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A B S T R A C T

The nonlinear evolution of large scale structure has long been
poorly understood as it has not been possible to thoroughly
describe the physics of the underlying processes by means of
theoretical physics until recent years.

This lack of understanding not only has hampered progress
in the understanding of cosmic history but also of the con-
stituents of the universe as most of them are of a still unknown
nature and cannot be observed directly.

We calculate a new theoretical and model-independent pre-
diction for the weak lensing power spectrum using both model-
independent cosmology, a newly invented method to circumvent
the need of a cosmological model, as well as Kinetic Field The-
ory, a recent technique to analytically describe the nonlinear
stages of structure formation.

Thus, by adding a nearly parameter-free prediction of the central
statistical quantity of gravitational lensing – a well established
method to analyse the distribution of cosmic matter density – to
the framework of Kinetic Field Theory we provide another pos-
sibility in order to verify, calibrate and improve the successful
analytic approach to nonlinear cosmic structure formation.
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Z U S A M M E N FA S S U N G

Die Entwicklung großer kosmischer Strukturen ließ sich lan-
ge Zeit unter anderem deshalb nicht vollständig durchdringen,
weil die Analyse dieser nichtlinearen Prozesse mit Mitteln der
theoretischen Physik erst in den letzten Jahren durch die Ent-
wicklung mathematisch konsistenter Theorien möglich wurde.

Dieses fehlende Verständnis von kosmischer Strukturbildung
hemmte nicht nur die Erforschung der Geschichte des Univer-
sums, sondern auch die der verschiedenen, größtenteils un-
bekannten, Formen von Materie und Energie, die zwar das
Universum in seiner heutigen Zusammensetzung dominieren,
sich jedoch nicht direkt beobachten lassen.

In dieser Arbeit berechnen wir eine neue, theoretische und
modellunabhängige Vorhersage für das Leistungsspektrum des
Gravitationslinseneffekts, mit dem sich auch die unbekannte
Materieform indirekt beobachten lässt. Hierzu nutzen wir so-
wohl modellunabhängige Kosmologie, eine jüngst eingeführte
Methode, mit der sich ein großer Teil physikalischer Annah-
men über das Universum ersetzen lässt, als auch die Kinetische
Feldtheorie, mit welcher man die nichtlineare Entwicklung kos-
mischer Strukturen analytisch beschreiben kann.

Indem wir die zentrale, statistische Größe des Gravitations-
linseneffekts mit Hilfe dieser Theorien neu und nahezu parame-
terfrei berechnen, fügen wir dem breiten Spektrum möglicher
Anwendungen der Kinetischen Feldtheorie eine weitere hinzu.
Damit soll es in Zukunft möglich sein, die erfolgreiche Theorie
mithilfe von Daten aus neuen Durchmusterungen zu verifizie-
ren, zu kalibrieren und zu verbessern, um schließlich auch die
Strukturbildung im nichtlinearen Bereich vollständig erfassen
und begreifen zu können.
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A B S T R A C T U M

Vastae structurae universi quomodo non lineariter evolutae sint,
diu percognita non erat, cum processus huius rei physice, si
theoretica physice uteris, describi non poterant usque ad exitum
decenni exacti.

Qua ignorantia impedimur, quominus complectamur cum histo-
riam universi, tum omnia, ex quibus universum constitutum est,
quia plurimarum partium naturam nondum perspicimus neque
esa ipsas observare possumus.

Fecimus novam theoreticam neque ab exemplis pendentem
praedictionem spectri potentiae lentium lenium utentes et nu-
per inventa via, qua exempla aliter necessaria evitari possunt,
cosmologiae non ab exemplis pendentis et theoria camporum
cineticorum, qua via nova mathematice describuntur gradus
formationis structurarum.

Cum addamus compagi theoriae camporum cineticorum prae-
dictionem quantitatis statisticae summae lentium gravitationis
minimis exemplaribus utentes– via consuetissima, qua, quomo-
do massa in universe distributa sit, investigatur –, providemus
aliam facultatem probandi, adaequandi, meliorem faciendi adi-
tum analyticum, quo ad formationem non linearem structurae
universi adire possumus.
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I N T R O D U C T I O N

Throughout history the search for the origin of the world has
been one of the central questions of humanity. Scientists of all
disciplines ranging from astronomy to theology and philosophy
provided different perspectives to the debate.
As our knowledge of the cosmos evolved, we developed not
only a clearly defined vocabulary, classifying different objects
in space, made observable by modern techniques, but were
also able to ask better and more precise questions. While the
question why the universe came into existence at all, mostly
remained with philosophers and theologians, physicists and as-
tronomers started to develop theories in order to determine how
the universe and its constituents evolved. The latter question
then gave rise to the discipline of cosmology, which investigates
the history of the universe and the nature and evolution of its
components by applying fundamental laws of physics to the
observable universe. Especially during the last century much
progress was achieved by remarkable findings both in theory
(the most influential, presumably, being the theory of general
relativity in 1915 invented by [19]) and by observation (e.g. the
heroic measurements of the cosmic microwave background of
Penzias & Wilson in 1965) leading to the establishment of the
so-called standard model of cosmology, which is able to explain
most of the universe’s history, beginning at the time shortly
after the so-called Big Bang. In fact, the model, as improved
and updated from day to day is able to plausibly explain the
evolution of the universe and its characteristic features during
different epochs.
Among those features are the universe’s constituents, energy
and matter in different manifestations, which are investigated
in order to get linked to the standard model of particle physics,
allowing for a connection of cosmology with a field of physics
where actual experiments can be performed.
Although the modern standard model can explain most of the
observed phenomena, there is still a number of unresolved
questions in cosmology - one of them being the question of
how structures (e.g. galaxies, galaxy clusters or the observed
filaments forming the cosmic web) formed and evolved in the
cosmos’ history. Although the early stages of structure formation
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2 contents

are understood quite well, the understanding of the nonlinear
evolution of structure has proven to be challenging.
This issue is addressed by the recently invented Kinetic Field
Theory, which allows to investigate structure formation deep
into the nonlinear domain of structure formation, making use
of statistical methods invented for quantum field theory. This
new method at hand, it is possible to calculate a closed, analytic
form of the matter density power spectrum, the most central
quantity for a statistical analysis of cosmic structure.
Apart from the investigation of cosmic structure with the means
of theoretical and statistical physics the second, complementary
part of cosmology was able to make remarkable progress with
observational methods, contributing to our knowledge of the
universe and its history. It is however still difficult to actually
measure some of the central quantities. The density fluctuation
power spectrum, for example, is typically measured with the
help of biased tracers, e.g. bright galaxies. There is strong ev-
idence for the existence of a form of matter which can not be
observed directly. This so-called dark matter is actually assumed
to account for more than 80% of the matter content of the uni-
verse. Therefore, the measurement of the matter density with the
help of biased tracers cannot be a satisfactory state of measuring
quantities like the power spectrum.
A well-established method to map the distribution of both dark
and ordinary matter which we can directly observe arises from
the theory of general relativity [19]. One of its consequences
is an effect called gravitational lensing which describes the de-
flection of light by matter overdensities along the line of sight.
A systematic analysis of those deviations allows to analyse the
distribution of matter and to calculate a power spectrum for the
gravitational lensing effect, a statistical correlator closely related
to the density fluctuation power spectrum.
One of the improvements in theoretical cosmology was the in-
vention of model-independent cosmology. This method allows
to replace cosmological models which are needed to calculate,
e.g. distances in the universe, with a set of functions which are
based on observations only. As this allows to omit most of the
assumptions on parameters and cosmic evolution this provides
for better analyses of complex observables like the power spec-
trum.
In the scope of this thesis we will make use of both this method
and the Kinetic Field Theory in order to predict a weak lensing
power spectrum which relies on as little assumptions about the
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universe and cosmological models as possible. This result will
allow for a thorough analysis of structure formation theory, com-
paring the spectrum to spectra obtained from observations or
numerical simulations and analysing the observed differences.
In chapter 1 we introduce the basic principles of physical cos-
mology (1.1) describing the physics of the universe (1.2, 1.3) and
the most important quantities (1.4, 1.5, 1.6) for our analysis.
In the next chapter, we discuss the physics of structure formation
in the early universe starting with linear structure formation
(2.1), introducing the linear growth function D+(a) (2.2) and
the power spectrum, our way to discuss the statistics of matter
density in the universe (2.3).
The following chapter presents the theory of gravitational lens-
ing starting from the statements of general relativity 3.1. We
investigate the lensing contributions by local overdensities (3.2)
and introduce the fundamental quantities of gravitational lens-
ing (3.3,3.4) as well as a statistical measure of the lensing effect
(3.5, 3.6).
We discuss a novel method of deriving two essential functions
describing the evolution of the cosmos (4.1) and structures
therein (4.2) only with observational methods and with as little
assumptions as possible in chapter 4. We compare those func-
tions to their counterparts in classically modelled cosmologies
(4.3).
Chapter 5 discusses the Kinetic Field Theory, a recently intro-
duced technique to derive a cosmic density power spectrum with
path integral methods, starting from an initial power spectrum.
There, we introduce the fundamental quantity, a generating
functional (5.1), discuss the physical operators and equations
needed (5.11, 5.3) and continue to apply the general theory to
cosmology (5.4-5.7) in order to derive a matter density power
spectrum (5.8).
We present our own results in chapter 6, where we use the tools
discussed so far in order to derive the model-independent weak
lensing spectrum (6.3). We continue with a short discussion on
how to actually derive a weak lensing power spectrum from
observations in chapter 7 and discuss our approach to calculate
an analytic form for the weak lensing spectrum uncertainty in 8

as well as our approximation (8.3).
We finally conclude our analysis in the last chapter discussing
our findings and outlining future tasks which are needed to
improve our results.





Part I

C O S M O L O G Y





1
C O S M O L O G I C A L F O U N D AT I O N S

Cosmology is the science of describing the history and the evo-
lution of the universe (from ancient greek ὁ κόσμος = order,
world; ὁ λόγος = law, rule). To describe the fundamentals of
cosmology as a discipline of physics (while the subject is stud-
ied by philosophers and theologists as well) we will introduce
the fundamental assumptions of cosmology as well as a very
brief overview of today’s knowledge about the physics of the
universe.

1.1 the cosmological principle

The most important assumption in cosmology is called the
cosmological principle, stating

i) that we are at no preferred position in space compared to
another observer, meaning that someone at a far distant
place in another part of the universe, must, considering
large scales, observe structures very similar to the structure
we observe,

ii) and isotropy: the structure of matter distribution of the uni-
verse looks approximately the same, independently of the
direction the observer is looking in.

Both principles combined imply spatial homogeneity, meaning
that the universe as observed today is approximately a spatially
homogeneous system if considered at large scales.

1.2 describing the dynamics of the universe

For the description of the laws of physics in the large-scale
universe where gravity is the dominating force we use the the-
ory of General Relativity which was first presented by [19].
In our presentation of this theory, we describe spacetime as
(3 + 1)−dimensional manifold, equipped with a metric tensor
g with components gµν.
The differential line element to measure a distance between
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8 cosmological foundations

two events, i.e. two different coordinate tuples in space-time, is
defined as:

ds2 = gµνdxµdxν, (1.1)

with dxµ,ν being the coordinate differences. We furthermore
introduce the scalar product of two vectors x, y:

xµyµ = 〈x, y〉 = gµνxνyµ. (1.2)

In both equations we already used the Einstein convention,
which we will continue to use for the rest of the chapter unless
stated otherwise:

gµνaνbµ :=
3

∑
µ,ν=0

gµνaνbµ, (1.3)

i.e. we drop the summation sign Σ and imply summation over in-
dices which are repeated on different levels (i.e. on the sub- and
superscript-level). Furthermore, we state that greek letter indices
imply summation over four-dimensional spacetime, whereas
latin letter indices,

gijaibj :=
3

∑
i,j=1

gijaibj, (1.4)

imply the summation over spatial dimensions only. Moreover,
we silently made use of the metric tensor’s property of convert-
ing vectors to 1-forms and vice versa:

xµ = gµνxν, (1.5)
xµ = gµνxν. (1.6)

Due to the notation convention chosen here, this is also referred
to as raising and lowering indices.

1.3 einstein’s field equations

The perhaps most important conclusion from Einstein’s theory
of general relativity is the equivalence of the geometry of the
universe described as a function of the metric gµν to the content
(both matter and energy) of the same:

Gµν =
8πG

c4 Tµν, (1.7)

where we introduce the Einstein tensor:

Gµν = Rµν −
1
2

Rgµν, (1.8)
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and the stress-energy tensor Tµν which we will specify for certain
cases later on. In general terms, Tµν describes the matter and
energy-content of the considered system. The Ricci tensor Rµν

is a contraction of the Riemann tensor

Rµν := Rλ
µλν, (1.9)

which itself, characterising the curvature, is defined as a map-
ping of three vector fields into another vector field R : V ×V ×
V → V in a way that [e.g. 45, eq. 15.27]:

R(X, Y)Z = ∇X(∇YZ)−∇Y(∇XZ)−∇[X,Y]Z. (1.10)

1.3.1 A Possible Solution: The FLRW Metric

In order to simplify Einstein’s field equations (1.7) one applies
the cosmological principle (section 1.1) to the metric. As gµν

is required to be symmetric, gµν = gνµ, only ten of its 4× 4
elements can be independent. We can then further reduce the
number of independent elements by:

i) considering the coordinates of freely falling observers called
comoving coordinates. In their frames, the spatial coordinates
are dxi = 0, implying:

ds2 = g00dt2 = −c2dt2. (1.11)

ii) If it is not possible to synchronise clocks in a way that
g0i = 0, a preferred direction in space would arise from
that nonvanishing three-vector. This would violate isotropy.
Thus, g0i must vanish:

g0i = 0, (1.12)

in order to introduce coordinates that are time-orthogonal.

This transforms the line element into:

ds2 = −c2dt2 + gijdxidxj. (1.13)

The possibility to write the line element like this in fact separates
space and time, allowing to foliate spacetime into hypersurfaces
of the four-dimensional manifold which are, at constant time,
of spatial nature. Allowing the spatial part of the metric to be
scaled with time we write:

ds2 = −cdt2 + a2(t)dl2. (1.14)
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Demanding isotropy, i.e., spherical symmetry in the spatial line
element dl2, we can transform this part of the metric to spherical
polar coordinates (w, θ, φ):

dl2 = dw2 + f 2
K(w)

[
dθ2 + sin2dφ2

]
. (1.15)

fK(w) is called comoving angular diameter distance and depends
on the curvature parameter K:

fK(w) =


sin
(
K1/2w

)
K−1/2 (K > 0)

w (K = 0)
sinh

(
|K|1/2w

)
|K|−1/2 (K < 0).

(1.16)

By combining all information we arrive at the Friedmann-Lemaître-
Robertson-Walker (FLRW) metric:

ds2 = −cdt2 + a(t)
[
dw2 + f 2

K(w)dΩ2
]

. (1.17)

This is the metric describing a spatially homogeneous and
isotropic universe. By using this metric we can now compute
the components of the Einstein tensor Gµν on the basis of eq. 1.8.
The components of the stress-energy tensor T are set to

Tµν = (ρc2 + p)uµuν + pgµν, (1.18)

which corresponds to the tensor of an ideal fluid with mass
density ρ and pressure p as seen by an observer who looks at
an isotropic surrounding on his spatial hypersurface. Putting
everything together in the field equations then leads us to the
two differential equations describing the dynamics of the so-
called scale factor a(t), introduced for the first time in 1.14.
These are the Friedmann equations:(

ȧ
a

)2

=
8πG

3
ρ +

Λc2

3
− Kc2

a2 , (1.19)

ä
a
= −4πG

3

(
ρ +

3p
c2

)
+

Λc2

3
. (1.20)

The ȧ refers to the scale factor’s time derivative, Λ describes a
cosmological constant which is usually related to the so-called
dark energy introduced to describe the observed acceleration of
the cosmic expansion. For the remainder of this chapter, we
normalise the scale factor a(t) with a0 := a(t0) = 1 first, unless
stated otherwise. We furthermore define the Hubble parameter:

H(t) :=
ȧ
a
=: h(t) · 100

km
s ·Mpc

. (1.21)
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The measured values for the current value H0 range from∼ 67 to
∼ 77 km

s·Mpc [e.g. 26, 29, 34, 37]. We will in the scope of this thesis
mainly adapt a current-day value for h of h0 = 0.7. This Hubble
parameter automatically provides us with a time tH = H−1 and
a length scale lH = ctH.

1.4 the mass density ρ

There are different elements contributing to the density parame-
ter ρ in the Friedmann equation. Each of its constituents behaves
differently during the universe’s expansion. We relate energy
density ρ and pressure p by the equation of state

p = wc2ρ, (1.22)

where w now is the specific equation-of-state parameter (w = 0
for non-relativistic matter; w = 1

3 for relativistic matter and
w = −1 for a cosmological constant). One can now combine both
Friedmann equations 1.19 and 1.20 and obtain a conservation
equation for the energy density:

ρ̇ +
ȧ
a

(
3ρ +

p
c2

)
= 0. (1.23)

Plugging in the equations of state for different types of matter
leads to:

ρm ∝ a−3,

ρr ∝ a−4,
ρΛ ∝ const.,

ρK ∝ a−2,

where for the first time we used the scale parameter as a pa-
rameter of cosmic evolution instead of time. We further define a
critical density:

ρcrit =
3H2

8πG
, (1.24)

which is defined as critical closure parameter [28, p. 116], meaning
this parameter is equal to the total matter density of the universe,
if and only if the universe is spatially flat. We indeed assume
this flatness (K = 0) for the universe today. The critical density
then gives rise to the important density parameters:

Ωi :=
ρi

ρcrit
(i = m, r, Λ, K). (1.25)
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Figure 1.1: Expansion function for a ΛCDM cosmology (cf. eq. 1.27)
with density parameters Ωm0 = 0.3, ΩΛ0 = 0.7, Ωb0 = 0.04
and Hubble factor h = 0.7 as described in eq. 1.27. In order
to provide an expression for the expansion function E(a) a
specific cosmological model is needed. It is convenient to
normalise this particular function to unity at present-day
scale factor, E(1) = 1.

A present day value for ρcrit is ρcrit,0 = 9.20 · 10−30g cm−3 [e.g.
6], assuming h0 ≈ 0.7. It is convenient not to explicitly write
down ρK and ΩK but simply set ΩK = 1−∑ Ωi with Ωi being
all other density parameters.
By using these expressions the first Friedmann equation 1.19

can be abbreviated:

H2(t) = H2
0

(
Ωm0a−3 + Ωr0a−4 + ΩΛ0 + ΩK0a−2

)
. (1.26)

By introducing the expansion function E(a) one can further
simplify and write:

H2(a) =:H2
0 E2(a). (1.27)

It is worth mentioning that this form of E(a) is specific for the
cosmological model we just discussed. We will discuss a more
general approach for a definition of E(a) in chapter 4. Never-
theless, we want to show the form of the expansion function
E(a) for a specific ΛCDM cosmology with Ωm0 = 0.3, ΩΛ0 =
0.7, Ωb0 = 0.04 and Hubble factor h = 0.7 in Fig. 1.1.
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1.5 redshift

In the next section, we introduce cosmic redshift as a measure
of an object’s velocity and relate it to cosmic expansion. We
consider a photon moving in radial direction in the expanding
universe. The FLRW metric (eq. 1.17) then implies together with
ds2 = 0:

cdt = −a(t)dw, (1.28)

where without loss of generality we choose dt to be positive.
It is furthermore worth mentioning that neglecting angular
coordinates only corresponds to our choice of the coordinate
system being centred at the observer. Since both the observer
and the source of light are comoving in the coordinate frame
considered we know the distance between the source (emitter e)
and observer (o) to be constant:

weo =
∫ t0

te
dw =

∫ t0

te
dt

c
a(t)

. (1.29)

As a direct consequence its time derivative vanishes:

dweo

dto
= 0 =

c
a(to)

dto

dte
− c

a(te)
, (1.30)

leading to:
dto

dte
=

a(to)

a(te)
. (1.31)

Fixing now dt = ν−1 to the periodic time of a light wave with
frequency ν we get:

νe

νo
=

a(to)

a(te)
=

λo

λe
= 1 +

λo − λe

λe
=: 1 + z, (1.32)

where we added 0 in the penultimate step and defined the
redshift of light z in the last step. By fixing a0 = 1 and renaming
ae =: a we get to the relation of redshift and scale factor:

a =
1

1 + z
, (1.33)

z =
1
a
− 1. (1.34)

These relations describe how light is redshifted (or inversely
blueshifted) with the scale factor by which the universe ex-
panded in between emission time and time of observation.
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Figure 1.2: Comoving and physical distances. While the comoving dis-
tance w symbolised by the difference between grid points
here stays constant the physical distance r between the grid
points increases with the scale factor a(t). Image scheme
taken from [17].

1.6 cosmic distances

Having discussed the redshift we now turn to distances. In
this section, we introduce different measures of distance used
in cosmology which will become important when discussing
measurements later on. For the discussion of this subject we
closely follow [17].

1.6.1 Comoving Distance

Although we already used the comoving distance without nam-
ing it in 1.29 we want to formally introduce this distance mea-
sure as well as explain its physical meaning.
Considering the universe’s expansion characterised by the scale
factor a = a(t) one can picture space like a three-dimensional
hypersurface with a grid (cf. Fig. 1.2). Whereas, the physical
distance changes during expansion – the grid points’ names, i.e.
the coordinates, do not. This fact gives rise to comoving coordi-
nates. While the physical distances, i.e. the distance between
two points, increase with the cosmic expansion the comoving
distance, e.g. the distance between the two points described in
comoving coordinates, stays constant. While there are several
interesting comoving distances we however want to introduce
only one of them and refer to [28] for further examples. The co-
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Figure 1.3: Comoving distance. The comoving distance as given in eq.
1.35 is shown as a function of scale factor a. The variable
refers to the scale factor or time the signal was emitted,
whereas the comoving distance then describes the distance
between the source of emission and an observer at redshift
z = 0 or scale factor a = 1. For a = 1 when the position
of the source and the observer is the same the comov-
ing distance vanishes. The earlier the signal was emitted,
the farther away is the source due to cosmic expansion,
measured in units of comoving distance.

moving distance between a distant light source and an observer
is given by

w(a) =
∫ t0

t(a)

dt
a(t)

=
∫ 1

a

da′

a′2H(a′)
, (1.35)

and illustrated in Fig. 1.3 as a function of the scale factor a.

1.6.2 Angular Diameter Distance

Another important distance measure is the angular diameter
distance which is abbreviated by dA and introduced as it is
convenient in astronomy to measure angles θ of objects of known
physical size l. In fact, measuring distances differently often
proves impossible. Assuming small angles one can calculate

dA =
l
θ

. (1.36)
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Figure 1.4: Angular diameter distance. The angular diameter distance
as given in eq. 1.37 is shown as a function of scale factor
a. The variable refers to the scale factor or time the signal
was emitted, whereas dA describes a distance between the
source of emission and an observer at redshift z = 0 or
scale factor a = 1. In a flat universe which we assume here
objects at a smaller scale factor appear larger as they would
at a higher scale factor. This effect can be explained by the
interplay of the expansion of the universe and the finite
speed of light.

As the comoving length of the object is given by lc = l/a and
the comoving distance to the object considered is given by w(a)
we obtain the angle θ = (l/a)/w(a). This can then be used in
order to obtain for a flat universe:

d f lat
A = aw(a) =

w(a)
1 + z

. (1.37)

We show an illustration of the angular diameter distance in Fig.
1.4.

1.6.3 Luminosity Distance

One can also measure the flux from an object whose luminosity
is already known. An object at distance d and luminosity L gives
rise to the observed flux:

F =
L

4πd2 . (1.38)
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Figure 1.5: Luminosity distance. The luminosity distance as discussed
in eq. 1.6.3 is shown as a function of scale factor a. The
variable refers to the scale factor when the signal was
emitted. The luminosity distance DL describes the distance
between the source of emission and an observer at redshift
z = 0 or scale factor a = 1. For a = 1, when the position
of the source and the observer is the same the comoving
distance vanishes. The earlier the signal was emitted, the
farther away is the source due to cosmic expansion.

If we do assume a static universe this flux is constant. General-
ising, however, to a dynamic and expanding universe we find
depending on the scale factor a that the flux is

F =
L(w)

4πw2 , (1.39)

where L(w) is the luminosity through a sphere of comoving
radius w. The energy per unit time passing the sphere at w will
be reduced by a−2 due to redshift and space expansion. We
therefore observe:

F =
La2

4πw2 , (1.40)

and can still write the flux as before if we define DL = w/a.
We show the luminosity distance in Fig. 1.5. In all Figures illus-
trating the different distance measures (1.3, 1.4, 1.5) we used a
flat ΛCDM cosmology with Ωm0 = 0.3, ΩΛ0 = 0.7, h = 0.7 and
Ωb0 = 0.04.





2
C O S M I C S T R U C T U R E

The first statement within the cosmological principle (1.1) is to
notice that the distribution of matter in the universe is mainly
homogeneous. Performing surveys in the neighbourhood of the
Earth or simulating the evolution of the universe, however, we
observe massive structures and find large voids in between the
filament-like structured matter. It is therefore essential to recall
that the principle of homogeneity only holds on sufficiently
large scales.
In order to understand the evolution of those structures, in this
chapter, we address the gravitational instability which cumu-
lates mass on scales which are small compared to the Hubble
radius. We operate in the expanding universe with a FLRW
metric and introduce classical ways in order to investigate the
formation of structures in the universe and their main complica-
tions which in turn lead to the development of a new theory of
structure formation invented by [8, 10, 11].
In the description of this, we losely follow [6, 17, 32] describing
the evolution of matter within the frame of ideal fluid dynam-
ics. We shall however stick to the conventions used in [6]. We
recall that the concept of the ideal fluid implies that one as-
sumes a negligible mean free path of the particles implying
vanishing friction. Although this description is both easy and
commonly used, it cannot be sufficient to describe the behaviour
of dark matter not only because of the obvious limitations of the
concept of an ideal fluid, but also because the concept implies
and requires a unique velocity field assigning a unique veloc-
ity vector to every spatial point considered. With only weakly
interacting (or non-interacting) dark matter, however, there can
be multiple crossing streams and the concept cannot account
for a sophisticated description of the evolution of dark matter
structures. Nevertheless, it is a common and easy illustration of
the evolution of cosmic structures in the linear regime.
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2.1 linear structure formation

The analysis of structure formation in the linear regime builds
on the description of mass conservation in the continuity equation:

ρ̇ +∇ · (ρ~v) = 0, (2.1)

the conservation of momenta in the Euler equation:

~̇v + (~v · ∇)~v =
−∇P

ρ
−∇Φ, (2.2)

and the Poisson equation describing the Newtonian gravitational
potential:

∇2Φ = 4πGρ. (2.3)

Here, we introduced the mass density ρ = ρ(~r, t) and a velocity
field ~v = ~v(~r, t). At this point, we describe all quantities in
terms of the physical coordinates ~r as opposed to comoving
coordinates. The gradient of the pressure P exerts a force as well
as the gradient of the gravitational potential Φ does.
The next step is to change into a comoving coordinate system
and replace~r by:

~x =~r/a. (2.4)

Calculating the derivative:

~v = ∂t~r = ȧ~x + a~̇x, (2.5)

we notice that there are two components of the velocity. We
name the first part:

ȧ~x = H~r, (2.6)

the Hubble velocity, as it is the velocity caused by the expansion
of the universe only. The latter part, a~̇x =: a~u is called peculiar
velocity and describes the motion of the objects themselves, rela-
tive to the Hubble expansion.
Also transforming the temporal and spatial derivatives to the
comoving system with:

∂t → ∂t − H~x · ∇,

∇ → 1
a
· ∇, (2.7)

we arrive at new expressions for the continuity, Euler and Pois-
son equation in comoving coordinates:

ρ̇− H~x · ∇ρ +
1
a
∇ · (ρ~v) = 0, (2.8)

~̇v− H (~x · ∇)~v +
1
a
(~v · ∇)~v =

−∇P
aρ
− ∇Φ

a
, (2.9)

∇2Φ = 4πGρa2. (2.10)
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It is convenient to split both the density and the velocity into
homogeneous background contributions and deviations from
that background:

ρ = ρ0(1 + δ), (2.11)
~v = ~v0 + a~u. (2.12)

Here, we introduce the density contrast:

δ =
ρ− ρ0

ρ0
. (2.13)

The equation system (2.11-2.12) above must hold for the back-
ground contribution independently. Then we can derive equa-
tions for the evolution of the two perturbation quantities δ and
~u :

δ̇ +
1
a
∇ · [(1 + δ)~u] = 0 (2.14)

~̇u + 2H~u + (~u · ∇)~u =
−c2

s∇δ

a2(1 + δ)
− ∇φ

a2 , (2.15)

where we introduce the speed of sound cs defined as:

c2
s ρ0δ :=

(
∂P
∂ρ

)
δρ, (2.16)

and a modified Newtonian potential:

φ = Φ− 2
3

πGρ0a2x2, (2.17)

satisfying the Poisson equation for the density contrast alone:

∇2φ = 4πGρ0a2δ. (2.18)

In order to further simplify the problem we start to drop any
terms quadratic in either the density contrast or the velocity or
mixed terms. This reduces the equation system to the linearised
equation system

δ̇ +∇ · ~u = 0, (2.19)

~̇u + 2H~u =
−1
a2

(
c2

s∇δ +∇φ
)

. (2.20)

The Poisson equation for the density contrast, 2.18, still holds
additionally. We can combine the temporal derivative of the
linearised, comoving continuity equation with the spatial diver-
gence of the linearised, comoving Euler equation 2.20 in order
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to eliminate the divergence of ~̇u. Then a second-order differen-
tial equation emerges describing the time development of the
density contrast :

δ̈ + 2Hδ̇ = 4πGρ0δ +
c2

s∇2δ

a2 . (2.21)

This equation is linear and homogeneous which is why we
choose to expand the density contrast into Fourier modes:

δ̂k(t) := δ̂(t,~k) =
∫

d3xδ(t,~x)e−i~k~x, (2.22)

δ(t,~x) =
∫ d3k

(2π)3 δ̂(t,~k)ei~k~x. (2.23)

This transformation makes the Laplace-operator in the right-
hand-side of 2.21 easy to to evaluate and results in a factor of
−k2. The evolution equation of the density contrast in Fourier
space then reads:

¨̂δk + 2H ˙̂δk =

(
4πGρ0 −

c2
s k2

a2

)
δ̂k. (2.24)

The right hand side of this equation vanishes for wave numbers

k2
J := 4πGρ0a2

c2
s

which is referred to as Jeans wave number.
Analysing the differential equation 2.24 for vanishing H, H = 0,
i.e. for a static universe, we can see that for k ≥ k J the density
contrast must oscillate, whereas for k ≤ k J density modes start
to grow. By translating this wave number into a length scale we
obtain the Jeans length:

λJ :=
2π

k J
=

cs

a

√
π

Gρ0
(2.25)

and realise that only density perturbations larger than this
length can grow. Evaluating the equation with H 6= 0 for a dy-
namic universe we find that the formerly neglected term +2H ˙̂δ
leads to a damping of both the oscillating and the exponentially
increasing solutions.

2.2 the linear growth function D+

In linear theory modes are uncoupled allowing them to evolve
independently of another, but with the same rate. Thus, we can
write the solutions as:

δ̂k(t) = δ̂k(t0) · D(t). (2.26)
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Figure 2.1: The linear growth factor D+(a) (eq. 2.27) for a standard
cosmology with ΩΛ0 = 0.7, Ωm0 = 0.3, h = 0.7.

Analysing 2.24 we find two independent solutions for D. For
the case of nonrelativistic matter after the radiation-dominated
era we find a growing solution with D+ ∝ a and a solution
decaying with D− ∝ a−3/2. Analysing the differential equation
for different kinds of matter in different stages of the cosmic
evolution we find that we can describe the growth of the density
contrast in the Λ-dominated era with D+(a) approximated by:

D+(a) =
5a
2

Ωm

[
Ω4/7

m −ΩΛ +

(
1 +

1
2

Ωm

)(
1 +

1
70

ΩΛ

)]−1

.

(2.27)

This is shown for a standard cosmological model with ΩΛ0 =
0.7, Ωm0 = 0.3, h = 0.7 in Figure 2.1 This description requires
a cosmological model with Ωm < 1 and ΩΛ > 0. The most
prominent example of such a cosmology is the standard model
of cosmology: ΛCDM. This model is named after its main com-
ponents, cosmological constant Λ and cold dark matter CDM.
The cold refers to the property of moving slowly compared with
the speed of light whereas dark refers to the matter not inter-
acting with light. The major component is often modeled as
cosmological constant with a negative equation of state parameter
(cf. eq. 1.22).
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2.3 statistical measures of density fluctuations

One of the central quantities of structure formation is the matter
density power spectrum defined either as:

〈δk(t)δ∗k′(t)〉 := (2π)3δD(~k− ~k′)Pδ(k), (2.28)

or
〈δk(t)δk′(t)〉 := (2π)3δD(~k + ~k′)Pδ(k), (2.29)

where we used the Dirac delta distribution δD and the complex
conjugate of the Fourier mode δ∗k (t) in the first definition. The
density power spectrum Pδ depends on the wave number k only
because isotropy prohibits this quantity to depend on a direction.
Looking at its definition we realise that the power spectrum is
simply the variance of the Fourier transformed k-dependent
density contrast. We could also calculate the variance of the
real-space density contrast:

〈δ(~x, t)δ(~x +~r, t)〉 =: ξ(t, r). (2.30)

This quantity is called correlation function and turns out to be the
Fourier transform of the power spectrum as its constituents are
the Fourier transform of the constituents of the power spectrum:

ξ(t, r) =
∫ d3k

(2π)3 P(k)e−i~k~r. (2.31)

In this thesis, however, we will concentrate on the treatment of
the power spectrum. It is easy to describe the evolution of the
power spectrum in the linear phase when the description of the
linear evolution of the density contrast is given by eq. 2.26. Con-
sidering the definition of the power spectrum we immediately
can derive:

Plin
δ (k, t) = P0

δ (k) · D2
+(t). (2.32)

We will choose an initial power spectrum P0
δ at an initial time

of approximately recombination for structure formation is as-
sumed to be linear at that point in time and we can determine
the power spectrum of that phase with CMB measurements.
From the analysis of the density contrast’s evolution during
different phases in the evolution of the universe (i.e. radiation-,
matter- and Λ-dominated epochs) we can derive the behaviour
of the power spectrum. For a detailed calculation we refer the
reader to [e.g. 6, 17, 32] and give the result of these calculations
directly:
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During the expansion of the universe the Hubble radius rH =
c/H(t) increases. This means that modes that were larger than
the horizon before now enter the horizon and evolve differently
than before. In fact, density perturbations of relativistic matter
grow only as long as they have not entered the horizon. Entering
the horizon, however, these modes start to oscillate instead of
growing – their growth ends. When the universe starts to be
dominated by nonrelativistic matter (the time of the transition
from matter- to radiation-domination is marked by the expan-
sion parameter aeq) modes grow independently of their length
scale. This implies that those modes which enter the horizon
earlier are suppressed with respect to those entering the horizon
at a later stage. Detailed calculations of the physical processes
lead to the following behaviour of the power spectrum for cold
dark matter:

P(k) ∝

{
k (k < keq)

k−3 (k > keq)
, (2.33)

where the parameter keq is defined as:

keq = aeq
2π

rH,eq
, (2.34)

and the Hubble radius at equality time is given by:

rH,eq =
c

H(a)
=

c
H0E(a)

∣∣∣∣
a=aeq

=
c

H0

a3/2
eq√

2Ωm,0
. (2.35)

We show the form of the linear power spectrum of cold dark
matter in Fig. 2.2.
The possibility of a linear description of the density contrast
evolution that we sketched so far ceases as soon as δ approaches
unity. Analytic investigation of density evolution would require
further strong assumptions on the system itself. Alternatively,
we could use simulations of different kinds to gain further
knowledge. This is done by many research groups across the
globe. A comprehensive and general treatment with analytic
methods, however, has not been developed except for the field
theory we introduce in chapter 5. Tackling these issues and
finding an analytical description of structure growth also in
the nonlinear regime of structure formation will be one of the
main motivations for the development of Kinetic Field Theory
in chapter 5.
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Figure 2.2: Linear density power spectrum. This plot shows the power
spectrum of linear structures as derived in Bardeen et al.
[3]. This illustration is particularly helpful to visualise the
behaviour of the power spectrum as described in 2.33,
where the power spectrum grows linear with k up to the
turning point keq, when it starts decreasing with k−3.
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G R AV I TAT I O N A L L E N S I N G

Gravitational lensing is a phenomenon which allows to probe
the distribution of (mostly dark) matter in the universe and its
evolution through time. The effect is a particularly interesting
one as it enables us to probe matter on both very small and very
large scales. It describes the deflection of light by overdensities
in the matter distribution along the line of sight.
The effect was predicted by Einstein’s theory of General Rela-
tivity in 1915 and proposed as a possibility to probe the theory.
Although it was expected to be very hard to measure the effect
with the lens being a single star, [51] already realised that the ef-
fect must be strong enough for a deflector consisting of a nebula
(galaxy).
The phenomenon of gravitational lensing shows three differ-
ent categories: strong, weak and micro-lensing. Strong lensing
shows when observer, lens and light source are in near-perfect
alignment and the mass density of the lens exceeds a certain
threshold (called the critical mass density). The shape of the
source is strongly distorted leading to observable phenomena
like Einstein rings or multiple images of the very same source.
Microlensing on the other hand is a method to observe objects
using the magnification of light curves of sources behind by the
otherwise unobservable lens.
Weak lensing describes the systematic distortion of light sources
due to various structures along the line of sight between the
observer and the light source. These distortions, however, are
too small to be observed directly. They therefore can only be
detected and measured by statistically correlating large samples
of sources which are typically galaxies. This is discussed in
Section 3.6.
The first detection of strong gravitational lensing effects was
made by [18]. The first strong lensing system outside the So-
lar System, however, was only observed in 1979 by [49] and it
proved to be even more challenging to probe weak gravitational
lensing for the first time. The effect, called cosmic shear, induced
by the inhomogeneous matter distribution in the universe was
then detected and presented by four independent groups [2, 23,
46, 50] in the same year.

27
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The foundation of the lensing formalism and the most important
quantities are shown in many different textbooks and articles,
however in order to introduce the formalism of gravitational
lensing needed we closely follow [4].

3.1 jacobi equation

For all calculations following we assume that the universe is
described by a Friedmann-Lemaître-Robertson-Walker (FLRW)
cosmological model. Furthermore, we assume General Relativity
[45] to be valid throughout. We assume the gravitational poten-
tial to be weak (Φ� c2) and the peculiar velocity of the sources
of gravitation to be slow with respect to the mean background.
Gravitational lensing describes the bending of light due to the
influence of a gravitational field. We therefore start by consider-
ing a bundle of light rays, written in general relativity as null
geodesics. For our first step, we pick out a single fiducial ray. Its
tangent vector is given by:

kµ =
dxµ

dλ
, (3.1)

with λ an affine parameter parametrising the light ray and k
normalised such that its projection to the four-velocity of a freely
falling observer equals one:

〈k, uobs〉 = 1. (3.2)

This normalisation determines the choice of the affine parameter
λ: A wave vector k̃ projected onto the velocity of a freely falling
observer returns the light ray’s frequency measured by the very
same observer. Therefore, the affine parameter must be chosen
such, that k = k̃/ωobs = k̃/

∣∣〈k̃, uobs
〉∣∣.

We now consider a neighbouring ray of the chosen one and the
tangent vector v of the curve connecting both rays considered.
We call this connection curve γ. The tangent vector is modified
by the influence of a curvature field characterised by R = R(k, v)
according to the equation of geodesic deviation (Jacobi equation):

∇2
kv = R(k, v)k. (3.3)

∇k denotes the covariant derivative with respect to the wave
vector k and R(k, v) describes the curvature as in equation 1.10.
One can now evaluate this equation by introducing a (two-
dimensional) screen perpendicular to our light-ray within the
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observer’s three-space spanned by vectors E1 and E2. Both vec-
tors are parallely transported along the fiducial light ray. The
projection of the vector v on the screen is described by vector
components v1,2 and 3.3 can be rewritten as:

∇2
k

(
v1

v2

)
= T

(
v1

v2

)
, (3.4)

where we introduce the optical tidal matrix:

T =

(
R+ Re(F ) Im(F )

Im(F ) R− Re(F )

)
. (3.5)

Re(X) and Im(X) denote the real and imaginary parts of the
variable X and the components of the optical tidal matrix T are
given by:

F =
1
2

Cαβγδεαkβkγεδ,

R =
1
2

Rαβkαkβ +
1
2

Cαβγδεαkβkγε∗δ, (3.6)

with the Weyl tensor Cαβγδ [defined e.g. in 45, eq. 15.110 and
below in 3.23] and the vector ε := E1 + iE2. It is now assumed,
that one can split the contribution from the background and
the contribution from clumps of matter as additional sources of
gravity to the light rays’ behaviour in the influence of the total
gravitational field:

T = Tbg + Tcl. (3.7)

3.2 the tidal matrix

3.2.1 Tidal Matrix: Background

We will now consider both contributions separately, starting
with the contribution from the background in a freely expanding
FLRW-universe, described by the Friedmann-Lemaitre-Robertson-
Walker metric [e.g. 6, eq. 1.11]:

ds2 = a2(η)
[
−dη2 + dw2 + f 2

K(w)dΩ2
]

, (3.8)

where by η we denote the conformal time, related to cosmic time
t by dη = c

a dt. dΩ is the solid angle element, w the (comoving)
radial distance w and fK(w) the comoving angular-diameter
distance (cf. eq. 1.16). This metric is equivalent to 1.17. Assuming
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the background to be symmetric the Weyl curvature tensor Cαβγδ

in eq. 3.6 vanishes. With k being a null vector the contraction of
the Ricci-Tensor with k can be rewritten as Rαβkαkβ = Gαβkαkβ =
8πG

c4 Tαβkαkβ using Einstein’s field equations 1.7. For an ideal
fluid with negligible pressure we insert Tαβkαkβ = ρc2 〈u, k〉2
for the stress-energy-tensor 1.18. Having normalised the wave
vector before, it turns out that the projection |〈k, u〉| equals:

|〈k, u〉| = 1 + z, (3.9)

where we introduce the redshift z (cf. section 1.5) of the fluid
with respect to the observer. Knowing, that the density of
pressure-less, non-relativistic matter evolves with ρ = ρ0(1+ z)3

the total expression for R is given by:

R = −4πG
c2 ρ0(1 + z)5, (3.10)

leading to the optical tidal matrix for the background contribu-
tion:

Tbg = RI2, (3.11)

with the two-dimensional unit matrix I2.
In order to continue with our description of the background con-
tribution we now analyse the equation of motion 3.3. First, we
have to choose an affine parameter. Ignoring peculiar velocities
again we write:

〈k, u〉 =
〈

dx
dλ

, u
〉

=
dx0

dλ
=

cdt
dλ

, (3.12)

knowing that uµ = δ
µ
0 . This must be equal to 1 + z = 1/a.

Therefore,
dλ = ac dt = a2dη. (3.13)

By remembering that the screen (and therefore its basis vectors)
are parallely transported with k we rewrite the left hand side of
the Jacobi equation:

∇2
kvi =

d2vi

dλ2 , (3.14)

and replace the affine parameter with the comoving radial dis-
tance:

dλ = a2dw. (3.15)

One can now introduce co-moving bundle dimensions vi/a and
analyse their propagation with w by using the relation of w and
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the affine parameter λ and making use of the first Friedmann
equation in order to find:(

d
dw2 + K

)
vi

a
= 0. (3.16)

We introduced the curvature K when we inserted Friedmann’s
equation. Equation 3.16 describes the propagation of the co-
moving bundle dimensions in the homogeneous and isotropic
universe, i.e. in the background.

3.2.2 Tidal Matrix: Clumps

Having determined the equation of motion describing the prop-
agation of the comoving light-bundle dimension in the back-
ground we continue by describing the influence of overdensities
in the universe called clumps. The name also reflects their prop-
erty of being smaller in spatial terms than the curvature scale of
the background universe. Those clumps’ Newtonian potential
Φ = φc2 � c2 perturbs the FLRW metric such as:

ds2 = a2(η)
[
−(1 + 2φ)dη2 + (1− 2φ)

(
dw2 + f 2

K(w)dΩ2
)]

.
(3.17)

In a locally flat space we approximate fK(w) ≈ w and start by
looking at the light in the comoving Newtonian environment
with:

ds̃2 = −(1 + 2φ)dη2 + (1− 2φ)d~w2. (3.18)

We introduce the dual basis

θ0 = (1 + φ)dη

θi = (1− φ)dwi (3.19)

in terms of which the metric 3.18 looks Minkowskian. For the
following considerations we neglect terms of higher order than
linear in φ and time derivatives of the potential. The latter terms
become negligible, since they get damped by a factor of c−1 as
we convert them to derivatives with respect to the coordinate x0.
We introduce the shorthand Aj := ∂j A and calculate the compo-
nents of the Riemann tensor in order to be able to calculate the
Weyl curvature tensor later on. We find:

R0i0j = φij, Rijij = φii + φjj,

R1213 = φ23, R1223 = −φ13,
R1323 = φ12, (3.20)
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while all the other elements vanish. This enables us to calculate
the Ricci tensor Rjl = Ri

jil and the Ricci scalar R = Ri
i, i.e. the

trace of the tensor with the same name,

Rαβ = ∇2φI4, R = 2∇2φ. (3.21)

Based on that we can calculate the Einstein tensor in this setup:

Gαβ = Rαβ +
R
2

gαβ = ∇2φδ0
αδ0

β, (3.22)

where we also insert the stress-energy tensor 1.18. The Weyl
curvature is defined as:

Cαβγδ = Rαβγδ − gα[γRδ]β + gβ[γRδ]α +
R
3

gα[γgδ]β, (3.23)

and we use the shorthand notation for antisymmetrising Aα[βBγ]δ =
1
2

(
AαβBγδ − AαγBβδ

)
as it is defined, e.g., in [48, p. 26]. Plugging

in numbers, we find the only non-zero components to be:

C0i0j = φij −
1
3
∇2φηij, Cijij = φii + φjj −

2
3
∇2φ,

C12113 = φ23, C1223 = −φ13, C1323 = φ12. (3.24)

We can now calculate both components of the tidal matrix for
clump contribution with:

Rcl = −∇2φ (3.25)
Fcl = −(φ11 − φ22)− 2iφ12 (3.26)

and find the tidal matrix:

Tcl = −2

(
φ11 φ12

φ12 φ22

)
. (3.27)

If we call the specific potential which is passed by the light ray
φ(0) and expand the gradient of the potential as:

∂i(φ− φ(0)) := ∂iδφ = ∂j∂iφ|0xj = −1
2
(Tcl)ij xj, (3.28)

we can rewrite the geodesic deviation equation as:

d2xi

dλ2 =
d2xi

dw2 = −2∂iδφ, (3.29)

where we use the fact that in the local Newtonian metric dλ =
dw. Since only potential differences have physical importance,
but not absolute potential values, we reset the potential φ := δφ

and notice that the xi in the local frame are comoving bundle
dimensions vi/a which are subject to cosmic expansion as well.
Alltogether, the equivalent to eq. 3.16 including clumps is given
by: (

d
dw2 + K

)
xi + 2∂iφ = 0. (3.30)
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3.3 lensing potential and lensing equation

In order to solve equation 3.30 and proceed with the definition
of the lensing potential, a key quantity for the central object
of this thesis which is the weak (gravitational) lensing power
spectrum, we start by solving the inhomogeneous oscillator
equation 3.30. We find the appropriate Green’s function to be:

G(w, w′) =
1√
K

sin
(√

K(w− w′)
)

Θ(w− w′)

= fK(w− w′)Θ(w− w′), (3.31)

where fK is again the comoving angular diameter distance (cf. eq.
3.8). For the solution we furthermore need appropriate boundary
conditions which we find to be provided by:

xi
∣∣∣
w=0

= 0, (3.32)

dxi

dw

∣∣∣∣
w=0

= θi. (3.33)

Since this might not be trivial to understand at this stage we
want to elaborate on this in greater detail. It is worth recalling
that xi = vi/a is the local description of the tangent vector con-
necting the light rays considered. The first condition therefore
describes that the xi of all rays considered at w = 0, i.e. at the ob-
server’s position, are vanishing since we consider rays starting
there. We do, however, consider rays which may start in different
directions θi which is described by the second condition. This
is schematically illustrated in Fig. 3.1. The solution of eq. 3.30

with boundary conditions 3.32 and 3.33 is given by:

xi(w) = fK(w)θi − 2
∫ w

0
dw′ fK(w− w′)∂iφ(xj(w′), w′). (3.34)

For the rest of this calculation we shall assume very small de-
flection angles and use Born’s approximation for the integration
along the unperturbed light path xi(w′) ≈ fK(w′)θi. The appli-
cation of this widely used approximation is very well justified
by numerical simulations [e.g. 33, 43].
Considering gravitational lensing as the phenomenon of light
coming from a distant source being deflected by a deflector
closer to the observer we only integrate from the observer (at
w = 0) to the comoving radial distance of the source ws. We
define the angle βi := xi(ws)/ fK(ws) and find:

βi = θi − 2
∫ ws

0
dw′

fK(ws − w′)
fK(ws)

∂iφ( fK(w′)θ j, w′). (3.35)
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Figure 3.1: A bundle of light rays (null geodesics, continuous black).
The light ray is characterised by its tangent vector k
(pink, dashed) connected to its neighbours by the curve γ

(green, dotted) with the associated tangent vector v (green,
dashed). Dashed lines indicate tangent vectors, whereas
the dotted line describes the constructed connection of the
two rays (continuous lines).

If we rename the subtrahend of this equation,

αi(θ j) := 2
∫ ws

0
dw′

fK(ws − w′)
fK(ws)

∂iφ( fK(w′)θ j, w′),

and call it reduced deflection angle we can write down the lensing
equation:

βi = θi − αi(θ j). (3.36)

This equation is schematically elaborated in Fig. 3.2 We then
define a derivative with respect to angular coordinates ∂θ =
fK(w)∂x which enables us to write down the reduced deflection
angle as angular gradient of a newly introduced effective lensing
potential:

ψ(θ j) = 2
∫ ws

0
dw′

fK(ws − w′)
fK(ws) fK(w′)

φ( fK(w′)θ j, w′). (3.37)

3.4 cosmic shear and convergence

In this section we introduce two central quantities of weak
gravitational lensing: shear and convergence. These will not only
be important in the light of the weak lensing power spectrum,
the central object of this thesis, but also when relating this to
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Figure 3.2: A schematic display of the lensing process. A light ray
coming from S is deflected by the lens at L. Consequently,
the image I of the light source, as seen by the observer,
is located at angle θ instead of the source’s real position
at angle β. The deflection is described by the difference
α = θ − β. While ws describes the (comoving) distance of
the observer to the (light) source, wL describes the distance
of the observer to the lens and wLS the distance between
lens and source.

actual measurement results when one analyses large surveys for
cosmological purposes. First, we introduce a map ζ:

φ : S2 → S2 (3.38)
p 7→ ζ(p)

mapping a point from the sky as seen by the observer to a sphere
where the light sources are in fact located. The deformation of
sources by the lens mapping is then defined by the projection’s
differential Dζ describing the change from one to the other. One
can argue with simple mechanics that the only reason for a
change of intensity due to the lens mapping ζ is due to the
different angular coordinate at which the source appears after
being mapped as there is no additional light source created while
the light source’s position on the sphere are being changed. This
effect of changing intensities is called magnification and can be
expressed as:

µ = |det(Dζ)|−1 . (3.39)

For the following analysis of the differential Dζ we first have to
introduce charts mapping local neighbourhoods U (with p ∈ U)
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and V (with φ(p) ∈ V) in S2 to a neighbourhood U′, V′ in R2

and call them h1 and h2:

h1 : U → U′,
h2 : V → V′.

We can then span U′ and V′ with coordinate pairs (θ1, θ2) and
(β1, β2), respectively and – in the cartesian vector spaces – finally
express the Jacobian matrix Dζ by partial derivatives:

(Dζ)i
j =

∂βi

∂θ j =
∂(θ − α)i

∂θ j = δi
j −

∂2ψ

∂θi∂θ j = δi
j − ψi

j, (3.40)

where by the first symbol in the last term we denote the common
Kronecker-delta:

δij =

{
1 i = j
0 i 6= j

, (3.41)

and for the last part we made use of the common shorthand for
derivatives Ai

j := ∂i∂j A for an arbitrary variable A. One now
separates this differential into its trace and the trace-free part:

(Dζ)i
j =

(
1− κ 0

0 1− κ

)
−
(

γ1 γ2

γ2 −γ1

)
, (3.42)

where we introduce and define the convergence:

κ :=
1
2

ψi
i (3.43)

as well as the two components of the cosmic shear γ:

γ := γ1 + iγ2 (3.44)

γ1 :=
1
2

(
ψ1

1 − ψ2
2

)
(3.45)

γ2 := ψ1
2 = ψ2

1. (3.46)

While the convergence κ is responsible for an enlargement of
the objects on the sky, isotropically, due to the lens mapping, the
shear components elliptically distort the image. This is being
exploited in order to detect gravitational lensing.
In order to further investigate the meaning of the convergence
we plug the definition of the lensing potential into the expression
for the convergence in the locally Cartesian environment:

κ(xj) =
∫ ws

0
dw′

fK(w′) fK(ws − w′)
fK(ws)

∂xi ∂xi
φ(xj, w′), (3.47)
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and find with
∇2φ =

4πG
c2 ρ

that the convergence is a suitably weighed surface-mass-density
of the matter inhomogeneities which cause lensing:

κ(θi) =
4πG

c2

∫ ws

0
dw′

fK(w′) fK(ws − w′)
fK(ws)

ρ( fK(w′)θi, w′).

(3.48)
The simplified Poisson equation (eq. 3.43) holds due to the
fact that the partial derivatives ∂i are taken with respect to
coordinates orthogonal to the line of sight (i.e. the integration
variable). The third derivative in direction of the line of sight
vanishes after the integration into the very same direction, if the
potential is localised.

3.5 the weak lensing power spectrum

Having introduced the lensing potential in eq. 3.37 we are ready
to develop the weak lensing power spectrum. Writing down the
angular correlation function of the effective lensing potential we
find: 〈

ψ(~θ)ψ(~θ′)
〉
=
∫ ws

0
dw

∫ ws

0
dw′

ws − w
wsw

ws − w′

wsw′

·
∫ d3q

(2π)3 Pφ(q)ei~q·(~x−~x′). (3.49)

As this is not trivial to see, we shall have a look at the correlation
function of the gravitational potential.

〈
φ(~x)φ∗(~x′)

〉
=
∫ d3q

(2π)3

∫ d3q′

(2π)3

〈
φ̂(~q)φ̂∗(~q′)

〉
ei(~q·~x−~q′·~x′)

(3.50)

=
∫ d3q

(2π)3

∫ d3q′

(2π)3 Pφ(q)δ(~q− ~q′)(2π)3ei(~q·~x−~q′·~x′)

(3.51)

=
∫ d3q

(2π)3 Pφ(q)ei~q·(~x−~x′), (3.52)

where we abbreviate ~x := (wθ, w) and expand the gravitational
potential in Fourier modes for the first equality:

φ(~x) =
∫ d3q

(2π)3 φ̂(~q)ei~q~x, (3.53)
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and insert the definition of the potential power spectrum:〈
φ̂(q)φ̂∗(q′)

〉
= (2π)3δ(q− q′)Pφ(|q|), (3.54)

in order to get to the second line. We perform an integration
over q′ using the Dirac-δ-function in order to find the final result.
For the average

〈
φ̂(q)φ̂∗(q′)

〉
we take all Fourier modes with

wave number q which are contained in the volume.
The Fourier basis can now be expanded once more into spherical
harmonics:

ei~q~x = 4π ∑
lm

il jl(qw)Y∗lm(~θx)Ylm(~θq), (3.55)

and we use this expansion in order to further manipulate the
three-dimensional integral in eq. 3.49:∫ d3q

(2π)3 Pφ(q)ei~q(~x−~x′) =
∫ d3q

(2π)3 16π2Pφ

(
∑
lm

il jl(qw)Y∗lm(~θx)Ylm(~θq)

)

·
(

∑
l′m′
−il′ jl′(qw′)Y∗l′m′(~θ′x)Yl′m′(~θ′q)

)
(3.56)

=
2
π

∫
q2dqPφ(q)

∫
dΩ ∑

lm
∑
l′m′
−il+l′

· jl(qw)jl′(qw′)

·Y∗lm(~θx)Yl′m′(~θ′x)Ylm(~θq)Y∗l′m′(~θq)
(3.57)

=
2
π

∫
q2dqPφ(q)∑

lm
∑
l′m′
−il+l′ jl(qw)

· jl′(qw′)Y∗lm(~θx)Yl′m′(~θ′x)δll′δmm′

(3.58)

=
2
π

∫
q2dqPφ(q)∑

lm
−i2l jl(qw)jl(qw′)

·Y∗lm(~θx)Ylm(~θ′x). (3.59)

Plugging this into the expression 3.49 and providing boundaries
for the integral in 3.49 we find:〈

ψ(~θ)ψ(~θ′)
〉
=

2
π ∑

lm

∫ ws

0
dw

∫ ws

0
dw′

ws − w
wsw

ws − w′

wsw′

·
∫ ∞

0
q2dqPφ(q)jl(qw)jl(qw′)Y∗lm(~θx)Y∗lm(~θx

′
).

(3.60)
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For the only angles left as arguments in the expression on the
right hand side are θx we abbreviate θ = θx. We now expand the
constituents of the left hand side of this equation into spherical
harmonics as well:

ψ(~θx) = ∑
lm

ψlmYlm, (3.61)

with coefficients

ψlm =
∫

d~θψ(~θ)Y∗lm(~θ), (3.62)

and define the angular power spectrum by

〈ψlmψ∗l′m′〉 = δll′δmm′C
ψ
` . (3.63)

We use the expanded lensing potential in the description of the
angular correlation function〈

ψ(~θ)ψ(~θ′)
〉
=∑

lm
∑
l′m′
〈ψlmψl′m′〉YlmY∗l′m′ (3.64)

=∑
lm

YlmY∗lmCψ
` . (3.65)

Comparing both terms leads to:

Cψ
` =

2
π

∫ ws

0
dw

∫ ws

0
dw′

ws − w
wsw

ws − w′

wsw′

∫ ∞

0
q2dqPφ(q)

· jl(qw)jl(qw′).
(3.66)

Assuming that typical scales considered here, 2π/q, are much
smaller than the cosmological distances w, w′ we conclude that
qw� 2π. The spherical Bessel functions jl(qw) are then varying
much faster than the potential power spectrum. We can evaluate
this power spectrum of the lensing potential at q = l/w using
that the spherical Bessel functions peak there, additionally use
the fact: ∫ ∞

0
q2dqjl(qw)jl(qw′) =

π

2w2 δ(w− w′), (3.67)

and find:

Cψ
` =

∫ ws

0
dw
(

ws − w
wsw2

)2

Pφ

(
l
w

)
(3.68)

for the angular power spectrum depending on the gravitational
potential power spectrum. One can then replace the gravitational
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potential power spectrum Pφ by the density power spectrum Pδ,
since φ and δ are related by the Poisson equation:

∇2φ =
3
2a

H2
0

c2 Ωm0δ, (3.69)

which translates to:

k2φ̂ =
3
2a

H2
0

c2 Ωm0δ̂ (3.70)

for their respective Fourier transforms and leads to:

Pφ(k) =
9

4a2
H4

0
c4 Ω2

m0
Pδ(k)

k4 . (3.71)

This transforms the expression for the angular power spectrum
to:

Cψ
` =

9
4l4

H4
0

c4 Ω2
m0

∫ ws

0
dw
(

ws − w
wsa(w)

)2

Pδ

(
l
w

)
. (3.72)

In order to calculate an angular power spectrum of the con-
vergence (eq. 3.43), we apply two derivatives to the lensing
potential in eq. 3.61 and remember that for spherical harmonics

∂i∂iYlm(θ) = l(l + 1)Ylm(θ) ≈ l2Ylm (l � 1) (3.73)

holds. This, finally, leads to the relation of the angular conver-
gence power spectrum with the power spectrum of the density
contrast Pδ:

Cκ
` =

9
4

(
H0

c

)4

Ω2
m0

∫ ws

0
dw
(

ws − w
wsa(w)

)2

Pδ

(
l
w

)
. (3.74)

3.6 measurement and uncertainty

Locally, one can apply the flat-sky approximation assuming
again that one can approximate the curved space of the sphere
with a two-dimensional Cartesian neighbourhood. We have
already introduced the complex shear γ = γ1 + iγ2. We will
also make use of its complex conjugate γ∗ = γ1− iγ2. In the flat-
sky approximation it is possible to calculate the shear’s Fourier
transform and calculate the power spectrum:

Cγ
` = 〈γ̂γ̂∗〉 . (3.75)
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One can by introducing a differential operator ð = ∂1 + i∂2 and
relating convergence and shear to the potential, by κ = 1

2ð
†ðψ

and γ = 1
2ð

2ψ respectively, find that

Cγ
` = 〈γ̂γ̂∗〉 =

〈
l4

4
ψ̂ψ̂∗

〉
= 〈κ̂κ̂∗〉 = Cκ

` . (3.76)

We thereby related the convergence power spectrum, as given in
3.74 to the same quantity for the cosmic shear. For completeness,
we also mention the fact that the shear power spectrum is related
to the two-point correlation function of shear by the Fourier
transform as is the density power spectrum,

ξκ(θ) =
∫ ∞

0

ldl
2π

Cκ
` J0(lθ) = ξγ(θ). (3.77)

Given a smooth and continuous shear field one could measure
this quantity directly. The shear field, however, is not directly
measurable. We therefore will sketch in chapter 7 methods to
measure cosmic shear and show how [22] suggests to calculate
the shear power spectrum from a discrete set of shear values.





4
M O D E L I N D E P E N D E N T C O S M O L O G Y

introduction

In chapter 1 we introduced the function E(a). Being the dynamic
part of the Hubble function H(a) = H0E(a) = ȧ

a it describes
the universe’s expansion in time and is therefore central for our
understanding of the cosmos’ history. However, the quantity
as given before in eq. 1.27 relies on a certain theoretical frame-
work based on a particular cosmological model. The expansion
function for the ΛCDM-universe, for example:

E(a) =
√

Ωm0a−3 + Ωr0a−4 + ΩΛ0 + ΩK0a−2, (4.1)

requires a Friedmann universe, i.e. a universe following Fried-
mann’s equations of expansion (eq. 1.19-1.20).
Even more assumptions were made when we wrote down an
approximation for the linear growth function D+(a) which de-
scribes the density contrast’s (growing) evolution during the
linear phase of cosmic structure formation:

δ(a) = D+(a)δ0. (4.2)

There we referred to [6, pp. 131-133] who had a close look at
different stages of the universe’s evolution considering different
eras.
Supernovae of type Ia (SNe Ia) are known to be of very high lu-
minosity making them easily observable even at large distances
[e.g. 17, 28]. With SNe Ia as standard candles [27] invented a
method to determine the expansion solely from observations.
[21] then simplified it and applied the new formalism to [39],
a large set of SNe-Ia data. They proceeded to derive the linear
growth factor D+(a) by using their own model-independent
analysis of E(a). This function is completely parameter-free
as well, except for one last remaining degree of freedom: the
present-day matter density Ωm0.
In this chapter, we introduce the method of [21] to derive the ex-
pansion function E(a) and the linear growth factor D+(a) purely
from observations of SNe Ia [39] with only the basic assumption
of spatial symmetries and the current matter density Ωm0 as
free parameter. This will become essential in order to derive the

43
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central piece of this thesis, a model-independent weak lensing
power spectrum.

4.1 deriving the expansion function E(a)

The aim of this section is to explain how [21] derives E(a) from
the sample of supernovae type Ia [39].
We start with a definition of the normalised Chebyshev polyno-
mials Tn:

Tn(x) :=


1√
π

(n = 0)√
2
π cos(n · arccos x) (n > 0)

. (4.3)

The Chebyshev polynomials are defined on [−1, 1]. Looking
to investigate E(a) and D+(a) with a ∈ [0, 1] we want to shift
the Chebyshev polynomials to the scale factor’s domain. The
polynomials get shifted to [0, 1] by:

T∗n (x) = Tn(2x− 1). (4.4)

These modified Chebyshev polynomials will supply an orthonor-
mal basis system in which we will expand a modified, inverse
expansion function. We start by converting measured distance
moduli µi which are defined as the difference between the ap-
parent magnitude m and the absolute magnitude M, µ = m−M
and related to the distance d by µ = 5(log10(d)− 1) to luminos-
ity distances:

Dl,i = 101+0.2µipc (4.5)

and introduce the quantity x:

xi :=
ai − amin

1− amin
, (4.6)

depending on the scale factor a. We introduce this quantity in
order to operate on the same unit interval where the Chebyshev
polynomials are normalised. The scale factor is given as discrete
ai in the measurement set. amin refers to the smallest scale factor
in the sample corresponding to the farthest object. The scaled
luminosity distance which we will need later on in equation 4.12,
is introduced as:

di = a2
min(1 + δa · xi)Dl,i, (4.7)

where we also defined δa := (1− amin)/amin.
The application of both transformations provide us with a nicely
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scaled set of data. Expressing the radial comoving distance (1.35)
in terms of those new coordinates x we find:

w(x) =
∫ t0

t

cdt′

a(t′)
=
∫ 1

x

cdx′

a(x′)ẋ′

=
c

H0

∫ 1

x

dx′ e(x′)
amin

. (4.8)

In the last step we introduce:

e(x) := [ẋ(1 + δa · x)]−1. (4.9)

Rewriting

ẋi = ȧ/(1− amin) = ȧ/(aminδa)

= H(a)
a

aminδa
= H0E(a)

1 + x · δa
δa

, (4.10)

we can write the luminosity distance in a new form:

Dl(x) =
w(x)
a(x)

=
1

a2
min(1 + x · δa)

∫ 1

x
dx′e(x′). (4.11)

The first equality is of course only possible for vanishing cur-
vature (cf. section 1.6.3). Rescaling by the factor 1

a2
min(1+x·δa)

we

find the scaled luminosity distance:

d(x) =
∫ 1

x
dx′e(x′), (4.12)

or, similarly,
e(x) = −d′(x). (4.13)

We can now write the scaled luminosity distance in terms of the
shifted Chebyshev polynomials defined earlier:

d(x) =
∫ 1

x
dx′e(x′) =

M

∑
j=1

cj pj(x) (4.14)

with pj(x) :=
∫ 1

x dx′T∗j (x′). Defining P = (Pij) with Pij = pj(xi)

we introduce the vector of coefficients, ~c by:

~d = P~c. (4.15)

By ~d we denote the data vector consisting of our data points di.
We furthermore define a covariance matrix of the data vector
by C =

〈
~d⊗ ~d

〉
. Then the maximum likelihood solution for ~c is

given as:

~c =
(

PTC−1P
)−1 (

PTC−1
)
~d. (4.16)

These components of ~c can then be converted to the expansion
function via 4.10-4.14.
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4.1.1 Errors ∆E(a)

Before we introduce the method from [21] for calculating D+,
we turn to the calculation of the uncertainties of the expansion
function.
We write down the Fisher matrix:

F = PTC−1P, (4.17)

which is then rotated into its eigenframe by an appropriate
matrix R resulting in a diagonal matrix F′:

F′ = RTFR. (4.18)

The eigenvalues of this matrix, i.e. its diagonal entries, give rise
to a vector of uncertainties:

∆c′i = σ′i . (4.19)

Rotating the vector ∆~c′ = (∆c′i) back into the original frame we
arrive at:

∆~c := RT∆~c′. (4.20)

These errors propagate via 4.10-4.14 to the uncertainties to E(a)
providing us with estimates for ∆E(a).

4.2 the linear growth function D+(a)

We also want to present the second part of [21] which is the
derivation of a model-independent D+(a) which we will use in
chapter 5 for the calculation of the power spectrum. In order to
understand the growth function properly we turn again to the
solution of eq. 2.21 for vanishing pressure reading:

δ̈ + 2Hδ̇ = 4πGρ0δ. (4.21)

The solution to this equation can be written as:

δ(~x, t) = f (~x) · D(t) (4.22)

as there are no mixed spatial and temporal derivatives in 4.21

which is homogeneous in δ. There are two solutions D±(t) to
this differential equation of second order of which we only shall
consider the growing one named D+ as the decreasing one is not



4.2 the linear growth function D+(a) 47

relevant for our purpose. We transform the differential equation
4.21 from time t to the scale factor a and find with:

d
dt

= aH0E(a)
d
da

, (4.23)

d2

dt2 = aH2
0 E(a)

[(
E(a) + aE′(a)

) d
da

+ aE(a)
d2

da2

]
, (4.24)

that 4.21 translates to:

D′′+ +

(
3
a
+

E′(a)
E(a)

)
D+ =

3
2

Ωm

a2 D+, (4.25)

where we again used the density parameter Ωm = ρ/ρcrit as
defined in 1.25. In order to solve this equation we set the initial
condition for the linear growth function to be:

D+(amin) = 1. (4.26)

We assume that the linear growth factor follows a power law in
this early stages of cosmic expansion:

D+(a) = an. (4.27)

Plugging this ansatz into the differential equation for D+ two
solutions for the exponent n arise:

n± =
1
4

(
−1− ε±

√
(1 + ε)2 + 24(1−ω)

)
. (4.28)

Here, we introduced the two parameters:

ε := 3 + 2
d log E
d log a

= 3 + 2
a

E(a)
dE(a)

da
,

ω := 1−Ωm(a). (4.29)

We choose the positive, growing solution, abbreviate n := n+

and find for small parameters ε, ω in the matter-dominated era:

n ≈ 1− ε + 3ω

5
. (4.30)

The first parameter ε can be fixed knowing E(a) and the second
one can be determined by choosing the only remaining free
parameter Ωm0, knowing that the time-dependent matter density
parameter behaves like:

Ωm(a) = Ωm0E−2(a)a−3. (4.31)
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Knowing both parameters, we can deduce n and are able to
calculate the growth function when considering the second
initial condition:

D′+(a)
∣∣
a=amin

=
d
da

an
∣∣∣∣
a=amin

= n · an−1
∣∣∣
a=amin

= n · an

a

∣∣∣∣
a=amin

=
{n

a
D+(a)

}∣∣∣
a=amin

=
n

amin
.

(4.32)

After solving the equation 4.25 with the two boundary condi-
tions for D+ and D′+ at a = amin we can renormalise (which we
can do because equation 4.25 is homogeneous):

D+(a = 1) := 1. (4.33)

In order to determine the uncertainty of the growth function we
consider the uncertainty of the expansion function propagating
to the growth function. We realise that the uncertainty gets
smaller towards a = 1. [21] traces this behaviour of ∆D+(a)
back to the choice of normalisation 4.33. As in [21] we will give
the D+(a) for a realistic matter density parameter Ωm0 = 0.3
in the next section together with the results for the expansion
function E(a).

4.3 results from Haude et al . [21]

In this section, we present the expansion function E(a) as given
in [21] and compare it to the expansion function as derived from
a standard LCDM-model cosmology from eq. 1.27. The SNe
Ia sample [39] covers supernovae in a range of redshifts corre-
sponding to scale factors from 0.31 to 1. By applying the method
described in 4.1 they derive both the expansion function as well
as its uncertainty with 3 significant coefficents, i.e. coefficients
satisfying:

|cj| ≥ ∆cj. (4.34)

[21] explain the small uncertainties by the fact of the entire infor-
mation of SNe data being compressed into the three coefficients.
They find an expansion function which would be best fitted by
a very simple ΛCDM-Model with:

E(a) =
√

Ωm0a−3 + 1−Ωm0, (4.35)

where the best-fit present-day matter density Ωm0 is given by
Ωm0 = 0.324± 0.002. We show both the curve derived by [21]
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Figure 4.1: Expansion function. We show the expansion function pro-
vided by [21] from their method of model-independent
cosmology. This curve, a dotted line here, is shown with its
uncertainty in green. In order to compare the curve to an
expansion function (eq. 4.35) in a ΛCDM universe we show
this one as well as a dashed line in pink, using the value
for Ωm0 as provided by [21]. As the SNe Ia sample [39]
used by [21] only provides data within a scale factor range
a ∈ [0.3067, 1] we also choose to show the ΛCDM-curve
only in this range for there is no possibility to compare it
to the model-independent results elsewhere.

as well as the curve obtained by their fitting function with their
best-fit 4.35 with Ωm0 = 0.324 in Fig. 4.1.
Analysing the growth of cosmic structures we also want to
discuss their findings for the linear growth function D+(a), de-
scribing the growth of structures in the linear phase of structure
formation. We compare the curve obtained with the method of
[21] to the one obtained with the standard theory of a ΛCDM
cosmology (eq. 2.27) in Fig. 4.2, again using the same parameter
for the present-day matter density.

concluding remarks

In this chapter, we demonstrated how [21] improved the method
of [27] to infer a parameter-free expansion function E(a) from a
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Figure 4.2: Linear growth function D+(a). We show the growth func-
tion provided by [21] derived by the method discussed in
4.2. The only parameter used is Ωm0 = 0.3. The result is
shown as a dashed green line together with its uncertainty.
In order to compare their result to a growth function in
the standard model of cosmology we also show a growth
function obtained by a classical approximation as dotted
pink line.
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large set of supernovae measurements [39] and used this result
to further calculate a model-independent growth factor D+(a)
leaving the present-day matter density as the only parameter
to be fixed. Both results are essential for our aim of building a
model-independent weak lensing power spectrum as we will
discuss later on in chapter 6.
The comparison of both quantities E(a) and D+(a) with pre-
dictions from theory in the cosmological standard model ΛCDM
shows good agreement of the model-independent and the theory-
predicted curves in both cases well within the uncertainties of
the model-independent expansion and growth functions.
The best fit matching the expansion function alone is found for
Ωm0 = 0.324 which is a value for the present-day matter density
parameter only slightly larger than the one measured by [35]
(Ωm0 = 0.3147± 0.0074).





5
K I N E T I C F I E L D T H E O RY

In this chapter we introduce the Kinetic Field Theory (KFT) as
developed and explained in [5, 8, 10, 11, 20, 47]. KFT was devel-
oped in order to apply a formalism of statistical field theories
to classical particles with a focus on calculating key quantities
in cosmology. In particular, a closed, analytic, non-perturbative
and parameter-free equation for the non-linear density fluctu-
ation power spectrum (cf. chapter 2, eq. 2.28) was derived. As
we need this power spectrum for our calculation of the angular
weak lensing power spectrum (as discussed in chapter 3, eq.
3.74) we will introduce KFT only to the point where we will be
able to compute the density fluctuation power spectrum. We
want to mention, however, that KFT has been used for further
analyses explaining the density profile of dark matter haloes,
computing velocity power spectra and even in applications to
cold Rydberg atoms. As the latter one is a system quite different
to cosmological applications the variety of applications is rather
remarkable. For those and other applications of KFT we refer to
the review [11]. It is also this review which we will closely follow
in order to present KFT in this chapter. We will however extend
our discussion of KFT by some parts we took from [10].
We start by introducing the generating functional of KFT (5.1),
the central object of the theory and continue by extracting in-
formation from this functional in the next section (5.3). We will
then adapt and use the formalism developed so far for applica-
tions in cosmology (5.4-5.7) and elaborate on how to derive both
the free density fluctuation power spectrum (5.8) as well as an
approximate expression for the non-linear density fluctuation
power spectrum including particle interactions (5.9).

5.1 the generating functional

The first and central mathematical object of Kinetic Field Theory
is the generating functional Z, defined as:

Z =
∫
Dφ(x)P[φ(x)] exp

{
i
∫

dx 〈O(x), φ(x)〉
}

, (5.1)

53
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where P(φ) is the probability distribution of states φ. We fur-
thermore introduced a source field O. We will elaborate on the
purpose of such source fields later on.
It can be very helpful to think of this generating functional as
a modification of the partition sum from statistical mechanics
as it incorporates a probability distribution P(φ) and integrates
over all states φ. If however the state space is a function space
rather than ordinary phase space, it generalises to a path inte-
gral which is reflected in the definition 5.1.
Considering a canonical ensemble of N classical particles the
state space is given by the phase space Γ of the particles with
trajectories (qj, pj) with q ∈ R3 and p ∈ R3, the position and
momentum of a particle which is labelled by j. We define this
tuple as xj := (qj, pj). We furthermore introduce the tensorial
object:

x = xj ⊗ ej. (5.2)

Again, the summation over repeated indices is implied, xj ⊗
ej = ∑j xj ⊗ ej. We want to point out that x = x(t) is a time-
dependent variable although we will not always write down the
time dependence explicitly. The unit vector ej has nonvanishing
components only at j-th position, (ej)i = δij, where we use the
Kronecker delta. For the newly introduced tensor we define a
scalar product:

〈x,y〉 = xj · yj. (5.3)

This implies that the vector x of particle j is multiplied only
with the vector y of the very same particle.
The generating functional can be written down as an ordinary
integral over the phase space of the N particles considered. This
is possible as the integral over trajectories turns into an (ordi-
nary) integral over possible starting points since the trajectories
of the particles (which are described with Dirac delta functions)
are deterministic.
In order to – in analogy to a quantum field theory – extract
cumulants from the generating functional later on we start in-
troducing auxiliary generator fields. In order to obtain the average
position of a particle j, for example, we introduce the conjugate
field J into the generating functional:

Z[J] =
∫

dxP(x) exp
{

i
∫ ∞

0
dt′
〈
J(t′), x(t′)

〉}
(5.4)
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and apply a functional derivative with respect to Jj before setting
J = 0 again: 〈

xj(t)
〉
= −i

δ

δJj(t)
Z[J]

∣∣∣∣∣
J=0

. (5.5)

The tensor J itself has components Jqj , Jpj and is constructed
similarly to the tensor x via:

J =
(

Jqj

Jpj

)
⊗ ej. (5.6)

In a next step, the probability P(x) is split up into the probabil-
ity of the ensemble occupying an initial state P

(
x(i)
)

and the

corresponding conditional transition probability P
(

x|x(i)
)

:

P(x) =
∫

dx(i)P
(

x|x(i)
)

P
(

x(i)
)

. (5.7)

The transition probability P
(

x|x(i)
)

for trajectories in classical
mechanics can be described by a functional delta distribution
with the Hamiltonian flow Φcl

(
x(i)
)

:

P
(

x|x(i)
)
= δD

[
x−Φcl

(
x(i)
)]

. (5.8)

With the equation of motion written as E(x) = 0 the Hamilto-
nian flow is given by all solutions of this equation for initial
points within a given domain of phase space Γ. The solutions of
the classical equation of motion with initial points at x(i) can be
written as E

(
x, xi) = 0. The former transition probability (eq.

5.8) is then given by:

P
(

x|x(i)
)
= δD

[
E
(

x, x(i)
)]

. (5.9)

This singles out the solutions of the equations of motion as
the only possible trajectories which is a sensible statement for
classical mechanics.

5.2 equations of motion

We now want to solve the equations of motion.
With the symplectic matrix:

I :=
(

0 I3
−I3 0

)
, (5.10)
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we can write down the equation of motion for a single particle
as:

ẋ− I∇xH = 0, (5.11)

with the Hamiltonian H which will be specified for our pur-
pose later on and three-dimensional unit matrices I3. For non-
interacting particles the Hamiltonian equations are linear, allow-
ing for a solution using a Green’s function G(t, t′). In order to
prepare for interactions, however, we can amend the equation
5.11 by a source term K leading to solutions:

x̄(t) = G(t, 0)x(i) +
∫ t

0
dt′G(t, t′)K(t′). (5.12)

Assuming that the interactions between particles can be charac-
terised with a potential V the source term is:

K(t′) =
(
0,−∇V(t′)

)T . (5.13)

As x is a six-dimensional vector G must be a 6× 6 matrix consist-
ing of three blocks gqqI3, gqpI3 and gppI3. The gij-propagators
can themselves be interpreted as a measure of time. In order to
write down a solution for all ensemble particles x̄ we need to
construct both a Green’s function G(t,t’) = G(t, t′)⊗ IN and a
suitable source field K := Kj ⊗ ej for all of the N particles. Then,
we can write:

E
(

x, x(i)
)
= x(t)− x̄(t) = 0. (5.14)

This allows for a reformulation of the generating functional:

Z[J] =
∫

dx(i)
∫

dx δD(x− x̄)P(x(i)) · exp
{

i
∫ ∞

0
dt′
〈
J(t′), x(t′)

〉}
=
∫

dx(i)P(x(i)) exp
{

i
∫ ∞

0
dt′
〈
J(t′), x̄(t′)

〉}
:=
∫

dΓ exp
{

i
∫ ∞

0
dt′
〈
J(t′), x̄(t′)

〉}
, (5.15)

where we introduce dΓ := dx(i)P(x(i)).

5.3 density

In order to obtain the cosmic density which we will need for
the calculation of the density fluctuation power spectrum (cf.
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eq. 2.28) from the generating functional we define a density
operator. The cosmic number density at a given time is:

ρ(q, t1) =
N

∑
j=1

δD(q− qj(t1)). (5.16)

Here, we again used that the system consists of N particles at
their respective positions qj. After a Fourier transformation we
find for Fourier mode k1:

ρ̃(k1, t1) =
N

∑
j=1

exp
{
−ik1 · qj(t1)

}
. (5.17)

The tilde indicates the Fourier representation of the density. We
shall henceforth omit the tilde and assume operations in Fourier
space from now on. For further analysis we start to abbreviate
the arguments (1) = (k1, t1) and (−1) = (−k1, t1).
The position qj contained in the expression for the density can
now be substituted by a functional derivative with respect to
the qj-th component of the auxiliary field J at time t1:

ρ̂j(1) := exp

{
−k1

δ

δJqj(t1)

}
. (5.18)

Summing up those operators for single particles we find the
density operator:

ρ̂(1) =
N

∑
j=1

ρ̂j(1), (5.19)

leading to a density of the form 5.17 when applied. Noticing,
that the one-particle operator 5.18 contains a functional deriva-
tive in the exponential we realise that the application of this
operator corresponds to a shift of the generator field. This shift
amounts after r applications of the density operator to:

∆J = −
r

∑
j=1

δD(t′ − tj) ·
(

k j

0

)
⊗ ej. (5.20)

The generating functional can then, after setting J = 0 again, be
written as:

Z[L] =
∫

dΓ exp
{

i
〈
Lq, q

〉
+ i
〈
Lp, p

〉
+ iSI

}
, (5.21)

where we introduce a shift vector L with:

Lq = −
r

∑
j=1

k j ⊗ ej, (5.22)



58 kinetic field theory

and

Lp = −
r

∑
j=1

k jgqp(tj)⊗ ej, (5.23)

as well as the interaction term:

SI =
r

∑
j=1

k j

∫ tj

0
dt′gqp(tj, t′)∇jV(t′). (5.24)

Comparing the generating functional 5.21 with the former ex-
pression, we must stress that the given positions and momenta
q, p correspond to the components of the initial phase space
tensor x(i). It is also worth mentioning that up to this point the
formalism has not been specified for a particular application
except for the assumption that we can trace back any interaction
to an interaction potential.
Assuming that the potential V can be expressed as a linear
superposition of potential contributions by different particles
we can further develop an interaction operator ŜI in order to
separate the interaction part of 5.21 from the free generating
functional Z0:

Z[L] = exp
{

iŜI
}

Z0[L], (5.25)

where we defined

Z0[L] =
∫

dΓ exp
{

i
〈
Lq, q

〉
+ i
〈
Lp, p

〉}
. (5.26)

5.4 cosmological applications

Contrary to our choice in chapter 1 we choose to normalise the
scale factor to unity, a(0) = 1, at the initial time t = 0. As we
can renormalise later on this is merely a convenient choice. In
comoving coordinates we can write the Lagrangian of a particle
of mass m as:

L(q, q̇, t) =
m
2

a2q̇2 −mΦ. (5.27)

The gravitational potential Φ is again connected to the surround-
ing density via the Poisson equation:

∇2Φ = 4πGa2(ρ− ρ0). (5.28)

With an expression for the mean cosmic density ρ0 early in the
matter-dominated epoch, implying Ωm,i = 1, which we want to
choose as initial time, one can reformulate the Poisson equation
in terms of the density contrast δ (cf. eq. 2.13):

∇2Φ =
3
2

H2
i

δ

a
. (5.29)
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In chapters 2 and 4 (e.g. eq. 2.26), we introduced and discussed
the linear growth-factor D+. This function can also be used as
a measure of cosmic time. Before we are able to introduce an
appropriate Lagrange function for the system we introduce the
two functions:

g(t) := a2D+ f H, f :=
d log D+

d log a
, (5.30)

as well as a modified potential Φ̄ by:

∇2Φ̄ =
3a
2g

δ. (5.31)

We introduce the new time coordinate D+, which we get from
t→ D+(t)− D+(0) with t = 0 corresponding to an initial time
0 at a moment in the matter dominated epoch where the density
fluctuations are sufficiently small for us to remain in the linear
phase. Typically, one chooses the time of recombination.
Using the gauge invariance of classical mechanics and by recall-
ing the action principle to find an appropriate transformation to
the new time coordinate we can find a modified Lagrangian for
the newly introduced coordinate of time:

L̄ =
g
2

q̇2 − Φ̄. (5.32)

By defining a reduced potential φ = Φ̄/g obeying ∇2φ = 3a
2g2 δ

the equation of motion is given by:

q̈ +
ġ
g

q̇ +∇φ = 0. (5.33)

With the generalised momentum p = ∂
∂q̇ L̄ = gq̇ we find the

Hamiltonian H̄ as Legendre transform of L̄:

H̄ = q̇p− L̄(q, q̇, t)

=
p2

g
− g

2
p2

g2 + Φ̄

= Φ̄ +
p2

2g
, (5.34)

which leads to the Hamiltonian equations of motion:

q̇ = ∂pH̄

=
p
g

, (5.35)

ṗ = −∂qH̄
= −∇Φ̄. (5.36)
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The equations of motion can be solved by using the Green’s
function Ḡ:(

q(t)
p(t)

)
= Ḡ(t, t0)

(
q0

p0

)
+
∫ t

t0

Ḡ(t, t′)
(

0
−∇Φ̄

)
dt′, (5.37)

with

Ḡ(t, t′) =

(
I3 ḡqp

0 I3

)
, and

ḡqp(t, t′) =
∫ t

t′

dt̄
g(t̄)

. (5.38)

This propagator ḡqp(t, t′) turns out to be limited from above
due to cosmic expansion with the result that the description of
trajectories with this solution deviates from the true trajectories
which must include all interactions. In order to account for
those, at least in part, one has to introduce more sophisticated
propagators like the improved Zel’dovich propagator [4] leading
to:

~q0(t) = ~q(i) + gqp(t, 0) · ~p(i), (5.39)

where the superscript (i) refers to the inital position and mo-
mentum.
The corresponding propagator is given by:

gqp(t, t′) = Hi

∫ a

a′

dã
ã3H(ã)

. (5.40)

Here, Hi denotes the Hubble parameter at initial time ti. We will
use this propagator for our calculation of a density fluctuation
power spectrum later on.

5.5 initial probability distribution

In order to evaluate the generating functional in 5.21 we need
to specify the probability distribution P(x(i)) in dΓ. Recalling
the Helmholtz decomposition theorem, a look at the peculiar
particle velocities reveals that the decomposition of the velocity
field into a curl-free field and a divergence-free field allows us
to introduce a velocity potential. The divergence-free compo-
nent of the field quickly decays due to cosmic expansion and
momentum conservation. Calling the velocity potential Ψ we
can derive from the linearised continuity equation 2.1:

∂tδ +∇ · ~u = 0, (5.41)
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that, at early times when D+ = 1 = ∂tD+ holds after introduc-
ing D+ as measure of cosmic time (D+ = t) we get:

δ +∇2Ψ = 0. (5.42)

As we assume the initial density fluctuation field δ to be of
Gaussian nature, the continuity equation implies the same for
the velocity potential Ψ. The same equation enables us to relate
the power spectra of both quantities as well. In Fourier space
the equation reads:

δk + k2Ψk = 0 (5.43)

for the k-th mode, leading to PΨ = k−4Pδ. We again used the
notation δk = δ(~k). After drawing particle positions with a
probability proportional to δ and choosing momenta for each
particle proportional to ∇Ψ the initial probability distribution is
given by:

P(x(i)) =
V−N√

(2π)3NdetCpp

C(p) exp
{
−1
2

pTC−1
pp p

}
. (5.44)

For a derivation of this probability as well as the momentum
covariance matrix Cpp we refer to [10]. For late times we can set
C(p) = 1 [10, 11]. Defining the variance:

σ2
1 =

∫
k

k−2Pδ(k) (5.45)

we can write down a momentum correlation matrix as sum of
the momentum dispersion and of the momentum correlation of
particles j and k at a distance qjk =

∣∣qj − qk
∣∣:

Cpp =
σ2

1
3
I3 ⊗ IN + Cpj pk ⊗ Ejk. (5.46)

We can trace back the dependence on the distance rather than
on absolute positions to the cosmological principle introduced
earlier (1.1). The expression for momentum dispersion is due
to the Gaussian nature of the velocity field where the momenta
are drawn from.

5.6 simplifying Z0

In order to further evaluate the free generating functional we use
the expression from 5.26 and provide the probability distribution
5.44 to the differential element dΓ.We perform the p-integration:∫

dp exp
{
−1
2

pTC−1
pp p + i

〈
Lp, p

〉}
, (5.47)
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change into a coordinate system in which the correlation matrix
Cpp is diagonal and rewrite the integral as:

∫
db exp

{
∑

i

−1
2

b2
i σ−2

i + ikixi

}
, (5.48)

where the σi are the eigenvalues of the correlation matrix and
with bi we denote the elements of the rotated momentum p. The
sum ∑i kibi is the equivalent of

〈
Lp, p

〉
in the rotated system. In

order to complete the square we add and subtract 0 = 1
2(k

2
i σ2

i −
k2

i σ2
i ) transforming the integral to:

∫
db ∏

i
exp

{
1
σ2

i

(
i√
2

bi +
ki√

2
σ2

i

)2

− 1
2

k2
i σ2

i

}
. (5.49)

Since the second argument of the exponential, −1
2 k2

i σ2
i , does not

depend on b any longer, we can pull it out of the integral and
solve the remaining integration. The integral then becomes:

exp

{
−1
2 ∑

i
k2

i σ2
i

}
(2π)N/2

√
∏

i
σ2

i

= exp

{
−1
2 ∑

i
k2

i σ2
i

}
(2π)N/2

√
detCpp. (5.50)

Transforming back to the old coordinate system, we finally find:

∫
dp exp

{
−1
2

pTC−1
pp p + i

〈
Lp, p

〉}
= exp

{
−1
2

LT
p CppLp

}
(2π)3N/2

√
detCpp. (5.51)

For the factors conveniently cancel with those in 5.44 the free
generating functional reduces to:

Z0[L] = V−N
∫

dq exp
{
−1
2

LT
p CppLp + i

〈
Lq, q

〉}
. (5.52)
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5.7 the factorised Z0[L]

This expression can now be factorised [10, section 2.3, App. B].
We will not derive the factorisation in detail as it was laid out
beautifully in [10]. The result of the factorisation is:

Z0[L, 0] =V−l(2π)3δD

(
l

∑
j=1

~Lq1

)

· exp
{
−1

2
(Q0 −QD)

} l

∏
2≤b<a

∫
kab

l

∏
1≤k<j

(∆jk + Pjk),

(5.53)

with:

k = 1 . . . (l − 1), j = (k + 1) . . . l, (5.54)
b = 2 . . . (l − 1), a = (b + 1) . . . l, (5.55)

and:

Pjk = P(~k jk, τ)

=
∫

q

(
exp

{
g2

qp(τ, 0)k2
jk

(
a‖λ
‖
jk + a⊥λ⊥jk

)}
− 1
)

ei~kjk~q, (5.56)

which is a nonlinearly time-evolved density fluctuation power
spectrum. This interpretation of P will arise when we consider
the simplest possible case, l = 2. Then the free generating
functional contains the information on the two-point correlator,
i.e. the density fluctuation power spectrum. We will discuss this
in section 5.8. We abbreviated the damping terms in Z0 by:

Q0 :=
σ2

1
3

(
∑

j

~Lpj

)2

, and (5.57)

QD :=
σ2

1
3 ∑

j 6=k

~Lpj ·~Lpk . (5.58)

Furthermore, we abbreviated:

∆jk := (2π)3δD(~k jk), (5.59)

and defined the wave vectors:

~k jk :=


~Lqj −

j−1
∑

b=2

~k′jb +
l

∑
a=j+1

~k′aj k = 1

~k′jk k > 1.
(5.60)
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A few more definitions are needed in order to calculate the
above quantities. The λ factors are defined as:

λ
‖
jk :=

~LT
pj

π
‖
jk
~Lpk

g2
qp(τ, 0)k2

jk
, (5.61)

λ⊥jk :=
~LT

pj
π⊥jk

~Lpk

g2
qp(τ, 0)k2

jk
, (5.62)

and the projectors π are

π
‖
jk = k̂⊗ k̂, (5.63)

π⊥jk = I3 − π
‖
jk. (5.64)

5.8 the kft matter density fluctuation power spec-
trum

For a simple two-point-function the factorised, free generating
functional reduces to:

Z0[L] = (2π)3δD(k1 + k2)V−2 exp {−Q0} P(k1, t). (5.65)

Having applied the two density-operators the functional must
contain the information on the evolution of the density - fluctu-
ation power spectrum without considering interaction. For the
two particle case, the non-linearly evolved power spectrum P
appearing in the free generating functional is:

P(k1, t) :=
∫

q

(
eQ − 1

)
exp {ik1 · q} . (5.66)

Here:

Q0 :=
σ2

1
3

g2
qp(t)k

2
1, Q := −g2

qp(t)k
2
1a‖(q), (5.67)

Q0 in particular acts as a damping term originating in momen-
tum dispersion (hence the factor σ2

1 /3). The correlation function
a‖ is in turn defined as:

a‖(q) := a1(q) + µ2a2(q), (5.68)

and depends on the distance q and the separation angle µ =
cos(α) with α being the angle enclosed by k1 and q. The function
a‖ is a function correlating those components of the momentum
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which are parallel (‖) to the connecting line of both particle
positions, q12. The two auxiliary functions ai are given by:

a1(q) =
−1
2π2

∫ ∞

0
dkPδ(k)

j1(kq)
kq

, (5.69)

a2(q) =
1

2π2

∫ ∞

0
dkPδ(k)j2(kq). (5.70)

As usual, the ji denote spherical Bessel functions [e.g. 16]. Con-
sidering the exponential only up to linear order and considering
the small-q limits for a‖ we arrive at a linearly evolving power
spectrum:

P(k, t) ≈ g2
qp(t)Pδ(k), (5.71)

which we will show in Fig. 5.1.

5.9 a note on interactions

There are different methods to account for particle interactions
in the generating functional discussed, e.g., in [11]. A possible
path is to use the Born approximation [9]. Another way is to
average the interaction term in 5.25 [7]. We will use the results
of the Born approximation in order to have access to a fully
nonlinear power spectrum. By considering 5.25, we can see that
it is possible to write the power spectrum with interactions like:

P̄ = exp {−Q0 + iSI} P(k, t). (5.72)

Considering particle trajectories [6] introduced an effective force
f (t) [6, eq. 62] in order to write down the interaction term as:

SI(t) = −k1 ·
∫ t

0
dt′gqp(t, t′)

(
f1(t′)− f2(t′)

)
, (5.73)

where f j denotes the force f (t) acting on particle j. The force
terms can then be re-written as:

f1(t)− f2(t) = f12 − f21 +
N

∑
j=3

(
f1j − f2j

)
, (5.74)

and fij is the force f (t) on particle i exerted by particle j. Con-
sidering those particles, we know that fij = − f ji and thus
fij − f ji = 2 fij. Using the argument of isotropy and neglect-
ing higher-order correlations [11] omit the sum ∑N

j=3
(

f1j − f2j
)

on the right hand side of the equation 5.74 as the forces exerted
by particles 3 to N will cancel on average. This leads to:

SI(t) = −2k1 ·
∫ t

0
dt′gqp(t, t′) f12(t′). (5.75)
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When we introduced the growth factor as measure of time we
also introduced a reduced potential φ = Φ̄/g.
The potential v of a unit point mass in the considered system
can in Fourier-space be written by:

ṽ(t) =
−3a

2ρ0k2g2 . (5.76)

We look at the gradient of the potential of a particle j at the
position of particle i which of course constitutes the force term
fij. This force term is needed for the description of the action.
The potential gradient is given by:

∇iφj(t) =
−3ia
2ρ0g2

∫
k

k
k2 exp

(
ik · (qi(t)− qj(t))

)
. (5.77)

It is quite complicated to evaluate this potential gradient. The
Born approximation replaces:

qj(t)→ q(i)j + gqp(t)p(i)j . (5.78)

This allows to find an approximate expression for the force fij.
We will however not give this derivation, but refer to [11] for a
detailed expression of both the derivation and the discussion of
the evaluated force term.
We show the comparison of a numerically emulated power
spectrum [44], the nonlinear power spectrum from KFT and
the linearly evolved power spectrum in Fig. 5.1, finding large
deviations only on very small scales, whereas the shape of the
power spectra show remarkable resemblance.
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6
T H E PA R A M E T E R - F R E E W E A K L E N S I N G
P O W E R S P E C T R U M

introduction

It is still difficult to use observational methods in order to di-
rectly prove or disprove theories addressing the problem of
structure formation, let alone to investigate the nature and be-
haviour of the cosmic dark sector. Measuring the density power
spectrum for example, being a central object of statistical struc-
ture formation theory, proves to be challenging and must often
be evaluated via biased tracers, such as galaxies or with numeri-
cal simulations.
Gravitational lensing however is a well-tested method to observe
the distribution of matter, independent of its nature, being sen-
sitive to gravity only. The angular weak lensing power spectrum
Cγ

l introduced in chapter 3 in particular provides us with a
method to observe a two-point correlator 〈γ̄γ̄∗〉. This in turn, by
its relation to the matter density power spectrum Pδ(k), allows
to test predictions of structure formation theories without rely-
ing on either numerical simulations or biased tracers.
By calculating the angular power spectrum of weak gravitational
lensing from the Kinetic Field Theory we provide a method to
probe this new theory of cosmic structure formation with a
quantity which can be obtained from new large field surveys
like Euclid [1] which will provide an extensive dataset for lensing
analyses.
The theoretical expression for the angular weak lensing power
spectrum, as defined in eq. 3.74, however, does depend on a spe-
cific cosmological model when making use of a specific distance
measure and a particular form of the density power spectrum.
This introduces a further source of possible errors. The issue can
be addressed by providing the quantities needed, in our case
the expansion function and the power spectrum obtained with
as little assumptions on the cosmology as possible.
With a well-calibrated measured lensing power spectrum (which
we will discuss in chapter 7) this allows us to test and improve
the theory behind the theoretical prediction, whenever we have
a nicely calibrated set of lensing data at hand.

71
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According to our own derivation, based on the review [4], in
chapter 3, equation 3.74, the angular lensing power spectrum
Cκ

l = Cγ
l is defined as:

Cγ
l =

9
4

(
H0

c

)4

Ω2
m0

∫ ws

0
dw
(

ws − w
wsa(w)

)2

Pδ

(
l
w

, a
)

. (6.1)

In order to calculate a model-independent angular power spec-
trum we need to understand how the function is affected by
different parameters and models. Apart from H0, c and Ωm0
there are two major constituents in the integral above: The cos-
mic matter density power spectrum Pδ(k) and the comoving
distance line element dw. Both quantities were discussed inde-
pendently in chapters 1 (w) and 2 (Pδ). Looking at the major
components separately in the following sections we will discuss
the influence of specific cosmological models and parameters.

6.1 analysing the ingredients with Schmidt and

Bartelmann [38]

6.1.1 The Comoving Distance w(a)

Recalling the definition of the comoving distance from eq. 1.35:

w(a) =
∫ t0

t(a)

dt′

a(t′)
=
∫ 1

a

da′

a′2H(a′)
, (6.2)

as well as the definition of the Hubble function (eq. 1.27):

H(a) = H0E(a), (6.3)

we can write:

w(a) = H−1
0

∫ 1

a

da′

a′2E(a′)
. (6.4)

The influence of any cosmological model on the comoving dis-
tance is caused by the nature of the cosmic expansion function
E(a). This function normally requires a specific cosmological
model with parameters behaving in a particular way in time.
The expression for the comoving distance as function of cosmic
scale factor leads to the differential:

dw =
−da

H0a′2E(a)
, (6.5)
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and allows to reformulate the lensing power spectrum in terms
of an integral over scale factor rather than comoving distance:

Cγ
l =

9
4

(
H0

c

)4

Ω2
m0

∫ as

1

−da
a4E(a)

(
ws − w(a)

ws

)2

Pδ

(
l

w(a)

)
=

9
4

(
H0

c

)4

Ω2
m0

∫ 1

as

da
a4E(a)

(
ws − w(a)

ws

)2

Pδ

(
l

w(a)

)
,

(6.6)

where we flip the integration boundaries in order to eliminate
the minus sign. It is now straightforward to observe the ex-
pansion function’s influence on the power spectrum at three
different points. First, it acts as direct constituent in the integral,
second it is part of the remaining comoving distances in the
weight function:

W(a, as) :=
[

w(as)− w(a)
w(as)

]2

, (6.7)

a definition we took from [38], and at a third instance it is
present in the argument of the density power spectrum. As
discussed in chapter 1 the classical definition of the function in
the standard model of cosmology is given by:

E(a) =
√

Ωm0a−3 + Ωr0a−4 + ΩΛ + ΩKa−2, (6.8)

for our ΛCDM cosmology.
[38] has extensively analysed the influence of a change in E(a)
on the weak lensing power spectrum. In our analysis, we will
discuss their findings and extend or modify their investigation
wherever needed. We begin by following [38] in calculating the
variance of the comoving (radial) distance:

δw(a)
δE(x)

=
δ

δE(x)

∫ 1

a

da′

a′2
1

E(a′)

=
∫ 1

a

da′

a′2
1

E2(a′)
δD(a′ − x)Θ(x− a)Θ(1− x)(−1)

=
−Θ(x− a)Θ(1− x)

x2E2(x)
, (6.9)

where we used that the functional derivative and the integration
commute in this case and that for functions f (x):

δ f (a)
δ f (b)

= δD(a− b). (6.10)
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The Heaviside step functions:

Θ(x) :=

{
1 (x ≥ 0)
0 (x < 0)

, (6.11)

ensure, that a change in the expansion function E(a) does not
influence the scale factor at earlier times.
Instead of plotting the function δw(a)

δE(x) we decided to plot w(a)
for the two particular expansion functions E(a), which we con-
sider in the scope of our work. These are the ΛCDM expansion
function and the model-independent expansion function [21].
We show both expansion functions in Fig. 6.1. We decided to
do so because on the one hand we do not consider plots of
those functional derivatives illustrative in our case, but also
because we only analyse the two named cases allowing for an
easy comparison of the discussed effects.

6.1.2 The Density Power Spectrum Pδ

Returning to the weak lensing power spectrum Cl we also must
analyse the expression 6.6 for the empirical expansion function
with a density power spectrum based on the changed comoving
distance. This again is worked out by [38] analytically who
analyses each part of the integral for its variation with respect to
E(a) seperately. It is mainly a masterpiece of functional analysis
which is why we refer the ambitious reader to the work itself for
a detailed discussion and will ourselves only give a quick and
comprehensive overview of their results. We will again refrain
from illustrating their results in form of functional derivative
figures, but will give the results obtained both with ΛCDM
and [21]-expansion functions for all the results similar to the
illustrations in Fig. 6.1.
Considering the weak lensing power spectrum one can identify
three parts which will also give rise to the three analyses [38]
performs. The integral in 6.6 is renamed as:

I :=
∫ 1

as
W2(a, as)Pδ

(
l

w(a)

)
da

a4E(a)
(6.12)

with W(a, as) defined already. In order to proceed, they define
an uncertainty distribution:

R(x, as, l) =
∆I
I

=

∣∣∣∣δ log I
δE

∣∣∣∣∆E, (6.13)
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Figure 6.1: Comparing comoving distances. We show both the co-
moving distance using the standard expansion function of
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ing distance obtained with the purely empirical expansion
function from [21]. The difference wHaude(a)− wΛCDM(a)
is shown in the lower panel where the y-scale is logarith-
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and calculate δ log I
δE , finding:

δ log I
δE

=
∫ 1

as

da
a4E

Θ(x− as)Θ(1− x)
{

W2Pδ

·
(

2
δ log W

δE
+

δ log Pδ

δE
+
−δD(x− a)

E

)}
,

(6.14)

where the product rule is applied and the Dirac-distribution in
the last summand is the result of the functional derivative δE(a′)

δE(x) .
We now follow [38] analysing each single part of the variational
integral 6.14:

(i)

δ log W
δE

=
Θ(1− x)Θ(x− as)

w(as)x2E2(x)

(
1− Θ(a− x)

W(a, as)

)
, (6.15)

where the results from δw
δE are extended and the product

rule is applied.

(ii)

δ log P
δE

=
Θ(1− x)Θ(x− a)

w(a)x2E(x)
κ(k, a) +

δ log D+(a)
δE(x)

α(k, a),

(6.16)
where:

κ(k, a) :=
∂

∂ log k
log Pδ(k, a), (6.17)

is the change of matter density power spectrum with a
changed wave number k which one can trace back to the
change in the comoving distance. We also define:

α(k, a) =
∂

∂ log D+
log Pδ(k, a)

=

{
2 (linear)

Ω−γ
m (a) ∂

∂ log a Pδ(a) (nonlinear)
, (6.18)

where a case distinction is made for the linear and nonlin-
ear part of the power spectrum. Ωγ

m is determined by the
logarithmic derivative d log D+

d log a = Ωγ
m. It is worth stressing

that a functional derivative term arises here which has not
been part of our first expression δI

δE .
Before we follow [38] in analysing this expression δD+

δE , we
want not to miss mentioning that the k-derivative of Pδ

originates from the derivative δ
δE Pδ(l/w) with w being a

function of the expansion function.
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(iii)

δ

δE

(
D+(a)
D+(1)

)
= D+(a)g(x) {Ξ(x− a)− Ξ(x, 1)} , (6.19)

where

g(x) := xD2
+(x)Ωm(x)

(
Ω2γ−1

m − 3
2

)
, (6.20)

and

Ξ(x, a) := Θ(a− x)
∫ a

x

dy
y3D2

+(y)E(y)
. (6.21)

The last function Ξ is renamed from [38], where it is re-
ferred to as Γ.

By inserting all of these results one can obtain the full expression
for δ log I

δE and the uncertainty distribution R(x, as, l) (eq. 6.13).
We however will instead of illustrating this functional derivative
show all the ingredients discussed, W2 and Pδ(l/w) for both
cases considered as well as the final product Cγ

l , where we used
the model-independent expansion function. For a model density
power spectrum we use the nonlinear power spectrum of [44],
as it was done in [10].

6.2 a new Pδ for the lensing power spectrum

After we already replaced the expansion function with a model-
independent version we now exchange the second major model-
dependent component Pδ which we formerly described by, e.g.,
[3, 36, 44] with the power-spectrum from KFT.
In order to isolate the influence of the exchange of power spectra
in a first step we reset the expansion function to the expansion
function 1.27 of ΛCDM cosmology.
We deduced a power spectrum with KFT in section 5.8. There,
we used the factorised form of the free generating functional
(cf. section 5.7) with two applied density operators in order
to calculate the two-point correlation of cosmic density. This
happening in Fourier space we can easily identify this result
with the correlator which constitutes the cosmic density power
spectrum, cf. eq. 2.28.
The generating functional for two applied density operators in
the factorised case reads:

Z0[L, 0] =V−2(2π)3δD(~Lq1 +~Lq2)

· exp
{
−1

2
(Q0 −QD)

}
(∆21 + P21), (6.22)
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W(a,as)ΛCDM , find-
ing only a very small difference on the sub-percent level
between both curves. The redshift of the source was chosen
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with

∆21 = (2π)3δD(~k21), (6.23)

P21 =
∫

q

(
exp

{
g2

qp(τ, 0)k2
21

(
a‖λ
‖
21 + a⊥λ⊥21

)}
− 1
)

ei~k21~q

= P(~k21). (6.24)

We already defined the other constituents of these elements in
section 5.7. We then rename:

~Lq1 =
~k21 =:~k. (6.25)

With the Dirac-distribution in 6.22 we know that there can only
be one independent wave vector which we already know for
power spectra. Calculating the λ factors we find

λ
‖
21 = −1, (6.26)

λ⊥21 = 0. (6.27)

We are then left with the short expression for the cosmic density
power spectrum

P(~k, τ) =
∫

q

(
eQ − 1

)
ei~k~q, (6.28)

where we introduced the shorthand Q := −g2
qp(τ)k2a‖(q). For

small k or early times, i.e. small gqp, we can linearise the expo-
nential and will find the linearly evolved power-spectrum

P lin(k, t) ≈ g2
qp(τ)Pδ(k). (6.29)

Referring to 6.28 as PKFT we can now use this for the calculation
of the weak lensing power spectrum:

Cγ
l =

9
4

(
H0

c

)4

Ω2
m0

∫ 1

as

da
a4E(a)

(
ws − w(a)

ws

)2

PKFT
δ

(
l

w(a)

)
,

(6.30)
and compare it to the Cl obtained with a model Pδ (e.g. [3]) in
Fig. 6.5.

6.3 a model-independent weak lensing spectrum

In order to calculate a fully model-independent power spectrum
for the weak lensing effect we now use both the parameter-
free power spectrum from KFT (eq. 6.28) as well as the model-
independent expansion function from [21], chapter 4 to calculate
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Figure 6.5: Comparing weak lensing power spectra for a ΛCDM uni-
verse. Here, we compared the lensing spectrum calculated
with a density fluctuation power spectrum from Smith
et al. [44] (straight, pink line) on the one hand and from
Kinetic Field Theory (dashed, green line) on the other hand.
Furthermore, we show as a silver line the weak lensing
spectrum as obtained when using a linear density power
spectrum. In the lower panel of the figure we observe the
difference of the two which indicates maximal deviation
at the same point when the linear power spectrum starts
deviating from the nonlinear one, marking the onset of
nonlinear structure formation.
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Figure 6.6: Comparing the fully model-independent lensing power
spectrum by using the KFT density power spectrum as
well as the purely observational expansion function from
[21] to a power spectrum obtained with a ΛCDM expansion
function and a modeled density power spectrum. Both for
the very large and in the very small moments we recognise
substantial deviations when directly comparing the power
spectrum based on a model cosmology and numerical
simulations to a power spectrum obtained by using model-
independent cosmology and Kinetic Field Theory.

Cl.
After we replace the weight function and the power spectrum,
the only parameters left are H0, c and Ωm0. We compare the
model-independent angular power spectrum and the difference
remaining between both curves. In order to not only compare
our findings to established models we also want to compare
them to a different Cl-calculation from numerical cosmology.
There, we use the data obtained from the code UFalcon [41, 42],
a highly efficient alternative to conventional N-body simulations.
We choose this data set in order to get a value for the lensing
power spectrum from a present-day numerical approach for
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Figure 6.7: Comparing our model-independent weak lensing power
spectrum to the power spectrum from the N-body like
simulation scheme UFalcon. While both curves agree rea-
sonably well up to ` ≈ 100, a deviation starts to evolve and
grow similar to the deviation in Fig. 6.6 growing towards
high l.

nonlinear cosmic structure formation analysis. We show this
comparison in Fig. 6.7.

concluding remarks

In this chapter, we introduced the weak lensing power spectrum
in a way which is parameter-free and model-independent to
the greatest possible extent. To our knowledge this is the weak
lensing power spectrum with the least assumptions on specific
cosmological models and parameters so far. We achieved that by
incorporating both an expansion function which was obtained
from observations only [21] as well as a power spectrum which
only assumes a probability distribution as an initial condition
which can be measured to great accuracy at the time of recom-
bination and develops this in time by using fundamental laws
of physics only. Both model-independent ingredients E(a) and
Pδ are tested against well-established models and compared to
results from numerical simulations.
For all comparisons we found that the combination of the ap-
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plication of model-independent cosmology and Kinetic Field
Theory led to substantial deviations of our weak lensing spectra
from the weak lensing spectra with well-established models.
These could be traced back to deviations of the density fluctua-
tion power spectra when one uses the expansion and growth-
functions of model-independent cosmology for the Kinetic Field
Theory Framework. Calculating the angular weak lensing spec-
trum then leads to a deviation of approximately 20 percent from
the modelled lensing spectra.
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I N T E R M I S S I O N : O B S E RV I N G C `

As we discussed before (chapters 3, 6), the weak lensing power
spectrum can be a central piece in testing structure formation
theories and probing the cosmic dark sector. The measurement
of expression 3.75, linking the theoretically predicted power
spectrum, from which we derived our model-independent lens-
ing power spectrum, Cγ

` [Pδ, w], to a correlator of measurable
observables, Cγ

` = 〈γ̃γ̃∗〉, however required a smooth shear field
γ = γ(~θ) ∀~θ ∈ S2 to be (directly) observable in order to calculate
the power spectrum.
Observing the sky, however, no complex scalar field with shear
values at every single point presents itself, ready to be evaluated
by cosmologists eager to calculate the power spectrum. What
we can however observe are stars and galaxies with measurable
shapes which are deformed by the gravitational lensing effect
with respect to their intrinsic source shapes. In this brief inter-
mission chapter, we want to explain which steps are needed to
obtain a weak lensing power spectrum from a survey, i.e. from
an image, often poor in resolution, of the sky.

7.1 from observations to shear data

The first step is to analyse every single astronomical object in the
image for its character, size and shape (whereby we shall refer
to ellipticity values and not to the size from now on). Thankfully,
there is software well-tested which analyses large field surveys
in a reasonable amount of time and provides us with a detailed
list of the objects contained in the image [e.g. 12].
As these object parameters are subject to observational problems,
a proper calibration must then follow allowing to recover an ob-
ject’s properties as they would be detected with perfect cameras.
One of the main challenges, for example, is to deconvolve the
image with the instrument’s own point spread function (PSF).
While there are many methods to perform a calibration like this
we only name the one of [25] where we suggested a method
to use strong lensing analyses for calibration purposes. This
however requires a large set (∼ 50) of strong lensing systems
with a remarkable image quality (comparable to the quality of
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the Cosmos survey [40]). In the same paper, however, we also
presented a method named cloning, invented by [13–15], which
can be used for calibration of weak lensing data on its own
without the need of analysing strong lensing systems.
Having achieved a set of properly calibrated observations one
can continue to calculate the cosmic shear in selected regions.
We therefore assume that the ellipticities of galaxies are ran-
domly distributed. This is actually a rather bold claim. In order
to account for intrinsic and extrinsic alignments of galaxies due
to gravitational potential fields of large scale structure sophis-
ticated methods have been developed. We however shall stick
to the idealising assumption of randomly distributed galaxy
ellipticities. One can justify this approximation for sufficiently
large regions where even the effects of alignments might vanish
when being averaged over.
By averaging over N � 1 galaxies and their intrinsic (source)
ellipticities εs

α we find:

〈εs
α〉N = 0, (7.1)

where 〈·〉N denotes the arithmetic mean of the N galaxy elliptic-
ities considered.
As the weak lensing effect leads to an additional deformation of
the shapes observed, we add this to the source ellipticity and
write:

εα = εs
α + γ(θ). (7.2)

In order to prevent confusion we want to stress here that the α

refers to the component of the ellipticity and does not enumerate
the galaxies considered. Averaging over N galaxies again the
shear (averaged over the region of the N galaxies) remains, while
the source ellipticities cancel again:

〈εα〉N = 〈γ(θ)〉AN
, (7.3)

where AN is the area enclosing the N galaxies considered. This
shear can then be again calibrated [e.g. 25, eq. 2.5].

7.2 from real-space shear to the lensing power

spectrum

Having obtained a set of calibrated ellipticity data we can pro-
ceed to calculate the weak lensing power spectrum. As the data
set will be discrete for any observation, consisting of the stars’
and galaxies’ ellipticities, we have to introduce a formalism to
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calculate the weak lensing power spectrum from this discrete set.
Here, we will follow the method and introduce the estimators
invented by [22] for the remainder of this chapter.
The N galaxies of our calibrated measurement data set are at
positions ~θi and have shape parameters ε1,2 which we combine
to the complex ellipticity:

εi = ε1,i + iε2,i, (7.4)

similar to the complex shear we introduced earlier (eq. 3.44).
Here, the index i enumerates the galaxies considered. After
the calibration process the stars are not being considered any
longer and only the galaxies are taken into account for the
calculation of the cosmic shear. These galaxy ellipticities are
Fourier-transformed:

ε̃α(~̀ ) =
N

∑
i=1

exp(i~̀ ·~θi) · εα,i, (7.5)

before we start splitting up the measured ellipticity into intrinsic
galaxy shape and ellipticity contributions from shear deforma-
tions:

ε̃α =
N

∑
i=1

{
εs

α,i exp(i~̀ ·~θi)
}

+
∫

d~θ

{
exp(i~̀ ·~θ)γ(~θ)∑

i
δD(~θ −~θi)

}
. (7.6)

Here and in the remainder of this chapter, we use the tilde sign
to mark Fourier-transformed quantities. In order to make the
notation easier, we define

n(~θ) = ∑
i

δD(~θ −~θi). (7.7)

We operate in the two dimensions we can observe on S2 ' R2

(cf. section 3.4) in the whole chapter. Therefore, δD(~θ) = δ
(2)
D
~θ)

We continue defining:

ñ(~̀ ) =
∫

d~θei~̀ ·~θn(~θ), (7.8)

and turn to the first major approximation, where we replace the
newly defined n(~θ) term by:

N

∏
j=1

(
1
A

∫
d~θj

)
(n(~θ)) = n̄Π(~θ), (7.9)
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with the aperture function:

Π(~θ) =

{
1 ~θ in survey area
0 otherwise

, (7.10)

the survey area:

A =
∫

d~θΠ(~θ), (7.11)

and
n̄ =

N
A

, (7.12)

the mean number density of galaxies in the field. This replace-
ment of n(~θ), is, however small, an essential approximation
since the Dirac delta-distributions in n(~θ) would prevent further
progress. We can further abbreviate:

ñ(~̀ ) = (2π)2n̄∆(~̀ ), (7.13)

when we define:

∆(~̀ ) =
∫ d~θ

(2π)2 ei~̀ ·~θΠ(~θ). (7.14)

This ∆ is different from the ∆jk used in chapter 5 as it defines
a (2π)2-scaled Fourier transform of the aperture function Π(~θ).
With a sufficiently large field, i.e. a field of a size much larger
than the (squared) mean separation of galaxies, |A| � |~θ|2,
which is simply connected (which should hold for most surveys
large enough to perform weak lensing analyses), we can set
Π(~θ) ≈ 1 and ∆(~̀ ) ≈ δD(~̀ ). Carrying out the δD-integral in 7.6
then leaves us with:

ε̃α(~̀ ) = n̄γ̃α(~̀ ) +
N

∑
i=1

{
εs

α,i · exp(i~̀ ·~θi)
}

. (7.15)

[22] introduces the convergence power spectrum as:〈
κ̃E(~̀ )κ̃

∗
E(~̀
′)
〉
= (2π)2δD(~̀ −~̀ ′)C`

=: 〈κ̃κ̃∗〉
= 〈γ̃γ̃∗〉 . (7.16)

The subscript E refers to the distinction of modes in analogy to
electrodynamics (E and B) where fields get decomposed into
curl- and divergence free parts. For a pure lensing signal, which
is curl-free, the divergence-free B-mode will vanish. In the fol-
lowing, we shall ignore the B modes which are however present
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in real-world data from shear surveys (e.g. the Dark Energy
Survey [30] or the surveys [40], [1] mentioned earlier). We ab-
breviated κ := κE as we do not investigate the divergence-free
B-modes and will only need κB one more time. Before defin-
ing the estimator from [22] we will give the shear-convergence
relation they gave (equations 5,8 therein):

γ(~θ) = π−1
∫

d~θ′D(~θ −~θ′)κ(~θ), (7.17)

with:

D(~θ) =
θ2

2 − θ2
1 − 2iθ1θ2

|θ|4 , (7.18)

and:
γ̃(~̀ ) = exp(2iβ)κ̃(~̀ ), (7.19)

where by β we denote the polar angle of the argument ~̀ . This
definition 7.19 at hand we can easily see the equality of the con-
vergence and shear power spectra: 〈κ̃κ̃∗〉 = 〈γ̃γ̃∗〉 . The power
spectrum estimator in [22] is defined:

Ĉ¯̀ :=
(

n̄2Ar( ¯̀)A
)−1

·
∫

Ar( ¯̀)
d~̀
∣∣∣ε̃1(~̀ )cos(2β) + ε̃2(~̀ )sin(2β)

∣∣∣2 − σ2
ε

2n̄
, (7.20)

as band power for disjunct bins at ¯̀. AR( ¯̀) = 2π ¯̀∆` is the
approximate area of the annulus with mean radius ¯̀ which is
the area we average over for our band power estimator.
The estimator is shown to be unbiased. This proof starts by
again splitting intrinsic ellipticities from shear contributions:∣∣∣ε̃1(~̀ )cos(2β) + ε̃2(~̀ )sin(2β)

∣∣∣2
=
∣∣∣∑ εs

1(
~̀ )cos(2β) + γ1n̄cos(2β) + εs

2(~̀ )sin(2β) + γ2n̄sin(2β)
∣∣∣ .

(7.21)

We ignore terms with mixed γ and ε (for we still consider them
to be uncorrelated and ignore alignment effects). With:〈

εs
i εs∗

j

〉
= δijσ

2
ε , (7.22)〈

εs
i εs

j

〉
= 0, (7.23)

from the definition of the intrinsic ellipticity dispersion, we find:〈
εs

α,iε
s
β,j

〉
= δijδαβ

σ2
ε

2
. (7.24)
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The persistent application of these equations to the power spec-
trum estimator results, after a rather lengthy calculation, in:〈

Ĉ¯̀
〉
=
(

AR( ¯̀)A
)−1

∫
AR( ¯̀)

〈
γ̃2

1cos2(2β) + γ̃2
2sin2(2β) +

(γ̃1γ̃∗2 + γ̃∗1 γ̃2)sin(2β)cos(2β)〉.
(7.25)

With:
κ̃F + κ̃∗F

2
= γ̃1cos(2β) + γ̃2sin(2β) = κ̃(`), (7.26)

where we introduce κF as the convergence containing also the
divergence-free B-modes κ̃F = κ̃E + iκ̃B. We find:

〈
Ĉ`

〉
=

1
AR( ¯̀)A

∫
AR( ¯̀)

d~̀ 〈κκ∗〉

=
1

AR( ¯̀)A

∫
AR( ¯̀)

d~̀ (2π)2δD(0)C`. (7.27)

Remembering our approximation ∆(~̀ ) ≈ δD(~̀ ) we now intro-
duce an approximation for the second order:

|∆(~̀ )|2 ≈ δD(~̀ )∆(~̀ ) = δD(~̀ )∆(0) = δD(~̀ )
A

(2π)2 . (7.28)

The application of this identity finally leads to:

〈
Ĉ`

〉
=

1
AR A

∫
AR

∫
AR

d~̀ (2π)2∆(0)C`

=
1

AR A

∫
AR

∫
AR

d~̀C` = C¯̀ . (7.29)

[22] generalises this for ∆(`) without the named approximation.
We recommend to read this as well, but we will not repeat this
here, since it will not be used in the scope of this thesis.
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U N C E RTA I N T I E S

In the last and final chapter of this thesis, we want to extend
our calculation of the lensing power spectrum by an estimation
of the uncertainties connected with our signal. This estimate
provides us with a range in which we can expect deviations
when actually using large field surveys to explore the sky and to
probe the weak lensing power spectrum 7. The same principle
applies if we want to compare our result to results differently
obtained in general, e.g. from numerical simulations (cf. chapter
6).
While [38] evaluated the effect of a variation of the expansion
function on the weak lensing power spectrum we aim at de-
riving an expansion of the uncertainty from the variance of
the KFT power spectrum and, later on, for a description of the
power spectrum uncertainty as a natural consequence of the
measurement process.

8.1 a naive approach to the variance

The first possibility coming to mind when we want to measure
the weak lensing spectrum signal’s uncertainty is to consider
the variance of the same:

Var(C`) = 〈C`C`〉 − 〈C`〉2

= 〈C`C`〉 − C2
` . (8.1)

The second term is rather trivial to evaluate, as we only have
to square our results from 6. The correlator, however, is more
interesting to investigate. We consider:

〈C`C`〉 =
〈

9
4

(
H0

c

)4

Ωm0

∫
dwW2Pδ

(
`

w

)

·9
4

(
H0

c

)4

Ωm0

∫
dw′W ′2Pδ

(
`

w′

)〉
. (8.2)

We abbreviate:

ξ2 :=

(
9
4

(
H0

c

)4

Ωm0

)2

(8.3)
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and simplify the slightly modified expression 〈C`C`′〉:

〈C`C`′〉 = ξ2
∫

dw
∫

dw′W2W ′2
〈

Pδ

(
`

w

)
Pδ

(
`′

w′

)〉
. (8.4)

As we already know from the definition of the matter density
power spectrum, the power spectrum can be identified with a
two-point-correlator:〈

δkδ′∗k
〉
= δD(k− k′)(2π)3Pδ(k), (8.5)

where δk is to be understood as Fourier-mode of the density
contrast δ, δ̃(k) =: δk. By inserting this in the 〈C`C`′〉 correlator,
we get

〈C`C`′〉 ∼
∫∫

w,w′
W2W ′2

〈
〈δδ〉

〈
δ′δ′
〉〉

∼
∫∫

w,w′
W2W ′2

〈
δδδ′δ′

〉
. (8.6)

We therefore see, that the computation of the signal’s variance
requires the evaluation of a four-point correlator of cosmic den-
sity. As the density contrast is only a scaled and shifted version
of cosmic density:

δ =
ρ− ρ0

ρ0
=

ρ

ρ0
− 1, (8.7)

we calculate 〈ρρρ′ρ′〉, instead, in order to make the connection
to KFT clearer.

8.2 a 4th-order correlator with kft

The calculation of the correlator we need in order to calculate
the variance of the weak lensing power spectrum seems straight-
forward with the fully factorised expression (section 5.7) for
the generating functional after the application of n = 4 density
operators:

ρ̂ρ̂ρ̂ρ̂ Z0[J, K]|J,K=0 =: Z0[L]. (8.8)

This free generating functional reads:

Z0[L] =V−4(2π)3δD

[
~Lq1 +~Lq2 +~Lq3 +~Lq4

]
· exp

{
−1

2
(Q0 −QD)

} 4

∏
2≤b<a

∫
kint

4

∏
1≤k<j

(∆jk + Pjk)

(8.9)
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where by kint we refer to the so-called internal wave vectors~k jk

with k ≥ 2, whereas the ~k jk with k = 1 are called external for
they contain the shift vectors (cf. section 5.7):

~k jk; k=1 := ~Lqj −
j−1

∑
b=2

~k jb +
l

∑
a=j+1

~kaj. (8.10)

Considering the expression 8.9 for the fully factorised generating
functional we find that the integral

I4 =
∫

kint

4

∏
1≤k<j

(∆jk + Pjk) (8.11)

is similar to:∫
kint

∆6
jk + 6∆5

jkPjk + 15∆4
jkP2

jk + 20∆3
jkP

3
jk

+ 15∆2
jkP4

jk + 6∆jkP5
jk + P

6
jk. (8.12)

We then enumerate the terms in descending order of ∆jk and
start calculating. Many terms will look rather similar as only
the indices of their components are permuted. We will show
one example with term II (

∫
6∆5

jkPjk) and abbreviate the other
cases by simply indicating that there’s a number of permutation
terms giving this number in brackets.
As one can read off from eq. 8.12 there are 20+ 2 · 15+ 2 · 6+ 2 =
64 terms in the end. These can be calculated:

I ∫
kint

∆6
jk = (2π)18

(
δD( ~Lq2) · δD( ~Lq3) · δD( ~Lq4)

)
,

II ∫
kint

∆5
jkPjk = (2π)15δD( ~Lq2)δD( ~Lq3)P( ~Lq4) + [2∗]

+ (2π)15δD(~Lq4)P(~Lq3)δD(~Lq3 +~Lq2) + [2∗∗].

The two permutation terms in the first line are:

[2∗] =(2π)15δD( ~Lq3)δD( ~Lq4)P( ~Lq2)

+ (2π)15δD( ~Lq2)δD( ~Lq2)P( ~Lq3),

the permutations in the second line are:

[2∗∗] =(2π)15δD(~Lq2)P(~Lq4)δD(~Lq4 +~Lq3)

+ (2π)15δD(~Lq3)P(~Lq2)δD(~Lq2 +~Lq4),
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III ∫
kint

∆4
jkP2

jk = (2π)12δD( ~Lq2)P(~Lq4)P(~Lq3) + [2]

+ (2π)12δD(~Lq4)P(~Lq3)P(~Lq3 +~Lq2) + [5]

+ (2π)12P(~Lq4)P(~Lq3)δD(~Lq3 +~Lq2) + [2]

+ (2π)12P(−~Lq2)P(−~Lq3)δD(~Lq2 +~Lq3 +~Lq4) + [2],

IV ∫
kint

∆3
jkP

3
jk = (2π)9δD

(
4

∑
j=2

Lqj

)

·
∫

dk43P(~Lq3 +
~k43)P(−~Lq2 −~Lq3 −~k43)P(~k43)

+ (2π)9P(~Lq3)P(−~Lq2 −~Lq3)P(~Lq4 +~Lq2 +~Lq3) + [5]

+ (2π)9P(~Lq3)P(~Lq4)P(~Lq2 +~Lq3 +~Lq4) + [2]

+ (2π)9P(~Lq3)P(~Lq2 +~Lq3)P(~Lq2) + [5]

+ (2π)9δD(~Lq4)P(~k32)P(~Lq2 +
~k32)P(~Lq3 −~k32) + [2]

+ (2π)9P(~Lq2) + P(~Lq3) + P(~Lq4),

V ∫
kint

∆2
jkP4

jk = (2π)6
∫

dk32P(~k32)P(~Lq4 −~Lq3 −~k32)P(~k32 −~Lq3)

· P(~Lq3 +~Lq4 −~Lq3) + [2]

+ (2π)6
∫

dk42 P(~Lq2 −~k42)P(~k42)P(~Lq2 +~Lq3 +
~k42)

· P(~Lq4 −~k42) + [2]

+ (2π)6
∫

dk32 P(~k32)P(~Lq4)P(~Lq2 +~Lq4 +
~k32)

· P(~Lq3 −~k32) + [5]

+ (2π)6
∫

dk32 P(~k32)P(~Lq4)P(~Lq2 +~Lq4 +
~k32)

· P(~Lq3 −~k32) + [2],

VI ∫
kint

∆jkP5
jk = (2π)3

∫
dk32dk42P(~k32)P(~k42)P(~Lq4 −~k42)

· P(~Lq2 +
~k32 +~k42)

· P(~Lq3 −~k32 −~k42 +~Lq4) + [2]

+ (2π)3
∫

dk32dk42 P(~k32)P(~k42)P(~Lq2 +
~k32 +~k42)

· P(~Lq3 −~k32)P(~Lq4 −~k42) + [2],
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VII ∫
kint

P6
jk =

∫
dk32dk42dk43P(~k32)P(~k42)P(~k43)P(~Lq2 +

~k32 +~k42)

· P(~Lq3 −~k32 +~k43)P(~Lq4 −~k42 −~k43),

The integrations of course are meant to range over all three
dimension of the kij and we abbreviated

∫
dkij :=

∫
d~kij for

simplicity. While the first term can be quashed for it sets ~Lqj =
0 ∀j the other terms might lead to nonzero contributions for
nonvanishing ~Lqj as well. It however proved impossible for us
to finally evaluate convolved terms as they appear in (IV) to (VII)
numerically. We want to reassure the reader that we tried.

8.2.1 Encountering Numerical Problems

To explain this, we start by rewriting the expression P as in [24,
eq.7.7]:

P21(~Lp1 ,~Lp2 ,~Lq1) =
(~Lp1 ·~Lq1)(~Lp2 ·~Lq1)

L4
q1

P(i)
δ (Lq1)+

+
∫

q

(
e−

~LT
p1

Cpp~Lp2 − 1 +~LT
p1

Cpp~Lp2

)
ei~Lq1 ·~q,

(8.13)

and stress that the expression depends on ~Lp1 and ~Lp2 . [24]
found that for the currently existing integration routine to be
successful the alignment of those two vectors ~Lpj is crucial. The
integration is possible for, e.g., ordinary power spectra where
~Lp1 = −~Lp2 . [24] analysed the ~Lpj in a plane (Fig. 7.1 therein)
and found that the critical points strongly depend on the angle
2θ′ enclosed by both considered ~Lpj . If however the angle starts
to decrease from π (i.e. the antiparallel alignment for the power
spectrum) the critical point [24, point 1 in Fig. 7.1] starts to de-
generate and moves into both directions of the z-axis [24, points
4 in Fig. 7.1]. Thus, our integration method, a saddle-point ap-
proximation around the origin, will simply miss the critical point
leading to invalid results.
It is precisely this property of the system which hinders progress
in the evaluation of the terms we needed to evaluate for the
four-point correlation function: This function depends, in our
notation, on the three shift vectors ~Lq1,2,3 which add to zero. Re-
calling that for the case of the power spectrum~Lpi = gqp(t, 0)~Lqi
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holds, we can see that for every possible configuration at least
one of the angles enclosed by the ~Lp1,2,3 will be much smaller
than π. Thus, in a convolution integral as encountered in terms
(IV) to (VII) the angles will force the critical points of integration
to degenerate and move on the z-axis away from our integration
origin. In effect, we cannot yet evaluate the integral.
Although this proves that we were not able to evaluate those
terms in the scope of this thesis we want to mention that there
are promising approaches to fix the problem of integrating terms
just like this by bypassing the obstacle with help of the Faddeva
function.

8.3 finding an approximation

Having failed in evaluating the four point function from KFT
we again turn to [22] for at least an approximation of the un-
certainty. The approach of this paper is to use the estimators
developed earlier (presented in chapter 7) and derive their vari-
ance, originating in the derivation of the shear power spectrum
from a discrete set of data instead of a continuous shear field.
We start by calculating the covariance:

Cov(C¯̀ ; ¯̀, ¯̀ ′) = 〈C¯̀C¯̀ ′〉 − C¯̀C¯̀ ′ , (8.14)

and, as before, especially the first part of the right-hand side.
We investigate with the estimators 7.20 inserted,

〈
Ĉ¯̀Ĉ¯̀ ′

〉
=
∫

AR( ¯̀)

d~̀

n̄2AAR( ¯̀)

∫
AR( ¯̀ ′)

d~̀′

n̄2AAR( ¯̀ ′)〈∣∣∣ε̃1(~̀ )cos(2β) + ε̃2(~̀ )sin(2β)
∣∣∣2

·
∣∣∣ε̃1(~̀′)cos(2β′) + ε̃2(~̀′)sin(2β′)

∣∣∣2〉
− σ2

ε

2n̄

{∫
AR( ¯̀)

d~̀

n̄2AAR( ¯̀)

〈∣∣∣ε̃1(~̀ )cos(2β) + ε̃2(~̀ )sin(2β)
∣∣∣2〉

+
∫

AR( ¯̀ ′)

d~̀′

n̄2AAR( ¯̀ ′)

〈∣∣∣ε̃1(~̀′)cos(2β′) + ε̃2(~̀′)sin(2β′)
∣∣∣2〉}

+
σ4

ε

4n̄2 . (8.15)

If we evaluate the first correlator we will again find four-point
correlators. [22] argues that these can be expanded into a sum
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of products of two-point correlators for a Gaussian field. They
justify the assumption of Gaussian statistics for very large scales,
i.e. for a analysis of a field large enough for nonlinear peaks
not to play a significant part for the shear estimation. We will
for our estimate follow this path keeping in mind that for this
approximation we relinquish nonlinear and non Gaussian in-
fluences. Ignoring nonlinear effects of course is a painful loss,
considering that a central beauty of KFT - and therefore our
model-independent power spectrum - is the investigation of non-
linear structure. As we need large scales for the estimation of the
weak-lensing signal ([25] uses 100 and 200 galaxies, distributed
over a range of several arcminutes), however, this approximation
does seem justified.
We now consider the second term:∫

AR( ¯̀)

d~̀

n̄2AAR( ¯̀)

〈∣∣∣ε̃1(~̀ )cos(2β) + ε̃2(~̀ )sin(2β)
∣∣∣2〉 , (8.16)

and find it to equal

C` +
σ2

ε

2n̄
. (8.17)

The same statement holds for the third term when replacing
every ` by a `′. We then turn to the evaluation of the many
four-point correlators appearing in 8.15 after expanding them
into the sum of products of two-point correlators. With:

ε̃α(~̀ ) ≈ n̄γα(~̀ ) + ∑
i

εs
α,i exp(i`θi), (8.18)

we find that we can write the correlators as:〈
ε̃α(~̀ )ε̃β(~̀

′)
〉
=n̄2

〈
γ̃α(~̀ )γ̃β(~̀

′)
〉

+∑
ij

〈
εs

α,iε
s
β,j exp(i(~̀~θi − ~̀′~θj))

〉
=n̄2

〈
γ̃α(~̀ )γ̃β(~̀

′)
〉

+δαβ
σ2

ε

2

(
∑

i
exp(i~θi(~̀ −~̀ ′))

)
, (8.19)

when we recall and apply the definition of the ellipticity disper-
sion σε and assume again that shear and intrinsic ellipticities
are not correlated. We furthermore see that:

ñ(~̀ ) =
∫

d~θ exp(i~̀~θ)∑
i

δD(θ − θi)

= ∑
i

exp(i~̀~θi) (8.20)
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and:
ñ(~̀ −~̀ ′) = (2π)2n̄δD(~̀ −~̀ ′), (8.21)

finding:〈
ε̃α(~̀ )ε̃β(~̀

′)
〉
=n̄2

〈
γ̃α(~̀ )γ̃β(~̀

′)
〉
+ δαβ

σ2
ε

2
(2π)2n̄δD(~̀ −~̀ ′).

(8.22)

We use the relations of γ̃ and κ̃ to calculate the final form of the
correlator:〈

Ĉ¯̀Ĉ¯̀ ′
〉
=
∫

AR( ¯̀)

∫
AR( ¯̀ ′)

d~̀d~̀′

n̄4A2AR( ¯̀)AR( ¯̀ ′)
{A+ B + C}

− σ2
ε

2n̄
(C¯̀ + C¯̀ ′)−

σ4
ε

4n̄2 (8.23)

with the term A being the cosmic covariance, which is a conse-
quence of the field being of finite extent, given as:

A = n̄4
(

A2C`C`′ + 2δD(~̀ −~̀ ′)A(2π)2C2
`

)
. (8.24)

The term C is shot noise from the intrinsic ellipticity dispersion:

C = σ4
ε

4
(2π)4n̄2

(
A2

(2π)4 + 2δD(~̀ −~̀ ′)
A

(2π)2

)
, (8.25)

and the B is a mix of both:

B =
σ2

ε

2
(2π)2n̄3

(
A2

(2π)2 C` +
A2

(2π)2 C`′ + 4δD(~l −~l′)AC`

)
.

(8.26)
Returning to the covariance we finally subtract C`C`′ and find:

Cov(C¯̀ ; ¯̀, ¯̀ ′) = 2(2π)2An̄2
∫

AR( ¯̀)

∫
AR( ¯̀ ′)

d~̀d~̀ ′

n̄4A2AR( ¯̀)AR( ¯̀ ′)

δD(~̀ −~̀ ′)
[

n̄C` +
σ2

ε

2

]2

.

(8.27)

The Dirac distribution sets ¯̀ = ¯̀′. Integration leads to:

Cov(C¯̀ ; ¯̀, ¯̀ ′) =
4π

A ¯̀∆`

(
C¯̀ +

σ2
ε

2n̄

)2

δ¯̀ ¯̀ ′ , (8.28)

where ∆` is the thickness of the ¯̀-annulus. With our C` from
chapter 6 we can use real-survey parameters and give a realistic
estimate of our power spectrum and its uncertainty. We shall do
so in Fig. 8.1 where we choose ∆` = 100 and σE, A and n̄ to be
from the Canada-France-Hawaii Telescope (CFHT) survey.
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Figure 8.1: The model-independent weak lensing power spectrum and
its uncertainty according to Joachimi, Schneider, and Ei-
fler [22] and eq. 8.28. We furthermore showed the same
comparison as in Fig. 6.6. Judging from this estimate of
the signal’s uncertainty it will not be possible to use a
CFHT-like survey to determine the power spectrum more
accurately.





C O N C L U S I O N

In this thesis we calculated a model-independent angular weak
lensing power spectrum. To achieve this we replaced the cosmo-
logical model by a set of functions, the expansion function E(a)
and the linear growth factor D+(a), which were derived from
observational data only using the method of [21]. Furthermore,
we used a parameter-free analytic expression for the cosmic
matter density power spectrum Pδ obtained from the Kinetic
Field Theory instead of a modelled or a numerically simulated
power spectrum.
Both changes yielded an expression for the power spectrum
which depended on three remaining parameters only: The speed
of light c, the Hubble parameter h and the present-day matter
density parameter Ωm0. All of them have been measured to
great accuracy by various surveys.
Hence, we extended the wide range of Kinetic Field Theory
applications by an application in gravitational lensing adding its
key statistical quantity. The lensing effect has been well-tested
and measured in various existing surveys. More large-scale sur-
veys are planned and scheduled (e.g. [1]) and the angular power
spectrum is investigated with numerical simulations. This al-
lows for another possible source of verification and calibration
of our theoretical predictions and measurement effects.
In a second step, we used Kinetic Field Theory in order to cal-
culate an analytical expression for the variance of the power
spectrum signal calculated before. We therefore calculated the
four-point function of cosmic density with Kinetic Field Theory,
but were not able to evaluate this expression numerically.
Looking for another possibility to obtain an estimate of the
signal’s uncertainty, we found an approximation by ignoring
non Gaussian contributions to the shear field which allowed
us to expand the four-point functions into a sum of products
of two-point correlators. Hence, we were able to express the
uncertainty in terms of the weak lensing spectrum and the geo-
metrical parameters of the survey considered.
Having calculated both a fully model-independent power spec-
trum and a rough estimate of its uncertainty we outlined another
possibility for a reliable test of the Kinetic Field Theory using
real-world measurement data from upcoming lensing surveys
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for comparison. This allows for further improvements of the
theories tested, especially since we eliminated further sources of
possible errors by replacing influences of particular cosmologi-
cal models by introducing model-independent cosmology.
We were able to compare the lensing power spectrum from
Kinetic Field Theory with its respective counterpart from nu-
merical simulations. We found good accordance of our results,
the model-independent weak lensing spectrum, with classically
obtained results. While the numeric values of the spectrum
showed a clear discrepancy of up to 20 percent, the general
shape and order of magnitude of the lensing spectra agreed
quite well. This confirms, that Kinetic Field Theory, combined
with model-independent cosmology can be a strong tool in order
to better understand cosmic structure formation and to calculate
central quantities.
We want our results to be pathfinders, integrating the lensing
formalism into the framework of Kinetic Field Theory and thus
inventing a new instance for a verification of the still rather
young, but all the more promising theory.
This finally might lead to new insights about the evolution of
the universe, its constituents and cosmic structure – and finally
even hint at the nature of the cosmic dark sector.
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