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A B S T R A C T

Non-linear structures provide an important test of the cosmological standard model. In
this thesis, we investigate both analytic approaches to describing statistical properties of
cosmic non-linear structures and a comparison of observational with simulated data.

In the first part, we focus on analytic derivations in the framework of kinetic field
theory (KFT), a novel theory to cosmic structure formation based on statistical field theory
of classical particles. We investigate ways to derive the probability density function (PDF)
of the cosmic density field within this framework. For this purpose, we introduce different
models and explore approaches to derive the density PDF from the generating functional
of KFT directly.

We then use parts of these results in order to obtain an analytic derivation of the
halo mass function. Unlike the standard approach, we derive the halo mass function
from the present day non-linear density field directly. We use two models of the density
PDF for this purpose, the lognormal and the generalised normal distribution, and fix
their parameters by the predictions of KFT. We then derive the halo mass function using
excursion set theory with correlated random walks. We obtain a closed form expression
for the halo mass function, with only one free parameter, i.e. the halo overdensity ∆. For
a choice of ∆ = 2.9, our results agree well with those of simulations.

In the last part, we investigate a concrete example of non-linear structure, i.e. the
substructure distribution in the massive galaxy cluster Abell 2744. We compare it to that
of haloes of the Millennium XXL simulation in order to test its compatibility with the
cosmological standard model ΛCDM. We identify structures in both the mass map of
Abell 2744 and comparable mass maps of the MXXL haloes by a method based on the
wavelet transform. This allows us to find three haloes in the MXXL simulation with a
substructure distribution similar to Abell 2744 thus corroborating its concordance with
ΛCDM. We add a thorough discussion of our results and put them into context with the
findings of other recent works.

v



Z U S A M M E N FA S S U N G

Nichtlineare Strukturen stellen einen wichtigen Test des kosmologischen Standardmo-
dells dar. Aus diesem Grund untersuchen wir in dieser Dissertation sowohl analytische
Ansätze, um statistische Eigenschaften kosmischer nichtlinearer Strukturen zu beschrei-
ben, als auch einen Vergleich zwischen Beobachtungs- und Simulationsdaten.

Im ersten Teil der Arbeit stehen analytische Berechnungen im Vordergrund, welche
im Rahmen der kinetischen Feldtheorie (KFT), einer neuen Theorie basierend auf der
statistischen Feldtheorie klassischer Teilchen, hergeleitet werden. Wir untersuchen Wege,
um die Wahrscheinlichkeitsverteilung (PDF) des kosmischen Dichtefeldes innerhalb
dieser Theorie zu berechnen. Dazu führen wir verschiedene Modelle ein und ergrün-
den Möglichkeiten, um die PDF direkt aus den Erzeugendenfunktional der KFT zu
bestimmen.

Wir nutzen anschließend Teile dieser Ergebnisse, um eine analytische Herleitung der
Halo-Massenfunktion zu erhalten. Im Gegensatz zur Standardvorgehensweise versuchen
wir, die Halo-Massenfunktion direkt mithilfe des heutigen nichtlinearen Dichtefeldes
herzuleiten. Zu diesem Zweck benutzen wir die Log-Normal- und die generalisierte
Normalverteilung in Kombination mit KFT aus dem ersten Teil der Arbeit. Wir leiten
anschließend die Halo-Massenfunktion mithilfe von Exkursionsmengen-Theorie mit
korrelierten Zufallsschritten her. Dies resultiert in einer geschlossenen Form für die Halo-
Massenfunktion, die nur von einem freien Parameter abhängt, der Halo-Überdichte ∆.
Für eine Wahl von ∆ = 2.9 erhalten wir eine gute Übereinstimmung unserer Halo-
Massenfunktion mit Ergebnissen aus Simulationen.

Im letzten Teil untersuchen wir ein konkretes Beispiel der nichtlinearen Struktur, die
Substrukturverteilung des massereichen Galaxienhaufens Abell 2744. Wir vergleichen
diese mit Halos gleicher Masse aus der MXXL-Simulation, um die Übereinstimmung mit
dem kosmologischen Standardmodell ΛCDM zu testen. Wir identifizieren Substrukturen
sowohl in der Massekarte von Abell 2744 als auch in vergleichbaren Karten der MXXL-
Halos mithilfe einer Methode, die auf der Wavelet-Transformation basiert. Dadurch
können drei Halos in der MXXL-Simulation gefunden werden, welche eine ähnliche
Substrukturverteilung zu der in Abell 2744 aufweisen. Auf dieser Grundlage kann daher
kein Konflikt zu ΛCDM behauptet werden. Daran anschließend folgt eine detaillierte
Diskussion unserer Ergebnisse und deren Zusammenhangs mit den Resultaten anderer
kürzlich veröffentlichter Arbeiten.
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1
I N T R O D U C T I O N

The Universe contains a large variety of different structures. There are stellar systems
with planets orbiting their stars, galaxies typically of spiral or elliptical shape and finally
clusters of galaxies that are enormous gravitationally bound structures, which can reach
masses of several 1015 M�. In a more general sense these structures can be seen as
patterns of overdense and underdense regions in space. It is one of the key aims of
cosmology to find out where these patterns come from, what their statistical properties
are and how they evolve over time. Central to cosmic structure formation is the idea that
the Universe was in an almost homogeneous state at very early times (e.g. at the release
of the cosmic microwave background (CMB) at redshift z ≈ 1100). The cosmic microwave
background shows, however, that there have been very small density fluctuations at
that time already. It is currently assumed that these are rooted in quantum fluctuations,
which is a prediction by the theory of inflation. The evolution of these small over- and
underdensities is governed by the action of gravity. This leads to overdensities attracting
more matter and therefore becoming even denser, whereas underdensities become less
and less dense. This process leads to the formation of dense “pancake-like” walls, which
further collapse to form filaments and finally haloes. These haloes are finally assumed to
be sites in which galaxies and galaxy clusters form and reside today.

The theoretical description of structure formation is located within the framework of the
cosmological standard model ΛCDM. This by now well established theory (see Chapter 2

for an introduction) assumes that gravity is the main driver for cosmic evolution, that
80 per cent of the matter is made up by cold dark matter (CDM), which is of unknown
composition so far, and that the accelerated expansion of the Universe is caused by the
cosmological constant Λ. It was realised by Peebles (1965) that cosmic structures grow
in a hierarchical fashion, i.e. overdense regions on small scales collapse first, whereas
larger objects form later. Moreover, Peebles and Yu (1970) proposed that the origins of
today’s rich cosmic structure left an imprint in the CMB in form of small temperature
fluctuations. However, it was realised later in Peebles (1982) that the matter content of
the Universe must be dominated by dark matter in order to explain the amplitude of the
CMB temperature fluctuations to be two orders of magnitude lower than first expected.

Since gravity is a highly non-linear theory, the analytical description of the process
of structure formation is very difficult. A first approach in early years was therefore
to linearise the equations, which should be valid in the case of very small density
fluctuations (see e.g. Lifshitz, 1946; Bonnor, 1957). Due to the hierarchical nature of
structure formation, the validity of this description depends on both the considered length
scale and the considered time. At the present time, the linear description should be valid

1



2 introduction

on length scales of & 20 Mpc. However, the majority of cosmic structures as for example
filaments or haloes can only be described by the full non-linear equations. Substantial
progress in describing the mildly non-linear regime has been made by Zel’dovich (1970),
who provided an approximate description in terms of the initial deformation tensor.
It resulted in the notion that structures first collapse to form “pancake-like” walls as
mentioned above, before they collapse further to form filaments and then haloes. At
a similar time, Gunn and Gott (1972) introduced their model of spherical collapse,
describing the evolution of a spherical halo in an expanding space. Finally, Press and
Schechter (1974) presented the first analytic derivation of the halo mass function, i.e. the
comoving number density of haloes of a given mass, combining the ideas of spherical
collapse with a linear extrapolation.

In the last three decades, cosmic structure formation has been described increasingly
by the help of simulations. These solve the non-linear equations numerically and allow
simulating the formation of cosmic structures for a given cosmological model. The
constant improvement of computational power allowed to simulate larger and larger
simulation volumes with increasing resolution as well as to include baryonic effects.
Milestones were for example the Millennium simulation (Springel et al., 2005), which
simulates the dark matter distribution in a box with a side length of 739 Mpc, or the
Illustris simulation (Vogelsberger et al., 2014), which also includes baryonic effects like
radiative cooling, stellar feedback, etc. in a box with side length of 111 Mpc.1

Non-linear cosmic structures are of interest for several reasons. On the one hand, they
are simple in the sense that they can be classified into only a few categories (haloes,
filaments, etc.) and that baryonic effects can usually be neglected. On the other hand,
their non-linear formation is complicated enough to provide an important test for the
cosmological standard model. Furthermore, they can be observed in large numbers
such that their statistical properties can be measured to a precision that allows the
determination of cosmological parameters. This has become in particular true in recent
years with several ongoing large galaxy surveys that provide an enormous amount of
observational data. The amount of data will even increase in the years to come with
planned survey programmes that will measure the cosmic large-scale structure with an
unprecedented precision. Current programmes are for example the Dark Energy Survey
(DES, Abbott et al., 2018) and the Kilo Degree Survey (KiDS, de Jong, J. T. A. et al.,
2017), which are mapping large fractions of the sky. In the future, these data will be
complemented by the even more detailed observations of the Euclid satellite (Laureijs
et al., 2011), the Legacy Survey of Space and Time (LSST, Ivezić et al., 2019) at the Vera
C. Rubin Observatory in the optical wavebands and by SKA (Maartens et al., 2015) in
the radio wavebands. These will provide an enormous amount of data, which will allow
determining statistical quantities of the non-linear large-scale structure and cosmological

1 The box lengths are typically given in units of h−1Mpc, where the dimensionless Hubble parameter h
(defined in Eq. 2.8) has been factored out. We absorbed here h into the units by using h = 0.6766 (Planck
Collaboration, 2020a).
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parameters with per cent precision or better. For this reason, it is important to advance
as well the theoretical understanding of structure formation.

In this thesis, we investigate several aspects of non-linear structures using both analytic
approaches and a comparison of observations with the predictions of a cosmological
simulation. The analytic calculations are mainly based on kinetic field theory (KFT),
which is a recently introduced theory to describe cosmic structure formation using
statistical field theory for an ensemble of classical point particles (see Bartelmann et al.,
2019, for a review). There are several reasons for why it is worthwhile trying to advance
the analytical description of cosmic structure formation. While cosmic simulations seem
to provide easy to interpret results at first sight, they can be affected by numerical errors
and systematic biases, which can alter the results substantially without being noticed.
This is connected to the limits to the information gain through simulations. Usually,
simulations are used in the form that one inserts a number of parameters and then
“runs the machine”, without reaching the fundamental processes happening inside the
machine. Analytic descriptions instead help to better understand these fundamental
laws governing the formation of structures in the Universe. Moreover, high-resolution
cosmic N-body simulations take a long time and require large computational power
and storage capacities. In contrast, an analytic description for some of the quantities of
interest, e.g. higher order spectra or the halo mass function, allows a computation in a
small fraction of the time a simulation takes. Once an analytical description is found, it
can furthermore be adapted easily to changes of the model such as the modification of
the laws of gravity. In the case of a simulation this would require a completely new run
of the simulation. Therefore, precise parameter studies on the basis of simulations turn
out to be very challenging. For these reasons, we will explore ways to obtain analytic
derivations for two statistical quantities of non-linear cosmic structures: (i) the probability
density function (PDF) of the cosmic matter density field and (ii) the halo mass function.
We will base our calculations on the KFT framework already developed.

N-body simulations, however, allow for solutions of the non-linear equations in
regimes, which are not accessible or only difficult to access by analytical calculations. As
a concrete example for the structure in the highly non-linear regime, we will consider
the substructure of a massive galaxy cluster Abell 2744. Since the cosmological standard
model needs to make valid predictions also in this regime, we will take the substructure
distribution of Abell 2744 as a test for ΛCDM. To this end, we use the data of the N-body
simulation Millennium XXL (Angulo et al., 2012) as the prediction of ΛCDM. We will
put special emphasis on treating observational and simulated data alike.

This thesis is structured as follows. We will start with an introduction to cosmology
in Chapter 2, where we introduce the most important concepts relevant for our further
derivations. We continue with an overview of KFT in Chapter 3. Here, we will make the
reader familiar with its central object, i.e. the generating functional, and a reformulation
in terms of macroscopic fields the so called resummed kinetic field theory (RKFT). The
first main part of this thesis concerns the density PDF in Chapter 4. We will introduce
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models that are currently used in the literature and use the predictions of KFT to fix the
parameters of two of these models, i.e. the lognormal model and the generalised normal
model. We will furthermore try to derive the PDF from the generating functional directly.
We then focus on the halo mass function in the second main part of the thesis. We review
the current approaches to deriving the halo mass function in Chapter 5 and add a critical
discussion of some conceptual shortcomings. We then present an alternative based on
the present day non-linear density field including excursion set theory with correlated
random walks in Chapter 6. Subsequently, we turn towards a more explicit investigation
of non-linear structure in the last part of this thesis. We use observational data of Abell
2744 in order to compare its substructure to the predictions of ΛCDM in Chapter 7.
To this end, we introduce an algorithm based on the wavelet transform which is then
applied to the observational and simulated data. Finally, we conclude with a summary
of our results in Chapter 8.
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-P., Limousin, M., Medezinski, E., Natarajan, P., Nonino, M., Robertson, A., Tam, S.
I., Umetsu, K. (2017): Growing a ‘cosmic beast’: observations and simulations of MACS
J0717.5+3745. MNRAS, 481 3, 2901

• Schwinn, J., Baugh, C. M., Jauzac, M., Bartelmann, M., Eckert, D. (2018): Uncovering
substructure with wavelets: proof of concept using Abell 2744 . MNRAS, 481 4, 4300



2
C O S M O L O G Y

The field of cosmology seeks to describe the evolution of the Universe as a whole. It
therefore tries to find a consistent description from the earliest times – potentially the
Universe’s origin, if it has one – until today. It is especially concerned with the creation
of structures in the Universe and their evolution over time. In this chapter, we will give
a brief overview over the most important cosmological concepts and quantities. Since
modern cosmology is a rather wide field, we will focus on only those concepts that
will be important later in this thesis. We will start in Section 2.1 with a summary of the
evolution of the Universe smoothed over large scales, where it can be assumed to be
homogeneous. This will lead us to the introduction of the cosmological standard model
in Section 2.2. We continue with the description of the evolution of small structures on
top of the homogeneous background field in Section 2.3. Finally, we conclude with the
introduction of the power spectrum in Section 2.4.

2.1 the homogeneous universe

The theoretical base of cosmology lies in the description of the evolution of the Universe
through the effects of gravity. All other forces can be neglected on cosmological scales.
The weak and strong force are extremely short ranged (weak force < 1 fm, strong force
∼ 1 fm). They therefore only play a role in the earliest times of the Universe and have
no effect on the later evolution. Electromagnetic forces play an important role for galaxy
formation and the intergalactic medium. However, the range of electric forces is limited
by Debye-shielding of the free charges in the cosmic plasma to scales . 1 m. The effect
of magnetic fields in cosmology is still not completely understood. There seem to exist
magnetic fields on cosmological length scales, i.e. several Mpc. However, they usually
reach field strengths of only . 1 µG (Han, 2017). They therefore do not contain enough
energy to play a role in the evolution of the Universe.

The current theory of gravity is general relativity. It describes gravity via a geometric
theory based on the idea that space and time are two parts of one and the same
mathematical object – a four dimensional manifold called spacetime. While the mass
of objects – or more generally energy and momentum – causes the spacetime to be
curved, it is exactly this curvature of spacetime that governs the trajectories of matter

5
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and energy. It therefore causes the effect, which we call the gravitational acceleration.
The interplay between energy and curvature is described by the field equations1

Gµν + Λgµν =
8πG

c4 Tµν , (2.1)

where gµν is the metric tensor describing the spacetime manifold, Gµν the Einstein tensor,
which contains second derivatives of the metric tensor and hence describes its curvature
of spacetime, Λ is the cosmological constant, G Newton’s gravitational constant, c the
speed of light in vacuum and finally Tµν is the energy-momentum tensor describing the
distribution of matter and energy. Since the introduction of the field equations in Einstein
(1915), they have been confirmed impressively well by a large number of experiments
over the last century (e.g. Dyson et al., 1920; Lemaître, 1931; Pound and Rebka, 1959;
Shapiro, 1964; LIGO-Collaboration et al., 2016). The equations are non-linear, coupled
partial differential equations and therefore they cannot be solved for general systems.
It is, however, possible to find solutions for special cases where the equations can be
simplified due to the symmetries of the system.

In the case of cosmology, one is first of all interested in the evolution of the Universe
as a whole. For this reason, considering only very large scales (we will discuss in the
paragraph below, what very large means in this context), two assumptions can be made
in order to simplify the field equations for a freely falling observer considerably:

1. The Universe is isotropic.

2. No point in the Universe is preferred to any other (Copernican principle).

The combination of both assumptions implies that the Universe must be spatially homo-
geneous on large scales, since it must be isotropic around each point in space. These two
symmetry assumptions are often referred to as the cosmological principle.

The assumption of isotropy is well supported by observations of the cosmic microwave
background (CMB, see e.g. Bennett et al., 1994; Planck Collaboration, 2020b). These
show that after foreground cleaning and correcting for the motion with respect to the
CMB rest frame, the Universe is isotropic with a precision better than 10−4. It is way
harder to find evidence for the second assumption, since a test of homogeneity would
require observing the Universe from different points in space. Observations, however,
only test our own backward light-cone. Thus, a time-evolving homogeneous universe
cannot be distinguished from an inhomogeneous universe with a different time evolution.
While it is not possible at the moment to directly proof the validity of the homogeneity
assumption, it is still possible to perform in a sense null hypothesis tests and constrain if
the observational data would at least be compatible with a homogeneous universe. If
scales & 100 Mpc are considered, there does not seem to be evidence for inhomogeneities

1 Note that the Λ- and the Tµν-term appear in the literature sometimes with a negative sign. This depends on
the choice of metric signature and the definition of the Ricci tensor. We adopt here the sign convention of
Misner et al. (1973) that uses the metric signature (-,+,+,+).
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(Bull et al., 2012; Redlich et al., 2014a). Moreover, also large galaxy surveys reach the same
conclusion, i.e. that the Universe appears homogeneous on scales & 100 Mpc (e.g. Hogg
et al., 2005; Ntelis, 2016). The cosmological principle is therefore a valid assumption,
when the Universe smoothed over scales of ∼ 100 Mpc is considered.

On smaller scales, however, the Universe is obviously inhomogeneous with a large
variety of structures (e.g. voids, walls, filaments and nodes). The standard cosmological
description assumes that the background solution (i.e. where the cosmological principle
holds) can be treated as a solution of the field equations decoupled of the small scale
evolution; in other words that backreaction effects can be neglected2 (Baumann et al.,
2012; Adamek et al., 2013; Green and Wald, 2014).

Under the assumption of the cosmological principle, the metric takes a particularly
simple form. Due to isotropy, the spatial part can be expressed in spherical coordinates
(χ, θ, ϕ). The only entry in the spatial part of the metric, which is allowed by the
symmetries of the system, is a function a(t) scaling the spatial part as a whole. It can
only depend on time due to homogeneity. The so called Robertson-Walker metric then
takes the form

ds2 =− c2dt2 + a2(t)
[
dχ2 + f 2

K(χ)dΩ2] , (2.2)

where dΩ is the solid angle element and f 2
K(χ) contains the dependence of the angular

part of the metric on spatial curvature K

fK(χ) =


K−1/2 sin

(
K1/2χ

)
(K > 0)

χ (K = 0)

|K|−1/2 sinh
(
|K|1/2χ

)
(K < 0) .

(2.3)

The scale factor is typically normalised to be a(t0) = 1 at present time t0 and in the
following text all quantities with a subscript zero shall denote present day values. With the
metric at hand, the left side of the field equation (Eq. 2.1) is determined. The symmetries
of the cosmological principle allow furthermore to write the energy-momentum tensor
in a simple form. When viscosity and matter decay are neglected, it can be assumed to
have the form of a perfect fluid

Tµν =
(

ρ +
p
c2

)
uµuν + pgµν , (2.4)

2 It should be noted, however, that the topic of backreaction is still under debate (see e.g. for a review of the
current status Bolejko and Korzyński, 2017) and that there is a number of scholars who doubt the validity of
this assumption that backreaction can be neglected (Räsänen, 2006; Buchert et al., 2015).
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where ρc2 denotes the fluid’s energy density, p its pressure and uµ the four velocity of
the fluid. Choosing the frame of reference of a freely falling observer (i.e. uµ = (c, 0, 0, 0))
and inserting the energy momentum tensor (Eq. 2.4) and the metric (Eq. 2.2) into the
field equations (Eq. 2.1), they simplify considerably and can be written as two equations(

ȧ
a

)2

=
8πG

3
ρ− Kc2

a2 +
Λc2

3
, (2.5)

ä
a
=− 4πG

3

(
ρ +

3p
c2

)
+

Λc2

3
, (2.6)

called the Friedmann equations. Furthermore, we define the Hubble-Lemaître function

H(a) :=
ȧ
a

, (2.7)

which quantifies the expansion rate of the Universe. Today’s value of the Hubble-
Lemaître function (i.e. the Hubble-Lemaître parameter) is typically expressed in units of
100 km s−1 Mpc−1 and therefore the dimensionless parameter h is defined via

H0 =: 100h km s−1 Mpc−1 . (2.8)

The expansion of space causes a stretch of the photons’ wavelengths, the cosmological
redshift. It is related to the scale factor via

z :=
λo − λe

λe
=

1
a
− 1 , (2.9)

where λe denotes the photon’s wavelength at emission and λo the observed wavelength.
In order to simplify the first Friedmann equation even further, we will assume the fluid

to consist of two components, a non-relativistic component, which scales as ρm ∝ a−3,
and a relativistic component, which scales as ρr ∝ a−4. The additional factor of a−1 for
relativistic matter can be understood as follows. For relativistic particles, the rest-mass
is zero (photons) or negligible and the energy of each particle is determined by its
wavelength. The particle’s wavelength gets stretched as ∝ a (see redshift, Eq. 2.9) in
addition to the scaling of the number density as ∝ a−3 and the combination of both
effects leads to a scaling with a−4. We wish to express the different energy components as
dimensionless quantities. We therefore identify the typical energy density scale occurring
in the equation and define it as the critical density

ρcrit :=
3H2

8πG
. (2.10)

This allows us to define the dimensionless density parameters

Ωm(a) :=
ρm(a)
ρcrit(a)

, Ωr(a) :=
ρr(a)

ρcrit(a)
. (2.11)
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Also the curvature and cosmological constant terms in the first Friedmann equation can
be expressed in terms of dimensionless parameters

ΩK(a) := − Kc2

H2a2 , ΩΛ(a) :=
Λc2

3H2 . (2.12)

Inserting the definition of H(a) and the density parameters Ωi into Eq. (2.5) while
expressing them through their scaling with a, we obtain the particularly simple expression
for the first Friedmann equation

H2(a) = H0

[
Ωr0a−4 + Ωm0a−3 + ΩK0a−2 + ΩΛ0

]
. (2.13)

2.2 the cosmological standard model

The first Friedmann equation in the form of Eq. (2.13) forms the base of the current
standard model of cosmology, which is called the ΛCDM model. Its name derives from
its two main ingredients, i.e. the cosmological constant Λ and cold dark matter (CDM).
We will summarise the origin and impact of these assumptions as well as observational
evidence below.

2.2.1 Dark matter

The observational evidence for the need for a dark (i.e. a non-luminous) matter compo-
nent dates back to the early 20

th century. The observations of the velocity dispersion of
galaxy clusters indicated that these clusters must contain much more mass than could be
explained through the matter visible in form of the stars of the member galaxies (Zwicky,
1933). This additional matter component was named dark matter. A similar problem was
observed four decades later when galaxy rotation curves were used to determine the
mass of spiral galaxies (Rubin et al., 1978). The measured flat rotation curves could only
be explained with the existence of a massive dark halo surrounding each galaxy and
extending to radii way larger than the galactic disc.

The strongest indication, that this dark matter needs to be a completely new form of
matter, came with the discovery of the cosmic microwave background (CMB) and the
investigation of its temperature fluctuations. In the 1970s, it was assumed that the CMB
must contain temperature fluctuations of order 10−3, simply by scaling back today’s
density fluctuations (making the conservative choice that fluctuations today are at least
δ ∼ 1) to the redshift of the CMB and assuming the coupling between matter and
radiation leads to an imprint of the density fluctuations in the CMB. It came as a surprise
when no fluctuations of this order were observed (Boughn et al., 1981; Melchiorri et al.,
1981). Peebles (1982) suggested that the smaller amplitude of the temperature fluctuations
could be explained if there existed an unknown form of matter that does not or only
extremely weakly interact with electromagnetic radiation.
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Finally, further evidence for the existence of dark matter is provided by the reconstruc-
tion of cluster masses through gravitational lensing (e.g. Taylor et al., 1998; Refregier,
2003) and most prominently the separation of matter and gas in the so called bullet cluster
(Clowe et al., 2006). Today, a large variety of different explanations for dark matter exist
ranging from massive dark objects like black holes, to a unknown particle species or
modifications of the theory of gravity. The most common theory is that dark matter is
explained by a novel particle species. If thermally produced, such a particle needs to be
heavy (i.e. & 3 keV) in order to be in agreement with the observed amount of substructure
in the Universe3. Since a heavy particle would have a small velocity dispersion, it is
usually called cold dark matter (CDM). The standard model of cosmology assumes that
dark matter is in the form of such cold dark matter.

2.2.2 Dark energy

The second ingredient to the ΛCDM model is the cosmological constant. In 1998 and
1999, the teams of Riess and Perlmutter used supernovae of type Ia as standardisable
candles in order to determine the relation between distance and redshift in the Universe.
This led to the surprising result that the expansion of the Universe is accelerating (Riess
et al., 1998; Perlmutter et al., 1999). This behaviour can be explained by an additional
energy component with a negative pressure, which is typically called dark energy. A
positive cosmological constant Λ provides the simplest explanation for the accelerated
expansion. It can be absorbed in the energy momentum tensor and therefore be seen as
an energy component whose density does not change with time.

Additional evidence for the accelerated expansion of the Universe is provided by
the CMB (Planck Collaboration, 2020a) in combination with the clustering of galaxies
(eBOSS Collaboration, 2020) and gravitational lensing (Joudaki et al., 2017; Köhlinger
et al., 2017; Troxel et al., 2018). There exists an overwhelming variety of possible theories
explaining the accelerated expansion either through modifications of the gravitational
laws (modified gravity) or an additional component in the energy momentum tensor
(dark energy), like for example a scalar field. However, all of the measurements are
consistent with the accelerated expansion being caused by the cosmological constant Λ.

2.2.3 The ΛCDM-model

These two ingredients, (i) assuming the existence of a cold dark matter component
and (ii) that the cosmological constant is the reason for the accelerated expansion of

3 A light particle would have a large velocity dispersion (for this reason also called hot dark matter), which
would lead to small scale structures (e.g. satellite galaxies) being washed out. Comparing the amount
substructure observed in the Universe to that observed in hot dark matter simulations, leads to conflicting
results. A hypothetical dark matter candidate, which is not produced thermally, would for example be an
axion-like particle (e.g. Hu et al., 2000).
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Table 2.1: Cosmological paramters determined via the combination of measurements of the Planck
satellite, lensing and baryonic acoustic oscillations (last column in Table 2 of Planck
Collaboration, 2020a).

As . . . . . . . . . . . . 2.105± 0.030

ns . . . . . . . . . . . . 0.9665± 0.0038

100θMC . . . . . . . 1.04101± 0.00029

τ . . . . . . . . . . . . . 0.056± 0.014

Ωb . . . . . . . . . . . 0.04858± 0.00068

Ωc . . . . . . . . . . . . 0.2607± 0.0038

ΩΛ . . . . . . . . . . . 0.6889± 0.0056

σ8 . . . . . . . . . . . . 0.8102± 0.0060

h . . . . . . . . . . . . . 0.6766± 0.0042

the Universe, form in combination with the Friedmann equations the current standard
model of cosmology, ΛCDM. In its simplest form, it depends on only six parameters: the
amplitude of the primordial power spectrum4 As and the exponent of its power law ns,
the observed angular size of the sound horizon at recombination θMC, the reionisation
optical depth τ, the baryon density Ωb and that of dark matter5 Ωc. All other parameters
like for example the Hubble-Lemaître constant H0 or the normalisation of the matter
power spectrum σ8 can be derived from these six parameters6. Starting from the formation
of the first elements in the early Universe until the present day with the Universe being
filled with a large variety of structures, the ΛCDM-model gives a coherent model of the
cosmic evolution. It is able to explain a variety of observations impressively well, such
as the fluctuations in the cosmic microwave background (Planck Collaboration, 2020a),
the large-scale clustering of galaxies (Cole et al., 2005; eBOSS Collaboration, 2020), weak
gravitational lensing (Joudaki et al., 2017; Köhlinger et al., 2017; Troxel et al., 2018) and
the accelerated expansion of the Universe measured by supernovae of type Ia (Riess
et al., 1998; Perlmutter et al., 1999). The combination of these cosmological probes allows
determining the six ΛCDM-parameters to percent precision (see Table 2.1).

Due to the non-linear nature of gravity, it is very hard to obtain analytical predictions
for the formation of cosmic structures in a ΛCDM-universe. While it is possible to
linearise the equations for early times (which will be introduced in Section 2.3), these

4 See introduction of the power spectrum in Section 2.4.
5 These two densities add up to the total matter density as Ωm = Ωb + Ωc.
6 In order to derive σ8, an additional assumption on the shape for the evolved density-fluctuation power

spectrum has to be made.
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Figure 2.1: Galaxy distribution observed in large galaxy redshift surveys, e.g. SDSS or 2dFGRS in
comparison to the ΛCDM prediction as obtained by the Millennium simulation. The
figure was taken with kind permission from Springel et al. (2006), Fig. 1.

approximations break down when the density fluctuations grow non-linearly over time.
For this reason, numerical simulations play an important role to obtain theoretical
predictions of ΛCDM that can be tested against observations. Such simulations evolve
a realisation of the initial density field forward in time to the present day. By now,
there exist a large number of numerical simulations modelling different cosmologies on
various scales, while containing either dark matter only or baryons additionally. The
Millennium simulations (Springel et al., 2005; Boylan-Kolchin et al., 2009; Angulo et al.,
2012) are a renowned set of dark matter only simulations. It was possible to use these to
show that the ΛCDM prediction of the large-scale structure corresponds well with that
obtained from observations (see Fig. 2.1). We will make use of one of these simulations,
the Millennium XXL simulation, in Chapter 7. An alternative, analytical approach to
non-linear structure formation based on kinetic field theory will be described and used
in Chapters 3 and 4.
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2.3 linear structure formation

While the Friedmann equations describe the background evolution of the Universe, we
now would like to proceed to the formation of structures in terms of fluctuations in the
density field. We will quantify the density fluctuations in terms of the density contrast

δ(~x) =
ρ(~x)− ρ̄

ρ̄
, (2.14)

where ρ̄ denotes the mean cosmic density, or in terms of its Fourier transform

δ(~k) =
∫

d3~x δ(~x) e−i~x·~k. (2.15)

The analytical description of structure formation in full generality is a very complicated
task due to the non-linear nature of gravity. During the earliest epoch of the Universe,
however, the fluctuations are still small as can be seen in the CMB (δ ∼ 10−5). We can
therefore linearise the equations to describe structure formation in the early Universe.
We will use the non-relativistic fluid equations7 to link the density ρ, the velocity ~v, the
pressure p and the gravitational potential φ (see e.g. Peebles, 1993 pp. 112 or Mo et al.,
2011, pp. 163 for the details of the calculation). The non-relativistic fluid equations are
given by the continuity equation

∂ρ

∂t
+ ~∇ · (ρ~v) = 0 , (2.16)

the Euler equation

∂~v
∂t

+ (~v · ~∇)~v = −
~∇p
ρ
− ~∇φ (2.17)

and the Poisson equation8

∆φ = 4πGρ . (2.18)

In order to linearise these equations, we consider the values of all fields as small pertur-
bations on top of the background field, e.g. ρ = ρ̄ + δρ, ~v = ~̄v + δ~v, etc. We furthermore

7 Since we describe structure formation on spatial scales r � c/H(t), time scales t� 1/H(t), the velocities
are small v� c and the potentials are weak Φ� c2 we can neglect relativistic effects.

8 It is interesting to note that from the Newtonian limit of Einstein’s field equations we would obtain the
Poisson equation including the cosmological constant Λ. However, since we describe structure formation on
scales r � c/H(t) and moreover the Λ-term in H(t) is just becoming relevant in the present era, we can
neglect Λ here.
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express the equations in terms of comoving coordinates ~x instead of the physical coor-
dinates9,~r = a(t)~x, and define the peculiar velocity in comoving units, ~u := δ~v/a. This
leads to the perturbation equations

∂δ

∂t
+ ~∇ · ~u = 0 , (2.19)

∂~u
∂t

+ 2H~u = − c2
s
~∇δ

a2 −
~∇δφ

a2 , (2.20)

∆δφ = 4πGρ̄a2δ , (2.21)

where we introduced the sound speed c2
s := δp/δρ to express the pressure perturbations

in terms of density perturbations. By taking the divergence of Eq. (2.20) and inserting it
into the time derivative of Eq. (2.19), we obtain the linear growth equation

δ̈ + 2Hδ̇ =
c2

s
a2∇

2δ + 4πGρ̄δ . (2.22)

Since the growth equation is a homogeneous differential equation, we use the separation
of variables to factor out the time evolution and write the density field δ(~x, t) as a product
of the initial density δi(~x) and a factor D+(t),

δ(~x, t) = D+(t)δi(~x) . (2.23)

The factor D+(t) is typically called the linear growth factor, since it describes the growth
of density modes with time. It should be noted that since the growth equation (Eq. 2.22)
is of second order, it has two solutions, i.e. a growing and a decaying solution. Since
the decaying solution will play no role in the formation of structures, we only consider
the growing solution. For now, we will also only consider the evolution of dark matter
structures. Since dark matter is pressureless, we can neglect the pressure term in Eq. (2.22)
and insert Eq. (2.23) to obtain

D̈+ + 2HḊ+ = 4πGρ̄D+ . (2.24)

A good approximation to the solution of this differential equation has been found by
Carroll et al. (1992)

D+(z) =
5a
2

Ωm(z)
[

Ω4/7
m (z)−ΩΛ(z) +

(
1 +

1
2

Ωm(z)
)(

1 +
1

70
ΩΛ(z)

)]−1

. (2.25)

This approximation, however, is only valid for cosmological-constant models and not
for more general models including dynamical dark energy. As mentioned above, this

9 Note that this also leads to ~∇ now describing the derivative with respect to the comoving coordinates
~∇ → ~∇ ≡ ~∇x = a~∇r and also the time derivative gets replaced by ∂

∂t → ∂
∂t − H~x · ~∇.
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linear description only holds for a limited range of time. This can be understood quite
easily when considering that the initial density field can be assumed to be Gaussian and
that it stays Gaussian under linear evolution. Furthermore, it is obvious that the density
contrast cannot take lower values than δ = −1, which corresponds to ρ = 0, i.e. empty
space and therefore the support of the probability distribution has a lower limit. Hence, it
must become non-Gaussian once the density fluctuations become of order |δ| ≈ 1, since
the probability distribution cannot be symmetric any more as required by the Gaussian.
For this reason, it is assumed that the linear description breaks down for values δ & 1.
The condition of small δ is fulfilled for early times and when the field is smoothed over
large scales.

2.4 the power spectrum

Since the exact theoretical description of the evolution and state of every point in space is
an impossible task, modern cosmology resorts to a statistical description. It considers the
Universe to be one realisation of a random process. We therefore need statistical tools
in order to relate theoretical predictions to observations. One of the simplest statistical
quantities of a random field is its variance. It is typically useful to investigate the variance
of the field’s Fourier modes, which is called the power spectrum. For the field of density
fluctuations, it is defined as〈

δ(~k) δ∗(~k′)
〉
=: (2π)3δD(~k−~k′)P(|~k|) . (2.26)

Due to statistical isotropy, the power spectrum can only depend on the absolute value |~k|
and the δD-distribution ensures that modes are uncorrelated as required by homogene-
ity10.

The Gaussian probability distribution is defined by only two parameters, the mean µ

and the variance σ2. Since the mean of δ(~k) is zero by definition, the statistical properties
of δ(~k) are completely specified by the power spectrum as long as δ(~k) can be described
as a Gaussian random field. As soon as the Gaussian description breaks down, all so
called higher order spectra, i.e. bispectra, trispectra, etc., become non-zero and therefore
relevant11.

10 It should be noted that throughout this thesis angular brackets denote ensemble averages and in this case an
average over an ensemble of density fields. In practise, however, the ergodic principle is assumed and the
ensemble average is replaced by an average over statistically independent regions of one realisation, i.e. our
Universe.

11 For completeness it shall be mentioned that for a Gaussian random field all even higher moments are
also non-zero (i.e. trispectra, etc.). However, they can be expressed via Wick’s theorem in terms of the
powerspectrum.
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We will furthermore define the density field smoothed by a window function WR(|~x|),
which depends on a smoothing radius R

δR(~x) :=
∫

d3~yδ(~x)WR(|~x−~y|) . (2.27)

Typically the field is smoothed using a spherical top hat function. The variance of the
smoothed field is related to the power spectrum via

σ2
R = 4π

∫ dk k2

(2π)3 P(k)W2
R(k) , (2.28)

where WR(k) denotes the Fourier transform of the spherical top hat, given by

WR(k) =
j1(kR)

kR
. (2.29)

From theoretical considerations it is found that the power spectrum can be expressed
as a power law (e.g Peebles and Yu, 1970; Zel’dovich, 1972)

Pi(k) = Askns . (2.30)

The parameters ns and As remain free parameters of the ΛCDM model and need to
be determined by observations (see Table 2.1). The amplitude As is in some cases
determined by measuring the variance of the density field smoothed over a sphere with
radius R = 8h−1Mpc, i.e. σ8 according to Eq. (2.28). This, however, requires assuming a
shape of the evolved power spectrum.
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K I N E T I C F I E L D T H E O RY

The quantitative description of the formation of structures in the cosmos is at the core
of modern cosmology. On the observational side, the measurement of the statistical
distribution of structures has become more and more precise in the last decades. In
parallel, there has been a shift towards simulations on the theoretical side. Despite this,
the need for an analytical description of cosmic structure formation is now as before
very high, since it offers two advantages. First, large cosmological simulations with high
spatial resolution require a large amount of computational time, which can reach from
several days up to months. Parameter estimations that match the level of precision of the
upcoming large-scale surveys, e.g. LSST (Ivezić et al., 2019) or Euclid (Laureijs et al., 2011),
require precise predictions for a six- or higher dimensional parameter space. This poses
a problem, since running a large number of cosmological simulations, e.g. in order to
perform a Monte Carlo Markov Chain analysis, is not feasible. An analytical description
in contrast could deliver results within a small fraction of the time and therefore solve
this problem. Second, an analytical description usually provides much deeper insight
into the underlying physical processes than just a simulation. It would help to single out
processes and effects relevant for structure formation and therefore understand its theory
better.

In the previous chapter, we already showed an analytical description of structure
formation in terms of linear perturbation theory (Section 2.3). The description in the
non-linear regime, however, turns out to be a much harder task. A first approach in the
mildly non-linear regime is represented by the Zel’dovich approximation (Zel’dovich,
1970). More recently proposed approaches include standard perturbation theory (SPT,
see e.g. Bernardeau et al., 2002, for an extensive review), Lagrangian perturbation theory
(LPT, e.g. Section 2.7 in Bernardeau et al., 2002) or effective theories (Carrasco et al., 2012;
Floerchinger et al., 2017).

A completely different approach has been proposed recently by Bartelmann et al.
(2016) by the name kinetic field theory (KFT, see Bartelmann et al., 2019, for a review),
which is based on the field-theoretical description of classical particles (Penco and
Mauro, 2006; Mazenko, 2010; Mazenko, 2011; Das and Mazenko, 2012; Das and Mazenko,
2013). It is a kinetic theory based on classical particle trajectories obeying Hamilton’s
equations. Stochasticity enters the formalism through the initial conditions of the particles,
which are provided in terms of a probability distribution. The theory is formulated in
phase space and therefore circumvents the well known shell-crossing problem, which is
present for example in SPT and LPT approaches like the Zel’dovich approximation. This
problem arises whenever the trajectories of two dark matter streams cross. In SPT it is

17
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assumed that particles move as a single coherent flow, typically called the single stream
approximation. This allows setting the velocity dispersion to zero. At shell-crossing,
however, when multiple streams exist in the same region of space the velocity dispersion
will become non-zero and the description breaks down (c.f. Section 2.2 in Bernardeau
et al., 2002). This problem also arises in Lagrangian descriptions. In the Zel’dovich
approximation for example, collapsing mass shells will cross each other when they form
a “pancake”. Due to the free streaming assumed in the Zel’dovich approximation, these
shells would re-expand forever, while in reality they will obviously remain bound by
the gravitational potential. It can be seen also from a mathematical viewpoint that the
Lagrangian description breaks down. At shell crossing, two fluid elements originating
from different initial positions end up at the same Eulerian position. This causes the
mapping between Lagrangian and Eulerian space to lose its bijective property. The
Jacobian of this mapping then becomes zero and the density (defined as inverse of
the Jacobian) becomes singular (c.f. Section 2.5 in Bernardeau et al., 2002). In phase
space, however, Hamilton’s equations are unique once their initial conditions are set. For
this reason, KFT provides a framework to compute statistical properties of the cosmic
density field on scales that are much deeper in the non-linear regime than comparable
formulations. For example, it is currently able to predict the non-linear power spectrum
of cosmic density fluctuations up to a scale of k ∼ 5 hMpc−1 with a precision of better
than 12 per cent Bartelmann et al. (2019) compared to the N-body fitting formula of
Smith et al. (2003).

In this chapter we will give an introduction to the basic concepts of KFT. It is mainly
based on the review by Bartelmann et al. (2019) and Lilow et al. (2019). While we will
focus on the application of KFT to cosmic structure formation, the applicability of KFT
reaches far beyond cosmology. For example, there have been other applications such as
systems of Rydberg atoms (Kozlikin, 2018; Bartelmann et al., 2019) or the derivation of a
truncation criterion for the BBGKY hierarchy (Viermann et al., 2015). We will start with
introducing the central object of KFT, i.e. the generating functional of correlation functions,
in Section 3.1. We then introduce operators, which allow extracting correlators from
the generating functional, in Section 3.2 and specify the initial conditions in Section 3.3.
We continue with defining the propagators, which describe the free motion of particles,
in Section 3.4. We will briefly discuss interactions in Section 3.5 and then proceed to
calculating statistical quantities like cumulants or the power spectrum in Section 3.6.
Finally, we will sketch the macroscopic formulation of KFT first introduced by Lilow et al.
(2019) in Section 3.7. This reformulation of KFT will be used in one of our approaches to
derive the probability distribution of the cosmic density field, which is described in the
subsequent chapter (Chapter 4).
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3.1 the generating functional

Kinetic field theory is a theory to (not only but most importantly) predict statistical
properties of the cosmic structure and their development over time. It is based on a central
mathematical object, the generating functional Z, which is also known from quantum
field theory (QFT). KFT, however, is a statistical field theory describing classical particles.
As the name suggests, the generating functional can be used to generate correlation
functions of arbitrary order and therefore takes a role similar to the partition sum in the
statistical physics approach to thermodynamics. In full generality, it can be written as a
path integral over all possible states of the system,

Z =
∫
Dϕ P(ϕ) , (3.1)

where ϕ denotes a general state of the system, P(ϕ) is the probability distribution of
these states and Dϕ signals that the integral is in fact a path integral. The aim will be
now to construct a generating functional such that statistical quantities like the power
spectrum of cosmic densities can be obtained by applying the corresponding operators to
it. The computation of the power spectrum and higher-order spectra is done analogously
to obtaining moments from the moment generating function of a random variable or to
obtaining ensemble averages by applying derivative operators to the partition sum in
thermodynamics.

Since it is our aim to describe cosmic structure formation, we would like to describe
trajectories of classical particles. Let us introduce in this context the notation which will be
needed for the calculations in this and the next chapter. KFT is based on the description
of particle trajectories in phase space. We will denote the phase space coordinate of the
jth particle by a six-dimensional vector xj := (~qj,~pj), with position ~qj, momentum ~pj and
1 ≤ j ≤ N. The phase space coordinates of all particles are contained in the tensor

x =xj ⊗ ej , (3.2)

where summation over j is implied and the vector ej has components
(
ej
)

i = δij, with
1 ≤ i ≤ N. Furthermore, we define a scalar product for these tensors,

〈x, y〉 :=(xi · yj)(ei · ej) = xi · yi. (3.3)

In this context, our system will be a sub-volume of the cosmos sampled by N particles
and we will consider that its state is given by the final phase space coordinates of its
N particles x( f ). We go one step beyond and do not want to express the state of system
in terms of the phase space coordinates x( f ), but instead in terms of the trajectories
starting at the particles’ initial coordinates x(i) and ending at x( f ). We denote these
trajectories by x(t), but we will not write out the time dependence explicitly in the
following calculations.
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We now express the generating functional (Eq. 3.1) in terms of the particle trajectories,

Z =
∫
Dx P(x) , (3.4)

involving a path integral over all N particle trajectories. We only want to consider
trajectories that fulfil the classical equations of motion, which will be reflected by the
form that the trajectories’ probability distribution P(x) takes. Let us write the classical
equations of motion abstractly as

E(x, x(i)) = 0 , (3.5)

where E = Ej⊗ ej. The particles shall be placed in phase space at an initial time according
to a probability distribution P(x(i)). We can then rewrite the probability of the trajectories
as a conditional probability,

P(x) =
∫

dx(i) P(x|x(i)) P(x(i)) , (3.6)

with the transition probability P(x|x(i)) is given by

P(x|x(i)) = δD[E(x, x(i))] . (3.7)

The delta distribution ensures that only such trajectories are selected that solve the
equations of motion.

Since we are considering classical particles, the equation of motion for a single particle
is given by the Hamiltonian equation1,

ẋ−J∇x H(x) = 0 . (3.8)

Here, we have chosen the typical notation using the symplectic matrix defined as

J :=

(
0 13

−13 0

)
, (3.9)

where 1n denotes the unit matrix in n dimensions and H(x) the Hamiltonian function.
Formally, we can split the Hamiltonian into a free part H0 describing the motion of
particles without forces and a part HI describing the contribution due to interactions
between the particles, i.e. H = H0 + HI. The solution to the free equations of motion (i.e.
inserting H = H0 into Eq. 3.8) can be formulated in terms of the Green’s function G(t, t′),

x(0)(t) = G(t, 0)x(i) . (3.10)

1 Note that we adopt here the notation of Lilow et al. (2019), which differs from Bartelmann et al. (2019),
where H describes only the free Hamiltonian and interactions are introduced as an inhomogeneity in the
Hamilton equation. In our case H describes the full Hamiltonian.
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We can write the Green’s function in terms of its position and momentum components

G(t, t′) :=

(
gqq(t, t′)13 gqp(t, t′)13

0 gpp(t, t′)13

)
. (3.11)

To demonstrate explicitly the role of the component functions gab (also called propaga-
tors), we plug this form of the Green’s function back into Eq. (3.10), which gives

~q(0)j = gqq(t, t0)~q
(i)
j + gqp(t, t0)~p

(i)
j , (3.12)

~p(0)j = gpp(t, t0)~p
(i)
j . (3.13)

In order to make the notation more compact, we summarise the Green’s functions of all
N particles in the tensor G(t, t′) := G(t, t′)⊗ 1N .

We now turn back to the full equations of motion including interactions (Eq. 3.8), given
by

0 = E(x) = ẋ−J∇xH(x) . (3.14)

Its general solution for a particle starting at initial coordinate x(i) can be expressed for
one particle in terms of the Greens function by including the interaction potential V,

x(t) = G(t, 0)x(i) +
∫ t

0
dt′G(t, t′)

(
0

−~∇V(t′)

)
. (3.15)

In order to express the generating functional in terms of these particle trajectories, we
insert Eqns. (3.6) and (3.7) into Eq. (3.4) to obtain

Z =
∫
Dx

∫
dx(i) P(x(i)) δD[E(x)] . (3.16)

For compactness, we introduce the short-hand notation

dΓ := dx(i) P(x(i)) (3.17)

and proceed by expressing the delta distribution in terms of its Fourier transform,

Z =
∫

dΓ
∫
Dx

∫
Dχ ei

∫
dt 〈χ,E(x)〉 , (3.18)

where χ is the field conjugate to x. Since the combination of the two fields χ and x
will appear quite often in the following calculations, it turns out useful to introduce the
combined field ψ := (x, χ). The microscopic action can then be defined as

S[ψ] =
∫

dt 〈χ, E(x)〉 . (3.19)
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As already mentioned within the context of the Hamiltonian, the action can be split into
a free part and an interacting part, S = S0 + SI, with

S0[ψ] =
∫

dt〈χ, ẋ−J∇xH0[x]〉 , (3.20)

SI[ψ] =
∫

dt〈χp,∇qHI[q]〉 . (3.21)

We can therefore rewrite Eq. (3.19) in a form that will become beneficial later,

Z =
∫

dΓ
∫
Dψ eiS[ψ] =

∫
dΓ
∫
Dψ eiSψ,I+iSψ,0 . (3.22)

3.2 operators

The main application of KFT is to describe statistical quantities of the cosmic density
field. We are considering point particles as the tracers of the underlying density field.
Their number density in position space is given by

ρ (~x, t) =
N

∑
j=1

δD
(
~q−~qj(t)

)
. (3.23)

It should be noted that we focus here on the position space density, whereas other works
base their calculations on the phase space density which is often denoted by f (e.g. in Lilow
et al., 2019). Since we will work in Fourier space, we will use the Fourier convention

ã(~k) =
∫

d3~q a(~q) e−i~k·~q, a(~q) =
∫ d3~k

(2π)3 ã(~k) ei~q·~k, (3.24)

to arrive at

ρ̃
(
~k1, t1

)
=: ρ̃(1) =

N

∑
j=1

e−i~k1·~qj(t1) . (3.25)

In the first step, we have introduced the short-hand notation (ks, ts) =: (s), which will
be frequently used throughout the following calculations. For clarity, we will drop the
tilde for denoting the Fourier transformed quantities and we introduce the short-hand
expressions

∫
q

:=
∫

d3~q,
∫

k
:=
∫ d3~k

(2π)3 . (3.26)

In order to extract cumulants – for example of the density ρ – from the generating
functional, we will have to introduce source fields and density operators, just as it is
familiar from QFT. These source fields are introduced by hand such that the operators
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can act on them to obtain the statistical quantity of interest. Afterwards the source fields
are set to zero. Let us introduce the source fields J := Jj ⊗ ej and K := Kj ⊗ ej for the
phase space trajectories x and their conjugate field χ, respectively, with Jj = (~Jqj ,~Jpj) and
Kj = (~Kqj , ~Kpj). This allows writing the generating functional as

Z[J, K] =
∫

dΓ
∫
Dψ ei

∫
t[〈χ,E(x)〉+〈J,x〉+〈K,χ〉] . (3.27)

where we used the generating functional of the form of Eq. (3.18).
The average phase space coordinate

〈
xj(t)

〉
of particle j at time t can now be calculated

by applying a functional derivative with respect to Jj(t),

〈
xj(t)

〉
= −i

δ

δJj(t)
Z[J, K]

∣∣∣∣
J=0,K=0

=: x̂Z[J, K]

∣∣∣∣
J=0,K=0

, (3.28)

where we have introduced the phase space coordinate operator x̂ in the last step. Note that
operators will be denoted by a hat in the subsequent text. Since the Fourier transform of
the microscopic density field in Eq. (3.25) is defined via the positions of the particles, we
can define the density operator simply by replacing ~q with the position component of x̂,
yielding

ρ̂(1) :=
N

∑
j=1

exp
[
−i~k1 · x̂qj(t1)

]
︸ ︷︷ ︸

=:ρ̂j

=
N

∑
j=1

exp

[
−~k1 ·

δ

δJqj(t1)

]
. (3.29)

Applying this operator once to the logarithm of the generating functional, W := ln Z,
with Z from Eq. (3.27), would give the mean cosmic density, applying it twice would lead
to the power spectrum and n times yields the nth-order spectrum. Further operators can
be defined when needed in a similar manner, such as the response field operator defined
in Section 3.5.

3.3 initial conditions

In order to actually calculate the non-linear power spectrum of the cosmic density field,
we need to specify two further elements of the generating functional. First, we need to
define the particles’ initial distribution in phase space, which is contained in dΓ. Second,
we need to specify the particle propagators gab that determine the particle trajectories.
We will focus here on the initial conditions and introduce the propagators in the next
section. Since we only show the main steps of the derivation, we refer the reader to
Appendix A of Bartelmann et al. (2016) for the details. We will focus in our considerations
on universes containing only one sort of matter, i.e. dark matter. However, there exists as
well a description that includes a mixture of dark and baryonic matter (Bartelmann et al.,
2019; Geiss et al., 2020).
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As argued in Section 2.3, the initial density field can be described well by a Gaussian
random field. The particle positions can then be obtained by Poisson sampling from
the underlying density distribution. The probability distribution of finding particle j at
position ~qj with given density ρj = ρ(~qj) is therefore

P(~q(i)j |ρj) = N−1ρj . (3.30)

In order to obtain the initial distribution of the momenta, we will assume that the initial
velocity field can be described as the gradient of a velocity potential Ψ. This assumption
can be justified as follows. By applying the Helmholtz theorem, the velocity field can be
decomposed into a curl and a gradient. The curl component, however, will quickly decay
during the early linear evolution of cosmic structures, so only the gradient part remains.
Introducing the notation ~yj := ~∇Ψj, where Ψj = Ψ(~q(i)j ) is only defined on the initial

spatial section and therefore depends on the initial spatial coordinates ~q(i)j only, and
setting the mass of the particles m = 1, we obtain for the initial momentum distribution

P(~p(i)j |~yj) = δD

[
~p(i)j −~yj

]
. (3.31)

The initial phase space distribution can therefore be expressed as the joint probability

P(~qj,~pj) =
∫

dδj

∫
d3~yjP(~q

(i)
j |δj)P(~p(i)j |~yj)P(δj,~yj) (3.32)

=
ρ̄

N

∫
dδj(1 + δj)

∫
d3~yjδD[~p

(i)
j −~yj]P(δj,~yj) (3.33)

=
ρ̄

N

∫
dδj(1 + δj)P(δj,~p

(i)
j ) , (3.34)

where we expressed the density ρj in terms of the density contrast δj which follows a
Gaussian distribution with mean 〈δ〉 = 0.

Taking the continuity equation and expressing the velocity through its potential, leads
to a Poisson equation for the initial2 density contrast δ = −∆Ψ. We conclude that the
density contrast can only be normally distributed if the velocity potential is normally
distributed, since the divergence is a linear operator, which leaves the Gaussian property
intact. We know that the normal distribution of the density contrast is determined
through its power spectrum Pδ(k). Using the Poisson equation we can derive the power
spectrum of the velocity potential to be

PΨ(k) = k−4 Pδ(k) . (3.35)

Therefore, the probability distribution P(δj,~pj) in Eq. (3.32) is a multivariate Gaussian
distribution and the power spectrum Pδ suffices completely to determine its covariance
matrix. Inserting the resulting Gaussian distribution for P(δj,~pj) into Eq. (3.32) yields

2 keeping in mind that Ψ is only defined for the initial spatial coordinates.
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then the initial phase space distribution P(q(i), p(i)). The final result as obtained in
Bartelmann et al. (2016) is given by

P(q(i), p(i)) =
V−N√

(2π)3N det Cpp

C(p(i)) exp
(
−1

2
p(i)T

C−1
pp p(i)

)
, (3.36)

with the factor C(p(i)) which is a polynomial in the momenta. If the propagator is
chosen such that it becomes gqp � 1 for late times, then factor can be approximated
by C(p(i)) ≈ 1 in for the present time (Bartelmann et al., 2019). We will use, however,
a different approach which is analogous to Lilow (2018) when we calculate the free
cumulants (Appendix A). We will expand C(p(i)) in the lowest order of the initial density
power spectrum P(i)

δ (k). The momentum correlation matrix is defined via the power
spectrum of the velocity potential,

Cpj pk =
∫

k
(~k⊗~k)PΨ(k)ei~k·~qjk . (3.37)

It is conveniently split into its diagonal and off-diagonal elements,

Cpp =
σ2

1
3

13 ⊗ 1N + C̄pj pk ⊗ Ejk , (3.38)

where C̄pj pk contains only the off-diagonal terms (i.e. the diagonal is C̄pj pj = 0) and
Ejk := ej ⊗ ek. The variance σ2

1 is given by

σ2
1 :=

∫
k

Pδ

k2 , with σ2
n :=

∫
k

k2nPΨ =
∫

k
k2(n−2)Pδ . (3.39)

3.4 propagators

Within the framework of KFT, there are different choices to describe the trajectories of
particles in phase space, which are determined through the microscopic propagators gab.
Amongst the possible choices are trajectories derived from (i) the Zel’dovich approx-
imation, (ii) an improved version of the Zel’dovich approximation (Bartelmann, 2015)
that reduces the overshooting of the original Zel’dovich trajectories and (iii) Newtonian
dynamics in an expanding Universe. We will use the latter in our calculations analogously
to Lilow et al. (2019) and will briefly introduce it in this section.

In order to make calculations easier, we will choose the logarithm of the linear growth
factor D+(t) as the time coordinate,

η(t) := log
D+(t)
D+(ti)

, (3.40)
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where dividing by the D+ at initial time ti ensures that η(ti) = 0. Furthermore, we will
choose comoving spatial coordinates

~q :=
~r
a

, (3.41)

with physical coordinate~r and scale factor a, and the momentum defined via

~p :=
d~q
dη

. (3.42)

As shown in Appendix D of Lilow et al. (2019), the Newtonian equations of motion for
dark matter particles in an expanding space time read

d~q
dη

=~p , (3.43)

d~p
dη

=

(
1− 3

2
Ωm

f 2
+

)
~p− ~∇qṼ ≈ −1

2
~p− ~∇qṼ , (3.44)

with the linear growth rate f+ := d ln D+/d ln a. The canonical conjugate momentum
~pcan and the Newtonian potential V have been rescaled, ~p := ~pcan/(ma2H f+) and
Ṽ := V/(a2 f 2

+H2), in order to bring the equations in a simpler form.
The components of the Green’s function (Eq. 3.11) can then be obtained by solving

the free equations of motion, i.e. setting Ṽ = 0 in Eqns. (3.43) and (3.44), which can be
written as(

d
dη

+ E0

)
~x = 0, E0(η) =

(
0 −13

0 1
2 13

)
. (3.45)

This equation is solved by the Green’s function (analogously to Bartelmann, 2015)

G(η, η′) = exp
[
−
∫ η

η′
dη̄E0

]
θH(η − η′) . (3.46)

The component functions of this Green’s function finally represent the desired propaga-
tors, which are given by

gqq(η, η′) = θH(η − η′) , (3.47)

gqp(η, η′) = 2
(

1− e−
1
2 (η−η′)

)
θH(η − η′) , (3.48)

gpq(η, η′) = 0 , (3.49)

gpp(η, η′) = e−
1
2 (η−η′)θH(η − η′) , (3.50)

where θH denotes the Heaviside step function.
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3.5 interactions

The above form of the equations of motion (Eqns. 3.43 and 3.44) also leads to the
corresponding interaction potential. The rescaled gravitational potential Ṽ needs to fulfil

~∇2
qṼ =

3
2

Ωm

f 2
+

ρ− ρ̄

ρ̄
≈ 3

2
Φρ − ρ̄

ρ̄
. (3.51)

According to Lilow et al. (2019), the solution for Ṽ(~q, t) can be written as a sum of the
single-particle gravitational potentials v(|~q−~qj(t)|),

Ṽ(~q, t) =
N

∑
j=1

v(|~q−~qj(t)|) . (3.52)

The single-particle gravitational potential can be determined by solving Eq. (3.51) in
Fourier space. It results in

v(k) = −3
2

1
ρ̄k2 . (3.53)

With this at hand, we would like to write the interaction part of the action (Eq. 3.21)
more explicitly. It turns out useful to introduce the response field B for this purpose,
defined as

B (~x, t) :=
N

∑
j=1

~χpj(t) · ~∇qδD
(
~q−~qj(t)

)
, (3.54)

where we used the notation χj := (χqj , χpj) and we remind the reader that χj represents
the Fourier conjugate to the trajectory xj(t) (as introduced in Eq. 3.18). We can now
Fourier transform B and define the response field operator in terms of the single-particle
density operator ρ̂j

B̂
(
~k, t
)

:=
N

∑
j=1

(
~k · δ

δKpj

)
ρ̂j . (3.55)

We furthermore define the interaction matrix element

σρB(1,−2) = −v(k1, t1)(2π)3δD(~k1 −~k2)δD(t1 − t2) . (3.56)

The interaction part of the action (Eq. 3.21) can then be rewritten as

Sψ,I =
∫

d1
∫

d2 ρ(−1) σρB(1,−2) B(2) . (3.57)
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Since the following calculations contain numerous integrals over Fourier space, we will
use the notation∫

d1 :=
∫ d3~k1

(2π)3

∫
dt1 (3.58)

and introduce the dot product

A · B :=
∫

d1 A(−1)B(1) (3.59)

as a short hand-notation for the integration. We can then write

Sψ,I = ρ · σρB · B . (3.60)

In order to further ease the notation we introduce the dressed response field F := σρB · B
with the corresponding dressed response field operator

F̂ :=σρB · B̂ . (3.61)

We thus can write the interaction part of the action as

Sψ,I = ρ · F . (3.62)

This represents our final form of Sψ,I which will be used throughout the text. It shall
be mentioned that there exist alternative ways to include interactions in KFT, e.g. when
using the improved Zel’dovich trajectories (as described in the review Bartelmann et al.,
2019).

3.6 statistical quantities from the generating functional

We now have all the ingredients to calculate statistical quantities from the generating
functional (Eq. 3.27). We will summarise in this section the results for cumulants in the
free (i.e. non-interacting) case, then the power spectrum including interactions and finally
the free bispectrum.

3.6.1 The free cumulants

For deriving the cumulants in the non-interacting case, we introduce the free generating
functional. We use the formulation of the generating functional in terms of the action
Sψ = Sψ,0 + Sψ,I (c.f. Eq. 3.22) and set the interaction part to zero, Sψ,I = 0. Since we are
interested in cumulants of the density and the dressed response field, we introduce two
source fields Hρ and HF , and write the free generating functional as

Zρ,F
0 [Hρ, HF ] :=

∫
dΓ
∫

ψ eiSψ,0+iHρ·ρ+iHF ·F . (3.63)
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Furthermore, we define the logarithmic free generating functional

Wρ,F
0 [Hρ, HF ] := ln Zρ,F

0 [Hρ, HF ] . (3.64)

We would like to emphasise that in contrast to the generating functional in Eq. (3.27), we
introduced here source terms for the density ρ and the dressed response field F directly
instead of those for the particle phase space trajectories x and their conjugate field χ. This
eases the following calculations, where we are interested in cumulants of exactly these
collective fields ρ and F . We highlighted the changed source fields by the superscript
ρ,F . The density operator can now be formulated as a functional derivative with respect
to Hρ,

ρ̂(1) = −i
δ

δHρ(1)
equivalent to ρ̂(1) =

N

∑
j=1

exp

[
−~k1 ·

δ

δJqj(t1)

]
, (3.65)

which can be easily translated into its corresponding form in terms of δJqj(t1) by inserting
the definition of ρ into Eq. (3.63). The dressed response field operator is in this case given
by

F̂ (1) = −i
δ

δHF (1)
. (3.66)

The cumulants for the non-interacting case are then obtained by applying j density
operators ρ̂ and k dressed response field operators F̂ to the logarithmic free generating
functional Wρ,F

0 which yields the cumulant Gρ1...ρjF1...Fk .
3 Their general form has been

calculated in Fabis (2015) for a statistically homogeneous and isotropic Hamiltonian
system with Gaussian initial conditions. These results were then applied in Appendix B
of Lilow (2018) in order to give specific expressions for the cumulants. We will state
here the results of Lilow (2018) with two modifications. First, we consider the position
space density ρ(~q) in contrast to the phase space density f (~q,~p) used in Lilow (2018).
We therefore have to integrate out the phase space cumulants’ momentum information.
This is equivalent to setting all appearances of the Fourier conjugate of the momentum
to zero, i.e.~lr = 0, where r runs from 1 to the number of phase space density operators
applied. Second, we take only the lowest order in initial correlations, P(i)

δ , into account.

This means for example terms linear in P(i)
δ for Gρρ and GρρF and terms quadratic in

P(i)
δ for Gρρρ. We can therefore also neglect the damping term which does not appear in

this approximation. We show here the 1- and 2-point cumulants (for more details of the
calculations and the lengthier expressions for the 3-point cumulants see Appendix A),

3 We would like to emphasise that G with subscript ρ and F denotes the respective cumulant and should not
be confused with the propagator G(t, t′).



30 kinetic field theory

GF (1) = 0 , (3.67)

Gρ(1) = (2π)3δD(~k1)ρ̄ , (3.68)

GFF (1, 2) = 0 , (3.69)

GρF (1, 2) ≈ i(2π)3δD(~k1 +~k2)~k2
1 gqp(t1, t2)ρ̄v(k1, t1) , (3.70)

GFρ(1, 2) = GρF (2, 1) , (3.71)

Gρρ(1, 2) ≈ (2π)3δD(~k1 +~k2)(1 + gqp(t1, 0))(1 + gqp(t2, 0))ρ̄2P(i)
δ (~k1) . (3.72)

In Eqns. (3.67) and (3.69), it was used that pure dressed response field cumulants GF ...F
vanish. It was shown in Appendix A of Fabis (2015) that the pure response field cumulants
GB...B vanish, which implies that the dressed response field cumulants are zero as well.

3.6.2 The density power spectrum with mean field interactions

Besides these results for the non-interacting case, the power spectrum of the cosmic
density field has been derived in the most recent formulation of KFT (Bartelmann et al.,
2019) taking interactions into account via a mean field approach using the improved
Zel’dovich propagator. They obtain for the free power spectrum the expression

P(k, t) =
∫

q

(
eQ − 1

)
eikq , (3.73)

with

Q :=− g2
qp(t)k

2a||(q) , (3.74)

and the correlation function of the parallel momentum components

a||(q) :=a1(q) + µ2a2(q) , (3.75)

where the functions a1 and a2 are given as

a1 =− 1
2π

∫ ∞

0
dkP(i)

δ (k)
j1(kq)

kq
and (3.76)

a2 =
1

2π

∫ ∞

0
dkP(i)

δ (k)j2(kq) . (3.77)

These functions contain the spherical Bessel functions j1,2(kq) and depend on the cosine
of the angle θkq enclosed by~k and ~q, i.e. µ := cos θkq .
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Figure 3.1: Upper panel: The non-linear density power spectrum as predicted by KFT including
interactions through a mean field approach (red). For comparison the linearly evolved
power spectrum is shown in blue and a prediction from N-body simulations by Smith
et al. (2003) in black. Lower panel: Relative deviation of the KFT prediction from
the N-body fitting formula of Smith et al. (2003). The figure was taken with kind
permission from Bartelmann et al. (2019), Fig. 4.

The power spectrum including interactions can then be expressed in terms of the free
power spectrum by applying a mean field approach (see Bartelmann et al., 2019, Section 4

for details), yielding

P̄(k, t) = e−Q0+i〈SI〉P(k, t) , (3.78)

with

Q0 :=
σ2

1
3

g2
qp(t)k

2 (3.79)

and the mean interaction part of the action

〈SI〉 =− 2k
∫ t

0
dt′gqp(t, t′)〈 f12〉(k, t′) , (3.80)

where 〈 f12〉 is the projection of the force between two particles on the wave vector k. The
angular brackets denote taking the average over all particle pairs. A comparison between
the KFT prediction, the results from N-body simulations (Smith et al., 2003) and the
linear power spectrum is shown in Fig. 3.1.
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3.6.3 The free density bispectrum

The analytical prediction of the density bispectrum, i.e. the Fourier transform of connected
three-point correlation function, is a much harder task and up to now there exist only
approximations either based on perturbation theory (Bernardeau et al., 2002; McCullagh
et al., 2016; Lazanu and Liguori, 2018) or based on effective field theory (Angulo et al.,
2015). A first order approximation of the bispectrum similar to that known for SPT (c.f.
Eq. 43 in Bernardeau et al., 2002) can be derived from KFT in the interaction-free case as
shown in Bartelmann et al. (2016). The result is given by

P(3)
(
~k1,~k2,~k3

)
= δD

(
~k1 +~k2 +~k3

)
×
[

Pδ(k1)Pδ(k2)F(~k1,~k2) + cyc.
]

, (3.81)

with

F
(
~k1, ~k2

)
= 1 +

~k1 · ~k2

k2
1

+
~k1 · ~k2

k2
2

+
(~k1 · ~k2)2

k2
1k2

2
.

The similarity to the result from SPT becomes even more apparent when comparing the
predictions for the third cumulants obtained from the bispectra, which will be shown in
Section 4.2.

3.7 macroscopic formulation

The framework of KFT has been extended by an approach introducing macroscopic fields,
dubbed resummed KFT (RKFT), which was proposed by Lilow et al. (2019). While the
original version of RKFT is based on the density in phase space (Klimontovich density),
we will introduce the formalism more adapted to our calculations in Section 4.3 and
consider therefore the density in position space only. The macroscopic position space
density φρ is introduced in the generating functional (Eq. 3.22 with Eq. 3.62) by setting it
exactly to the microscopic density ρ via a δD-distribution,

Z =
∫
Dφρ

∫
dΓ
∫
Dψ eiSψ,0+iφρ·F δD

[
φρ − ρ

]
=
∫
Dφρ

∫
Dφβ e−iφβ·φρ

∫
dΓ
∫
Dψ eiSψ,0+iφρ·F+iφβ·ρ .

(3.82)

In the second line we have Fourier transformed the δD-distribution by introducing the
macroscopic auxiliary field φβ, which is the Fourier conjugate to φρ. In the expression for
the generating functional above, we can interpret the macroscopic fields φρ and φβ as the
source fields for the microscopic density ρ and dressed response field F , respectively. We
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can therefore express the last two integrals as the free generating functional (Eq. 3.63),
with source fields φρ and φβ, which leads to

Z =
∫
Dφρ

∫
Dφβ e−iφβ·φρ

∫
dΓ
∫
Dψ eiSψ,0+iφρ·F+iφβ·ρ︸ ︷︷ ︸
=Zρ,F

0 [φβ,φρ]

=
∫
Dφρ

∫
Dφβ e−iφβ·φρ Zρ,F

0 [φβ, φρ]

=
∫
Dφ e−iφρ·φβ+Wρ,F

0 [φβ,φρ]

=
∫
Dφ eiSφ ,

(3.83)

where we combined the two macroscopic fields into φ := (φρ, φβ) in the third line and
defined the logarithm of the free generating functional (Eq. 3.64). In the fourth line, we
defined the macroscopic action

Sφ := −φρ · φβ − iWρ,F
0 [φβ, φρ] . (3.84)

As emphasised by Lilow et al. (2019), this description is still exact and the macroscopic
action contains therefore the complete information on the microscopic dynamics. All of
the microscopic information is encoded in the free generating functional Wρ,F

0 [φβ, φρ].
Statistical quantities like for example the power spectrum can now be obtained by
introducing source fields for the macroscopic fields and applying functional derivatives
to the generating functional with respect to these source fields. The resulting expressions
can then be solved in a perturbative approach by Taylor expanding Wρ,F

0 [φβ, φρ] and
inserting the free microscopic cumulants obtained in Section 3.6.1. The full details of this
calculation are presented in Lilow et al. (2019). We use an analogous approach when we
apply the macroscopic formulation in order to calculate the PDF of the cosmic density
field in Section 4.3.





4
T H E O N E - P O I N T D I S T R I B U T I O N F R O M K F T

The cosmic density contrast is a correlated random field and therefore the probability to
obtain a density at one-point in space is conditional on the field values at other points.
To fully describe the density field, this conditional density distribution needs to be
known, which contains the information of all n-point spectra. We consider here the so
called one-point distribution, i.e. the conditional distribution marginalised over the field
values at all other points. We will call this distribution for brevity simply the probability
distribution function (PDF) of the cosmic density contrast1. It is a key quantity of modern
cosmology, since it summarises important information about the statistical properties
of the density field. It is needed for deriving further observables such as the halo mass
function (which we will consider in Chapters 5 and 6) or in the prediction of the halo
merger rate.

In the early Universe, the density contrast is well described by a Gaussian random
field as observations of the CMB (Planck Collaboration, 2020a) show. The corresponding
PDF of the density contrast at early times is therefore given by a normal distribution.
As explained in Section 2.3, the PDF then evolves away from a normal distribution
due to cosmic structure formation and the non-linearity of gravity. The description of
the PDF of today’s non-linearly evolved density field is a very hard task which has no
satisfying solution yet. One reason for this is that in principle infinitely many moments
of the PDF are required to describe the PDF of the non-linear field. As an alternative,
the current approach has been either to work on the basis of the initial density field as
in the Press-Schechter approach to the halo mass function (Press and Schechter, 1974)
or to assume a suitable model for the PDF of the evolved (over-)density field. It should
be noted that usually not the PDF of the actual overdensity field δ is considered, but
instead that of the field δR smoothed with a spherical filter of variable radius. To avoid
confusion, we would like to warn the reader that we will use the term density field
synonymously for the smoothed overdensity field. However, the meaning should become
clear, since we use δR with subscript R in the respective equations to signal that the
smoothed overdensity field is considered.

We will start with an overview of different models for the PDF that are currently
being used in the literature, which we will introduce in Section 4.1. We then present a
first approach to obtaining the density PDF from KFT in Section 4.2. Here, we will take
two of the models discussed in the preceding section, i.e. the lognormal model and the
generalised normal model, and fix their parameters by predictions of KFT. This section is

1 As mentioned in the previous chapter, we will focus only on dark matter in our considerations due to its
simple properties and since it represents the majority of the cosmic matter content.
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based on Linke (2017) and unpublished work by M. Feix2. In the last sections, we will
present a more fundamental approach, where we aim at deriving an approximation to
the density PDF directly from the generating functional of RKFT. We obtain the PDF
using perturbation theory up to second order in Section 4.3. A third-order approximation
is investigated in Section 4.4. Finally, we sketch an alternative ansatz based on the large
deviation principle in Section 4.5. We will consider in this chapter a dark matter only
universe, with parameters corresponding to those measured by (Planck Collaboration,
2020b), i.e. H0 = 67.66 km s−1 Mpc−1, ΩΛ = 0.6889, Ωm = 0.3111, σ8 = 0.8102 and
ns = 0.9665.

4.1 models of the cosmic density pdf

4.1.1 Lognormal distribution

Already in the 1930s, it was observed by Hubble (1934) that the galaxy distribution can be
described reasonably well by a lognormal distribution. Several decades later the theoretical
implications for the cosmic density field were investigated by Coles and Jones (1991). It
was then shown by Kayo et al. (2001) that the predictions of a lognormal distribution
also compare well to the predictions of cosmological N-body simulations.

By definition the mean of the density contrast needs to vanish, 〈δR〉 = 0. We further-
more introduce a scaling parameter σ̃R > 0 which is related to the variance of the cosmic
overdensity field σ2

R through σ̃2
R = ln(1 + σ2

R). The lognormal distribution is then given
by

pLN(δR) =
1√

2πσ̃R (1 + δR)
exp

[
−
(
ln (1 + δR) + σ̃2

R/2
)2

2σ̃2
R

]
(4.1)

and it is defined for values −1 < δR < ∞. The lognormal distribution shares all the
advantageous analytical properties of the normal distribution, since it can be seen as a
normal distribution after a change of variables x → ln(x) has been applied. Therefore, it
is described by just one parameter in the case of the cosmic overdensity field, since the
second parameter is fixed by 〈δR〉 = 0.

4.1.2 Generalised normal distribution

A more accurate model for the density PDF has been proposed by Shin et al. (2017). Based
on the measurement of the density PDF from N-body simulations, they propose to use

2 These two works led to a paper draft including contributions by the author of this dissertation. Parts of this
unpublished manuscript have been adopted verbatim in Section 4.2 and Chapter 6.
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the generalised normal distribution. This distribution is a generalisation of the lognormal
distribution which depends on three parameters. It takes the form

pGN(δR) =
1√
2π

1
α− β(δR − µ)

× exp

[
− 1

2β2

(
ln
[

1− β(δR − µ)

α

])2
]

, (4.2)

with a location parameter µ, a scaling parameter α > 0 and a shape parameter β. We
will require the PDF to be positively skewed in order to allow the tail to extend to high
densities while the PDF is bounded from below by δ > −1.The shape parameter therefore
needs to fulfil β < 0. The PDF is defined for the range µ + α/β < δR < ∞.

Shin et al. (2017) show that the generalised normal distribution provides a fit to simu-
lation results that is significantly better than the lognormal distribution for smoothing
radii in the range of 2 to 25 h−1Mpc. The generalised normal model is able to describe
the density PDF with a precision of less than 20 per cent in this range of smoothing radii.
The lognormal distribution in contrast describes the N-body with precision of less than
40 per cent.

We show an example of a Gaussian, lognormal and generalised normal distribution
in Fig. 4.1. The parameters were chosen such that the variance and the skewness match
the KFT prediction for the density field smoothed at 20 h−1Mpc (see Section 4.2). While
the Gaussian distribution is by definition symmetric around its mean, the other two
distributions are noticeably skewed. For the smoothing radius shown in the figure,
their large density tails roughly coincide. The lognormal distribution, however, is more
concentrated around its centre and therefore its low density tail decreases faster for
smaller densities.

4.1.3 Edgeworth approximation

An alternative approach, which has been used to describe the weakly non-Gaussian
regime, is the Edgeworth expansion (see e.g. Juszkiewicz et al., 1995). It approximates
the PDF by a series expansion which perturbs a Gaussian distribution with the help
of Hermite polynomials. The expansion coefficient of the nth polynomial is set by the
nth cumulant of the distribution that is to be approximated. However, the Edgeworth
expansion suffers from several conceptual shortcomings, which have been pointed out
recently by Sellentin et al. (2017) and Linke (2017).

The most severe problem is that the series only describes the PDF asymptotically. It
typically does not converge. Therefore, expansion coefficients “explode” as the next-order
term is even larger than the previous. The terms typically have alternating signs in order
to overcompensate the error of the previous expansion order. The asymptotic nature of
the series implies a second problem. There exists no clear measure to decide how well
the expansion matches the true PDF. Third and last, the Edgeworth approximation can
have negative values and therefore it does not represent a valid PDF. However, as stated
in Sellentin et al. (2017), this presents the smallest of its problems as it could be easily
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Figure 4.1: Examples of three different PDF models for the density field smoothed at 20 h−1Mpc.
The blue, short dashed line shows a Gaussian, the green, long dashed a lognormal
distribution (Eq. 4.1) and the orange, solid line a generalised normal distribution
(Eq. 4.2). The parameters were chosen such that the variance and the skewness match
the KFT prediction (see Section 4.2) and the mean is set to δ = 0.

circumvented. For example, these values could be set to zero while renormalising the
PDF afterwards. For these reasons, we will not use the Edgeworth expansion in this work
and mention it only for completeness.

4.1.4 Large deviation principle

A recent approach to deriving the PDF of the cosmic density field in the mildly non-linear
regime (R ∼ 10 to 20 h−1Mpc) is based on the large deviation principle. This principle
represents a generalisation of the central limit theorem (see e.g. Touchette, 2009, for a
nicely written introduction). It is fulfilled, if the asymptotic limit of the PDF, for a driving
parameter n going to infinity, is described by

P(x) ∼ e−nψ(x) for n→ ∞ , (4.3)

where the function ψ(x) is called the rate function. In the case that ψ(x) has a global mini-
mum of value zero, a Taylor expansion up to second order around this minimum would
recover the central limit theorem. It furthermore predicts the exponential suppression of
large deviations from the distribution’s most likely value.

We will introduce very briefly the most important concepts and theorems of large
deviation theory, which will become important in our subsequent discussion. A central
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quantity in large deviation theory is the scaled cumulant generating function (SCGF),
ϕ(k). It is defined for a real random variable An as

ϕ(k) := lim
n→∞

1
n

ln
〈

enkAn
〉

, (4.4)

where k ∈ R and〈
enkAn

〉
=
∫

R
enkaP(An ∈ da) . (4.5)

The Gärtner-Ellis theorem then states that if the SCGF exists and if it is differentiable for
all k ∈ R, then An satisfies the large deviation principle. It furthermore states that the
SCGF is connected to the rate function via the Legendre-Fenchel transformation, which
is a generalisation of the Legendre transformation for non-convex functions,

ψ(x) = sup
k∈R

{kx− ϕ(k)} . (4.6)

The second important theorem we will need is the contraction principle. Consider a second
random variable Bn that is a function of another random variable, Bn = f (An). The
contraction principle then states, if An fulfils the large deviation principle, then the
large deviation principle also holds for Bn and the rate functions are connected via the
infimum,

ψB(b) = inf
a: f (a)=b

ψA(a) . (4.7)

The large deviation principle can now be applied to derive the PDF of the cosmic
density field (Valageas, 2002; Bernardeau et al., 2014; Bernardeau and Reimberg, 2016;
Uhlemann et al., 2016). The linearly evolved density contrast, which shall be denoted by
τ, is described by a Gaussian random field. It can be shown, that the SCGF of a Gaussian
distribution exists and is differentiable for all k ∈ R with the inverse variance, 1/σ2,
being the driving parameter (c.f. Schilder’s theorem, Eq. 215 in Touchette, 2009). The
Gärtner-Ellis theorem thus states that τ fulfils the large deviation principle. If the real
density contrast ρ := ρphys

ρ̄ can now be expressed in terms of the linearly evolved density
contrast τ, the contraction principle can be used to derive the rate function of ρ from that
of τ. This has been done by Bernardeau et al. (2014) using the spherical collapse model,
where they obtain

ρ =
(

1− τ

ν

)−ν
, with ν =

21
13

. (4.8)

However, Uhlemann et al. (2016) suggest applying the contraction principle to the
logarithmic density µ = ln ρ instead of ρ. They state that this cures some shortcomings
of the original approach presented in Bernardeau et al. (2014), benefiting from the fact
that µ cannot become negative. The contraction principle then gives

ψµ = inf
τ: f (τ)=µ

ψτ(τ) . (4.9)
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Figure 4.2: Comparison of the KFT prediction of the variance σ2
KFT (blue, solid line) with the

variance calculated from the linear power spectrum σ2
lin (light blue, dashed line) and the

third cumulant from KFT κ3 (red, solid line) with the prediction by SPT κ3,SPT (orange,
long dashed line). All quantities are predictions for the cosmic density field smoothed
by a spherical top-hat filter as a function of filter scale R.

This rate function can then be transformed into the scaled cumulant generating function ϕ

via a Legendre-Fenchel transformation. Subsequently, Uhlemann et al. (2016) make the
ansatz that the cumulant generating function ϕ̃ is connected to the scaled cumulant
generating function via ϕ̃ = 1

σ2 ϕ(λσ2), where λ = dψ/dρ is the Legendre conjugate
variable and σ is a free parameter. The PDF can be obtained by a Laplace transform of ϕ̃

using the saddle-point approximation. Expressing the result in terms of ρ, Uhlemann
et al. (2016) obtain

P(ρ) =

√
ψ′′(ρ) + 1

ρ ψ′(ρ)

2πσ2 exp
[
−ψ(ρ)

σ2

]
. (4.10)

They demonstrate that this expression describes the PDF of the cosmic density field in the
mildly non-linear regime considerably better than for example a lognormal distribution.
A connection between the parameter σ2 and the variance of the non-linearly evolved
density field as predicted by KFT has been recently investigated by Bieringer (2018).

4.2 predicting model parameters with kft

Our first approach to describe the PDF of the density field with predictions from KFT
will employ two of the models introduced in the previous section. We will use KFT to
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obtain the parameters of the lognormal and the generalised normal distributions. These
parameters are fixed by the KFT results for the variance and the skewness of the density
field smoothed on a radius R.

The variance can be easily obtained from the KFT prediction of the non-linear power
spectrum (Fig. 3.1). The most recent development of KFT (Bartelmann et al., 2019)
provides the power spectrum of the non-linearly evolved cosmic density field Pδ(k) with
a precision of better than 20 per cent on scales up to k ∼ 10 hMpc−1, which is already
deeply in the non-linear regime. It includes interactions between the dark matter particles
by a mean field approach. The variance is then simply given by

σ2
R =

∫ d3k
(2π)3 Pδ(k)Ŵ2

R(k) , (4.11)

where ŴR is the Fourier transform of the top-hat filter with radius R, which has been
used to smooth the density field.

The third cumulant can be obtained in a similar way by integrating over the bispectrum.
Using the KFT prediction of the bispectrum in the non-interacting case (see Section 3.6.3),
the third cumulant κ3 can be calculated via

κ3(R) =
∫ d3k1

(2π)3
d3k2

(2π)3
d3k3

(2π)3 P(3)(~k1,~k2,~k3) ŴR(k1)ŴR(k2)ŴR(k3)

= σ4
R

(
4 +

R
σ2

R

dσ2
R

dR

)
,

(4.12)

which has been first derived in Linke (2017). It only depends on the variance σ2
R and its

derivative with respect to R. The form of Eq. (4.12) is very similar to the result from SPT
for an Einstein-de Sitter universe (Eq. 60 in Bernardeau, 1994a), i.e.

κ3,SPT = σ4
R

(
34
7

+
R
σ2

R

dσ2
R

dR

)
. (4.13)

The two equations differ only in the numerical value of the first summand in the bracket.
We show a comparison of the KFT-prediction for the variance σ2

R, the linear variance
from the Bardeen power spectrum σ2

R,lin, the third cumulant κ3 from KFT and the SPT-
prediction κ3,SPT in Fig. 4.2. Since KFT includes the non-linear evolution of density
fluctuations (see Fig. 3.1) the KFT prediction for the variance is on all scales larger than
the linear prediction. The non-linear effects become especially important on small scales,
which is reflected in an increasing discrepancy when smoothed over smaller and smaller
scales. The third cumulant κ3, which reflects the skewness of the distribution, decreases
considerably faster than the variance for increasing smoothing radii. The predictions of
SPT deviate from those of KFT by 20 to 30 per cent. However, it is important to mention,
that the values for κ3 for SPT are not a pure SPT result, since we only took the functional
form of Eq. (4.13), but we inserted the KFT values for the variance and its derivative, in
order to just compare the difference in the functional forms.
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We now use these KFT predictions to fix the parameters of the models for the density
PDF presented in Section 4.1. In case of the lognormal distribution (Eq. 4.1) this is
particularly easy. Since it only depends on one parameter σ̃R, we simply insert the KFT
prediction for the variance into

σ̃2
R = ln(1 + σ2

R) . (4.14)

This fully specifies the lognormal distribution at each radius.
The generalised normal distribution (Eq. 4.2) depends on three parameters, where the

first constraint is given by using 〈δR〉 = 0. Calculating the mean 〈δR〉 from Eq. (4.2) then
leads to the condition

µ̃β

α
= eβ2/2 − 1. (4.15)

Furthermore, we can similarly calculate the variance σ2
R = 〈δRδR〉 and third cumu-

lant κ3 = 〈δRδRδR〉 for the generalised normal distribution Eq. (4.2). This leads to the
conditions

σ2
R =

α2

β2 eβ2
(

eβ2 − 1
)

(4.16)

and

κ3 =
2 + e3β2 − 3eβ2(

eβ2 − 1
)3/2 σ3 . (4.17)

To further ease the notation, we define κ̃3 := κ3/σ3
R and

y := 1 +
κ̃2

3
2
−

√
4κ̃2

3 + κ̃4
3

2
. (4.18)

Eq. (4.17) can then be solved for β to get an explicit relation with respect to κ̃3

β2 = ln
(
−1 + y1/3 + y−1/3

)
. (4.19)

Moreover, we obtain the remaining two parameters by solving Eqns. (4.15) and (4.16),
which leads to

α2 = σ2
Rβ2 e−β2

(
eβ2 − 1

)−1
(4.20)

and

µ̃ =
α

β
eβ2/2 − 1. (4.21)
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Figure 4.3: PDF of the cosmic density field smoothed with a spherical top-hat filter based on
a generalised normal distribution (Eq. 4.2) as described in the text. Variance and
skewness are fixed by KFT predictions. The colours encode different smoothing radii
ranging from R = 2.5 to 40 h−1Mpc.

This allows to fully determine the generalised normal distribution by plugging in the
KFT predictions for σ2

R and κ3.
A comparison of the resulting lognormal distribution, generalised normal distribution

and a Gaussian can be seen for a smoothing radius of R = 20 h−1Mpc in Fig. 4.1. The
generalised normal distribution for six different smoothing radii is shown in Fig. 4.3.
For large smoothing radii, the PDF is still almost symmetric and has a shape close to a
Gaussian distribution. As the smoothing radius gets smaller, the variance and skewness
increase considerably. This leads to a shift of the maximum to more and more negative
values and a long tail extending to ever higher densities.

4.3 the density pdf from the generating functional

We will now explore a second path, which aims at deriving the density PDF from the
generating functional of KFT directly without assuming any PDF model. For this purpose,
we will use the framework of resummed KFT (RKFT, Lilow et al., 2019), which has been
summarised in Section 3.7. To extract the PDF from the generating functional, we will
introduce an indicator function Iρ̃. The purpose of this function is to filter out only those
field configurations in the macroscopic generating functional (Eq. 3.83), for which the
macroscopic density φρ (evaluated at the origin) has a value in a range of ∆ρ̃ around
a fiducial density ρ̃. It results in a probability distribution of the density ρ̃ represented
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by bins of width ∆ρ̃, which we denote as P(ρ̃)∆ρ̃ = P(ρ̃− ∆ρ̃/2 . φρ . ρ̃ + ∆ρ̃/2). The
indicator function is then formally introduced in the generating functional (Eq. 3.83) as

P(ρ̃)∆ρ̃ = N
∫
Dφ eiSφ Iρ̃(φρ) , (4.22)

where N is a normalisation constant. The most natural choice for the indicator function
would be a box function which returns one when the density is within the interval ∆ρ̃

around ρ̃ and zero otherwise. In our approach, we choose a Gaussian indicator function
instead, since its Fourier transform is particularly easy and it allows us to perform the
calculations analytically. The indicator function for the macroscopic density evaluated at
a position ~q0 and time t is given by

Iρ̃

(
φρ(~q0, t)

)
= e−

(φρ(~q0,t)−ρ̃)2

2σ2 , (4.23)

where we assumed that the normalisation factor of the Gaussian will be contained in
the normalisation factor N in Eq. (4.22). It will now be our aim to rewrite Eq. (4.22)
such that we absorb the indicator function into the action. We can then perform a
perturbation theory approach analogously to that presented in Lilow et al. (2019) in order
to approximate the integral. For simplicity, we choose ~q0 = 0, since the point at which
the field is evaluated is arbitrary due to the homogeneity assumption of cosmology.

We need to bring the indicator function into a form that uses the same structure as the
macroscopic action of RKFT. We will show here only the most important steps, while the
detailed calculations are presented in Appendix B. To bring the indicator function into a
RKFT-compatible notation, we rewrite the products in the exponent as the dot product
defined in Eq. (3.59). This requires to express the indicator function in dependency
of wave vectors ~k instead of positions ~q0 and to introduce integrals over ~k and t. As
detailed in Appendix B.1, the indicator function expressed in Fourier space, denoted by
Ĩρ̃(φρ(~k, t)), then takes the form

Ĩρ̃

(
φρ

)
=e−

1
2σ2 (

∫∫
d1 d2 φρ(1)φρ(2)δD(t1−t)δD(t2−t)−2

∫
d1 ρ̃φρ(1))δD(t1−t))e−

ρ̃2

2σ2 . (4.24)

In order to be able to introduce the dot product in the exponent, we define the two
auxiliary functions

W1(1) :=
ρ̃δD(t1 − t)

σ2 , (4.25)

W2(1, 2) :=
δD(t1 − t)δD(t2 − t)

σ2 , (4.26)
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which depend on the arguments 1 and 2 only formally3, allowing us to write the linear
and the quadratic term of the exponent in the desired form of the dot product,

Ĩρ̃

(
φρ

)
= eW1·φρ− φρ ·W2 ·φρ

2 e−
ρ̃2

2σ2 . (4.27)

We now insert it into the generating functional (Eq. 3.83) and obtain

P(ρ̃)∆ρ̃ = N
∫
Dφ eiSφ Ĩρ̃(φρ)

= N
∫
Dφ eiSφ eW1·φρ− φρ ·W2 ·φρ

2 e−
ρ̃2

2σ2

=: N e−
ρ̃2

2σ2

∫
Dφ eiSpdf

φ .

(4.28)

In the last step, we have defined the action Spdf
φ , which contains those parts of the

indicator function that depend on the field φρ,

Spdf
φ := −φρ · φβ − iWρ,F

0 [φβ, φρ]− iW1 · φρ + i
φρ · W2 · φρ

2
. (4.29)

We now solve the path integral of Eq. (4.28) in a procedure analogous to the perturba-
tion theory approach proposed by Lilow et al. (2019). We will expand the free generating
functional Wρ,F

0 [φβ, φρ] contained in the action Spdf
φ up to second order. The third-order

expansion will be investigated in Section 4.4. Since all other summands in the action are
of quadratic order or less, the path integral can easily be solved by a Gaussian integration.
We write the quadratic form of the action in terms of the field φ, the one-point vertex V
and the macroscopic propagator ∆, which are yet to be defined. We need to emphasise
that V and ∆ are in this case not the same as in the standard RKFT formulation but will
have a slightly modified shape, since they will contain also the indicator function. We
thus assume the action to be of the form

iSpdf
φ =

∫
d1
(
Vρ,Vβ

)
(1)

(
φρ

φβ

)
(−1)

− 1
2

∫
d1
∫

d2
(
φρ, φβ

)
(−1)

(
(∆−1)ρρ (∆−1)ρβ

(∆−1)βρ (∆−1)ββ

)
(1, 2)

(
φρ

φβ

)
(−2)

= V · φ− 1
2

φT · ∆−1 · φ ,

(4.30)

3 Note also that we usedW1(1) =W1(−1) andW2(1, 2) =W2(−1,−2), since neitherW1 norW2 depends
on~k. In principle, the definition would require a minus sign in front of all of the arguments, according to
the definition of the dot product in Eq. (3.59).
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where V and ∆ are still to be specified. Sparing the identification of V and ∆ for a second
step, we can solve Eq. (4.28)

P(ρ̃)∆ρ̃ = N e−
ρ̃2

2σ2

∫
Dφ e−

1
2 φT·∆−1·φ+V·φ

= Ñ e
1
2V·∆·V−

ρ̃2

2σ2 ,

(4.31)

where we absorbed in the second line all constant factors from the path integral into the
normalisation constant Ñ .

We now proceed with specifying the actual form of V and ∆, where especially
the inversion of ∆−1 will require some involved calculations. To bring Eq. (4.29) into
quadratic form, we need to Taylor expand the logarithm of the free generating functional
Wρ,F

0 [φβ, φρ] up to second order. The Taylor expansion in terms of the source fields φβ

and φρ is given by

W[φ] = ∑
nρ,nβ

1
nρ!nβ!

nβ

∏
u=1

(∫
du φβ(−u)

δ

δφβ(u)

) nρ

∏
r=1

(∫
dr′ φρ(−r′)

δ

δφρ(r′)

)
W[φ̃]|φ=0

= ∑
nρ,nβ

inρ+nβ

nρ!nβ!

nβ

∏
u=1

(∫
du φβ(−u)

)
. . .

×
nρ

∏
r=1

(∫
dr′ φρ(−r′)

)
Gρ···ρF···F (1, . . . , nβ, 1′, . . . , nρ) ,

(4.32)

where we have used in the second step that φρ and φβ are in our picture the source
fields of the dressed response field F and the microscopic density field ρ, respectively.
Applying functional derivatives with respect to φρ and φβ to the logarithm of the free
generating functional therefore simply yields the corresponding free cumulant up to a
constant prefactor. These cumulants have been summarised in Section 3.6.1.
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Multiplying Eq. (4.29) by a factor of i and inserting the Taylor expansion up to second
order leads to

iSpdf
φ =− iφβ · φρ +W1 · φρ −

φρ · W2 · φρ

2
+ iGρ · φβ + iGF · φρ

− 1
2

φβ · Gρρ · φβ −
1
2

φρ · GFF · φρ − φβ · GρF · φρ

= (iGF +W1) · φρ + iGρ · φβ − φρ ·
1
2
(W2 + GFF ) · φρ

− 1
2

φβ · Gρρ · φβ − φβ ·
(
GρF + iI

)
· φρ

=
(
(iGF +W1), iGρ

)
·
(

φρ

φβ

)

− 1
2
(
φρ, φβ

)
·
(
W2 + GFF iI + GFρ

iI + GρF Gρρ

)
·
(

φρ

φβ

)
,

(4.33)

with the 2-point identity function I defined as

I(1, 2) :=(2π)3δD(~k1 +~k2)δD(t1 − t2). (4.34)

In the second step, we collected summands according to their powers in φρ and φβ,
respectively, and used vector/matrix-notation in the third step. Comparing this form of
the action with Eq. (4.30), the vertex V and the inverse macroscopic propagator ∆−1 can
easily be identified as

V ≡
(
(iGF +W1), iGρ

)
(4.35)

and

∆−1 ≡
(
(W2 + GFF ) (iI + GFρ)

(iI + GρF ) Gρρ

)
. (4.36)

Taking the free cumulants introduced in the previous chapter, i.e. Eqns. (3.67) – (3.72),
we see that the pure dressed response field cumulants are zero, which leads to

V =
(
W1, iGρ

)
=

(
ρ̃

σ2 δD(t1 − t), iGρ

)
(4.37)

and

∆−1 =

(
W2 iI + GFρ

iI + GρF Gρρ

)
(4.38)

:=

(
A B

C D

)
. (4.39)
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We defined in the last step A, B, C and D to ease notation for deriving the inverse of ∆−1.
They can be interpreted as block matrices in the following way. Discretising the time
evolution into n time steps, the fields φρ and φβ can be seen as n-dimensional vectors.
In this picture, components of the inverse propagator take the shape of n× n matrices.
Their full functional form is recovered in the limit n→ ∞.

4.3.1 Calculating the propagator

In this section, it will be our task to calculate the propagator

∆ =:

(
∆11 ∆12

∆21 ∆22

)
, (4.40)

i.e. to invert Eq. (4.38) such that we can insert it into Eq. (4.31). Using matrix inversion
with block matrices known from linear algebra, we obtain

∆11 = (A− B · D−1 · C)−1 = −C−1 · D · (B− A · C−1 · D)−1 , (4.41)

∆12 = (C− D · B−1 · A)−1 , (4.42)

∆21 = (B− A · C−1 · D)−1 , (4.43)

∆22 = (D− C · A−1 · B)−1 = −B−1 · A · (C− D · B−1 · A)−1 , (4.44)

where we have rewritten Eqns. (4.41) and (4.44) such that they can be expressed in terms
of ∆12 and ∆21. We will therefore start with calculating ∆12.

In order to make the following calculations more readable and to highlight that the
δD-distributions are the crucial point, we absorb all functional dependences that are not
δD-distributions into the functions G̃ρF (k1; t1, t2) and G̃ρρ(k1; t1, t2), i.e.

GρF (1, 2) =: (2π)3δD(~k1 +~k2)G̃ρF (k1; t1, t2)

≈ i(2π)3δD(~k1 +~k2)~k2
1 gqp(t1, t2)ρ̄v(k1, t1) ,

(4.45)

Gρρ(1, 2) =: (2π)3δD(~k1 +~k2)G̃ρρ(k1; t1, t2)

≈ (2π)3δD(~k1 +~k2)(1 + gqp(t1, 0))(1 + gqp(t2, 0))ρ̄2Pini
δδ (~k1) .

(4.46)

(i) Calculating ∆12:

By definition of the inverse and the 2-point identity function (Eq. 4.34), we have

∆12(1, 1̄) · (C− D · B−1 · A)(−1̄, 2)
!
= I (1, 2) , (4.47)
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where the variable with a bar is the variable which is integrated over in the dot product
(defined in Eq. 3.59). Inserting the matrix components A, B, C and D leads to

∆12(1, 1̄) ·
[
iI (−1̄, 2) + (2π)3δD(−~k1̄ +~k2)G̃ρF (−k1̄; t1̄, t2)− (2π)3 . . .

δD(−~k1̄ +~k1̄′)G̃ρρ(−k1̄; t1̄, t1̄′) · B−1(−1̄′, 1̄′′) · δD(t1̄′′ − t)δD(t2 − t)
σ2

]
!
= I (1, 2) .

(4.48)

In order to solve this equation, we will proceed analogously to Lilow et al. (2019) and
assume that ∆12 can be decomposed into summands that contain various combinations
of δD-distributions. We guess the form of ∆12 on the basis of the structure of ∆−1, i.e. by
recognising the different combinations of δD-distributions contained in A, B, C and D.
We therefore assume that we can decompose ∆12 into

∆12(1, 1̄) = −i
(
I (1, 1̄) + (2π)3δD(~k1 +~k1̄)∆̃

(1)
12 (k1; t1, t1̄) . . .

+ δD(t1̄ − t)∆̃(2)
12 (k1, k1̄; t1; t) + ∆̃(3)

12 (k1, k1̄; t1, t1̄; t)
)

,
(4.49)

where the functions ∆̃(1)
12 , ∆̃(2)

12 and ∆̃(3)
12 contain the remaining unknown functional

dependences belonging to each δD-distribution and they are now to be determined.
We furthermore notice that B−1 equals exactly the off-diagonal entry in the propagator

of Lilow et al. (2019), which was used to calculate the non-linear power spectrum. We can
therefore simply use their solution for B−1, which they named the advanced propagator ∆A

after factoring out a factor of −i. It is given by

B−1(−1̄′, 1̄′′) = −i
[
I − iGFρ

]−1
(−1̄′, 1̄′′) = −i∆A(−1̄′, 1̄′′) (4.50)

= −i
(
I (−1̄′, 1̄′′) + (2π)3δD(−~k1̄′ +~k1̄′′)∆̃A(−k1̄′ ; t1̄′ , t1̄′′)

)
, (4.51)

where – in the same spirit as above – it was assumed in the second line that the advanced
propagator can be decomposed into a summand equal to the identity function and
another proportional to δD(−~k1̄′ +~k1̄′′). Lilow et al. (2019) describe the computation of ∆̃A

in their Appendix B.4 They also introduce the retarded propagator ∆R, which is related
to the advanced propagator simply by exchanging the arguments, ∆A(1, 2) = ∆R(2, 1).

Inserting our ansatz for ∆12 (Eq. 4.49) and the result for B−1 (Eq. 4.51) into Eq. (4.48)
leads us to the constraint equation which should allow us to determine the three func-
tions ∆̃(1)

12 , ∆̃(1)
12 and ∆̃(3)

12 . Carrying out all resulting integrations in Eq. (4.48) leads

4 They show that for certain functional forms of G̃ρF an exact analytic expression can be obtained using
Laplace transforms. In the general case, an approximate numerical result can be computed using the
discretisation of the time argument mentioned in the paragraph below Eq. (4.39).
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then to the lengthy expression (see Appendix B.2 for the details of the calculation)

(2π)3δD(~k1 +~k2)
[
−iG̃ρF (k1; t1, t2) + ∆̃(1)

12 (k1; t1, t2)− i
∫

t1̄
∆̃(1)

12 (k1; t1, t1̄) G̃ρF (k1; t1̄, t2)

]
. . .

+ δD(t2−t)
σ2

[
G̃ρρ(k1; t1, t) +

∫
t1̄′

G̃ρρ(k1; t1, t1̄′)∆̃A(k1; t1̄′ , t) +
∫

t1̄
∆̃(1)

12 (k1; t1, t1̄) G̃ρρ(k1; t1̄, t) . . .

+
∫

t1̄

∫
t1̄′

∆̃(1)
12 (k1; t1, t1̄) G̃ρρ(k1; t1̄, t1̄′)∆̃A(k1; t1̄′ , t) + σ2 ∆̃(2)

12 (k1, k2; t1; t) . . .

+
∫

k1̄
∆̃(2)

12 (k1, k1̄; t1; t) G̃ρρ(−k1̄; t, t) +
∫

k1̄
∆̃(2)

12 (k1, k1̄; t1; t)
∫

t1̄′
G̃ρρ(−k1̄; t, t1̄′)∆̃A(−k1̄; t1̄′ , t) . . .

+
∫

k1̄

∫
t1̄

∆̃(3)
12 (k1, k1̄; t1, t1̄; t) G̃ρρ(−k1̄; t1̄, t) . . .

+
∫

k1̄

∫
t1̄

∆̃(3)
12 (k1, k1̄; t1, t1̄; t)

∫
t1̄′

G̃ρρ(−k1̄; t1̄, t1̄′)∆̃A(−k1̄; t1̄′ , t)
]

. . .

−i ∆̃(2)
12 (k1, k2; t1; t) G̃ρF (−k2; t, t2) + ∆̃(3)

12 (k1, k2; t1, t2; t) − i(2π)3 ∆̃(3)
12 (k1, k1̄; t1, t1̄; t) · δD(−~k1̄ +~k2)G̃ρF (−k1̄; t1̄, t2)

!
= 0 ,

(4.52)

where we regrouped the summands according to the contained δD-distribution. In order
to make it easier to match equal terms, we highlight them by the same line style. Each of
the three summands is proportional to a different δD-distribution and therefore each of
the summands has to be zero individually. We end up with three constraining equations
that will allow us to determine the three functions ∆̃(1)

12 , ∆̃(1)
12 and ∆̃(3)

12 . These read

∆̃(1)
12 (k1; t1, t2) = iG̃ρF (k1; t1, t2) + i

∫
t1̄

∆̃(1)
12 (k1; t1, t1̄) G̃ρF (k1; t1̄, t2) , (4.53)

∆̃(2)
12 (k1, k2; t1; t) = − 1

σ2

[
G̃ρρ(k1; t1, t) +

∫
t1̄′

G̃ρρ(k1; t1, t1̄′)∆̃A(k1; t1̄′ , t) +
∫

t1̄

∆̃(1)
12 (k1; t1, t1̄) G̃ρρ(k1; t1̄, t) . . .

+
∫

t1̄

∫
t1̄′

∆̃(1)
12 (k1; t1, t1̄) G̃ρρ(k1; t1̄, t1̄′)∆̃A(k1; t1̄′ , t) +

∫
k1̄

∆̃(2)
12 (k1, k1̄; t1; t) G̃ρρ(−k1̄; t, t) . . .

+
∫

k1̄

∆̃(2)
12 (k1, k1̄; t1; t)

∫
t1̄′

G̃ρρ(−k1̄; t, t1̄′)∆̃A(−k1̄; t1̄′ , t) +
∫

k1̄

∫
t1̄

∆̃(3)
12 (k1, k1̄; t1, t1̄; t) G̃ρρ(−k1̄; t1̄, t) . . .

+
∫

k1̄

∫
t1̄

∆̃(3)
12 (k1, k1̄; t1, t1̄; t)

∫
t1̄′

G̃ρρ(−k1̄; t1̄, t1̄′)∆̃A(−k1̄; t1̄′ , t)

]
, (4.54)

∆̃(3)
12 (k1, k2; t1, t2; t) = i ∆̃(2)

12 (k1, k2; t1; t) G̃ρF (−k2; t, t2) + i(2π)3 ∆̃(3)
12 (k1, k1̄; t1, t1̄; t) · δD(−~k1̄ +~k2)G̃ρF (−k1̄; t1̄, t2) ,

(4.55)

The first equation (Eq. 4.53) provides an easy solution to ∆̃(1)
12 after one realises that it is

almost identical to Eq. (B.5) in Lilow et al. (2019), i.e. the constraint equation for ∆̃R. The
only difference is in the order of the time arguments of the functions appearing under the
integral and which are integrated over. Despite this difference, the result will be exactly
the same as can be seen as follows. Recursively inserting the right-hand side of Eq. (4.53)
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for ∆̃(1)
12 under the integral leads to a recursive series, which is a so called Neumann

series. This leads to integrals of arbitrarily many factors of G̃ρF . In this representation it
becomes obvious that Eq. (4.53) is in fact identical to Eq. B.5 in Lilow et al. (2019) despite
the different order of time variables under the integral. We therefore get

∆̃(1)
12 (k1; t1, t2) = ∆̃R(k1; t1, t2) , (4.56)

where we can consider ∆̃R as known by adopting the results of Lilow et al. (2019).
We now continue with the third equation (Eq. 4.55), since it can be inserted into

Eq. (4.54) to obtain a solution for ∆̃(2)
12 . Also here we can obtain a simple form by

identifying ∆̃R as shown in Appendix B.3. We end up with

∆̃(3)
12 (k1, k2; t1, t2; t) = ∆̃(2)

12 (k1, k2; t1; t) ∆̃R(−k2; t, t2) . (4.57)

We can obtain ∆̃(2)
12 by inserting Eqns. (4.56) and (4.57) into the second constraint equation

(Eq. 4.54), which leads to

∆̃(2)
12 (k1, k2; t1; t) = − 1

σ2

G̃ρρ(k1; t1, t) +
∫

t1̄′
G̃ρρ(k1; t1, t1̄′)

(
∆̃A(k1; t1̄′ , t) + ∆̃R(k1; t1, t1̄′)

)
. . .︸

+
∫

t1̄

∫
t1̄′

∆̃R(k1; t1, t1̄)G̃ρρ(k1; t1̄, t1̄′)∆̃A(k1; t1̄′ , t)︷︷ ︸
=:∆̃ρρ(k1;t1,t)

. . .

+
∫

k1̄

∆̃(2)
12 (k1, k1̄; t1; t)

[
G̃ρρ(−k1̄; t, t) +

∫
t1̄

G̃ρρ(−k1̄; t, t1̄)∆̃A(−k1̄; t1̄, t)

]
. . .

+
∫

k1̄

∫
t1̄

∆̃(2)
12 (k1, k1̄; t1; t) ∆̃R(−k1̄; t, t1̄)

[
G̃ρρ(−k1̄; t1̄, t) +

∫
t1̄′

G̃ρρ(−k1̄; t1̄, t1̄′)∆̃A(−k1̄; t1̄′ , t)

]  .

(4.58)

Also here we can identify an expression that occurred already in Lilow et al. (2019). The
first three terms in the bracket correspond to the density-density propagator ∆ρρ, defined
for the phase space density f in Eq. (B.11) of Lilow et al. (2019), where the tilde signals
that the δD-distribution has been factored out. We furthermore see that the right-hand
side of the equation does not depend on k2. Therefore, ∆̃(2)

12 cannot depend on k2 either,
which we drop from now on,

∆̃(2)
12 (k1, k2; t1; t) ≡ ∆̃(2)

12 (k1; t1; t) . (4.59)
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This allows us to pull ∆̃(2)
12 out of those integrals where the second k-argument is the

integration variable,

∆̃(2)
12 (k1; t1; t) = − 1

σ2

[
∆̃ρρ(k1; t1, t) + ∆̃(2)

12 (k1; t1; t)

∫
k1̄

[
G̃ρρ(−k1̄; t, t) . . .

+
∫

t1̄

G̃ρρ(−k1̄; t, t1̄)
(
∆̃A(−k1̄; t1̄, t) + ∆̃R(−k1̄; t, t1̄)

)
. . .

+
∫

t1̄

∫
t1̄′

∆̃R(−k1̄; t, t1̄)G̃ρρ(−k1̄; t1̄, t1̄′)∆̃A(−k1̄; t1̄′ , t)

]]

= − 1
σ2

[
∆̃ρρ(k1; t1, t) + ∆̃(2)

12 (k1; t1; t)

∫
k1̄

∆̃ρρ(−k1̄; t, t)

]
,

(4.60)

where we used in the second step that we can write the bracket as well as ∆̃ρρ. We now

solve the equation for ∆̃(2)
12 and obtain

∆̃(2)
12 (k1; t1; t) = − 1

σ2 ∆̃ρρ(k1; t1, t)

(
1 +

1
σ2

∫
k1̄

∆̃ρρ(−k1̄; t, t)

)−1

= −∆̃ρρ(k1; t1, t)

(
σ2 +

∫
k1̄

∆̃ρρ(−k1̄; t, t)

)−1

.

(4.61)

According to its definition in Lilow et al. (2019), the density-density propagator ∆ρρ(1, 2) =
(2π)3δD(~k1 +~k2)∆̃ρρk1; t1, t2) corresponds to the 2-point density cumulant, however with-
out terms involving vertices. Integrating ∆̃ρρ over all k-values therefore results in a
linearly evolved density variance5, which we define as σ2

lin :=
∫

k1̄
∆̃ρρ(k1̄; t, t). Hence, we

obtain the result

∆̃(2)
12 (k1; t1; t) = − 1

σ2 + σ2
lin

∆̃ρρ(k1; t1, t) . (4.62)

We have now determined all three of the component functions and, taking the results for
∆̃R and ∆̃ρρ from Lilow et al. (2019), we obtain a solution for ∆12.

(ii) Calculating ∆21:

The solution for ∆12 leaves us at the same time with a simple result for ∆21, realising
that ∆21 is simply the transposed of ∆12, i.e. interchanging first and second argument.

5 In general, the integral over ∆̃ρρ does not correspond exactly to the linearly evolved density variance, since

the free Gρρ-cumulants contain also non-linear P(i)
δ -terms. However, this deviation should be very small.

Since we employ an approximation of Gρρ up to linear order in P(i)δ (c.f. Eq. 3.72), it is in our case exactly
the linear variance.
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This is because ∆12 and ∆21 take a role similar to the advanced propagator ∆A and the
retarded ∆R in Lilow et al. (2019), which are related by exchanging their first and second
arguments. We can therefore directly express ∆21 as

∆21(1, 2) = ∆T
12(1, 2) = ∆12(2, 1) . (4.63)

(iii) Calculating ∆11:

We start with Eq. (4.41) and identify the inverse of the bracket with ∆21, which leads to

∆11(1, 2) = −C−1(1, 1̄) · D(−1̄, 1̄′) · ∆21(−1̄′, 2) . (4.64)

Furthermore, we can identify C−1 with the definition of the retarded propagator ∆R

from Lilow et al. (2019), as it was done above analogously for B−1 with the advanced
propagator. The only difference between B and C is the order of the arguments, since
F and ρ are interchanged in the cumulant. This is the reason why now the retarded
propagator ∆R is involved. We can therefore write

C−1(−1̄′, 1̄′′) = −i
[
I − iGρF

]−1
(−1̄′, 1̄′′) = −i∆R(−1̄′, 1̄′′) (4.65)

= −i
(
I (−1̄′, 1̄′′) + (2π)3δD(−~k1̄′ +~k1̄′′)∆̃R(−k1̄′ ; t1̄′ , t1̄′′)

)
. (4.66)

Inserting this result together with D (Eq. 4.38) and ∆21 (Eq. 4.63) into Eq. (4.64) leads to

∆11(1, 2) =
∫

t1̄

[(
δD(t1̄ − t1) + ∆̃R(k1; t1, t1̄)

) (
(2π)3δD(~k1 +~k2)G̃ρρ(k2; t1̄, t2) . . .

+ (2π)3δD(~k1 +~k2)
∫

t1̄′
G̃ρρ(k2; t1̄, t1̄′)∆̃

(1)
12 (k2; t2, t1̄′) . . .

+ G̃ρρ(−k1; t1̄, t)∆̃(2)
12 (k2, k1; t2; t) +

∫
t1̄′

G̃ρρ(−k1; t1̄, t1̄′)∆̃
(3)
12 (k2, k1; t2, t1̄′ ; t)

)]
,

(4.67)

where the integrations have been carried out already. The detailed steps are shown in
Appendix B.4.

(iv) Calculating ∆22:

Finally, we can obtain ∆22 in a similar way from Eq. (4.44), leading to

∆22(1, 2) = −B−1(1, 1̄) · A(−1̄, 1̄′) · ∆12(−1̄′, 2) , (4.68)
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where we have identified the inverse of the bracket with ∆12. We can again use the
solution for B−1 from Lilow et al. (2019), i.e. Eq. (4.51), and insert A (Eq. 4.38) as well as
∆21 (Eq. 4.42) to obtain

∆22(1, 2) =
δD(t1 − t) + ∆̃A(k1; t1, t)

σ2

[
δD(t2 − t) + ∆̃(1)

12 (−k2; t, t2) . . .

+δD(t2 − t)
∫

k1̄′
∆̃(2)

12 (−k1̄′ , k2; t; t) +
∫

k1̄′
∆̃(3)

12 (−k1̄′ , k2; t, t2; t)

]
.

(4.69)

Also here we have carried out the integrations where possible. The details of the calcula-
tion can be found in Appendix B.5.

4.3.2 Calculating the PDF

This puts us in the position to actually calculate the PDF as given in Eq. (4.31) by inserting
our results for the one-point vertex V and the propagator ∆. The one-point distribution
can then be calculated as

P(ρ̃)∆ρ̃ = Ñ e−
ρ̃2

2σ2 +
1
2V·∆·V

= Ñ exp
[
− ρ̃2

2σ2 +
1
2
(V1 · ∆11 · V1 + V2 · ∆21 · V1 + V1 · ∆12 · V2 + V2 · ∆22 · V2)

]
=: Ñ exp

[
− ρ̃2

2σ2 +
1
2
(I + II + III− IV)

]
.

(4.70)

Since the steps to carry out the dot products for each of the terms I to IV do not bear
any deeper insights but involve only straightforward calculus, we will give just the final
results here and refer the reader to Appendix B.6 for the details. We obtain

I =
ρ̃2σ2

lin
σ4

σ2

σ2 + σ2
lin

, (4.71)

II =
ρ̃ρ̄

σ2
σ2

σ2 + σ2
lin

, (4.72)

III = II , (4.73)

IV =
ρ̄2

σ2
σ2

σ2 + σ2
lin

. (4.74)
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Inserting these into Eq. (4.70) gives

P(ρ̃)∆ρ̃ = Ñ exp

[
− ρ̃2

2σ2 +
1
2

(
ρ̃2

σ4 σ2
lin + 2

ρ̃ρ̄

σ2 −
ρ̄2

σ2

)
σ2

σ2 + σ2
lin

]

= Ñ exp

[
1
2

(
− ρ̃2

σ2 + 2
ρ̃ρ̄

σ2 −
ρ̄2

σ2

)
σ2

σ2 + σ2
lin

]

= Ñ exp

[
− (ρ̃− ρ̄)2

σ2 + σ2
lin

]
.

(4.75)

This form already represents a Gaussian distribution as expected from a second-order
approximation. However, we can go one step beyond and evaluate the PDF in the limit
of vanishing width of the indicator function (σ→ 0). We are then left with the Gaussian
approximation of the PDF itself and eliminated the influence of the indicator function,

P(ρ̃)dρ̃ = lim
σ→0

P(ρ̃)∆ρ̃ = Ñ exp

[
− (ρ̃− ρ̄)2

σ2
lin

]
. (4.76)

We thus indeed managed to obtain a Gaussian distribution. This is of course the expected
result, since we required a quadratic form of the exponent of the generating functional in
order to be able to solve the path integral in Eq. (4.28).

This result is of course not useful when one wishes to calculate the non-linear cosmic
density field. As we argued above, the present day density field is indeed non-Gaussian.
However, the exercise shown above can be interpreted as a first step. We succeeded in
deriving a PDF from the generating functional using an indicator function and the result
matches the expectations. It therefore represents an encouraging first result from which
we can proceed towards deriving a non-Gaussian PDF from the generating functional.

4.4 beyond quadratic approximations

In the next step, we extend this approach by expanding the generating functional beyond
second order. This, however, leads to the problem that the path integral in Eq. (4.31)
cannot be solved in a straightforward manner, since it is not a Gaussian integral any
longer. This problem is also known from QFT, where a frequently used solution is to
approximate the path integral by an effective action (see e.g. Weigand, 2013; Ch. 11.3 in
Peskin and Schroeder, 1997). In this section, it is our aim to explore if a similar approach
can be applied in our case as well.
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In the spirit of its definition in QFT, we define the effective logarithmic generating
functional W as the logarithmic generating functional that contains the information of the
path integral

P(ρ̃)∆ρ̃ = N eW[V1] := N
∫
Dφ eiSφ (4.77)

and it is a functional of our source fields V1 only6. However, it is usually more convenient
to use instead of W[V1] its Legendre transform (or rather the Legendre transform of
−iW[V1])7, which is called the effective action. The Legendre transform is a functional of
−i δW

δV1
, which is the expectation value of φ while the sources are still present, i.e.

−i
δW
δV1

=

∫
Dφ φ eiSφ∫
Dφ eiSφ

=: φ̄ . (4.78)

Performing the Legendre transformation and multiplying with i, we obtain the effective
action as

iΓ[φ̄] = W[V1[φ̄]]− iV1 · φ̄ . (4.79)

However, since calculating φ̄ also requires solving the path integral, it poses the same
problem as calculating P(ρ̃) directly. We will therefore express the expectation value of φ

by its lowest-order approximation

φ̄ ≈ ∆ · V1 . (4.80)

Since we are not interested in the effective action, but in W expressed in terms of φ̄,
we will reformulate Eq. (4.79) as W[V1[φ̄]] = iΓ[φ̄] + iV1 · φ̄. Hence, we can calculate the
probability distribution of ρ̃ as

P(ρ̃)∆ρ̃ = eW[V1[φ̄]] . (4.81)

We will neglect any loops and take the effective action at tree-level,

Γ[φ̄] ≈ Sφ|φ=φ̄ . (4.82)

6 W can be seen as the generating functional of connected correlation functions, see e.g. Peskin and Schroeder
(1997) p. 380.

7 This is due to the fact that in our notation a factor i has been absorbed into W to make the connection to
statistical physics more obvious. However, in the standard QFT formalism the i is usually factored out. We
therefore have to perform the Legendre transformation of −iW[V1].
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Combining Eqns. (4.78), (4.79) and (4.82) leads to

W[φ̄] ≈ iSφ|φ=φ̄ + iV1 · φ̄

≈
[
−iV1 · φ−

1
2

φ · ∆−1 · φ− i
(

1
3!

φβ · φβ · φβ · Gρρρ +
1
2

φβ · φβ · φρ · GρρF . . .

+
1
2

φβ · φρ · φρ · GρFF +
1
3!

φρ · φρ · φρ · GFFF︸ ︷︷ ︸
=0

)]∣∣∣∣∣∣
φ=φ̄

+ iV1 · φ̄ ,

(4.83)

where we have approximated W0 up to third order in the second step, introducing the
3-point cumulants which are explicitly given in Appendix A.

Unfortunately, it quickly turns out that this approach does not lead to sensible results.
Inserting Eq. (4.83) into Eq. (4.81) shows that the odd orders will lead to a diverging PDF.
For negative values of δ, the exponent becomes positive and grows therefore exponentially.
Hence, the PDF is not normalisable. These findings are in line with Sellentin (2015), where
the same result was obtained in the context of likelihood estimations. As pointed out by
Sellentin (2015), this problem arises due to the slow convergence of the Taylor expansion
of the logarithm, since we expand the logarithmic generating functional W. They state
further that an expansion well beyond the fourth order would be needed in order to
expect the PDF to be normalisable. Considering that already the third cumulants can only
be obtained as a rough first-order approximation, an approximation in terms of sixth-,
seventh- or higher-order cumulants does not seem feasible at this stage. Furthermore,
Carron and Neyrinck (2012) suggest that even the full hierarchy of correlation functions
could be insufficient to describe a correlated lognormal field due to the long tail of
the lognormal distribution. This would imply that also the analogous description after
marginalising over all other points, i.e. describing the one-point distribution in terms of
all cumulants, would not be unique for a long-tailed distribution.

4.5 large deviation principle

For this reason, we would like to sketch an alternative approach here, which is based
on the large deviation principle. As shown in the review by Touchette (2009), the large
deviation principle can be connected to statistical physics. This allows identifying the
SCGF with the Helmholtz free energy times the scaling parameter N. Since also KFT has
a deep link to statistical physics, e.g. the generating functional fulfils the same role as a
partition sum, it seems plausible to find a connection of KFT with the large deviation
principle. If it is possible to find a rate function from KFT, this would then allow obtaining
an asymptotic description of the density PDF.
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As is known from quantum field theory, the Schwinger functional (i.e. the logarithm of
the generating functional8) takes the same role as the Helmholtz free energy (see Peskin
and Schroeder, 1997, p. 365) and it therefore also corresponds to the SCGF divided by the
particle number ϕ/N. The rate function is connected to the SCGF by a Legendre-Fenchel
transformation and the Legendre-Fenchel transformation of the Schwinger functional
results in an effective action Γ (times a factor of i due to the definition of the Schwinger
functional in KFT). This finally gives us the link between the rate function and the
effective action

Nψ = iΓ . (4.84)

We would like to emphasise that in this section we turn away from the RKFT formula-
tion used in the previous sections and base our considerations on the formulation of the
generating functional derived in Eq. (3.27).9 A recent calculation by Schmidt (2020) has
shown that an effective action for the KFT generating functional can be written as

Γ[X, φ̃] = W0 + WK − J · X− K · φ̃

= φ̃ · G−1 · X− i ln
∫

dq exp
[
−1

2
φ̃p(0)Cpp(q)φ̃p(0)− i

〈
φ̃q(0), q

〉]
,

(4.85)

where the first equality simply reproduces the definition of the effective action as the
Legendre transform of the Schwinger functional W = −i ln Z[J, K] with respect to the
phase space-position source field J and the response source field K. This implies the
definition of the Legendre conjugate variables as

φ̃ :=
δW
δK

= 〈χ〉 , (4.86)

X :=
δW
δJ

= 〈x〉 , (4.87)

which both correspond to macroscopic fields in the sense that both the initial phase-
space coordinates and the final field configurations have been integrated out. It implies
furthermore that the effective action Γ contains corrections to the action S appearing
inside the generating functional (Eq. 3.22), since the fluctuations of the initial conditions
have been taken into account by performing the integral. The second line of Eq. (4.85)
is the effective action derived by Schmidt (2020), which includes the matrix of initial
momentum correlations Cpp (see Eq. 3.38). Note that we furthermore added a tilde to the
Legendre conjugate to J, i.e. φ̃, in contrast to the original φ used in Schmidt (2020), since
we already used φ to denote the macroscopic fields in the previous sections.

It is now our aim to extract the rate function from

iΓ[X, φ̃] = iφ̃ · G−1 · X + ln
∫

dq exp
[
−1

2
φ̃p(0)Cpp(q)φ̃p(0)− i

〈
φ̃q(0), q

〉]
. (4.88)

8 in some cases up to a prefactor of i or −i
9 Note that the form of the generating functional used in Schmidt (2020) also uses the approximation C ≈ 1;

see also the discussion in the paragraph below Eq. (3.36).
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To do so, we need to identify a scaling iΓ ∝ N, which would then allow us to determine
the rate function ψ by comparing with Eq. (4.84). We will ignore the first term, iφ̃ ·G−1 ·X,
since it should be purely imaginary and thus just adds a phase, which should average
out while N → ∞.10 Instead we consider the second term, but can only sketch a potential
route to extract the rate function from it. Since Cpp is symmetric, positive definite and
real, we know that it can be diagonalised with an orthogonal matrix R ∈ SO(3N) and
has real eigenvalues. For N = 2, these eigenvalues are

λi =
σ2

1
3
±
{

ξ ′Ψ(q)
q

ξ ′′Ψ(q)
, with i ∈ [1, 6] . (4.89)

The eigenvalues depending on ξ ′Ψ(q)
q have multiplicity two, while those depending on

ξ ′′Ψ(q) multiplicity one as stated in Linke (2017). Applying the orthogonal matrix R,
however, will also rotate the vectors φ̃p(0), which results in φ̃′p(0) = Rφ̃p(0). These will
be the arguments of our rate function in the end. We write the diagonalised Cpp matrix as

Λ := R−1CppR = diag(λ1, ..., λ3N) , (4.90)

which leads to

iΓ[X, φ̃′] = ln
∫

dq exp
[
−1

2
φ̃′p(0)Λ(q)φ̃′p(0)− i

〈
φ̃q(0), q

〉]
(4.91)

= ln
∫

dq exp

[
−1

2

3N

∑
i=1

φ̃′pi
(0)λi(q)φ̃′pi

(0)− i
〈
φ̃q(0), q

〉]
. (4.92)

If we could now solve the integral by a saddle-point approximation and ignore the
second imaginary term, we would end up with

iΓ[X, φ̃] ≈ ln exp

[
−1

2

3N

∑
i=1

φ̃′pi
(0)λ̃iφ̃

′
pi
(0)

]
, (4.93)

where λ̃i = infqi λ(qi). Since we are interested in the limit N → ∞, we furthermore
approximate the sum via the average

〈
λ̃i
〉

i∈[1,3N]
and arrive at

iΓ[X, φ̃] ≈ −3N
2

φ̃′pi
(0)
〈
λ̃i
〉

i∈[1,3N]
φ̃′pi

(0) , (4.94)

where we can set φ′pi
(0) =: k, since it corresponds to a wave number and it is the

argument of our rate function. This leaves us with the rate function

ψ(k) = −3
2

k2 〈λ̃i
〉

i∈[1,3N]
. (4.95)

This, however, should merely sketch the idea rather than present a rigorous deduction,
since it is unclear at the moment how the

〈
λ̃i
〉

i∈[1,3N]
could be obtained. We leave this

calculation for further investigation.

10 Note that φ̃ and X are vectors with 6N entries and G−1 is a 6N× 6N-matrix, so φ̃ ·G−1 · X consists of (6N)2

terms.





5
T H E H A L O M A S S F U N C T I O N

Every reasonably comprehensive cosmological model must be equipped with a theory of
the formation and evolution of structures and objects within the Universe. This theory
should be able to predict the abundance of cosmological objects (i.e. dark matter haloes)
at a given time, which then can be tested against observations. This can be seen as a
test of both the underlying cosmological model and the method used to predict the
number of objects in the Universe. One of these testable predictions for the abundance of
cosmological objects is provided by the halo mass function, which describes the comoving
number density of dark matter haloes with a given mass M at redshift z. The limitation
of this function to dark matter haloes makes the theoretical description much easier and
therefore especially the high mass end of the halo mass function is of interest, where
baryonic effects can be neglected (see also Castro et al., 2020).

In this chapter, we will give a short overview of the most important results for the
calculation of the halo mass function. We will confine this summary to only those works
which will be important for our new approach in the next chapter. We will introduce
the pioneering work of Press and Schechter (1974) and Bond et al. (1991), who extended
the Press-Schechter ansatz by combining it with random walk statistics. In this context,
we will also need the results of the spherical collapse model. We end this chapter with a
critical discussion of the (extended) Press-Schechter (PS) approach. We will list several
shortcomings as a motivation for our approach and we will briefly summarise some
alternative ideas presented in other works.

5.1 the assumptions of the press-schechter approach

The first ansatz for an analytic prediction of the halo mass function was proposed by
Press and Schechter (1974). It builds essentially on three ideas (see e.g. Zentner, 2007 and
Desjacques et al., 2018 for nicely written, extended reviews):

(i) the origin of today’s haloes can already be found in the density field at reasonably
early times,

(ii) the evolution of these regions can be extrapolated linearly to define a criterion
determining if this region will collapse to form a halo and

(iii) the threshold used to define this criterion can be calculated using spherical collapse.
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The first assumption, working on the level of the initial density field, provides the
advantage that it can be described as a Gaussian random field1. The restriction to
linear theory only (i.e. assumption (ii)) assures that the field stays Gaussian, since linear
transformations leave the Gaussian property unchanged. Working with a Gaussian
random field makes the analytical calculation way easier and allows the derivation
of a closed form halo mass function. The assumption of linear evolution might seem
misplaced, since the interiors of clusters are highly non-linear (see discussion of the
applicability of linear evolution in Section 2.3). However, it is assumed here that in
particular the field smoothed over large scales will be decisive if the halo collapses or not.
It is assumed that the field at these scales can be reasonably well described by linear
theory. The Press-Schechter approach therefore neglects what the interior of the halo
looks like, which is governed by highly non-linear processes. The third assumption,
finally, is needed to be able to find a numerical value for the threshold that identifies
collapsing regions. We will comment on the scope of validity of these assumptions in
Section 5.5.

5.2 spherical collapse

The PS approach is founded on the idea that only those regions in space can form
collapsed objects whose densities are high enough, i.e. that exceed a critical density δc.
Therefore, haloes can be identified in the smoothed density field by searching for such
regions. One possible threshold can be derived on the basis of spherical collapse in
combination with linear perturbation theory (Gunn and Gott, 1972; Peebles, 1980). Let us
consider a sphere of radius R and mass M. Its evolution is governed exclusively by its
interior (see e.g. Birkhoff’s theorem or Einstein and Straus, 1946). Due to this decoupling
from the cosmological background, we can approximate the evolution of the sphere by
Newtonian gravity (see e.g. Peebles, 1980, pp. 79 or Weinberg, 2008, Section 11.7 for a
detailed derivation). The equation of motion for a test particle at radius R is then given
by

d2R
dt2 = −GM

R2 , (5.1)

where M is the mass enclosed of the sphere with radius R. Integrating once yields

1
2

(
dR
dt

)2

− GM
R

= E , (5.2)

1 Primordial non-Gaussianities are measured to be small enough that they can be neglected for our purposes
at early times like e.g. z ≈ 1000 (Planck Collaboration, 2020a).
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with the energy per unit mass E . Considering the gravitationally bound case (E < 0), this
equation has the following parametric solution.

R = A(1− cos θ), with A =
GM
2|E | , (5.3)

t = B(θ − sin θ), with B =
GM

(2|E |)3/2 . (5.4)

The parameter θ describes the time evolution and runs from θ = 0 (i.e. tini = 0 and
Rini = 0) to 2π, where the sphere collapsed again to a point (i.e. tcoll = 2πB and Rcoll = 0).
At half of the collapse time or equally at θ = π, the radius reaches its maximum, which
is called the turn-around point (i.e. tta = tcoll/2 = πB and Rta = 2A).

Since we are interested in the time evolution of the halo’s density contrast, we can use
mass conservation in order to express the density in terms of our parametric solution

ρ =
M

4π/3R3 =
3M
4π

1
A3(1− cos θ)3 . (5.5)

To obtain the density contrast, we have to consider that the mean matter density changes
with time as well. Using Eq. (2.11) and that H = 2/3t for an Einstein-de Sitter (EdS)
universe (Ωm0 = 1), we get

ρ̄ =
3H2

8πG
=

1
6πGt2 =

1
6πG

1
B2(θ − sin θ)2 . (5.6)

The evolution of the density contrast δ as predicted by the spherical collapse model is
then given by

1 + δ =
ρ

ρ̄
=

9
2
(θ − sin θ)2

(1− cos θ)3 . (5.7)

This description breaks down of course for late times, since the spherical collapse model
predicts the sphere to collapse to a single point and the density to become infinite. We
therefore use linear perturbation theory instead to predict the density evolution, while
combining it with spherical collapse result for the collapse time tcoll. We assume that the
lowest order Taylor expansion of Eqns. (5.4) and (5.7) can be extrapolated to the times
where the spherical collapse equations themselves would lead to unphysical results.2

This approach is furthermore justified by the fact that the result (Eq. 5.10) corresponds

2 Also the linear prediction leads of course to a result for δc that is way lower than the real overdensity of a
collapsed halo. We will discuss the effects of virialisation and the calculation of a more physical collapse
overdensity below. The linear result, however, is important, since the Press-Schechter approach is based on
the linearly evolved density field.
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precisely to the result obtained by linear perturbation theory. The Taylor expansions to
lowest order give

1 + δ = 1 +
3
20

θ2 +O(θ4) , (5.8)

t =
B
6

θ3 +O(θ5) . (5.9)

Solving Eq. (5.9) for θ and plugging it into Eq. (5.8) gives

δ(t) =
3
20

(6π)2/3
(

t
tta

)2/3

, (5.10)

where we used tta = πB and that turn-around happens at θ = π. This reproduces the
result known from linear perturbation for the EdS model (i.e. δEdS ∝ t2/3). Plugging the
collapse time from the spherical model (tcoll ≡ t(θ=2π) = 2tta) into Eq. (5.10) gives for
the overdensity of a collapsed halo as predicted by linear theory (Bardeen et al., 1986)

δc =
3
5

(
3π

2

)2/3

≈ 1.686 . (5.11)

As mentioned above, we have assumed an EdS universe in the derivation of this value.
There exist also more general versions of Eq. (5.11) that calculate δc depending on the
cosmological parameters (Lahav et al., 1991; Lacey and Cole, 1993; Mo et al., 2011). Since
the dependence of δc on Ωm and ΩΛ is found to be weak, the value δc = 1.686 is typically
used for ΛCDM universes nevertheless.

A more realistic value for the overdensity of collapsed haloes can be obtained by
considering spherical collapse without linear perturbation theory, but assuming that
the halo is virialised when the halo collapsed to half of the value at turn-around3,
Rvir = Rta/2. Solving Eq. (5.3) for the cosine term, we obtain 1− cos θ = 1. Since the sine
term, however, parameterises the time evolution and we assume the virialisation still to
happen at tvir = 2tta, we obtain with Eq. (5.4) that (θ − sin θ)2 = (2π)2. Inserting both
into Eq. (5.7) leads to

1 + ∆vir =
9
2
(2π)2 ≈ 178 . (5.12)

Due to the number of simplifying assumptions made on the way towards this result, it
can only give a rough estimate for the overdensity of real haloes. In order to reflect the
lack of accuracy, this value is usually set to ∆vir = 200.

3 The virial theorem predicts E = T + V = V(Rvir)/2, with kinetic energy T = −V(Rvir)/2 and potential
energy V. At turn-around T = 0 and therefore E = V(Rta), which leads to Rvir = Rta/2, since V ∝ 1/R
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5.3 the press-schechter halo mass function

We will use the critical density of Eq. (5.11) to identify collapsed regions in the linearly
evolved density field. The size of these regions is introduced by considering the smoothed
density contrast4 δR as a function of the smoothing scale R (as introduced in Eq. 2.27). It
should be noted that R describes the radius of the Lagrangian volume throughout the
calculation, so it is a comoving radius that is always centred on the central peak. The
probability distribution of the smoothed field is given by a Gaussian

p(δR) =
1√

2πσ2
R

e−δ2
R/(2σ2

R) . (5.13)

The probability of the smoothed density contrast to exceed δc is then given by

p(δR ≥ δc) =
∫ ∞

δc

dδR p(δR) =
1
2

erfc
(

δc√
2σR

)
. (5.14)

This cumulative probability corresponds to the fraction of volume that is occupied by
haloes of size defined by the smoothing scale R.

For the next step, we need to add a quite crucial assumption, i.e. that we can assign a
mass M(R) to each region smoothed with a filter of size R. This sounds quite straight
forward for a real space top-hat filter. It is not clear, however, for a sharp-k filter as we
will discuss in Section 5.4. Doing so, we can denote the volume fraction occupied by
haloes of mass m > M by F(>M) and rewrite Eq. (5.14)

F(>M) =
1
2

erfc

(
δc√

2σR(M)

)
. (5.15)

Since F(>M) is a cumulative quantity, but the halo mass function quantifies the differ-
ential probability in a mass interval [M, M + dM], we need to take the derivative with
respect to M

dF(>M)

dM
=

dF(>M(R))
dR

dR
dM

= f (R)
dR
dM

. (5.16)

This quantity gives us the volume fraction of haloes in the mass interval [M, M + dM],
while we are interested in the number density of haloes per volume. We therefore have to

4 The adequate choice for the filter function would be a spherical top-hat here, since δc was calculated with
the spherical collapse model.
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divide Eq. (5.16) by the average volume of a halo of mass M, which is given by V̄ = ρ̄/M.5

The halo mass function is then given by6

n(M)dM =
ρ̄

M

∣∣∣∣dF
dR

∣∣∣∣ dR
dM

dM . (5.17)

Note that we need to take the absolute value of dF
dR , since there are fewer large than small

haloes and therefore the volume fraction decreases with increasing radius R, so dF
dR < 0.

The final form of the Press-Schechter mass function is obtained by plugging Eq. (5.15)
into Eq. (5.17) and multiplying it by a fudge factor of 2

n(M)dM =

√
2
π

ρ̄

M
δc

σR

d ln σR

dM
exp

(
− δ2

c

2σ2
R

)
dM . (5.18)

This additional factor of 2 needs to be introduced by hand, since otherwise only half
of the mass of the Universe would be bound in haloes. This can be easily verified by
integrating Eq. (5.16) over all masses.

5.4 the halo mass function with excursion set statistics

While the above description was based on the spherical top hat filter, Bond et al. (1991)
proposed to filter the field instead with a sharp filter in k-space

WR(k) =

{
1 (kR ≤ 1)

0 (kR > 1) .
(5.19)

As we have seen in the definition of the power spectrum (Eq. 2.26), the modes of a
statistically homogeneous Gaussian random field are uncorrelated. Smoothing with a
sharp k-filter therefore corresponds to adding independent modes, or in other words it
represents a Markov process. Thus, the smoothed field as a function of k can be described
by an uncorrelated random walk. Smoothing around every point in space provides
us then with an ensemble of uncorrelated random walks. Since k = 0 corresponds to
smoothing over the whole space, the smoothed density at k = 0 will be the mean density
and therefore δR(k = 0) = 0. Hence, all random walks will start at zero. Note that in the
literature typically the fact is used that the variance of the smoothed field S(R) := σ2(R)
is a monotonous function of the smoothing scale R or wave number k, respectively. For

5 One might wonder why the density of the halo’s region is assumed to be ρ̄ in this step although haloes
are defined via their linear overdensity δc. The standard reasoning is that in the Press-Schechter approach
haloes are identified in fact in the initial density field as proto-haloes where overdensities are still negligible.
The linear extrapolation solely helps to identify these regions. Since gravitational collapse is a non-linear
process, the overdensity δc has no physical reality anyway. Using Lagrangian coordinates, the halo’s volume
is then simply given by M/ρ̄.

6 At times, the different notation dn(M)/dM is used to denote the halo mass function in order to emphasise
that the halo mass function is a differential quantity. The notation n(M) is more common, however.
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this reason, the random walk is often described as a function of S instead of k. We will
make use of this notation at times in this thesis, when summarising some results of the
literature.

The key idea of the excursion set ansatz of Bond et al. (1991), is to identify
dF(>M(R))/dR with the so called first crossing rate f (R), i.e. the rate of random walks
that cross the density threshold δc in the interval [M, M + dM] for the first time. This
quantity can be predicted for an uncorrelated random walk treating δc as an absorbing
barrier. The result for this problem has been known for quite some time (Chandrasekhar,
1943) and reads

f (S) =
δc√

2πS3
exp

(
− δ2

c
2S

)
. (5.20)

It provides exactly the additional factor of two, which had to be plugged in by hand in
the original Press-Schechter approach (compare Eq. 5.20 with the derivative of Eq. 5.15

with respect to S). On the basis of this result, there exists also a justification of why
the original approach is missing this factor of two. From the random walk point of
view, it is easy to see that a walk could cross the barrier at some scale k1, but then drop
again below the threshold for higher k. This corresponds to an underdense region that
lies within a larger, collapsed overdensity. Since it is part of the parent halo this region
would certainly be needed to count for the volume fraction of the parent halo. However,
the original Press-Schechter approach ignored all these walks, since they are below the
threshold. This is called the “cloud in cloud” problem. The probability for an uncorrelated
random walk to continue at the threshold in upward direction is exactly the same as the
probability to continue downwards. Therefore only half of the random walks will have
stayed above the threshold when integrating over all k, which then leads exactly to the
missing factor of two7.

However, smoothing with a sharp-k filter comes at the price that this filter has no well
defined volume in real space. Therefore, it is not possible anymore to relate a mass M(R)
to the smoothing scale R. In Bond et al. (1991), the choice for the specific value of V(R)
is left open and the first crossing rate is simply plugged into Eq. (5.18) to obtain the final
Press-Schechter result. The extended Press-Schechter approach therefore solves the cloud
in cloud problem at the cost of introducing a (minor) inconsistency. Usually, the volume
is fixed by using that of a real space top-hat with the same filter scale V = 4/3πR3

instead or V = 6πR3 (Lacey and Cole, 1993), respectively.

5.5 shortcomings of the press-schechter approach

The Press-Schechter approach and more so its extension in Bond et al. (1991) provided
an important step in the analytical description and quantification of structures in the

7 We would like to caution the reader that also this excursion set approach comes with some conceptual
problems, as we will discuss in Section 5.5. So, this argumentation should be taken with a grain of salt.
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Universe. Its result for the halo mass function describes numerical and observational
data surprisingly well, given the simplifying nature of the underlying assumptions. Due
to this fact, it remained over several decades the most established analytic description of
the halo mass function, which is not dependent on any fits to numerical simulations.

However, there are several problems with the assumptions underlying the (extended)
Press-Schechter approach, which causes the theory to rest on shaky ground. While it
is totally justified to employ simplifying assumptions for a first approach, it remains
unsatisfying for a theory being widely considered (and taught) as the standard approach
to the halo mass function. This has been commented on in many works (see e.g. Zentner,
2007; Robertson et al., 2009; Maggiore and Riotto, 2010a; Maggiore and Riotto, 2010b;
Maggiore and Riotto, 2010c; Corasaniti and Achitouv, 2011; Hagstotz et al., 2019). In the
following, we will summarise these problematic assumptions and highlight alternative
approaches where possible.

1. Linear extrapolation

Basing the theory on the linearly evolved density field comes with one great advantage.
Linear evolution ensures that the Gaussian nature of the density field stays untouched.
Therefore the form of the density field’s PDF is known and calculations become especially
easy due to the well behaved nature of the normal distribution. While the assumption
of linear evolution seems reasonable at large scales (i.e. k . 0.1 Mpc/h for z = 0, see
e.g. the power spectrum in Bartelmann et al., 2019, Fig. 3), it appears rather unsuited
for the description of collapsed objects due to the highly non-linear nature of gravity.
As described above, spherical collapse predicts an overdensity for virialised objects of
∆vir ≈ 178, well above the linear regime (i.e. δ� 1). It therefore appears surprising that
the Press-Schechter approach nevertheless gives reasonable results. It can also be added
that even the result obtained by linear extrapolation (δc = 1.686) is not in the linear
regime anymore.

2. Spherical collapse

The Press-Schechter approach uses spherical collapse to predict the linear density
threshold for collapsed objects δc. In Doroshkevich (1970), however, it has in fact been
shown that the probability for the spherically symmetric collapse of a halo is identical to
zero. Calculating the eigenvalues (λi, i ∈ {1, 2, 3}) of the deformation tensor introduced in
Zel’dovich (1970), one can show that only points in space with three positive eigenvalues
will collapse to form haloes. Since the probability of all three of the eigenvalues to be the
same (as required for spherical collapse) is zero, the collapse will happen in an ellipsoidal
fashion.

On the one hand, isotropy of the Universe requires that there is no preferred orientation
of the ellipsoidal collapse and therefore stacking the images of a large number of observed
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clusters would indeed lead to a spherical result. However, the ellipsoidal collapse requires
an overdensity larger than the spherical prediction in order to counteract the occurring
tidal forces. This is the case in each individual collapsing halo regardless of its orientation
and therefore ellipsoidal collapse has to be taken into account when the density threshold
is determined. It seems reasonable to assume that this effect is most visible on small
scales, where the influence of the local gravitational field will lead to strong tidal forces.
Hence, the assumption of spherical collapse should at most be valid in the regime of
highest mass peaks, since these are affected the least by the distortions of smaller scale
overdensities (Robertson et al., 2009). Sheth et al. (2001) therefore incorporated ellipsoidal
collapse by introducing an excursion set approach with a moving barrier, i.e. a density
threshold that decreases as a function of scale R.

3. Excursion set approach

The excursion set approach in Bond et al. (1991) provides an elegant resolution to the
“fudge factor” and cloud in cloud problem in Press and Schechter (1974). However, it
poses new problems and requires additional unsatisfactory assumptions. In order to
apply the theory of uncorrelated random walks, we need to filter the random field with a
sharp filter in k-space. This filter, however, has no well defined volume in real space and
therefore does not allow assigning a mass to the halo. In other words, we can calculate
the volume fraction of haloes at a certain filter scale R, but not a mass fraction. This leads
to a contradiction within the model, since a spherical top-hat is used to obtain δc = 1.686,
but the field is smoothed with a sharp k-filter when this threshold is applied.

Using a Gaussian or a spherical top hat filter in the excursion set statistics instead,
would introduce correlations between the steps of the random walk and therefore
poses a much more complicated problem to solve analytically. Correlated random walks
can be caused by two effects. First, the unfiltered random field can possess coupled
modes through non-Gaussianities either in the primordial or the evolved field. Secondly,
correlations can be caused by the filter function. The excursion set approach has been
extended to correlated random walks by Peacock and Heavens (1990) and more recently
by Musso and Sheth (2012). Peacock and Heavens (1990) derived an approximation by
realising that an uncorrelated random walk can be recovered by increasing the step size
of the random walk to a value larger than the correlation length. The correlations are then
included in the additional parameter that describes the correlation length. Musso and
Sheth (2012) use the joint probability distribution of the density field and its derivative
with respect to the smoothing scale in order to describe the excursion set statistics of
strongly correlated steps.

The excursion set approach, however, faces a much more fundamental problem. The
notion of a halo is very unclear conceptually in this approach and does not harmonise
with the way haloes are defined in simulations or observations (Zentner, 2007, pp. 40).
The excursion set approach assigns each point in space that exceeds the threshold at a
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filter scale R to the volume of a halo of mass M(R). It is quite obvious, however, that a
neighbouring point will not be counted for the same mass halo, but either for a higher
mass halo if it is more central or a lower mass halo if it is located towards the outskirts. As
stressed by Zentner (2007), the excursion set approach leads to a continuous “halo mass
field” in contrast to an identification of distinct haloes with particular masses, which
would be needed for a conceptually sound comparison with simulations or observations8.
This inconsistency has also been investigated numerically in simulations (Robertson et al.,
2009). They determine the overdensity threshold in dependence of scale by measuring
the overdensity of those patches in the simulation’s initial density field that are found to
form a halo at z = 0. They find good agreement with the moving threshold proposed
in Sheth et al. (2001) from ellipsoidal collapse. However, after inserting this barrier into
the excursion set formalism, the resulting halo mass function does not agree with that
measured in the simulation. This therefore shows that the excursion set approach does
not lead to a correct prediction of the halo mass function. A similar result has been
obtained by Geiger (2020) (see Section 5.7).

Alternative concepts have been proposed quite early, e.g. Bardeen et al. (1986) proposed
an approach which is based on predicting the abundance of peaks in the density field
instead of the abundance of haloes of a given mass. This approach has been extended to
predict the distribution of potential depths Angrick and Bartelmann (2009) and it has
been combined with excursion set statistics of correlated random walks in Paranjape
et al. (2012). Furthermore, Maggiore and Riotto (2010a) used a path integral approach,
which takes into account correlated steps caused by both the non-Gaussianities of the
density field and its filtering and it assumes a stochastic barrier reflecting that haloes in
simulations identified through e.g. the Friends-of-Friends9 (FoF) algorithm (Davis et al.,
1985) can be of quite irregular shape.

4. Mass as an observable

The alternative approaches proposed by Bardeen et al. (1986) and Angrick and Bartel-
mann (2009) additionally bypass a fourth problem, which lies at the core of the halo
mass function itself. It is a long standing problem that there exists no clear definition of
a halo and its mass. A variety of different halo mass definitions have been developed,
depending on which branch of cosmology, i.e. theory, observations or simulations, is
considered10. A possibility to remedy the different halo notions in simulations and theory
was proposed by Maggiore and Riotto (2010b). They incorporate the irregular shape of
haloes in simulations into the halo mass function by applying a stochastic barrier to
their path integral approach. Bardeen et al. (1986) and Angrick and Bartelmann (2009)

8 It could be argued, however, that the description in terms of a continuous halo mass field may be more
realistic than the description in terms of distinct haloes. Nevertheless, it leads to a conflict when the results
are to be compared with haloes from simulations.

9 See Section 7.1 for an introduction of the FoF code.
10 See Section 7.1 for a discussion of halo mass definitions in observations, simulations and theory.
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drop the halo mass quantity altogether. Their approaches are based on peaks in the
density field and potential minima instead. Being local quantities, these are well defined
in observations, simulations and theory alike and could therefore be advantageous over
an approach based on halo masses.

5.6 beyond press-schechter

Motivated by the success of the extended Press-Schechter approach in qualitatively
describing the simulation results, a large variety of different halo mass function shapes
have been proposed in order to improve the quantitative description. The extended
Press-Schechter approach, however, remains the only completely analytical prediction
of the halo mass function, since all other forms contain free parameters that need to be
fitted to numerical simulations. As a representative for the large variety of fit functions,
we will shortly present the result of Tinker et al. (2008), which will be used in the next
chapter. We furthermore summarise an analytical approach by Musso and Sheth (2012),
which considers random walks with correlated steps.

At this point, it also should be mentioned that the halo mass function is often expressed
in the form

n(M)dM =
ρ̄

M2 S f (S)
∣∣∣∣ d ln S
d ln M

∣∣∣∣ dM , (5.21)

in the literature. This form is handy, since most halo mass functions only differ in the
quantity S f (S), which is called the multiplicity function. It quantifies the number of first
crossings per logarithmic variance interval, i.e. S f (S) = dF(S)/d ln S.

5.6.1 Functions fitted to simulations

By now, there exists a plethora of fitting functions, whose parameters are optimised by
fitting to N-body simulations (see e.g. Murray et al., 2013b, for a list). We will make use
of the fitting formula proposed by Tinker et al. (2008) in order to compare the results
of our novel approach presented in the next chapter (Chapter 6) to the predictions of
simulations. Tinker et al. introduce a form for f (σ) that is similar to the first crossing
distribution proposed in Sheth and Tormen (1999)

f (σ) = A
[(σ

b

)−a
+ 1
]

e−c/σ2
. (5.22)

It depends on four parameters: a normalisation constant A, a and b, which specify
the slope and amplitude of the low-mass power law, and c, which determines the
exponential cut-off of the halo mass function. Fitting their halo mass function to all
haloes found in a sample of 18 N-body simulations, they obtain the parameters as
A = 0.186, a = 1.47, b = 2.57 and c = 1.19. We chose particularly this fitting function
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Figure 5.1: Comparison of three different halo mass function models, i.e. Press-Schechter (black),
Tinker (blue) and Sheth-Tormen (green).

for the comparison to our results, since haloes in their simulations were found with
a spherical over density finder with ∆ = 200. This corresponds well to our theoretical
derivation, where we likewise use the spherical overdensity as the criterion to identify
haloes.

A comparison of the Press-Schechter, the Sheth-Tormen and the Tinker halo mass
functions is shown in Fig. 5.1. While all models show the same qualitative behaviour, the
Press-Schechter clearly predicts too many low mass haloes and underpredicts the high
mass tail. The Sheth-Tormen as well as the Tinker mass functions are fits to cosmological
simulations and therefore reflect the theoretical ΛCDM predictions by N-body simula-
tions. However, also these two functions show a considerable discrepancy in the high
mass regime. This demonstrates that the functional form of the halo mass function is
by no means uniquely determined by simulations and there still exists a considerable
uncertainty in the theoretical description (see also Murray et al., 2013a).

5.6.2 First crossing rate with correlated steps

As mentioned above, the assumption of uncorrelated steps in the extended Press-
Schechter approach seems quite problematic. Musso and Sheth (2012) therefore proposed
a formalism to predict the first crossing rate of a random walk with correlated steps. As
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they point out, the first crossing rate for completely correlated (cc) walks, i.e. when δR is
a deterministic function of smoothing scale R, is given by

fcc =
dFcc

dR
=

d
dR

(∫ ∞

δc

p(δR)dδR

)

=
d

dR

[
1
2

erfc
(

δc√
2S

)]
=

1√
2π

exp
(
− δ2

c
2S

)
,

(5.23)

which exactly represents the Press-Schechter result without the fudge factor of two.
Musso and Sheth (2012) argue therefore, that the first crossing rate of a random walk
with somewhat correlated steps must lie in between the fully correlated result of Eq. (5.23)
and the uncorrelated result, i.e. Eq. (5.23) times a factor of two as obtained in Bond et al.
(1991).

Musso and Sheth (2012) derive the first crossing rate in the strongly (but not completely)
correlated (sc) regime (see also Musso and Sheth, 2014a; Musso and Sheth, 2014b). This
means that walks that are in an upward direction are very likely to continue in an
upward direction and vice-versa. If such a random walk crosses the barrier in an upward
direction it can therefore be assumed that it crossed never before. The first crossing
distribution can then be estimated by counting only those walks which cross the barrier
in an upward direction. For conditioning the first crossing distribution on upward walks,
the probability of the derivative of the density field with respect to S is needed in addition
to the probability of the field value itself. The first crossing distribution can be derived
from the joint distribution p(δ, δ′) via

fsc(S)∆S =
∫ ∞

0
dδ′

∫ δc+δ′∆S

δc

dδ p(δ, δ′) ≈ ∆S
∫ ∞

0
dδ′δ′p(δ = δc, δ′) , (5.24)

where the prime denotes a derivative with respect to S, i.e. δ′ = dδ/dS. In the second
step, the density integral was approximated by the trapezoidal rule and by using p(δ =

δc + δ′∆S, δ′) ≈ p(δ = δc, δ′).
The joint probability distribution can only be written down for a small number of

distributions p(δ). For a generic random variable X, there is no way to deduce what
type of distribution their derivative X′ follows. Since taking the derivative is a linear
operation, however, the derivative of a Gaussian distributed random variable must be
Gaussian distributed as well. Hence, assuming that δ follows a Gaussian distribution, it
is possible to write down the joint probability distribution as

p(δ, δ′) =
γ

π
√

1− γ2
exp

[
− 2γ2

1− γ2

(
δ2

4Sγ2 − δδ′ + Sδ′2
)]

, (5.25)

where the Pearson-correlation coefficient γ2 is defined by

γ2 :=
〈δδ′〉2
〈δδ〉 〈δ′δ′〉 . (5.26)
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Plugging the joint PDF (Eq. 5.25) into Eq. (5.24) finally leads to the first crossing rate

fsc(S)∆S =
e−δ2

c /2S

2
√

2πS3

[
1 + erf(Γδc/

√
2S)

2
+

√
S

2π

e−Γ2δ2
c /2S

Γδc

]
∆S , (5.27)

with

Γ :=
γ2

1− γ2 . (5.28)

A comparison of Eq. (5.27) to Monte Carlo predictions of walks with correlated steps
(Musso and Sheth, 2012, Fig. 1) showed a very good agreement. However, when compared
to the first crossing distribution measured in N-body simulations the results of Eq. (5.27)
as well as a number of other predictions (e.g. those by Peacock and Heavens, 1990; Bond
et al., 1991 or Maggiore and Riotto, 2010a) show large discrepancies (Lapi and Danese,
2014, Fig. 2 and Hiotelis and Popolo, 2017, Fig. 4).

The halo mass function can finally be obtained by inserting the first crossing rate
(Eq. 5.27) into Eq. (5.21). In this context, Musso and Sheth (2014a) make a further remark
concerning the comparison with N-body simulations. They argue that the random walks
described with Eq. (5.27) would not correspond to those found in simulations, since
these will always be centred on a simulation particle. To take this bias into account, they
suggest to mass weight the random walks, i.e. to multiply p(δ) by a factor of δ. We will
comment on this ad hoc modification in Section 6.1.

5.7 investigating the excursion set approach

The applicability of the excursion set statistics has furthermore been investigated in a
recent study by Geiger (2020). Their analysis was based on Gaussian random fields11 in
order to investigate the excursion set statistic on a fundamental level. Using Gaussian
random fields in contrast to a more realistic density field, e.g. from a cosmological
simulation, allowed to make use of the Gaussian field’s convenient analytical properties.
The halo mass function was determined from the random field in two ways: (i) applying
the excursion set approach and (ii) using a spherical overdensity finder (as e.g. in Tinker
et al., 2008). As a proof of concept, the excursion set statistics was first determined directly
from the generated field and then compared to the analytical description. The extended
Press-Schechter prediction could be perfectly recovered as expected. In a second step, a
spherical overdensity finder similar to that of Tinker et al. (2008) was used to identify
haloes according to the halo-definition employed in simulations. The halo mass function
found by this procedure is in strong disagreement with the excursion set prediction. This
goes in line with the results of Robertson et al. (2009) and shows once more that the
excursion set approach does not provide a sound description of the halo mass function.

11 The Gaussian random fields were generated such that they have the same power spectrum as predicted for
cosmic structure formation (Bardeen et al., 1986; Eisenstein and Hu, 1998).
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They furthermore investigated the influence of the filter function on the results of the
excursion set formalism. This was done by smoothing the simulated field with: (i) a
sharp-k filter as in the extended Press-Schechter approach and (ii) with a top-hat filter in
real space. Afterwards, the excursion set statistic was determined by counting random
walks in the simulated field for each filter that exceed a threshold δc. This showed that
the choice of filter function in the excursion set approach has a significant influence on
the halo mass function, especially in the high-mass end. It was shown that the sharp-k
filter predicts more than an order of magnitude less haloes of masses M & 5× 1014M�.
As explained above, using the sharp-k filter in the extended Press-Schechter approach
leads to an inconsistency in the formalism. The derivation of the density threshold δc and
the identification of haloes in simulations are both based on spherical overdensities in
real space, while the sharp-k random walks do not reflect any physical object. The results
obtained with the top-hat filter in real space should therefore reflect much better the halo
mass function as it would be determined in a simulation. Hence, this result corresponds
well with the finding that the Press-Schechter halo mass function underpredicts the high
mass tail in comparison to simulations.





6
A K F T A P P R O A C H T O T H E H A L O M A S S F U N C T I O N

As explained in the last chapter, the current analytical derivation of the halo mass function
has several conceptual short comings and the most recent proposals consist of fitting
functions only. However, the halo mass function remains an important cosmological
probe. It is interesting not only for conceptual reasons. It also can be used to determine
cosmological parameters, since its high mass tail in particular is very sensitive to the
matter density Ωm and the normalisation of the power spectrum σ8. The determination
of the halo mass function is therefore the goal of current and future cosmological surveys,
such as DES (Abbott et al., 2018), KiDS (de Jong, J. T. A. et al., 2017), Euclid (Laureijs
et al., 2011) and LSST (Ivezić et al., 2019). For this reason, it seems desirable to gain a
deep understanding of the halo mass function in form of an analytical approach that
goes beyond fitting functions.

We make an attempt at improving the derivation of the halo mass function by applying
excursion set statistics directly to the present day non-linear density field. This avoids the
problematic detour via the linearly extrapolated density field. In exchange, random walks
cannot be assumed to be uncorrelated anymore in our approach. We will therefore base
our analysis on the work of Musso and Sheth (2012) presented in Section 5.6.2. The rough
outline of our approach is as follows: We will use KFT to predict the second and third
moment of the present day density field. With these at hand, we can fix the parameters of
our model for the density PDF. From the PDF, we then derive the first crossing rate for a
fixed density threshold ∆, where ∆ is assumed to be constant throughout the calculations.
We do not derive this parameter from spherical collapse. It is rather treated as a free
parameter, which would be the analytic analogue to setting the overdensity parameter in
spherical overdensity halo finders used in cosmological simulations (e.g. by Lacey and
Cole, 1994; Sheth and Tormen, 1999; Tinker et al., 2008). After all, the halo mass function
is calculated by inserting the first crossing distribution into Eq. (5.17).

The approach presented in this chapter builds upon work by Linke (2017) and unpub-
lished work by M. Feix1. We start with explaining the mass weighting of random walks
and deriving the first crossing distributions of two different models for the density PDF
in two different correlation regimes in Section 6.1. We will then derive the halo mass
function in Section 6.2. We will finally discuss our results in Section 6.3.

1 These two works led to a paper draft including contributions by the author of this dissertation. Parts of this
unpublished manuscript have been adopted verbatim in Section 4.2 and Chapter 6.
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6.1 the first-crossing rate

As discussed above, Musso and Sheth (2012) provide a first crossing rate for random
walks with correlated steps. We will apply their approach while investigating two regimes
in particular: (i) the completely correlated limit, where δR is a deterministic function of
R,2 and (ii) the regime of strongly correlated random walks. We will perform each of
the calculations with two models for the density field’s probability distribution: (a) a
lognormal distribution (Eq. 4.1), which is used for illustrative purposes to present our
method, and (b) the generalised normal distribution (Eq. 4.2), which should represent a
more realistic model of the PDF.

6.1.1 Weighted random walks

Before we calculate the first crossing rates in the respective regimes, we need to slightly
modify the models of our density PDFs. This is necessary, since a direct application of the
excursion set approach to the gravitationally evolved, non-Gaussian density field would
result in an underestimation of the halo number density. As discussed in Musso and Sheth
(2014b) this becomes apparent when the PDF is transformed to a Gaussian distribution,
where the threshold has to be transformed accordingly, which consequently leads to
it not being constant any more. Taking the lognormal distribution as an example, a
constant threshold becomes a linearly increasing barrier after being mapped to Gaussian
walks. Hence, not all walks cross the barrier any more and only a small fraction of
the total mass is predicted to be bound in haloes. Musso and Sheth (2014b) suggest a
solution to this issue in a different context. They argue that there exists another problem
when their results are compared to those obtained from simulations. When haloes are
identified in simulations, only such random walks are considered that are centred on
a mass particle of the simulation. This argument views the halo finding process as
the closest numerical equivalent to performing the excursion set approach. Musso and
Sheth (2014b) mention that a crude way to account for this fact would be to weight
every random walk by its mass when estimating the crossing rate (see also Sheth, 1998).
This corresponds to introducing a factor of (1 + δR) in the case of the lognormal PDF
(introduced in Section 4.1.1)

p̃LN(δR) = (1 + δR)pLN(δR) . (6.1)

2 This is expected to be a good approximation for very massive haloes, which should be affected only little by
noise. These very massive haloes would naturally appear, when the density field is smoothed over large
scales.
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We can furthermore absorb the weighting factor into the lognormal model through
a redefinition of its parameters. It just amounts to a sign flip of the mean parameter
µ̃ = −σ̃2

R/2, i.e.

µ̃→ ν̃ = −µ̃ =
σ̃2

R
2

. (6.2)

We can therefore write the weighted lognormal distribution as

p̃LN(δR) =
1√

2πσ̃R (1 + δR)
exp

[
−
(
ln (1 + δR)− σ̃2

R/2
)2

2σ̃2
R

]
. (6.3)

At the same time, the additional weighting factor turns the increasing threshold, which
was obtained after the mapping to a Gaussian distribution, into a linearly decreasing one.
Thus, all random walks are guaranteed to cross at some scale, which also solves the first
problem of underpredicting the total mass bound in haloes.

We generalise this idea, by applying a similar weighting also to the generalised normal
distribution (see Section 4.1.2)

p̃GN(δR) =

(∣∣∣∣µ̃ +
α

β

∣∣∣∣+ δR

)
pGN(δR). (6.4)

Analogously to the lognormal distribution, the weighting factor has been determined
from the Jacobian associated with the mapping of the generalised normal distribution
into a Gaussian. It ensures as well that all random walks cross the threshold. Also for the
generalised normal distribution, we can absorb the weighting factor into a redefinition of
the model’s parameters

α→ α̃ = αeβ2
, (6.5)

µ̃→ ν̃ = µ̃− α

β

(
eβ2 − 1

)
, (6.6)

while β remains the same. Therefore the weighted distribution for the generalised normal
case can be written as

p̃GN(δR) =
1√
2π

1
α̃− β(δR − ν̃)

exp

[
− 1

2β2

(
ln
[

1− β(δR − ν̃)

α̃

])2
]

. (6.7)

6.1.2 Completely correlated random walks

We will now calculate the first crossing distribution for the lognormal distribution in
the limit of completely correlated steps. As shown in Section 5.6.2, the first crossing
distribution is given by Eq. (5.23), i.e.

fcc =
d

dR

(∫ ∞

∆
p̃(δR)dδR

)
=

dσ̃2
R

dR
d

dσ̃2
R

(∫ ∞

∆
p̃(δR)dδR

)
. (6.8)
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Calculating the above integral for the weighted lognormal distribution (Eq. 6.3) yields∫ ∞

∆
p̃LN(δR)dδR =

1
2

erfc
[

ln (1 + ∆)− σ̃2
R/2√

2σ̃R

]
, (6.9)

which leads to the result

fcc,LN =
1√

8πσ̃R

(
1 +

2 ln (1 + ∆)
σ̃2

R

)
exp

[
−
(
ln (1 + ∆)− σ̃2

R/2
)2

2σ̃2
R

]
dσ̃2

R
dR

. (6.10)

For the generalised normal distribution, the integral in Eq. (6.8) is evaluated as

∫ ∞

∆
p̃GN(δR)dδR =

1
2

erfc

[
ln (1− β (∆− ν̃) /α̃)√

2β

]
. (6.11)

We would like to introduce a slight notational change from that used in the previous
chapter for the following calculations. From now on, primes denote derivatives with re-
spect to R, i.e. A′ = dA/dR. Thus the first-crossing distribution in the limit of completely
correlated steps is given by

fcc,GN =− 1√
2πβ

exp

[
− (ln [1− β (∆− ν̃) /α̃])2

2β2

]

×
[
(βν̃/α̃)′ − ∆ (β/α̃)′

1− β (∆− ν̃) /α̃
− ln (1− β (∆− ν̃) /α̃)

β

dβ

dR

]
,

(6.12)

with

βν̃

α̃
= e−β2/2 − 1,

β

α̃
=

e−β2 − 1
σ2

R
. (6.13)

6.1.3 Strongly correlated random walks

We now continue with the strongly (but not completely) correlated regime following
Musso and Sheth (2012). As shown in Eq. (5.24), they obtain the first crossing distribution
by only selecting trajectories that cross the barrier in an upward direction at scale S(R),
which leads to

fsc = −
∫ 0

−∞
dδ′R p̃

(
∆, δ′R

)
δ′R. (6.14)

Note once again that primes denote here derivatives with respect to R. Since S is
monotonously decreasing with R, we have to consider downward crossing walks in
contrast to Eq. 5.24 and therefore the integration boundaries are changed. For clarity,
we will apply this approach here only to the lognormal distribution. The corresponding
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calculations for the generalised normal distribution can be found in Appendix C.3.
In order to derive the joint distribution p(δR, δ′R) we will transform the lognormal
distribution into a Gauss distribution. Since the derivative of a normally distributed
variable also follows a normal distribution, the joint distribution is given by a bivariate
normal distribution and p(δR, δ′R) can be obtained by reversing the transformation
afterwards.

Considering the weighted lognormal distribution specified by Eq. (6.3), we introduce
the new random variables

x = ln (1 + δR) ,

x′ =
dx
dR

=
δ′R

1 + δR
.

(6.15)

The joint PDF p̃x(x, x′) then takes the form of a bivariate Gaussian with its mean and
covariance matrix characterised by (see Appendix C.1 for the detailed calculation)

〈x〉 = 1
2

σ̃2
R,

〈
x′
〉
= 0,

〈
x2〉 = σ̃2

R,
〈

xx′
〉
=
〈δRδ′R〉
1 + σ2

R
,

〈
x′2
〉
=

〈
δ′2R
〉

1 + σ2
R
−
( 〈δRδ′R〉

1 + σ2
R

)2

.

(6.16)

Transforming back to variables δR and δ′R yields the joint PDF p̃(δR, δ′R) as

p̃(δR, δ′R) =
1

(1 + δR)
2 p̃x(x, x′)

=
1

(1 + δR)
2

1
2π
√
〈x2〉 〈x′2〉 (1− γ2)

exp
[
− z

2(1− γ2)

]
,

(6.17)

where x and x′ need to be expressed through their definition in Eq. (6.15) in terms of δR

and δ′R. Furthermore, we defined

z :=

(
(x− 〈x〉)2

〈x2〉 +
(x′ − 〈x′〉)2

〈x′2〉 − 2γ
(x− 〈x〉)(x′ − 〈x′〉)√

〈x2〉 〈x′2〉

)
, (6.18)

(6.19)
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and used γ = 〈xx′〉 /
√
〈x2〉 〈x′2〉. Finally, Eq. (6.17) can be inserted into Eq. (6.14). The

final result for the first crossing distribution reads then

fsc,LN =
1

2πσ̃2
R

√
〈x′2〉 exp

[
−
(
x∆ − σ̃2

R/2
)2

2σ̃2
R

]

×
(√

1− γ2σ̃R exp

[
−γ2 (x∆ − σ̃2

R/2
)2

2 (1− γ2) σ̃2
R

]

−
√

π

2
γ
(
x∆ − σ̃2

R/2
)

erfc

[
γ
(
x∆ − σ̃2

R/2
)√

2 (1− γ2)σ̃R

])
,

(6.20)

with x∆ := ln(1 + ∆). The resulting crossing rate for the generalised normal distribution
is given by an analogous calculation resulting in Eq. (C.42).

6.2 calculating the halo mass function

The first crossing rates f (R) can now be inserted into Eq. (5.18), i.e.

n(M)dM =
ρ̄

M
∆
σR

f (R)
d ln σR

dM
dM . (6.21)

This leads to an analytic estimate of the halo mass function from the non-linear density
field. While all parameters of the underlying PDF model are fixed by KFT predictions,
the only free parameter in our model is the barrier ∆. It determines the threshold above
which an overdense region is considered to be a collapsed halo. The choice of this value,
however, is unspecified. As we are considering the non-linear density field, the linear
critical density of spherical collapse (∆lin_sc = δc = 1.686), used by Press and Schechter
(1974), is not applicable. The other extreme would be that the PDF of the non-linear
density field is perfectly known. In this case a value close to the result obtained from
spherical collapse (∆nonlin_sc = ∆vir = 177) would be expected. However, the problem of
an accurate, analytical description of the PDF down to small scales remains unsolved.
Inaccuracies in the PDF model should also lead to values of ∆ deviating from the
spherical collapse prediction. Therefore, ∆ stays a free parameter in our approach. We
expect its value to be higher than the prediction of the linear extrapolation, ∆lin_sc, but
still significantly lower than the non-linear spherical collapse prediction, ∆nonlin_sc, since
our PDF model becomes more and more inaccurate on small scales.

We discuss here the results obtained using the generalised normal distribution for the
completely correlated case (i.e. fcc,GN) and the strongly correlated random walk (i.e. fsc,GN),
which have been calculated in Appendix C.3. We compare these results to the Press-
Schechter and Tinker mass functions. The Tinker mass function is especially suitable for
our purposes, since a spherical overdensity halo finder was used in their simulations to
identify collapsed objects. This is equivalent to the definition of a halo in our approach.
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In Fig. 6.1, we show the corresponding halo mass functions for four different density
thresholds in the range from ∆ = 2.0 to 10.0. These choices are only representative choices
to show the overall dependence of the resulting halo mass functions on the threshold.
The corresponding results for the lognormal distribution can be found in Appendix D.
Fig. 6.1a shows the result of the completely correlated case (see Eq. (6.12)). It can be
seen that for ∆ = 2.9, our results are in very good agreement with the Tinker halo mass
function over six orders of magnitude. It should be emphasised, that this value of ∆ is not
a fit, but a plausible choice. It is therefore not meant to be a precise measurement of ∆,
but should rather show that for a suitable choice of ∆, our analytic approach is capable of
producing results that agree closely with those from numerical simulations. To highlight
our agreement with the Tinker halo mass function, also the Press-Schechter mass function
is shown in contrast. Since it is based on linear evolution, it underpredicts the high mass
tail, whereas the completely correlated case with ∆ = 2.9 shows a very good agreement
with the Tinker halo mass function. Changing the threshold to higher values leads to
a severe underprediction of massive haloes. Selecting a threshold of ∆ = 10 leads to
an underprediction of haloes of mass M = 1015 h−1M� of more than three orders of
magnitude. The low mass haloes, in contrast, are slightly overpredicted. The halo mass
function for a threshold of ∆ = 10 is even slightly higher than the Press-Schechter
prediction for the mass range between 1010 and 1011 h−1M�. For values of ∆ smaller than
2.9, massive haloes are significantly overpredicted, but the halo mass function agrees
well with the Tinker prediction in the low mass regime.

The results obtained by using strongly correlated random walks (i.e. using Eq. C.42)
are plotted in Fig. 6.1b. Choosing ∆ = 2.9 leads also in this case to a very good agreement
with the Tinker halo mass function. The high mass tail agrees slightly better with the
Tinker halo mass function, but fine-tuning ∆ to a slightly lower value would have led
to a similar agreement in the completely correlated case. It is, however, not our aim to
give a precise value for ∆, but to highlight the differences between both results. Despite
a very similar overall behaviour, the strongly correlated random walk shifts all halo
mass functions to slightly higher values. Therefore, all curves apart from the halo mass
function with ∆ = 2.0 lie slightly above the Press-Schechter result. The relative difference
between our results for ∆ = 2.9 and the predictions of the Tinker prediction can as well
be seen in Fig. 6.2.

To test the predictions for redshifts higher than z = 0, we calculate the results of our
halo mass function for redshift z = 1, by inserting the corresponding KFT predictions
into the density PDF model. Also in this case (see Fig. 6.3), we obtain results that agree
very well with the predictions of the Tinker halo mass function. However, to obtain
a better agreement in the high-mass tail the threshold would be needed to be chosen
slightly lower (∆ = 2.7). It can also be seen that the slope of the high mass tail is slightly
steeper than that of the Tinker halo mass function but the discrepancy is of the same
order as that between the Tinker fit and their simulation results. This shows that our
approach provides reasonable results also for redshifts different from today’s z = 0.
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Figure 6.1: Halo mass functions predicted analytically from the non-linear density field using a
generalised normal distribution (dashed lines). The four different density thresholds
in the range ∆ = 2.0 – 10.0 are coded by colours as given in the legend. The Press-
Schechter prediction is shown in black and the Tinker fit in blue. The upper panel (a)
shows the completely correlated case (Eq. 6.12). The lower panel (b) shows the results
for a strongly correlated random walk (Eq. C.42).
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Figure 6.2: The relative deviation of our halo mass function based on the generalised normal
model as compared to the Tinker fit. The density threshold was set in our model to
∆ = 2.9 (corresponding to the red dashed line in Fig. 6.1). The upper panel (a) shows the
completely correlated case and the lower panel (b) the a strongly correlated regime.

6.3 discussion

The approach presented above represents a first step towards an analytical derivation of
the halo mass function from the non-linear cosmic density field. It is a purely analytic
derivation of the halo mass function, since the free parameters of the PDF model are
fixed by the predictions of KFT. The only remaining free parameter of our model is the
density threshold ∆ above which a halo is considered to be collapsed. This leaves us with
a closed form for the halo mass function. In both of the regimes tested, i.e. the completely
correlated and the strongly correlated regime, we obtain very good agreement for a choice of
∆ = 2.9 with the predictions of the Tinker halo mass function. Being a fit to numerical
simulations, the Tinker halo mass function serves as a proxy for the direct comparison
to cosmological N-body simulations. The results agree in particular well with the high
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Figure 6.3: Halo mass functions at redshift z = 1, predicted using a generalised normal distribu-
tion (dashed lines). The colour coding was chosen analogously to Fig. 6.1. Additionally
the Press-Schechter halo mass function for redshift z = 0 is plotted as dotted line.

mass tail of the halo mass function, where the Press-Schechter model deviates from the
results found in simulations.

However, the chosen value for ∆ does not correspond to the virial overdensity obtained
from spherical collapse (∆nonlin_sc = 177), but is two orders of magnitude lower. Since our
PDF model breaks down on small scales, it is expected that our threshold ∆ lies below
∆nonlin_sc = 177, but still in the non-linear regime and therefore above ∆lin_sc = 1.686. In
order to improve our results and obtain a value closer to the overdensity measured in
virialised objects, a more accurate PDF would be necessary. A step in this direction has
been presented in Chapter 4. However, continuing work needs to be done in this direction.
Moreover, in case the strongly correlated regime is considered and the Musso-Sheth
approach is to be applied, the PDF of the density field alone would not be sufficient, but
the joint PDF p(δR, δ′R) would be needed.

For completeness, we would like to mention that there is a slightly different inter-
pretation of the low value of ∆ when formulating our approach taking a Lagrangian
perspective3. The mass weighting of random walks in Eqns. (6.1) and 6.4 can also be
seen as transforming the Eulerian PDF (e.g. our unweighted lognormal model) into the
corresponding Langrangian PDF as argued in Musso and Sheth (2014b). This is necessary
since the Lagrangian volume is considerably larger than the Eulerian and it is thereby

3 This was pointed out by the anonymous referee of a paper draft submitted to the Monthly Notices of the
Royal Astronomical Society.
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changing the densities in the Lagrangian picture. This can be accounted for by multi-
plying the lognormal distribution exactly by the weighting factor (1 + δR) (Bernardeau,
1994b; Bernardeau et al., 2002; Lam and Sheth, 2008). Mapping the weighted lognormal
distribution to the Gaussian distribution then requires adapting the density threshold
accordingly. This results in δ = ln(1 + ∆) ≈ 1.55,4 which corresponds to a value similar
to δc = 1.686 used in the original Press-Schechter description5. It is understandable
to draw therefore the conclusion that our approach simply represents a mapping of
the non-Gaussian density field to the Lagrangian initial density field and subsequently
performing the standard Press-Schechter approach. However, this is not quite the case.
On the one hand, the viewpoint presented above indeed could help to understand why
our approach predicts too many haloes at lower masses, where it agrees well with
the predictions of the Press-Schechter mass function. Furthermore, the connection of
our approach to the Press-Schechter approach in terms of the mapping between the
density thresholds gives somewhat more substance to the answer to why the original
Press-Schechter approach works comparably well despite its conceptual shortcomings6.
A similar result was obtained by Valageas (2009) aiming at deriving a more realistic
value for δc, where δc ≈ 1.59 was found. This value is close to our value stated above,
δ = ln(1 + ∆) ≈ 1.55, obtained from mapping the lognormal distribution to the Gaussian
distribution (see Appendix D).

On the other hand, this way of reasoning does not explain why we arrive at our result
using strongly or even completely correlated random walks. This crucial difference does
not allow interpreting our approach simply as a complicated way of performing the
standard Press-Schechter approach. Furthermore, our approach agrees well with the
high mass tail predicted by the Tinker halo mass function (see Fig. 6.1). It should be
mentioned, however, that the tail of extremely large masses (i.e. M & 1015 M�) is only
poorly constrained by simulations due to the rarity of the objects.

4 This results from the threshold ∆ = 3.7 found for the lognormal case (Appendix D). The generalised normal
distribution yields a slightly lower value of δ = ln(1 + ∆) ≈ 1.36.

5 Note that the value δc = 1.686 was derived for an EdS universe (see Section 5.2) and a more realistic value
should be closer to the value we obtained here.

6 A very interesting alternative derivation of the Press-Schechter result has been proposed recently by Lapi
and Danese (2020). Their approach is not based on excursion set statistics but on describing clustering via a
stochastic differential equation with respect to time.
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S U B S T R U C T U R E S O F G A L A X Y C L U S T E R S

We have mentioned in the previous chapter that the high mass tail of the halo mass
function is highly sensitive to σ8 and Ωm due to its exponential decrease. It is populated
by the most massive gravitationally bound structures that can be found in the Universe
today, which are clusters of hundreds to thousands of galaxies. For this reason, galaxy
clusters represent an important cosmological probe, which allow to measure cosmological
parameters with exponential sensitivity. A further important reason for the interest in
galaxy clusters is that their formation processes take place on scales up to a few Mpc,
due to their enormous masses (& 1014 M�). At such large scales, baryonic affects can
be assumed to play only a minor to negligible role (Munari et al., 2016; Shirasaki et al.,
2018). They therefore represent an excellent testbed for the standard model of cosmology.
Several cluster properties can be used for this purpose, such as their mass distribution,
number density or their extreme value distribution. In this chapter, we will focus on
the distribution of substructures within the cluster and their masses, which has been of
interest in a number of recent studies (Knebe and Mueller, 2000; Natarajan et al., 2007;
Jauzac et al., 2016; Jauzac et al., 2018; Natarajan et al., 2017; Mao et al., 2018).

We will investigate the massive galaxy cluster Abell 2744, since a recent analysis
has revealed that it contains a large number of very massive substructures and thus it
represents one of the most complex clusters known (Jauzac et al., 2016). We will test the
compatibility of its substructure distribution with ΛCDM by comparing it to clusters of
similar mass in the cosmological simulation Millennium XXL (MXXL, Angulo et al., 2012).
In order to allow a quantitative analysis that treats simulation data and observational
data alike, we introduce an algorithm based on wavelets.

We will start with a brief introduction of different mass definitions in Section 7.1
highlighting the different quantities used in observations, simulations and theory. We
then introduce the cluster Abell 2744 and its observational data in Section 7.2, followed
by the introduction of the Millennium XXL (MXXL) simulation in Section 7.3. We give
a brief summary of the wavelet transform in Section 7.4 and define how we use it to
find substructures in Section 7.5. The results of the comparison of observational and
simulated data are presented in Section 7.6. In Section 7.7, we investigate thoroughly
potential errors due to the fact that we analyse the particle data at a somewhat different
redshift than that of Abell 2744. We put our results into context with the findings of
Schwinn et al. (2017) and Mao et al. (2018) in Section 7.8. We finish with some concluding
remarks in Section 7.9, emphasising the importance of being aware of the differences
between the mass definitions used in simulations and observations. The content of this
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chapter is to a large extent based on Schwinn et al. (2018) from which several passages
have been included verbatim.

7.1 mass definitions

Substructures of galaxy clusters are often compared to those in ΛCDM haloes based
on their masses. However, as already mentioned in Section 5.5, mass is a problematic
observable as there exists no unique definition for the mass of a cluster. For this reason,
we deem it helpful to provide here a short list of the different mass observables used in
the different branches of cosmology, i.e. theory, observations and simulations.

7.1.1 Masses in theoretical considerations

In theoretical considerations, the mass of a halo is usually defined via the so called virial
radius. We have discussed in Section 5.2 that spherical collapse predicts that virialised
objects enclose a mean overdensity of roughly ρ200 = 200× ρ̄. Hence, the virial radius
is typically estimated by the radius of a sphere enclosing ρ200, denoted by R200,mean. For
preciseness, we differentiate here between R200,mean, which encloses a density of 200

times the mean density, and an alternative definition, R200,crit, which encloses a density of
200 times the critical density ρcr (Eq. 2.10), which is also frequently used. The virial mass
is defined accordingly as

M200,crit =
4π

3
R3

200,crit × 200ρcr . (7.1)

Throughout the rest of this chapter, we will approximate the virial mass by M200,crit, since
this convention was used by Neto et al. (2007), in which the concentration-mass relation
is introduced, which will be used in Section 7.8. Furthermore, we drop the subscript “crit”
for brevity.

7.1.2 Masses in observations

The results of imaging observations are typically two-dimensional maps. When it comes
to cluster potential reconstructions through gravitational lensing, for example, the end
product will be a potential- or mass map of the cluster. It seems therefore natural to
characterise the mass of clusters simply by placing a circular aperture of a specified
radius on the cluster centre and measure the enclosed mass, denoted by Map. Ideally,
neglecting line-of-sight projections, this mass estimate would coincide with M200, if the
aperture radius was taken as R200. However, first of all, the virial radius R200 has to be
estimated from the potential map as well and can have quite a large error. Secondly, since
we are dealing with the real Universe of course, there will be line-of-sight projections
and mergers, such that other structures can contaminate the mass within the aperture
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around the cluster of interest. Hence, it is often useful to choose a radius smaller than
R200 in order to exclude such contaminations, especially when a second structure is
clearly visible in the vicinity.

7.1.3 Masses in simulations

Halo masses in simulations typically depend on the method used to identify haloes.
This is done usually by the help of structure finding algorithms. We will here focus
on the algorithms used in the MXXL simulation introduced in Section 7.3. Structures
are identified in the MXXL simulation using the well-known Friends-of-Friends (FoF)
algorithm (Davis et al., 1985). It finds haloes by connecting all particles that are separated
by less than a given linking length, b. The linking length is typically given in units of
the mean interparticle separation and it was set to b = 0.2 in the MXXL simulation. This
value is typically regarded to ensure that the mean density of FoF haloes corresponds
to ∼ 200 times the critical density (ρcrit := 3H2/(8πG))1. The mass of such a FoF halo is
then given consequently as the summed mass of all particles assigned to the halo, which
we will denote by MFoF. In addition, also the R200-radius has been determined for each
FoF halo in the MXXL simulation and therefore also M200 is known. This allows for a
more unbiased comparison with theoretical results.

Within these FoF haloes, substructures are identified in the MXXL simulation using
the SUBFIND (Springel et al., 2001) algorithm. It identifies substructures by detecting
saddle points in the halo’s density distribution. It then assigns all particles to the subhalo
that are within the isodensity contour that traverses a saddle point and it only assigns
those particles to the substructure that are actually gravitationally bound to it. All other
particles are assigned to the main halo. The summed mass of all particles assigned to the
subhalo then gives the SUBFIND mass, which we will denote by Msub.

7.2 abell 2744 – observational data

Abell 2744 is one of the most massive and most complex galaxy clusters in the Universe.
It is located at a redshift of z = 0.308 and has a total mass of ∼ 3× 1015 M�. At least
seven massive substructures with masses & 5× 1013 M� have been found to reside in the
cluster (Jauzac et al., 2016). Due to these distinctive properties, it has been the subject of a
large number of investigations and observations in various wavebands (e.g. Merten et al.,
2011; Owers et al., 2011; Eckert et al., 2015; Medezinski et al., 2016; Jauzac et al., 2016).

The analysis performed in this chapter is based on the reconstruction of the cluster’s
mass distribution obtained in Jauzac et al. (2016). The observational data sets used for
this reconstruction comprise observations from the Hubble Space Telescope (HST), which

1 However, More et al. (2011) show that setting the linking length to b = 0.2 could in fact lead to haloes that
enclose a significantly higher overdensity in the range ∼ 250 to ∼ 600.
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Table 7.1: The eight substructures of Abell 2744. Column 1 gives the ID of the substructure,
columns 2 and 3 give the position on the sky, column 4 gives the mass within a circular
aperture of radius 150 kpc, column 5 gives the significance level of the detection in units
of the variance (σ) in the mass map and column 6 gives the distance of the substructure
from the Core’s brightest cluster galaxy (BCG). The BCG is located at right ascension
α = 3.586 259◦ and declination δ = −30.400 174◦. This table is based on Table 2 from
Jauzac et al. (2016).

ID R.A. Dec. M(r < 150 kpc) σ DC−S

(deg) (deg) (1013 M�) (kpc)

Core 3.58626 -30.40017 13.55± 0.09 150 -

N 3.57666 -30.35759 6.10± 0.50 12 708.4

NW 3.55310 -30.37676 7.90± 0.60 13 603.6

Wbis 3.54629 -30.40332 5.20± 0.60 9 565.3

S1 3.60412 -30.37465 5.00± 0.40 13 486.9

S2 3.59895 -30.35693 5.40± 0.50 11 728.5

S3 3.54151 -30.37378 6.50± 0.60 11 763.7

S4 3.52473 -30.36958 5.50± 1.20 5 1000.5

probe especially the inner region of the cluster for the strong lensing analysis, the Canada-
France-Hawaii Telescope (CFHT) for the large-scale weak lensing analysis and the Wide
Field Imager (WFI) at La Silla Observatory, Chile for photometric redshifts. The redshift
data was supplemented by spectroscopic data from Owers et al. (2011). All these data
were compiled to perform a combined strong and weak lensing analysis, which resulted
in a map of Abell 2744’s gravitational potential (see Fig. E.1 in Appendix E). The details of
this reconstruction, including the selection of background galaxies, shape measurements
and noise estimation, can be found in Jauzac et al. (2016).

The mass distribution given by the potential map allows determining Abell 2744’s
mass within a circular aperture of R = 1.3 Mpc, which is obtained to be M(R <

1.3 Mpc) = (2.3± 0.1)× 1015 M�.2 Furthermore, the potential map reveals eight massive
substructures within a distance of 1 Mpc from the cluster centre. All these substructures
have masses & 5× 1013 M�. We list the ID, position on the sky, mass, significance and
distance of all eight substructures in Table 7.1, which was taken from Jauzac et al. (2016).
However, Jauzac et al. (2016) caution that one of these substructures (Wbis) is probably a
background structure projected onto the cluster, since it has a relatively high mass-to-light
ratio and the spectroscopic redshifts of galaxies in its vicinity place it behind the cluster.

2 Note that this corresponds in fact to the mass contained in a cylinder of radius R = 1.3 Mpc, since it is
inferred from the line-of-sight projected 2D-map. To infer the proper three-dimensional mass of the cluster
itself, further assumptions about the shape and symmetry of the cluster need to be made.
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We therefore make the conservative assumption that Abell 2744 contains at least seven
massive substructures. We test the compatibility of Abell 2744 with the cosmological
standard model by investigating if haloes of similar total mass taken from a large ΛCDM
simulation contain a similar number of substructures as massive and as close to the
centre as in Abell 2744.

7.3 the millennium xxl – simulated data

7.3.1 Simulation properties

For this purpose, we use the Millennium XXL (MXXL) simulation (Angulo et al., 2012).
The MXXL simulation is the third in the family of Millennium simulations. These
simulate the content of a ΛCDM universe (dark matter only) with parameters chosen
as H0 = 73 km s−1Mpc−1, ΩΛ = 0.75, Ωm = Ωdm + Ωb = 0.25, Ωb = 0.045 and
σ8 = 0.9 (Springel et al., 2005; Boylan-Kolchin et al., 2009). The only difference between
the simulations is given by the simulated volume and therefore their mass- and spatial
resolution. The MXXL simulation, being the largest of the three, comprises a box of side
length 4.3 Gpc. It is therefore large enough to contain multiple haloes of the mass of
Abell 2744 at redshift z ≈ 0.3. The dark matter fluid is sampled by 303 billion particles
each having a mass of mp = 8.80× 109 M�.3

During the simulation run, gravitationally bound structures were found by using the
FoF algorithm and substructures within these haloes were identified by SUBFIND. The
properties of the FoF and SUBFIND haloes were stored for 64 snapshots ranging from
z = 63 to 0. The full information of all dark matter particles, i.e. their position and
velocities, were stored only for four snapshots at redshifts z = 0, 0.24, 1 and 3. This data
reduction was necessary, since storing the full particle data of all snapshots would have
required an enormous storage space of about 700 TB. We will base our analysis on the
FoF data sets as well as the full particle data at snapshot 54 (z = 0.24), which is the
snapshot closest to the redshift of Abell 2744 for which the full particle data are available.
We aim to use the particle data of the simulation to create cluster mass maps that are
comparable to those obtained from observations. Using the same method when analysing
observational and simulated mass maps allows us to perform a comparison in an as
unbiased way as possible. In a second step, we then compare our findings with the
SUBFIND data sets in Section 7.8.

3 Note that quantities from simulations are in the literature typically given in units with the dimensionless
Hubble constant factored out (e.g. h−1Mpc, h−1M�, . . . ). In order to guarantee comparability of our results
with the observational results, we do not follow this choice in this chapter, but we absorb factors of h into
the units and adopt a value of h = 0.7 as in Jauzac et al. (2016).
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7.3.2 Mass maps from the MXXL simulation

The projected mass maps for all MXXL haloes with a mass similar to Abell 2744 are
obtained as follows. First, we select all FoF-haloes at redshift z = 0.28 with a mass of
M200 ≥ 2.0× 1015 M�. This represents a rather conservative mass cut, since it corresponds
to the lower 3σ-bound of Abell 2744’s mass within an aperture of 1.3 Mpc obtained in
Jauzac et al. (2016). This radius, however, is smaller than the R200-radius and therefore
the M200-mass of Abell 2744 can be assumed to be way larger. An extrapolation by
Schwinn et al. (2017) in order to estimate Abell 2744’s virial mass (M200), led to M200 =

3.3± 0.2× 1015 M�, which lies well above our lower threshold. The mass criterion defined
above is fulfilled by 209 haloes in the MXXL simulation.

The particle data of the MXXL simulation can now be used to create projected mass
maps of each halo. We use the snapshot closest to the redshift of Abell 2744 for which
full particle data is available, i.e. the snapshot at z = 0.24. Mass maps are then generated
by projecting all particles over a length of 30 Mpc on a 3× 3 Mpc map and binning them
into pixels of side length 4.55 kpc. This choice corresponds to the resolution of the mass
map obtained for Abell 2744 in Jauzac et al. (2016). By varying the projection length, we
found that the results of our analysis are fairly insensitive to the choice of 30 Mpc. A
projection over 15 Mpc, for example, would not alter the conclusions of our analysis. We
obtain for each halo three mass maps using either the x-, y- or z-axis as the line-of-sight.
Due to the limited mass resolution of the MXXL simulation with a particle mass of
mp = 8.80× 109 M�, the mass maps from the simulation are much more coarse-grained
than those obtained from observations. In order to correct for this effect, we smooth all
mass maps (that of Abell 2744 as well) with a Gaussian filter with a standard deviation of
1.5 pixels (∼ 6.8 kpc). With these mass maps we can perform a comparison of simulated
clusters and Abell 2744 on equal footing. For this purpose, we will use an algorithm
based on the wavelet transform, which is introduced in the next section.

7.4 the wavelet transform

In signal and data processing, typically the Fourier transform is used to isolate frequencies
of interest, i.e. signal contributions of certain length or time scales. This, however, is
done at the cost of losing any time or position information about the signal. An analysis
in Fourier space is therefore most useful for stationary signals, but has only limited
advantage for signals changing with time or position in a nonperiodic way. An alternative
combining the best of both worlds is provided by the wavelet transform (WT) (Morlet
et al., 1982; Daubechies, 1988; Mallat, 1989; Meyer, 1989). This transform allows filtering
out specific frequencies of a signal without losing positional information (see e.g. the
overviews by Rioul and Vetterli, 1991, and Jones, 2009, or the books of Daubechies, 1992,
and Mallat, 2009 for a detailed introduction).
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The wavelet decomposition can be used for both discrete signals, using the wavelet
series expansion, and continuous signals using the continuous wavelet transform. The
continuous wavelet transform of a signal s(x) is defined via

Ws(a, b) =
1√
a

∫ +∞

−∞
ψ

(
x− b

a

)
s(x)dx, (7.2)

where ψ(x) represents the mother wavelet function, which is scaled by a parameter a
and shifted by a parameter b. In other words, the wavelet transform is given by the
convolution of a window function ψ(x) with the signal function s(x). By shifting this
window function using the parameter b, the positional information of the original signal
is preserved. Furthermore, the width of the filter governed by the scaling parameter a
introduces a filter scale. The wavelet functions ψa,b(x) = ψ

(
x−b

a

)
are chosen such that

they form an orthonormal basis of L2 (i.e. the space of square integrable functions).
Furthermore, the mother wavelet function ψ(x) needs to fulfil two conditions:

(i) it needs to have zero mean∫ ∞

−∞
ψ(x)dx = 0, (7.3)

(ii) it needs to be normalised

||ψ(x)|| =
[∫ ∞

−∞
|ψ(x)|2 dx

]1/2

= 1. (7.4)

The combination of conditions (i) and (ii) requires ψ(x) to be a localised, oscillatory
function. Furthermore, it can be seen that the prefactor of 1/

√
a in Eq. (7.2) ensures that

the scaled wavelet remains normalised according to condition (ii).
There exist many different choices for the mother wavelet in the literature. The most

common ones are the Haar wavelet, the Mexican Hat wavelet, the Morlet wavelet, which
is a complex valued wavelet, and the family of Daubechies wavelets (see e.g. Daubechies,
1992; Jones, 2009; Mallat, 2009). We show examples of these four wavelets in Fig. 7.1. The
choice of the mother wavelet depends mainly on the signal to be analysed. The mother
wavelet is chosen such that it best describes the signal that is to be isolated.

7.5 finding substructures using the wavelet transform

We can use this wavelet transform to devise an algorithm to identify the positions of
all peaks on sub-cluster scales in the mass maps. This method would allow treating
simulated and observed data alike. Hence, it prevents the results from being biased by
the substructure finding algorithm used in the simulation, since these algorithms identify
substructures on the basis of different criteria than those used in the observations. The



96 substructures of galaxy clusters

0.8

0.4

0.0

0.4

0.8

4 2 0 2 4

Morlet

0 1 2

1

0

1

1

Haar(a)

2 1 0 1 2 3

1

0

1

2

Daubechies

0 2 4

0.4

0.0

0.4

0.8

4 2

Mexican
Hat

(c)

(b)

(d)

Figure 7.1: Examples of four of the most common mother wavelet functions: (a) Haar wavelet,
(b) Mexican Hat wavelet, (c) Daubechies wavelet (with two vanishing moments) and
(d) real part of the Morlet wavelet.

wavelet transform provides a convenient tool in this case, since it allows extracting the
mass signal at the scale of interest, without losing the positional information as would be
the case with a Fourier transform. It has been applied already in a number of studies
to investigate cluster substructures (see e.g. Escalera and Mazure, 1992; Krywult et al.,
1999; Flin and Krywult, 2006; Livermore et al., 2017). It is therefore our aim to use the
coefficients of the wavelet transform (WT) to identify significant mass peaks in each mass
map. We will then define a set of criteria including the scale of the WT and a threshold
in the WT coefficients, which is tailored such that it selects only substructures that are as
significant as those of Abell 2744.

In doing so, it is important to keep in mind that the projected substructure mass in
the mass map actually consists of two components: (i) the mass gravitationally bound
to the substructure and (ii) the background mass distribution of the host halo in which
the substructure resides. The WT coefficients depend on both of these components and
the host halo boosts the coefficients of the substructures. Hence, a small fluctuation
close to the centre can have a higher coefficient than a substructure further away with a
higher density peak in comparison to the local background. To avoid this, we fit the mass
distribution of the main halo with an NFW density profile (Navarro et al., 1996) and
subtract its contribution from the mass map before performing the wavelet transform.
Although we fit the cluster by a spherically symmetric mass distribution, which gives only
a rough estimate for a cluster undergoing a merger, it still minimizes the contamination
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by the background halo. Due to the subsequent filtering with the wavelet transform, the
remaining residuals do not play an important role, since they appear on larger length
scales and have a smaller amplitude than the subhaloes that are to be extracted. A more
precise modelling of the background halo could, however, even increase the sensitivity
with which subhaloes can be detected.

To perform the wavelet transform, we use the publicly available 1D continuous wavelet
transform module of the PyWavelet package4. We adopt the Mexican Hat wavelet as the
mother wavelet function, since it matches best the shape expected for a density peak of a
subhalo in comparison to other wavelets (see Fig. 7.1). In contrast, if a function closer to
the actual density profile was chosen, the wavelet-conditions (Eqns. 7.3 and 7.4) would
not be fulfilled. Since the 1D wavelet transform is used to analyse a 2D map, we apply
the 1D wavelet transform row-wise and column-wise. The final WT coefficients are then
obtained by taking the arithmetic mean of the row-wise and column-wise coefficients. We
chose this approach, since it was comparably simple to implement and led to satisfactory
results. It could be improved, however, by implementing a 2D wavelet transform. This
should not alter the qualitative results we obtain, but it should increase the sensitivity
to weak signals, since subhaloes can be filtered out better the more precisely they are
modelled. It would, for example, prevent the striped patterns visible in Fig. 7.2.

With this map of WT coefficients at hand, substructures can be detected automatically.
Based on the WT coefficients, we can define a quantitative criterion that determines
which of the identified substructures can be considered to be equally significant as those
of Abell 2744. This criterion consists of two parameters: the scale of the wavelet transform
and the threshold for its coefficients, marking the threshold for the significance of the
substructure. The values of these parameters are set such that our method recovers as
many of the eight substructures of Abell 2744 found in Jauzac et al. (2016) as possible5.
We adopt the following choice of parameters:

- a WT scale of 40 pixels, corresponding to 182 kpc and

- a threshold for WT coefficients of W ≥ 2.6× 1010 M�pc−1.

The scale of the WT is set such that it maximises the coefficients of the peaks correspond-
ing to Abell 2744’s substructures. The threshold was set to the lowest WT coefficient
value of these peaks. Applying this criterion to the mass maps obtained from the MXXL
haloes ensures that the substructures found in the simulated mass maps are at least
as significant as the substructures found in Abell 2744 and we do not include random
fluctuations in our analysis.

In order to detect peaks in the mass maps using as little computational time as possible,
we apply the following procedure. First, we select only those pixels that are at least 5

4 http://pywavelets.readthedocs.io
5 As discussed in Section 7.6.1, this choice recovers seven substructures and only fails to recover the S1

substructure, which also does not show up as a prominent peak in the mass map.
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Figure 7.2: Substructures of Abell 2744 identified automatically by using the wavelet transform.
The left panel shows the mass map of Abell 2744 where the colour map and contours
show the surface density. The right panel shows the wavelet transform coefficients
computed as described in the text. Substructures fulfilling the defined threshold
criteria are marked as orange circles with radius corresponding to R = 150 kpc. The
S1 substructure found in Jauzac et al. (2016) is highlighted as a red dashed circle.

times above the average WT coefficient of the map. We then select 20 per cent of these
pixels randomly. This further helps us to save computational time and does not pose
a problem, since we expect each subhalo to have ten or more pixels that are at least 5

times above the average WT coefficient. We then draw a circular aperture around the
selected pixels with a radius of 100 kpc. Since this radius is smaller than the aperture
used to determine the mass of the substructures (i.e. R = 150 kpc), it allows us to have
slightly overlapping subhalo apertures. In each aperture around the randomly selected
pixels, we select the pixel with the largest WT coefficient and change the centre of the
aperture to this pixel. Since the local maximum could lie outside of the circle, i.e. when
several circles were placed in the vicinity of the same subhalo, it is well possible that
the maximal pixel lies at the edge of the aperture. We therefore perform this procedure
iteratively ten times. This ensures that all peaks are found and that peaks have a minimal
distance of 100 kpc to each other. We do not aim to find peaks closer than that, since
they would have significantly overlapping apertures, preventing their masses from being
determined independently. As a last step we discard all substructures with an aperture
mass M(R < 150 kpc) < 3× 1013 M� or which are at a distance R > 1.25 Mpc from
the halo centre, since they do not match the properties of the substructures found in
Abell 2744.
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7.6 results

7.6.1 Abell 2744

We apply the method specified above to the mass map obtained in Jauzac et al. (2016).
As highlighted in Fig. 7.2, we are able to recover seven of the eight substructures they
report. Our algorithm does not identify the S1 substructure identified in both Medezinski
et al. (2016) (where it was named NE) and Jauzac et al. (2016). Although this substructure
produces a lensing signal with a high significance (13σ in Jauzac et al., 2016), it does
not show up as a clearly visible peak in the mass map (see Fig. 7.2). Since our detection
algorithm is based on the mass of substructures and their scale, it fails to identify this
substructure. For this reason, we consider a cluster to be Abell 2744-like in terms of its
substructure distribution, if at least six substructures6 are found that:

(i) are identified by our wavelet transform algorithm with the above defined thresholds,

(ii) have an aperture mass of at least M(R < 150 kpc) ≥ 3× 1013 M�,

(iii) have a projected distance not larger than 1.25 Mpc from the cluster centre.

7.6.2 MXXL

Exactly the same method is then applied to the mass maps obtained for the 209 MXXL
haloes with a mass similar to Abell 2744 (as described in Section 7.3.2). We find three
haloes that can be considered similar to Abell 2744 according to the criteria (i) - (iii). The
mass maps of these three haloes are shown in Fig. 7.3 together with the maps of the
corresponding WT coefficients. We list the properties (i.e. aperture mass, distance from
the centre and WT coefficient) of all identified substructures in Table 7.2.

The first halo (halo 37) resembles the properties of Abell 2744 remarkably closely. The
cluster has a mass of M37(R < 1.3Mpc) = 2.61× 1015 M�, similar to that of Abell 2744.
Our wavelet transform algorithm identifies nine substructures within a projected distance
of 1.2 Mpc. Sorting the subhaloes by descending projected mass and comparing the mass
of each rank to its equivalent in Abell 2744 shows a maximal discrepancy of 23 per cent
between their aperture masses. Furthermore, the central substructure seems to consist of
two separate density peaks, very similar to the bimodal mass distribution of the core of
Abell 2744 (Jauzac et al., 2015).

The second halo, halo 95, has a mass of M95(R < 1.3Mpc) = 2.00× 1015 M� and is
therefore the least massive of the three MXXL haloes. Also this cluster consists of nine
substructures with an aperture mass higher than 3× 1013 M� within a distance of 1.0 Mpc
from the centre. Comparing the substructures’ aperture masses to those of Abell 2744

6 keeping in mind that Wbis is potentially a line-of-sight projection
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Figure 7.3: MXXL haloes 37, 95 and 114 which show a substructure distribution similar to that of
Abell 2744. The panels on the left side show the mass maps of all haloes where the
colour map and contours show the surface density. The contours show the map after
being smoothed by a Gaussian with standard deviation of 8 pixels (∼ 36.4 kpc). The
right panels show the wavelet transform coefficients used to identify the substructures.
Substructures fulfilling the threshold criteria are marked as orange circles with radius
corresponding to R = 150 kpc.
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by sorting them in the same way as for halo 37 shows a discrepancy of at most 40 per
cent. The higher discrepancy in comparison to that of halo 37 is due to the low masses of
subhaloes 6 to 9. These are somewhat less massive than the least massive substructures
of Abell 2744. The masses of the six most massive substructures differ by less than 17 per
cent from those of Abell 2744.

Finally, halo 114 has a mass of M114(R < 1.3Mpc) = 2.10× 1015 M�, which is slightly
lower than the mass of Abell 2744. We found eight massive substructures within a radius
of 1.25 Mpc from the centre. The substructures’ masses differ by at most 30 per cent from
those of Abell 2744’s substructures. Especially the lower mass subhaloes, i.e. all apart
from the two most massive ones, contain less mass than the substructures of Abell 2744.

It should be noted that the WT coefficients of almost all substructures in the MXXL
simulation are considerably higher than those of Abell 2744. These values could be
slightly overestimated due to the finite mass resolution of the MXXL simulation. Since
the dark matter distribution of the MXXL simulation is traced by particles of mass
mp = 8.80× 109 M�, the cluster mass maps are not as smooth as in the observational
case. As described in Section 7.3.2, we correct for this effect by applying a Gaussian filter
with a standard deviation of 1.5 pixels to each mass map from the MXXL simulation.
This value was chosen such that the smoothing is gently enough to not remove any
substructures.

In addition, we can use the mass maps to draw conclusions about Abell 2744’s virial
mass. In Schwinn et al. (2017), the virial mass was predicted to be M200 = 3.3± 0.2×
1015 M� by using the projection of a corresponding NFW-profile. We compare this
prediction with the M200 masses of the three MXXL haloes listed above. The first halo
(halo 37) has a mass of M200,37 = 3.67× 1015 M�, which is 40 per cent higher than its
aperture mass within 1.3 Mpc. This agrees well with the prediction of Schwinn et al.
(2017). However, the masses of both of the other clusters, M200,95 = 2.55× 1015 M� and
M200,114 = 2.41 × 1015 M�, are 11 per cent and 12 per cent, respectively, lower than
expected from an extrapolation using an NFW profile. Since all of these clusters are
undergoing a merger, the cluster is far from being relaxed, which explains the deviation
from the extrapolation using an NFW-profile. This suggests that also the virial mass of
Abell 2744 is potentially lower than the value estimated in Schwinn et al. (2017) and
should lie in the range of M200,A2744 ∼ 2.5 – 3× 1015 M�.

7.7 time evolution and projection effects

An inevitable shortcoming of our work is the analysis of the simulation data at redshift
z = 0.24, while Abell 2744 is located at z = 0.306, which corresponds to a time difference
of roughly 600 Myr. This gap in the cluster evolution cannot be avoided, since the particle
data of the MXXL simulation is not available for the redshift of Abell 2744. The only
possibility to investigate the behaviour of the substructures in between these redshifts is
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Figure 7.5: Time evolution of the mass and radial distance of the subhaloes of halo 37. The left
panel shows subhaloes 2, 4, 7 and 9. The right panel shows subhaloes 3, 5, 6 and 8. The
five different snapshots (50-54) are colour coded as given in the legend. The radius is
given as the distance from the position of the central halo.

to trace the substructures back in time using the merger trees available for the SUBFIND

haloes. For this reason, we identify the closest SUBFIND halo for each substructure found
by the wavelet transform algorithm. In cases where this leads to more than one possible
candidate, we select the most massive subhalo. This allows us to predict the positions
and masses of the substructures at z = 0.3.

We find for all substructures identified in halo 37 the corresponding SUBFIND haloes. In
case of halo 95, however, we find that only seven of the nine substructures have SUBFIND

haloes at the position of the substructures in the mass map. There are no SUBFIND haloes
for substructures 6 and 7. The substructures with no corresponding SUBFIND halo are very
likely line-of-sight projections. For halo 114 we find SUBFIND haloes for 6 of 8 substructures.
For substructures 3 and 4 there is no close SUBFIND halo.

7.7.1 Change of distance during the infall

Using these SUBFIND haloes, we track the movement of the substructures during their
infall and investigate if they are already within a radius of 1.2 Mpc at z = 0.3. The time
evolution of the SUBFIND haloes of MXXL halo 37 is shown in Fig. 7.4. The trajectories
of the infalling substructures are heavily affected by the ongoing merger and move by
up to 1.9 Mpc between two snapshots. In order to determine the subhaloes’ positions
at z = 0.3 we interpolate the trajectories between the snapshots. At least seven of the
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identified substructures can be found within a radius of 1.2 Mpc from the main halo
at z = 0.3. In case of halo 95, the trajectories of the six identified subhaloes describe a
merger similar to that of halo 37. In this case, only 4 of the 6 SUBFIND haloes are already
within a radius of 1.2 Mpc at z = 0.3. Since there are no corresponding SUBFIND haloes
for substructures 6 and 7, there is no way to predict the position of these substructures
at z = 0.3, unfortunately. The trajectories of the subhaloes of halo 114 differ from the
other two haloes. They do not have as perturbed trajectories, but they simply fall into the
cluster. For this reason, the substructures are already close to the centre at z = 0.3. The
maximum distance of the substructures from the central halo at z = 0.3 is 1.6 Mpc.

7.7.2 Change of mass during the infall

The identification of the SUBFIND haloes also allows us to investigate the mass evolution
of the substructures. We can therefore test if any drastic mass changes occurred, such
that they would not have been considered to be Abell 2744-like at z = 0.3. We show the
mass evolution of the subhaloes of halo 37 in Fig. 7.5 as an example. We consider the
subhalo masses from five snapshots in the range from z = 0.41 to 0.24. For clarity, these
are plotted in two panels each showing the evolution of four subhaloes. The subhaloes
show a mixture of mass growth and mass being stripped away due to the infall. While
some substructures (subhaloes 2, 4 and 9) are purely affected by tidal stripping during
their infall, others (i.e. subhaloes 3, 5, 6, 7 and 8) also gain mass between one or two
snapshots. The mass evolution of subhalo 7 reveals clearly the difficulties faced by
SUBFIND to identify subhaloes that are very close to the cluster centre. It loses 90 per cent
of its mass between snapshot 50 and 52 when it is very close to the centre. Being more
distant again in snapshot 53, its mass is restored from 10 per cent back to 40 per cent
of its initial mass at snapshot 50. This emphasises the problems of analysing masses of
substructures close to the centre based on the SUBFIND data. These findings are in line
with the recent results of Mao et al. (2018) and Han et al. (2017). The high fluctuations in
the substructures’ masses make it difficult to predict the mass change of the substructures
between z = 0.3 and z = 0.24. Since the mass of 4 subhaloes decreased from z = 0.3 to
0.24, they have been most likely Abell 2744-like already at z = 0.3. In contrast, the masses
of the central halo and subhalo 6 increased from z = 0.3 to 0.24. However, they increase
only by 10 percent and 7 percent, respectively, which does not result in a tension with
Abell 2744. Furthermore, the projected mass of subhalo 7 is not very likely to be affected
as dramatically as the change in SUBFIND-mass suggests. Since it is much closer to the
centre at z = 0.3, it is more likely that the projected aperture mass is even higher due to
the additional contribution of the host halo. We therefore argue that it is likely to find at
least seven substructures with similar aperture masses in halo 37 at redshift z = 0.3.
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7.7.3 Projection effects

Using the 3D information of the SUBFIND haloes, we can furthermore test the effect of
line-of-sight projections on the formation of apparent 2D groups. Investigating the 3D
positions of halo 37’s substructures shows that the identified substructures are distributed
over a distance of almost 4 Mpc centred on the main halo. As expected, subhaloes
appearing close to each other on the 2D map can be quite distant in 3D. While sub-
haloes 2, 3, 6 and 7 form a group in projection, they are distributed over a line-of-sight
distance of 3.4 Mpc. We test as well, if the 2D map is influenced by another effect,
i.e. the projection of multiple subhaloes onto one substructure on the map. Fig. 7.4
shows, however, that this effect is negligible in our case. Only subhalo 5 is affected by
another close massive subhalo which appears as separate peak in the mass map in Fig. 7.3.

7.8 comparison to other recent studies – the role of mass estimates

Our results are in contrast to the recent analysis presented in Jauzac et al. (2016) and
Schwinn et al. (2017), which suggested a potential tension between the substructure
distribution of Abell 2744 and the predictions for a ΛCDM universe. This initial study,
however, was based on FoF- and SUBFIND-haloes alone and did not use the full particle
data of the MXXL simulation. The apparent tension was taken up by Mao et al. (2018)
searching for haloes similar to Abell 2744 in a different simulation, i.e. the high resolution
Phoenix cluster simulations (Gao et al., 2012). Investigating the particle data of the
simulation directly, they found one halo with a similar substructure distribution to
Abell 2744. Interestingly, they showed that a significant contribution to the subhalo
masses, measured by an 150 kpc aperture around the substructure centres, comes in
fact by the background mass distribution of the host halo. Additionally, a study by Han
et al. (2017) found that the substructure masses can be significantly underpredicted by
SUBFIND and thus be in part responsible for the apparent tension with ΛCDM that is
found using subhalo masses alone.

We therefore put the results obtained with our wavelet algorithm in contrast to the
results of Schwinn et al. (2017), where only the MXXL FoF- and SUBFIND-haloes were used.
We focus especially on the role of the different mass estimates either from substructure
finding algorithms like SUBFIND or from the particle data directly. We investigate if it is
possible to find a relation between these estimates, which would allow translating one
into the other.

7.8.1 Comparison of aperture masses with SUBFIND masses

We first compare the subhalo masses obtained by SUBFIND with the aperture masses of
the substructures identified in the 2D-maps. These masses are listed for all substructures
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Table 7.3: Comparison of different mass estimates for all substructures of halo 37 apart from
the central halo. The table lists subhalo ID (column 1), distance from the central halo
(column 2), the mass measured within a 150 kpc aperture from the projected mass
map (column 3), the mass provided by SUBFIND for the closest SUBFIND-halo (column
4), the mass of the host halo at the position of the substructure estimated assuming an
NFW-profile (column 5) and the expected aperture mass assuming two NFW-profiles
for the main halo and the SUBFIND subhalo (column 6).

ID DC−S M(r < 150 kpc) Msub Mhost Mextr

(kpc) (1013 M�) (1013 M�) (1013 M�) (1013M�)

2 576 8.85 1.72 3.80 4.79

3 615 7.28 1.73 3.35 4.35

4 1182 6.97 2.21 1.61 2.80

5 974 6.73 2.29 2.13 3.36

6 902 6.37 2.36 2.35 3.60

7 967 5.00 2.06 2.19 3.33

8 683 4.08 1.01 2.88 3.54

9 1008 3.08 2.33 2.03 3.27

of halo 37 in Table 7.3. Similar to the analysis in Mao et al. (2018), we find that the aperture
mass of the substructures can reach values up to five times their corresponding SUBFIND

mass. Comparing the subhalo masses obtained by SUBFIND (Table 7.3, column 4) to those
obtained in the mass map (Table 7.3, column 3) leads to up to 80 per cent lower SUBFIND
masses than the masses measured within a 150 kpc-aperture. This additional mass comes
most likely from line-of-sight projection of the background mass distribution of the main
halo. It explains why no cluster with the same number of massive substructures as Abell
2744 was found in the study of Schwinn et al. (2017). Assuming that substructures have
SUBFIND masses similar to their aperture masses led to setting a too high mass threshold
when searching for substructures.

We now try to estimate if a relation between SUBFIND mass and aperture mass can be
found. This would be extremely helpful, since many simulation snapshots consist only
of FoF- and SUBFIND data for reasons of data compression. For this purpose, we model
the aperture mass by considering two components, the background halo and the subhalo.
We assume that both mass distributions are given by NFW profiles. The mass of the main
halo is assumed to be M200 = 3.67× 1015 M� and subhalo mass is estimated by setting
M200 = Msub, where Msub denotes the mass provided by SUBFIND. The NFW profiles are
fixed through the respective masses by adopting the c-M200 relation presented in Neto
et al. (2007). We then obtain the projected mass by integrating the sum of the subhalo
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and host halo density profiles within a cylinder of length 30 Mpc (corresponding to the
line-of-sight) and radius 150 kpc (corresponding to the radius of the aperture).

First, we are interested in how much this model predicts the host halo to contribute to
the total aperture mass. The contribution of the host halo to the aperture mass is shown
in Table 7.3, column 5. This estimate shows that it can contribute between 23 and 71 per
cent of the aperture masses measured from the mass maps directly (column 3). Also this
result corresponds to the conclusion that a substantial fraction of the aperture mass is
due to the background mass distribution of the host halo.

We then compare the predictions of our model for the total aperture masses (i.e. the
contributions of host halo and subhalo combined, see column 6 in Table 7.3) to the
results from the actual mass maps. The extrapolated masses of all subhaloes apart from
subhaloes 8 and 9 are considerably lower than the actual masses measured from the
mass map directly. The extrapolation underestimates the projected mass by up to 60 per
cent. This shows that the translation from subhalo masses measured with SUBFIND to
projected masses within a 2D mass map is not possible. This is most likely due to the
fact that the cluster is far from being relaxed and thus assuming spherical symmetry
and an NFW-profile leads to incorrect results. Additionally an overprediction of tidal
stripping by SUBFIND as reported in Muldrew et al. (2011) and Han et al. (2017) would as
well lead to lower expected masses. We therefore conclude that only an analysis based
on the particle data directly can lead to mass estimates that are comparable to those
obtained from observations.

7.8.2 Substructure finding based on SUBFIND

We furthermore would like to put our results into context with those of Mao et al.
(2018), which were based on the particle data of the Phoenix simulations. Their approach
consisted of investigating the most massive halo in the simulation, which is the only halo
in the simulation as massive as Abell 2744. They first identified all SUBFIND haloes with
mass Msub ≥ 2.3× 1011 M�. Then they used the particle data to compute aperture masses
centred on these SUBFIND haloes for 24 different projections of the halo. By doing so they
found at least three projections with eight and another one with nine substructures with
properties comparable to Abell 2744.

While the first analysis presented in Schwinn et al. (2017) neglected the contribution
of the host halo on the subhalo apertures, the method presented in Mao et al. (2018)
could in fact exaggerate the influence of the host halo due to centring apertures on all
SUBFIND halos above their mass threshold. As they state correctly, their method does
not ensure that a halo found by SUBFIND is actually significant enough to be detected
as a substructure in a weak lensing mass map. Since the host halo contributes such a
large fraction to the total mass, Mao et al. (2018) are prone to picking up light subhaloes,
to which the necessary aperture mass is provided mainly by the diffuse host halo
mass. However, such a subhalo would not correspond to the substructures found in
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the observation of Abell 2744. Furthermore, using only SUBFIND haloes can also lead to
missing substructures. As discussed in Section 7.7, we find a number of substructures that
show up as significant substructures in the mass map, but do not have a corresponding
SUBFIND counterpart (e.g. because they are not gravitationally bound). Combining these
results it seems advisable not to rely on SUBFIND data at all in this kind of comparison
with observations, but to identify structures in a way that is as similar as possible to the
observational approach.

7.8.3 Artificial disruption of substructure

Finally, we would like to address an additional, unrelated numerical issue. When inves-
tigating substructures in N-body simulations, it is important to keep in mind that not
only their identification but also their evolution on particle data level can be altered by
numerical effects. A very detailed investigation of the influence of parameter choices in
the N-body simulation on the tidal disruption of subhaloes has been performed recently
by van den Bosch, Frank C and Ogiya, Go (2018). Using the simplified setting of a
subhalo on a circular orbit in a static, analytic host halo, they addressed the question of
whether the tidal disruption of subhaloes has a physical or numerical origin. They find
that mainly two effects have an important influence and cause a spurious disruption of
subhaloes.

The first is due to the force softening parameter which is commonly introduced by
hand in N-body simulations. It is set to prevent that the gravitational potential between
two particles diverges when two particles approach each other. For this reason, a minimal
distance ε is added quadratically to the separation of the two particles. Several studies
exist on the optimal choice of this parameter (Kampen, 2000; Dehnen, 2001; Power et al.,
2003). However, van den Bosch, Frank C and Ogiya, Go (2018) find that the commonly
chosen values lead to a spurious disruption of subhaloes on orbits close to the centre.

The second effect is the amplification of discreteness noise by a runaway instability.
Since the subhalo is represented by discrete particles, there exist different equivalent
realisations of the same subhalo. If one of the realisations loses more mass through tidal
stripping than the average, it expands more than average due to revirialisation. Thus,
again more particles than average are beyond the subhalo’s virial radius and get stripped
away. This runaway instability leads to a large variance of the time it takes to disrupt the
subhalo.

These effects also have the potential to influence the findings of our work. The severity
of these effects depend mainly on the radial distance from the centre and how much mass
has already been stripped away, i.e. how long the merging already has been going on. van
den Bosch, Frank C and Ogiya, Go (2018) show drastic numerical effects for orbits close to
the host halo centre (i.e. Rorb = 0.1Rvir) for the later stages of the infall where the subhalo
has already lost more than 90 per cent of its original mass. In our case, the majority of
subhaloes are on orbits with Rorb > 400 kpc. Since Abell 2744 has a virial radius of 2.8



110 substructures of galaxy clusters

Mpc, this corresponds to Rorb > 0.2R200. For these larger orbits, van den Bosch, Frank
C and Ogiya, Go (2018) show that the numerical bias is still present, but less drastic,
especially for the earlier phases of the infall where at least 10 per cent of the original
subhalo mass is still gravitationally bound to the subhalo. In order to quantify their
findings, van den Bosch, Frank C and Ogiya, Go (2018) give two equations to evaluate up
to which bound mass fractions stripped subhaloes can be deemed trustworthy (their Eqns.
20 and 21). We evaluate these equations with the parameters of the MXXL simulation, i.e.
particle mass mp = 8.80× 109 M� and softening length ε = 13.7 kpc, and estimate the
concentration of the subhaloes with the c-M relation of Neto et al. (2007). This allows us
to assess if the substructures identified in the MXXL haloes are significantly influenced
by numerical effects.

For this purpose, we need to assume the original mass of the subhaloes in order
to assess how much of the subhalo mass has been stripped away already. However,
this assumption has no effect on the qualitative nature of the result in our case. If we
assume that the infalling subhaloes had an original mass of Morig = 1014 M�, we find
that numerical processes become important when they are stripped down to a mass
of ∼ 5× 1012 M�. Choosing instead an even more conservative value, i.e. a consider-
ably higher original mass of Morig = 1015 M�, we find that numerical effects begin
to influence the subhalo’s disruption significantly when the remaining mass is below
∼ 7.5× 1012 M�. Since the substructures we are analysing still have considerably higher
masses (Msub & 1013 M�), i.e. they have not been stripped to this extend, we may assume
that they are not significantly affected by numerical processes. However, it is worth
having in mind on the basis of this discussion that substructures close to the centre of
clusters are by no means exact representations of the true mass distribution, even if the
particle data are analysed. It leaves the possibility that the subhalo masses in our analysis
may be slightly underpredicted. It is therefore possible that in a simulation with smaller
numerical effect, we would find even more substructures fulfilling our criteria.

7.9 concluding remarks

We have presented here a thorough investigation of the question if the high number of
massive substructures in Abell 2744 is in conflict with the predictions of ΛCDM. We
addressed this issue by analysing the MXXL simulation on the basis of its particle data.
This allowed us to create projected mass maps similar to those available for Abell 2744,
which we then analysed using a method based on the wavelet transform. In doing so, we
attached great importance to treating observational and simulated data the same way
in order to exclude systematic errors. We assessed the similarity to Abell 2744 on the
basis of three criteria: (i) the substructure’s distance from the centre, (ii) their projected
mass within an aperture of 150 kpc radius and (iii) their significance in the mass map
based on wavelet filtering. Based on this approach we were able to recover seven of
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the eight substructures of Abell 2744 and we find three haloes in the MXXL simulation,
that have both a total mass and a substructure distribution similar to that of Abell 2744.
Since the simulation volume is ten times bigger than the volume out to z=0.306 and we
find three similar clusters, the probability of finding Abell 2744 can be estimated to be
approximately 30 per cent.

However, we would like to emphasise that we analysed the simulation at the redshift
z = 0.24, which is different to that of Abell 2744 (z = 0.3). This simulation snapshot was
that closest to z = 0.3 for which the full particle data is available. Since the difference
between these redshifts corresponds to a timespan of roughly 600 Myr, it was important
to make plausibility checks, if it is likely that the substructure distribution already had a
similar configuration at the redshift of Abell 2744. To do so, we identified the SUBFIND

halo corresponding to each substructure where possible. By tracing these back in time,
we checked if their masses and positions changed in that period in a way that they would
not be compatible with the substructure distribution of Abell 2744 at z = 0.3. We were
able to demonstrate that this is not the case for at least one halo, halo 37, which was
analysed exemplarily.

We furthermore put our results into the context of the findings of Schwinn et al. (2017),
Mao et al. (2018) and van den Bosch, Frank C and Ogiya, Go (2018). We conclude that
the apparent discrepancy discovered in Schwinn et al. (2017) can be traced back to
the different mass definitions used in the observations (aperture mass) and the MXXL
simulation (SUBFIND mass). We find that the aperture mass contains a large contribution
by the mass of the host halo, which ranged from 23 to 71 per cent of the aperture mass.
This also confirms the results of Mao et al. (2018). We furthermore showed that it is not
possible to estimate the aperture mass on the basis of the SUBFIND mass and the host halo
mass. This is most likely due to the perturbed state of the cluster, which does not allow
describing the mass distribution on the basis of NFW profiles. We furthermore showed
that the SUBFIND masses can show up a dramatic drop when the subhalo gets close to
the halo centre, which was also discovered in Han et al. (2017). This can be explained
by the method used by SUBFIND to identify substructures based on saddle points in the
density distribution. This method breaks down as the main halo gets too dense in the
centre to allow the identification of the subhalo. We therefore highly recommend using
particle data directly to compare simulations to observations. We furthermore point out
that it is important to analyse both observational and simulated data in the same way.
We show that the analysis of Mao et al. (2018), which uses the particle data to obtain
aperture masses, but SUBFIND data to identify substructures, could also be influenced by
systematic effects. First, they do not know if their SUBFIND haloes would show up as a
significant structure in the mass map and second they might miss a substructure if it
does not have a SUBFIND counterpart. One possibility to avoid these issues is represented
by the wavelet approach presented in this chapter.





8
C O N C L U S I O N

Non-linear cosmic structures make up the majority of structures we can observe in the
Universe today. While structure formation in the linear regime has been well-understood
for several decades now, non-linear cosmic structures still harbour a rich, unexplored
well of information, but are at the same time much harder to describe analytically. In this
thesis, we investigated various aspects of non-linear cosmic structures with a focus on
analytical descriptions and with the aim to use them for testing the cosmological standard
model ΛCDM. In the first two parts, we focussed mainly on the analytic derivation of
statistical properties of the cosmic density field in the non-linear regime, such as the
probability distribution function (PDF) and the halo mass function. The third and last
part focussed on the observed substructure distribution in the massive galaxy cluster
Abell 2744. Here, we tested if the predictions of ΛCDM from the cosmological N-body
simulation Millennium XXL are compatible with the observational data.

The first main part considered the one-point distribution of the cosmic density field,
which corresponds to the PDF of density values at one point after it was marginalised
over all field values at other points. It is a fundamental probe of the statistical properties
of cosmic structures. It is furthermore required for deriving other theoretical predictions
such as for example the halo mass function or merger rates. Deriving an analytical
description of the density PDF promises a better understanding of the processes relevant
to structure formation. At the same time, it would provide a test of ΛCDM with mini-
mized systematic effects in comparison to simulations. We started with introducing the
main concepts of cosmology and kinetic field theory (KFT), which is a novel analytic
theory to describe cosmic structure formation on the basis of a generating functional.
With the theoretical foundation at hand, we focussed on different ways to derive an
analytic formula for the density PDF. As a first approach, we employed two models,
i.e. the lognormal distribution and the generalised normal distribution, and fixed their
free parameters with predictions of KFT. The lognormal model for the smoothed cosmic
density contrast δR, for example, has only one free parameter. This parameter can be fixed
by predicting the variance of the field (depending on the smoothing scale R), which can
be obtained from the non-linear power spectrum of KFT. The generalised normal model
for δR depends on two parameters, which can be fixed through the non-linear variance
and the third cumulant. We introduce a first order approximation for the third cumulant
in the framework of KFT, which is very similar to a result from standard perturbation
theory and should be valid at least at mildly non-linear scales.
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Subsequently, we explored a path to extract the density PDF from the generating
functional of KFT directly. For this purpose, we used the resummed KFT (RKFT) approach
of Lilow (2018) and introduced an indicator function in order to extract the PDF from the
generating functional. Using the framework of RKFT and approximating the logarithmic
action of the generating functional by a Taylor approximation up to second order, we are
able to recover a Gaussian distribution for the PDF. This meets of course our expectations
for an approximation of the exponent to second order. However, it is of limited use,
since the non-linear regime we are interested in is highly non-Gaussian. We therefore
see this approach only as the first step on the path towards a more realistic extraction of
the non-linear density PDF from the generating functional. We extended this approach
by including the next order of the Taylor expansion. Since in this case we cannot solve
the path integral of the generating functional analytically any more, we approximate
its result using an effective action. The results, however, are somewhat discouraging.
It turns out quickly that the approximation to third order in the exponent leads to a
diverging PDF. These findings are in line with the results of Sellentin (2015), who find
that this can in fact be traced back to the slow convergence of the Taylor expansion of the
logarithm. In order to correct for the problematic results of the low expansion orders, it
would be necessary to expand well beyond the fourth order. This, however, does not seem
feasible at the current stage, since already the third cumulant can only be obtained as a
rough first order approximation. Furthermore, Carron and Neyrinck (2012) find that even
all higher-order cumulants might be insufficient to describe a long-tailed distribution.
This problem is also related to the Stieltjes moment problem (e.g. Stieltjes, 1894; Novi
Inverardi et al., 2005). It states that the reconstruction of the PDF from its moments is
only possible if further conditions are fulfilled. There exists a variety of necessary and
sufficient conditions in the literature (Lin, 2017), such as the criterion mk+1/mk = O(k2)

as k→ ∞ just as one example, where mk denotes the kth moment. In order to avoid these
problems, we finally turned to yet another approach. We sketched an idea to describe
the PDF asymptotically on the basis of the large deviation principle. We outlined a first
ansatz, but we were not yet able to find a solution for the average

〈
λ̃i
〉

i∈[1,3N]
appearing

in the calculation, where λ̃i = infqi λ(qi) and λ(qi) are the eigenvalues of the initial
momentum-correlation matrix Cpp. We leave the continuation of this approach for future
work.

In general, the extraction of the PDF from the generating functional remains a desirable
target for the future. It seems that this should be possible at least in principle, since
theoretically all higher-order cumulants can be derived from the generating functional.
It therefore must also contain the information of the PDF itself. Since the path integral
can only be solved for approximations of second order, it appears essential to build the
approach on an effective action like that derived in Schmidt (2020), which was presented
in Section 4.5. A very interesting path, i.e. that involving the large deviation principle,
could only be covered very briefly. The large deviation principle can be applied to a
surprisingly large variety of physical problems and can as well be linked to statistical
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physics. It could therefore be a promising path to also find a link to KFT in the future,
which could allow deriving the density PDF from the generating functional.

It should be added as well that in the framework of KFT deriving the density PDF
represents an analogous problem to calculating the extrema of the density field. An
extremum corresponds to those positions in the field where the response field (see
Eq. 3.54) becomes B = 0 or φβ = 0 for the macroscopic dressed response field. Therefore,
extracting from the generating functional the probability of the field having a density
ρ ∈ [ρ0, ρ0 + dρ] should make no difference mathematically to extracting the probability
of the field having a response field in the range B ∈ [−ε, ε] for ε being small. Therefore,
finding a solution to the former problem, could lead to an analogous solution for the
density of extrema from which the peak density might be deduced.

In the second part, we focussed on the halo mass function. The halo mass function is a
frequently used quantity, since especially its high mass tail is exponentially sensitive to
the cosmological parameters Ωm and σ8. Since its derivation includes the density PDF, we
made use of some of the results of the preceding chapter. We started with an introduction
of the current standard derivation of the halo mass function, i.e. the approach by Press
and Schechter (1974) with its extension by Bond et al. (1991). This was followed by an
in depth discussion of several assumptions in the derivation, which are known to be
problematic. These are mainly the following four: (i) the assumption of spherical collapse,
(ii) basing the derivation on linear extrapolation, (iii) using the excursion set approach
and (iv) using mass as the observable of interest. For this reason, we aimed at deriving
the halo mass function in an alternative way that overcomes some of these shortcomings.
We therefore proposed an approach that discards assumptions (i) and (ii). Being based
on the present day non-linear density field directly, our approach did not include linear
evolution. Furthermore, we leave the overdensity threshold of haloes as a free parameter
and do not need spherical collapse for this reason. Our approach was based on two of the
non-linear PDF models introduced in the first part, i.e. the lognormal and the generalised
normal model. It turned out advantageous that both of these models belong to the family
of Gaussian distributions, which implies favourable analytic properties. We fixed the
model parameters by the KFT predictions for the variance σ2(R) and third cumulant
κ3(R).

Since we work on the level of the non-linear density field, the steps of the random
walk in the excursion set approach cannot be assumed to be uncorrelated any more.
For this reason we applied an approach based on correlated random walks, which was
recently proposed in Musso and Sheth (2012). We calculated the halo mass function in
two different regimes of correlated steps: (i) the completely correlated limit and (ii) the
regime of strongly correlated random walks. Following the argument of Musso and Sheth
(2014b), we furthermore had to mass-weight the walks to correct for the known fact that
the lognormal model leads to a severe underestimation of the halo number density. These
calculations were performed for each of the two PDF models separately. We obtained
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for the generalised normal model in both of the correlation regimes, i.e. the completely
correlated and the strongly correlated case, very good agreement with the Tinker mass
function (a fit to N-body simulations), when a threshold of ∆ = 2.9 was chosen. The
result agrees in particular well with the high mass tail of the halo mass function, where
the Press-Schechter model deviates from the results found in simulations. Similar results
were obtained with the lognormal model in both regimes. However, the agreement in the
high mass tail is slightly worse than with the generalised normal model. While our value
for ∆ is still way smaller than the overdensity of real galaxy clusters, it is still further in
the non-linear regime than the corresponding value of the Press-Schechter mass function.
Furthermore, our improvement is of conceptual nature. We were able to present a fully
analytic approach that is based on the present day non-linear density field and does not
include spherical collapse, thus overcoming two of the shortcomings of the standard
Press-Schechter approach. Our ansatz led to a closed form expression for the halo mass
function with only one free parameter, i.e. the overdensity threshold ∆.

The discrepancy of the value of our parameter ∆ and the real overdensity measured in
virialised objects is somewhat expected, since the PDF models used in this approach are
known to become inaccurate on small scales. This is in particular the case, since we use
only a first order approximation for the third cumulant κ3. A first step to improve on our
result would therefore be a more precise prediction of κ3. More generally, it would be
desirable to find a better analytic description of the density PDF, in the best case from
the generating functional of KFT directly. However, the obstacles on this route have been
highlighted in the first part of the thesis. Moreover, it remains unclear if an approach
based on excursion set statistics is the right way at all to follow, since it has been shown
to have substantial deficits (e.g. Robertson et al., 2009). An alternative route would be an
approach based on peak theory (Bardeen et al., 1986), which can also be modified such
that mass as an observable is abandoned all together (Angrick and Bartelmann, 2009).

Finally we considered a more concrete example of non-linear structures, i.e. the
substructure distribution in the massive galaxy cluster Abell 2744. In particular, we tested
its compatibility with the predictions of ΛCDM by using the data of the cosmological
simulation Millennium XXL (MXXL). Our analysis tied in with the findings of Schwinn et
al. (2017), where a potential tension between the substructures of Abell 2744 and ΛCDM
was found. However, this initial analysis was based on FoF- and SUBFIND haloes of the
MXXL simulation alone. To enable a more comparable analysis of the observational and
simulated data sets, we resorted to the particle data of the MXXL simulation in order to
create 2D mass maps similar to those of Abell 2744. We then applied an approach based
on the wavelet transform in order to define criteria to detect significant substructures in
the mass maps. This allowed us to identify substructures in the mass map of Abell 2744

and in the MXXL-mass maps by the same method. On this basis, we found three haloes
in the MXXL simulation with a substructure distribution similar to that of Abell 2744,
therefore refuting a potential tension with ΛCDM.
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Since the particle data were taken from a snapshot at z = 0.24, which was the snapshot
closest to the redshift of Abell 2744 (z = 0.3) for which particle data were available, we
added an analysis testing if we would expect substantial change in the substructure
distribution between these redshifts. For this purpose, we identified (where possible) the
corresponding SUBFIND haloes and traced their position and mass back to z = 0.3. We
found that the substructures of at least one MXXL halo (halo 37) can be considered to be
similar to those of Abell 2744 already at z = 0.3. The other two haloes did not allow such
a conclusion, since not for all of their substructures corresponding SUBFIND haloes could
be found. Finally, we investigated the reasons for the discrepancy between the results
of Schwinn et al. (2017) and the analysis presented here. We found that this is mainly
rooted in the incompatibility of SUBFIND masses and the aperture masses inferred from
2D mass maps. A similar result was recently found by Mao et al. (2018) and Han et al.
(2017). We therefore concluded with some cautioning remarks concerning the comparison
of observational data with SUBFIND haloes, especially with regard to halo masses. We
emphasised the importance of analysing simulated and observational data with the same
method, such as for example the wavelet method used in that chapter. For the future, it
would be interesting to apply the sort of comparison developed in this work also to other
massive clusters with substantial substructure, such as for example the Hubble Frontier
Field clusters (Lotz et al., 2017) or “El Gordo” (Marriage et al., 2011; Menanteau et al.,
2012). It could as well be applied to obtain subhalo mass functions from observational
and simulated data in order to compare both data sets.

To conclude, we have examined various aspects of cosmic non-linear structures. These
contain a great amount of information about the laws governing the evolution of the
Universe which is still to be uncovered in the years to come. Still a lot more work is
needed to obtain a more precise analytic description of its statistics, e.g. in terms of
the PDF and the halo mass function. The interest in improving our understanding of
the statistical properties of the cosmic density field is twofold. On the one hand, it is
important to make as accurate predictions as possible in order to allow for meaningful
tests of the cosmological standard model. On the other hand, a precise model of the
statistics of the cosmic density field allows to measure cosmological parameters from
observational data. Finally, simulations play a very important role to make cosmological
predictions, but it is crucial to be aware of systematic effects that can easily creep into
these kinds of analyses. It is therefore important to avoid such biases by analysing
observational and simulated data with the same methods.





A
T H E F R E E C U M U L A N T S

We reproduce here the calculations of Appendix B of Lilow (2018) in order to calculate
the free cumulants of a Hamiltonian system. Please note that we calculate here the
cumulants with respect to the position space density ρ unlike the cumulants derived in
Lilow (2018), which use the phase space density f (q, p). We therefore need to set the
~lr-vectors appearing in Lilow (2018) to zero. These vectors are the Fourier conjugates
to the momentum vectors and the index r runs from 1 to the number of phase space
density operators applied. In contrast to Lilow (2018), we take here only the lowest order
in initial correlations, P(i)

δ , into account that is not a shot-noise term. This means for

example terms linear in P(i)
δ for Gρρ and GρρF and terms quadratic in P(i)

δ for Gρρρ. We

can therefore also neglect the damping factor e
−σ2

p/2 ~L2
p{1,...,nρ ,1′ ,...,n′F } , which does not appear

in this approximation. We will calculate here all 1-, 2- and 3-point cumulants.
As shown in Appendix A of Fabis (2015), we can use that the pure response field

cumulants GB...B vanish. Keeping in mind that F̂ = σρB · B̂ and therefore the dressed
response field cumulants are obtained by response field cumulants multiplied by factors
of σρB (Eq. 3.56) according to the number of F̂ operators applied. Hence also the pure
dressed response field cumulants vanish,

GF (1) = 0 , (A.1)

GFF (1, 2) = 0 , (A.2)

GFFF (1, 2, 3) = 0 . (A.3)

We will follow the expressions in Appendix B of Lilow (2018) omitting the damping
factor and setting

~Lp{1,1′}(t
′
1) =~k1gqp(t1, t′1) , (A.4)

since we calculate cumulants for the position space density. We obtain

Gρ(1) = (2π)3δD(~k1)ρ̄ , (A.5)

Gρρ(1, 2) = (2π)3δD(~k1 +~k2)(1 + gqp(t1, 0))(1 + gqp(t2, 0))ρ̄2P(i)
δ (~k1) , (A.6)
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where we combined Eq. B.3 with B.16 of Appendix B in Lilow (2018) taking only those
terms linear in P(i)

δ and neglect all terms O
(
(P(i)

δ )2
)

. Furthermore, we get from Eq. B.2
of Lilow (2018)

GρF (1, 2) = i(2π)3δD(~k1 +~k2)~k2
1 gqp(t1, t2)ρ̄v(k2, t2) , (A.7)

GFρ(1, 2) = GρF (2, 1) (A.8)

and finally

GρFF (1, 1′, 2′) = −(2π)3δD(~k1 +~k1′ +~k2′)ρ̄~k1′ ·
(
~k1gqp(t1, t1′) +~k2′gqp(t2′ , t1′)

)
. . .

~k2′ ·
(
~k1gqp(t1, t2′) +~k1′gqp(t1′ , t2′)

)
v(~k1′ , t1′)v(~k2′ , t2′) ,

(A.9)

GρρF (1, 2, 1′) = i(2π)3δD(~k1 +~k2 +~k1′)ρ̄
2v(k1′ , t1′) . . .~k1′ ·~k1gqp(t1, t1′)P(i)

δ (k2)

1−
~k2 ·

[
~k1gqp(t1, t) +~k1′gqp(t1′ , t)

]
~k2

2

(1 + gqp(t2, t)
)
+ . . .

~k1′ ·~k2gqp(t2, t1′)P(i)
δ (k1)

1−
~k1 ·

[
~k2gqp(t2, t) +~k1′gqp(t1′ , t)

]
~k2

1

(1 + gqp(t1, t)
) ,

(A.10)

Gρρρ(1, 2, 3) = i(2π)3δD(~k1 +~k2 +~k3)ρ̄
3C3

(
~L{1},~L{2},~L{3}

)
, (A.11)

with

C3

(
~L{1},~L{2},~L{3}

)
= P(i)

δ (k1)P(i)
δ (k2)

(
1 + gqp(t1, t)

) (
1 + gqp(t2, t)

)
. . .(
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~k2

1

+
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+
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1
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2

)
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+ ({1} ↔ {2} ↔ {3})
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+ ({1} ↔ {2} ↔ {3}) ,
(A.12)

using Eqns. B.2, B.4, B.6 and B.8 of Lilow (2018), where B.8 is an expansion up to second
order in the initial density power spectra and we neglect all terms O

(
(P(i)

δ )3
)

.



B
C A L C U L AT I O N S F O R T H E D E R I VAT I O N O F T H E D E N S I T Y P D F
F R O M T H E G E N E R AT I N G F U N C T I O N A L

In this part of the appendix, we add the detailed calculations to the derivation of the
density PDF in Chapter 4.3.

b.1 adapting the indicator function to rkft notation

We start with rearranging the Gaussian indicator function defined in Eq. (4.23) such that
it can be written in terms of the dot product appearing in the RKFT formalism (Eq. 3.59).
The indicator function is given by

Iρ̃

(
φρ(~q0, t)

)
= e−

(φρ(~q0,t)−ρ̃)2

2σ2 . (B.1)

We set ~q0 = 0 and introduce integrals over the ~q arguments in the exponent

Iρ̃

(
φρ(0, t)

)
= e−

1
2σ2

∫∫
d3~q1d3~q2 (φρ(~q1,t)−ρ̃)(φρ(~q2,t)−ρ̃)δD(q1)δD(q2) . (B.2)

In order to phrase it in the language of the dot product, we express it in Fourier space

Ĩρ̃

(
φρ

)
= e

− 1
2σ2

∫∫ d3~k1
(2π)3

d3~k2
(2π)3 (φρ(~k1,t)−ρ̃(2π)3δD(~k1))(φρ(~k2,t)−ρ̃(2π)3δD(~k2)) (B.3)

and also introduce two time integrals

= e−
1

2σ2

∫∫
d1 d2 (φρ(1)−ρ̃(2π)3δD(~k1))(φρ(2)−ρ̃(2π)3δD(~k2))δD(t1−t)δD(t2−t)

= e−
1

2σ2 (
∫∫

d1 d2 φρ(1)φρ(2)δD(t1−t)δD(t2−t)−2
∫

d1 ρ̃φρ(1))δD(t1−t))e−
ρ̃2

2σ2 .
(B.4)

We then define two auxiliary functions

W1(1) :=
ρ̃δD(t1 − t)

σ2 , (B.5)

W2(1, 2) :=
δD(t1 − t)δD(t2 − t)

σ2 , (B.6)

which depend on the arguments 1 and 2 only formally, but allow us to finally write
the exponent as a quadratic form in terms of the dot product. Note that we used
W1(1) = W1(−1) and W2(1, 2) = W2(−1,−2), since neither W1 nor W2 depends on~k.
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In principle, the definition would require a minus sign in front of all of the arguments
due to the definition of the dot product in Eq. (3.59). We thus get∫

d1
ρ̃δD(t1 − t)

σ2 φρ(1) =
∫

d1W1(−1)φρ(1) =W1 · φρ, (B.7)

∫∫
d1 d2 φρ(1)φρ(2)

δD(t1 − t)δD(t2 − t)
2σ2

=
∫∫

d1 d2
φρ(1)W2(−1,−2)φρ(2)

2

=
φρ · W2 · φρ

2
.

(B.8)

With this we can rewrite the indicator function as

Ĩρ̃

(
φρ

)
= eW1·φρ− φρ ·W2 ·φρ

2 e−
ρ̃2

2σ2 , (B.9)

which is the form used in Eq. (4.27).

b.2 details of the solution for ∆12

In this section, we show the detailed steps to obtain Eq. (4.52). We start with Eq. (4.48)

∆12(1, 1̄) ·
[
iI (−1̄, 2) + (2π)3δD(−~k1̄ +~k2)G̃ρF (−k1̄; t1̄, t2)− (2π)3 . . .

δD(−~k1̄ +~k1̄′)G̃ρρ(−k1̄; t1̄, t1̄′) · B−1(−1̄′, 1̄′′) · δD(t1̄′′ − t)δD(t2 − t)
σ2

]
!
= I (1, 2) .

(B.10)

Plugging in our ansatz for ∆12(1, 1̄) from Eq. (4.49) and B−1 from Eq. (4.51) we can carry
out all of the integrals

[
−i
(
I (1, 1̄) + (2π)3δD(~k1 +~k1̄)∆̃

(1)
12 (k1; t1, t1̄) + δD(t1̄ − t)∆̃(2)

12 (k1, k1̄; t1; t) + ∆̃(3)
12 (k1, k1̄; t1, t1̄; t)

)]
. . .

. . . ·
[
i
(
I (−1̄, 2)− i(2π)3δD(−~k1̄ +~k2)G̃ρF (−k1̄; t1̄, t2) + (2π)3δD(−~k1̄ +~k1̄′) . . .

. . . G̃ρρ(−k1̄; t1̄, t1̄′) ·
(
I (−1̄′, 1̄′′) + (2π)3δD(−~k1̄′ +~k1̄′′)∆̃A(−k1̄′ ; t1̄′ , t1̄′′)

)
· δD(t1̄′′−t)δD(t2−t)

σ2

)]
!
= I (1, 2)

...
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...

I (1, 2)− i(2π)3δD(~k1 +~k2)G̃ρF (k1; t1, t2) + (2π)3δD(~k1 +~k1̄′)G̃ρρ(k1; t1, t1̄′) · I (−1̄′, 1̄′′) · δD(t1̄′′−t)δD(t2−t)
σ2 . . .

· · ·+ (2π)3δD(~k1 +~k1̄′)G̃ρρ(k1; t1, t1̄′) · (2π)3δD(−~k1̄′ +~k1̄′′)∆̃A(−k1̄′ ; t1̄′ , t1̄′′) · δD(t1̄′′−t)δD(t2−t)
σ2 . . .

· · ·+ (2π)3δD(~k1 +~k1̄)∆̃
(1)
12 (k1; t1, t1̄) ·

[
I (−1̄, 2)− i(2π)3δD(−~k1̄ +~k2)G̃ρF (−k1̄; t1̄, t2) + (2π)3 . . .

. . . δD(−~k1̄ +~k1̄′)G̃ρρ(−k1̄; t1̄, t1̄′) ·
(
I (−1̄′, 1̄′′) + (2π)3δD(−~k1̄′ +~k1̄′′)∆̃A(−k1̄′ ; t1̄′ , t1̄′′)

)
· δD(t1̄′′−t)δD(t2−t)

σ2

]
· · ·+ δD(t1̄ − t)∆̃(2)

12 (k1, k1̄; t1; t) ·
[
I (−1̄, 2)− i(2π)3δD(−~k1̄

~k2)G̃ρF (−k1̄; t1̄, t2) + (2π)3 . . .

. . . δD(−~k1̄ +~k1̄′)G̃ρρ(−k1̄; t1̄, t1̄′) ·
(
I (−1̄′, 1̄′′) + (2π)3δD(−~k1̄′ +~k1̄′′)∆̃A(−k1̄′ ; t1̄′ , t1̄′′)

)
· δD(t1̄′′−t)δD(t2−t)

σ2

]
· · ·+ ∆̃(3)

12 (k1, k1̄; t1, t1̄; t) ·
[
I (−1̄, 2)− i(2π)3δD(−~k1̄ +~k2)G̃ρF (−k1̄; t1̄, t2) + (2π)3 . . .

. . . δD(−~k1̄ +~k1̄′)G̃ρρ(−k1̄; t1̄, t1̄′) ·
(
I (−1̄′, 1̄′′) + (2π)3δD(−~k1̄′ +~k1̄′′)∆̃A(−k1̄′ ; t1̄′ , t1̄′′)

)
· δD(t1̄′′−t)δD(t2−t)

σ2

]
!
= I (1, 2)

−i(2π)3δD(~k1 +~k2)G̃ρF (k1; t1, t2) + (2π)3δD(~k1 +~k1̄′)G̃ρρ(k1; t1, t1̄′) · δD(t1̄′−t)δD(t2−t)
σ2 . . .

. . . + (2π)3δD(~k1 +~k1̄′)G̃ρρ(k1; t1, t1̄′) · ∆̃A(−k1̄′ ; t1̄′ , t)
δD(t2−t)

σ2 + (2π)3δD(~k1 +~k2)∆̃
(1)
12 (k1; t1, t2) . . .

. . . − i(2π)6δD(~k1 +~k1̄)∆̃
(1)
12 (k1; t1, t1̄) · δD(−~k1̄ +~k2)G̃ρF (−k1̄; t1̄, t2) . . .

. . . + (2π)3δD(~k1 +~k1̄)∆̃
(1)
12 (k1; t1, t1̄) ·

[
(2π)3δD(−~k1̄ +~k1̄′)G̃ρρ(−k1̄; t1̄, t1̄′) · δD(t1̄′−t)δD(t2−t)

σ2 . . .

. . . +(2π)3δD(−~k1̄ +~k1̄′)G̃ρρ(−k1̄; t1̄, t1̄′) · ∆̃A(−k1̄′ ; t1̄′ , t)
δD(t2−t)

σ2

]
. . .

. . . + δD(t2 − t)∆̃(2)
12 (k1, k2; t1; t)− i(2π)3δD(t1̄ − t)∆̃(2)

12 (k1, k1̄; t1; t) · δD(−~k1̄ +~k2)G̃ρF (−k1̄; t1̄, t2) . . .

. . . + δD(t1̄ − t)∆̃(2)
12 (k1, k1̄; t1; t) ·

[
(2π)3δD(−~k1̄ +~k1̄′)G̃ρρ(−k1̄; t1̄, t1̄′) · δD(t1̄′−t)δD(t2−t)

σ2 . . .

. . . +(2π)3δD(−~k1̄ +~k1̄′)G̃ρρ(−k1̄; t1̄, t1̄′) · ∆̃A(−k1̄′ ; t1̄′ , t)
δD(t2−t)

σ2

]
. . .

. . . + ∆̃(3)
12 (k1, k2; t1, t2; t)− i(2π)3∆̃(3)

12 (k1, k1̄; t1, t1̄; t) · δD(−~k1̄ +~k2)G̃ρF (−k1̄; t1̄, t2) . . .

. . . + ∆̃(3)
12 (k1, k1̄; t1, t1̄; t) ·

[
(2π)3δD(−~k1̄ +~k1̄′)G̃ρρ(−k1̄; t1̄, t1̄′) · δD(t1̄′−t)δD(t2−t)

σ2 . . .

. . . +(2π)3δD(−~k1̄ +~k1̄′)G̃ρρ(−k1̄; t1̄, t1̄′) · ∆̃A(−k1̄′ ; t1̄′ , t)
δD(t2−t)

σ2

]
!
= 0 .

(B.11)
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Carry out all remaining integrals where possible

−i(2π)3δD(~k1 +~k2)G̃ρF (k1; t1, t2) + G̃ρρ(k1; t1, t) · δD(t2−t)
σ2 . . .

. . . +
∫

t1̄′
G̃ρρ(k1; t1, t1̄′)∆̃A(k1; t1̄′ , t)

δD(t2−t)
σ2 . . .

. . . + (2π)3δD(~k1 +~k2) ∆̃(1)
12 (k1; t1, t2) − i(2π)3δD(~k1 +~k2)

∫
t1̄

∆̃(1)
12 (k1; t1, t1̄) G̃ρF (k1; t1̄, t2) . . .

. . . +
∫

t1̄
∆̃(1)

12 (k1; t1, t1̄) G̃ρρ(k1; t1̄, t)
δD(t2−t)

σ2 +
∫

t1̄
∆̃(1)

12 (k1; t1, t1̄)
∫

t1̄′
G̃ρρ(k1; t1̄, t1̄′)∆̃A(k1; t1̄′ , t)

δD(t2−t)
σ2

. . . + δD(t2 − t) ∆̃(2)
12 (k1, k2; t1; t) − i ∆̃(2)

12 (k1, k2; t1; t) G̃ρF (−k2; t, t2) . . .

. . . +
∫

k1̄
∆̃(2)

12 (k1, k1̄; t1; t) G̃ρρ(−k1̄; t, t)
δD(t2−t)

σ2 +
∫

k1̄
∆̃(2)

12 (k1, k1̄; t1; t)
∫

t1̄′
G̃ρρ(−k1̄; t, t1̄′)∆̃A(−k1̄; t1̄′ , t)

δD(t2−t)
σ2

. . . + ∆̃(3)
12 (k1, k2; t1, t2; t) − i(2π)3 ∆̃(3)

12 (k1, k1̄; t1, t1̄; t) · δD(−~k1̄ +~k2)G̃ρF (−k1̄; t1̄, t2)
1 . . .

. . . +
∫

k1̄

∫
t1̄

∆̃(3)
12 (k1, k1̄; t1, t1̄; t) G̃ρρ(−k1̄; t1̄, t)

δD(t2−t)
σ2 +

∫
k1̄

∫
t1̄

∆̃(3)
12 (k1, k1̄; t1, t1̄; t)

∫
t1̄′

G̃ρρ(−k1̄; t1̄, t1̄′)∆̃A(−k1̄; t1̄′ , t) δD(t2−t)
σ2

!
= 0 .

(B.12)

Note that we do not carry out the integrals containing ∆̃(3)
12 for reasons that become

obvious in Eq. (B.14). In order to make it easier to match equal terms, we adopted the
highlighting by different line styles from Eq. (4.52). We finally regroup the terms in order
to single out the different δD dependencies so that we end up with Eq. (4.52), i.e.

(2π)3δD(~k1 +~k2)
[
−iG̃ρF (k1; t1, t2) + ∆̃(1)

12 (k1; t1, t2) − i
∫

t1̄
∆̃(1)

12 (k1; t1, t1̄) G̃ρF (k1; t1̄, t2)

]
. . .

. . . + δD(t2−t)
σ2

[
G̃ρρ(k1; t1, t) +

∫
t1̄′

G̃ρρ(k1; t1, t1̄′)∆̃A(k1; t1̄′ , t) +
∫

t1̄
∆̃(1)

12 (k1; t1, t1̄) G̃ρρ(k1; t1̄, t) . . .

. . . +
∫

t1̄

∫
t1̄′

∆̃(1)
12 (k1; t1, t1̄) G̃ρρ(k1; t1̄, t1̄′)∆̃A(k1; t1̄′ , t) + σ2 ∆̃(2)

12 (k1, k2; t1; t) . . .

. . . +
∫

k1̄
∆̃(2)

12 (k1, k1̄; t1; t) G̃ρρ(−k1̄; t, t) +
∫

k1̄
∆̃(2)

12 (k1, k1̄; t1; t)
∫

t1̄′
G̃ρρ(−k1̄; t, t1̄′)∆̃A(−k1̄; t1̄′ , t) . . .

. . . +
∫

k1̄

∫
t1̄

∆̃(3)
12 (k1, k1̄; t1, t1̄; t) G̃ρρ(−k1̄; t1̄, t) +

∫
k1̄

∫
t1̄

∆̃(3)
12 (k1, k1̄; t1, t1̄; t)

∫
t1̄′

G̃ρρ(−k1̄; t1̄, t1̄′)∆̃A(−k1̄; t1̄′ , t)
]

. . .

. . . − i ∆̃(2)
12 (k1, k2; t1; t) G̃ρF (−k2; t, t2) + ∆̃(3)

12 (k1, k2; t1, t2; t) − i(2π)3 ∆̃(3)
12 (k1, k1̄; t1, t1̄; t) · δD(−~k1̄ +~k2)G̃ρF (−k1̄; t1̄, t2)

!
= 0 .

(B.13)
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b.3 deriving ∆̃ (3)
12

We continue with showing the steps for deriving ∆̃(3)
12 . We start with Eq. (4.55)

∆̃(3)
12 (k1, k2; t1, t2; t) = i ∆̃(2)

12 (k1, k2; t1; t) G̃ρF (−k2; t, t2) . . .

· · ·+ i ∆̃(3)
12 (k1, k2; t1, t1̄; t) · (2π)3δD(−k1̄ + k2)G̃ρF (−k2; t1̄, t2)︸ ︷︷ ︸

=GρF (1̄,2)

,

(B.14)

where we reintroduce GρF in the last term in order to bring it to the left side

∆̃(3)
12 (k1, k1̄; t1, t1̄; t) ·

(
I (1̄, 2)− iGρF (1̄, 2)

)︸ ︷︷ ︸
=∆−1

R (1̄,2)

= i ∆̃(2)
12 (k1, k2; t1; t) G̃ρF (−k2; t, t2) . (B.15)

This allows us to identify the second factor on the left-hand side with the definition of
the inverse retarded propagator from Lilow (2018), see also Eq. (4.65). This finally leads
to

∆̃(3)
12 (k1, k1̄; t1, t1̄; t) = i ∆̃(2)

12 (k1, k2; t1; t) G̃ρF (−k2; t, t2) · ∆R(2, 1̄) . (B.16)

Renaming and plugging in Robert’s ansatz for ∆R (i.e. Eq. 4.51)

∆̃(3)
12 (k1, k2; t1, t2; t) = i ∆̃(2)

12 (k1, k1̄; t1; t) G̃ρF (−k1̄; t, t1̄) · . . .

. . .
(
I (−1̄, 2) + (2π)3δD(−~k1̄ +~k2)∆̃R(−k1̄; t1̄, t2)

)
,

(B.17)

which can be simplified to

∆̃(3)
12 (k1, k2; t1, t2; t) = i ∆̃(2)

12 (k1, k2; t1; t)

(
G̃ρF (−k2; t, t2) +

∫
t1̄

G̃ρF (−k2; t, t1̄)∆̃R(−k2; t1̄, t2)

)
.

(B.18)

Since ∆̃R is an infinite series of convolutions of G̃ρF , the term in brackets just gives −i∆̃R

∆̃(3)
12 (k1, k2; t1, t2; t) = ∆̃(2)

12 (k1, k2; t1; t) ∆̃R(−k2; t, t2) , (B.19)

which is the result presented in Eq. (4.57).
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b.4 deriving ∆11

Here, we present the steps for deriving ∆11. We will start with Eq. (4.64)

∆11(1, 2) = −C−1(1, 1̄) · D(−1̄, 1̄′) · ∆21(−1̄′, 2) (B.20)

and use that we can write C−1 in terms of the retarded propagator from Lilow (2018)
(see Eq. 4.66)

C−1(−1̄′, 1̄′′) = −i
[
I − iGρF

]−1
(−1̄′, 1̄′′) = −i∆R(−1̄′, 1̄′′) (B.21)

= −i
(
I (−1̄′, 1̄′′) + (2π)3δD(−~k1̄′ +~k1̄′′)∆̃R(−k1̄′ ; t1̄′ , t1̄′′)

)
. (B.22)

Inserting this result together with D (Eq. 4.38) and ∆21 (Eq. 4.43) into Eq. (4.64) leads to

∆11(1, 2) = −C−1(1, 1̄) · D(−1̄, 1̄′) · ∆21(−1̄′, 2)

= −C−1(1, 1̄) · D(−1̄, 1̄′) · ∆12(2,−1̄′)

= i
(
I (1, 1̄) + (2π)3δD(~k1 +~k1̄)∆̃R(k1; t1, t1̄)

)
· (2π)3δD(−~k1̄ +~k1̄′)G̃ρρ(k1̄; t1̄, t1̄′) . . .

. . . · (−i)
(
I (2,−1̄′) + (2π)3δD(−~k1̄′ +~k2)∆̃

(1)
12 (k2; t2, t1̄′) + δD(t1̄′ − t)∆̃(2)

12 (k2,−k1̄′ ; t2; t) + ∆̃(3)
12 (k2,−k1̄′ ; t2, t1̄′ ; t)

)
=
(
(2π)3δD(~k1 +~k1̄)δD(t1 − t1̄) + (2π)3δD(~k1 +~k1̄)∆̃R(k1; t1, t1̄)

)
·
(
(2π)3δD(−~k1̄ +~k2)G̃ρρ(k1̄; t1̄, t2) . . .

. . . + (2π)3δD(−~k1̄ +~k2)
∫

t1̄′
G̃ρρ(k1̄; t1̄, t1̄′)∆̃

(1)
12 (k2; t2, t1̄′) + G̃ρρ(k1̄; t1̄, t)∆̃(2)

12 (k2,−k1̄; t2; t) . . .

. . . +
∫

t1̄′
G̃ρρ(k1̄; t1̄, t1̄′)∆̃

(3)
12 (k2,−k1̄; t2, t1̄′ ; t)

)
=
∫

t1̄

[(
δD(t1 − t1̄) + ∆̃R(k1; t1, t1̄)

) ∫
~k1̄

(2π)3δD(~k1 +~k1̄)

(
(2π)3δD(−~k1̄ +~k2)G̃ρρ(k1̄; t1̄, t2) . . .

. . . + (2π)3δD(−~k1̄ +~k2)
∫

t1̄′
G̃ρρ(k1̄; t1̄, t1̄′)∆̃

(1)
12 (k2; t2, t1̄′) + G̃ρρ(k1̄; t1̄, t)∆̃(2)

12 (k2,−k1̄; t2; t) . . .

. . . +
∫

t1̄′
G̃ρρ(k1̄; t1̄, t1̄′)∆̃

(3)
12 (k2,−k1̄; t2, t1̄′ ; t)

)]
=
∫

t1̄

[(
δD(t1̄ − t1) + ∆̃R(k1; t1, t1̄)

) (
(2π)3δD(~k1 +~k2)G̃ρρ(k2; t1̄, t2) . . .

. . . + (2π)3δD(~k1 +~k2)
∫

t1̄′
G̃ρρ(k2; t1̄, t1̄′)∆̃

(1)
12 (k2; t2, t1̄′) . . .

. . . + G̃ρρ(−k1; t1̄, t)∆̃(2)
12 (k2, k1; t2; t) +

∫
t1̄′

G̃ρρ(−k1; t1̄, t1̄′)∆̃
(3)
12 (k2, k1; t2, t1̄′ ; t)

)]
,

(B.23)

which is the result presented in Eq. (4.67).
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b.5 deriving ∆22

We continue with the steps to derive ∆22. Inserting B−1 (Eq. 4.51), A (Eq. 4.38) and ∆21

(Eq. (4.42)) into Eq. (4.44) results in

∆22(1, 2) = −B−1(1, 1̄) · A(−1̄, 1̄′) · ∆12(−1̄′, 2)

= i
(
I (1, 1̄) + (2π)3δD(~k1 +~k1̄)∆̃A(k1; t1, t1̄)

)
· δD(t1̄ − t)δD(t1̄′ − t)

σ2 . . .

. . . · (−i)
(
I (−1̄′, 2) + (2π)3δD(−~k1̄′ +~k2)∆̃

(1)
12 (−k1̄′ ; t1̄′ , t2) + δD(t2 − t)∆̃(2)

12 (−k1̄′ , k2; t1̄′ ; t) + ∆̃(3)
12 (−k1̄′ , k2; t1̄′ , t2; t)

)
=
(
I (1, 1̄) + (2π)3δD(~k1 +~k1̄)∆̃A(k1; t1, t1̄)

)
· δD(t1̄ − t)

σ2 . . .

. . .
(

δD(t2 − t) + ∆̃(1)
12 (−k2; t, t2) + δD(t2 − t)

∫
k1̄′

∆̃(2)
12 (−k1̄′ , k2; t; t) +

∫
k1̄′

∆̃(3)
12 (−k1̄′ , k2; t, t2; t)

)
=

δD(t1 − t) + ∆̃A(k1; t1, t)

σ2

(
δD(t2 − t) + ∆̃(1)

12 (−k2; t, t2) + δD(t2 − t)
∫

k1̄′
∆̃(2)

12 (−k1̄′ , k2; t; t) +
∫

k1̄′
∆̃(3)

12 (−k1̄′ , k2; t, t2; t)

)
,

(B.24)

which is the result shown in Eq. (4.69).

b.6 calculating the terms i to iv of the second order approximation

to the pdf

We show here the detailed steps for obtaining the terms I to IV defined in Eq. (4.70). We
will make use of the definition

σ2
lin :=

∫
k1̄

∆̃ρρ(k1̄; t, t) , (B.25)

defined in the paragraph preceding Eq. (4.62). Using this definition we can obtain the
identity

1 +
∫

k1̄′
∆̃(2)

12 (k1̄′ ; t, t) = 1−
∫

k1̄′
∆̃ρρ(k1̄′ ; t, t)

(
σ2 +

∫
k1̄

∆̃ρρ(−k1̄; t, t)

)−1

= 1− σ2
lin

σ2 + σ2
lin

=
σ2

σ2 + σ2
lin

.

(B.26)

We now proceed to solve the terms I to IV. We obtain for the first term
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I = V1 · ∆11 · V1

=
ρ̃

σ2 δD(t1 − t) · ∆11 ·
ρ̃

σ2 δD(t2 − t)

=
ρ̃

σ2 δD(t1 − t) ·
∫

t1̄

[(
δD(t1̄ − t1) + ∆̃R(−k1; t1, t1̄)

) (
(2π)3δD(−~k1 +~k2)G̃ρρ(k2; t1̄, t2) . . .

. . . + (2π)3δD(−~k1 +~k2)
∫

t1̄′
G̃ρρ(k2; t1̄, t1̄′)∆̃

(1)
12 (k2; t2, t1̄′) . . .

. . . + G̃ρρ(k1; t1̄, t)∆̃(2)
12 (k2, k1; t2; t) +

∫
t1̄′

G̃ρρ(k1; t1̄, t1̄′)∆̃
(3)
12 (k2, k1; t2, t1̄′ ; t)

)]
· ρ̃

σ2 δD(t2 − t)

=
ρ̃2

σ4

∫
k1

∫
t1̄

[(
δD(t1̄ − t) + ∆̃R(k1; t, t1̄)

) (
G̃ρρ(k1; t1̄, t) +

∫
t1̄′

G̃ρρ(k1; t1̄, t1̄′)∆̃R(k1; t, t1̄′) . . .

. . . +
∫

k2

G̃ρρ(k1; t1̄, t)∆̃(2)
12 (k2; t; t) +

∫
k2

∫
t1̄′

G̃ρρ(k1; t1̄, t1̄′)∆̃
(2)
12 (k2; t; t)∆̃R(−k1; t, t1̄′)

)]

=
ρ̃2

σ4

∫
k1

[
G̃ρρ(k1; t, t) +

∫
t1̄′

G̃ρρ(k1; t, t1̄′)∆̃R(k1; t, t1̄′) +
∫

k2

∆̃(2)
12 (k2; t; t)

[
G̃ρρ(k1; t, t) +

∫
t1̄′

G̃ρρ(k1; t, t1̄′)∆̃R(−k1; t, t1̄′)

]
. . . +

∫
t1̄

∆̃R(k1; t, t1̄)G̃ρρ(k1; t1̄, t) +
∫

t1̄

∫
t1̄′

∆̃R(k1; t, t1̄)G̃ρρ(k1; t1̄, t1̄′)∆̃R(k1; t, t1̄′) . . .

. . . +
∫

k2

∆̃(2)
12 (k2; t; t)

[∫
t1̄

∆̃R(k1; t, t1̄)G̃ρρ(k1; t1̄, t) +
∫

t1̄

∫
t1̄′

∆̃R(k1; t, t1̄)G̃ρρ(k1; t1̄, t1̄′)∆̃R(−k1; t, t1̄′)

])]

=
ρ̃2

σ4

∫
k1

∆̃ρρ(k1̄; t, t)

(
1 +

∫
k2

∆̃(2)
12 (k2; t; t)

)
=

ρ̃2σ2
lin

σ4
σ2

σ2 + σ2
lin

.

(B.27)
For the second term we get

II = (2π)3δD(−~k1)ρ̄ · (−i)
(
I (2,−1) + (2π)3δD(−~k2 +~k1)∆̃

(1)
12 (k2; t2, t1) . . .

+δD(t1 − t)∆̃(2)
12 (k2,−k1; t2; t) + ∆̃(3)

12 (k2,−k1; t2, t1; t)
)
· i ρ̃

σ2 δD(t2 − t)

=
ρ̄ρ̃

σ2 δD(−~k1) ·
(

δD(t1 − t) + ∆̃R(k1; t, t1) + δD(t1 − t)
∫

k2

∆̃(2)
12 (k2; t; t) +

∫
k2

∆̃(2)
12 (k2; t; t)∆̃R(k1; t, t1)

)

=
ρ̃ρ̄

σ2

(
1 +

∫
t1

∆̃R(0; t, t1) +
∫

k2

∆̃(2)
12 (k2; t, t) +

∫
t1

∫
k2

∆̃(2)
12 (k2; t; t)∆̃R(0; t, t1)

)

=
ρ̃ρ̄

σ2

(
1 +

∫
k2

∆̃(2)
12 (k2; t, t)

)
=

ρ̃ρ̄

σ2
σ2

σ2 + σ2
lin

,

(B.28)

we used in the fourth line that ∆̃R(k = 0; t, t) = 0, since the propagator vanishes for k = 0.
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We proceed with the third term

III = i
ρ̃

σ2 δD(t1 − t) · (−i)
(
I (−1, 2) + (2π)3δD(−~k1 +~k2)∆̃

(1)
12 (−k1; t1, t2) . . .

+δD(t2 − t)∆̃(2)
12 (−k1, k2; t1; t) + ∆̃(3)

12 (−k1, k2; t1, t2; t)
)
· (2π)3δD(−~k2)ρ̄

=
ρ̃

σ2 δD(t1 − t) ·
(
(2π)3δD(−~k1)ρ̄ + (2π)3δD(−~k1)

∫
t2

∆̃R(−k1; t1, t2)ρ̄ . . .

+∆̃(2)
12 (−k1; t1; t)ρ̄ +

∫
t2

∆̃(2)
12 (−k1; t1; t)∆̃R(0; t, t2)ρ̄

)

=
ρ̃ρ̄

σ2

(
1 +

∫
t2

∆̃R(0; t, t2) +
∫

k1

∆̃(2)
12 (−k1; t, t) +

∫
k1

∫
t2

∆̃(2)
12 (−k1; t; t)∆̃R(0; t, t2)

)

=
ρ̃ρ̄

σ2

(
1 +

∫
k2

∆̃(2)
12 (k2; t, t)

)
=

ρ̃ρ̄

σ2
σ2

σ2 + σ2
lin

= II ,

(B.29)

which is exactly the same as the second term. Finally the fourth term gives

IV = (2π)3δD(~k1)ρ̄ ·
δD(t1 − t) + ∆̃A(−k1; t1, t)

σ2

(
δD(t2 − t) + ∆̃(1)

12 (−k2; t, t2) . . .

+δD(t2 − t)
∫

k1̄′
∆̃(2)

12 (−k1̄′ , k2; t; t) +
∫

k1̄′
∆̃(3)

12 (−k1̄′ , k2; t, t2; t)

)
· (2π)3δD(−~k2)ρ̄

= (2π)3δD(~k1)ρ̄
2 · δD(t1 − t) + ∆̃A(−k1; t1, t)

σ2

(
1 +

∫
t2

∆̃R(0; t, t2) . . .

+
∫

k1̄′
∆̃(2)

12 (k1̄′ ; t, t) +
∫

t2

∫
k1̄′

∆̃(2)
12 (k1̄′ ; t; t)∆̃R(0; t, t2)

)

=
ρ̄2

σ2

(
1 +

∫
t1

∆̃A(0; t1, t)

)(
1 +

∫
k1̄′

∆̃(2)
12 (k1̄′ ; t, t)

)
=

ρ̄2

σ2
σ2

σ2 + σ2
lin

.

(B.30)

we used in the fourth line that ∆̃A(k = 0; t1, t) = 0, since the advanced propagator vanishes
for k = 0.





C
C A L C U L AT I O N S F O R T H E F I R S T C R O S S I N G D I S T R I B U T I O N W I T H
S T R O N G LY C O R R E L AT E D S T E P S

We show here some additional calculations to those of Chapter 6. The calculations
presented here are reproduced from unpublished work of M. Feix.

c.1 mean and covariance matrix of the transformed lognormal distri-
bution

In Section 6.1.3, we transformed the weighted lognormal distribution

p̃LN(δR) = (1 + δR)pLN(δR)

=
1√

2πσ̃R (1 + δR)
exp

[
−
(
ln (1 + δR)− σ̃2

R/2
)2

2σ̃2
R

]
.

(C.1)

into a normal distribution by change of variable

x = ln(1 + δR) . (C.2)

This allowed us to obtain the joint distribution p(x,x′), which takes the form of a bivariate
normal distribution. We derive here the mean and covariance matrix of this bivariate
normal distribution

p(x, x′) =
1

2π|C| 12
exp

−1
2

(
x− 〈x〉

x′ − 〈x′〉

)T

C−1

(
x− 〈x〉

x′ − 〈x′〉

) , (C.3)

with

C =

(
〈xx〉 〈xx′〉
〈x′x〉 〈x′x′〉

)
. (C.4)

It is our aim to express the mean and covariance matrix in terms of δR and δ′R. The
derivative of x with respect to the smoothing scale R can be expressed in terms of δR and
δ′R as

x′ =
δ′R

1 + δR
. (C.5)

131
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From Eq. (C.1), we can easily identify 〈x〉 and
〈

x2〉 by comparing with the definition of
the normal distribution,

〈x〉 = σ̃2
R
2

, (C.6)〈
x2〉 = σ̃2

R . (C.7)

We then can make use of the following three simple identities

〈
exx′

〉
=

〈
(1 + δR)

δ′R
1 + δR

〉
=
〈
δ′R
〉
= 0 , (C.8)

where we used that the mean slope of random walks 〈δ′R〉 should be zero,〈
e2xx′

〉
=
〈
δ′R + δRδ′R

〉
=
〈
δRδ′R

〉
(C.9)

and 〈
e2xx′2

〉
=
〈
δ′2R
〉

, (C.10)

which we obtain by plugging in the relations from Eqns. (C.2) and (C.5). The mean values
of Eqns. (C.8) – (C.10) can also be calculated explicitly by integrating over the PDF (i.e.
Eq. C.3). This leads for the first identity to〈

exx′
〉
=
〈

x′
〉
+
〈

xx′
〉 (C.8)

= 0

⇒
〈

x′
〉
= −

〈
xx′
〉

,
(C.11)

for the second to 〈
e2xx′

〉
=
(
1 +

〈
δ2

R
〉) 〈

xx′
〉 (C.9)

=
〈
δRδ′R

〉
⇒

〈
xx′
〉
=
〈δRδ′R〉

1 +
〈
δ2

R
〉 ,

(C.12)

and for the third to〈
e2xx′2

〉
=
(
1 +

〈
δ2

R
〉) [(〈

x′
〉
+ 2

〈
xx′
〉)2

+
〈

x′2
〉]

=
(
1 +

〈
δ2

R
〉) [(〈

xx′
〉
+ 2

〈
x′2
〉)] (C.10)

=
〈
δ′R
〉

⇒
〈

x′2
〉
+
〈

xx′
〉2

= − δ′2R
1 +

〈
δ2

R
〉

⇒
〈

x′2
〉
=

δ′2R
1 +

〈
δ2

R
〉 − δ′2R

1 +
〈
δ2

R
〉 ,

(C.13)
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which we obtain by plugging in the result for 〈xx′〉 from Eq. (C.12) in the last line. We
can therefore summarise our results as

〈x〉 = 1
2

σ̃2
R,

〈
x′
〉
= 0,

〈
x2〉 = σ̃2

R,
〈

xx′
〉
=
〈δRδ′R〉
1 + σ2

R
,

〈
x′2
〉
=

〈
δ′2R
〉

1 + σ2
R
−
( 〈δRδ′R〉

1 + σ2
R

)2

,

(C.14)

which corresponds to Eq. (6.16).

c.2 mean and covariance matrix of the transformed generalised nor-
mal distribution

We can apply the same procedure to obtain the mean and covariance matrix for the
transformed generalised normal distribution. Although we are interested in the weighted
generalised normal distribution in Section 6.1, we will start first with the unweighted
distribution since we can use these results to simplify the calculations when the weighting
is applied.

c.2.1 Unweighted generalised normal distribution

We start with the unweighted generalised normal distribution (c.f. Eq. 4.2)

pGN(δR) =
1√
2π

1
α− β(δR − µ)

× exp

[
− 1

2β2

(
ln
[

1− β(δR − µ)

α

])2
]

. (C.15)

We can now transform the variable

x = − ln
[

1− β (δR − µ̃)

α

]
. (C.16)

Analogous to the previous section, this allows us to write the joint PDF p(x, x′) in the
form of Eq. (C.3). The derivative of x with respect to smoothing scale R can be expressed
in terms of δR and δ′R as

x′ =
(β/α)′ δR + (β/α) δ′R − (βµ̃/α)′

1− β (δR − µ̃) /α
. (C.17)

As in the case of the lognormal distribution, we can easily identify 〈x〉 and
〈

x2〉 by
comparing Eq. (C.15) with the definition of the normal distribution

〈x〉 = 0 , (C.18)〈
x2〉 = β2 . (C.19)
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By definition, we know that 〈δR〉 = 0 and
〈
δ2

R
〉
= σ2

R. By calculating the mean and
variance of δR using the PDF directly (i.e. from Eq. C.15) we get

〈δR〉 = µ̃− α

β

(
e

β2
2 − 1

)
!
= 0

⇒ µ̃ =
α

β

(
e

β2
2 − 1

) (C.20)

and 〈
δ2

R
〉
=

α2

β2 eβ2
(

eβ2 − 1
)

!
= σ2

R . (C.21)

Note that β < 0, such that β = −
√

β2.
We can again make use of three identities, which are

〈
e−xx′

〉
= −

(
d

dR

√
β2

α2

)
〈δR〉 −

(√
β2

α2

) 〈
δ′R
〉
− d

dR

(
βµ̃

α

)
= − d

dR

(
βµ̃

α

)
,

, (C.22)

〈
e−2xx′

〉
= −

√
β2

α2

(
d

dR

√
β2

α2

) 〈
δ2

R
〉
− β2

α2

〈
δRδ′R

〉
−
(

1 +
βµ̃

α

)
d

dR

(
βµ̃

α

)
(C.23)

and

〈
e−2xx′2

〉
=

(
d

dR

√
β2

α2

)2 〈
δ2

R
〉
+ 2

√
β2

α2

(
d

dR

√
β2

α2

) 〈
δRδ′R

〉
+

β2

α2

〈
δ′R

2
〉
+

[
d

dR

(
βµ̃

α

)]2

,

(C.24)

which we obtain by inserting Eqns. (C.16) and (C.30). The mean values of Eqns. (C.22)
– (C.24) can also be calculated explicitly by integrating over the PDF (i.e. Eq. C.3). This
leads for the first identity to

〈
e−xx′

〉
= exp

(
β2

2

) (〈
x′
〉
−
〈

xx′
〉) (C.22)

= − d
dR

(
βµ̃

α

)
, (C.25)

for the second to〈
e−2xx′

〉
= exp

(
2β2) (〈x′

〉
− 2

〈
xx′
〉)

(C.25)
= − exp

(
3
2

β2
)

d
dR

(
βµ̃

α

)
− exp

(
2β2) 〈xx′

〉 (C.26)
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and for the third to〈
e−2xx′2

〉
= exp

(
2β2) [(〈x′

〉
− 2

〈
xx′
〉)2

+
〈

x′2
〉]

. (C.27)

With this at hand, we could now write down the mean and the covariance matrix. Since
we are interested in the weighted version of the PDF, however, and just need these results
to simplify our calculations in the next section, we will proceed with the weighted PDF
straight away.

c.2.2 Weighted generalised normal distribution

We now consider the weighted generalised normal distribution (c.f. Eq. 6.7)

p̃GN(δR) =

(∣∣∣∣µ̃ +
α

β

∣∣∣∣+ δR

)
pGN(δR)

=
1√
2π

1
α̃− β(δR − ν̃)

exp

[
− 1

2β2

(
ln
[

1− β(δR − ν̃)

α̃

])2
] (C.28)

and apply the change of variable

x = − ln
[

1− β (δR − ν̃)

α̃

]
. (C.29)

We again write the joint PDF p(x, x′) in the form of Eq. (C.3). The derivative of x with
respect to smoothing scale R can be expressed in terms of δR and δ′R as

x′ =
(β/α̃)′ δR + (β/α̃) δ′R − (βν̃/α̃)′

1− β (δR − ν̃) /α̃
. (C.30)

Once more, we identify 〈x〉 and
〈

x2〉 by comparing Eq. (C.28) with the definition of the
normal distribution

〈x〉 = 0 , (C.31)〈
x2〉 = β2 . (C.32)

We furthermore can calculate from Eq. (C.28)

〈δR〉 = ν̃− α̃

β

(
e

β2
2 − 1

)
=

α

β
e

β2
2

(
1− eβ2

)
,

〈
δ2

R
〉
=

α̃2

β2 eβ2
(

eβ2 − 1
)
= e2β2

σ2
R ,

(C.33)

Note also here that β < 0, such that β = −
√

β2.
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We can now use a trick to derive again three identities for mean values of combinations
of e−x and x′. For this, we realise that the weighting factor gives exactly a factor of
(α̃/β)e−x, which can be seen by inserting Eq. (C.29) the definitions of ν̃ and α̃ (c.f.
Eqns. 6.5 and 6.6)

e−x = 1− β(δR − ν̃)

α̃
=

1
α̃
[α̃− β(δR − ν̃)]

=
1
α̃

[
α̃− β

(
δR − µ̃ +

α̃

β
− α

β

)]
=

1
α̃

[
α̃− α̃ + β

(
δR − µ̃− α

β

)]
=

β

α̃

(
δR − µ̃− α

β

)
,

(C.34)

where the second factor is exactly our weighting factor in Eq. (C.28). We can therefore
use the results of the unweighted PDF (i.e. Eqns. C.22 – C.24), by rewriting the weighting
factor as shown above1. However, we still have to take into account that the parameters
have been shifted due to the weighting, which means that we have to replace µ̃→ ν̃ and
α̃→ α̃ when taking the results from the unweighted case. This then leads to

〈
x′
〉
=

α̃

β

〈
x′
〉

unweighted
(C.22)
=

α̃

β

(
d

dR
βν̃
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)
, (C.35)
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and

〈
e−xx′2

〉 (C.24)
= − α̃
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(C.37)

The first identity, Eqns. (C.35), already yields 〈x′〉. As shown in the previous section, the
values of Eqns. (C.36) and (C.37) can also be calculated explicitly by integrating over the
PDF (i.e. Eq. C.3). We state the results here again for completeness

〈
e−xx′

〉
= exp

(
β2

2

) (〈
x′
〉
−
〈

xx′
〉)

, (C.38)
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) [(〈
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xx′
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. (C.39)

1 e.g. 〈x′〉 = α̃
β

〈
e−xx′

〉
unweighted, where the unweighted formula needs to be evaluated with the shifted

parameters ν̃ and α̃.
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Combining Eqns. (C.35) – (C.37) with Eqns. (C.38) and (C.39) leads then to the desired
results for the mean and covariance matrix
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(C.40)

c.3 strongly correlated regime for the generalised normal distribu-
tion

We now derive the halo mass function for the generalised normal model in the strongly
correlated regime. The completely correlated regime has already been derived in Sec-
tion 6.1.2. The steps presented here are analogous to those of Section 6.1.3, where the
lognormal model was used.

We start with the joint distribution p̃x(x, x′) derived above (Section C.2.2). Reexpressing
the PDF in terms of δR and δ′R then gives

p̃(δR, δ′R) =
(

β

α̃− β (δR − ν̃)

)2

p̃x(x, x′). (C.41)

This expression can now be inserted into Eq. (6.14) to obtain the first-crossing distribution
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(C.42)



138 calculations for the first crossing distribution with strongly correlated steps

where γ = 〈δRδ′R〉2 /(〈δRδR〉 〈δ′Rδ′R〉) as before and we defined the short-hand notations

x∆ := − ln [1− β (∆− ν̃) /α̃] ,

η := γx∆

√
〈x′2〉+ β

[
ε− 〈x′〉

]
,

ε :=
(β/α̃)′ ∆− (βν̃/α̃)′

1− β (∆− ν̃) /α̃
.

(C.43)

Inserting this first crossing distribution into Eq. (5.18) results in the halo mass functions
shown in Fig. 6.1 for redshift z = 0 and Fig. 6.3 for z = 1.



D
R E S U LT S F O R T H E L O G N O R M A L M O D E L

For completeness, we add in this part of the appendix the plots (see Fig. D.1) corre-
sponding to the calculations of the halo mass function with the lognormal model in
Sections 6.1.2 and 6.1.3. This figure is analogous to Fig. 6.1, which was obtained using the
generalised normal model instead. The mass functions in the upper panel were calculated
using excursion set statistics in the completely correlated regime (Eq. 6.10). Those in the
lower panel represent the results for random walks in the strongly correlated regime
(Eq. 6.20).

We find a fairly good agreement in the mass range from 1010 to 1016 h−1M� for both
regimes when the overdensity threshold is set to ∆ = 3.7. However, comparing the results
to those from the generalised normal model (Fig. 6.1), we find that the agreement with
the fit to N-body simulations is slightly worse – especially in the knee of the function
and the slope of the high mass tail. This is indeed expected, since the lognormal model
describes the cosmic density field less accurately than the generalised normal model. For
the maximally correlated case, shown in Fig. D.1a, higher values for the density threshold ∆
lead to an agreement with the Press-Schechter mass function in the low mass regime
and a substantial underprediction in the high mass tail. Setting the threshold to ∆ = 2.0
leads to a better agreement with the Tinker mass function in the low mass regime, but a
significant overprediction in the high mass tail. The strongly correlated random walk, shown
in Fig. D.1b leads to slightly lower values of the halo mass functions. For masses smaller
than 1013 h−1M�, all curves shown lie below the Tinker mass function if the overdensity
is set to ∆ = 3.7. It is interesting to note that for the generalised normal model this
behaviour is reversed (see Fig. 6.1). There the strongly correlated random walk leads
to a slightly higher halo mass function. As mentioned above the worse agreement with
the Tinker mass function in comparison to the generalised normal model is caused by
the lognormal model describing less accurately the cosmic density field. The relative
deviations of our halo mass functions based on the lognormal model as compared to the
Tinker fit are shown in Fig. D.2.
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Figure D.1: Halo mass function predictions using a lognormal model for the PDF of the density
field (dashed lines). The colour coding was chosen analogously to Fig. 6.1. The upper
panel (a) shows the completely correlated case (Eq. 6.10). The lower panel (b) shows
the results for a strongly correlated random walk (Eq. 6.20).
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Figure D.2: The relative deviation of our halo mass function based on the lognormal model as
compared to the Tinker fit. The density threshold was set in our model to ∆ = 3.7
(corresponding to the red dashed line in Fig. D.1). The upper panel (a) shows the
completely correlated case and the lower panel (b) the a strongly correlated regime.
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Figure E.1: The gravitational potential of Abell 2744 taken from Jauzac et al. (2016). The solid
white contours show the potential obtained from a combined strong and weak lensing
analysis. The dashed cyan contours show the X-ray luminosity of the cluster. The cyan
arcs highlight the positions of two X-ray shocks. The cyan crosses mark the positions
of remnant cores. The positions of the all eight detected substructures are shown
as orange diamonds. In case their position differs from the position shown in Merten
et al. (2011) and Medezinski et al. (2016), the previous positions are highlighted as red
diamonds. The yellow arrow denotes the direction of a filament as reported in Eckert
et al. (2015) and the green arrow shows the direction of a radio relic discussed in Eckert
et al. (2016). This figure was taken from Jauzac et al. (2016).
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