and found that most of heterozygous loci were
mapped with low number of high quality bases, resulting in an obvious enrich-
ment of r at 1.0, whereas this enrichment was removed by the filtering (figure
6.6).

The same filtering process was applied on the chromosome X for all female LCL-
iPSCs. The filtering process reduces the number of X-related heterozygous po-
sitions from averagely 1,076 to 245. The minimum and maximum number of
X-related heterozygous loci are 425 and 2,083 before filtering, whereas 50 and
485 afterwards. Using LCL-iPSC of NA18489 as an example, the comparison of
X-related r values before and after the filtering process is shown in figure 6.7.

The computation of aIS

The aIS is computed with X-related r values after the filtering process, following
the process shown in figure 2.6. Similar as section 2.3.1, two patterns were used:
the average and the median of filtered heterozygous positions on the X chromo-
some. The aIS values computed by these two patterns show a good association
(figure 6.8 b), which was also observed in h-iPSC lines in HipSci (figure 6.8 d).
As discussed in section 2.3.1, using the median for aIS-computation would ig-
nore the small number of loci with bi-allelic expression when the vast majority
is mono-allelically expressed. To take the activation status of the entire X chro-
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Figure 6.6: The comparison of the distribution of r values on chromosome 1 for
LCL-iPSC sample NA18912 before (a) and after (b) the removal of heterozygous
positions of which DP is smaller than 10.
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Figure 6.7: The comparison of the distribution of r values on the X chromosome
for LCL-iPSC NA18489 before (a) and after (b) the removal of positions of which
DP is smaller than 10.
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Figure 6.8: Summary of aIS in HipSci and in the LCL-iPSC data set. a. The
distribution of aIS in 25 female LCL-iPSCs. b. The association between aIS using
two computation patterns in 25 female LCL-iPSCs. c. The distribution of aIS
in 273 female h-iPSCs in HipSci. d. The association between aIS using two
computation patterns in 273 female h-iPSCs in HipSci.
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mosome into account, the average-computed aIS is used as the XCI metrics. In
the following text, the aIS refers to the average-computed aIS.

The distribution of aIS for 25 female LCL-iPSCs is shown in figure 6.8 (a). As a
comparison, the distribution of aIS in 273 female h-iPSCs from HipSci is shown
in figure 6.8 (c). The majority of h-iPSCs from HipSci has higher aIS values than
LCL-iPSCs: the mean and median for h-iPSCs are 0.84 and 0.85, respectively;
while for LCL-iPSCs are 0.79 and 0.76, respectively. In general, h-iPSCs from
HipSci are closer to mono-allelic expression than LCL-iPSCs.

6.2.3 The strong association between mIS and aIS

For 25 female LCL-iPSCs of which both methylation and RNA-sequencing data
are available, the Pearson correlation between mIS and aIS reaches -0.96, much
higher than the correlation in 205 female h-iPSCs which were randomly selected
by one line per donor in HipSci (Pearson correlation = -0.5), shown in figure 6.9.
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Figure 6.9: The correlation between XCI proxies mIS and aIS. a. In 25 LCL-iPSCs
(Pearson correlation = -0.96). b. In 205 h-iPSCs which were randomly selected
by one line per donor in HipSci (Pearson correlation = -0.5). The sub-figure b
was shown in chapter 2, in figure 2.9 (a).

Different factors might lead to this observation of high correlation between XCI
metrics, for instance, the limited sample size, cell culture time and the source of
LCL-iPSCs.

Only 25 LCL-iPSCs are available with both methylation and expression level
data, thus this high correlation would not be seen as a population-based con-
clusion. According to Banovich et al. 2018 (supplementary information), LCL-
iPSCs were cultured at least three passages before being collected for analysis,
whereas each passage took averagely seven days (Guideline of Handing human
iPSCs by the Cedars-Sinai hospital, USA), making cell culture time starting from
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approximately 21 days. The detailed passage information is available for 11
LCL-iPSCs, where the maximum passage number was 14, the minimum num-
ber was 5 (mean = 6), corresponding to cell culture time from 35 days to 98 days
(mean = 42 days). Compared to lines in HipSci where cell culture time varied
from 24 days to 240 days (mean = 77 days; median = 72 days), cell culture time
is shorter for most LCL-iPSCs. As presented in chapter 3, the expression of XIST
drops sharply at day 50 while XCI level does not follow (figure 3.8). With a lack
of culture time for all 25 LCL-iPSCs, it is not able to confirm the time-effect on
the high consistency between two XCI metrics for LCL-iPSCs.

At last, different cells were used as the origins for the generation of human iPSC
lines in these two data sets: fibroblasts in HipSci (Kilpinen et al. 2017) and EBV-
transformed LCLs in Banovich et al. 2018. Even though fibroblasts have been
widely used as starting cell of h-iPSCs in previous studies, the genetic similar-
ity between fibroblasts and derived h-iPSCs is still unclear (Pomp et al. 2011,
Tchieu et al. 2010, Anguera et al. 2012). Furthermore, the study by Rajesh et al.
2011 used two EBV transformed LCLs and derived two clonal iPSCs from each
LCL sample, where the EBV antigen was detected in LCLs but not LCL-iPSCs,
revealing that LCL-iPSCs contain genetic variations from their progenitor cells.

6.3 The random pattern of XCI alteration in the genera-
tion of LCL-iPSCs from LCLs

Chapter 5 presented that XCI level can be stably inherited by iPSC-derived cells
(figure 5.2). Here, I investigate whether h-iPSCs could inherit XCI level from the
starting cells: the correlation between XCI level of LCL-iPSCs and of YRI-LCLs.
In this association analysis, aIS is used as XCI metrics.

The RNA-sequencing data of YRI-LCLs, including both autosomes and chro-
mosome X, were downloaded from the 1000 Genome Project (1000 Genomes
Project Consortium et al. 2015), version 201305 and were mapped to human ref-
erence hg19/GRCh37 (Harrow et al. 2012). The same pipeline was used for the
alignment and the variant calling process for YRI-LCLs, where the enrichment
of heterozygous positions can be observed again at r = 1.0 in the chromosome 1
and the chromosome X in female LCLs before filtering (figure 6.10, a and c). The
filtering process with removing heterozygous positions of which DP < 10 helps
the distribution of r value closer to normal distribution in chromosome 1 (figure
6.10 d) and removes most of the enriched r values at 1.0 for the X chromosome
(figure 6.10 b).

For 25 female YRI-LCLs, the distribution of average-computed aIS is shown in
figure 6.11 (a) and the association between aIS computed by two patterns is
shown in figure 6.11 (b). For YRI-LCLs with relatively high average-computed
aIS (aIS > 0.85), the median-computed aIS do not concentrate at value 1.0, but
close to the average-computed value (figure 6.11 b).
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Figure 6.10: The Comparison of distribution of r values before (left) and after
(right) filtering process with the removal heterozygous positions of which DP is
smaller than 10 in chromosome X (up) and in chromosome 1 (bottom) for sample
NA18489.

This observation leads to an assumption of different XCI pattern in LCLs and in
LCL-iPSCs: it is less common in LCLs than in LCL-iPSCs to have a few bi-allelic
expression when the majority of X chromosome is mono-allelically expressed,
thus the XCI is more complete in YRI-LCLs (starting cells) than in LCL-iPSCs.

Besides the different distribution of aIS in LCLs and LCL-iPSCs, there is poor
association between aIS of these two types of cells (Pearson correlation = 0.24,
figure 6.12). Figure 6.12 can be interpreted in two parts. Firstly, points which
locate in the top-middle of the figure show that LCL-iPSCs either inherit the
XCI level from the YRI-LCLs or contain a XCI loss. This XCI variability was
observed in h-iPSCs in HipSci (chapter 2) and both patterns were reported by
previous studies (Mekhoubad et al. 2012, Anguera et al. 2012, Pomp et al. 2011,
Marchetto et al. 2010). Secondly, points which locate on the bottom-middle of
the figure display a slight higher level of XCI compared to their starting cells,
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Figure 6.11: Summary of aIS in 25 female YRI-LCLs. a. The distribution of aIS.
b. The association between average-computed and median-computed aIS.
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meaning that they regain the XCI during the programming of LCL-iPSCs.

To further explore the alteration of aIS in the generation of LCL-iPSCs, I se-
lected two samples (NA18508 and NA19209) and studied their aIS-distribution
on all filtered heterozygous positions on the X chromosome in both YRI-LCLs
and LCL-iPSCs. Figure 6.13 shows that sample NA18508 has vast mono-allelic
expression level of the X chromosome in YRI-LCLs while almost bi-allelic ex-
pression level in LCL-iPSCs, meaning that the XCI level of this sample altered
from almost-appropriate to complete loss during the generation of h-iPSC lines.
However, the alteration pattern of XCI in sample NA19209 is in reverse: it dis-
plays almost complete XCI loss in YRI-LCLs (aIS close to 0.5) but regain high
proportion of XCI (aIS close to 0.8) in LCL-iPSCs.

This observation points out that during the generation of h-iPSCs from LCLs,
the regulation of XCI happens in a random manner: h-iPSCs have the possi-
bility to regain proper XCI or to lose XCI at a various level. This observation
also supplements the discovery in Rajesh et al. 2011 (briefly discussed in section
6.2.3) that unlike EBV transformed LCLs, the LCL-iPSCs did not contain EBV
antigens, showing that the generation of h-iPSCs from LCLs was accompanied
by the genetic variation at the X chromosome and at the expression level.

Lacking the RNA-sequencing data of fibroblasts in HipSci, it is impossible to
investigate the regulation of XCI during the generation of h-iPSCs from fibrob-
lasts. Further validation researches with large number of h-iPSCs derived from
fibroblasts and/or from LCLs will be very meaningful for the understanding of
XCI regulation during the reprogramming of h-iPSCs and I am looking forward
to seeing more biological studies to investigate the potential XCI loss with large
scale h-iPSC data set.

6.4 An inspiration: the XCI heterogeneity is more likely
to be caused by the loss of XCI, instead of by the reac-
tivation of the entire X chromosome

To summarize, in this chapter I demonstrate the existence of XCI heterogeneity
with h-iPSCs from different progenitor cells and populations and present that
methylation level and expression level are good representations of XCI for h-
iPSCs. In addition, there are innovative discoveries regarding the pattern of XCI
in h-iPSCs.

It has been well studied and clear that during the generation of iPSCs from mice
(below m-iPSCs), the inactive X chromosome get reactivated thus m-iPSCs con-
tain two active X chromosomes (Okamoto et al. 2004, Heard et al. 1997, G. Fan
et al. 2011). However, about the regulation of XCI during the generation of h-
iPSCs, there is not yet an conclusion: some scientists think that there is also a
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Figure 6.13: The alteration of aIS in the generation of LCL-iPSCs from YRI-LCLs
in sample NA18508 and sample NA19209. a and b. NA18508 has vast mono-
allelic expression in YRI-LCLs (starting cells of h-iPSC generation) and has ap-
proximate bi-allelic expression in LCL-iPSCs, showing a loss of XCI level. c and
d. NA19209 has bi-allelic expression in YRI-LCLs but close to mono-allelic ex-
pression in LCL-iPSCs, meaning that XCI is re-established during the generation
of LCL-iPSCs.
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reactivation of the X chromosome (Barakat et al. 2015, Vacca et al. 2016, Kim,
Hysolli, and Park 2011, Tomoda et al. 2012), while others assume that there is
a loss of XCI, which might result from the culture (Kim, Hysolli, Tanaka, et al.
2014, Mekhoubad et al. 2012, Anguera et al. 2012, Pomp et al. 2011).

With summary of results in this chapter and in chapter 2, here are my assump-
tions about the XCI regulation in the reprogramming of h-iPSCs: a) h-iPSCs
inherit the XCI level from the donor; b) the variation of XCI in h-iPSCs results
from the loss of XCI but not from the reactivation of the entire X chromosome.

The assumption a) was inspired by chapter 3 where the donor effect was iden-
tified to have an important effect in XCI variation and by chapter 4, where one
variant region on chromosome 1 (section 4.2) and the rs3790598-MOV10 path
were found promising as XCI determinants.

Figure 6.14: The aIS in two data sets included in this thesis reveals the pattern of
XCI regulation in the programming of h-iPSCs. a and b. For 273 female h-iPSCs
in HipSci and for 25 female LCL-iPSCs, a ’tail’ is observed in the scatter plot of
aIS computed by two patterns. c. For 25 YRI-LCLs, which are starting cells of
LCL-iPSCs, there is no ’tail’ in the scatter plot of computed aIS values.

Here, I explain my assumption b) with figure 6.14. For 273 female h-iPSC lines
in HipSci (Kilpinen et al. 2017) and 25 female LCL-iPSCs generated by Banovich
et al. 2018, a ’tail’ can be observed in the scatter plot of aIS values computed by
the average or the median of r values (definition in section 2.3, shown with fig-
ure 2.6). This ’tail’ shows h-iPSC lines of which the median-computed aIS is 1.0
while the average-computed aIS is in the range of [0.8, 1.0] (for h-iPSCs, figure
6.14 a) or of [0.9, 1.0] (for LCL-iPSCs, figure 6.14 b). This difference of aIS values
computed by the two patterns reveals the situation of the X chromosome: the
vast majority is mono-allelic expressed while a small part is bi-allelic expressed.
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In other words, h-iPSC lines which are the ’tail’ display a slight loss of XCI while
they are close to the proper XCI status.

Two other conclusions might be drawn with figure 6.14. Firstly, when compar-
ing the scatter plot of aIS values in LCL-iPSCs and YRI-LCLs (figure 6.14 b and
c), the ’tail’ does not exist in YRI-LCLs which are starting-cells of LCL-iPSCs,
meaning that the slight XCI loss is probably gained during the programming
or culture of lines. Secondly, the ’tail’ only exists at the mono-allelic end of the
scatter plot (close to 1.0 on the x-axis of figure 6.14). In the situation that the
reactivation of the X chromosome happens during the programming of h-iPSCs
and follows by the inactivation process, it would be possible to observe another
’tail’ at the bi-allelic end of the scatter plot (close to 0.5 on the x-axis of figure
6.14), at least in the data set of HipSci with 273 female lines.

Among the 25 LCL-iPSCs studied in this chapter, 4 lines show a capacity to
regain the XCI from their progenitor cells (figure 6.4 c, middle-bottom points).
Because of the limited sample size, it is hard to tell whether this is a single-line
variability or whether this is a recovery of XCI in LCL-iPSCs. Due to the lack
of aIS values for fibroblasts, this thesis is not able to investigate whether this
potential pattern of XCI recovery also takes place in HipSci. I expect to see more
studies with XCI level in both starting cells and h-iPSCs, which will be helpful
to clarify the XCI regulation during the generation of h-iPSCs.



Discussion: XCI heterogeneity -
the knowns and unknowns

There has been a long time argue about the XCI level in h-iPSCs: some studies
assume a reactivation of the X chromosome (Barakat et al. 2015, Kim, Hysolli,
Tanaka, et al. 2014), while others assume a loss of XCI during the generation of
h-iPSCs (Mekhoubad et al. 2012, Anguera et al. 2012, Tchieu et al. 2010, Brenes
et al. 2020, Nazor et al. 2012).

The motivation for this thesis was to investigate XCI with the large-scale female
h-iPSCs from HipSci (Kilpinen et al. 2017). In previous chapters, I presented
the XCI heterogeneity in 273 female h-iPSCs from 205 donors and investigated
major concerns regarding this heterogeneity: how similar are sibling-lines com-
pared with h-iPSCs from different donors; how do single cells display XCI sta-
tus; which factors might be sources of this variability and what are the conse-
quences. Specifically, I presented the donor effect in the XCI level of h-iPSCs,
with which I assumed that the XCI level is mainly inherited from the donor and
is slightly lost in the programming and culture of h-iPSCs.

The major advantages of this thesis compared to previous studies

The first and biggest advantage of this thesis is the large number of enrolled
donors - in total 205 female donors, including 170 healthy donors and 35 pa-
tients (21 donors had Bardet-Biedl syndrome and 14 donors had neonatal dia-
betes). Compared with previous studies which included fewer than 15 donors
or fibroblasts on average (Kim, Hysolli, Tanaka, et al. 2014, Trokovic et al. 2015,
Pomp et al. 2011, Anguera et al. 2012), the population-level data set helps to
improve our understanding of XCI in h-iPSCs. The second advantage is the
massive number of h-iPSC lines in the analysis. With 273 female h-iPSCs and
219 male h-iPSCs, this thesis avoids the potential bias introduced by small sam-
ple size (in general smaller than 50 h-iPSC lines in Mekhoubad et al. 2012, Tchieu
et al. 2010, Pomp et al. 2011, Anguera et al. 2012). Thirdly, HipSci is one of the
largest data bank of h-iPSCs generated by a single institute in the world. Since
different experimental settings bring noise and bias in h-iPSCs (Newman et al.
2010, Volpato et al. 2018, Rao et al. 2012), this uniform data source guarantees a
well controlled input for research.
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XCI heterogeneity in h-iPSCs

XCI heterogeneity is clearly shown with 273 female h-iPSCs: the vast major-
ity of h-iPSC lines displays a varying degree of XCI level while 4 lines (1%) have
complete XCI loss. This XCI heterogeneity is also observed in 32 h-iPSCs gener-
ated from LCLs (Banovich et al. 2018), originating from an African population
(YRI) in the 1000 Genome Project (1000 Genomes Project Consortium et al. 2015),
which is different from HipSci lines in both population of donors and types of
progenitor cells. These results demonstrate that XCI heterogeneity exists in gen-
eral in h-iPSCs, regardless of origin.

New discoveries regarding XCI in h-iPSCs

The expression level of h-iPSCs can be used as XCI metric, which has good as-
sociation with the methylation-based XCI metric. This result can facilitate the
estimation of XCI level in female h-iPSCs in laboratories without setting up a
methylation array, since the expression level is commonly used in the pluripo-
tency assay (Müller et al. 2011).

The sharp drop of XIST expression in cell culture (approximately day 50) is a
very interesting observation in this thesis. This ’on/off’ mode of XIST reveals a
potential time-related mechanism in the expression of XIST and also shows that
XIST is not a perfect marker of XCI status, especially for h-iPSCs in long cell
culture.

The usage of different cell culture media results in stratification of XCI level
and of pluripotency score of h-iPSC lines (Kilpinen et al. 2017). Therefore, for
scientists who would like to reproduce a study or to compare their own studies
with an existing result, I recommend maintaining the same cell culture medium
for the generation of h-iPSCs.

The XCI variation of h-iPSCs is inherited by iPSC-derived macrophages (Alasoo
et al. 2018, n = 43, Pearson correlation = 0.61, p-value = 1.3⇥ 10

-5), revealing
that when using iPSC-derived cells for disease modeling or for drug develop-
ment, the XCI level should be taken into account to avoid potential bias in gene
expression.

Functional consequences of XCI loss

XCI variation is associated with genome wide expression alteration in h-iPSCs,
with 15% of affected genes on the X chromosome and 85% on autosomes. Simi-
lar to Bar et al. 2019 (using h-ES cells) and to Brenes et al. 2020 (using h-iPSCs),
XCI loss is accompanied by an up-regulation of X-linked genes. The XCI loss
has a random effect on expression of autosomes: the fraction of up- and down-
regulation is almost the same with XCI loss in h-iPSCs (47% up-regulation).



109

Different to studies which reported XCI loss with culture time (Mekhoubad et
al. 2012, Anguera et al. 2012, Nazor et al. 2012), I showed that the overall XCI
level in h-iPSCs is not associated with culture time in the long term (min = 24
days, max = 240 days, mean = 78 days).

One more step towards the clinical application of h-iPSCs

The h-iPSC lines have been seen as a very promising tool for disease mod-
elling, cell therapy and drug development (Galupa et al. 2018, Liang et al. 2013,
Imaizumi et al. 2012, Y. Li et al. 2018, S. P. Paşca et al. 2011, Y.-T. Lin et al. 2018).
With enormous amount of research, it is not only important to know the biolog-
ical process or mechanism of XCI in h-iPSCs, but also to know consequences of
XCI heterogeneity in the application of h-iPSCs in clinics.

By the end of my PhD, I ask myself this question: what are contributions of
my thesis for the practical use of h-iPSCs?

Firstly, I would like to highlight that, for scientist who use h-iPSCs and/or iPSC-
derived cells for disease modelling, especially X-linked diseases (i.e. Rett syn-
drome) and immuno-therapies (i.e. autoimmune throid disease), it is essential
to include XCI level as a covariate in the research because it directly results in
gene expression alteration and might have immune-related consequences. Sec-
ondly, in clinical research, it is common that multiple h-iPSCs are generated
from the same donor due to a limited number of patients (Avner et al. 2001, Na-
zor et al. 2012, Mekhoubad et al. 2012, Anguera et al. 2012, Pomp et al. 2011).
This thesis demonstrates the similarity of XCI level in h-iPSCs generated from
the same donor. Nevertheless, I suggest that scientist should be very careful in
this situation and check the XCI level of all h-iPSC lines before including them
in the clinical research. Thirdly, for scientists and laboratories who have the ex-
pression level but not the methylation level of their h-iPSCs, a fast estimation of
XCI level can be achieved by the computation of expression-based XCI metrics,
namely aIS and rIS. I recommend to not use XIST expression as the marker for
XCI, since this thesis shows the gap between these two factors and presents a
sharp drop of XIST expression in cell culture.

What are remaining questions?

First of all, what is the XCI status at the single cell level? Even though I pre-
sented that 84 single cells of joxm_1 have largely the same XCI level, a larger
single-cell data set is essential to investigate this question. Secondly, can h-
iPSCs regain the XCI when progenitor cells display XCI loss? In the data set
of Banovich et al. 2018, 4 out of 25 h-iPSCs showed higher X-inactivation level
than their progenitor cells (LCLs). This observation and the pattern of XCI reg-
ulation in h-iPSCs need to be studied with a larger sample size. Thirdly, what
is the reason that XIST drops sharply during cell culture and what leads to the
variable X-methylation level when XIST is not expressing? Considering the gap
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between XIST expression and XCI level, is there a different regulation pattern
of XCI besides XIST in h-iPSCs? Fourthly, what are consequences of XCI varia-
tion in the application of h-iPSCs in disease modelling (i.e. Rett syndrome) and
are there XCI-related side-effects due to variable methylation and/or expression
level on the X chromosome?

There is never an end of scientific exploration, I hope my work and my the-
sis can give inspirations to other scientists in the relevant field and I am excited
to follow further studies about the XCI in h-iPSCs, as well as to see more appli-
cations of h-iPSCs in biological and clinical research.
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Figure B.1: Variance component analysis (VCA) using aIS as XCI metric, with-
out CNA segments (included factors: cell culture time, age and health condition
of donor, XIST expression level, trisomy situation of X chromosome). a. First
model is fit for all 273 female h-iPSC lines, including donor as random effect fac-
tor. The first model identifies XIST expression (> 25%) and donor (25%) as most
important factors for XCI heterogeneity. b. Second model is fit for 205 female
h-iPSCs randomly selected from the initial data set by one line per donor. This
model identifies XIST expression as the only important factor which explains
slightly more than 20% of variance in XCI level.
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Figure B.2: The distribution of the median � value for probes targeting XCI
escapees (red, 235 probes) or non-escapees (blue, 4050 probes) on the X chromo-
some of 273 female h-iPSCs. Genes which escaped XCI in all tissues in Tukiainen
et al. 2017 are used as XCI escapees in this figure (n = 99). Among 235 probes
targeting XCI escapee genes, 49% of probes display relatively high methylation
level (� > 0.25) while 51% of probes display low methylation level (� 6 0.25),
indicating that in h-iPSCs, XCI might also happens on genes where were identi-
fied as escapees in other human tissues.
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Figure B.3: Using PCA to investigate the population structure for 166 female
h-iPSCs with pruned and filtered genetic variants: two groups are observed,
whereas one group contains the vast majority of h-iPSCs (163 out of 166 h-
iPSCs).
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