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Abstract

In the last decades, molecular biology has transformed into a data-rich discipline. This

trend is driven by developments in imaging and the continuous increase in available omics

technologies which allow for high-throughput profiling of various types of molecules in a

given biological system.

Classical omics approaches profile the abundance of thousands of cellular biomolecules,

e.g., RNAs or proteins. Recently developed assays, such as Thermal Proteome Profiling

(TPP), however, can additionally inform on biophysical states of proteins. By choosing

the right experimental design or through contextualization of TPP experiments they can

reveal small molecule protein engagement, protein-protein interaction (PPI) dynamics

or effects of post-translational modifications (PTM). However, while experimental de-

signs, reproducibility, amenable organisms and throughput of the TPP assay are being

advanced at a fast pace, computational methods for statistical analysis of obtained data

are lagging behind.

This thesis proposes a suite of computational methods to provide tools for several of the

aforementioned application areas of TPP.

First, it describes a software package for analysis of TPP experiments in the context of

PPIs and suggests a method for detection of differential PPIs across conditions. The ap-

plication of this method to different TPP datasets revealed significantly changing PPIs

during different phases of the human cell cycle and behavior of protein complexes in

Escherichia coli within and across cellular compartments.

Second, this work addresses a specific experimental TPP setup called 2D-TPP in which
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thermal stability of proteins is measured as a function of temperature and concentration

of a compound of interest to find proteome-wide interactions of the compound. This

was done by implementation of a curve-based hypothesis test to analyze data obtained

from such experiments with false discovery rate control. The method was benchmarked

on simulated data and on several real datasets. Application of the software to 2D-TPP

datasets profiling epigenetic drugs revealed hitherto unknown off-targets and downstream

effects of these drugs.

Third, the same computational method was applied to a 2D-TPP dataset profiling ATP

and GTP in a crude cell extract. The analysis of these datasets revealed functional roles

of ATP in proteome regulation ranging from allosteric binding, over protein complex

assembly and condensate formation.

Last, a method for analysis of TPP experiments to profile the effect of PTMs is presented.

While the application of this method led to the detection of phosphosites known to be

involved in protein regulation, it also pointed out sites which appear to be involved in

controlling the localization of proteins to membrane-less organelles.

Taken together, this thesis introduces and showcases computational methods for differ-

ent application areas of TPP. The presented methods are implemented as open source

software packages to enable long-term availability and access to the broader commu-

nity.
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Zusammenfassung

In den letzten Jahrzehnten hat sich das Forschungsfeld der Molekularbiologie zunehmend

in eine Disziplin mit hohen Datenaufkommen entwickelt. Dieser Trend wird stark durch

die Entwicklungen im Bereich der Bildgebungsverfahren und dem kontinuierlichen Zuwachs

an Omics Technologien, die Hochdurchsatzmessungen von verschiedenen Biomolekülen

in biologischen Systemen erlauben, vorangetrieben.

Klassische Omics Methoden erstellen ein Profil der Abundanz von tausenden zellulären

Biomolekülen, wie zum Beispiel von Ribonukleinsäuren oder Proteinen. Vor Kurzem

entwickelte Verfahren, wie Thermal Proteome Profiling (TPP), ermöglichen es zudem,

Informationen über biophysische Zustände von Proteinen zu liefern. Durch die Wahl des

passenden Versuchaufbaus oder durch die Kontextualisierung von TPP Experimenten,

können diese Interaktionen von Proteinen mit niedermolekularen Verbindungen, Protein-

Protein Interaktionsdynamiken oder Auswirkungen von post-translationalen Modifikatio-

nen aufdecken. Während jedoch Verbesserungen von Versuchsaufbauten, Reproduzier-

barkeit, Durchsatz und die Anzahl der Organismen, auf die das Verfahren angewen-

det werden kann, stetig zunehmen, fehlen die entsprechenden Methoden, um die dabei

erzeugten Daten statistisch auswerten zu können.

Diese Doktorarbeit schlägt eine Reihe von computergestützten Methoden vor, umWerkzeuge

für die statistische Analyse einiger der zuvorgenannten Anwendungsgebiete von TPP zu

liefern.

Als erstes wird ein Softwarepaket zur Analyse von TPP Experimenten mit Hinblick

auf Protein-Protein Interaktionen in verschiedenen Zell- oder Behandlungszuständen

iii



vorgestellt. Die Anwendung dieser Methode auf unterschiedliche TPP Datensatze führte

dabei zur Entdeckung von signifikant unterschiedlichen Protein-Protein Interaktionen

zwischen verschiedenen Phasen des menschlichen Zellzykluses. Desweiteren fanden wir

unterschiedliche Ausprägungen von Protein-Komplexen in Escherichia coli, abhängig

davon, ob sie sich innerhalb eines oder über verschiedene Zellkompartimente hinweg,

ausbreiteten.

Zweitens behandelt diese Arbeit einen speziellen experimentellen Ansatz von TPP—2D-

TPP. Hierbei wird das experimentelle Design so gewählt, dass die thermale Stabilität

von Proteinen als Funktion von Temperatur und der Konzentration einer chemischen

Verbindung proteomweit gemessen wird, um Proteine zu finden, die mit der getesteten

Verbindung interagieren. Dies wurde umgesetzt, indem ein kurvenbasierter Hypothesen-

test zur Analyse erzeugter Daten mit Kontrolle der ‘False Discovery Rate’ implementiert

wurde. Diese Methode wurde anhand von einem simulierten und mehreren echten Daten-

sätzen getestet. Die Anwendung dieser Analysemethode auf 2D-TPP Datensätze, die

zur Bestimmung von Interaktionsprofilen epigenetischer Wirkstoffe aufgenommen wur-

den, führte zur Entdeckung zuvor nicht bekannter, unerwünschter Interaktionspartner

und indirekter Auswirkungen dieser Wirkstoffe auf zelluläre Stoffwechselwege.

Drittens wurde diesselbe statistische Methode zur Bestimmung von ATP und GTP Inter-

aktionspartnern in mechanisch erzeugten Zelllysaten, basierend auf einem dementsprechen-

den 2D-TPP Datensatz, angewandt. Die Analyse der dabei erhaltenen Ergebnisse ergab,

dass ATP in verschiedene Regulationsprozesse des intrazellulären Proteoms, neben der

bekannten Rollen als Substrat sowie auch als allosterischer Modulator, involviert ist.

Diese umfassten zum Beispiel die Assemblierung von Proteinkomplexen und der Forma-

tion von Proteinkondensaten.

Als letztes wird eine Methode zur Analyse von TPP Experimenten zur Bestimmung

von funktionellen post-translationalen Modifikationen vorgestellt. Die Anwedung dieser

Methode konnte Phosporylierungsstellen detektieren, deren Rollen in der Regulation von

Proteinen schon bekannt waren. Darüberhinaus hob die Methode aber auch Phospho-

rylierungsstellen mit bisher unbekannter Funktion hervor, die in der Lokalisationsregula-
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tion von Proteinen, die Teil von nicht-membranumschlossenen Organellen sind, involviert

zu sein scheinen.

Zusammengefasst stellt diese Doktorarbeit verschiedene statistische Methoden zur Anal-

yse von TPP Experimenten vor und veranschaulicht ihre Funktionsweise durch die An-

wendung auf Datensätzen mit unterschiedlichen analytischen Zielen. Die vorgestell-

ten Analysemethoden sind als Open-Source-Software Pakete implementiert, um eine

langfristige Verfügbarkeit und den Zugang für die breite Forschungsgemeinschaft zu

gewährleisten.
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Chapter 1

Introduction

“We still don’t know one thousandth of one percentage of what nature has

revealed to us.”

— Albert Einstein

All living organisms are built up of cells. Each of which constitutes a spatially constrained

compartment which usually contains the organism’s genetic material in form of DNA,

other nucleic acids such as RNAs, proteins, sugars, lipids and other organic molecules

(Alberts et al., 2007, pp. 1–10, 54–64). According to the central dogma of molecular

biology the DNA of most genes is transcribed to messenger RNA which, in turn, is trans-

lated into proteins (Alberts et al., 2007, pp. 331–339, 366–382). This simplified model

of gene expression illustrates how the genetic material can be converted into functional

gene products, that can perform a variety of functions, including catalysis of chemical re-

actions or modulation of cellular morphology and appearance. By restricting expression

to a subset of genes, organisms can use their genetic material to create phenotypically

distinct cells which can perform diverse tasks (Alberts et al., 2007, pp. 454–466).

The field of systems biology is concerned with understanding how cells and organisms

operate by making use of their genetic inventory (Kirschner, 2005). In this context, it

has been a long-standing problem to understand functions of gene products, how they
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are regulated and how they work together under different conditions. While much has

been learned from experiments dedicated to one or a handful of gene products, it has

been increasingly realized that most processes and their underlying actors inside cells are

highly interconnected and thus difficult to study in isolation. Therefore, there have been

efforts to find means of quantitatively measuring many or even all detectable elements of

a type of biological molecule in different organisms and conditions to gain a more holistic

view of cellular states and the interconnected changes upon perturbation.

However, even with a quantitative readout of a large proportion of biomolecules in hand,

researchers often struggle to infer the underlying biological mechanisms which lead to

observed effects in response to varying conditions or perturbations. Thus, in the last

years, methods have been developed that do not only inform on the abundance, but also

on the functional state of biomolecules and their interactions among each others. The

statistical analysis of such datasets, however, entails several novel challenges, some of

which are approached within this thesis.

1.1 Modern technologies to study molecular biology

In the last 30 years the development of methods to interrogate molecules inside biological

systems has drastically accelerated. The development of DNA microarray technologies,

which consist of glass plates with spotted DNA fragments, that allow for fluorophore-

mediated readout of hybridization events of complementary DNA strings, for the first

time allowed the simultaneous measurement of hundreds to thousands of transcript levels

in cellular samples (Schena et al., 1995).

A few years later sequencing-based approaches entered the stage. Sequencing of nucleic

acids had been established before (Maxam & Gilbert, 1977; Sanger et al., 1977), however

the costs and throughput involved in the classical sequencing approaches did not allow

to run these experiments at a large scale. The establishment of next-generation short

read sequencing (Bentley et al., 2008), i.e., massively parallel sequencing by synthesis on

flow cells using dye-labeled nucleotides, whose incorporation is recorded optically, soon
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overcame this limitation. At that time, the technology developed was strongly driven by

the great interest in genome sequencing, but through parallel assay development based

on this sequencing technology, profiling of transcripts levels (Nagalakshmi et al., 2008),

probing presence of epigenetic modifications at specific genomic loci (Cokus et al., 2008)

and detection of binding events of transcriptions factors (Johnson et al., 2007; Robertson

et al., 2007) all joined the toolbox of accessible technologies to profile living organisms.

All sequencing-based methods have in common that they rely on sequencing of DNA

fragments, mapping back the sequenced reads to the genome and counting the occurrence

of events of interest, e.g., observation of reads with a genomic variant, an epigenetic

modification or of a certain transcript.

1.2 Mass spectrometry-based proteomics

A long time before approaches to profile nucleic acids were developed, a technology

termed mass spectrometry (MS) was developed, with the aim to measure the mass to

charge ratio (m/z) of ions. However, the scope of the original method developed by John

Thomson was by no means to measure biomolecules, but rather the structure of atoms

to begin with (Thomson, 1913).

Decades later, a breakthrough discovery by John Fenn and colleagues, who developed

a universal method for in vacuo ionization of large biomolecules in solution, termed

electrospray ionization (ESI) (Fenn et al., 1989), paved the way for its application in

molecular biology.

Nowadays, MS finds application in the fields of proteomics, metabolomics and lipidomics.

Moreover, in proteomics, it is applied in many different ways. The most common are i)

to quantify expression of all detectable proteins in complex samples by measurement of

representative peptides obtained from tryptic digest of extracted proteins (Bantscheff et

al., 2012), ii) to measure the abundance of a targeted part of the proteome (Shi et al.,

2016), iii) to analyze different proteoforms, i.e., the same protein with, e.g., different post-

translational modifications, of intact proteins (Donnelly et al., 2019), and iv) to measure
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three-dimensional constraints of protein residues in complexes using cross-linkers to aid

structural biology approaches (O’Reilly & Rappsilber, 2018).

1.2.1 Mass analyzer

At the heart of each mass spectrometer lies its mass analyzer. This component represents

the actual tool capable of measuring m/z of ions. Different types of mass analyzers exist

and are based on different principles.

Time of flight instruments

Time of flight (TOF) mass analyzers exploit the fact that the speed at which ionized

molecules travel in an electric field depends on mass and charge of the particle. Typically,

such instruments consist of a tube into which ions are injected with a controlled energy

and travel from one end to the other towards a detector. Given the known length of the

tube and the strength of the electric field, the m/z of a given particle can be determined

by measuring its time of flight. The longer the distance traveled by the molecule, the

more precisely the mass to charge ratio of particles can be measured (Cotter, 1999).

Ion traps

A different approach to measuring the m/z of an ionized molecule is to capture, i.e., to

trap it in an electric field, e.g., by switching the polarity of its surrounding electrodes.

By measuring the oscillation of the trapped ion in such a system, one can infer its m/z.

Different types of ion traps exist with an important one represented by the Orbitrap

(Figure 1.1): a trap in which ions are forced onto an orbit around a spindle and its

characteristic oscillations in z-direction are used to infer its m/z. This instrument was

developed by Alexander Makarov and offers high mass resolution and speed (Hu et al.,

2005; Makarov, 2000).
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Figure 1.1: Illustration of an Orbitrap mass analyzer. Ions are injected

orthogonally to the z-axis and forced onto an orbit around the axial electrode

by an electric field. The frequency of harmonic oscillations along the z-axis

are inversely proportional to the square root of m/z and can be converted

into spectra by fast Fourier transformation (Makarov, 2000). The spectrum

intensity is thereby indicative of the ion’s abundance. Schematic drawn based

on Fig. 1 by Hu et al. (2005).

1.2.2 Modern high-resolution mass spectrometers

Mass spectrometers, however, do not only consist of mass analyzers. Several components

are pre-connected in front of the mass analyzer to focus and filter the ion beam to enable

successful m/z measurement (Figure 1.2). By successively selecting specific m/z ranges

of ions, eluted at a certain time point, it is possible to measure a substantial fraction

of proteins extracted from a biological source, e.g., 5,000 - 10,000 for human samples

(Bantscheff et al., 2012).

5



Orbitrap
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Collector
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Figure 1.2: Schematic of a modern orbitrap mass spectrometer. After

online separation of peptides by liquid chromatography and ionization, pos-

itively charged peptides are injected into the instrument. The ion beam

is focused by the S lens and forwarded into the bent flatapole which leads

charged particles along the curvature, whereas uncharged ones collide. Ions

are then injected into the quadrupole, where they are filtered for a certain

m/z range and forwarded to the C-trap. In the C-trap filtered ions are gath-

ered before they are injected through the Z lens into the Orbitrap. While

a first MS spectrum (MS1) is recorded, ions of selected m/z ranges are sent

into the collison cell in which they are fragmented through high energy in-

duced gas collisions (HCD). Resulting fragments are then transported back

into the C-trap and injected into the Orbitrap to record a second MS spec-

trum (MS2). By subsequently measuring MS1 scans for several m/z ranges

and triggering MS2 scans in case the measured signal in the first recording

fullfils certain criteria, a large fraction of the peptides present in a complex

sample can be measured. Schematic drawn based on Fig. 2 by Michalski et

al. (2011).
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1.2.3 Bottom-up proteomics

Over the years, an approach termed bottom-up proteomics has emerged as the standard

workflow to quantify an, as large as possible, fraction of an organism’s proteome (Figure

1.3). The term ‘bottom-up’ refers to the principle of digesting proteins into small pep-

tides, measuring the abundance of these peptides and mapping them back to proteins and

thus estimating the abundance of proteins. The digestion of proteins to peptides is typi-

cally performed by proteases with a defined cleavage pattern, such as trypsin, which cuts

only C-terminal of lysine or arginine. Samples are then desalted and online fractionated

by high pressure reverse phase liquid chromatography (LC), which elutes polar peptides

first and hydrophobic peptides last, before samples are ionized using ESI and injected

into the mass spectrometer. In modern Orbitrap instruments (Figure 1.2), ions are fo-

cused and systematically filtered for different mass to charge ranges using quadrupoles

and are subsequently measured in tandem (MS/MS) (Michalski et al., 2011). This means

that first a spectrum of a certain mass range of a given peptide sample is recorded and

then selected mass ranges of these ions are transported into a collision cell where they

are collided with gas atoms and thereby fragmented preferentially at their peptide bonds.

These peptide fragments are then transported to the mass analyzer, where a second scan

is performed and a fragment ion spectrum is obtained. Based on the parent ion mass

and the fragmentation pattern, peptides can be identified by searching against a database

generated by in silico synthesis of all possible spectra expected for a certain organism.

Quantification of identified peptides can then be performed using different strategies out-

lined in Section 1.2.5: “Quantitative proteomics to compare different conditions”.

1.2.4 Peptide database search

In order to identify peptides based on their measured mass and fragmentation spectrum,

a database, specific to the organism, from which the sample has been obtained from, is

created in silico. This includes computationally digesting all protein sequences with the

chosen protease, calculating expected m/z ratios for differently charged peptide sequences

7



and fragmenting those sequences and determining theoretically expected spectra. Peptide

measurements are then compared with possible matching theoretical spectra obtained in

this way and a score, based on how likely a combination of observed spectral matches

would randomly occur for a given query based on a binomial model, is computed (Cox

et al., 2011). In order to control for false positives, the same approach is in parallel

performed with all reversed protein sequences, a so called decoy database (Elias & Gygi,

2007). Typically, at a false discovery rate (FDR) of 1%, determined as the highest score

at which 1% of the total observed peptides spectrum matches (PSMs) are found with

the reversed sequence database, PSMs are accepted and used to quantify peptides and

subsequently proteins (Elias & Gygi, 2010).

When inferring proteins from identified peptides accepted at a certain FDR, however, one

needs to consider that there remains a higher risk of finding false positive proteins than

at the accepted peptide-level FDR. Hence, a protein-level FDR procedure is typically

performed. The picked approach uses all forward and reverse peptides identified at a

given FDR cutoff. For each protein, forward and reverse, the score of its highest scoring

peptide is set. Then for each pair of forward and reverse proteins the one with the lower

score is removed and the remaining list is sorted by score and the same FDR procedure

as for peptides is applied (Savitski et al., 2015). Protein FDR is usually also set to be

below 1%.

1.2.5 Quantitative proteomics to compare different conditions

Different strategies to perform comparative proteomics experiments have been developed.

First, so called label-free experiments were performed, which usually quantify proteins

based on their MS1 spectrum. This approach relies on performing fully independent MS

experiments for each replicate of a biological condition that is to be compared. Chal-

lenges associated with this approach are that individual MS experiments are never simply

comparable, but have to be normalized by means such as by aligning LC elution profiles

(Cox et al., 2014). However, even with application of appropriate normalization proce-
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Figure 1.3: Standard workflow for bottom-up proteomics. Proteins are

extracted from the sample, digested into peptides using the enzyme trypsin,

fractionated via C-18 solid phase liquid chromatography, ionized and injected

into the mass spectrometer.

dures, inference of accurate fold changes between conditions remains challenging.

Second, strategies evolved that made use of stable heavy isotope-labeling of amino acids

in cell culture (SILAC). This approach requires cells to be grown in culture. It is then

made use of differentially heavy isotope-labeled amino acids, e.g. deuterium-labeled heavy

L-leucine vs. normal L-leucine, which are exclusively present in this form in the sample

medium of cells in a specific condition (Ong et al., 2002). By growing in such labeled

media, the cells successively replace all endogenous amino acids in their proteins with

labeled ones. Following extraction of the proteins from both conditions, pooling and

performing an MS experiment, the peptides retrieved from the isotope labeled proteins

containing a leucine have a shifted mass and can thus be quantified separately for both

conditions (Ong et al., 2002). Nowadays, heavy carbon labeled arginine and lysine are

used instead of deuterium-labeled leucine which have several analytically favorable char-

acteristics, such as that heavy and light proteins are co-eluted and complete coverage of

the amenable proteome can be achieved (Ong et al., 2003).

Third, different approaches have been developed to chemically modify peptides obtained

after tryptic digest and thus encode different conditions for multiplexing. The two most
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used chemical labels are isobaric tags for absolute and relative quantification (iTRAQ,

up to 8 channels) (Ross et al., 2004) and tandem mass tags (TMT, up to 16 channels)

(Li et al., 2020; Thompson et al., 2003; Werner et al., 2014, 2012). Isobaric tags are

amine reactive molecules, designed in a way that their overall mass is the same, but

upon fragmentation so called reporter ions are formed, which have characteristic masses

that can be used to encode different conditions. This is achieved by distributing different

isotopes of N and C atoms within these molecules such that the overall mass is equal,

but the region forming the reporter ion fragment contains different N and C isotopes al-

lowing for quantification on MS2 level (Pappireddi et al., 2019). Proteomics approaches

making use of chemical labeling have the advantage that samples are pooled at an early

stage and thus sample handling and instrument performance do not introduce additional

batch effects. However, there are also limitations. The most crucial one, termed ratio

compression (Ow et al., 2011), occurs if measured samples are too complex, i.e. too many

different peptides with similar m/z elute at the same time. This phenomenon results in

an underestimation of the relative fold change in abundance of a protein in two condi-

tions, induced by the fact that quadrupoles cannot isolate a narrow mass range, leading

often to co-isolation of other ions that also carry reporter tags. This co-isolation gets

worse with increasing sample complexity. Thus, computational and chromatographic

strategies have been developed (Savitski et al., 2013) to establish a workflow (Figure 1.4)

which minimizes ratio compression and allows for accurate relative quantification, while

reducing instrument time through multiplexing.

Another more recently developed approach is called data independent acquisition (DIA)

(Gillet et al., 2012) as opposed to data-dependent acquisition (DDA), which is performed

as described above and used by all approaches discussed so far. In DIA the selection of

m/z windows, which are chosen for fragmentation, is not dependent on the data, i.e., the

instrument systematically chooses windows of m/z ranges to cover all peaks and frag-

ments the ions therein. This strategy is more time efficient than DDA, however comes

with the caveat of not being able to identify measured peptides without an appropri-

ate DDA reference measurement or an accurate in silico prediction (Yang et al., 2020).
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Figure 1.4: Workflow to perform quantitative proteomics using chemical

labeling for multiplexing. Proteins are extracted from samples and digested

with trypsin. Peptides from different condtions are then labeled with dis-

tinct isobaric tags and pooled. Obtained samples are offline pre-fractionated

orthogonally to the online chromatography, e.g., at high pH. The different

collected fractions are then consecutively injected into the mass spectrom-

eter. Resulting raw files are merged by jointly being searched against the

database.

1.2.6 Beyond measuring protein abundance

Apart from modulation of gene expression, cells also use other means of regulating their

existing proteins. For instance, post-translational modifications (PTM) can switch pro-

teins from active to inactive or target them for degradation (Karve & Cheema, 2011).

These processes, often referred to as intracellular signalling, in many cases allow cells

to respond faster to extrinsic cues compared with gene expression. Aside from modifi-

cation and degradation of proteins, cellular states can also be influenced by interaction
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of proteins with one another or with other biomolecules, such as organic compounds or

nucleic acids. Over the last years, there has been much effort to establish technologies,

which are capable of informing on these interactions on a system-wide level (Larsen et

al., 2006).

Measuring post-translational modifications of proteins

The most studied PTM is the reversible modification of proteins with phosphoryl groups

(Cohen, 2002). In most cases phosphorylation represents a modifications of hydroxy-

groups and thus occurs on serine, threonine and tyrosine, but can also be placed on

histidine’s imidazole ring. The enzymes which place it are termed kinases, whereas those

which remove it are phosphatases. This modification is known to be the information

carrier in many important signalling pathways, e.g., major metabolic processes (Linn et

al., 1969) or regulation of the cell cycle (Nurse & Bissett, 1981). It has been shown

that protein phosphorylation at specific sites on proteins can trigger intramolecular re-

arrangements often (in-)activating enzymes for signal transduction (Kimura et al., 1996;

Young et al., 2001) or modulate protein-protein interactions (PPI) (Nishi et al., 2011).

However, in most cases the presence of this PTM in the existing protein pool is highly

substoichiometric, i.e., only a small subset of proteins will carry a phosphorylation. Thus,

peptides carrying the modifications of interest need to be enriched to enable their mea-

surement with MS. In phosphoproteomics, this is usually achieved using either TiO2 or

immobilized metal ion (usually Fe3+) affinity chromatography (IMAC) (Pinkse et al.,

2011; Potel et al., 2018). The strongly negatively charged phosphopeptides obtained

after tryptic digest, bind to the positively charged metal ions in acidic conditions, while

unmodified peptides largely flow through. Phosphopeptides can then be eluted under

alkaline conditons. Usually both, flow-through, i.e., unmodified peptides and enriched

phosphopeptides are then subjected to MS/MS analysis. This is important to judge

whether changes in phosphopeptide abundance are related to abundance changes in the

protein or specific to the phosphorylated proteoform.
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Other PTMs such as acetylation, SUMOylation and ubiquitination have been shown to

have crucial functions within cells and are possible to study with proteomics methods as

well (Andersen et al., 2009; Kim et al., 2006; Peng et al., 2003). The principle behind

such proteomics methods is usually similar to phosphoproteomics, in the sense that pep-

tides carrying modifications need to be enriched either by using antibodies attached to

beads or specific columns which can bind and release respectively modified peptides in

different buffers.

Determining protein turnover rates

Under normal conditions, cells actively degrade and replace their inventory of proteins

on a continuous basis. This process happens at distinct rates for different proteins (Pratt

et al., 2002). The modern method of choice for measuring proteome-wide turnover rates

is termed pulsed SILAC (Schwanhäusser et al., 2011). As the name indicates, it exploits

properties of the metabolic labeling strategy SILAC. This is done by initially culturing

cells in light medium, i.e., common isotopes of the amino acids lysine and arginine,

followed by a pulse labeling, i.e., changing the culture media to heavy, meaning that all

contained essential amino acids lysine and arginine feature heavy carbon isotopes. When

cells are now harvested at different time points after the medium change and proteins are

extracted and measured by MS, proteins containing light and heavy amino acids can be

distinguished due to a shift in m/z. The temporal change in intensity ratio between light

to heavy-labeled proteins can then be used to compute protein turnover rates (inverse:

protein half-life) (Mathieson et al., 2018; Schwanhäusser et al., 2011).

Measuring protein-protein interactions

Most cellular processes are orchestrated by dynamically interacting proteins or complexes

consisting of multiple proteins, which are stably associated to perform multi-faceted tasks.

Thus, for many years, there has been a strong interest in studying protein-protein inter-

actions (PPIs) and their functions. A classical approach is the yeast two-hybrid method,
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which uses a split transcription factor (TF) regulating the expression of a reporter gene

which only works if the two TF domains come together mediated by a PPI between a

bait and a prey protein (Chien et al., 1991).

Mass spectrometry-based approaches first were introduced by taking the Western blot-

based co-immunoprecipitation, which can detect an interaction between two proteins

with suitable antibodies against both interactors (Phizicky & Fields, 1995), to an un-

biased level enabling the identification of system-wide PPIs with bait proteins (Ewing

et al., 2007; Gavin et al., 2002). Other proteomics-based methods have been developed

more recently that either make use of promiscuous modification of proteins in close prox-

imity to a bait protein fused to biotin ligase (BioID) (Roux et al., 2012) or are based

on co-elution patterns or proteins when cell lysates are fractionated with size exclusion

chromatography (SEC) (Dong et al., 2008; Heusel et al., 2019).

In recent years, it has been realized that due to the stoichiometric abundance of pro-

tein complex members, protein abundance measurements across different samples and

perturbations also allow to recapitulate annotated PPIs and protein complexes and even

can allow to discover new interactions (Ori et al., 2016). Similarly, we have been able

to show that the same holds true for protein turnover, i.e., subunits of protein com-

plexes are turned over at a rate more similar than expected by chance (Mathieson et al.,

2018).

Biophysical methods to study protein-ligand interactions

Detection of proteins bound by ligands is an important challenge in biomedical but also

basic research. It is crucial for understanding the regulation of fundamental biological

processes and functions of associated proteins, but also especially in the context of drug

discovery, where there is a need to rationalize drug effects by determining which molec-

ular targets and potentially off-targets are engaged by a molecule of interest (Simon et

al., 2013).

One of the first biophysical proteomics methods to approach this problem translated an
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assay termed Stability of Proteins from Rates of Oxidation (SPROX) (West et al., 2008)

to a proteome-wide scale using MS (West et al., 2010). This technique makes use of

chemical denaturation of proteins in the presence of hydrogen peroxide which leads to

oxidation of the protein in a denaturant doese-dependent manner. This process can be

used to deduct the thermodynamics of proteins’ denaturation and their modulation in

the presence of a ligand (West et al., 2008). Limitations of this approach are that the

observation of protein denaturation is limited to putative oxidation sites and that it can

only be performed in very specific chemical conditions which are very different to the

intracellular milieu.

A different approach is taken by methods such as Drug Affinity Response Target Stability

(DARTS) (Lomenick et al., 2009) and Limited Proteolysis coupled to mass spectrometry

(LiP-MS) (Feng et al., 2014). These methods are based on the principle that incubation

of proteins with an unspecific protease, such as Proteinase K, will lead to a character-

istic cleavage pattern, since the most accessible peptide bonds will be most likely to be

cleaved. If a protein undergoes conformational change or is bound by a ligand this can

be reflected in a change of its characteristic cleavage pattern, since certain cleavage sites

might be freed up or blocked by such an event (Feng et al., 2014; Lomenick et al., 2009).

The strength of this technology is that it gives hints on which sites of the protein are

affected by a conformational change of ligand-binding. However, due to the unspecific

protease digestion the associated database search becomes increasingly difficult with the

complexity of the proteome this technique is applied to. Also these approaches are lim-

ited to cellular lysates and do not inform on in situ events.

The most recently developed technology which applies biophysical proteomics to detect

protein-ligand interactions is called Thermal proteome profiling (TPP) (Savitski et al.,

2014). TPP works by implementing the Cellular Thermal Shift Assay (CETSA) (Mar-

tinez Molina et al., 2013) on a proteome-wide level using TMT-labeling multiplexed MS

(Franken et al., 2015; Savitski et al., 2014). In the original version of the method, cells

are cultured in two different conditions, e.g., the presence of absence of a drug. The

cells from both conditions are split into 10 aliquots and heated to a temperature range

15



between 37 and 65◦C (for human samples) for 3 minutes. Subsequently, aggregating

proteins are removed by centrifugation or filtration and the remaining soluble proteins

are digested with trypsin and all aliquots per condtions and replicate are labeled with

one set of TMT reagents, subjected to sample preparation and analyzed by LC-MS/MS

(Figure 1.5) (Franken et al., 2015). Thereby, the method generates accurate, proteome-

wide denaturation curves (also referred to as melting curves) as a function of temperature

(temperature range TPP; TPP-TR) which can be used to compare, e.g., vehicle and drug

treated cells. By comparison of melting curves of individual proteins in different condi-

tions, thermal shifts can be used to infer ligand-protein engagement (Figure 1.5) (Childs

et al., 2019; Franken et al., 2015; A. Mateus, Kurzawa, et al., 2020). A key difference

compared with the methods described above, is that TPP can be performed on intact

cells (Savitski et al., 2014) and meanwhile has been adapted also to intact tissues (Perrin

et al., 2020). Additionally, the method can also be used to derive ligand dose-response

thermal stability curves for all proteins at one temperature (ideally chosen as a tem-

perature at which many proteins partly, but not completely unfold). This approach is

termed Isothermal Compound Concentration Range TPP (TPP-CCR) (Franken et al.,

2015; Savitski et al., 2014). It has the advantage that proteins, which require different

doses of a compound to be affected, can be monitored, at the cost of not being able to

detect effects on proteins, which either are fully denatured or not denatured at all, at

the chosen temperature (A. Mateus, Kurzawa, et al., 2020).

The combination of both variants, TPP-TR and TPP-CCR, is realized in an approach

termed 2D-TPP (Becher et al., 2016). By combining separate MS runs for two consecutive

temperatures in which cells were treated with each n different compound concentrations,

proteome thermal stability is measured as a function of both temperature and ligand

concentration (Figure 1.6).
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Figure 1.5: Illustration of the experimental TPP-TR workflow. Cells are

grown in multiple replicates of two different conditions, e.g. the presence or

absence of a compound. Each of the replicates is then divided intom aliquots

and subjected to a short heat treatment at a distinct temperature (range

depending on the organism used in the experiment). Cells are then lysed and

remaining soluble proteins are then extracted by precipitating cell debris and

denatured proteins through centrifugation or by microfiltration. Obtained

proteins are then digested and labeled with TMT, before samples of each

replicate are pooled and analyzed by LC-MS/MS. Proteins are identified by

database search and quantitative data is analyzed by comparison of melting

curves. While this approach could successfully be applied to detect (off-

) targets in human cells of the pan-HDAC inhibitor Panobinostat (Becher

et al., 2016) and the Bromo- and Extra-Terminal (BET) domain inhibitor

JQ1 (Savitski et al., 2018) using bespoke thresholds, objectively determining

which thermal proteome profiles are indicative of target engagement still

remains challenging.
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Figure 1.6: Illustration of the experimental 2D-TPP workflow. Cells are

grown in the presence of n different ligand concentrations including a solvent-

only condition. Each of the samples containing a specific ligand concentration

is then divided into m aliquots and subjected to a short heat treatment at

a distinct temperature (range depending on the organism used in the ex-

periment). Cells are then lysed and remaining soluble proteins are then

extracted by precipitating cell debris and denatured proteins through cen-

trifugation or by microfiltration. Obtained proteins are then digested and

labeled with TMT so that all conditions at two consecutive temperatures

are multiplexed. All obtained samples are measured in w MS experiments.

After identification and quantification, for each protein a n×m data matrix

is obtained, which can contain non-randomly missing values preferentially at

higher temperatures.

Lately, the 2D-TPP technology has been expanded to accommodate also the profiling of

continuous or discrete cell state perturbations (Becher et al., 2018; A. Mateus, Hevler, et

al., 2020; Selkrig et al., 2020). Such approaches enable the orthogonal readout of protein

stability in addition to protein abundance and can thus reflect cell state changes, e.g.,

metabolite levels or PPIs (Becher et al., 2018; A. Mateus, Hevler, et al., 2020).
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1.3 Statistical methods to analyze genome scale data

The statistical analysis of a genome-scale experiment typically involves the comparison

of characteristics of many–hundreds to hundreds of thousands–genomic features between

two or more groups. If one treats these comparisons as k individual tests one could

consider to use hypothesis tests, such as the t-test for comparison on individual features

between two groups, or an analysis of variance (ANOVA) in the case of a multi-group

comparison (Figure 1.7a and b). The Welch two sample t-test compares the means of

two distributions by accounting for their variances:

t =
x̄1 − x̄2√
s21
n1

+
s22
n2

(1.1)

(Welch, 1947). By determining the degree of freedom of the associated t-distribution,

which can be computed based on the standard deviations s1/2 and number of observations

n1/2 of both distributions, one can obtain a p-value associated with an observed t-statistic.

The ANOVA (Fisher, 1918) for comparing data obtained from more than two individual

groups or conditions works by comparing two scenarios: 1) Observed data is treated as

obtained from one group, the overall mean is determined and the residual sum of squares

(RSS) is determined as the sum of squared errors of all data points from the overall mean.

We denote it here as RSS(0) since it refers to the null hypothesis of no observed group

difference (also referred to as total sum of squares). 2) The data is divided into different

conditions and group-specific mean estimates are obtained. The sum of squared errors

from the mean of all individual groups are then computed and summed to obtain RSS(1).

Since RSS(1) retains less degrees of freedom, by using several mean estimates compared

to one mean estimate used to determine RSS(0), RSS(1) ≤ RSS(0). An F -statistic can

then be constructed with:

Fi =
RSS(0)i − RSS(1)i

RSS(1)i

d2
d1
. (1.2)

Here, d1 describes the difference in retained degree of freedom (DOF) between the null

and alternative hypothesis, e.g. if one overall mean estimate is compared with three group-

specific means d1 = 2. On the other hand d2 represents the DOF under the alternative
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hypothesis, i.e. d2 = n− ν1, with n representing the total number of observations and ν1

describing the number of groups accounted for under the alternative hypothesis. Through

comparison of the obtained F -statistic with the Fd1,d2-distribution a corresponding p-

value can be obtained. The obtained p-value is then indicative of whether there is

evidence for a difference in the means of the groups. To identify which of the groups differ

in means, a post-hoc test may be performed, such as the Tukey procedure which works

similar to performing a t-test between all pairs of groups and subsequently adjusting

obtained p-values for multiple testing (Tukey, 1949).
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Figure 1.7: Illustration of the t-test and the ANOVA. a) The t-test com-

pares the means (red dots) of samples obtained from two groups while ac-

counting for their variances and number of observations. b) The ANOVA

assesses how much lower the sum of obtained variances is, when mean esti-

mates are computed per group (red dots) versus a mean estimate across all

data points (green line).

However, these approaches lack flexibility to accommodate complex covariate structures,

such as confounding factors and batch effects. Thus, linear models, which can consider

multiple variables at the same time and test for significance of all of them simultaneously,

are the preferred choice for genome-scale differential testing.
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1.3.1 Linear models for differential analysis

In general terms, a linear model describes a response variable yi as a linear combination,

i.e., a weighted sum, of one or more explanatory variables {xi,1, xi,2, ..., xi,n}. This can

be expressed as

yi =
∑
k

xi,kβk + εi with εi ∼ N (0, σ2) . (1.3)

The parameters βk represent the weights of the different explanatory variables which are

summed. These parameters are typically obtained by maximum likelihood estimation

(MLE) which is in the case of Eq. 1.3 equivalent to minimizing
∑

i ε
2
i using ordinary

least squares.

The advantage of linear models over two-sample hypothesis tests is exemplified in Figure

1.8. While the hypothesis test finds a significant difference in the means of both groups,

the linear model is able to dissect that the mean differences in the two groups is due

to a bias in covariate distribution, a so called confounding variable, but that there is no

significant effect of the group variable, i.e., the intercept of the two linear models per

group is more or less the same.

Linear models are not only applicable to normally distributed data as in the example.

The concept of generalized linear models enables to similarly fit, e.g., count data, by

introducing a link function which allows to perform MLE on a transformed scale (Holmes

& Huber, 2018).

1.3.2 Empirical Bayes methods

The branch of statistics named after Thomas Bayes follows a different approach to data

interpretation compared to frequentist statistics. Essential to Bayesian statistics is the

incorporation of prior knowledge or beliefs in data analysis. In the case of linear regres-

sion for example, Bayesian inference would use MLE, which is also common in frequentist

statistics, but moderate the estimated parameters by a prior probability distribution to

obtain a posterior distribution of the parameters (Bishop, 2006). In many cases, how-
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Figure 1.8: Illustration of how linear models can account for covariate

structure. Example in which the effect of two different shampoos on the

fraction of gray hair is measured. a) While the t-test finds a significant

difference between the means of both groups, the linear model (b) infers the

trend of higher fraction of gray hair with age and finds no difference in the

intercepts of both groups. Age is a confounding variable in this analysis and

the difference in group means observed in a) is due to a difference in mean

age, but not due to a difference in mean fraction of gray hair.

ever, justifying a certain choice of the prior distribution is challenging. This problem is

addressed in the empirical Bayes approach, which especially finds application in genome-

scale experiments in which empirically determined variances across all genes or those of

a certain group are used to moderate those estimated for individual genes based on few

replicates (Efron, 2010).
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Figure 1.9: Empirical Bayesian variance estimation by sharing of informa-

tion across proteins. Data on the abundance levels of three different proteins

is obtained, which are taken to come from the same true underlying dis-

tribution (blue). Maximum likelihood estimation of the distribution (red)

underestimates the true variance, especially for Protein 1. The empirically

moderated distributions (green) less severely underestimate the true vari-

ance.

The R/Bioconductor software package limma implements this approach for analysis of

microarray data (Ritchie et al., 2015). However, since proteomics data similarly repre-

sents log-transformed intensity signal, the package is often applied also for differential

analysis of proteomics datasets (Kammers et al., 2015).

1.3.3 Statistical analysis of TPP experiments

Since different experimental designs of TPP experiments were developed, distinct meth-

ods to accommodate respective data were suggested in the last years. A common aspect

of these methods is that they all fit sigmoid curves:

µ(x) = c+
d− c

1 + exp(b(x− a))
, (1.4)

were x can either be the temperature to model a melting curve, or x can represent the

compound concentration such as for TPP-CCR or 2D-TPP experiments in which dose

response stabilization curves are estimated. Note: originally a slightly different sigmoid
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formula was suggested, which is directly derived from denaturation thermodynamics

(Brandts, 1964), however these models are equivalent and interpretation of parameters

for Eq. 1.4 is more intuitive. The parameter a is the inflection point, b is the slope, c

corresponds to the plateau and d is the upper limit.

Comparison of melting curves

The first method to determine thermal shifts from TPP-TR experiments is based on

melting point Tm comparisons between two conditions using µ(Tm) = 0.5 (Figure 1.10a)

(Savitski et al., 2014). In order to accept parameter estimates for testing on melting

points, the fit should fulfill R2 ≥ 0.8 and the plateau c ≤ 0.2. For proteins with accepted

fits, measured in at least two replicates in both conditions, ∆Tm = T treat.
m − T ctrl.

m are

computed, ∆Tm-values are z-transformed per replicate and converted into p-values. Ob-

tained p-values from within one replicate are adjusted for multiple testing. Proteins are

considered significantly thermally shifted between the compared conditions if the ∆Tm

of two replicates is associated with padj. < 0.1.

More recently, a method by Childs et al. (2019) has been suggested, which is termed

Nonparametric Analysis of Response Curves (NPARC). The main motivation for this ap-

proach, is the fact that by aggregating the observed data to a summary parameter, such

as the melting point, only a small fraction of the observed data is used for analysis. This

limits the discovery of thermal shifts of proteins for which Tm can be determined and

for which the thermal shift is apparent in a temperature close to Tm. NPARC works by

fitting two nested models to the melting curve of each protein. First, the null model (Fig-

ure 1.10b) which does not distinguish between treatment conditions, then an alternative

model (Figure 1.10c) which fits a melting curve for each treatment condition separately.

By comparing the RSS of both models (RSS(0) for the null model and RSS(1) for the

alternative model) and determining the respective DOFs of both models, an F -statistic

can be computed (Eq. 1.2).
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Figure 1.10: Analysis strategies for TPP-TR experiments. a) ∆Tm-based

comparison by fitting of sigmoid melting curves per condition and replicate

and comparison of z-scores. b,c) Curve-centric analysis of TPP-TR data, by

deriving an F -statistic based on the residuals sum of squares of a null (b) and

an alternative model (c) and comparison with an empirical null distribution.
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The obtained distribution of F -statistics is, however, not correctly described by the theo-

retically derived DOFs, since in practice residuals are correlated and heteroscedastic and

not independently and identically distributed as theoretically assumed. Thus, NPARC

offers a method for determining an empirical null distribution to obtain well calibrated

p-values for obtained F -statistics (Childs et al., 2019).

Analysis of 2D-TPP data

The first proposed analysis of 2D-TPP datasets (Becher et al., 2016) was inspired by

the analysis of TPP-CCR experiments (Franken et al., 2015). This includes fitting a

simplified sigmoid dose response curves to relative fold changes, which were transformed

into a space where the thermal stability of a protein measured at the lowest ligand dose

was forced to 0 and the highest to 1, with:

f(x) =
1

1 + 10b(a−x)
, (1.5)

with a representing the inflection point and b the slope (Franken et al., 2015). A TPP-

CCR curve of a protein is accepted to be associated with a dose-dependent stabilization

(or destabilization if b < 0) if R2 ≥ 0.8 and the non-transformed relative fold change

rcmax ≥ 1.5 at the highest ligand concentration condition compared to the vehicle condi-

tion.

In the case of 2D-TPP, this method is applied to within temperature transformed values

for each temperature separately. It is then asked for a (de-)stabilization pattern, ac-

cording to the same thresholds, to be observed at two consecutive temperatures. Figure

1.11 shows how this is done for HDAC6 for a 2D-TPP dataset profiling panobinostat.

However, compared to the TPP-CCR setting in which curves are fitted to ten data points

in replicates, in 2D-TPP analysis, DR curves are fitted to as few as five data points of

which even the lowest and highest concentration one are fixed to either 0 or 1. This

leads to surprisingly high R2 values even for poor fits (Figure 1.11) and thus bears the

risk of overinterpretation of such fits. Moreover at the same time, the fixed thresholds
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inherently limited sensitivity of the approach and there is no possibility for controlling

or adjusting the FDR associated with determined hits.
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Figure 1.11: Analysis strategy for 2D-TPP experiments. a) Heatmap of

relative fold changes at individual temperatures measured for HDAC6 in the

presence of different concentrations of Panobinostat. At several consecutive

temperature the fold change cutoff of 1.5 is surpassed including the temper-

atures 48.1 and 50.1. b) Sigmoid dose-response fits to transformed thermal

stability fold changes of HDAC6 measured at the temperatures 48.1 and

50.1. The protein is accepted as thermally stabilized by Panobinostat since

for both fits R2 > 0.8 and at both temperatures rcmax ≥ 1.5.
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Chapter 2

Materials and Methods

2.1 Software and required packages

If not stated otherwise, all analyses presented in this work were implemented using the R

language (R Core Team, 2020). Table 2.1 summarizes details on version and environment

used. All R packages used in this thesis are summarized in Table 2.2. All plots were

made using the ggplot2 R package (Wickham, 2016) and arranged using cowplot (Wilke,

2019).

Table 2.1: R environment and session info

Setting Value

version R version 4.0.0 Patched (2020-05-04 r78358)

os macOS Mojave 10.14.6

system x86_64, darwin17.0
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Table 2.2: Summary of R packages and their versions

Package Version

AnnotationDbi 1.50.0

bibtex 0.4.2.2

Biobase 2.48.0

BiocGenerics 0.34.0

BiocParallel 1.22.0

bookdown 0.19

clusterProfiler 3.16.0

cowplot 1.0.0

devtools 2.3.0

dplyr 1.0.0

drc 3.0-1

forcats 0.5.0

GGally 2.0.0

ggplot2 3.3.2

ggsignif 0.6.0

heididown 0.1.0

here 0.1

IRanges 2.22.2

kableExtra 1.3.1

knitr 1.28

limma 3.44.1

magrittr 1.5

MASS 7.3-51.6

network 1.16.1

Package Version

NPARC 1.1.1

org.Hs.eg.db 3.11.4

phosphoTPP 0.1.0

pROC 1.16.2

purrr 0.3.4

RColorBrewer 1.1-2

readr 1.3.1

readxl 1.3.1

rmarkdown 2.2

Rtpca 1.1.1

S4Vectors 0.26.1

sna 2.6

statnet.common 4.4.1

stringr 1.4.0

tibble 3.0.1

tidyr 1.1.0

tidyverse 1.3.0

TPP 3.17.0

TPP2D 1.7.3

tufte 0.6

usethis 1.6.1

viridis 0.5.1

viridisLite 0.3.0

vsn 3.56.0
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2.2 Publicly available datasets used in this work

All publicly available datasets used in this work are summarized in Table 2.3.

2.3 Experimental methods

Note: All wet-lab experiments were performed by my colleagues who are acknowledged

in the respective method descriptions.

2.3.1 Thermal proteome profiling (TPP)

TPP in Escherichia coli

Cultures of Escherichia coli strain BW25113 were grown in lysogeny broth (LB, Lennox,

Sigma Aldrich, ID: L3022) overnight at 37◦C and diluted 1:100 into a volume of 20 ml LB.

Bacteria were grown aerobically with shaking at 37◦C until an optical density of 0.5 at 578

nm (OD578). Obtained cells were spun down through centrifugation for 5 min at 4,000 ×

g, washed with 10 ml phosphate buffered saline (PBS, 2.67 mM KCl, 1.5 mM KH2PO4,

137 mM NaCl, and 8.1 mM NaH2PO4, pH 7.4), re-suspended in PBS to an OD578 of 10

and 100 µl were transferred into wells of a polymerase chain reaction (PCR) plate (Sigma

Aldrich, ID: BR781378-50EA). The plate was centrifuged for 5 min at 4,000 × g and 80

µl were removed before the plate was subjected to a temperature gradient (37-87◦C) in

a PCR machine (Agilent SureCycler 8800) for 3 min and then incubated for 3 min at

room temperature. Cell lysis was done by incubation with 30 µl lysis buffer consisting

of PBS with 50 µg/ml lysozyme (Sigma Aldrich, ID: L687), 250 U/ml benzonase (Sigma

ALdrich, ID: 9025-65-4-E8263), protease inhibitor (Roche, Sigma Aldrich, ID: P8340),

0.8% NP-40 and 1 mM MgCl2 while shaking at room temperature for 20 min.
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Table 2.3: Overview of publicly available datasets used in this work.

Dataset URL Reference

2D-TPP of JQ1 http://dx.doi.org/10.1016/j.cell.2018.02.030 Savitski et al. 2018

in intact HL60 lysate

2D-TPP of Panobinostat http://dx.doi.org/10.1038/nchembio.2185 Becher et al. 2016

in intact HepG2 cells

Annotation of human https://doi.org/10.1186/s13059-016-0912-5 Ori et al. 2016

protein complexes

D2P2 database: http://http://d2p2.pro Oates et al. 2013

Predicted disorder

in human proteins

EcoCyc database: protein https://ecocyc.org Keseler et al. 2017

complexes in E. coli

Functional phosphosite score http://doi.org/10.1038/s41587-019-0344-3 Ochoa et al. 2020

Hotspot thermal https://doi.org/10.1038/s41592-019-0499-3 Huang et al. 2019

profiling data

Meltome atlas http://meltomeatlas.proteomics.wzw.tum.de:5003 Jarzab et al. 2020

Proteome isoelectric http://http://isoelectricpointdb.org Kozlowski et al. 2017

point database

STEPdb 2.0: E. coli https://stepdb.eu Loos et al. 2019

subcellular protein localization

STRINGdb: PPI database http://string-db.org Szklarczyk et al. 2019

TPP-TR of G1/S vs. M http://dx.doi.org/10.1016/j.cell.2018.03.053 Becher et al. 2018

in HeLa cells
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This was followed by three cycles of freezing in liquid N2 and thawing for 1 min at 25◦C

with subsequent vortexing. The PCR plate was then centrifuged for 5 min at 2,000 × g

to pellet cell debris and the retained supernatant was filtered for 5 min at 500 g through

a 0.45-µm 96-well filter plate (Millipore, ID: MSHVN4550) to remove residual protein

aggregates. The filtrate was mixed 1:1 with sample buffer containing 180 mM Tris pH 6.8,

4% SDS, 20% glycerol and 0.1 g bromophenol blue and processed for MS/MS analysis.

These experiments were performed by André Mateus (Mateus et al., 2018).

2D-TPP of PCI-34051 and BRD-3811 in HL60 cells

HL60 cells (DSMZ, ID: ACC 3) were cultured in Iscove’s modified Dulbecco’s medium

(IMDM, GIBCO) with 10% fetal bovine serum (FBS). Cells were treated with 0, 0.04,

0.29, 2, 10 µM PCI-34051 (Sellekchem) or BRD-3811 (synthesized in-house) for 90 min

at 37◦C and 5% CO2. Samples treated with each drug concentrations were split into 12

aliquots which were each heated at a different temperature in the range of 42-63.9◦C for

3 min and subsequently set to room temperature for another 3 min. Then, samples were

each lysed in 30 µl PBS supplemented with protease inhibitors and 0.67% NP-40, which

was cooled on ice previous to lysis. Cells were frozen in liquid N2 for 1 min followed by a

short thawing step in a metal block at 25◦C before being placed on ice and resuspended

by pipetting. This was followed by an incubation of samples with 25 U benzonase per ml

for 60 min at 4◦C and subsequent centrifugation at 100,000 g for 20 min at 4◦C. Finally,

30 µl of supernatant of each sample were transferred into a new tube and subjected

to sample preparation for MS analysis. These experiments were performed by Isabelle

Becher (Kurzawa, Becher, et al., 2020).

2D-TPP of ATP and GTP in Jurkat crude lysate

Jurkat E6-1 cells (ATCC, ID: TIB-152) were grown in Roswell Park Memorial Institue

medium (RPMI, GIBCO) with 10% FBS, harvested and washed with PBS. Cells were

pelleted by centrifugation at 1000 x g for 3 min and resuspended in 10-times the volume
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of the pellet of PBS supplemented with protease inhibitors and 1.5 mM MgCl2. The

obtained suspension was then lysed through mechanical disruption by 20 strokes with a

Dounce homogenizer. Protein concentration was adjusted to 3.5 mg/ml. Retrieved crude

lysates were treated with 0, 0.005, 0.05, 0.5, and 2 mM NaATP or 0, 0.001, 0.01, 0.1,

and 0.5 mM for NaGTP for 10 min at room temperature. Samples treated with each

metabolite concentration were divided into 12 portions and each heated to a different

temperature in the range of 42-63.9◦C for 3 min. After 3 min at room temperature,

protein aggregates were removed using ultracentrifugation at 100,000 × g for 20 min

at 4◦C. 30 µl of supernatant were transferred into a fresh tube for each sample and

preparation for MS/MS analysis was performed. These experiments were performed by

Sindhuja Sridharan (Sridharan et al., 2019).

2D-TPP of Vemurafenib and Panobinostat in rat tissue lysates

Rat spleen punch pieces were distributed over 48-well plates (two per well) with 600

µl of Dulbecco’s modified Eagle’s high glucose medium (Thermo Fisher Scientific, ID:

11965118), supplemented with 10% FBS, 10 mM HEPES (Thermo Fisher Scientific, ID:

15630056), 100 U/ml penicillin-streptomycin (Thermo Fisher Scientific, ID: 15140122)

and 4.5 g/l L-glutamine. Spleen punches were then treated with different doses of Panobi-

nostat (50, 5, 0.5 and 0.05 µM) at 37◦C and 5% CO2 for 2.5 h and were then transferred

to a 96-well PCR plate with 100 µl of PBS supplemented with protease inhibitors and

the respective Panobinostat concentrations.

Testis were weighed into 96-well cell culture plates with 150 µl of the same medium as for

the spleen punches. Subsequently, the testis pieces were treated with different doses of

Vemurafenib (40, 10, 2 and 0.4 µM) at 37◦C and 5% CO2 for 1.5 h, and were then trans-

ferred to a 96-well PCR plate, briefly centrifuged and remaining medium was discarded.

A volume equivalent to the volume of the testis pieces of PBS supplemented with pro-

tease inhibitors and the respective Vemurafenib concentrations was added to each well.

Samples from both tissues were then simultanouesly heated to one of 12 temperatures
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covering the range from 42-64◦C for 3 min and then processed as described 2D-TPP

experiments above.

2D-TPP of Panobinostat and JQ1 in human blood

Human blood was obtained from donations of healthy volunteers at the Institue for Clin-

ical Transfusion Medicine and Cell Therapy in Heidelberg. 1.5-2 ml of freshly acquired

heparinized blood samples were treated with 0, 0.02, 0.143, 1, and 5 µM of Panobinostat

or 0, 0.4, 2, 10, and 40µM of JQ1 for 1.5 h at 37◦C and CO2. Protease inhibitors were

added and treated samples were transferred onto a PCR plate such that each treatment

condition could be heated to 10 different temperatures (range of 44-54◦C) for 3 min using

the gradient-heating function of a PCR machine followed by incubation at room temper-

ature for 3 min. Primary blood mononuclear cells (PBMCs) were obtained by density

centrifugation at 1,000 × g at room temperature for 10 min using SepMate-15 Tubes

(STEMCELL, ID: 85420) and Lymphoprep density gradient medium (STEMCELL, ID:

07811) and RosetteSe Human Granulocyte Depletion Cocktail (STEMCELL, ID: 15624).

Retrieved PBMCs were washed with PBS with protease inhibitors and then resuspended

and the buffer was supplemented with 0.8% NP-40, 1 kU/ml benzonase and 1.5 mM

MgCl2 before incubation at 4◦C for 1 h. Samples were then centrifuged at 4◦C for 3 min

at 500 × g. Insoluble aggregates were removed by filtering the samples through a 384-

filter plate (Thermo Fisher Scientific, ID: 10675743) and subsequently further processed

for MS/MS analysis. These experiments were performed by Jessica Perrin, Thilo Werner

and Anna Rutkowska (Perrin et al., 2020).

TPP experiments of in S9 rat liver lysate

Male Wistar rat liver S9 (BioIVT, ID:M00022) was used at a concentration of 2 mg/ml

and treated with 10 or 100 µM Panobinostat or one of its metabolites or with 0.4 mM

NADP. Samples were simultaneously heated to 37, 47.7, 51.1, 54.2, 57.2 or 60.7◦C for 3

min and then rested at room temperatures for 3 min. Cell lysis was then performed with
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0.8% NP-40, supplemented with 1.5 mM MgCl2 and 1 kU/ml benzonase at 4◦C for 1 h.

Protein aggregates were pelleted by ultracentrifugation at 100,000 × g for 20 min and

removed, and remaning soluble samples were further processed for LC-MS/MS analysis.

These experiments were performed by Jessica Perrin and Thilo Werner (Perrin et al.,

2020).

2.3.2 Solubility proteome profiling (SPP) experiments

Crude lysates of Jurkat cells were perpared as described in Section “2D-TPP of ATP and

GTP in Jurkat crude lysate” and split into 10 portions. Two of the aliquots were used

as vehicle-treated controls, the other eight were treated for 10 min at room temperature

with a range of concentrations (0.1, 0.5, 1, 2, 4, 5, 8 and 10 mM) of a small molecule

(MgATP, MgAMP-PNP or MgGTP), followed by an incubation at 37◦C for 3 min. NP-

40 was added to one of the control and to the eight small molecule treated samples

to a final concentration of 0.8%. Sodium dodecyl sulfate (SDS) was added to the other

control sample to a final concentration of 1%. All 10 aliquots were then treated with 25 U

benzonase per ml at 4◦C for 60 min and insoluble proteins were subsequently removed by

ultracentifugation at 100,000× g for 20 min at 4◦C and discarding of pellets. Experiments

were conducted by Sindhuja Sridharan (Sridharan et al., 2019).

2.3.3 ATP depletion and in-cell SPP

Jurkat cells were treated with two doses D1 and D2 of 2-deoxyglucose (2DG) dissolved in

water and Antimycin-A dissolved in 96% ethanol. After washing with PBS, Jurkat cells

were resuspended in RPMI media without glucose, at a density of 2 ·106 cells per ml and

split into three portions. The first aliquot was supplemented with glucose (10 mM final

concentration) and solvent of the inhibitors. The second and third aliquots were treated

with 0.1 nM AA and 1 mM 2DG (D1) and 1 nM AA and 10 mM 2DG (D2), respectively.

Subsequently, plates of the three conditions were incubated for 60 min at 37◦C with 5%
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CO2. Two aliquots were collected from each condition and centrifuged for 3 min at 1000

× g and 80 µl of the supernatant media was removed. One aliquot each was treated

with a mild lysis buffer (PBS with protease and phosphatase inhibitors, 2.1 mM MgCl2,

1.12% NP-40 and 35 U per ml benzonase), while the other aliquot for each condition was

treated with a strong lysis buffer (PBS containing protease and phosphatase inhibitors,

2.1 mM MgCl2, 1.4% SDS and 35 U per ml benzonase). Insoluble proteins were pelleted

by ultracentrifugation for 20 min at 100,000 × g at 4◦C and removed. Experiments were

performed by Sindhuja Sridharan (Sridharan et al., 2019).

2.3.4 Phospho-TPP experiments

HeLa Kyoto cells were grown at 37◦C and 5% in Dulbecco’s modified Eagle’s medium

(Sigma Aldrich, ID: D5030) supplemented with 10% FBS, 1 mM glutamine and 1 mg/ml

glucose. For each of the five replicates, ten aliquots of 2 × 107 cells were prepared and

heated to a temperature range between 37-66.3◦C for 3 min, followed by 3 min incubation

at room temperature. Cells were lysed using a PBS-based buffer with 0.8% NP-40, 1.5

mM MgCl2, cOmplete protease inhibitors (Sigma Aldrich, ID: 11697498001), PhosSTOP

(Sigma Aldrich, ID: 4906845001), benzonase, 2 mM NaF, 2 mM Na3VO4, 2 mM Na4O2P7

at 4 ◦C for 1 h Protein aggregates were removed using filter plates and the soluble frac-

tion was processed as described in “MS sample preparation”.

TMT-labeled, lyophilized peptides were resuspendend in 70% ACN and 0.07% trifluo-

roacetic acid (TFA) and loaded for 6 min with a flow-rate of 400 µl/min onto a ProPac

IMAC-10 column (Thermo Fisher Scientific, ID: 63276) which was pre-loaded with Fe3+

ions. The samples were washed for 6 minutes with 70% ACN and 0.07% TFA and sub-

sequently phosphopeptides were eluted by changing the buffer to 0.3% ammonia at a

flow-rate of 500 µl/min for 2 minutes. Phosphopeptide and non-bound fractions were

collected lyophilisated and analyzed by LC-MS/MS. These experiments were performed

by Clément Potel, Isabelle Becher and André Mateus (Potel et al., 2021).
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2.3.5 MS sample preparation

Sample processing was performed according to a modified SP3 protocol by Hughes et al.

(2019). Protein containing samples were added to Sera-Mag Speed Bead ethanol suspen-

sion (Thermo Fisher Scientific, ID: 4515-2105-050250, 6515-2105-050250). After shaking

samples for 15 min at room temperature, beads were washed four times with 70% ethanol.

Then, 100µl protein digest buffer (30 mM chloroacetamide, 5 mM tris(2-carboxyethyl)-

phosphine, 1 µg/µl trypsin in 100 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic

(HEPES) with pH 8) was added to samples for on bead reduction, alkylation and diges-

tion overnight. Resulting peptides were eluted from the beads and lyophilized. Dried

peptides were reconstituted in 10 µl water and 10 µg of TMT10plex (8 µg/µl) (Thermo

Fisher Scientific) dissolved in acetonitrile (ACN). After 60 min the labeling reactions

was quenched with 5 µl of 2.5% hydroxylamine and sets of TMT-labeled peptides were

pooled and vacuum dried for LC-MS/MS analysis (Sridharan et al., 2019). This step was

performed by respective experimenters who had performed prior experiments.

2.3.6 LC-MS/MS analysis

Lyophilized peptides were reconstituted in 0.05% formic acid and analyzed on either a

Q Exactive Plus Hybrid Quadrupol-Orbitrap or an Orbitrap Fusion Lumos Tribrid mass

spectrometer (Thermo Fischer Scientific, ID: IQLAAEGAAPFALGMBDK and FETD2-

10002). Before MS/MS analysis, peptides were separated using an UltiMate 3000 Nano

RSLC system (Thermo Fischer Scientific, ID: 6041.7903A) featuring a trapping cartridge

(Acclaim PepMap 100, C18 reversed phase, length: 15 cm, inner diameter: 300 µm,

particle size: 5 µm, pore size: 100 Å) and an analytical column (Acclaim PepMap 100,

C18 reversed phase, length: 50 cm, inner diameter: 75 µm, particle size: 3 µm, pore

size: 100 Å). Solvent A (0.1 formic acid in MS grade water (Thermo Fisher Scientific,

ID: 85189)) and solvent B (0.1 formic acid in MS grade ACN (Thermo Fisher Scientific,

ID: 85188)) were used for online LC preparation and peptides were loaded onto the trap

column at 30 µl/min starting with solvent A and eluted by a gradient over 2 hours from
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2 to 40 % of solvent B with 0.3 µl/min.

The Q Exactive Plus Hybrid Quadrupol-Orbitrap was operated in positive ion mode

with a spray voltage of 2.3 kV and capillary temperature of 320◦C. Full scan MS spectra

with a mass range of 375-1200 m/z were acquired in profile mode in the Orbitrap using a

resolution of 70,000 with maximum fill time of 250 ms or collecting a maximum of 3×106

ions using automatic gain control. MS/MS acquisition was triggered in a data-dependent

mode and performed using consecutively fragmenting the top 10 MS1 peaks with charges

between 2 and 4. Isolation of precursors was done using a mass-range window of 0.7 m/z

and fragmentation was performed at 33 normalized collision energy.

The Orbitrap Fusion Lumos Tribrid mass spectrometer was operated in positive ion mode

with a spray voltage of 2.4 kV and capillary temperature of 275◦C. Full scan MS spectra

with a mass range of 375-1500 m/z were acquired in profile mode in the Orbitrap using

a resolution of 120,000 with maximum fill time of 50 ms or collecting a maximum of

4 × 105 ions using automatic gain control and the radio frequency lens was set to 30%.

MS/MS acquisition was run in data-dependent mode with triggering fragmentation at a

maximum duty cycle time of 3 s for peptide-like peaks with charge states between 2 and

7. Precursor isolation was done using a mass-range window of 0.7 m/z and fragmentation

was performed at 38 normalized collision energy. Acquisition of fragment mass spectra

was performed in profile mode at a resolution of 30,000 (Perrin et al., 2020; Sridharan et

al., 2019).

Instruments of the EMBL proteomics core facility and Cellzome were operated by Do-

minic Helm and Mandy Rettel, and Thilo Werner respectively.

2.3.7 Fluorometric aminopeptidase assay

Recombinant LAP3 was acquired from (Origene, ID: NM_015907) and its activity was

measured with the Leucine Aminopeptidase Activity Assay Kit (Abcam, ID: ab124627).

LAP3 was dissolved in the assay buffer and either vehicle or 100 µM of PCI-34051 or

BRD-3811 were added and the samples were incubated at room temperature for 10
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min, before fluorescent signal (Ex/Em = 368/460 nm) was detected over 55 min. This

experiment was performed by Isabelle Becher (Kurzawa, Becher, et al., 2020).

2.3.8 Differential scanning fluorometry with DHRS1

Recombinant DHRS1 (amino acids 3-262) fused to a cleavable His-Flag tag was expressed

in E. coli was purified using Ni-Nitrilotriacetic acid affinity. A Prometheus NT.48 (Nan-

oTemper Technologies, ID:PR001) was used to perform nano differential scanning fluom-

etry experiments according to manufacturer’s instructions. 100 µg/ml of recombinant

DHRS1 were treated with 100 µM of Panobinostat or one of its metabolites. Analy-

ses were performed using a temperature range of 20-90◦C with a slope of 1.0 ◦C/min.

Tms of DHRS1 in the presence of the different compounds were determined as the first

derivative of the fluorescence ratio at 350 nm to 330 nm. Tms could not be determined

if the compounds treated with were autofluorescent. These experiments were performed

in duplicates by Jessica Perrin and Anna Rutkowska (Perrin et al., 2020).

2.3.9 BANF1 DNA pulldown

BANF1 fused to a cleavable His-tag was expressed from a codon-optimized plasmid in E.

coli. The recombinant protein was purified using Ni-Nitrilotriacetic acid affinity and sub-

sequent gel filtration chromatography using a Superdex-75 column (GE Healthcare). Pu-

rity of BANF1 was confirmed using intact mass analysis on a Q-TOF mass spectrometer.

The purified protein was then incubated at a 1:1 ratio with a synthetic double stranded

DNA oligo (FW-5’-Biotin-GTGTGGAAAATCTCTAGCAGTAAAAAAAAAA-3’ and RV-

5’-TTTTTTTTTTACTGCTAGAGATTTTCCACAC-3’, annealed at 95◦C for 5 min fol-

lowed by a step-wise cool down to 4◦C) together with 0, 0.1, 0.3, 1, 3, and 10 mM MgATP

in Tris-buffered saline, 10 mM Tris-Cl, 150 mM NaCl, 3 mM KCl pH 7.5 (TBS) for 30

min at 25◦C. The formed DNA-protein complex was pulled down with Streptavidin beads

(Thermo Fisher Scientific, ID: 65601) according to the manufactorer’s protocol. Equal
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amounts of the protein in isolation in the same buffer were used as a control for unspecific

binding to the beads. After washing the beads with TBS supplemented with 0.2% NP-40

and with or without consistent ATP concentration, bead-bound protein was eluted with

TBS supplemented with 0.1% SDS and was accompanied by heating for 5 min at 95◦C.

The eluate of the different samples were further processed for LC-MS/MS analysis. This

experiment was performed by Sindhuja Sridharan (Sridharan et al., 2019).

2.4 Computational methods

2.4.1 Protein identification and quantification

Pre-processing of raw data was done using isobarQuant version 1.10 (Franken et al.,

2015) and database search was performed using Mascot version 2.4 (Matrix Science)

against the human (Uniprot, Proteome ID: UP000005640) or E. coli strain K 12 (Uniprot,

Proteome ID: UP000000625) proteome extended by known contaminants and reversed

protein sequences. The search parameters are listed in Table 2.4. Peptides were identified

at 1% FDR using a target-decoy strategy and quantified using isobarQuant’s post-Mascot

routine which performs reporter ion peak integration. Protein-level FDR was controlled

using the picked approach (Savitski et al., 2015).

2.4.2 Phosphopeptide identification and quantification

Phosphopeptide database search was performed with both isobarQuant version 1.10

(Franken et al., 2015) and MaxQuant version 1.6.2.3 (Cox & Mann, 2008) to benefit

from precise isobaric quantification (isobarQuant) and phosphorylation site localization

with annotation of confidence (MaxQuant).
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Table 2.4: Database search parameters for standard peptide identification.

Parameter Setting

Protease Trypsin

Missed cleavages 3

Peptide tolerance 10 ppm

MS/MS tolerance 0.02 Da

Fixed modifications Carbamidomethylation on cysteines;

TMT10-plex on lysines

Variable modifications Acetylation of N-termini;

Oxidation of methionines;

TMT10-plex on N-termini

Table 2.5: Database search parameters for phosphopeptide identification.

Parameter Setting

Protease Trypsin

Missed cleavages 3

Peptide tolerance 10 ppm

MS/MS tolerance 0.02 Da

Fixed modifications Carbamidomethylation on cysteines;

TMT10-plex on lysines

Variable modifications Acetylation of N-termini;

Oxidation of methionines;

TMT10-plex on N-termini;

Phosphorylation of serine;

threonine and tyrosine
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2.4.3 Analysis of temperature range thermal proteome profiling data

TPP-TR datasets were imported and normalized using the TPP package (Franken et al.,

2015), except for phospho-TPP data which were normalized differently as outlined in the

respective subsection.

Methods used to analyze normalized TPP-TR datasets in the context of PPIs are de-

scribed in section “Thermal proximity coaggregation analysis of annotated protein pairs”.

The melting point-centric comparison applied to phosphoTPP data is described in sub-

section “Melting point-centric analysis” of the respective section.

The analysis of the TPP-TR dataset comparing 10 mM MgATP with NP-40 control in

Jurkat cell lysate encompassed assigning proteins into the groups ‘soluble’ and ‘insoluble’

based on whether they were found as significant hits in the SPP experiments comparing

SDS and NP-40.

To compute the Euclidean distances between proteasome subunits as edge weights in the

network in Figure 5.2a, the intact cell TPP-TR experiment of Jurkat cells included in the

human meltome atlas (Jarzab et al., 2020) was used by averaging fold changes obtained

from different replicates and applying Eq. 2.1 to obtain Euclidean distances between all

pairs of proteins part of the 26S proteasome. To build the network, only PPIs with a

melting curve distance of 0.5 or smaller were considered.

2.4.4 Thermal coaggregation based on melting point similarity

In order to assess globally whether subunits of protein complexes showed lower difference

in melting points than expected by chance, we fitted sigmoid melting curves (Eq. 1.4) to

the TPP-TR dataset by Becher et al. (2018) of HeLa cells synchronized in G1/S phase.

Melting points for each protein were extracted and annotated for protein complexes using

the data by Ori et al. (2016). Standard deviations (SD) of melting points per complex

were computed. The same was done for 1000 random permutations of the complex

annotation and the median of SD of melting points was compared.
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2.4.5 Thermal proximity coaggregation analysis of annotated protein

pairs

Fold changes obtained at temperature k for each protein, aggregated per gene symbol,

were summarized by the median across replicates. A proteome-wide matrix of Euclidean

distances across all K fold changes at temperature k was performed by computing:

di,j =
1

K

√√√√ K∑
k=1

(ri,k − rj,k)2 (2.1)

for each possible pair of proteins i and j (Tan et al., 2018). The obtained distance

matrix was reduced to the lower triangular values and converted to long table format,

i.e., a table with two columns: protein pair id and average Euclidean distance (ED).

To generate unique protein pair ids the two proteins were ordered alphabetically. The

resulting long table was sorted by ED in increasing order and known PPIs were annotated

based on the STRING database (Szklarczyk et al., 2019). True positive rate (TPR =
TP

TP + FN , sensitivity), true negative rate (TNR = TN
TN + FP , 1-specificity) and the area

under the receiver operating chracteristic (ROC) curve (AUC) were computed using the

pROC R package.

Next, 10,000 random pairs of proteins were drawn and their ED d∗i,j was computed

according to Eq. 2.1. By comparison of the distribution of EDs obtained from the

annotated PPIs with the randomly drawn ones an empirical p-value was computed for

the coaggregation of each annotated PPI with an ED of di,j ≤ θ with:

p̂(θ) =
#{d∗i,j ≤ θ}

#{d∗i,j}
. (2.2)

Obtained p-values were adjusted for multiple testing using the method of Benjamini and

Hochberg (Benjamini & Hochberg, 1995). PPIs with an adjusted p-value with padj. ≤ 0.1

were accepted as significantly coaggregating protein pairs.
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2.4.6 Thermal proximity coaggregation analysis of annotated protein

complex subunits

The all versus all protein distance matrix was computed as for the PPI coaggregation

analysis. Then, all unique PPIs m = (i, j) between subunits of annotated protein com-

plexes by Ori et al. (2016) were combined to an average ED di. c. (intra complex) per

complex with:

di. c. =
1

M

M∑
m=1

dm (2.3)

with M representing the total number of unique PPIs per complex (Tan et al., 2018).

To test for significant coaggregation of protein complexes, for each distinct total number

of unique PPIs per complex M , 10,000 groups of proteins with equivalent size were

randomly drawn and an empirical p-value was computed with Eq. 2.2 considering di. c.

and d∗i. c. instead of di,j and d∗i,j (Tan et al., 2018).

In order to create ROC curves to represent a dataset’s specificity and sensitivity in

recovering annotated protein complexes, we generated five permuted lists of annotated

protein complexes reflecting the size distribution of the truly annotated complexes. The

average EDs for truly annotated protein complexes as well as for the permuted annotation

were computed with Eq. 2.3. A separate table with the columns protein complex id and

average ED was then created for every version of the permuted complex annotation and

the values obtained for the true annotation, sorted by increasing average ED and assigned

a rank. TPR and FPR (TPs were considered truly annotated protein complexes and

FP protein complexes from the permuted complex annotation) were then computed as

average TPR and FPR observed per rank across the different tables. The AUC was then

computed through integration of the ROC curve (Kurzawa, Mateus, et al., 2020).

2.4.7 Differential thermal proximity coaggregation analysis

In order to detect changes in thermal coaggregation of two proteins i and j annotated

to interact, in conditions c1 and c2, a different type of distance matrix, featuring the

45



residual sum of squares (RSS) between each pair of proteins i and j for both condition

individually was obtained with:

RSSci,j =
n∑

k=1

(ri,k − rj,k)2 . (2.4)

Next, a statistic similar to an F -statistic (Eq. 1.2), but not obtained from a nested model

situation, was computed with:

Fi,j =
|RSSc1i,j − RSSc2i,j |

min(RSSc1i,j ,RSS
c2
i,j)

. (2.5)

To assess significance of Fi,j above a given threshold θ, we made use of a similar empirical

p-value calculation as in Eq. 2.2 by computing F ∗i,j for 10,000 pairs of proteins, not

annotated as interactors. Specifically, we computed:

p̂(θ) =
#{F ∗i,j ≤ θ}

#{F ∗i,j}
. (2.6)

Obtained p-values were adjusted for multiple testing (Benjamini & Hochberg, 1995) and

protein pairs with padj. ≤ 0.1 were considered to change significantly in their coaggrega-

tion behavior between the two conditions (Kurzawa, Mateus, et al., 2020).

2.4.8 Detection of ligand-protein interactions from 2D thermal pro-

files

In order to detect proteins whose thermal profiles were altered by the presence of a ligand

in a dose-dependent manner and thus were assumed to be bound by the profiled ligand,

we performed hypothesis tests on curves fitted to the abundance of proteins derived from

2D-TPP (DLPTP). The method adapts and extends the approach by Storey et al. (2005)

for analysis of microarray time-course experiments and was implemented by fitting two

parametric nested models for each protein i at temperature j and ligand concentration

k.
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Data pre-processing

Quantification of unique reporter ion spectra were aggregated per protein (gene symbol)

by summing ion peak areas for all cases in which proteins had been quantified by at

least two unique peptides. Cases with only one unique peptide per protein were not

considered. Thus, intensity values si,u were obtained for protein i in condition u = (j, k),

at temperature j and ligand concentration k. Further, we made use of the robust fold

change estimates ri,u for jointly multiplexed conditions relative to control condition u′,

computed by isobarQuant (Franken et al., 2015). By combining them with the summed

reporter ion intensity across all channels, we computed log2 signal intensities yi,u more

accurately reflecting the relative differences between different conditions

yi,u = log2(
ri,u∑
l ri,l

∑
l

si,l) , (2.7)

where l contained all u of one set of multiplexed channels. The obtained abundance table

Y = (yi,u) was filtered to contain only cases with pi = #{yi,u} ≥ 20, i.e., proteins had to

be quantified at least at four temperatures and at all ten respective ligand concentrations

(Kurzawa, Becher, et al., 2020).

Data exclusion

For the dataset profiling PCI-34051 it was noticed that the measurements at tempera-

tures 54 and 56.1◦C had unexpectedly high noise levels. Especially, the relative reporter

ion intensities obtained at 54◦C showed about ten times higher variances in comparison

to other temperatures. Hence, the data measured for these temperature was excluded

from the analysis.

Moreover, in the datasets profiling the drugs PCI-34051 and BRD-3811, we found that

thermal profiles of some proteins were affected by carry-over, i.e., instruments were still

containing peptides from MS experiments runs prior to the acquisition for these datasets.

These cases showed a pattern of stabilization at every other temperature and no con-

tinuous profiles. Such cases (individual proteins with their entire profiles) were identi-
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fied by manual inspection and removed before model fitting (Kurzawa, Becher, et al.,

2020).

Description of models

The null model, expected for no ligand induced effect, is:

yi,j,k = β
(0)
i,j + ε

(0)
i,j,k . (2.8)

Here, β(0)i,j is the base intensity level a temperature j and ε(0)i,j,k is a residual noise term.

The alternative model, reflecting thermal profiles affected by the compound in a dose-

dependent manner, is:

yi,j,k = β
(1)
i,j +

αi,jδi
1 + exp(−κi(ck − ζi(Tj)))

+ ε
(1)
i,j,k . (2.9)

Here, the base intensity at temperature j is β(1)i,j , δi represents the maximal absolute

stabilization across all temperatures measured for protein i, αi,j ∈ [0, 1] describes which

fraction of the maximal stabilization happens at temperature j and κi is a joint slope

factor optimized across all temperatures. Lastly, the concentration of half-maximal sta-

bilization is reflected by ζi(Tj), also referred to as half maximal effective concentration

in -log10 space (pEC50), with ζi(Tj) = ζ0i + aiT , where ai is a slope indicating a linear

temperature-dependent increase or decay of the inflection point, and ζ0i is the intercept

term of the linear model. As for the null model, ε(1)i,j,k is a residual noise term.

Model fits were obtained by minimization of the sum of squared residuals RSS(0)i =∑
j

∑
k(ε

(0)
i,j,k)2 and RSS(1)i =

∑
j

∑
k(ε

(1)
i,j,k)2 using the L-BFGS-B algorithm (Byrd et al.,

1995) using R’s optim function.

The start values for iterative optimization of βi,j in both models were initialized with the

mean abundance ȳi,j of protein i at temperature j; δi was set to the maximal difference

observed between abundance values within a temperature for protein i; αi,j was initial-

ized as αi,j = 0 for all i and j; κi was initialized with the value estimated for the slope of

a linear model across temperatures; ζ0i was set to the average log10 drug concentration
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featured in the experiment; and ai was set to 0. The sum of squared residuals obtained of

both models were compared using the F -statistic (Eq. 1.2). In this case, the parameters

in Eq. 1.2, d1 = ν1 − ν0 and d2 = pi − νi represent the models’ respective degrees of

freedom, where pi is the number of observed data points for protein i, and ν0 and ν1 are

the number of parameters of the null and alternative model respectively.

Moreover, we computed an empirical Bayes moderated version of Eq. 1.2, by making use

of the squeezeVar function of the R/Bioconductor package limma (Ritchie et al., 2015).

The function squeezeVar uses the observed variances s2i = RSS(1)i /d2 to estimate a com-

mon value s20 and shrinks each s2i towards that value. To do so, squeezeVar assumes

that the true σ2i come from a scaled inverse χ2 distribution with parameter s20:

1

σ2i
∼ 1

d0s20
χ2 . (2.10)

By assuming that the residuals follow a normal distribution, using the scaled inverse Chi-

squared prior and Bayes’ theorem, it can be derived (Smyth, 2004) that the expectation

value of the posterior of σ2i |s2i is

s̃2i =
d0s

2
0 + d2s

2
i

d0 + d2
. (2.11)

The hyperparameters s20 and d0 are approximated by fitting a scaled F -distribution with

s21 ∼ s20Fd2,d0 (Smyth, 2004). Thus, we obtained moderated F̃ -statistics with

F̃ =
RSS(0)i − RSS(1)i

s̃2i d1
(2.12)

(Kurzawa, Becher, et al., 2020).

FDR estimation

To approximate the false discovery-rate (FDR) for rejecting the null model for protein

i with mini observations and F̃ = θ, we applied a modified version of the bootstrap

approach by Storey et al. (2005) : To obtain a null distribution, we repeated the following

procedure B-times: i) Draw a randomized sample with replacement of the residuals ε1i,w of
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the alternative model fit for protein i in MS experiment w to obtain ε1∗i,w and add them to

the fitted estimates of the respective null model of protein i to obtain y∗i,w = µ0i,t+ε
1∗
i,w. ii)

Fit both models (Eqs. 2.8 and 2.9) to y∗i,w and compute F̃ 0b
i . FDR was then estimated

by partitioning all proteins {1, ..., P} into groups with similar number of observations

D(p) with γ(p) = bD(p)
10 + 1

2c and then:

F̂DRg(θ) = π̂0g(θ)

∑B
b=1 #{F̃ 0b

p ≥ θ|γ(p) = g}
B ·#{F̃p ≥ θ|γ(p) = g}

. (2.13)

The fraction of true null events π̂0g for the group g of proteins was estimated by:

π̂0g(θ) =
B ·#{F̃p < θ|γ(p) = g}∑B
b=1 #{F̃ 0b

p < θ|γ(p) = g}
. (2.14)

For the standard DLPTP approach (without moderation), we performed the same ap-

proach as described above using F -statistics derived from Eq. 1.2 without subsequent

moderation (Kurzawa, Becher, et al., 2020).

Incorporation of replicates

To estimate FDR for ligand effects on thermal profiles of protein obtained by 2D-TPP

experiments performed in replicates, we performed the above described model fitting

and computing of moderated F -statistics and bootstrapping (B = 100) for proteins

from both replicates separately. We then required that a protein had been fit in both

of the replicates and chose for each protein in each dataset (true and different rounds

of bootstrapping) the lowest obtained F -statistic. Based on the retrieved dataset, we

performed the above indicated steps for FDR estimation.

2.4.9 Differential Solubility Proteome Profiling analysis

Differential analysis of SPP data was performed using the R/Bioconductor package limma

(Ritchie et al., 2015), by comparing the log2 intensity levels of control conditions (NP-40

without any compound) and the highest treatment condition with ATP, GTP, AMP-PNP
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or SDS. The design formula was intensity ∼ condition+ batch.

Positive effective solubilization concentrations (pESC50) were determined for proteins

found to significantly change in the highest treatment condition with a minimal fold

change of 1.5. Sigmoidal curves were fitted to log2-transformed relative fold changes

measured at log10-transformed concentrations x with Eq. 1.4, where x represented the

compound concentration, using the R package drc (Ritz et al., 2015). The parameter

pESC50 was then computed as pESC50 = −a.

2.4.10 Phospho-TPP data analysis

Obtained database search results from isobarQuant (Franken et al., 2015) and MaxQuant

(Cox & Mann, 2008) were joined by peptide MS/MS scan id and filtered to contain

at least one phosphosite with a localization probability greater than 0.75 as obtained

from the MaxQuant output. Additional filtering criteria to keep phosphopeptides for

further analysis were: a signal to interference ratio higher or equal to 0.5 and a precursor

to threshold ratio higher or equal to 4 to keep only peptides with low levels of co-

isolation and thus avoid ratio compression (Savitski et al., 2013). Peptides which shared

phosphosite localization and identical sequences were aggregated by summation of signal

intensities.

For the non-modified fraction only isobarQuant search and quantification results were

used. Filtering criteria for non-modified peptides were that they mapped to one protein

only, had a Mascot score of greater than 20 and an FDR lower than 1%. Fold changes were

computed for all phopsho- and non-modified peptides by dividing all signal intensities

by the respective signal intensity measured at the lowest temperature, 37◦C.

Normalization

A two-step normalization procedure was performed to first adjust for global differences in

the phosphopeptide enriched samples to their corresponding flow-through (non-modified)
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samples, and second a curve-based normalization to account for TMT-channel differ-

ences.

In the first step, normalization factors were retrieved to align median fold changes of

non-modified peptides quantified in matching replicates of phospho- and non-modified

samples by restricting overlapping peptides to follow expected melting curves (observed

fold changed at the 7th temperature should be between 0.4 and 0.6, between 0 and 0.4

for the 9th temperature, and between 0 and 0.2 for the 10th temperature) (Potel et al.,

2021).

After obtained normalization factors were applied, the curve-based normalization strat-

egy suggested by Savitski et al. (2014) was performed. This was done by finding the

set of overlapping peptides across all replicates of unmodified datasets, filtering these

according to similar fold changes boundaries as before (the fold change measured at the

3rd temperature should be higher than 1, between 0.4 and 0.6 at the 7th temperature,

between 0 and 0.3 at the 9th temperature, and between 0 and 0.2 at the 10th tempera-

ture). We then chose the replicate per condition with the highest subset of these peptides

fulfilling these criteria Shq and fitted a melting curve to their median fold changes at each

temperature using Eq. 1.4, where x represented the temperature. Normalization factors

for each replicate where then obtained for each replicate as the ratio of observed median

fold change across of all peptides in Shq and the predicted value by the fitted melting

curve. Obtained normalization factors for each replicate where then applied to normalize

unmodified and phosphopeptide enriched datasets of the same replicate (Potel et al.,

2021).

Melting point-centric analysis

Sigmoidal melting curves were fitted to normalized fold changes measured for phospho-

peptides with a distinct modified sequence and to normalized fold changes obtained for

all peptides mapping uniquely to one protein. The sigmoid model used was Eq. 1.4,

where x represented the temperature.
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Melting curves were only accepted if R2 ≥ 0.8 and the plateau was below 0.2. Fits

not fulfilling these requirements were removed from further analysis. Melting points of

remaining fits were estimated as µ(Tm) = 0.5. To assess significantly thermally shifted

phosphopeptides compared to respective proteins, we applied the method described by

Savitski et al. (2014). This included filtering Tm estimates of phosphopeptides and cor-

responding proteins to determined in at least three replicates, computing replicate-wise

∆Tm, z-transforming and converting z-scores into p-values. Obtained p-values were then

adjusted for multiple testing using the Benjamini-Hochberg procedure. To call a phos-

phopeptide significantly differentially thermally stable compared to its protein, we asked

for at least two replicates with and padj. ≤ 0.1 and an equal sign of the thermal shift in

all replicates.

Curve-centric analysis using Gaussian processes

For the curve-centric analysis, all replicates were once fitted jointly across phospho-

peptides and respective non-modified proteins (null model) and once for each condition

separately (alternative model), using a Gaussian process:

f(x) ∼ GP(µ(x), k(x, x′)) , (2.15)

where k(x, x′) was taken as a radial basis function kernel and x is the temperature at

which relative fold changes were observed. The posterior mean function µf |D(x) was

computed using the python (version 3.7.4) package gpytorch (version 1.0.1) (Gardner et

al., 2018) by maximizing the Gaussian likelihood. The code was adapted from a script

provided by Britta Velten.

The RSS0/1 obtained from null and alternative model fits were then analyzed using the

NPARC (nonparametric analysis of response curves) procedure (Childs et al., 2019). This

involved computing an F -statistic according to Eq. 1.2.

To find a suitable null distribution for obtained F -statistics, we created a synthetic

dataset. This was done by picking for each protein, for which we found at least one

phosphopeptide in at least three replicates to compare with, a random non-modified
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peptide. We then performed the same procedure as for the phosphopeptide vs. non-

modified protein data by comparing melting profiles of picked peptides with non-modified

protein profiles inferred from the remaining peptides. Then, the procedure, described

by Childs et al. (2019), was performed to estimate degrees of freedom d∗1 and d∗2

of the F -distribution after NPARC analysis. Next, p-values were obtained using the

Fd∗1,d
∗
2
-distribution and F -statistics obtained from the actual comparison of phosphopep-

tide vs. non-modified protein melting profiles, adjusted for multiple testing using the

Benjamini-Hochberg procedure and phosphopeptides were considered significantly ther-

mal shifted if padj. ≤ 0.01.

2.4.11 Annotation of protein features and ontologies

Annotation of E. coli complexes and protein localization to compartments

E. coli protein complexes were annotated using the EcoCyc database (Keseler et al.,

2017). Protein localization was annotated using the STEPdb 2.0 database (Loos et al.,

2019). Proteins were annotated using gene level information provided by EcoCyc and

STEPdb.

Annotation of protein disorder and isolelectric points

Protein disorder and isoelectric points were annotated using the Uniprot ID per gene

symbol with the longest sequence provided by Oates et al. (2013) and Kozlowski (2017)

respectively.

Gene ontology annotation and enrichment analyses

Annotation of gene ontologies (GO) was done using the R/Bioconductor packages Anno-

tationDbi (Pagès et al., 2020) and org.Hs.eg.db (Carlson, 2020). Enrichment analyses

for GO terms associated to cellular compartment or biological process were performed
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using the R/Bioconductor package clusterProfiler (Yu et al., 2012) using a q-value

cutoff of 0.1 and the method of Benjamini and Hochberg for adjusting for multiple testing

(Benjamini & Hochberg, 1995).
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Chapter 3

Thermal proteome profiling to probe

protein-protein interactions and

protein complexes

“The main idea behind complex systems is that the ensemble behaves in ways

not predicted by its components.”

— Nassim Nicholas Taleb, Skin in the Game

This chapter details how TPP datasets can be analyzed to inform on PPI dynam-

ics. An R/Bioconductor package Rtpca (https://bioconductor.org/packages/Rtpca)

(Kurzawa, Mateus, et al., 2020), which was created for this purpose, is presented. The

application of the software focuses on two datasets: an experiment comparing different

phases of the human cell cycle (Becher et al., 2018) and an experiment which profiles

proteome thermal stability in E. coli cells (Mateus et al., 2018).
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3.1 Thermal proximity coaggregation

As reported by Tan et al. (2018), we observed that thermal stability of protein complex

members is more similar than expected by chance (Figure 3.1) (Becher et al., 2018).

This finding paved the way for systematic analyses of TPP experiments with regard to

assembly states of protein complexes and presence of PPIs in different biological samples

and conditions. While our approach of comparing standard deviations of melting points

within complexes allowed us to test for the effect of coaggregation of interacting proteins

on a global scale, the method by Tan et al. (2018) allows to test for the association of in-

dividual protein complexes or PPIs, a method termed Thermal Proximity Coaggregation

Analysis (TPCA) (Figure 3.2).
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Figure 3.1: Assessing coaggregation by melting point similarity. Compar-

ison of standard deviations of melting points of proteins, part of the same

complex. Dotplot and boxplot show the distribution of values obtained for

complexes, violin plot shows the distribution of medians of standard devia-

tions of melting points obtained for 1000 permutation of the complex anno-

tation list. The median SD of melting points obtained for the true protein

complex annotation (bold line in boxplot) is clearly lower than any of those

obtained by permuted complex annotation (violin plot).
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Figure 3.2: The concept of thermal proximity coaggregation analysis. a)

Example profiles of the proteins MDM2 and MDM3 which are found to signif-

icantly coaggregate with TPCA. b) Example profile of two proteins annotated

to interact, but not showing coaggregation. c) Distribution of Euclidean dis-

tances between random pairs of proteins used to determine significance of

values obtained for annotated interactors.
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3.2 An R package for analysis of PPI dynamics using TPP

datasets

The goal of creating an R package for performing TPCA was to build a package for

the standardized and efficient coaggregation analysis as an extension to the existing

R/Bioconductor package TPP (Franken et al., 2015) which can handle data import and

normalization and differential melting curve analysis, but not TPCA. Moreover, we aimed

to expand this package by a method that allowed to test for differential PPIs across

distinct conditions. Hence, we created the R/Bioconductor package Rtpca (https://

bioconductor.org/packages/release/bioc/html/Rtpca.html) (Kurzawa, Mateus, et

al., 2020).

To showcase the functionality of the package and the ability of using TPP datasets to

infer assembled protein complexes, PPIs and their dynamics, we reanalyzed the TPP-TR

dataset by Becher et al. (2018) comparing the human cell cycle phases G1/S (interphase)

and M (mitosis).

3.2.1 TPCA of datasets in a single condition

The first function we created was runTPCA which implements TPCA to find significantly

coaggregating PPIs based on an imported TPP dataset and a PPI or protein complex

annotation. Moreover, when setting the parameter doRocAnalysis = TRUE it also com-

putes receiver operating curves (ROC) for the PPI-predictive power of the dataset. This

is done by sorting all protein pairs by the obtained Euclidean distance of their melting

profiles and annotating whether they are known interactors or not. If true positive in-

teractors are enriched at the top of the table, i.e., have a low Euclidean distance, one is

more likely to predict a true interaction than just by chance (AUC > 0.5).
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Figure 3.3: PPI and complex predictive performance of TPP datasets of

different cell cycle stages. a-b) ROC curves for prediction of PPIs in G1/S

(a) and M phase. c-d) ROC curves for TPCA-based prediction of protein

complexes in G1/S (c) and M phase (d).
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In addition to the ROC curves for PPIs suggested by Tan et al. (2018) (Figure 3.3a and

b), we also implemented a version that works for protein complexes (Figure 3.3c and d)

which uses truly annotated protein complexes as true positives and permuted complex

annotations as false negatives. When running Rtpca on the datasets obtained for both cell

cycle phases we observed both, PPIs that were found to significantly coaggregate in both

phases such as the two mitochondrial tryfunctional enzyme subunits HADHA:HADHB

and PPIs that could only be found in one of the phases, e.g., the members of the Sin3

deacetylase complex HDAC1:SIN3A which only coaggregated in interphase. On the

complex level, we observed the same. For example, we found the RNA polymerase III

core complex only to significantly coaggregate in G1/S, and the Cohesin complex in M

phase.

3.2.2 Detection of differential PPIs using TPCA

The second function we implemented was to enable differential PPI coaggregation anal-

ysis for which we took a different approach than suggested by Tan et al. (2018). While

Tan et al. (2018) used the difference in Euclidean distance between the melting curves

of two proteins annotated to interact to find changes in coaggregation, we developed a

method which also incorporated information on whether the coaggregation of two PPIs

was at all evident in one of the tested conditions based on a statistic (Eq. 2.5) inspired

by the F -statistic.

In order to perform successful differential coaggregation analysis, however, one needs to

consider the limited power of TPCA, i.e., the small AUC of the ROC curve for predicting

PPIs (Figure 3.3a and b). This limited enrichment of true PPIs, due to the relatively

high chance of similarity of melting curves between two proteins which do not coaggre-

gate, requires to focus the analysis on a set of potential interactors with an increased

fraction of true positives to be able to recover true positives when the multiple testing

burden is high. Thus, we have developed two strategies to cope with this challenge which

are presented and compared using the TPP-TR dataset of Becher et al. (2018) in the
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following subsections.

Analysis of PPI dynamics during the human cell cycle

We downloaded the TPP-TR dataset of Becher et al. (2018) and imported and format-

ted the data. PPIs were annotated using interactions listed in the STRING database

(Szklarczyk et al., 2019) with a combined score of 975 or higher. Annotation of protein

complexes was taken from Ori et al. (2016). ROC curves for PPI- (Figure 3.3a and b) and

protein complex-predictiveness (Figure 3.3c and d) for datasets of both cell cycle phases

and significantly coaggregating PPIs were determined using the TPCA procedure by

invoking the Rtpca function runTPCA with doRocAnalysis = TRUE. Interestingly, while

there appeared to be stronger coaggregation of PPIs in M phase compared to G1/S (larger

AUC in Figure 3.3b than a), the trend was inverse when considering protein complexes

(larger AUC in Figure 3.3c than d).

Next, we applied our newly developed method, implemented as function runDiffTPCA

as part of the Rtpca package, to find differential PPIs between the different cell cycle

stages. To do so, we followed two different strategies: i) we restricted the PPIs to test for

differential TPCA to those that had been found to significantly coaggregate (padj. < 0.2,

Note: we were intentionally less stringent here, to not exclude too many PPIs a priori) in

either of the two cell cycle phases and ii) we included all possible intra-complex PPIs of all

complexes that had been found to significantly co-melt (padj. < 0.2) for differential TPCA

testing. Both strategies found differently coaggregating PPIs, with the PPI-centric ap-

proach finding many more at padj. < 0.1 (n = 41) compared to the complex-centric one

(n = 7) (Figure 3.4). The intra-ribosomal PPIs RPS6:RPSA and RPS23:RPSA were

found by both strategies to be differentially coaggregating, i.e., comelting in G1/S, but

not in M phase. The PPI-centric approach additionally found the eukaryotic translation

initiation factors EIF3D:EIF3E to be associated in G1/S, but not in M phase. Together

with the ribsomal proteins, this may reflect the high global translational activity in G1/S

compared to M phase (Tanenbaum et al., 2015). The PPI-centric found CDC5L:EXOC7
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as coaggregating in M, but not in G1/S phase. CDC5L is pre-mRNA splicing factor

crucial for mitotic progression (Mu et al., 2014). Its mitosis-specific association with

exocyst complex subunit EXOC7, could be related to regulation of splicing specific to

genes involved in mitosis (Dellago et al., 2011; Mu et al., 2014). On the other hand,

the complex-centric approach found several nucleoporins (NUP188, NUP88, NUP93 and

NUP205) to coaggregate mitosis-specifically with the Nuclear pore complex associated

protein RANBP2. The strong association of RANBP2 with these nucleoporins in M

phase, could be due to RANBP2’s role in nuclear envelope breakdown during mitosis

(Prunuske et al., 2006).
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Figure 3.4: Results obtained from differential thermal coaggregation anal-

ysis between G1/S and M phase. Volcano plots obtained from a) PPI-centric

and b) complex centric approach. Blue dots represent PPIs found to signifi-

cantly differentially coaggregate between the two conditions with padj. < 0.1.

3.2.3 TPCA of the E. coli proteome

The TPP technology was first developed in human cells (Savitski et al., 2014). The in-

terest in expanding the assay to other organisms led our group to adapt the technology
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to Escherichia coli, through several modifications in the protocol (Mateus et al., 2018).

Based on the previous observations concerning PPIs and protein complexes in human

cells, we were interested whether TPCA would also recover known protein complexes in

bacterial cells. Thus, we obtained an annotation of protein complexes in E. coli from

the EcoCyc database (Keseler et al., 2017) and performed TPCA. The ROC curve we

obtained from this analysis showed that melting curves measured in E. coli were predic-

tive for protein complexes (Figure 3.5a). However, when comparing the distribution of

average Euclidean distances of melting curves of complex subunits with the ones obtained

for human (Figure 3.5b), we observed that the obtained values in E. coli were on average

higher and that less significantly coaggregating complexes were found.

We noticed that the average thermal stability of proteins in E. coli varies considerably

across different compartments, with thermal stability in general increasing from inner to

outer compartments (Mateus et al., 2018). Since compartment spanning complexes in E.

coli are common, e.g., many ABC-transporter complexes, we wondered whether complex

aggregation was influenced by the localization of subunits to multiple compartments.

Thus, we made use of the STEPdb 2.0 database (Loos et al., 2019) which annotates the

majority of known E. coli proteins to different compartments and we split complexes into

a group that featured complexes with subunits localized to the same compartment and a

group of complexes with subunits annotated to localize to multiple compartments. When

we compared Euclidean distances of complexes in both groups, we found that when pro-

tein complex subunits were all localized in one compartment the distribution of average

Euclidean distances appeared comparable to those obtained for human complexes and

that only compartment-spanning complexes showed higher Euclidean distances (Figure

3.5c).
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Figure 3.5: TPCA of protein complexes in E. coli. a) ROC curve for

prediction of protein complexes based on coaggregation of subunits in the

E. coli TPP dataset. b) Comparison between average Euclidean distances

of complex subunit melting profiles obtained in human and E. coli TPP

experiments. c) Average Euclidean distances of complexes with all subunits

in one versus multiple compartments in E. coli.
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3.3 Conclusion

In this chapter, it was shown that TPP experiments can be informative on PPIs and

the association of protein complexes. Using a TPP-TR dataset profiling different stages

of the human cell cycle, it was demonstrated how computational methods, implemented

in the Rtpca software, can be used to infer PPIs and complex assembly in individual

datasets and how to find differential associations between different conditions. Moreover,

by analyzing TPP-TR data obtained for the bacterium Escherichia coli, it could be shown

that also in this organism TPP can be used to inform on PPIs and protein complexes with

the limitation that in E. coli many complexes feature subunits in different compartments

and it was found that such cases are not amenable for coaggregation analysis.
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Chapter 4

Computational detection of

ligand-protein interactions from

two-dimensional thermal proteome

profiles

“An expert is a person who has made all the mistakes that can be made in a

very narrow field.”

— Niels Bohr

In this chapter a computational method for the analysis of 2D-TPP, an experimental

design of the TPP assay for sensitive profiling of ligand-protein interactions, is intro-

duced. The approach is benchmarked on a synthetic dataset and applied to multi-

ple real datasets. It was implemented as an R/Bioconductor package TPP2D (https:

//bioconductor.org/packages/TPP2D) and is thus freely available and open source

(Kurzawa, Becher, et al., 2020).
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4.1 Data obtained from 2D-TPP experiments

In 2D-TPP experiments (Becher et al., 2016), thermal stability of proteins is measured

as a function of n concentrations of a ligand of interest and m temperatures (Figure 1.6).

Hence, an n ×m matrix Yi of intensity values is observed for protein i (Figure 4.1 a).

However, due to the fact that for some proteins a major proportion of the intracellular

pool will denature at temperatures lower than the maximal temperature used for the heat

treatment and may thus not be quantified at higher temperatures, these data matrices

contain non-randomly missing values towards higher temperatures. Moreover, due to the

long measurement time required to record a single replicate of a 2D-TPP experiment,

they are in most cases acquired in only one replicate.

4.2 A curve-based hypothesis testing framework for 2D-

TPP analysis

The first analysis strategy for 2D-TPP experiment employed bespoke thresholds, a min-

imal fold change of 1.5 at the highest ligand concentration and R2 > 0.8 of the dose-

response fits at two consecutive temperatures, to detect proteins affected by the ligand

used in the experiment (Becher et al., 2016). However, this approach is inherently limited

in sensitivity, does not inform on the false discovery rate (FDR) and does not account

for varying noise levels across experiments.

To address these shortcomings, we developed a method termed Detection of Ligand-

Protein Interactions from Thermal Profiles (DLPTP) which allows to analyze 2D-TPP

experiments with FDR-control and high sensitivity. The approach we took was based on

a nested modeling framework which fits for each protein i a null model, expected if the

profiled ligand showed no effect on the thermal stability of protein i, and an alternative

model which models the case of dose-dependent stabilization of protein i.
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Figure 4.1: Illustration of data obtained from 2D-TPP experiments and

design of DLPTP’s nested models. a) Heatmap of relative fold changes at

individual temperatures measured for BRD4 in the JQ1 HL60 lysate dataset.

b) Null and c) alternative model fitted to log2 intensity signal of BRD4 from

the same dataset.
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Both models were fit to the log2 intensity signal of protein i across temperatures and

ligand concentrations. The null model was taken as a temperature-wise intercept model

of the 2D-thermal profile of protein i (Figure 4.1a, Eq. 2.8). For the alternative model

we designed a constrained dose-response model across temperatures (Figure 4.1b, Eq.

2.9). This was done by fitting the base level intensity at each temperature, a joint

slope, but varying degrees of stabilization per temperature and an inflection point which

was allowed to vary linearly across temperatures. Using the residual sum of squares

(RSS) obtained for each model, we computed for each protein i an F -statistic (Eq.

1.2). Moreover, we implemented an empirical Bayes moderated version of obtained F -

statistics. However, since residuals of both models were correlated and heteroscedastic,

we could not directly use obtained F -statistics and theoretical degrees of freedom to

compute p-values, adjust them for multiple testing and control for false discoveries. Thus,

we adapted a bootstrapping approach from Storey et al. (2005), originally suggested for

significance analysis of microarray timecourse experiments, and adjusted it to the specific

noise structure of 2D-TPP data, i.e., we restricted resampling to measurements from

the same MS experiment, to calibrate our F -statistics in terms of FDR. Since 2D-TPP

datasets contain varying numbers of observations for different proteins, we applied this

approach separately for groups of proteins with similar number of observations.

4.3 Benchmarking DLPTP on a synthetic dataset

To evaluate whether our implementation of DLPTP indeed controlled FDR as expected,

we created a synthetic dataset composed of 5000 true negative thermal protein profiles

simulated based on our null model with additional Gaussian noise observed for the real

datasets and 80 known true positive profiles from various datasets (Becher et al., 2016;

Mateus et al., 2018; Savitski et al., 2018; Sridharan et al., 2019). We then evaluated

both, the standard and the empirical Bayes moderated version of DLPTP and compared

their performance to the threshold-based approach (Figure 4.2). We found that both

versions of DLPTP were able to control FDR at nominal levels. While the standard
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version of DLPTP did not show a better sensitivity-specificity trade-off compared to the

threshold-based approach, the moderated version was found to be more sensitive.
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Figure 4.2: A benchmark of DLPTP with a synthetic dataset confirms FDR

control and improved sensitivity compared to the threshold-based approach.

TPR vs. FDR curve of the different compared methods for 2D-TPP analysis.

Dashed lines correspond to 1, 5 and 10% nominal FDR.

4.4 Application of DLPTP to published 2D-TPP datasets

To further explore our method we reanalyzed two previously published 2D-TPP datasets.

First, the first published 2D-TPP experiment profiling the pan-HDAC inhibitor Panobi-

nostat in intact HepG2 cells (Becher et al., 2016) and second a 2D-TPP dataset of the

BRD4 inhibitor JQ1 in HL60 lysate (Savitski et al., 2018).
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Figure 4.3: DLPTP recovers known drug-binding proteins based on pub-

lished datasets. Volcano plots of DLPTP results obtained for the a) Panobi-

nostat in-cell and the b) JQ1 lysate dataset. The effect size is taken as

sign(κ) ·
√

RSS(0) − RSS(1) which describes how much more variance is ex-

plained by the alternative versus the null model, signed by the direction

of the effect, i.e., stabilization of destabilization. The F -statistic on the

y-axis is transformed as described to guarantee that transformed values re-

main bounded as F approaches 0. Colored points represent proteins found

significantly affected in thermal stability at 10% FDR.

The DLPTP analysis of the Panobinostat dataset (Figure 4.3a) revealed all so far de-

scribed on- and off-targets of the drug: HDAC1, HDAC2, TTC38, PAH, FADS1 and

FADS2, except for HDAC6 which featured noisy measurements at the highest and sec-

ond highest temperature which prevented the alternative model from achieving a fit with

small enough residual error despite of the presence of a dose-response trend. Additionally,

we could identify the zinc finger transcription factor ZNF148 which has been described

recently to be amenable for Panobinostat binding and DHRS1 which is likely indirectly

affected by Panobinostat (Perrin et al., 2020). Both of these proteins could not be iden-

tified as significantly affected by the drug by previous analysis of this dataset.
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The reanalysis of the JQ1 dataset revealed the chemical probe’s previously described

targets (Savitski et al., 2018): the BET transcriptional regulators BRD2, 3 and 4 and

HADHA, a mitochondrial trifunctional enzyme with acetyl-transferase activity, but not

the off-targets SOAT1 and FYTTD1.

4.5 Target Profiling of the HDAC8-inhibitor PCI-34051

Next, we turned to a 2D-TPP dataset profiling the HDAC8 inhibitor PCI-34051 (Figure

4.4a), a compound reported to be effective against different forms of T-cell leukemia

(Balasubramanian et al., 2008). By analyzing the dataset with DLPTP, we identified 154

proteins which significantly changed in thermal stability (Figure 4.4b). A gene ontology

analysis revealed that the hits were enriched for the biological process terms ‘oxidation–

reduction process’ (hypergeometric test, padj. = 5 ·10−11, odds ratio: 3.5) and ‘carboxylic

acid metabolic process’ (hypergeometric test, padj. = 7 · 10−6, odds ratio: 2.8). Proteins

belonging to these groups are likely not direct targets of the drug, but rather involved

in the metabolic response to the compound. In addition to proteins which reflected

these gene sets, we found the target of PCI-34051, HDAC8 (pECPCI-34051
50 = 6.4), and

unexpectedly, Leucine aminopeptidase 3 (LAP3; also called Cytosol aminopeptidase;

pEC50 = 5.9), a Zn2+-dependent metallopeptidase, in the group of most significantly

affected proteins. LAP3 expression was reported to correlate with malignant development

of hepatocellular carcinoma (Tian et al., 2014) and its inhibition was observed to limit

invasion of ovarian cancer cells (Wang et al., 2015). Thus, LAP3 constitutes a potentially

interesting target for therapy of different cancer entities.

To further investigate our discovery of LAP3 as potential off-target of PCI-34051, another

2D-TPP experiment was performed on BRD-3811 (Figure 4.4c), an analog of PCI-34051

which is sterically hindered to bind to HDAC8 by its additional methyl group (Olson et

al., 2014), to assess whether BRD-3811 could be a specific inhibitor of LAP3.
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Figure 4.4: Target profiling with 2D-TPP of the HDAC8 inhibitor PCI-

34051 and its analog BRD-3811. a) Chemical structure of PCI-34051. b)

Volcano plot obtained by DLPTP analysis of a PCI-34051 2D-TPP exper-

iment. c) Chemical structure of BRD-3811. d) Volcano plot obtained by

DLPTP analysis of a BRD-3811 2D-TPP experiment. e) Leucine aminopep-

tidase in vitro assay shows inhibition of LAP3 by PCI-34051 and BRD-3811.

Time course measurement of an fluorescent reporter of recombinant LAP3

peptidase activity in the presence of PCI-34051, BRD-3811 or solvent control.
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When analyzing the obtained dataset with DLPTP, HDAC8 was not found to be stabi-

lized, as expected. However, LAP3 was found to be significantly affected in its thermal

stability also by BRD-3811 (Figure 4.4d). In order to determine whether enzymatic

activity of LAP3 was inhibited in the presence of either of the two compounds, a fluoro-

metric aminopeptidase assay was performed with recombinant LAP3 in the presence of

100 µM PCI-34051, BRD-3811 or solvent control. Indeed, a slower increase in fluorescent

signal, reflecting attenuated peptidase product accumulation, could be observed in the

presence of both compounds (Figure 4.4e). The effect was weaker for BRD-3811, resem-

bling the lower pEC50 of LAP3 stabilization, obtained for the compound by 2D-TPP

(pECBRD-3811
50 = 5.0). This could mean that the additional methyl group in BRD-3811

dampens the binding to LAP3 which likely also works via Zn2+ chelation at the active

site of the enzyme.

4.6 DLPTP analysis of 2D-TPP experiments in rat tissues

and human blood

The ability to assess drug distribution to different organs and tissue-specific target en-

gagement in vivo, is highly desirable in the pre-clinical drug discovery process. It allows

to determine whether a drug reaches the destined tissue and whether it specifically en-

gages its molecular target. These insights are invaluable to evaluate drug safety and

efficacy.

To establish the application of TPP in an in vivo and an ex vivo setting we collaborated

with colleagues from GSK/Cellzome. Whereas in vivo experiments with drug versus

vehicle dosed rats were performed in a similar setup as TPP-TR experiments (not re-

ported in this thesis), respective ex vivo experiments, were performed on rat organs and

on human blood in 2D-TPP format (Perrin et al., 2020). These experiments were per-

formed by sacrificing untreated rats, extracting different tissues, i.e., testis or spleen, and

treating different tissue pieces with different concentrations of a compound, followed by
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heating and extraction, and profiling of soluble proteins. All of these experiments were

done in replicates, since these experiments were expected to be more noisy compared to

cell culture based experiments.

Thus, we devised a strategy to apply DLPTP to 2D-TPP experiments with replicates.

This was implemented by running DLPTP on each replicate of the same experiment

separately using 100 rounds of bootstrapping each. Replicates were then integrated by

requiring each protein to be replicated and selecting the lowest observed F -statistic across

the two replicates for each protein in the true dataset and each round of the bootstrapped

dataset. FDR was then computed on this combined dataset with the same approach as

for a single dataset (Eq. 2.13 and 2.14). We applied this approach to all datasets of this

study.

4.6.1 Ex vivo 2D-TPP experiments in rat tissues

For the ex vivo experiment in rat testis profiling the BRAF-inhibitor Vemurafenib, a drug

approved for late stage melanoma therapy, we observed specific stabilization of Braf (rat

homolog of human BRAF), but also destabilization of the kinase Ulk4 which was not

reported as a target of the drug so far. However, the known off-target ferrochelatase

(Fech) (Savitski et al., 2014) was identified, but was not found to be significantly altered

in thermal stability.

Next, we analyzed the 2D-TPP experiment profiling Panobinostat in rat spleen punches

(Figure 4.5b). We observed the known targets Hdac1, Hdac2 and its off-target Ttc38.

Additionally, Dhrs1 was found to significantly stabilize. We had also identified DHRS1

(human homolog) in the HepG2 in-cell 2D-TPP experiment with Panobinostat (Figure

4.3a) and wondered whether the oxidoreductase was a direct off-target of the drug or

whether it could be a molecule derived from metabolization of Panobinostat that bound

to Dhrs1 and stabilized it (Figure S3). Hence, to test whether Dhrs1 was a direct target of

Panobinostat or one of its metabolization products, we purified, recombinantly expressed

human DHRS1 and performed differential scanning fluorimetry. This was done in the
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presence of Panobinostat, some of its metabolites and solvent control. However, we

found no apparent difference in thermal stability for any of the compounds compared

to control, which would have indicated a direct interaction of any of the molecules with

DHRS1 (Figure 4.5c). Thus, we performed a TPP experiment in rat liver lysate with a

reduced design to test multiple compounds in two multiplexed TMT MS experiments.

These experiments were done with only one vehicle control reference channel at 37◦C

and all other channels at 50◦C (a temperature close to the melting point of DHRS1

(Jarzab et al., 2020)) in the presence of vehicle control, Panobinostat or metabolized

forms of the drug at two concentrations. As in the previous experiment, we could not

observe any effect on Dhrs1 thermal stability by any of the tested compounds, but saw

thermal stabilization of Hdac2 at both concentrations of panobinostat and one of its

metabolized forms T27c, which still contains the hydroxamic acid group involved in target

engagement (Figure 4.5d). Hence, the thermal stabilization of Dhrs1 in rat spleen could

not be explained by a direct interaction with Panobinostat, we hypothesized that it might

thus be induced indirectly, e.g, by a cellular process triggering activation of Dhrs1. Since

Dhrs1 is known to be dependent on NADP binding to function (Zemanová et al., 2019), we

performed another reduced TPP experiment in rat liver lysate in the presence of further

metabolized forms of Panobinostat and NADP, this time not at different concentrations,

but at different temperatures around the melting point of DHRS1 in human cell lines

(∼ 50◦C) (Jarzab et al., 2020). This time we observed only stabilization of Dhrs1 in

the presence of NADP, but not for any of the other compounds (Figure 4.5e). We

thus concluded that Panobinostat treatment in metabolically active cells or tissues likely

induced a cellular process triggering a change of the biophysical state of Dhrs1, possibly

related to stronger binding to NADP.
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Figure 4.5: DLPTP analysis of 2D-TPP experiments performed in rat tis-

sues. Volcano plots of ex vivo 2D-TPP experiments of a) Vemurafenib in rat

testis and b) Panobinostat in rat spleen. c) Melting points obtained for pu-

rified, recombinantly expressed DHRS1 by differential scanning fluorimetry

in the presence of different compounds. *: Not measurable due to autofluo-

rescence. d-e) Fold changes obtained from TPP experiments in S9 rat liver

extract for d) Dhrs1 and Hdac2 at 50◦C in the presence of different concen-

trations of Panobinostat and different metabolized forms compared to vehicle

control and e) for Dhrs1 at 48 and 51◦C in the presence of a different set of

Panobinostat derivates (100 µM) than in d) and NADP (0.4 mM) compared

to vehicle control.
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4.6.2 2D-TPP experiment in human blood

The datasets of 2D-TPP performed directly in human blood were obtained by performing

the drug- and subsequent heat treatment on fresh blood samples, followed by centrifu-

gation and extraction of primary blood mononuclear cells, extracting remaining soluble

proteins from those cells and measuring them by LC-MS/MS analysis.

In the experiment featuring Panobinostat we were able to find several of the previously

described (off-)targets such as HDAC1, HDAC2, HDAC6 and TTC38. In addition, the

zinc finger transcription factor ZNF512 was found to significantly stabilize in the pres-

ence of Panobinostat (Figure 4.6a). This is in line with the reported Zn2+ chelation

activity mode of Panobinostat’s hydroxamic acid group. However, we also found a high

fraction of members of the large and small ribosome to significantly destabilize in this

experiment. This has not been observed before in cell line-based experiments (Figure

4.3a) and seemed to be an artifact of this particular experiment, since we did not observe

similar effects in the JQ1 2D-TPP experiment in human blood (Figure 4.6b).

For JQ1 profiled in human blood, we could identify the cognate targets BRD2, 3 and

4 as significantly stabilized. Moreover, as in the cell lysate experiment (Figure 4.3b)),

we found HADHA and this time also its binding partner HADHAB to be significantly

altered in thermal stability.
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Figure 4.6: DLPTP analysis results for 2D-TPP datasets obtained with

human blood. Volcano plots of results obtained for the datasets of a) Panobi-

nostat and b) JQ1 profiled in human blood. Blue dots represented proteins

found with significantly altered thermal stability at 10% FDR. Purple points

in panel a) represent members of the large and small ribosome subunits.

4.7 Conclusion

Here, a novel statistical method for analysis of 2D-TPP experiments—DLPTP—was

presented. The concept of curve-based hypothesis testing tailored to thermal profiles

enabled the first approach for 2D-TPP analysis with control of the the false discovery

rate. The method’s performance was assessed on a synthetic dataset and it was found to

outperform the previous analysis approach by being more sensitive at the same specificity.

Application of DLPTP to published 2D-TPP datasets found known on- and off-targets

of the profiled drugs and thus further validated our approach. The analysis of a 2D-

TPP dataset profiling the HDAC8 inhibitor PCI-34051 found an off-target of the drug:

LAP3 which is a potentially interesting target for therapy of different cancer entities.

BRD-3811, an analog of the compound which does not bind HDAC8, was found to also

bind and inhibit LAP3. Hence, BRD-3811 could be a starting point drug candidate
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for specific, high affinity inhibitors of LAP3 that could be used for certain subtypes of

ovarian and liver cancer.

Lastly, we applied DLPTP to different datasets obtained with the recently developed

ex vivo realization of 2D-TPP which allows to profile drugs directly in animal tissues

of interest or in human blood. Also for these datasets, we were able to detect the

reported targets of the profiled drugs and additionally observed downstream effects such

as modulation of the oxidoreductase Dhrs1 which was found to stabilize significantly in

rat spleen upon treatment with Panobinostat.
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Chapter 5

Applying thermal proteome

profiling to study protein-metabolite

interactions

“Measure what is measurable and make measurable what is not so.”

— Gallileo Gallilei

Metabolites fulfill a myriad of functions in cells, such as storing energy and regulating

protein function (Rinschen et al., 2019). However, protein-metabolite interactions often

lie on the transient, low affinity side of biochemical interactions, making them particu-

larly hard to study in relevant biological contexts (Reznik et al., 2017). In this chapter,

the application of TPP to study protein-metabolite interactions is described based on the

example of ATP and GTP. Mapping protein interactions of these nucleotide metabolites

served both as a proof of concept with previous literature knowledge to validate observa-

tions, as well as a resource giving new insights into intracellular regulatory roles of these

molecules (Sridharan et al., 2019).
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5.1 2D-TPP experiments of ATP and GTP in crude lysate

Intracellular nucleotide levels are tightly regulated and are thus difficult to modulate

experimentally (Tsuura et al., 1999). Hence, we performed 2D-TPP experiments with

mechanically disrupted Jurkat cells, to generate an as close as possible system to the

intact cell scenario. With these lysates we performed 2D-TPP experiments with ATP

and GTP (Figure S5a and b) using distinct dose ranges (ATP: solvent control + 0.005-2

mM; GTP: solvent control + 0.001, 0.01-0.5 mM) reflecting the different intracellular

concentrations of the two nucleotides (ATP: ∼ 1-10 mM; GTP: ∼ 0.1-1 mM) (Traut,

1994). These experiments were performed in triplicates and thus our DLPTP analysis

strategy for incorporation of replicates was applied to analyze obtained datasets. Based

on the volcano plots obtained from the ATP and GTP experiments (Figure 5.1a and b),

a high fraction of proteins with associated GO terms ‘ATP binding’ and ‘GTP binding’

were found to be significantly affected in thermal stability. Indeed, both were found to

be significantly enriched (hypergeometric test p < 2.2 · 10−16 and odds ratio: 3.2 for

ATP-binders in the ATP dataset and p < 2.2 · 10−16 and odds ratio: 17.5 for GTP in

the GTP dataset). However, we also found a significant enrichment of the respective

other nucleotide in both datasets, i.e., GTP binder enriched in the ATP dataset (hy-

pergeometric test p = 4.1 · 10−4 and odds ratio: 2.1) and ATP binders enriched in the

GTP dataset (hypergeometric test p < 2.2 · 10−16 and odds ratio: 3.0). This reflected

previously reported cross-talk between the two metabolites observed in E. coli, i.e., ATP

binding to GTP-binders and vice versa (Piazza et al., 2018).

Next, we took a closer look at the obtained pEC50 values, i.e., the effective thermal sta-

bilization concentrations, of the two metabolites on proteins of different ontology groups

(Figure 5.1a and b). As expected, we found that, for both datasets, proteins known to

bind to the respective nucleotides showed the highest effective stabilization concentra-

tions. However, the difference between ATP binders and GTP binders was much lower

in the experiment profiling ATP than in the one of GTP. This could be related to the

difference in intracellular concentrations of both metabolites.
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Figure 5.1: DLPTP analysis results for the 2D-TPP experiments profiling

ATP and GTP in crude lysate. Volcano plots of DLPTP analysis results for

the a) ATP and b) GTP dataset. Violin plots of distributions of effective

stabilization concentrations (pEC50) of different group of proteins found to

be stabilized by c) ATP and d) GTP.
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Since GTP is present in cells at much lower concentrations than ATP, GTP binding

proteins need a higher affinity and specificity for GTP to ensure binding to the right

nucleotide in excess presence of ATP.

5.2 Indirectly induced thermal stability effects by ATP

Interestingly, many proteins from other functional groups were also found to stabilize.

While we were less surprised to observe proteins annotated to bind to other nucleotides

or nucleic acids, due to the similarity to ATP and GTP, the many regulatory subunits

and members of protein complexes with subunits that were nucleotide binders were un-

expected. Thus, we took a closer look at this phenomenon. The proteasome represented

an interesting examples (Figure 5.2a): while the 19S proteasome (the regulatory particle)

features several ATPases in its base (“C”-subunits), the 20S proteasome (core particle)

does not feature any annotated ATP-binding subunits. In Jurkat cells both subcomplexes

aggregate distinctly, but show coaggregation of their respective subunits to a large extent

(Figure 5.2b). We used these curves to compute pairwise Euclidean distances between

individual subunits and observed that non-ATP binding proteasome subunits in close

physical proximity, i.e., as inferred by low Euclidean distance of melting curves, to an

ATP-binding one where co-stabilized in the presence of ATP (Figure 5.2c). This led us

to hypothesize that ATP binding to subunits of complexes can costabilize nearby sub-

units. To test this hypothesis, we revisited the TPCA concept (introduced in Chapter 3)

to compute Euclidean distances (ED) of protein pairs annotated to be part of the same

complex using a Jurkat intact cell TPP-TR experiment (Jarzab et al., 2020). We then

asked whether the median ED of non-ATP binding annotated proteins, which stabilized

with ATP, to an ATP-binding subunit within the same complex was lower than for non-

ATP binding annotated proteins, which did not stabilize in the presence of ATP. Indeed,

we found that this was true, when testing across all complexes annotated by Ori et al.

(2016) (Figure 5.2d).
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Figure 5.2: Co-stabilization of complex subunits by ATP. a) Schematic of

the 26S proteasome and its subcomplexes (figure adapted from Becher et

al. 2018, with permission based on its license). b) Melting curves of sub-

units of the proteasome. c) Network of protein-protein interactions within

the proteasome showing the effect of ATP on subunit thermal stabilities.

d) Violin plot of across complex comparison of median Euclidean distances

between melting curves of non-ATP-binding annotated subunits found sta-

bilized or unaffected by ATP and ATP-binding annotated subunits in the

same complexes. Significance assessed by Wilcoxon rank sum test.
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Figure 5.3: Exemplary heatmaps of ATP and GTP induced stability fold

changes at different temperatures. Average relative fold change 2D profiles of

selected proteins obtained for a) ATP and b) GTP. For visualization purposes

fold changes higher than 3 were ceiled at 3.
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Next, we took a step back and inspected the thermal profiles of proteins with significant

thermal stability effects for ATP and GTP more closely. For proteins annotated as

ATP-binders, but stabilized by both ATP and GTP (CLPB and CSK) and GTP-binders

stabilized by both GTP and ATP (RRAS or RUVBL2), we found that the respective

nucleotide annotated to bind the protein showed stronger and more potent stabilization,

as expected (Figure 5.3a and b). However, especially for many RNA-binding proteins,

such as LUC7L and U2AF2, we noted that many of them did not feature a typical

stabilization pattern at higher temperatures, but rather from the lowest temperature

onward (Figure 5.3a and b). The only explanation we could find for this phenomenon

was, that at high concentrations, ATP and GTP could solubilize insoluble subpopulations

of these proteins. This notion was reinforced by a recent report stating ATP could act

as a biological hydrotrope (Patel et al., 2017) and expression changes could not be the

reason for this observation, as these experiments were performed in lysates. To follow up

on this hypothesis, we devised a new experimental approach termed Solubility Proteome

Profiling (SPP).

5.3 Profiling proteome-wide ATP-induced solubilization of

insoluble subpopulations

In order to measure soluble and insoluble subpopulations of proteins in crude lysates

and the effect of a compound (ATP in this case) on the insoluble pool, we devised

a new strategy termed SPP (Figure 5.4). By multiplexing both, a channel in which

the proteome was extracted with a mild detergent (NP-40), which preserves insoluble

proteins, and a channel for which a strong detergent (SDS) was used, we could monitor

both the soluble and the total proteome. Additionally, we added channels in which

proteins were extracted with NP-40 and a dose range of ATP (0.1-10 mM). To test for

both, proteins which had an insoluble subpopulation and proteins which were solubilized

by ATP, we used the R package limma to find proteins with significant signal intensity
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changes between the SDS and NP-40 control and the 10 mM ATP and NP-40 control

channel, respectively. The results of the analyses of this dataset are shown in Figure

5.5a. By comparing total (SDS) versus NP-40 soluble proteins, we found that 16% of the

proteome (1063 out of 6522 proteins quantified by at least two peptides in at least two

replicates) had a significant insoluble subpopulation, which was at least half the amount

of the soluble population (padj < 0.01 and rSDS/NP-40 ≥ 1.5).
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Figure 5.4: Schematic of the experimental workflow for Solubility Pro-

teome Profiling. Cells are grown and disrupted mechanically using a Dounce

homogenizer. Proteins are then extracted from crude lysates with either

SDS or NP-40 alone, or with NP-40 and a concentration range of a com-

pound. Extracted proteins are measured by LC-MS/MS analysis, identified

by database search and quantified. By testing for intesity differences between

the highest compound concentration channel and the NP-40 control channel,

proteins with altered solubility are identified. Effective solubilization con-

centrations are then determined for significantly affected proteins by fitting

of dose-reponse curves.
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Figure 5.5: SPP experiments inform on insoluble subpopulation and sol-

ubilizing effect of ATP. Volcano plots obtained from limma analysis of the

SPP data comparing a) the SDS vs. the NP-40 control and b) the 10 mM

ATP vs. the NP-40 control channel (padj. < 0.01 and log2(fc) > log2(1.5)).

c) Heatmap of the channels with different ATP concentrations. The black to

light gray bar indicated the fraction of insolubility as measured by the SDS

vs. NP-40 comparison.
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Proteins with a significant insoluble fraction enriched for the cellular compartment GO

terms ‘nuclear body’ (padj < 2.2 · 10−16, odds ratio: 3.0), ‘ribosome’ (padj < 2.2 · 10−16,

odds ratio: 12.2), ‘preribosome’ (padj < 2.2 · 10−16, odds ratio: 42.1) and ‘nuclear speck’

(padj < 2.2 · 10−16, odds ratio: 4.8, all determined with hypergeometric tests). The in-

terpretation of these terms became more clear when considering that the enriched GO

term ‘nuclear body’, comprises terms, as ‘PML body’, ‘paraspeckles’, ‘Cajal body’, and

‘nuclear speck’. The enrichment of ribosomal proteins, especially preribosomal ones, in

addition, could be due to the fact that they are produced and assembled in the nucleolus,

another membrane-less compartment. Taken together, this indicated that our SPP ex-

periment informed on insoluble subpopulations of proteins which were, to a large extent,

part of membrane-less organelles (Banani et al., 2017).

From the comparison of the 10 mM ATP with the NP-40 condition (Figure 5.5b), we

found 218 proteins, of which 216 were previously found to have a significant insoluble sub-

population, which significantly solubilized with ATP. These proteins were also enriched

for the cellular compartment GO terms ‘nuclear body’ (padj < 2.2 · 10−16, odds ratio:

5.0), ‘nuclear speck’ (padj < 2.2·10−16, odds ratio: 6.5), ‘fibrillar center’ (padj = 7.4·10−9,

odds ratio: 8.5) and ‘preribosome’ (padj = 3.0 · 10−6, odds ratio: 7.5) indicating that 10

mM ATP solubilized parts of membrane-less organelles. By integration of the results ob-

tained from all ATP treated channels with both NP-40 and SDS control channels (Figure

5.5c), we observed that, except for a small group with the highest fraction of insolubility,

ATP affected a large part of proteins with considerable insoluble subpopulations.

Next, we made use of all measured channels with different ATP concentrations to com-

pute dose-response curves for the solubilization of those proteins which were found to

be significantly affected by ATP. This allowed us to estimate the effective solubilization

concentration (pESC50), at which the half maximal solubilization effect was observed.

We saw that these values varied strongly between different proteins (Figure 5.6 a-c). For

the Barrier-to-autointegration factor (BANF1), a DNA-binding protein involved in chro-

matin organization, we observed one of the highest effective solubilization cocentration

pESCBANF1
50 = 3.5 (Figure 5.6 a).
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Figure 5.6: Susceptibility for solubilization by ATP varies across

membrane-less organelles. ATP concentration-dependent solubility profiles

of a) BANF1, b) DDX50 and c) FBL. d) Violin plot of effective solubiliza-

tion concentrations (pESC50) of proteins localizing to different membrane-

less organelles. e) 2D density plots of soluble, insoluble and ATP-solubilized

proteins with average isoelectric points vs. fraction disorder.
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The proteins DDX50 and FBL localizing to nucleoli and Cajal bodies, respectively,

showed lower pESC50 values (pESCDDX50
50 = 1.2 and pESCFBL

50 = 1.3), indicating higher

required ATP concentrations for solubilization (Figure 5.6 b and c). This led us to sys-

tematically compare pESC50 values for different membrane-less organelles. We observed

that paraspeckles needed the lowest ATP concentrations to be solubilized, followed by

nuclear speckles and nucleoli, and Cajal bodies requiring the highest concentrations (Fig-

ure 5.6 d). This made us wonder which molecular features defined proteins with insoluble

subpopulations and those which were solubilized by ATP.

Since the proteins we found affected in their solubility by ATP were mostly not annotated

binders of the nucleotide, and as ATP is a highly negatively charged molecule, we hypoth-

esized that positively charged proteins were more likely to be affected by it. Moreover,

phase separation of membrane-less organelles has been reported to be driven by proteins

with a high fraction of intrinsically disordered regions (Feric et al., 2016). Thus, we plot-

ted all proteins confidently quantified in our SPP experiment into a 2D space defined by

disordered protein sequence fraction and average protein isoelectric points (Figure 5.6 e).

From the 2D density plot we observed that proteins with a primarily soluble population

were spread out broadly in the 2D space, with a tendency towards low average isoeletric

points. Proteins with a significant insoluble subpopulation making up at least 50% of

their soluble one, however, showed a bimodal distribution in terms of average isoelectric

points, but were characterized by a shift to a greater fraction of disordered sequences

compared to primarily soluble proteins. Lastly, proteins which were solubilized by ATP

featured a shift towards both, high average isoelectric points and high fraction of dis-

ordered sequences. This analysis further emphasized that the proteins we measured as

insoluble and those that we found to be solubilized by ATP were enriched for proteins

with characteristics of phase separating proteins forming membrane-less organelles.

96



a

−0.8

−0.4

0.0

0.4

0.8

p
E

S
C

5
0

 >
 3

p
E

S
C

5
0

 >
 2

p
E

S
C

5
0

 >
 1

o
th

e
r

lo
g

2
(D

2
/N

P
−

4
0

 c
o

n
tr

o
l)

b

−1.5

−1.0

−0.5

0.0

c
o

n
tr

o
l

D
1

D
2

lo
g

2
(r

e
la

tiv
e

 s
o

lu
b

ili
ty

) FBL

c

−1.5

−1.0

−0.5

0.0

c
o

n
tr

o
l

D
1

D
2

lo
g

2
(r

e
la

tiv
e

 s
o

lu
b

ili
ty

) DDX50

d

−1.5

−1.0

−0.5

0.0

c
o

n
tr

o
l

D
1

D
2

lo
g

2
(r

e
la

tiv
e

 s
o

lu
b

ili
ty

) BANF1

e

Replicate 1 2 3

0.0

0.5

1.0

1.5

−4 −3 −2

log10[MgATP]

R
e

l. 
D

N
A
−

b
o

u
n

d
 B

A
N

F
1

Replicate

1

2

3

4

f

Figure 5.7: SPP experiments in intact cells with depleted ATP levels. a)

Schematic of SPP with ATP depleted cells. D1: 0.1 nM AA and 1 mM

2DG, D2: 1 nM AA and 10 mM 2DG. b) Violin plots of degree of insolubil-

ity upon ATP depletion for groups of proteins with different pESC50 values

measured in the ATP SPP experiment in crude lysate. c-e) Example proteins

representing different insolubility patterns upon ATP depletion. f) Relative

DNA-bound BANF1 intensity in the presence of different ATP concentra-

tions. 97



Recently, there has been a report linking ATP hydrolysis to solubilization of Xenopus

oocyte nucleoli (Hayes et al., 2018). To evaluate whether the ATP induced solubility

effects we observed were driven by ATP hydrolysis, we performed SPP experiments with

GTP and adenylyl-imidodiphosphate (AMP-PNP) a non-hydrolysable analog of ATP

(Figure S5c), using the same concentrations previously used for ATP. When comparing

the relative fold changes of all proteins and dose-response solubilization of representative

proteins found to be affected by our previous experiment with ATP, we observed that

those effects were comparable to the ones observed for ATP (Figure S6). Thus, these

control experiments suggested that these effects are not primarily driven by ATP hydrol-

ysis.

Moreover, to verify that our observations would maintain relevance in intact cells and

did not resemble artifacts obtained in lysates, we performed an additional experiment

in which we reduced intracellular ATP levels and performed SPP of intact cells (Figure

5.7a). This was done using two different doses (D1 and D2, Figure S7) of treatments

which inhibited both, oxidative phosphorylation via antimycin A (AA) and glycolysis

via 2-deoxyglucose (2DG) (Hertel et al., 1986). Depletion of intracellular ATP levels has

many consequences for cellular physiology and thus such experiments have to be inter-

preted very carefully. Thus, we focused our analysis on the proteins for which we had

observed a significant solubility effect in out previous SPP experiment in crude lysates.

When considering specifically these proteins, we observed the reversed effect in the ATP

depletion experiment (Figure 5.7b), i.e., proteins which were solubilized by ATP in crude

lysate already at low nucleotide concentrations, showed the most severe increase in insol-

uble subpopulations and vice versa. This notion became reinforced when inspecting the

obtained patterns for the three exemplary proteins mentioned earlier (Figure 5.7c-e). We

were particularly intrigued by the strong changes observed for BANF1, i.e., strong solu-

bilization at low ATP concentrations in crude lysate and high degree of insolubility upon

ATP depletion. BANF1 has been reported to cross-bridge chromosomes in anaphase by

binding to unspecific DNA sequences (Samwer et al., 2017). Based on our observations we

hypothesized that its DNA binding capacity might be affected by ATP binding. Hence,
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we recombinantly expressed and purified BANF1 and incubated it with a biotinylated

DNA oligonucleotide. When pulling down the DNA fragment with streptavidin beads

in the presence of different concentrations of ATP and measuring BANF1 abundance by

LC-MS/MS after washing the beads, we observed ATP dose-dependent competition of

BANF1 off the DNA (Figure 5.7f). Hence, we conclude that BANF1 binding to DNA is

mediated by ATP levels in the nucleus. If ATP levels are high, BANF1 DNA binding is

inhibited. When ATP levels drop, BANF1 binds to chromatin and reads out as insoluble

in our SPP experiments.

5.4 ATP induced loss of solubility of a small group of pro-

teins

In contrast to the observations of ATP solubilized proteins described above, five proteins

lost solubility with increasing concentration of ATP. Prominent examples were IMPDH1

and NUCKS1 (Figure 5.8a and b). IMPDHs have been reported to be modulated al-

losterically by ATP and to form a filamentous structure upon ATP binding (Labesse et

al., 2013). This could explain the observed profile of IMPDH1 in our SPP experiment,

due to the possible insoluble nature of their filamentous structures. In both cases it was

likely that ATP hydrolysis played a role, since neither of the proteins showed the same

behavior in the the SPP experiment with AMP-PNP. These observations made us wonder

how such proteins would behave in a TPP-TR experiment with 10 mM ATP, since the

treatment should render a high proportion of both proteins insoluble, thus essentially

probing thermal stability of different subpopulations of such proteins. Indeed, when

considering the melting curves obtained from such a TPP-TR experiment, we observed

non-sigmoidal melting curves for both, IMPDH1 and NUCKS1 in the ATP-treated con-

dition (Figure 5.8c and d). We thus normalized the soluble subpopulation by the relative

solubility we had measured for both protein in the presence of 10 mM ATP in our SPP

experiment.
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Figure 5.8: Proteins which lose solubility in the presence of high ATP con-

centrations. SPP profiles in crude lysate treated with ATP of a) IMPDH1 and

b) NUCKS1. Melting curves obtained from TPP-TR experiments in crude

lysate with and without 10 mM ATP for c) IMPDH1 and d) NUCKS1. The

soluble fraction in the ATP-treated condition was corrected by the measured

value in the SPP experiment. Both conditions were fit with natural splines

with 5 degrees of freedom. e) Violin plot of maximal fold changes measured

in control condition melting profiles obtained from crude lysates for proteins

which were found by SPP to have insoluble subpopulations vs. such that had

no insoluble subpopulations. Significance assessed by Wilcoxon rank sum

test.
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In the control condition IMPDH1 showed a sigmoidal curve, and the one of NUCKS1

was approximately monotonous, even though it showed incomplete denaturation across

the applied temperature range. Hence, we reasoned that the signal we were observing

in the ATP-treated condition reflected the reduced soluble subpopulation at the lower

temperatures, but with increasing temperatures shifted towards a mixed signal of both

subpopulations, apparently due to heat induced solubilization of the insoluble subpool.

At the highest temperatures measured, both conditions converged for both proteins in-

dicating that at these condition for both proteins the different subpopulations were be-

having homogeneously. This observation made us wonder whether non-normalized sig-

nals in TPP-TR experiments could in general correspond to the presence of insoluble

subpopulations of proteins. Thus, we compared maximal observed fold changes for pro-

teins measured in the TPP-TR control condition for which we found significant insoluble

subpopulations in our SPP comparison of SDS vs. NP-40. Indeed, we found that pro-

teins with a significant insoluble subpopulation showed higher maximal fold changes in

melting curves, indicating that non-sigmoidal melting curves, especially featuring higher

signal with increasing temperatures as opposed to monotonously decreasing signal, ob-

tained with TPP-TR experiments inform on the presence of such subpopulations (Figure

5.8e).

5.5 Conclusion

Here, it was demonstrated how TPP, particularly in the 2D-TPP format in combination

with DLPTP analysis, can be used to study metabolite-protein interactions. Based on

the example using the nucleotides ATP and GTP, it was shown that this approach offers

the possibility to detect proteome-wide nucleotide interactions and indirect effects such

as costabilization of complex memebers, and solubilzation of insoluble protein subpopu-

lations.

Moreover, a dedicated experimental strategy—Solubility proteome profiling (SPP)—to

identify proteome-wide insoluble subpools in crude lysates and to profile ATP effects
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on the solubility of such proteins was presented. Based on the obtained data it could

be shown that many of the proteins found to have insoluble subpopulations and those

which were affected in their solubility by ATP were part of membrane-less organelles. We

found that proteins of different phase separated compartments showed different suscepti-

bility to ATP solubilization and that high fraction of disordered sequence and increased

isoelectric points were associated with this behavior.
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Chapter 6

Thermal profiling to identify

functional post-translational

modifications

“The more we know, the more we realize there is to know.”

— Jennifer Doudna

Post-translational modifications (PTMs) are crucial for various cellular processes ranging

from signal transduction to marking proteins for degradation (Karve & Cheema, 2011).

Due to constant development and improvement of technologies to detect PTMs, our cat-

alogs of their occurrence are growing continuously (Larsen et al., 2006). However, while

specific modifications of individual sites have been linked to functions, globally our un-

derstanding of their consequences is limited. Thus, novel approaches are urgently needed

which allow to find functional PTMs.

By far the most studied PTM is protein phosphorylation. However, while catalogs of

phosphosites exist for several organisms (Hornbeck et al., 2019), we still know little

about the functionality of most of these sites. One approach, that is presented in this
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chapter, is to compare in situ thermal profiles of phosphorylated proteoforms with corre-

sponding unmodified proteins. However, the experimental setup and the corresponding

data analysis of such experiments have to be chosen carefully to enable valid interpreta-

tion of results. Here, the general principal of such approaches is described. A published

experiment of this type by Huang et al. (2019) is inspected and problems with both

the experimental approach and the data analysis strategy are analyzed. Subsequently,

an alternative experimental setup and corresponding data analysis strategy is presented.

Lastly, an advanced analysis strategy is described which can specifically account for

unconventional thermal profiles of proteins or phosphopeptides.

6.1 Performing TPP of phosphorylated proteins

First introduced by Azimi et al. (2018), the combination of thermal proteome profiling

with phosphopeptide enrichment (phospho-TPP) can give insights into melting behavior

of phosphorylated proteoforms which can be different to profiles obtained for respective

unmodified proteins, thus potentially reflecting different intracellular states. Such states

may be defined by different engagement with other proteins, co-factors or by intramolec-

ular rearrangements.

Importantly, to perform phospho-TPP, Azimi et al. (2018) enriched phosphopeptides

after in situ heat treatment of intact cells, lysis and TMT-labeling of samples incubated

at different temperatures. Enrichment post labeling is crucial since the procedure is not

linearly comparable for samples with different amount of input material. Hence, when

samples which received different heat treatments and thus contain vastly different levels

of remaining soluble proteins are enriched separately, this may distort underlying denat-

uration profiles due to different enrichment efficiencies.

However, in the study by Azimi et al. (2018) no global comparison of melting pro-

files of phosphorylated proteoforms with their corresponding unmodified proteins was

performed.
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6.2 Hotspot thermal profiling

Huang et al. (2019) used a similar strategy to the one by Azimi et al. (2018) and

proposed the global comparison of thermal profiles of phosphorylated versus unmodified

proteins, terming their approach Hotspot thermal profiling (HTP). The authors reported

719 of 2,883 total comparisons (25%, p < 0.05, student’s t-test) to be significantly shifted,

although not considering adjustment for multiple testing and thus not controlling the false

discovery-rate. Since the reported results would have exciting implications for effects of

phosphorylation, e.g., implying widespread functionality of phosphosites, we carefully

analyzed the dataset and the reported method details.
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Figure 6.1: Scatterplot of estimated melting points for proteoforms with

specific phosphosites and corresponding unmodified proteins from the HTP

data. a) Scatterplot of estimated melting points. b) Scatterplot of estimated

melting points with indicated significantly thermally shifted proteoforms with

specific phosphosites compared to unmodified proteins in blue.

When examining the global relation between melting points of phosphorylated proteo-

forms and respective unmodified proteins (Figure 6.2a), we observed a surprisingly low

correlation (R2 = 0.18).

105



R2 = 0.46

R2 = 0.23

R2 = 0.22

R2 = 0.29

R2 = 0.28

R2 = 0.21

R2 = 0.13

R2 = 2.6e−05

R2 = 0.13

R2 = 0.23

R2 = 0.24

R2 = 0.3

R2 = 0.32

R2 = 0.32

R2 = 0.25

R2 = 0.00054

R2 = 0.28

R2 = 0.43

R2 = 0.24

R2 = 0.19

R2 = 0.32

R2 = 0.35

R2 = 2.1e−06

R2 = 0.26

R2 = 0.23

R2 = 0.21

R2 = 0.39

R2 = 0.34

R2 = 3e−04

R2 = 0.36

R2 = 0.49

R2 = 0.24

R2 = 0.12

R2 = 0.0013

R2 = 0.13

R2 = 0.25

R2 = 0.14

R2 = 0.00016

R2 = 0.17

R2 = 0.41

R2 = 0.00061

R2 = 0.39

R2 = 0.0019

R2 = 0.53 R2 = 0.0017

Tm rep1_1 Tm rep1_2 Tm rep2_1 Tm rep2_2 Tm rep3_1 Tm rep3_2 Tm rep4_1 Tm rep4_2 Tm rep5_1

T
m

 rep1_2
T

m
 rep2_1

T
m

 rep2_2
T

m
 rep3_1

T
m

 rep3_2
T

m
 rep4_1

T
m

 rep4_2
T

m
 rep5_1

T
m

 rep5_2

40 50 60 70 40 50 60 70 40 50 60 70 40 50 60 70 40 50 60 70 40 50 60 70 40 50 60 70 40 50 60 70 40 50 60 70

40

50

60

70

40

50

60

70

40

50

60

70

40

50

60

70

40

50

60

70

40

50

60

70

40

50

60

70

40

50

60

70

40

50

60

70

Figure 6.2: Melting point reproducibility for phosphorylated proteoforms

from the HTP data. Scatterplots with light blue background represent com-

parisons of technical replicates.
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This is not expected, since the majority of phosphosites is not evolutionary conserved and

thus not expected to be functional (Landry et al., 2009) and only a subset of functional

phosphosites is expected to alter protein thermal stability profoundly. This observation

additionally, indicated to us that the HTP dataset had some inherent problem beyond

being analyzed without control for false discoveries. When considering which of the

phophosites Huang et al. had reported to be thermally shifted (Figure 6.2b), it seemed

that their method had picked up many comparisons as significant with very low effect

size and omitted cases in which compared melting points were relatively high. Both

observations further underlined that the applied analysis was not chosen appropriately.

To further trace down the origin of the problems observed for the HTD dataset, we in-

spected reproducibility of the melting point estimates reported for the phosphorylated

proteoforms (Figure 6.2). We observed overall low correlation (average R2 = 0.22) be-

tween the five replicates with a technical replicate each. However, even between some of

the technical replicate samples, correlations were very low. From this, it became evident

that there were profound problems associated with the assessment of thermal stabil-

ity of phosphorylated proteins in the HTP dataset. When carefully inspecting HTP’s

method details, we noted several points that could have negatively affected quality of

thermal profiles of phosphopeptide enriched samples. First, Huang et al. (2019) did not

perform orthogonal off-line fractionation to reduce ratio compression. This could have

led to unreliable quantification of relative fold changes, which were also not corrected

computationally (Savitski et al., 2013). Second, the authors of HTP did not perform

phosphopeptide enrichment after, but before labeling with TMT reagents. Due to the

above described non-linearity of the enrichment procedure this likely further distorted

the relative quantification of phosphoproteoforms at different temperatures.

Due to the above raised points, we were convinced that the HTP approach led to low

quality melting profiles, especially of phosphopeptide enriched samples. The experimen-

tal deficiencies were reinforced by the analysis strategy based on hypothesis tests without

consideration of type I error inflation due to no correction for multiple testing.
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Figure 6.3: Schematic of the HTP and our revised phospho-TPP work-

flow. a) HEK293 cells are grown, aliquoted and subjected to heat treatment

at different temperatures. Cells are lysed and non-denatured proteins ex-

tracted and digested with trypsin. 5 % of each aliquot are TMT-labeled

and measured via LC-MS/MS analysis and taken as the unmodified control

samples. The rest of the differently heat treated samples are enriched for

phosphopeptides using TiO2 spin tips, labeled with TMT and measured via

LC-MS/MS analysis. b) Same steps as for HTP with HeLa cells up to the

tryptic digest. Then, retrieved peptides of differentially heat-treated sam-

ples are labeled with distinct TMT reagents. Phosphopeptide enrichment is

performed with pooled samples. Flow-through samples are prefractionated

and measured with LC-MS/MS analysis and taken as unmodified samples.

Phosphopeptide enriched samples are also prefractionated and measured with

LC-MS/MS analysis and taken as the phosphorylated proteoform samples.
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Thus, we concluded that the results presented by Huang et al. (2019) could be mislead-

ing for individual phosphosites. However, since the general concept of phospho-TPP is

promising, we decided to generate a dataset avoiding the outlined pitfalls in experimental

design and data analysis.

6.3 A revised workflow for phosho-TPP

The experimental workflow we set out to perform comprised several revised steps as

compared to HTP (Figure 6.3). Importantly, these included phosphopeptide enrichment

after TMT-labeling of tryptic peptides to avoid distortion of melting profiles by enrich-

ment biases and prefractionation of samples before LC-MS/MS analysis to minimize ratio

compression. Further, we developed a dedicated normalization and hypothesis testing

strategy for FDR-controlled data analysis.

After database search and quantification, we filtered obtained data to remove peptides

affected by ratio compression and required phosphopeptides to feature at least one class

I site, i.e., localized with high confidence (P > 0.75). Based on the filtered raw data, we

realized that we needed to normalize the signal obtained from different TMT reporter ion

channels for both the unmodified (non-bound fraction) and the phosphopeptide enriched

samples. This is a common necessity in chemical labeling-based MS datasets, induced by

sample handling, pipetting errors and heterogeneous labeling efficiencies (Oberg & Ma-

honey, 2012). However, since we recorded melting curves across the different TMT chan-

nels (with decreasing average signal with increasing temperature), we could not simply

normalize all channels to the same average signal, but had to employ a different strategy

similar to the one suggested by Savitski et al. (2014). Additionally, we wanted to nor-

malize also for effects introduced through differential sample handling of phosphopeptide

enriched versus unbound fraction samples. Thus, we developed a two-step normalization

procedure. The first step was to align median fold changes obtained for jointly identi-

fied unmodified peptides within replicates of phosphoenriched and flow-through samples.
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Figure 6.4: Comparison of raw and normalized unmodified protein melt-

ing profiles. a) Distributions of raw fold changes obtained at the different

temperatures. b) Distributions of normalized fold changes obtained at the

different temperatures.
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Figure 6.5: Comparison of raw and normalized phosphopeptide melting

profiles. a) Distributions of raw fold changes obtained at the different tem-

peratures. b) Distributions of normalized fold changes obtained at the dif-

ferent temperatures.
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Second, we adapted the previously described TPP melting curve normalization approach

(Franken et al., 2015; Savitski et al., 2014). We applied it to derive temperature-wise

normalization factors for all replicates of unmodified datasets and applied them to both

the unmodified and the phosphopeptide enriched datasets. The results of this normaliza-

tion are shown in Figure 6.4 for the unmodified and in Figure 6.5 for the phosphopeptide

enriched replicate datasets.

Next, we fit sigmoidal melting curves to the normalized fold changes of each distinct

phosphopeptide and across all unmodified peptides mapping uniquely to a protein for

each replicate separately. We accepted these fits if they featured an R2 > 0.8 and a

plateau lower than 0.2. From all accepted fits we extracted melting point estimates for

each replicate for both phosphopeptide and unmodified protein profiles. To evaluate the

reproducibility of replicates in our dataset we compared melting point estimates for both

unmodified (Figure S8) and phosphorylated proteins (Figure S9). We observed signif-

icantly higher correlations between melting point estimates for biological replicates of

both conditions than for the HTP data (on average for unmodified proteins: R2 = 0.86,

on average for phosphorylated proteins: R2 = 0.78). Thus, we conclude that our re-

vised phospho-TPP workflow led to significantly increased reproducibility compared to

the HTP approach.

Next, we globally correlated these melting point estimates obtained for phosphorylated

proteoforms and respective unmodified proteins (Figure 6.6a). Globally, we observed a

good correspondence between melting points estimated for both conditions (R2 = 0.65).

This observation reinforced our initial notion that most phosphosites should not drasti-

cally affect protein thermal stability and the fact that this nevertheless appeared to be

case for the HTP data was likely technically, but not biologically driven.

Based on our melting point estimates for phosphopeptides and corresponding unmodified

proteins we went on to test for shifts in thermal stability. Reasoning that a significant

shift of the thermal profile obtained for a phosphopeptide, with confident localization

of a single or multiple phosphosites on a protein, compared to its respective unmodified

protein indicated a functionality of these sites.
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Hence, we applied the approach originally suggested by Savitski et al. (2014) to compare

melting curves obtained from TPP-TR experiments featuring drug treated versus control

cells. This approach stringently adjusted for multiple testing in strong contrast to the

unadjusted t-tests applied by Huang et al. (2019). Overall, we found about 1.6% of phos-

phosites to significantly shift thermal stability of corresponding proteins (padj. < 0.01,

129 out of 7,864 tested comparisons). When comparing the phosphosites found significant

by HTP and our approach (Figure 6.6b and c), we evaluated which of the overlapping

phosphosites, covered by both methods, were found to have a significant effect on pro-

tein thermal stability according to either of the analysis approaches. Based on this, we

observed that the vast majority of site-specific phosphorylated proteoforms which Huang

et al. (2019) had found to be significantly thermally shifted were not found as such by

our approach (234 sites, 98.7%) and were indeed largely scattered around the identity

line in Figure 6.6b. On the other hand three out of 8 sites found significantly shifted

by our approach were also found significant by HTP (Figure 6.6c). These observations,

further substantiated that the results reported by Huang et al. (2019) were misleading.

Next, we made use of the functional score for phosphorylation sites, recently reported

by Ochoa et al. (2020). This score was obtained by a machine learning approach which

integrated several features of phosphosites, such as whether they appear in the inter-

face of known PPIs or whether they are known to be disease associated. We reasoned

that phosphosites of thermally shifted proteoforms should be characterized by a higher

functional score compared to non-shifted ones. However, when we compared the two

groups as identified by HTP, we found no difference between their functional score distri-

butions (Figure 6.7a). On the other hand, for the sites found to be significantly shifted

by our revised approach, we indeed saw significantly higher functional scores (Figure

6.7b).
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Figure 6.7: Comparison of distribution of functional scores by Ochoa et

al. (2020) between shifted vs. non-shifted phosphosites. Violin plots of func-

tional scores for both groups of phosphosites as distinguished by a) HTP and

b) our revised phospho-TPP method. Significance between functional score

distributions was assessed using a Wilcoxon rank sum test.

Convinced that site-specific phosphorylations on proteins which our approach identified

as thermally shifted were strongly enriched for functionally relevant modifications, we

went on to explore individual examples of such sites. First of all, we noted that 78% (100

out of 129) of all sites found by our approach to shift thermal stability significantly, had

a destabilizing effect on the respective proteins. This was interesting, since we had not

expected a general tendency for either stabilization nor destabilization.

One of these destabilizing phosphosite examples was phosphorylation of Tyr397 on protein

kinase Lyn (LYN, ∆Tm = −5.2◦C, Figure 6.8a), a protein involved in regulation of

immune response, DNA damage response and hematopiesis (Ingley, 2012). Tyr397 lies

in the activation loop of LYN and phosphorylation of this site is known to influence

the kinase activity through induction of a conformational change in proteins of the Src

subfamily which enables more efficient access to the ATP binding site (Xu et al., 1999).

Another example were the joint phosphorylations of Thr19 and Ser22 (only captured as a
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doubly phosphorylated peptide) of Lamin-A (LMNA, ∆Tm = −8.6◦C, Figure 6.8b). The

nuclear intermediate filament Lamin-A is involved in the regulation of various essential

cellular processes such as chromatin organization and replication (Gruenbaum & Foisner,

2015). Both of the phosphosites detected to affect LMNA thermal stability in situ were

previously found to be crucial for nuclear lamina disassembly during mitosis (Heald &

McKeon, 1990).
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Figure 6.8: Examples of phosphosites found to significantly shift thermal

stability of proteins. Comparison of phosphorylated vs. unmodified melting

profiles for a) Tyrosine-protein kinase Lyn with and without phosphoryla-

tion of Tyr397, b) Lamin-A with and without phosphorylation of Thr19 and

Ser22, c) Calcium-regulated heat stable protein 1 with and without phospho-

ryltion of Ser41 and d) BRCA1-associated ATM activator 1 with and without

phosphorylation of Ser742. Error bars represent standard error of the mean.
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Third, the cold shock domain containining calcium-regulated heat stable protein 1 (CARHSP1)

which is known to localize to P-bodies and to bind tumor necrosis factor-α mRNA and

thus to stabilize its half life (Pfeiffer et al., 2011) also was found to feature a phosphosite

which thermally destabilized the protein, namely Ser41 (∆Tm = −9.4◦C, Figure 6.8c).

This is in line with a report linking a Ser41 phospho-deficient mutant of CARHSP1 to de-

screased nucleic acid binding and loss of localization to cytoplasmic condensates (Hou et

al., 2011). In addition, we found that Ser742 phosphorylation of the BRCA1-associated

ATM activator 1 (BRAT1, ∆Tm = 4.0◦C, Figure 6.8d), involved in DNA damage re-

sponse (Aglipay et al., 2006), led to thermal stabilization of the protein. BRAT1 mu-

tations are associated with several diseases such as the rigidity and multifocal seizure

syndrome (Srivastava et al., 2016). While Ser742 phosphorylation of BRAT1 has been

reported by several studies (Hornbeck et al., 2019), no functional role of this phosphosite

has so far been implied. It would be interesting to perform pulldown or microscopy ex-

periments with Ser742 phosphomimetic and phosphodeficient versions of BRAT1 to see

whether this phosphosite is involved in regulating PPIs or intracellular localization.

6.4 A nonparametric approach for phospho-TPP analysis

Our revised approach was able to identify 7,864 high quality comparisons between phos-

phorylated proteoforms and corresponding unmodified proteins. However, we noted that

for some proteins and phosphopeptides the sigmoid fit had not converged or the filtering

step on R2 and plateau of obtained fits eliminated many cases from downstream analysis.

Thus, we revisited thermal stability profiles obtained for examples which had been fil-

tered out. Nucleophosmin (NPM1) (highest R2 = 0.74 across replicates) could either not

be fitted or was filtered out due to a mild upwards trend at low temperatures (44-50◦C,

Figure 6.9a). NPM1 is an abundant component of the nucleolus (Mitrea et al., 2018)

and this observation reminded us of our finding in the ATP study (Figure 5.8e), which

revealed that proteins with insoluble subpopulations often showed fold changes higher

than one, likely representing the thermal aggregation profile of a mixture of subpools.
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Another example with an even more extreme profile was observed for the heterogeneous

nuclear ribonucleoprotein A0 (HNRNPA0) phosphorylated on Ser84, which featured up

to four fold higher values at 44◦C compared to 37◦C (Figure 6.9b), also reminiscent of a

profile obtained for a mixture of subpopulations. HNRNPA0 Ser84 phosphorylation has

been reported to lead to increased binding of HNRNPA0 to GADD45A mRNA, which is

thereby stabilized (Reinhardt et al., 2010). This offers a compelling explanation for why

a potentially RNA-bound subpopulation of HNRNPA0 may be characterized by Ser84

phosphorylation.
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Figure 6.9: Examples of non-sigmoidal thermal profiles. TPP-TR pro-

file of a) Nucleophosmin and b) Ser84 phosphorylated heterogeneous nuclear

ribonucleoprotein A0.

Motivated to find an approach which would allow us to include such cases into hypoth-

esis testing, we turned to a method suggested by Childs et al. (2019) termed NPARC

(Nonparametric analysis of response curves). However, Childs et al. (2019) originally

also used sigmoid curves with this procedure, which we thought would not be adequate

to capture cases such as the profile of phosphorylated HNRNPA0. Thus, we devised a
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strategy of fitting Gaussian processes to phosphopeptide and corresponding unmodified

protein thermal profiles and using obtained mean estimates to apply NPARC (NPARC-

GP). To apply NPARC’s empirical correction of obtained F -statistics, we performed the

same procedure with a dataset in which we selected a random unmodified peptide and

compared it to all other unmodified peptides. This comparison yielded a distribution

of F -statistics expected under the null hypothesis, which we could use to obtain scaling

factors to calibrate our F -statistics obtained from the phosphopeptide versus unmodified

protein comparison (p-value histograms before and after F -statistic calibration are shown

in Figure S10).

Satisfied with the calibration of our statistic, we went on to inspect phosphosites which

were found significantly shifted by NPARC-GP (483 out of 16,051, 3% at padj. < 0.01,

Figure 6.10a). This represented a similar fraction as found significant with our previous

analysis strategy, while being considerably lower than the 25% reported by Huang et

al. (2019). Moreover, as for the data analysis strategy described above,we also found a

strong trend towards destabilization of proteins by phosphorylation (83%, 400 out of 483

significantly shifting phosphosites) for NPARC-GP. External validation of phosphosites

predicted by NPARC-GP to be functional using the score by Ochoa et al. (2020), showed

a highly significant enrichment of high functional scores (Figure 6.10b). Finally, we found

that NPARC-GP detected all literature validated cases described above (LYN pY397,

LMNA pT19pS22 and CARHSP1 pS41) and in addition phosphosites which modulated

thermal stability of NPM1 (Figure 6.11a) and the striking profile of HNRNPA0 pS84

(Figure 6.11b). We thus conclude that NPARC-GP represents a powerful method for

phospho-TPP analysis. It allowed assessing the significance of phosphorylation-induced

shifts of protein thermal stability for twice as many amenable comparisons as the melting

point-centered approach.

Together with results we previously obtained in our work concerning proteins with in-

soluble subpopulation (Figure 5.8e) and previous reports of site-specific phosphorylation

events controlling protein localization to membrane-less organelles (Rai et al., 2018),

these results may indicate that the identified phosphosites on NPM1 and HNRNPA0
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might represent similar regulatory switches. However, to conclude that this is indeed

the case, further experiments such as microscopy studies of specific phosphomimetic and

phosphodeficient variants of these proteins in the presence of membrane-less organelle

markers are needed.
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Figure 6.10: NPARC-GP results obtained for the phospho-TPP dataset. a)

Volcano plot of NPARC-GP results. The effect size is taken as sign(∆AUC) ·√
RSS(0) − RSS(1) which describes how much more variance was explained

by the alternative versus the null model, signed by the direction of the ef-

fect, i.e., stabilization of destabilization as measured by difference in area

under the melting curve. Orange dots represent phosphopeptides found to

significantly shift thermal stability of proteins at padj. < 0.01. b) Violin plot

comparing distributions of functional scores by Ochoa et al. (2020) of sig-

nificantly shifted vs. non-shifted phosphorylated proteoforms as detected by

NPARC-GP. Significance between functional score distributions was assessed

using a Wilcoxon rank sum test.
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Figure 6.11: Examples of non-sigmoidal melting profiles captured by

NPARC-GP. a) Nucleophosmin with and without phosphorylated Ser254 and

b) heterogeneous nuclear ribonucleoprotein A0 with and without phosphory-

lation on Ser84.

6.5 Conclusion

In this chapter, the combination of phosphoproteomics with thermal proteome profiling

to identify functionally important phosphosites was introduced. A revised experimental

strategy for phospho-TPP (Potel et al., 2021) was presented and analyzed in comparison

to the HTP data by Huang et al. (2019). It was shown that phospho-TPP together

with a dedicated data analysis strategy outperforms HTP in terms of reproducibility

and credibility of hits as validated by an external resource (Ochoa et al., 2020). Our

approach could recover many phosphosites reported to affect protein states and outlined

so far functionally uncharacterized phoshosites which are interesting candidates to study

with follow-up experiments.

Moreover, an alternative analysis strategy for phospho-TPP experiments was presented

termed NPARC-GP. This approach compares mean estimates obtained by Gaussian pro-

cess regression for phosphorylated and unmodified corresponding proteins jointly and
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per conditions and thus computes an F -statistic. We show that this approach can ac-

commodate thermal profiles which a parametric sigmoid model fails to capture and thus

drastically increases amenable comparisons.
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Chapter 7

Discussion

“The first rule is that you must not fool yourself and you are the easiest person

to fool.”

— Richard Feynman

In this thesis, computational methods for different experimental setups of thermal pro-

teome profiling are presented. The scope of these methods comprises detection of differ-

ential protein-protein interactions, identification of small molecule-protein engagement

from 2D-TPP data and determination of phosphorylation sites which functionally affect

proteins.

In the following, the presented methods and results obtained through their application

are discussed in the context of the current literature.

7.1 Tracking protein-protein interactions dynamics with TPP

The first presented method, implemented as R/Bioconductor package Rtpca, covers

both, the previously described analysis of TPP-TR data to detect significantly coaggre-

gating pairs of proteins or subunits of protein complexes (Tan et al., 2018) and a newly
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developed approach for detection of differential coaggregation when comparing two dif-

ferent conditions (Kurzawa, Mateus, et al., 2020).

The advantage of applying TPP to detect PPIs in comparison to other methods such as

SEC co-elution MS (Dong et al., 2008; Heusel et al., 2019), BioID (Roux et al., 2012)

or bait-prey pull down experiments (Ewing et al., 2007; Gavin et al., 2002), is that it is

so far the only method that can give a representation of the in situ (Becher et al., 2018;

Tan et al., 2018) and more recently also the in vivo (Perrin et al., 2020) interaction state

of proteins without the requirement for any form of labeling or modification of proteins

of interest.

A limitation of using TPP-TR for detection of PPIs or complex subunit assembly is,

however, that for the method to work, protein populations have to be fully engaged in

the interaction, otherwise the signal will be a mixture of bound and unbound subpop-

ulations and thus not similar enough to that of interacting proteins. This problem is

less severe for protein complexes with multiple subunits, since the similarity of melting

profiles of multiple proteins is less likely to appear by chance in comparison to that of

only two.

Moreover, the implementation of methods available in the Rtpca package also offer room

for improvement. To integrate data across replicates the method currently computes

median profiles. This approach was chosen to simplify the analysis in scenarios where

three or more TPP-TR replicates are available, but some proteins were only quantified

in two of those replicates. This could be improved by directly using measurements from

individual replicates and accounting for the different number of observations when com-

puting pairwise distances by using the normalized Euclidean distances. Additionally,

the differential analysis could be generalized to be not only applicable to two, but any

number of different conditions.

Further, TPP-TR experiments have so far only been performed with a maximal number

of ten TMT channels for a single condition, whereas the latest SEC co-elution meth-

ods measure up to 160 fractions (Heusel et al., 2019) and thus can be more sensitive

and specific due to more available data points in the profiles of individual proteins. It
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would therefore be interesting to see whether a TPP-TR implementation using 16 TMT

channels with the recently developed TMTpro reagents (Li et al., 2020) could lead to

an improvement in this regard. In particular, it could be interesting to not design the

experiment with evenly spaced temperatures, but rather to add more measurements in

the low to medium temperature region. Since data quality is usually better in this region

due to higher soluble protein abundance and as the most variable regions of protein is

expected around the average melting point, such an experimental design could lead to

better discrimination between melting profiles of individual proteins. However, since in

the TPP-TR format deviations of individual proteins from the average melting profile are

inherently limited, i.e., most proteins will follow some form of melting curve, exploiting

the increased sensitivity of proteome changes within the same temperature as yielded by

the 2D-TPP format (Becher et al., 2016, 2018), could be a more powerful alternative.

Recently, we have shown that by measuring proteome-wide effects of genetic perturbation

on cells in a 2D-TPP format and searching for proteins co-changing in abundance and

thermal stability can lead to an improved prediction of PPIs and protein complexes (A.

Mateus, Hevler, et al., 2020). Thus, this indicates that perturbation studies in 2D-TPP

format, though being demanding in required sample numbers and MS measurement time,

offer a promising route forward (A. Mateus, Kurzawa, et al., 2020).

Finally, a task that has not yet been tackled is using TPP data for the prediction of

so far unannotated PPIs or complex members. Such an approach could be particularly

powerful if combined with other features such as protein sequences, domains or structural

elements (Hu et al., 2021).

In conclusion, it was shown that TPP data can be informative on PPIs and on their

dynamics across differential conditions. Through work presented in this thesis, meth-

ods to perform such analyses are now available as open source software (https://

bioconductor.org/packages/Rtpca). Since much of our knowledge on PPIs is based

on characterization of easily accessible cell states, e.g., interphase cells in culture, many

so far uncharacterized interactions, predominantly established in other cell states, still

remain to be discovered. TPP can serve as a useful tool to complement other approaches
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in tackling this goal in the future.

7.2 Detection of ligand-protein interactions using TPP

The initial goal which drove the development of TPP was to enable unbiased monitoring

of drug-target engagement in living cells (Savitski et al., 2014). Since it first was estab-

lished, several innovations have advanced its initial protocol (Franken et al., 2015).

One of the first steps was the finding that the original protocol, which used a lysis buffer

without any detergents and suffered from not being able to identify membrane proteins,

could be modified to include a mild detergent—NP-40, which does not resolubilize heat

denatured proteins but makes membrane proteins accessible to the technology (Huber

et al., 2015; Reinhard et al., 2015). Recently, this aspect has been further improved

by the establishment of a TPP protocol targeting specifically the cell surface proteome

(Kalxdorf et al., 2021).

The recent adaptation of the assay to an in vivo and ex vivo setting represented another

milestone, broadening the scope of the method from cell culture-based (off-)target iden-

tification to potential application in complementing pre-clinial absorption, distribution

and toxicology studies (Perrin et al., 2020).

Importantly, the development of the two-dimensional format (Becher et al., 2016) was

another important step forward, since it tackled the problem that different proteins may

need different compound doses to stabilize and may denature at different temperatures,

thus being susceptible for compound-induced stabilization at varied temperatures. While

2D-TPP improved the sensitivity of the assay, it also led to new data analysis challenges.

Since obtained profiles are obtained by several independent MS runs, noise levels can

vary across the profiles and due to full denaturation of measured proteins at some of

the temperatures used for heat treatment, resulting data tables also feature missing val-

ues. Hence, identification of ligand-interacting proteins was done by applying bespoke

thresholds to 2D-TPP data (Becher et al., 2016). However, these thresholds do not offer

false discovery-rate control and are inherently limited in sensitivity. Thus, to address
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the need for a statistical method for 2D-TPP analysis we developed the R/Bioconductor

package TPP2D (method name: DLPTP, https://bioconductor.org/packages/TPP2D)

(Kurzawa, Becher, et al., 2020).

7.2.1 FDR-controlled ligand-protein detection with DLPTP

The concept of DLPTP’s approach is inspired by NPARC (Childs et al., 2019), which fea-

tures a nested modeling approach combined with ANOVA for detection of ligand-binding

proteins from TPP-TR experiments avoiding the use of summary parameters. However,

applying a similar concept to datasets obtained by the 2D-TPP format entails several ad-

ditional challenges. First, nested null and alternative models have to be designed which

need to be flexible enough to accommodate typical observed profiles and yet constrained

such that effects on protein thermal profiles induced by drug binding can be fit, but not

random deviations induced by experimental noise. Eventually this is realized by choosing

the null model as a temperature-dependent intercept model (Eq. 2.8) and the alternative

model as a temperature-wise dose-response model (Eq. 2.9) with several constrains on

its parameters to avoid overfitting of apparent dose-response trends at individual tem-

peratures. Second, obtained F -statistics need to be calibrated in terms of FDR. This is

realized by adapting the bootstrapping procedure suggested by Storey et al. (2005) for

analysis of microarray timecourse experiments. Third, to prevent misinterpretation of

alternative models with extremely low or comparably high (often induced by few outlier

measurements) residual error, an empirical Bayes moderation of obtained F -statistics is

implemented.

The method implementing the above described features is shown to outperform the be-

spoke rules approach on a synthetic dataset (Figure 4.2). However, some drawbacks still

exist. First, especially the optimization of the complex alternative model is computa-

tionally intensive and together with the bootstrapping approach for FDR-calibration of

the F -statistic, the method is slow and on the limit of what can be run on a laptop:

3-5 hours to run the method for a human dataset on one core of a modern laptop, while
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applying the bespoke rules can be done in less than an hour. This could be improved

by expanding the null and the alternative models such that the correlation of residuals

can be accounted for and the ANOVA assumptions approximately hold true, so that the

expected distribution of the F -statistic under the null can be used or at least empirically

corrected to be used as suggested by Childs et al. (2019).

Moreover, although the method globally performs better than the bespoke thresholds, it

misses the identification of individual known true positives, e.g., HDAC6 in the Panobi-

nostat in-cell dataset (Figure 4.3a), for which the respective profile contains outlier mea-

surements that prevent the fit from achieving low residual error (Figure S2). This issue

is in part tackled by performing empirical Bayes moderation of the F -statistic, which

leads to an overall increase in sensitivity without compromising specificity. However,

even with empirical Bayes moderation, the aforementioned profile of HDAC6 can not be

recovered at an acceptable FDR. This issue is expected to be alleviated by the improved

experimental 2D-TPP designs (Zinn et al., 2021), exploiting additional available isobaric

channels through usage of TMTpro (Li et al., 2020) to measure eight instead of five dif-

ferent compounds concentrations at every temperature.

Another remaining challenge in the analysis of 2D-TPP datasets is the interpretation of

observed ligand-induced effects on thermal stability, i.e., determining whether an altered

thermal profile is indicative of a ligand directly binding to a protein, inducing a change

of interactions with other proteins or of a downstream process which leads to cofactor

binding or to intramolecular rearrangements. This issue is showcased by the example of

DHRS1 in the ex vivo Panobinostat datasets (Figures 4.5b-e). With increasing numbers

of 2D-TPP datasets that will be generated in the future and orthogonal experiments to

interpret observed hits, it may be possible to train machine learning algorithms to classify

these different cases and thus to exploit even more of the potential of this technology.

In summary, TPP represents one of the current state-of-the-art technologies for detection

of ligand-protein interactions, with advantages over similar methods, such as, no need

for chemical modification of the compound of interest and application in situ and in vivo

(A. Mateus, Kurzawa, et al., 2020). The increasing availability of open source computa-
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tional methods for statistical analysis of obtained datasets further enables interpretation

of retrieved datasets by the broad community (Childs et al., 2019; Kurzawa, Becher, et

al., 2020).

7.3 TPP for detection of metabolite-protein interactions

Metabolites are one of the numerically most abundant classes of biomolecules in cells.

By serving as cofactors, substrates and allosteric inhibitors, metabolites interacting with

proteins are essential for cellular life (Diether & Sauer, 2017). While many metabolite-

protein interactions have been studied based on isolated proteins via in vitro assays,

systematic studies are rare (Yang et al., 2012).

In recent years, studies in Saccharomyces cerevisiae (Li et al., 2010) and Escherichia coli

(Piazza et al., 2018) were performed, showing that many metabolite-protein interactions

are not yet characterized. These can have a multitude of functional implications which

are important to discover to further our understanding of protein regulation in cells.

Thus, it is vital to develop approaches to map metabolite-protein interactions, especially

in human cells to better understand cellular metabolism and its cross-regulation with

proteins in health and disease.

The first application of TPP-TR to study metabolite-protein interactions was done by

Reinhard et al. (2015) and Huber et al. (2015). While these approaches could recover

a considerable amount of annotated interactors of the probed metabolites, also many

known interactors were not found based on melting curve shifts. Hence, we performed

experiments to probe the protein interactions landscape of ATP and GTP using the more

sensitive 2D-TPP and analyzed the obtained data with DLPTP. For the 2D-TPP exper-

iment with ATP, we identify over 50% more annotated ATP binders (Figure 5.1c) than

with the TPP-TR setup, plus many so far uncharacterized interacting proteins. Perform-

ing 2D-TPP experiments for various other metabolites will help to systematically catalog

metabolite-protein interactions and thus further our understand of metabolic and protein

activity regulation.
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Interestingly, we also find evidence that metabolite-protein interactions may affect as-

sembly of protein complexes. Proteome-wide ATP-binding subunits appear to thermally

co-stabilize non-ATP-binding subunits in their proximity (Figure 5.2). Indeed, such phe-

nomena have been observed previously, e.g., the interaction of the histone deacetylase

HDAC3 and its corresponding deacetylase activation domain of NCOR2 is dependent

on inositol (1,4,5,6)-tetraphosphate which acts as a ‘intermolecular glue’(Watson et al.,

2012). Thus, similar interaction-mediating roles are likely to exist for other metabolites

and using TPP to study their effects on proteomes may help elucidate them.

Lastly, we make a striking observation in our 2D-TPP dataset of ATP, namely that in

addition to the expected thermal stability effects induced by the nucleotide, at high con-

centrations it also appears to affect solubility of some proteins in mechanically disrupted

cells. These results are in line with a recent report by Patel et al. (2017), who have de-

scribed solubilizing effects of ATP on purified proteins which form condensates in vitro.

Thus, we devised dedicated experiments to further characterize these effects.

7.3.1 ATP effects on protein solubility

Our SPP experiments in crude lysates (Figure 5.4) yield two distinct insights. First,

the comparison of the SDS versus NP-40 extracted proteome gives insights into which

proteins have insoluble subpopulations in the specific system we profile. Second, the

comparison of NP-40 with different concentrations of MgATP versus NP-40-only ex-

tracted proteome gives insights into which of these insoluble pools can be resolubilized

by ATP. Enrichment analyses for both comparisons suggests that these proteins localize

to membrane-less organelles. Hence, our observations could substantiate the suggested

role of ATP in regulating solubility of protein condensates (Brangwynne et al., 2011),

ensuring that they stay liquid-like and do not transition to solid-like phases which have

been described to have the potential to form irreversibly aggregated states often linked

to pathologies (Molliex et al., 2015).

Patel et al. (2017) have attributed hydrophobic protein condensate solubilizing effects of
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ATP to its amphiphilic properties comprising a relatively lipophilic adenosine ring and a

highly hydrophilic triphosphate group. They have thus concluded that it acts as a bio-

logical hydrotrope, which are small compounds that contain hydrophobic and hydrophilic

functional groups and can solubilize hydrophobic molecules in aqueous solvents (Kunz

et al., 2016). Recently, there has been a discussion on whether this term is adequately

describing effects exerted by ATP (Mehringer et al., 2021). The authors show that, con-

trary to what would be expected of a hydrotrope, ATP does not reduce surface tension

(Mehringer et al., 2021). Moreover, some reports have linked ATP to inducing a loss,

rather than a gain, in solubility of organic substances (Vraneš et al., 2020). Mehringer

et al. (2021) thus argue that the effects observed by Patel et al. (2017) on proteins stem

from different features than their hydrophobic nature, e.g., that ATP’s adenosine ring

may interfere with π-π stacking of tryptophan-enriched low-complexity domains medi-

ating protein phase separation (Wang et al., 2018). The arguments by Mehringer et al.

(2021) are in line with our observations (Figure 5.6e) that ATP predominantly affects

solubility of proteins with a high fraction of disordered regions and elevated isoelectric

points which thus can not primarily be hydrophobic.

Hence, the emerging picture seems to be that ATP can affect insoluble subpools of

proteins with disordered domains and with a tendency to be positively charged. Mech-

anistically this effect appears to be driven by interference of π-π stacking of interacting

low-complexity domains within condensates by its hydrophobic adenosine ring. Nega-

tively charged proteins are less affected due to ionic repulsion of ATP, but its strongly

negative triphosphate group may additionally disturb cation-π interactions also involved

in formation of phase separated compartments (Wang et al., 2018).

In summary, multiple lines of research have led to observations that high ATP concentra-

tions can have solubilizing effects of condensates formed by certain proteins. Importantly,

several of these studies (Mehringer et al., 2021; Patel et al., 2017), including the work pre-

sented in this thesis (Sridharan et al., 2019), have performed experiments indicating that

the observed effects are independent of ATP hydrolysis. While discussions on the correct

term to describe this phenomenon are still ongoing, the evidence for the intracellular
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relevance of these observations is growing.

7.4 Detection of functional PTMs

In chapter 6, we have evaluated an approach termed Hotspot thermal profiling (HTP)

which has been suggested for the identification of functional phosphorylation sites (Huang

et al., 2019), using a modified version of phospho-TPP suggested by Azimi et al. (2018).

We found several problems associated with the presented experimental strategy and the

data analysis, resulting in misleading results obtained by HTP. Thus, we suggest a revised

experimental workflow and a corresponding data analysis strategy. With our improved

method, we find that only a small fraction of phosphosites induces shifts in thermal sta-

bility of respective proteins (< 2%, Figure 6.6b). However, those sites which we find to

alter thermal stability are enriched for known regulatory sites (Figure 6.8) and show an

increased probability to be functional as predicted by the machine learning-derived score

by Ochoa et al. (2020) (Figure 6.7). Our conclusion, based on the comparison of different

phospho-TPP protocols, is that several aspects of the experimental workflow are vital

to ensure generation of meaningful datasets and their valid interpretation: i) Phospho-

peptide enrichment needs to be performed after TMT-labeling, ii) both, phosphorylated

and unmodified, samples need to be prefractionated before LC-MS/MS analysis and iii)

obtained data needs to be adequately normalized and analyzed with false discovery rate

control (Potel et al., 2021).

Having generated a dataset following the above raised points, in addition to many ex-

amples with typical sigmoidal profiles, we find also phosphorylated proteoforms, which

feature strikingly non-sigmoidal melting profiles. The most prominent example is rep-

resented by Ser84 phosphorylated HNRNPA0, a component of ribonucleosomes, which

features a strong increase in soluble fraction at temperatures up to 50◦C before denatur-

ing at higher temperatures (Figure 6.9b). Two reports have linked its phosphorylation

on Ser84, placed by MAP kinase-activated protein kinase 2 in response to lipopolysac-

charide treatment or DNA damage, to increased mRNA binding (Reinhardt et al., 2010;
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Rousseau et al., 2002). Together with our previous observation that melting curves of pro-

teins with insoluble subpopulation can feature such profiles (Figure 5.8e), it is tempting

to speculate that mRNA-bound Ser84 phosphorylated HNRNPA0 form RNA-dependent

insoluble subpools.

Like the example of the phosphoproteoform of HNRNPA0, other sites, which may be

involved in the regulation of protein localization to insoluble subpools, could be part of

phospho-TPP datasets. However, since such non-sigmoidal melting profiles can often not

be incorporated into differential analysis based on sigmoid fits and comparison of melting

points, we adapt the previously suggested nonparametric approach (Childs et al., 2019)

to work with mean function estimates obtained from Gaussian processes. While the frac-

tion of significantly thermally shifted phosphorylated proteomforms is still small (3%)

this method allows to double the amenable phosphorylated versus unmodified profiles

which can be compared.

Taken together, we suggest both, an experimental workflow and a corresponding statisti-

cal analyses, which offer the exploration of effects of phosphosites on protein states. The

presented approach is by no means limited to the study of phosphorylation sites, but

can readily be applied to various other PTMs such as acetylation or ubiquitinylation.

Moreover, it is also not limited to human as the only amenable organism. Smith et al.

(2020) have performed a similar protocol in yeast and in the future it would be interesting

to expand this to other organisms and to different human cell types for which TPP is

established in (Jarzab et al., 2020).

7.5 Conclusion

In summary, this work suggested computational methods to various application areas

of thermal proteome profiling, which advanced its sensitivity and scope. In the future,

TPP may contribute to more informed decisions in pre-clinical drug development, char-

acterization of novel PPI dynamics, cataloging of metabolite-protein interactions and the

discovery of functional PTMs in diverse organisms.
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Appendix

Sensitivity analysis of the DLPTP model

To perform a sensitivity analysis of the DLPTP model for 2D-TPP analysis, introduced

in Chapter 4, we picked two different 2D thermal profiles: 1) the profile of BRD4 from

the JQ1 HL-60 lysate dataset, an example of profile very well explained by the DLPTP

model, and 2) the profile of HDAC6 taken from the Panobinostat intact cell dataset,

resembling a profile from which the model could not identify HDAC6 as ligand binding,

even though it is a known target of Panobinostat.

For our analysis we repeatedly subsampled 90% of the data points of the two profiles and

fitted the null and alternative model on the obtained datasets. For BRD4 we observed no

dramatic effects on the obtained fits (Figure S1a). Obtained parameter distributions and

inter-correlations did also not reveal any surprising relations (Figure S1b). For HDAC6,

however, while obtained fits on data point subsamples were broadly consistent (Figure

S2a), it became clear that obtained F -statistics for some subsamples were much higher

than for the full profile (Figure S2b). This indicates that a few outlier data points lead

to the low observed F -statistic of the full profile and thus the inability of DLPTP to pick

up HDAC6 as significantly stabilized by Panobinostat.
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Figure S1: Sensitivity analysis based on the example of BRD4 in the JQ1

lysate dataset. a) Comparison of DLPTP alternative model fits on subsam-

ples and all data points (red). b) Correlation of parameters obtained for

different subsamples of data points.
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Figure S2: Sensitivity analysis based on the example of the HDAC6 in the

Panobinostat in-cell dataset. a) Comparison of DLPTP alternative model

fits on subsamples and all data points (red). b) Correlation of parameters

obtained for different subsamples of data points.
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forms.
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Figure S5: Chemical structures of metabolites and analogs used in this

work. Chemical structures of a) ATP, b) GTP and c) AMP-PNP.
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Figure S6: Controls experiments to confirm ATP’s effect on insoluble pro-

teins is not driven by ATP hydrolysis. Scatterplots of median fold changes

at maximal compound concentration of a) MgGTP vs. MgATP and b)

MgAMP-PNP vs. MgATP. Solubility profiles of representative proteins in

the presence of different concentrations of MgGTP (c-e) and MgAMP-PNP

(f-h).
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Figure S7: Intracellular ATP levels after depleltion with D1 and D2. Mea-

surements were performed with the Cell-Titer Glow assay. D1: 0.1 nM AA

and 1 mM 2DG, D2: 1 nM AA and 10 mM 2DG.
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Figure S8: Comparison of melting point estimates obtained from different

replicates of unmodified proteins.
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Figure S9: Comparison of melting point estimates obtained from different

replicates of phosphopeptides.
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Figure S10: Calibration of obtained NPARC-GP results of phospho-TPP

data. Histogram of p-values a) before and b) after empirical calibration.
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