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Abstract

Drinfeld defined the notion of elliptic modules, which are now called Drinfeld mod-
ules, as an analogue of elliptic curves in the function field setting. To prove the
Langlands correspondence in this context, Drinfeld studied moduli spaces of ellip-
tic sheaves. The categories of elliptic sheaves and Drinfeld modules are equivalent
under certain conditions. Since then, many generalizations of elliptic sheaves have
been studied, such as D-elliptic sheaves defined by Laumon, Rapoport and Stuhler
and Frobenius-Hecke sheaves defined by Stuhler. In this thesis, I introduce a new
generalization of elliptic sheaves, called generalized D-elliptic sheaves which can
be thought of as a generalization of both D-elliptic sheaves and Frobenius-Hecke
sheaves. I study their moduli space and prove a uniformization theorem. This
builds on work of Laumon-Rapoport-Stuhler, of Hartl and of Rapoport-Zink.

Zusammenfassung

Als Analogon zu elliptischen Kurven iiber Funktionenkorpern definierte Drinfeld den
Begrift eines elliptischen Moduls, die man inzwischen unter dem Namen Drinfeld
Moduln kennt. Um in diesem Kontext die Langlands Korrespondenzen zu beweisen,
studierte Drinfeld Modulrdaume von elliptischen Garben. Die Kategorien der elliptis-
chen Garben und die der Drinfeld Moduln sind unter bestimmten Voraussetzungen
dquivalent. Inzwischen gibt es viele Verallgemeinerungen von elliptischen Garben,
beispielsweise die D-elliptischen Garben, definiert von Laumon, Rapoport und Stuh-
ler sowie die Frobenius-Hecke Garben, definiert von Stuhler. In dieser Dissertation
konstruiere ich eine neue Verallgemeinerung von elliptischen Garben, die sogenan-
nten verallgemeinerten D-elliptischen Garben, die als Verallgemeinerung sowohl von
den D-elliptischen Garben als auch von den Frobenius-Hecke Garben betrachtet wer-
den konnen. Ich studiere deren Modulrdume und beweise einen Uniformisierungs-
Satz. Dies baut auf Arbeiten von Laumon-Rapoport-Stuhler, von Hartl und von
Rapoport-Zink auf.
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1 Introduction

In the seminal papers [15], [I6], Drinfeld introduced elliptic modules (nowadays
called Drinfeld modules) as analogues of elliptic curves and abelian varieties in
the function field setting. Drinfeld’s main interest were the moduli spaces of these
objects, the so called Drinfeld modular varieties. These are the analogues of modular
curves in the function field setting and their [-adic cohomology realizes part of the
Langlands correspondences over global function fields.

In the classical setting of number fields, modular curves are attached to the group
GL2/Q and through the theory of Shimura varieties, there are generalizations of
these moduli spaces to other groups, such as symplectic and unitary groups, but also
to forms of GLs and to more general base fields. These generalizations are important
objects in the Langlands program. In the function field setting generalizations of the
Drinfeld modular varieties have also been constructed as moduli spaces of objects
that generalize Drinfeld modules. Let us explain three main generalizations.

In [35], Laumon, Rapoport and Stuhler defined D-elliptic sheaves and their mod-
uli varieties to prove the local Langlands correspondence. Here D stands (essentially)
for a maximal order of a division algebra. The moduli varieties mimick (and gen-
eralize) classical Shimura curves attached to an inner form of GLy over Q. These
varieties are smooth and compact; unlike those of Drinfeld.

In [46], Stuhler defined Frobenius-Hecke sheaves. The Frobenius-Hecke sheaves
can be thought of elliptic sheaves that can have many “poles”. Stuhler also con-
structed moduli spaces of Frobenius-Hecke sheaves, the analogue to Hilbert modular
varieties attached to GLy over a totally real field.

In 23], Hartl defined abelian sheaves as an analogue of abelian varieties in the
classical theory. Abelian sheaves are higher dimensional generalizations of elliptic
sheaves. In the same paper it is proved that the stack of abelian sheaves is a Deligne-
Mumford stack. Hartl studied uniformization of abelian sheaves at co. There is a
uniformizable locus in the stack of abelian sheaves. In [23], a uniformization theorem
is proved for this uniformizable locus. In order to prove this, Hartl introduced
analogues of Rapoport-Zink spaces. The main guides for this thesis are [35] and
[23].

What has been missing in the function field case so far, was the analogue of
Shimura curves over totally real fields attached to inner forms of GLy, that are split
at all infinite places. In this thesis we provide such a generalization. We want to
emphasize at this point that in the function field setting all the generalizations above
as well as our results work for GL; and not only for GLs.

In order to construct these more general moduli spaces we first generalize elliptic
sheaves in a new way. We call these new objects generalized D-elliptic sheaves. They
are a simultaneous generalization of both D-elliptic sheaves and Frobenius-Hecke
sheaves. They can be thought of as D-elliptic sheaves that can have many poles or
as Frobenius-Hecke sheaves with a D-action.
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In this thesis, we construct the moduli space of generalized D-elliptic sheaves.
We formulate the moduli problem of generalized D-elliptic sheaves with level I-
structure. We show that the moduli space of generalized D-elliptic sheaves has
nice algebraic properties as in the D-elliptic sheaf case. More presicely, the stack
of generalized D-elliptic sheaves is a Deligne-Mumford stack and with a non-trivial
level structure, it is even a scheme. We show that the characteristic morphism is
proper over a suitable base. In order to prove these properties, we mainly follow [35].
One big difference to [35] is that in [35], Laumon, Rapoport and Stuhler assumed
that a D-elliptic sheaf has finite characteristic whereas in our case the characteristic
can be infinite.

The second main result of this thesis is the proof of the uniformization theorem.
We uniformize the moduli space of generalized D-elliptic sheaves at the infinity place.
This is analogous to the classical complex uniformization of Shimura varieties which
is a very important result in the classical theory.

In future work, we hope to use our uniformization result to study arithmetic
questions about the moduli space of generalized D-elliptic sheaves. For example,
the uniformization result is needed in order to build a definition of modular forms
as holomorphic functions with certain transformation properties. We then plan to
study the motives attached to these forms, their good reduction properties and their
L-functions.

We will now give a more detailed overview of the results of this thesis.

1.1 Overview of the results

Let X,Y be smooth gemometrically irreducible projective curves over F, and 7 :
X — Y be amorphism of degree ¢. Let co € |Y'| be a closed place and {ooy, - - -, 00; }
be the closed places in | X| lying above co. Define F' to be F,(X). (This is the ge-
ometric analogue in the function field setting to passing from Q to a totally real
field.)

Let D be an Azumaya Ox-algebra such that its stalk at the generic point 1 of X
is a division algebra over F'. We denote by Bad the ramified places for D, and put
B := 7(Bad). Our generalization of Drinfeld’s notion of elliptic sheaf is provided by
the following definition:

Definition 1.1. (Definition [2.2)

Let S be an F;-scheme and fix a closed immersion ¢ : " — (X \ Bad) xp, S
such that pry o) : 8" — S is finite locally free of degree t.

A generalized D-elliptic sheaf of charachteristic ¢ is a tuple (£€,1) where £ =
(&, Jiar ti)ierr is a ladder (see Def. of locally free sheaves &; of Oxs-modules
where S is an F,-scheme with a D-action together with injective morphisms of
Ox «s-modules

-/

Jig + € —> Ey for i <@
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ti:0"E — &
which are compatible with the D-action and which satisty the following conditions:
(i) A periodicity condition: Put ¢ = d.degoo - t. We have
Eive = Ei(001, ..., 00)
where &;(coq,...,001) =& ® Ox(oc0y,...,00).
(i) A condition on the cokernel of j; » around each oo;.
(iii) The cokernel of ¢; has support on Im ¢ and is locally free of rank d over S’

We want to point out that if £ = 1, generalized D-elliptic sheaves are D-elliptic
sheaves defined in [35]. And if D = My(Ox), we show in Proposition that
the category of generalized D-elliptic sheaves is Morita equivalent to the category
of Frobenius-Hecke sheaves defined in [46]. We formulate the notion of level I-
structures on generalized D-elliptic sheaves in Definition [2.15] We also define adelic
level structures in Section [7} However, for our main results we only need level
I-structures.

Similarly to Stuhler (J46]), we will be working with generalized D-elliptic sheaves
that have certain characteristic (cf. Section [f). The generalized D-elliptic sheaves
with the condition on their characteristic are called generalized D-elliptic sheaves
relative to X/Y . We introduce those and define level I-structures on them in Section
We denote the stack of generalized D-elliptic sheaves relative to X/Y with level
I-structure by GEllx yp ;. Let us put J := 7([). Our first main result in this thesis
is the following:

Theorem 1.2. (Theorem The stack GEWx yp,1 is an algebraic stack in the
sense of Deligne-Mumford [11] which is smooth over Y ~ (JUBUo0). Moreover, if
I #0, it is a scheme that is a disjoint union of quasi-projective schemes.

The idea to prove this theorem is to cover it with certain Deligne-Mumford stacks
of I-stable generalized D-elliptic sheaves. We follow [35] to prove that the I-stable
generalized D-elliptic sheaves form stacks. An important tool is the stack of I-stable
vector bundles. To deal with the infinite characteristic we use the idea of Hartl in
Proposition [5.19]

Next, we study the question of properness. We show that once we consider the
translations of generalized D-elliptic sheaves relative to X/Y as the same object,
i.e, we consider the quotient GEWx vy p 1 /17, we have:

Theorem 1.3. (c¢f. Theorem|6.1
The morphism
gé’%x/y,p,[/lZ — Y~ B

1S proper.



We prove the properness by using the valuative criterion of properness.

After these global results, we now want to explain our uniformization theorem.
For that let Z denote the fiber of GEx/yp over oo and Q/E\M;YDJ denote the
formal completion of GEllx /yp along Z. Let G;en denote the moduli functor of
generalized D-elliptic sheaves relative to X/Y which are quasi-isogeneous to a fixed
generalized D-elliptic sheaves realtive to X/Y. We will explain some more details
regarding this below. Let Ay denote the finite adeles of X and let H be a compact
open subgroup of D*(Ay). Our uniformization theorem is the following:

Theorem 1.4. (¢f. Theorem .' We have an isomorphism of formal schemes
/\Z
e D*\G,.,, x D*(Ay)/H.

In order to prove the theorem, we largely follow the framework that was introduced
by Hartl in [23](building on the work of Rapoport-Zink in [43]). We want to point
out that unlike [23], our construction works for deg oo > 1 also.

A major part of the proof of the uniformization theorem consists of showing
representability of the moduli space G ,,. We also need a Serre-Tate theorem. For
that we need an analogue of p-divisible groups and Dieudonné theory.

Hartl introduced the notions “z-divisible groups” and “Dieudonné F [ z]-modules”.
These objects are the analogues of p-divisible groups and Dieudonné modules that
were used by Rapoport and Zink to prove the p-adic uniformization of Shimura
curves. We define analogues of these local objects first for the D-elliptic sheaves
over Y. Since these are local objects they carry a Dy, := D ®p, O~ action where
O4 denotes the completion of the stalk of the structure sheaf of Y at co. Follow-
ing Hartl’s steps, we define z-divisible D,,-modules and Dieudonné D_,-modules.
Since Dy, ~ My(O4), the category of z-divisible D.,-modules are Morita equivalent
to the category of z-divisible groups. Following [23] and [43], we work with the
moduli space of z-divisible D,,-module which are isogenous to a fixed z-divisible
Do-module.

Generalized z-divisible Dy -modules are then defined as ¢-tuples of z-divisible

Do-modules at each oo; for ¢ = 1,---,¢. Similarly, generalized Dieudonné Dy -
modules are defined as t-tuples of Dieudonné D.-modules at each oo; for ¢ =
1,---,t. As in the classical case, there is a categorical anti-equivalence between

the category of generalized z-divisible D,,-modules and generalized Dieudonné D-
modules. The rigidity of quasi-isogenies also holds for generalized z-divisible D-
modules as in the classical case (cf. Theorem [9.17).

Generalized z-divisible Do-modules are related to generalized D-elliptic sheaves
through their Dieudonné modules, namely generalized formal Dy -elliptic sheaves.
As before a generalized formal D.-elliptic sheaf is t-tuple of the formal D, -elliptic
sheaves where j = 1,--- | t. We will give the idea to construct formal D..-elliptic
sheaf first for ¢t = 1 case (cf. Construction [10.7). As we mentioned before, if t =1 a

6



generalized D-elliptic sheaf is a D-elliptic sheaf defined in [35]. Let £ = (&, ji, ti)icz
be a D-elliptic sheaf. We take the formal completion £ of £ along the fiber over occ.
Since the periodicity of £ is d deg 0o, the periodicity of £ is also d deg co. We take
deg oo-jumps of this sheaves, denote it by £ and the latter will have periodicity
d. We will use this to prove the representability of the moduli functor G’gen. Now,

if we consider a generalized D-elliptic sheaf z, by following same path for each oo;,
we get formal D, -elliptic sheaf for each j =1,--- ,t. Then the generalized formal
Dy-elliptic sheaf associated to £ is the t-tuple of formal D, -elliptic sheaves.

By using the equivalence between generalized z-divisible Do,-modules and gen-
eralized Dieudonné D -modules, we obtain a certain generalized z-divisible D-
module. These certain generalized z-divisible Do -modules are the generalized z-
divisible D, -modules associated to the generalized D-elliptic sheaves. This corre-
spondence is similar to the relation between abelian varieties and their p-divisible
groups in the classical world.

Similar to the classical case, we can look at deformations of generalized D-elliptic
sheaves and deformations of generalized formal D.-elliptic sheaves. Both categories
are equivalent via a Serre-Tate theorem:

Theorem 1.5. (Theorem Let £ be a generalized D-elliptic sheaf and let E
denote the generalized formal Dy -elliptic sheaf associated to £. Then, the category

of deformations of € is equivalent to the category of deformations of 2

Let us finish this overview by explaining the uniformizing spaces from the uni-
formization theorem when D splits at all oo;’s. As before consider the moduli
problem G’gen of generalized D-elliptic sheaves which are quasi-isogenous to a fixed
generalized D-elliptic sheaf, say £. To have a precise result on the field of definition
of the uniformization, we use Genestier [19]. We define an equivalency of functors

G, and Genestier’s functor G by using formal completion of generalized D-elliptic

sheaves over T. Hence, as in [19], the functor G’ is representable by (Z x Q@)

gen
where Q@ is the Deligne-Mumford scheme (cf. [4], Section 4.3). This is higher di-
mension version of Drinfeld’s upper plane plane which occurs in the uniformization
of Shimura curves.

Over the algebraic closure of the residue field at oo, the group of quasi-isogenies
of £ is D*. By using this we have an action of D* on G, and since D* acts

naturally on D*(Ay), we obtain a diagonal action on G}, x D*(Ay). Putting in
the level structures, we get an isomorphism

D\](Z x @) x D(A;)/H — GEllxp1.

And if t = 1, we get a uniformization theorem of D-elliptic sheaves as stated in
[4]. I want to emphasise that in [4], the theorem is stated without a proof. So, the
uniformization theorem for generalized D-elliptic sheaves fills in this gap.
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Outline of the thesis

The thesis contains three main parts: global part, local part, and the uniformization.

First part consists of Section 2 - 7. In these sections we define generalized D-
elliptic sheaves as a natural generalization of Frobenius-Hecke sheaves and D-elliptic
sheaves. We define (quasi-)isogenies between generalized D-elliptic sheaves in Sec-
tion 3 and give some examples. In Section 4, we look at generalized D-elliptic
sheaves of certain type, namely we put a condition on its characteristic, and con-
sider their stack. This stack is a Deligne-Mumford stack and in fact is a scheme with
non-trivial level structure. Since we have a D-action the characteristic morphism is
proper. We prove this in Section 6.

We work on the local part in Section 8-12. In Section 8-10, we define generalized
z-divisible Dy-modules, generalized Dieudonné Dy -modules and generalized formal
Dyo-elliptic sheaves. The latter is the generalized z-divisible Dy-module associated
to a generalized D-elliptic sheaves. We define some results like rigidity of quasi-
isogenies analoguesly to the classical case. In Section 11-12, we give examples of
D-elliptic sheaves and generalized D-elliptic sheaves. By using these examples we
define the moduli functors of (generalized) formal D.-elliptic sheaves.

We connect first and second part by Section 13. In Section 13 we give a Serre-
Tate theorem in generalized D-elliptic sheaf case. This theorem relates deformations
of generalized D-elliptic sheaves with the deformations of generalized formal D-
elliptic sheaves.

The aim of the last part is to uniformize the moduli space of generalized D-elliptic
sheaves. We prove the representability of the moduli functor in Section 15 by using
its algebraization defined in Section 14. We state our uniformization theorem in
Section 16 and give proof in Section 17.

This thesis also contains an appendix (Sections 18-20). In Section 18 we give
Morita equivalence for rings, sheaves and stacks. Section 19 collects the background
that we need from the theory of stacks. Section 20 we collect some facts about
vector bundles.



2 Generalized D-elliptic sheaves

In this section, we present simultaneous generalization of D-elliptic sheaves([35]) and
Frobenius-Hecke sheaves([46]). We will give the definition of generalized D-elliptic
sheaves following Stuhler [46]. In his paper [46], Stuhler defined Frobenius-Hecke
sheaves as a generalization of elliptic sheaves to give a modular interpretation of

SLa(B H QY /Spf(OY )

7j=1

where Q@ is Deligne-Mumford scheme(cf. [4], Section 4.3) around oo; for each
j=1,...,t

Let X and Y be smooth projective geometrically irreducible curves over I, with
function fields F' and L, respectively. Let 7 : X — Y be a finite morphism of
degree t. Let oo € Y be a closed point which splits completely and ooy, ..., oo,
be the points of X above co. Regard T = {oco1,...,00;} as a closed irreducible
subscheme of X. Let A := I'(Y —00,0y) and B := ['(X — T, Ox). We have the
following situation:

X  T={oop,....00}) B  F=F,X)

}lf o‘o A L=F,Y)
We will denote the completion of the local ring O o, at oo; foreach i € {1,... ¢}
by O, and the completion of the local ring Oy at oo by Oy. Let z; be a
uniformizing element of Ox ~, and z be a uniformizing element of Oy . Also, let
koo, be the residue field at oo; and k., be the residue field at oo.
Note that there are natural identifications of completions:

Foo, >~ Lo
and
Oooj >~ Oyoo.
Let Ox 1 = ﬂ Ox 0, be the semilocal ring of X in T and

k‘( ) OXT/(TCld OX'JI‘ Hkooz

Let D be an Azumaya Ox-algebra with dimp, D = d?. Assume D, is a maximal
order for each x € | X|.

Denote the ramified places for D by Bad. Assume that no oo; € Bad i.e, Dy, =
D ® Oy, ~My(O,). Put Dy =[] Do, -

Leti= (i1,...,4;) € Z' and i+1 = (i3 +1,...,4;+1). There is a partial ordering
on Zt:



i<i < i;<djforallj=1,...t

Let S be an Fg,-scheme. We denote the Frobenius endomorphism on S by og :
S — S which is defined as the identitiy on points and as the g-power map on
the structure sheaf. Let S’ be a closed subscheme of (X ~ Bad) X S such that
pralg = 8" — S is finite of degree t.

Definition 2.1. A ladder over S is a system £ = (&;,t;) where &; are locally
free Oxyg-modules of rank d? with right D-action which is Oxyg-linear and the
restriction of D to the scalars is same as the action of Ox. And for ¢, € Z' with
i < 4 there are injective Oy g-module morphisms

Jiz 2 & — Ex

t' : O'*(C:' — (c:iJrl

which are compatible with the D-action such that for ¢ < ¢’ the following diagram
commutes:

Er1 > Epaa

v

0" E—— "€,

Definition 2.2. A pair (£,1) consisting of a ladder £ = (&;,t;) and a closed im-
mersion ¥ : S’ — (X \ Bad) xj S such that pro ot : S — S is finite locally free
of degree t is called a generalized D-elliptic sheaf over S if the following conditions
are satisfied:

(i) (periodicity) Put £ = d.degoo -t. We have
Eive = Ei(001, ..., 00)
where &;(00y,...,00;) = & ® Ox (001, ...,00;)
(ii) Let ' =i+ (d1,...,0;) where 6; = 0 or 1. Then, the support of the quotient
Ey /& is contained in T x S. Moreover,
(Eir/&i)loo;xs = Vi j is locally free of rank d - §; over Og

Assume 0; = 1. The induced action of Ox  on V)  ; factorizes over an algebra
morphism of the quotient

771(2 : k’(T) — End(VM-/J).
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Put ;= (771(2, o ,771(?,) Then, for all i € Z¢,

Xi+1,i+2 = Xii+1 © T
where 7 : k(T) — k(T), z — 27 is the Frobenius morphism.

(iii) The cokernel of ¢; has support on Im and is locally free of rank d over S’

Remark 2.3. 1. Let £ = (&, ;) be a generalized D-elliptic sheaf and V; » ; be a
vector bundle defined as in condition [l Define

1

Then, V,;;; ~ L;y; ®r, F}*Y. Now, on V,y; there is a My(k(T)))-action,

3,87
denote it by 7). Since My(k(T)) = k(T) @, My(F,), the action n%) = x\) @r

where X’E]’L)/ is an action of k(T) on [,ZQ.), and 7 is the natural right action of

M,(F,) on F1xd. -

2. We want to point out that the vector bundle V; s ; in the Definition is
isomorphic to 5?;,% where £; 7 ; is the line bundle over Og.

3. The action XE ) of k(T) on V, s ; factors via the structure map

0

05 — EndS(VM-/J)

o)

Ogs. Indeed, let XZ), : k(T) — Endg(L; ;) ~ Og be an action(cf. Definition
2.8)). By the previous item, we can define

. So, the action morphism y.”; may be regarded as homomorphism k(T) —

(4)
K(T) 225 Og — My(Og) = Ends(LES ) = Ends (V).

J

4. Let ' = i+ (61,---,0:) where 0, = 0 or 1. Note that the action of XEz)' is

independent of the components of i and ¢’ with index different from j. By
condition fiil all x], is determined by X& :

Definition 2.4. The map ) in the definition of generalized D-elliptic sheaf is called
the characteristic of the generalized D-elliptic sheaf.

11



Let €& = (&;,t;)iezt be a generalized D-elliptic sheaf and n = (ny,...,n;) € Z".
Then, one can define the Z!-action on £ as follows:

Eln] = (51'*27 t@'*@)

where i —n = (iy — ny,...,4 — ny). In particular,

El] =& = (& 1,ti1)

Remark 2.5. 1. Let £ = (&;,t;) be a generalized D-elliptic sheaf over S. By
condition (i), H°((X \ T) ® Og, &) is independent of i. Moreover, if S =
Spec K where K is a field it is a K[r]-module where the 7 action comes from
ti : O'*gz — 81“’1'

2. Assume t = 1 and X =Y. Then, locally Oy ~ Og and, we get a D-elliptic
sheaf (|35], Definition 2.2). In this case the module in the previous item is
called Drinfeld-Stuher Op-module. For more details, please see [41].

Remark 2.6. (1) Assume D = M,(Ox) and € = (&;,1;) is a generalized D-elliptic
sheaf. Then, the generalized D-elliptic sheaves are called Frobenius-Hecke sheaves
of rank d that were defined in [46]. In Proposition we will see that the cat-
egory of Frobenius-Hecke sheaves and generalized D-elliptic sheaves are Morita
equivalent when D = M,(Ox).

(2) In Frobenius-Hecke sheaf case, the module H°((X \T)® K, &;) is considered by
Anderson in [3|(Hilbert-Blumenthal t-modules) and by Stuhler in [46](Abelian
Ok -module of Hilbert-Blumenthal type) separately.

Remark 2.7. We want to point out that in [46], in the definition of Frobenius-Hecke
sheaves item 1| is different. Stuhler says coker j; ; is free over Og. However, we want
elliptic sheaves defined by Drinfeld as a special case of Frobenius-Hecke sheaves, so
coker j; » should be locally free over Og. We write the definition of Frobenius-Hecke
sheaves in the correct form below. Please also note that in this case a ladder consists
of £ = (&;,t;) where & are locally free Ox-modules of rank d such that the obvious
diagrams commutes.

Definition 2.8. A pair (£,1) consisting of a ladder £ = (&;,t;) and a closed im-
mersion ¢ : S’ — (X \ Bad) X, S such that pro ot : S’ — S is finite locally free
of degree t is called a Frobenius-Hecke sheaf if the following conditions are satisfied:

(i) (periodicity) Put £ = d.degoo. We have
514{ = 61(001, Ce 7OOt)

where 51(001, cey OOt) = gl® Ox(OO1, R ,OOt)
12



(ii) Let ' =i+ (d1,...,0;) where 0; = 0 or 1. Then, the support of the quotient
Ey /& is contained in T x S. Moreover,

(Ei/Ei)loo;xs = L; i j is locally free of rank §; over Og

Assume d; = 1. The induced action of Ox 1 on L, ; ; factorizes over an algebra
morphism of the quotient

Put x; . == (XZ(IJ, e ,X(.t.),). Then, for all i € Z¢,

(2

Xi+1,i+2 = Xii+1 © T
where 7 : k(T) — k(T), z — 27 is the Frobenius morphism.

(iii) The cokernel of ¢; has support on Im and is locally free of rank 1 over 5"

In [35],p. 224 it is mentioned that D-elliptic sheaves are Morita equivalent to
elliptic sheaves when D = My(Ox). As for D-elliptic sheaves, one can use Morita
equivalence for generalized D-elliptic sheaves also. Recall that generalized Ox-
elliptic sheaves are Frobenius-Hecke sheaves by definition. For a review of Morita
equivalence, we refer to Section

Proposition 2.9. The category of Frobenius-Hecke sheaves of rank d is Morita
equivalent to the category of generalized My(Ox )-sheaves.

Proof. (of Proposition
Let £ = (&;,t;) be a Frobenius-Hecke sheaf over S. Define
EI (FbTi) = (8£®OX N7t£®ox N)

where N = O is a simple right My(Ox)-module. Note that & ®p, O ~
& @ - @& where the direct sum is taken d-copies. Let us focus on the condition
in Definition . Let i =i+ (01,---,0;) where each §; = 0 or 1. Then we have,

Fu|Fi=(E @ DE)(E® - DE)=E)ED - DE/E;

Hence (]—"l»//]-"i)|oojx5 ~ (51’/51)@d|oojxs ~ E?ﬂj where £, ; is locally free over Og
of rank d;. For simplicity, put V, ;s ; 1= EE?;J. Then, V, i ; is locally free of rank d-¢;
over Og.

By condition ({ii) in Definition we have an action homomorphism

13



X9 k(T) — Ends(Liy ;)

A

12

Ogs.

Thus on

Fo | Fi = Lig Q) k(T = Ly ; @, Fy
we have an induced action .
k(T) X Os = My(Os) =~ End (L] )
as Og-algebra where can is the natural action of Og on My(Og). Define T]Z(Q =

can o Xz(jz), Now, let @ € k(T) be any. We have

i i42(@) = can 0 X3y 115(@) = can o Xy 0 7(@) = 0y 0 7(@)

where 7 : k(T) — k(T) is the Frobenius endomorphism.
Now, let us consider the morphisms 7, : F; — Fi41. As before we have

coker 7; ~ cokert®4, which is locally free of rank d over §'. Hence, F = (F;, 1)

is a generalized D-elliptic sheaf.

Conversely, given a generalized D-elliptic sheaf F = (F;, 7;) for D = M,;(Ox).
Suppose 0 < 0§ <7 —i < 1. We know that

(Fir/Fi)looyx0s = Viar,j

is locally free over Og of rank dé;. It comes with an action of M4(k(T)) = k(T) ®,
M,(F,). Define

Then, Vi,l'/,j >~ ACLZ/’]' ®1Fq F;Xd.
Now, define € = (;,;) = (F; @my0x) OX% T @my0x) OX ). Then,

(Er/E)looyxs = Vigj Omy0x) O
~ ‘Ci,ilyj ®]Fq F;Xd ®Md O}(Xd

By Remark (i), the XZ('ji)’ ® r-action on L;y; ®p, F3** induces x; g-action of
k(T) on N

Ly O, Fy* Quyox) OX* ~ Liy ;.
14



Then by definition, it follows that

Xi+1,i+2 = Xii+1©9 T

where 7 : k(T) — k(T) is the Frobenius endomorphism.
Now, let us consider the morphisms ¢; : 0*&; — &;11. As before, we have cokert;

is locally free of rank 1. Hence £ is a Frobenius-Hecke sheaf.
O

Definition 2.10. A morphism between two generalized D-elliptic sheaves £ and &’
is a morphism between locally free Oxs-modules f; : & — & which respects the
D-action and compatible with j;;’s and ¢;’s.

Definition 2.11. Let G€lx p(S) denote the category whose objects are the gen-
eralized D-elliptic sheaves over S and morphisms are isomorphisms of generalized
D-elliptic sheaves.

Now, we are ready to define stack of generalized D-elliptic sheaves. For a review
of stacks, please see Section

Proposition 2.12. Let Schyr, denote the calegory of schemes over F,. Then the
assignement

S — 95€€X7D<S)

defines a fibered category over Schy,. Moreover, it is a stack with respect to fppf-
topology.

Proof. First we will show that GEllx p(S) is a fibered category for an F,-scheme S
by using Definition [I9.10} Let 7" — S be a morphism of F,-schemes and let £ be
a generalized D-elliptic sheaf over S. Then, the pullback f*(£) is a generalized D-
elliptic sheaf over T'. So, we get a functor f* : GEWU x p(T) — GEUx p(S) defined
by taking pullback. Then, the conditions in Definition are satisfied by defition
of pullback and by the fact that (f o g)* = g* o f* for any two morphisms f, g in
SCh]Fq.

To show that this fibered category is in fact a stack, it remains to show the
two conditions in Definition More precisely, let S be an F,-scheme and
E = (&, Jew - te) and F = (Fy, I 4, 71) be two generalized D-elliptic sheaf over S.
We need to show that

e The functor
Isos(E,F) : Schg — Sets

defined by (f : T — S) + {¢: f*€ = f*F isomorphism in GEWxp(T)} is
a sheaf in the étale topology.

15



e Suppose T' — S is a covering in Schg, for the fppf topology. Suppose we
have descent datum in GE¢/x p. Then, these datum is effective.

We start with the first item. For simplicity we will denote the functor Isog(€, F)
by F. Let f : T — S € Schg and f; : T; — T be an étale covering in Schg.
Given ¢; € F(T;). Let pry : T; xo T; — T; and pry : T; X¢ T; — T; denote the
natural projections. Assume pri(y;) = pri(v;) € F(T; x7 T}) for any 1, j.

It is known that quasi-coherent sheaves over Schg form a stack ([52], Section
4.2.). Via this fact, there is an isomorphism ¢, : f*&, = f*JF, of locally free
sheaves. We need to show that this isomorphism ¢ : f*€ — f*F is an iso-
morphism of generalized D-elliptic sheaves. Write f*€ = (f*&, f*jrw, [ tr) and
[*F = (f*Fi, Uy, f 7). By the following diagram

% f*jE,E
[o————C&y

@ij NLS%/
I, .

f }“E$ f* Fi
we have two morphisms ¢y o f*jj, and f*II; ;o ¢y from f*E, — f*Fp. Since
Hom is a sheaf for quasi-coherent sheaves, we have ¢ o f*j v = f I © @y
We have a similar diagram for the morphisms ¢; and 7; for each i € Z'. Hence,
the isomorphism ¢ commutes with the morphism j;’s and ¢;’s for each i € Z*. For
D-action, we have the following diagram

o F
.Dl .Dj
et Fu
Similar as before, we get two morphisms -0y and ¢ o-D from &, — Fj. Since
Hom is a sheaf for quasi-coherent sheaves, we have - o ¢ = ¢ o -D.
Let f: T —> T be a covering in Schg. Let ({€P}, {1,}) be a descent data,
e EW (5,& ,jk Wt (l)) is a generalized D-elliptic sheaf over T; for each i. Since
the categorgf “of quasi-coherent sheaves form a stack over Schg, there are locally free
sheaves f over T; for each k and i, together with cartesian arrows 87 — ]:

such that the diagram in the definition commutes. Let £ be fixed but any. The;l,
we have the following diagram:

l%"lg/)

FO o F0

k/

where the vertical arrows are cartesian. Let H](f )k, : }"(i) — ]:(f be the morphism of

locally free sheaves that makes the diagram above commutative, i.e, which satisfies
16



@), © jl%, = H(Ei) o gog). Similarly, define Téi) : U*}"E(i) — .7:&(2;. Also, by a similar

diagram we will have a D-action on each F,Ei).

By Example we get locally free sheaves F, for each k. By descent of
morphisms(cf. Section 023R), we get morphism Il : F, — Fyr and 7, : 0* Fj, —
Fi+1. For each £ there is a closed immersion v® : &' — (X \ Bad) x; T
since each €@ is generalized D-elliptic sheaf. Similarly by descent of morphisms
we have a ¢ : 8" — (X \ Bad) x T. Hence, we get a ladder F together with
8" — (X N Bad) x;, T. We need to check that (F, 1) = (F, Il 4, 7) satisfies
the conditions in Definition Let us check the condition (?7). Let C’,ii) denote

the cokernel of tgf) : 5,53“ — 5,&21. Again, by the descent for quasi-coherent sheaves,
we get Cj which is the cokernel of 7, : F, — Fpy1 which is locally free of rank
d over S’. Similarly by using the descent for quasi-coherent sheaves, we see that
the other conditions in Definition are satisfied. Hence, (F, 1) is a generalized
D-elliptic sheaf over T'.
The commutativity of the diagram in Definition [19.17]is equivalent to the cocycle
condition in the definition of the object with descent data.
[

Remark 2.13. Note that sending a generalized D-elliptic sheaf (£,1) to its char-
acteristic 1 gives us a morphism of stacks

QSEEXQ — X \ Bad.

Now, we will define level structures on generalized D-elliptic sheaves. Let I C X
be a closed subscheme such that I N (S") = (0. Then, the restrictions &|;xs are
all isomorphic via the morphisms j; . We will denote this restriction by &|;xs.
Note also that the morphism t|;.g : 0*E|1xg — E|1xg are also isomorphisms since

Iny(s) =0.

Definition 2.14. Let X and Y be two schemes and let F be a locally free Ox-
module and G be a locally free Oy-module. Let pr; : X xY — X and pry :
X XY — Y be the natural projections. We define the external tensor product of
F and G as follows:

FRG:= p?”f(]:) ROxxy p?“;(g)
which is naturally a locally free Ox . y-module.

Definition 2.15. Let I C X ~ Bad be a finite closed subscheme different than
T U(S"). A level I-structure on a generalized D-elliptic sheaf £ = (&;,1;) is an
isomorphism of (’)IXFqs—modules
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compatible with D-action and the Frobenius structure on S given by og : 050g —

Os.

Remark 2.16. Fron now on, when we define a level I-structure, it is meant that I
is disjoint from T U 1(5").

Remark 2.17. We want to mention that we can define level structures for ideals
of X, as in the case of Hilbert modular forms in the classical world.

Definition 2.18. Let GEWx p ;(S) denote the category of generalized D-elliptic
sheaves over S with level I-structure and whose morphisms are morphisms of gen-
eralized D-elliptic sheaves that respects the level I-structure.

Proposition 2.19. Let S be an F,-scheme. Then, S — GEWUxp(S) defines a
stack which we will denote by GEWUx p 1.

Proof. The proof is similar as to the proof of Proposition [2.12] O

Remark 2.20. In Section |5 we will show that after putting a condition on the char-
acteristic of the generalized D-elliptic sheaf, we will have Deligne-Mumford stack.
Moreover, with nontrivial level structure we will have scheme.

Let £ = (&;,t;) be a generalized D-elliptic sheaf over S with level I-structure.
Let Schg denote the category of schemes over S. As in the case of D-elliptic sheaf
[[35], (2.6)], we define the t-invariant elements functor

E;: Schg — H°(I,D;) — modules
by T+ (H°(I x T, E|rxr))'="

Remark 2.21. Note that (H(I x T,&|1xr))™ = (H(T, pr.(€|ixr))=" where
pr: I x T — T is the natural projection.

Proof. This follows from the fact that the global section of the direct image of a
sheaf is isomorphic to the global sections of the given sheaf. m

Theorem 2.22. The functor Ey is represented by a finite étale scheme over S which
is free over H(I,Dy) of rank 1.

The proof of the Theorem is similar to [35], (2.6)(comp [14], Section 2)

18



Proof. Let Ab denote the category of abelian groups. Let F be a locally free Og-
module of rank m together with an isomorphism ¢ : FrobiF — F. Consider
the functor G from Schg to Ab given by T ~— H(T, Fr)¢=" where Fr denote
the sheaf F after base change to T". Locally on S, we have 7 ~ OF and denote by
® = (a;;) € GL,(H®(S, Og)) the inverse of the matrix representing the isomorphism
. Then, the functor G is represented by a closed subscheme of G}’ group scheme,
denote it by G, given by the system of equations

i=1
It is finite étale over S because ® is invertible. Hence the functor G : Schg — Ab
defined by T +— H°(T, Fr)?=™ is represented by a finite étale commutative group
scheme G of order ¢" that is given by the system of equations (1)) (See also [12]).

Now, if we consider the direct image of £|;x s under the projection map X xS —
S, we get a locally free sheaf over S with a Frobg-linear isomorphism. In Drinfeld
case, there is an H°(I, O;) action on the direct image. But additional to Drinfeld
we have a D-action on Erxg. So, pr.(Erxs) is a H°(I, D)-module.

Hence, E; is represented by a finite étale group scheme over S in H°(I,D;)-
modules of rank |HY(I, Dy)|.

To show that it is free of rank 1 over H°(I, D;)-module, we follow [35]. We
may assume that the support of I is x. Then, Oy is a quotient of O,. Define
E, = l'glll(Ep ®o, Op) where the limit is taken over all finite closed subschemes
I' € X such that supp I = supp I’. Then, E, is a D, = My(O,)-module. Now, by
[15], Proposition 2.2 and since the order of E; is |H°(I,Dy)|, it follows that FE, is a
free O, module of order d?. So, E, is a My4(O,)-module and free O,-module of rank
d?. Then, E, is free over My(O,) of rank 1 by Nakayama’s lemma. More precisely,
let m, be the maximal ideal of O, and let x(x) denote the residue field. By the
classification of simple M(k(x))-modules, we have

E, ® O,/m, ~ My(k(z)).
Let e € E, be an element that maps to a generator of £, ® O,/m,. Then,
My(O,) — E,,ar e

is surjective by Nakayama’s lemma. Since My(O,) and E, are both free over O, of
the same rank, they are isomorphic (cf [10], 26.24 (iii)).
]

Remark 2.23. Note that (D; X Og)=4 X Oy = D; X Og

Lemma 2.24. Let £ = (&;, ;) be a generalized D-elliptic sheaf over a connected S.
Then, the set of level I-structures on £ are in 1-1 correspondence with the set of
isomorphisms of H°(I, Dy)-modules
E;(S) = H(I,Dy)
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Proof. Suppose that S is connected. Then taking ¢-invariants thus gives an isomor-
phism D; = D; of D;-modules. And by the previous remark the latter isomorphism

uniquely determines the former one.
m

We will use this lemma to define adelic level structures in Section [7l

Remark 2.25. By the previous lemma, we see that for connected S, the set of
I-level structures is a torsor over the unit group D;. More precisely, Let S be an
F,-scheme. Then, the morphism

T‘[/J(S) : ggng’DJ/(S) — QSMXVDJ(S)

which associates a level I'-structure to its restriction gives us a Gy j-torsor over
X N\ I, ie, the finite group G 1 acts on the set of level I'-structures transitively
and freely.

Remark 2.26. The multiplicative group of the algebra H°(I,D;) = H°(I, D) acts
on the set of level structures via the composition

DIXST)'DIXS%)SIXS

Proof. (of Remark [2.25))

Let ¢; and @9 be two level I’-structures on a generalized D-elliptic sheaf (&;, ;)
over an S-scheme T such that ¢;|; ~ s|;. By Remark [2.23] instead of the diagram

Dp X OT - Erxr

~

/ N]gaz
g

s
Dy KR O

we can consider the following
(Dp X OT)t:id 1 (SI/XT)t:id

~

(’D]/ X OT>t:id
where g € Isom((Dp X Or) =) = Isom((€|rxs)™™). Then, by Theorem we
know that g € H°(I', D). Since ;|7 =~ 1|7, we have

g € Ker(GLy(H(I', Dy)) — GLi (H(1,Dy)) ).

So, the G/ 1 action is transitive.
On the other hand,
prog= 1 <= ] opog=id,

hence the action is free. Therefore, for every S, the morphism rp ;(S) is a Gp -

torsor.
]
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Remark 2.27. We want to remark that the functor E; is defined for a fixed gen-
eralized D-elliptic sheaves £. If we want to consider the functor for two different
generalized D-elliptic sheaves £ and F, we will write E7(£) and Ef(F)(e.g Con-

struction [16.3)).
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3 Isogenies

In this section we will define and give some examples of (quasi-)isogenies of gener-
alized D-elliptic sheaves. First, we want to recall the following definition [25], page
109:

Definition 3.1. Let (X, Ox) be a ringed space and F be an Ox-module.

1. We say F is free if it is isomorphic to a direct sum of copies of Ox.

2. We say F is locally free if X can be covered by open sets U for which F|y is a
free Ox|y-module. In that case the rank of F is the number of copies of the
structure sheaf needed(finite or infinite).

Remark 3.2. If X is connected, the rank of a locally free sheaf is same everywhere.

Definition 3.3. 1. An isogeny between two generalized D-elliptic sheaves £ and
&' is a morphism f : & — &' such that for all i € Z!

(a) fi: & — & is injective,
(b) locally on S, there is an effective divisor D C X such that coker f; is
supported on D x 9,

(c) coker f; is locally free of finite rank as an Og-module.

2. A quasi-isogeny between two generalized D-elliptic sheaves €& = (&;,t;) and
E = (&,t) is, locally on S, a pair (f,D) where f: & — £’ is an isogeny for
an effective divisor D C X.
Example 3.4. Let £ = (&;,t;) be a generalized D-elliptic sheaf over S and let
a € F* be an arbitrary element. Then, multiplication by «a is a quasi-isogeny on £
since multiplying by a sends &; into &;((a)x) where (a) denotes the pole divisor of
a.

Example 3.5. 1. Let £ = (&, ji#.t;) be a generalized D-elliptic sheaf. The
morphism [ : £[1] — £ which given by the sequence of maps (j;—1, : £[1] =
g1 — &) is an isogeny. Indeed by condition [ii, we know that coker j;_1;

is locally free of finite rank over Og and coker j;_y; is supported on T x S for
the effective divisor T of X.

2. Let (£,%) be a generalized D-elliptic sheaf such that the subscheme S’ of
X x S via 9 is supported on T x S then the sequence (¢;) defines an isogeny
0*E[1] — £. This follows since we know that cokert; is locally free of finite
rank over Og and cokert; is supported on T x S.

3. Let (€,7) is a generalized D-elliptic sheaf such that the subscheme S” of X x S
is supported on px S for pin X \T , then by item the (¢;) define an isogeny
o*E[1] — & where the effective divisor of X in the definition [3.3|is {p}.
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4 Categories of generalized D-elliptic sheaves

In the following we will use the fact that a scheme S is identified by its functor of
points hg. Let B denote the image of Bad under the finite coveringmap 7 : X — Y
of degree t.

Generalized D-elliptic sheaves relative to X/Y

Recall that the Hilbert scheme Hilb,(U) for any open subset U C X is the repre-
sentable functor Schr, — Sets defined by

S+ {closed subschemes S" C U xy, S | pro|g : 8" — S is finite of degree ¢}.

Now, the functor that assigns to a generalized D-elliptic sheaf (£, ) to the graph
of its characteristic morphism ¢ : S" — (X ~ 77 !(B)) x} S defines a morphism

QSMX,D — Hilbt(X AN 7'('71(8))
() — I'Y

We have a morphism

can : hy.g — Hilb,(X ~ 77 !(B))

defined by (' — Y \ B) — <(X N7 B)) Xy T EN (X ~771(B)) xp, T) for

any Y ~\ B-scheme 7. Note that can(oo) = {o0y,---,00;}. For simplicity assume
X ~771(B) =SpecM,Y \B =SpecR and T = SpecS. Then, f: M ®g, S —
M ®g S is defined by a ®p, B — a ®g 8. Since R is a F,-module, f is surjective,
e, f: X \771(B) xy.gT — X ~ 7 !(B) xg, T is a closed immersion. Moreover

proo f: X N7 (B) xy g T — X 7 '(B) xp, T — T
is of degree t. Indeed, since M is an S-module of degree ¢, we have:
M®@rS~R ®zS ~S5"

which is of rank ¢ over S.
Using these natural morphisms we will define a new stack:
Definition 4.1. The algebraic stack GEl{x y,p is defined as the pullback
GEUX p

l

hy B <o Hilbt(X AN W_I(B))
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It is a stack over Y ~ B. The objects of GEWx/yp(T) for a Y \ B-scheme T
is called generalized D-elliptic sheaf relative to X/Y. More precisely, for a given
Y \ B-scheme ¢ : T' — Y, such a generalized D-elliptic sheaf is given by

(E,can(€) : (X ~ 7' (B)) Xy s T — (X N7 '(B)) xx, T)

Remark 4.2. Note that this puts a condition on the characteristic of a generalized
D-elliptic sheaf, namely we want 1 to be the map (X ~ 771(B)) xy.g T — (X ~
7 1(B)) xg, T where 1 is the characteristic of generalized D-elliptic sheaf (£, ).

Generalized D-elliptic sheaves relative to X/Y with level struc-
ture
By Proposition we know that the category of generalized D-elliptic sheaves
with level /-structure forms a stack where [ is a closed subscheme of X \ Bad that
is disjoint from T U pro(I'y).

Let J = 7(I) and assume that JUB = (). We will define the relative objects for

schemes over Y ~\ (J U B).
As before, we have two morphism:

GEUx pr — Hilb, (X (W’l(B) U supp([)))
(E,0) —

where 1 : D; K Og = Ejlixs,s is the level I-structure and

Y\ (JUB) — Hilby(X \ (7 (B) Usupp([)))
(T — Y N (JUB)) = ((X N\ (Bad Usupp(]))) Xy ey T — (X \ (Bad Usupp(]))) xg, T)

Definition 4.3. The algebraic stack GEllx y.p 1 is defined as the pullback
ggﬁ@xp,l

J

Y \ (JUB) ——Hilb,(X \ (7~!(B) Usupp(])))

It is a stack over Y \ (J UB). The objects of GEllx yp (T) for a Y \ (J UB)-
scheme T are called generalized D-elliptic sheaves relative to XY with level I-
structure. More precisely, let ( : T — Y~ (JUB) be a Y ~ (J UB)-scheme. Then,
the generalized D-elliptic sheaf is given by

(g, can(¢) : (X~ (7~ (B)Usupp(1))) xy sumT — (X~ (" (B)Usupp(I))) xz, T, L)
24



Remark 4.4. 1. In the next section we will prove that it is a Deligne-Mumford
stack and moreover if [ is nontrivial it is a disjoint union of quasi-projective
schemes.

2. By considering relative objects, we put a restriction on the characteristic of
the generalized D-elliptic sheaves with level I-structures.
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5 The Deligne-Mumford stack of generalized D-elliptic
sheaves

In this section, we will prove that the stack of generalized D-elliptic sheaves relative
to X/Y with a level I-structure is a smooth Deligne-Mumford stack. Moreover, for
nontrivial 7, it will be represented by a scheme. Throughout the next two sections,
we will write only generalized D-elliptic sheaves instead of generalized D-elliptic
sheaves relative to X/Y.

Definition 5.1. For any n € Z define the substack QSM’}UY’D’I of GEUx/vp1
consisting of generalized D-elliptic sheaves (&;,¢;) with fixed degree deg & = n.

It follows from the definition that, we have

GEUX )y = H GEUS v 1 (2)

Theorem 5.2. The stack QEM}/Y’DJ 1s of finite type which is smooth over Y ~
(JUBUO®). Moreover if I # 1, it is actually a quasi-projective scheme.

This theorem together with the decomposition in (2)) will give us the following
theorem:

Theorem 5.3. The stack GEllxyp,1 is an algebraic stack in the sense of Deligne-
Mumford [11] which is smooth over Y ~ (J UB U oo). Moreover, if I # 0, it is a
scheme that is a disjoint union of quasi-projective schemes.

To prove the Theorem [5.2] we will follow the steps of |35], Section 4. The
smoothness follows from the following lemma:

Lemma 5.4. ([33], Lecture 2)
Consider the diagram of stacks over IF,

W U

L l(FFObu,id)
1[—>(a’6 Luxu

Y

where Y is a scheme, U is algebraic and locally of finite type over F,, V is algebraic
and locally of finite type over Y, the morphism (m,«) : V — Y XU is representable
and the square is 2-cartesian.

Then, W s algebraic and locally of finite type over'Y and the diagonal morphism
W — W X W (which is representable, separated and of finite type) is everywhere
unramified and therefore quasi-finite.
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Moreover, if we assume that U is smooth over Fy and that (m,a) : V — Y xU
1s smooth of pure relative dimension n, the algebraic stack W is smooth of pure
relative dimension n over Y.

To prove theorem [5.2] we need to introduce new stacks.

Definition 5.5. 1. Let & be a locally free sheaf on X x S of rank r with a level
I-structure, i.e, with an isomorphism 7 : OF, ¢ — &|xs-

2. We say (€,n) as in is I-stable if for any geometric point s — S of .S and
for any locally free sheaves F on X x S which is properly contained in &, we
have

deg F — deg _ deg(&) — deg I
rank(F) rank (&)

(cf [45], 4.1, Définition 2)

Definition 5.6. (i) We denote by GEU(Y 5 1, ; the open substack of the stack of
generalized D-elliptic sheaves consisting of (&;, ;) such that & is stable as a
vector bundle.

(ii) Define the substack QSM?/’%,,DJ of GEUY )y p ; via the pullback diagram
GEUS )y p g

QS%’}(/KDJ —GElx v 1
Theorem 5.7. The stacks gé’%;ﬁD ; are representable by quasi projective schemes
when I # (. In particular, they are of finite type.
To prove this theorem we will define more stacks.

Definition 5.8. 1. Let Vecx; (and Vec% ; ) denote the stack over Schg, of
vector bundles over X (i.e. over X x S for any F,-scheme S) of rank d? with
level I-structure (and degree n).

2. Denote the substack Vec}f} of Veck ; where x € {(),n} classifying the I-stable
vector bundles (of degree n if * = n) in the sense of Definition

Definition 5.9. 1. Let Vecx p,r denote the stack of vector bundles over X with
level I-structure and D-action. It carries a natural morphism 7 : Vecxpr —
VBCXJ.
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2. Let Veck p; denote the inverse image of Vecy ; where x is n, st or {n,st}
under 7.

Proposition 5.10. (Seshadri), ([31], Theorem 1.4.1)
The open substack of I-stable vector bundles with fixed rank r and degree d

r,d,st r
Vecty ;" C Vect

is a smooth quasiprojective scheme with dimension r*(g — 1+ deg ). In particular,
it s of finite type.

Lemma 5.11. The morphism
Vecxpr — Vecxr
15 relatiwvely representable and affine.
Proof. [35], Lemma 4.4. O

Remark 5.12. The stack Vec¥ p; is representable by a disjoint union of quasi-
projective schemes if deg/ > 0 and Vecy p s is smooth over F ([35], Lemma 4.5).

Definition 5.13. 1. Consider the sequence

s,k

£

4,8

Ji,
..C EC

Ex°

morphisms j; s which are compatible with the D-action satisfy the conditions

and in the Definition .

2. Let I C X ~\ Bad be a finite closed subscheme different than T U (S’). Then
the restrictions & |t are all isomorphism via the morphisms j; . So, we will
write E|rxg for the restriction &|rxs A level I-structure for such a sequence
is collection of level I-structures ¢; : Dy K Og — E|;xs that are compatible

3. Let t-Seqx p denote the stack classifying the sequences as above with level
I-structure. And let t-Seq¥ p; denote the open substack of t-Seqx p,r such
that & is stable with level I-structure.

Proposition 5.14. The morphism t-Seqx p1 — Vecxp sending an element
s,k

e EC Jie E,C /
to & 1is relatively representable by a product of flag varieties, in particular it is
smooth.
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Proof. Let & on X x S be given. Then, the chain (&;);ez corresponds to a flag
subsheaves via periodicity

{O} C gl c---C é@degoofl C 89(0017 T 70075)/59

such that the successive quotients are locally free over Og and which are stable with
respect to the D-action, i.e under the action of D ®oy [['_; Feo; = [1 D ®oy k(00:).
Now the resulting flag for each i is exactly the type of flag considered in the proof
of [35], Lemma 4.6. Morevoer by [35], Lemma 4.6, for each ¢ this flag is relatively
representable by a flag variety. Hence, the morphism t-Seqxp; — Vecxp is
relatively representable by the t-fold product of the flag varieties from [35]. O

Remark 5.15. Note that our definitions of objects are slightly different than [35].
Our indices are elements of Z' eventhough indices in [35] are elements of Z. We
will indicate that in the future also by putting ¢ before objects, e.g, we don’t have
SeqXQ[ as in [35] but t—S€qX7D7].

Definition 5.16. Let S be an F,-scheme and ¢ : S’ — (X \ Bad) X, S such that
proo : S" — S is finite locally free. Let I be a closed subscheme of X such that
INY(S’) = 0. We define t-Heckex p s to be the stack classifying pairs consisting of
a map v as above and a commutative diagram

Ji,s Js,k
C 51( 5§( 57(
ti—1 ts—1 te—1
j/‘ Jl k
C [ N </ A N </ A ¢
i—1 gﬁfl gk—l

satisfy the condition (i) in the Definition

Mapping a pair (¢, commutative diagram) as above to ¢ defines a morphism of

stacks
[ t—H@Cke)QD,[ — Hilbt<X AN 7T71(B))

Since coker ¢; are supported on the graph I'¢ of the morphism ¢ : S" — X x 5,
we can define a morphism of stacks t-7 : Heckexp; — Hilb,(X ~\ 77!(B)) by
assigning a diagram to S’.

The stacks defined above form a 2-cartesian diagram:
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GEUx DI t-Seqx p,1

l L(Frob,id)
(a.)

t-Heckex p 1 t-Seqx,p,1 X t-Seqxp.1

Lﬂ

Hilb,(X \ 7~1(B))

(3)

where (a, 8) is given by (1st row, 2nd row) of a diagram in t-Heckex p ;.

Definition 5.17. Recall the morphism Y \ B — Hilb,(X \ 7 !(B)) defined in
Section 4, We define t-Heckexyp, via the pullback diagram

t—HeckeXDJ

|

Y \ B——Hilb,(X \ 7 !(B))

Similarly as diagram (3| we have the following:
GEUX v 1 GEUxp 1 t-Seqx,p,1

l l j (Frob,id)
o,3)

t-Heckex/yp 1 t-Heckex p 1 ’ t-Seqxp1 X t-Seqx p.1

¥ J

Y\ B Hilb,(X ~ 7~ (B))

To proceed we need to define another stack as in 23], Section 3. The Hilbert
scheme Hilb,(X/F,) parametrizes the closed subschemes of X. The Quot scheme
is defined as the functor that parametrizes the quotients of locally free sheaves on
X. For more details on Quot schemes one can see [51].

Definition 5.18. Let X be a scheme of finite type over S. Let £ be a locally free
sheaf over X. Define the functor Quotg/x/g from the category of S-schemes by
sending an S-scheme T to equivalence class (F,q)/ ~ where F is a coherent sheaf
over Xr which is flat over T" and ¢ : & — F is an epimorphism together with an
equivalence relation defined as follows:

(F,q) ~ (F,q) : <= ker(q) = ker(q')

Let the base stack be T := Hilb,(X ~\ 7 '(B)) x t-Seqx.p.s
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Over T we have a universal vector bundle & of rank d* over X X 7 coming
from the 0-th term of t-Seqx p ;. The datum in Hilb,(X \ 7~ 1(B)) over T defines a
closed substack T’ of X x T, say given a by a closed immersion ¥. By the defining
property of Hilb,(X \ 77!(B)), the induced morphism 7’ — T is finite locally free
of degree t.

Pulling back & along 7' — X x T gives us a vector bundle Fy over 7' of rank
d. The bundle Fy is finite flat over T of degree d*t. Over T’ the bundle F, carries
a D-action.

We will consider the Quot scheme Quotdfto s7,7- The quotients of Fy are sup-
ported on 7'. Those where are locally free over 7 of rank dt are classified by
Quot™ Fy/T'/T. For a diagram in t-Heckex pr over T, the cokert_; over T de-
fines an element in Quot™ Fy/T'/T. It also carries a D-action not parameterized
by Quot-scheme. We shall deal with this in Proposition [5.19

Now, Quotr, /77 is a stack over T. We know that t-Seqx p; is a stack over [F,.
Then we have the following pullback diagram

T

|

t‘SGC]X,D,I —TF,

We will denote the pullback object t-Seqx p,; X T by t-Seqx p /7 and regard
it as a stack over 7. Let Vecr denote the stack of vector bundles over 7. By the
morphism in Lemma we have a map t-Seqx p /7 — Vecy. So we can form
the fiber product over Vecr

t-Seqxp,1/T
Quotdftg/T,/T Vecr

which is a stack over T.

Proposition 5.19. (¢f. [23], Lemma 3.8.) The morphism
t—HeckeXpJ — QUOt‘%}g/T’/T XvecTt-SeqX7D7]/T

defined by assigning a diagram in t-Heckex p 1 to (cokert_q, 2" row) is represented
by a closed immersion.

Proof. Note that first line of t-Heckex p  is already in the stack 7 and so on the
stack Quotgl_fo T X veert-S€qxp,r/7 one has both lines and the universal quotient.
So, to get a diagram in t-Heckex p; we need to define the morphism ¢; and check
that the necessary conditions are satisfied. One can define t-Heckex p by the
following conditions:
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1. &, equals the kernel of the morphism from & to the universal quotient,

2. for each —¢ <i < —2 the sheaf & is contained in the intersection of &; and
&', which we view as subsheaves of & via jj110 and t_;

3. if we let ¢; be the inclusion & C &;1; then cokert; is supported on ImWV¥ for
S — X 71 YB) x S, and it is locally free of rank d over S’

4. t_; is induces an isomorphism of level I-structures on £’ ; and on &
5. t_; is D-equivariant.

Let us define t_; : & | — & as the isomorphism of £, with the kernel of the
universal quotient map. So, for j,s > 1, we have

e € = £ &

/ C ! C ! C /I C
=€l 281 Eea €1

For simplicity assume ¢ = —2. Condition (ii) tells us that if coker(j_; o) ot_; o
J'91 = O then we can define t 5 : £’y — £_;. More precisely, assume coker(j_; o)o
t10j 5 1 =0. Wehave (j'y ;037 10)(c) € Im(j_10), and hence we can define a

map &, — E_1. Define t_y to be this map. Then, the following diagram

g g

tQJ t1J
ile 1

gt g
is commutative. Consider the following short exact sequences:

0 —— cokert_y — coker(j_190t_g) —coker j_; o —0

0 —cokerj', | ——coker(t_j o', ;) ——cokert ; ——0

We know that (coker(j;))|oo,xs 18 locally free of rank d over Og. Then, via diagram
we see that cokert_, is locally free of rank dt over Og.

Therefore t-Heckex p is a substack of Quot%ﬁ,ﬁ XVeert-Seqxpr/r- And
since each condition can be expressed in terms of algebraic relations, ¢-Heckex p s
is a closed substack.

O

Theorem 5.20. ([35], Theorem 5.2)

There exists a constant ¢ > 0 with the following property: Let I be any closed
subscheme of X \ Bad of degree > c. Then for any generalized D-elliptic sheaf with
level I-structure (€,1,1) over Spec L, where L is an algebraically closed field, the
vector bundle & is I-stable.
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The proof goes similarly as in [35], Theorem 5.2. Below, we will give the idea.
The proof uses Harder-Narasimhan filtration of a vector bundle and some related
properties. A Harder-Narasimhan filtration of a vector bundle used to determine
the unstability-stability of a vector bundle in general. For more details, please see
[35], Section 5.

Let £ be a vector bundle over X. The slope of £ is defined as

(€) = deg &
H ~ rank &’

Let F be a subbundle of £. Define

jumpé' = ,U/mzn(f> — Mmazx (5/‘7")

where (i, is the minimal slope of the nontrivial quotients of F and ft,,q, is the
maximal slope of the nonzero vector subbundles of £/F. We will denote by £® the
i-th term of the Harder-Narasimhan filtration of £.

Proof. Let oy, ,a. € I'(X N\ T, D) be generators of I'(X \T,D) as a I'(X ~
T,Ox). Since the orders of the poles are bounded we find a constant n with a; €
I'X,D(n-o0)) for j=1,---,r

Now let (&;,t;) be a generalized D-elliptic sheaf over SpecL. Then, via period-
icity, we have a; - & C Eijnddegoo- Then, for each i € Z one gets an upper bound
Jjumpe, < P(n,d,deg oco) for every non-zero proper subbundle F C &; (cf [35], 5.3).
Here P(t,d, deg o) stands for an expression in ¢, d and deg co.

As the constant in the theorem, take ¢ := (d*> — 1)? - d? - P(n,d,degoo). By
definition of the slope and I-stability of a vector bundle and Harder-Narasimhan
filtration it is enough to show that

u(ESY) = (&) < (d* = 1)P(n, d, deg o)

where 59(1) denotes the first nonzero element in the Harder-Narasimhan filtration of
&y. We have

u(ENM) — u(&) < u<5“>> — 1(E/E5Y)
_ Z g(] 1 (5é+1/59(j)>)

— Z jumpgg(fg(j))

J=1

< (d* —1)P(n,d,deg )
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where the first inequality comes from the Harder-Narasimhan filtration of &. For
the other (in)-equalities, use the fact that r < d* = rank(&) and the upper bound
P(n,d,degoo) for the jumpe,.

]

Proof. (of Theorem [5.7)
We have morphism of stacks

QE%X/KDJ — t—HGCk€X7D7[ — QUOt Xt—SeqX”D’] — t—SeqXDJ — V@CX,D,[

where the first two morphisms are closed immersions, the last one is representable
by a product of flag varieties and the other is represented by a quasi-projective
morphism.

Now, by Theorem we know that Vec}’f{; ; is a quasi-projective scheme if

degl > 0. Consider the inverse image of Vec}’ffl ; under the composition of maps

above. We get the substack QS%}’??DJ of GEUx )y r(cf. [31], Proposition 1.4.6).
]

Now, we are ready to prove our first theorem:

Proof. (of Theorem Let Gy := K@T(GLl(HO(I/,D]/)) — GL, (HO(I,DI))>.

Note that ggw‘;?/@m, is stable with respect to G j-action. By Remark [2.25] the

quotient QEMAS;’/@,DI,/GIQI is quasi-projective scheme if I # () and in particular of
finite type.
Since any vector bundle becomes stable for some I’ with degree big enough (cf.

Theorem [5.20), the quotients

ggﬂfi’/@/’u[, /GI’,I

cover QEMT)‘(/Y’DJ as I’ vary and so 9562}/Y7D7] is of finite type. Moreover, if I # (),
it is a quasi-projective scheme.
O

Corollary 5.21. The stack GEllx yp 1 is union of algebraic stacks of finite type.

Proof. Since we can cover GEU x vy p 1 by |, QS%}/KDJ, the proof follows from the
previous theorem. O

Corollary 5.22. The stack Qé’%ﬁé/yﬂl 18 a disjoint union of quasi-projective schemes.

Proof. Since one can write gg%iﬁ/Y,DJ = ]_[n gé’ﬁﬁiﬁ’fyp ;» the proof follows from the

Theorem (.71 O
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Proof. (of Theorem [5.3)
Let I' C X ~\ {TUv(5")} be a finite closed subscheme with deg I’ > 0 such that
I cI'c X. By Remark [2.25, the morphism

I, gg%X/Y,D,I' — gt%fX/Y,D,I

is a torsor over X ~\ I’ under the finite group G ; = Ker <GL1 (HO(I’,DI/)) —
GLy(H(1,Dy)).

Note that r;},(ggwf,g/m 1) C GEUS )y p 1 and the open substack GELLY )y, 1
is stable under the finite group G ;. So, we can define the quotients

g(c;ggﬁ/y’DJ//G[/J

which are stacks in the sense of Deligne-Mumford since Gp ; is finite étale ([20],
Section 2.3). Since any vector bundle becomes stable for some I” with degree big
enough (cf. Theorem [5.20), these quotients cover GELlx ypr as I’ vary. And so,
GEUlxy,p, 1 is itself a Deligne-Mumford stack.

O
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6 Properness

The main aim of this section is to prove the following:

Theorem 6.1. The morphism

QEMX/Y,D,I/lZ — Y \B
18 proper.

Remark 6.2. We want to point out that our properness is stronger than the one
in [35]. Namely, the image of our morphism can meet with the poles whereas in |35]
it can’t.

We will prove this by checking the valuative criteria of properness.

Theorem 6.3. (Valuative Criterion of Properness) Let f : X — Y be a morphism
of schemes of finite type and quasi-separated. Then, f is proper iff the following
condition holds: Let R be a wvaluation ring with quotient field K, let T = SpecR,
U = SpecK and let i : U — T be the morphism induced by R C K. For every
morphism U — X and T — Y forming a commutative diagram

U——X

|
T— Y
there exists a unique morphism T' — X making the whole diagram commutative.

Proof. |21], Theorem 15.9. O

Lemma 6.4. The characteristic morphism GEUx yp /17 — Y ~\ B is of finite
type and quasi-separated.

Proof. By the action of Z!, we can write

GEUxyvpr= [ GEW v

0<n<ddegoo

where GEllx )y p is the stack of generalized D-elliptic sheaves (&;, ;) with deg& = n
is fixed. Then, by Theorem the stack QEMX/Y,DJ/lZ is a stack of finite type.
So, the characteristic morphism G€Wx/y,p/1Z — Y \ B is of finite type.

By the previous section, the stack GEllx,yp is a Deligne-Mumford stack,
which means the diagonal morphism A QS%X/YDJ X ggfgx/y’p’[ — ggfgx/y’p’[
is quasi-compact and separated ([20], Definition 2.20), equivalently A is quasi-
separated (Tag 04YW) ). So, the morphism GEWx/yp /17 — Y ~\ B is quasi-
separated.

[
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Before we start the proof of Theorem [6.1] we want to introduce some notations.
Let R D F, be a complete discrete valuation ring with quotient field K, perfect
residue field x and uniformizing element w. Since R is a discrete valuation ring,
SpecR has only two points, Spec R = {n, s} where 7 is the generic point and s is
the special point. Consider X xg, Spec R. Let 1’ be generic point of X ®, k. Note
that via the composition

" —-X®k—>X®R

one can see 1/ as a point of X ® R. Denote by R’ the local ring Oxgr,y at n'. Let
K’ be the fraction field of R’ and ' be the residue field of R’. Then, R’ is a discrete
valuation ring (cf. Lemma 00PD) with uniformizing element w, quotient field K’
and residue field ' (Note that ' = Frac(F®k) = FF(X ®k), i.e the function field
of X®k and K' = Frac(F ® K) = FF(X ® K), i.e the function field of X ® K).

Theorem 6.5. ([13/], Proposition 3.1) The category of locally free sheaves F over
X ® R is equivalent to the category of pairs (F, N) where F is locally free sheaf over
X ® K and N is R'-lattice in Frr = Fy

Proof. We will sketch the proof here. Let n° = Spec(K’) be the generic point of
X ® K. Now let us consider the diagram

XQR~—XQ®K

f
|
Spec R’ 5 Spec K’
Let F be a 1~ocally free sheaf over X ® R. Then, F := .7-N"|X®K and N =
H°(Spec(R'), g* F) such that we have a : (f)*(N) = (¢')*(F).
Now, let F be a locally free sheaf over X ® K and let N be a R'-lattice in Fy

such that they are isomorphic over SpecK’. Then, F := ¢.(N) N f.(F).
O

Remark 6.6. For the details of the proof one can also check [18], Corollary 2.9.

Now we will start our proof. Let £ = (&;,t;) be a generalized D-elliptic sheaf
over K. We want to apply valuative criteria, i.e, we want to extend &£ to X x Spec R.
Put V := &,/ the stalk of & at the generic point ' of X ® K. By definition of
stalk this is a module over Ox yspec k,y = FF(X ® K) = K’ of finite rank, i.e a finite
dimensional K'-vector space, so &,/ is independent of 7. Define ¢ :=t;,, as the
stalk of ¢; at /. Then, ¢ is idp ® Frobg-linear endomorphism of V. The D-action
on &’s induces a D-action on V and ¢ is D-linear. We will construct R'-lattices
in V using ¢ so that we can use the equivalence of categories to get a locally free
sheaves over X @ R.
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Let L be an R'-lattice in V. We say L is admissible if the induced map
¢:L/wlL — L/wL

is not nilpotent, i.e, @™V [ C wL. Now, in his paper [I3], Drinfeld defined admis-
sible lattices and proved the following:

Proposition 6.7. ([13/, Proposition 3.2)

1. There exists a p-invariant lattice My in V' containing all other p-invariant
lattices. If My is not admissible then there are no admissible lattices in V.

2. After replacing K by a finite extension Ky, which means changing V with
V ® Ky and ¢ with ¢ ® Frobk,, there exists admissible lattices in V.

Remark 6.8. In [35], Laumon, Rapoport and Stuhler remarked after Proposition
6.6 that eventhough Drinfeld proved Proposition in the rank 2 case only, it is
valid in general. Differently from [35], we have a finite covering X — Y and
multi-t-indices.

After passing to a finite extension K of K if necessary, we may assume that the
maximal ¢-invariant R’-lattice M is admissible, i.e, the induced map

p: Mo/wMO — Mo/wMO

is not nilpotent, i.e, 0™V My ¢ wM. Note that M, is D-stable since ¢ is D-linear
and M is maximal. So, we have an R'-lattice in a K’-vector space V together with
locally free sheaves & over K. Then, by the equivalence of categories in Theorem
6.5 we have a ladder of locally free sheaves over Y ® R:

Now, via the D-action on &; and categorical equivalence in Theorem , there
is a D-action on &;’s and all morphisms are D-linear. Moreover, we have &, ~
c‘Z(ool, ...,00;) where { = d - deg 0.

Let ¢/ =i+ (1,...,0;) where each §; = 0 or 1. Since

supp(Ey /€;) C supp(&i(0on, ..., 00,) /&) = T x R,

the support of ér/é is contained in T x R. We have to prove that 62//62 is locally
free of rank d over Spec R around each oo; with ; = 1. Since (&;,t;) is a generalized
D-elliptic sheaf over X ® K, coker j; ;/’s are locally free of rank dd; over oo; x K for
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¢ =1+ (01,---,0;) with §; = 0 or 1. By categorical equivalence from Theorem
we also know that &|xgrx = &. Then, by Nakayama’s lemma, we have

dd; < dimy (€ /E0)lowyxr ® )

since we have a D-action on éx/é, we see that dim, (é//é) = dj;

We have ¢ : X ~\77'(B) Xy gSpec K — (X ~77'(B)) xg,Spec K. Then, by the
natural morphism Spec K — Spec R, we get the morphism ¢ : (X ~71(B)) Xy g
Spec R — X ~ 7~ (B) xg, Spec R.

Assume that we have a morphism ¢ : 8 — (X ~ Bad) xj, SpecR. We want
to show that (81, tz, w) is a generalized D-elliptic sheaf over X ® R. There are two
cases:

(i) R - p(Mo) = My
(if) R p(Mo) & Mo.

We will show that in the ﬁrst case the cokernel oft is supported on the image
of w and locally free of rank dt over R and if D is a division algebra second case
cannot occur.

Lemma 6.9. In the first case, the triple (ci, %;, {bv) is a generalized D-elliptic sheaf
over Spec R.

Proof. The only thing remaining to show is that the cokert; has support on [ m@
and locally free of rank dt over R.

Consider the stalk of coker%; at the generic point Spec k' of X ® k. Over Spec k/,
the coker%v is same as the coker @ where ¢ : My/wMy — My/wM,. Since we are
in the first case and k is perfect, @ is surjective. So, Spec K ¢ Supp(cokert;), so
Spec k' C Supp(cokert ). Hence coker ¢; has support on IHM/J We need to show that
coker t; is locally free of rank d - t over R. To show this we will use:

Lemma 6.10. Let f : X — Y be a proper morphism of locally Noetherian schemes,
F be a coherent sheaf on X which is flat over Y. Let X, := X xy Speck(y) denote
the fiber over y of f and F, denote the sheaf F ®p, k(y) on X, where k(y) is the
residue field of y. Then the function Y — 7Z defined by

y e X(Fy) =Y (=1 dimy ey, 7,)

18 locally constant on Y .
Proof. [38], Chapter II, Section 5, Corollary 1. O

Now, consider the function Spec R — Z defined as in the previous lemma. Since
SpecR = {n, s}, the open sets containing s is §), {n}, Spec R. Then, as the function
X is locally constant via previous lemma, we have that x (& ® k) = x(€). Then,
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dim,. #; @ & = x(Er1) — X(&) = x(Eir1) — x(&) = dimg cokert;

Hence, cokert; is locally free of rank dt over R. Therefore (ci, t, 1;) is a general-
ized D-elliptic sheaf over Spec R.
O

Lemma 6.11. If D is a division algebra, the second case cannot occur.

Proof. The proof goes similarly as in [35]. Let M, My, p, @ be as before. In the
second case, @ is neither surjective nor nilpotent. Let us consider the flag of x’-vector
spaces:

MOQIm@QIm@2Q---le@"zlm@”ﬂz...j

=

which becomes stationary.

On the other hand Im ¢’/ Im ¢'™ is a D ® x’-module, so its dimension over &’
is divisible by d. Therefore, n < d — 1. Moreover, if we put N = Im @" then
dim N = rd where 0 <1 < d.

Let &; = &]|xon- The stalk of £; at the generic point of X ® x is M. Define
Fi C &; to be the locally free Oxgx-submodule generated by N, i.e, the maximal
locally free Oxg,-submodule of &; with stalk at the generic point N C M. Now, by
the maximality, F; is a D ® k- submodule of &; and we have the following diagram

E—Ey

|

Fi—Fy

and Fiyddegoo = Fi(001,- -+ ,00;). Now, the quotients (]—" /]—")\ yxx are (D ®
koo;) ® k-modules. Note that

rddeg(oo) = dim(F;/Fi(—o01, -+, —00;) < dim(&;/E;(—o001, -+ ,00;) = d*deg(oo
Hence there exists i; € {i,--- ,i+ ddegoo — 1} such that
(Fi,41/Fi)looson = 0. (5)
By using this observation we will prove there exists ¢ for all j € {1,--- ¢} such that

(Fir/Fi)looyon = 0, ie, Fi = Fipa.

We want to remark that if we fix the j™* entry of t; and change the other entries
of 1;, the equation | still works. So, we may assume that all entries of i; is zero
except i;. Let iy = (i11,0,---,0), iy = (0,422,---,0),--- ,4, = (0,---,0,4). We
define i = (i11,- -+ ,ix) and we claim that ( Z+1/]—“)|Oo o = 0.

We want to recall that Ef is independent of 7 on the affine part. Then, we have:
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= &il((XT)Uoo))@n

Ei((x~T)uso;)x

=&l (X T)Uso;)2n

g;'j |((X\T)Uooj~)®n

) Ul

?g]. ’((X\T)UOOj)@H _— T:z‘ (X\T)Uoo;)®k

So, F; = F; around oo,. Now, consider the following diagram

Since F; C &; for each i € Z¢, we have a similar diagram for F,’s:

1(—) -Ferl

//

Fi———=7F;

(7)
We know by the Equation 5| that _7-"Z +1/F; = 0 around 00;. By Diagram @ we
have f = F,; around oo;. Similarly, we have ]—"Z +1 = Fir1. Then, in the previous

dlagram around oo; we have

7:11

which implies that (]_:iﬂ/f@)\ooj@g =0 for any j=1,--- ,t.

Consider the following diagram




The dotted arrows in the diagram are defined via the maximality of F;’s. So,
we have a morphism t : 0*F; — F; whose stalk at the generic point is equal to
@l : N — N. Since @l is bijective, t is injective. As degF; = dego*F;, we
conclude that t is an isomorphism. By Galois descent data, we conclude that ?i is
of the form

?Z:F/@)K

where F’ is a locally free sﬁeaf over X. Moreover, F' is a D-module and its rank over
Ox is equal to rd = dim N. Then the generic stalk F is a D-module of dimension
rd < d* over F. If D is a division algebra such a module cannot exist.

O
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7 Adelic Level structures

We have defined level I-structures on a generalized D-elliptic sheaf for closed sub-
schemes I of X ~\ Bad which is disjoint from T Uim in Definition Now, we
will define level structures in the adelic point of view. The main tool for this section
is Lemma 2.241

In Section [2| we have defined the t-invariant functor E; and in Theorem [2.22]
we have shown that E; is a free H(I, D;)-module of rank 1. Recall that B =
I'(X \T,Oy) and define B := [eex(tuBag) Be- Define the functor

Fg:Schg — D(E)—modules

by T +— @], Ep(T) where the limit is taken over all closed subschemes I of X \ Bad
that are disjoint from T U pro(1'9).

Remark 7.1. Note that

Eg(5) ~ @E[/(S) = 1gll\/ﬂd(BP/[/) = D(é)

where By := H°(I', Oyp).

Suppose S is connected. Let ¢ : s — S be a geometric point. Since each
E; is representable by an étale scheme by Theorem and Ez is an D(B)-

~

module, we may see Ez as an D(B)[m (95, s)]-module :*E5(s). Consider the set

Isom(E5, D(B)) = Isomp, ) (0" Eg(s), D(B)) of isomorphism of D(B)-modules. By
definition, there is a right action of D(B) and a (S, s)-action from the left on

Isomz(Ez, D(B)).

~

~

Definition 7.2. Let H C D(B) be a compact open subgroup. An H-level structure

~

on a generalized D-elliptic sheaf £ is an H-orbit in Isom(Eg, D(B)) which is fixed
by m1(S, s).

Remark 7.3. 1. The condition to be fixed by m(S,s) tells us that the level
structure is independent of the choice of the base point.

2. If H = ker(D(B) —» D(I)) then an H-level structure is a level I-structure
(Definition [2.15]).

Now, we will modify the definition of an H-level structure. Let A, denote the
finite adeles of the function field I’ of X. For a generalized D-elliptic sheaf £, define
the functor

Ey, : Schs — D(Ay)-modules
43



by T +— D(Ay) ®D(§) Ejz.
Assume S'is connected and let ¢ : s — S be an algebraically closed point. As be-
fore, we may see Fy , as an D(Ay)[m; (S5, s)]-module t*Ey (s). Consider Isom(Ey,, D(Ay)) :=
Isom(:*Ey,(s), D(Af)). Once more by definition, there is a right action of D(Ay)
and a left action of 7 (5, s) on this set.

Definition 7.4. Let H C D(Ay) be a compact open subgroup. A rational H-level
structure on a generalized D-elliptic sheaf £ over S is an H-orbit in Isom(Ey,, D(Ay))
which is fixed by m1(S5, s)

Remark 7.5. 1. Again the condition to be fixed by (S, s) implies that the
level structure is independent from the choice of the base point.

2. In Section we will see that a quasi-isogeny will give us an H-level structure.
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Part II Divisible groups

The work on p-divisible groups is useful to study p-adic structure of abelian varieties
and their local study. In this chapter we will give an analogy of some of the main
objects such as p-divisible groups, Dieudonné modules and isocrystals that was used
by Rapoport-Zink [43], stating first the analogues definitions in abelian sheaf case
[23]. In the theory of Rapoport-Zink there are three main theorems and we will give
analogues of the first two:

1. Rigidity of quasi-isogenies of p-divisible groups
2. Serre-Tate theorem

3. Grothendieck-Messing theorem

In this part in each section, we will first consider the case when t = 1 and so X =
Y. So we will be looking at the D-elliptic sheaf case. Then, by using these objects,
we will define the objects for generalized D-elliptic sheaf case. We will consider
certain analogues of p-divisible groups with Dy-action (resp, Dieudonné modules)
which we call z-divisible Do-module (resp, Dieudonné Dy,-modules) generalizing
the work of Hartl in [23], and define the corresponding moduli functors. By using
z-divisible D,-module , we will define z-divisible D,-modules.

8 Generalized z-divisible D, -modules

First we will consider the case when ¢t = 1 and X = Y. So we have only one
oo € | X|. In the classical case p-divisible groups are sequence of finite flat group
schemes with certain conditions. Similarly, we will use “balanced group schemes”
defined by Poguntke in [42].

8.1 Balanced Group Schemes

This part is a summary of the first 5 sections of [42].

Let S = SpecR be an affine scheme over F,. Denote by Grg the category whose
objects are finite flat affine commutative group schemes over S locally of finite
presentation.

An F,-action on a group scheme G' € Grg is a ring homomorphism:

Fq — EIldGTS G

Assume locally on S there exists an F-equivariant closed embedding G < G’
for some finite set N. Such group schemes are called of F,-additive type.

Let C denote the category of objects G € Grg that are of Fj -additive type and
that in addition carry an F,-action.
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Take any G € C. One can write G = Spec A. By using the group structure on
G, we have the following maps on A:

m:A— A® A the co-multiplication map

n:A— R the augmentation(or co-unit) map

t: A— A the co-inverse map
making A a Hopf algebra.

Definition 8.1. Let G = Spec A be an affine group scheme over S = Spec R with
an F,-action: F, — Endg, ¢ G. Let I := ker(n) be the augmentation ideal. Now,
we get an induced Fj-action on I. The corresponding eigenspaces are:

I; ={z € Ila.x = o’z,Va € F}}
for 0 < j < g where the multiplication on the LHS is the F-action.
Definition 8.2. 1. Let G = Spec A be an affine group scheme over S = Spec R.
Define the space of primitive elements of A as
Prim(A) ={z € Ilm(z) =21+ 1@z}
2. Define Prim;(A) := Prim(A) N I,
Remark 8.3. 1. One can write
I =11

By [48], Lemma 2, one can find orthogonal idempotents ey, . .., e, of End(I)
such that I; = e;[.

2. Similar to (1), if PrimBg is flat, one can write Prim A = @?: Prim; A.
Definition 8.4. For s € N, define the p-Frobenius map
fs : Primys A — Prims+1(A) as © — a?

Proposition 8.5. Let G = Spec A € C. The R-module Prim A is locally free and
ord G = prk(PrimA)'

Proof. [42], Proposition3.6 O
Proposition 8.6. Prim; A # 0 only if j = p® for some s € N
Proof. [42], Theorem5.10 O

Definition/Theorem. Let G = Spec A € C. We say G is a balanced group scheme
if one of the following equivalent conditions hold:
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1. For 0 < s <r —1, the maps fs are bijective

2. The map defined by composition of p-Frobenius maps

f': Primy (A) — Prim,—1(A)
z s’
is injective.
3. The rank of Prim,:(A) as an R-module is same for all 0 < s <r —1

4. The order of G is equal to g#kr(Primi(4))

Proof. [42], Lemma 5.12 ]

Remark 8.7. The balanced group schemes are categorically equivalent to finite
locally free strict F,-module schemes" as defined in [24]. A finite locally free -
module scheme G is a strict F,-module scheme if it has a deformation carrying a
strict F-action which lifts the F,-action on G. It is proved in [I] that finite locally
free strict F,-module schemes are categorically equivalent to the category of "finite
[F,-shtukas" ( cf. Remark [9.3| below).

Example 8.8. Recall that ¢ = p". The group scheme «,s := Spec(A[z]/(2F")) for
s € N with the usual F -action is balanced iff r|s.

Remark 8.9. Note that the additive group scheme is not in the category C since it
is not finite, and so not a balanced group scheme.

Lemma 8.10. Let G,H € C. If two of G, H and G x H are balanced, then so is
the third.

Proof. [42], Lemma 5.19

8.2 z-divisible D, -module

Before we define D_-groups, we need to introduce some notation:

Notation: Let ¢ := ¢%8>. Recall that z is a uniformizer of Ox . ldentify
its completion, O, with ky[z]| and F with k. ((2)). Let ¢ be an indeterminant
over ko and k[C] be the ring of formal power series. From now on, all base
schemes S will be schemes over Spec koo[(]]. Relate koo| 2] with ko [C] by fixing the
characteristic map f : Speck[¢] — X such that f*(z) = (. We will use the
notation z as a uniformizer of Oy and ¢ as an element of Og.
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We denote by Nilp,_ ¢ the category of schemes over Spf ko [(]|, viz., the category
of schemes over Spec ko [¢] on which ¢ is locally nilpotent.

Denote by & the field extension of ks such that [k:ég) : ko] = d. Let A be the
central O-algebra k2 [IT] where

II' = 2, [L.a% = a.Il Ya € k'Y

Definition 8.11. 1. Let R be a ring. An R-module scheme over S is a flat
commutative S-group scheme E with a ring homomorphism

R— EHdS(E)

2. An R-module scheme F is finite of order r it E — S is finite flat of degree 7.

3. A morphism of R-module schemes is a morphism between underlying S-group
schemes which is compatible with the R-action.

Definition 8.12. Let GG be a commutative group scheme over S and let ¢ : S — G
be its unit section. Then wg = e*QlG/S is its co-Lie module.

Definition 8.13. ([24], Definition 7.1) Let h € Z>". A z-divisible group of height h
is an inductive system of finite O, -module schemes over S

(B % By 2 By B )
such that for each integer n > 1

1. B, ~ E,.1[2"] where E, 1[2"] :=ker(z" : E,y1 — Enyq)

2. The underlying group scheme of E,, is a balanced group scheme(cf. Appendix
, denote it by G,

3. the order of E,, is qgg,

4. locally on S, there exists e € Z>° such that (z — ()® = 0 on wg := hmwg, .

A morphism of z-divisible groups over S is a morphism of inductive systems of
O -module schemes.

Definition/Remark: By Lemma 8.2 and Theorem 10.7 in [24], wg is a locally free
Og-module and the rank of wg is locally constant on S. We define the dimension
of £ as rk(wg)

Now, we will consider z-divisible groups with a D..-action.
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Definition 8.14. A z-divisible Dy.-module of height h and dimension e is a z-
divisible group of height dh and dimension de with an O-algebra homomorphism
Do — Endep_ (E) extending the action of O.

Remark 8.15. Assume degoo = 1 and D, = O,. Then, one can identify O
with F,[z]. In this case, the z-divisible O.-module is same as a z-divisible group
in Definition R.13]

Remark 8.16. Our definition of z-divisible D -modules are similar to Tate and
called in the classical case Barsotti-Tate groups. In [37], Messing defined p-divisible
groups in the classical case in a different, but equivalent, way than Tate in [50]. In
[24], Hartl and Singh, defines z-divisible groups following [37] so that it is an fppf
sheaf of F,[z]-modules. Then, they show that it is equivalent to the Definition [8.13]
Following [|24], one can give a definition of z-divisible Do-modules as in [37] and
then state that the two definitions are equivalent. Since it is technical and very
similar to the case [24], we will give the idea briefly:

Let E = (E,,1i,) be a z-divisible Dy-module. Then, G := hﬂneN E,, defines us a
commutative fppf sheaf of groups. Now, GG is z-divisible, i.e, the morphism 2z : G —
G is an epimorphism. By condition (1) And G is z-torsion, i.e, G = lignEN G, where
G = ker(z" : G — G). Also, by the condition (2) in the definition of z-divisible
group, each GG, is representable by a balanced group scheme.

Remark 8.17. Let E be a z-divisible D,-module over S. Then, pulling back £
under the morphism of schemes S’ — S gives us a z-divisible D,,-module over S’.
We will use this in Proposition [9.17]

Morita equivalence for z-divisible D, -modules

Proposition 8.18. The category of z-divisible Oy -modules of height h and di-
mension d and z-divisible Dy.-modules of height hd and dimension de are Morita
equivalent.

Proof. Let E = (E,,i,) be an z-divisible O -module over S. Consider the functor

Ew— E =(E i) = (F,®o0, N,i, 0., N)
where N is the O, -My(Oy)- bimodule O, Note that £, ® N is same as taking
d copies E,, X --- x E, of E,, so E,, ® N is finite O,-module scheme and the group
scheme underlying E, ® N is balanced(cf. Lemma [8.10). Therefore, we have an

inductive system

(B S B2 E S )
of finite O, -module schemes. Note that z acts on each E, ®»_ N through only first
factor. And, there is an D, ~ M;(O4)-action on E’ extending the action of O.
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Now, let us consider the order of E/. For simplicity, assume FE, := SpecA,
where A, is a Og-module of rank ¢"" since ord E,, = ¢"". Now, Op, = Op, x..xi, =
A, ®---® A, where all operations are taken with d copies, the order of E/, is ¢g?"".

Since wgr = Wee..op ~ W @ - wg, it follows that £’ has dimension de.

Therefore, E' = (E! 1) is a z-divisible D,,-module.

n»'n

]

A morphism of z-divisible D,-modules is a morphism of z-divisible groups which
is compatible with the D, -action. Let F = (E,,i,) and E' = (E/,i,) be two z-

divisible D,,-modules. Denote by Homp_ (E, E’) the set of morphisms F — E’ of
z-divisible D,-modules and Endp_ (F) := Homp_ (E, F).

Isogenies of z-divisible D, -modules

Definition 8.19. Let S be an F,-scheme and X,Y be two Og-module schemes.
Define the sheaf Homg as U — Homg (X (U), Y (U)) on the Zariski site over S. This
sheaf is called sheaf of germs of morphisms on S.

Recall that we can see z-divisible D,.-modules as fppf-sheaves Remark
Now, we will define isogenies of z-divisible D..-modules by seeing them as fppf
sheaves.

Definition 8.20. A morphism between two z-divisible D,,-modules F and F’ is an
isogeny < it is an fppf-epimorphism between FE and E’ whose kernel is represented
by a finite locally free group scheme.

Example 8.21. The multiplication by z on a z-divisible D ,-module E'is an isogeny.
We will denote this isogeny by [z].

Remark 8.22. Note that the composition of two isogeny is again an isogeny.

Proposition 8.23. Let E and E’ be two z-divisible Dy,-modules over S. The group
of morphisms Homp_ (E, E') is torsion free k| z|-module.

Proof. Let ® : E — E’ be a morphism of z-divisible D_,-modules, i.e, ® is an
inductive system of morphisms ®,, : £, — E!. Assume that

[z]"® = 0 for some n. (8)

Consider the diagram

En+m [Z_> Em

L(D’mﬁH’L l D,

"

"]

El

n+m
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By assumption, we have [z"] o ®,,,,, = 0 and hence ®,, o [2"] = 0. The latter
means im|[z"] C ker ®,,. Since [2"] is surjective, we see that ®,, = 0 for all m € N.
Hence, & = 0.

[l

Now, we will define quasi-isogenies for z-divisible D,,-modules.

Definition 8.24. A quasi-isogeny p between two z-divisible D -modules E, E’ is
a global section of the sheaf Homg(F, E') @42 koo((2)) of koo((2))-modules on S
such that locally on S there exists an n € Z for which z"p is an isogeny. Denote by
Qlsogg(E, E') the set of quasi-isogenies between E and E'.

Definition 8.25. The category C of z-divisible D -modules up to isogeny has z-
divisible D-modules as objects and all global sections of the sheaf Homg (E, E')®j_ -]
ks((2)) as morphisms.

Remark 8.26. Let E, £’ be two z-divisible D,-modules over S. Then, E and E’
are isomorphic in C iff they are isogeneous. More precisely, let p : F — E’ be an
isogeny. By definition we have an exact sequence
0—>H—>E—1vF—0

where H denotes the kernel of f. Note that f € Homg(E, E’). We claim that
f®1 € Homg(E, E') Qg [] k((2)) is an isomorphism of objects in C. The latter
holds iff t ® 1 = 0. We know that ord H is finite, say n. Then, n. = 0. But then,
we have

n 1
11 =1—=nmRX-—-—=0Q —=0.
n n n

and hence f ® 1 is an isomorphism.

Definition 8.27. 1. Let p : E — E’ be an isogeny between two z-divisible
D,-modules over S. The rank of the kernel of p is a power of ¢q. If the rank
is constant, say ¢", we call h the height of the isogeny p.

2. Let p: E — E’ be a quasi-isogeny between E, E’. Then, by definition locally
on S there is n € Z such that 2"p is an isogeny. Let h be the smallest of such
n’s. We define h to be the height of the quasi-isogeny p.

Remark 8.28. 1. Note that the number / in item [2l need not to exist.

2. We want to remark that any isogeny or quasi-isogeny between two z-divisible
D,-modules is, by definition, compatible with D..-action.

Let p : E — E’ be a quasi-isogeny of z-divisible D,.-modules. By definition,
locally on S, there exists n € Z such that z"p is an isogeny. The question is: Is
there a characterization that will tell us when p is an isogeny itself to begin with?
The answer is given by the following lemma:
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Lemma 8.29. Let E = (E,,i,) and E' = (E! 1) be two z-divisible Dy-modules

over S. Let p: E — E' be a quasi-isogeny of z-divisible Dy-modules. Let n € 7
such that z"p is an isogeny. Then

p is an isogeny <= z"p: E[n] — E'[n] is the zero morphism
where E[n](resp, E'In|) denotes the kernel of multiplication by 2™ on E (resp. E').

Remark 8.30. 1. Note that in the lemma, the n that satisfies the considition
2"p to be an isogeny and the n in the condition 2"p : E[n] — E’'[n] is the
zero morphism are same.

2. Let f: E— E' be a morphism of z-divisible D, .-modules. Note that since
E[n] C E and E'[n|] C E" we can restrict the morphism f on these subsets.
We denote both the restriction and the morphism on £ and E’ by f. So, one
can define 2" f as the composition

E[n] .

E'ln] =~ F

Since f is a morphism of z-divisible D,-modules, it sends F[n| to E’'[n] and
the composition 2" f is the zero morphism. The key point to say that the
composition is zero is the fact that E[n] mapped to E’[n], i.e, f respects the
group structure.

Proof. (of Lemma Let p be an isogeny. Then, by definition 2"p is the zero
morphism on E,,.

Conversely, let us assume that

E[n] —2= E'[n] =~ F'[n]

is the zero morphism.

Assume for now that p is a morphism. Since [2"] is an isogeny, ker[z"| = E[n]
is finite locally free group scheme. Since 2"p is the zero morphism, we have ker p C
ker(z"p) = Eln| and so ker p is also finite locally free group scheme. So, we only
need to prove that p : E — FE’ is a morphism. We denote n-shift of E’ by
E'(n), ie, E'(n) = (£}_,,ijn). The image of 2" : E — F lies in E(n). Since
2"p : E[n] — FE'[n] is the zero morphism, we get an isogeny z"p : E — E'(n).
And 27" : E'(n) — FE’ is a morphism. Then, p = 27" o 2"p is composition of
morphisms, hence a morphism.

O

Proposition 8.31. Let o : E — E' be a quasi isogeny of z-divisible Dy,-modules
over S. The functor defined on J\/’z’lpkoo[[d] by

T — {f € Hom(T,S) | f*a is an isogeny }
s representable by a closed subscheme of S.
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The proof of this proposition will follow from the following lemma:

Lemma 8.32. Let a : &€ — F be a morphism of Og-modules on a scheme S.
Assume F is finite locally free. The functor defined on Schg by

T — {f € Hom(T,S) | ffa =0}

s representable by a closed subscheme of S.
Proof. [43], Lemma 2.10. O

Proof. (of Proposition Let o : £ — E' be a quasi-isogeny of z-divisible D.-
modules over S. Then, locally on S, there is an n such that 2"p is an isogeny. Let
f T — S be a morphism of schemes such that f*« is an isogeny. By Lemma [8.29
it is equivalent to say that z"(f*«) is zero. Note that z"f*a = f*(2"«). But then
by Proposition [8.32] the functor is representable by a closed subscheme of S. m

Definition 8.33. ([23|, Definition 6.6) A z-divisible Ox-module over S is a z-
divisible group E over S with an action Oxn — Endp_ E of Oa, which prolongs the
natural action of O,. A morphism of z-divisible Ox-modules which is an isogeny
of z-divisible groups is called an isogeny.

Remark 8.34. The height and dimension of a z-divisible Ox-module is the height
and the dimension of the underlying z-divisible group.

Definition 8.35. (|23|, Definition 6.7) A z-divisible Ox-module E which as a z-

divisible O, -module is of height r¢ and dimension d¢ over S € ./\/'z'lpspf KO is called

special if the action of Oa induced on wg, makes wg into a locally free Y Os-
module of rank d.

Definition 8.36. (a)A z-divisible Do, ® Oa-module over S of height ¢ and dimen-
sion el is a z-divisible Oa-module E of height dh¢ and dimension del together with
an action Do, ® O — Ends(E)

(b) A z-divisible Dy, ® Oa-module E over S € Nilpspfkéi)ﬂg]] of height Al and
dimension el is called special if the action of Dy, ® Oa makes wg a locally free
k‘((,g) ® Og-module of rank e.

Definition 8.37. 1. A morphism of z-divisible D, ® Oa-modules is a morphism
of z-divisible D,-modules that respects the D, ® Oa-action.

2. A morphism of z-divisible D, ® Oa-modules which is an isogeny of z-divisible
D..-module is called an isogeny
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8.3 Generalized z-divisible D,-modules

We will extend the definition of z-divisible groups in the setting of generalized D-
elliptic sheaves. Denote by E; the z;-divisible Dy, ,-module at oco; for j =1,...,t.

Put Dy = H;Zl Dy, and z = (z1,. .., 2). Let kffol)i denote the field extension of
koo, of degree d and put qu; := q®e>i. For each j = 1,...,t, define the koo -algebra
A; = KD (1)) where

H? = 2,11, - a® = a-T1; for all a € k'Y
J

Put A :=][A,. Note that if t = 1 then A is same as in the section of z-divisible
Doc-module (Section [8). Let S € Nilpy,_ i, .. ¢

Definition 8.38. A generalized z-divisible D,,-module over S is ¢-tuple
E: (Ela"' 7Et>

where each Ej is a z;-divisible Dy, ;-module. Note that Dy, acts on E by acting on
j-component via the projection onto j-factor.

Definition 8.39. Let E = (Ey,--- ,E;) and E' = (E}, -, E}) be two generalized
z-divisible Dy-modules. A morphism f : E — E' is a t-tuple (f1,---, f) of
morphisms of zj-divisible Dy ;-modules f; : E; — E.

Definition 8.40. Let E = (Ey,--- ,E;) and E' = (E}, -, E}) be two generalized
z-divisible Dy-modules over S.

1. An (quasi-)isogeny f : E — E' between E and £’ is a t-tuple (fi, -, f;)
where each f; : E; — Ej is (quasi-)isogeny of z;-divisible Dy, -modules E;
and E). We say E and E' are (quasi-)isogeneous if there is an (quasi-)isogeny
between them.

2. We denote the D,-module of isogenies between E and E’ by Isogg(E, E') and

by QlIsogg(E, E') the Dy-module of quasi-isogenies.

Remark 8.41. The composition of two isogenies is again an isogeny.

Definition 8.42. The category of generalized z-divisible Dy-modules up to isogeny
has z-divisible Dy,-modules as objects and all global sections of the sheaf Hom¢(E, E,)@)k(T)[[;]]
k(T)((z)) as morphisms.

As in the z-divisible D -module case, in this case also, we have the following:
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Morita equivalence

Recall that each oo; is split, i.e, Dy, ~ My(Ox,). Now, let E = (Ey,---, E;) be
a generalized z-divisible Dy-module over S. By Morita equivalence of z-divisible
Do-modules (Proposition [8.18), we have that each z;-divisible Do,-module E; is
Morita equivalent to Ej ®p, OZ' where Ej is an z-divisible Ou,-module. So, we
have

E = ((Ei ®Dool Oggll% T (Eé ®Doot Ogoil)) = (Ei, T >E£) ®D@ (H Ogél)

where (Ef,--- , Ej) is z-divisible O,-module.

Definition 8.43. 1. Wesay a generalized z-divisible Do-module E = (Ey, - - - , Ey)
is a generalized z-divisible Doy @ Op-module over S if each Ej is a z;-divisible
Do, @ Aj-module.

2. A generalized z-divisible Dy, ® Op-module E = (Ey,--- , E;) over S is called
special if each z;-divisible D, @ A;-module FE; is special.

Definition 8.44. Let £ = (Ey,--- ,F;) and E' = (Ej,--- , E}) be two generalized
z-divisible Dy, ® Oa-modules over S. A morphism (resp., isogeny, quasi-isogeny)
between £ and E' is a t-tuple of morphisms (resp., isogeny, quasi-isogeny) between
z;i-divisible D, ® Oa,-modules E; and E..
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9 Generalized Dieudonné D, -modules

9.1 Dieudonné D,-modules

First we will define Dieudonné Do -modules for ¢ = 1 case. Denote the structure
sheaf of the completion of X x S along 0o x V(¢) by O,®0s. Let S € Nilpy_jey-
We extend the map o* on S to 0., 204 as follows:

c*(z) = 2% for x € Og and ¢" = id otherwise.

Now, define 0*M = M ®¢_ 504 o+ (00®05).

Definition 9.1. 1. (|24], Definition 2.4) A Dieudonné O, -module over S of di-
mension e and rank r is a pair (M, F') where

(i) M is a locally free sheaf of O, &®Og-modules of rank r and

(i) F:0*M — M is an O,,®0Og-module homomorphism where coker F is
locally free of rank e as an Og-module.

2. A Dieudonné D -module of rank r and dimension e over S is a Dieudonné
Os-module M = (M, F) of rank rd and dimension ed over S together with
an O.-algebra homomorphism D, — End(M) extending the action of O
and which F' is compatible with D, -action.

A morphism of Dieudonné modules is a morphism of locally free O,®@Og-
modules which is compatible with F' and the D -action.

Remark 9.2. If degoo = 1 and Dy, = O, a Dieudonné D_,-module is nothing
but Dieudonné O..-module.

Remark 9.3. ([24], ex 2.8) For every Dieudonné O -module M = (M, F) over S
of rank r, we have M = @(M/Z"M,F mod 2" M) where M/z"M considered as
locally free Og-module of rank rn and F' mod 2" M is an Og-module homomorphism
for every n € N.

Morita equivalence for Dieudonné Modules

Let M = (M, F) be a dieudonné Oy -module of rank r and dimension e. Define
M' = (M’ F') as follows:

M =M ®o_ N
and

Fl:=F&o_N
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where N = OX? is an 0,-My(O,,)-bimodule. Since oo is unramified, we have
Do ~ My(Ou). So, M" is a locally free (On®Os)-module of rank 7 - d with Dq-
action and F’ is a (OOOQA@OS)—module homomorphism that respects the D.-action
with coker F’ ~ coker F®?, So, we have:

Proposition 9.4. The category of Dieudonné Oy -modules of rank r and dimension
e s equivalent to the category of Dieudonné Dy.-modules of rank r-d and dimension

e-d.

Theorem 9.5. ([2])], Theorem 8.3)

The functor E — (Mg, Fg) gives an anti-equivalence between categories of Ouo-
z-divisible groups of height h and dimension d over S and Dieudonné Oy -modules of
rank h and dimension d over S. Furthermore, the Og|z|-modules wg and coker Fg
are isomorphic.

Proof. Let S € Nilp,_j¢ and let G, = Spec Og[€] be the additive group scheme
over S. There is a Frobenius endomorphism on G, defined by Frob;{ = 7. Let
E = (E,,i,) be an Oy-z-divisible group over S. Define the sheaf on S

ME = @HOms<Gn, Ga)

where G, is the balanced group scheme underlying F,, for each n. We make Mg
a sheaf of Og|z]-modules by the multiplication by z on E, which is locally free by
[24], Lemma 8.1. Moreover, composition with o defines a map

Fuy,:0"Mg — Mg, fr—=o0of (9)

So, (Mg, Fg) is a Dieudonné O.,-module.

Let (M, F) be a Dieudonné O, module. By Remark M = lim(M/="M).
Put M,, := M/z"M

Claim: E, = @Spec(Sym(Mn)/fn) is a z-divisible group where Sym M,, de-
notes the symmetric algebra of M, and §, is the ideal (%7 — F,z|x € M,)

Proof: One can easily see that the kernel of the map 2" : M, .1 — M, is
M,,. We need to show that for each n > 1, Spec(Sym(M,,)/f.) is a balanced group
scheme. The comultiplication and the F,-action are given by

Alz)=2®1+1®x and a.x =ax
Via the surjective map Sym M,, — Sym M,, /f,, we get an embedding

Spec(Sym M, /f,) — GY

for some set N. Moreover, the products {[[z;"} where z; € M, and m; €
{0,...,q — 1} form a basis of Sym M,,/f,. Therefore, ord(Sym(M,,)/f,) = g2 kMn,
hence Spec(Sym M, /f,) is a balanced group scheme over S by Definition [8.1] (iv).
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This also gives us the third condition since ranko,M, = hn. The last condition
follows from [24], Theorem 8.3(e).
n

Corollary 9.6. The functor E +— (Mg, Fg) gives an anti-equivalence between cate-
gories of z-divisible Do -modules of height h and dimension d over S and Dieudonné
Doo-modules of rank h and dimension d over S. Furthermore, the O @0g-modules
wg and coker Fg are isomorphic.

Proof. Let E = (F,,i,) be a z-divisible D,,-module over S. Then by Morita equiv-
alence, (E,,i,) = (E], ®o,, N,i, @ id) where (£, i) is an O-z-divisible group
and N = O¥1, By Theorem there is a Dieudonné- O-module (M, F'). So, by
Morita equivalence we get the Dieudonné D.-module (M ®o_ O1x4, F @0, O1x4)
corresponding to the z-divisible D.-module (E,,i,).

Conversely, let M = (M, F') be a Dieudonné D,,-module. We can express M as
(M' ®0., N, F' @0, N) where (M’, F") is a Dieudonné O,-module and N = Q%1
Then, by Theorem [0.5] there exists a Ou-2-divisible group E = (E,,4,). By Morita
equivalence there we get a z-divisible D,-modules (E, ®o. O i, ®q,, OL1).

O

To get the classification of p-divisible groups in the classical case, one works with
isocrystals. In [23], the isocrystals are defined in the case of abelian sheaves:

Definition 9.7. A Dieudonné F,((2))-module over S is a tuple (M, F') where M is
finite locally free Og]z]|[1/z]-module and F : 0*M — M is an isomorphism

Example 9.8. Let (M, F') be a Dieudonné F | z]|-module over S. Its corresponding
Dieudonné F((z))-module is :

M(1/z] == (M o4 Oslzl[1/2], F © id)

We define the quasi-isogeny between two Dieudonné F,|z]-modules by using
their isocrystals:

Definition 9.9. A quasi-isogeny between Dieudonné F | z]-modules f : (M, F) —
(M', F') is an isomorphism of the corresponding Dieudonné F,((z))-modules

[ M @0l Osl2][1/2] = M’ @0 Osl=][1/7]
such that fo F'= F' oo*(f).

By using Morita equivalence we can also define a quasi-isogeny between Dieudonné
Do-modules M and M’ by using the isocrystals of the corresponding Dieudonné
O-modules:

28



Definition 9.10. 1. Let N, N’ be two Dieudonné D,.-modules. Then, by Morita
equivalence N =M @ ---dMand N' =M & --- & M’ for some Dieudonné
Os-modules M, M'. A quasi-isogeny f : N — N' is an isomorphism (M &
- @M)[1/z2] — (M'®---®M')[1/z] which is compatible with the D.-action.

2. We will denote the group of quasi-isogenies between two Dieudonné D,.-
modules M and M’ by Qlsogy_ (M, M').

Remark 9.11. Note that the map E +— (Mg, Fg) in Theorem [9.6] sends isogenies
to isogenies and quasi-isogenies to quasi-isogenies.

Now, we can define the Newton polygon of a Dieudonné F,[z]-module. For this
we need the slope decomposition as in the classical case.

Let m/n be a rational number written in lowest term with n > 0. Define the
Dieudonné F | z]-module V(m/n) = (V, F) over S = SpecF, as follows:

m

0 ... z
- :
V= (F((2)", F = SR ot o'V = V.
1 0
As an analogue to the classical case as in [43], we have the following
Theorem 9.12. ([23], Theorem 7.6) Let K be an algebraically closed field with

SpecK € Nilpg,j¢)- Then, every Dieudonné Fy[z]-module (M, F) over SpecK is
isomorphic to a decomposition

@i V(mi/ni) @ K((2)) (10)

where my/ny < ma/ny < ... are determined uniquely. The Dieudonné F[z]-
modules V(m;/n;) are called the component of slope m;/n;.

Let M = (M, F) be a Dieudonné F[z]-module over Spec K where Spec K €
Nz’lqu[[z]]. By Theorem [9.12] we know that over an algebraically closed extension
of K, the module M decomposes as . Then, the Newton polygon of M is the
polygon passes through the points

(nl_l_..._f_ni’ml_l_..._l_mi)

for all 7 and extend linearly between these points.
Remark 9.13. The Newton polygon begins at (0,0) and ends at (rk(M), dim(M)).

Definition 9.14. 1. Let M = (M, F) be a Dieudonné F,|z]-module over S =
Spec K where K is a field. We say M is isoclinic if M has only one slope
appearing in the slope decomposition.
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2. Let M = (M, F) be a Dieudonné D, ,-module. then, by Morita equivalence
there is a Dieudonné O,-module M’ such that M = M’ @p_ O, We say
that M is isoclinic if its corresponding Dieudonné O, -module is isoclinic.

Similarly, one can define a Hodge polygon of M over S = Spec K € Nilqu[[zﬂ. The
Hodge polygon of a Dieudonné F|z|-module is defined by the elementary divisors of
the K|z]-module coker F'. The Hodge polygon has same initial and terminal point
as the Newton polygon. An analogue of a theorem of Grothendieck-Katz ([30]) and
Katz’s constancy theorem(|27], Theorem 2.7.1) in the function field world is stated
in [23].

Let M be a Dieudonné D..-modules over S. For a morphism f : S’ — S in
Nilpy,_jq we can define the pullback of M = (M, F) to the Dieudonné D,.-module

(M @o_ 50, (0x®0s), F @ id)

over S’. We have the following rigidity theorem for Dieudonné D.,-modules:

Proposition 9.15. Let M and M’ be two Dieudonné O -modules over S. We
denote the group of quasi-isogenies between M and M’ by Qlsogg(M,M'). Let
t:S = S be a closed scheme defined by a sheaf of ideals I that is locally nilpotent.
Then,

Qlsogg (M, M') — Qlsogg(t* M, * M)
1 a bijection.

Proof. We may assume that Z9 = (0). Then, the Frobenius morphism Frobg : S —
S factors as

. [y S S
where j : S — S is the identity map between the underlying topological spaces
|S| = |S|. On the structure sheaves, we have

05—~ Og o
defined by x — x mod Z — 9. So, we have o*f = j7*(.*f) for f € Qlsogg(M, M').
We have the diagram

M_f>M/

o

oM 1L { o*M'

Let f,g € QIsogg(M, M') such that /*f = 1*g. Via a similar diagram as above
we have

fo(F®id)=(F®id)oj"'f=(F® id)oj"g=go (F ®id)
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where the last equality comes from considering a diagram as above for the quasi-
isogeny ¢g. Hence, we have f = ¢, which shows the injectivity. The surjectivity
also follows directly from the diagram above and the fact that o*f = 5%/ f for a
quasi-isogeny f.

O

Proposition 9.16. Let N, N’ be two Dieudonné Do-modules over S. Lett: S — S
be a closed subscheme defined by locally nilpotent sheaf of ideals. Then,

QIsog Do (N, N') — Qlsogp_ ("N, " N')

Proof. Let f € Qlsogp,_(N,N') be any. by definition f gives us a quasi-isogeny
g: M — M’ of Dieudonné O.-modules such that fD,, = D, f. By Proposition
9.15] we have g € Qlsogg(t*M,*M') with gD = Dwjg. By using § we get an
f € Qlsogp,_(:"M, 1" M), 0

By Remark [9.11] we can rewrite the rigidity theorem as follows:

Proposition 9.17. Lel E and E' be two z-divisible Doo-modules over S. Letl ¢ :
S — S be a closed subscheme of S defined by a sheaf of ideals that is locally
nilpotent. Then,

Qlsogg(E, E') — Qlsogg(t*E,*E")
15 a bijection.

By using this theorem, we can prove the rigidity for generalized D-z-divisible
groups:

Theorem 9.18 (Rigidity theorem). Let + : S" — S be a closed subscheme defined
by a locally nilpotent sheaf of ideals. Let E and E' be two generalized Dy -z-divisible
groups. Then, every (quasi-)isogeny p' : *E — (*E' lifts uniquely to a (quasi-
Jisogeny p: E — E'.

Proof. Let p/ : t«*E — *E' be a quasi-isogeny between generalized D,.-z-divisible
groups E = (Ey,--- ,E;) and E' = (E},--- | E}) where each E; and E] is a Dy,-2-
divisible groups. Then, by definition we have quasi-isogenies p} : .*E; — (*E.. By
Theorem [9.17] pj lifts uniquely to a quasi-isogeny p; : E; — E!. Hence, p' liftly
uniquely to a quasi-isogeny p := (p1,- -+, pt)-

[
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9.2 Generalized Dieudonné D, -modules

Let S be as before. Denote the formal completion of X x S along the closed sub-
scheme T x S by X x 57, Then,

X x5 =[50/ (0w, 205)

Let us denote the structure sheaf of the completion of X x S along the closed
subscheme {00;} x V/({;) by O, ®0s where j € {1,...,t}.

Definition 9.19. A generalized Dieudonné D-module of rank r and dimension e
M over S is t-tuple (M,,---,M,) of Dieudonné D, ,-modules M, = (Mj, F;) of
rank r and dimension e for j =1,--- ..

Definition 9.20. Let M = (M, F) = ((My, Fy), -+, (M;, F,)) and M’ = (M', ") =
(M, F}),---,(M], F])) be two generalized Dieudonné Dy-modules over S.

1. An (quasi-)isogeny between two generalized Dieudonné D,-modules M and
M’ is a t-tuple of (quasi-)isogenies between Dieudonné Dy -modules.

2. We denote the set of quasi-isogenies between two generalized Dieudonné D-
modules M and M’ by QIsog(M, M").

Theorem 9.21. There is a categorical equivalence between the category of general-
ized Dy -z-divisible groups and the category of generalized Dieudonné D,-modules.

Proof. The proof follows from the fact that a generalized D,-z-divisible group (resp.
a generalized Dieudonné Dy-module) is tuples of D-z;-divisible groups (resp.
Dieudonné D, ;-modules) and Theorem . ]

Remark 9.22. Similar in the D-elliptic sheaf case, Theorem sends quasi-

isogenies to quasi-isogenies.

Morita Equivalence

Let (M,F) = ((My, Fy), -+, (M, F})) be a generalized Dieudonné Dy,-module. We
know that each (M;, F;) is Morita equivalent to a Dieudonné O..,-module (M/, F}).
Hence, (M, F) is Morita equivalent to (M7, FY),--- , (M}, F})).
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10  Generalized Formal D..-elliptic sheaves

10.1 Formal D.-elliptic sheaves

We are back to the case when X =Y. Let S € Nilpk<d)ﬂ<ﬂ. Recall that we denote

the structure sheaf of the completion of X x S along co x V(¢) by Ox®0Os. Denote
the sheaf Op ®o_, (00®0g) on S by OAROs.

Definition 10.1. (a) ([23], Definition 7.11)Let S € Nilp, @ . A formal abelian

sheaf of rank 7 and dimension e over S is a sheaf F of (’)Ag(’)s—mgdules on S
together with an isomorphism of OA®0Og-modules F : 0*F —» F such that
(F, F) is a Dieudonné O.,-module over S of rank r¢ and coker F' is locally free

of rank e as an k:ff)) ® Og-module.

(b) A morphism of formal abelian sheaves is a morphism of the corresponding
Dieudonne O.,-modules.

Definition 10.2. Let S € /\filpk(@[[q]. A formal Dy -abelian sheaf over S of rank
r and dimension e is a formal abelian sheﬁf of rank rd and dimension ed with an
Ox-algebra homomorphism D,, — End(F).

Remark 10.3. 1. Let F = (F,F) be a formal Dy-abelian sheaf. Then, F has
an (Da @0, Op)@Os-action and so F respects the (Dy @0, Oa)@Og-action.

2. We want to note that a formal D_-abelian sheaf is in particular a Dieudonné
D..-module.

Definition 10.4. A morphism of formal D_-abelian sheaves is a morphism of
Dieudonné D, -modules that is compatible with the (D, ®¢_, (’)A)@)(’)g—module
action and the D_-action.

We can extend Theorem to special z-divisible D, ®0.. Oa-modules and
formal D.-elliptic sheaves:

Theorem 10.5. The functor E — (Mg, Fg) is an anti-equivalence of categories
between the category of special z-divisible Dy ® Oa of height rl and dimension el
and the category of formal Ds-abelian sheaf of rank r and dimension e.

Proof. We know by Theorem that the category of z-divisible D_.,-modules and
the category of Dieudonné D.,-modules are anti-equivalent and coker F' and wg are
isomorphic. The condition on ranks of coker F' and wg as Y ® Ogs-modules follows

immediately.
O
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Definition 10.6. An (quasi-)isogeny of formal D,-abelian sheaves is an (quasi-
)isogeny between the corresponding Dieudonné D, -modules that are compatible
with the (Do ® Oa)®0Og-module action and the D-action.

In the next example we will construct a formal D..-abelian sheaf associated to a
D-elliptic sheaf. We will call this formal D..-abelian sheaf associated to a D-elliptic
sheaf formal Dy -elliptic sheaf. In the classical case, one can obtain a p-divisible
group associated to an abelian variety. By this construction, we will get the z-
divisible D,,-module associated to a D-elliptic sheaf.

Construction 10.7. Let S € Nilpko@[[c]] and € = (&, ji, t;) be a D-elliptic sheaf over
S. Assume deg(oo) = m, 50 ko, = Fym. We will denote by 0> = o[ ., the relative
Frobenius with respect to Fyn and o = idx xo™

Since deg oo = m the periodicity of the D-elliptic sheaf £ is dm. Assume there
is a morphism 8 : S —» Spec k9 [¢]- We will define the formal D..-elliptic sheaf
corresponding to the D-elliptic sheaf £. Now, we define

EF =& Qoxys (OOO@FqOS)

We want to note that £’s have periodicity dm since &;’s have periodicity dm.
Note that there is a D, = D ®0, Ox-action on each £ as D and O, acts on &;
and O,,®0s, respectively. We can define the maps J2° and £2° via the morphisms
7: and t;’s of &:

oo, )
8 z+1

0O . g* £00
ti 5 l+1

We put
E* = (gz 7]2 1 )

Define £% := (£, 7% : £ — £2,,1° : 0*EX° — £;14) as follows:

)

£x = £

mu?

j?o = j?r?i—l—m—l ©--+0 jmz 500 — gri?z—&—m (11)

and

't‘;go : ( ) tmz+m 100 (O-mil)*tmi -0 *800 — &

mi+m

(12)
We want to note that £ has periodicity d by definition. Now, define
£ = oL 1500
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We let A € k4 act on g'l-oo as the scalar f*A?. Define F : & —E by We can
express II, A and F' as block matrices:

0 ... 25, B*A1dy
m— | i S : D - FrAtIdg _ and
T 0 X g
0 ... 22
o | &
e, 0

It can be easily seen that FII = IIF and FA = AF. Then, £ is a sheaf of
Oa ® Og-modules. Moreover we have:

1) £ has rank d® over 0805,

2) coker F has rank d? over Og,

3) coker F has rank d over k%) @ O.

Now, via 1) and 2), (€, F) is a Dieudonné D-module of rank d® and dimension
d*. And, via 3) we conclude that (£, F) is a formal D.-elliptic sheaf.

Remark 10.8. Any quasi-isogeny of a D-elliptic sheaf induces a quasi-isogeny of a
formal D-elliptic sheaf.

Remark 10.9. We can reconstruct £* from a given £%. For this we will use the
fact that there is a D,,®0Og-action on £*°. Note that we have

Dm®FqOS = (D ®Fq Fq’")®qu OS = (Dmel D ,Doo€m>®05

Now let £% = (goo,}'oo, t>°) be as in the Construction . More precisely, recall
that £ = F5. Define for j € {0,--- ,m — 1}

) _ -l _j\xgoo m—1/_j'\xgoo
Emitj = EB]":O(U ) Eey D S} (07 )& ey

Then, we have £, ; C &, ;41 because (09)*E> C (09)*E2, and we define 5 as

the inclusion 7, C EX 1. Now, we will define ¢7°’s. First observe that

(%) = (&, () EXey) @ (@T),, (07 ) EXey) @ (0™)EFey

mi+j J
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Now, note that 1 is defined from the last compontent (6™)*E®ey of (0™)*EX
to £77,. Hence, we can define ¢3¢ : 0*E° — &7, as the identity on the ﬁrst m —1

components and as %:‘?O on the last component. Therefore we have (£2°,j2°,t°).

Remark 10.10. 1. A formal DOO abelian sheaf £ = (£, F) carries an action of

Oa. The latter contains kY as a subfield. Denote this action by . We can
therefore decompose £ into eigenspaces for the I Y _action as follows:

E={acf|po\)-a=pNNaVrek?}

Then, £ = @leg'i. Note that if £ is constructed from a D-elliptic sheaf £ and
d = ¢, these eigenspaces recover precisely £ in the Construction .

2. Let E= (g F) and E/ (5’ F') be two formal D.-elliptic sheaf. Let FE—
5 be a quasi-isogeny. By (1), we can write & = ®'_,& and & = 69 &l By
definition, f commutes with the Ox-action, in particular with the 3G )—action.

Therefore, f sends &; to 8’ This means that quasi-isogenies between formal
Do-elliptic sheaves is componentwise.

Proposition 10.11. The category of formal Oy -elliptic sheaves of rank r and di-
mension e is Morita equivalent to the category of formal Dy -elliptic sheaves of rank
r and dimension e.

Proof. Let (g’, F) be a formal O..-elliptic sheaf of rank r and dimension e. Then,
(€, F) is a Dieudonné O,-module of rank ¢ and dimension ef. Similar to the
previous sections, define

(€, F) = (E®0X Fid).

By Morita equivalence for Dieudonné D,-modules, (é\’,F’) is a Dieudonné D,-
module of rank r¢ - d and dimension ef. Now, the fact that coker F’ is locally free
of rank ed over k% @ Og follows.

]

Definition 10.12. We say a formal D.-elliptic sheaf is isoclinic if it is isoclinic as
a Diedonné D,,-module.

Theorem 10.13. Let & = (5, F) be a formal Dy -elliptic sheaf over S. Then, Eis
1soclinic.

Proof. By Morita equivalence of D..-elliptic sheaves we can write z o Z ® 01
where z is a formal O.-elliptic sheaf. Since dimz =1 and rk:z = d, there is only
one choice of slope in the decomposition. Therefore, E has only one slope in its slope
decomposition, hence isoclinic. O
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10.2 Generalized Formal D, elliptic sheaves

Now, we are in the situation that 7 : X — Y is of degree ¢t > 1.

Let S € Nilpké§>[[<1,--'7ct]]'

Definition 10.14. A generalized formal D-abelian sheaf & of rank r and dimension

e is t-tuple (£,,--- ,&,) of formal D,.,;-abelian sheaves of rank r and dimension e
for j=1,--- ,t.

Definition 10.15. A morphism(resp, (quasi)-isogeny) f : € — F between two
generalized formal D.-abelian sheaves E=(&,- &) and F = (Fy,--, F,) is
t-tuple (f1,---, fi) where each f; : Ej — i—"j is a morphism (resp, (quasi)-isogeny)
of formal D -abelian sheaves.

Remark 10.16. (Morita equivalence) Let S € ./\/’z'lpk(az)[[Cl ¢ And let E=(EF) =

((c‘,A'l, Fi),- (gt, F;)) be a generalized formal Dy-elliptic sheaf over S. By Propo-
sition |10.11, we know that each (EA'J, Fj) is Morita equivalent to a formal O -elliptic
sheaf (&7, F). So, & is Morita equivalent to (€], F}),--- , (€], F})).

Theorem 10.17. The category of generalized formal Du-elliptic sheaves is anti-
equivalent to the category of generalized special z-divisible Dy, @ Oa-modules.

Proof. Let E = (EW, ... | E) be a generalized special z-divisible Dy @O a-module,
i.e, each EY) is a special zj-divisible Dy ; ® Aj-module. By Theorem we know
that via the functor £ — (Mg, Fg) the category of special z-divisible D, ® Oa-
modules is anti-equivalent to the category of formal D.-elliptic sheaves. By using
this functor at each component we see that the category of generalized z-divisible
D@0 a-modules is anti-equivalent to the category of generalized formal D-elliptic
sheaves. O

Construction 10.18. : Let S € Nilp,_, ... o and let € = (&;,t;) be a generalized
D-elliptic sheaf over S. We will denote the structure sheaf of the formal completion
of X x S along the closed subscheme oo, x V((;) by OOO]@OS foreach j=1,--- ,t.

Assume deg(0o;) = m, 80 ke, = Fgm. We will denote by 09 = olg_, the
relative IFrobenius with respect to Fym and o = idx xo*. Since degoo = m the
periodicity of the D-elliptic sheaf £ is dm. Assume there is a morphism g : S —
Spec I <1, -+, &) Now, foreach j = 1,--- ¢ by proceeding as in the Construction

10.7| we get formal D, -elliptic sheaves z(j). Hence

)

is the generalized formal D -elliptic sheaf corresponding to the generalized D-elliptic
sheaf £.

g = (E(l)a e 7205)
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We know by Theorem

decomposition. So, the generalized formal D.-elliptic sheaf has (

slope decomposition.

Remark 10.19. Let & = (E(l), -

10.13

,z(t)) be a generalized formal D-elliptic sheaf.

that each 3(” has only one slope, namely Cll in its slope
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11 Moduli space of formal D, -elliptic sheaves

11.1 Main Example

In this section we will consider the case when ¢ = 1 and hence X =Y. We will
construct an example of D-elliptic sheaf. First we will assume that degoo = 1 and
then degoo > 1.

We will define the objects around oo and on the affine part U := X \ oo, and by
glueing we will get D-elliptic sheaves (see Section . Recall that for a D-elliptic
sheaf (&;,7i,t;), we had & ~ &1 on U. In the following |a| denotes the integer
part of the given rational number a.

CASE 1(degoo = 1):

Let X be a smooth projective geometrically irreducible curve with constant field
F, and let S = SpeclF,. Assume degoo = 1. We will define D-elliptic sheaf over
X x F, with & =D ® F,. Since &]|xcoxs is the same for all 4, the construction is
by gluing and by exploring the D-elliptic sheaf near oco.

Define the decreasing chain of O.-lattices in F<:

L; = @?:10002 [(d—j—i)/d]

Define &; o := Hom(Lg, L;). Then, we have & o = My(Ox) ~ D. Clearly,
Hom (Lo, L;) € Hom(Lg, Lit1), i.€, & 0o C Eit1.00- Note that each &; o is an My(Ox )-
module. Now, define

Ji & — Ein

by the natural inclusion Hom(Lg, L;) € Hom(Lg, L;11). And directly by definition
of L;’s, one can see that

Ld ~ LQ(OO)

which means we have the periodicity ¢ = ddegoo = d. And, since degoo = 1, we
have o* = id. So, one can define

t;: O'*gi — gz’+1

as 7;.

Now, we glue & ’s with M := I'(X \ {oo} ® F,,D ® F,) and get locally free
sheaves &; over X x S.

Then, € = (&, ji, ti)icz is a D-elliptic sheaf.

CASE 2(degoo > 1)

Let X be a smooth projective geometrically irreducible curve over F, and let
S = SpecF m where m = deg co. Note that O,,®0s = @' Ou,, where O, =~ Oy
for each i € {0,...,m — 1}.
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Similarly in the degoo = 1 case, we will define D-elliptic sheaf over X x F;m
with & = D @ Fym. Since &|xsoxs is same for all 4, the construction is by gluing
and investigating the D-elliptic sheaves around oo.

We define

i—l—s—j

d—1 41
Lsﬂ' = @D, L ma T Jej(’)oob

=0

where ¢;’s are the bases at oo,

Now, put & o = omy! Hom(Ls,;, Ls). We glue & o with M = I'(X \ {oco} ®
Fym,D®F,m) and get locally free sheaves & over X X F,m

Define the morphisms j; : & — &1 via the inclusions Hom(L,;, Lgo) C
Hom(Ls 11, Ls o). One can easily see that we have a periodicity £ oo = Edegoo,c0 =

g()(OO)

Now, we need to define ¢;’s. Note that o interchange oo;’s, say o(00;) = 0011
for i = 0,---,m — 2 and o(00,,—1) = 00p. Let us consider & . For each s =
0,---,m—1, we have

HOII](LS’O, L070) =~ Md(ooos)

And o sends My(O,) to My(Ou,,,) for i = 1,--- ,;md — 1 and My(O,) to
My(Os,). Therefore, 0*& ~ &. So define ty by using this isomorphism : ¢, :
0*& — & — &1. Now we need to define ¢; for i = 1,...,md. Note that

0o = BT Hom(0* Ly, 0% Ly )

— HOm( (EB? éZLL 1—s— ]7YL+1J€ Ooos)ya*(@d;ézL —1— e ]m+1J jOOOS)>

i—l—s—jm 1— 5 jm

= @;n:—(f Hom (@? éZL‘ dm7+1jejooos+1, EB? ézt +1] j(f)ooerl)

Lzm]

@H0m<@]d (1)2; am +1J€]Om0’@d 1 \_ ";me—i— Jejocxm)

And
5i+1,oo = @TBl Hom(Ls i+1 Ls 0)

Hom(@d 1 VdmmHJe]OOOO,EBd 1 [ Fghn 41, O0s0)
i—s—jm d— s ]’V‘Vl
Te;0,, @izgzl o JejOoQS)

@@?fHorn(@d bl

Now, it is easy to see that one gets the components of each O ’s change by a
multiple of z'/¢. Hence, we define t; : 0*& — £1. We also want to note that if
i # ¢m or a multiple of ¢m, then we have &1 = & + t;(0*&;).

Therefore we have a D-elliptic sheaf, again denote it by £€. And, as in the
Construction [10.7] we can compute the formal D.-elliptic sheaf corresponding to
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£. Denote this formal D -elliptic sheaf by z = (é\, F). Now, by Theorem m
there exists a z-divisible D, ® Oa, which we will denote by E.

11.2 The Moduli functor

Now, we will define a moduli functor for the formal D-elliptic sheaves which are
quasi-isogeneous to £ in the example in section similar to [23|, in which the
author refers to [12] and [43]. As in previous cases, the solution of our moduli
problem will be a formal scheme over Spf k(]

Let S € Nilpkw[[g]]- Denote by S the closed subscheme of S given by the sheaf of

ideals (Og. If 5 : S — Spf kY [¢] is a morphism of formal schemes, let 3: S —
Spec kY denote the restriction of [ to the special fibers.

Definition 11.1. (Moduli Problem) Define the functor G : Nilp,, . — Sets as

S — { Isomorphism classes of triples (6,2, @) where
o 3:5 — SpfkD[(] is a morphism of formal schemes,
° f is a formal D-elliptic sheaf of rank d and dimension 1 over S,
e O: 25 — B*E is a quasi-isogeny of formal D-elliptic sheaves. }
Two triples (61721,@1) and (52,22@2) are isomorphic if 8; = 35 and there is

an isomorphism between F, and F, over S that is compatible with a; and as.
By Theorem we can reformulate the moduli problem as

Proposition 11.2. The functor G from Definition is equivalent to the functor
Nilpy_jep — Sets such that

S — { Isomorphism classes of triples (5, E,~y) where

o 3:5 = Spf kD[] is a morphism of formal schemes,
o [ is a special z-divisible Do @ Oa-module of height d* and dimension d over S

o v:B3E — Eg is a quasi-isogeny of special z-divisible Doy @ Oa. }

Lemma 11.3. Let G be the functor Nilpkw[[c]] — Sets defined by

S — { Isomorphism classes of triples (3, E', p') where
o 3:5 — Spf kD[] is a morphism of formal schemes,
o I is a special z-divisible Ox-module of height d* and dimension d over S,
e p: BE — E% is a quasi-isogeny of O -z-divisible Op-modules. }
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Then, the functor G is Morita equivalent to G.

Proof. We define the natural transformation 7 : G — G. Define Ns é(S) —
G(S) as follows:

(8. E'.¢) = (B, B @o. O3, p)
where p : BT (E) — (E' ®0. O 5. Note that the height of E' @0, OX¢ ~
E' @®---® E' is d® and the dimension of £’ ®¢__ O is d>.
é S ~—>é S/
(8) == 01S)

)
o
—_— /
G(S) 57 GIS)
Note that by Proposition 8.18] for every S € Nilpkm[[g]p the component 7ng is an
isomorphism. Therefore, we have an isomorphism of functors.

]
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12 Moduli space of generalized formal D-elliptic
sheaves

12.1 Main Example

Now, we are back to the case where 7 : X — Y is a finite morphism of degree t.
We will construct example of generalized D-elliptic sheaves using gluing Section

Example 12.1. (degoo = 1 case:)

Recall that for each j = 1,--- ¢, we have ko, >~ koo. Assume degoo = 1. So,
k(T) = [[keoy = kY =~ F,. Let S = SpecF,. Let D be an Azumaya algebra
of dimension d? over Oy. We will construct generalized D-elliptic sheaf over X x
F, with & = D ® F,. As in the D-elliptic sheaf case since for a generalized D-
elliptic sheaf &|x.Txs is same for all i, our construction will be base on gluing and
investigating the generalized D-elliptic sheaf around oo;’s.

Before we continue, let us make a remark. Let i = (iy,--- ,4;) € Z"' be any. Each
i; stands for each ooj, i.e, every change in one 7; means to modify around that oo;.
Keeping this in mind we will define lattices. Let i = (i1, ,4;) and s € {1,--- | t}.
Define

Lico, = @) O, 2}F7775)/4)

and

Lit == &1 Lico,-
Define &; o, := Hom(Lg o, , Li o, ) and let

Eir 1= @2:151‘,005-
We glue & ¢ with I'(X N\ T x F,, D ® F}) to get locally free sheaves & over X x S.
By definition, we have

Eor =My(Ox,) ® - ®My(Ox,) =~ Doy ® -+ ® Do,

Let ¢ € Z" be such that ¢ <. By definition we have &; o, C &y o, for each oos.
We define the morphisms j; 7 : & — &y via this natural inclusion. The periodicity

Lz‘+d~t,11‘ = LQ,T(Oola T 70015)

also directly follows from definition. Now, we will define the morphisms ¢, : 0*&; —
Eit1-

Now, let us define the maps t; for i € Z'. Since S = Spec ]Fg, we have ¢* = id.
Define t; : 0*&; — &;41 to be the monomorphisms j; ;41 that were defined above.
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Therefore, we get a generalized D-elliptic sheaf € = (&;,1;)iczt. As before, one

can construct corresponding generalized formal D..-elliptic sheaf, £. By categorical
equivalence, we get a generalized special z-divisible D, ® Oa-module, E.

Remark 12.2. We want to note that in the example above we have S’ =T x S.

Example 12.3. (degoo > lcase):
Now, assume degoo =m > 1. Let S = Spec Fflm. Then we have

O, ® Og > &1 O,

for each ooy € T where Oy, , >~ O, . Now, for each oo;, € T define

k d—1 Lzé—l s— ]m+1J
L - ®j OZ ]Oook,s

where e;’s are the bases at ooy 5. Now put

Eivosp = Hom(Lk

SZ7

k
Ls,Q)
Define

o m—1
ELOOk T 695:0 gi,oos,k

and

Eir = Dp1Ei00,
Note that by definition we have

Eir = ([Ma(Ony ) @+ 8 Ma(O10)] @ -+ & [Ma(Oe,) @ -+ & Ma(Osc, )] )

We glue & r with I'(X N\ T®F...,D ® F,,.) and get locally free sheaves & over
X X Fim.

Let 4,1 € Z' with ¢ <i'. Then, by definition we have & ., C &y o, for each ooy.
We define the morphisms j;  : & — & by this inclusion. We have the periodicity

giertdegoo ~ 51(001, e ,OOt)

by definition. We only need to define the morphisms ¢; : 0*&; — &;11. Note that

*

t m—1 _x
T = Bh10"Eive, = Bpuy Py 0 Eiou

= &}, &7 Hom(c*LE, 0" L%))

Similarly as in Example [TT.1] _ Case 2, we define ¢; : 0°& — &1
Hence (&;,t;) is a generalized D-elliptic sheaf. We Wlll denote this also by &.
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12.1.1 Generalized Moduli Functor

Let S € Nilp,,_ [cici]- Ve will consider the generalized special z-divisible Do @ Oa-
modules which are isogeneous to E which is defined in Example and then show
that this is equivalent to product of the moduli schemes of the D,;-z;-divisible
groups at each oo;, as in [46].

Definition 12.4. Define the functor Gy, from Nilpkoo[[c1,-~~,<t]] — Sets

S — { Isomorphism classes of triples (6,2, a) where

. B: S — Spf kD[, - - -, ¢] is a morphism of formal schemes,

° 2 is a generalized formal D..-elliptic sheaf over S,

e O: 25 — B*E is a quasi-isogeny of generalized formal D-elliptic sheaves. }

By Theorem [10.17], we can reformulate the moduli problem as follows:

Definition 12.5. The functor Gy, is equivalent to the functor from Nilpy ¢, .. ) —
Sets defined by

S — { Isomorphism classes of triples (3, E,a) where

e 5:S5 — Spf ké‘i) [¢1,- -+, ¢] is a morphism of formal schemes,

e [ is a generalized special z-divisible D, ® Oa-module over S,

e a: Es — B*E is a quasi-isogeny of generalized D,-z-divisible groups. }

Proposition 12.6. The moduli functor Gy, of generalized special z-divisible Doy ®
Oa-modules s

Gyen = G x -+ x G

where G is the moduli functor of special z-divisible Dy, @ Oa-modules defined in

Definition [11.2

Proof. The proof follows by definition of a generalized special z-divisible Dy, @ Oa-
modules. O
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13 The Serre-Tate Theorem

In [23], Hartl gives an analogue of classical Serre-Tate theorem in the abelian sheaf
case. In this section, we will adapt his result to the generalized D-elliptic sheaf case.
Namely, we will show that the deformation of a generalized D-elliptic sheaf is same
as the deformation of a generalized formal D-elliptic sheaf.

Let S € Nilpk(@ﬂgl - al and ¢ : S = S be a closed subscheme of S that is defined

by the sheaf of ideals Z which is locally nilpotent.

Definition 13.1. 1. Let £ be a generalized D-elliptic sheaf over S. We say a
generalized D-elliptic sheaf £ over S is a deformation of £ if there exists an
isomorphism of generalized D-elliptic sheaves f : 1.*€ = &

2. Two deformations (€, f) and (F,g) of a generalized D-elliptic sheaf £ are
isomorphic if there exists an 1bomorphism of generalized D-elliptic sheaves
a : £ — F such that the following diagram is commutative:

- F

Pk

E——=¢

Let £ be a generalized D-elliptic sheaf over S. The category of deformations of
£ has

e objects: pairs of deformations (E, f)
e morphisms: isomorphisms of deformations

Similarly, one can define the category of deformations of a generalized formal Dy -
elliptic sheaf. Let £ denote the generalized formal Dy-elliptic sheaf corresponding
E.

Definition 13.2. 1. We say a generalized formal D.-elliptic sheaf F is a defor-

mation of £ if there exists an isomorphism of generalized formal D,,-sheaves
g:U'F =S E.

2. Two deformations (F, g) and (g h) are isomorphic if there is an isomorphism

of generalized formal D-elliptic sheaves ]-" = (] that is compatible with g
and h.

The category of deformations of a generalized formal Dy -elliptic sheaf E has
pairs (F, g) as objects and isomorphisms of deformations as morphisms.
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Theorem 13.3 (Serre-Tate Theorem). Let S € Nilpkgi)[[gl,...,g]] and let 1 : S — S
be as before. Then, the category of deformations of a generalized D-elliptic sheaf £
and the category of deformations of its corresponding generalized formal Do -elliptic
sheaf 2 are equivalent.

To prove this theorem, we need some preparations. The following proposition
tells us, together with rigidity of generalized D,.-z-divisible groups, that the set of
morphisms of category of deformations is non-zero.

Proposition 13.4. Let £ be a generalized D-elliptic sheaf and z be its generalized
formal Dy -elliptic sheaf. Let G be a generalized formal Dy, such that there exists a
quasi-isogeny a : Q — E Then, there exists a generalized D-elliptic sheaf F and a
quasi-isogeny v : F — £ which is an isomorphism over X' x S where X' = XNT
such that its completion is isomorphic to Q, i.e., there exists an isomorphism F —>
G such that the following diagram commutes:

Foo> g
N A
g

Moreover, ~v is unique up to isomorphism. So, we will denote the generalized

abelian sheaf F by a*&.

To prove this proposition, we will get the lattices around each oo; and vector
bundle on the affine part so that we can glue them to get a generalized D-elliptic
sheaf on X x S. For more on gluing lattices around oo and vector bundles on the
affine part, please see Section and Section 20l We want to recall that for a
generalized D-elliptic sheaf £ = (&;,t;), the module &|x.1)xs is independent of i

(cf. Remark [2.5).

Proof. Let £ be a generalized D-elliptic sheaf and z be its generalized formal D-

~ ~(1 ~ ~ ~(1 ~(t
elliptic sheaf. Write £ = (§( ), e ,Q(t)) and g = (Q( )7 e ,Q(f)). Recall that a quasi
isogeny a : Q — & is a t-tuple (@M, ... a®) of quasi-isogenies a¥) : a(]) — E(j)

of formal D, -elliptic sheaves. By definition of quasi-isogenies of formal Z_)Ooj -elliptic
sheaves, we have isomorphisms of the corresponding isocrystals

a0/ 871/ 2 8V

By Remark [10.10(i), we can write Q(J) — @™ ,G’. Then by Remark[10.10| (i), we
know that a quasi-isogeny between two formal D_-elliptic sheaves is a quasi-isogeny
componentwise:

al . G5 — £
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Now, by Remark construct G from each G . Then, by the quasi-isogeny
al), we have an injection
G E[1/2]
Therefore, we can glue G, -+, G with &](x.m)xs to get locally free sheaves F;
on X x S. Since each €9 has a D,.,-action and £ has a D-action, there is a D-action
on each 7;. By the morphisms II" and F” of the generalized formal D-elliptic sheaf
Q and by the morphisms j, : & — &y and t; : 0*& — &1, we get morphisms

j£:f2—>-a+l and t;:U*FQHE-‘rL
Therefore, we get a generalized D-elliptic sheaf F = (F;, j;, t;). By construction, we
see that the generalized formal D-elliptic sheaf i-" corresponding to the generalized

D-elliptic sheaf F is isomorphic to Q and there is a quasi-isogeny p : F — &.
O

Proposition 13.5. Let . : S — S be a closed subscheme of S defined by a sheaf of
ideals that is locally nilpotent. Let £ = (§;,t;) and £ = (], t]) be two generalized D-

elliptic sheaves over S. Then, every quasi-isogeny 1*E€ — 1*E' gives a quasi isogeny
E — &' in a unique way.

Proof. The proof goes similar to the rigidity of quasi-isogenies of Dieudonné D,.-
modules. We may assume by induction that Z¢ = (0). Then, Frobenius og on S
and Frobenius og on S factors as

[ S S
and

§—>5—"+8
where j is the identity between the underlying topological spaces |S| = |S).

Recall that by using the morphisms ¢; : 0*& — &1y and t] : 0*E] — &£/, one
can define isogenies t : 0*£[1] — £ and t' : 0*E'[1] — &' (cf. Example [3.5). Here
E]1] denotes the shift by 1, i.e, E[1] = (i1, Jim1, ti1)-

Now, let p : t*€ — 1*E' be a quasi-isogeny. Consider the shift by 1 and pullback
under 7 and we have

3] g E] — e
Hence, we get the following diagram

£ P g

tT t/T
osell) = jrrel] T osernt) = e
which gives us a quasi-isogeny p : £ — &'. It follows from the diagram that :*p = p
and p is defined uniquely by p.

O
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Proof. (of Theorem

Let F be a deformation of £ with f : *F = £. Let E and z denote the
generalized formal D,-elliptic sheaf corresponding £ and F respectively. Then, z
is a deformation of z So, we have a functor sending a deformation (F, f) of £ to

the corresponding deformation (z, f) of €. Denote this functor by F.
Let (F, f) and (F', f') be two deformations of £. Then, the map

Homp(F, F') — Homp@@, f)

is injective and surjective by Proposition [13.4] and [13.5] We will show that F' is
essentially surjective. R R R R

Let (F, f) be a deformation of £ where f : (*£F = £ is an isomorphism of
generalized formal D, -elliptic sheaves. As before, it is enough to consider the case
when the ideal sheaf Z of S satisfies Z¢ = (0). Then, the Frobenius os on S factors
as

§—2.5_t. g9

Consider the sheaf £ := j*E[1] = (j*€;—1,j*t;—1). By using the morphisms ¢;’s
of £, we get a quasi-isogeny t : (*(o x £[1]) — & that is an isomorphism over
X'(cf. Example B.5). But 0*&[1] = *j*E[1] = *E’. So, we have a quasi-isogeny
t:1*&" — £. Consider the generalized formal D, -elliptic sheaf 3 corresponding to
the generalized D-elliptic sheaf £’. We have t: L*E/ — E and we obtain a diagram

rF-L1-E

o ?T
t=lof A ',
€

where & =t 1o f is a quasi-isogeny of generalized formal D.-elliptic sheaves.
By Theorem , the quasi-isogeny &’ extends uniquely & : F — zl. Then, by
Proposition there is a generalized D-elliptic sheaf F that is quasi-isogeneous to
&' via a: F — &' so that the corresponding generalized formal D.-elliptic sheaf
of F is F. By the diagram
1]

F—=j"

~— ™

toa .
EN

[Cn

the tuple (F,t o «) is a deformation of £.
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Part III Uniformization

14 Algebraization

Assume t = 1 and so X =Y. Recall that in this case a generalized D-elliptic sheaf
is called D-elliptic sheaf (cf. Remark [2.5] (ii)). We will give an interpretation of
the moduli space G' that was defined in Sectlon in _ Let S € Nilp,_j¢ and
let S be the closed subscheme of S defined by ¢ = 0. One can define a morphlsm
G —> Spf kY [[C]] by (8,F, ) — B. We will define an action of Gal( /k ) on

G. Note that Gal(k'? k) = Gal(k?[¢]/kx[C]). Take any ~ € Gal(kf;? kso). We
define v( via the diagram

Sy .9 (1)

lvﬁ lﬁ
Spf kS I¢] — Spf K2 [C]

where ~s is the composition S —» Spf k' [[C]] Spf k¢ ﬂ(]] We write S for S
considered as a Spf k' [¢]-scheme via ~g. Then, we define the action of v on G(S)

by
v (8, F, @) = (v8,7sF, 7s0) € G(S7)
that is compatible with D..-action.

Definition 14.1. Define the functor G' : Nilp, . — Sets as

S — { Isomorphism classes of pairs (F,«) where
e F is a D-elliptic sheaf over .S,

o o: Fs — Egis a quasi-isogeny of D-elliptic sheaves. }

Two such pairs (F, ) and (F', ') are isomorphic if there is an isomorphism of
D-elliptic sheaves between F and F' that is compatible with o and o’'.

Theorem 14.2. The functors G and G' Xgpi. ] Spf kég)[[(’]] are isomorphic as
Gal(kéf?/k‘oo)—modules where Gal(kég)/k;oo) acts trivially on G’

Proof. The proof goes similarly as in [23], Theorem 10.2. Let (F,a) € G'(S) and
B:S — Spfks @ [€]- By Construction we get a formal Dy-elliptic sheaf F
and the quasi- 1s0geny a of D-elliptic sheaves gives a quasi isogeny of formal D~
elliptic sheaves @ : Fg — B*E. So, we get a triple (3, F,d) € G(S). Since
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Gal(kc(g) /ks) acts trivially on G' and by definition of the Galois action, the map
G’ x Spf k) [<] — G is Gal(kég)/koo)—equivariant.

Conversely, let (ﬁ,z, a) € G(S). By Proposition , there is a unique lift of &
to p: z — 3 over S. Then, by Proposition we get a D-elliptic sheaf, say F
whose corresponding formal D,.-elliptic sheaf is F and a quasi-isogeny p : F — £.
So, (F,pg) € G'(S). Therefore, we get a map G — G’ x Spf k9. The fact that
the map is Gal(k% /ks )-equivariant follows by definition. Now, one can easily see

that the two maps are mutually inverse.
O

Definition 14.3. The tuple (F,a) € G'(S) associated to a (3, F,a) is called alge-
braization of (38,£', Q).

14.1 Algebraization of generalized moduli functor

Let S € Nilp;_ic,... ¢ and S be its closed subscheme of S. Define the functor

S — { Isomorphism classes of pairs (F,«) where
e F is a D-elliptic sheaf over 5,

o o: Fs — Egis a quasi-isogeny of D-elliptic sheaves. }

Recall that Gy, be the moduli functor of generalized formal D-elliptic sheaves
that was defined in Definition [12.4. We will write @k [¢] for

koo [C1® ke - - - Ok ksol€]

where completed tensor product is taken for t-copies and write @x\)kc@ [<] for

KON @k - - g A2

where in both cases, we have t factors in the tensor product.

Theorem 14.4. The functors Gge, and Gy, Xgi_[¢] @ké‘?[{(]] are isomorphic as
Gal(k'? / ko )t-modules.

Proof. The proof goes similarly as in Theorem Let 8 : S — 9 [<] be a
kso[¢]-morphism for j =1,---  t. Put

Be=118 95— k2N &rutc) - OrotcF2UCI-
J
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Then we have an action of Gal(kc(g)/koo)t on k) I<1®kgey - @kwﬂcﬂk&l) [¢] where

each Gal(k:ég)/koo) act on each j3; as in the diagram
Now, the functor G/, — Ggep is defined by the Construction [10.18, and the

gen

functor G e, — G, is defined by using Proposition as in Theorem [14.2} [

The following theorem gives us another interpretation of Gyep:

Theorem 14.5. We have

Gl = (G % X G) X e kDG

where G' is the functor defined in Definition [14.1]

We will use the algebraization of the moduli functors G and G’ to algebraize the
moduli functor G g,.

Proof. By definition of generalized formal D, -elliptic sheaves, we have
Ggen @G X -+ xG

where G is the moduli functor of formal D..-elliptic sheaves that was defined in
Theorem [11.1} Then, by algebraization in D-elliptic sheaf case (Theorem [14.2)), we
have

Gyen = (G' @, [l HOIGD) X+ X (G [ HONGD) = (G X G x g e SRLNG
O

Corollary 14.6. The functors G, ~G' x --- x G'.

gen
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15 Representability of the Moduli Functor

15.1 Representability of G’

In this Section we will prove that the functor G" that was defined in Definition
is representable by Z x Q@ For the definition and some of the properties of Q%
we refer to [4], Section 4.3 and [46], Section 4. Our main reference for this section
is [I9]. We want to recall the D-elliptic sheaf £ defined in Section [I1.1] By using
Construction [I0.7, one can define the formal D.-elliptic sheaf associated to £. We
will denote this formal D_-elliptic sheaf by €

Definition 15.1. ([19], Chapter I, Definition 4.3.3) Define the functor Go from
Nilpkm[[g]] to Sets by sending an S € Nz'lpkoo[[c]] to the isomorphism class of triples

((Mz‘, I, F})icz, Ro) where
1. M; is locally free koo'[d]@@s—HlOdule of rank d

2. the morphisms
IL : My — M

Fiio" M — M
are morphism of k. [¢]®Os-modules such that the following conditions are
satisfied for ¢ € Z:
(a) The diagram
* F
oM —— M
J*Hil lﬂiﬂ
" Fiiq
oMy — Mo
is commutative

(b) We have M, 4 ~ M;(c0) by the composition
M, %MHI — o — Mgy

(¢) (cf. Definition [0.1][1] item
There exists a locally free B-module w; such that coker F; = [',w; where
I': OB — B
a®@b — B(a)b

Here g : Oy — B gives B an Og-algebra structure where O, is the
maximal unramified extension k% [7] € Oa = kL 1]
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(d) There exists n € N(cf. Construction [10.7) such that the composition
~ (Idg e ®Fr™1)* R
(Idkoo[[C]] ®F7“n)*./\/l0 koo €] 0

(Idkoo[[C]] @F’F"*l)*/\/ﬁ —_— -

Fn_1

M, /M, ()

is the zero morphism.

3. the map R
Ro : M5 Qe koo (O) = €i5 D] koo (O)
is an isomorphism that satisfies the following commutative diagram:
Put Nis 1= Mi s @rfep koo (€)) and Fiz := &5 ) Fool(C))

F0,§®1dkoo

(Idk,, ®FT)*N0,S Nl,S‘

(Idkoo ®Fr)*R0l LRl
Fy g®1d.,

(Idkoo ®F7‘>*.’F0730 05 - .’FLg

4. if n € N such that
Ro(Mos) C &,5 C &5 Prae] koo ((€))
then (‘,A'n’g/Ro(./\/lo,g) is locally free over S of rank n.

As one can see from the definition, one can think of the triples (M;, I1;, F;) as a
ladder over O.

Proposition 15.2. The functors Go and G' are naturally isomorphic.

Proof. We define a functor G’ — G and leave the verification of details to the
reader.

Let (F,p: Fg — £g) € G'(S5). By taking completion along the fiber over oo
as in the Construction we get a ladder F> over O, which almost satisfies the
necessary conditions in Definition since the D-elliptic sheaf £ satisfies similar
conditions. R

Let d, denote the degree of the quasi isogeny p : Fg — Eg. Define (F;,11;, 1)
as F*° shifted by d,

Then Ry is the isomorphism

Fa [1/2) — &[1/7]

Then, we have the following theorem:
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Theorem 15.3. The functor G’ is representable by 7 x Q@D oper O

Proof. By [19], in Chapter III, Section 3(Theorem 3.1.1 together with Lemma 3.3.1)

we know that G is representable by (AZ(CQ over 0. By the Proposition we
conclude that G’ is representable by Z x Q@ over O,. O]

15.2 Representability of G’

gen

is representable by [,(Z x Q@)

n

Theorem 15.4. the functor G,

Proof. The proof follows immediately by Corollary and Theorem [15.3] O
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Part IV Uniformization

16 The Uniformization Theorem

16.1 The group of quasi-isogenies for D-elliptic sheaf

Recall the definition of £ in In [5], it is proved that the space of quasi-
morphisms between abelian sheaves is isomorphic to the space of morphisms between
the generic fibres 1 of X x S. Similar to the abelian sheaf case, we have the following

Proposition 16.1. Let £ = (&, ji, t;) and & = (E],j.,1.) be two D-elliptic sheaves
of the same rank and same characteristic over S = Spec L where L is a field. Then,
Q-vector space Qlsogp(E,E') is isomorphic to the group of units of the space of
morphisms between the fibers at the generic point n of X x S

{fon : Eom — g(/),n | fon Ojo_,rl; oty = (j(,),n)_l ° té),n 00" (fon)}
We will use this theorem to compute the group of quasi-isogenies of £.

Theorem 16.2. The group of quasi-isogenies of € = (&;, Ji, t;) over the algebraic
closure k%9 of ks in the example s equal to D*, the invertible elements of the
division algebra D.

Proof. By Proposition in [5], it is enough to consider the morphisms between
the fibers at the generic point 7 :
Lo — (E0(00))y = (£ @ Oxxs(o0))y (1)

Recall that by definition & = D and D,, = D. Let p : £ — £ be a quasi-isogeny.
By the Proposition [16.1] it is enough to consider py,, : £, — (£(B)), where B is
an effective divisor of X, i.e, we are looking for the group of morphisms

[ DRFm — D RFym.

such that the following diagram commutes:

Tjol Tjol
D@ Fym D& Fym

I I"
D ®U U*qu W D ®J O'*]qu

Note that o*Fym = Fym ®p,m o Fym and consider the following diagram:
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F m w qu

q

d d

ag g
qu ®qu qu ot qu ®]qu qu

hTE hTﬁ
Fym F o

q ©
where the maps g : Fgm ®f , Fgn — Fgm is defined by o @ 5 — a.0(f) and
h:Fgn — Fgm ®%qm F m is defined by v — 1®+. Hence the composition of vertical
arrows in the diagram is . So, we have by the second diagram above, cop = poo.
Therefore, we have (D ® qu)Gal(]qu/ Fo) = D, and so, the group of quasi isogenies
of the D-elliptic sheaf is D*.

]

16.2 The Uniformization Theorem

Following the way of p-adic uniformization of Shimura curves and uniformization of
stack of abelian sheaves, we will use the scheme Q@ representing the moduli functor
G'. We know that the moduli functor G, is represented by [[Z x Q. We will
use this to uniformize generalized D-elliptic sheaves. Before we continue we want to
recall our conventions:

X T={oo...,00} B=TI(X\T,Oyx) F=F,X)
lﬂ o‘o A=TI(Y \T {o0}, Oy) L= ITF(,(Y)

We will use the symbol D* for both the group of units of D and the algebraic
group of units of the division algebra D defined by

D*(R) = (D ® R)*

where R is an F-algebra. Let

Ay = {(ax) € ﬁxgqux | a, € B, for almost all :z:}

denote the finite adeles and define

D*(Ay) = H(Dx,Dx) = {(ax) € HDx | a, € D, for almost all x}
z¢T z¢T

Let (D")* = [I,¢1r D = ([1.¢r Do) And (D7)} denote the kernel of the group
homomorphism
(D")* — H°(X,D ®oy Or)*
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where the morphism (D")* — H%(X,D ®o, O)* defined as (a ® by)oexs —
(@ ® by)zer. We want to construct an isomorphism over A, for a generalized D-
elliptic sheaf that is quasi-isogeneous to the generalized D-elliptic sheaf £ that was

constructed in Examle [12.1. We will use this isomorphism to define the action of
(DY)

Construction 16.3. Let S € Nz'lpkoo[[gh,,,’ct]] and let S be its closed subscheme
defined by ¢; = 0 for all j. Recall the generalized D-elliptic sheaf £ = (&;,1;)
over_Spec Ff] that was defined in Example Consider the pullback of £ along

: S — SpecF,. Denote this pullback by &', i.e, £ = (El’,t;) = (s*&;,s*t;). On
X X NT, all 5 | x/«g are isomorphic via the morphisms j s+ S0, we denote this
sheaf by &| yry5. Similar for the morphisms ¢;’s, we get a map ' |x7x5: 0%E|x1xg —
E|xx5- Recall the t-invariant functor Ez defined in Section [2] and consider E5(S).

Now,
Ep(S) = lim Ep(S) ~ limMy(By/I') = D(B)
rcx r
where By = HO(I',O)). We denote this isomorphism by f. Clearly, (D)) acts
on D(B).
The isomorphism f gives rise to an isomorphism
Y : Ey, = D(Ay)

which induces a rational H-level structure on €.

Let F be a generalized D-elliptic sheaf over S which is quasi-isogeneous to €
via a : F — £. As in the previous paragraph, we can look at ling (F). The
composition a o ¢ gives us an isomorphism

Yoa: @E}/(Z) Dp(B) D(Ay) — D(Ay)

So, we get a level structure on F.

Let S € Nilpy_yc,... cp- Let (E,p) € G, be any where p : Fg — £ is a
quasi-isogeny. Then, by Construction we get a level structure n on F. So, we
can define

G;en (Af)/(DT) — gggfx/ypj XSch]p Nllpk [¢1, ¢
(F, @),a(DY)}) = (F,a ') (1)

(
Remark 16.4. Note that (D")} is a compact open subgroup of D*(A;).
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Now, let us define the D*-action on G, x D*(Ay)/(D")}. We want to recall
that the group of quasi-isogenies of € is D*.
Let g € D* and let F be a generalized D-elliptic sheaf that is quasi-isogeneous

to € via p: Fg —> €g. Then the action of g on « is defined by
Fg—~E5—"% £4(D)
where gg denotes t*¢ with ¢ : S — S. By using this action we can define the action

of D* on G, as follows:

(9- (£ p) = (Egsop)
which is compatible with the D-action.

On the other hand, by the diagonal embedding D* < D*(A}), we have an
action of D* on G’ _, x D*(A;)/(D")} by

gen

((£7 p)7 C_l) = (<£7 gs o p)7 g- &)
Let Z be the pullback defined by the diagram
ggegx/y"p’] —=Y B

w |

Z )
We denote the formal completion of GEllx,yp ; along the closed subscheme Z

by Q/S\M;/YD’[. Before we continue, we want to recall that the stack of gener-
alized D-elliptic sheaves GEllx yp with nontrivial level structures is actually a

scheme(Theorem . So, when we take the formal completion @;/Y,D, ; we have

a formal scheme. For an introduction to formal schemes we refer to [17].
Now, put

X = D*\G!.,, x D*(Ay)/(D")}

—7

Before we continue, we need to understand the double coset space D*\G
D*(A;)/(D")} better. For convenience, put H := (D")}.

Let d; H be representatives of the quotient D*\D*(A)/H. Now, stabpx (d;H) :=
{de D* | dd;H = d;H}. Let d € stabpx(d;H) be any. We have

1
gen X

de St(lbe (dZH) <— dd;H =d;H <— d € ledZI

Hence, d € d;Hd;' N D*. Let us denote the group d;Hd; ' N D* by I;. Note that
I; is a discrete subgroup of D*. Indeed, by the Strong Approximation Theorem, we
know that D* is discrete in D*(A). This implies that D* is discrete in D* (][, Fi,)-
Then, I is discrete since any subgroup of a discrete group is discrete.

Then we have:
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Proposition 16.5. D*\G' ., x D*(A;)/H =11, G..../ ;.

gen gen

Proof. Consider D*\D*(Ay)/H. We can write it as a finite disjoint union [ [ D*d; H.

Then,
Gl X D*(Ay) = ]_[Ggm x D*d;H.

gen

Therefore, we can write D*\D*(A;)/H as [[, [3\GY,, which is nothing but just
[L; L\ (@) O

Proposition 16.6. Assume t = 1 and hence X = Y. In this case we are only
considering D-elliptic sheaves. Then, the double coset space D*\G' x D*(Ay)/H is
a formal scheme if T'; is discrete and torsion free.

Proof. By the previous proposition, we know that the double coset space is isomor-
phic to I3\ (Q2@). We know that Q@ is a formal scheme. By [40], Theorem 3.1 ( or
Section 3 in [26]), Q@ /I} is a formal scheme since I} is discrete.

[

Proposition 16.7. Int > 1 case, we can state a similar result. Namely, with the
notation and assumptions as before, (U /T; is a formal scheme.

Proof. The proof is analogous to [39] and [40]. O
We have defined the action of (D")} on G/, x D*(A;) in Section S0, we

gen
have morphism

G/ (Af)/H — gg£€X7D7[.

gen

We also defined the action of D* on G, x D*(Ay)/H so that we get a morphism

gen

D*\Gyep x D*(Ap)/(DV)} — GEUxp

gen

Now, this morphism factors through @;D’ ;- Indeed, on the left, we have a
formal scheme defined by (-completion, so the left side is of the form @X/(W)"
And if Z denotes the ideal sheaf of Z, we see that X/(7"™) mapsto Y/Z", i.e, I"
mapsto to (". So, we can define

: X —Y
Now we can state our main theorem:

Theorem 16.8. One has an isomorphism of formal schemes

QEMX/YDI ~ D* \Ggen (Af)/(DT)?
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Remark 16.9. We want to remark that if the proof of the previous proposition is
worked out in a details then, we can recover Stuhler’s result on uniformization of
Frobenius-Hecke sheaves in [46].

Recall the representability theorem in Section [I5 Theorem [I5.4]

Theorem 16.10. We can reformulate the Theorem[16.§ as follows:

t
GEWy )y = D\(J](Z x QD)) x D*(A;)/(D");

i=1
Remark 16.11. Let us assume ¢ = 1 and so we have D-elliptic sheaves. We want to
note that in [4], Blum and Stuhler consider D-elliptic sheaves with a normalization
condition. In this case G’ is representable by Q. Hence our theorem becomes:
Ellxps ~ DX\Z x QW x D*(A;)/(D®)}.

where E00x p ;1 denotes the stack of D-elliptic sheaves with level I-structure. This
theorem is stated in [4], Theorem 4.4.11 without a proof.
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17 Proof of Uniformization Theorem

Let S € Nz'lpkoo[[gh,,,m]. We will prove that the stack X x5 S is a scheme and that
we have an isomorphism of schemes

XX);S:)S

Proposition 17.1. The morphism 0,cq : Xrea — Vrea 1S bijective on K-points
where K is a field, i.e, the morphism 0,.q(K) : X(K) — Y(K) is an isomorphism.

Proof. First we will show the surjectivity. Let s € ),.q be a point. Since it is
isoclinic ( Theorem , there is a quasi-isogeny p : £, — €. We can assume, by
multiplying with a quasi-isogeny of £ if necessary, that p respects the level structure.
The induced quasi-isogeny F, — p*&, is also compatible with the level structures.
Hence, s lies in the image.

Now, let s; := ((Fy, 1), hiH) and sy := (F,, a2), hoH) be two elements in

Xea(S). Assume ered((zl, 1), th)) - 0r6d<(£2, as), th)>. We will show that

s1 and sy lie in the same orbit wrt the D*-action.
Since (F,, h1H) = (F,, hoH), we have a quasi-isogeny ¢ : F; — F,. Consider
the diagram

1)§L§

(

™

IS
¢ f
N ¥
(Fa)s——E3
where f is defined vis the diagram. We claim that f = gg for some g € D*. This
will follow from the next lemma.

]

Lemma 17.2. Let S € Nilpkmﬂch,,,@]} and let S be its special fiber. Assume S =
Spec K where K s an algebraically closed field. The map

D* — Qlsogg(Ey)
defined by g — gg s surjective.

Proof. Recall the generalized D-elliptic sheaf € defined in Example [2l We consider
& over S, denote it by £, = £ x K. Let f : £;; — E(D) be an isogeny for some
effective divisor D of X which is an isomorphism over (X \ T) x S. Consider the
diagram

f

Ex £(D)
o*(Ex) — "L 0" (£, (D))
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Note that 0*(€x) = 0*(E ® K) = € ® 0K by definition of £.

Note that o* K" ~ K".

Note that 0*(€x) = c"(ER K) = E®0*K ~ £ ® K". Then the morphism
t:o*(Ex) — Ek is represented by a matrix 7. Over F' = F,(X), the matrix 7" is

invertible. Hence, we have o* f = f and therefore lies in IF,.
O

Remark 17.3. 1. Note that by the rigidity in Proposition [13.5] we can reformu-
late the previous lemma as

D* — Qlsogs(Eg) — Qlsogg(Es)
2. We also want to point out that the morphism D* — Qlsogg(Eg) defined in
the lemma is in fact an isomorphism of groups.
Proposition 17.4. The morphism 0,.q s radicial.

Proof. By [2], Chapter VI, Proposition 5.2, it is enough to show that for any field
K, the map of K points 0,.q(K) : Xyea( K) —> Vrea(K) is injective. This follows
from the previous proposition. L]

Proposition 17.5. The morphism 6 is formally étale.

Proof. This follows from the fact that quasi-isogenies of z-divisible groups extend

uniquely to deformations in the category Nilp, " which is satisfied by Serre-
q

Tate theorem.

16l

]

Let 7 and J be ideal of definition of X and ), respectively. Put X, :=
(X,0x /") and Y, := Oy/J". Then, X, and Y, are schemes locally of fi-
nite type over S = Spec koo|(1, - - - , (] for each n. Denote the restriction of 6 to X,
by 6,,.

Proposition 17.6. The morphism X,, — Y, is locally of finite type.
Proof. This follows from Lemma 01T8.

Proof. (of the Uniformization Theorem)
By the previous lemmas, we have

X Xy yn :> yn
where ), := Spec(0y/(™)(We want to note that ¢ is an ideal of definition of
since Z is the vanishing locus of (.)
Since the morphism 6 is locally of finite type and formally étale, # is étale. Since
it is also radicial, it is an open immersion. So,  is open immersion and bijection on
points which means that it is an isomorphism. O
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Appendix

18 Morita Equivalence

In this part, we will explain Morita equivalence, which later we will use it to show
some categorical equivalences. For the proofs and more on Morita equivalence please
see [6] and [28], Section 19.5.

Definition 18.1. Let R and S be two rings. We say R and S are Morita equiva-
lence if Mod — R and Mod — S are equivalent where Mod — R( respectively, Mod —5)
denotes the category of right R(resp, S)-modules .

Theorem 18.2. (Eilenberg-Waits Theorem) If F': Mod —R — Mod =S is an
equivalence, then there exists an R-S-bimodule () such that F' ~ — Qg Q)

We can apply Theorem to Morita equivalence. Let F' : Mod —R —
Mod —S be an equivalence with inverse G : Mod —S — Mod —R. By Theorem
[18.2] F is given by — ®p () where @ is an R-S bimodule and G is given by — ®g P
where P is an S-R bimodule. Hence,we have the following characterization of Morita
equivalence:

Theorem 18.3. The rings R and S are Morita equivalent iff there exists an R-S
bimodule @ and S-R-bimodule P such that P @ Q ~ S (as S-S bimodules) and
Q ®s P ~ R(as R-R bimodules).

Remark 18.4. Let R and S be two Morita equivalent rings and Proj-R( respec-
tively, Proj-S) denote the category of projective modules over R(resp, S). Then
Proj-R and Proj-S are Morita equivalence. In general, any property defined cate-
gorically is preserved by Morita equivalence.

Example 18.5. Let S = M,(R). Then, R and S are Morita equivalent with R-
My(R) bimodule Q = R, row vectors, and My(R)-R bimodule P = R¥!, column
vectors. That is

F : Mod —R — Mod —M,(R)
is given by A — A ®p @ and

G : Mod —M;(R) — Mod —R
is given by B — B ®u,(r) P

Remark 18.6. Note that an R-S-bimodule is just a left module over the ring
R ®7 S°P where S° is the opposite ring of S.
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One can define Morita equivalence for sheaves in a similar way, roughly speaking
by simply replacing modules with sheaf of modules[see Example . More generally,
one has Morita equivalence for stacks, for more please see [28], Prop. 19.5.2. , which
says that if we have an equivalence between Ox stacks then there exists a certain
sheaf of modules such that equivalence functor is given by tensoring with that sheaf
of modules.

Morita Equivalence for Sheaves and Stacks

In this section we will see that there is Morita equivalence for more general cate-
gories. We will start with Morita equivalence for Ox-modules where (X, Ox) is a
ringed space. The main reference is [21], Section 8.12.

Morita Equivalence for Sheaves

Let (X,Ox) be a ringed space and £ be an Ox-module. One can associate the
Hom-sheaf to £ which is an Ox-algebra End(E) = Home, (€, ). Recall that £V :=
Home, (€,0x). For U C X one can define the maps

End(&) x E(U) — E(U) given by (v,u) — vy(s)

EV(U) x End(E)(U) — EY(U) given by (A\,v) — Aow
make & a left End(E)-module and €Y a right End(E)-module. So, we get functors

F : Ox-Mod — &nd(€)- LeftMod, F — & ®o, F
G : End(E)- LeftMod — Ox-Mod, H — &" Qgnae) H

Theorem 18.7. ([21], Proposition 8.26) Let £ be a finite locally free Ox-module
such that £, # 0 for all x € X. Then, F and G are quasi-inverse to each other.

Remark 18.8. If £ = O% then End(E) ~ M,,(Ox). Hence, we obtain an equiva-
lence between the category of Oyx-modules and the category of M, (Ox)-modules.

Morita Equivalence for Stacks

So far, we had Morita equivalence for modules over a ring and for O x-modules. One
has Morita equivalence for Ox-stacks also.

Let (X, Ox) be a ringed site, i.e, a site X together with a sheaf of commutative
rings Ox on X. Let R; be a sheaf of Ox-algebras on X.

Proposition 18.9. ([28], Proposition 19.5.2) Let P be an R1 ®p, Ry’ -module. the
following are equivalent:
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(i) There is an Ro®e, R’ -module Q such that PQRr, Q ~ R4 as an R1®p, R -
modules and Q ®r, P ~ Ry as an Ry ®o, Ry’ -module.

(ii)) P ®gr, —: Mod =Ry — Mod —R is an equivalence of Ox-stacks

(iii) Homg,(P,—) : Mod =Ry — Mod —R is an equivalence of Ox-stacks.

Moreover, under the condition of (i), Q is isomorphic to Homg,(P,R1) and to
Hompger (P, Ra) as an Ra ®oy Ry’ -module.

Remark 18.10. We stated only some parts of the proposition above to see the
relation with the previous categories. To see the remaining items in the proposition
please see [28].

Theorem 18.11. (Morita Equivalence) Let ® : Mod —Ry — Mod —R; be an
equivalence of Ox-stacks. Then, there erists an Ry ®o, R -module P satisfying
one of the equivalent conditions in the previous proposition such that P ®g, — ~ ®

and Homp, (P, —) ~ &~ !

Proof. [28], Theorem 19.5.4. O

19 Stacks

The main source for this part is [20], [47] and [52]. In this section we will give a
summary of stacks.

Stacks can be thought of as a generalization of schemes in the following sense.
In schemes the points are sets while in stacks the points are categories. So different
than schemes in stacks each point comes with a set of automorphisms. A stack is a
scheme iff the set of automorphisms of each point is trivial (Lemmal[19.34). This fact
plays a role in the representability by a scheme of the moduli problems. To have the
representability by a scheme one usually puts extra conditions on automorphisms
to satisfy. That is one of the reason that in the main body of this work we consider
objects with level I-structures. In the presence of a non-trivial level structure,
we prove that moduli functor is representable by a scheme. There are examples
however where even after adding big level structures, the moduli functor still is not
representable by a scheme(E.g [23], Section 3). In [23], Section 4, Hartl gives an
example of a moduli functor which is not representable by a scheme.

Let S be a scheme. One can see S by its functor of points. One can define
stacks as 2-functor, which emphasises that stacks are generalizations of schemes([20],
Definition 2.10). Here, we will define stacks as categories. Note that these two
definitions of stacks are equivalent. Then, we will put some condition on stacks so
that we can see them as geometric objects.
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Definition 19.1. A category over C is a category JF together with a covariant
functor pr : F — C. If X € Ob F(resp. ¢ is a morphism) and 7" € C such that
pr(X) =T (resp pr(p) = f), we say that X lies over T (resp. ¢ lies over f).

Definition 19.2. Let F be a category over C. A morphism ¢ : X — X’ is called
catresian if for any other object Y € ObF with a morphism ¢ : Y — X’ and
factorization
h p(#)
p(Y) — p(X) — p(X')
of p(1), there exists unique morphism A : Y — X such that po\ = ¢ and p(\) = h.

In a picture expression:
P

vyl s x—*% o x

L

p(Y) = p(X) LEL p(X7)

Definition 19.3. 1. A category F over C is called fibered category if given an
object X of F and an arrow f : T — pz(X) of C, there exists a cartesian
arrow ¢ : X' — X of F over f, i.e, so that pr(y) = f.

2. Let F be a fibered category and T € ObC. We define the fiber of F over T
as the full subcategory of F whose objects lie over 7" and whose morphisms
lie over idy. We denote this fiber by F(T).

Definition 19.4. 1. A groupoid is a category in which every morphism is iso-
morphism.

2. We say a fibered category F is fibered in groupoids if all fibers are groupoids.

Proposition 19.5. Let F be a category over C. Then F is fibered in groupoids over
C if and only if the following two conditions hold.

1. Every arrow in F 1is cartesian.

2. Given an object n of F and an arrow f : U — px(n) of C, there exists an
arrow ¢ : ¢ — n of F with pr(p) = f .

Proof. [52], 3.22. O

Remark 19.6. 1. the condition (1) implies that the morphism ¢ : { — 7 in the
condition (2) is unique up to isomorphism: Assume there exists p1 : (; —> 7
and s : (3 —> n as in the condition (2). Then by (1), there exists unique
map A : (3 — (2. By swaping (; and (5, we see that ) is an isomorphism.
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2. Condition (2) also implies that ¢ : X — X' is an isomorphism <= pr(p)
is an isomorphism in C.

Convention: For each X' € Ob F and any f : T'— T" with X’ over 7" choose
an X as in the condition one. Note that the map from X’ — X is unique by
18.6(1). We will denote this lift X by f*X’(or by X’'|r). From now on we fix such
choices for all f and X’. This kind of choice is called a cleavage.

Remark 19.7. From the previous remark, we see that any morphism in F(7) is
an isomorphism.

Definition 19.8. 1. A morphism of fibered categories F — G is a functor
f + F — G such that

(i) pcof=pr

(ii) f sends cartesian morphisms in F to cartesian morphisms in G.

2. Let f,g: F — G be two morphisms of fibered categories. A base preserving
natural transformation « : f — ¢ is a natural transformation of functors
such that for every X € F the morphism ax : f(X) — ¢(X) in G projects
to the identity morphism in Schg.

Definition 19.9. Let F — C be a fibered category. A fibered subcategory G of
F is a subcategory of F, such that the composite G — F — C makes G into a
fibered category over C, and such that any cartesian arrow in G is also cartesian in

F.
Fibered category associated to a pseudo functor

Definition 19.10. (|52], Definition 3.10) Let C be a category. A pseudo-functor ®
on C consist of the following data

1. For each object U of C a category ®U
2. For each morphism f:U — V in C a functor f*: ®V — ®U
3. For each object U of C an isomorphism ¢y : id}; ~ idgy of functors U — ¢U
4. For each pair of morphisms U LoV 4 W an isomorphism
ag f'9° = (gf)7 : OW — OU
of functors ®W — dU

These data are required to satisfy the following conditions:
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(a) If f: U — V a morphism in C and 7 is an object of ®V, we have
iy, g () = o (f™n) « iy f'n — f™n
and
aria, () = frev(n): fTidvn — fn

(b) Whenever we have morphisms U Lv 4w 7and an object 6 of ®T the

diagram
ar q(h*0
f*g*h*@ 1,9(h"6) (gf)*h*@
lf*ag,h(e) lagf,h(e)
fN) — 5 9(12)
commutes.

By [52] Section 3.1.3, one can get a fibered category associated to a psedo-functor
and vice versa. Moreover, these two procedures are inverse to each other(up to an
isomorphism of fibered categories).

Example 19.11. Let Schg denote the category of schemes over a fixed base scheme
S. For each scheme U we define QCoh(U) to be the category of quasi-coherent
sheaves on U. Given a morphism f : U — V| we have a functor f*: QCoh(V) —
QCoh(U).

However, in general for U Lvs W, (gof)* # ffog*,so U — QCoh(U) is not
a functor. But (go f)* and f*g* are canonically isomorphic since (¢f). = f.g. and
f* is left adjoin to f,, Yoneda lemma induces the canonical isomorphism between
functors (g o f)* and f* o g*. One can also check that the isomorphisms above
satisfy the conditions in the definition. So we get a pseudo-functor, hence a fibered
category QCoh/S. For details please see [52], 3.2.1.

From now on unless stated otherwise assume that C = Schg is equipped with
the étale topology. Before we continue we want to recall the definition of a sheaf in
a Grothendieck topology.

Definition 19.12. ([47], Section 2.2)
Let C be a category with Grothendick topology. A presheaf on C is a functor

F:C% — Sets
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Definition 19.13. Let C be a category with Grothendieck topology. A presheaf F'
on C is a sheaf if for every U € ObC and covering {U; — U };c; the sequence

F(U)—>-Hi€] F(Ui)—>Hi,je] F(U; xy Uj)
is exact, where the two maps on the right are induced by the two projections U; X
Uj — Uz and Ul XU Uj — Uj.

Remark 19.14. To say that the sequence above is exact means that the map
F(U) — [lie; F'(U;) identifies F(U) with the equalizer of the two maps

[Lic: F(U) —=11, je, F(Ui v Uj)

Stacks

Let F be a fibered category over a C. For any object S of C' and any two objects (
and 7 in F(S), define the presheaf on (C/S5):

Homg(¢,n) : (C/5) — Sets

Definition 19.15. We say a fibered category F is a prestack if for every choice of
S, (,n the presheaf Homg((, n) is a sheaf.

Definition 19.16. Let C be a site and F be a fibered category over C. Let U be
an object of C. Given a covering U = {U; — U}. Set

Uij = Ul Xy Uj
and
Uijk = Uz XU Uj XU Uk

An object with descent data ({(;}, {¢i;}) on U is a collection of objects ¢; € F(Uj;)
together with isomorphism

pij - pryC — pri¢ in F(Us xp Uj)
such that the following cocycle condition is satisfied:
PriszPik = Priatij © PragPik © PraCe — Prig;

Definition 19.17. We say that an object with descent data ({G}, {¢;;}) in F(U) is
effective if there exists an object ¢ of F(U) together with cartesian arrows ¢; — ¢
over f; : U; — U such that the following diagram

prag; o priGi
| |
G Gi
¢

commutes.
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Definition 19.18. A stack is a prestack such that for every cover (U; — U) in the
chosen Grothendieck topology, all descent data relative to (U; — U) are effective.

Example 19.19. Given a scheme S, we have constructed (QCoh/S) of quasi-
coherent sheaves, whose fiber of a scheme U over S is the category QCoh(U) of
quasi-coherent sheaves on U. The fibered category (QCoh/S) over (Sch/S) is a
stack with respect to the fpqc topology (cf. [52], Theorem 4.23).

Definition 19.20. Let C be a site and F — C a stack. A substack of F is a fibered
subcategory that is a stack.

Example 19.21. ([52], Example 4.19) Let C be a site, F — C a stack, G a full
subcategory of F satisfying the following two conditions.

1. Any cartesian arrow in F whose target is in G is also in G.

2. Let {Ui — U} be a covering in C, n an object of F(U), n; pullbacks of 7 to
U;. If n; is in G for all 7, then 7 is in G.

Then G is a substack.

Example 19.22. The full subcategory of (QCoh/S) consisting of locally free sheaves
of finite rank satisfies the two conditions, hence it is a substack.

Stacks fibered in groupoids

Definition 19.23. A stack in groupoids is a category fibered in groupoid F such
that the assignement
Schg — Set

given by U — F(U) is a sheaf of groupoids, i.e,
1. For all scheme T and pair of objects X,Y of F over T (i.e, pair of objects in

F(T)), the contravariant functor

Isor(X,Y) : Schy — Sets

defined by (f : 7" — T) — {p: f*X = f*Y an isomorphism in F(7")} is a
sheaf (in the étale topology).

2. All descent data are effective.

Remark 19.24. We want to point out that the stack in Definition [19.23|is different
than the one in the Definition [19.18 In Definition [19.23, we define “ stacks in
groupoids”. We will usually supress the word "groupoid" in the "stack in groupoids".
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Definition 19.25. 1. Morphisms (resp. isomorphisms) of stacks are defined to
be morphisms (resp. isomorphisms) of fibered categories over Schg

2. We denote by Homg(F, G) the category whose objects are morphisms of stacks
and whose morphisms are base preserving natural transformations.

We can relate the two definitions of stack:

Definition 19.26. Let F — C be a fibered category. The category fibered in
groupoids associated with F is the subcategory F.,,+ of F, whose objects are all the
objects of F, and whose arrows are the cartesian arrows of F.

Remark 19.27. The stack F..+ is a groupoid stack.

Proposition 19.28. Let C be a site, F — C a fibered category. Let F.u be the
associated category fibered in groupoids.

1. If F is a stack, so is Feart.

2. If F is a prestack and F.qu 15 a stack, then F is also a stack.

Proof. [52], Proposition 4.20. ]
By using morphisms we can form a new stack, namely fiber product of stacks.

Definition 19.29. Let F;, /5 and G be stacks. Given two morphisms f: F; — G
and Fy — G, we define the fiber product F; xg F, as follows.

e The objects of F; x F; are the triples (Xi, Xs, ) where X, € Ob F; lie over
the same scheme U and « : f(X;) — ¢g(X3) is an isomorphism in G(in other
words pg(a) = idy).

e A morphism from (X, Xo, ) to (Y7,Ys,5) is a tuple (1, p2) of morphisms
@; : X; — Y, that lie over the same morphisms of schemes h : U — V such
that the following diagram commutes

f(X1) —=g(Xa)
lf(«m) Lg(wz)
F(V) 5 g(Y2)
The fiber product satisfy the universal property of fiber products.
Theorem 19.30. The fiber products exist in the category of stacks stacks
Proof. |22], Lemma 4.14. ]
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Example 19.31. Let T be a scheme over S. Consider Schr the category of schemes
over T'. Define the functor Schy — Schg by the composition V — T — S for
any V € Schy. Then, Schy becomes a stack. We will denote also this stack by T

Definition 19.32. 1. We say a stack F is representable by a scheme T' if it is
isomorphic to the stack associated to 7.

2. A morphism of stacks ¢ : F — @ is called representable if for all T' € Ob Schg
and morphisms T — G the fiber product of stacks T" x¢g F is representable
by a scheme.

3. Let "P" be a property of morphisms of schemes which is local on the target
and stable under base-change (e.g: smooth, étale, surjective, of finite type
etc).We say that a representable morphism f : F — G has "P" if for any
T — G the induced morphism of schemes T xg F — T has the property
HP"'

Remark 19.33. One can define the representability of a stack by algebraic spaces
similarly as above. Since we will only use representability by a scheme, we won’t
give the definition of an algebraic space.

We have the following very useful lemma that shows us an obsticle to be repre-
sentable.

Lemma 19.34. If a stack has an object which has a nontrivial automorphism then
the stack cannot be respresentable by a scheme. ([20], Lemma 2.17)

Lemma 19.35. ([20/, Lemma 2.18) Let F be a stack and T' a scheme. The functor
u: Homg(T, F) — F(T)
giwen by (f : Schy — F) — f(idr) gives us an equivalence of categories.

Remark 19.36. 1. Note that the previous lemma tells us that an object of F
that lies over T is equivalent to a morphism of stacks from 7" — F.

2. We want to note this the previous lemma is the 2-Yoneda lemma(cf. [52],
3.6.2)

Let F be a stack and let Az : F — F x F be the obvious diagonal morphism.
A morphism from a scheme 7" to F x F is equivalent to two objects X, Xo € F(T)
by the previous lemma. By taking the fiber product we have

ISOHlT(Xl,Xg) F

l A

T—>) IXS.F

(X1,X2
Hence the group of automorphisms of an object is encoded in the diagonal morphism.
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Proposition 19.37. Let F, X, X5 be as above. the following are equivalent:

1. The morphism Ax is representable.

2. The stack Isomp (X1, Xa) is representable for all T, Xy and X.
3. For any scheme T, every morphism T — F s representable.
4. For all schemes Ty, Ty and morphisms Ty — F and Ty, — F, the fiber
product T7 X 7 T is representable.
[32], Cor. 2.12. , [[52], Prop. 7.13] O

Definition 19.38. (Deligne-Mumford stack)
Let Schg be the category of S-schemes with étale topology. Let F be a stack
and let Ax : F x F be the obvious diagonal morphism. Assume

1. The diagonal Ar is representable.

2. There exists a scheme U (called atlas) and a surjective and étale morphism
u:U—F

Then, we say that F is a Deligne-Mumford stack.

By the Proposition [19.37] and by the fact Ax is representable, we see that the
morphism u : U — F in (2) in the definition is representable. So, the notion of
étale is well-defined for wu.

Definition 19.39. Let Schg be the category of S-schemes with the fppf topology.
Let F be a stack. Assume

1. The diagonal Ax is representable.

2. There exists a scheme U and a smooth(hence locally of finite type) and sur-
jective morphism v : U — F.

Then, we say that F is an Artin stack.

Example 19.40. Now, we will give the example "quotient stack" following [11],
Example 4.8.

Let X be a scheme over S. Let G be a group scheme over S that is étale,
separated and of finite type over S. Assume G acts on X. Define the stack [X/G]
over S as follows: Its category of sections over an S-scheme 7' is the category of
principal homogeneous spaces over 7' under Gr. The principal homogeneous space
G x X over X together with the morphism G x X — X is a section of [X/G] over
X. The corresponding morphism X — [X/G] is étale and surjective, so [X/G] is
a Deligne-Mumford stack.

The stack [X/G] is representable <= X is a principal homogeneous space over
a scheme Y.
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Remark 19.41. 1. Note that this example tells us that if GG is étale over .S, then
the quotient stack [X/G] is a Deligne-Mumford stack. We are using this fact
in Section [5] Proof of Theorem [5.3]

2. For more details on the "moduli quotient", we refer to [20]. In the introduction
he talks about "quotient scheme" vs "quotient stack" and in Section 3, he
compare moduli scheme vs moduli stack of vector bundles.

There are some conditions on G to decide when the quotient of a group is a stack
and when the quotient of a stack is a Deligne-Mumford stack. We collect some of
them in the following proposition.

Proposition 19.42. 1. If G is smooth and affine then the groupoid [X/G| is a
stack.

2. If the stabilizers of the geometric points of X are finite and reduced then [ X/G]|
s a Deligne-Mumford stack.

Proof. 1. [32], 2.4.2

2. [52], Example 7.17

Moduli stacks

For this section one can look at [47], Introduction.

Moduli spaces are spaces that answers the problem of classifying objects. These
problems are called moduli problems. And the moduli problems are usually de-
scribed by functors. We say that a functor F' is representable by a scheme M if F
is isomorphic to Hom(—, M) where Hom(—, M) is the functor of points. Then, the
scheme M is called a fine moduli space. This means that there is a 1-1 correspon-
dence between families of objects parametrized by B and the morphisms B — M.
So, a fine moduli space has a universal family U corresponding to the identity
morphism idy; € Hom(M, M) together with a morphism U — M. We say that
two points on M are isomorphic if they correspond the isomorphic(or geometrically
same) objects.

Often a fine moduli is desired but not obtained. Instead one obtains a coarse
moduli space. A coarse moduli space is a scheme M with a morphism of functors
F — Hom(—, M) that is universal for morphisms from F to representable functors
and such that for any algebraically closed field k the induced map F(Spec(k)) —
Hom((Spec(k), M) = M(k) is a bijection. So, a coarse moduli space is a space that
has the right information on points., i.e, if we only consider points not families,
coarse moduli space has the right information.
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Sometimes the moduli functor cannot be represented by a scheme and it has nei-
ther fine moduli space nor a coarse moduli space. The reason for that is the objects
that are parametrized has nontrivial automorphisms(recall Lemma [19.34). One can
solve this problem by considering isomorphisms. More precisely, consider the ob-
jects parametrized by B with only morphisms between them are isomorphisms. By
remembering isomorphisms, we get a moduli stack.

20 Vector bundles over X x S

Let ooy, - -+, 00, be closed places of X and let A = I'(X ~ {o01,- -+ ,00,},0x). We
denote the function field of X by F/F,.
The main reference for this is [53], Section 2.

Theorem 20.1. Let S be an Fy-scheme. Given the data (M, E,, 1;) where

o M s vector bundle of rank d over Spec A x S
o &, is vector bundle of rank d over Ox o X S
o 1 MR F ~&, D0x e, F an isomorphism
there exists (up to isomomorphism) a unique vector bundle F on X X S such that
(MF = Flspec Axs: EF o0 = F @0yys Oxpo0; X Sscanj : My @4 F = Ex o, @ F)
where can; is the canonical isomorphism.

Proof. In [53], Proposition 2.69, the theorem is proved for the case n = 1. Now, the
proof follows by induction on n. n

Therefore, one can think of a locally free space over X x S as in two parts: the
affine part and the part around oco. The isomorphism serves as gluing morphism.

Example 20.2. Let X be a smooth connected curve over K, and let U C X be
a non-empty affine open subset of X with U = SpecR. Denote by F' the function
field of X, i.e, FF = K(X) = Frac(R). Then, there is a bijection up to isomorphism
between

1. rank n vector bundles on X

2. Data: (M, (Ly)sex—v, (iz)zex—v) where M is a rank n projective R-module,
for each x € X —U, L, is arank n free Ox z-module and i, is an isomorphism

g M ®prF =~ L, R0y, F.
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