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ABBREVIATIONS  

ABC ATP-binding cassette  

ACN Acetonitrile 

ADMET Absorption, distribution, metabolism, excretion and toxicity 

ATP Adenosine triphosphate 

AU Arbitrary unit 

AUC Area under the curve 

CETSA Cellular thermal shift assay 

CV Coefficient of variation 

Da Dalton 

DBF 4’,5’-Dibromofluorescein 

DD Dried Droplet 

ddH2O Double-distilled water 

DDI Drug-Drug Interaction 

DHAP 2’,5’-dihydroxyacetophenone 

DHB 2’,5’-dihydroxybenzoic acid 

DMEM Dulbecco’s modified Eagle Medium 

DMSO Dimethylsulfoxide 

FCS Fetal calf serum 

FDA Food and Drug Administration 

FDI Food-Drug Interaction 

FRET Förster resonance energy transfer 

HPLC High performance liquid chromatography 
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HTS High-throughput screening 

IC50 Half maximal inhibitory concentration 

m/z Mass-to-charge ratio 

MALDI Matrix assisted laser desorption/ionisation 

MS Mass spectrometry 

MTP MALDI target plate 

OAT Organic Anion Transporter 

OATP2B1 Organic Anion Transporting Polypeptide 2B1 

PBS Phosphate buffered saline 

PEN/STREP Penicillin-streptomycin 

Ph-CCA-NH2 4-Phenyl-α-cyanocinnamic acid amide 

pIC50 Negative decadic logarithm of IC50 

rpm Revolutions per minute 

S/N Signal to noise 

SLC Solute Carrier 

TFA Trifluoracetic acid 

TOF Time of flight 

uHTS Ultra High-throughput screening 

WC Whole Cell 
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1 INTRODUCTION 

1.1 TRANSPORT PROCESSES ACROSS THE CELL MEMBRANE 

Cells as living organisms have to be in constant exchange with their environment to 

keep up their normal function. Without the uptake of important nutrients, the unlimited 

capacity of a cell cannot be granted. Substances need to cross the lipid bilayer of a 

cell, which is keeping it in its shape and delimiting it from other cells ensuring a specific 

cellular environment1. The easiest way to pass this membrane is by passive diffusion, 

which is the primary route for gases and water. The eased diffusion includes transport 

through channels and carriers, like ion channels or glucose carriers. The active 

transport is dependent on adenosine triphosphate (ATP). Primary active transport 

directly uses ATP to energise for instance a N+/K+-ATPase whereas secondary active 

transport uses an electrochemical gradient built up by a primary active transporter2. 

For example, the activity of Na+/K+-ATPase leads to an accumulation of Na+ in the 

extracellular space, which can be used to co-transport glucose into the cytosol by a 

secondary active transporter (Figure 1). Besides the two mentioned active transport 

processes, there is also a tertiary active transport, which uses a concentration gradient 

built up by a secondary active transporter. Alongside the “conventional” transport 

ways, molecules can also be transported into the cells by invagination of the cell 

membrane. This process is called endocytosis and includes four mechanisms named 

clathrin-mediated, caveolae, phagocytosis and pinocytosis3, 4. This transport process 

results in a taken-up particle enclosed by a vesicle. For the export via this transport 

route, particles are enclosed by a vesicle and transported outside of the cell through 

exocytosis. 
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Figure 1: Different ways of transport across the cell membrane: Passive and active 

transport in a cell including diffusion, eased diffusion, primary and secondary active transport. 

(Figure adapted from Rassow et al.)5 

 

1.1.1 TRANSPORTERS MEDIATING UPTAKE AND EFFLUX IN CELLS 

The size, charge and polarity of a molecule affects the way it is transported6. Diffusion 

is only possible for small and lipophilic compounds that follow their concentration 

gradient. As soon as the molecule to be transported is hydrophilic, larger or has to be 

transported against the concentration gradient, the help of transport proteins 

comprising solute carriers (SLC), adenosine triphosphate (ATP)-binding cassette 

(ABC) transporters, channels, carriers and ATP-driven pumps, is needed. Both import 

and export of compounds is managed by transporters with the ABC transporters being 

almost exclusively responsible for export from cells and the SLC transporters for 

import of substances into the cells7. SLC transporters comprise more than 400 

members8, 9 organised into 65 families10. They are integral membrane proteins and 

are localised on the cell surface and in organellar membranes, depending on the type 

of SLC transporter. According to their substrate selectivity, they are grouped in 

families11. There are transporters mediating the uptake of organic anions (Organic 
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anion transporter(OAT)) and organic cations (Organic cation transporter (OCT)), 

which are besides the organic anion transporting polypeptide (OATP) family two of the 

best known and investigated SLC families.  

Before transporter proteins that act as uptake routes for drugs, where identified, it was 

believed that passive transport across the biological membrane constitutes the main 

uptake route of drugs12. The route of drug uptake of biological compounds into cells is 

still controversial. While Kell et al. postulate the drug transport as being carrier-

mediated only13, many other laboratories insist on the coexistence of both passive and 

carrier-mediated drug uptake12. Kell argues with most studies being conducted with 

non-transfected cells that are used as a control for passive transport. It has to be noted 

that the non-transfected cells of course also contain a variety of transporters and thus 

in their opinion cannot be used as control for passive transport13. Nonetheless, there 

is a common agreement on transport proteins accounting for drug uptake into cells. 

Like the just described controversy, it also took a while for transport proteins as such 

catching the attention of scientists. 

 

1.1.2 DRUG TRANSPORTER HISTORY 

In the 1940s, probenecid was discovered as a compound that affects the half-life of 

penicillin due to interference with renal clearance14. This can be seen as the first notice 

of drug-transporter interaction, as Pascale et al., described the effect of probenecid on 

the organic anion transporters located in the kidney leading to the reduced clearance 

activity15. In the 1950s, pathologists discovered the Dubin-Johnson syndrome leading 

to a discolouration of the liver due to an increase of bilirubin in the serum16. This 

syndrome later could be explained by the mutation in an organic anion transporter 

gene17 giving a hint about the importance of transporter research. In 1976, Juliano and 

Ling first depicted P-glycoprotein (P-gp)18, a primary active efflux ABC-transporter19, 

which got more attention, as it could subsequently be connected to multidrug 

resistance of tumour cell lines against anticancer agents20. As P-gp overexpression 

ranks as a major cause for the treatment failure of chemotherapeutics in cancer21, 22, 

research focused on finding inhibitors that could help to keep the chemotherapeutic 

drug inside the cancer cell. Amongst others, verapamil and cyclosporine A were found 

as inhibitors of P-gp23, 24 in the years after. In 1998, the transporter research field 



Introduction   

 

6 

 

gained even more interest by the identification of another important ABC transporter: 

the breast cancer resistance protein (BCRP)25, which plays an important role in the 

cytostatic drug resistance of cancer cells, making it a big topic of cancer research26.  

BCRP transporters that turned out to be involved in multidrug resistance and the 

already seen links to human diseases like Dubin-Johnson syndrome and cancer led 

to the recognition of the research field, which resulted in the first International 

Transporter Consortium (ITC) White Paper in 20107. To date, there were three ITC 

workshops followed by several white papers published in prestigious journals7, 27, 28. 

On the basis of the white papers published by the ITC, the Food and drug 

administration (FDA) concluded on publishing guidances for industry, which are 

intended to help drug developers plan and evaluate studies to determine the drug-

drug-interaction (DDI) potential of an investigational drug product. Additionally, the 

FDA has recommended to monitor several transport proteins in the process of drug 

approval such as for example a guidance for P-gp and OATP1B1/1B3. The latter two 

should be investigated if the hepatic/biliary elimination is a significant clearance 

pathway for the investigational drug and the drug is likely to be taken up into the liver. 

Those directives are adapted periodically and help to manage adverse events. Figure 

2 illustrates the timeline of drug transporter history with the highlights that ended up in 

the formation of the ITC. 

 

Figure 2: Timeline drug transporter history: Time line showing the most important events 

in drug transporter history from the discovery of probenecid and its effects on penicillin due to 

clearance issues to the publication of the first ITC white paper in 2010. 
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1.1.3 SLC TRANSPORTERS AND THEIR LINK TO HUMAN DISEASE 

As the history of transporter research already showed, the need to investigate 

transport proteins is high. Speaking of the SLC transporters, more than 80 out of the 

more than 400 known SLCs are linked to human diseases29. Therefore, the already 

mentioned Dubin-Johnson syndrome is not the only disease linked to a malfunction, 

mutation or genetic variant of an SLC gene. Besides little known diseases as Barter 

and Gitelman syndrome, which are caused by a mutation in SLC1230, SLCs are also 

connected to diseases that have occupied science for several years like amyotrophic 

lateral sclerosis, Parkinson’s disease, Alzheimer’s disease, epilepsy, schizophrenia or 

autism. Those neurological disorders seem to be influenced by the dysfunction of 

SLC1/SLC6 transporters29, 31-33. With metabolic diseases like diabetes34, 35, gout36, 37 

and cardiovascular diseases like elevated blood pressure38, 39 the list gets even longer.  

Surprisingly, SLC transporters also have a connection to cancer. They do not only play 

a role in the uptake of many cancer therapeutics, but there is also evidence of a 

change in the expression patterns of SLC transporters in cancer cells40. Cancer cells 

of course have a higher need for nutrition and energy than healthy cells. Those 

degenerated cells seem to help themselves with the upregulation of some SLC 

transporters41, 42. Overexpression of those uptake transporters might be an advantage 

for the cancer cells because of possible increase in uptake of hormones and nutrients. 

For the special case of Organic anion transporting polypeptide 2B1 (OATP2B1), 

belonging to the SLC family, it has been noted that in estrogen-receptor (ER)-positive 

breast cancer, the increase in uptake of hormones (estrogen) through OATP2B1 led 

to an increase of the survival of breast cancer cells43. 

The upregulated SLC transporters in cancer cells could have not only supportive, but 

also restricting effects for the cancer development, as SLC transporters also are 

known to interact with anticancer agents41, 44. An increased uptake of anticancer 

compounds by targeting SLC transporters could help improve the efficacy of 

chemotherapy45. Also, a future application could be to design drugs that can only 

specifically be taken up by SLC transporters expressed in the cancer cells leading to 

a possible cell-type specific drug delivery42.  

Due to their involvement in cancer and many more human diseases, SLC transporters 

represent an emerging drug target. Unfortunately, to date, there are only 12 drugs on 
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the market, which target a SLC gene product46. As the several entanglements with 

human diseases showed, the goal should be to focus on SLC transporters as drug 

targets in the coming years due to the possibility of improving the bioavailability of 

certain drugs by designing them to use the transporters as their specific route of 

uptake47. 

 

1.1.4 DRUG APPROVAL – INFLUENCE OF DRUG-DRUG INTERACTIONS 

Another fact that makes the SLC transporters worth investigating is the broad 

specificity of the protein class. They are involved in the uptake and further transport of 

nucleotides, amino acids, fatty acids, inorganic ions, sugars, neurotransmitters and 

drug molecules8. This abundance of different molecules makes up a big number of 

available molecules in a cellular environment. With the quantity of substances 

influenced by the transport proteins comes a critical effect that should not be 

underestimated. Drug-drug interaction (DDI) is a generic term for two or more 

pharmaceutical drugs or molecules that both interact with the transport protein and 

affect each other when administered concomitantly. This manifests itself by a change 

in the drug levels after concomitant application compared to the drugs administered 

alone7. Due to transport proteins intervening in the absorption, distribution, metabolism 

and excretion (ADME) of drugs, an alteration in ADME by transporters can lead to 

drug-drug interactions48. In detail, an inhibition of the transporter by one substance 

can lead to the other substrate not being transported anymore leading to the drug not 

getting to its target. Another possible consequence is that through the blocking of the 

transporter by a drug, another drug cannot be taken up into a metabolising organ 

anymore and the drug accumulates in the blood, which can lead to a toxic enrichment 

of the drug in the blood or other organs49.  

The group of Dawson et al. found that cholestasis, leading in the end to drug-induced 

liver injury, results from the inhibition of the bile salt export pump (BSEP). This 

transport protein is a key player in the further transport of bile salts from the liver and 

through inhibition can provoke an accumulation of the bile salts in liver triggering 

cholestasis50. Another severe example of drug-drug interaction happened in the 1990s 

and led to a sudden death of patients administered with terfenadine and ketoconazole 

concomitantly51. Not only DDI are a reason for an increased need for investigation of 
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transporters, but also interactions with food, referred to as food-drug interactions (FDI). 

Especially OATPs are known for interactions with juices52. An investigation of 

OATP2B1 showed a decrease in the area under the curve (AUC) of the plasma 

concentration of fexofenadine by 86 % and aliskiren by 63 % with a concomitant 

administration with apple juice. Also grapefruit juice had an effect on the AUC of 

fexofenadine (decrease 52 %), aliskiren (decrease 61 %) and celiprolol (decrease 

84 %)53. 

As DDIs are also known to be involved in adverse events54-56, and the population is 

getting older, which makes DDIs more likely due to people being on several 

medications simultaneously, it is important to investigate the DDI potential of a drug 

during its approval. What makes the investigation of the DDI potential even more 

important is the fact that half of the drugs withdrawn from the market in the 2000s were 

due to important drug interactions57. Drug development and approval are a very cost-

intensive issue and even facing a “reproducibility crisis” with the enormous rise in 

research and development costs per drug in the last 60 years58. Therefore, the detailed 

investigation of the efficacy, potency, ADME, toxicity, mechanism of action and side 

effects of the pharmaceutical compounds is an essential component in ensuring the 

prerequisites and increasing the chances for clinical trials and drug approval59, 60. 

As the members of the SLC family gained attention due to their known involvement in 

ADME processes61, they are included routinely in the drug development process and 

proposals for emerging clinical transporters are updated by the ITC as the responsible 

regulatory authority8. This together with guidances published by the FDA helped 

researchers to gain a better understanding of the drug interactions in the last years54. 

Nonetheless, a complete picture of the transport proteins and processes is still not 

available yet and an analysis showed that the SLC transporters are relative to their 

meaning in health and drug approval understudied9.  

 

1.1.5 OATP2B1 AS AN EMERGING DDI-RELEVANT DRUG TRANSPORTER 

An SLC transporter with emerging clinical importance is the organic anion exchanger62 

OATP2B1. It was first described as clinically important in the ITC whitepaper from 

20107 and still has to be described further because of lack of information on the drug-
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drug interaction likelihood. Even though OATP2B1 is less known and studied than 

OATP1B1 and OATP1B3, which are liver-specific, it is expressed in multiple organs, 

predominantly in liver63, 64, but also at the blood-brain barrier65, at the ciliary 

epithelium66, 67, in the intestine68, in skeletal muscle69 and in the placenta70 (Figure 3) 

and should therefore be treated as equally relevant71. The main drug uptake site is 

believed to be in the intestine72 and through its high abundance in liver and intestine, 

it is an important drug uptake transporter for many compounds, which increases the 

probability of DDI and FDI71.  

 

 

Figure 3: Expression of OATP2B1 in the human body: OATP2B1 is expressed ubiquitously 

throughout the body73. Figure adapted from Hagenbuch et al74.  

 

There are some known events of DDI and FDI associated with OATP2B1. Fruit juices 

are the best studied DDI mechanisms for OATP2B175 and as described in 1.1.4 can 

lead to a decrease in the plasma concentration of 86 % of a drug. Until now, the only 

DDI occurrence with OATP2B1 is an inhibition of OATP2B1 by ronacaleret, which 

results in a decrease in the exposure of rosuvastatin. As statins are frequently 

administered to older people, this represents a high risk for DDI, as older people tend 

to be co-medicated with other drugs76. Also, a decreased statin disposition by the 
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inhibition of transporters, which mediate the disposition, can result in the development 

of a statin-related myopathy76, which can be a life-restricting disease.  

But not only because of the DDIs, OATP2B1 is an interesting research object, it is also 

involved in human cancer. It has been identified in multiple tumour cell lines, where 

the abundance of the protein increased with tumour grade65, 77. Furthermore, 

overexpression has been found in various tumours45. As described already in 1.1.3, 

this overexpression of transport proteins in tumour cells could help the cancerous cell 

to facilitate its uptake of nutrients and hormones. Estrone-3-Sulfate (E3S) is a 

hormone that is also related with cancer and is a substrate for OATP2B173, which 

makes this hypothesis conceivable43. Targeted inhibition of OATP2B1 could be a 

strategy to reduce the growth of the tumours in which the transport protein is 

overexpressed78. 

Finally, OATP2B1 is also an interesting research object, because it seems to have 

multiple binding sites that also differ in their pH sensitivity. Thus, substrate and inhibitor 

differences could likely evolve68, 72, 79. This finding has not yet been fully clarified and 

together with the other aspects leads to a high interest in OATP2B1 research. 

 

1.2 ASSAY TECHNOLOGIES IN PHARMACEUTICAL RESEARCH AND 

DEVELOPMENT 

Pharmaceutical research and development relies on a wide range of assay 

technologies. Various fluorescence techniques are among the technologies. The term 

fluorescence was first introduced back in 1852 by George Stokes, The basis of 

fluorescence is the electronic and vibrational excitation of a system by a higher-energy 

(lower wavelength) photon and emission of a photon at a higher wavelength (Figure 

4). 
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Figure 4: Basis of fluorescence: Jablonski diagram: A paired electron in the singlet ground 

state (S0) absorbs a photon. One electron of the pair gets excited electronically to the first 

excited singlet electronic states (S1 ) or higher. In this example, also a vibrational excitation is 

shown, where the electron is excited to a vibrational state of S1. An unpaired electron is a very 

unstable form of an electron, thus leading to the need to fall back on the ground state. This 

can happen by internal conversion, which leads to a change in the electronic state due to a 

transformation of the excitation energy to heat. Here, the internal conversion is shown from 

the second excited singlet state (S2) to S1. Also, vibrational relaxation can occur followed by 

emission of a photon, called fluorescence or quenching, which leads to a reduction of the 

fluorescence intensity due to various effects. 

 

A fluorescence intensity measurement is usually conducted with a microplate reader 

consisting of a light source, filters or monochromators for excitation and emission and 

a detector for the measurement of the emitted light, which usually is a photomultiplier 

tube. Several other methods are also based on the fluorescence effect. A fluorophore 

is a fluorescent chemical compound and if excited with polarised light, most of them 

also emit polarised light, which is the basis for fluorescence polarisation (FP). For the 

measurement of FP, the probe is excited with linear polarised light generated by a 

polarisator. A second polarisator analyses the emitted light. In pharmaceutical 
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research, FP is used as a basic readout80, but can also be coupled with an 

immunoassay to detect antibodies or antigens in samples81. Förster resonance energy 

transfer (FRET) is another fluorescence-based technique used in pharmaceutical 

research. The physical process, which was discovered 1948 by Theodor Förster is a 

radiation-free energy transfer process between two dyes possessing a spectral 

overlap and being in proximity to another. The energy is transferred from a donor to 

an acceptor and can be measured indirectly by analysis of the decrease of radiation 

intensity of the donor or emission of the acceptor using a fluorescence microscope or 

a fluorometer. FRET is a common technique in pharmaceutical research82 and is also 

applied as time-resolved fluorescence (TR) FRET83, 84 through the use of fluorophores 

with a long lifespan, defining the time the molecule stays in an excited state before the 

emission of a photon. FRET and TR-FRET are suitable techniques for drug discovery 

as they cover the analysis of protein-protein interactions85. Fluorescence-lifetime 

imaging microscopy (FLIM) includes, as the name already suggests, a measurement 

of the lifetime of a fluorophore and not the intensity and is frequently used for 

pharmacological questions86, 87. Comparable to FRET, there is a technique with the 

same principle, transferring bioluminescence energy from a donor to an acceptor. Due 

to the same methodological principle, it is called bioluminescence resonance energy 

transfer (BRET)88. For most BRET reactions, the enzyme Rluc is used with its acceptor 

coelenterazin89. Luminescence measurements are most of the time conducted with 

luciferase and its acceptor luciferin90 and also find application in drug uptake studies91. 

Also biochemical methods are an important tool in pharmaceutical research. The 

cellular thermal shift assay (CETSA) is used for the analysis of protein interactions. It 

depends on the change in thermostability of the protein folding when adding a binding 

partner and can also be applied in a screen92. 

For the implementation of the research on the emerging transport protein OATP2B1 

and others, there are currently several methods used. Important here is to distinguish 

between methods used in search for new substrates and methods used for inhibitor 

screening. Most of the research is conducted either radio-labelled or fluorescence-

labelled48. A radioisotope assay can serve both needs and therefore is a suitable 

method for the investigation and characterisation of transport proteins48, 93. For the 

uptake assays, possible substrates are labelled usually either with tritium or 14C-

carbon. After treatment of the cells with the substrate and stopping of the reaction, 
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cells are lysed and the radioactivity analysed using a scintillation counter (Figure 5). 

This measurement device for the determination of the intensity of ionised radiation 

consists of a scintillator, a photomultiplier tube and a counter. A high energy photon 

reaches the scintillator and through the ionised radiation several low energy photons 

are produced. When a photon reaches the photocathode, it will emit a primary 

electron. The focusing electrode directs the electrostatically accelerated electron 

towards the first dynode in the photomultiplier tube. The electron gets multiplied and 

the resulting secondary electrons are multiplied at every dynode. This process leads 

to an enrichment of signal and a measurable and countable energy, which reaches 

the anode in the end.  

 

 

Figure 5: Scintillation counter: The measurement device for ionised radiation in radioactive 

assays consists of scintillator, photomultiplier tube and counter.  

 

Even though radioactive assays are very simple and sensitive in detection and the 

required labelling does not falsify the outcome because of the same chemical identity, 

the big problem with the technique is on the one hand the waste management, but 

also of course on the other hand the exposure of the working personnel94.  

An alternative for the investigation of transporters are fluorescent methods. They too 

need a labelling of the substrate, but are also very sensitive95, low in cost, automatable 

and therefore applicable in high-throughput screening (HTS)96. Nevertheless, there 

are several negative aspects about the method, like a short lifespan of the fluorophore, 



Introduction   

 

15 

 

a susceptibility in regard to pH changes and the influence of false-positives and –

negative hits97. False assumptions can result out of autofluorescence of the 

investigated compound itself93. If it is fluorescent at the investigated wavelength, there 

will be a detection of light, even though the compound could have led to an inhibition 

of the uptake of the fluorescent substrate. False assumptions can also result out of 

quenching effects93. In this case, properties of the investigated compound lead to a 

decrease of the emission of the fluorescent substrate and would therefore be identified 

as inhibitor, even if an inhibition did not take place. Additionally, a clear negative 

aspect about fluorescence-based methods is that a fluorescent label is needed. This 

reduces the possibilities of measurements and also affects the outcome. Summed up, 

a fluorescence-based method often picks up artefacts and therefore a preferably label-

free counter screening confirming the hits is advised98. 

 

1.3 MASS SPECTROMETRY ASSAY TECHNOLOGIES 

A possible counter screening for a fluorescence-based method can be mass 

spectrometry (MS), as it may be less prone to false-negatives and -positives. The 

basic principle of mass spectrometry is to generate ions and to separate those ions in 

vacuum according to their mass-to-charge ratio (m/z). The technology is used in 

multiple application areas like sequencing of peptides99, analysis of whole cells100 and 

structure elucidation of unknown and known compounds101, 102. All of the mass 

spectrometers have a similar basic structure: they consist of a sample inlet, ion source, 

mass analyser and a detector (Figure 6). Different types of mass analysers are 

illustrated in Figure 6. Among them are besides time of flight (TOF) also quadrupole 

(QUAD) and triple quad, ion traps, where orbitrap is a special form, sector field and 

fourier-transform ion cyclotrone resonance (FT-ICR)103. They all have the same goal: 

to separate ions to gather more information about them.  
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Figure 6: Components of a mass spectrometer/ Different types of mass analysers: A 

mass spectrometer typically consists of 4 components: sample inlet, ion source, mass 

analyser and mass detector. Various types of mass analysers are illustrated on the right.  

 

MS assays have been used in pharmaceutical and pharmacological research for 

decades. In the 2000s, accelerator mass spectrometry (AMS) became a popular 

method for the quantification of isotopes in humans with the possibility to conduct 

ADME studies104. Due to the immense cost, there are only about 80 laboratories 

worldwide equipped with that technique. A far more used mass spectrometric 

technique is secondary ion mass spectrometry (SIMS). This method, which uses 

primary ions to produce secondary ions that are then analysed, is capable of a high 

depth analysis and the possibility to create 3D images of the probes, which are 

especially relevant in terms of drug distribution105. Due to its high spatial resolution, it 

also made single-cell imaging possible106.Common in pharmaceutical research is also 

the liquid chromatography (LC)-MS-based approach, which can be for example used 

for proteomics107. Also metabolomic studies showed to be helpful in the identification 

of transporter substrates48. In an untargeted approach, the analysis of the serum and 

urine of OAT1 knockout mice and wildtype with LC-MS identified substrates of the 

transport protein108. Gordon et al. developed a method, dependent on LC-MS, which 

is capable of directly measuring the intracellular compound concentration in whole 

cells109. The methodological background for this is the usage of a RapidFire high-
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throughput MS system together with a triple quadrupole mass spectrometer. Through 

electrospray-ionisation (ESI) an ion is produced, which is isolated in the first 

quadrupole and excited in the second. The third quadrupole determines the product-

ions of the isolated ion. A clear disadvantage of the method is its limited HTS capacity. 

This puts another method in the focus of pharmaceutical mass spectrometric analyses. 

Matrix assisted laser desorption/ionisation (MALDI) MS is a method, which in the last 

years gained acceptance as a suitable technology for pharmaceutical research and 

drug development110. Not only in imaging111, 112, but also in biotyping113, 114 it has found 

its place as a commonly used technique for pharmaceutical and pharmacological 

questions. 

 

1.3.1 HISTORICAL BACKGROUND OF MALDI MASS SPECTROMETRY 

The very first experiments for the investigation of mass separation were done by 

Thomson, who also demonstrated the existence of the electron115. The first mass 

spectrometer with the property to measure charged atoms was also built by him116. 

The first time of flight (TOF)-analyser was constructed in 1946 by Stephens117. The 

principle of this analyser is the dispersion of ions along a field-free drift distance. With 

the theoretically simultaneous formation of ions, this leads to those being separated 

by their m/z according to their longer or shorter drift time. The determination of the m/z 

value is dependent on the flight time (𝑇𝑓). Ions with the charge 𝑞 result in taking up 

energy through the expose with the voltage 𝑈. 

𝐸 = 𝑈 ∗ 𝑞 

Due to the energy being then present as kinetic energy, the relation 𝐸 =
1

2
𝑚𝑣2 is valid 

and leads to the proportionality of the flight time with the mass-to-charge ratio m/z. 

(𝑇𝑓)2~𝑚/𝑧 

A pulsed ionisation leads to a simultaneous start of flight time of the ions. The lower 

the mass of the ions, the faster they will reach the detector. In most cases, a secondary 

electron multiplier (SEM), which has the same functionality as the photomultiplier tube 

in 1.2, acts as a detector and registers the time of arrival of the ions at the end of the 

drift distance. 
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The technique got more and more attention in the 1980s118. That success of the 

technique was mainly due to the development of Matrix-assisted laser 

desorption/ionisation (MALDI)119 as a pulsed ionisation technique, which is ideal to be 

coupled with a TOF120-122. The two fit perfectly together because both are dependent 

on pulsed ionisation and MALDI as a soft ionisation technique required a mass 

analyser capable of analysis of molecules with a high mass up to 105 u120. 

 

1.3.2 BASICS OF MALDI MASS SPECTROMETRY 

MALDI requires matrices, which are small organic crystalline molecules that, due to 

their chromophores, absorb energy at the employed laser wavelength. A matrix 

functions as a proton donator or acceptor, which ionises the analyte. The process is 

predicated on the co-crystallisation of matrix and analyte. The analyte gets 

incorporated into the matrix crystals during matrix crystallisation. By shooting with a 

pulsed ultraviolet (UV) laser beam onto the matrix-analyte mixture (nowadays often 

applied: frequency-tripled Nd:YAG laser), the analyte molecules desorb and get 

ionised. The gas phase protonation model consists of two steps. First, a 

photoionisation of the matrix is taking place through the irradiation of the laser. 

Secondly, the charge is transferred to the neutral analyte molecules123. The lucky 

survivor model postulates the generation of singly charged molecular ions123, 124. In 

case of multiply charged ions, the neutralisation of the matrix-analyte cluster is done 

quicker than for singly charged ions, which are the lucky survivors in that case. This 

makes MALDI MS a technique, for which data is easy to interpret, because of the low 

occurrence of highly charged molecular ions and a relatively easy isotopic pattern.  

MALDI MS, which is due to its soft ionisation a suitable method especially for large 

molecules like proteins or even polymers125, is dependent on the matrix, which is used 

for the ionisation. The basic principle is the desorption and ionisation through a laser 

beam, followed by the guiding of the molecular ions through an electric field generator 

into the mass analyser like a TOF (Figure 7). MALDI can also be coupled to a Fourier 

transform ion cyclotron resonance (FT-ICR) analyser126 or other mass analysers to get 

an even higher resolving power. Once the molecular ions arrived at the TOF analyser, 

they are separated due to their mass-to-charge ratio. There are two possibilities for 

the application of a detector. The linear detector is located directly in the row after the 
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flight tube. Bigger molecules, like proteins for example, are typically measured with 

the linear detector. Usage of the reflector detector is additionally associated with the 

use of electrodes in front of the linear detector, where an electrical field is applied that 

leads to the deceleration of the ions followed by an acceleration into the opposing 

direction in a U-shaped manner. Two ions with the same mass but different kinetic 

energies result in leaving the ion mirror at the same time, which acts as a flight time 

correction and thus improves the resolution while using the reflector mode for 

measurements127. 

 

 

Figure 7: Principle of MALDI-TOF-MS: Desorption and ionisation of the matrix-analyte 

mixture through a laser beam, time of flight mass analyser leads to separation of molecular 

ions due to their mass. Linear measurement with linear detector, reflector measurement with 

use of voltage to reflect the ions, measurement via reflector detector. 

 

The usage of an FT-ICR clearly improves the resolution compared to linear and 

reflector mode what comes along with an extension of the time needed for the 

measurement. The ICR setup includes a strong magnetic field, in which the ions are 

kept on circular trajectories with a frequency based on the respective m/z. After an 

impulse of excitation, an alternating electric field is used to generate the cyclotron 

resonance. The change in cyclotron radius can be measured by a detector. The 
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Fourier transformation of the signal leads to a mass spectrum out of the obtained 

frequency spectrum128, 129. 

 

1.3.3 EMERGENCE OF MALDI MASS SPECTROMETRY WHOLE CELL ASSAYS 

Generally, cell-based assays are a widely applied system, due to the ease in 

multiplexing, automation and predictability130. Concomitantly, MALDI MS emerged as 

a suitable technique for whole cell (WC) analysis in the last years due to its applicability 

to a wide range of masses, its ease of measurement and possibility of application to 

human diseases131. Whole cell means that the method does not include fractionation 

or extraction steps and thus creates an overview of the cell profile while maintaining 

easy handling steps. Already in 1975, there was evidence for the possibility to analyse 

bacteria with MS132. Beyond the first MALDI MS WC measurements, pathogens have 

been identified and classified due to cell-type specific mass spectral fingerprints133. By 

the fact that MALDI is a soft ionisation technique, also the analysis of protein 

fingerprints helped in identifying and classifying bacteria134. The application of MALDI 

MS in clinical microbiology started 20 years ago135, 136, and it is now seen as the gold-

standard method for microbial identification137. The possibility of the characterisation 

of a cell line by its fingerprint was first showed several years later138. The Hopf lab was 

one of the first to develop a WC-based MALDI MS biotyping method outside 

microbiology139. Other studies relied on the analysis of primary cells140 or purified 

blood cells141. Even though the origins of the method lay in the identification of 

microbial cells and to this day, the method is still mostly applied in this area of 

research, much progress has been made for mammalian cell lines. Dong et al. were 

able to identify protein patterns corresponding with viability or apoptosis of mammalian 

cells, which can be seen as the first pharmacological study representing another step 

further for WC MS113. Apart from that, also the application to more complex systems 

like mixtures of cell lines got possible. Petukhova et al. were able to detect cancer 

cells in a mixed cell population, which enabled the usage of more complex biological 

systems142. With reporting IC50 values of histone deacetylase inhibitors, the first 

quantitative WC-MALDI MS study was published143. Apart from the protein-based 

assays used for pharmacodynamics characterisations114, Weigt et al. also established 
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WC-based assays for the identification of lipid marker molecules144 and fatty acid 

synthase inhibitors145.  

Starting in 2011, the first approaches to HTS where made as Gurard-Levin et al. 

designed a method capable for HTS, which is dependent on self-assembled 

monolayers (SAMs), measured wit MALDI-TOF-MS146 and therefore called SAMDI. A 

few years later, the method once again demonstrated the feasibility of high throughout 

studies with MALDI MS, as Wigle et al. used SAMDI as a screening tool for lysine 

demethylases147. In 2014, Ritorto et al. succeeded in developing the first high-

throughput screen, which is not dependent on the chemically modified target surfaces 

anymore148. Several studies followed, which included MALDI MS as a HTS 

technology149-151. The first study not designed as proof-of-concept, but as a screen for 

inhibitors in a diverse compound set was conducted by Simon et al.152. This 

development shows that the automation and HTS-suitability of an assay gained more 

and more attention in the last years. As Beeman et al and Haslam et al.150, 153 predict, 

MALDI MS as a HTS application will become increasingly important for drug discovery 

in the upcoming years and should therefore be given more attention.  

Also for drug uptake into cells, MALDI MS showed to be a suitable method. Burlina et 

al. and Aussedat et al. analysed drug uptake via streptavidin-coated magnetic 

beads154, 155. Another drug uptake method relied on the analysis of the cell lysate156. 

Also a transwell model has been built up, which analyses the uptake of peptides 

indirectly and resembles the conditions in the blood brain barrier157. These methods 

gave a first hint about the applicability of MALDI MS for the analysis of drug uptake, 

but still, to date, there are no label-free WC MALDI MS methods known that investigate 

the transporter-mediated uptake of small molecules into the cells directly.  

 

1.3.4 SAMPLE PREPARATION FOR SMALL MOLECULE MALDI MASS 

SPECTROMETRY 

MALDI MS biotyping, which this work focuses on, is in its workflow dependent on the 

analyte investigated. For cell-based methods, the workflow contains several critical 

steps: Seeding out the cells in plates, incubation with the compound of interest, 

harvesting of the cells including washing, then freezing of the cells followed by 
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resuspension in solvent and spotting on a target plate. Finally, the plates are measured 

and the data is evaluated. 

For the analysis of compounds, there are several matrices possibly suited, like 2,5 

dihydroxybenzoic acid (DHB)158, sDHB159, 2,5 Dihydroxyacetophenone (DHAP)160, 9-

aminoacridine (9AA)161 and 4-Phenyl-α-cyanocinnamic acid amide (Ph-CCA-NH2)162 

(Figure 8,A). The uneven distribution of the analyte throughout the sample spot is a 

common burden for MALDI. This heterogeneity results from various processes that 

affect the sample preparation, like the decision for matrix, application, solvent, drying 

technique and various others. It can result in the formation of some crystals, where no 

analyte is incorporated163 and others with an incorporation of much analyte. Those are 

referred to as “sweet spots” (Figure 8,B), where the best MALDI MS performance is 

achieved164, 165. This inhomogeneity complicates an automated measurement and 

production of reproducible results. Suitable techniques to compensate the 

heterogeneity are the usage of a random walk on the spot during measurement to 

address stochastically, the optimisation of matrix application to a homogeneous layer 

and the inclusion of internal standards with the same ionisation properties166, 167. 

 

 

Figure 8: Chemical structures of MALDI matrices and “sweet spots”: (A) Chemical 

structures of matrices sDHB (9:1 mixture of DHB and 2-hydroxy-5-methoxybenzoic acid), 

DHB, DHAP, 9AA and Ph-CCA-NH2. (B) Picture of crystallised matrix that forms “sweet spots”, 

which are complicated to be measured automatically. 

 

Also, the different application techniques of matrix influence the crystallisation. Dried 

droplet, which is still among the most used application types, is a manual or automated 
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application of the matrix-analyte mixture. An application technique referred to as 

“sandwich” includes coating of the MALDI target plate (MTP) with matrix first and a 

dried droplet application on top, so that the analyte is encompassed by two layers of 

matrix138. PrimaDrop is conducted by application of the analyte first and letting it dry 

before applying matrix on top of the dried spot by pipetting168. A method that is 

dependent on the use of another device is the sprayed method. Here, the analyte gets 

applied to the MTP first and the matrix gets sprayed on top by a matrix sprayer169 

(Figure 9). In addition to this, some matrices can’t be applied in different application 

techniques with special solvents, so the method development is a crucial step, where 

a high focus should be put on evaluating the best matrix and solvent and application 

for the analyte of interest. Especially also in the context of method automation, some 

matrix application ways are superior to others. 

 

 

Figure 9: Different application ways for matrix: dried droplet, sprayer, PrimaDrop and 

sandwich application.  
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2 AIMS 

In the last years, research on cellular influx has strengthened the common opinion of 

transport proteins being the major determinants of drug uptake into a cell. With 

transporter experts reporting to the FDA, it is assumed that more drug approval 

regulations will have to focus on transport processes. This has been done by 

radioactive and fluorescent assays the last years. However, new assay technologies 

need to be developed and tested, in order to achieve less danger and fewer photonic 

interferences, respectively. MALDI MS represents a method that is label-free, sensitive 

and automatable. As MALDI MS assays got more and more attention in pharmacology 

in the last years, it was the method of choice to characterise the cellular transport 

process of SLC transport proteins. The development of a fast and robust MALDI MS 

assay for the detection of possible DDI could lead to completely new tools on the way 

to drug approval. 

Therefore, the thesis focused on the following three objectives: 

 

 Using the transport process of the SLC transporter OATP2B1 as an example, 

development of a MALDI MS workflow that enables sensitive and reproducible 

measurement of an OATP2B1 substrate in whole cells. 

 Incorporation of the developed MALDI MS workflow into pharmacologically 

relevant assays and assay automation. 

 Screening of 300 marketed drugs and discovery of OATP2B1 inhibitors (and 

possible DDI) by MALDI MS and comparison of screening results with a 

fluorescence-based reference assay. 
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3 MATERIALS AND METHODS 

3.1 MATERIALS 

3.1.1 GENERAL CHEMICALS 

Chemical Company (Headquarter) Catalogue number 

Acetone VWR International (Darmstadt, GER) 1.00012 

Acetonitrile VWR International (Darmstadt, GER) 1.00030 

Ethanol absolute VWR International (Darmstadt, GER) 20825 

Milli-Q-water Prepared in-house  

Peptide Calibration 
Standard II 

Bruker Daltonics (Bremen, GER) 8222570 

 

 

3.1.2 CHEMICALS FOR CELL CULTURE 

Chemical Company (Headquarter) Catalogue number 

Ammonium formate VWR International (Darmstadt, GER) AA14157-30 

DMEM GE Healthcare (Solingen, GER) HYCLSH30022.FS 

DMSO VWR International (Darmstadt, GER) A3672 

FCS Life Technologies (Darmstadt, GER) 10270 

G418 Sigma Aldrich (Munich, GER) G8168 

HBSS Sigma Aldrich (Munich, GER) H9269 

PBS Sigma Aldrich (Munich, GER) P3744 

PEN/STREP Life Technologies (Darmstadt, GER) 15140122 

Poly-L-Lysine Sigma Aldrich (Munich, GER) P8920 

Trypan blue Sigma Aldrich (Munich, GER) T8154 

Trypsin/EDTA Corning (Wiesbaden, Germany) 25-053-CI 
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3.1.3 COMPOUNDS FOR CELL CULTURE TREATMENT 

Compound Company (Headquarter) Catalogue 
number 

294 compound 
library170 

GSK Compound management 
(Stevenage, UK); Tocris (Bristol, 
UK), Selleckchem (Houston, USA), 
Cayman (Ann Arbor, USA) 

 

Dibromofluoresceine170 
(DBF) 

Sigma-Aldrich (St. Louis, USA) 216720 

Erlotinib171 LC Laboratories (Woburn, USA) E-4007 

Estrone-3-Sulfate 
(E3S)73 

Sigma-Aldrich (Steinheim, GER) E-9145 

 

All commercially sourced inhibitors were ≥99 % pure, all internally sourced inhibitors 

had ≥95 % purity, except raloxifene and novobiocin (94 %), tipranavir (91 %), cetirizine 

(90 %), diacerein (88 %) and P-3004 Unergol (87 %). 

 

3.1.4 CHEMICALS FOR MATRIX PREPARATION 

Chemical Company (Headquarter) Catalogue 
number 

D4-E3S Toronto Research Chemicals 
(Toronto, CAN) 

E889071 

DHAP (2,5-Dihydroxy-
acetophenone) 

Bruker Daltonics (Bremen, GER) 8231829 

DHB (2,5-Dihydroxybenzoic 
acid) 

Bruker Daltonics (Bremen, GER) 8201346 

Ph-CCA-NH2 (4-Phenyl-α-
cyanocinnamic acid 
amide)162 

SiChem (Bremen, GER) SC-1400 

sDHB Bruker Daltonics (Bremen, GER) 8702557 

Trifluoracetic acid Merck (Darmstadt, GER) 1082620025 
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3.1.5 CONSUMABLES 

Consumable Company 
(Headquarter) 

Catalogue number 

Cell culture dishes VWR International 
(Darmstadt, GER) 

734-2322 

Cell culture plates with 6 / 24 / 
96 wells 

Greiner bio-one 
(Solingen, GER) 

M8562 / M8812 / 
M0812 

Centrifuge tubes 0.5 / 1.5 / 2 mL Eppendorf (Hamburg, 
GER) 

0030121023 / 
0030120086 / 
0030120094 

Centrifuge Tubes 15 / 50 mL VWR International 
(Darmstadt, GER) 

525-0150 / 525-0155 

CyBio® RoboTipTray 96/60 µL Analytik Jena (Jena, 
GER) 

OL3810-25-441 

Low-lint wipers; Kimwipes Kimberly-Clark( Dallas, 
USA)  

Z188956 

MALDI 384 ground steel target Bruker Daltonics 
(Bremen, GER) 

8280784 

Neubauer Improver VWR International 
(Darmstadt, GER) 

631-0696 

Nitrile examination gloves VWR International 
(Darmstadt, GER) 

112-4513 

Pipet tips 10 / 200 / 1000 µL VWR International 
(Darmstadt, GER) 

613-0576 / 613-0579 / 
613-0582 

Serological pipettes 10 / 25 mL VWR International 
(Darmstadt, GER) 

612-3700DE / 612-
3698DE 

 

3.1.6 EQUIPMENTS AND INSTRUMENTS 

Equipment/Instrument Model, Company (Headquarter) 

Balances Analytical Balance Sartorius Research R200D, 
Sartorius (Göttingen, GER) 

Cell Culture Incubator Heracell 150, Thermo Fisher Scientific (Schwerte, 
GER) 
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Equpiment/Instrument Model, Company (Headquarter) 

Centrifuges Heraeus Fresco 21, Thermo Fisher Scientific 
(Schwerte, GER) 

SIGMA 6K15, Sigma Laborzentrifugen GmbH 
(Osterode, GER) 

Clean Bench AireGard ES NU-140 Vertical Laminar Airflow 
Workstation, Nuaire (Caerphilly, UK) 

Envision Plate Reader Perkin Elmer (Waltham, USA) 

Fluorescence microscope Olympus (Shinjuku, Japan) 

Mass spectrometer rapifleX MALDI-TOF MS, Bruker Daltonics (Bremen, 
GER) 

ultrafleXtreme MALDI-TOF/TOF MS, Bruker Daltonics 
(Bremen, GER) 

Matrix spray device SunCollect Sprayer, SunChrom (Friedrichsdorf, GER) 

HTX M5 Sprayer, HTX Technologies (Chapel Hill, 
North Carolina, USA) 

Microscope Invert light microscops AE 31, Motic (Wetzlar, GER) 

Pipettes 10/ 100/ 1000 µL Eppendorf Research plus, Eppendorf (Hamburg, GER) 

Pipetting Platform CyBio FeliX, Head R 96/60 µL, Analytik Jena (Jena, 
GER) 

Integra ViaFlo, 96 well head, 300 µL tip tray Integra 
Biosciences (Zizers, CH) 

Sonic bath VWR International (Darmstadt, GER) 

Trans-Blot Turbo Biorad (Hercules, USA) 

Vacuum aspirator Vacusafe, Integra Biosciences (Zizers, CH) 

Water purification system EMD MilliporeTM Milli-QTM Reference Ultrapure Water 
Purification System, Thermo Fisher Scientific 
(Schwerte, GER) 
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3.1.7 HUMAN CELL LINES 

Cell line Provider 

HEK293-OATP2B1172 Anne Nies, Matthias Schwab 

HEK293-vector control Anne Nies, Matthias Schwab 

 

3.1.8 BUFFERS FOR WESTERN BLOT 

Specification Composition 

10xTransfer buffer for semi-dry transfer 58.1g Trizma base, 29.3g Glycine, add 
distilled H2O to a total volume of 1 L 

20 % Tween solution 100 g Tween 20, add distilled H2O to a 
total volume of 500 mL 

1 M DTT Dissolve 7.7g DTT in 50 mL distilled 
H2O, filter solution through 0.22 µm 

1x Running buffer 20 mL 50X MOPS buffer; add distilled 
H2O to a total volume of 1 L 

1x Transfer buffer 100 mL 10xtransfer buffer, 1.875 mL 
20 % SDS w/v, 100 ml EtOH, add 
distilled H2O to a total volume of 1L 

Washing buffer 5 mL 20 % Tween 20, add PBS to a 
total volume of 1 L PBS 

2x SDS/DTT sample buffer 250 µL 4xNuPAGE sample buffer, 
25 µL DTT 1M, 225 µL distilled H2O 

 

3.1.9 SOFTWARE FOR DATA ACQUISITION 

Name Instrument Company (Headquarter) 

flexControl 4.0 rapifleX MALDI-TOF Bruker (Bremen, GER) 

MPP 2.2 rapifleX MALDI-TOF Bruker (Bremen, GER) 
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3.1.10 SOFTWARE FOR DATA ANALYSIS, VISUALISATION AND CHEMICAL 

DRAWING 

Software Company (Headquarter) 

Adobe Illustrator CS5 Adobe (California, USA) 

ChemDraw 19 Perkin Elmer (Waltham, USA) 

ClinPro Tools 3.0 Bruker (Bremen, GER) 

flexAnalysis 4.0  Bruker (Bremen, GER) 

Microsoft Powerpoint Microsoft (Redmond, USA) 

Prism 5 GraphPad Software (California, USA) 

 

3.2 METHODS 

3.2.1 WESTERN BLOT 

For verification of the overexpression of OATP2B1, a western blot was done. A cell 

pellet was harvested from 1/6 of a petri dish for both OATP2B1 and vector control. 

SDS lysis was done to break up the cells: the frozen cell pellets were resuspended 

with one cell pellet volume of pre-heated lysis buffer (200 µL 20 % SDS, 50 µL Tris-

HCl pH 7.4 and 750 µL ddH2O water). Samples were heated for 3 min at 95 °C in a 

Thermomixer, shaking at 700 rpm. Samples were cooled to room temperature before 

briefly centrifuging (10 s, 10000g). The 24x benzonase stock was diluted 1:24 in the 

samples, incubated 30 min at 37 °C and 850 rpm and vortexed 1-2 times in between. 

To complete the digestion, fresh benzonase was added: the 24x benzonase stock was 

diluted 1:48 in the samples, incubated for another 45 min at 37 °C and 850 rpm and 

vortexed 1-2 times in between.  

Next, a BCA assay was conducted to determine the protein concentration. A BCA 

assay kit (VWR) was used according to instructions by vendor. Samples were 

measured using the Envision Plate Reader. After protein concentration determination, 

samples were mixed 1:1 with 2xSDS/DTT buffer and incubated for 7 min at 95 °C for 

denaturation of proteins. Cells were then centrifuged at 13200 rpm for 5 min in a table 

top centrifuge before loading to remove precipitated material. A NuPAGE 4-12 % Bis-

Tris Gel was positioned in an electrophoresis chamber filled up with running buffer. 



Materials and methods   

 

31 

 

Anti-oxidant was added and 4 µL molecular weight marker was loaded into one well. 

The samples were diluted to 10 µg protein per well (prepared in SDS/DTT sample 

buffer) and loaded into the wells. 80 V was applied until the samples have fully 

migrated into the gel, then the voltage was increased to 160 V. Samples were migrated 

until the dye front reached the bottom of the gel.  

For the transfer of the samples from the gel onto the membrane, the nitrocellulose 

membrane was rehydrated shortly in 20 % EtOH. Blot papers, membrane and gel were 

equilibrated in 1x transfer buffer. A sandwich was formed out of blotting paper, 

membrane, gel and on top again blotting paper. The transfer was performed with a 

Trans-Blot Turbo (Biorad) for 10 min. After transfer, the membrane got blocked for 1 h 

at room temperature in odyssey blocking buffer. It got incubated over night at 4 °C with 

the primary antibody IRDye680RD Goat anti-rabbit (Leicor) diluted in OBB, 0.2 % 

Tween 20. On the following day, the membrane got washed 4 times 5 min with washing 

buffer and further incubated 1 h at room temperature with the secondary antibody anti-

OATP2B1 (IKP Stuttgart) diluted in OBB (1:200), 0.2 % Tween 20, 0.02 % SDS. The 

membrane got washed 4 times 5 min with washing buffer and the membrane finally 

rinsed with PBS once. An odyssey infrared imager (Leicor) was used to scan the 

membrane.  

 

3.2.2 CULTIVATION OF HUMAN CELL LINES 

3.2.2.1 CULTIVATION OF HEK293 CELLS 

HEK293 cells overexpressing OATP2B1 or vector control were generated and cultured 

as described by Nies et al.172 at 37 °C, 5 % CO2 and 95 % humidity in supplemented 

DMEM. Cells were grown to 70 % confluency in cell culture plates. For splitting, a cell 

culture plate was washed with 5 mL PBS prior to incubation with 3 mL trypsin buffer 

for 5 min. Cells were resuspended in 7 mL fresh medium and split into a new 

maintaining plate. A maintaining plate was seeded at 10-30 % confluency. 
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Supplements added to DMEM for OATP2B1/vector control cultivation 

10 % FCS 

5 % PEN/STREP 

8 mL/500 mL G418 

 

3.2.2.2 POLY-L-LYSINE COATING OF THE PLATES 

Because of adherence reasons, the 24- and 96-well plates that contained the cells 

during a treatment had to be coated with poly-L-lysine. For that reason, every well of 

those plates was incubated with 0.01 % poly-L-lysine for one hour. After removal of 

the solution, the wells got washed with sterile water once. Then they were let dry for 

about one hour before they were stored at 4 °C closed with parafilm prior to use. 

 

3.2.2.3 CELL SAMPLE PREPARATION FOR FLUORESCENCE MEASUREMENT 

48 h prior to the fluorescence-based assay, trypsinised, adherent culture cells were 

counted in a CASY counter and also the viability of the cells was determined in that 

step. For preparation of the treatment, the cells were resuspended at 0.5*106 cells per 

mL. 50 µL of cell suspension was added to each well of a coated black-well 96-well 

plate. 24 h before the assay, the cells were incubated with 5 mM sodium butyrate to 

increase the OATP2B1 expression. 

 

3.2.2.4 CELL HARVEST FOR MALDI MASS SPECTROMETRY MEASUREMENT 

Trypsinised, adherent culture cells were counted in a Neubauer counting chamber. 

While doing so, also the viability was checked with trypan blue. Cells were aliquoted 

to 106 cells per Eppendorf cup and centrifuged at 2000 rpm at 4 °C on a benchtop 

centrifuge. Supernatants were removed using a vacuum aspirator. The cell pellets 

were snap-frozen and stored at -80 °C until further use. 
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3.2.2.5 CELL PELLET GENERATION FOR MALDI MASS SPECTROMETRY 

METHOD DEVELOPMENT 

For treatment of the cells during method development, they were resuspended at 

0.25*106 cells per mL in cell culture medium. 1 mL of the cell suspension was added 

to each well of a coated 24-well plate. On the second day, the cells got treated with 

5 mM sodium butyrate dissolved in PBS. On the assay day, the cells got preincubated 

with the standard inhibitor erlotinib171 (4 µM) or vehicle (dimethylsulfoxide (DMSO)) for 

10 min before addition of either dibromofluorescein (DBF)173 or estrone-3-sulfate 

((E3S)73, varying concentrations from 3 nM to 100 µM) for varying time points from 

20 sec to 30 min. To stop the uptake, the supernatant was removed by a vacuum 

aspirator and the cells got washed once with ice cold PBS. After removal of PBS, the 

cells got trypsinised and were further portioned in Eppendorf cups. Those were spun 

down with a benchtop centrifuge at 2000 rpm and 4 °C for 5 min. The supernatant was 

removed, the cells were snap-frozen and stored at -80 °C until further use. The optimal 

screening conditions (2 min, 10 µM) were verified by the use of the standard inhibitor 

erlotinib. In case of a “spiked-in” experiment, an untreated cell pellet was used and the 

compound of interest was spiked in at different concentrations.  

 

3.2.2.6 CELL PELLET GENERATION FOR MALDI MASS SPECTROMETRY 

AUTOMATED SCREENING 

One day prior to drug treatment, OATP2B1 and vector control cells were resuspended 

at 0.5*106 cells per mL in culture medium. 200 µL of the suspension was added to 

each well of a coated 96-well plate. Directly after seeding out the cells, they were 

incubated with 5 mM sodium butyrate dissolved in PBS. On the day of the assay, one 

hour before the treatment, the medium was changed to the same amount of serum-

free medium in each well, also containing G418 and P/S like the normal growth 

medium. All of the 294 test compounds were dissolved in DMSO in a separate 

“inhibition-compound-plate”. Every plate contained erlotinib (4 µM final concentration) 

as a positive control and DMSO as a negative control. The CyBio FeliX pipetting 

platform was used to transfer 1 µL of the test compounds to the cell culture plate. For 

that purpose, the 96-well 60 µL tip tray of the pipetting platform was used to draw 1 µL 

from the “inhibition-compound plate” and release that amount to the 96-well plate 
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containing the cells. A complete blow out of the sample was conducted including 

blowing out of air into the cells, which led to an improvement in the mixing. A separate 

“substrate-plate” was prepared with E3S exhibited in every well. After the 

preincubation with test compound, which was being conducted for 10 min at 37 °C, 

the substrate was added to each well with the same CyBio FeliX method as described 

above. After an incubation time of 2 min, the supernatant was removed by a vacuum 

aspirator and washed once with ice cold PBS. After removal of PBS, the 96-well plate 

got snap-frozen and was stored at -80 °C until further use. 

 

3.2.3 FLUORESCENCE-BASED ASSAY 

3.2.3.1 FLUORESCENCE SUBSTRATE ASSAY 

All steps of the cell treatment, if not stated otherwise, were conducted “half-automated” 

by the use of an Integra ViaFlo equipped with a 96 well head with a 300 µL tip tray. 

The test compounds were all dissolved in DMSO, DBF was dissolved in Hank’s 

buffered salt solution (HBSS) exhibited in a tray. On the day of the assay, the 

supernatant of the cultured cells was removed. The cells got washed once with 50 µL 

pre-warmed HBSS buffer, which was removed again directly. Then the cells got 

preincubated with test compound of a final concentration of 10 µM dissolved in HBSS. 

For the method development of the fluorescence substrate assay, this was done 

manually. After a preincubation time of 5 min, the substrate DBF was added. The 

concentration ranged from 1.7-67 µM and the incubation time from 5-60 min. After the 

incubation at 37 °C, the supernatant was removed. The cells got washed once with 

ice-cold 150 mM ammonium formate buffer (pH 7.4, dissolved in HBSS)106. 

Fluorescence intensity was measured using an Envision plate reader using 485 nm 

as the excitation wavelength and 535 nm as the emission wavelength. The optimal 

screening conditions (30 min, 10 µM) were verified by the use of the standard inhibitor 

erlotinib.  

 

3.2.3.2 SCREEN FOR OATP2B1 INHIBITORS 

A set of 294 compounds was selected from the top prescribed drugs in the US of the 

year 2017174 excluding biologics and restricted substances, and was completed with 
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~100 literature small-molecule drugs known to interact with the transporter171, 175, 176. 

This compound set was used as the test inhibitors with each plate containing erlotinib 

(10 µM final concentration) as the positive control and DMSO as the negative control. 

All of the compounds were dissolved in DMSO (1 mM) and on the assay day diluted 

to 20 µM in HBSS. Cells were preincubated with the test compounds for 5 min and 

DBF dissolved in HBSS to 20 µM was added in the same ratio leading to a final 

concentration of 10 µM test compound and 10 µM DBF. After incubation for 30 min, 

the supernatant was removed and the cells got washed once with 150 mM ice-cold 

ammonium formate buffer (pH 7.4, dissolved in HBSS)106. Fluorescence intensity was 

measured using the method explained above. 

 

3.2.3.3 pIC50 DETERMINATION 

Drugs that produced an inhibition of DBF uptake of ≥50 % were serially diluted (5 nm-

100 µM) to analyse the concentration-dependent effect on the inhibition of the uptake. 

The experiment was conducted as described in 3.2.3.2. pIC50 values were determined 

with GraphPad Prism v8.0.0 using the “response vs log(inhibitor concentration) – 

variable slope” equation with no constraints on all parameters (IC50, Hill Coefficient, 

Bottom, Top)177. 

𝑌 = 𝑏𝑜𝑡𝑡𝑜𝑚 +
𝑡𝑜𝑝 − 𝑏𝑜𝑡𝑡𝑜𝑚

1 + 10˄𝐼𝐶50 − 𝑋
∗ ℎ𝑖𝑙𝑙𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡))) 

Each experimental run created a pIC50 value that was compared to show assay 

reproducibility. 

 

3.2.3.4 FLUORESCENCE MICROSCOPY 

In order to validate the plate reader output of the fluorescence-based assay, 

fluorescence microscopy was done with the black-well 96-well plates right after 

treatment and measurement by the plate reader. Pictures were taken in Nomarski 

microscopy and in the excited state from both vector control and OATP2B1 cell lines 

treated with the substrate DBF. The wavelengths for excitation were comparable to 

the plate reader measurement (481 nm excitation, 515 nm emission). Nomarski 
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interference contrast pictures, which enhance the contrast in unstained, transparent 

samples, were compared to excited shots. 

 

3.2.3.5 AUTOFLUORESCENCE AND QUENCHING MEASUREMENTS 

For exclusion of possible false-negatives and -positives due to autofluorescence and 

quenching effects during the fluorescence-based assay, the 294 drug set was 

analysed and compared with the fluorescence of DBF itself. For testing the 

autofluorescence, the compounds were dissolved in HBSS to a final concentration of 

10 µM and 100 µM in separate wells. DBF in a concentration of 10 µM in separate 

wells served as a comparison. The fluorescence intensities were compared at the 

usual excitation and emission wavelengths. For the calculation of the relative values, 

the fluorescence intensity of the investigated compounds was respectively divided 

through the mean fluorescence intensity of 3 DBF wells and expressed as a % value. 

For the evaluation of a quenching effect, DBF was additionally given to each of the 

compound wells and it was checked if there was a decrease in the fluorescence 

compared to DBF alone. Therefore, the measurement was also done at 485 nm 

excitation and 535 nm emission and relative values calculated like mentioned before. 

Compounds with a decrease of 30 % of the intensity, which would lead to a final value 

of 70 % and lower, were considered to have a quenching effect. 

 

3.2.4 MALDI MASS SPECTROMETRY WHOLE CELL MEASUREMENTS 

3.2.4.1 SAMPLE PREPARATION FOR METHOD DEVELOPMENT 

A MALDI MS measurement in general was conducted on a 384-well MTP. Before 

usage of the plate, it got rinsed 2x with soap-water, 2x with methanol and 2x with 

acetone using extra low-lint wipers, then the plate got air-dried.  

For a sample preparation, the cell pellet was taken out of -80 °C and resuspended with 

acetonitrile (ACN)/H2O leading to a final concentration of 2500 cells/spot. For the later 

in method development used normalisation, a final concentration of 0.3 µM D4-E3S 

was supplemented to the solvent. One spot contained 1 µL cell suspension. Cells were 

applied in eight measurement replicates. A different cell pellet that was treated the 
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same day is referred to as technical replicate. A biological replicate is here defined as 

a cell pellet of a different passage number that was treated on another day. 

 

3.2.4.2 MATRIX APPLICATION FOR METHOD DEVELOPMENT 

In the course of method development, several matrices were tested in their ability to 

detect the two different substrates, DBF or E3S. All of them were either applied Dried 

Droplet, via PrimaDrop168, as Sandwich or with a sprayer. For Dried Droplet 

application, the resuspended cells were mixed in a ratio of 1:1 with the matrix and 

applied onto the target plate. In case of PrimaDrop application, the cell suspension 

was applied manually onto the target plate and let dry before manually applying matrix 

on top. Sandwich application included coating the MTP with matrix first and then 

applying the cell suspension together with the matrix in a Dried Droplet way. For 

spraying the matrix, the cell suspension got applied and dried before using a spraying 

device to coat the samples. 20 mg/mL sDHB were used in 50 % ACN supplemented 

with 0.5 % TFA. 20 mg/mL DHB were used in 50 % ACN supplemented with 0.2 % 

TFA and the composition of 2,5-DHAP and Ph-CCA-NH2 varied in the course of 

method development from different solvents to different concentrations. When 

sprayed, DHB, sDHB and Ph-CCA-NH2 were coated with the SunCollect matrix 

sprayer. The HTX M5 sprayer was used for coating with 2,5-DHAP. 

 

Matrix spray protocol SunCollect sprayer 

Spray-head height 28 mm 

Distance between sprayed lines 2 mm 

Matrix flow rate 10-25 µL/min 

Speed while spraying 850 mm/min 

Sprayed layers 9 
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Matrix spray protocol HTXM5 sprayer 

Spray head velocity 1000 mm/min 

Spray-head height 40 mm 

Distance between sprayed lines 2.5 mm 

Matrix flow rate 100 µL/min 

Sprayed layers 2 

Spray nozzle temperature 50 °C 

Gas flow rate 2 l/min 

Pressure 10 psi 

 

3.2.4.3 AUTOMATED SAMPLE PREPARATION AND MATRIX APPLICATION FOR 

SCREENING 

The automation of the method was done together with Lena Schumacher during her 

bachelor thesis. For automated sample preparation the CyBio FeliX pipetting platform 

96-60 µL tip tray was used. The 96-well plate with the treated cells was taken out of 

the -80 °C freezer and placed onto the instruments thermal mixer, BioShake. They 

directly got resuspended with 20 µL ddH2O at room temperature and maximal pipetting 

speed was used to pipet the cell suspension up and down two times. Then, 20 µL of 

2.5 mg/mL Ph-CCA-NH2 in 70 % ACN supplemented with a final concentration of 

0.3 µM D4-E3S were added. For improvement of resuspension, the BioShake mixed 

the sample for 7 s. A 5 s pause upon sample aspiration helped to saturate the gas 

phase above the liquid phase in the pipetting tip leading to improved pipetting. One µL 

of the suspension was applied to a MTP leading to a final concentration of 2500 cells 

per µL. The plate was air-dried before measurement. The pipetting steps took 2 min. 

Out of one well, there were four spots on the MTP pipetted, leading to four 

measurement replicates. In case of other wells with the same treatment, this was here 

referred to as technical replicate, treated on the same day. A biological replicate here 

is described as a different passage number of cells being treated on another day. 
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3.2.4.4 MALDI-TIME OF FLIGHT MASS SPECTROMETRY DATA ACQUISITION 

All of the experiments were measured with a rapifleX MALDI-TOF mass spectrometer. 

A 10 kHz smartbeam 3D laser is installed in the instrument. Automation of the data 

acquisition was possible due to the use of the AutoXecute function of the flexControl 

4.0 software and later on by MALDI Pharma Pulse (MPP) 2.2. Spectra for method 

optimisation and inhibitor screen were acquired in the m/z range from 340-900. 

Random walk mode was used to create a preferably homogeneous overview of the 

sample spot at 40 different positions using the sum spectra of 4000 laser shots per 

measuring spot. The laser focus was adjusted to “MS thin layer” whereas the sampling 

rate amounts to 5 giga samples per second. E3S and D4-E3S were used as internal 

calibrants and a linear calibration on those two was performed.  

 

3.2.5 VIABILITY TEST: CELLTITER-GLO 

For both assays, fluorescence-based and MALDI MS, an investigation of cell viability 

after compound addition was done. In the case of the fluorescence-based assay, all 

of the compounds that were further analysed in their concentration-dependent effect 

on the uptake of DBF were also tested in their effect on the viability of the cells. For 

that purpose, after the measurement with the Plate Reader, the same amount of 

CellTiter-Glo reagent (mixed out of two components, as instructed by the 

manufacturer) was given to the already existing amount of ammonium formate (100 µL 

per well). After a mixing step, the plate was placed on a shaker for 2 min to induce cell 

lysis. Subsequently, the plate got incubated 10 more min at room temperature before 

measuring the luminescence with a plate reader. In case of the MALDI MS assay, the 

viability test could not be done after the measurement, but plates had to be treated 

with compounds and CellTiter-Glo reagent just for the viability measurement and could 

not be used further. The viability test was done once for each technique, because the 

incubation times with compounds varied in the two different assays (35 min in total 

with fluorescence-based assay, 12 min in total for MALDI MS assay) leading to 

possible differences in cell viability. 
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3.2.6 DATA ANALYSIS USING COMMERCIAL SOFTWARE 

For the method optimisation before the establishment of the automated assay, 

FlexAnalysis batchprocess mode was used to analyse the data. Therefore, a method 

was used, where first the baseline was subtracted (TopHat) and then the spectra were 

processed with a centroid peak detection algorithm and a peak width of 0.02 m/z. 

Peaks over a S/N of 2 were displayed. The algorithm for smoothing was set to 

SavitzkyGolay with a width of 0.2 m/z and 1 cycle. For the automated screening assay, 

MPP was used to perform an internal calibration on E3S and D4-E3S and extracting 

the desired intensity values of the masses of interest, in this case always E3S and D4-

E3S. The resulting Excel file included intensity, resolution and S/N of both peaks and 

a peak ratio resulting of the intensities of E3S vs D4-E3S. This normalised peak value 

was used for further calculations in Excel and GraphPad Prism. pIC50 values were 

calculated as already mentioned in 3.2.3.3. 

The search for a substrate during the screen for inhibitors was evaluated with R 

version 3.5.1178 by Thomas Enzlein. The data were normalised to the intensity of D4-

E3S after baseline correction and an average spectra of four measurement replicates 

was calculated. The respective compound masses were extracted from OATP2B1 and 

the vector control. The generated Excel file was then further analysed by determining 

a ratio of at least 1.5 (OATP2B1 vs. vector) and in addition the normalised peak of 

OATP2B1 had to be higher than the normalised peak of other samples at the 

respective compound mass. Compounds that were identified as eventual hits were 

further analysed in an inhibition experiment. 
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4 RESULTS 

The results of this thesis are presented in two chapters with 3 parts each: 

 

The first part focuses on a fluorescence-based assay, which was developed to be a 

reference method for the later developed MALDI MS assay. Throughout the course of 

experiments, there were three major goals to achieve: 

A) Checking the overexpression by a Western Blot 

B) Development of the assay 

C) Application to a screen and DDI analysis 

 

The second and major part focuses on the MALDI MS method. It was developed to be 

a label-free alternative to the currently used technologies. A condition for the assay 

was to be automatable and therefore have a possible application in industry. The 

MALDI MS experiments can also be divided into three parts 

 

A) Development of the method 

B) Automation of the method 

C) Application to a screen and comparison of the results with fluorescence-based 

screen 
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4.1 WESTERN BLOT CONFIRMING THE OVEREXPRESSION OF OATP2B1 

A prerequisite for transporter characterisation was the confirmation of the 

overexpression of the transport protein compared to the vector control (cells 

transfected with non-expressing plasmid), so that both cell lines could be compared in 

the following experiments and differences monitored could be attributed to the 

transport protein. A western blot was done to confirm the overexpression of OATP2B1 

compared to its vector control. As OATP2B1 has a size of 76.6 kDa, a band should be 

noticed at this height in the overexpressing cell line, but not in the vector control cell 

line. As it can be seen in Figure 10, there is a smeared band with an accumulation of 

intensity at 76.6 kDa for the OATP2B1 cell line. The vector control cell line did not 

show a band at this height. A comparison of two different amounts of total protein 

(15 µg vs 25 µg) showed a higher intensity at 25 µg. The reason for the smeared band 

can be various ranging from too concentrated protein / antibody to problems with the 

sample buffer using too less SDS. It is also likely that the smear in the bands were 

caused by genomic DNA strands, which were left in the samples. In this protocol, the 

cells were harvested and then directly lysed, where also a short centrifugation step 

was included. The digestion was done at 37 °C and after the SDS buffer addition, the 

samples were heated to 95 °C and centrifuged to remove the precipitated material. An 

additional sonication step or shearing the probes through a needle could have 

improved the breakup of the cells and reduced the smear in the band. Despite the 

lacking quality of the western blot, the overexpression of the transport protein was 

confirmed. As the goal here was only to confirm the overexpression and focus did not 

lie on the improvement of the western blot, the results are sufficient. With the 

confirmation of the overexpression of OATP2B1, all following experiments comparing 

the transporter overexpressing cell line with its vector control therefore lead to results, 

which can be attributed to the transport protein. 
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Figure 10: Western blot as confirmation of the overexpression of OATP2B1: A 

comparison of the OATP2B1 cell line and its vector control in a Western Blot showed a 

smeared band with an accumulation of the intensity at 76.6 kDa for OATP2B1 and none for 

the vector control. Two amounts of total protein (15 and 25 µg) were compared. 

 

4.2 FLUORESCENCE-BASED ASSAY 

Since fluorescence-based assays are still the most common method for transporter 

investigation, the goal was to establish a fluorescence-based assay for OATP2B1 as 

a reference assay. Due to the easy readout and applicability to high-throughput, this 

method is still used a lot. 

 

4.2.1 DEVELOPMENT OF A FLUORESCENCE-BASED ASSAY FOR THE UPTAKE 

OF DIBROMOFLUORESCEIN THROUGH OATP2B1 

For the development of the fluorescence-based assay, an existing protocol from the 

working group of Anne Nies was modulated and applied to the cells. Cells were treated 

with sodium butyrate 24 h prior to the assay in order to increase the expression of 

OATP2B1179. As a washing solvent for stopping of the uptake, ice-cold ammonium 

formate (pH 7.4) was utilised106. The usage of a pipetting platform (ViaFlo) improved 
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the Z’ of the assay and led to acceptable values ≥0.5. The Z’ is a factor describing the 

quality of an assay system and leading to a value between 0.5 and 1 for a valid assay. 

It is dependent on the standard deviation and the mean value of the positive and 

negative control and calculated as following. 

𝑍′ = 1 −
3 ∗ (𝑆𝑇𝐷𝐸𝑉(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑐𝑜𝑛𝑡𝑟𝑜𝑙) + 𝑆𝑇𝐷𝐸𝑉(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑐𝑜𝑛𝑡𝑟𝑜𝑙))

|𝑚𝑒𝑎𝑛(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑐𝑜𝑛𝑡𝑟𝑜𝑙) − 𝑚𝑒𝑎𝑛(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑐𝑜𝑛𝑡𝑟𝑜𝑙)|
 

Confirmation of the uptake of DBF173 through OATP2B1 was done by fluorescence 

microscopy. Therefore, the overexpressing cell line was compared to the vector 

control. A differential interference contrast picture, also known as Nomarski 

microscopy named after its inventor, was compared with a visible light (481 nm) 

excited version that led to the possible detection of the fluorescence of DBF (emission: 

515 nm). Nomarski microscopy is based on a prism splitting up the polarised light into 

two rays. The following condenser focuses the rays for passage through the sample, 

the distance between the rays is about 0.2 µm and thus, they hit two adjacent points 

on the object. In the following prism, the rays are merged again and interfere. This 

interference of the two rays, which have travelled through different path lengths due 

to variation in the thickness and refractive index of the analysed object, leads to the 

contrast in the picture.  

The goal of the experiment was to detect a fluorescence only in the cells 

overexpressing the transport protein and not in the vector control confirming the 

uptake through the transporter. Therefore, OATP2B1 and the vector control were 

treated with the substrate DBF for 30 min. By a comparison of the Nomarski 

transmitted light microscope picture of DBF-treated OATP2B1-overexpressing cells 

(Figure 11,A) with the excited version, clearly showed the fluorescence in the cells 

(Figure 11,B). The comparison of the Nomarski microscopy picture of the vector 

control treated with DBF (Figure 11,C) with the excited one (Figure 11,D) made clear 

that no fluorescence could be seen in the vector control. This finding supports the 

uptake of DBF through the transport protein OATP2B1, due to the fact that a 

fluorescence could only be detected with the presence of the transporter. 
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Figure 11: Fluorescence microscopy supports uptake of DBF through OATP2B1: (A) 

Nomarski microscopy, HEK293-OATP2B1 with DBF incubation. (B) Excited with 481 nm, 

emission at 515 nm, HEK293-OATP2B1 with DBF incubation. (C) Nomarski micropscopy, 

HEK293-vec with DBF incubation. (D) Excited with 481 nm, emission at 515 nm, HEK293-vec 

with DBF incubation. 

 

After the confirmation of overexpression and DBF uptake through OATP2B1, the 

overexpressing cell line was compared to its vector control and a concentration- and 

time-dependence of the DBF uptake was investigated in order to characterise the 

transport process. The goal of this experiment was the identification of the optimal 

assay conditions for investigating uptake and inhibition through OATP2B1, which lie 

in the linear range of the time-dependence and below the determined KM value. A 

comparison with the vector control is done to ensure that the transport is only mediated 

through OATP2B1. Therefore, OATP2B1 and vector control cells were treated with 

various concentrations of DBF during the concentration-dependence test and for 

various time points during the time-dependence test. The uptake process showed to 

be time-dependent, indicating also a clear difference to the vector control uptake. A 

plateau could be seen after about 1 h (Figure 12,A). The uptake process also showed 

to be concentration-dependent. A Michaelis-Menten curve fit was done in GraphPad 
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Prism to determine the KM value. Using the signal intensity to determine the KM is less 

common than using the velocity of the uptake. Nevertheless, the KM is the 

concentration at which the signal intensity describing the activity of the transport is 

half-maximal. Therefore, measurement of the signal intensity is comparable to the 

velocity and therefore can be used to determine the KM
180-182. The KM determination 

led to a value of 10.5 µM ± 1.6. In addition to the evaluation of concentration- and time-

dependence, the optimal assay conditions were found out. 30 min incubation time still 

lied in the linear range of the uptake, where transporter-activity is determined27, and 

10 µM DBF, which was beneath the KM value, is a good condition ensuring that the 

transporter is not yet saturated and still actively involved in uptake. A general rule is 

to use a substrate concentration within twofold of the KM value183 (Figure 12,B). 

 

 

Figure 12: Fluorescence-based evaluation of time- and concentration-dependence of 

DBF uptake through OATP2B1: Uptake assay of DBF through OATP2B1 was done by 

treating OATP2B1-overexpressing and vector control cells with various concentrations of DBF 

for various time points. The uptake was stopped by aspiration of the compound dissolved in 

HBSS and washing with ice-cold ammonium formate. Fluorescence intensity was measured 

with an Envision plate reader using 485 nm as excitation and 535 nm as emission wavelength. 

(A) Cells were incubated with 10 µM DBF for various time points ranging from 10 min to 

90 min. HEK293-OATP2B1 (indicated as circles) are compared to HEK293-vec (indicated as 

squares). Mean ± SEM for 4 technical replicates. (B) Cells were incubated with various 

concentrations of DBF ranging from 1.7 µM to 66.7 µM for 30 min. HEK293-OATP2B1 

(indicated as circles) are compared to HEK293-vec (indicated as squares). Mean ± SEM for 4 

technical replicates. Figure adapted from170. 
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The development of a cell-based assay should follow important quality criteria that are 

applicable to a broad variety of laboratory experiments. In the case of a cell-based 

assay, the first step of course is the decision for a cell line that is suitable for the 

analysis. As monolayer forming cell lines are a common tool for the investigation of 

transport processes12, a cell line, which overexpresses the desired transport protein, 

and its respective vector control can be established in for example HEK293 cells, 

which generally have a low background expression of transporters184. The next 

important step is to confirm the expression of the transporter in comparison to the 

vector control, which was here shown with a western blot. The presence of suitable 

controls is one of the most important considerations. As the concentration- and time-

depencende test already showed, the vector control acts as a good control for the 

OATP2B1 cell line. Additionally, in a screen, there should be a standard inhibitor 

involved, which acts as a suitable comparison to other substances investigated. The 

investigation of reproducibility is one of the key factors for the development of cell-

based assays. It is confirmed when the investigated inhibitor shows a comparable 

pIC50 in at least 3 biological replicates. Therefore, with the use of the optimised assay 

conditions, the pIC50 value of the kinase inhibitor erlotinib, which is a known inhibitor 

for the uptake of OATP2B1171, was determined. Thus, a dilution series of erlotinib was 

added to the cells and preincubation was done for 5 min. DBF was then added for 30 

min and the uptake was stopped by addition of ice-cold ammonium formate. During 

the assay validation, a pIC50 of 7.0 ± 0.1 was determined (Figure 13). The 

determination of the value was done using a positive control (10 µM erlotinib) 

considered as 100 % inhibition and vehicle (DMSO) considered 0 % inhibition. The 

pIC50 value was calculated with GraphPad Prism v8.0.0 using the “response vs log 

(inhibitor concentration) – variable slope” equation with no constraints on all 

parameters (IC50, Hill coefficient, bottom, top).  

𝑌 = 𝑏𝑜𝑡𝑡𝑜𝑚 + (𝑡𝑜𝑝 − 𝑏𝑜𝑡𝑡𝑜𝑚)/(1 + 10˄((𝐿𝑜𝑔𝐼𝐶50 − 𝑋) ∗ ℎ𝑖𝑙𝑙𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡)) 
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Figure 13: pIC50 generation of erlotinib during assay validation: Uptake assay was done 

by preincubation of the cells with a dilution series of erlotinib in HBSS for 5 min. 10 µM DBF 

was added for 30 min. After stopping the uptake by aspiration and washing with ice-cold 

ammonium formate, the plate was measured with an Envision plate reader at the mentioned 

wavelengths. Plotted is the % inhibition of DBF uptake with erlotinib control (10 µM) as positive 

control considered 100 % inhibition and vehicle control as negative control considered 0 % 

inhibition of the uptake. pIC50 of 7.0 was calculated using GraphPad Prism v8.0.0 using the 

“response vs log (inhibitor concentration) – variable slope” equation with no constraints on all 

parameters. Data represents 8 biological replicates. 

 

With the reproducible determination of the pIC50 and the evaluation of the optimal 

assay conditions, which led to an optimisation of the assay, the method was now 

applicable to a screening format, which also can be seen as a validation of the assay. 

 

4.2.2 SCREEN OF 294 DRUGS IDENTIFIES MANY INHIBITORS THAT ARE LIKELY 

TO CAUSE DRUG-DRUG INTERACTIONS 

Through the use of a pipetting platform (ViaFlo), a high-throughput format was 

established and the transport protein could be investigated regarding possible DDIs. 

Screening formats of transport proteins are still lacking even though they confirmed to 

be related to human diseases in many ways33 and therefore an interesting drug target. 

The goal therefore was the conduction of a screen, which was capable of testing 294 

compounds as a reference assay. This compound set consisted of the top marketed 

drugs of the year 2017174 plus ~100 additional compounds that are known to interact 

with the transporter OATP2B1171, 175, 176. The drugs were thus analysed in their ability 
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to inhibit the uptake of the fluorescent substrate DBF through OATP2B1. An alarming 

outcome of that experiment would be the identification of a high number of inhibitors 

that could also possibly lead to DDIs when coadministered. In order to enlighten the 

clinical relevance of the drugs in the compound set, OATP2B1 cells were preincubated 

with those test drugs for 5 min and then concomitantly incubated with 10 µM DBF for 

30 min. Uptake was stopped by washing with ice-cold ammonium formate and plates 

were measured in an Envision plate reader. There were 66 hits (inhibition ≥50 %) 

identified, meaning more than 20 % of the compounds in the data set showed an 

inhibition on the uptake (Figure 14). Compounds that led to an inhibition of more than 

50 % were advanced to detailed analysis through pIC50 determination. A noticeable 

detail about the figure below is the existence of negative inhibition values. This effect 

may indicate stimulation of uptake and is a known phenomenon for OATP2B1 

transporter185. 

 

 

Figure 14: Visual depiction of flurescence screening results: A set of 294 compounds 

was tested in its ability to inhibit the uptake of the fluorescent substrate DBF through 

OATP2B1. Therefore, the cells were incubated for 5 min with the test compound and then 

concomitantly incubated with 10 µM DBF for 30 min before the uptake was stopped by 

aspiration and washing with ice-cold ammonium formate. 10 µM erlotinib were used as a 

positive control considered 100 % inhibition and DMSO as a negative control considered 0 % 

inhibition. Compounds with an % inhibition of DBF uptake ≥50 % were considered a hit and 

were further analysed through the determination of their pIC50. Figure adapted from 170 and 

done by Friedrich Reinhard. 
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As the potency of the identified inhibitors was of great interest, a detailed analysis by 

a determination of the pIC50 was conducted, which can also be seen as a confirmation 

of the hits. The IC50 is the half maximal inhibitory concentration and describes the 

concentration of an inhibitor for which a half maximal inhibition of the target is reached. 

It is often used in pharmacology in order to rate the potency of a drug. The pIC50 is the 

negative decadic logarithm of the IC50 and is like the pH better comparable. 

For the pIC50 determination, the hit compounds were serially diluted and applied to the 

cells like mentioned before. The detailed analysis of the screening results showed an 

occurrence of 57 inhibitors in total meaning 9 inhibitors could not be confirmed during 

concentration-dependent measurements. Those were amiodarone, cetirizine, 

ceritinib, cyclosporine, fenofibrate, gliquidon, meloxicam, pioglitazone and 

trimethoprim. For gliquidone, there was no pIC50 determined, because the compound 

was forgotten to be included. Pioglitazone, ceritinib and trimethoprim were close to 

50 % inhibition in the screen and it was therefore not unlikely that they did not produce 

a pIC50. The others showed % inhibition values >73 % in the screen, but produced 

pIC50 curves with a high scatter or showed an inhibition less than 50 % for the highest 

concentration tested. Nevertheless, there were 8 potent inhibitors with a pIC50 ≥ 6 

found (Figure 15,Table 1). Those were acemetacin, atorvastatin, benzbromarone, 

erlotinib, fluvastatin, montelukast, tipranavir and tropesine. Acemetacin is a known 

OATP1B1 inhibitor186 and atorvastatin187, benzbromarone, erlotinib, fluvastatin171, 

montelukast188 and tipranavir189 are known OATP2B1 inhibitors. Tropesine was not 

known as OATP2B1 inhibitor before. 
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Figure 15: Analysis of the fluorescence-based screening results: From 294 screened 

compounds, there were 57 confirmed inhibitors in total, 21 with a pIC50 < 5, 29 with a pIC50 

between 5-6 and 7 potent inhibitors with a pIC50 > 6. pIC50 are the average from two 

independent pIC50 determinations. 

 

Table 1: pIC50 determination results of fluorescence-based screen: 57 inhibitors could be 

confirmed in 2 biological replicates, 8 potent inhibitors with mean pIC50 > 6 identified. 

  

 

Compound n=1 n=2

Acemetacin 7.2 7.1

Amsacrine 4.7 5.0

Atorvastatin 7.2 6.9

Benzbromarone 6.6 7.4

Bicalutamide 4.9 4.7

Calcitriol 4.9 5.5

Celecoxib 4.7 5.0

Clobetasol Propionate 5.1 5.0

Desogestrel 4.9 4.1

Diacerein 4.8 4.6

Diethylstilbestrol 5.4 6.5

Diflunisal 5.0 4.9

Dipyridamole 5.6 6.0

Doxazosin Mesylate 4.7 5.0

Drospirenone 4.7 5.4

Erlotinib 7.0 7.4

Estradiol 5.3 5.9

Estrone-3-Sulfate 5.5 5.4

Ethinyl Estradiol 6.2 5.4

Ezetimibe 5.7 5.8

Felodipine 5.3 5.8

Flutamide 4.4 4.5

Fluvastatin 6.9 6.8

Glimepiride 5.6 6.0

Glyburide 5.5 6.0

Indomethacin 4.7 4.9

Iornoxicam 5.6 6.3

Irbesartan 6.1 5.8

Itraconazole 4.5 4.7

Compound n=1 n=2

Ketoconazole 5.2 5.3

Latanoprost 5.1 5.3

L-Thyroxine 5.0 5.0

Loratadine 4.7 5.0

Losartan Potassium 5.1 5.1

Lovastatin 4.9 5.0

Mometasone Furoate 5.2 4.9

Montelukast 6.6 6.4

Norethindrone 4.9 4.7

novobiocin 5.4 5.5

Olmesartan Medoxomil 5.4 5.4

Olsalazine 5.4 5.8

Oxaprozin 4.8 4.9

Oxybutynin 4.7 4.5

P-3004
Unergol 4.7 4.9

Prasugrel Hydrochloride 5.2 5.3

Quetiapine Fumarate 4.8 4.7

Raloxifene Hydrochloride 4.9 5.5

Reserpine 5.3 5.6

Silymarin 5.7 5.5

Simvastatin 4.7 5.6

Sulfasalazine 5.5 5.6

Ticagrelor 5.5 5.2

Tipranavir 6.6 6.7

Travoprost 5.3 5.5

Tropesine 7.8 7.3

Vilazodone Hydrochloride 4.4 4.3

Zafirlukast 5.8 5.9
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Based on the results of that screen, Jennypher Mudunuru from the group of Maciej 

Zamek-Gliszczynski at GSK calculated the clinical relevance of those inhibitors taking 

into account the actual dose of the drug, the blood flow in the two possible interacting 

organs liver and intestine and other drug-specific parameters of the compounds 

according to an ITC white paper recommended calculation190. According to those 

calculations, 66 % of the identified inhibitors were clinically-relevant in the intestine 

and 29 % were clinically-relevant in the liver170. Those results clearly show the need 

to investigate transporter-mediated DDI. 

As an important requirement for a cell-based screening assay is the validation of the 

data, an inter-assay correlation of the screening data was analysed. One of the 

concentrations tested during pIC50 determination was 11.1 µM, which is a comparable 

concentration to the single screen conducted at 10 µM. For a comparison, only the 

compounds, which were further processed in pIC50 determination could be used, 

which led to an occurrence of only values greater than 50 % listed in the figure (Figure 

16). The resulting Spearman correlation coefficient of 0.71 was acceptable, but still 

indicated that the method was not perfectly adjusted. The CV % value of the 

comparison 11.1 µM and 10 µM was 26.4 and therefore showed to still need 

optimisation. Nevertheless, due to the uncommon setup of a comparison of 11.1 µM 

and 10 µM, differences could have arised also thereof. 

 

 

Figure 16: Inter-assay correlation of fluorescence experiment: Comparison of 11.1 µM 

that resulted from the pIC50 screen with 10 µM that resulted from the single screen. For the 

screen, a set of 294 compounds were tested in their ability to inhibit the uptake of the 
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fluorescent substrate DBF through OATP2B1. Therefore, the cells were incubated for 5 min 

with the test compound and then concomitantly incubated with 10 µM DBF for 30 min before 

the uptake was stopped by aspiration and washing with ice-cold ammonium formate. 10 µM 

erlotinib were used as a positive control considered 100 % inhibition and DMSO as a negative 

control considered 0 % inhibition. For the pIC50 determination, there were besides 11.1 µM of 

the compound also several other compound concentrations tested. The handling was the 

same as in the screen. 

 

Also the pIC50 determination acts as a validation of the method. For the determination 

of the pIC50 values, there were two biological replicates performed, so the analysis of 

intra-experimental reproducibility here could be performed by a comparison of the two 

data sets and a calculation of the linear regression r2. It had a value of 0.78 (Figure 

17), which was also acceptable. The results of the screen could be trusted and 

therefore analysed further. 

 

 

Figure 17: Reproducibility of the screening data: pIC50 values of two biological replicates 

plotted against each other to determine the reproducibility of the data. Figure adapted from170. 
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4.2.3 AUTOFLUORESCENCE AND QUENCHING EFFECT TEST 

A negative aspect about the fluorescence-based assays is that they can be prone to 

false-negatives and -positives due to photonic effects like quenching or 

autofluorescence of compounds. Autofluorescence of the investigated compounds 

can occur if the compounds themselves show a fluorescence emission measurable at 

535 nm when being excited at 485 nm. In the case of the fluorescence-based 

screening assay, for the identification of an inhibitor, there is a decrease in the 

fluorescence intensity detectable, whereas a compound, which does not show an 

inhibiting effect would lead to the fluorescence intensity of the DBF signal maintaining. 

An autofluorescent compound could therefore act as such a maintain of the signal and 

would be interpreted as a non-inhibitor and therefore might be false-negative. 

Quenching of the compounds can occur when the compounds are excited at 485 nm 

and result in a fluorescing signal, which suppresses the DBF fluorescence intensity 

signal due to overlay effects. A quenching compound could therefore act as a 

reduction of the signal intensity even though it is a non-inhibitor and would be 

interpreted as an inhibitor and thus false-positive. Therefore, an evaluation of the 

autofluorescence and quenching effects of the investigated compounds was 

conducted in order to exclude those showing artefacts from the identified inhibitors.  

For evaluation of autofluorescence of the compounds, they were solely diluted in 

HBSS, one compound per well, to a final concentration of 10 µM and 100 µM. Those 

two concentrations were used, because 10 µM would be the final concentration of the 

compound in the assay system, but it could not be guaranteed that the concentration 

really stays that low in the cell assay due to accumulation effects, so 100 µM was also 

tested. As a separate control in a separate well, DBF was diluted in HBSS to a final 

concentration of 10 µM, like it was used in the assay system. The fluorescence was 

measured with a plate reader using 485 nm as excitation and 535 nm as emission 

wavelength. The resulting fluorescence intensity (FI) values for the compounds were 

divided through the mean of 3 DBF wells in order to get a relative value for each 

concentration.  

𝐴𝑢𝑡𝑜𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 [%] =
𝐹𝐼 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑

𝑀𝑒𝑎𝑛 𝑜𝑓 𝐹𝐼 𝑜𝑓 3 𝐷𝐵𝐹 𝑤𝑒𝑙𝑙𝑠
∗ 100 
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An alarming outcome of that experiment could be the identification of many 

autofluorescent inhibitors. This would be an error source that has to be investigated 

once more with a counter screen, because there might be many false-negatives that 

need to be reinvestigated. As Table 2 shows, there were no compounds identified that 

showed a high autofluorescence (higher than 1.5 %) in comparison to the fluorescence 

of DBF, which makes clear that there are no false-negatives in the dataset due to this 

fluorescent effect. 

For the evaluation of quenching, which was here defined as a DBF fluorescence signal 

reduction of more than 30 %, the diluted compounds from the autofluorescence 

measurement were additionally incubated with 10 µM DBF. The measurement was 

performed like mentioned above. For the calculation of the relative value, the 

fluorescence intensity (FI) of the compounds incubated together with DBF were 

divided through the mean FI of 3 DBF wells. 

𝑄𝑢𝑒𝑛𝑐ℎ𝑖𝑛𝑔 [%] =
𝐹𝐼 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝑠 𝑖𝑛𝑐𝑢𝑏. 𝑡𝑜𝑔𝑒𝑡ℎ𝑒𝑟 𝑤𝑖𝑡ℎ 𝐷𝐵𝐹

𝑀𝑒𝑎𝑛 𝑜𝑓 𝐹𝐼 𝑜𝑓 3 𝐷𝐵𝐹 𝑤𝑒𝑙𝑙𝑠
∗ 100 

Ideally, the resulting values of the quenching experiment would be at around 100 %, 

so no reduction of the fluorescence signal of DBF could be detected. In that case no 

false-positives would have been identified. As it can be seen in Table 2 there were 5 

compounds identified that showed a quenching effect on DBF fluorescence of more 

than 30 % at 100 µM leading to a DBF fluorescence signal reduction to 70 % and 

lower. Those were amlodipine, amsacrine, ceritinib, chlorhexidine and doxazosin 

mesylate. This means that through the simultaneous incubation with 100 µM of those 

compounds, a reduction up to 30 % in the fluorescence of DBF was observed. Those 

compounds therefore might be false-positives, because the quenching led to a 

reduction of the fluorescence that could falsely be interpreted as an inhibitory effect. 

This might have led to misinterpretations in the identification of inhibitors (Table 2). 
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Table 2: Relative values of quenching and autofluorescence of 5 compounds: Data of 

conspicuous compounds at two different concentrations (10 µM and 100 µM) with relative 

values compared to DBF as a control. For autofluorescence, compounds were compared to 

DBF signal, for quenching, compounds were simultaneously incubated with DBF. Amlodipine, 

amsacrine, ceritinib, chlorhexidine and doxazosin mesylate showed a quenching effect of up 

to 30 % leading to a reduction of the fluorescence signal of 70% and more at 100 µM. 

 

 

Amlodipine, ceritinib and chlorhexidine were not identified as inhibitors during the 

fluorescence-based screen. Additionally to that, for the clinical relevance of the 

compounds doxazosin and amsacrine this quenching effect did not play a role, 

because they did not meet the criteria for clinical significance170, but this 

representation shows that there are 5 out of 294 compounds, which need at least a 

counter screen to be identified for certain. 

 

4.3 MALDI MASS SPECTROMETRY UPTAKE ASSAY 

MALDI MS is a label-free method, which is HTS applicable and therefore represents 

a suitable tool to investigate transport proteins in a high-throughput manner also as a 

possible counter screen for fluorescence-based methods. Cell-based assays for 

MALDI MS already exist, nevertheless there is no MALDI MS-based unlabelled cellular 

uptake measurement existing yet. For that purpose, a WC method was developed, 

automated and validated. The applicability of the method is dependent on several 

critical steps. Cellular physiology might be affected by the number of cells used in an 

assay191. The incubation time with the drugs has to be chosen. For transporter assays, 

this incubation time has to lie in the linear range of the substrate uptake27. The 

resuspension is again a very critical step. The solvent for resuspension and matrix 

Compound 10 µM 100 µM 10 µM 100 µM

Amlodipine 70.5 69.1 1.4 1.2

Amsacrine 77.7 48.7 1.2 1.1

Ceritinib 89.4 43.1 0.9 1.1

Chlorhexidine 107.9 59.2 1.3 1.2

Doxazosin Mesylate 94.3 68.2 1 1

Quenching Autofluorescence

DBF fluorescence signal reduction

Relative values [%]
Relative values [%]
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have to be chosen carefully. Also the best-suited matrix has to be identified, as the co-

crystallisation of matrix and analyte is a prerequisite for MALDI MS192. Those critical 

steps have to be kept in mind during assay development. This topic is manifold and 

diverse through the crystallisation patterns that can form dependent on the matrix, 

solvent and application technique that is used. Therefore, the method has to be 

developed and optimised on the best detection of the analyte thoroughly. All of those 

considerations have the aim to develop a method focused on the detection of the 

substrate in the cells. The intensity of the substrate signal paired with low noise values 

and CV % are crucial for the applicability of the method. Once the method has shown 

to be reproducible, it can be applied to a screen of drugs potentially inhibiting the 

uptake through the transporter to further characterise the transport process and be 

able to react to possible occurring DDIs.  

 

4.3.1 DEVELOPMENT OF A WHOLE-CELL MALDI MASS SPECTROMETRY 

UPTAKE METHOD 

First of all, it had to be decided which substrate is going to be used for the study of 

drug uptake through OATP2B1. In case of MALDI MS, there is of course no labelled 

substrate needed. In that case, other known substrates than DBF are possible. For 

that purpose, DBF and the physiological substrate estrone-3-sulfate (E3S) were 

compared in their possible detection by MALDI MS. The two possible substrates were 

spiked to a cell pellet in various concentrations ranging from 0.01 µM to 10 µM. It is 

likely that one of the substrates has an improved detection compared to the other. This 

is dependent on the use of matrix. Therefore, 2500 cells/spot were applied on a MTP 

and spray-coated with four different matrices. Intensity, S/N and crystallisation pattern 

were compared due to the fact that every matrix can lead to different outcomes in 

terms of homogeneity of crystallisation, measured intensity of the analyte peak and its 

S/N. 

The direct comparison of the two possible substrates showed a higher signal intensity 

for E3S and also a detection at lower concentrations than DBF. The limit of detection 

for E3S was with a concentration of 0.01 µM and usage of DHAP at an arb. u. of 1, 

whereas DBF showed poor signal intensity with DHAP matrix for all 3 lower 

concentrations (0.01 µM, 0.1 µM, 1 µM) at around 0.3 arb. u. With Ph-CCA-NH2, the 
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results were similar as E3S was still detected at 0.1 µM (2.3 arb. u.) and DBF only 

showed possible detection until 1 µM with a very low intensity of 0.5 arb. u. (Figure 

18,A). The comparison of the detection of 0.1 µM E3S with different matrices (DHAP, 

Ph-CCA-NH2, DHB and sDHB) showed the unsuitability of DHB and sDHB due to the 

low median S/N ratios of 8 (sDHB) and 19 (DHB) compared to 93 (Ph-CCA-NH2) and 

250 (DHAP) (Figure 18,B) and patchy crystallisation (Figure 18,C). DHAP and Ph-

CCA-NH2 are both possible for the detection of E3S due to their good S/N ratio ≥ 90, 

acceptable CV % (35 and 26 respectively) and homogeneous crystallisation pattern. 

Consequently, for further analyses, E3S was used as a substrate and the matrices 

DHAP and Ph-CCA-NH2 were analysed further in their suitability. Analysing the 

physiological substrate E3S brings the advantage that identified inhibitors are more 

likely to cause pharmacologically relevant DDIs. 

 

 

Figure 18: Comparison of E3S and DBF as two possible substrates for OATP2B1 uptake 

renders E3S as better suited: Cell pellets of HEK293 were resuspended at 2500 cells µL-1 

in ACN/ddH2O. One microliter of the suspension was applied to a MALDI target plate, which 

was spray coated with either Ph-CCA-NH2 (5 mg/mL in acetone/ddH2O (90/10)), DHAP (20 

mg/mL in ethanol/DAHC (75/20), DHB (20 mg/mL in ACN/ddH2O/TFA (50/50/0.2) or sDHB 
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(20 mg/mL in ethanol/DAHC/TFA (75/25/0.2)). Samples were measured using a rapifleX 

MALDI. (A) E3S / DBF was spiked to the cell pellet in different final concentrations of 10, 1, 

0.1 and 0.01 µM. Plots were done in R. Plotted is the median and 25 to 75 quantile of 9 

technical replicates. (B) Final spiked E3S concentration of 0.1 µM, plotted is the median of 9 

measurement replicates, whiskers are 5 to 95 percentile. CV % values indicated above boxes. 

(C) Matrix crystallisation of different matrices. 

 

The availability of both ultrafleXtreme and rapifleX in the laboratory raised the question 

of usage for the conduction of the assay. The rapifleX is the first mass spectrometer 

that offers the speed to analyse a 1536 target plate within 8 min and therefore the 

possibility to conduct uHTS. With regard to a screen, which was the goal for the 

developed method, the rapifleX would be favoured. For an objective comparison of the 

two devices, a MTP was spotted with cells spiked with E3S and sprayed with DHAP. 

The measurement was conducted on both devices and the intensity of the analyte 

peak was compared. As Figure 19 clearly shows, the use of the rapifleX did not only 

lead to a higher intensity of the analyte signal (100 arb. u. vs 55 arb. u.), but also to a 

higher resolution (17589 vs 7603). The rapifleX therefore was the favoured mass 

spectrometer for this analysis, owning also the possibility to conduct high-throughput. 

 

 

Figure 19: Usage of rapifleX leads to higher intensity and resolution compared to 

ultrafleXtreme: Analysis of the same MTP spotted with cell pellets spiked with 1 µM E3S and 
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analysed with 20 mg/mL DHAP applied sprayed dissolved in ethanol/DAHC/TFA (75/25/0.2) 

with rapifleX and ultrafleXtreme. Resolution and peak intensity is higher using rapifleX. 

 

As the result of detection is not only dependent on the matrix itself, but also the 

concentration of matrix and usage of solvent, the two well-performing matrices Ph-

CCA-NH2 and DHAP were optimised regarding their best suitable concentration, 

solvent and its composition in order to increase the detection of E3S. Important 

decision criteria were the S/N ratio of the E3S peak and its variability expressed in 

CV %. An ideal matrix and solvent composition would lead to a high S/N of the E3S 

signal combined with a low CV % value. For that purpose, cell pellets were spiked with 

1 µM E3S and analysed with different matrix concentrations, solvent compositions and 

matrix application types. 

For the optimisation of DHAP regarding detection of E3S, first the usage of different 

solvents was tested. The comparison of ethanol with acetone showed a clear 

advantage of acetone, despite the fact that they had a comparable highest median 

S/N of 222 and 205, respectively, as the variation using acetone was a lot lower 

(Figure 20,A,B). The CV % value for this experiment ranged from 37 to 52 for solvation 

in ethanol, with the lowest concentration of matrix having the highest CV % value. In 

comparison to that, the usage of acetone as solvent led to lower CV % values ranging 

from 11 (7.5 mg/mL) to 29 (10 mg/mL). The higher the DHAP concentration, the lower 

the median S/N got from 205 to 71 with acetone as a solvent rendering 7.5 mg/mL as 

best option, which also had the lowest CV % value (Figure 20,B). 
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Figure 20: Influence of the solvent for DHAP on S/N of E3S: HEK293 cell pellets were 

resuspended at 2500 cells µL-1 in ACN/ddH2O. One microliter of the suspension was applied 

to a MALDI target plate, which was spray coated with DHAP used in differing concentrations 

from 7.5 mg/mL to 20 mg/mL dissolved either in 75 % ethanol (A) or acetone (B) together with 

25 % DAHC. E3S was spiked to the cell pellet in the final concentration of 1 µM. Samples 

were measured using a rapifleX MALDI. S/N of the E3S peak of 9 measurement replicates is 

shown in a boxplot with median, whiskers are 5-95 percentile. 

 

With 7.5 mg/mL being identified as a good concentration of DHAP, also ACN was 

tested in comparison with acetone and a sandwich application was compared to a 

sprayed application. Both S/N and CV % were taken into account. The sandwich 

application of acetonitrile led to lower median S/N of 476 (75 % ACN) and 614 (60 % 

ACN) values than sprayed (1069 for 60 % ACN, 1237 for 70 % ACN) (Figure 21,B) 

and simultaneously to higher CV % values of 28-31 % compared to <10 % for sprayer 

application (Figure 21,C) leading to the exclusion of the sandwich application of ACN. 

The exclusion of the sandwich application was further supported by the crystallisation 

pattern, which showed a patchy crystallisation for sandwich application (Figure 22). 

The median S/N values for the sprayed application of DHAP with acetone were with 

values of 751 and 653 respectively comparable at 60 % and 75 % solvent rate (Figure 

21,A). Comparing the CV % of the different two solvent percentages, 60 % acetone 

showed to be less variant with a CV % <5 compared to 75 % solvent with a CV % of 

12 rendering the lower amount of solvent better suited (Figure 21,C). The direct 

comparison of 60 % acetone and the sprayed application of acetonitrile showed a 

good median S/N ratio of >750 for both. From two biological replicates, 60 % acetone 

showed a trend towards the lowest CV % value leading to the decision to choose this 
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composition for further investigations. The control with DMSO spiked in instead of E3S 

showed the applicability of the method leading to S/N ratios lower than 3, which is 

seen as the detection limit (Figure 21,A,B). DHAP was further used in the optimised 

conditions of a concentration of 7.5 mg/ml in 60 % acetone.  

 

 

Figure 21: Comparison of acetone and ACN as a solvent for DHAP: HEK293 cell pellets 

were resuspended at 5000 cells µL-1 in ACN/ddH2O. In case of sandwich application, the MTP 

was coated with matrix first, then the analyte and matrix were applied dried droplet by 

resuspension of a cell pellet to 5000 cells µL-1 in ACN/ddH2O and mixing 1:1 with the matrix. 

One microliter of the suspension was applied to a MTP. In case of spray coating, the cell pellet 

was resuspended at a concentration of 2500 cells µL-1 in ACN/ddH2O and 1 µl applied to the 

MTP, which was then spray coated with 7.5 mg/mL DHAP dissolved either in 75 % ACN or 

acetone together with 25 % DAHC. E3S was spiked to the cell pellet in the final concentration 

of 1 µM. As a control, only DMSO was spiked to the cells, indicated as orange boxes. Samples 

were measured using a rapifleX MALDI. (A,B) S/N of the E3S peak of 9 measurement 

replicates is shown in a boxplot with median and whiskers of 5-95 percentile. (C) CV % of E3S 

peak of two biological replicates. 



Results   

 

63 

 

 

Figure 22: Crystallisation pattern of DHAP with acetone and ACN renders sandwich 

application unsuitable: HEK293 cell pellets were resuspended at 5000 cells µL-1 in 

ACN/ddH2O. In case of sandwich application, the MTP was coated with matrix first, then the 

analyte and matrix were applied dried droplet by resuspension of a cell pellet to a cell number 

of 5000 cells µL-1 in ACN/ddH2O and mixing 1:1 with the matrix. One microliter of the 

suspension was applied to a MTP. In case of spray coating, the cell pellet was resuspended 

at a concentration of 2500 cells µL-1 in ACN/ddH2O and 1 µl applied to the MTP, which was 

then spray coated with 7.5 mg/mL DHAP dissolved either in 75 % ACN or acetone together 

with 25 % DAHC. E3S was spiked to the cell pellet in the final concentration of 1 µM. As a 

control, only DMSO was spiked to the cells, indicated as orange boxes. Samples were 

measured using a rapifleX MALDI. 

 

Also the Ph-CCA-NH2 matrix had to be optimised for the detection of E3S in the cells. 

Therefore, the concentration of matrix and the solvent composition were analysed. 

This was done with a cell pellet spiked with 1 µM E3S and analysed with different 

compositions of matrix and solvent. Ethanol only led to a median S/N ratio of 18-31 

using different concentrations of matrix (Figure 23,A) leaving only acetone and ACN 

as possible solvents, which both led to a good S/N ratio of up to 45 (Figure 23,C) and 

79 (Figure 23,B), respectively, whereas the lower concentrations of matrix (2.5 mg/mL 

and 5 mg/mL) performed better in terms of S/N. The low concentrations of 2.5 and 

5 mg/mL matrix in either acetonitrile or acetone were decided to be analysed further 

due to the higher S/N of around 70 for the low concentrations dissolved in ACN 

compared to below 50 for the high concentrations (Figure 23,B). Since all of the matrix 
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compositions here were applied sprayed, they had to be investigated once more with 

dried droplet, which is better suitable for HTS intentions. 

 

 

Figure 23: Solvent and matrix concentration has an influence on the S/N of E3S 

detection: Comparison of detection of E3S with Ph-CCA-NH2 dissolved in three different 

solvents, all 90 %: ethanol (A), ACN (B) and acetone (C). Different concentrations of matrix 

were tested out ranging from 2.5 mg/mL to 10 mg/mL. For the evaluation of the best matrix 

composition, cell pellets of HEK293 were resuspended at 5000 cells µL-1 in ACN/ddH2O. The 

cells were mixed 1:1 with matrix dissolved in either ethanol, ACN or acetone before the manual 

dried droplet application onto the target plate. E3S was spiked to the cell pellet in the final 

concentration 1 µM. Samples were measured using a rapifleX MALDI. S/N of 9 measurement 

replicates of the E3S peak is shown in a boxplot with median and whiskers of 5-95 percentile. 

 

Further analysis of Ph-CCA-NH2 matrix showed that both S/N and CV % had to be 

taken into account during the decision of the best matrix composition. The application 

of different concentrations of Ph-CCA-NH2 dissolved in acetone showed the 

applicability of both concentrations when sprayed due to a comparable S/N of around 

130 (Figure 24,A). Compared to that, acetonitrile led to higher median S/N ratios of 

around 190 when applied sprayed (Figure 24,B). The analysis of the CV % values 

showed the suitability of both acetonitrile and acetone as solvents for Ph-CCA-NH2 

(Figure 24,C). The dried droplet application of acetonitrile had a trend towards higher 

S/N ratios with acetonitrile (266 with 2.5 mg/ml Ph-CCA-NH2 compared to 180 with the 
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same concentration of matrix dissolved in acetone). The direct comparison of dried 

droplet vs sprayed application showed higher S/N ratios for dried droplet with 

2.5 mg/mL Ph-CCA-NH2 in 90 % acetonitrile compared to the sprayed application. 

Besides the fact that the dried droplet application led to higher CV % values in general 

(33 for 2.5 mg/ml Ph-CCA-NH2 in ACN compared to 11 %) (Figure 24,C) when applied 

in the same concentration and solvent sprayed, both application types seemed to be 

possible. The low concentration of 2.5 mg/mL Ph-CCA-NH2 dissolved in 90 % ACN 

was chosen for further analyses due to its high S/N ratio of 200 when sprayed and 

even 275 when applied dried droplet paired with a low CV % value <10 for sprayed 

application and 30 for dried droplet application. 

 

 

Figure 24: Apart from S/N investigation, also CV % has to be taken into account for 

matrix decision: Optimisation of solvent and comparison of sprayer against dried droplet of 

Ph-CCA-NH2. (A,B) For Dried Droplet application, cell pellets of HEK293 were resuspended 

at 5000 cells µL-1 in ACN/ddH2O. The cells were mixed 1:1 with matrix dissolved in either 90 % 

ACN or acetone before the manual application onto the target plate. For sprayed application, 

cell pellets were resuspended at 2500 cells µL-1 in ACN/ddH2O. One microliter of the 

suspension was applied to a MALDI target plate, which was spray coated with Ph-CCA-NH2. 

E3S was spiked to the cell pellet in the final concentration 1 µM. As a control, only DMSO was 
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spiked to the cells, indicated as orange boxes. Samples were measured using a rapifleX 

MALDI. S/N of the E3S peak of 9 measurement replicates is shown in a boxplot with median 

and whiskers of 5-95 percentile. (C) CV % of E3S peak of two biological replicates. 

 

The two matrices best suited for the analysis of E3S in the cells were identified and 

optimised on the E3S detection leading to 2.5 mg/mL Ph-CCA-NH2 in 90 % ACN and 

10 mg/mL DHAP in 60 % acetone as best options. As the positive influence of salts, 

which acidify / alkalify the sample on the detection in whole cell assay is known139, 193, 

this option was also tried out. The change in analyte detection through the acidification 

or alkylation of the samples comes due to the modified proton affinity, which again has 

an influence on the ionisation due to the lucky survivor model. Therefore, the matrices 

were additionally mixed with a dilution series of ammoniumformiate (pH 8.0). Neither 

for PhCCA-NH2 (Figure 25,A), nor for DHAP (Figure 25,B), there was an 

improvement of S/N through the addition of ammoniumformiate seen. Therefore, the 

matrices will be used without the addition of salts for alkylation. 

 

 

Figure 25: Addition of ammoniumformiate to the matrix solvent did not improve S/N: 

Optimisation of solvent and comparison of sprayer against dried droplet of Ph-CCA-NH2. (A,B) 

Cell pellets were resuspended at 2500 cells µL-1 in ACN/ddH2O. One microliter of the 

suspension was applied to a MALDI target plate, which was spray coated with 2.5 mg/mL Ph-

CCA-NH2 in 90 % ACN/ddH2O or 10 mg/mL DHAP in 60 % acetone/40 %DAHC. The matrices 

contained varying concentrations (0-2 %) 150 mM ammoniumformiate, pH 8.0. E3S was 

spiked to the cell pellet in the final concentration 1 µM. As a control, only DMSO was spiked 

to the cells, indicated as orange boxes. Samples were measured using a rapifleX MALDI. S/N 
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of the E3S peak of 9 measurement replicates is shown in a boxplot with median and whiskers 

of 5-95 percentile. 

 

All of the previous experiments were conducted due to method optimisation only as 

“spiked in” experiments of E3S. As the aspired experiments would be done in the 

course of real cell assay treatments, the two optimised matrix compositions, 10 mg/mL 

DHAP in 60 % acetone and 2.5 mg/mL Ph-CCA-NH2 in 90 % ACN, which both seemed 

to be suitable for the detection of E3S, were used to analyse OATP2B1 and “vector 

control cells” in a real treatment with E3S. With this experiment, it should be ensured 

that the matrices, which worked best in method optimisation, still work in the real 

treatment case. Possible struggles due to the cell treatment are endogenous peaks 

that could affect the detection of the analyte. In case of the cell treatment, the cells got 

treated with the substrate (the analyte), which was washed away again. The cells were 

broken up due to freezing, resuspension in solvent and shooting with the MALDI laser. 

The resulting concentration of analyte, which was taken up by the cells is most likely 

lower than in “spiked in” experiments. This could lead to possible issues with the 

detection limit. OATP2B1 and vector control were therefore treated with E3S and also 

concomitantly with the standard inhibitor erlotinib to investigate the effect of inhibition 

on the uptake. Additionally, there was a control group only treated with DMSO.  

As it can be seen in the following figure (Figure 26,B), the usage of DHAP led to the 

identification of a disturbing peak in close proximity to the analyte peak, indicated with 

an arrow. Also, the matrix crystallisation rendered DHAP inappropriate for a dried 

droplet application because of a very unhomogeneous crystallisation, which made an 

automated measurement difficult (Figure 26,C). A fully automated method can’t be 

realised by using the sprayer for the matrix application, therefore Ph-CCA-NH2 is the 

matrix of choice for the analysis of E3S uptake through OATP2B1. The figure also 

demonstrates the uptake through the transport protein. The red spectrum resulted 

from the incubation of OATP2B1 cells with the substrate, whereas there is a clear 

inhibition of the peak seen with concomitant incubation of erlotinib as an inhibitor. Also, 

the vector control treated with the substrate showed a significantly lower peak than the 

overexpressing cell lline of 2.5 arb. u. compared to 30 (Figure 26,A). These findings 

showed that the uptake of the substrate through the transport protein can be measured 
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with the cell-based MALDI MS assay and DHAP is inappropriate as a matrix in the real 

cell-treatment case due to the background peak in close proximity to the analyte and 

patchy crystallisation. 

 

 

Figure 26: Treatment of cells with E3S renders DHAP inappropriate due to background 

peak in close proximity to analyte peak: HEK293-OATP2B1/HEK293-vc cells were treated 

with 20 µM E3S (with and without 20 µM erlotinib) or only DMSO for 30 min. For dried droplet 

application, cell pellets of HEK293 were resuspended at 5000 cells µL-1 in ACN/ddH2O. The 

cells were mixed 1:1 with either 7.5 mg/mL DHAP in 60 % acetone, 40 % DAHC or 2.5 mg/mL 

Ph-CCA-NH2 in 90 % ACN/ddH2O. For sprayed application, cell pellets were resuspended at 

2500 cells µL-1 in ACN/ddH2O. One microliter of the suspension was applied to a MALDI target 

plate, which was spray coated with the matrices respectively. Samples were measured using 

a rapifleX MALDI. (A,B) Spectra of 9 measurement replicates are shown in ClinPro Tools. (C) 

Matrix crystallisation of different matrices, both applied by sprayer and dried droplet. 

 

After evaluation of the best matrix and solvent composition for the analyte, the 

application technique of matrix was investigated once more, as the method 

optimisation already showed the different effects of matrix application. Ideally, an 

assay should have a high signal window, defining the range between the positive and 
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the negative control. The higher the signal window, the easier it is to determine slight 

differences in concentration like a pIC50. Therefore, OATP2B1 cells were incubated 

with E3S (positive control) and E3S+Erlotinib (negative control) with the optimised 

matrix composition of Ph-CCA-NH2 with different application techniques and the signal 

window was compared. PrimaDrop, dried droplet, sprayer and sandwich application 

of 2.5 mg/mL Ph-CCA-NH2 in 90 % ACN were compared. An analysis of the CV % 

values led to the conclusion not to choose PrimaDrop because of its high variation 

(Figure 27,A). The other application ways performed well leading to CV % <20 and 

therefore the factor between substrate uptake and inhibited substrate uptake were 

compared. The sandwich application of matrix led to a low factor of 1.5 (Figure 27,D), 

whereas the other two methods showed a comparable factor >4 (Figure 27,B,C). This 

led to the exclusion of sandwich as application technique. As already investigated, the 

CV % of the dried droplet application was higher compared to the sprayed version with 

values of 19 % and 11 % respectively. Both application types therefore showed 

suitability as it is of interest to establish an assay with a CV % < 20. 

 

 

Figure 27: Method of matrix application has an effect on E3S detection: HEK293-

OATP2B1/HEK293-vc cells were treated with 20 µM E3S (with and without 20 µM erlotinib) or 

only DMSO for 30 min. For sprayed and PrimaDrop application, the cell pellet was 

resuspended at 2500 cells µL-1 in ACN/ddH2O. In case of spray-coating with matrix, one 
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microliter of the suspension was applied to a MALDI target plate and then spray-coated. In 

case of PrimaDrop application, the cells were manually applied to the target plate. The matrix 

was manually applied on top of the dried spot. For sandwich and dried droplet application, the 

cell pellet was resuspended at 5000 cells µL-1 in ACN/ddH2O. In case of sandwich application, 

first the MALDI target plate was coated with a layer of matrix, then matrix and analyte got 

mixed 1:1 and applied manually on top. For dried droplet application, matrix and analyte got 

mixed 1:1 and applied manually on to the MALDI target plate. In all cases, Ph-CCA-NH2 (2.5 

mg/mL in ACN/ddH2O (90/10)) was used as matrix. Samples were measured using a rapifleX 

MALDI. (A) CV % of 9 measurement replicates, shown is median with range. (B,C,D) Boxplot 

of 9 measurement replicates showing median of S/N of E3S signal. Whiskers are 5-95 

percentile. 

 

Due to the efforts to develop an automatable method, dried droplet would be the 

preferred application, because of its possibility to be automated. An option to decrease 

the intra-assay variability is the use of an internal standard. This procedure is very 

common in mass spectrometry imaging, where the internal standard is applied by a 

spraying device194. An internal standard is also a well-established method for 

quantification and normalisation in HPLC analysis195. For the internal standard, a 

molecule, which should ideally be preferably similar to the analyte molecule was 

chosen, in order to compensate measurement-related inaccuracies. In this case, the 

standard is applied by spiking it to the solvent, with which the cells got resuspended 

before application to the MTP. This has the advantage that no sprayed device is 

needed, which could have brought in another source of errors. D4-E3S is the 

deuterated standard of E3S and therefore resembles the analyte to a large extent. The 

use of 0.3 µM internal standard led to a reproducible peak, which was high enough to 

be compared to the substrate peak and thus this concentration of internal standard 

was used further for normalisation (Figure 28). 
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Figure 28: Use of internal standard during uptake experiments: HEK293-OATP2B1 cells 

were treated with 20 µM E3S for 30 min. The cell pellet was resuspended at 5000 cells µL-1 in 

ACN/ddH2O. Matrix and analyte got mixed 1:1 and applied manually on to the MALDI target 

plate for dried droplet application. Ph-CCA-NH2 (2.5 mg/mL in ACN/ddH2O (90/10)) was used 

as matrix. Samples were measured using a rapifleX MALDI. Shown are 9 measurement 

replicates in ClinPro Tools and the structure of D4-E3S. 

 

The effect of the normalisation to the internal standard had to be investigated in the 

course of the assay treatment. Therefore, the normalisation of the peak intensity to 

D4-E3S was compared with the not normalised version. Figure 29,A clearly shows the 

effect of normalisation leading to a noticeable reduction of the CV % value from 52 to 

15. As the matrix-analyte ratio is a key determinant of the detection of the analyte, the 

best amount of cells on a target spot had to be determined. This was also the first 

biological use case, on which the normalisation on the internal standard was 

transmitted to. Therefore, cell pellets of OATP2B1 treated with E3S or DMSO were 

resuspended with different amounts of ACN/ddH2O to achieve various cell numbers. 

After dried droplet application, there were cell numbers of 312 cells per spot up to 

10000 cells per spot, which were included in testing. As it can be seen in Figure 29, 
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B and C, the saturation of the signal intensity looked a lot smoother when normalised 

to the internal standard. This again showed the advantage of normalisation and 

simultaneously showed that the higher the cell number per spot is, the greater the 

factor between DMSO control and E3S treatment. For the following experiments, a 

cell number of 2500 cells/spot was chosen, because a higher cell number was not 

possible due to practical handling in the 96-well plates, which should be used due to 

the need for automation. 2500 cells/spot still produced a stable and reproducible signal 

window between substrate treatment and control treatment. In addition, the internal 

standard was spiked in for normalisation in the following experiments. 

 

 

Figure 29: Effect of normalisation of the spectra onto the internal standard D4-E3S: (A) 

HEK293-OATP2B1 cells got treated with DMSO for 10 min. After that preincubation, cells were 

treated with E3S for 2 min, followed by removing the supernatant and washing with ice-cold 

PBS. The 96 well plate was snap-frozen in liquid nitrogen. Cells were resuspended at 

5000 cells µL -1 in ddH2O. Before the automated Dried Droplet application with the CyBio 

pipetting platform, the cells got mixed 1:1 with Ph-CCA-NH2 (2.5 mg/mL in ACN/ddH2O 

(70/30)). Samples were measured using a rapifleX MALDI. Automated measurement was 

performed by MPP. CV % is calculated from 3 biological replicates with 9 technical replicates 

each, normalised and not normalised CV % is compared. Shown is median and range. (B, C) 

HEK293-OATP2B1 cells were treated with 20 µM E3S (circles) or only DMSO (squares) for 

30 min. The cell pellet was resuspended at different cell numbers in ACN/ddH2O. Before the 

manual application onto the plate, the cells were mixed 1:1 with Ph-CCA-NH2 (2.5 mg/mL in 
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ACN/ddH2O (90/10)) and thus applied dried droplet. Plots were done in GraphPad Prism, 

standard deviation of 9 measurement replicates. 

 

The measurements were conducted on a MTP spot containing a complex matrix of 

cells including the analyte and the matrix-molecules. This complex mixture could have 

an effect on the detection of the analyte. This process is called matrix suppression 

effect and the assumption was that with an increase in cells per spot, the signal 

intensity of the analyte will decrease due to the effect. Furthermore, the optimal cell 

number per spot should be determined. This should ideally be a number, where the 

matrix suppression effect is moderate together with a high signal window which was 

determined in Figure 29. Therefore, different cell numbers per spot were analysed 

and a constant concentration of E3S was spiked to the cells. An analysis of different 

cell passages should investigate if the suppression effect is comparable in every 

passage. This was the case, as it could be seen in Figure 30. Even though there were 

slight differences between the passages, the effect was comparable. In all three cell 

passages, the decrease of the analyte intensity was observed with increasing cell 

number per spot. As 2500 cells/spot still showed high signal intensities of E3S (Figure 

30) and also had a good signal window (Figure 29), it was chosen as the optimal cell 

number/spot. 

 

 

Figure 30: Comparison of matrix suppression effect in three different cell passages: 

(A,B,C) Analysis of differing cell numbers per spot. Cells were pelleted and resuspended in 

different amounts of suspension solution (ddH2O/matrix (50/50). As matrix, 2.5 mg/mL Ph-

CCA-NH2 in 70% ACN was used. Final amount of 0.3 µM D4-E3S and 1 µM E3S were spiked 

to the matrix solvent. Cells were spotted manually and measured using a rapifleX MALDI. 
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Shown are 18 measurement replicates with standard deviation. Intensities were normalised to 

312 cells set as 100 %. 

 

4.3.2 AUTOMATION OF THE METHOD LEADS TO POSSIBLE HIGH-

THROUGHPUT SCREENING 

As the automation of the method plays a pivotal role with regard to high-throughput, 

this chapter of experiments was designed by the author and carried out by Lena 

Schumacher as part of her bachelor thesis. Effective drug screening requires an 

automated method153. Therefore, the goal was to switch from 24-well format to 96-well 

format to increase speed and amount of samples. In addition to this, the pipetting steps 

were intended to be automated by the usage of the CyBio FeliX pipetting platform. 

First, the resuspension and application of the cells was tested in three different 

versions. Plates were taken out of the freezer and immediately resuspended with  

1. 40 µL matrix solvent mixture and directly applied on the plate after shaking  

2. first 20 µL of water, then addition of 20 µL matrix, shaking and application on plate  

3. 20 µL of water, then application on MTP and spot matrix on top. 

A comparison of those three application techniques rendered the second version as 

the most fruitful because of the production of a very homogeneous matrix layer 

compared to the other two (Figure 31,A). The CV % and intensity values were with 

around 20 % and 0.6 normalised intensity comparable amongst the three methods 

(Figure 31,B,C). 
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Figure 31: Usage of CyBio FeliX pipetting platform for resuspension and application of 

cells: HEK293-OATP2B1 cells were grown in a 96 well plate and treated with 20 µM E3S for 

30 min. After removing the supernatant and washing with ice-cold PBS, the plate was frozen 

in liquid nitrogen and stored at -80 °C. Cells were applied in three different versions: Version 

1 (V1): addition of 40 µL matrix solvent mix to each well, then spotted; V2: add 20 µL water 

first, shaked, then addition of 20 µL matrix to each well, resuspended and spotted; V3: addition 

of 20 µL water first, then spotted directly. Then spotted matrix on top. (A) Crystallisation pattern 

of three different resuspension versions. (B) Normalised intensity (on internal standard D4-

E3S), 12 technical replicates, 4 measurement replicates each; box and whiskers from 5 to 95 

percentile; outliers shown as circles. (C) CV % value of three different suspension versions; 2 

biological replicates, 84 technical replicates with 4 measurement replicates each; box and 

whiskers from 5 to 95 percentile; outliers shown as circles. Done by Lena Schumacher. 

 

Besides matrix, concentration, solvent composition and application, also the 

resuspension solvent plays a substantial role in the detection of the analyte and 

therefore was analysed during the automation of the method. As H2O already showed 

to be a suitable solvent for cell-based assays144, 145, it was compared with ACN/H2O, 

which was used before. Therefore, water was used as the resuspension solvent during 

CyBio FeliX application of the cells onto the MTP. This change in resuspension solvent 

led to a substantial increase in the assay window comparing the vector control and the 
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OATP2B1 overexpressing cell line. The resuspension with ACN/H2O only showed an 

assay window of 4 (Figure 32,B), whereas the resuspension with water led to a >5x 

increase of the assay window (Figure 32,A). Water was therefore further used as 

resuspension solvent during the drug uptake assay. 

 

 

Figure 32: Influence of resuspension solvent on detection of E3S and assay window: 

HEK293-OATP2B1 and vec cells were treated with 20 µM E3S with and without erlotinib or 

only DMSO for 30 min. 2.5 mg/mL Ph-CCA-NH2 (ACN/H2O; 90/10) was used as a matrix. 

Samples were measured on a rapifleX. (A) Resuspension was done with water; 96 well plates 

were used and resuspension and cell application was performed by CyBio FeliX. (B) 

Resuspension was done with ACN/H2O (50:50) in a 24 well plate and applied manually. 9 

measurement replicates for each treatment are displayed in one spectrum. Done by Lena 

Schumacher. 

 

In addition to the resuspension solvent, also the matrix solvent was once again 

investigated after automation of the method. The method had a relatively high 

concentration of organic solvent (90 % ACN), which could maybe lead to difficulties in 

the handling due to rapid evaporation, therefore also a lower concentration of 70 % 

ACN was investigated. The comparison of the different amounts of solvent for the 

matrix showed no clear difference in important criteria like S/N (Figure 33,A) and peak 

ratio of analyte peak (E3S) compared to the internal standard peak (D4-E3S) (Figure 
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33,B). Therefore, also 70 % solvent is a usable composition and was used for further 

analyses. 

 

 

Figure 33: Comparison of 70 % ACN and 90 % ACN as solvent for matrix: HEK293-

OATP2B1 cells were pretreated with DMSO for 10 min. Then cells were treated with 10 µM 

E3S for 2 min. As solvent for 2.5 mg/mL Ph-CCA-NH2 there were two different concentrations 

of ACN used: 90 % and 70 %. Cells were resuspended and applied automatically, plate was 

measured with a rapifleX. (A) S/N of 16 technical replicates with 4 measurement replicates 

each. Shown is median with interquartile range. (B) Peak ratio of 16 technical replicates with 

4 measurement replicates each. Shown is median with interquartile range. 

 

The automation of the method was a gain for the applicability of the assay due to the 

time saved and reduction of manual steps to a minimum. Before the automation, one 

well of a cell culture plate had to be converted to one Eppendorf cup, which had to be 

spun down and supernatant removed manually. Also, the application of one Eppendorf 

cup had to be done manually. This step took about 3 hours for one MTP. With the fully 

automated method, this could be reduced to just 2 min. With this in mind, a high-

throughput approach can be pursued. This would not have been possible without 

automation. A comparison of the non-automated method with the automated method 

is shown in the following figures (Figure 34,34) and illustrates the ease of handling 

steps by the use of a pipetting robot for treatment and cell and matrix application 

(Figure 35). 
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Figure 34: Unautomated workflow of MALDI MS cell treatment assay: Critical steps are 

seeding out of the cells, incubation, resuspension, spotting and measurement. Figure done by 

Lena Schumacher 

 

 

Figure 35: Automated workflow of MALDI MS cell treatment assay: Manual steps were 

noticeably reduced. Treatment with compound and application of cells and matrix are done 

with a pipetting robot. Figure done by Lena Schumacher 

 

The fully automated method included the treatment of the cells with pharmaceuticals 

and sample resuspension together with dried droplet matrix application using the 
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CyBio pipetting platform. Data acquisition was done using a rapifleX MALDI MS and 

the developed method was now applicable to different use cases like the 

characterisation of the transport kinetics and also to the identification of new inhibitors 

(Figure 36). 

 

 

Figure 36: Applicability of the fully automated method: Cells are grown in a 96 well plate 

(0.5*10^6 cells/mL) for 24 hours. They are directly incubated with 5 mM sodium butyrate to 

increase the expression of the transporter. After 24 hours, the medium is changed to serum-

free medium one hour prior to drug treatment. Then, cells are treated with inhibitor/test 

compound/DMSO for 10 min followed by treatment with substrate. To stop the uptake of the 

substrate, the supernatant is removed by a vacuum aspirator and cells are washed once with 

ice-cold PBS. The plate is snap-frozen in liquid nitrogen and stored at -80 °C. Samples are 

resuspended in water and 0.3 µM internal standard D4-E3S is applied together with 2.5 mg/mL 

Ph-CCA-NH2 (ACN/H20 70/30). 2500 cells/µL are applied on one spot. Measurement is done 

with a rapifleX using the automated measurement function of the MPP software. Possibilities 

of application of this method are characterisation of transport kinetics or search for inhibitors. 
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4.3.3 CHECK OF THE REPRODUCIBILITY THROUGH CONCENTRATION-/ TIME-

DEPENDENCE AND pIC50 DETERMINATION 

The first step in drug uptake transporter assays always is the characterisation of the 

transport process. The time- and concentration-dependence of the uptake of the 

substrate have to be investigated in order to identify the optimal assay conditions for 

a possible screen. With the characterisation of the DBF uptake by the fluorescence-

based measurement, the structure of this elucidation has already been shown. The 

characterisation of the substrate uptake including time- and concentration-

dependence analysis is one of the possible applications of the automated and 

optimised MALDI MS method and therefore was the first real application example of 

the automation. The characterisation of E3S as OATP2B1 was also particularly of 

interest in comparison with DBF. Those two substrates could show completely 

different characteristics leading to different optimal assay conditions. 

For the analysis of concentration-dependence, cells were treated with various 

concentrations of E3S for 1 min. As it can be seen in Figure 37,A, there was a 

saturation curve seen of the OATP2B1 overexpressing cell line. The uptake of E3S 

into the vector control stayed low apart from the increase at 100 µM. The KM value of 

the uptake was calculated and was 21.1 µM. Hence, for the optimal assay condition, 

a concentration of 10 µM E3S was chosen, being clearly lower than the KM value and 

therefore not saturating the transport protein. The time-dependence was investigated 

by application of 10 µM E3S for various time points. After 5 min, a flattening of the 

curve could be seen. An incubation time of 2 min still lied clearly in the linear range of 

the uptake, thus it was defined as the optimal assay condition where transporter-

activity is determined27. Compared to DBF, this is a very short incubation time, 

highlighting the need to characterise every substrate before application in a screen 

(Figure 37,B). The first application of the automated assay was successful leading to 

a new methodological way of characterising a transport protein via a MALDI MS cell-

based assay and the identification of the optimal assay conditions for E3S drug uptake 

(2 min, 10 µM). 
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Figure 37: Investigation of concentration and time-dependence of E3S uptake through 

OATP2B1: (A) HEK293-OATP2B1 or vec cells were preincubated first with inhibitor/DMSO 

for 10 min and then the substrate was applied in different concentrations ( 1.7 µM to 100 µM) 

for 1 min. 3 biological replicates with 3 technical replicates each and 4 measurement replicates 

for every technical replicate are shown. All replicates of one biological replicate were 

averaged, the 3 mean values of the biological replicates were then included in this graph. Fit 

was done in GraphPad Prism using the Michaelis Menten fit. (B) HEK293-OATP2B1 or vec 

cells were preincubated first with inhibitor/DMSO for 10 min and then 10 µM E3S was applied 

for various time points (0.5-17 min). The cells were resuspended at 5000 cells µL-1 in ddH2O. 

Before the automated Dried Droplet application with the CyBio FeliX pipetting platform, the 

cells got mixed 1:1 with Ph-CCA-NH2 (2.5 mg/mL in ACN/ddH2O (70/30)). Samples were 

measured using a rapifleX MALDI. 3 biological replicates with 3 technical replicates each and 

4 measurement replicates for every technical replicate are shown. All replicates of one 

biological replicate were averaged, the 3 mean values of the biological replicates were then 

included in this graph. Time-dependence test done by Lena Schumacher. 

 

The relationship between detector response and E3S concentration had to be shown 

in order to demonstrate the reliability of the developed method. A measurement in the 

linear range of the detector was the goal in order to ensure that the detector response 

was not saturated already. Therefore, E3S was spiked to the cells in different 

concentrations and the normalised intensity of E3S was analysed. Especially the 

optimal assay condition of 10 µM that was determined during the concentration-

dependence analysis should be investigated. Figure 38 clearly shows a saturation of 

the detector response above 20 µM and thus proves the linearity of the signal of E3S 

until 10 µM, which can be seen in a close-up of the correlation. The resulting spearman 
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correlation coefficient of 0.95 makes clear that the linearity of the response is given 

and therefore the treatment with 10 µM E3S still lied in the linear range of the detector. 

 

 

Figure 38: Linearity of intensity and concentration of E3S: HEK293 cells were seeded out 

at 0.5*10^6 cells/mL and directly incubated with 5 mM sodium butyrate. After 24 h, the medium 

was aspirated and the cells got washed once with ice-cold PBS before snap-freezing in liquid 

nitrogen. Different concentrations of E3S were spiked to the cells during sample application 

and the matrix 2.5 mg/mL Ph-CCA-NH2 was spiked with 0.3 µM D4-E3S final for normalisation. 

Shown are average and standard deviation of 4 technical replicates with 4 measurement 

replicates each. 

 

However, the reproducibility of the method still had to be shown. For this purpose, the 

cells were treated with a concentration range of erlotinib to see the variation of the 

inhibiting effect with differing concentration of inhibitor. The experiment was performed 

three times to see if the pIC50 values were comparable. In case of a lack in 

reproducibility of pIC50 determination, the method would have to be optimised again. 

The results showed a pIC50 of 6.1 with a variance of just ±0.1 (Figure 39A,B,C). This 

clearly showed the reproducibility of the method on the identification of inhibitors and 

rendered the method applicable for the screen of the compound set, which was 

already tested in the fluorescence-based assay.  
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Figure 39: Evaluation of the reproducibility of the method by determination of pIC50 of 

erlotinib: (A,B,C) HEK293-OATP2B1 cells were preincubated first with different 

concentrations of inhibitor (5 nm to 33 µM) for 10 min and then the substrate was applied for 

2 min. The cells were resuspended at 5000 cells µL-1 in ddH2O. Before the automated Dried 

Droplet application with the CyBio pipetting platform, the cells got mixed 1:1 with Ph-CCA-NH2 

(2.5 mg/mL in ACN/ddH2O (70/30)). Samples were measured using a rapifleX MALDI. Data 

shows 3 biological replicates with 8 technical replicates and 4 measurement replicates each. 

pIC50 value generation of erlotinib produced a pIC50 value of 6.1+/- 0.1. Done by Lena 

Schumacher 

 

4.3.4 MALDI MASS SPECTROMETRY-BASED SCREENING OF INHIBITORS OF 

DRUG UPTAKE 

The reproducibility of the developed, on E3S detection optimised and automated 

method was shown and was therefore applied to the screen of the compound set. 

Therefore, the overexpressing cell line was tested in two biological replicates and also 

the vector control was tested in one biological replicate with a single concentration of 

10 µM for all compounds. One of the reasons for also testing the vector control was 

the effect of the tested drugs on the enrichment of E3S in the vector-transfected cell 

line. An enriched uptake of E3S in the vector control could be due to passive 

membrane transport or other transporters, except OATP2B1, which are also 

expressed in the vector-transfected cell line12. In the case of an identification of a 

compound, which has an enriching effect on the E3S uptake in vc cells, for this 

compound, there has to be a subtraction of the vc intensity done in order to make a 

statement about the effect of OATP2B1. Based on an R calculation made by Thomas 

Enzlein, the E3S intensities in the vector control were analysed for all 294 compounds. 

Naproxen was identified as a compound, which exhibited a high E3S peak intensity 

for the vector control (normalised intensity: 0.86 compared to a mean value of 0.2 for 

all other compounds). Therefore, an attempt of reproduction of the finding was done 
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in a separate cell assay that had the same structure as the screen. Again, an enriched 

uptake of E3S in the vector-transfected cell line was observed, which can be seen by 

comparison of the blue spectrum, which resulted from the incubation of the vector 

control with naproxen and E3S and the purple spectrum, which resulted from the 

incubation of the vector control with one other drug as example (cholecalciferol). The 

blue spectrum led to an 3.5x increase in the intensity suggesting an enriched uptake 

of E3S through other transporters or passive transport (Figure 40). The OATP2B1-

dependent effect of naproxen therefore has to be calculated by subtraction of the 

vector control intensity. 

 

 

Figure 40: Effect of treatment with naproxen on E3S uptake in vec cells: OATP2B1 and 

vec cells were pretreated with 10 µM naproxen/DMSO for 10 min before application of 10 µM 

E3S/DMSO for another 2 min. Uptake was stopped by washing with ice-cold PBS and plates 

were snap-frozen in liquid nitrogen. Application of 2500 cells per spot was done dried droplet 

with 2.5 mg/mL Ph-CCA-NH2 in 70 % ACN automated with the use of CyBio FeliX. Shown are 

8 measurement replicates of every treatment in ClinPro Tools. 

 

The developed cell-based MALDI MS method is a completely new tool, which can also 

be applied to a screen of this large amount of compounds in order to classify them as 

inhibitors or non-inhibitors of the transport process of E3S through OATP2B1. In the 

fluorescence-based assay, there were 57 inhibitors confirmed. A possible outcome of 

that screen could be to identify the same 57 compounds as in the fluorescence-based 
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assay. Alternatively, a lower or higher amount of compounds could be identified due 

to the use of another substrate. The conduction of the screen in two biological 

replicates with a concentration of 10 µM was done automated with the use of the CyBio 

FeliX pipetting platform. The cells were preincubated with the test compounds for 

10 min followed by the application of substrate for another 2 min. Then the uptake was 

stopped by washing with ice-cold PBS and the cells were frozen and resuspended like 

already described. Every plate contained DMSO control (considered 0 % inhibition) 

and erlotinib control (considered 100 % inhibition), % inhibition values were calculated 

for every compound. Compounds, which showed a mean inhibition ≥50 % were 

identified as a hit. In Table 3 all 76 compounds, which were counted as a hit are 

shown. A colour scale for the average value, on which the decision for hits is based, 

ranging from red (low % inhibition) to green (high % inhibition) is included and shows 

tendencies of potency of the inhibitors. All 76 compounds were further processed in 

pIC50 determination. 
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Table 3: Cell-based MALDI MS screen results: % inhibition values of 76 hits from two 

biological replicates of 294 compound set. Colour scale for the average, on which the decision 

of hit identification is based on, from red (low % inhibition) to green (high % inhibition). 

  

 

The fluorescence-based assay showed that a pIC50 determination is needed for the 

determination of potency of the inhibitors, but also for the confirmation of hits, as some 

were not confirmed as hits in the pIC50 determination. It was also of interest, if the 

inhibitors that were found in both assay types would be comparable in their potency. 

For the investigation of the potency of the identified inhibitors, a detailed concentration 

response analysis in the form of a pIC50 determination had to be done. For pIC50 

determination, the cells were treated with a dilution series of the hit compounds 

ranging from 5 nm to 100 µM. Again, every plate contained positive and negative 

control. The determination was done for six biological replicates. The detailed analysis 

of the concentration-dependent inhibition confirmed 67 as inhibitors. The confirmation 

Name % inhibition n=1 % inhibition n=2 Average

Acemetacin 95.5 126.1 110.8

Amiodarone 69.5 60.8 65.2

Amlodipine 48.6 54.6 51.6

Amsacrine 73.3 87.9 80.6

Aripiprazole 70.0 80.1 75.1

Atorvastatin 99.3 117.0 108.1

Benzbromarone 110.2 115.6 112.9

Bicalutamide 89.3 88.6 88.9

Budesonide 102.3 81.8 92.1

Calcitriol 77.8 92.7 85.3

Celecoxib 93.3 120.7 107.0

Ceritinib 74.7 57.5 66.1

Clobetasol Propionate 90.9 71.1 81.0

Clopidrogel 116.0 106.2 111.1

Cyclosporine 74.5 61.0 67.7

Desogestrel 64.9 78.1 71.5

Diacerein 76.7 72.3 74.5

Diethylstilbestrol 102.2 110.4 106.3

Dipyridamole 111.2 111.3 111.3

Doxazosin Mesylate 67.7 72.3 70.0

Dronedarone 39.6 63.7 51.6

Drospirenone 76.7 70.2 73.4

Efavirenz 83.7 70.8 77.3

Ergocalciferol 41.7 96.9 69.3

Erlotinib 105.0 108.7 106.8

Estradiol 98.6 106.8 102.7

Ethinyl Estradiol 81.2 108.3 94.8

Ezetimibe 124.1 111.6 117.9

Felodipine 97.6 62.2 79.9

Fenofibrate 107.1 121.4 114.3

Fluticasone 83.1 99.4 91.2

Fluticasone Propionate 102.3 119.3 110.8

Fluvastatin 96.9 119.7 108.3

Glimepiride 87.2 87.2

Gliquidone 104.3 95.2 99.7

Glyburide 96.3 98.2 97.2

Guacetisal 53.6 70.1 61.8

Ipriflavone 111.8 129.7 120.8

Name % inhibition n=1 % inhibition n=2 Average

Irbesartan 65.1 77.6 71.3

Itraconazole 104.6 104.8 104.7

Ketoconazole 106.4 85.9 96.2

Lansoprazole 68.0 46.3 57.2

Latanoprost 112.6 113.9 113.2

L-Thyroxine 108.7 103.5 106.1

Loratadine 93.5 118.0 105.8

Losartan 102.6 100.9 101.7

Lovastatin 99.6 106.7 103.1

Medroxyprogesterone 65.2 60.1 62.6

Mometasone Furoate 94.5 96.2 95.4

Montelukast 109.4 101.8 105.6

Nabumetone 58.4 55.8 57.1

Nebivolol 70.1 47.7 58.9

Norethindrone 85.5 103.1 94.3

Novobiocin 32.1 68.3 50.2

Olsalazine 61.5 76.2 68.8

Oxybutynin 80.4 106.2 93.3

P-3004
Unergol 106.0 97.0 101.5

Parecoxib 56.2 68.3 62.2

Pioglitazone 66.0 78.8 72.4

Prasugrel 95.7 62.3 79.0

Progesterone 63.5 81.6 72.5

Quetiapine Fumarate 100.7 81.0 90.8

Quinapril 70.1 75.5 72.8

Raloxifene 115.0 102.3 108.7

Reserpine 85.6 96.2 90.9

Silymarin 54.9 90.2 72.5

Simvastatin 70.5 81.3 75.9

Tacrolimus 77.8 125.8 101.8

Tamoxifen Citrate 58.1 68.2 63.2

Tianeptine 54.6 57.2 55.9

Ticagrelor 112.1 110.7 111.4

Tipranavir 99.1 105.8 102.5

Tolterodine Tartrate 60.2 53.1 56.6

Travoprost 112.1 105.3 108.7

Vilazodone Hydrochloride 89.4 95.9 92.6

Zafirlukast 95.0 82.8 88.9
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was not possible for 9 compounds: Amiodarone, ceritinib, dronedarone, efavirenz, 

ergocalciferol, glyburide, lansoprazole, tamoxifen citrate and tolterodine tartrate. Apart 

from efavirenz and glyburide, all compounds that failed to be confirmed were close to 

50 % inhibition. Some like dronedarone, ergocalciferol and lansoprazole showed a % 

inhibition value beneath 50 for one replicate confirming the struggle in hit confirmation. 

All of the compounds could not be confirmed as inhibitors, because they did not show 

an inhibition > 50% at the highest concentrations investigated in the pIC50 

determination. Nevertheless, 14 of the confirmed inhibitors can be seen as potent 

inhibitors with a pIC50 ≥6 (Figure 41,Table 4), which showed the need for investigation 

of the inhibitors. 

 

 

Figure 41: MALDI MS results of the screen of 294 compounds: pIC50 determination of hits 

(≥50 % inhibition) revealed several potent inhibitors. For pIC50 determination, HEK293-

OATP2B1 cells were preincubated with a dilution series of hit compounds followed by 

treatment with substrate for 2 min. Every plate contained DMSO control (considered 0 % 

inhibition) and erlotinib control (considered 100 % inhibition). pIC50 values were generated by 

using the “response vs log (inhibitor concentration) variable slope” equation with no constraint 

on all parameters (IC50, hill coefficient, bottom, top) in GraphPad Prism177. Screen was 

conducted together with Lena Schumacher. 

 

The pIC50 determination was conducted in six biological replicates. Thus, the 

reproducibility of the assay, which is an elemental factor of assay validation, could be 

assessed in a comparison of the replicates. With a mean standard deviation of 0.3 and 
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a CV % under 5.5 for the whole data set, the method clearly showed to be a reliable 

and reproducible tool for identification of drug uptake inhibitors. Indicated in red are 

the 14 most potent inhibitors that were identified (Table 4). Those were acemetacin, 

atorvastatin, benzbromarone, cyclosporine, diethylstilbestrol, ezetimibe, fluticasone, 

fluvastatin, itraconazole, ketoconazole, montelukast, reserpine, tipranavir and 

zafirlukast (Table 4). Acemetacin was already identified as a potent inhibitor in the 

fluorescence-based screen and is also a known inhibitor of OATP1B1186. Also 

atorvastatin187, benzbromarone, fluvastatin171, montelukast188 and tipranavir189 were 

already found as potent inhibitors in the fluorescence-based assays and are known 

OATP2B1 inhibitors. Cyclosporine196, diethylstilbestrol, reserpine and itraconazole171 

are known OATP2B1 inhibitors. Ezetimibe and ketoconazole were described as non-

inhibitors of OATP2B1 in literature171 and fluticasone and zafirlukast were not known 

as an inhibitor before. From the classification of those inhibitors, which range from 

statins over immunosuppressants (cyclosporine) to leukotriene receptor antagonists 

(montelukast and zafirlukast), it becomes clear that the inhibitors can’t be predicted by 

the similarity of structure of pharmacological application. Nevertheless, there are also 

computer-based studies evolving, which predict inhibitors and non-inhibitors based on 

a training set of known compounds197, 198. Those approaches are called quantitative 

structure-activity relationship (QSAR) models and could also help to further investigate 

inhibitors of the transport protein. 
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Table 4: Listing of the pIC50 screening results for 6 biological replicates: pIC50 values 

were generated as already mentioned. Standard deviation and CV % were calculated for all 

six replicates (if available). Mean standard deviation was 0.3 and mean CV % 5.2. Indicated 

in red are potent inhibitors with a pIC50 ≥6. Screen was conducted together with Lena 

Schumacher. 

  

 

Besides the confirmation of reproducibility through the comparison of the pIC50 

determination, the intra-assay reproducibility could also be analysed by a comparison 

of the % inhibition values of the two biological replicates of OATP2B1. With a 

Spearman correlation coefficient of 0.86, the assay showed to be reproducible and a 

good validation of the obtained results (Figure 42).  

 

Name n=1 n=2 n=3 n=4 n=5 n=6 Mean STDEV CV%

Acemetacin 7.1 7.3 6.8 5.6 7.0 7.3 6.9 0.6 9.3

Amlodipine 4.9 4.8 4.8 4.8 4.9 5.0 4.9 0.1 1.9

Amsacrine 5.4 5.0 5.0 5.2 4.7 5.5 5.1 0.3 5.6

Aripiprazole 5.2 5.5 5.7 5.9 5.6 5.4 5.5 0.2 4.4

Atorvastatin 7.0 6.9 6.6 6.1 6.4 6.0 6.5 0.4 6.4

Benzbromarone 6.3 6.3 5.7 5.8 6.1 5.7 6.0 0.3 4.7

Bicalutamide 5.4 5.1 5.2 5.2 5.2 0.1 2.7

Budesonide 6.1 5.3 5.4 4.8 5.2 5.1 5.3 0.4 8.2

Calcitriol 5.5 5.7 5.6 5.7 5.6 6.0 5.7 0.2 2.7

Celecoxib 5.6 6.1 5.4 5.2 5.5 6.3 5.7 0.4 7.5

Clobetasol Propionate 5.6 5.3 5.7 5.7 5.5 5.7 5.6 0.2 3.2

Clopidogrel 5.3 5.3 5.6 5.5 5.3 6.1 5.5 0.3 5.6

Cyclosporine 6.5 7.0 6.5 6.5 6.2 6.5 0.3 4.6

Desogestrel 5.0 4.9 5.1 5.2 5.4 5.5 5.2 0.2 4.4

Diacerein 5.0 4.9 5.1 5.1 5.2 5.4 5.1 0.2 3.9

Diethylstilbestrol 7.2 7.0 7.0 6.1 6.7 6.4 6.7 0.4 5.9

Dipyridamole 5.9 5.4 5.4 5.4 5.8 5.4 5.6 0.2 3.8

Doxazosin Mesylate 5.4 4.8 5.1 5.4 5.0 5.4 5.2 0.3 5.4

Drospirenone 4.9 4.9 5.2 5.2 5.0 5.5 5.1 0.2 4.0

Erlotinib 5.4 5.2 5.7 5.7 5.9 6.1 5.7 0.3 5.6

Estradiol 5.5 5.4 5.5 6.1 5.3 5.0 5.5 0.4 6.5

Ethinyl Estradiol 5.8 5.4 5.6 5.8 5.7 5.3 5.6 0.2 3.6

Ezetimibe 7.0 6.4 6.4 6.4 6.5 6.9 6.6 0.3 4.0

Felodipine 5.9 5.8 6.2 5.9 5.9 5.7 5.9 0.2 3.0

Fenofibrate 6.0 5.5 6.0 5.9 5.9 5.4 5.8 0.3 4.9

Fluticasone 6.5 6.9 6.0 5.8 5.9 6.1 6.2 0.4 6.8

Fluticasone Propionate 6.5 6.1 5.6 5.0 5.7 6.4 5.9 0.6 9.5

Fluvastatin 6.4 5.9 6.3 5.3 6.3 6.0 6.0 0.4 6.9

Glimepiride 4.8 5.4 5.3 5.5 5.8 5.4 5.4 0.3 6.4

Gliquidone 5.9 5.9 5.5 5.7 5.5 5.6 5.7 0.2 3.3

Guacetisal 4.8 4.9 5.0 4.8 5.4 5.0 5.0 0.2 4.7

Ipriflavone 5.7 5.4 6.0 5.5 6.0 5.5 5.7 0.2 4.3

Irbesartan 5.7 6.0 5.9 6.1 5.5 5.5 5.8 0.3 4.4

Itraconazole 6.9 6.4 6.1 6.9 5.8 6.9 6.5 0.5 7.1

pIC50

Name n=1 n=2 n=3 n=4 n=5 n=6 Mean STDEV CV%

Ketoconazole 6.2 6.4 6.1 6.3 6.5 6.4 6.3 0.1 2.4

Latanoprost 6.2 5.0 5.8 6.3 5.9 5.8 0.5 8.6

Loratadine 6.0 5.7 5.5 6.1 5.9 5.9 5.8 0.2 3.7

Losartan 5.7 5.4 6.0 5.8 5.0 5.9 5.6 0.4 6.5

Lovastatin 4.9 5.0 5.0 4.7 4.7 5.0 4.9 0.1 2.6

L-Thyroxine 5.2 5.6 5.7 5.4 5.2 5.4 5.4 0.2 3.6

Medroxyprogesterone 6.1 5.7 5.5 5.0 5.3 5.6 5.5 0.4 6.7

Mometasone Furoate 5.3 5.7 5.6 5.3 5.5 0.2 3.6

Montelukast 7.8 7.8 7.7 7.8 0.0 0.5

Nabumetone 4.9 4.9 4.8 4.8 5.1 4.8 4.9 0.1 2.5

Nebivolol 4.6 5.2 5.8 5.3 5.4 4.9 5.2 0.4 8.2

Norethindrone 5.9 5.0 5.4 5.2 5.5 5.0 5.3 0.3 6.5

Novobiocin 4.6 4.6 4.7 4.3 5.0 5.0 4.7 0.3 5.8

Olsalazine 5.5 6.0 5.2 5.4 5.9 5.6 5.6 0.3 5.4

Oxybutynin 5.7 5.0 5.5 5.0 5.5 5.5 5.3 0.3 5.4

P 3004 Unergol 5.9 5.4 5.3 5.9 5.7 5.5 5.6 0.2 4.4

Parecoxib 5.0 4.8 5.0 5.4 5.4 5.4 5.2 0.3 5.2

Pioglitazone 5.4 5.0 4.8 4.9 5.9 5.4 5.2 0.4 7.7

Prasugrel 5.8 5.7 6.2 5.5 5.8 5.6 5.8 0.3 4.6

Progesterone 5.0 5.2 5.5 5.4 5.3 5.3 0.2 3.9

Quetiapine Fumarate 6.6 5.2 5.2 5.7 5.3 5.4 5.6 0.5 9.4

Quinapril 5.1 4.6 4.9 4.6 4.8 4.6 4.8 0.2 4.5

Raloxifene 6.2 5.6 5.9 5.9 0.3 4.5

Reserpine 7.0 7.3 7.0 7.2 6.9 7.5 7.2 0.2 3.1

Silymarin 5.0 5.0 5.3 4.9 4.6 5.2 5.0 0.2 5.0

Simvastatin 5.1 5.4 5.3 5.3 5.1 5.0 5.2 0.2 3.0

Tacrolimus 6.1 5.9 6.0 5.2 6.0 6.0 5.8 0.3 5.8

Tianeptine 4.3 4.7 5.0 4.7 4.6 4.9 4.7 0.2 4.8

Ticagrelor 5.9 5.4 5.2 5.4 5.6 5.5 0.3 5.0

Tipranavir 7.3 7.7 7.1 6.7 6.1 7.0 0.6 9.1

Travoprost 6.1 6.6 5.9 5.6 5.7 5.6 5.9 0.4 6.6

Vilazodone Hydrochloride6.3 5.7 6.0 5.8 5.6 6.0 5.9 0.3 4.6

Zafirlukast 6.6 6.5 6.4 5.6 6.3 5.5 6.2 0.5 7.6

Mean 0.3 5.2

pIC50
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Figure 42: Intra-assay reproducibility of MALDI MS screen: Comparison of two biological 

replicates for screening of the compound set in MALDI MS. For the screen HEK293-OATP2B1 

cells were preincubated with 10 µM test compound for 10 min. After 2 min incubation with the 

substrate E3S, the cells were washed with ice cold PBS to stop the uptake. Cells were 

resuspended in ddH2O and 0.3 µM D4-E3S dissolved in 2.5 mg/mL Ph-CCA-NH2 (ACN/H2O 

70/30). Via dried droplet performed by the CyBio FeliX pipetting platform, 2500 cells per spot 

were applied and measured automated with the MPP software. Every plate contained DMSO 

control (considered 0 % inhibition) and erlotinib control (considered 100 % inhibition). % 

inhibition values were calculated for every compound and compared here. Spearman 

correlation coefficient is 0.86. Screen was conducted together with Lena Schumacher. 

 

Due to the high concentrations used in this assay, a viability test in the form of a 

CellTiter-Glo assay was conducted. High concentrations could possibly lead to cell 

death resulting in disturbing signals. Therefore, the cells were treated with all 294 

compounds in the same way like in the screen and after washing the cells after the 

treatment, they were incubated with 50 µL PBS and the same amount of CellTiter-Glo 

reagent. A 10 min incubation at room temperature followed a shaking step and 

luminescence was measured in a plate reader thereafter. Cells that showed a viability 

of less than 80 % due to the treatment were excluded from the calculations (Table 5). 

This was the case for high concentrations of quetiapine fumarate, ticagrelor, tamoxifen 

citrate, dronedarone, amlodipine, ipriflavone, celecoxib, efavirenz, docusate, 

doxazosin mesylate, nebivolol, ketoconazole, travoprost and ceritinib. 
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Table 5: CellTiter-Glo Viability measurement of pIC50 determination: Viability of the cells 

was measured at every concentration used during concentration-dependent analysis of 

inhibition on drug uptake. Values with viability less than 80 % were excluded from the data 

set. The compounds, which led to an exclusion of at least one concentration are listed below. 

 

 

Having two established methods for the analysis of inhibitors of E3S drug uptake 

through OATP2B1 now brought the possibility of comparison of the two assay types. 

Due to the use of different methods and substrates of OATP2B1 and differences in 

experimental setup, an inhibitor identification differing from each other is likely. A 

comparison of the % inhibition and the pIC50 of the compounds for both assay types 

was therefore done. The comparison of the whole dataset by analysis of the 

% inhibition values for the compounds showed differences between the two methods. 

With MALDI MS, a total number of 67 hits could be verified, 47 of them were also 

identified with the fluorescence assay, 20 of them were just found with MALDI MS. For 

the fluorescence-based assay, a total number of 57 were found as hits, whereas 10 of 

Compound conc. Compound conc. Compound conc.

100 µM 33 µM 11 µM

Amlodipine 30.93 75.71 94.51

Amsacrine 79.22 101.53 105.38

Benzbromarone 78.23 93.87 98.7

Celecoxib 35.55 91.82 109.56

Ceritinib 23.79 32.44 82.43

Desogestrel 77.26 88.14 94.59

Dipyridamole 75.01 88.99 91.83

Docusate 24.38 43.88 88.43

Doxazosin Mesylate 40.64 96.32 93.45

Dronedarone 37.86 70.6 93.32

Efavirenz 24.38 61.35 85.8

Ethinyl Estradiol 79.97 74.63 87.52

Ezetimibe 78.79 75.23 90.1

Fenofibrate 77.2 76.575 84.9

Ipriflavone 68.19 85.06 88.17

Ketoconazole 32.26 58.19 88.69

Nebivolol 15.16 22.42 79.45

Norethindrone 84.65 76.8 95.01

Oxybutynin 79.62 87.22 96.75

Quetiapine Fumarate 32.24 87.05 89.27

Tamoxifen Citrate 61.51 89.34 95.63

Ticagrelor 44.44 80.76 103.03

Tolterodine Tartrate 76.53 92.85 95.72

Travoprost 102.49 48.09 75.69

Viability [%]

Compound
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them were only found in fluorescence, not with MALDI MS. The methods were found 

to not overlap completely in regard to the identification of inhibitors (Figure 43,A). Also 

the detailed analysis of the ones being a hit in both assay types through a comparison 

of pIC50 values brought up some differences leading to a Spearman correlation 

coefficient of 0.44 (Figure 43,B). The fact that the two methods partly led to the 

identification of different inhibitors shows the need to have a reference method for 

testing inhibitors of drug uptake. 

 

 

Figure 43: Comparison of MALDI MS-based and fluorescence-based assay: (A) 

Comparison of % inhibition values for both methods, for MALDI MS, the average of the two 

biological screening replicates was used, for fluorescence only the 10 µM screening data. (B) 

pIC50 value comparison of both methods. Only the ones leading to a hit in both assay types 

could be compared. Screen was conducted together with Lena Schumacher. 

 

A previously published radioactive-based study by Karlgren et al.171 examined a 

comparable data set using also E3S as substrate for OATP2B1. As the use of the 

same substrate like in the MALDI MS assay leads to a better comparability of the 

assay types, a comparison of the two assays was done. A possible outcome could 

range from the identification of the same inhibitors in both assay types to a low overlap 

of inhibitors found in both methods. 75 compounds and their respective inhibition 

values were compared. Compounds ≥ 50 % inhibition were highlighted in orange. As 

it can be seen in some cases, the compound was identified as inhibitor in both 

methods, but the % inhibition values varied due to the differing method. Compounds 
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were counted as “consistent in both methods” when they were identified as a non-

inhibitor <50 % inhibition or inhibitor >50 % inhibition with an additional consideration 

of ±5 %. Only 13 of 75 compounds were based on this calculation identified as not 

consistent in both assays (Table 6). 

 

Table 6: Comparison of MALDI and Karlgren data: % inhibition values of both methods are 

compared for 75 compounds. Compounds were counted as inhibitor/non-inhibitor as already 

described with an additional consideration of ± 5 %. Critical compounds (simvastatin, estradiol, 

doxazosin mesylate, genistein, tetracycline, ketoconazol), which lied in the limit of ± 5 % were 

counted as “consistent in both methods” due to their comparable result to the other assay 

format respectively. Cyclosporine revealed an IC50 of 37 µM in the Karlgren assay and was 

therefore also counted as inhibitor. 
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The comparison of both datasets was done by classifying the compounds which were 

analysed in both assay types as “inhibitors” (≥50 % inhibition) or “non inhibitors” <50 % 

inhibition. Also values ±5 % were accepted in this classification. Generally, it could be 

stated that the data sets agreed well in 83% of the cases. Some compounds (12 %) 

were only found in the MALDI MS assay as inhibitors, even less (5 %) only in the 

Karlgren study based on a radioactive assay (Figure 44). The comparability to already 

published data rendered MALDI MS a possible screening tool. 

 

 

Figure 44: Comparison of Karlgren publication with MALDI data: Overlap of 83 % of 

consistently identified inhibitors/non-inhibitors. Compounds that showed an inhibition of 50 % 

± 5 % in both methods were considered as inhibitor. 

 

4.3.5 SEARCH FOR SUBSTRATES OF OATP2B1 DURING SCREEN 

As the SLC family is still an understudied drug target class9 and a new consortium with 

13 partners and the goal to de-orphanise transporters of the SLC family in a large 

scale has been established just recently199, there is a high interest in methods that 

tackle the de-orphanisation. By now, there are only fluorescence-, radio-labelled and 

LC-MS/MS methods in use for the detection of transporter substrates. A method, 

which identifies several substrates at once by analysing the mass spectrum does not 

exist yet and is therefore highly demanded. The developed and automised cell-based 

MALDI MS assay is theoretically capable of serving this need. The uptake of one 

compound, E3S was confirmed in this study and because it is a mass spectrometric 
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analysis and the whole mass spectrum is gathered for every measurement, there is 

also the possibility for further analysis regarding identification of substrates.  

The first reason of parallel conduction of the screen in the vector control was already 

described as the control of E3S enrichment in the vector control due to concomitant 

incubation with other drugs. The second reason of parallel conduction of the screen in 

the vector control was the search for a substrate of OATP2B1. The comparison of the 

mass spectrum of the vector control with the one of the overexpressing cell line could 

theoretically help to identify a substrate. Assuming one of the compounds (“compound 

A”) in the 294 compound set has a chemical structure that leads to the m/z of 429.13, 

the mass spectrum is investigated at this value. Four different cases can occur. If the 

overexpressing cell line shows signal intensity at the sought-after m/z of 429.13 and 

simultaneously, the vector control does not show a peak at this m/z value, the signal 

window between these two peaks is analysed and has to be >1.5x in order to fulfil the 

criteria of a substrate (Figure 45,A). The signal window is analysed by division of the 

(normalised) peak intensity of the peak at 429.13 m/z of OATP2B1 through the peak 

at this m/z obtained with the vector control. The simplicity of the MALDI based 

substrate identification concept gets clear by the awareness that in just one mass 

spectrum, the information of 294 compound is available at the same time, which could 

theoretically lead to a large scale identification of substrates. Nevertheless, the three 

other cases describe the situation where no substrate was found. A peak that was 

identified at the sought-after m/z only in the vector control and not in the OATP2B1 

cell line does not lead to an identification of a substrate (Figure 45,B). This is also the 

case, when there is no peak at all identified at this respective m/z (Figure 45,C). 

Reasons for that could be that the substrate, which should be detected at this m/z 

does not fly (well enough) in the TOF. A last possible scenario is that in both cell lines 

a peak at the sought-after m/z is detected, which also does not lead to the identification 

of a substrate (Figure 45,D). This can also be due to the transport process occurring 

via passive transport or other transporters expressed in both cell lines. It is 

nevertheless not always possible to make a statement about the uptake of a drug into 

the cells by just identifying if a peak is present at the sought-after m/z. In the case of 

(Figure 45,D), this is not already a proof for the uptake of this substance into the cells 

in general, but it could also be an endogenous substance producing a peak at the m/z.  
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Figure 45: Concept of OATP2B1 substrate identification in MALDI MS: As an example 

drug, “Compound A” with an m/z of 429.13 is shown. Comparison of OATP2B1 overexpressing 

cell line with vector control can lead to three different cases. (A) OATP2B1 shows peak at the 

sought-after m/z and vec not. If the factor of signal intensities divided through each other >1.5, 

a substrate is identified. (B) Vec shows peak at the sought-after m/z and OATP2B1 not. No 

substrate was identified. (C) None of the cell lines show a peak at the sought-after m/z. No 

substrate was identified. (D) Both of the cell lines show a peak at the sought-after m/z. No 

substrate was identified. 

 

The concept of this method was applied to the screen. Therefore, the results were 

normalised to the internal standard and the intensities of OATP2B1 and the vector 

control compared at different m/z – according to the respective compound mass. The 

criteria for substrates were defined as there needs to be a factor of > 1.5 between the 

OATP2B1 peak intensity and vector control peak intensity. Based on those criteria, 

there were two compounds identified, which showed a high signal between OATP2B1 

and the vector control based on the average of two biological replicates of OATP2B1. 

As it can be seen already, the reproducibility lacked as in the first run, both compounds 

produced a high normalised signal intensity, whereas the normalised signal intensity 

of the second biological replicate was comparable with the vector control (Table 7). 
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Table 7: Compounds that meet the criteria of a candidate substrate for OATP2B1: Signal 

window of OATP2B1 vs vector results from average of two replicates from OATP2B1 

screening data. Data processed in R by Thomas Enzlein. 

Compound OATP2B1 N=1 OATP2B1 N=2 vector Signal window 

Fluvastatin 0.73 0.07 0.05 7.6 

Sulfasalazin 5.8 0.03 0.02 161.9 

 

The further goal was to verify those trends in a separate cell treatment once again. 

Therefore, the cells were pretreated with DMSO/erlotinib and treated 10 min with 

10 µM compound. The results show that none of the identified compounds could be 

verified as a substrate of OATP2B1. There was no significant difference between 

transporter overexpressing cell line and vector control seen, neither for sulfasalazine 

(Figure 46,A), nor for fluvastatin (Figure 46,B). This finding emphasised the 

assumption of the screen that the reproduction of the increased peak intensity in the 

OATP2B1 cell line cannot be achieved. Further, both compounds were investigated 

regarding their detection limit in MALDI-TOF. During the method optimisation, it was 

already shown that a high S/N is the basis for a reproducible detection. Thus, both 

compounds were analysed with a focus on their detection limit by analysing a dilution 

series of the compounds in cell background. Fluvastatin showed a low detection limit 

of about 8 arb. u. at a relatively high concentration of 2.5 µM. Additionally, a peak is 

detected with the addition of just DMSO, which leads to the assumption that there is 

also an endogenous peak at this m/z, which could disturb the measurement (Figure 

46,D). The detection limit of sulfasalazine is high with low concentrations as 0.6 µM 

and 0.2 µM still able to detect with arb. u. of 25 and 11 respectively. (Figure 46,C). 

Nevertheless, it was not possible of being identified as substrate during the screen 

and in the reproduction. Possible reasons for that are likely to be found in the method 

properties. As it was already shown multiple times during the assay development, the 

detection in cells is dependent on various factors ranging from matrix and solvent 

composition, to application of matrix and matrix analyte ratio. An optimised method for 

sulfasalazine is likely to show its uptake as a substrate, as it is also already a known 

substrate for OATP2B1200. 
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Figure 46: Further testing reveals no possible substrates for OATP2B1: (A,B) 

Comparison of sulfasalazine and fluvastatin. HEK293-OATP2B1 or “vector” cells were 

pretreated with DMSO/4 µM erlotinib for 10 min before 10 µM of the compounds was added 

for 10 min. Uptake was stopped and cells were frozen. Cells were resuspended in 

ddH2O/matrix (2.5 mg/mL Ph-CCA-NH2 in 70 % ACN)/internal standard D4-E3S to a final cell 

number of 2500 cells/spot. Shown are 8 measurement replicates of each treatment in ClinPro 

Tools. (C,D) Flight test of sulfasalazine and fluvastatin. For the flight tests, there were different 

final concentrations of compound (0.2 µM-20 µM or only DMSO) added to a cell pellet of 

HEK293-OATP2B1. Shown are 8 measurement replicates of each concentration in ClinPro 

Tools. 
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5 DISCUSSION 

5.1 FLUORESCENCE-BASED ASSAYS AND THEIR POSSIBLE DISADVANTAGES 

IN SCREENING 

The success of a drug candidate during clinical trials is dependent on different aspects. 

They can be metaphorically summed up as four pillars of efficacy: high exposure at 

the site of action, sufficient target engagement, the functional pharmacology and the 

relevant phenotype201. If a drug candidate has a lack in one of those pillars, it is more 

likely to fail during clinical trials59. The process of clinical trials as such is a time- and 

cost-intensive work. During and also after the market launch of a drug, a special 

emphasis is given on possible adverse events, which could lead to a withdrawal of a 

product from the market in serious cases. Those processes show that, among many 

other things, it is important to conduct research on the uptake mechanism of cells, 

which are an important player of exposure at the site of action, namely the first pillar 

of efficacy, and of adverse events. OATP2B1 seems to be one of the key players of 

intestinal absorption202, even though it has already been discussed to be located at 

the basolateral membrane of enterocytes203. Therefore, it is of importance to 

investigate the transport protein regarding to substrates and inhibitors. 

This was done in the first part of this thesis by the conduction of a fluorescence-based 

assay. Those assay types are besides radioactive measurements very common for 

transporter characterisation. Due to the western blot showing a clear overexpression 

of OATP2B1 compared to the vector control, those cell lines could be compared in 

order to characterise the transport protein. Another control was done by fluorescence 

microscopy, which clearly showed the uptake of DBF exclusively into OATP2B1-

overexpressing cells. The vector control, which was also treated with DBF, showed no 

fluorescence, thus validating the method. The time-dependence of the DBF uptake 

was analysed in order to determine the kinetics of transport of DBF. A plateau of the 

fluorescence intensity in OATP2B1 cells could be seen after 60 min. Reported 

timepoints of plateauing intensity range from short timepoints like several seconds to 

few minutes204-206 to long timepoints like 30-60 min, like in our case73, 207, 208. The 

analysis of the same transport protein with different substrates can lead to differences 

in plateauing time209 and makes clear that the decision for the substrate is fundamental 

for transporter studies. 
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The KM value was determined by investigation of a concentration range of DBF. The 

KM value was found to be 10.5 µM and is nearly identical with 10 µM published by 

Izumi et. al.173. The uptake was neither time-dependent nor concentration-dependent 

in the vector control showing a clear effect of the transport protein OATP2B1. The 

verification of the assay was done with the determination of the pIC50 of the known 

inhibitor erlotinib171. The pIC50 in the assay validation resulting from eight separate 

occasions was 7.0 ±0.1, which is slightly different to the value known from literature 

(6.3), which was obtained by usage of E3S as a substrate171. The conduction of the 

screen, which followed the characterisation of the transport, led to a pIC50 of 7.1 of two 

separate experimental assay runs showing the reproducibility of the method. The 

screen of the compound set revealed 66 compounds ≥50 % inhibition. 57 hits were 

confirmed and 8 potent inhibitors with a pIC50 ≥6 identified.  

As the intestine has a high risk of DDI because it has a special propensity to be 

exposed to high concentrations of drugs185, Jennypher Mudunuru from 

GlaxoSmithKline did a clinical extrapolation of the pIC50 data. This calculation also 

took the route of the drug, the molecular weight, the pKa, the actual dose, Iin,max as the 

estimated maximum plasma inhibitor concentration at the inlet to the liver and the 

unbound fraction (fu)210 of the drug in plasma into account. For detailed description of 

calculation process, refer to170. For the extrapolation of intestinal clinical relevance, 

the Igut was calculated. It is calculated as the dose of the drug divided through 250 mL 

and describes the intestinal luminal concentration of the interacting drug. Compounds 

with an Igut/IC50 ≥ 10 are flagged as clinically relevant in the intestine. The influence of 

the hepatic drug uptake was calculated using the Iin,max. Drugs leading to 1+Iin,max/IC50 

≥ 1.1 were flagged as clinically relevant in the liver. This illustrates that the IC50 does 

not necessarily has to be very low, viz. potent, in order to also fulfil the needs for being 

accounted as clinically relevant. Flutamide for example had an IC50 of 32.4 µM, which 

did not render it as a potent inhibitor. Nevertheless, the high Igut of 3620 and high Iin,max 

of 56 led to a value of 112 for the intestinal analysis and 1.1 for the hepatic analysis 

and therefore counted as clinically relevant in both tissues. This makes the need to 

investigate inhibitors even more important, because also less potent inhibitors could 

lead to clinical effects. 

The outcome of the clinical extrapolation was that 66 % of the identified inhibitors were 

clinically relevant in the intestine and 29 % in the liver. This is a really high number 
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possibly leading to DDI. Considering the fact that (when all medications are counted) 

more than 81 % of individuals would be taking at least 1 medication in a given week 

and more than 25 % would be taking at least 5 medications211 and the population is 

getting older and thus it’s coming to a worsening of that problem, attention to this is 

immensely important. The fluorescence-based assay, which was developed, can 

therefore act as a screening tool to classify the DDI potential of a drug set. In the end, 

a double verification with an in vivo test is intended and can shed another light onto 

the statement. For the conduction of the in vivo tests, OATP2B1 knockout mice would 

have to be created. They would be compared to the wildtype throughout the 

experiments. In the case of the study of Chen et. al., erlotinib as the standard inhibitor 

was given to the mice 1 h before administration with fluvastatin. Serial blood samples 

were taken at several timepoints after administration of the substrate fluvastatin. The 

samples were analysed using LC-MS/MS and fluvastatin concentrations were 

determined212. Such a structure of a study could also be used for the dataset of the 

fluorescence-based assay. Of course this would have the negative side effect that the 

usage of many wildtype and knockout mice would be needed. 

Bringing the research on the transporter to an even higher level, it could be possible 

to establish an individual dosing of patients according to their transporter availability 

in the genome213. Interindividual variability of transporters are a common 

phenomenon214, for which in the case of OCT1 for example the reasons are manifold 

ranging from genetic variants, epigenetic modifications and transcription factors to 

non-genetic factors, such as cholestasis. Metformin is a known important substrate of 

OCT1215 and is postulated to be affected by the interindividual variability. Differences 

in its pharmacokinetics and response to metformin therapy can be possible results213. 

Adressing this interindividual variability of the transporters by analysis of transporter 

expression in individual patients and consequential administration of drug could be 

one of the possible key future aspects of transporter research in context with precision 

medicine. 

Fluorescence-based readouts are most widely used in cell-based drug discovery216. A 

clear disadvantage of the assays is the possible occurrence of photonic artefacts like 

fluorescence quenching and autofluorescence requiring secondary assays. In this 

sense, also the autofluorescence and quenching properties of the investigated 

compounds was tested. 5 compounds (amlodipine, amsacrine, ceritinib, chlorhexidine 
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and doxazosin mesylate) were found to show a quenching effect at 100 µM compound. 

This quenching effect might have led to the assumption of them being inhibitors while 

the interaction just led to a reduction of the DBF fluorescence signal. At 10 µM, two 

compounds (amlodipine and amsacrine) showed a quenching effect of 20-29% 

fluorescence reduction. As this was the compound concentration at which the assay 

was conducted, these effects should be taken more into account than those at 100 µM. 

Amlodipine had a pIC50 value of 4.9 and amsacrine 5.1 standing for a IC50 of 12.5 µM 

and 8 µM respectively. At 10 µM compound concentration, they were therefore only at 

their halfmaximal inhibition. Nevertheless, a counter-screen for those substances may 

be needed, to ensure their inhibiting properties. 

 

5.2 DEVELOPMENT OF FIRST LABEL-FREE UPTAKE ASSAY USING MALDI 

MASS SPECTROMETRY 

A very recent publication in Nature once again highlighted the importance of SLC 

transporter research. A new consortium with 13 partners has been established with 

the ultimate goal to conduct a large scale de-orphanisation of the SLC superfamily. 

Most SLCs are difficult to access, also due to a lack of appropriate research tools199. 

The interaction of biomolecules can be investigated with several methods. The cellular 

thermal shift assay (CETSA) for example proved to be a suitable label-free method for 

the investigation of proteins and their binding partners by heat-induced protein stability 

changes. This method is based on the fact that a protein often gets stabilised by the 

binding of another molecule217, 218 and could therefore be a useful tool for transporter 

investigation. Nevertheless, it is not a universal and easy tool for the investigation of 

transport proteins, because a direct stabilisation of transporters sometimes fails. A 

possible reason for that is that for large proteins, like transporters, the ligand binding 

just leads to a stabilisation of a part of the molecule and overall stability might stay the 

same leading to the impossibility of readout using this method219. 

Another method, which is also dependent on temperature is the isothermal titration 

calorimetry (ITC), which is useful for the detection of biological interactions through an 

isothermal process. The structure of the device includes two separate chambers with 

thermally conductive material inside them. The temperature of the liquid surrounding 

the material can be measured using very sensitive thermometers. One of the 
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chambers acts as a reference chamber, whereas the probe is applied to the other 

chamber. The addition of the probe leads to the emission or absorption of heat to the 

liquid in the chamber. The measurement is based on the temperature recovery through 

a feedback loop. The disadvantage is that it is not really applicable to high-throughput 

screening, because the average duration of an experiment, where just one compound 

is tested is about 15-30 min220. Compared to analysis times of about 5 min for one 

384-spot MALDI target plate, where a single screen of 384 compounds could be 

investigated at once, this is significantly slower. 

Surface plasmon resonance (SPR) on the other hand is well suited for this due to its 

high throughput capacity221. It is a technique, which is often applied in drug discovery 

due to its ability to analyse interactions of molecules222. This works through the use of 

a goldsensor chip, on which the ligand is immobilised. Light passes through a prism 

and reflects off the backside of the chip surface and into a detector. The electrons in 

the metal of the gold sensor absorb the light of a certain incident angle and thus start 

to resonate leading to the formation of surface plasmons. The result is an intensity 

loss in the reflected beam, which appears as a dip in the SPR reflection intensity curve. 

Free analyte is given to the solution surrounding the goldsensor. If it binds to the 

immobilised ligand, the dip in the SPR curve shifts and a readout of the interaction of 

the biomolecular agents is possible. Optimisation of the technique also led to the 

possibility of the detection of smart molecules with their target macromolecules223. A 

disadvantage of the technique for the use case of transporter investigations is that a 

whole cell analysis is not possible. The target, in this case the transport protein, would 

have to be extracted and immobilised on the goldsensor chip. This may lead to 

changes in the binding situation and therefore artefacts. Also, the technique is rather 

suitable for the analysis of drug interactions of biomolecules than for the uptake of 

drugs into the cells. False assumptions could also happen due to the inhibitors that 

are also likely to bind to the transport protein. The SPR technique therefore represents 

an alternative with some drawbacks.  

Another label-free approach would include mass spectrometric analysis. LC-MS/MS 

is a suitable label-free technique and in the course of a RapidFire assay showed to be 

applicable to the analysis of intracellular compound concentration109. The clear 

disadvantage of this assay format is the comparatively low throughput. Nevertheless, 

mass spectrometric methods as such are ideally suited for transporter characterisation 



Discussion   

 

104 

 

and as possible methods for the counter-screen of the fluorescence-based assay, 

because of their ease in handling and general applicability to higher throughput. As 

especially cell-based assays typically require labelling of the substrate via 

fluorescence or radioactivity, whole-cell assays with a simple sample preparation and 

automation of handling steps are highly desirable. MALDI-TOF MS represents a well-

suited method for the label-free detection of drug uptake in whole cells as it is 

applicable to ADME processes224 and the development of a high-throughput screen is 

possible152. 

Previous work has showed that the method development part plays a crucial role in 

the detection of the analyte. The use of substrate, matrix and solvents have to be 

coordinated. For that purpose, our first approach was to determine the best substrate 

for the detection of uptake through OATP2B1. The dependence of detection on the 

use of different solvents was already a known phenomenon in MALDI MS225, 226. 

Therefore, the best matrix in terms of S/N ratio of substrate signal, CV % and matrix 

crystallisation was optimised in its concentration and also the solvent composition was 

optimised. The real cell treatment then showed the disability of the DHAP matrix due 

to a background peak in close proximity to the analyte peak. The problem of matrix 

peaks of certain matrices is often discussed. Especially in the low mass range, high 

matrix background signals are not unfamiliar. Therefore, projects that aim for the 

development of matrices with less background signals are ongoing227, 228. In that case, 

there was the option to switch to another matrix without a background peak. Another 

option could have been to switch to a higher resolution, which is possible by usage of 

the FT-ICR in combination with MALDI MS128. The possibility of the combination with 

FT-ICR leads to a wide range of applicability of cell-based MALDI MS assays. The 

disadvantage of it is the lack of speed that comes with the high resolution. Currently, 

there is still a compromise between the “4S criteria” required for mass spectrometry 

imaging, which could also be applied to biotyping. Those “4S criteria” include speed, 

spatial resolution, specificity and sensitivity110. High speed instruments like the rapifleX 

are supported by high specificity instruments like the FT-ICR. Nevertheless, for a 

screening application, FT-ICR is unsuitable due to its low throughput. A device that 

could bridge the gap is the timsTOF fleX as the next generation machine. It combines 

high speed and high spatial resolution and therefore could be an alternative to the 

screening done in the rapifleX.  
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During the real cell treatment, which led to the exclusion of DHAP, the first confirmation 

of the possibility of detecting the uptake of E3S through OATP2B1 was done. The 

vector control had a very low intensity at the m/z of E3S (349.14) and also the inhibition 

with the known inhibitor erlotinib led to a reduction of the peak intensity compared to 

the treatment with E3S only. Our next approach was to finalise the application of Ph-

CCA-NH2 for the drug uptake assay. As the success of a MALDI MS-based experiment 

is dependent on the matrix application technique229, different ways of application were 

tested. Even though dried droplet led to a higher CV % than sprayed application, it 

would theoretically be the method of choice due to its applicability in a high-throughput. 

For further optimisation of the method, an internal standard, D4-E3S was therefore 

used to normalise the spectra. This normalisation led to a decrease in the CV % value 

making dried droplet the method of choice. 

Besides the solvent and matrix ratio, also the matrix-analyte ratio plays a pivotal role 

in the detection of the analyte230, 231. Therefore, differing cell numbers per spot were 

investigated. The method development and optimisation made MALDI MS a suitable 

method for a drug uptake assay and showed the possibility to be applied for transport 

characterisation and screening for inhibitors. The transport characterisation identified 

a time-dependence of the uptake with a plateau seen after about 5 min. Compared to 

the fluorescence-based assay, this is a short incubation time, but in general a plateau 

after about 5 min is very common, like it was already mentioned. Also a concentration-

dependence of the uptake could be seen and resulted in the determination of the KM 

of 21.1 µM. As E3S is a very well-known and often used substrate of OATP2B1, it has 

been characterised often and has differing KM values from 5 µM to 38 µM73, 171, 209, 232-

234. Therefore, our determined value lies in the range and can be perfectly compared 

to the literature. The same cell line was also already investigated in a radiolabelled 

assay172 and revealed a very comparable KM of 16.9 µM. The confirmation of 

reproducibility of the method was further done by pIC50 determination of erlotinib. In 

three independent runs, a pIC50 of 6.1 ±0.1 was determined showing the reproducibility 

of the method and also the comparison to literature showed consistency with the data 

due to Karlgren et al. resulting in 6.3 as a pIC50
171. The method therefore showed to 

be a reliable and reproducible tool for the investigation of drug uptake and can be seen 

as the first unlabelled small molecule uptake assay by MALDI MS. 
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5.3 MALDI MASS SPECTROMETRY SCREENING OF INHIBITORS AS AN 

EMERGING METHOD FOR DRUG-DRUG INTERACTION TESTING 

The development of the drug uptake assay has opened up completely new possibilities 

for the application of MALDI MS. Using MALDI MS as a screening technique is 

meanwhile an established procedure152, 153. Also the identification of inhibitors has 

been done in high-throughput MALDI MS screens already235, nevertheless, the 

inhibitors of cellular drug uptake have never been investigated with MALDI MS before. 

The method was just applied to monitor the drug uptake labelled with streptavidin-

coated magnetic beads154, 155 and the analysis of peptide transwell-uptake157. A label-

free method conducted in whole cells for the direct measurement of the drug uptake 

of small molecules was nonetheless still lacking. 

For the investigation of cellular drug uptake, in this case a recombinant cell line was 

used. This brings the possibility of investigation of a single transporter and is therefore 

the preferred method to study uptake transporters and their inhibitors/substrates. A 

clear disadvantage, which logically comes with this assay type, is that such a static 

study is not including all the other transport processes taking place in the cell. Besides 

that, also the lab-to-lab variability in expression levels of the studied transport protein 

has a negative effect on the comparability of literature data concerning 

transporters27,183. Nevertheless, an investigation of a single transport protein is a very 

common method and can give a hint about the influence of this transporter on the 

cellular processes. Our goal therefore was to use the assay as a screening tool and 

investigate the same compound set as in the fluorescence-based assay. A screening 

of transporters and their inhibitors is mostly conducted via in vitro testing and 

sometimes computational modelling beforehand236. Besides that, also quantitative 

structure-activity relationship (QSAR) studies are often conducted in the context of 

transporter screening237. This method is based on the comparability of the chemical 

structure of a molecule with its biological activity. For transporter studies, the machine-

learning based technique can be fed with information about known inhibitors or 

substrates and their respective chemical structures. Based on structural similarities of 

various inhibitors regarding functional groups and vice versa, unknown compounds 

can be predicted as inhibitors or non-inhibitors. A first training set can therefore be 

confirmed or improved by testing in vitro again. The screening sets often encompass 

about 50-200 drugs238. So with testing nearly 300 compounds our compound set was 
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larger than average and together with the fact that it encompassed the top marketed 

drugs also very close to a real situation174. 

Criteria for the assay performance of a cell-based assay had to be followed during 

method development. Those included in general the presence of suitable controls, the 

evaluation of Z’ as an assay parameter, the involvement of a standard inhibitor, the 

check of the reproducibility and variability of the method and the validation of the data. 

The presence of suitable controls is especially important for conduction of experiments 

on a cell line with an overexpressing transport protein, because the background 

activity of transport also had to be taken into account. Therefore, the vector control 

was used as a control, which made assumptions about the transport protein itself 

possible. Z’ is, like already described, an assay parameter describing the quality of an 

assay with special regard to standard deviation. It was monitored throughout the 

method development and ideally should have a value between 0.5-1. In fact, also 

values below this quality threshold were observed, which showed that especially the 

positive and negative controls used throughout the screen were not that stable in their 

intensity values. The CV %, which was also a quality parameter during checking 

variability of the method, ideally had to be below 20 % in order to represent valid data. 

With the screen leading to a mean CV % value of below 6, this result was very 

promising. Checking the reproducibility of the method was done with the determination 

of the pIC50 of erlotinib. The intra-assay comparison of both the fluorescence-based 

and the MALDI MS assay still showed need for optimisation. Both assays are likely to 

need further stabilisation before being applied as industry standard operating 

procedure. This likely comes due to variability of the cells used in this assay. The 

HEK293 cells had issues with the adherence leading to problems throughout the 

workflow. Even an extra fixation step including coating of the plates with poly-L-lysin 

sometimes led to a detachment of the cells during the washing step. Apart from that, 

the overexpression of a protein can lead to several effects in the cell. Much energy is 

needed to assemble extra proteins in the cell239, which could lead to the disability to 

produce other proteins, which again has effects on the viability of a cell240. A way to 

improve the missing repeatability of the assay could be the use of another cell line, 

which is more stable in washing procedures due to better adherence. 

Some of the identified inhibitors were already found to be clinically relevant in the 

intestine/liver during the fluorescence-based assay and especially statins are a known 



Discussion   

 

108 

 

cause for DDIs241, 242. Those analyses of inhibitors can give a hint about the DDI 

happening in the human body. The identified clinically relevant inhibitors can then be 

postponed to verification in an in vivo model, as the identification of DDIs which 

depend on a onedimensional cell-based assay are just a first approach for the 

confirmation of clinical relevance27. An idea for the future could be to use 3 

dimensional cell cultures for the uptake assay instead. The organoids better mimic the 

processes in the human body243, which could also account for transport processes, 

and have also already been shown to be analysable via MALDI MS244. Another 

development that should be noted here is the design of “organs-on-chip”. Those 

biomimetic systems could clearly help to reduce animal-testing as it reconstitutes 

pathophysiology of organs in vitro245. Those chips could also be measured via MALDI 

MS and therefore display a possible future development in drug uptake and DDI 

assays. A general approach could also be the single-cell measurement, which could 

provide information about drug uptake in mixed cell cultures. The imaging of single 

cells was already achieved with SIMS-TOF106 and with the improvement of spatial 

resolution in MALDI246, 247, such a scenario is also conceivable here. 

Another important consideration for drug transporter screens is the before mentioned 

background of transport that has to be excluded. Due to the plethora of transport 

processes happening in the cellular organism, it has to be ensured that the 

conclusions drawn from the results are only due to the transporter itself and no passive 

transport processes are included. Therefore, the linear phase of the time-dependent 

plateau was identified during the characterisation and the screen was conducted at 

2 min incubation and 10 µM substrate concentration. Another indispensable action is 

the parallel screening of the vector control. Doing so, one can analyse directly the 

effect of the transport protein by analysis of the vector control data. In the case of 

naproxen treatment, there was an enriched E3S signal detected, which has to be 

substracted in order to conclude about the inhibiting function of naproxen. All the other 

compounds did not lead to an enrichment in the vector control signal facilitating the 

analysis. 

Another reason for parallel screening of the vector control can be the goal to identify 

a substrate during the screen. Theoretically, this should be possible with MALDI MS, 

because this technology has the advantage that the whole mass spectrum is 

measured and can be analysed. The recently founded consortium RESOLUTE shows 
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the ambition to de-orphanise and therefore characterise the whole SLC family199. 

OATP2B1 is less-well studied than its direct family members OATP1B1 and 

OATP1B3212, for which a considerable quantity of substrates are already known233, 248-

250. Although there are some substrates known for OATP2B1251, 252, interest in a 

screening method for finding out new substrates is high. For the identification of 

possible substrates, the normalised peak intensities at the m/z of the respective 

compound given were compared in OATP2B1 and the vector control. Criteria for a 

substrate are a factor ≥ 1.5 between transporter and vector control and the 

nonexistence of other peaks at this defined m/z. Even though two compounds were 

identified that met the criteria, they failed to be confirmed as substrates during further 

experiments. A general remark about the substrate identification via MALDI MS is of 

course that for the detection of a compound, many factors must match. The 

compounds need to be detected and therefore have to be ionised by the use of a 

defined matrix and possible to fly within the TOF. In this screen, of course the for E3S 

optimised matrix and measurement conditions was used, which surely are not optimal 

for other compounds. During the optimisation of the method for E3S drug uptake, 

many conditions were observed that led to a high variability of E3S detection. In the 

case of the two identified possible substrates, this was also the case. The variability 

of the results was quite high and another negative aspect was that the vector control 

was just screened in one biological replicate. The detailed repetition showed that the 

difference to the vector control could not be reproduced. MALDI MS does not seem to 

be directly suitable for substrate identification. Nevertheless, the application of 

different matrices with different application techniques and measurement settings 

could maybe be able to identify a substrate. The success with the use of E3S also 

shows the general possibility of the use of this technique. The clear disadvantage is 

just the dependency on the matrix in this case. Other techniques for the identification 

of substrates are often radio-labelled253, 254 or based on the determination of 

intracellular substrate by LC-MS/MS and therefore lack higher throughput. Although 

amongst others the group of Zhang et al. promotes the use of in silico approaches to 

identify new substrates255, which would definitely lead to a reduction of time, a method 

for identification of substrates in a screening manner is highly desirable. An 

amendment of the MALDI MS method to a multiple testing with different matrix 

conditions could be an option for substrate analysis. 
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5.4 COMPARISON OF BOTH ASSAY TYPES REVEALS DIFFERENCES 

The optimisation and conduction of two different technique-based screenings was 

done during this characterisation of OATP2B1. This suggests a comparison of the two 

screening results. This comparison has led to a quite unexpected outcome of just 47 

overlapping hits in total and 20 hits more identified in MALDI MS in addition to 10 hits 

more identified with the fluorescence-based assay. The fact that the two assay 

systems did not overlap in their results brings up several questions and assumptions. 

The first one is the data quality of both methods. For both of the methods, the 

reproducibility of the data was shown in correlation analyses. Those did not render 

one of the methods as less applicable than the other. Still, both methods had only an 

acceptable correlation coefficient indicating noticeable issues with the reproducibility, 

which are most likely due to fluctuations of the cell line. The cell line had adherence 

issues and like it was already postulated, those adherence problems are a very likely 

cause for problems with repeatability. The second assumption is the quenching and 

autofluorescence that can be a reason for differences in the dataset. The compounds 

that showed quenching were amlodipine, amsacrine, ceritinib, chlorhexidine and 

doxazosin mesylate. Those compounds were due to their quenching effect maybe 

falsely interpreted as inhibitors during the fluorescence-based assay. Ceritinib could 

not be confirmed as a hit during the pIC50 determination in the fluorescence-based 

assay, amlodipine and chlorhexidine were not found as a hit in the fluorescence-based 

assay. Amsacrine and doxazosin mesylate were found as a hit in both assay types 

and therefore do not explain the differences. The quenching effects maybe have 

happened during the fluorescence-based assay, but they do not explain the 

differences in the data sets. The situation is different for false positives of both assay 

types that could not be confirmed during pIC50 determination. For the fluorescence-

based assay, trimethoprim, cetirizine, fenofibrate, meloxicam, amiodarone, gliquidon, 

ceritinib and pioglitazone were falsely identified as hits in the first screening approach. 

Of those, only pioglitazone and gliquidon are true MALDI MS hits. For the MALDI MS 

assay, efavirenz, tolterodin tartrate, ceritinib, tamoxifen citrate, amiodarone, 

lansoprazole, glyburide and dronedarone were falsely identified as hits. Of those, only 

glyburide is a confirmed hit in the fluorescence-based assay. Also the presence of E3S 

itself in the compound set led to a big difference in the two different methods. For the 
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MALDI MS assay it was of course a substrate, therefore showing no inhibition and for 

the fluorescence-based assay, it was an inhibitor.  

The comparison of the data sets with a known data set of the literature, which also 

encompasses a high number of our investigated compounds171, also showed 

differences. As already described, the overlap of the MALDI MS data with the Karlgren 

data set was 83 %. Taking also the fluorescence-based method into account, the 

overall comparable classification of inhibitors is 80 %. The missing ~20 % can most 

likely be explained either by the use of another substrate in the case of the 

fluorescence-based assay or by interlaboratory differences in general. Another 

assumption that has been discussed a lot in the transporter field might have effects on 

the different assay technologies. Some of the SLC transporters, among them also 

OATP1B1, have been found to have multiple binding sites with a high-affinity and a 

low-affinity232, 256, 257. This phenomenon of a multiple binding sites has also already 

been postulated for OATP2B1. The multiple binding sites seem to differ both in affinity 

and pH sensitivity79. The differing methodological setup of the Karlgren assay could 

have maybe also led to the investigation of a different binding site for OATP2B1. In a 

study of Hacker et al. it is also illustrated that the identification of inhibitors is 

dependent on the substrate used258. This study, which investigated OCT2 is similar to 

our comparison of screening results with once DBF and once E3S as a substrate. 

These results make obvious that the substrate and inhibitor interaction is a very 

complex system, which needs to be addressed closely in different investigations and 

with different substrate-combinations to uncover the mechanism and properties of a 

transport protein completely. Apart from that, interlaboratory differences are a common 

reason for variation in IC50 determination. A study conducted by Bentz et al. revealed 

differences in the determination of the IC50 up to 800 fold259. It was postulated that this 

is most likely due to interlaboratory differences. Those interlaboratory differences 

include culture conditions, seeding density, passage number and confluency. Also the 

ingredients of the cell culture media seem to affect the transport protein expression260. 

Comparing the MALDI MS assay and the fluorescence-based assay with the Karlgren 

assay, there are remarkable differences in the setup. Not only that there is a different 

cell line used, which could have a clear difference in transporter expression, also 

marked by the addition of sodium butyrate for our cells, which was not done in the 

Karlgren assay, but there were also other differences noted. The KM value of E3S in 
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the Karlgren study was with 38 µM nearly 2 fold higher than our determined value of 

21 µM. Apart from that, also the concentration of the used substrate and inhibitor 

differed from our approach (1 µM substrate and 20 µM inhibitor in Karlgren assay vs. 

10 µM for both in MALDI MS). Those differences lead to the phenomenon of 

interlaboratory differences that result in the nonexistence of a 100 % comparable 

output. A variation in the transport protein expression could have also been a likely 

reason for the differences as it is already known that differences in transporter 

expression can lead to variation in DDI261. Besides the differences, there was also a 

consistent phenomenon observed. The addition of some compounds led to a negative 

% inhibition value suggesting a stimulation. Generally, this is a known occurrence in 

the transporter field185. For the MALDI MS assay, there were two drugs found with a 

stimulation greater than 100 %, namely E3S and fenbufen. E3S was used as a 

substrate and therefore is likely to appear as a stimulator, whereas also fenbufen is 

discussed as a drug increasing the uptake of prostaglandins by OATP2A1262. Hence, 

this finding fits well to the published literature. Nevertheless, a stimulation of the drug 

set on the uptake of E3S would have to be analysed separately once more. 

 

5.5 CONCLUSION 

During this project, I managed to build up a fluorescence-based assay with the 

verification via fluorescence microscopy and western blot showing the overexpression 

of OATP2B1. The fluorescence-based assay helped to characterise the uptake of DBF 

through OATP2B1 and showed to be both concentration- and time-dependent. The 

screen of a 294 compound set had an acceptable correlation and identified several 

hits, which were further analysed in a clinical extrapolation and showed the 

involvement of the transporter in DDI. 

The main goal of the project was the development of a cell-based MALDI MS drug 

uptake assay. For this purpose, an optimisation of the method has been done and led 

to usage of E3S as a substrate and 2.5 mg/mL Ph-CCA-NH2 as matrix dissolved in 

70 % ACN. The method was automated and usage of internal standard was 

incorporated in the protocol for further reduction of variability. The uptake of E3S also 

showed to be concentration- and time-dependent and the determination of the pIC50 

of erlotinib showed the reproducibility of the method. The screen of the compound set 
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was conducted and showed an acceptable intra-assay reproducibility. The reliability 

of the newly developed method was above all underlined by the low CV % and 

standard deviation of the 6 biological replicates resulting from pIC50 determination. The 

resulting identification of hits was not totally comparable to the results of the 

fluorescence-based assay. This is possibly due to the existence of multiple binding 

sites with differing pH sensitivity that has to be investigated further. A comparison with 

the data previously published by Karlgren et al. nevertheless showed an overlap of 

83 % and represents the applicability of the MALDI MS assay as a new screening 

technology. 
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6 SUMMARY 

For the longest time, there was the widely held belief that drug uptake into a cell is 

mainly due to diffusion, channels and carriers. Only in the 1940s, there was the first 

drug-transporter interaction discovered. As more transporter-related diseases where 

discovered and transport proteins identified that had an important connection to 

cancer, like the breast cancer resistance protein, the research field gained more 

interest. Drug-Drug interactions were identified and an International Transporter 

Consortium was founded that had the task to identify relevant transport proteins and 

closely work together with the drug approval by the FDA. The majority of transport 

proteins either belong to the class of ABC transporters, which are primary active export 

transporters or to the class of solute carrier (SLC) transporters, which are secondary 

active uptake transporters. OATP2B1 is an organic anion transporting polypeptide and 

is part of the group of SLC transporters. It is seen as an emerging transport protein 

and has gained attention due to many drug-fruit juice interactions. As the simultaneous 

intake of fruit juices and drugs are likely to happen in everyday life and OATP2B1 is a 

human transporter expressed mostly in liver and intestine, it is important to understand 

more about its uptake mechanism and possible inhibition. 

Until now, the emerging field of transporters are examined by either radioactive or 

fluorescence-based assays. Radioactive assays render a rather unpopular method 

with many obstacles like cost, safety-issues, labelling and no possibility of high-

throughput. Fluorescence-based assays are widespread and have the positive 

property that they can be automated and used in HTS. The negative aspects here are 

also labelling and the false negatives and positives prediction that comes through 

autofluorescence and quenching effects. Our goal therefore was to develop an 

alternative cell based assay based on a different technology: MALDI MS. MALDI MS 

brings the advantage that it is a label-free technique and it also is HTS-compatible, 

like it was already shown in the past. Cell-based MALDI MS assays have gained 

recognition in the last years in consequence of their speed, robustness and ease in 

setup and are suitable for the investigation of transport mechanisms due to the 

abundance of additional information gathered by this technique. 

For the MALDI MS method development, the use of E3S as a substrate provided the 

best results. The optimal matrix composition for the detection of E3S in the cells had 

to be found. 2.5 mg/mL Ph-CCA-NH2 in 70 % ACN were identified as the best 
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composition and were further used for transport characterisation with the confirmation 

of time-dependence and concentration-dependence of E3S uptake. The optimal assay 

conditions (2 min, 10 µM E3S) were used to screen a set of 294 compounds consisting 

of the top 300 marketed drugs and a set of compounds that are known to interact with 

OATP2B1. The used compounds were tested in their ability to inhibit the uptake of 

E3S into the cells. There were 76 compounds found with an inhibition of more than 

50 %, which were then further analysed by pIC50 determination. 67 of those 

compounds could be verified as hits, leading also to 14 very potent inhibitors with a 

pIC50 over 6. With an average CV % under 10 for 6 biological replicates, the method 

confirms reproducibility and reliability of the data.  

As a reference assay to the aspired MALDI MS assay, also a fluorescence-based 

assay was developed to examine the uptake of DBF through OATP2B1. This assay 

was also used to screen the 294 compound set and 67 compounds with an inhibition 

≥50 % were identified in the course of the experiments. 57 could be verified as a hit. 

There was a calculation being done to examine the clinical relevance of those 

transporters showing a clinical relevance of more than 60 % in the intestine reinforcing 

the meaning of transporter studies. By the comparison of the two techniques, it was 

found that only 47 inhibitors overlapped leading to compounds that were not found 

with one of both methods. This can eventually be explained by the use of different 

substrates and the multiple binding sites of OATP2B1, but still has to be addressed 

further. The comparison of the data with the previously published Karlgren et al. data 

set showed an overlap of 83 % and therefore shows the applicability of the MALDI MS 

method. To conclude, there were two assay systems developed that are suitable to 

examine the emerging transport protein OATP2B1. The importance of this transport 

protein has been shown through the amount of identified (clinically relevant) inhibitors. 

While the developed fluorescence-based method acts as a good reference method, 

the newly developed MALDI MS method represents a completely new way to analyse 

substrate and inhibitor of transporters. With its ease and speed in handling and most 

notably the label-free approach, the MALDI MS method is an indispensable tool for 

transporter characterisation and DDI analysis.  
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Der wohl wichtigste Dank gilt meinen Eltern. Die Unterstützung, die ich von euch 

bekomme ist beispiellos. Meiner Mutter möchte ich folgende Zeilen widmen: „Du bist 

mein Ursprung, mein Vertrauen, meine Insel und mein Schatz. Mein Mund der formt 

dein Lachen, mein Herz schlägt deinen Takt.“ Dein Einfluss macht mich zu einem 

besseren Menschen und dafür danke ich dir von Herzen. Meinem Vater danke ich vor 

allem für seine Stärke und seine Fähigkeit, mich immer wieder zu ermutigen. Ich weiß, 

dass du immer für mich da bist, dafür bin ich dir unendlich dankbar. Meine Brüder 

Oliver und Manuel spielen in meinem Leben schon immer eine große Rolle. Ihr seid 
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meine Vorbilder, nicht nur was den akademischen Abschluss angeht  ich habe euch 

schon immer nachgeeifert, wen wundert es da, dass wir uns so ähnlich sind. Aber 

dennoch so verschieden. Ihr erdet mich. Ich bin so dankbar, dass es euch gibt! Und 

dass ihr zwei so tolle Frauen habt, Nicole und Siqi, ihr seid wie zwei Schwestern für 

mich. Ich kann mir gar nicht mehr vorstellen, wie es ohne euch ist. Auch Oma und Opa 

gebührt natürlich ein besonderer Dank. Leider kann ich nur noch Christa und Walter 

persönlich danken. Ich weiß aber, dass Franz und Gisela sich genauso darüber 

gefreut hätten. Ich vermisse euch. Oma und Opa, den unbändigen Stolz zu spüren, 

den ihr uns entgegenbringt ist etwas ganz Besonderes. Ihr seid unvergleichlich und 

ich liebe euch sehr. Auch meiner Patin möchte ich einen besonderen Dank 

aussprechen. Seit vielen Jahren ist sie eine meiner wichtigsten Ansprechpersonen 

und wird es immer bleiben. Danke, dass du immer für mich da bist.  

Was wäre ein Leben ohne Freunde? Ich habe vielleicht nicht viele, aber ich habe 

sicherlich die besten  Julia, seit 15 Jahren sind wir unzertrennlich, wir haben schon 

einige Höhen und Tiefen durchstanden, danke dass es dich gibt! Julian und Ariane 

sind zwar noch keine 15 Jahre dabei, aber immerhin schon seit der ersten 

Vorlesungsstunde ;-) Ihr zwei seid meine liebste Erinnerung an Würzburger 

Studententage. Es freut mich, dass wir immer noch so gut in Kontakt sind und 

aufeinander vertrauen können. Vielen Dank auch fürs Korrigieren und Lesen der 

Doktorarbeit! Und wer natürlich nicht fehlen darf: Anne, Bodil, Denise, Sonny und 

Steffi. Ihr seid schon immer dabei und werdet es auch immer sein. Mit euch werde ich 

das hier ganz kräftig feiern und freue mich auf viele weitere Jahre. 

Abschließend möchte ich einem ganz besonderen Menschen in meinem Leben 

danken, der alles mitgemacht hat, vom besten Gefühl, wenn die Veröffentlichung 

akzeptiert wurde, bis hin zu bitterster Enttäuschung und Erschöpfung, wenn etwas 

nicht so lief wie geplant. Es gibt niemanden, der mich besser aufmuntern könnte als 

du, Marko. Du zeigst mir mittlerweile seit einigen Jahren deine Welt und seit ich dich 

kenne ist meine Familie doppelt so groß wie vorher (Hiermit auch einen großen Dank 

an die Familien Jurjevic & Teubert!). Bei dir fühle ich mich zuhause und das soll immer 

so bleiben. Volim te, moja bubica. 


