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Abstract

Determining conditions under which a given map is close to a homeomorphism has been an
important problem in geometric topology. One of the major results related to the problem is
the α­Approximation Theorem of Chapman and Ferry, which asserts that a small homotopy
equivalence between manifolds is small homotopic to a homeomorphism. In this context, the
smallness condition on a homotopy means that the size of the track covered by each point dur­
ing the homotopy is small when measured by an open cover of the target space. In proving
such a theorem, besides the original approach of Chapman­Ferry which uses some results from
topological surgery theory, there is another more geometric approach that is more suitable to
establish a similar theorem for classes of spaces more general than manifolds. This second ap­
proach, due to Chapman himself, is to use controlled topological engulfing to prove a geometric
result on approximate fibrations called the Sucking Principle. The α­Approximation Theorem
then follows from an application of this principle together with the Cell­Like Approximation
Theorem of Siebenmann. In this thesis, based on previous work of B. Hughes, we develop var­
ious tools that address the above approximation questions in a stratified setting of possibly sin­
gular spaces. In particular, we establish the Stratified Radial Engulfing Theorem, the Stratified
Wrapping Up Theorem, the Stratified Handle Theorem, and the Stratified γ­Sucking Theorem.
As a consequence we obtain a Stratified Sucking Theorem with unstratified polyhedral target
space.
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Zusammenfassung

Die Bestimmung von Bedingungen, unter denen eine bestimmte Abbildung einem Homöo­
morphismus nahe kommt, ist ein wichtiges Problem der geometrischen Topologie. Eines der
Hauptergebnisse in diesem Zusammenhang ist der α­Approximationssatz von Chapman und
Ferry, der besagt, dass eine kleine Homotopieäquivalenz zwischen Mannigfaltigkeiten eine
kleine Homotopie zu einem Homöomorphismus besitzt. Hierbei bedeutet die Kleinheitsbedin­
gung an die Homotopie, dass die Spur, die von jedem Punkt während der Homotopie abgedeckt
wird, in den Mengen einer offenen Überdeckung des Zielraums enthalten ist. Um den Satz zu
beweisen, gibt es neben dem ursprünglichen Ansatz von Chapman­Ferry, der einige Ergebnisse
aus der topologischen Chirurgie Theorie verwendet, einen anderen geometrischeren Ansatz,
der besser geeignet ist, die Erweiterung des Satzes für Klassen von Räumen zu beweisen, die
allgemeiner als Mannigfaltigkeiten sind. Dieser zweite Ansatz, der Chapman selbst zu ver­
danken ist, besteht darin, ein kontrolliertes topologisches „Umfangen” zu verwenden, um ein
geometrisches Ergebnis, genannt „Ansaugeprinzip” zu beweisen. Der α­Approximationssatz
folgt dann aus einer Anwendung dieses Prinzips zusammen mit dem zellförmigen Approxima­
tionssatz von L. Siebenmann. In dieser Arbeit entwickeln wir, ausgehend von Ansätzen von B.
Hughes, etliche Werkzeuge, die obige Approximationsfragen in einem stratifizierten Kontext
möglicherweise singulärer Räume adressieren. Insbesondere etablieren wir den stratifizierten
radialen Umfangungssatz, den Satz über stratifiziertes Aufrollen, den stratifizierten Henkel­
satz, und den stratifizierten γ­Ansaugesatz. Als Folgerung erhalten wir einen stratifizierten
Ansaugesatz, in dem der Zielraum ein unstratifizierter Polyeder ist.
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Chapter 1

Introduction

When is a map close to a homeomorphism?

The homeomorphism type of a closed manifold of dimensions 0, 1, and 2 is fully deter­
mined by its homotopy type. In higher dimensions, homotopy equivalences between closed
manifolds are much harder to understand, particularly in the case of non­trivial fundamental
groups. Indeed, there are closed manifolds that are homotopy equivalent but not homeomor­
phic. Historically, the first such examples were the 3­dimensional lens spaces, classified by the
Reidemeister torsion [Coh73]. These phenomena motivated further investigation on the rela­
tionship between homotopy equivalences and homeomorphisms. One of the typical questions
then was when is a homotopy equivalence homotopic to a homeomorphism.

The α­Approximation Theorem of T. A. Chapman and Steve Ferry asserts that a small ho­
motopy equivalence between manifolds is homotopic to a homeomorphism via a small homo­
topy. In this context, the smallness condition on a homotopy means that the size of the track
covered by each point during the homotopy is small when measured by an open cover of the
target space. Such a homotopy is then called an α­homotopy, where the term α denotes the
open cover. This also explains the terminology of the theorem. More precisely, the theorem
states that ifMn and Nn are manifolds then for any open cover α of Nn there is another open
cover β of Nn such that if f : Mn → Nn is a β­homotopy equivalence which is already a
homeomorphism from ∂M to ∂N , then f is α­homotopic to a homomorphism which agrees
with the homeomorphism between boundaries.

The α­Approximation Theorem is true for manifolds of all dimensions. It was first proved
for infinite­dimensional Hilbert­cube manifolds by Steve Ferry using global mapping cylinder
constructions which do not seem to have analogs in finite­dimensions [Fer77]. Chapman­Ferry
proved the theorem for n ≥ 5 by using a handle decomposition of the target space to analyze
the situation on each handle and then get a series of handle problems [CF79]. The handle
problems are then solved by using the torus geometry in the form of Kirby’s torus trick and
Siebenmann’s inversion trick. Some results from topological surgery in the form of a splitting
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theorem and a uniqueness theorem of homotopy tori are also needed. Then, the conclusion of
the theorem is achieved by patching all solutions of the handle problems using the deformation
theorem of Edwards and Kirby [EK71]. In low dimensions, W. Jakobsche proved the case
n = 2, 3 by proving the splitting theorem in these dimensions and then following the arguments
of Chapman­Ferry [Jak83] [Jak88]. The n = 4 case follows from the n = 5 case and the
5­dimensional Quinn’s Thin h­Cobordism Theorem [Qui82] [FW91]. In Chapter 2, we are
presenting the techniques and results that are used in the Chapman­Ferry’s proof as well as
describing the main idea of the proof itself.

The α­Approximation Theorem is also related to another classical problem in geometric
topology, namely determining conditions under which a map is close to a homeomorphism.
The first hint to solve this problem is the fact that the point inverses of a homeomorphism
are all precisely points. Therefore a map that is close to a homeomorphism must have point
inverses that are close to points in some suitable sense. One of the first notions of a set being
close to a point is the concept of the cellular subset of a manifold which was firstly introduced
by M. Brown in [Bro60]. A compact subset of a manifold is cellular if it has arbitrarily small
open neighbourhoods that are homeomorphic to open cells. A map between manifolds with
cellular point inverses is called a cellular map. A cellular subset X of a manifold M is close
to a point in the sense that the quotient space M/X is a manifold and the quotient projection
map π : M → M/X , which is a cellular map, is a uniform limit of homeomorphisms. On the
other hand, R. Finney observed that any map which is a limit of homeomorphisms is necessarily
cellular [Fin68]. This motivated one to make a conjecture that cellular maps are precisely limits
of homeomorphisms

Nevertheless, cellularity is clearly not an intrinsic concept. Whether the image of an em­
bedding φ : X → M is cellular onM or not, does depend on the embedding rather than being
a property of the embedded space X . Any finite­dimensional cellular subset of a manifold,
obviously except a point, can be embedded as a non­cellular subset in Euclidean space with
a dimension greater than twice of its dimension [Edw78]. This motivated R. Lacher to con­
sider embeddability as a cellular subset of some manifold rather than cellularity itself [Lac77].
A space is cell­like if it can be embedded as a cellular subset in a manifold. A map between
ANRs with cell­like point inverses is then called a cell­like map. A proper cell­like map is
called a CE map. Furthermore, W. E. Haver also showed that a cell­like map between separa­
ble ANRs is an α­homotopy equivalence for every α [Hav75]. Therefore, for a map between
separable ANRs, being CE is an example of being α­homotopy equivalence.

Responding to the conjecture that cellular maps are precisely limits of homeomorphisms,
Siebenmann proved his CE Approximation Theorem [Sie72]. The theorem states that a given
CEmap f : Mn → Nn between metric n­manifolds with n ̸= 4 can be approximated arbitrarily
closely by a homeomorphism provided that if n = 5 then the CE map f is already a homeomor­
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phism between boundaries and if n = 3 then each point inverse of f has an open neighborhood
that is prime for connected sum. An important consequence of this theorem that more closely
resembles the conjecture is that the set of cell­like maps between closed n­manifolds is pre­
cisely the closure of the set of homeomorphisms in the space of all maps [Lac77]. In particular,
we obtain that such a cell­like map is homotopic to a homeomorphism. Hence, this theorem is
a special case of the α­Approximation Theorem.

There is a second approach to proving the α­Approximation Theorem for n ≥ 5 which
directly uses the CEApproximation Theorem. This approach, which is due to Chapman himself,
is more geometric because it does not need any facts from surgery [Cha81] [Wei94]. Instead, it
uses a result from topological engulfing called the Sucking Principle of manifold approximate
fibrations. An α­homotopy equivalence is an example of a weaker version of fibration called
α­fibration. A map is called an approximate fibration if it is an α­fibration for each α. Loosely
speaking, the Sucking Principle says that for a given α­fibration there exists an approximate
fibration that is small homotopic to it. Hence, the given α­homotopy equivalence is small
homotopic to an approximate fibration. Furthermore, such an approximate fibration is CE and
therefore Siebenmann’s theorem can be used to achieve the conclusion of the theorem.

The idea of Chapman’s proof of the Sucking Theorem in [Cha81] is by constructing a se­
quence of αi­fibrations so that it starts from the given α­fibration and its limit is the required
approximate fibration. The existence of such a sequence is guaranteed by a result called theHan­
dle Theorem which is proved by solving some handle problems. This handle problem is solved
by a torus argument that comes from wrapping up constructions, this is the stage where the en­
gulfing comes to play. The type of engulfing that is needed in such constructions is a controlled
topological version of Stallings’ engulfing due to Siebenmann, Guillou, and Hähl [SGH74].

The non­manifold case

The geometric nature of Chapman’s approach makes it more applicable in strategies to­
wards obtaining versions of the α­Approximation Theorem for spaces that are more general
than manifolds. M. Steinberger and J. West have used this approach to prove the Equivari­
ant α­Approximation Theorem for the orbit spaces of locally linear group actions that satisfy
some gap condition of codimensions [SW87]. In this thesis, based on earlier works of T. Chap­
man [Cha81] and B. Hughes [Hug04], we develop stratified tools that we hope may be helpful
in establishing the α­Approximation Theorem for stratified spaces. In doing so, we need to
use the stratified adaption of various notions of maps used in Chapman’s approach; we will
work with classes of maps such as stratum­preserving homeomorphisms, stratum­preserving
α­equivalences, stratified α­fibrations, etc. We are recalling the definitions of such classes in
Chapter 3.

We will mainly work in a class of spaces that is suitable for topologically stratified situa­
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tions, namely the class of Quinn’s Homotopically Stratified Spaces. F. Quinn introduced his
class of stratified spaces in [Qui88] to provide “a setting for the study of purely topological strat­
ified phenomena, particularly group actions on manifolds.” The conditions on how the strata
should fit together used to define such stratified spaces are homotopic rather than geometric
conditions. Hence, this class includes the classes of geometrically stratified spaces of Whit­
ney, Thom­Mather, and Browder­Quinn, as well as the class of topologically stratified spaces
of Siebenmann. In Chapter 3, we are also recalling the definitions of those various classes of
stratified spaces and then stating some of the important results that will be of importance to
our work. Namely, the Stratified Isotopy Extension Theorem of Quinn and the Approximate
Tubular Neighborhood Theorem of Hughes. For terminology, a homotopically stratified space
with manifold strata will be called a manifold homotopically stratified space or an MHSS.

In light of the abovemanifold results, a natural approach towards a possible stratified version
of the α­Approximation Theorem and the Sucking Principle is to provide the required stratified
engulfing techniques. In [Hug04], B. Hughes indicated an idea to extend Chapman’s engulfings
to the stratified settings. The idea is as follows, Chapman’s engulfing steps produce a series of
self­homeomorphisms that are then realized by small ambient isotopies of the source space.
In the stratified setting, we can regard these ambient isotopies as isotopies on the strata of the
source space, and then using Quinn’s Stratified Isotopy Extension Theorem, we can construct
stratum­preserving small ambient isotopies of the whole space. This idea will be realized in
Chapter 3 and, among other things, yields a detailed proof of the following result suggested by
B. Hughes:

Stratified Radial Engulfing Theorem. Let B be a compact polyhedron and X be an MHSS
such that the bottom stratum has dim ≥ 5. For every ε > 0 there exists a δ > 0, such that if
f : X → B × R is a stratified δ­fibration over B × [−4, 4], then there is a stratum­preserving
homeomorphism h : X → X such that

(1) f−1(B × (−∞, 1]) ⊂ hf−1(B × (−∞, 0))

(2) h may be chosen so that there is a stratum­preserving (pBf)−1(ε)­isotopy ht : idX ≃ h

which is supported on f−1(B × [−3, 3]).

Next, the stratified radial engulfing will be used to do wrapping up constructions for strati­
fied α­fibrations. In the following statements, B continues to be a compact polyhedron.

Stratified Wrapping Up Theorem I. LetX be an MHSS without boundary such that the bot­
tom stratum has dim ≥ 5. For every ε > 0 there exists a δ > 0, such that if f : X →
B × R is a stratified δ­fibration over B × [−4, 4], then there exists an MHSS without bound­
ary X̃ , a stratified ε­fibration f̃ : X̃ → B × S1, and a stratum­preserving open embedding
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φ : f−1(B × (−1, 1)) → X̃ such that the following diagram commutes:

X̃
f̃

> B × S1

f−1(B × (−1, 1))

φ
∪

∧

f |
> B × (−1, 1).

id×e

∧

The Stratified Wrapping Up Theorem will then be used to solve stratified handle problems
in the form of the following theorem. Note that ct(B) and c̊t(B) denote the closed t­subcone
and the open t­subcone of the cone on some compact polyhedron B, respectively.

StratifiedHandle Theorem. LetX be anMHSSwithout boundary such that the bottom stratum
has dim ≥ 5. Given ε > 0 there exists a δ > 0 such that for everyµ > 0 if f : X → c̊(B)×Rn is
a stratified δ­fibration over c̊3(B)×Dn

3 and a stratified ν­fibration over (c3(B)−c̊1/3(B))×Dn
3 ,

then there exists a stratified µ­fibration f̃ : X → c̊(B) × Rn over c1(B) × Dn
1 which is ε­

homotopic to f rel(X − f−1(c̊2/3(B) × D̊
n

3 )).

The Stratified Handle Theorem is used to solve the handle problems that arise in proving
the Stratified γ­Sucking Theorem of Chapter 4:

Stratified γ­Sucking Theorem. Let X be an MHSS without boundary such that the bottom
stratum has dim ≥ 5 and let B be a compact polyhedron. For every ε > 0 there exists a δ > 0
such that if f : X → B is a stratified δ­fibration then for every γ > 0 there exists a stratified
γ­fibration f ′ : X → B which is ε­close to f .

This theorem has several applications, for example, we use it to prove the following:

Stratified Sucking Theorem. LetX be an MHSS without boundary such that the bottom stra­
tum has dim ≥ 5 and let B be a compact polyhedron. Then for every ε > 0, there exists a
δ > 0 such that if f : X → B is a proper stratified δ­fibration, then f is ε­near to a stratified
approximate fibration.

The proof is by using the Stratified γ­Sucking Theorem to construct sequences {δi}i=1,2,...

and a sequence of stratified δi­fibrations starting from the given stratified δ­fibration so that
the limit is the required stratified approximate fibration. Based on arguments of Chapman, B.
Hughes sketched a proof of a similar theorem but with manifold target space [Hug04]. The next
step in this program would be to develop a version of the Stratified Sucking Theorem in which
the target is allowed to be stratified. A possible idea to do this is to use Hughes’ Approximate
Tubular Neighborhood Theorem.





Chapter 2

Geometric Topology of Manifolds

The purpose of this chapter is to describe key tools in geometric topology of manifold. We dis­
cuss the Torus Trick, the Wrapping Up Construction, and the Handle Problem. We also present
some related results on topological manifolds such as the Generalized Schoenflies Theorem,
Local Contractibility Theorem of the Homeomorphisms Group of Manifolds, and the Defor­
mation Theorem of Embeddings.

2.1 Kirby’s Torus Trick

At the 1963 Conference on Differential and Algebraic Topology in Seattle, Washington, John
Milnor put forward the following list of the seven most important problems in geometric topol­
ogy:

(1) (The Double Suspension Problem) LetM3 be a homology sphere with non­trivial funda­
mental group, is the double suspension ofM3 homeomorphic to S5?

(2) (Topological Invariance of Whitehead Torsion) Is simple homotopy type a topological
invariant?

(3) (Topological Invariance of Rational Pontrjagin classes) Can rational Pontryagin classes
be defined as topological invariants?

(4) (The Hauptvermutung) If two PL­manifolds are homeomorphic, does it follow that they
are PL­homeomorphic?

(5) (The Triangulation Problem) Can topological manifolds be triangulated?

(6) (Low Dimensional Poincaré Conjecture) Is the Poincaré conjecture true in dimensions 3
and 4?

7



8 2.1. Kirby’s Torus Trick

(7) (The Annulus Conjecture) Is the region bounded by two locally flat n­sphere in Rn+1

necessarily homoeomorphic to Sn × [0, 1]

Much progress has been made on these problems, in fact, only the 4­dimensional PL/DIFF
Poincaré conjecture remains open. Problems 1, 2, 3, and 7were solved affirmatively by Edwards­
Cannon [Edw77] [Can79], Chapman [Cha74], Novikov [Nov66], and Kirby [Kir69], respec­
tively. Whereas problems 4 and 5 were solved negatively by Kirby­Siebenmann [KS69]. M.
Freedman solved the 4­dimensional TOP Poincaré conjecture [Fre82] and, relatively recently,
G. Perelman solved the 3­dimensional Poincaré conjecture for all categories. For an excellent
geometric topology reference towards the solutions of the above problems, see [Fer77].

This section is devoted to the Torus Trick which was first introduced in 1969 by R. Kirby
in his solution of the Annulus Conjecture. This trick is so powerful in studying the geometric
topology of topological manifolds. In fact, the trick has then inspired in solving other Milnor
problems, namely problems 2, 3, 4, and 5. It also motivated the proof of several important
theorems in geometric topology including the Deformation Theorem of Embeddings and the
α­Approximation Theorem. We will describe the torus trick by considering the simplest case
in which the trick is used. We will describe the sketch of the proof of the local contractibility
theorem of the homeomorphisms group of Rn. This proof came alongside the solution of the
Annulus Conjecture in [Kir69].

In this context, a spaceX is locally contractible if each of its points has a contractible basis
neighborhood. Let H(Rn) denotes the space of self­homeomorphisms between Rn with the
compact­open topology.

Theorem 2.1 (Kirby). H(Rn) is locally contractible.

It is a well­known fact thatH(Rn) is a topological group. Hence, to prove the local contractibil­
ity theorem, it is sufficient to only consider the basis neighborhood of the identity map. For any
ε > 0 and compact subset K in Rn, such a basis neighborhood is given by

NK,ε(id) := {h : Rn → Rn | d(x, h(x)) < ε, for x ∈ K}.

The idea of the proof is to show that any h ∈ NK,ε(id) is isotopic to the identity by using
the fact that a homeomorphism between torus can be lifted to a periodic homeomorphism via
universal covering. Such a periodic homeomorphism is bounded and hence by Alexander’s
trick is isotopic to the identity.

To be more precise, we are given a homeomorphism h : Rn → Rn such that d(x, h(x)) < ε

for ε > 0 and x ∈ K. We construct the following commutative diagram of spaces and maps in
which the given homeomorphism appears at the bottom of the diagram.

1. For r ≥ 0, let rDn denotes the n­dimensional disk of radius r. The map α : T n −Dn →
Rn is an immersion such that α(T n − Dn) is contained in K. The existence of such
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immersions is guaranteed by the immersion theorem of Smale­Hirsch. Steve Ferry also
has explicitly constructed such immersion.

2. Let Dn and 2Dn be concentric so that h̄ : T n − 2Dn → T n −Dn is an inclusion. Since
both the source and the target spaces are contained in K, we can choose ε > 0 small
enough so that we have that h̄ is a homeomorphism. Hence we have that the bottom
rectangle in the diagram is commutative.

3. The vertical maps in the middle rectangle are inclusions. In the source space, we just
coning off the boundary of T n − 2Dn. Whereas on the target space we need to use an
adaption of the generalized Schoenflies theorem. This theorem says that the image of any
locally flat embedding of an n­sphere into an (n+1)­sphere bounds two (n+1)­disks. In
fact, h̄(∂2Dn) is a locally flat submanifold of T n −Dn, hence it bounds an (n+ 1)­disk
and we can just cone off the boundary as before. Finally, we radially extend h̄ along these
disks to get a self­homeomorphism of torus ĥ.

Rn Rn

T n T n

Bn Bn

T n − 2Dn T n −Dn

Rn Rn.

h̃

en en

ĥ

i h̄

α| α

h

4. Now we use the universal covering maps en to lift h̄ and get a periodic homeomorphism
h̃. This periodic homeomorphism is then bounded and we can use the result of Connell
that a bounded homeomorphism is isotopic to the identity.

5. We can assume that Dn is in the top handle of T n, so we just modify this handle. Let
Bn be the 0­handle. Hence all the triangles in the diagram are commutative and we have
that h = h̃ on Bn. Therefore, h is isotopic to the identity on Bn. By composing with
Alexander’s isotopy, we conclude that h is isotopic to the identity on the whole Rn.

Note that the above construction can be made more canonical in the sense that if h varies con­
tinuously, then all the lifts will also vary continuously. Therefore, we can conclude that any
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neighborhood basis of the identity is contractible and hence H(Rn) is locally contractible. To
do this, we need the following canonical version of the generalized Schoenflies theorem.

The Canonical Generalized Schoenflies Theorem. There exists an ε > 0 such that if f :
Sn−1 × [−1, 1] → Rn is an embedding within ε of the identity map, then f |Sn−1×{0} extends
canonically to an embedding f̄ : Dn → Rn. The embedding f̄ is canonical in the sense that f̄
depends continuously on f and if f = id, then f̄ = id.

Moreover, we can regard Rn in the above construction as the 0­handle and we can cross all
spaces in the above diagram with Dk for some integer k > 0 to get a similar construction for
the k­handle. Hence, by the fact that compact manifolds admit handlebody decompositions, R.
Edwards andR. Kirby proved the local contractibility of the homeomorphisms group of compact
manifolds. This result is a consequence of their Deformation Theorem of Embeddings [EK71].

Deformation Theorem of Imbeddings (Edwards­Kirby). LetMn be a topological manifold.
If C is a compact subset of M which is contained in an open subset U , then for every ε > 0
there is a δ > 0 so that if h : U → M is an open embedding with d(h(x), x) < δ, then there is
a homeomorphism h̄ : M → M so that h̄|C = h|C , h̄|(M−U) = id, and d(h̄(x), x) < ε.

There is a variation of the Torus Trick in which, to produce a homeomorphism between
torus, one replaces the use of punctured torus immersion with a construction called wrapping
up, see Section 8 of [EK71].

Wrapping Up Lemma. Let h : 4Bn → Rn be a proper embedding that is sufficiently close to
the identity map. Then, there exists a homeomorphism ĥ : T n → T n such that

(1) ĥ|2Bn = h|2Bn

(2) ĥ depends continuously on h and if h = id, then ĥ = id.

The idea of the proof is to regard (−6, 6) × T n−1 as an open subset of Rn and since h is suffi­
ciently small it restricts to a homeomorphism h| : (−6, 6) × T n−1 → (−6, 6) × T n−1. Then,
by using the universal covering e : R → S1 we lift h| to get homeomorphism ĥ : T n → T n

T n T n

(−6, 6) × T n−1 (−6, 6) × T n−1.

ĥ

e×idT n−1

h|

e×idT n−1

Note that the construction can be done carefully so that we get the conclusion of the lemma,
that is by choosing so that (−6, 6) × T n−1 ⊂ 4Bn and e× idT n−1 |Bn = idBn .
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This variation is more applicable to consider the non­manifold case. For instance in [Sie71],
Siebenmann used this to prove the local contractibility theorem of the homeomorphisms group
of CS spaces. In this thesis, we will use a stratified wrapping up construction to solve our
stratified handle problems.

2.2 Chapman­Ferry Handle Problems

In geometric topology, many theorems about manifolds can be solved by firstly solving handle
problems. Suppose we are given a homeomorphism f : M → N between manifolds in which
N admits a handle decomposition and we want to isotop f to a special map. By special map,
we mean categories of maps such as CAT embeddings (CAT=TOP, DIFF or PL), cell­like maps,
small­homotopy equivalences, or approximate fibrations. It suffices to analyse the situation in
which the homeomorphism is to the handles ofN and then to get series of handle problems that
usually can be solved by using the torus trick.

To be more precise, we can regard Bk × Rn as a model of an open k­handle with core
Bk × 0. A handle problem means a topological embedding h : Mn+k → Bk × Rn from a
manifoldMn+k which is a special map over a neighborhood of ∂Bk × Rn. The problem h is
said to be solved if there exists an isotopy ht : Mn+k → Bk × Rn for t ∈ [0, 1], such that:

(1) h0 = h

(2) h1 is a special map near Bk ×Bn

(3) ht = h over the complement of a compact set and over a neighborhood of ∂Bk × Rn for
all t ∈ [0, 1].

In general, the torus trick takes a piece of the given embedding and extends it in such a way
that it has nice properties near infinity. For example, in the proof of the local contractibility of
H(Rn) above, the torus trick is used to solve a 0­handle problem of TOP embeddings.

This section is devoted to describing the handle problems that occur in the Chapman­Ferry’s
proof of the α­Approximation Theorem for manifolds. First we recall the notions of small­
homotopy and small­homotopy equivalence with respect to an open cover of the target space.
Let α be an open cover of a space Y , a homotopy h : X × I → Y from a space X is said to be
an α­homotopy if for each x ∈ X there isU ∈ α such that F ({x}×I) ⊂ U . A map f : X → Y

is said to be α­homotopic to another map g : X → Y if there is an α­homotopy connecting
both maps. Let A ⊂ Y , a map f : X → Y is an α­homotopy equivalence (or α­equivalence)
over A provided that there is a map g : A → X , called an α­inverse of f over A, such that
the composition fg is α­homotopic to idY and the composition gf |f−1(A) is f−1(α)­homotopic
to idX . Note that if Y has a specified metric, for an ε > 0 we can use an open cover of Y
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which contains open balls of radius ε. Hence, by ε­homotopy and ε­equivalence we mean a
small­homotopy and small­equivalence with respect to this open cover.

Theorem 2.2 (The Manifold α­Approximation Theorem). Let Nn be a closed topological
manifold with a fixed topological metric. For every ε > 0 there exists a δ > 0 such that ifMn

is a manifold and f : M → N is a δ­equivalence, then f is ε­homotopic to a homeomorphism.

Chapman­Ferry proved the theorem by using a handle decomposition of N to get some handle
problems that then be solved by a torus argument. The handle problem is solved by proving
the following Handle Lemma. The Handle Lemma is then used to prove the following Handle
Theorem. Note that this proof is modelled on Siebenmann’s proof of the CE Approximation
Theorem in [Sie71].

For notation of the following Manifold Handle Lemma and Manifold Handle Theorem, let
V n be a manifold with a fixed topological metric in which n = k + m ̸= 4. Let f : V n →
Bk × Rn be a proper map such that f−1(∂Bk × Rm) = ∂V n and f is a homeomorphism over
a neighborhood of ∂Bk × Rn such as (Bk − 1

2B̊
k
) × Rn.

Manifold Handle Lemma. For every ε > 0 there exists a δ > 0 so that if f is a δ­equivalence
over a neighborhood of 0 say Bk × 3Bm, form ≥ 1, then:

(1) there exists an ε­equivalence F : Bk × Rm → Bk × Rm such that F = id over a
neighborhood of ∞ for instance [(Bk − 5

6B̊
k
) × Rm] ∪ [Bk × (Rm − 4B̊

m
)], and

(2) there exist a homeomorphism ϕ : f−1(U) → F−1(U) such that F ◦ ϕ = f |f−1(U) where
U = (Bk − 5

6B̊
k
) × Rm ∪Bk × 2Bm.

Manifold Handle Theorem. For every ε > 0 there exists a δ > 0 so that if f is a δ­equivalence
over a neighborhood of 0 such as Bk × 3Bm, then there exists a proper map f̃ : V → Bk × R
which satisfies:

(1) f̃ is an ε­equivalence over a smaller neighborhood of 0 such as Bk × 2.5Bm

(2) f̃ = f over a neighborhood of ∞ namely [(Bk − 5
6B̊

k
) × Rn ∪Bk × (Rm − 2B̊

m
)]

(3) f̃ is a homeomorphism over another smaller neighborhood of 0 say Bk ×Bm.

The proof of the Handle Lemma is by constructing a commutative diagram of spaces and
maps consisting of the following:

1. We are given a δ­equivalence f overBk×3Bm. As above, α is an immersion of punctured
torus. The bottom rectangle comes from a pullback construction. Since idB × α is an
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immersion, α′ is also an immersion and henceW0 is an n­manifold. For sufficiently small
δ, the lift f0 is a δ0­equivalence where the size of δ0 depends on the size of δ.

2. Since f is a homeomorphism near the boundary, we can add a copy of (Bk − 2
3B

k)×{x0}
to get a manifoldW1 containingW0 and a proper map f1 which is an extension of f0. Note
that f1 is a δ1­equivalence where the size of δ1 depends on the size of δ0.

Bk × Rm Bk × Rm

Bk × Rm Bk × Rm

Bk × Tm W3 Bk × Tm

W2 (Bk × Tm) − D̊
n

W1 (Bk × Tm) − (2
3B

k × {x0})

W0 Bk × (Tm − {x0})

V Bk × Rm.

F

idB×em

F ′

j

idB×em

j

f3h

f2

f1

α′

f0

idB×α

f

3. The end of (Bk × Tm) − (2
3B

k × {x0}) can be parametrized as Sn−1 × R. Then, if δ1 is
sufficiently small, f1 restricts to proper map f1| : f−1(Sn−1 × R) → Sn−1 × R which is
a δ1­equivalence over Sn−1 × [−2, 2]. By the Splitting Theorem, there exists a bicollared
(n− 1)­sphere S ⊂ f−1

1 (Sn−1 × [−1, 1]) such that f1|S : S → Sn−1 × R is a homotopy
equivalence. Choose Dn to be a disk in Bk × Tm containing 2

3B
k × {x0} and letW2 to

be the component ofW1 that does not contain Dn. Define f2 = f1|W2 . Note that at this
stage we have lost some control.

4. By attaching toW2 a cone over S we can getW3. Note that f2 extends to a proper map
f ′

3. We regain the lost control by stretching out a collar on a disk 2Dn which containsDn

and squeezing Dn to be small. The result is a δ2­equivalence f3.

5. We choose h to be a homeomorphism which agrees with f3 over (Bk − 5
6B̊

k
) × Tm and

which is homotopic to f3. For n ≥ 5, the existence of h is a consequence of topological
surgery, namely from the result that any homotopy Bk × Tm is a real Bk × Tm rel ∂
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[Sie71]. For n = 4, the existence of h is a consequence of Waldhausen’s Irreducibility
Theorem [Jak88].

6. The map em is the universal covering. F ′ : Bk × Rm → Bk × Rm is the lift of f3 ◦ h−1

which is the identity on (Bk − 5
6B̊

k
) × Tm and homotopic to the identity. Hence, from

the elementary covering­space theory, F ′ is bounded. If δ3 is sufficiently small, F ′ is an
ε­equivalence in which the size of ε depends on the size of δ3.

7. We define J : Rn → 4B̊
k

× 4B̊
m
to be the radial homeomorphism which is fixed on

2Bk × 2Bm. Then j : Bk × Rm → Bk × Rm is defined by restricting J . It is clear that
j is an open embedding.

8. Next, F : Bk ×Rm → Bk ×Rm is defined to be the conjugation of F ′ by j on Bk ×Rm

and to be the identity elsewhere.

9. Finally, from the above diagram we can construct the following diagram:

F−1(Bk × 2Bm) Bk × 2Bm

f−1
0 (id× em)(Bk × 2Bm) (id× em)(Bk × 2Bm)

f−1(Bk × 2Bm) Bk × 2Bm.

h(id×em)j−1

F

id×em

α′

f0|

id×α

f |

Note that all vertical arrows are homeomorphisms. Thus, we can get a homeomorphism
ψ : f−1(Bk×2Bm) → F−1(Bk×2Bm) by composing the inverse of the vertical maps on
the left. We obviously have that Fψ = f |f−1(Bk×2Bm) and ψ = f on (Bk − 5

6B̊
k
)×2Bm.

Hence, ψ extends to the desired homeomorphism ϕ.

Now, we turn to the proof of the Handle theorem. The idea is to switch the roles of 0 and
∞ by using a method called Siebenmann’s Inversion Trick [Sie71]. The case when m = 0 is
easy and it follows from the TOP generalized Poincaré Conjecture and coning. Form > 0, the
inversion trick is roughly as follows, by applying the Handle Lemma we obtain a homeomor­
phism F : Bk × Rm → Bk × Rm which is equal to the identity on the neighborhood of ∞.
We identify Rm ∪ {∞} with Sm. Then compactify the homeomorphism by adding the point
∞ and extending by the identity to obtain a homeomorphism between Bk × Sm. Consider the
restriction F | : Bk ×Rm −F−1(Bk ×{0}) → Bk × (Rm −{0}), this map will extend to a map
F1 : V1 → Bk × (Sm −{0}) in which V1 is a manifold. The compactification can be carried out
so that F1 is a δ1­equivalence over a compactum in Bk × (Sm − {0}) and a homeomorphism
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over (Bk − 5
6B̊

k
) × (Sm − {0}). Note that in this stage we have switched 0 and ∞. Then, we

apply the Handle Lemma to F1 and obtain the desired f̃ . Note that in this stage we also need to
use the Splitting Theorem and the Generalized Schoenflies Theorem. The Handle Theorem is
then used to prove the following.

Lemma 2.1. Let f : Mn → Nn be a proper map in which ∂M = ∅ andN is an open subset of
Rn. Choose a compactum C inN which is contained in another compactum C̃. Then, for every
ε > 0 there exists a δ > 0 so that if f is a δ­equivalence over C̃, then there exists a proper map
g : Mn → Nn which is ε­close to f and which is a homeomorphism over C.

With Lemma 2.1, we are ready to prove Theorem 2.2. WriteN as an infinite union of openly
embeddable subset Ni of Rn in which {Ni} is a star­finite cover of N . For each i, let Ci be a
compactum inNi which is contained in the interior of another compactum C̃i so that ∪Ci = N .
Hence by Lemma 2.1, there is a proper map gi : f−1

i (Ni) → Ni approximating f |f−1
i (Ni) which

is a homeomorphism over C̃i. We then glue all the embeddings gi|Ci
together by using the

Deformation Theorem of Edwards­Kirby to obtain the desired homeomorphism.
Note that in both the Handle Lemma and Handle Theorem, we need the Splitting Theorem.

In fact, the Theorem is the most essential and difficult part of Chapman­Ferry’s approach.

The Splitting Theorem. Let W n be a manifold without boundary such that n ̸= 4 and f :
W → Sn−1 × R be a proper map which is a p−1

R (ε)­equivalence over Sn−1 × [−2, 2] where
pR : Sn−1 ×R → R is the projection map. If ε is sufficiently small, then there exists an (n−1)­
sphere S ⊂ (pRf)−1(−1, 1) such that f | : S → Sn−1 × R is a homotopy equivalence, S is
bicollared, and S separates the component of W n containing f−1(Sn−1 × [−1, 1]) into two
components, one containing f−1(Sn−1 × {−1}) and one containing f−1(Sn−1 × {1}).

In [CF79], Chapman­Ferry only gave the proof of the Splitting Theorem (and hence the proof
of the α­Approximation Theorem) for dimensions n ≥ 5. The proof is modeled on the Split­
ting Theorem for Siebenmann’s Boundary Theorem which uses topological surgery theory.
In [Jak83], W. Jakobsche proved the theorem for n = 2, 3 using PL techniques that exist in
these dimensions, and then, in [Jak88], he proved the Manifold α­Approximation Theorem for
these dimensions. Hence to sum up, the Manifold α­Approximation Theorem is true for all di­
mensions. The infinite­dimensional case was proved first by Steve Ferry himself using global
mapping cylinder constructions which do not seem to have analogs in finite­dimensions. The
case n = 0 is trivial and the case n = 1 is obvious. The n = 4 case follows from the n = 5
case and the 5­dimensional Quinn’s Thin h­Cobordism Theorem [Qui82] [FW91].





Chapter 3

Topologically Stratified Spaces

The purpose of this chapter is twofold. Firstly, to present the definition of a class of stratified
spaces called manifold homotopically stratified spaces. This notion of stratified spaces has
been first introduced by Frank Quinn in [Qui88]. It includes geometrically stratified spaces
of Whitney, Thom­Mather, and Browder­Quinn, as well as topologically stratified spaces of
Siebenmann. Secondly, to develop stratified version of small­equivalences and approximate
fibrations. We also show that some results concerning these categories of maps on manifold
settings can be generalized to stratified settings.

3.1 Geometrically Stratified Spaces

The section is devoted to discussing some categories of geometrically stratified spaces. Those
are stratified spaces in which there are geometric conditions on how the strata should fit to­
gether. Such conditions are also related to the existence of bundle neighborhoods of strata. The
presentation of this section will closely follow the treatments in [HW00], [Ban07] and [Fri20].

We start by defining general stratified spaces or spaces with a stratification.

Definition 3.1. A stratification of a spaceX indexed by an index set I is a locally finite partition
{Xi}i∈I of locally closed subspaces ofX . For i ∈ I, the subsetXi is called the i­stratum ofX ,
and the closed subsetX i = ∪{Xk | Xk ∩ cl(Xi) ̸= ∅} is called the i­skeleton ofX . In the case
when I = N, the depth of the stratification is defined to be d = sup{i− j | Xi ̸= ∅ ̸= Xj}. A
space X is a stratified space with a stratification {Xi}i∈I if it admits a stratification {Xi}i∈I .

However, we need to introduce a condition which eliminate some pathologies in how the
strata of a stratification can fit together.

Definition 3.2. A stratification {Xi}i∈I is said to satisfy the frontier condition if for every
i, j ∈ I, the condition Xi ∩ cl(Xj) ̸= ∅ implies Xi ⊆ cl(Xj).

17
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For a space X with stratification {Xi}i∈I , an ordering relation ≤ can be defined on I by
setting i ≤ j if and only ifXi ⊆ cl(Xj). If the stratification satisfies the frontier condition, then
≤ is a partial ordering of I and for each i ∈ I we have X i = cl(Xi). For the proofs of these
facts, see [Hug99].

Tomotivate the notions of geometric stratifications, we consider a real algebraic set V ⊂ Rn

which is a common locus of finitely many real polynomials. The singular set ΣV of all points
where V fails to be a smooth variety is also an algebraic set. Hence, there is a finite filtration
V = V m ⊇ V m−1 ⊇ · · · ⊇ V 0 ⊇ V −1 = ∅ where V i−1 = ΣV i. We obtain a stratification of
V by setting the i­stratum as Vi = V i − V i−1. However, the strata need not have well­behaved
neighborhoods, the local topological type need not be locally constant along strata. To illustrate
this situation, consider the locus of x2 = zy2 which is an algebraic set in R3 known as the
Whitney umbrella. The singular set ΣV is the z­axis which is clearly a smooth manifold, hence
we obtain just two strata namely V − ΣV and ΣV . However, there is a drastic change in the
neighborhood ofΣV in V when we pass through the origin, for negative z a small neighborhood
ofΣV onlymeetsΣV and this is not the case for positive z. ThismotivatedWhitney to introduce
his conditions A and B.

Definition 3.3 (Whitney Stratified Spaces). Let M be a smooth manifold and Z ⊂ M be a
closed subset. A stratification {Si}i∈I of Z which satisfies the frontier condition is called a
Whitney stratification provided that it fulfills the following.

(1) Each stratum Si is a submanifold ofM .

(2) For i < j, the strata Si and Sj satisfy the following Whitney’s conditions. Suppose:

• (xi) ⊂ Sj is a sequence of points converging to a point y ∈ Si such that the tangent
spaces Txi

Sj converge to a limiting tangent space τ .

• (yi) ⊂ Si is a sequence of points which is also converging to y ∈ Si such that the
secant lines li = xiyj converge to a limiting line l.

Then, (Condition A) TySi ⊂ τ and (Condition B) l ⊂ τ .

A space with a Whitney stratification is called aWhitney stratified space.

Note the definition turns out to be somewhat redundant, as it was shown by J. Mather that
Condition B implies Condition A. The Whitney umbrella with the above stratification is not a
Whitney stratified space. However, we can choose another stratification in which the origin is
regarded as a stratum to get a Whitney stratification. A similar construction also works for a
class of spaces that is more general than algebraic sets called semi­algebraic sets. It is a finite
union of sets that are the locus of finitely many polynomial equations and inequalities. For
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example real algebraic sets and polyhedra. Moreover, the class of Whitney stratified spaces
also include real and complex analytic sets.

Next, we discuss other more general categories of geometric stratified spaces in which the
geometric conditions are encoded by the existence of some neighborhoods of strata.

Definition 3.4 (Thom­Mather Stratified Spaces). Let k be an integer. A Ck­Thom­Mather
stratified space is a triple (X,S,T) such that:

(1) S = {Xi}i∈I is a stratification of X such that each stratum Xi is a Ck­manifold.

(2) T = (Ti, πi, ρi) is called a tube system and consists of open neighborhoods Ti of Xi

which is called tubular neighborhoods, retractions πi : Ti → Xi which is called the local
retractions of Ti and maps ρi : Ti → [0,∞) such that Xi = ρ−1(0).

(3) For each pairXi, Xj ∈ S, we have aCk­submersion (πij, ρij) : Tij → Xi × [0,∞)where
Tij = Ti ∩Xj , πij = πi|Tij

and ρij = ρi|Tij
.

(4) For each triple Xi, Xj, Xk ∈ S and x ∈ Tjk ∩ Tik ∩ π−1
jk (Tij), we have the following

compatibility conditions: πij ◦ πjk(x) = πki(x) and ρij ◦ ρjk(x) = ρki(x).

J. Mather has proved that every Whitney stratified space admits a C∞­Thom­Mather strat­
ification. Moreover, by using the Thom Isotopy Lemmas, Mather has also proved that each
stratum Xi in a Thom­Mather stratified space has a mapping cylinder neighborhood in which
the projection map is a fiber bundle projection over that stratum. Furthermore, the existence of
this mapping cylinder neighborhood is abstracted by W. Browder and F. Quinn.

Definition 3.5 (Browder­Quinn Stratified Spaces). Let X be a space with a stratification
{Xi}i∈I satisfying the frontier condition. The stratification {Xi}i∈I is said to be aCk­Browder­
Quinn stratification ofX provided that for every i, there is a closed neighborhoodNi of ΣXi =
X i −Xi in X i and a map νi : ∂Ni → ΣXi, such that:

(1) each stratum Xi is a Ck­manifold,

(2) ∂Ni is a codimension 0 submanifold of Xi,

(3) Ni is the mapping cylinder of νi,

(4) If i < j andWi = Xi − intNi, then νj| : ν−1
j (Wi) → Wi is a Ck­submersion.

Note that the definitions of both Thom­Mather space and Browder­Quinn space incorporate the
topological case by taking k = 0.
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3.2 Quinn’s Manifold Homotopically Stratified Spaces

The notion of homotopically stratified spaces has been first introduced to provide a setting for
the study of purely topological stratified phenomena [Qui88]. The conditions used to define
homotopically stratified spaces are homotopic rather than geometric conditions. Hence, this
class of stratified spaces is very general. It includes the topological cases of various classes of
geometrically stratified spaces that have been discussed in the previous chapter.

To define the homotopically stratified spaces, we some notions of maps that are compatible
with a given stratification.

Definition 3.6. Amap between spaces with stratifications is stratum­preserving if it takes strata
into strata. If X is a space with stratification {Xi}i∈I then a map F : Z × A → X is said to
be stratum­preserving along A with respect to the stratification if for each z ∈ Z there is some
i ∈ I such that F ({z} × A) ⊂ Xi. Particularly, for the unit interval I , a map F : Z × I → X

is a stratum­preserving homotopy if it is stratum­preserving along I and is a nearly stratum­
preserving homotopy if its restriction to Z × [0, 1) is stratum­preserving along [0, 1).

Definition 3.7. Let X and Y be spaces with stratifications {Xi}i∈I and {Yj}j∈J , respectively.
Let Z be a space, a map f : Z → Y is said to be stratum­preserving homotopic to another map
g : Z → Y if there exist a stratum­preserving homotopy F : Z × I → Y such that F0 = f and
F1 = g. A map f : X → Y is said to be a stratum­preserving homotopy equivalence provided
that there exists another map g : Y → X such that f ◦ g : Y → Y is stratum­preserving
homotopic to idY with respect to {Yj}j∈J and g ◦ f : X → X is stratum­preserving homotopic
to idX with respect to {Xi}i∈I .

Next, we discuss a homotopy condition of subspaces that will be of importance in defining
homotopically stratified spaces.

Definition 3.8. LetX be a space with a stratification {Xi}i∈I and Y ⊂ X . Then Y is said to be
forward tame inX if there exists a neighborhood U of Y inX and a homotopy h : U × I → X

such that ht|Y = inc. : Y ↪→ X for each t ∈ I , h0 = inc. : U ↪→ X , h1(U) = Y , and
h((U \ Y ) × [0, 1)) ⊆ X \ Y .

Intuitively, the definition says that points of U \ Y remain in the same stratum until the last
moment of the homotopy when everything gets pushed into Y .

Another notion that will be important in defining homotopically stratified spaces is the no­
tion of the homotopy link. It is a path space that will be a homotopical model of neighborhoods
of strata. The idea to use path spaces as neighborhoods originally goes back to E. Fadell in which
he used it as the total spaces of topological normal bundles in order to construct a topological
version of Stiefel­Whitney classes [Fad65]. It should be noted that all mapping space will be
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assumed to be given the compact­open topology. We denote by Y X the space of continuous
maps from X to Y .

Definition 3.9. Let X be a space with a stratification {Xi}i∈I and Y ⊂ X .

(1) The homotopy link of Y in X is the space of paths that start in Y but leave it instantly:

holink(X,Y ) = {ω ∈ XI | ω(t) ∈ Y if and only if t = 0}.

(2) The stratified homotopy link of Y in X is defined by

holinks(X,Y ) = {ω ∈ holink(X, y) | ω(t) ∈ Xi for some i and for all t ∈ (0, 1]}.

(3) Let x0 ∈ Xi ⊆ X . The local homotopy link at x0 is defined by

holink(X, x0) = {ω ∈ holinks(X,Xi) | ω(0) = x0}.

(4) Evaluation at 0 defines a map q : holink(X,Y ) → Y called holink evaluation map.

The stratified homotopy link holinks(X,Y ) has a natural stratification induced by the strat­
ification of X in which the i­stratum is defined by holinks(X,Y )i = {ω ∈ holinks(X,Y ) |
ω(1) ∈ Xi}. The local holink at x0 inherits a natural stratification from holinks(X,Y ).

Definition 3.10. A space X with a stratification {Xi}i∈I satisfying the frontier condition is a
manifold homotopically stratified space (MHSS) if the following conditions are fulfilled:

(1) Manifold strata property. X is a locally compact, separable metric space and each stratum
Xi is a topological manifold without boundary.

(2) Forward tameness. For each k > i, Xi is forward tame in Xi ∪Xk.

(3) Normal fibration. For each k > i, the holink evaluation map q : holink(Xi ∪Xk, Xi) →
Xi is a fibration.

(4) Compactly dominated local holinks. For each x0 ∈ X there exists a compact subset
C ⊂ holink(X, x0) and a stratum­preserving homotopy

h : holink(X, x0) × I → holink(X, x0)

such that h0 = id and h1(holink(X, x0)) ⊆ C.

If X only satisfies the condition (2) and (3), then X is called a homotopically stratified space.
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One of the important classes of examples of MHSS is the class of Siebenmann CS sets
that was originally considered as a suitable setting for topologically stratified phenomena. L.
Siebenmann introduced this class of stratified space in his work proving the local contractibility
of the homeomorphisms group of compact polyhedra. To define Siebenmann’s stratified spaces
we need the notion of a cone over a space. Let B be a compact space, then the cone over B
is defined to be the quotient c(B) = B × [0,∞]/ ∼ in which the equivalence relation ∼ is
generated by (b, 0) ∼ (b′, 0) for all b, b′ ∈ B. Similarly, the open cone over B is defined by
c̊(B) = B × [0,∞)/ ∼.

Definition 3.11. LetX be a space with stratification {Xi}i∈I . ThenX is locally cone­like if for
all i ∈ I and for each x ∈ Xi there is a neighborhood U of x in Xi, a neighborhood N of x in
X which is called a distinguished neighborhood, a compact space with stratification L which is
called a link, and a homeomorphism h : U× c̊(L) → N such that h(U× c̊(Lk)) = X i+k+1 ∩N .
A locally cone­like space is called a CS space if each stratum is a manifold.

Note that in defining the locally cone­like spaces as above, Siebenmann did not require the
Frontier Condition, however it can be shown that the condition follows from the definition.
See [Fri20] for a proof of this fact. It is immediate from the definition that a distinguished
neighborhood of a CS space is of the form Dn × c̊(L). This induces a natural stratified handle
decomposition in which a k­handle is defined as Dk × c̊(L), see [Sie71].

Example 3.1. Let B be a polyhedron with a specified PL triangulation. This triangulation
induces a stratification in which, for each i, the open i­simplices of B can be regarded as the i­
strata of this stratification. This stratification can be shown to satisfy the frontier condition. The
cone­like structure is constructed as follows. For each barycenter b ∈ B, letCb be the closed star
of b in the second barycentric subdivision ofB. It is clearly PL homeomorphic to c1(Xb) ×Dk,
whereXb is a compact polyhedron andDk is a neighborhood of b in the corresponding simplex.

The rest of this section is devoted to stating two fundamental results in [Qui88], namely the
Quinn’s Isotopy Extension Theorem and the Whole Tameness Theorem.

Theorem 3.1 (Stratified Isotopy Extension). LetX be a MHSS such that if there exist indices
j < k such that j ≤ i then dim(Xk) ≥ 5,

(1) If U is a neighborhood of the i­skeletonX i inX and h : X i × I → X i × I is a stratum­
preserving isotopy, then there exists an extension of h to a stratum­preserving isotopy
h̃ : X × I → X × I supported on U .

(2) If C ⊆ V ⊆ X such that C ⊂ X is closed in X , V is open and ht|V ∩Xi is the inclusion
for each t ∈ I , then h̃ may be chosen such that h̃t|C is the inclusion for each t ∈ I .
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The defining property of MHSS says that each stratum is forward tame in its higher strata.
The whole tameness says that such property can be generalized to the whole space. See also
[Hug99]. To state the theorem, we need the notion of stratified fibration.

Definition 3.12. LetX and Y be spaces with stratifications {X}i∈I and {Y }j∈J , respectively,
and p : X → Y be a map. Then,

(1) a stratified homotopy lifting problem (SHLP) of p consists of a spaceZ, a map f : Z → X

and a stratum­preserving homotopy F : Z × I → Y such that F (0, z) = pf(z) for each
z ∈ Z, i.e. the following diagram is commutative

Z X

Z × I Y.

f

×0 p

F

(2) p is a stratified fibration provided that given any SHLP as above, there exists a stratified
solution, i.e. a stratum­preserving homotopy F̃ : Z × I → X such that F̃ (z, 0) = f(z)
for each z ∈ Z and pF̃ = F

Z X

Z × I Y.

f

×0 p

F

F̃

Example 3.2. IfX is a space with a stratification {Xi}i∈I and A is a space then we can regard
X × A as a space with a stratification {Xi × A}i∈I and the projection onto the second factor
pr2 : X×A → A is a stratified fibration. For suppose we are given an SHLP as in the following
diagram:

Z X × A X

Z × I A,

f

×0 pr2

pr1

F

F̃

we can construct a stratified solution F̃ : Z×I → X×A of pr2 by F̃ (z, t) = (pr1f(z), F (z, t))
for each (z, t) ∈ Z × I . Note that F̃ is clearly stratum­preserving since pr1f(z) ∈ Xi for all
z ∈ Z and some i.

Example 3.3. LetX be a spacewith a stratification {Xi}i∈I andPsp(X) be the space of stratum­
preserving paths in X , i.e. Psp(X) = {ω ∈ XI | ω(I) ⊂ Xi for some i ∈ I}. Then the
evaluation map q : Psp(X) → X is a stratified fibration. This fact follows from the standard
proof that the evaluation map q : XI → X is a fibration.
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Theorem 3.2 (Whole Tameness). Let X be a MHSS and Y ⊆ X be a closed union of strata
of X . Then

(1) Y is stratified forward tame in X

(2) the holink evaluation map q : holinks(X,Y ) → Y is a stratified fibration.

3.3 Approximate Tubular Neighborhood

There is an important difference between smooth and topological manifolds concerning the
existence of mapping cylinder neighborhoods of submanifolds. By the Tubular Neighborhood
Theorem, every smooth submanifold of a smooth manifold has a neighborhood which is the
mapping cylinder of a smooth fiber bundle. On the other hand, by the examples of Rourke and
Sanderson , neighborhoods of submanifolds in a topological manifold which are the mapping
cylinders of topological fiber bundles may not exist [RS67]. However, R. D. Edwards proved
that for topological manifolds of dim ≥ 5, locally flat submanifolds do have mapping cylinder
neighborhoods in which the projection maps are approximate fibrations [Edw].

Similarly, such difference also occurs in stratified spaces. In smoothly stratified spaces,
skeleta have mapping cylinder neighborhoods whose projection maps are stratified systems of
fiber bundles. On the other hand, the work of B. Hughes in [Hug02a] showed that, under a
certain dimensional assumption, skeleta in an MHSS do have a neighborhood in which the
projection map is a stratified approximate fibration, but the topology of the neighborhood is not
necessarily the usual quotient topology of mapping cylinders.

Definition 3.13. LetX and Y be spaces. Given a map p : X → Y ×R, the teardrop of p is the
space denoted by X ∪p Y whose underlying set is the disjoint union X ⊔ Y with the minimal
topology such that

(1) X ⊂ X ∪p Y is an open embedding,

(2) the mapping c : X ∪p Y → Y × (−∞,∞] defined by

c(x) =

 p(x) for x ∈ X

(x,∞) for x ∈ Y

is continuous.

The teardrop is a generalization of the open mapping cylinder construction. If g : X →
Y then the teardrop (X × R) ∪g×id Y is the open mapping cylinder cyl̊(g) with the teardrop
topology. Note that if f : X → Y , the teardrop topology of the mapping cylinder is the
topology on X × (0, 1) ⊔ Y generated by the open subsets of X × (0, 1) and sets of the form
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U ∪ (f−1(U) × (0, ε)), where U is open in Y and ε > 0. If f is a proper map between locally
compact and Hausdorff spaces X and Y , then this topology coincides with the usual quotient
topology. Not all teardrops are open mapping cylinders because not all maps to Y × R split as
products. See [HTWW00] for more about teardrop construction and [Hug02a] for its relation
with mapping cylinder construction.

Definition 3.14. LetX and Y be spaces with stratifications {X}i∈I and {Y }j∈J , respectively,
and p : X → Y be a map. Then,

(1) for an open cover α of Y , p is a stratified α­fibration provided that given any SHLP as
in the following diagram, there exists a stratified α­solution, i.e. a stratum­preserving
homotopy F̃ : Z × I → X such that F̃ (z, 0) = f(z) for each z ∈ Z and pF̃ is α­close to
F . The latter statement means that given any (z, t) ∈ Z × I there is a U ∈ α containing
both fF̃ (z, t) and F (z, t).

Z X

Z × I Y.

f

×0 p

F

F̃

(2) p is said to be a stratified approximate fibration if it is a stratified α­fibration for every
open cover α of Y .

The notion of stratified approximate fibration was introduced by D. Coram and P. Duvall
in [CD77] as a generalization of both Hurewicz fibrations and CE maps.

Example 3.4. It is clear from the definitions that any stratified fibration is a stratified approxi­
mate fibration. Proposition 3.2 of the next section give us an example of stratified α­fibrations.

Definition 3.15. Let X be a space with a stratification. A subset A ⊆ X is said to have
an approximate tubular neighborhood in X if there exists an open neighborhood U of A and a
stratified approximate fibration p : U \A → A×R such that the natural map (U \A)∪pA → U

is a homeomorphism.

Remark 3.1. The above condition is equivalent to that the natural extension p̃ : U → A ×
(−∞,∞] of p is continuous. It will be more convenient for us to replace R by (0,∞) and to
switch the role of {∞} ∈ (−∞,∞] to {0} ∈ [0,∞). Hence, by this convention, A ⊂ X has
the approximate tubular neighborhood U in X if and only if there is a stratified approximate
fibration ϕ : U → A× [0,∞) where ϕ−1(A× {0}) = A and ϕ| : A → A× {0} is the identity.

By the singular set of a MHSS we mean the union of all non­maximal strata.
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Theorem3.3 (Approximate TubularNeighborhood). LetX be anMHSSwith compact singu­
lar set Σsing such that all non­minimal strata ofX have dimension greater than 4. If Y ⊂ Σsing

is a union of strata, then Y has an approximate tubular neighorhood in X .

Prior to [Hug02b], the work of Hughes, Taylor, Weinberger and William has proved the
theorem for the two strata cases [HTWW00]. The book of Hughes and Ranicki [HR96] contains
the proof of the two strata cases in which the bottom strata are points.

3.4 Stratum­Preserving Small­Homotopies and CE maps

In this section we define stratified versions of small­homotopies and small­equivalences. We
prove some results that relate these classes of maps with the previously defined ones. We also
prove the stratified version of some preparatory results that are needed in this thesis.

Definition 3.16. LetX and Y be spaces with stratifications {Xi}i∈I and {Yj}j∈J , respectively,
and α be an open cover of Y . Let Z be a space, a stratum­preserving homotopy F : Z×I → Y

is a stratum­preserving α­homotopy if for every z ∈ Z there exists a U ∈ α such that the track
{z} × I is contained in U . A map f : Z → Y is said to be stratum­preserving α­homotopic
to another map g : Z → Y if there exists a stratum­preserving α­homotopy F : Z × I → Y

such that F0 = f and F1 = g. A map f : X → Y is said to be a stratum­preserving α­
equivalence provided there exists another map g : Y → X , called stratified α­inverse, such
that f ◦ g : Y → Y is stratum­preserving α­homotopic to idY and g ◦ f : X → X is stratum­
preserving f−1(α)­homotopic to idX where f−1(α) := {f−1(U) | U ∈ α}.

Recall that a subset A of a space X is a neighborhood retract of X if there exists a neigh­
borhood of A in X which retracts to A. A space X is called an Absolute Neigborhood Retract
(abbreviated ANR) provided that it is a neighborhood retract of every space Y containing it
as a closed subset. For excellent references on the ANR theory, see [vM89] and [Hu65]. An
important result on ANR that will be used several times in this thesis is the fact that, for maps
to ANR, the notion of small­nearness is equivalent to the notion of small­homotopic.

Proposition 3.1. Let Y be an ANR. For every open cover α of Y there exists an open cover β
of Y , which is a refinement of α, such that if X is a metrizable space and f, g : X → Y are
maps which are β­near, then f and g are α­homotopic.

For a detailed proof, see Chapter 4 of [Hu65].

The first result of this section is a stratum­preserving version of the Estimated Homotopy
Extension Theorem of Chapman­Ferry. The proof is a direct modification of the proof of the
unstratified case in [CF79].
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Proposition 3.2 (Stratum­Preserving Estimated Homotopy Extension). Let X be an ANR
andA be a closed ANR subspace ofX . If Y is a space with a stratification and F : A× I → Y

is a stratum­preserving α­homotopy such that F0 : A → Y extends to F̃ 0 : X → Y , then there
exists a stratum­preserving α­homotopy F̃ : X × I → Y extending F .

Proof. From the fact that both X and A are ANRs, it is clear that (X × {0}) ∪ (A× I) is also
an ANR (inX × I). Thus, there exists a neighborhoodN of A inX which retracts to A so that
we can construct a retraction r1 : (X × {0}) ∪ (N × I) → (X × {0}) ∪ (A× I). Note that ifN
is close toA, the retraction r1 does not move points very far. Next, we define another retraction
r2 : X × I → (X × {0}) ∪ (N × I) by r1(x, t) = (x, tϕ(x)), where ϕ : X → I is a map which
is 0 onX −N and 1 on A. By using the given maps, we defineH : (X × {0}) ∪ (A× I) → Y

by H(x, 0) = F̃ 0(x) and H(x, t) = F (x, t). Note that since F is stratum­preserving, H is also
stratum­preserving. We define the required extension as F̃ = Hr2r1 : X × I → Y which is
obviously stratum­preserving. To check the α­smallness condition, note that by the definition
of ϕ each track F̃ ({x} × I) is a single point for x /∈ N . For x ∈ N , we can choose N suffi­
ciently close to A so that the track F̃ ({x} × I) will be close to some track F ({x′} × I), where
x′ ∈ A. Hence, F̃ is an α­homotopy because it is close to an α­homotopy F .

The following result says that a stratum­preservingα­equivalence is an example of stratified
α­fibration. For example, this will be important in a program towards a stratified version of the
α­Approximation Theorem via Chapman’s approach.

Proposition 3.3. LetX and Y be spaces with stratifications {Xi}i∈I and {Yj}j∈J , respectively,
and α be an open cover of Y . If p : X → Y is a stratum­preserving α­equivalence, then p is a
stratified α­fibration.

Proof. Given an SHLP of p as shown by the following commutative diagram:

Z X

Z × I Y.

f

×0 p

F

We need to find a stratum­preserving homotopy F̃ : Z × [0, 1] → X such that F̃ (z, 0) = f(z)
for each z ∈ Z and pF̃ is α­close to F . By hypothesis, there exists a stratified α­inverse
q : Y → X of p such that qp is stratum­preserving p−1(α)­homotopic to idX . It is clear
that qpf : Z → X is stratum­preserving p−1(α)­homotopic to f : Z → X . Thus, there
is a stratum­preserving p−1(α)­homotopy H : Z × I → X such that H(z, 0) = f(z) and
H(z, 1) = qpf . We set F̃ = H . The required condition when t = 0 is clearly satisfied. From
the commutativity we have that pf(z) = F (z, 0) and hence pf(z) is stratum­preserving homo­
topic to F (z, t). On the other hand, from the relation f(z) = H(z, 0) and the fact that H is
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a stratum­preserving p−1(α)­homotopy we have that pf(z) is stratum­preserving α­homotopic
to pH(z, t) = pF̃ (z, t). Hence, we have that pF̃ (z, t) is stratum­preserving α­homotopic to
F (z, t) and finally, by Lemma 3.1, the conclusion of the proposition follows.

In order to prove the stratified version of the Radial Engulfing Lemma in Chapter 3, we will
need to restrict a stratified α­fibration to a stratum. Hence, we prove the following:

Lemma 3.1. Let X and Y be spaces with stratifications {Xi}i∈I and {Yj}j∈J , respectively,
and α be an open cover of Y . If p : X → Y is a stratified α­fibration, then its restriction to a
stratum Xi of X is also a stratified α­fibration.

Proof. For a given SHLP of p| : Xi → Y , we construct the following diagram:

Z Xi X

Z × I Y Y.

×0

f

p| p

F

?
F̃

id

Note that the compositions with the inclusions give us an SHLP of p : X → Y . Since p is a
stratified α­fibration, there is a stratified α­solution F̃ : Z × I → X . The required conclu­
sion will follow by showing that this stratified α­solution factors to Xi and setting this factor
to be the required stratified α­solution of p|. From the definition of a stratified α­solution, for
all z ∈ Z, we have that F̃ (z, 0) = f(z) ∈ Xi. Since F̃ is stratum­preserving, we have that
F ({z} × I) ⊂ Xi for all z ∈ Z. Hence, F̃ factors to Xi.

Next, we consider the pullback construction of stratified fibrations. We will prove a result
asserting that the pullback of a stratified fibration is also a stratified fibration. For instance,
this will be needed in Chapter 4 when we are trying to solve some stratified handle problems
for stratified α­fibrations. The setting is as follows, let p : X → Y be a fibration between
unstratified spaces and f : Y ′ → Y be amap in which Y ′ is a stratified space with a stratification
{Y ′}i∈I . LetX ′ = {(y′, x) ∈ Y ′ ×X | f(y′) = p(x)}. We can stratify Y ′ ×X with the product
stratification and stratifyX ′ as a subset of Y ′×X , i.e. by settingX ′

i = {(y′, x) ∈ X ′ | y′ ∈ Y ′
i }.

We obtain maps f ′ : X ′ → X and p′ : X ′ → Y ′ induced by the projections so that the following
diagram is commutative:

X ′ f ′
> Xi

Y ′

p′

∨
f

> Y.

p

∨
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Note that p′ is stratum­preserving. Assuming this notation, we prove the following important
facts:

Lemma 3.2 (Universal Property). If G : Z × I → X is a homotopy and G′ : Z × I → Y ′

is a stratum­preserving homotopy such that pG = fG′, then there exists a unique stratum­
preserving­H : Z × I → X ′ satisfying f ′H = G and p′H = G′.

Z × I

X ′ X

Y ′ Y

G

G′

H

p′
f ′

p

f

Proof. Consider the homotopy (G′, G) : Z×I → Y ′×X which is obviously stratum­preserving
with respect to the product stratification on Y ′ × X . From the condition pG = fG′, we have
that (G′, G) factors to X ′. We set this factor as H . It is clear that the required commutativity
relations hold. Uniqueness follow from the fact that the projections f ′ and p′ define the image
point uniquely in X ′, but these are fixed by the hypothesis.

Proposition 3.4. The induced map p′ : X ′ → Y ′ is a stratified fibration.

Proof. Given an SHLP of p′, we can construct a commutative diagram as follows:

Z X ′ X

Z × I Y ′ Y.

×0

g

p′

f ′

p

G

Ḡ G̃

f

It is obvious that the compositions f ′g : Z × 0 → X and fG : Z × I → Y clearly form an
SHLP of p. Since p is a fibration, there exists a solution G̃ : Z× I → X . Note that the stratum­
preserving homotopyG and the homotopy G̃ satisfy the conditions of Lemma 3.2. Hence, there
is a unique stratum­preserving homotopy Ḡ : Z × I → X ′. Note that this Ḡ satisfies all re­
quirements to be a stratified solution of p′.

Note that in [Fri03], G. Friedman has considered a similar case in whichX is stratified and both
Y, Y ′ is unstratified. The proofs above are inspired by his proofs of the related case.

We now expand the definitions of stratum­preservingα­equivalence and stratifiedα­fibration.
Let X and Y be spaces with stratifications, α be an open cover of Y , and A ⊂ Y . A map
f : X → Y is a stratum­preserving α­equivalence over A if it has an α­inverse that is only
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defined onA, that is there exists a map g : A → X such that fg : A ↪→ Y is stratum­preserving
α­homotopic to idA and gf |f−1(A) : f−1(A) ↪→ X is stratum­preserving f−1(A)­homotopic to
idf−1(A). A map p : X → Y is said to be a stratified α­fibration over A if for any given SHLP
over A, i.e. a map f : Z → X and a stratum­preserving homotopy F : Z × I → A for which
pf(z) = F (z, 0) for all z ∈ Z, there exists a stratum­preserving homotopy F̃ : Z × I → X

such that F̃ (z, 0) = f(z) and pF̃ is α­close to F .
The following result will be of importance throughout the thesis, it says that for a sufficiently

fine open cover we can restrict small­homotopies and small­fibrations. For a space Y with an
open cover of α and A ⊂ Y , recall that the star of A in α is defined as St(A,α) = ∪{A ∪ U |
A ∩ U ̸= ∅ and U ∈ α}.

Proposition 3.5. Let X and Y be spaces with stratifications, U ⊂ Y is open, A ⊂ U , and α is
an open cover of Y that is chosen so that no element of St(A,α) meets Y − U . Then,

(1) if f : X → Y is a stratum­preserving α­equivalence, then the restriction f | : f−1(U) →
U is a stratum­preserving (α ∩ U)­equivalence over A.

(2) Similarly, if p : X → Y is a stratified α­fibration, then p| : p−1(U) → U is a stratified
(α ∩ U)­fibration over A.

Remark 3.2. If A ⊂ Y is closed, the open cover α can always be chosen fine enough so that
the hypothesis of Proposition 3.5 is satisfied, see [CF79].

The following result says that we can sew together stratified α­fibrations. Its proof which
uses the Stratum­Preserving Estimated Homotopy Extension Theorem 3.2, is a modification of
the proof of the unstratified case in [Cha80].

Lemma 3.3. Let B be an ANR with chosen closed subsets A1 and A2. Let Ã1 and Ã2 be closed
neighborhoods of A1 and A2, respectively. For every open cover α of B there exists an open
cover β of B such that if X is a space with a stratification and f : X → B is a proper map
which is a stratified β­fibration over Ã1 and Ã2, then f is a stratified α­fibration over A1 ∪A2.

Proof. Suppose we have an SHLP of f over A1 ∪ A1 as in the following diagram:

Z X

Z × I A1 ∪ A2.

×0

F̃ 0

f

F

Choose open sets Ni ⊂ B so that Ai ⊂ Ni and N̄ i ⊂ Ãi. Let α′ be an open cover of B.
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Assertion. The open cover β can be choosen so that if for each z ∈ Z, F ({z}× I) lies in either
N1 or N2, then there is a stratum­preserving homotopy G : Z × I → X extending F̃ 0 and for
which fG is α′­close to F .
Proof. Let Zi := {z ∈ Z | F ({z} × I) ⊂ Ni}. Consider the following SHLP which is a
restriction of the previous one:

Z1 X

Z1 × I A1̃.

×0

F̃ 0|

f

F |

G′

By using the hypothesis that f is a stratified β­fibration overA1̃, there exists a stratum­preserving
homotopy G′ : Z1 × I → X extending F̃ 0| such that fG is β­close to F |. By the Estimated
Homotopy Extension Lemma 3.2 we can adjust F slightly rel Z × {0} so that F | = fG′. Note
that we also have to cut down the domain of G′ a little bit.

Since Z1 and Z2 are open, we can find compacta Ci ⊂ Zi so that Z = C1 ∪ C2. Let
R : Z2 × I × [0, 1] → Z2 × I be a homotopy which affects only the I­coordinate and satisfies
the following properties:

(1) R0(Z2 × I) ⊂ (Z2 × {0}) ∪ ((Z1 ∩ Z2) × I)

(2) Rt = id on (Z2 × {0}) ∩ ((C1 ∩ Z2) × I), for all t

(3) R1 = id.

We define g : (Z2 × {0}) ∪ ((Z1 ∩ Z2) × I) → X by g = G′ on (Z1 ∩ Z2) × I and g = F̃ 0.
Consider the following diagram:

Z2 × I (Z2 × {0}) ∪ ((Z1 ∩ Z2) × I) X

Z2 × I × [0, 1] Z2 × I Ã2.

×0

R0

f

R

H

F |

It is clear that the diagram is an SHLP of f and since f is a stratified β­fibration over Ã2, there
is a stratum­preserving homotopy H : Z2 × I × [0, 1] → X so that H0 = gR0 and fH is
β­close to FR. Note that by using the [0, 1]­coordinate and the β­closeness, the restriction of
H1 : Z2 × I → X to (Z2 × {0}) ∪ ((C1 ∩ Z2) × I) is stratum preseving f−1(β)­homotopic to
the restriction of g to (Z2 × {0}) ∪ ((C1 ∩ Z2) × I). Hence, by Proposition 3.2 there exists a
stratum­preserving f−1(β)­of H1 to a stratum­preserving homotopy G2 : Z2 × I → X so that
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G2
0 = F̃ |Z2 andG2 = G1 on C1 ∩Z2. Thus, we can pieceG1 andG2 together to get the desired

stratum­preserving homotopy G : Z × I → X .
Returning to the proof of the lemma, we choose a partition 0 = t0 < t1 < · · · < tn = 1

of I so that for each z ∈ Z and i we have that F ({z} × [ti−1, ti]) is close to A1 or A2. We
will construct the desired small solution inductively. For each i, we will construct a map Gi :
Z × [0, ti] → X so that

(1) Gi
0 = F̃ 0

(2) fGi|Z×{i} is α­close to F |Z×{i}

(3) fGi is α­close to F |Z×[0,ti]

and then Gn : Z × I → X will be the desired extension of F̃ 0. The case i = 0 is triv­
ial. Let Gi : Z × [0, ti] → X be given with the properties above, we need to construct
Gi+1 : Z× [0, ti+1] → X . We only need to consider the definition ofGi+1 on Z× [ti, ti+1] since
Gi+1 is an extension of Gi to this region. As in the proof of the assertion, we use Proposition
3.2 to adjust F |Z×[ti,ti+1] to obtain a homotopy F ′ : Z × [ti, ti+1] → B so that F ′

ti
= fGi

ti
and

F ′
t+1 = Fti+1 . The purpose of doing this is so that we still have that F ′({z} × [ti, ti+1]) is close

to A1 or A2 for all z ∈ Z and therefore the assertion can be applied. By the assertion, there is
a map Gi+1 : Z × [ti, ti+1] → X for which Gi+1

ti1
= Gi

ti1
and fGi+1 is α′­close to F ′. If α′ is

sufficiently fine, fGi+1 is α­close to F |[ti,ti+1]. The induction is now complete.

Finally, we come to the main result of this section. This result is very useful when we are
in the situation that we have to check whether a given map is a stratified α­fibration. Such a
situation occurs, for instance, in stratified wrapping up constructions in Chapter 4.

Proposition 3.6. Let B be a locally compact ANR and γ be an open cover of B. For every
open cover α of B there exists an open cover β of B so that ifX is a space with a stratification
and f : X → B is a stratified β­fibration over the closure of each element of γ, then f is a
stratified α­fibration.

Proof. The case when B is compact. We may assume that γ = {Ui}n
i=1 is a finite cover of B.

Choose a sequence of {γk}n−1
k=1 of open covers of B in which γk = {Uk,i}n

i=1 so that elements
of it satisfy Ū1,i ⊂ Ui and Ūk+1,i ⊂ Uk+i. We are given that f is a stratified β­fibration over
each Ū i. By Lemma 3.3, f is a stratified β1­fibration over the closure of U1,1 ∪ U1,2 and Ū1,i

for 3 ≤ i ≤ n, where β1 can be made as fine as we want corresponding to a fine choice of β.
Again, by Proposition 3.3, f is a stratified β2­fibration over the closure of U2,1 ∪U2,2 ∪U2,3 and
U2,i
¯ for 4 ≤ i ≤ n where β1 can also be made as fine as we want. By continuing this process,
we eventually will get that f is a stratified α­fibration over the closure of

∪n
i=1 Un−1,i = B.
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The case when B is locally compact. We can write B = ∪∞
i=1 Bi where each Bi is compact

andBi ∩Bj = ∅ for |i− j| ≥ 2. Let B̃i be a closed neighborhood ofBi so that B̃i ∩ B̃j = ∅ for
|i− j| ≥ 2. From the compact case above, we have that f is a stratified α′­fibration over each
B̃i where α′ can be made as fine as we want corresponding to a fine choice of β. Obviously f
is also a stratified α′­fibration over B′ = ∪{B̃i | i odd} and B′′ = ∪{B̃i | i even}. Hence, by
Proposition 3.3 f is a stratified α­fibration over B′ ∪B′′ = B.

Note that in the case when the target space Y has a specified metric and ε > 0 is given,
we will also use ε to denote the open cover of Y by open balls of diameter ε. This convention
means that we can also define the notions of stratum­preserving ε­homotopy, stratum­preserving
ε­equivalence, and stratified ε­fibration. Note that all the above results are also true in the metric
case.

The rest of this section is devoted to recalling some facts about CE maps. The term CE is
the abbreviation of ”cellular­equivalent”. This notion is introduced by R. Lacher in [Lac77].
We adapt the definitions and results to the stratified setting.

Definition 3.17. A subset A of an ANRX is said to have property UV ∞ in x provided that for
each neighborhoodU ofA inX there exists a neighborhood V ⊂ U ofA such that the inclusion
V ↪→ U is homotopic to a constant map.

Definition 3.18. Let X and Y be stratified spaces in which the strata are ANRs. A stratum­
preserving map f : X → Y is said to be cell­like provided that each point inverse f−1(y)
has property UV ∞ in X . A proper onto stratum­preserving cell­like map is called a stratum­
preserving CE map.

One of the fundamental results in the theory of CE maps is the following homotopy char­
acterization. Note that, R. Lacher proved the finite dimensional case in [Lac77] and then W.
Haver proved the general case in [Hav75].

Theorem 3.4 (Homotopy Characterization of CE Maps). Let f : X → Y be a proper onto
mapping between locally compact ANRs, then the following are equivalent:

(1) f is cell­like,

(2) for each contractible open subset U ⊂ Y , f−1(U) is contractible,

(3) f is a hereditary proper homotopy equivalence, in the sense that for every open set
V ⊂ Y , the restriction f |f−1(V ) is a proper homotopy equivalence.

The following is a useful homotopy property of point inverses of an approximate fibration
that can be used to show the relation between approximate fibration and CE map.
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Theorem 3.5 (Theorem 2.4 of [CD77]). LetX and Y be locally compact ANRs. If p : X → Y

is an approximate fibration and y ∈ Y , then given any neighborhood U of p−1(y) inX there is
a neighborhood V of p−1(y) in U such that for any neighborhoodW of p−1(y) in V there is a
neighborhoodW0 of p−1(y) inW and a homotopy H : X × I → X satisfying

(1) H0 = idX ,

(2) Ht|cl(X − U) ∪W0 = id for all t ∈ I ,

(3) Ht(V ) ⊂ U for all t,

(4) H1(V ) ⊂ W .

Remark 3.3. The condition that the point inverses of a CEmap have the propertyUV ∞ as given
in Definition 3.18 is equivalent to the condition that the point inverses have trivial shape in the
sense of Borsuk. It is also equivalent with our description in the Introduction, see [Lac77]. The
third condition of Theorem 3.4 equivalently says that a CE map is a α­equivalence for each α.
Moreover, it is well­known that an approximate fibration which is also a homotopy equivalence
is CE. For example [Cha81], [Wei94] and [FL18]. contain observations of this fact.



Chapter 4

Stratified Engulfing Results

In this chapter, we are going to develop stratified topological engulfing results that will for
example be applied to solve the handle problems of Chapter 4. Engulfing is a process by which
an open subset of a manifold is adjusted via an ambient isotopy to absorb a predetermined
polyhedron. In [Hug04], B. Hughes indicated that by using Quinn’s Stratified Isotopy Extension
Theorem, one may extend the engulfing methods to the stratified settings.

4.1 Controlled Topological Engulfing

The method of engulfing has been one of the most useful discoveries in geometric topology.
Nevertheless, there are several distinct versions of engulfing, but all of them are connected
by a common thread. The first versions, developed in the PL category, are the Zeeman’s and
the Stallings’ engulfing that firstly appeared in the early Sixties. Among other things, Zeeman
used his engulfing method to solve the weak high dimensional Poincaré conjecture and Stallings
used his method to prove the Hauptvermutung for Euclidean spaces. In 1969, M. H. A. Newman
developed a topological engulfing method. For a complete treatment of PL topology one can
consult the book of J. P. Hudson [Hud69] and the book of Rushing [Rus73] for various engulfing
methods and their applications.

The version of engulfing that will be used in this thesis is the controlled topological engulf­
ing of Siebenmann, Guillou and Hähl [SGH74] [Cha81] which is modelled on the engulfing
theorem of Stallings. Hence, we start by recalling the statement of this engulfing theorem.
Roughly speaking, Stallings’ engulfing says that an open subset of a PL­manifold can expand
like an amoeba to engulf any given subpolyhedron, provided that certain dimensional and con­
nectivity conditions are met. To be more precise, recall that a pair (M,U) is p­connected if
πi(M,U) = 0 for all i ≤ p. The following is first appear in [Sta62].

Theorem 4.1 (Stallings’ Engulfing). Let Mn be a PL­manifold without boundary, U be an
open subset of Mn and P be a p­dimensional polyhedron in Mn. If (M,U) is p­connected,

35
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P ∩ (M − U) is compact and p ≤ 3, then there is a compact subset E ⊂ M and an am­
bient PL­isotopy et : M → M which is the identity outside E and connecting idM to a PL
homeomorphism h : M → M such that P ⊂ h(U).

The idea of the proof is to let U acts as an amoeba which sends out feelers to engulf the
vertices of P ∩ (M −U) one at a time, all the while keeping the part of P already in U covered.
After all the vertices of P ∩ (M −U) are covered, the engulfing is extended to the 1­simplices
of P ∩ (M − U), one at a time. It is not so much like sending out feelers anymore, but more
like sliding the new U sideways along a singular disk bounded by the 1­simplex to be engulfed
and an arc in the extended U joining the ends of the simplex. This process is then extended to
all simplices of P ∩ (M − U).

Now we discuss the controlled topological engulfing that will be used in this thesis. The
controlled term means that we give controls on the open subset that is going to engulf the given
polyhedron. It is a topological engulfing so we need the notion of a subset being locally poly­
hedral in a manifold.

Definition 4.1. LetM be a topological manifold and P ⊂ M be a polyhedron. For x ∈ M , the
polyhedron P is said to be locally polyhedral at point x if there exists an open neighborhood U
of x inM and a triangulation of U as a PL­manifold such that U ∩P is a subpolyhedron of this
triangulation. The polyhedron P is said to be locally polyhedral inM if it is locally polyhedral
at all points ofM .

Theorem 4.2 (Controlled Topological Engulfing). LetM be a connected n­manifold without
boundary. Let p be an integer ≥ 0, and

(1) let P be a closed and locally polyhedral polyhedron in M , possibly non­compact, with
dimP ≤ n − 3 and P0 ⊂ P be a subpolyhedron such that Q = cl(P − P0) is compact
with dimQ ≤ p,

(2) let U0 ⊂ U1 ⊂ · · · ⊂ Up andM0 ⊂ M1 ⊂ · · · ⊂ Mp = M be sequences of non­empty
open sets ofM such that P ⊂ M0, P0 ⊂ U0, Ui ⊂ Mi such that for 0 ≤ i ≤ p − 1, all
maps (K,L) → (Mi, Ui) from a finite simplicial pair of dim ≤ p − 1 are homotopic in
(Mi+1, Ui) to a map (K,L) → (Ui+1, Ui).

Then, there exists a compactly supported isotopy of idM to a homeomorphism h : M → M for
which P ⊂ h(Up).

For completeness we also include the treatment of T. Chapman in [Cha81], that is to ap­
ply the theorem to the Euclidean plane to get useful engulfing results. For notation, let u, v :
[0,∞) → (−2, 2) so that v(s) ≤ u(s), for all s ≥ 2. Consider the areas Γ(u) and Γ(v) under
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the graphs of u and v as subsets of [0,∞) × R. That are

Γ(u) := {(s, t) | −∞ < t ≤ u(s)}

Γ(v) := {(s, t) | −∞ < t ≤ v(s)}.

Lemma 4.1. For anm­manifold without boundaryM there exists an ε > 0 such that if

(1) f : M → [0,∞) × R is an ε­fibration over [0, 4] × [−4, 4],

(2) P ⊂ M is a closed polyhedron which is locally polyhedral inM and dim(P ) ≤ m− 3.

Then there exists an isotopy, which is supported on f−1([0, 3] × [−3, 3]), of idM to a homeo­
morphism h : M → M satisfying P ∩ f−1(Γ(v)) ⊂ hf−1(Γ(u)).

Proof. Without loss of generality we can assume that P ⊂ f−1(Γ(v)). Choose a closed sub­
polyhedron P0 ⊂ P such that P0 ⊂ f−1([2,∞) × R) and P ∩ f−1([2.5,∞) × R) ⊂ P0 and
functions ui, vi : [0,∞) → (−2, 2), for 0 ≤ i ≤ m, that satisfy

(1) u0 < u1 < · · · < um = u,

(2) v < v0 < · · · < vm,

(3) ui < vi, for all i,

(4) v(s) < u0(s) < · · · < um(s) < vm(s), for all s ≥ 2.

Note that the choice of ui, vi depends only on u, v and the ε must be calculated in term of this
choice. Set f−1(Γ(ui)) and f−1(Γ(vi)) to be the Ui andMi of Theorem 4.2, respectively. If ε is
sufficiently small, the first assumption implies that for each i there is a homotopy of the identity
on (f−1(Γ(vi)), f−1(Γ(ui))) to a mapping into (f−1(Γ(ui+1)), f−1(Γ(ui))) which is supported
on (f−1(Γ(vi+1)), f−1(Γ(ui))). We also have P0 ⊂ f−1(Γ(u0)). The required isotopy and
homeomorphism follow from Theorem 4.2. Hence, we have P ⊂ h(f−1(Γ(u))).

The next step is to engulf the whole of f−1(Γ(v)). This can be done by patching the isotopy
that engulfs a polyhedron P with the one that engulfs a certain dual polyhedron Q of P in the
complement of P . The existence of a such dual polyhedron is guaranteed by the following
theorem of R. D. Edwards [SGH74]. From now on, superscripts will denote dimensions.

Theorem 4.3 (Topological Dual Skeleta). LetMn be a manifold without boundary with n ≥ 5
and let 2 ≤ k ≤ n − 3. Then for any ε > 0, there exists a pair of disjoint closed polyhedra
(P k, Qm−k−1) which are locally polyhedral inM such that for any compact subsetC ⊂ M−Q

and any neighbourhood E of P inM there exists an ε­isotopy ht of idM such that C ⊂ h1(E).
Moreover, one may require that ht = idM outside a neighbourhood of C for all t ∈ I .
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Definition 4.2. In the situation of the above theorem, the pair (P,Q) is said to be topological
dual skeleta inM .

Lemma 4.2. For a manifold without boundaryMn with n ≥ 5, there exists an ε > 0 such that
if f : M → [0,∞) × R is an ε­fibration over [0, 4] × [−4, 4] then there is an isotopy, which
is supported on f−1([0, 3] × [−3, 3]), of idM to a homeomorphism h : M → M satisfying
f−1(Γ(v)) ⊂ h(f−1(Γ(u))).

Proof. Choose maps v1, v2 : [0,∞) → (−2, 2) such that v < v1 < v2 and v2(s) < u(s) for all
s ≥ 2. If P n−3 ⊂ M is a closed locally polyhedral polyhedron, then by Lemma 4.1 there exists
a homeomorphism h1 : M → M which is supported on f−1([0, 2] × [−2, 2]) and satisfies
P ∩ f−1(Γ(v2)) ⊂ h1(f−1(Γ(u))). If Q2 ⊂ M − P is also a closed and locally polyhedral
polyhedron then also by Lemma 4.1 and the relation v1 < v2, there exists a homeomorphism
h−1

2 : M → M supported on f−1(Γ(v1)∩([0, 3]×[−3, 3])) and h2(Q∩f−1([0, 2.1]×[−2.1,∞]))
lies in the complement of f−1(Γ(v)).

By Theorem 4.3, for each ε > 0 we can choose P and Q so that (P,Q) is topological
dual skeleta in M by setting the closure of h1(M − f−1(Γ(u))) ∩ f−1(Γ(v2)) to be the com­
pact subset C. Let h3 : M → M to be the corresponding homeomorphism supported on
f−1([0, 3] × [−3, 3]) which is ε­close to idM and takes C close to Q. If ε is small enough, it
follows that the composition h2h3h1 fulfills our requirement.

4.2 Stratified Radial Engulfings

In this section, we are going to prove our stratified version of Radial Engulfings. For the mani­
fold settings, the theorem was firstly proved for the infinite dimensional cases (i.e. on Hilbert­
cube manifolds) in [Cha80] by using the unknotting theorem of Z­set embeddings. See [vM89]
or [Cha76] for a detailed account on Hilbert­cube manifolds containing the Z­set Unknotting
Theorem. The finite­dimensional case was then proved in [Cha81] based on the controlled
topological engulfing results of the previous section. We will prove the theorem for finite­
dimensionalMHSSs by following the idea of B. Hughes indicated in [Hug04] to use the Quinn’s
Stratified Isotopy Extension Theorem as a tool.

For notation, let B be a compact polyhedron having metric topology determined by a fixed
triangulation and pB : B × R → B is the projection to the first factor.

Theorem 4.4 (Stratified Radial Engulfing I). Let B be a compact polyhedron and X is an
MHSS such that the bottom stratum has dim ≥ 5. For every ε > 0 there exists a δ > 0, such that
if f : X → B×R is a stratified δ­fibration overB× [−4, 4], then there is a stratum­preserving
homeomorphism h : X → X such that
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(1) f−1(B × (−∞, 1]) ⊂ hf−1(B × (−∞, 0))

(2) h may be chosen so that there is a stratum­preserving (pBf)−1(ε)­isotopy ht : idX ≃ h

which is supported on f−1(B × [−3, 3]).

Proof. We start by choosing a fine triangulation of B such that its mesh depends on ε and then
the δ is calculated in term of this choice. The idea is to do a double inductive arguments. We
start by following [Cha81] to do an induction up through the skeleta ofB to get a small ambient
isotopy on a strata of X . Then, we do an induction up through the skeleta of X by using the
Stratified Isotopy Extension Theorem 3.1 to extend the ambient isotopy to a stratum­preserving
ambient isotopy on the whole X .

For each vertex v ∈ B, let Cv be a small closed neighborhood of v. Let C̃v be an open
set containing Cv such that the collection {C̃v}v∈B is pairwise disjoint. For instance, we can
choose C̃v as the open star of v in the second barycentric subdivision of B. We are given a
stratified δ­fibration f : X → B × R over B × [−1, 1]. For each i­stratum Xi of X , we will
apply Lemma 3.2 to the composition

(q × idR)f | : f−1(C̃v × R) ∩Xi ↪→ f−1(C̃v × R) → C̃v × R → [0,∞) × R

where q : C̃v → [0,∞) is a proper retraction, for instance, a cone parameter of the open star.
If δ is small enough, by Proposition 3.5, f | : f−1(C̃v ×R) → C̃v ×R is a stratified δ­fibration
over q−1([0, 4] × [−4, 4]). Moreover, the restriction f | : f−1(C̃v ×R) ∩Xi → C̃v ×R is also a
stratified δ­fibration by Lemma 3.4. Nevertheles, (q×idR)f | : f−1(C̃v ×R)∩Xi → [0,∞)×R
need not necessarily be a stratified δ­fibration over [0, 4] × [−4, 4] due to the arbitrariness of
q. However, we can still apply Lemma 4.2 because on its proof we only needed the ε­lifting
property for homotopies which move only in the R­direction and this property is also true for
the map (q × id)f . By Lemma 4.2, we obtain a homeomorphism hv : Xi → Xi supported
on f−1(C̃v × [−2, 2]) such that f−1(Cv × (−∞, 1.5]) ⊂ hvf

−1(C̃v × (−∞, 0)). Then, by
composing all of hv, we get a homeomorphism h0 : Xi → Xi such that

f−1(∪v∈BCv × (−∞, 1.5]) ⊂ h0f−1(B × (−∞, 0)).

By our choice of triangulation of B, for each simplex ∆ of B we have that diam(∆) << ε.
Hence, the homeomorphism h0 can be realized by a small ambient isotopy in the sense that there
is a (pBf)−1(ε)­isotopy h0

t : id ≃ h. By the absolute part of the Isotopy Extension Theorem
3.1, we can extend h0

t to a stratum­preserving (pBf)−1(ε)­isotopy of X which is supported on
a neighborhood of X i. That is how we deal with the 0­skeleton.

For the 1­skeleton, let σ =< v1, v2 > be a 1­simplex of B. Let Cσ be a closed subset
containing the closure of σ− (Cv1 ∪Cv2) in its interior. As above, let C̃σ be an open subset con­
taining Cσ such that {C̃σ}σ∈B is a pairwise disjoint collection. Hence, by Lemma 4.2 there is a
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homeomorphism hσ : Xi → Xi supported on f−1(C̃σ × [−2.5, 2.5]) for which f−1((Cσ ∪ [C̃σ ∩
(C ′

v1 ∪C ′
v2)])×(−∞, 1.4]) lies in hσf

−1[(C̃σ ×(−∞,−2))∪(C̃σ ∩(Cv1 ∪Cv2))×(−∞, 1.5))]
where C ′

v1 and C
′
v2 are slightly smaller neighborhood of v1 and v2. By doing this for all 1­

simplices σ ofB and composing all the yielded homeomorphisms, we obtain a homeomorphism
h1 : Xi → Xi. By a similar argument as in the previous paragraph, this homeomorphism is
realized by a small ambient isotopy that can be extended to a stratum­preserving small isotopy
of the whole X . Note that in this step we use the relative part of Theorem 3.1 such that this
isotopy agrees with the one in the pervious paragraph. The composition h1h0f−1(B×(−∞, 0))
contains f−1(B1 × (−∞, 1.4]) where B1 is the 1­skeleton of B. Hence, we are done for the
1­skeleton. We do the similar step until all the skeleta of B are exhausted.

In the above Stratified Radial Engulfing Theorem, we get ambient isotopies onX which are
small when measured in B. In the following version of the theorem, we also impose a control
on the R­factor so that the isotopies are also small when measured in R. These following radial
engulfings are the versions that will be used to solve the handle problems.

Theorem 4.5. Let θ : R → R be a homeomorphism which is supported on [−1, 1]. SupposeX
is an MHSS without boundary such that the bottom stratum has dim ≥ 5. For every ε > 0 there
exists a δ > 0 such that if f : X → B×R is a stratified δ­fibration overB× [−4, 4], then there
is a stratum­preserving homeomorphism θ̃ : X → X supported on f−1(B × [−3, 3]) such that
d(fθ̃, (idB × θ)f) < p−1

B (ε). Moreover, θ̃ may be chosen so that there is a stratum­preserving
(pBf)−1(ε)­isotopy θ̃t : idX ≃ θ̃ which is supported on f−1(B × [−3, 3]).

X B × R

p−1
B (ε)

X B × R B

θ̃

f

idB×θ

f pB

Proof. The idea is to choose a finite partition −1 = x0 < x1 < · · · < xn−1 < xn = 1 of [−1, 1]
and then, by using Theorem 4.4, to construct the required stratum­preserving homeomorphism
θ̃ : X → X as a ’stacking’ on this partition. The latter means that θ̃ is supported on f−1(B ×
[−2, 2]), satisfies d(pBfθ̃, pBf) < ε/2 and also satisfies

f−1(B × (−∞, θ(xi−1)]) ⊂ θ̃f−1(B × (−∞, xi]) ⊂ f−1(B × (−∞, θ(xi)])

for 1 ≤ i ≤ n − 1. If the partition {xi} is chosen sufficiently fine and the support of θ̃ is
sufficiently close to f−1(B × [−1, 1]), then the condition d(fθ̃, (idB × θ)f) < p−1

B (ε) will be
clearly satisfied. The stratum­preserving stacking homeomorphism θ̃ will be constructed as a
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composition θ̃ = θ̃n−1 ◦ · · · ◦ θ̃1, in which each stratum­preserving homeomorphism θ̃i comes
from an application of Theorem 4.4. The required stratum­preserving (pBf)−1(ε)­isotopy will
be clear from the construction.

First, we construct the stratum­preserving homeomorphism θ̃1. We are given a stratified
δ­fibration f : X → B × R over B × [−4, 4], from Theorem 4.4, there is a stratum­preserving
homeomorphism h : X → X and a stratum­preserving (pBf)−1(ε)­isotopy ht : idX ≃ h

which is supported on f−1(B × [−1, 1]). By setting θ̃1 = h−1, we obviously have that θ̃1

satisfies d(pBfθ̃1, pBf) < ε and

f−1(B × (−∞,−1]) ⊂ θ̃1f
−1(B × (−∞, x1]) ⊂ f−1(B × (−∞, θ(x1)]) (∗)

in which the first inclusion follows from the facts that θ̃1 is supported on f−1(B × [−1, 1]) and
is small­homotopic to idX . We also use the relation −1 < x1. The second inclusion follows
from Theorem 4.4.

Next, we construct the stratum­preserving homeomorphism θ̃2 as a composition θ̃2 = θ′′
2 ◦θ′

2.
It must be supported on θ̃1f

−1(B × [x1, 1]) so that the inclusions in (*) will be automatically
preserved. By similar reasoning as in the previous step, θ′

2 comes from Theorem 4.4. It is
supported on θ̃1f

−1(B × [x1, 1]) and satisfies

f−1(B × (−∞, θ(x1)]) ⊂ θ′
2θ̃1f

−1(B × (−∞, x2]). (∗∗)

The θ′′
2 also comes from Theorem 4.4, but we directly use the resulted stratum­preserving home­

omorphism instead of its inverse. It is supported on f−1(B × (θ(x1), 1]) so that the inclusion
in (**) will be preserved and it also satisfies

θ′′
2θ

′
2θ̃1f

−1(B × (−∞, x2]) ⊂ f−1(B × (−∞, θ(x2)]). (∗ ∗ ∗)

From (**) and (***), we have that

f−1(B × (−∞, θ(x1)]) ⊂ θ′′
2f

−1(B × (−∞, θ(x1)]) ⊂ θ′′
2θ

′
2θ̃1f

−1(B × (−∞, x2])

⊂ f−1(B × (−∞, θ(x2)])

and then by defining θ̃2 = θ′′
2 ◦ θ′

2, we have that

f−1(B × (−∞, θ(x1)]) ⊂ θ̃2θ̃1f
−1(B × (−∞, x2]) ⊂ f−1(B × (−∞, θ(x2)]).

Finally, we are actually done if we inductively continue this process for all 1 ≤ i ≤ n− 1.

The proof of the above lemmas can be adapted so that the engulfing moves can also be along
B. Let φB : B → [0,∞) be a proper map and define Bt = φ−1

B ([0, t]) for each t ∈ [0,∞).
Let θs : R → R be an isotopy supported on [−1, 1] in which θs = id for s ≥ 1. It induces a
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homeomorphism θ : B × R → B × R defined by θ(b, r) = (b, θφB(b)(r)). It is obvious that
θ is supported on B1 × [−1, 1]. The following are adaption of Theorem 4.4 and Theorem 4.5,
respectively.

Theorem 4.6 (Stratified Radial Engulfing II). If X is an MHSS without boundary such that
the bottom stratum has dim ≥ 5. Then for every ε > 0 there exists a δ > 0 such that if
f : X → B×R is a stratified δ­fibration over B4 × [−4, 4], then there is a stratum­preserving
homeomorphism h : X → X such that

(1) f−1(B × (−∞, 1]) ⊂ hf−1(B × (−∞, 0))

(2) if pB : B × R → B is the projection then h may be chosen so that there is a stratum­
preserving (pBf)−1(ε)­isotopy ht : idX ≃ h, supported on f−1(B3 × [−3, 3]).

Theorem 4.7. LetX be an MHSS without boundary such that the bottom stratum has dim ≥ 5.

(1) For every given ε > 0 there exists a δ > 0 such that if f : X → B × R is a stratified
δ­fibration over B3 × [−3, 3], then there is a stratum­preserving homeomorphism θ̃ :
X → X which is supported on f−1(B2 × [−2, 2]) and which satisfies d(fθ̃, θf) < ε.
Furthermore, θ̃ may be chosen so that there is a stratum­preserving (pBf)−1(ε)­isotopy
of θ̃ to idX which is supported on f−1(B2 × [−2, 2]).

(2) Moreover, for every µ > 0 there is a ν > 0 such that if f is additionally given to be a
stratified ν­fibration over (B3 − B̊1/3)× [−3, 3], then the stratum­preserving homeomor­
phism θ̃ : X → X additionally satisfies d(fθ̃, θf) < µ over (B − B̊2/3) × R. Also, the
θ̃ may be chosen so that additionally the stratum­preserving (pBf)−1(µ)­isotopy is also
over (B − B̊2/3) × R.

X B × R

p−1
B (ε)

X B × R B

θ̃

f

θ

f pB

Proof. This is similar the proof of Theorem 4.5, but using Lemma 4.6 instead of Theorem 4.4.
The idea is to choose a finite partition −1 = x0 < x1 < · · · < xn−1 < xn = 1 of [−1, 1]
and then, by using Lemma 4.6, to construct a stratum­preserving stacking homeomorphism θ̃

satisfying

f−1(Bxi−1 × (−∞, θxi−1(xi−1)]) ⊂ θ̃f−1(Bxi
× (−∞, xi]) ⊂ f−1(Bxi

× (−∞, θxi
(xi)]).
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The second part is achieved by using the ν­control over (B3 − B̊1/3) × [−3, 3] to further refine
the stacking so that we have d(fθ̃, θf) < µ over (B − B̊2/3) × R.





Chapter 5

Stratified Handle Problems

In this chapter, we are going to prove the following:

Stratified γ­Sucking Theorem. Let X be an MHSS without boundary such that the bottom
stratum has dim ≥ 5 and let B be a compact polyhedron. For every ε > 0 there exists a δ > 0
such that if f : X → B is a stratified δ­fibration then for every γ ≥ 0 there exists a stratified
γ­fibration f ′ : X → B which is ε­close to f .

The idea of the proof is to start by using a handle decomposition of the target space and analyze
the situation on each handle. From this step, we get handle problems that will be solved by
a stratified wrapping­unwrapping technique. We will be working backward starting from the
wrapping up construction in which the stratified engulfing results will be used.

5.1 Stratified Wrapping Up

The use of the wrapping up technique as an alternative to Kirby’s immersion of punctured torus
in solving handle problems firstly appeared in section 8 of [EK71] to prove the local contractibil­
ity of the homeomorphism group of manifolds. The power of this alternative technique becomes
obvious when we are dealing with stratified spaces in which the Torus Trick cannot be applied.
In the stratified settings, Siebenmann used such a technique to prove the local contractibility of
the homeomorphism group of CS spaces [Sie71]. Moreover, in [AH80] Anderson and Hsiang
used the wrapping up construction to study the extension problems of PL structures on CS
spaces.

In Chapter 1, we have described the wrapping up construction for a topological embedding
onto Rn. The idea is by regarding the embedding to have an R­factor and then wrapping this
factor up using the universal covering. This section is devoted to the wrapping up construction
of some stratified δ­fibrations. We will use Lemma 4.4 and Lemma 4.6 to wrap up a stratified δ­
fibration having an R­factor around S1. For notation, let e : R → S1 be the universal covering
projection defined by e(x) = exp(πix/4) and B be a compact polyhedron.

45
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Theorem 5.1 (Stratified Wrapping Up I). Let X be an MHSS without boundary such that
the bottom stratum has dim ≥ 5. For every ε > 0 there exists a δ > 0, such that if f :
X → B × R is a stratified δ­fibration over B × [−4, 4], then there exists an MHSS without
boundary X̃ , a stratified ε­fibration f̃ : X̃ → B×S1, and a stratum­preserving open embedding
φ : f−1(B × (−1, 1)) → X̃ such that the following diagram commutes:

X̃
f̃

> B × S1

f−1(B × (−1, 1))

φ
∪

∧

f |
> B × (−1, 1).

id×e

∧

Proof. We are given a stratified δ­fibration f : X → B×R overB× [−4, 4]. By Theorem 4.5,
for some µ > 0 there exist a stratum­preserving homeomorphism θ̃ and a stratum­preserving
(pBf)−1(µ)­isotopy θ̃t : idX ≃ θ̃ which is supported on f−1(B × [−3, 3]). Hence it is clear
that, by applying Lemma 3.1, pBf is ν­close to pBfθ̃t for some ν > 0, and that, by choosing an
appropriate homeomorphism θ in Theorem 4.5, θ̃ can be conditioned so that we have a controlled
condition that pRfθ̃f

−1(B × {−t}) is close to {−t+ 4} for 1.8 ≤ t ≤ 2.2.
Construction of X̃ . We consider

Y = θ̃f−1(B × (−∞,−2]) − f−1(B × (−∞,−2))

which is a compact subset of X and define X̃ = Y/ ∼ where the equivalence relation ∼ is
generated by x ∼ θ̃(x) for all x ∈ f−1(B×{−2}). Since θ̃ is stratum­preserving, the identified
points x and θ̃(x) lie in the same stratum of X and hence the identification only modifies that
stratum. The modified stratum is clearly a manifold and thus X̃ is an MHSS with the same
stratification of X except for the modified stratum.

Construction of f̃ : X̃ → B × S1. By representing S1 as [−2, 2]/ ∼ where ∼ is generated
by −2 ∼ 2, we can naturally identify f−1(B × (−1, 1)) as an open subset of X̃ and (−1, 1)
as an open subset of S1. Therefore, we have inclusion maps φ : f−1(B × (−1, 1)) ↪→ X̃ and
e| : (−1, 1) ↪→ S1, in which the former is stratum­preserving. We define a map g : Y →
B × [−2, 2] such that the R­component satisfies:

pRg(x) =


−2, for x ∈ f−1(B × {−2})
2, for x ∈ θ̃f−1(B × {−2})
close to pRf |Y , otherwise.

Note that the controlled condition implies that pRf(x) is close to 2 for x ∈ θ̃f−1(B×{−2}) and
hence pRg is well­defined. To define the B­component of g we will use the stratum­preserving
inverse isotopy θ̃−1

t := θ̃1−tθ̃
−1 : id ≃ θ̃

−1. Let µ : Y → [0, 1] be a Urysohn function which is
0 on f−1(B× {−2}) and 1 on θ̃f−1(B× {−2}). We define pBg(x) = pBfθ̃

−1
µ(x)(x). Note that,
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for x ∈ f−1(B × {−2}), we have pBg(x) = pBf(x) and pRg(x) = −2 = pRf(x). Moreover,
for x ∈ θ̃f−1(B × {−2}), we have pBg(x) = pBfθ̃

−1(x) and pRg(x) = 2 = pRfθ̃
−1(x).

Therefore g = f on f−1(B × {−2}) and g = fθ̃
−1(x) on θ̃f−1(B × {−2}). Hence, g factors

to the quotient and yields a map f̃ : X̃ → B × S1 making the diagram above commute.
Proof that f̃ : X̃ → B × S1 is a stratified ε­fibration. From the above construction, we

have that g is close to f |Y and hence by Lemma 3.1, there is a ν > 0 such that g is ν­homotopic
to f |Y . Thus, by Proposition 3.6, it suffices to find a neighborhood ofB×{−2} in the quotient
over which f̃ is a stratified ε1­fibration for smaller ε1. Let

U = θ̃f−1(B × (−∞,−1.8)) − f−1(B × (−∞, 1.8])

and define g′ : U → B × (1.8, 2.2) by

pBg
′(x) =

 pBg(x), for x ∈ U ∩ Y

pBgθ̃
−1(x), for x ∈ U − Y

and

pRg
′(x) =

 pRg(x), for x ∈ U ∩ Y

pRgθ̃
−1(x) + 4, for x ∈ U − Y.

It is clear that U can be regarded as an open subset of X̃ and B × (1.8, 2.2) as an open subset
of B × S1 such that f̃ |U = g′. Thus if we can prove that g′ is a stratified ε1­fibration over
B × [1.9, 2.1], then f̃ will be a stratified ε1­fibration over a neighborhood of B × {−2} as
desired.

To show that g′ is a stratified ε1­fibration over B × [1.9, 2.1], we prove that g′ is small
homotopic to the stratified ε­fibration f |U . By construction pRg

′ is close to pRf |U , so by Lemma
3.1 there is a small homotopy pRg

′ ≃ pRf |U . To treat the B­factor, we define u : U → B by

u(x) =

 pBg(x), for x ∈ U ∩ Y

pBfθ̃
−1(x), for x ∈ U − Y

and we will show that this is small homotopic to pBg
′. From the definition of pBg we have

a small homotopy et : pBg ≃ pBfrelf−1(B × {−2}) and hence we get a small homotopy
pBg

′ ≃ u. By applying the homotopy et again to U ∩ Y and by extending it over U using
Proposition 3.2, we get a homotopy u ≃ pBf |U . Therefore, by putting all the homotopies to­
gether, we have that g′ is γ­homotopic to f |U for a γ > 0. Thus g′ is a stratified ε1­fibration for
an ε > 0 as desired.

The proof of the next Theorem is by doing similar things as in the proof of Theorem 5.1,
but using Theorem 4.7 instead of Theorem 4.5. Let B be a compact polyhedron. Recall that
φ : B → [0,∞) is a proper map and Bt = φ−1([0, t]).
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Theorem 5.2 (StratifiedWrapping Up II). LetX be anMHSS without boundary such that the
bottom stratum has dim ≥ 5. For every ε > 0 there exists a δ > 0 such that if f : X → B ×R
is a stratified δ­fibration overB3 × [−3, 3], then there exist an MHSS X̃ , a stratified δ­fibration
f̃ : X̃ → B̊2.5×S1 overB2×S1 and a stratum­preserving embedding φ : f−1(B̊1×(−1, 1)) →
X̃ such that the following diagram commutes:

X̃
f̃

> B̊2.5 × S1

f−1(B̊1 × (−1, 1))

φ
∪

∧

f |
> B̊1 × (−1, 1).

id×e

∧

Moreover, for every µ > 0 there exists a ν > 0 such that if f is additionally given to be a
ν­fibration over (B3 − B̊1/3) × [−3, 3], then the map f̃ is additionally a stratified µ­fibration
over (B3 − B̊2/3) × S1.

5.2 Stratified Handle Results

In this section, we will prove the main result of this chapter, the Stratified γ­Sucking Theorem
5.4. The proof is by using a handle decomposition of the target space and then solving some
related handle problems. The solutions of the handle problems will be presented as Theorem
5.1 and Theorem 5.3 in which they are proved by some variants of the torus trick. We will apply
the stratified radial engulfing theorems and the stratified wrapping up theorems in these torus
arguments.

The first theorem contains the solution of top­dimensional handle problems. For notation,
let Dn

k denotes the n­dimensional disk of radius k and let en = e × · · · × e : Rn → T n be the
product of n universal covering projections.

Lemma 5.1 (Stratified Handle: Top­Dimensional Handles). Let X be an MHSS without
boundary such that the bottom stratum has dim ≥ 5. Given ε > 0 there exists a δ > 0, such
that for every µ > 0, if f : X → Rn is a stratified δ­fibration over Dn

3 , then there exists a
stratified µ­fibration f̃ : X → Rn over Dn

1 which is ε­homotopic to f rel(X − f−1(D̊
n

3 )).

Proof. We will work through the following commutative diagram of spaces and maps, the
required f̃ : X → R will be obtained from a modification of the map in the top of the diagram.
We choose the projection εn : Rn → T n such that εn|Dn

3
: Dn

3 → T n is an open embedding
and regard T n−1 × R as an open subset of D̊

n

3 in such a way that εn−1 × id : Dn
2 → Dn

2 is the
identity. The latter can be done using the argument in Section 8 of [EK71], see also Section 1.1
of this thesis. Consider the restriction f | : f−1(T n−1 ×R) → T n−1 ×R. By Proposition 3.5, the
restriction f | is a stratified δ­fibration over T n−1 × [−3, 3] provided that δ is sufficiently small.
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From Lemma 5.1 there is anMHSSX ′, a stratified δ′­fibration f ′ and a stratum­preserving open
embedding φ so that the lowest rectangle in the above diagram commutes.

X ′′ Rn

X ′′ Rn Dn
2

X ′ T n

f−1(T n−1 × (−1, 1)) T n−1 × (−1, 1)

f̄

p

f ′′

id

en

γ

f ′

f |

φ id×e

Next, we unwrap all of this by using the pullback construction of f ′ and the universal cov­
ering en : Rn → T n. This step is indicated by the middle rectangle in the diagram above.
Since en is a local homeomorphism, p : X ′′ → X ′ is a stratum­preserving local homeomor­
phism by the facts that p is stratum­preserving and the pullback of a local homeomorphism is
a local homeomorphism. Hence, by the fact that the property of being homotopically strat­
ified is local one, X ′′ is an MHSS. Since we chose that (en−1 × id)|Dn

2
= idDn

2
, it follows

that p| : (f ′′)−1(D̊
n

2 ) → f−1(D̊
n

2 ) is a stratum­preserving homeomorphism. Thus we can
choose that f ′′ = f over D̊

n

2 . To prove that f ′′ is a stratified δ′′­fibration, for some δ′′ > 0, let
F : Z × I → Rn and F̃ 0 : Z → X ′′ be maps whose form an SHLP of f ′′. In order to solve the
SHLP, we construct the following diagram:

Z X ′′ X ′

Z × I Rn T n

×0

F̃ 0

f ′′

p

f ′

F

G
H

en

It is clear that enF : Z× I → T n and pf : Z → X ′ yield an SHLP of f ′. Since f ′ is a stratified
δ′­fibration, there is a stratum­preserving homotopyH : Z × I → X ′ such that f ′H is δ′­close
to enF and H(z, 0) = pF̃ 0(z) for all z ∈ Z. Since en and f ′ clearly satisfy the hypothesis of
Proposition 3.4, we have that p is a stratified fibration. Note that H and F̃ 0 can be regarded as
inputs of an SHLP of p, therefore there is a stratum­preserving homotopy G : Z × I → X ′′

such that G0 = F̃ 0 and pG = H . We claim that G is the required stratified δ′′­solution of f ′′.
From the facts that f ′H is δ′­close to enF , that pG = H and that the right rectangle in the above
diagram is commutative, we have that f ′pG = enf ′′G is δ′­close to enF . Hence, since en is a
local homeomorphism, f ′′G is δ′′­close to F for some δ′′ > 0.

Now, we modify f ′′ using a radial homeomorphism γ : Rn → Rn which compresses Dn
K
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to Dn
3 for large K > 0 and keeps Dn

2 pointwisely fixed. For a detailed construction of such a
radial homeomorphism, we refer to page 18 of [KS77]. We define f̄ = γf ′′. It is clear from the
construction that f̄ = f over D̊

n

2 , f̄ is a stratified δ′′′­fibration, and f̄ is a stratified µ­fibration
over Rn − D̊

n

3 where the size of µ depends on the size of 1/K and the size of δ′′′ depends on
the size of δ′′.

The final step is to modify f̄ . Let θ : Rn → Rn be a homeomorphism supported on D̊
n

8 and
defined to be θ(x1, x2, · · · , xn) = (x1 + 5, x2, · · · , xn) on D̊

n

2 such that it only affects the first
coordinate of Rn. It is clear that θ(D̊

n

2 ) ⊂ Rn − D̊
n

3 . By the first part of Lemma 4.7, there is a
stratum­preserving homeomorphism θ̃ : X ′′ → X ′ such that f̄ θ̃ is ε′′­close to θf̄ in which the
size of ε′′ depends on the size of δ′′′. We define f̂ = θ−1f̄ θ̃ : X ′′ → Rn which is a stratified
µ­fibration overDn

1.5. Moreover, there is a small homotopy from f̂ to f̄ where the size depends
on ε′′. Finally, we define f : X → Rn to be f̂ over Dn

1.5, to be f over Rn − D̊
n

2 , and over
Dn

2 − D̊
n

1.5 to be defined by the homotopy f̂ ≃ f̄ . It is clear that f̃ is as desired.

Recall that for a compact spaceB, the cone overB is defined to be the quotient c(B) = B×
[0,∞]/ ∼ in which the equivalence relation ∼ is generated by (b, 0) ∼ (b′, 0) for all b, b′ ∈ B.
Similarly, the open cone over B is defined by c̊(B) = B × [0,∞)/ ∼. For any t ∈ [0,∞),
define the t­subcone by ct(B) = B×[0, t]/ ∼ and the open t­subcone by c̊t(B) = B×[0, t)/ ∼.

Theorem 5.3 (Stratified Handle: General Case). LetX be an MHSS without boundary such
that the bottom stratum has dim ≥ 5. Given ε > 0 there exists a δ > 0 such that for every µ > 0
if f : X → c̊(B) × Rn is a stratified δ­fibration over c̊3(B) × Dn

3 and a stratified ν­fibration
over (c3(B) − c̊1/3(B)) × Dn

3 , then there exists a stratified µ­fibration f̃ : X → c̊(B) × Rn

over c1(B) ×Dn
1 which is ε­homotopic to f rel(X − f−1(c̊2/3(B) × D̊

n

3 )).

Proof. For n = 0. We are given ε > 0, µ > 0 and a proper map f : X → c̊(B) which is a
stratified δ­fibration over c̊3(B) and a stratified ν­fibration over c3(B)−c̊1/3(B). Choose t close
to 0 and let θ : c̊(B) → c̊(B) be a homeomorphism which is supported on c2/3(B) − c̊t/2(B)
and takes ct(B) to c1/2(B) so that all moves occur along the [0,∞)­direction in c̊(B). By
the first part of Lemma 4.7 there is a stratum­preserving homeomorphism θ̃ : X → X such
that fθ̃−1 is δ̃­close to θ−1f , where the size of δ̃ depends on the size of δ. Then we define
f ′ = θ−1fθ̃ : X → c̊(B). It is a stratified µ̃­fibration over c3(B) − c̊1/3(B) which is ε/2­
homotopic to f rel (X − f−1(c̊2/3(B))), where the size of µ̃ depends on the size of µ. Let
γ : c̊(B) → c̊(B) be a homeomorphism which is supported on c2/3(B) and squeezes ct(B)
close to the cone point. It can be seen that f̃ = γf ′ fulfills the required conditions.

For n ≥ 1. In this case the proof is similar to the proof of Lemma 5.1 with only two sig­
nificant changes. The first occurs in the wrapping up procedure in which Lemma 5.2 is used in
place of Lemma 5.1. The second one occurs in the definition of radial homeomorphism γ. In
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this case we define γ : c̊(B) × Rn → c̊(B) × Rn as the composition γ = γ2γ1 where γ1 gives
a radial squeezing on Rn toward the origin as the one in the proof of Lemma 5.1 and γ2 gives a
radial squeezing on c̊(B) toward the cone point as the one in the case n = 0 above.

Finally, we come to the main theorem of this chapter.

Theorem 5.4 (Stratified γ­Sucking). Let X be an MHSS without boundary such that the bot­
tom stratum has dim ≥ 5 and let B be a compact polyhedron. For every ε > 0 there exists a
δ > 0 such that if f : X → B is a stratified δ­fibration then for every γ > 0 there exists a
stratified γ­fibration f ′ : X → B which is ε­close to f .

Proof. We use a stratified handle decomposition ofB as in Example 2.1 and do an inductive ar­
gument from the handle neighborhood in the top stratum down. For top handles, we use Lemma
5.1 so we have that for δ small enough then there is a stratified ε1­fibration f1 : X → B which
is close to f and which is a stratified γ1­fibration over a neighborhood of Un = ∪Nb where ε1

and γ1 are the δ and the µ in the Lemma, respectively, and Nb is a distinguished neighorhood
of the barycenter b of some n­simplex of B. The size of ε1 depends on the size of ε and the
size of γ1 can be chosen as small as we please so that the following next steps can be done.
Next, we similarly treat the open (n− 1)­handles neighborhood c̊(Bb) × Rn−1 of barycenter b
of some (n− 1)­simplex. In this case, we use Lemma 5.3 to find a stratified ε2­fibration over a
neighborhood of Un ∪ Un−1 where Un−1 = ∪Nb for some barycenter b of the (n − 1)­simplex
where the size of ε2 depends on the size of ε1 and the size of γ2 depends on the size of γ1. We
then continue doing this process until all handles in B are exhausted.

As an application of the Stratified γ­Sucking Theorem, we prove our Stratified Sucking
Theorem by constructing a sequence of stratified ε­fibrations. Loosely speaking, the theorem
asserts that a map that is nearly a stratified approximate fibration can be sucked into the space
of stratified approximate fibrations. This also explains the terminology.

Theorem 5.5 (Stratified Sucking ). LetX be an MHSS without boundary such that the bottom
stratum has dim ≥ 5 and let B be a compact polyhedron. Then for every ε > 0, there exists a
δ > 0 such that if f : X → B is a proper stratified δ­fibration, then f is ε­near to a stratified
approximate fibration.

Proof. We are given a proper stratified δ­fibration f : X → B, by Theorem 5.4, for some
ε1 > 0 there is a proper stratified δ1­fibration f1 : X → B which is ε1­close to f . Inductively,
we can construct sequences {fn} and {δn} for n = 1, 2, 3, . . ., such that fn is a stratified δn­
fibration, limn→∞δn = 0, each fn is εn­close to f , the uniform limit p := limn→∞ fn is proper,
and limn→∞ εn = ε. We will show that p is the desired stratified approximate fibration.
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To show that p is a stratified approximate fibration, by Proposition 3.6, it suffices to show
that for every compact subset C ⊂ B and for every γ > 0, p is a stratified γ­fibration over C.
Hence, suppose that we have an SHLP of p over C, i.e. a homotopy F : Z × I → C and a map
F̃ 0 : Z → p−1(C) such that pF̃ 0 = F0. We construct the following diagram:

Z × 0 p−1(C) p−1(C)

Z × [0, 1] C.

×0

F̃ 0

p|
fn|

F

By definition of p, we have that fn is close to p. Then, by Proposition 3.1, we have a small­
homotopy from p|p−1(C) to fn|p−1(C). Since F0 = pF̃ 0, we have that F0 is small homotopic to
fnF̃ 0 : Z × 0 → C, say with a homotopyH : (Z × 0) × I → C. Since F0 = H0 : Z × 0 → C

extends to F : (Z× [0, 1])×0 → C, by the Stratum­Preserving Estimated Homotopy Extension
Theorem 3.2, there is a small­homotopy H̃ : (Z× [0, 1])×I → C extendingH so that H̃0 = F

and H̃1 : Z × [0, 1] × 1 → C extends fnF̃ 0 : Z × 0 → C. Hence, we can regard both H̃1 and
F̃ 0 as inputs of an SHLP of fn|. We construct the following diagram:

Z p−1(C) p−1(C)

Z × [0, 1] C.

×0

F̃ 0

p|
fn|

H̃1

Since fn is a stratified δn­fibration, there is a stratum­preserving homotopy G : Z × [0, 1] →
p−1(C) such that G0 = F̃ 0 and fnG is δn­close to H̃1. We claim that, for n large enough, G
is a desired γ­solution of the original SHLP of p|. We have that pG is close to fnG and H̃1

is small­homotopic to F . Hence, from the fact that fnG is δn­close to H̃1 we have that pG is
close to F . Note that all closeness and smallness relations above depend only on n, thus we can
choose n large enough so that pG is γ­close to F .



Chapter 6

Outlook

A possible strategy towards a stratified version of the α­Approximation Theorem might be
based on proving a more general stratified sucking theorem that allows for the target space to
be stratified. In doing so one would have to overcome the problem that the stratum­preserving
property of solutions in the limiting process might be lost due to collapsing of strata phenomena.

Suppose we knew the following version of the stratified sucking principle:

(*) Let X be an MHSS without boundary such that the bottom stratum has dim ≥ 5 and let Y
be a compact stratified polyhedron. Let ε > 0 be given. Then there exists a δ > 0 such that if
f : X → Y is a proper stratified δ­fibration, then f is ε­near to a stratified approximate fibration.

Then the strategy might be as follows. Given a stratum­preserving α­equivalence f : X →
Y in whichX is a CS set and Y is a compact stratified polyhedron in which both have dim ≥ 5
bottom strata. Then, by Proposition 3.3, f is a stratified α­fibration. From (*), f is β­near to a
stratified approximate fibration p : X → Y . Next, by Remark 3.3, we have that p is a stratum­
preserving CE map. Finally, from the following stratum­Preserving CE approximation theorem
of M. Handel, p is arbitrarily near to a stratum­preserving homeomorphism h : X → Y . Hence,
the given stratum­preserving α­equivalent f is β­near to a stratum­preserving homeomorphism
h : X → Y .

Theorem 6.1 (Stratum­Preserving CE Approximation Theorem). Let X and Y be CS sets
with only finitely many strata such that the bottom strata have dim ≥ 5. Let ε : X → (0,∞)
be a continuous function. If f : X → Y is a stratum­preserving CE map, then there is a
stratum­preserving homeomorphism h : X → Y such that d(f(x), h(x)) < ε(x) for all x ∈ X .

This theorem is proved in [Han75]. It is a generalization of Siebenmann’s CE Approximation
Theorem for manifolds [Sie72].
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