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I

Quantendynamikmit der funktionalen Renormierungsgruppe
unter Verwendung eines zeitlichen Regulators

Diese Arbeit beschäftigt sich mit der Entwicklung einer Methode zur Berech-
nung der Zeitentwicklung von Korrelationsfunktionen. Dazu werden Verfahren
aus der funktionalen Renormierungsgruppe (fRG) verwendet, wobei die Beson-
derheit ein zeitlicher Regulator ist. Durch dieseWahl werden Quantenfluktuatio-
nen basierend auf einer Zeitskala unterdrückt, welche in Kausalitätseigenschaf-
ten für Korrelationsfunktionen resultieren. Aufgrund dieser Eigenschaften ist
es immer möglich Flussgleichungen analytisch zu integrieren. Insbesondere
folgt daraus eine exakte Ein-Loop-Gleichung für den inversen Propagator. Zu-
sätzlich zu diesen formalen Ergebnissen wird die Methode in der 𝜙3-Theorie
angewendet, wobei der dynamische Propagator betrachtet wird. Schon in der
verwendeten einfachen Trunkierung finden sich Hinweise auf eine selbstähnli-
che Zeitentwicklung. In einem gesonderten Teil wird die Yang-Mills-Theorie in
drei Dimensionen im Gleichgewicht betrachtet. Die vereinfachte Numerik im
Vergleich zu Rechnungen außerhalb des Gleichgewichts, ermöglicht es diese
Theorie mit Fokus auf unterschiedliche Trunkierungen zu untersuchen. Dabei
ist ersichtlich, dass Trunkierungen mit Bedacht gewählt werden müssen, damit
unterschiedliche Rechnungen scheinbar konvergieren.

Quantum Dynamics from the Functional Renormalisation
Group with a Temporal Regulator

In this work, a framework for the computation of the time evolution of correla-
tion functions is developed. For that purpose, techniques from the functional
renormalisation group (fRG) are used, with the unique feature of a temporal
regulator. This specific choice of regulator suppresses quantum fluctuations
based on a time scale and yields causal properties for correlation functions.
As a consequence, flow equations can always be integrated analytically, which
in turn allows for the derivation of a one-loop exact functional relation for
the inverse propagator. In addition to this formal result, the method is ap-
plied to the 𝜙3-theory, where the dynamics of the propagator is investigated.
In this setup, the system is prepared far-from-equilibrium and the time evol-
ution of the propagator is computed. Even in the simple truncation that is
employed, there are already hints at a self-similar time evolution. In a sep-
arate part, three-dimensional Yang-Mills theory is examined in equilibrium.
Due to the simpler computation as opposed to non-equilibrium scenarios, it is
possible to investigate this theory in view of different truncations. This study
reveals that truncations have to be chosen carefully in order to achieve apparent
convergence.
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Chapter 1

Introduction 1
The investigation of quantum systems can be approached in a wide variety of
ways. In quantum field theory, the probably most naive approach is perturba-
tion theory. Starting from a set of classical propagators and vertices, diagrams
for full quantities can be calculated and, therefore, corrections to propagators
and vertices are obtained. While the general idea is simple, selecting a con-
sistent set of diagrams is not. Furthermore, not every theory can be described
perturbatively across the full energy range. The prime example is quantum
chromodynamics (QCD). For low energies, the coupling of the gauge sector,
which is described by Yang-Mills theory, becomes too large in order to be used
as the parameter of a perturbative expansion. This problem gives rise to the
development of non-perturbative methods. Among these methods, there are
roughly two categories: lattice quantum field theory and functional methods. In
lattice field theory, the problemof computing diagrams is completely eliminated.
In its simplest form, correlation functions are computed as the weighted average
over field configurations. Consequently, there is no restriction on the order of
corrections. This approach, however, only directly works in the imaginary-time
formalism, i.e. in Euclidean space, and for zero chemical potential. Otherwise
the probabilistic interpretation is not possible. However,more involvedmethods
exist or are in development. Functional methods, on the other hand, rely again
on the computation of diagrams. Contrary to perturbation theory, however,
those diagrams are not entirely built from classical propagators and vertices.
Depending on the method, some or all vertices are fully dressed quantities.
Consequently, calculated corrections can include any order of the coupling and,
hence, are not perturbative. Functional methods that are relevant in this work
are the functional renormalisation group (fRG), Dyson-Schwinger equations
(DSEs) and the 2PI effective action formalism. An additional distinction can be
made for those methods. While DSEs and the 2PI effective action formalism
provide a systematic approximation for 𝑛-point functions, they do not encode
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any recipe for computations. They just provide a system of coupled equations
that have to be solved iteratively. Such a non-linear system strongly depends
on the (numeric) initial conditions in order to converge. On the contrary, the
fRG is built such that it provides a system of coupled differential equations that
allow for the interpolation from an initial action to the effective action. Even
though the numerics in the fRG should be more stable, it does not reveal more
about the quality of the resulting correlation functions than the other methods.
A separate examination using various approximations is necessary.

When it comes to the study of the dynamics of quantum systems, not all of the
aforementioned methods are equally suitable. For example, quantum field the-
ory on the lattice heavily relies on Euclidean space. As a consequence, analytic
continuation of the results is required in order to obtain real-time properties
in Minkowski space. Having said that, functional methods can be formulated
in either metric. Hence, they are better candidates for the investigation of
quantum dynamics. Admittedly, out-of-equilibrium computations, where the
time evolution of correlation functions is of interest, yield additional challenges.
Conservation laws, for example, play a crucial role. A violation of conservation
laws propagates with time and can cause secularities, which eventually leads to
the breakdown of the approach. As a matter of fact, this makes the fRG with
a cutoff in momentum space not feasible because such a cutoff modifies local
conservation laws. While this is also true in equilibrium, those modifications
are well-captured within modified symmetry identities.

1.1. Motivation

The motivation of this work can be divided into a motivation for developing a
new method, and the question why to look at quantum dynamics altogether.
For gauge theories, the incentive for a new method is already partly justified

above. In that case, an fRG approach in momentum space breaks gauge invari-
ance. In view of avoiding secularities, finding a gauge invariant regularisation
is therefore of great interest. In this work, regularisation is achieved by sup-
pressing quantum fluctuations based on a time cutoff. For a local regulator, the
action is manifestly gauge invariant.
While this problemmotivates the method for gauge theories, this work pre-

dominantly deals with scalar field theories. In this context, a major concern
is energy conservation. Similarly to the above case, secularities can arise in
non-conserving approximations. One way to obtain evidently conserving ap-
proximations is to work in the 2PI effective action formalism. However, in
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comparison to an fRG approach, only the dynamics of the propagator can be
examined. Additionally, non-classical initial conditions are not directly imple-
mented in that approach. Therefore, a system can not be arbitrarily prepared.

The fRG, on the other hand, allows for a wide variety of approximations for
all orders of correlation function. This freedom comes at the cost that energy
conservation is not apparent. But the locality of flow equations strongly hints at
this property. The t-fRG, which is further developed in this work, also allows
the inclusion of non-classical initial correlation functions.

Lastly, there also exist approaches like classical statistical simulations or
(vertex-resummed) kinetic theory. Although well justified, they suffer from
the problem that they are not applicable to the full range of time evolution.
They rather only work in overlapping ranges. For example, classical statistical
simulations are well suited for high occupation numbers. But since particles
are redistributed over time, occupation numbers eventually get too small and
quantum corrections have to be included. An approach that is valid for all
occupancies and, consequently, for all times, is favourable.

Thepossibility to compute the time evolution for correlation functionswithout
a restriction on the valid time range, and arbitrary initial conditions, permits
the study of out-of-equilibrium scenarios. While a system that is prepared out of
equilibriumwill inevitably reach equilibrium, two cases can be distinguished. A
system close to equilibriumwill directly flow towards equilibrium. Regardless of
the relaxation time, the dynamics of the system is of little interest. On the other
hand, a system far from equilibrium can undergo a very interesting behaviour.
Instead of directly flowing to equilibrium, it can reach a so-called non-thermal
fixed point. In that regime, the time evolution is describes by self-similar dy-
namics. The details of a system are essentially forgotten, and time evolution is
described by a set of scaling exponents. Seemingly unrelated systems can share
the same exponents and, therefore, follow the same dynamics. Consequently,
a classification is possible, which leads to far-from-equilibrium universality
classes. So far, universality is not investigated that well, which partly fuels the
development in this thesis. Another motivation is the theoretical study of heavy
ion collisions, where a framework that is capable of describing far-from-equi-
librium dynamics for gauge theories is required. In that context, the inclusion
of non-classical initial correlators is an extra benefit as it allows for a system to
be initially prepared such that it resembles experiments.
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1.2. Publications

The compilation of this thesis was performed solely by the author. The results
presented throughout the work have been obtained with collaborator, and most
of the research is either published or available as preprint. Text and figures that
originate from these article are not marked explicitly, but the comments in the
following list indicate where they are incorporated in this dissertation.

[1] Correlation functions of three-dimensional Yang-Mills theory from the FRG
Lukas Corell, Anton K. Cyrol, Mario Mitter, Jan M. Pawlowski, Nils Strodthoff
Published: SciPost Phys. 5.6 (2018)
DOI: 10.21468/SciPostPhys.5.6.066
E-Print: arXiv:1803.10092 [hep-ph] (2018)
Comment: This article is printed nearly unmodified in chapter 6 and appendix D.

[2] Flowing with the Temporal Renormalisation Group
Lukas Corell, Anton K. Cyrol, Markus Heller, Jan M. Pawlowski
E-Print: arXiv:1910.09369 [hep-th] (2019)
Comment: Content from this article is used throughout the thesis, with the
results presented in chapter 4 and appendix C.3.

1.3. Outline

This thesis is structured as follows. In chapter 2, the basics required for this
work are introduced. This includes an introduction to the Schwinger-Keldysh
real-time formalism in section 2.1 as well as a brief discussion of functional
methods in section 2.2. The methods include the functional renormalisation
group (fRG), Dyson-Schwinger equations (DSEs) and Φ-derivable approxima-
tions. The chapter is also used to fix the notation and conventions for the rest of
the work.
Chapter 3 is the centrepiece where the method of the temporal functional

renormalisation group (t-fRG) is developed. The key aspects of the approach,
where the emphasis is on causality, is subsequently showcased in a formal
discussion for the inverse propagator. As a unique feature of the t-fRG, an exact
one-loop functional relation for the inverse propagator is derived in section 3.5.3.
In section 3.6, two possible approaches towards solving time evolution equations
are presented. The chapter concludeswith a brief discussion in initial conditions
and renormalisation in section 3.7.

https://inspirehep.net/literature/1664306
https://scipost.org/10.21468/SciPostPhys.5.6.066
https://arxiv.org/abs/1803.10092
https://inspirehep.net/literature/1759913
https://arxiv.org/abs/1910.09369
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In chapter 4, the t-fRG is applied in the 𝜙3-theory, where the dynamics of the
propagator is considered. Results contain the time evolution of the dispersion
relation as well as the occupation number. The latter are further analysed for a
self-similar time evolution. As a consistency check, the results are investigated
in view of energy conservation. For that purpose an expression for the total
energy is derived solely in terms of the propagator in section 4.3.
In chapter 5 a scalar theory with quartic interactions is discussed. The previ-

ous considerations of initial conditions and renormalisation are exemplified
using the tadpole diagram in section 5.2. It follows the derivation of two dif-
ferent truncations for the dynamical four-point vertex in section 5.3. These
include a one-loop vertex correction as well as the s-channel resummation.
Lastly, the t-fRG approach is generalised to an 𝑁-component scalar field theory
in section 5.3.3 where the 𝑠-channel resummation leads to a 1/𝑁 expansion.
In chapter 6, Yang-Mills theory is examined in three space-time dimensions

using the fRG. This investigation in equilibrium is completely self-contained
and presents truncations that are yet out of reach in the t-fRG approach. The
fRG results are compared to results from Dyson-Schwinger equations and the
lattice.
Finally, the dissertation is concluded in chapter 7 and possible future applica-

tions are discussed.
Appendix A provides the derivation of DSEs in the 𝜙3-theory that are referred

to throughout the work. Appendices B and C contain details for dealing with
equations on the closed time path, as well as numerical details. In appendix D,
details of fRG computations in Yang-Mills theory are provided, including a
numerical verification of regulator independence.





Chapter 2

Preliminaries 2
In this preliminary chapter, some basics for the understanding of this work are
presented. It starts with the introduction of the Schwinger-Keldysh formalism,
which serves as the formalism used throughout this thesis. In this context, the
closed time path and correlation functions are considered. Subsequently, func-
tionalmethods that are based on the path integral approach are briefly discussed.
Although the essential method for this work is the functional renormalisation
group, it is worthwhile to also have a basic knowledge of other frameworks.
Since they are not mutually exclusive, they can be simultaneously employed for
diagrammatic discussions. For that purpose, Dyson-Schwinger equations and
Φ-derivable approximations are presented. The latter is particularly useful for
the discussion of conserving approximations.

2.1. Schwinger-Keldysh formalism

In the context of non-equilibrium phenomena, it is instructive to employ a
real-time formalism. That way, the occurring time is indeed the physical time
and therefore time evolution is most descriptive. Throughout this work, the
Schwinger-Keldysh formalism, which was developed in [3–7], is used. In this
section, the formalism is introduced in terms of operator expectation values.
This approach gives a good intuition concerning the different arising correlation
functions. Furthermore, a generating functional for non-equilibrium correl-
ation functions is provided, although a treatment within functional methods,
e.g. the functional renormalisation group, is deferred to section 2.2. To fur-
ther clarify the occurring correlation functions, they are discussed by means of
one-point and two-point functions.
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2.1.1. Closed time path

At the heart of the Schwinger-Keldysh formalism lies the concept of a time path
that runs from an initial time to a finite or infinite time, and then back again.
This path is suitably named closed time path (CTP) and is clearly motivated by ex-
amining operator expectation values. The computation of operator expectation
values requires all information on the state of a quantum system at the time in
question. The quantity that does contain all this information is the density mat-
rix 𝜌(𝑡). Usually, the density matrix is known at some initial time 𝑡0 at which the
system is prepared. It could very well describe a system in thermal equilibrium,
where 𝜌0 = 𝜌(𝑡0) ∝ e−𝛽𝐻, with the inverse temperature 𝛽 and the Hamiltonian
𝐻. Generally, it describes any system and, in particular, interesting ones far
from equilibrium. The time evolution of the density matrix is governed by the
unitary time evolution operator 𝑈. Hence, the density matrix at an arbitrary time
is given by

𝜌(𝑡) = 𝑈(𝑡, 𝑡0) 𝜌(𝑡0)𝑈(𝑡0, 𝑡) . (2.1)

The expectation value of any operator 𝒪 at time 𝑡 is given as the trace over
the density matrix at that time and the operator. Utilising the time evolution
from equation (2.1) and exploiting the invariance of the trace under cyclic
permutations, the expectation value reads

⟨𝒪⟩(𝑡) = Tr [𝑈(𝑡0, 𝑡)𝒪𝑈(𝑡, 𝑡0) 𝜌(𝑡0)] . (2.2)

This form is very illustrative when reading the argument of the trace from
right to left: The initial density matrix is evolved in time from 𝑡0 to 𝑡 where
the operator 𝒪 is inserted. Subsequently, there is a time evolution back to the
initial time. This operator ordering, which starts and ends at the same time,
directly suggests the term closed time path. This time path consists of a forward
and backward branch. The time contour is denoted by 𝒞 and the forward and
backward branches by 𝒞+ and 𝒞−, respectively. A graphical representation of
the closed time path for the expectation value of 𝒪(𝑡) is shown in figure 2.1. In
the current form, the closed time path runs exactly up to the time of the operator.
However, this path can be arbitrarily extended beyond that time by using the
unitarity of the time evolution operator. For an extension up to infinity, unity in
the form of 𝑈(𝑡,∞)𝑈(∞, 𝑡) = 𝟙 is inserted into the trace in equation (2.2). Since
care has to be taken in view of operator ordering, the next two sections deal
with the one-point function and two-point function separately. Understanding
the latter directly allows generalisation to higher-order 𝑛-point functions.
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𝜌0 𝒪

𝑡0 𝑡

Figure 2.1. Closed time path for the computation of the time-dependent expectation
value of the operator 𝒪, see equation (2.2). 𝜌0 is the density matrix at the initial
time 𝑡0. Note that the time path does not extend further than where the operator
is inserted.

𝜌0 𝒪

𝑡0 𝑡

𝜌0

𝒪

𝑡0 𝑡

Figure 2.2. Graphical representation of equation (2.3). The closed time path is
extended beyond the operator insertion to compute the expectation value of a
single operator. The placement of the operator on either branch is equivalent and
both diagrams represent the same expectation value.

2.1.2. One-point functions

The extension of the closed time path to infinity for the expectation value of a
single operator is straightforward because no care has to be taken with regard
to operator ordering. Unity in the form of 𝑈(𝑡,∞)𝑈(∞, 𝑡) = 𝟙 can be inserted
either to the left or the right of the operator in equation (2.2). Visually, these
cases correspond to the operator being inserted on the forward and backward
branch, respectively, as depicted in figure 2.2. The corresponding equation for
the operator insertion on the forward branch is given as

⟨𝒪⟩(𝑡) = Tr [𝑈(𝑡0,∞)𝑈(∞, 𝑡)𝒪𝑈(𝑡, 𝑡0) 𝜌(𝑡0)] . (2.3)

Although there are seemingly two expectation values depending on which
branch the operator is located, they are identical. As a consequence, the one-
point function is uniquely defined.
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2.1.3. Two-point functions

For two-point functions, i.e. the expectation value of two operators, there is no
unique way of extending the closed time path. Given two operators at different
or equal times, the extension of the contour could be inserted before, between
or after them. Another way to think of this is to first consider the closed time
path and then insert the operators. In doing so, it is clear that the placement of
the operators is crucial. This is incorporated into the formalism by considering
contour-time-ordered correlation functions. This time-ordering on the closed
time path is best understood as walking along the path in the direction of the
arrow in figure 2.1. Thus, time-ordering on the forward branch is the usual time-
ordering, while on the backward branch, it is anti-time-ordering. In particular,
this means that every time on the backward part of the contour is considered
later than any time on the forward part. The contour-time-ordering operator
is denoted by T𝒞. Just by counting, it is clear that there are four distinct two-
point functions. To be specific, both operators can be inserted on the same
branch (two possibilities) or each on a different branch (two possibilities), see
figure 2.3. If both operators are identical, the two-point functions are related.
In section 2.1.4, the relation is clarified for the expectation values of two field
operators, that is the propagator. To further clarify the extension of the time
contour, it is convenient to mark the operators to indicate if they should be
inserted on the forward (+) or backward (−) branch. Apart from this distinction,
the operator itself remains unchanged. As an example, consider the case where
both operators are inserted on the forward branch. Given an operator 𝒪1 at
time 𝑡1 and 𝒪2 at 𝑡2 with 𝑡1 < 𝑡2, the time-ordered expectation value is

⟨ T𝒞 𝒪+
1 (𝑡1)𝒪+

2 (𝑡2)⟩ = Tr [𝑈(𝑡0,∞)𝑈(∞, 𝑡2)𝒪2𝑈(𝑡2, 𝑡1)𝒪1𝑈(𝑡1, 𝑡0) 𝜌(𝑡0)] , (2.4)

This equation is depicted in the top left panel in figure 2.3. The same figure
also shows the remaining three cases, which are obtained analogously. Ex-
plicitly writing out those expectation values, it is apparent that the contour-
time-ordering as described above is indeed correct. For the sake of brevity, the
exemplary correlation function has only been considered for 𝑡1 < 𝑡2. In general,
a distinction of cases is required, see section 2.1.4.

2.1.4. Propagator

The most ubiquitous two-point function is the propagator, that is the connec-
ted part of the contour-time-ordered expectation value of two field operators.
It is worthwhile to explicitly work out the propagator in order to find a good
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⟨T𝒞 𝒪+
1 (𝑡1)𝒪+

2 (𝑡2)⟩

𝜌0 𝒪1 𝒪2

𝑡0 𝑡1 𝑡2

⟨T𝒞 𝒪−
1 (𝑡1)𝒪−

2 (𝑡2)⟩

𝜌0

𝒪1 𝒪2

𝑡0 𝑡1 𝑡2

⟨T𝒞 𝒪+
1 (𝑡1)𝒪−

2 (𝑡2)⟩

𝜌0 𝒪1

𝒪2

𝑡0 𝑡1 𝑡2

⟨T𝒞 𝒪−
1 (𝑡1)𝒪+

2 (𝑡2)⟩

𝜌0

𝒪1

𝒪2

𝑡0 𝑡1 𝑡2

Figure 2.3. Graphical representation of a two-point function where the closed time
path is extended beyond both operator insertions. The different placements of the
operators lead to four distinct correlation functions.

representation, also in regard to numerical computations, see chapter 4. In
section 2.1.2 it was established, that one-point functions are unique and there-
fore the macroscopic field, i.e. the expectation value of a single field operator 𝜑,
reads

𝜙(𝑥) = ⟨𝜑(𝑥)⟩ . (2.5)

Due to the uniqueness of the mean field it is irrelevant that the argument is
actually on the time contour. This changes for the propagator where four cases
are distinguished. It is defined on the closed time path as

𝐺(𝑥, 𝑦) = ⟨T𝒞 𝜑(𝑥) 𝜑(𝑦)⟩ − 𝜙(𝑥) 𝜙(𝑦) . (2.6)

Previously, operators were marked with ‘+’ and ‘−’ superscripts according to
their position on the closed time path. Following this convention, the propag-
ator is denoted similarly. In this notation, the first and second superscript
correspond to the first and second argument, respectively. Keeping the contour-
time-ordering in mind, the ++-component of the propagator is given as

𝐺++(𝑥, 𝑦) + 𝜙(𝑥) 𝜙(𝑦) = ⟨𝜑(𝑥) 𝜑(𝑦)⟩ 𝜃(𝑥0 − 𝑦0) + ⟨𝜑(𝑦) 𝜑(𝑥)⟩ 𝜃(𝑦0 − 𝑥0) . (2.7)
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Explicitly writing out the remaining components, it is clear that not all propag-
ators are independent. In fact, only two of them are necessary to express the
others. For example, the propagators with arguments on different branches,
i.e. 𝐺+− and 𝐺−+, can be used to express the others. A convenient way is to use
linear combinations of 𝐺+− and 𝐺−+ which results in two real functions [8, 9].
The first one is the spectral function

𝜌(𝑥, 𝑦) = i (𝐺−+(𝑥, 𝑦) − 𝐺+−(𝑥, 𝑦)) = i ⟨ [𝜑(𝑥), 𝜑(𝑦)] ⟩ , (2.8)

where [⋅, ⋅]denotes the commutator, and the secondone is the statistical two-point
function or statistical propagator

𝐹(𝑥, 𝑦) =
1
2 (𝐺

−+(𝑥, 𝑦) + 𝐺+−(𝑥, 𝑦)) =
1
2 ⟨ {𝜑(𝑥), 𝜑(𝑦)} ⟩ − 𝜙(𝑥) 𝜙(𝑦) , (2.9)

where {⋅, ⋅} denotes the anti-commutator. Due to the definitions, the spectral
function and statistical propagator are odd and even functions, respectively. The
former contains the equal-time commutation relations [9]

𝜌(𝑥, 𝑦)||𝑥0=𝑦0 = 0 ,

𝜕𝑥0𝜌(𝑥, 𝑦)||𝑥0=𝑦0 = 𝛿(𝐱 − 𝐲) . (2.10)

Inserting the spectral function (2.8) and statistical propagator (2.9) into the
propagator (2.7) and the remaining components, reduces the representation
to the two degrees of freedom that are necessary out of equilibrium. Yet, the
propagators are not defined on the time contour, but rather on the real time
axis for one specific case of operator placement. On the closed time path, the
propagator can be written as

𝐺(𝑥, 𝑦) = 𝐹(𝑥, 𝑦) −
i
2 𝜌(𝑥, 𝑦) sgn𝒞(𝑥

0 − 𝑦0) , (2.11)

where the contour-sign function sgn𝒞 is introduced. It is defined analogously to
the regular sign function, except that the time arguments are considered on the
closed time path. This means, with both arguments on the forward branch, it is
just the regular sign function, while it has an overall minus sign on the backward
branch. In particular, for the first argument on the forward and the second one
on the backward branch the function evaluates to −1, and with the arguments
swapped to 1. This form of the propagator is particularly useful, since it consists
of two real functions that are defined on the real time axis and the only function
that is defined on the time contour is the contour-sign function. This simplifies
equations, especially those containing integrals over the contour. Some useful
identities for integrals on the time contour are derived in appendix B.
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2.1.5. Generating functional

After introducing the closed time path, contour-time-ordering and non-equilib-
rium correlations functions, it is possible to define a generating functional of
correlation functions. Although functional methods are covered in section 2.2,
providing this functional here concludes the introduction of the Schwinger-
Keldysh formalism. Additionally, the form of the generating functional provided
here is utilised again in chapter 3.

The only remaining ingredient in order to define a generating functional is the
notion of integration along the closed time path. This integration follows again
the direction of the time contour as already mentioned for the understanding
of contour-time-ordering. Let 𝑓 be a function defined on the contour, and the
functions 𝑓+ and 𝑓− on the real time axis, where the superscripts again indicate
where the time argument is placed. The integration can then be written as

∫
𝒞
d𝑥0 𝑓(𝑥0) = ∫

∞

𝑡0
d𝑥0 {𝑓+(𝑥0) − 𝑓−(𝑥0)} . (2.12)

In this notation, the initial time 𝑡0 on the left hand side is understood implicitly
as it is typically unambiguous. On the right hand side the sign of the second
term stems from the reversed direction of integration on the backward branch.
Another notation used throughout this work is the integral that incorporates
also spatial dimensions. A general integral over space-time in 1 + 𝑑 dimensions
is then denoted by

∫
𝒞(𝑥)

= ∫
𝒞
d𝑥0∫

ℝ𝑑
d𝑑𝐱 . (2.13)

With the understanding of the integration along the closed time path, the defin-
ition of a generating functional for non-equilibrium correlation functions is
straightforward. In its simplest form it contains only a linear source term and
can be written as the trace

𝑍[𝐽; 𝜌] = Tr [𝜌(𝑡0) T𝒞 exp {i∫
𝒞(𝑥)

𝜑(𝑥) 𝐽(𝑥)}] , (2.14)

where 𝐽 denotes the source and T𝒞 is the contour-time-ordering operator. In this
definition, the time contour in the source term extends to infinity. Correlation
functions are obtained as functional derivatives with respect to the source

⟨𝜑(𝑥1)⋯𝜑(𝑥𝑛)⟩ = (−i)𝑛
𝛿𝑛𝑍[𝐽; 𝜌]

𝛿𝐽(𝑥1)⋯𝛿𝐽(𝑥𝑛)
|||𝐽=0

. (2.15)
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Alternatively, generating functionals can be defined in the path integral formal-
ism. In section 2.2, that approach is used in the context of functional methods.

2.2. Functional methods

So far, the Schwinger-Keldysh formalismwas introducedwhere correlation func-
tionswere given as operator expectation values. While this is certainly enough to
understand the basics of correlation functions out of equilibrium, computations
require a systematic approach on how to approximate them. To achieve this,
functional methods are employed in this work, with the focus on the functional
renormalisation group (fRG) as a basis to develop the framework of the temporal
functional renormalisation group (t-fRG) in chapter 3. Despite this focus, it is in-
structive to also look at other functional methods like Dyson-Schwinger equations
and Φ-derivable approximations. In particular, Dyson-Schwinger equations are
employed in the computation of the total energy in section 4.3.

2.2.1. Generating functionals

In equation (2.14) a generating functional for contour-time-ordered correlation
functions was given in the form of a trace which included a linear source term.
Another way for such a functional is given in the path integral approach, see [9].
It is quite similar to the path integral in equilibrium, except that the closed time
path has to be considered. In this formalism the generating functional is

𝑍[𝐽, 𝑅] =

𝜑−(𝑡0)

∫
𝜑+(𝑡0)

[d𝜑] exp { i [𝑆[𝜑] +∫
𝒞(𝑥)

𝐽(𝑥) 𝜑(𝑥) +
1
2 ∫

𝒞(𝑥,𝑦)

𝜑(𝑥) 𝑅(𝑥, 𝑦) 𝜑(𝑦)] } , (2.16)

where 𝑆[𝜑] denotes the classical action. The measure [d𝜑] excludes integration
over d𝜑±(𝑡0) which is fixed by the initial conditions, and 𝐽 and 𝑅 are linear
and bilinear sources, respectively. The usage of exactly those two sources, as
opposed to just a linear source term or anything up to an 𝑛-linear source term,
is merely motivated by what is necessary for this work. Like in the equilibrium
case, a generating functional of connected correlation functions with the same
dependence on the sources can be defined as

𝑊[𝐽, 𝑅] = −i ln𝑍[𝐽, 𝑅] . (2.17)

Before going on with the definition of effective actions, it is instructive to discuss
the derivation of correlation functions to fix the notation.
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2.2.2. Correlation functions

Contour-time-ordered correlation functions can be derived as functional deriv-
atives of the generating functionals with respect to one of the sources. While
utilising the linear source term gives access to any 𝑛-point function, derivatives
with respect to the bilinear term only allow the derivation of 2𝑚-point functions
with 𝑚 a positive integer. The first case, for any connected 𝑛-point function,
reads

⟨𝜑(𝑥1)⋯𝜑(𝑥𝑛)⟩
conn.
𝐽,𝑅 = (−i)𝑛−1

𝛿𝑛𝑊[𝐽, 𝑅]
𝛿𝐽(𝑥1)⋯𝛿𝐽(𝑥𝑛)

. (2.18)

Note that the functional derivatives are not evaluated at vanishing sources. The
dependence on the sources is deliberately kept and is indicated by subscripts
for clarity. Although it seems tedious to carry the sources as subscripts, it has
the advantage to make the derivation of some relations in the next section more
apparent. And by introducing the bilinear source term, the flow equation of
the one-particle irreducible (1PI) effective action is easily obtained. The source-
dependent macroscopic field, i.e. one-point function, is given as

𝜙𝐽,𝑅(𝑥) ≔ ⟨𝜑(𝑥)⟩𝐽,𝑅 =
𝛿𝑊[𝐽, 𝑅]
𝛿𝐽(𝑥)

, (2.19)

and the propagator, that is the connected two-point function, is

𝐺𝐽,𝑅(𝑥, 𝑦) ≔ ⟨𝜑(𝑥) 𝜑(𝑦)⟩𝐽,𝑅 − 𝜙𝐽,𝑅(𝑥) 𝜙𝐽,𝑅(𝑦) = −i
𝛿2𝑊[𝐽, 𝑅]
𝛿𝐽(𝑥) 𝛿𝐽(𝑦)

. (2.20)

In view of correlation functions derived from functional derivatives with re-
spect to the bilinear source, a general form is not as useful. However, for the
propagator, this approach is quite handy. It produces both the connected and
disconnected part and the propagator can be defined equivalently as

1
2[𝐺𝐽,𝑅(𝑥, 𝑦) + 𝜙𝐽,𝑅(𝑥) 𝜙𝐽,𝑅(𝑦)] ≔

𝛿2𝑊[𝐽, 𝑅]
𝛿𝑅(𝑥, 𝑦)

. (2.21)

Higher-order correlation functions can be derived in a similar way.

2.2.3. Effective actions

In addition to generating functionals for (connected) correlation functions,
effective actions are further functionals of great importance. They are the
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Legendre transforms of generating functionals of connected correlation func-
tions in the source terms. Most generally, for up to 𝑛-linear source terms, the
Legendre transform in each source results in the 𝑛-particle irreducible (𝑛PI) ef-
fective action. Since those effective actions have a dependence on up to 𝑛-point
functions they allow for the derivation of the quantum equations of motion for
those correlation functions. This section deals exclusively with the 1PI and 2PI
effective action. The former is essential in the framework of the functional
renormalisation group, see e.g. [10], and will be referred to simply as effective
action. The latter is fundamental for Φ-derivable approximations, also known
as 2PI effective action formalism, see e.g. [9, 11].

1PI effective action

The effective action Γ, which generates the 1PI correlation functions, is the
Legendre transform of equation (2.17) in the linear source. Therefore, it is a
functional of the macroscopic field. Also keeping the bilinear source 𝑅, the
effective action is

Γ𝑅[𝜙] = 𝑊[𝐽𝜙,𝑅, 𝑅] −∫
𝒞(𝑥)

𝜙(𝑥) 𝐽𝜙,𝑅(𝑥) . (2.22)

The dependence of the source 𝐽 on both the mean field 𝜙 and source 𝑅 is given
by the definition of themean field in equation (2.19). Knowing all dependencies,
finding the quantumequation ofmotion for themacroscopic field is just amatter
of applying the chain rule in the variation of the effective action with respect to
the macroscopic field

𝛿Γ𝑅[𝜙]
𝛿𝜙(𝑥)

= ∫
𝒞(𝑦)

𝛿𝑊[𝐽𝜙,𝑅, 𝑅]
𝛿𝐽𝜙,𝑅(𝑦)

𝛿𝐽𝜙,𝑅(𝑦)
𝛿𝜙(𝑥)

−∫
𝒞(𝑦)

𝜙(𝑦)
𝛿𝐽𝜙,𝑅(𝑦)
𝛿𝜙(𝑥)

− 𝐽𝜙,𝑅(𝑥) . (2.23)

The first and second term on the right hand side cancel due to equation (2.19).
For non-vanishing sources, the quantum equation of motion is

𝛿Γ𝑅[𝜙]
𝛿𝜙(𝑥)

= −𝐽𝜙,𝑅(𝑥) . (2.24)

Higher-order functional derivatives of the effective action with respect to the
field result in the 1PI 𝑛-point functions

Γ(𝑛)𝑅 [𝜙](𝑥1, … , 𝑥𝑛) =
𝛿𝑛Γ𝑅[𝜙]

𝛿𝜙(𝑥1)⋯𝛿𝜙(𝑥𝑛)
. (2.25)
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For 𝑛 > 2 those are vertex functions, and the case 𝑛 = 2 should be treated
separately. Using the definitions of the 1PI correlation functions (2.25), the
propagator (2.20) and the macroscopic field (2.19), as well as the equation of
motion (2.24), it follows that the two-point function is related to the propagator
by

∫
𝒞(𝑧)

Γ(2)𝑅 [𝜙](𝑥, 𝑧)𝐺𝑅[𝜙](𝑧, 𝑦) = i 𝛿𝒞(𝑥 − 𝑦) . (2.26)

Therefore, it is the inverse of the propagator. It is important that in position
space this is an integral equation. This inverse problem is further discussed
in section 3.6. On the other hand, in momentum space (using time and spatial
translation invariance in equilibrium) the 1PI two-point function is just the
reciprocal of the propagator. This simpler relation in momentum space is a
major advantage for numerical computations. In chapter 6, this is used in the
context of the fRG in equilibrium for Yang-Mills theory.

2PI effective action

The 2PI effective action is the Legendre transform with respect to both the
linear and bilinear source. Equivalently, it is the Legendre transform of the 1PI
effective action (2.22) with respect to the bilinear source

Γ(2PI)[𝜙, 𝐺] = Γ𝑅[𝜙] −∫
𝒞(𝑥,𝑦)

𝛿Γ𝑅[𝜙]
𝛿𝑅(𝑥, 𝑦)

𝑅(𝑥, 𝑦) (2.27)

The functional derivative of the 1PI effective action with respect to the bilinear
source can be evaluated by applying the chain rule. It follows

𝛿Γ𝑅[𝜙]
𝛿𝑅(𝑥, 𝑦)

=
𝛿𝑊[𝐽𝜙,𝑅, 𝑅]
𝛿𝑅(𝑥, 𝑦)

+∫
𝒞(𝑧)

𝛿𝑊[𝐽𝜙,𝑅, 𝑅]
𝛿𝐽𝜙,𝑅(𝑧)

𝛿𝐽𝜙,𝑅(𝑧)
𝛿𝑅(𝑥, 𝑦)

−∫
𝒞(𝑧)

𝜙(𝑧)
𝛿𝐽𝜙,𝑅(𝑧)
𝛿𝑅(𝑥, 𝑦)

, (2.28)

where the second and third term on the right hand side cancel due to equa-
tion (2.19). The first term is the two-point function defined in equation (2.21).
Therefore, the 2PI effective action, which is a functional of the macroscopic
field and the propagator, is given as

Γ(2PI)[𝜙, 𝐺] = Γ𝑅[𝜙] −
1
2 ∫𝒞(𝑥,𝑦)

[𝐺(𝑥, 𝑦) + 𝜙(𝑥) 𝜙(𝑦)] 𝑅(𝑥, 𝑦) . (2.29)
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Using equation (2.24), the quantum equations of motion for the macroscopic
field and propagator are obtained as

𝛿Γ(2PI)[𝜙, 𝐺]
𝛿𝜙(𝑥)

= −𝐽(𝑥) −∫
𝒞(𝑦)

𝑅(𝑥, 𝑦) 𝜙(𝑦) ,

𝛿Γ(2PI)[𝜙, 𝐺]
𝛿𝐺(𝑥, 𝑦)

= −
1
2 𝑅(𝑥, 𝑦) . (2.30)

As a final remark, it is worthwhile to note that the 2PI effective action coincides
with the 1PI effective action if it is evaluated at𝐺 = 𝐺EoM[𝜙], which is the solution
to the equation of motion (2.30) for 𝑅 = 0. For a non-vanishing bilinear source,
both effective actions can also be related if the modified effective action (2.31) is
considered.

2.2.4. Functional renormalisation group

The central functional method for this work is the functional renormalisation
group (fRG). It is based on the Wilsonian approach to renormalisation [12], where
degrees of freedom are successively integrated-out. The functional approach
was developed in [13]. By introducing a scale-dependent bilinear source, the so-
called regulator, quantum fluctuations are suppressed depending on the scale.
The derivative of the effective action with respect to the scale then leads to a
differential equation. This is the flow equation of the effective action and allows for
the interpolation from some initial action to the full effective action. The shape
of the regulator in this equation is not unique, but should rather be chosen to
suit the use case. In any case, it has tomake sure that all quantum fluctuations at
the initial scale are suppressed so that the initial action is just an input. On the
other hand, the regulator has to vanish at the final scale. In this work, different
regulators are used in the context of the temporal functional renormalisation
group in chapter 3 and equilibrium Yang-Mills theory in chapter 6.
In the following, the regulator is denoted by 𝑅𝑠, where 𝑠 is the introduced

scale. All quantities that depend on the regulator are also indicated by the
scale. Depending on the problem, it has a different meaning. For example, in
equilibrium, a momentum scale is reasonable.

Modified effective action

As already mentioned above, at the initial scale, the regulator has to suppress
all quantum fluctuations. For any valid regulator, this means that the scale-
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dependent effective action is initially given by the sumof the initial (input) action
and the quadratic regulator term. It is then reasonable to define a modified
version of the effective action where the regulator term is subtracted. Starting
from its definition in equation (2.22), this leads to the modified effective action

Γ𝑠[𝜙] → Γ𝑠[𝜙] −
1
2 ∫𝒞(𝑥,𝑦)

𝜙(𝑥) 𝑅𝑠(𝑥, 𝑦) 𝜙(𝑦) . (2.31)

Both definitions coincide for a vanishing regulator. This directly leads to a
constraint on the regulator shape. At the final scale the regulator has to approach
zero. Only then, the flow equation can be used to interpolate towards the full
quantum effective action. This modification of the effective action of course
impacts some of the properties derived in section 2.2.3. First of all, the relation
between the 1PI two-point function and propagator now includes the regulator

∫
𝒞(𝑧)

[Γ(2)𝑠 [𝜙] + 𝑅𝑠](𝑥, 𝑧)𝐺𝑠[𝜙](𝑧, 𝑦) = i 𝛿𝒞(𝑥 − 𝑦) . (2.32)

Secondly, the variation of the modified effective action with respect to the reg-
ulator is given by equation (2.28). Also using equation (2.21), the derivative is
now just the propagator

𝛿Γ𝑠[𝜙]
𝛿𝑅𝑠(𝑥, 𝑦)

=
1
2𝐺𝑠[𝜙](𝑥, 𝑦) . (2.33)

The second term was cancelled by the modification to the effective action.

Flow equation

The flow equation of the effective action is the partial derivative with respect to
the scale. Hence, with an appropriate regulator it allows integrating from some
initial condition, e.g. the classical action, to the full effective action. With the
modified effective action (2.31) and its variation with respect to the regulator
from equation (2.33), the flow equation is

𝜕𝑠Γ𝑠[𝜙] = ∫
𝒞(𝑥,𝑦)

𝛿Γ𝑠[𝜙]
𝛿𝑅𝑠(𝑥, 𝑦)

𝜕𝑠𝑅𝑠(𝑥, 𝑦) =
1
2 ∫𝒞(𝑥,𝑦)

𝐺𝑠[𝜙](𝑥, 𝑦) 𝜕𝑠𝑅𝑠(𝑥, 𝑦) , (2.34)

which is also referred to as theWetterich equation [13]. It has an inherent one-
loop structure, as do the flow equations for 1PI 𝑛-point functions. The latter are
given by functional derivatives with respect to the field as in equation (2.25).
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Due to the fact that theWetterich equation contains a two-point function, i.e. the
propagator, on the right hand side, the flow equation for an 𝑛-point function
depends on up to (𝑛+2)-point functions. This leads to an infinite hierarchy
of coupled (integro-) differential equations and a truncation has to be applied.
Typically, multiple different truncations are required to look for and achieve
apparent convergence. In chapter 6, this procedure is applied and presented in
the context of three-dimensional Yang-Mills theory in equilibrium.

Flow equation in equilibrium

For computations in equilibrium, it is beneficial to formulate the flow equation
in momentum space. Since the goal is to integrate-out momentum shells, the
scale parameter in the regulator is also a momentum scale and is denoted by 𝑘.
Using translation invariance in both time and space the flow equation is given
as

𝜕𝑡Γ𝑘[𝜙] =
1
2 ∫𝑝

𝐺𝑘[𝜙](𝑝) 𝜕𝑡𝑅𝑘(𝑝) . (2.35)

The occurring RG time is defined as 𝑡 = ln(𝑘/𝑘0) for a fixed 𝑘0, which leads to
the partial derivative 𝜕𝑡 = 𝑘𝜕𝑘.

2.2.5. Dyson-Schwinger equations

Another approach to systematically obtain approximations for non-perturbative
computations, is the use of Dyson-Schwinger equations, see e.g. [14]. As for the
functional renormalisation group, Dyson-Schwinger equations are all derived
from one master equation through functional derivatives with respect to the
mean field. In this section, this master equation will be briefly derived. One
way is to start with a vanishing functional integral, i.e. one where the integrand
is a total derivative. In this context, only a linear source term included, and the
integral to start with is

∫
𝜑−(𝑡0)

𝜑+(𝑡0)
[d𝜑]

𝛿
𝛿𝜑 exp { i [𝑆[𝜑] +∫

𝒞(𝑥)
𝐽(𝑥) 𝜑(𝑥)] } = 0 . (2.36)

The functional derivative can be executed and, subsequently, the fields in the
functional in front of the exponential function are replaced by derivatives with
respect to the source. That way, this functional does not depend on the field



2.2. FUNCTIONAL METHODS 21

and can be pulled out of the integral. The remaining integral is then just the
generating functional 𝑍[𝐽] and the equation becomes

(
𝛿𝑆[𝜑]
𝛿𝜑(𝑥)

|
|
|𝜑=−i 𝛿𝛿𝐽

+ 𝐽(𝑥))𝑍[𝐽] = 0 . (2.37)

After replacing the functional 𝑍[𝐽] by ei𝑊[𝐽] and multiplying its inverse from the
left, the equation reads

𝛿𝑆[𝜑]
𝛿𝜑(𝑥)

|
|
|𝜑= 𝛿𝑊[𝐽]

𝛿𝐽 −i 𝛿𝛿𝐽

= −𝐽(𝑥) . (2.38)

The functional derivative is now evaluated at𝜑 = 𝛿𝑊[𝐽]
𝛿𝐽 −i 𝛿𝛿𝐽 , where the first term

is just the mean field. Since the goal is to derive Dyson-Schwinger equations
for 1PI correlation function, the derivative with respect to the source has to be
rewritten in terms of the mean field. Exploiting the chain rule for functional
derivatives, and using both the definition of the macroscopic field (2.19) and the
propagator (2.20), the derivative is

−i
𝛿

𝛿𝐽(𝑥)
= ∫

𝒞(𝑧)
𝐺(𝑥, 𝑧)

𝛿
𝛿𝜙(𝑧)

= 𝐺 ⋅
𝛿
𝛿𝜙 . (2.39)

In this equation, a condensed notation was introduced on the right hand side.
Finally, the source in equation (2.38) is given by the quantum equation of mo-
tion (2.24). The result is the Dyson-Schwinger equation for the effective action

𝛿Γ[𝜙]
𝛿𝜙(𝑥)

=
𝛿𝑆[𝜑]
𝛿𝜑(𝑥)

|
|
|𝜑=𝜙+𝐺⋅ 𝛿𝛿𝜙

. (2.40)

Dyson-Schwinger equations for 𝑛-point functions are again obtained from the
master equation (2.40) as functional derivative with respect to the field. See
appendix A for an example in the 𝜙3-theory.

Structure of Dyson-Schwinger equations

To better understand the structure of the master equation, it is convenient to
use a vertex expansion of the classical action. For a theory with up to𝑚-point
interactions, the expansion can be written as

𝑆[𝜑] =
𝑚
∑
𝑛=2

1
𝑛! ∫𝒞(𝑧1,…,𝑧𝑛)

𝑆(𝑛)(𝑧1, … , 𝑧𝑛) 𝜑(𝑧1)⋯𝜑(𝑧𝑛) . (2.41)
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Plugging this expansion into the master equation (2.40), there is a term which is
schematically

𝑆(𝑚) × [𝜙 + 𝐺 ⋅
𝛿
𝛿𝜙]

𝑚−2
× 𝜙 . (2.42)

It is clear that the diagram with the highest order correlation function comes
from this term. It contains the most functional derivatives with respect to the
mean field, and each increases the order of a correlation function by one. To
get the highest 𝑛-point function, all functional derivatives have to successively
hit the propagator, then the three-point function it generates, and so on. The
resulting diagram then has the form

𝑆(𝑚) × 𝐺𝑚−1 × Γ(𝑚−1) . (2.43)

Therefore it consists of the classical𝑚-point function, and all legs but one are
connected with a propagator to the 1PI (𝑚−1)-point function. This examination
concludes that the Dyson-Schwinger equation for the effective action contains
up to (𝑚 − 1)-point functions, where𝑚 is given by the highest order tree-level
vertex. Furthermore, the Dyson-Schwinger equation for an 𝑛-point function
includes up to (𝑛 + 𝑚 − 2)-point functions. Similarly to the flow equations in
the fRG, this leads to an infinite tower of coupled equations, and a truncation is
necessary. But contrary to the flow equations, Dyson-Schwinger equations in
general do not have a one-loop structure.

Self-energy and Dyson equation

The vertex expansion of the classical action (2.41) allows for the derivation of
Dyson-Schwinger equations without explicitly specifying the interaction terms.
In addition, this expansion reveals that the Dyson-Schwinger equation for any
1PI 𝑛-point contains the classical vertex and a set of diagrams

Γ(𝑛)(𝑥1, … , 𝑥𝑛) = 𝑆(𝑛)(𝑥1, … , 𝑥𝑛) + diagrams . (2.44)

Consequently, Dyson-Schwinger equations relate classical vertices to 1PI ver-
tices. A particularly important DSE is for the inverse propagator. It is also
referred to as gap equation and reads

Γ(2)(𝑥1, 𝑥2) = 𝑆(2)(𝑥1, 𝑥2) − iΣ(𝑥1, 𝑥2) , (2.45)

where the self-energy Σ is implicitly defined. The self-energy contains all dia-
grams of the Dyson-Schwinger equation for the inverse propagator, excluding
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Ҳ Ҭ ͞
Figure 2.4. Diagrammatic representation of the Dyson equation. The black dot
denotes the free propagator and the blue circle the dressed one. The large red
circle is the self-energy.

the classical inverse propagator. Using that the 1PI two-point function is the
inverse of the full propagator, and analogously for the classical quantities, the
equation for the inverse propagator can be transformed to an equation for the
propagator

𝐺(𝑥1, 𝑥2) = 𝐺0(𝑥1, 𝑥2) +∫
𝒞(𝑧1,𝑧2)

𝐺0(𝑥1, 𝑧2) Σ(𝑧1, 𝑧2) 𝐺(𝑧2, 𝑥2) . (2.46)

Here, 𝐺0 denotes the free propagator, and the equation is the well-known Dyson
equation, see figure 2.4 for a diagrammatic representation. This equation is par-
ticularly useful for computations out-of-equilibrium, where the inverse propag-
ator is not simply the reciprocal of the propagator. Essentially, the Dyson series
is an alternative way to compute the inverse in a given approximation, that is
for a given self-energy.

2.2.6. Φ-derivable approximations

In the last section, the self-energy was defined in the framework of Dyson-
Schwinger equations where it is a result of the chosen truncation. Since there is
essentially no restriction on how to truncate the set of equations, not all approx-
imations are conserving. This is a crucial aspect regarding non-equilibrium
computations where, in particular, energy conservation is of utmost import-
ance. Another approach is to demand a self-energy that ensures a conserving
approximation. Symmetry considerations, see e.g. [15], lead to the observation
that any self-energy of the form

Σ[𝜙,𝐺](𝑥, 𝑦) = 2i
𝛿Φ[𝜙,𝐺]
𝛿𝐺(𝑥, 𝑦)

(2.47)

is a conserving approximation, as long as the functional Φ obeys the symmetry
that corresponds to the conserved quantity. Since the self-energy is a sum
of one-particle irreducible diagrams, the Φ-functional only contains two-particle
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irreducible diagrams. This functional constitutes the difference of the full and
one-loop 2PI effective action, see e.g. [8, 9, 16]. Up to an irrelevant constant, the
2PI effective action can be written as

Γ(2PI)[𝜙, 𝐺] = 𝑆[𝜙] +
i
2 Tr𝒞 { ln𝐺−1} +

i
2 Tr𝒞 {𝐺0[𝜙]−1𝐺} + Φ[𝜙,𝐺] , (2.48)

where 𝐺0[𝜙] denotes the free propagator. Plugging equation (2.48) into the
quantum equation of motion (2.30), directly leads to

Γ(2)(𝑥1, 𝑥2) = 𝑆(2)(𝑥1, 𝑥2) + 𝑅(𝑥1, 𝑥2) − iΣ(𝑥1, 𝑥2) . (2.49)

Therefore, the self-energy defined here is equivalent to the one in the DSE
framework if a modified classical action with 𝑆(2) → 𝑆(2) + 𝑅 is considered.



Chapter 3

Temporal functional renormalisation
group

3

This chapter is the centrepiece in view of the formal development of the temporal
functional renormalisation group (t-fRG). The method was originally proposed
in [17, 18] and is introduced and further developed here. As the name suggests,
the underlying framework is the functional renormalisation group (fRG), which
has been introduced in section 2.2.4. In the fRG, the general idea is to suppress
quantum fluctuations based on some scale, and successively adding them to
the computation by moving said scale. In equilibrium, the choice of which
fluctuations are suppressed is based on amomentum scale, see chapter 6. In the
t-fRG, however, the goal is to obtain the time evolution of correlation functions.
This non-equilibrium scenario requires a different kind parameter. The notion
of causality, which plays a fundamental role in the t-fRG, dictates that this para-
meter is a time. In particular, quantum fluctuations are completely suppressed
after the cutoff time. Time evolution is then governed by moving this cutoff to
later times.
The idea of a complete suppression of fluctuations is introduced in two steps.

At first, the suppression is implemented solely in terms of a finite closed time
path in section 3.1. There, a generating functional of correlation functions
is provided, which is a modification to the generating functional on the in-
finite closed time path from section 2.1. In this approach, properties of the
cutoff-dependent correlation functions are directly evident. Subsequently, in
section 3.2, an equivalent generating functional based on the path integral and
a regulator is given. Implementing the finite closed time path by means of
a regulator, allows for the utilisation of techniques from the fRG, ultimately
providing the flow equation of the effective action in section 3.3. As causality
is so fundamental in this method, it is further discussed in section 3.4. The
provided causal properties are then used in section 3.5 to show that flows can
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always be integrated analytically. In particular, in section 3.5.3, a one-loop
exact functional relation for the propagator is derived. Following this formal
discussion, multiple ways are provided on how to obtain time evolution equa-
tions in section 3.6. An approach that is inspired by the momentum-space
fRG is discarded in favour of two methods that better incorporate causal argu-
ments. Those methods rely heavily on the previous result of integrated flows,
and proved feasible in a numeric setup.

The chapter is concluded with the inclusion of non-classical initial conditions
into the formalism. The freedom of choosing any reasonable condition is then
used to discuss equilibrium initial conditions as well as renormalisation

3.1. Finite closed time path

In the introduction to the Schwinger-Keldysh formalism, the closed time path
was intentionally extended to infinity. This has the benefit of a simple notation,
e.g. in the generating functional. However, this extension is essentially unity,
as is obvious from the construction. In other words, for fixed times it is exactly
known how far the contour has to extend. Namely, up to the largest occurring
time. Anything after that time is extraneous. This argument can be utilised to
analyse the impact of a finite time path on correlation functions. In this scenario,
the extent of the contour is fixed to a cutoff time 𝜏, while the time arguments
of correlation functions are arbitrary. The generating functional (2.14) is only
slightlymodified by restricting the integral in the source term to the finite closed
time path

𝑍𝜏[𝐽; 𝜌] = Tr [𝜌(𝑡0) T𝒞 exp { i∫
𝒞(𝑥)<𝜏

𝜑(𝑥) 𝐽(𝑥) }] . (3.1)

The regularised correlation functions derived from this generating functional in-
evitably depend on the cutoff time. Despite that, they are still given by functional
derivatives

⟨𝜑(𝑥1)⋯𝜑(𝑥𝑛)⟩𝜏 = (−i)𝑛
𝛿𝑛𝑍𝜏[𝐽; 𝜌]

𝛿𝐽(𝑥1)⋯𝛿𝐽(𝑥𝑛)
|||𝐽=0

. (3.2)

It is important that the dependence on the cutoff is well understood: the cutoff
time can be interpreted as a parameter that merely switches correlation func-
tions of the fully interacting theory on and off. As long as all times of the
correlation functions are smaller than the cutoff time, the correlation functions
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𝜌0 𝜑(𝑡1) 𝜑(𝑡2) 𝜑(𝑡𝑛)⋯

𝑡0 𝜏

𝜌0 𝜑(𝑡1) 𝜑(𝑡2) 𝜑(𝑡3) 𝜑(𝑡𝑛)⋯

𝑡0 𝜏

Figure 3.1. Regularised correlation functions. • Left: All times are smaller than
the cutoff time 𝜏. It is equivalent to the correlation of the fully interacting theory.
• Right: (At least) one time is larger than the cutoff time 𝜏. Due to causality, it is
identically zero.

are equivalent to the ones of the fully interacting theory. The left panel of fig-
ure 3.1 illustrates such a scenario. In this case, the regularisation has no impact
at all. The remaining cases all contain at least one time that is larger than the
cutoff time. Since a functional derivative containing such a time vanishes, the
correlation function does as well. The right panel of figure 3.1 represents this
case. Therefore, the 𝜏-dependence of the regularised correlation functions boils
down to a jump from zero to the full correlation function at the cutoff time. This
relation can be summarised as

⟨ 𝜑(𝑥1)⋯𝜑(𝑥𝑛) ⟩𝜏 = {
⟨𝜑(𝑥1)⋯𝜑(𝑥𝑛) ⟩ for 𝑥1, … , 𝑥𝑛 < 𝜏
0 otherwise.

(3.3)

The interpretation of this relation becomes clear by considering the functional
in equation (3.1). It only sums over fluctuations up to the cutoff time. Therefore,
all information earlier than this time is included and all 𝑛-point functions that
only have earlier time arguments are full correlation functions. In fact, this
is a direct consequence of causality. Likewise, causality entails that quantum
fluctuations from the future can notmix with the past. Thinking about the cutoff
time as the present, it is obvious that correlation functions with at least one time
later than the cutoff time have to vanish identically. The concept of causality
and the property of the regularised 𝑛-point functions, which are either of the
fully interacting theory or vanishing, are key aspects of the temporal functional
renormalisation group. In particular, they are indispensable for the analytic
integration of flow equations and, correspondingly, the derivation of one-loop
exact equations.
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3.2. Temporal regulator

Moving the cutoff from an initial to later times, exactly governs the time evolu-
tion of correlation functions. In order to implement this moving of the cutoff by
the flow equation as it is done in the fRG, it is essential that a suitable regulator
is equivalent to the formulation using a finite closed time path. More precisely,
the regulator should result in the same property for regularised correlation func-
tions as in equation (3.3). Using the path integral formalism from section 2.2,
the generating functional for regularised correlation functions is written as

𝑍𝜏[𝐽] =

𝜑−(𝑡0)

∫
𝜑+(𝑡0)

[d𝜑] exp { i [𝑆[𝜑] +∫
𝒞(𝑥)

𝐽(𝑥) 𝜑(𝑥) +
1
2 ∫

𝒞(𝑥,𝑦)

𝜑(𝑥) 𝑅𝜏(𝑥, 𝑦) 𝜑(𝑦)] } , (3.4)

where the cutoff time is denoted by 𝜏. When looking for an appropriate class
of regulators that lead to the given properties, it is directly evident that only
sharp regulators are suitable. Otherwise, no jump can occur in the correlations
functions. Moreover, to achieve that the regularised correlation functions are
either zero or the full non-regularised one, it is crucial that the regulator is
either zero or infinite. Regions where the regulator is infinite are necessary to
completely suppress all fluctuations and assure causality. On the other hand,
zero-values of the regulator ensure that full, i.e. cutoff-independent correla-
tion functions appear in the regularised ones. Any relaxation of one of these
constraints directly leads to breaking the given properties. It is clear that these
constraints do not uniquely determine the regulator, but rather lead to a class
of regulators. Nevertheless, a particularly simple and useful choice is given by
the local regulator

−i𝑅𝜏(𝑥, 𝑦) = 𝑟(𝑥0) 𝛿𝒞(𝑥 − 𝑦) (3.5)

where 𝑟 denotes the shape function, which has been chosen to only depend
on the time argument. The 𝛿𝒞-distribution on the closed time path is defined
analogously to its counterpart on the real time axis, such that

∫
𝒞(𝑦)

𝛿𝒞(𝑥 − 𝑦)𝑓(𝑦) = 𝑓(𝑥) . (3.6)

This makes the regulator local in both time and space, which is expected to be
crucial for gauge theories. The regulator term can only be gauge invariant for a
local regulator. In particular, regulators that contain spatial or time derivatives,
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which is the case in momentum space, always break gauge invariance. The
regulator shape function that is suitable for the local regulator is

𝑟𝜏(𝑥0) = {
∞ if 𝑥0 > 𝜏
0 otherwise.

(3.7)

To clarify that this regulator truly acts as intended, it is convenient to consider
the functional integral as a sum over all possible field configurations. If such a
configuration has support only for times smaller than the cutoff, the regulator
term is vanishing. For any other configuration, i.e. ones containing 𝜑(𝑥0) ≠ 0
for any 𝑥0 > 𝜏, the regulator leads to a vanishing integrand. Therefore, only the
former contribute to the functional integral. Introducing the measure [d𝜑]reg,𝜏,
which only includes the relevant field configurations, the generating functional
can also be written as

𝑍𝜏[𝐽] = ∫
𝜑−(𝑡0)

𝜑+(𝑡0)
[d𝜑]reg,𝜏 exp { i [𝑆[𝜑] +∫

𝒞(𝑥)<𝜏
𝐽(𝑥) 𝜑(𝑥)] } . (3.8)

where it is sufficient that the integral of the linear source term is limited to times
smaller than the cutoff time. Integration beyond that time is vanishing. This
form resembles the generating functional given in equation (3.1) and the same
arguments hold concerning the properties of regularised correlation functions.

3.3. Flow equation

After establishing, that a properly chosen temporal regulator implements exactly
the same suppression of quantum fluctuations as a finite closed time path, the
well-known flow equation (2.34) from the fRG can be used. With an adapted
notation, this equation reads

𝜕𝜏Γ𝜏[𝜙] =
1
2 ∫𝒞(𝑥,𝑦)

𝐺𝜏[𝜙](𝑥, 𝑦) 𝜕𝜏𝑅𝜏(𝑥, 𝑦) . (3.9)

Note that the regulator in the t-fRG has to be regarded as a distribution that
has to be regularised in the derivation of the flow equation. Flow equations
for 1PI 𝑛-point functions are given by functional derivatives with respect to the
background field 𝜙

𝜕𝜏Γ
(𝑛)
𝜏 [𝜙](𝑥1, … , 𝑥𝑛) =

𝛿𝑛

𝛿𝜙(𝑥1)⋯𝛿𝜙(𝑥𝑛)
𝜕𝜏Γ𝜏[𝜙] . (3.10)
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In the derivation of flow equations also appear functional derivatives of the
field-dependent propagator. From its relation to the 1PI two-point function, see
equation (2.32), follows that the derivative is

𝛿
𝛿𝜙(𝑦)

𝐺𝜏[𝜙](𝑥1, 𝑥2) = i∫
𝒞(𝑧1,𝑧2)

𝐺𝜏[𝜙](𝑥1, 𝑧1) Γ(3)[𝜙](𝑧1, 𝑦, 𝑧2) 𝐺𝜏[𝜙](𝑧2, 𝑥2) . (3.11)

The structure of the flow equations in the t-fRG do not differ from their fRG-
counterpart in momentum space (equilibrium). They lead to an infinite hier-
archy of coupled differential equations. Additionally, they share the fact that
there is no flow equation for the propagator, but rather the inverse propag-
ator. Therefore, solving the (truncated) set of equations requires to solve an
inverse problem. A naive approach, analogously to equilibrium computations,
is discussed in section 3.6.1. As it turns out, the aspect of causality and implied
properties, allows for a more elegant way to solve these equations. The next sec-
tions provide the key results necessary for this approach, which is subsequently
discussed in section 3.6.2.

3.4. Causality

The properties of regularised correlation functions that have been discussed so
far, are a direct consequence of causality. Since this is an outstanding feature of
the temporal regulator, it is further discussed here and additional properties
in this framework are established. Causality in view of correlation functions
basically expresses that an 𝑛-point function does not depend on information
later than its latest time argument. Setting the cutoff time to exactly this latest
time argument, this reasoning can be directly transferred to the flow equation.
The previously introduced regulators, all implement causality. A particular
important consequence of the present cutoff procedure, and therefore causality,
is that the regularised propagator 𝐺𝜏 is strictly zero if at least one time argument
exceeds the cutoff time. In turn, for vanishing or constant backgrounds 𝜙𝑐 it
is the fully interacting propagator 𝐺 ≡ 𝐺𝜏=∞. Consequently the regularised
propagator can be written as

𝐺𝜏(𝑥, 𝑦) = 𝐺(𝑥, 𝑦) 𝜃(𝜏 − 𝑥0) 𝜃(𝜏 − 𝑦0) . (3.12)

This equation entails the important property that the full propagator for vanish-
ing or constant fields 𝜙𝑐 only depends on the full cutoff-independent two-point
function Γ(2)[𝜙𝑐]. The cutoff-independent 𝑛-point functions are defined in the
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limit where the regulator vanishes. In the t-fRG, this corresponds to 𝜏 = ∞. In
the following, those correlation functions are denoted without the 𝜏-subscript

Γ(𝑛)[𝜙] ≡ Γ(𝑛)𝜏=∞[𝜙] . (3.13)

The surprising property of equation (3.12) is deeply rooted in the locality and
causality of the present cutoff procedure. Furthermore, it is linked to the func-
tional optimisation of the fRG, compare [10]. There, it has been shown that
optimised fRG flows have a related property: for optimal cutoffs, the regulator
variation of the two-point function perpendicular to the direction of the optim-
ised flow vanishes: 𝛿⊥Γ

(2)
𝑘 = 0. The local temporal regularisation discussed in

the present work shares this property.
A useful alternative representation of equation (3.12) is given by the rela-

tion between the propagator and the 1PI two-point function in equation (2.32).
However, due to equation (3.12), the occurring two-point function is the cutoff-
independent one. Therefore, the propagator can be written as

𝐺𝜏(𝑥, 𝑦) = [
i

Γ(2) + 𝑅𝜏
] (𝑥, 𝑦) . (3.14)

The causal structure extends to all 1PI 𝑛-point functions Γ(𝑛)𝜏 : they are fully
dressed as long as all their time arguments are smaller than or equal to 𝜏, and
the initial ones otherwise. Hence, Γ(𝑛)𝜏 [𝜙𝑐] for constant backgrounds 𝜙𝑐 with
𝑛 ≥ 2 can be written as

Γ(𝑛)𝜏 (𝑥1, … , 𝑥𝑛) = Γ(𝑛)𝑡0 (𝑥1, … , 𝑥𝑛) + ΔΓ(𝑛)(𝑥1, … , 𝑥𝑛)
𝑛
∏
𝑖=1

𝜃(𝜏 − 𝑥0𝑖 ) , (3.15)

where ΔΓ(𝑛) constitutes the difference of the full and initial 𝑛-point function

ΔΓ(𝑛) = Γ(𝑛) − Γ(𝑛)𝑡0 . (3.16)

For more details see appendix B of [18]. This structure of the 1PI 𝑛-point func-
tions is preserved by the flow equation and make this approach manifestly
causal. Note that the ΔΓ(𝑛) in general contain 𝜃- and 𝛿-distributions and, there-
fore, are distributions themselves. This intricacy is dealt with for integrated
flows in section 3.5, and more explicitly for the dynamic vertex in the 𝜙4-theory
in section 5.3.

The causality constraints of the present temporal fRG also lead to another very
important identity that is peculiar to this approach. As in any fRG approach, the
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𝜏-derivative of the regulator only appears in the form 𝐺𝜏 ⋅ 𝜕𝜏𝑅𝜏 ⋅ 𝐺𝜏. In the t-fRG,
however, for constant background, this term is simply given by the 𝜏-derivative
of the propagator

𝜕𝜏𝐺𝜏(𝑥, 𝑦) = i∫
𝒞(𝑧1,𝑧2)

𝐺𝜏(𝑥, 𝑧1) 𝜕𝜏𝑅𝜏(𝑧1, 𝑧2) 𝐺𝜏(𝑧2, 𝑦) . (3.17)

This identity follows readily from the 𝜏-derivative of equation (3.12) using the
representation in equation (3.14). In contrast to standard flows withmomentum
cutoffs, the term proportional to 𝜕𝜏Γ

(2)
𝜏 is absent. Equation (3.17) has important

implications on the general structure of the temporal flow equations and is
crucial for the approach.

3.5. Integrated flows

The causality of the flow equation has the remarkable consequence that the time
flow can always be integrated analytically. In particular, the properties of the
propagator in equation (3.12) and the higher-order 1PI correlation functions in
equation (3.15), are indispensable. Additionally, the relation of the 𝜏-derivative
of the regulator in equation (3.17) is crucial for the approach. Generally, the
flow of any 𝑛-point function schematically reads

Flow [Γ(𝑛)𝜏 ] = Diagrams [{𝐺𝜏, 𝜕𝜏𝑅𝜏, Γ
(3)
𝜏 , … , Γ(𝑛+2)𝜏 }] , (3.18)

where the right hand side represents a sum of diagrams that are build up from
𝜏-dependent correlation functions and the 𝜏-derivative of the regulator in the
set. The causality preserving regulator can be replaced by the 𝜏-derivative of the
propagator using equation (3.17), since it always appears in the form𝐺𝜏 ⋅𝜕𝜏𝑅𝜏 ⋅𝐺𝜏.
Therefore, the regulator is completely eliminated from the flow, which now has
the form

Flow [Γ(𝑛)𝜏 ] = Diagrams [{𝜕𝜏𝐺𝜏, 𝐺𝜏, Γ
(3)
𝜏 , … , Γ(𝑛+2)𝜏 }] . (3.19)

At this point, only correlation functions or their 𝜏-derivative appear in the dia-
grams. The 𝑛-point functions can always be split into a 𝜏-independent function
and 𝜃-distributions as in equation (3.12) or indicated by equation (3.15). The
derivative of the propagator directly follows as

𝜕𝜏𝐺𝜏(𝑥, 𝑦) = 𝐺(𝑥, 𝑦) [𝛿(𝜏 − 𝑥0)𝜃(𝜏 − 𝑦0) + 𝜃(𝜏 − 𝑥0)𝛿(𝜏 − 𝑦0)] . (3.20)
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Each diagram now also contains a 𝜏-independent part which consists of the full
correlation functions. This part is obviously irrelevant in the 𝜏-integration to
obtain the integrated flow. The remaining part consists exclusively of 𝜃- and
𝛿-distributions. Integrating the latter part can always be done analytically and
gives a non-trivial prefactor. As a consequence, each diagram and, hence, any
flow can be integrated analytically. Keeping initial conditions in mind, the
integrated flow can be written as

Γ(𝑛) = Γ(𝑛)𝑡0 +Diagrams [{#,𝐺, Γ(3), … , Γ(𝑛+2)}] , (3.21)

where # denotes the non-trivial prefactor for each individual diagram. The
diagrams in this equation have a one-loop structure just like the flow equation.
Furthermore, they contain only fully dressed correlation functions. This striking
result is only possible due to causality. In momentum space, even a sharp
regulator does not result in one-loop equations. An example for this procedure is
given within a general discussion for the propagator in section 3.5.3. It is further
applied in the context of 𝜙3-theory in chapter 4, and 𝜙4-theory in chapter 5.

3.5.1. Vanishing diagrams

In the process of integrating flow equations, there are certain diagrams that
can be argued to be vanishing due to causality by comparing distributions of
the external arguments on both sides of the equation. Those are all diagrams
that contain 𝑛-point functions with 𝑛 > 2 that are either non-local or (partially)
local. In the latter case, occurring 𝛿-distributions are not connecting internal
and external points. This section provides a clean calculation demonstrating
that such diagrams are always zero.

In the flow of any 𝑛-point function, there are alwaysmultiple diagrams, which
only differ in where the regulator is inserted. In the t-fRG, this corresponds to
where the 𝜏-derivative of the propagator is. Therefore, the flow equation of any
𝑛-point function contains integrals of the form

𝜕𝜏Γ
(𝑛)
𝜏 (𝑥1, … , 𝑥𝑛) = ∫

𝒞(𝑧1,…,𝑧2𝑚)

𝜕𝜏[𝐺𝜏(𝑧1, 𝑧2)⋯𝐺𝜏(𝑧2𝑚−1, 𝑧2𝑚)] 𝑓𝜏(𝑥1, … 𝑥𝑛; 𝑧1, … 𝑧2𝑚) ,

(3.22)

where the positive integer𝑚 and 𝑓𝜏 are specific to the diagram. In general, the
right hand includes a sum over distinct diagrams. Since the propagators are
all internal, their arguments 𝑧𝑖 for 𝑖 = 1…2𝑚 are all integration variables. The



34 3. TEMPORAL FUNCTIONAL RENORMALISATION GROUP

distribution 𝑓𝜏 represents all vertices within a certain diagram. It takes all, both
internal and external, points as arguments. It is indeed to be understood as
distribution, since it contains 𝛿- and 𝜃-distributions. The local structure of the
included correlation functions is crucial, and the following assumption is made.

Assumption: The 𝛿-distributions included in 𝑓𝜏 either have only external or
internal points in their argument. Contributions of the form 𝛿𝒞(𝑥𝑖 − 𝑧𝑗) for
𝑖 = 1…𝑛 and 𝑗 = 1…2𝑚 are not allowed. That way, (partially) local vertices do
not connect internal and external points.

The remaining distributions are 𝜃-distributions to an arbitrary power for every
external and internal point, which is an expression of causality. For the internal
points, those distributions would only result in an overall factor and are ignored
in the following. Without loss of generality, the case without any 𝛿-distribution
is used, and the 𝜃-distributions are to the power of one. It is also sufficient to
consider external points with 𝑥01 > 𝑥02 > ⋯ > 𝑥0𝑛. Completely separating all
distributions leads to

𝜕𝜏Γ
(𝑛)
𝜏 (𝑥1, … , 𝑥𝑛) ∝ ∫

𝒞(𝑧1,…,𝑧2𝑚)

𝐺(𝑧1, 𝑧2)⋯𝐺(𝑧2𝑚−1, 𝑧2𝑚) 𝑓(𝑥1, … 𝑥𝑛; 𝑧1, … 𝑧2𝑚)

× (
𝑛
∏
𝑖=1

𝜃(𝜏 − 𝑥0𝑖 )) 𝜕𝜏(
2𝑚
∏
𝑖=1

𝜃(𝜏 − 𝑧0𝑖 )) , (3.23)

where 𝑓 is understood to be 𝑓𝜏 without the 𝜃-distributions. The aforementioned
argument that this integral vanishes, involves comparing distributions on both
sides of the equation. On the left hand side, there has to be a term, apart from
exponents, that has the form

𝜕𝜏(
2𝑚
∏
𝑖=1

𝜃(𝜏 − 𝑥0𝑖 )) , (3.24)

and therefore contains one 𝛿-distribution. On the right hand side a similar term
exists, but is not a derivative with respect to 𝜏. Hence, there is no 𝛿-distribution
to match the left hand side. At this point, the assumption that no (partially) local
vertex connects intern and external point is crucial. Otherwise the missing
𝛿-distribution could arise. If the distributions on either side of the equation do
not match, the only possible solution is a vanishing flow. While this argument is
certainly valid, the vanishing of the flow can be shown rigorously. For the sake
of a shorter notation, the function

𝐼(𝐱; 𝐳) = 𝐺(𝑧1, 𝑧2)⋯𝐺(𝑧2𝑚−1, 𝑧2𝑚) 𝑓(𝑥1, … 𝑥𝑛; 𝑧1, … 𝑧2𝑚) (3.25)
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contains all functions of the integrand. The time-contour integrals are now
denoted by 𝒞(𝐳) = 𝒞(𝑧1, … , 𝑧2𝑚). With the restriction to 𝑥01 > 𝑥02 > ⋯ > 𝑥0𝑛, the
integrated flow is obtained by the 𝜏-integration of the flow equation just in the
neighbourhood of 𝑥01

Γ(𝑛)(𝑥1, … , 𝑥𝑛) ∝ lim
𝜀→0+

∫
𝑥01+𝜀

𝑥01−𝜀
d𝜏∫

𝒞(𝐳)

𝐼(𝐱; 𝐳) (
𝑛
∏
𝑖=1

𝜃(𝜏 − 𝑥0𝑖 )) 𝜕𝜏(
2𝑚
∏
𝑖=1

𝜃(𝜏 − 𝑧0𝑖 )) .

(3.26)

Integration by parts is convenient for the 𝜏-integration. To this end, the part
containing a total derivative in the integral is denoted by Γ(𝑛)A , and the remaining
part by Γ(𝑛)B . The integration of the former is straightforward and gives

Γ(𝑛)A (𝑥1, … , 𝑥𝑛) = lim
𝜀→0+

∫
𝒞(𝐳)

𝐼(𝐱; 𝐳) {(
2𝑚
∏
𝑖=1

𝜃(𝑥01 − 𝑥0𝑖 + 𝜀)) (
𝑛
∏
𝑖=1

𝜃(𝑥01 − 𝑧0𝑖 + 𝜀))

− (
2𝑚
∏
𝑖=1

𝜃(𝑥01 − 𝑥0𝑖 − 𝜀)) (
𝑛
∏
𝑖=1

𝜃(𝑥01 − 𝑧0𝑖 − 𝜀))} . (3.27)

Due to the choice of 𝑥01 being the largest external time, the first product of
𝜃-distributions in the first line is unity, the second product just restricts the
integrals to times smaller than 𝑥01 + 𝜀. In the second line, the first product
contains 𝜃(𝑥01 − 𝑥01 − 𝜀) = 0 and therefore the second term is zero. Performing
the limit after the integration gives

Γ(𝑛)A (𝑥1, … , 𝑥𝑛) = ∫

𝒞(𝐳)<𝑥01

𝐼(𝐱; 𝐳) . (3.28)

The second term is given by

Γ(𝑛)B (𝑥1, … , 𝑥𝑛) = − lim
𝜖→0+

∫
𝑥1+𝜖

𝑥1−𝜖
d𝜏∫

𝒞(𝐳)

𝐼(𝐱; 𝐳) (
𝑛
∏
𝑖=1

𝜃(𝜏 − 𝑧0𝑖 )) 𝜕𝜏(
2𝑚
∏
𝑖=1

𝜃(𝜏 − 𝑥0𝑖 )) .

(3.29)

The 𝜏-derivative leads to a sum of 2𝑚 terms. Of those terms, only the one
where the derivative hits the 𝜃-distribution that has 𝑥1 in its argument has a
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contribution. This term is proportional to 𝜕𝜏𝜃(𝜏 − 𝑥01) = 𝛿(𝜏 − 𝑥01), and after the
𝜏-integration, the remaining product is

2𝑚
∏
𝑖=2

𝜃(𝑥01 − 𝑥0𝑖 ) = 1 . (3.30)

If the derivative with respect to 𝜏 would have hit any other 𝜃-distribution, this
remaining product would have at least one vanishing factor. The 𝜃-distributions
with internal points in their argument again restrict the integrals to times smaller
than 𝑥01 , and the result is

Γ(𝑛)B (𝑥1, … , 𝑥𝑛) = −∫

𝒞(𝐳)<𝑥01

𝐼(𝐱; 𝐳) . (3.31)

It is evident, that both parts of the integration differ only by an overall sign and,
therefore, the integrated flow vanishes:

Γ(𝑛)(𝑥1, … , 𝑥𝑛) = Γ(𝑛)A (𝑥1, … , 𝑥𝑛) + Γ(𝑛)B (𝑥1, … , 𝑥𝑛) = 0 . (3.32)

3.5.2. Non-vanishing diagrams

As soon as there exists at least one partially local vertex in the flow equation
where the 𝛿-function connects an internal and external point, the integrated flow
can be non-vanishing. In this scenario, it is important that this 𝛿-distribution
connects the external point with the latest time to an internal point. Otherwise,
the diagram is again vanishing after the 𝜏-integration. For example, assum-
ing that all vertices in total only have this single locality with 𝛿𝒞(𝑥1 − 𝑧1), the
integrated flow from equation (3.26) takes the form

Γ(𝑛)(𝑥1, … , 𝑥𝑛) ∝ lim
𝜀→0+

∫
𝑥01+𝜀

𝑥01−𝜀
d𝜏∫

𝒞( ̃𝐳)
̃𝐼(𝐱; ̃𝐳) (

𝑛
∏
𝑖=1

𝜃(𝜏 − 𝑥0𝑖 ))

× 𝜕𝜏(𝜃(𝜏 − 𝑥01)
2𝑚
∏
𝑖=2

𝜃(𝜏 − 𝑧0𝑖 )) , (3.33)

where ̃𝐳 = (𝑧2, … , 𝑧2𝑚), 𝑥01 is still the largest time, and the integration over 𝑧1
is already performed. Now, the 𝜏-derivative can either hit the 𝛿-distribution
with the external point or an internal point. The latter have to vanish due to the
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causal structure of the flow. This can be shown similarly to the previous section.
Performing the 𝜏-integration by parts, directly leads to

Γ(𝑛)(𝑥1, … , 𝑥𝑛) ∝ ∫
𝒞( ̃𝐳)<𝑥01

̃𝐼(𝐱; ̃𝐳) , (3.34)

which is exactly the term where the 𝜏-derivative hits 𝜃(𝜏−𝑥1). This examination
of non-vanishing diagrams is very useful in the application of truncations to
flow equations. It allows to identify the non-vanishing parts of diagrams by
using causal arguments without explicitly calculating each diagram in full.

3.5.3. Integrated flow for the propagator

Section 3.5.1 showed which kind of diagrams are vanishing in the integration of
flow equations which is helpful in analysing the general structure of integrated
flows. Here, the integrated flow of the propagator is discussed for general
theories, resulting in a one-loop exact functional relation. The starting point
for such a discussion is the full, i.e. not truncated, flow of the 1PI two-point
function

𝜕𝜏Γ
(2)
𝜏,𝑥1𝑥2 =

1
2 ∫

𝒞(𝑧1,𝑧2)

𝜕𝜏𝐺𝜏,𝑧1𝑧2 Γ
(4)
𝜏,𝑧1𝑧2𝑥1𝑥2 +

i
2 ∫

𝒞(𝑧1,…,𝑧4)

𝜕𝜏[𝐺𝜏,𝑧1𝑧2𝐺𝜏,𝑧3𝑧4] Γ
(3)
𝜏,𝑥1𝑧2𝑧4 Γ

(3)
𝜏,𝑥2𝑧1𝑧3 .

(3.35)

Here, a condensed notation with space-time arguments as indices, was intro-
duced. This makes the structural aspects of the following arguments more
apparent. See figure 3.2 for a diagrammatic representation of the flow equa-
tion. Without loss of generality, in the following, this flow is considered for
𝑥01 > 𝑥02 > 𝑡0. The full Γ(2) is then obtained from

Γ(2)(𝑥1, 𝑥2) = Γ(2)𝑡0 (𝑥1, 𝑥2) + lim
𝜖→0+

∫
𝑥01+𝜖

𝑥01−𝜖
𝜕𝜏Γ

(2)
𝜏 (𝑥, 𝑦) . (3.36)

The infinitesimal shift with 𝜖 has been introduced as the flow is proportional to
𝛿(𝜏 − 𝑥01). Indeed, due to causality and locality, the flow is only non-vanishing
for 𝜏 = 𝑥01 . For 𝑥02 > 𝑥01 the flow is only non-vanishing for 𝜏 = 𝑥02.
With the knowledge that diagrams containing only non-local vertices are

absent in integrated flows, it is worthwhile to split ΔΓ(𝑛) with 𝑛 > 2 from equa-
tion (3.16) into a non-local and local part

ΔΓ(𝑛)(𝑥1, … , 𝑥𝑛) = ΔΓ(𝑛)nl (𝑥1, … , 𝑥𝑛) + ΔΓ(𝑛)local(𝑥1, … , 𝑥𝑛) . (3.37)



38 3. TEMPORAL FUNCTIONAL RENORMALISATION GROUP

࿈ᆓ ԕ ԡႼႲ Ҳ Ѳѳ Ҭ $ѳ Ջ Ҭ + -(М ՗࿂
࿂

࿂ ࿂
࿂

࿂
࿂ ࿂

࿂
࿂࿂

Figure 3.2. Full flow equation for the 1PI two-point function. It only contains
correlation functions of the fully interacting theory, that is the propagator (blue
circlewith solid outline), the three-point function (green circlewith dashed outline)
and four-point function (pink circle with dotted outline). The 𝜏-derivative of the
regulator is represented by the orange square.

Here, all terms containing 𝛿𝒞(𝑥𝑖 − 𝑥𝑗) for 𝑖 ≠ 𝑗 are collected in the local part.
However, this notation still hides the fact that both parts can contain additional
𝜃-distributions of the form 𝜃(𝜏 − 𝑥𝑖). This intricacy does not play a role in the
flow equation itself, but leads to different prefactors when performing the 𝜏-
integration. Terms that cause these non-trivial prefactors, have the form

lim
𝑟→0

𝜃𝑟(𝜏 − 𝑥0) 𝛿𝑟(𝜏 − 𝑥0) =
1
2𝛿(𝜏 − 𝑥0) , (3.38)

where the subscript 𝑟 indicates a general regularisation of the 𝜃- and 𝛿-distri-
butions. Higher powers of 𝜃-distributions can also be included systematically,
using

lim
𝑟→0

𝑓[𝜃𝑟(𝜏 − 𝑥0)] 𝛿𝑟(𝜏 − 𝑥0) = 𝛿(𝜏 − 𝑥0)∫
1

0
𝑑𝑥𝑓[𝑥] . (3.39)

This subtlety canbe concealedwithin the definition of a ∗-product. It is implicitly
defined via the example

∫
𝒞(𝑧1,𝑧2)<𝑥01

𝐺𝑧1𝑧2 ∗ Γ
(4)
𝑧1𝑧2𝑥2𝑥2 = ∫

𝑥01+𝜖

𝑥01−𝜖
d𝜏∫

𝒞(𝑧1,𝑧2)
𝜕𝜏𝐺𝜏,𝑧1𝑧2 Γ

(4)
𝜏,𝑧1𝑧2𝑥1𝑥2 . (3.40)

This definition is directly motivated by section 3.5.1. In that section, only the
special case with no additional 𝜃-distribution was studied, and therefore, a
normal product was sufficient. However, it was shown where the restriction of
the time contour to times smaller than 𝑥01 on the left hand side stems from.
With the notation settled, the flow from equation (3.35) can be analysed. The

first term on the right hand side, the tadpole, only consists of a single vertex.
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From previous results, it is evident that only a local vertex contributes to the
integrated flow. In general, this is the initial vertex and some partially local
contributions that can be generated. The portion of the integrated flow that
contains the tadpole is

1
2 ∫

𝒞(𝑧1,𝑧2)<𝑥01

𝐺𝑧1𝑧2 Γ
(4)
𝑡0,𝑧1𝑧2𝑥1𝑥2 +

1
2 ∫

𝒞(𝑧1,𝑧2)<𝑥01

𝐺𝑧1𝑧2 ∗ ΔΓ
(4)
local,𝑧1𝑧2𝑥1𝑥2

. (3.41)

The term involving the initial vertex is a normal product since there is no ad-
ditional 𝜏-dependence. The remaining term in equation (3.35) contains two
three-point vertices. One of those vertices has to be local in order to be non-zero
after the 𝜏-integration. Still considering the case 𝑥01 > 𝑥02, the local vertex has to
have the argument 𝑥1. Removing the vanishing non-local part leads to the full
integrated flow of the two-point function

Γ(2)𝑥1𝑥2 − Γ(2)𝑡0,𝑥1𝑥2 =
1
2 ∫

𝒞(𝑧1,𝑧2)<𝑥01

𝐺𝑧1𝑧2 Γ
(4)
𝑡0,𝑧1𝑧2𝑥1𝑥2 +

1
2 ∫

𝒞(𝑧1,𝑧2)<𝑥01

𝐺𝑧1𝑧2 ∗ ΔΓ
(4)
local,𝑧1𝑧2𝑥1𝑥2

+
i
2 ∫

𝒞(𝑧1,…,𝑧4)<𝑥01

𝐺𝑧1𝑧2𝐺𝑧3𝑧4 ∗ (Γ
(3)
𝑡0,𝑥1𝑧2𝑧4 + ΔΓ(3)local,𝑥1𝑧2𝑧4

) Γ(3)𝑥2𝑧1𝑧3 . (3.42)

This functional relation is valid for any theory. No assumption about the kind
of interactions has been made. Depending on the theory of interest, further
simplifications may be possible. The cases of a theory with either pure cubic or
quartic interaction are subject of the next two sections.

Cubic interaction

Deriving the one-loop exact equation for a pure 𝜙3-theory is quite easy since
there are no local vertices apart from the initial three-point vertex. This can be
seen by considering the flow of any 𝑛-point function. Initially there is only the
three-point function which needs to include the classical vertex and, therefore,
has a local part. But since all diagrams in flow equations are one-loop, two
points of the three-vertex are always internal and no generated vertex can be
local. Hence, it is true that

ΔΓ(𝑛)local ≡ 0 , ∀𝑛 > 2 . (3.43)
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Figure 3.3. Diagrammatic representation of the gap equation for the inverse propag-
ator in the 𝜙3-theory. The black dots denote classical quantities. The blue (solid
outline) and green (dashed outline) circles represent the dressed propagator and
three-point function, respectively.

This is a general property of the theory and not the t-fRG. It is also evident
by considering perturbative vertex corrections. In particular, the four-point
function is non-local, and the tadpole terms in equation (3.42) are zero. For the
three-point function, this implies that the local part is completely contained in
the initial vertex. The general result for the integrated flow of the 1PI two-point
function reduces to

Γ(2)𝑥1𝑥2 − Γ(2)𝑡0,𝑥1𝑥2 =
i
2 ∫

𝒞(𝑧1,…,𝑧4)<𝑥01

𝐺𝑧1𝑧2𝐺𝑧3𝑧4Γ
(3)
𝑡0,𝑥1𝑧2𝑧4 Γ

(3)
𝑥2𝑧1𝑧3 , (3.44)

where the ∗-product is equivalent to the normal product because Γ(3)𝑡0 does not
contain any 𝜃-distribution. When using the classical action as initial condition,
i.e. Γ(𝑛)𝑡0 = 𝑆(𝑛), the initial three-point function is

𝑆(3)(𝑥1, 𝑥2, 𝑥3) = −𝜆 𝛿𝒞(𝑥1 − 𝑥2) 𝛿𝒞(𝑥2 − 𝑥3) , (3.45)

and the integrated flow reduces to the familiar gap equation

Γ(2)𝑥1𝑥2 − 𝑆(2)𝑥1𝑥2 = −
i𝜆
2 ∫

𝒞(𝑧1,𝑧2)<𝑥01

𝐺𝑧1𝑥1𝐺𝑧2𝑥1 Γ
(3)
𝑥2𝑧1𝑧2 . (3.46)

Figure 3.3 shows a diagrammatic representation of this equation. The derivation
is given in appendix A as example for Dyson-Schwinger equations.

Quartic interaction

For a 𝜙4-theory in the symmetric phase, i.e. with 𝜙 = 0, there is no three-point
vertex. This reduces the integrated flow of the two-point function to only the
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tadpole diagram

Γ(2)𝑥1𝑥2 − Γ(2)𝑡0,𝑥1𝑥2 =
1
2 ∫

𝒞(𝑧1,𝑧2)

𝐺𝑧1𝑧2 Γ
(4)
𝑡0,𝑧1𝑧2𝑥1𝑥2 +

1
2 ∫

𝒞(𝑧1,𝑧2)<𝑥01

𝐺𝑧1𝑧2 ∗ ΔΓ
(4)
local,𝑧1𝑧2𝑥1𝑥2

. (3.47)

This relation consists of a tadpole diagram with the initial four-point vertex, as
well as onewith a local four-point vertex. The latter actually containsmost of the
complexity of this seemingly simple equation. Due to the ∗-product, different
parts of the local four-point function can contribute with different prefactors. A
general discussion as for the 𝜙3-theory is not possible here, and it is necessary to
explicitly consider vertex corrections. Hence, this topic is deferred to section 5.3
where different truncations are examined.

3.6. Time evolution equations

To this point, the only statement about time evolution has been that it is governed
bymoving the cutoff time from some initial time to themaximal time of interest.
Since this is fully described by the flow equations of correlation functions,
formally the time evolution is already described. However, it is important to
discuss possible implementations. In this section, problems of a naive approach
are discussed, as well as two approaches that have been used successfully.

3.6.1. Equilibrium-inspired approach

The naive approach is directly inspired by fRG computations in equilibrium.
There, the regulator can be implemented numerically, and the propagator is
easily obtained as the reciprocal of the sum of the 1PI two-point function and
regulator. In the t-fRG, however, a key aspect is the causality preserving regulator.
In section 3.2, two properties of the regulator shape have been discussed. It
needs to be sharp, and take on values that are either zero of infinite. Clearly, both
of those requirements are not possible to implement numerically. Nevertheless,
it is a valid approach to initially relax both requirements and use a regulator
shape function of the form

𝑟𝜏,𝜀1,𝜀2(𝑥
0) =

1
𝜀2
𝜃𝜀1(𝑥

0 − 𝜏) , (3.48)

where 𝜀1 indicates the regularisation of the 𝜃-distribution, and 𝜀2 accounts for
the prefactor, which is infinite in the causal regulator. In a numerical study, the
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dependence on the parameters 𝜀1 and 𝜀2 could be investigated and, ultimately,
the case

𝑟𝜏(𝑥0) = lim
𝜀1→0+
𝜀2→0+

𝑟𝜏,𝜀1,𝜀2(𝑥
0) (3.49)

may be recovered. Certainly, this approach, poses the problem that causality is
broken in any case, potentially leading to secularities. Consequently, numerical
computations are not stable. Additionally, since there is no flow equation for
the propagator, an inversion of the 1PI two-point functions is required. The
inverse problem is an integral equation and brings multiple challenges. Naively,
the integral equation

∫
𝒞(𝑧)

[Γ(2)𝜏 + 𝑅𝜏](𝑥, 𝑧)𝐺𝜏(𝑧, 𝑦) = i 𝛿𝒞(𝑥 − 𝑦) (3.50)

from equation (2.32) can be discretised. Let the discretised components of the
propagator with time arguments fixed on the closed time path be 𝐺++

𝜏 , 𝐺+−
𝜏 ,

𝐺−+
𝜏 and 𝐺−−

𝜏 , and analogously for the inverse propagator and the regulator. To
write the integral equation in a compact form, it is convenient to introduce the
matrix-valued quantities

𝐺𝜏 = (𝐺
++
𝜏 𝐺+−

𝜏
𝐺−+
𝜏 𝐺−−

𝜏
) , Γ(2)𝜏 = (Γ

(2)++
𝜏 Γ(2)+−𝜏
Γ(2)−+𝜏 Γ(2)−−𝜏

) , 𝑅𝜏 = (𝑅
++
𝜏 𝑅+−𝜏

𝑅−+𝜏 𝑅−−𝜏
) . (3.51)

Since those quantities are defined on the real time axis, the integral has to be
written analogously to equation (2.12). The correct signs are given by inserting
the metric

𝛾 = 𝛾−1 = (𝟙 0
0 −𝟙) . (3.52)

The 𝛿-distribution on the time contour is also proportional to that metric. Neg-
lecting integration weights, the discretised integral equation can be rearranged
to

𝐺𝜏 ∝ i𝛾 (Γ(2)𝜏 + 𝑅𝜏)
−1 𝛾 . (3.53)

The problem is therefore broken down to inverting a matrix. However, as for
the propagator, the inverse propagator contains redundant information leading
to an ill-conditioned matrix. Secondly, it is actually a differential operator and,
therefore, initial conditions have to be provided. Ultimately, such an approach
introduces unnecessary numerical complexity, and its study is not motivated by
physics due to the causality-breaking regulator.
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3.6.2. The t-fRG way

Better approaches circumvent both problems. Firstly, the numerical regulator
can be completely avoided. Due to the causal properties discussed in section 3.4,
and, in particular, the identity (3.17), the regulator drops out of the flow equa-
tions. In this scenario, the regulator and its properties are used exactly, and no
breaking of causality is introduced numerically. Secondly, the inversion of the
1PI two-point function can be performed using either a differential equation or
an integral equation. In the following, both methods are described. At the core
of both methods lies the result that flow equations can be integrated analytic-
ally. In this context, the integrated inverse propagator is essential. From the
decomposition in equation (3.15), it follows that the integrated flow of the 1PI
two-point function is

−iΣ(𝑥1, 𝑥2) = ΔΓ(2)(𝑥1, 𝑥2) = ∫
∞

𝑡0
d𝜏 𝜕𝜏Γ

(2)
𝜏 (𝑥1, 𝑥2) , (3.54)

which has now been defined as the self-energy Σ. Let the initial inverse propag-
ator always be the classical one, i.e. Γ(2)𝑡0 = 𝑆(0), then the self-energy is consistent
to the ones in the context of Dyson-Schwinger equations and Φ-derivable ap-
proximations. Integrating the right hand side of equation (3.54) leads to the gap
equation

Γ(2)(𝑥1, 𝑥2) = 𝑆(2)(𝑥1, 𝑥2) − i Σ(𝑥1, 𝑥2) . (3.55)

Note that the restriction of the initial inverse propagator does not rule out a non-
classical propagator as initial condition. For the differential equation, the initial
propagator is just the initial condition of the equation. In case of the integral
equation, it can be included on the level of the gap equation, see section 3.7.
On the other hand, the choice leads to a self-energy that is compatible with the
definitions in DSEs and Φ-derivable approximations. Consequently, the t-fRG
can viewed as a way to systematically derive approximations without actually
solving time evolution equations. The self-energy can then be compared to
other functional methods and, in particular, 2PI and DSE approximations can be
recovered. As a matter of fact, for the 𝜙3-theory the Dyson-Schwinger equation
for the inverse propagator was already obtained in the general discussion in
section 3.5.3. Likewise, it is shown in chapter 4 that the applied truncation is
equivalent to a Φ-derivable approximation. A more involved example for the
𝜙4-theory is presented in section 5.3. While it is interesting and reassuring
to recover established approximations, it is more important that those can be
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extended by choosing different truncations. Lastly, it is possible to utilise known
methods to solve the time evolution equations. In fact, the integral equation is
closely related to the non-equilibrium Dyson equation, whereas the differential
equation finds applications in the 2PI effective action formalism, see e.g. [9].

Differential equation

Formerly, the fact that the inverse propagator is actually a differential operator
was mentioned as a problem of the inverse problem. Then again, by using an
explicit form of the classical inverse propagator, a differential equation for the
time evolution is given. For that purpose, the classical inverse propagator

𝑆(2)(𝑥, 𝑦) = −𝛿𝒞(𝑥 − 𝑦) (𝜕2𝑥0 −∇2
𝐱 +𝑚2

0) (3.56)

is inserted into the gap equation (3.55) and, subsequently, the full propagator is
multiplied from the right. This leads to a 𝛿-distribution on the left hand side,
and after rearranging, the time evolution equation is

(𝜕2𝑥0 −∇2
𝐱 +𝑚2

0)𝐺(𝑥, 𝑦) = −i𝛿𝒞(𝑥 − 𝑦) − i∫
𝒞(𝑎)

Σ(𝑥, 𝑎)𝐺(𝑎, 𝑦) . (3.57)

This equation has no constraint on the initial vertices, and the initial propagator
is encoded in the initial conditions for the differential equations. In view of
numerical implementations, it is useful to work with the spectral function and
statistical propagator introduced in section 2.1.4. Additionally, it is reasonable to
Fourier transform in the spatial coordinates. For that purpose, spatial translation
and rotational invariance is assumed. The time evolution equation for the
propagator is then given as a system of coupled differential equations. See
appendices B and C for details and, particularly, equation (C.4) for the final
result.

Integral equation

The integral equation is obtained similarly to the differential equation. The
full propagator is multiplied from the right to equation (3.55). But instead of
using the explicit form of the initial inverse propagator, the free propagator 𝐺0
is multiplied from the left. This directly gives the integral equation on the time
contour:

𝐺(𝑥, 𝑦) = 𝐺0(𝑥, 𝑦) +∫
𝒞(𝑎,𝑏)

𝐺0(𝑥, 𝑎) Σ(𝑎, 𝑏)𝐺(𝑏, 𝑦) . (3.58)
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Since the definition of the self-energy in this context is analogously to the defin-
ition in the Dyson-Schwinger equation for the inverse propagator, the time
evolution equation for the propagator resembles the Dyson series on the closed
time path. Analogously to the differential equation, using the spectral and stat-
istical parts of the propagator in spatial Fourier space results in a set of coupled
integral equations. See appendices B and C for details. The final result is given
in equation (C.5).

3.7. Initial conditions and renormalisation

An advantage of the t-fRG is the possibility to include non-classical initial correl-
ation functions. As a special case, this includes equilibrium initial conditions,
which are discussed in section 3.7.1. In addition, renormalisation can also be un-
derstood as an initial value problem when considering necessary counterterms
as vertices, which are clearly not present in the classical theory. In the following,
time evolution equations in their integrated form are used.
Providing initial vertices, i.e. 1PI 𝑛-point functions for 𝑛 > 2, is straightfor-

ward and already fully encoded in equation (3.15). For the propagator, initial
conditions can be included on the level of the gap equation. For that purpose,
let the initial propagator 𝐺 be the solution to the gap equation

i𝐺−1(𝑥1, 𝑥2) = 𝑆(2)(𝑥1, 𝑥2) − iΣinit(𝑥1, 𝑥2) . (3.59)

This occurring initial self-energy should generally be understood as input rather
than a functional that depends on any correlation function. Solving for the
initial propagator, leads again to the Dyson equation

𝐺(𝑥1, 𝑥2) = 𝐺0(𝑥1, 𝑥2) +∫
𝒞(𝑧1,𝑧2)

𝐺0(𝑥1, 𝑧1) Σinit(𝑧1, 𝑧2)𝐺(𝑧2, 𝑥2) , (3.60)

where𝐺0 denotes the free propagator. To use this propagator as initial condition,
the gap equation (3.55) can be rewritten by adding and subtracting the initial
self-energy, essentially doing nothing. In the form

Γ(2)(𝑥1, 𝑥2) = 𝑆(2)(𝑥1, 𝑥2) − i Σinit(𝑥1, 𝑥2) − i [Σ − Σinit](𝑥1, 𝑥2) , (3.61)

it is clear that the first two terms on the right hand side are just the inverse initial
propagator according to equation (3.59). Then the time evolution equation for
the full propagator reads

𝐺(𝑥, 𝑦) =𝐺(𝑥, 𝑦) +∫
𝒞(𝑎,𝑏)

𝐺(𝑥, 𝑎) [Σ − Σinit](𝑎, 𝑏)𝐺(𝑏, 𝑦) . (3.62)
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In summary, initial conditions are provided as Γ(𝑛)𝑡0 for 𝑛 > 2, and the pair of
consistent 𝐺 and Σinit.

3.7.1. Equilibrium initial conditions

In the context of the t-fRG, and approximations in general, the term equilibrium
is always referring to a given approximation. Writing down an initial action
in equilibrium therefore involves including all vertices with their respective
structure that are allowed in the truncation. For simplicity, let the truncation
be chosen such that only the dynamics of the propagator is considered and the
flow of vertices is neglected. Furthermore, the initial vertices are the classical
ones. This yields a self-energy which is a functional of the full propagator and
classical vertices. Since the latter are of no interest here, they are suppressed in
the notation. Let the self-energy without arguments denote

Σ ≡ Σ[𝐺] , (3.63)

which was already implicitly used before. If the system is prepared in equilib-
rium, the initial self-energy has to obey the truncation and, therefore,

Σinit ≡ Σ[𝐺] . (3.64)

As is evident from equation (3.60), the initial propagator depends on the initial
self-energy and vice versa. Finding a solution is therefore non-trivial, which is
clear since it actually means solving the quantum field theory. Regardless of this
inconvenience, let 𝐺 be the equilibrium solution. According to equation (3.62),
the time evolution equation is

𝐺(𝑥, 𝑦) =𝐺(𝑥, 𝑦) +∫
𝒞(𝑎,𝑏)

𝐺(𝑥, 𝑎) [Σ[𝐺] − Σ[𝐺]](𝑎, 𝑏)𝐺(𝑏, 𝑦) . (3.65)

The solution to this equation is obviously the initial propagator, i.e. 𝐺 =𝐺. Thus,
the time evolution equation is compatible with equilibrium initial conditions.
Even though this result is may not be all too relevant in view of applications, it
verifies that non-classical initial correlation functions are consistently included
in the framework. For an example, see the resummed tadpole in quantum
mechanics in section 5.2.2.

3.7.2. Renormalisation

The possibility of using arbitrary initial conditions can also be used for renorm-
alisation. In the t-fRG, the idea is particularly simple because all diagrams are
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one-loop and the appropriate counterterms for any vertex can be included in
the initial action, or in case of the 1PI two-point function in the gap equation.
While an in-depth discussion is beyond the scope of this work, a general outline
of the procedure is given here for a divergent vertex. For the inverse propagator,
see the example of the tadpole in 𝜙4-theory in section 5.2.1.
For the sake of convenience, let the initial action Γ𝑡0 already be renormalised

except for one vertex Γ(𝑘), where the initial (finite) vertex is denoted by Γ(𝑘)𝑡0 . In
order to renormalise this vertex, it is necessary to include a counterterm into
the initial action. The initial action is therefore modified to be

Γ𝑡0,ren[𝜙] = Γ𝑡0[𝜙] +∫
𝒞(𝑥1,…,𝑥𝑘)

1
𝑘!Δ

(c)Γ(𝑘) 𝜙(𝑥1)⋯𝜙(𝑥𝑘) . (3.66)

With this change, equation (3.16) takes the form

Γ(𝑘) = Γ(𝑘)𝑡0 + Δ(c)Γ(𝑘) + ΔΓ(𝑘) , (3.67)

where ΔΓ(𝑘) contains both finite and divergent diagrams from the flow equation.
It is therefore clear that a counterterm that contains exactly the divergent part
leads to a renormalised vertex. At this point, causality is again crucial to the
approach. The 𝑘-point function also appears in its own flow equation, which
essentially leads to vertex corrections that are not one-loop. Consequently,
counterterms would be necessary at any loop-order. However, since all correla-
tion functions in the flow of Γ(𝑘) are earlier than the external arguments, they
are already renormalised. As a consequence, no diagram contains divergent
subdiagrams, and renormalisation is indeed performed at one-loop level.





Chapter 4

Dynamics of theɸ³-theory 4
In this chapter, the t-fRG approach is implemented for a scalar field theory with
cubic interactions in 1 + 1 dimensions. This theory is an ideal test case for the
present approach because it has no divergent diagrams and a simple truncation
already gives rise to non-trivial dynamics of the propagator. Moreover, it is
also of interest for extending the far-from-equilibrium universality known from
𝜙4-interactions (relativistic and non-relativistic, e.g. [19]) and gauge theories
to the 𝜙3-theory. It is also a necessity regarding applications of the t-fRG to
non-Abelian gauge theories. Such theories contain cubic interactions already
at the classical level. Even though, there, three-point vertices are momentum
dependent, they allow for the same scattering processes. Since those scattering
processes are absent in the 𝜙4-theory, the insights from cubic interactions are
essential in view of non-Abelian gauge theories.
On a more practical note, this chapter serves as a proving ground for the

t-fRG. Up until now, the t-fRG was formally developed, and integrated flows
were examined in a very general context. Here, an explicit truncation for the
𝜙3-theory is chosen, which gives a more descriptive access to the method.

4.1. Theory and truncation

The setup for any computation within the framework of the (temporal) fRG
consists of an initial action anddifferent kinds of approximations. Inmomentum
space, the initial action is mostly chosen as the classical action, whereas in the
t-fRG it depends on how the system is prepared at the initial time. The first
required approximation is the truncation of the flow equations. In a vertex
expansion of the effective action, this accounts for systematically selecting a
finite number of vertices, and diagrams of their respective flows. While already
reducing the infinite number of coupled differential equations to a finite number,
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it might be necessary to approximate the vertex functions itself. For example,
in chapter 5 the four-point function is approximated by only the 𝑠-channel
contribution. In the context of non-Abelian gauge theories it might also be
necessary to approximate vertices in terms of allowed tensor structures, see
chapter 6. All these approximations have to be done carefully because they
fundamentally limit the processes that are considered in the computation. A
reasonable truncation keeps all dominant processes and only ignores subleading
ones. Finding such a truncation is far from trivial and, in general, various
truncations have to be considered when looking for apparent convergence, see
section 6.3.1.

4.1.1. Truncation

A sensible starting point for a truncation is to include all vertices that already
appear in the initial action. In this numerical study, the initial action is the
classical action of the 𝜙3-theory. Therefore, initial vertices correspond to tree-
level vertices. The regarded action reads

𝑆[𝜑] = ∫
𝒞(𝑥)

{
1
2𝜕

𝜇𝜑(𝑥)𝜕𝜇𝜑(𝑥) −
𝑚2

2 𝜑(𝑥)2 −
𝜆
3!𝜑(𝑥)

3} . (4.1)

At the classical level, this theory contains only cubic interactions. Following
the idea of only keeping exactly those kinds of interactions, all flow equations
for higher-order correlation functions are neglected. This condition, which is
summarised as

𝜕𝜏Γ
(𝑛)
𝜏 (𝑥1, … , 𝑥𝑛) = 0, for 𝑛 > 3 , (4.2)

prevents the generation of corrections to those vertices. Since they do not exist
at the initial time, this constraint is equivalent to setting those 𝑛-point functions
to zero. This truncation already reduces the flow of the three-point function to
a single diagram, see figure 4.1. An even more restrictive approach is to neglect
this diagram, which is equivalent to setting the flow to zero. Similarly to the
𝑛-point functions with 𝑛 > 3, this choice prevents corrections to the vertex.
However, the three-point function does not vanish, but is fixed to the initial
(classical) vertex

Γ(3)𝜏 (𝑥1, 𝑥2, 𝑥3) = 𝑆(3)(𝑥1, 𝑥2, 𝑥3) = −𝜆𝛿𝒞(𝑥1 − 𝑥2) 𝛿𝒞(𝑥2 − 𝑥3) . (4.3)

Although, in this setup, the initial action is chosen to be the classical one,
the same procedure can be applied for any initial action. The only change
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Figure 4.1. Flow equation of the three-point function in the 𝜙3-theory with the
truncation from equation (4.2). The green circles with dashed outline denote
the three-point function, and the blue circles with solid outline represent the
propagator. The 𝜏-derivative of the regulator is depicted by the orange square.
‘perm.’ refers to permutations of the external leg as well as the insertion of the
regulator.

appears in equation (4.3) where the classical three-point function is replaced
by an initial three-point function that is given as input. In any case, only the
dynamics of the propagator is considered because the flow of the three-point
function is still neglected. It is noteworthy that this truncation gives rise to a non-
trivial dynamical evolution in the 𝜙3-theory regardless of the initial three-point
function. In contradistinction, in the 𝜙4-theory, a non-local, i.e. non-classical,
initial four-point function is necessary. Otherwise, the only diagram in the flow
of the two-point function is the tadpole diagram with local vertex. This further
motivates using the 𝜙3-theory as a test case.

4.1.2. Truncated flow for the propagator

After having established the truncation, it is now possible to turn to the only
remaining flow, that is for the 1PI two-point function. For that purpose, the
discussed truncation is applied to the full flow equation from section 3.5.3,
which was given as

𝜕𝜏Γ
(2)
𝜏,𝑥1𝑥2 =

1
2 ∫

𝒞(𝑧1,𝑧2)

𝜕𝜏𝐺𝜏,𝑧1𝑧2 Γ
(4)
𝜏,𝑧1𝑧2𝑥1𝑥2 +

i
2 ∫

𝒞(𝑧1,…,𝑧4)

𝜕𝜏[𝐺𝜏,𝑧1𝑧2𝐺𝜏,𝑧3𝑧4] Γ
(3)
𝜏,𝑥1𝑧2𝑧4 Γ

(3)
𝜏,𝑥2𝑧1𝑧3 .

(4.4)

In this equation, the regulator was already replaced using the identity from
equation (3.17). The first term on the right hand side completely drops out in
this setup, whereas in the second one, the classical vertices are inserted and,
subsequently, the integration over internal points is performed. In the last step,
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it is important to note that the integration is possible since the 𝛿-distributions
in the local vertices do not share the same regularisation as the 𝜃-distributions
in the 𝜏-dependent propagator. The latter all originate from the 𝜃-distribution
in the regulator, while those in the local vertices are directly given in the initial
action. In fact, this statement is true for any local vertex, even those generated
via flow equations, because they inherit the locality from the initial vertices.
The truncated flow of the two-point function then reads

𝜕𝜏Γ
(2)
𝜏 (𝑥1𝑥2) =

i𝜆2

2 𝜕𝜏𝐺2
𝜏 (𝑥1𝑥2) . (4.5)

Figure 4.2 shows a graphical representation of this flow. Note that the permuta-
tions indicated in said figure are encoded in the 𝜏-derivative in the second term
on the right hand side of equation (4.4), as well as in equation (4.5). In the
truncated flow with the classical three-point function, this fact is obscured by
the symmetry of the vertex. Finally, the integrated flow is easily obtained since
the flow is a total 𝜏-derivative. In section 3.6.2, the integrated flow of the 1PI
two-point function was defined as the self-energy Σ in equation (3.54). Using
this convention, the self-energy reads

Σ(𝑥1, 𝑥2) = −
𝜆2

2 𝐺
2(𝑥1, 𝑥2) . (4.6)

In the present truncation, the self-energy is one-loop, and only depends on the
fully dressed propagator. The latter is actually not a feature of the truncation,
but the t-fRG itself. As a matter of fact, it is possible to write the self-energy as
functional of the propagator in any truncation. For that purpose, the integrated
flows of higher-order correlation functions is inserted into the self-energy. As a
consequence, the obtained functional is generally of any loop-order but only
depends on the propagator. This is a property that is also present in the 2PI ef-
fective action formalism. Interestingly, the truncation in this study directly leads
to the self-energy that is obtained in the two-loop perturbative 2PI approach.
From the definition in equation (2.47), it is clear that the functional

Φ[𝐺] =
i𝜆2

12 ∫𝒞(𝑧1,𝑧2)
𝐺3(𝑧1, 𝑧2) =

i
12 (4.7)

indeed results in the same self-energy. As a consequence, the present truncation
is manifestly energy conserving. Since the approximation was not construc-
ted in this respect, this result could hint at truncations in the t-fRG generally
being energy conserving. A more ambitious example that results in the same
observation is presented in chapter 5 for the 𝜙4-theory.
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Figure 4.2. Truncated flow equation of the two-point function. The black dot with
three legs denotes the classical vertex 𝑆(3), the blue circles with solid outline
represent the propagator, and the orange square is the 𝜏-derivative of the regulator.
‘perm.’ refers to permutations of the external legs.

4.2. Numerical setup

With the theory and truncation fixed, the numerical setup needs to be discussed.
In this section, the choice of a suitable representation of the propagator is
justified, and subsequently, initial conditions for multiple solvers are provided.

4.2.1. Representation of the propagator

In a numerical study, it is essential to choose the optimal representation for
the objects of interest. For the computations in this chapter, the propagator is
parameterised as

𝐺(𝑥, 𝑦) = 𝐹(𝑥, 𝑦) −
i
2 𝜌(𝑥, 𝑦) sgn𝒞(𝑥

0 − 𝑦0) , (4.8)

which was introduced in section 2.1.4. The spectral function 𝜌 and the statistical
propagator 𝐹 are defined as the expectation value of the commutator and anti-
commutator of two field operators, respectively. This choice is particularly
useful because both of those functions are real, and each exhibits a symmetry
under the permutation of time arguments. Contrary, the naive approach using
the matrix representation with 𝐺++, 𝐺+−, 𝐺−+ and 𝐺−−, involves four complex
functions. A direct implementation of the latter representation requires eight
times as much memory as the implementation using the spectral function and
statistical propagator. Another, even more important, reason are cancellations
on the closed timepath that occur in time integrals. In thematrix representation,
those cancellations have to occur numerically and, therefore, errors accumulate
with each time step. On the other hand, those cancellations are explicit in the
formulation with the spectral function and statistical propagator, eliminating
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one source of numerical errors. For details, see appendix B. Lastly, spatial
coordinates are Fourier transformed, see appendix C.

4.2.2. Initial conditions

In case of using the integral equation (3.58), the initial conditions are encoded in
the solution of the Dyson equation for the initial propagator 𝐺. For a free theory
at initial time, which is regarded here, it is just the solution to the free equation
of motion. In terms of the spectral function and the statistical propagator, this
solution can be written as

𝐹(𝑡, 𝑡′; 𝐩) =
1
𝜔𝐩

(
1
2 + 𝑓0(𝐩)) cos [𝜔𝐩(𝑡 − 𝑡′)] ,

𝜌(𝑡, 𝑡′; 𝐩) =
1
𝜔𝐩

sin [𝜔𝐩(𝑡 − 𝑡′)] , (4.9)

where 𝑓0(𝐩) denotes the initial occupation number. The initial occupation num-
ber can be considered as a free parameter that needs to be additionally fixed
for a particular preparation of the system. On the other hand, the dispersion
relation at initial time 𝜔2𝐩 = 𝐩2 +𝑚2

0 is fixed by the initial (bare) mass. For the
differential equation approach from equation (3.57), initial values have to be
provided for 𝐹 and 𝜌, as well as their first derivatives at the initial time. Those
values can be readily obtained from the free propagator (4.9).
For the results presented in this chapter, the initial occupation number is

chosen such that momentummodes below the initial mass are evenly occupied,
otherwise the occupation number vanishes. It is parameterised as

𝑓0(𝐩) =
𝑁
̃𝜆
𝜃(𝑚0 − |𝐩|) , (4.10)

where the prefactor determines the total particle number and hence the total
energy. In this study 𝑁 = 100 is chosen, and the dimensionless coupling of the
three-point function is given by ̃𝜆 = 𝜆/𝑚2

0 = 0.01.

4.3. Total energy

Since the truncation in this numerical study is equivalent to a Φ-derivable ap-
proximation, the total energy is evidently conserved. In order to verify this
statement numerically, it is necessary to work out the appropriate expression
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for the energy in the given truncation. In this particular case, it is possible to
utilise the Dyson-Schwinger equation of the inverse propagator to express the
energy solely in terms of the propagator.

The total energy is given by ⟨𝑇00⟩, that is the 00-component of the expectation
value of the energy-momentum tensor. In general, the expectation value of the
energy-momentum tensor is obtained from the effective action as

⟨𝑇𝜇𝜈(𝑥)⟩ =
2

√−𝑔(𝑥)

𝛿Γ[𝜙, 𝑔]
𝛿𝑔𝜇𝜈(𝑥)

|
|
|
𝑔𝜇𝜈=𝜂𝜇𝜈

. (4.11)

In equation (4.11), the metric 𝑔𝜇𝜈 is identified with the Minkowski metric 𝜂𝜇𝜈.
The flow of ⟨𝑇𝜇𝜈⟩ can be derived from the metric variation of 𝜕𝜏Γ𝜏 and will be
discussed in future work. Here, the derivation follows closely the ones also
found in the 2PI framework, e.g. [20], which allows to discuss the diagrammatic
consistency of the truncation at hand. Concentrating on the energy-component,
𝑇00 is derived from equation (4.11) by substituting Γ by the classical action. This
leads to

𝑇00(𝑥) = 𝜕0𝜑𝜕0𝜑 − 𝑔00 (
1
2 𝜕𝜇𝜑𝜕

𝜇𝜑 −
1
2 𝑚

2
0 𝜑2 −

𝜆
3! 𝜑

3) . (4.12)

Its expectation value can be obtained from a general form that follows closely
the derivation in section 2.2.5, see also e.g. [10]. For powers of the field operator,
it can be written as

⟨
𝑛
∏
𝑖=1

𝜑(𝑥𝑖)⟩ =
𝑛
∏
𝑖=1

[∫
𝒞(𝑧𝑖)

𝐺(𝑥𝑖, 𝑧𝑖)
𝛿

𝛿𝜙(𝑧𝑖)
+ 𝜙(𝑥𝑖)]

𝜙EoM

, (4.13)

with the full mean-field-dependent propagator 𝐺[𝜙](𝑥, 𝑦) and the mean field
𝜙 = ⟨𝜑⟩ being evaluated on the equations of motion (EoM). In the present case,
it is 𝜙EoM = 0, thus the energy reduces to

⟨𝑇00(𝑥)⟩ =
1
2 lim𝑦→𝑥 [𝜕𝑥0𝜕𝑦0𝐺(𝑥, 𝑦) + (−𝜕2𝐱 +𝑚2

0)𝐺(𝑥, 𝑦)]

+
i𝜆
3! ∫

𝒞(𝑧1,𝑧2,𝑧3)

Γ(3)(𝑧1, 𝑧2, 𝑧3)
3
∏
𝑖=1

𝐺(𝑥, 𝑧𝑖) , (4.14)

where the variation of the field-dependent propagator with respect to the field
was used as given in equation (3.11). The last term in equation (4.14) is the
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Figure 4.3. The sunset diagram on the left, which contributes to the energy in
equation (4.14), contains a one-loop subgraph (left box) which is related to the gap
equation (DSE) in the right box. The black dots represent the classical propagator
and three-point function, respectively. The dressed propagator is depicted by blue
circles with solid outline. The green circle with dashed outline denotes the dressed
three-point function.

vacuumsunset diagram. Its one-loop subgraph is related to theDyson-Schwinger
equation of the inverse propagator for 𝜙 = 0. The derivation of this equation
is presented in appendix A.1. The diagrammatic representations of the DSE as
well as the subgraph are shown in figure 4.3. Inserting the gap equation (A.7)
into the sunset diagram leads to

i𝜆
3! ∫

𝒞(𝑧1,𝑧2,𝑧3)

Γ(3)(𝑧1, 𝑧2, 𝑧3)
3
∏
𝑖=1

𝐺(𝑥, 𝑧𝑖) =
1
3 ∫

𝒞(𝑧)

[𝑆(2)(𝑥, 𝑧) − Γ(2)(𝑥, 𝑧)]𝐺(𝑧, 𝑥) . (4.15)

The second term is proportional to an irrelevant constant, (Γ(2) ⋅ 𝐺)(𝑥, 𝑦) =
i 𝛿𝒞(𝑥 − 𝑦), while the first one simply changes the prefactors of the first and
second term on the right hand side of equation (4.14). Fourier transforming the
spatial coordinates, the final expression for the total energy is

⟨𝑇00(𝑡)⟩ =
5
6 lim

𝑡→𝑡′
𝜕𝑡𝜕𝑡′∫

𝐩
𝐺(𝑡, 𝑡′; 𝐩) +

1
6 ∫𝐩

(𝐩2 +𝑚2
0) 𝐺(𝑡, 𝑡; 𝐩) . (4.16)

Note that the explicit occurrence of Γ(3) has dropped out. This trivially ensures
the self-consistency of equation (4.16) with the approximation of Γ(3) used in
the computation of the propagator. Equation (4.16) also readily extends to all
components of the expectation value of the energy momentum tensor ⟨𝑇𝜇𝜈⟩.
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4.4. Results

The propagator already allows for the discussion of relevant observables such as
the occupation number and the dispersion relation. Although, in non-equilibri-
um situations, there are no unique definitions, versions analogue to the ones
in equilibrium can be defined. To that end, a decomposition of the equal-time
statistical propagator, see e.g. [21], is used that has the form

𝐹(𝑡, 𝑡, 𝐩) =
𝑓(𝑡, 𝐩) + 1

2
𝜔(𝑡, 𝐩)

. (4.17)

The non-equilibrium generalisations of the occupation number 𝑓(𝑡, 𝐩) and
dispersion relation 𝜔(𝑡, 𝐩) are chosen such that they coincide with their time-
independent counterparts in equilibrium. The occupation number can be com-
puted as

𝑓(𝑡, 𝐩) = [𝜕𝑡𝜕𝑡′𝐹(𝑡, 𝑡′; 𝐩)|𝑡′=𝑡𝐹(𝑡, 𝑡; 𝐩)]
1/2 −

1
2 , (4.18)

and for the dispersion relation, the generalisation reads

𝜔(𝑡, 𝐩) = (
𝜕𝑡𝜕𝑡′𝐹(𝑡, 𝑡′; 𝐩)|𝑡′=𝑡

𝐹(𝑡, 𝑡; 𝐩) )
1/2

. (4.19)

The free propagator (4.9), which is evidently in equilibrium, exemplifies the
above definitions. There, it can be directly verified that the definitions indeed
coincide with the expected values in equilibrium.
For the results shown in this section, the initial conditions describe a sys-

tem far from equilibrium: it is prepared with highly over-occupied momentum
modes at small momenta and none for high momenta. Explicitly, the initial oc-
cupancies are characterised by a (sharp) box of height 𝑁̃/ ̃𝜆 such that momentum
modes are evenly occupied for momenta |𝐩| < 𝑚0, see equation (4.10). In par-
ticular, 𝑁 = 100 is chosen and the dimensionless coupling of the three-point
function is given by ̃𝜆 = 𝜆/𝑚2

0 = 0.01. The results in this chapter were obtained
solving the integro-differential version of the time evolution equation.

4.4.1. Dispersion relation

A first interesting result is the time evolution of the dispersion relation shown in
figure 4.4. At small momenta the dispersion decreases with time. This region is
dominated by themass. Themass𝑚 of the interacting particles can therefore be
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Figure 4.4. Time evolution of the dispersion relation as defined in equation (4.19).
It is depicted by showing the result for various times. The grey dashed line corres-
ponds to the dispersion at the initial time. At zero momentum, the mass of the
interacting theory is obtained as𝑚 ≈ 0.9𝑚0 relative to the bare mass.

read off at zero momentum. For late times, the mass is obtained from figure 4.4
as 𝑚 ≈ 0.9𝑚0 relative to the bare mass 𝑚0. For higher momenta, where the
mass is negligible, the dispersion agrees for all times.

4.4.2. Occupation number

The time evolution of the occupation number is shown in figure 4.5 for the
same times as used for the dispersion relation. Naturally, the initial sharp box
is softened during the time evolution, and particles are redistributed over the
range of momenta. The momentum regime around 𝑝/𝑚0 ≈ 2 is particularly
interesting. In this regime, self-similar scaling may be identified where the
occupation number exhibits a power law decay

𝑓(𝑡, 𝐩) ∝ |𝐩|−𝜅 . (4.20)

In order to estimate the exponent 𝜅, the power law could be directly fitted
to the available data in the appropriate momentum range. However, it is not
clear over which momenta the power law behaviour is given. Alternatively, the
momentum-dependent exponent can be computed by

𝜅(𝑡, 𝑝) = −𝑝𝜕𝑝 ln 𝑓(𝑡, 𝑝) . (4.21)
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Figure 4.5. Time evolution of the occupation number as defined in equation (4.18)
represented by the result for various times. The grey dashed line shows the initial
occupations. For later times the initial box is smoothed out, and the result indicates
a self-similar scaling regime around 𝑝/𝑚0 ≈ 2 exhibiting a power law decay.

This exponent is shown for different times in figure 4.6. In the momentum
range 𝑝/𝑚0 ∈ [1.8, 2.1] this exponent is approximately constant. At later times
this constant scaling regime is more pronounced, and the exponent for the
momentum range above is evaluated at 𝑡 = 499.9/𝑚0 as

𝜅 ∈ [5.57 , 5.69] ,
𝑝
𝑚0

∈ [1.8 , 2.1] . (4.22)

The analysis above suggests a power law behaviour. Moreover, the exponent is
similar for all times considered. This indicates a self-similar scaling, although
the regime is rather small.
In regimes with self-similar scaling, the time evolution is characterised by a

self-similar scaling of the occupancies, see e.g. [19, 22]. This scaling reads

𝑓(𝑡ref, |𝐩|) = (
𝑡
𝑡ref

)
−𝛼

𝑓[𝑡, (
𝑡
𝑡ref

)
−𝛽
|𝐩|] . (4.23)

In the regime𝑝/𝑚0 ∈ [1.8, 2.1], a least squares fit for the times 𝑡𝑚0 = 312.5, 375.0,
437.6 with respect to the occupancies at the reference time 𝑡ref = 499.9/𝑚0 leads
to the exponents 𝛼 = 0.82, 1.03, 1.39 and 𝛽 = −0.02, 0.02, 0.09. The left panel of
figure 4.7 shows the original occupation numbers for the above times and the
right panel those that are rescaled each by their corresponding exponents. The
rescaled occupation numbers match in the momentum range found from the
power law exponent in accordance with a self-similar time evolution.
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Figure 4.6.Momentum-dependent exponents of the occupation number for various
times ̃𝑡 = 𝑡𝑚0 as defined in equation (4.21). In the momentum range 𝑝/𝑚0 ∈
[1.8, 2.1], the exponents are approximately constant. At later times this constant
regime is more pronounced, and the exponent is evaluated at 𝑡 = 499.9/𝑚0 as
𝜅 ∈ [5.57 , 5.69]. The inset shows the momentum-dependent exponents for the full
available momentum range.
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Figure 4.7. Self-similar time evolution in the momentum range 𝑝/𝑚0 ∈ [1.8, 2.1],
which is marked by vertical dashed lines. • Left: Occupation numbers without
rescaling as obtained directly from the computation. • Right: Occupation num-
bers rescaled according to equation (4.23) for an assumed self-similar time
evolution in the given momentum range. The exponents computed for times
𝑡𝑚0 =312.5, 375.0, 437.6 are given by 𝛼 =0.82, 1.03, 1.39 and 𝛽 =−0.02, 0.02, 0.09.
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Figure 4.8. Relative error of the total energy 𝐸(𝑡), see equation (4.24), with respect
to the initial total energy 𝐸(0). The applied convention is ||[𝐸(𝑡) − 𝐸(0)]/𝐸(0)||. After
an initial tune in, the relative error stabilises at around 10−4.

4.4.3. Energy and particle number

A non-trivial and important consistency check for the present computation is
the conservation of energy and particle number. The total energy is obtained
by computing the expectation value of the time-time component of the energy-
momentum tensor 𝑇𝜇𝜈. The details of this computation were discussed in sec-
tion 4.3, where a representation of the energy solely in terms of the propagator
was derived. Using 𝜌(𝑡, 𝑡, 𝐩) = 0 in equation (4.16), the total energy is

𝐸(𝑡) = ⟨𝑇00(𝑡)⟩ = lim
𝑡→𝑡′

5
6𝜕𝑡𝜕𝑡′∫𝐩

𝐹(𝑡, 𝑡′; 𝐩) +
1
6 ∫𝐩

(𝐩2 +𝑚2
0) 𝐹(𝑡, 𝑡; 𝐩) . (4.24)

Figure 4.8 shows the relative error of the total energy over time. After a short tune
in period, the error stabilises at around 10−4 and the total energy is conserved.
Finally, conservation of the total particle is considered. For that purpose, a

definition based on the flow of particle numbers is useful. The definition used
in this context is

Δ𝑓(𝑡) =
∫𝑝 {𝑓(𝑡, 𝑝) − 𝑓(0, 𝑝)}

∫𝑝 ||𝑓(𝑡, 𝑝) − 𝑓(0, 𝑝)||
, (4.25)

which measures the sum of positive and negative flow of particle numbers
normalised to the difference of positive and negative flow of particle numbers
(total flow). Figure 4.9 shows this quantity. Similarly to the total energy, the total
particle number is conserved after the initial oscillations.
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Figure 4.9. Sum of positive and negative flows in particle number, which is normal-
ised to the difference of positive and negative flow (total flow) of particle number,
see the definition in equation (4.25). After initial oscillations the total particle
number is conserved.

4.5. Conclusion

In this chapter, the t-fRG approach in its integrated form has been applied to the
𝜙3-theory in 1+ 1 dimensions. This theory serves as a test case for the approach
and simulates the cubic interactions in a non-Abelian gauge theory. Here, the
simplest approximation of the dynamics of the propagator has been studied
by using classical vertices in the integrated flow. This approximation leads to
a dynamical resummation of the propagator. The results indicate a scaling
regime out of equilibrium with a momentum scaling |𝐩|−𝜅 with 𝜅 ∈ [5.57 , 5.69]
at 𝑡 = 499.9/𝑚0, see equation (4.22). An investigation of the self-similarity of the
three times available led to the coefficients𝛼 ∈ [0.82 , 1.39] and 𝛽 ∈ [−0.02 , 0.09],
see equation (4.23).



Chapter 5

Quartic interaction 5

In the previous chapter, only cubic interactions have been considered. Now
the t-fRG approach is extended to quartic interactions. Not only are four-point
functions necessary to describe a 𝜙3-theory with non-vanishing macroscopic
field, but four-vertices are also essential on the way to gauge theories. Yang-
Mills theory, for example, includes both three- and four-point functions in the
gauge-fixed action. The former are the ghost-gluon- and three-gluon-vertices,
and the latter is the four-gluon-vertex. Although those vertices are momentum
dependent and additionally include tensor structures, the causal structure is
still the same. A scalar field theory is therefore appropriate for the discussion
of the t-fRG.

Together with the 𝜙4-theory inevitably comes the problem of renormalisation.
Even in 1 + 1 dimensions, the tadpole diagram with the classical local four-
point function is logarithmically divergent. However, the upside is that the
most simple truncation only includes exactly that diagram. Hence, the problem
of renormalisation can be regarded isolated for the tadpole, see section 5.2.1.
Similarly, the general discussion of equilibrium initial conditions is exemplified
in section 5.2.2 for the same truncation in 1 + 0 dimensions.

In addition to those important topics, the dynamical vertex is discussed in
two truncations. The considered truncations comprise a one-loop correction
to the vertex in section 5.3.1, and the resummed 𝑠-channel in section 5.3.2.
Finally, the t-fRG approach is extended to an 𝑁-component scalar field theory
in section 5.3.3. In this case, the resummed vertex leads to a 1/𝑁 expansion.
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Figure 5.1. Diagrammatic flow equation of the inverse propagator in the 𝜙4-theory.
The blue circles with solid outline denote the propagator while the pink circle with
dotted outline denotes the four-point function. The 𝜏-derivative of the regulator is
depicted as orange square.

5.1. Flow equations

In this chapter, the 𝜙4-theory is considered for vanishing background fields only.
As a consequence no vertex with an odd number of legs can be generated. The
remaining set of flow equations is truncated such that the four-point function
is the highest-order correlation function. In this truncation, the only non-
vanishingflows are those of the two- and four-point function. The former is given
in its entirety in equation (3.35). Due to the absence of the three-point function,
the only remaining diagram is the tadpole. Therefore, in a pure 𝜙4-theory with
vanishing background field, the flow equation is

𝜕𝜏Γ
(2)
𝜏,𝑥1𝑥2 =

1
2 ∫

𝒞(𝑧1,𝑧2)

𝜕𝜏𝐺𝜏,𝑧1𝑧2 Γ
(4)
𝜏,𝑧1𝑧2𝑥1𝑥2 . (5.1)

Figure 5.1 shows a diagrammatic representation of this flow equation. The
flow of the four-point function also only consists of one distinct diagram, see
figure 5.2. The corresponding equation that contains all permutation of external
legs is

𝜕𝜏Γ
(4)
𝜏,𝑥1𝑥2𝑥3𝑥4 =

i
2 ∫𝒞(𝑦1,𝑦2,𝑦3,𝑦4)

𝜕𝜏[𝐺𝜏,𝑦1𝑦2𝐺𝜏,𝑦3𝑦4] Γ
(4)
𝜏,𝑦2𝑥2𝑥3𝑦3 Γ

(4)
𝜏,𝑦4𝑥1𝑥4𝑦1

+
i
2 ∫𝒞(𝑦1,𝑦2,𝑦3,𝑦4)

𝜕𝜏[𝐺𝜏,𝑦1𝑦2𝐺𝜏,𝑦3𝑦4] Γ
(4)
𝜏,𝑦4𝑥1𝑥3𝑦1 Γ

(4)
𝜏,𝑦2𝑥2𝑥4𝑦3

+
i
2 ∫𝒞(𝑦1,𝑦2,𝑦3,𝑦4)

𝜕𝜏[𝐺𝜏,𝑦1𝑦2𝐺𝜏,𝑦3𝑦4] Γ
(4)
𝜏,𝑦4𝑥1𝑥2𝑦1 Γ

(4)
𝜏,𝑦2𝑥3𝑥4𝑦3 . (5.2)
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Figure 5.2. Diagrammatic flow equation of the four-point function in the 𝜙4-theory.
The blue circles with solid outline denote the propagator while the pink circles with
dotted outline denote the four-point function. The 𝜏-derivative of the regulator is
depicted as orange square. ‘perm.’ refers to permutations of the external legs.

5.2. The tadpole diagram

The simplest truncation is obtained by approximating the four-point function
with the classical one, i.e. neglecting its flow equation. As a consequence, the
tadpole diagram in the flow of the 1PI two-point function is solely computed
using the local vertex, which is given by

𝑆(4)(𝑥1, … , 𝑥4) = −𝜆 𝛿𝒞(𝑥1 − 𝑥2) 𝛿𝒞(𝑥2 − 𝑥3) 𝛿𝒞(𝑥3 − 𝑥4) . (5.3)

This resultingdiagram is logarithmically divergent already in 1+1dimensions, so
that renormalisation is necessary. Since the considered truncation leads to this
single diagram, the investigation of renormalisation is particularly accessible.
Additionally, equilibrium initial conditions as a special case can be studied.
Integrating the flow of the 1PI two-point function results in the self-energy
where the local part is

Σ(0)(𝑡) =
𝜆
2 ∫

𝐩
𝐹(𝑡, 𝑡; 𝐩) , (5.4)

with the momentum integral ∫𝐩 = ∫ℝ𝑑
d𝑑𝐩
(2𝜋)𝑑

in 1 + 𝑑 dimensions.

5.2.1. Tadpole renormalisation

In this section, mass renormalisation within the t-fRG is investigated. The gen-
eral idea was presented in section 3.7.2. Since this problem can be considered
as an initial value problem, the notation is closely related to the one introduced
for the time evolution equations in section 3.6.2. Let the local self-energy from
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equation (5.4) define the naive self-energy with both finite and divergent part

Σ(0)non-ren.(𝑡) =
𝜆
2 ∫𝐩

𝐹(𝑡, 𝑡; 𝐩) . (5.5)

The divergence originates from the zero-temperature part of the statistical
propagator. The finite-temperature part contains a particle number distribu-
tion that vanishes in the ultraviolet limit. The necessary counterterm is time-
independent and only contributes to themass, whichmakes it sensible to define
it as the mass shift

Σ(0)counter(𝑡) = Δ𝑚2 =
𝜆
2 ∫𝐩

𝐹𝑇=0(𝑡, 𝑡; 𝐩) =
𝜆
4 ∫𝐩

(𝑚2
𝑅 + 𝐩2)−1/2 , (5.6)

where𝑚𝑅 denotes the renormalised mass. The counterterm Σcounter is inserted
into the gap equation like Σinit in equation (3.61), which leads to the gap equation
for the initial propagator

i𝐺−1(𝑥1, 𝑥2) = 𝑆(2)(𝑥1, 𝑥2) − Δ𝑚2 𝛿𝒞(𝑥1 − 𝑥2) . (5.7)

The solution to this equation is evidently the free propagator with renormalised
mass

𝑚2
𝑅 = 𝑚2

0 + Δ𝑚2 . (5.8)

Finally, the time evolution equation (3.62), where Σinit is replaced by Σcounter
reads

𝐺(𝑥, 𝑦) =𝐺(𝑥, 𝑦) +∫
𝒞(𝑎,𝑏)

𝐺(𝑥, 𝑎) Σ(𝑎, 𝑏)𝐺(𝑏, 𝑦) , (5.9)

with the finite self-energy

Σ(0)(𝑡) = −Δ𝑚2 +
𝜆
2 ∫𝐩

𝐹(𝑡, 𝑡; 𝐩) . (5.10)

For numerical computations it is useful to split the propagator into the zero-
temperature part of the free propagator with renormalised mass and the rest.
That way, the cancellation in equation (5.10) is performed on the level of the
equation.
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5.2.2. Equilibrium initial conditions in quantummechanics

In a quantummechanical system, that is in 1+0 dimensions, the tadpole diagram
is not divergent. With renormalisation out of the way, it is easier to focus on
equilibrium initial conditions. Following the more general discussion from
section 3.7.1, the equation to obtain the equilibrium propagator is

i𝐺−1(𝑥1, 𝑥2) = 𝑆(2)(𝑥1, 𝑥2) − iΣinit(𝑥1, 𝑥2) . (5.11)

where the local self-energy is given by equation (5.4) with the full propagator
replaced by the initial one. Since the initial propagator is in equilibrium, the
self-energy is time independent and defines the mass shift

Δ𝑚2 = Σ(0)init(𝑡) =
𝜆
2 𝐹(𝑡, 𝑡) . (5.12)

As a consequence, the solution of equation (5.11) is

𝐹(𝑡, 𝑡′) =
1
2𝑚 cos [𝑚 (𝑡 − 𝑡′)] ,

𝜌(𝑡, 𝑡′) =
1
𝑚 sin [𝑚 (𝑡 − 𝑡′)] , (5.13)

with the resummed mass𝑚2 = 𝑚2
0 + Δ𝑚2. Plugging the statistical propagator

from equation (5.13) into the self-energy from equation (5.12) leads to a fixed
point equation for the mass shift,

Δ𝑚2 =
𝜆
4 (𝑚

2
0 + Δ𝑚2)−1/2 . (5.14)

To close this discussion, the time-dependent local self-energy is computed for
equilibrium and out-of-equilibrium initial conditions. The corresponding initial
self-energies are Σinit = Σ[𝐺] and Σinit = 0 (free propagator with bare mass),
respectively. Due to the construction of the initial propagator in equilibrium,
see also section 3.7.1, the self-energy has to be constant in time. Therefore, a
numerical computation merely serves as a tool to verify the formal result, but
also checks that the employed solver is accurate enough. Figure 5.3 shows the
result for both initial conditions. The equilibrium case behaves as intended.
In the out-of-equilibrium scenario, the time-dependent mass shift oscillates
around the resummedmass with themaxima taking on the value of the one-loop
mass correction. Clearly, the used truncation does not allow for equilibration.
As a matter of fact, it was already stated in section 4.1.1 that such a truncation
does not give rise to meaningful dynamics of the propagator.
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Figure 5.3. Time-dependent self-energy for different initial conditions. The blue
line depicts a system initially prepared at equilibrium. The orange line corresponds
to a free propagator at initial time. The latter oscillates around the resummed
mass with themaxima taking on the value of the one-loopmass correction (dashed
black line) to the bare mass.

5.3. Dynamics of the vertex

The previously used truncation, where the four-point function was fixed to the
classical one, clearly does not involve the dynamics of the vertex. Additionally,
the self-energy in such a truncation is purely local. Hence, the self-energy con-
tributes only to the mass, and there is actually no meaningful dynamics of the
propagator. In the 𝜙3-theory such a simple truncation already leads to a dynam-
ical propagator, see chapter 4. In the 𝜙4-theory it is therefore indispensable
to include a dynamical vertex. From the full flow equation of the four-point
function, see figure 5.2, it is clear that in general the fully dressed vertex feeds
back into its own flow equation. In this section, two truncations are examined.
In the first one, the four-point function inside the flow is replaced by its classical
counterpart. In the second truncation, the vertex couples back into its flow, but
is approximated only by its 𝑠-channel.

5.3.1. One-loop vertex

If the flow of the four-point vertex is truncated such that it does not include the
fully dressed four-point vertex itself, the vertex corrections are all one-loop, see
figure 5.4. Of course, this refers to loops containing the full propagator and,
thus, higher-order loops are still implicitly included. Paying attention to all
permutations of the external legs and the regulator insertion, the flow equation
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Figure 5.4. Truncated flow equation of the four-point function. The black dots de-
note classical four-point functions while the pink circle (dotted outline) represents
the fully dressed one. The blue circles (solid outline) are the full propagators. The
𝜏-derivative of the regulator is represented by the orange square.

is given by

𝜕𝜏Γ
(4)
𝜏 (𝑥1, 𝑥2, 𝑥3, 𝑥4) =

i𝜆2

2 𝜕𝜏[𝐺𝜏(𝑥1, 𝑥3)2] 𝛿𝒞(𝑥1 − 𝑥2) 𝛿𝒞(𝑥3 − 𝑥4)

+
i𝜆2

2 𝜕𝜏[𝐺𝜏(𝑥1, 𝑥2)2] 𝛿𝒞(𝑥1 − 𝑥3) 𝛿𝒞(𝑥2 − 𝑥4)

+
i𝜆2

2 𝜕𝜏[𝐺𝜏(𝑥1, 𝑥2)2] 𝛿𝒞(𝑥2 − 𝑥3) 𝛿𝒞(𝑥1 − 𝑥4) . (5.15)

The different combinations of 𝛿-distributions show that all channels are included
in the flow equation. This is important, because in this truncation no specific
channel is singled out. However, as soon as the integrated flow is inserted
into the flow of the inverse propagator which is subsequently integrated over
𝜏, the 𝑡-channel drops out. This a direct consequence of the 𝛿-distribution
not connecting internal and external point, see section 3.5.1 for the general
discussion. The 𝑠- and 𝑢-channels contribute equally to the self-energy. The full
expression for the self-energy is

Σ(𝑥1, 𝑥2) = −
i𝜆
2 𝐺(𝑥1, 𝑥2) 𝛿𝒞(𝑥1 − 𝑥2) −

𝜆2

6 𝐺(𝑥1, 𝑥2)
3 , (5.16)

where the first term on the right hand side is again the tadpole. This self-energy
is evidently a perturbative approximation up to two loops. Moreover, it is equi-
valent to 2PI perturbation theory. In that framework, the self-energy is obtained
by opening one propagator line of the vacuum diagrams that are contained in
the Φ-functional. Keeping combinatorial factors in mind, from the definition in
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equation (2.47), it follows that the appropriate functional is given by

Φ[𝐺] =
1
8 +

i
48 . (5.17)

Without further considerations, it is therefore evident that the chosen truncation
leads to an energy-conserving approximation. Since the truncation has not been
chosen in view of energy conservation, this finding is a welcome side effect.

5.3.2. S-channel resummation

Going beyond the one-loop vertex requires the four-point function to feed back
into its own flow equation. Yet it is still allowed to approximate the vertex.
In this respect, it is useful to split the vertex into 𝛿-distributions and vertex
functions. Since the initial vertex always includes the classical one, which is
completely local, the flow equation directly shows that the generated vertex can
have one or two 𝛿-distributions. This holds true in the present truncation with a
vanishing background field. It can also contain a non-local part. Choosing an
approximation where only the case with two 𝛿-distributions is considered, the
vertex can be split as

Γ(4)𝜏 (𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑆(4)(𝑥1, 𝑥2, 𝑥3, 𝑥4)

+ i Γ(4s)𝜏 (𝑥1, 𝑥3) 𝛿𝒞(𝑥1 − 𝑥2) 𝛿𝒞(𝑥3 − 𝑥4)

+ i Γ(4t)𝜏 (𝑥1, 𝑥2) 𝛿𝒞(𝑥1 − 𝑥3) 𝛿𝒞(𝑥2 − 𝑥4)

+ i Γ(4u)𝜏 (𝑥1, 𝑥2) 𝛿𝒞(𝑥1 − 𝑥4) 𝛿𝒞(𝑥2 − 𝑥3) , (5.18)

where the introduced functions on the right hand side represent the differ-
ent channels. This decomposition allows for the derivation of a flow equation
for every channel. In this section, however, only the dominant 𝑠-channel is
considered. Its flow equation is obtained from the flow of the full vertex in equa-
tion (5.2). Dropping all permutations of the external legs that do not contribute
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to the 𝑠-channel, the flow reads

i 𝜕𝜏Γ
(4s)
𝜏 (𝑥1, 𝑥3) 𝛿𝒞(𝑥1 − 𝑥2) 𝛿𝒞(𝑥3 − 𝑥4)

=
i
2 ∫

𝒞(𝑦1,𝑦2,𝑦3,𝑦4)

𝜕𝜏[𝐺𝜏(𝑦1, 𝑦2)𝐺𝜏(𝑦3, 𝑦4)] Γ
(4)
𝜏 (𝑥1, 𝑥2, 𝑦1, 𝑦4) Γ

(4)
𝜏 (𝑦2, 𝑦3, 𝑥3, 𝑥4) . (5.19)

This equation can be further simplified by identifying vanishing diagrams. Since
the vertices are either classical or 𝑠-channel, there are in total four diagrams.
Without loss of generality, let 𝑥01 > 𝑥03. With the result from section 3.5.1, it
follows that the first vertex in equation (5.19) has to be the classical one. Oth-
erwise, the internal and external points are not connected by a 𝛿-distribution.
Inserting the decomposition of the vertex as well as the explicit form of the
classical vertex, the flow equation ultimately is

𝜕𝜏Γ
(4s)
𝜏 (𝑥1, 𝑥3) =

𝜆2

2 𝜕𝜏[𝐺𝜏(𝑥1, 𝑥3)
2] −

i𝜆
2 ∫

𝒞(𝑧1)

𝜕𝜏[𝐺𝜏(𝑥1, 𝑧1)2] Γ
(4s)
𝜏 (𝑧1, 𝑥3) . (5.20)

Integrating the flow requires the causal property of 1PI correlation functions.
In case of the 𝑠-channel vertex, this property is expressed as

Γ(4s)𝜏 (𝑥1, 𝑥2) = Γ(4s)(𝑥1, 𝑥2) 𝜃(𝜏 − 𝑥01)
2 𝜃(𝜏 − 𝑥02)

2 , (5.21)

where the 𝜃-distributions are to the power of two because the arguments are
pairwise identical. Using equation (3.39) to dealwith the product of distributions,
the integrated flow is obtained as

Γ(4s)(𝑥1, 𝑥2) =
𝜆2

2 𝐺(𝑥1, 𝑥3)2 −
i𝜆
2 ∫

𝒞(𝑧1)<𝑥01

𝐺(𝑥1, 𝑧1)2 Γ(4s)(𝑧1, 𝑥3) . (5.22)

The property in equation (5.21) has to be considered also in the integration of
the flow of the inverse propagator. The result is the self-energy

Σ(𝑥1, 𝑥2) = −
i𝜆
2 𝐺(𝑥1, 𝑥1) 𝛿𝒞(𝑥1 − 𝑥2) −

1
6 𝐺(𝑥1, 𝑥2) Γ

(4s)(𝑥1, 𝑥2) , (5.23)

where the first term constitutes the tadpole diagram with the classical four-
point function. The second term contains the 𝑠-channel vertex which itself is
resummed using equation (5.22). When the resummation is not performed, the
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𝑠-channel remains at one-loop order, and the two-loop self-energy takes the
closed form

Σtwo-loop(𝑥1, 𝑥2) = −
i𝜆
2 𝐺(𝑥1, 𝑥1) 𝛿𝒞(𝑥1 − 𝑥2) −

𝜆2

12 𝐺(𝑥1, 𝑥2)
3 . (5.24)

Comparing this approximation to the result from section 5.3.1 it stands out
that the sunset diagram in the self energy (5.16) has a factor of two, which is
absent here. This factor arises because, previously, both the 𝑠- and 𝑢-channel are
included, which lead to the same term. In this section, the vertex is restricted
to the 𝑠-channel only, and consequently there is no contribution from the 𝑢-
channel.

5.3.3. 1/N expansion

The extension of the t-fRG to an 𝑁-component scalar field theory is straight-
forward. Due to the introduced tensor structure, every integral also contains a
summation over the field indices. Naturally, the regulator needs to be a tensor
as well. For the local regulator, the tensor structure is completely given by the
Kronecker delta. Therefore, the regulator is

𝑅𝑎𝑏𝜏 (𝑥, 𝑦) = 𝛿𝑎𝑏 𝑅𝜏(𝑥, 𝑦) . (5.25)

As a matter of fact, for a vanishing background field, the Kronecker delta is
the only tensor. Consequently, the tensor structure of correlation functions is
determined by combinations of the Kronecker delta. Similar to the regulator,
the propagator is decomposed into

𝐺𝑎𝑏
𝜏 (𝑥, 𝑦) = 𝛿𝑎𝑏𝐺𝜏(𝑥, 𝑦) . (5.26)

The self-energy and higher-order correlation functions can be split similarly. In
this form, it is easy to trace over field indices. For example, a propagator loop
can be traced as

[𝐺𝑎𝑏
𝜏 (𝑧1, 𝑧2)]

2 = 𝛿𝑎𝑏 𝛿𝑎𝑏𝐺𝜏(𝑧1, 𝑧2)2 = 𝑁 ⋅ 𝐺𝜏(𝑧1, 𝑧2)2 . (5.27)

In fact, this is the only ingredient to generalise the 𝑠-channel resummation to
an 𝑁-component scalar field, which directly gives the 1/𝑁 expansion. Let the
interaction part of the action be

𝑆int[𝜑] = −
𝜆
4!𝑁 ∫

𝒞(𝑥)
𝜑𝑎(𝑥) 𝜑𝑎(𝑥) 𝜑𝑏(𝑥) 𝜑𝑏(𝑥) . (5.28)
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The classical four-point function is then given by

𝑆(4),𝑎𝑏𝑐𝑑(𝑥1, 𝑥2, 𝑥3, 𝑥4) = −
𝜆
3𝑁 (𝛿𝑎𝑏 𝛿𝑐𝑑 + 𝛿𝑎𝑐 𝛿𝑏𝑑 + 𝛿𝑎𝑑 𝛿𝑏𝑐)

× 𝛿𝒞(𝑥1 − 𝑥2) 𝛿𝒞(𝑥2 − 𝑥3) 𝛿𝒞(𝑥3 − 𝑥4) . (5.29)

The 1PI four-point function is again approximated by the 𝑠-channel, such that

Γ(4),𝑎𝑏𝑐𝑑𝜏 (𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑆(4),𝑎𝑏𝑐𝑑(𝑥1, 𝑥2, 𝑥3, 𝑥4)

+ i Γ(4s)𝜏 (𝑥1, 𝑥3) 𝛿𝑎𝑏 𝛿𝑐𝑑 𝛿𝒞(𝑥1 − 𝑥2) 𝛿𝒞(𝑥3 − 𝑥4) . (5.30)

Equation (5.19) canbe readily extended to includefield indices. After performing
the trace and integrating over 𝜏, the vertex is given by

Γ(4s)(𝑥1, 𝑥2) =
𝜆2

18𝑁 𝐺(𝑥1, 𝑥3)2 −
i𝜆
6 ∫

𝒞(𝑧1)<𝑥01

𝐺(𝑥1, 𝑧1)2 Γ(4s)(𝑧1, 𝑥3) , (5.31)

which is evidently of order 𝒪(𝑁−1). The self-energy (5.23) only changes in the
tadpole diagram with the classical vertex. In that case, the full tensor structure
from equation (5.29) has to be regarded. The result is the self-energy

Σ(𝑥1, 𝑥2) = −
i𝜆
2
𝑁 + 2
3𝑁 𝐺(𝑥1, 𝑥1) 𝛿𝒞(𝑥1 − 𝑥2) −

1
6 𝐺(𝑥1, 𝑥2) Γ

(4s)(𝑥1, 𝑥2) . (5.32)

Note that the tadpole diagram contributes to 𝒪(𝑁−1) as well as 𝒪(𝑁0). As a
consistency check, let 𝑁 = 1. In that case, the self-energy seems identical
to equation (5.23). However, also the resummed vertex from equation (5.31)
has to be considered. In comparison to equation (5.23), the first and second
term have an extra factor of 1/9 and 1/3, respectively. The reason is that for a
single component the classical four-point function does not distinguish between
different channels. However, for 𝑁 > 2 the classical vertex consists of the
three channels, see equation (5.29). In the flow of the 𝑠-channel vertex, only
the 𝑠-channel of the classical vertex contributes. In the first term, there are
two classical vertices leading to nine distinct tensor structures, whereas in the
second term, the single classical vertex leads to three distinct diagrams. In both
cases, only a single diagram survives the projection to the 𝑠-channel.





Chapter 6

Three-dimensional Yang-Mills theory in
equilibrium

6

This final chapter is separate from the rest of the work in the sense that it focuses
on the functional renormalisation group in equilibrium. For that purpose, all
computations are performed in momentum space. The reduced computational
cost compared to the t-fRG allows for the investigation of (three-dimensional)
Yang-Mills theory, which is of course more involved than the previously con-
sidered scalar field theories. In this chapter, the non-perturbative ghost and
gluon propagators as well as the momentum-dependent ghost-gluon, three-
gluon, and four-gluon vertices are computed in a comprehensive truncation
scheme. Compared to the physical case of four space-time dimensions, more
sophisticated truncations are necessary due to significant contributions from
non-classical tensor structures. In particular, a special technique is applied to
compute the tadpole diagrams of the propagator equations, which also captures
all perturbative two-loop effects. The correlators obtained within the fRG are
compared to lattice and Dyson-Schwinger results. The necessity of the used
elaborate truncation scheme indicates that achieving apparent convergence
is not trivial. Therefore, performing this examination in a computationally
less intensive setting, i.e. in equilibrium, is crucial. Even though there might
be additional subtleties out of equilibrium, the insights from this chapter are
important. A truncation not accurately describing equilibrium, will also present
issues for initially out-of-equilibrium systems in view of equilibration.
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6.1. Introduction

Functional methods such as the functional renormalisation group (fRG) or
Dyson-Schwinger equations (DSEs) are non-perturbative first-principles ap-
proaches to quantum chromodynamics (QCD), and they are complementary
to lattice simulations. At finite density the latter approach is hampered by a
sign problem, while the former approaches face convergence and accuracy
problems. The aim of the fQCD collaboration [23] is to establish the fRG as
a quantitative continuum approach to QCD, with the phase diagram and the
hadron spectrum as primary applications, see [24–29] for recent works.

Building on the advances made in a previous work in four-dimensional space-
time [27], we consider Landau-gaugeYang-Mills (YM) theory in threedimensions,
in this work. Similar to its four-dimensional analogue, it is asymptotically free
and confining. Upon adding an adjoint scalar, it corresponds to the dimension-
ally reduced asymptotic high-temperature limit of four-dimensional YM theory.
Furthermore, the reduced dimensionality allows lattice simulations at a consid-
erably reduced numerical expense, making the three-dimensional theory an
interesting testing case that allows truncation checks in functional approaches.
Therefore, the propagators of three-dimensional YM theory have been studied
intensively on the lattice [30–46], with DSEs [47–53], and in semi-perturbative
settings [54–56]. Its vertices have been investigated on the lattice [33, 35] as well
as with continuummethods [51, 53, 56].
So far, the most advanced results for YM theory in three dimensions within

functional approaches have been obtained in a recent DSE investigation [53].
There, the coupled system of equations for the classical tensor structures has
been solved self-consistently. In terms of the complexity of the truncation, the
investigation [53] is comparable to the calculation performed in [27] for the
four-dimensional case, which is more complicated due to non-trivial renormal-
isation. The present work builds on these advances, with a focus on the effects
of including non-classical vertices and tensor structures in the tadpole diagrams
of the gluon and ghost propagator equations.

This chapter is organized as follows: in section 6.2 we review the treatment of
YM theory with the fRG using a vertex expansion for the effective action. We
focus on new developments for the inclusion of the propagator tadpole diagrams.
In section 6.3 we discuss our results, which includes a thorough investigation
of apparent convergence and a comparison to DSE and lattice results. The
conclusion is given in section 6.4. We check the independence of the regulator
and describe the computational setup in the appendices.
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6.2. Yang-Mills theory from the fRG

In this sectionwe review the fRGapproach toYM theory using a vertex expansion
for the effective action. Although the overall set-up follows [27, 57], we repeat
the most important steps for the convenience of the reader.
The fRG is a non-perturbative continuummethod that implementsWilson’s

idea of including quantum fluctuations in momentum shells for the effective
action, see [10, 58–61] for QCD-related reviews. The key object in this approach,
pioneered byWetterich [13], is the scale-dependent analogue of the effective
action Γ𝑘. The RG or infrared cutoff scale 𝑘 is introduced via a momentum-
dependent regulator function 𝑅𝑘 that acts like a fluctuation-suppressing mass
term on momentum scales 𝑝2 ≲ 𝑘2 . The scale dependence of Γ𝑘 is governed by
an exact equation with a simple one-loop structure,

𝜕𝑡Γ𝑘[𝜙] =
1
2 ∫𝑝

𝐺𝑎𝑏
𝜇𝜈[𝜙] 𝜕𝑡𝑅𝑏𝑎𝜈𝜇 −∫

𝑝
𝐺𝑎𝑏[𝜙] 𝜕𝑡𝑅𝑏𝑎 , (6.1)

where ∫𝑝 = ∫d3𝑝/(2𝜋)3 and the full field-, momentum-, and scale-dependent
gluon and ghost propagator

𝐺𝑘[𝜙] =
1

Γ(2)[𝜙] + 𝑅𝑘
, with Γ(𝑛)𝑘 [𝜙] =

𝛿𝑛Γ[𝜙]
𝛿𝜙𝑛 . (6.2)

The superfield 𝜙 = (𝐴𝜇, 𝑐, ̄𝑐) consists of gauge, ghost, and anti-ghost fields. In
equation (6.1) the propagators 𝐺𝜇𝜈

𝑎𝑏 [𝜙] and 𝐺
𝑎𝑏[𝜙] are the diagonal gluon and

off-diagonal ghost–anti-ghost components of the propagator (6.2). A pictorial
representation of equation (6.1) is given in figure 6.1. The regulator functions
are given in appendix D.1, where we also demonstrate the independence of the
results from the choice of the regulator function. Flow equations for the 1PI
𝑛-point functions are straightforwardly derived from equation (6.1) by taking
functional derivatives with respect to the fields, see figure 6.2 for the diagram-
matic equations.

6.2.1. Vertex expansion

Due to the structure of the flow equation (6.1), the flow equation for an 𝑛-point
correlator depends on up to (𝑛 + 2)-point functions. This leads to an infinite
tower of coupled equations, which have to be truncated within appropriate non-
perturbative expansion schemes in order to be numerically solvable. As in [27],
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1

2

∂Γk
∂t

= −

Figure 6.1. Flow equation. Wiggly and dotted lines represent the dressed gluon and
ghost propagators, respectively. The crossed circles denote regulator insertions
𝜕𝑡𝑅 , see equation (6.1).

we work in a systematic vertex expansion scheme, corresponding to an expan-
sion of the effective action in terms of 1PI correlation functions. Relying on the
structural similarities of the three-dimensional theory to its four-dimensional
analogue, we take all classical vertices into account, i.e. the ghost-gluon, three-
and four-gluon vertex. In addition, we compute so-called tadpole vertices as
discussed in section 6.2.2. For later reference we quickly recapitulate the para-
metrisations for the propagators and classical vertex functions considered in
this work. The gluon and ghost two-point functions are parametrised in terms
of scalar dressing functions 1/𝑍𝐴(𝑝) and 1/𝑍𝑐(𝑝),

[Γ(2)𝐴𝐴]
𝑎𝑏

𝜇𝜈
(𝑝) = 𝑍𝐴(𝑝) 𝑝2 𝛿𝑎𝑏Π⊥

𝜇𝜈(𝑝) ,

[Γ(2)̄𝑐𝑐 ]
𝑎𝑏
(𝑝) = 𝑍𝑐(𝑝) 𝑝2 𝛿𝑎𝑏 , (6.3)

where Π⊥
𝜇𝜈(𝑝) = 𝛿𝜇𝜈 − 𝑝𝜇𝑝𝜈/𝑝2 denotes the transverse projection operator. We

parametrise the three-point vertices by

[Γ(3)̄𝑐𝑐𝐴]
𝑎𝑏𝑐

𝜇
(𝑝, 𝑞) = √4𝜋𝛼(𝜇) 𝜆 ̄𝑐𝑐𝐴(𝑝, 𝑞) [𝒯 cl

̄𝑐𝑐𝐴]
𝑎𝑏𝑐

𝜇
(𝑝, 𝑞) ,

[Γ(3)𝐴3 ]
𝑎𝑏𝑐

𝜇𝜈𝜌
(𝑝, 𝑞) = √4𝜋𝛼(𝜇) 𝜆𝐴3(𝑝, 𝑞) [𝒯 cl

𝐴3]
𝑎𝑏𝑐

𝜇𝜈𝜌
(𝑝, 𝑞) . (6.4)

Their classical tensor structures are given by

[𝒯 cl
̄𝑐𝑐𝐴]

𝑎𝑏𝑐

𝜇
(𝑝, 𝑞) = i𝑓𝑎𝑏𝑐 𝑞𝜇 ,

[𝒯 cl
𝐴3]

𝑎𝑏𝑐

𝜇𝜈𝜌
(𝑝, 𝑞) = i𝑓𝑎𝑏𝑐 {(𝑝 − 𝑞)𝜌𝛿𝜇𝜈 + perm.} . (6.5)
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The transversely projected basis for the ghost-gluon vertex consists of only one
single element, whereas the corresponding basis for the three-gluon vertex
counts four elements. The impact of non-classical tensor structures in the
three-gluon vertex have been found to be subleading [62] in four space-time
dimensions. Here we assume that they are also subleading in three dimensions
and neglect them. The parametrisation of the four-gluon vertex is given by

[Γ(4)𝐴4 ]
𝑎𝑏𝑐𝑑

𝜇𝜈𝜌𝜍
(𝑝, 𝑞, 𝑟) = 4𝜋𝛼(𝜇) 𝜆𝐴4( ̄𝑝) [𝒯 cl

𝐴4]
𝑎𝑏𝑐𝑑

𝜇𝜈𝜌𝜍
, (6.6)

where the classical tensor structure is given by

[𝒯 cl
𝐴4]

𝑎𝑏𝑐𝑑

𝜇𝜈𝜌𝜍
= 𝑓𝑎𝑏𝑛𝑓𝑐𝑑𝑛𝛿𝜇𝜌𝛿𝜈𝜍 + perm. . (6.7)

The inclusion of non-classical tensor structures in the four-gluon vertex is dis-
cussed in section 6.2.2. The four-gluon dressing function(s) are approximated as
a function of the averagemomentum ̄𝑝2 = 1

4 (𝑝
2
1+𝑝22+𝑝23+𝑝24)whichwas shown to

be a good approximation for the full momentum dependence in four space-time
dimensions [63] and we assume that the same holds in three dimensions.
From the momentum-dependent dressing functions of the different correlat-

ors, we can define corresponding running couplings via

𝛼 ̄𝑐𝑐𝐴(𝑝) = 𝛼(𝜇)
𝜆2 ̄𝑐𝑐𝐴(𝑝)

𝑍𝐴(𝑝) 𝑍2𝑐(𝑝)
,

𝛼𝐴3(𝑝) = 𝛼(𝜇)
𝜆2𝐴3(𝑝)
𝑍3𝐴(𝑝)

,

𝛼𝐴4(𝑝) = 𝛼(𝜇)
𝜆𝐴4(𝑝)
𝑍2𝐴(𝑝)

. (6.8)

Due to gauge invariance, encoded in the Slavnov-Taylor identities, all coup-
lings (6.8) have to agree in the perturbative regime of the theory. Furthermore,
the dimensional suppression of the running coupling ensures that the dressing
functions take their bare values at large momentum scales,

lim𝑝→∞ 𝜆 ̄𝑐𝑐𝐴(𝑝) = lim𝑝→∞ 𝜆𝐴3(𝑝) = lim𝑝→∞ 𝜆𝐴4(𝑝) = 1 , (6.9)

for UV-trivial wave function renormalisations

lim𝑝→∞𝑍𝐴(𝑝) → 1 , lim𝑝→∞𝑍𝑐(𝑝) → 1 . (6.10)
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∂t
−1 = + − 1

2
+

∂t
−1 = − 2 − 1

2
+

∂t = − − + perm.

∂t = − + 2 + + perm.

∂t = + − 2 − + perm.

∂t = + − 2 − − + perm.

∂t = + + − + perm.

∂t = + perm.

Figure 6.2. Diagrams that contribute to the truncated flows of propagators and
vertices. While filled circles denote dressed (1PI) vertices, the squares denote the
tadpole vertices explained in section 6.2.2. Shaded lines indicate the projection
procedure of the tadpoles vertices. Permutations include not only (anti-)symmetric
permutations of external legs but also permutations of the regulator insertions.
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The truncation described above depends only trivially on the gauge group. In
particular, only the quadratic casimir of the adjoint representation appears in
the truncated set of equations. Therefore, it can be absorbed into a redefinition
of the coupling, which in turn can be turned into a redefinition of the phys-
ical scale, see [29, 57] for a more detailed discussion. The same holds for the
extended truncation described in the next subsection. Thus, our results are ef-
fectively independent of the gauge group. However, this does not indicate a bad
truncation since also in perturbation theory, Yang-Mills theory is independent
of the gauge group up to three loops, see e.g. [64] for a recent discussion. Also
the DSE results from [53] do not possess a genuine gauge group dependence and
lattice results for the propagators show only a mild dependence on the gauge
group [65, 66]. Consequently, we compare our results to 𝑆𝑈(2) lattice results.

6.2.2. Tadpole vertices

The structure of the flow equation (6.1) implies that fully dressed four-point
functions appear on the right hand side of the propagator equations, see fig-
ure 6.2. In general, this requires the full knowledge of allmomentum-dependent
non-classical four-point tensor dressings. Although some exploratory studies
exist [63, 67–70], their dynamical back-coupling into the propagator equations
has still not been achieved. In the following, we propose a method that captures
most of the dynamics on the level of the propagator equations, while it keeps
the numerical effort at a manageable level. As an example, we consider the
gluon tadpole contribution to the gluon propagator equation. All other tadpole
diagrams are obtained analogously. The gluon tadpole contribution to the flow
of the gluon two-point function is given by

𝜕𝑡[Γ
(2)
𝐴2 ]

𝑎𝑏

𝜇𝜈
(𝑝) =

1
2 ∫𝑝

[Γ(4)𝐴4 ]
𝑎𝑏𝑐𝑑

𝜇𝜈𝜌𝜍
(𝑝,−𝑝, 𝑞) ⋅ [𝐺 𝜕𝑡𝑅𝐺]

𝑑𝑐
𝜍𝜌(𝑞) . (6.11)

Exploiting that the gluon propagator is diagonal in colour space and transverse
with respect to its momentum in Landau gauge, we can project equation (6.11)
with 𝛿𝑎𝑏Π⊥

𝜇𝜈(𝑝) . From this we see that the gluon propagator equation depends
only on the projected four-point function

𝑇𝐴4(𝑝, 𝑞) = Π⊥
𝜇𝜈(𝑝) [Γ

(4)
𝐴4 ]

𝑎𝑏𝑐𝑑

𝜇𝜈𝜌𝜍
(𝑝,−𝑝, 𝑞)Π⊥

𝜌𝜍(𝑞) . (6.12)

Therefore, the full contribution of the four-gluon vertex to the tadpole is already
contained in this single scalar function, whose flow we can compute directly
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from projecting the corresponding equation accordingly, cf. figure 6.2. In
particular, this procedure includes the back-coupling effect of all non-classical
tensor structures that are generated at the perturbative one-loop level, including
therefore also all two-loop effects of the tadpole diagrams in the propagator
equations. The non-classical tensor structures couple back into the vertices
indirectly via the propagators. We neglect their direct back-coupling into the
vertex equations. However, we expect this approximate treatment to yield a
considerable improvement of the truncation at comparablymoderate numerical
costs.

6.3. Results

In this section we present the main findings of our investigation. Our solutions
are of the scaling type, and are obtained as described in appendix D.2. After
discussing the truncation dependence of our results we provide an extensive
comparison to results from lattice gauge theory and Dyson-Schwinger equations.
We close with a determination of the infrared scaling coefficients and their
comparison to those of finite temperature Yang-Mills theory in four dimensions.

6.3.1. Truncation and apparent convergence

In order to assess the influence of the truncation on our results, we compare
three different extensions of our simplest symmetric point approximation:

1. symmetric point: only classical verticeswith dressing functions that depend
only on the symmetric momentum configuration,

2. full momentum: same as 1. symmetric point, but including the full mo-
mentum dependence of the ghost-gluon and three-gluon vertex dressings,

3. sym. point + 4gl tadp.: same as 1., but with the effects of the non-classical
tensors of the four-gluon-vertex included in the tadpole diagram of the
gluon propagator equation as described in section 6.2.2,

4. sym. point + all tadp.: same as 3., but additionally including the effects
of the two-ghost-two-gluon and four-ghost vertices in both propagator
equations, see section 6.2.2 and figure 6.2 for a visualisation.

The corresponding results for the propagators are shown in figure 6.3. The
first immediate observation is that the additionalmomentumdependence (2.) in



6.3. RESULTS 83

10−1 100 101
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

p [GeV]

g
lu
o
n
p
ro
p
a
g
a
to
r
d
re
ss
in
g

symmetric point

full momentum

sym. point + 4gl tadpole

sym. point + all tadpoles

10−1 100 101
1

2

3

4

5

6

p [GeV]

g
h
o
st

p
ro
p
a
g
a
to
r
d
re
ss
in
g

symmetric point

full momentum

sym. point + 4gl tadpole

sym. point + all tadpoles

Figure 6.3. Truncation dependence of the gluon propagator dressing 1/𝑍𝐴(𝑝) (left)
and ghost propagator dressing 1/𝑍𝑐(𝑝) (right). Symmetric point and full momentum
denotes using the average momentum and full momentum dependence, respect-
ively, in the three-gluon vertex. Results with + 4gl tadpole and + all tadpoles include
the respective tadpole diagrams.

the three-gluon and ghost-gluon vertices does not visibly affect the propagators.
On the contrary, the full momentum dependence and tensor structures of the
four-point functions in the tadpole diagrams significantly affect the propagators.
Concerning the goal of apparent convergence, we observe that including the tad-
pole contribution of the four-gluon vertex alone has a comparably pronounced
effect, most of which is counteracted by the remaining tadpoles. This indicates
that a fast convergence may be achieved if the underlying consistent resumma-
tion pattern is preserved within the truncation scheme. A similar observation
has already been made in the matter sector of QCD in four space-time dimen-
sions [24, 28]. There, it is found that the effect of non-classical tensor structures
in the quark-gluon vertex is counter-acted by corresponding structures in higher
quark-gluon interactions that stem from the same BRST-invariant operator. We
conclude that it is of chief importance to fully reveal these resummation pat-
terns.

6.3.2. Comparison to DSE and lattice

In this section we compare the results from our most extensive truncation,
4. sym. point + all tadp. (see section 6.3.1), to results obtained from 𝑆𝑈(2) lattice
gauge theory [33, 35, 45, 71] and with Dyson-Schwinger equations [53]. To that
end, we normalise both, lattice and DSE results respective to our results in the
UV regime, for more details see appendix D.3. We emphasise again that the
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Figure 6.4. Gluon propagator dressing 1/𝑍𝐴(𝑝) (left) and the dimensionful propag-
ator 1/(𝑝2𝑍𝐴(𝑝)) (right) in comparison with DSE [53] and lattice [33, 35, 45, 71]
results.

presented fRG result is of the scaling type [72–80], whereas the lattice and DSE
results are decoupling solutions [34, 36, 39, 81, 82], characterised by a finite,
non-vanishing value of the gluon propagator at 𝑝 = 0 .

Propagators

From figure 6.4 and the left panel of figure 6.5, it is clearly seen that our results
agree well with the rescaled lattice results in the UV regime with a discrepancy
arising below 3GeV. This difference is most likely due to truncation artefacts in
our results which has to be clarified in future work. The most obvious culprits
are missing effects in the equations for the classical vertex tensor structures
due to the leading non-classical tensor structures of the three- and four-point
functions.
The DSE gluon propagator from [53] has a smaller bump than both the fRG

and lattice propagators. In section 6.3.1 we have shown that non-classical tensor
structures have the net effect of increasing the bump in the gluon propagator. In
comparison to the DSE truncation in [53], the present approximation includes
more non-classical tensor structures. Although thismay serve as an explanation,
the systemof equations is highly non-linear, and such an incomplete comparison
is potentially misleading. Another factor may be that the DSE results are of the
decoupling type whereas our results are of the scaling type, which generically
show a larger bump [27]. In order to perform a more informative comparison
between the DSE and fRG results, a DSE scaling solution would be preferable
because of its uniqueness [78, 80].
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Figure 6.5. Ghost propagator dressing 1/𝑍𝑐(𝑝) (left) and ghost-gluon vertex dressing
𝜆 ̄𝑐𝑐𝐴( ̄𝑝) (right) compared to DSE [53] and lattice [33, 35, 45, 71] results.
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Figure 6.6. Three-gluon (left) and four-gluon (right) vertex dressings, 𝜆𝐴3( ̄𝑝) and
𝜆𝐴4( ̄𝑝) , compared to DSE [53] and lattice [33, 35, 45, 71] results.

Vertices

The ghost-gluon and gluonic vertex dressings are shown in comparison with
DSE [53] and lattice [33, 35, 45, 71] results in figure 6.5 and figure 6.6, where the
momentum scale was set using the fit parameters from the gluon propagator in
the previous section. Similar to the propagators, all dressings converge to unity
in the ultraviolet.

Concerning the ghost-gluon vertex dressing, we find that the lattice result has
its peak at a higher scale than the dressings computed with functional methods.
A similar but, at least in the fRG result less obvious, deviation can be observed
already in the ghost propagator dressing, indicating a general scale mismatch
between ghost- and glue sector. This is particularly interesting, since also recent
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QCD investigations with very sophisticated truncation schemes [24, 28] show
such a scale mismatch between thematter sector and the glue part of the theory,
whereas the glue sector in itself runs consistently. We think that in both cases,
missing higher-order effects are the most likely source of these deviations.
The fRG three-gluon vertex dressing shows very good agreement with the

lattice results over all momenta. In particular, the agreement in the infrared is
surprising, since the lattice features a decoupling solution, which has a linearly
divergent three-gluon vertex dressing function [51, 53, 56], whereas our solution
is the scaling solution, which has a stronger divergence in the infrared, 𝜆𝐴3(𝑝) ∝
(𝑝2)−3𝜅−1/2 , cf. section 6.3.3. The fRG and DSE four-gluon vertices agree well,
whereas lattice measurements of the four-gluon vertex are not available as of
now.

6.3.3. Infrared scaling exponents

In the scaling solution, all correlators scale with a specific power law in the
infrared. It can be shown that self-consistency demands that the anomalous
scaling behaviour of any (2𝑛 + 𝑚)-point function with 2𝑛 ghost and 𝑚 gluon
legs in 𝑑 dimensions is determined by one single scaling exponent and can be
written as [47, 78, 80]

lim
𝑝→0

𝜆(2𝑛,𝑚)(𝑝) ∝ (𝑝2)(𝑛−𝑚)𝜅+(1−𝑛)(𝑑2−2) . (6.13)

In particular, for the two-point functions, the scaling power laws are then given
by [73, 74]

Γ ̄𝑐𝑐(𝑝) ∝ 𝑝2 ⋅ (𝑝2)𝜅 ,

Γ𝐴𝐴(𝑝) ∝ 𝑝2 ⋅ (𝑝2)−2𝜅+
𝑑
2−2 , (6.14)

where we took their canonical scaling into account. The right panel of figure 6.4
and the left panel of figure 6.5 clearly reveal the power law behaviour. Fitting
the propagators with equation (6.14), we obtain the three-dimensional scaling
exponents,

𝜅sym. p. = 0.321 ± 0.001 ,

𝜅full mom. = 0.348 ± 0.013 ,

𝜅sym. p. + tad. = 0.349 ± 0.003 , (6.15)
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for the different truncations. The uncertainty stems from the difference of the
ghost and gluon propagator fits. In contrast to the large- and mid-momentum
behaviour of the correlators, the scaling coefficient is also susceptible to the full
momentum dependence of the vertices.
We also compare these scaling coefficients with those of four-dimensional

Yang-Mills theory at finite temperature [29]. There an approximation similar to
the symmetric point approximation, (1) in section 6.3.1, was used. Fitting the
magnetic part of gluon propagators to the scaling formula equation (6.14) yields
𝜅𝑇 = 0.323(3). Hence, the magnetic scaling exponent agrees very well with the
scaling exponent of the three-dimensional theory in the approximation (1). This
is expected from dimensional reduction, and yields a very consistent picture.

6.4. Conclusion

We have presented non-perturbative correlators of three-dimensional Landau-
gauge Yang-Mills theory obtained from first principles with the functional renor-
malisation group. We have checked the reliability of the results by comparing to
lattice results and achieved better agreement by including non-classical tensors
structures in the truncation scheme. However, at lower momenta the functional
and the lattice results still show a discrepancy of 10%. This hints at sizeable
truncation artefacts in three-dimensional Yang-Mills theory with functional
methods at the current truncation level.
These findings are particularly interesting, because an analogous investiga-

tion with the fRG in four dimensions shows considerably better agreement with
the corresponding lattice results already at a simpler truncation level, based
on classical tensor structures only. This indicates that apparent convergence is
achieved with less effort in the four-dimensional theory. A possible explanation
are the stronger infrared effects that are generically present in lower dimen-
sions. Phrased differently, the three-dimensional theory features a weakened
RG irrelevance of the operators corresponding to the non-classical vertex com-
ponents.
Interestingly, the effects of non-classical tensors seem to cancel largely. Al-

though individual contributions result in large corrections, their overall effect is
relatively small but notable. In this work this is explicitly shown in the propag-
ator tadpole contributions, whose overall effect is small, when compared to the
individual contributions. A similar observation has also been made in the mat-
ter sector of four-dimensional QCD for the effect of non-classical quark-gluon
interactions [24, 28]. This finding is particularly important for devising quickly
converging truncation schemes by preserving the underlying resummation
patterns.





Chapter 7

Conclusion and outlook 7
In this thesis, the method of the t-fRG was further developed to the point where
applications are viable. The crucial aspect of causality was discussed throughout
the work, which led to properties and identities that simplify computations to a
great extent. The framework permits using any reasonable initial action and,
subsequently, deriving the necessary flow equations. As a unique feature of the
t-fRG, the resulting flows can always be integrated analytically. Thereby, the
locality of vertices and flows readily allow for the identification of vanishing
and non-vanishing diagrams. Consequently, the derivation of diagrammatic ex-
pressions is significantly simplified. For non-vanishing diagrams, the intricacy
of occurring 𝜃- and 𝛿-distribution has been dealt with in a systematic way in
order to obtain the non-trivial prefactors.
Beyond the diagrammatics, multiple ways on how to solve the time evolution

equations have been discussed. A naive approach that is based on ideas from
momentum-space fRGhas been discarded as handling the regulator numerically
turned out to not be feasible. The alternative of using the integrated flow has
been successfully used with an integro-differential and integral equation. In
particular, numerical computations have been performed for the 𝜙3-theory
where a dynamical propagator was considered. In that context, self-similar time
evolution was investigated and scaling exponents were determined.
To further establish the formalism of the t-fRG, the 𝜙4-theory was used to

discuss renormalisation and equilibrium initial conditions. Furthermore, the
integrated flow of the four-point function was investigated in multiple trunca-
tions. In that context, the t-fRG was also extended to an 𝑁-component scalar
field theory. As a result of approximating the four-vertex solely by the 𝑠-channel,
a 1/𝑁 expansion was derived.
Lastly, sophisticated truncations in the framework of equilibrium fRG have

been investigated for Yang-Mills theory. Such truncations are yet out of reach in
the t-fRG. But the insights regarding the convergence of different truncations
should proof to be useful on the way to out-of-equilibrium computations.
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The development of the t-fRG is mostly complete in view of the concept and
technical difficulties. However, some details are rather formal so far. Among
these is the inclusion of non-zero background fields. While this should not pose
a problem (at least for constant background fields), no numerical study has been
performed. The same is true for renormalisation. The obvious candidate for
verifying renormalisation in a numerical setup, is the 𝜙4-theory. With those
two topics verified, the t-fRG would be applicable to any theory with cubic and
quartic interactions. The long term goal is an application to non-Abelian gauge
theories.
In this thesis, the focus was on a very general framework, which essentially

allows for a system to be prepared with any set of initial correlation functions.
The time evolution of the initial system is determined by the truncation. This
approach comes at the cost that numerical implementations are computational
intensive. Additionally, accurately resolving full correlation functions requires
a lot of memory. While a long runtime may be considered as an inconveni-
ence, the memory consumption quickly exceeds available resources on a single
computational node (server), so that a distributed memory system is necessary.
In order to limit the required resources, the t-fRG may be applied in a more
problem-specific way in future work. For example, an application in equilib-
rium should be possible by demanding equilibrium initial conditions in the time
evolution equations. Of course this prevents the use of the explicit solvers from
this work, and constitutes a variational problem. Similarly, a scaling ansatz for
correlators may be used. However, that approach is vastly different and has
to be thoroughly studied. The advantage for a scaling ansatz is that no time
evolution is necessary to reach a non-thermal fixed point. The system would be
already prepared at a time with self-similar dynamics, and scaling exponents
could be determined.



Appendix A

Dyson-Schwinger equations for the
ɸ³-theory

A

In section 2.2.5, the Dyson-Schwinger equation for the 1PI effective action is
derived. The result is the master equation

𝛿Γ[𝜙]
𝛿𝜙(𝑥)

=
𝛿𝑆[𝜑]
𝛿𝜑(𝑥)

|
|
|𝜑=𝜙+𝐺⋅ 𝛿𝛿𝜙

. (A.1)

Functional derivatives of this equation with respect to the macroscopic field res-
ult in the Dyson-Schwinger equations for 1PI 𝑛-point functions. As an example,
in this chapter, the gap equation for the inverse propagator, i.e. 1PI two-point
function, is computed for the 𝜙3-theory.

A.1. Inverse propagator

A theory with only three-point functions at tree-level can be described by a
classical action of the form

𝑆[𝜑] =
1
2 ∫

𝒞(𝑧1,𝑧2)

𝑆(2)(𝑧1, 𝑧2) 𝜑(𝑧1) 𝜑(𝑧2) +
1
3! ∫

𝒞(𝑧1,𝑧2,𝑧3)

𝑆(3)(𝑧1, 𝑧2, 𝑧3) 𝜑(𝑧1) 𝜑(𝑧2) 𝜑(𝑧3) (A.2)

where the vertex is assumed to be symmetric under permutations of the argu-
ments. The Dyson-Schwinger equation is obtained in two steps. At first, the
variation of the classical action with respect to the field is computed. Using the
symmetry of the vertex, this variation reads

𝛿𝑆[𝜑]
𝛿𝜑(𝑥1)

= ∫
𝒞(𝑧1)

𝑆(2)(𝑥1, 𝑧1) 𝜑(𝑧1) +
1
2 ∫

𝒞(𝑧1,𝑧2)

𝑆(3)(𝑥1, 𝑧1, 𝑧2) 𝜑(𝑧1) 𝜑(𝑧2) . (A.3)
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Figure A.1. Dyson-Schwinger equation for the inverse propagator in the 𝜙3-theory.
The solid line with a black dot denotes the free propagator whereas the blue circle
(solid outline) denotes the dressed propagator. The vertex with a black dots repres-
ent the classical three-point vertex and the green circle (dashed outline) the 1PI
three-point function.

This functional has to be evaluated at 𝜑 = 𝜙+𝐺 ⋅ 𝛿
𝛿𝜙 . In a more verbose notation,

this means replacing every occurrence of the field with

𝜑(𝑥) = 𝜙(𝑥) +∫
𝒞(𝑦)

𝐺(𝑥, 𝑦)
𝛿

𝛿𝜙(𝑦)
. (A.4)

It is clear that the rightmost field is simply themacroscopic field. The functional
derivative vanishes here. For the other derivatives the identity

𝛿
𝛿𝜙(𝑦)

𝐺(𝑥1, 𝑥2) = i∫
𝒞(𝑧1,𝑧2)

𝐺(𝑥1, 𝑧1) Γ(3)(𝑧1, 𝑦, 𝑧2) 𝐺(𝑧2, 𝑥2) (A.5)

is employed. Ultimately, this leads to

𝛿Γ[𝜙]
𝛿𝜙(𝑥1)

= ∫
𝒞(𝑧1)

𝑆(2)(𝑥1, 𝑧1) 𝜙(𝑧1) +
1
2 ∫

𝒞(𝑧1,𝑧2)

𝑆(3)(𝑥1, 𝑧1, 𝑧2) [𝜙(𝑧1) 𝜙(𝑧2) + 𝐺(𝑧1, 𝑧2)] .

(A.6)

The variation of this master equation with respect to the macroscopic field is
the gap equation for the inverse propagator. Using again equation (A.5), it is
given as

Γ(2)(𝑥1, 𝑥2) = 𝑆(2)(𝑥1, 𝑥2) +∫
𝒞(𝑧1)

𝑆(3)(𝑥1, 𝑥2, 𝑧1) 𝜙(𝑧1)

+
i
2 ∫

𝒞(𝑧1,𝑧2,𝑦1,𝑦2)

𝑆(3)(𝑥1, 𝑧1, 𝑧2) 𝐺(𝑧1, 𝑦1) Γ(3)(𝑦1, 𝑥2, 𝑦2) 𝐺(𝑦2, 𝑧2) . (A.7)
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Figure A.2. Dyson-Schwinger equation for the three-point function in the 𝜙3-theory.
The blue circles with solid outline denote the dressed propagator. Black dots
represent the classical three-point vertex and the green (dashed outline) and pink
(dotted outline) circles the 1PI three- and four-point functions, respectively. ‘perm.’
refers to the permutation of the external legs at the dressed three-point functions.

This equation is in fact the full Dyson-Schwinger equation for the theory, i.e. no
truncation has been employed. See figure A.1 for a graphical representation.

A.2. Three-point function

The gap equation for the inverse propagator depends on the dressed three-point
function. It is possible to employ the simplest truncation where Γ(3) = 𝑆(3).
However, in an improved approximation, also the dressed three-point function
is considered. In order to obtain the DSE for the three-point function, the
functional derivative of equation (A.7) with respect to the macroscopic field
is computed. The derivative can either hit a propagator or the 1PI three-point
function resulting in

Γ(3)𝑥1𝑥2𝑥3 = 𝑆(3)𝑥1𝑥2𝑥3 +
i
2 ∫

𝒞(𝑧1,𝑧2,𝑦1,𝑦2)

𝑆(3)𝑥1𝑧1𝑧2 𝐺𝑧1𝑦1 Γ
(4)
𝑦1𝑥2𝑥3𝑦2 𝐺𝑦2𝑧2

−
1
2 ∫

𝒞(𝑧1,𝑧2,𝑧3,𝑧4,𝑧5,𝑧6)

{ 𝑆(3)𝑥1𝑧1𝑧2 𝐺𝑧1𝑧5 Γ
(3)
𝑧5𝑥3𝑧6 𝐺𝑧6𝑧3 Γ

(3)
𝑧3𝑥2𝑧4 𝐺𝑧4𝑧2 + 𝑥2 ↔ 𝑥3 } , (A.8)

where a condensed notation with arguments as indices is used. The diagram-
matic expression for this equation is shown in figure A.2. Here, the four-point
function is in general non-vanishing even in 𝜙3-theory since it can be generated
using only three-point functions.





Appendix B

Bookkeeping in Keldysh space B
In section 2.1.4, the propagator on the closed time path is expressed in terms
of two real functions on the real time axis: the spectral function and statistical
propagator. Only the occurring contour-sign function is actually defined on
the time contour. In this form, equations can be simplified to a great extent.
Moreover, cancellations on the contour aremore evident. In this chapter, identit-
ies of integrals on the closed time path are derived, so that they can be expressed
as integrals on the real time axis. Furthermore, frequently used expressions like
pointwise products and contractions are explicitly given. The latter is then em-
ployed to derive time evolution equations for the spectral function and statistical
propagator.

B.1. Explicitly contour-time-ordered functions

Analogously to the decomposition of the propagator into statistical two-point
function 𝐹 and spectral function 𝜌, other two-point functions can be written in
this explicitly contour-time-ordered form. For example, the different channels
of a four-point vertex can be understood in such a way. The propagator has the
form

𝐺(𝑥, 𝑦) = 𝐹(𝑥, 𝑦) −
i
2 𝜌(𝑥, 𝑦) sgn𝒞(𝑥

0 − 𝑦0) , (B.1)

where 𝐹 is symmetric and 𝜌 is antisymmetric. Those properties are directly
evident due to their definition as the anti-commutator and commutator of two
field operators. For other two-point functions, this decomposition is extended
to include a local part. Such a generic function then reads

𝐴(𝑥, 𝑦) = −i𝐴(0)(𝑥) 𝛿𝒞(𝑥 − 𝑦) + 𝐴(𝐹)(𝑥, 𝑦) −
i
2 𝐴

(𝜌)(𝑥, 𝑦) sgn𝒞(𝑥
0 − 𝑦0) . (B.2)
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The inclusion of a local part is necessary when applying this decomposition to
the self-energy. In the style of the propagator, 𝐴(𝐹) is meant to be symmetric
and 𝐴(𝜌) anti-symmetric. Any function in the above form with these symmetry
properties is called Keldysh function within this work.

B.2. Integrals on the closed time path

In the contraction of two Keldysh functions appear integrals over the closed time
path, where the integrand depends on the branches of the time contour only in
the contour-sign functions. Therefore, identities between the integration on the
contour and an integration on the real time axis can be derived. Since spatial
integration is not relevant here, all identities are derived in 1 + 0 dimensions.
Spatial integration can be added afterwards. Additionally, each integrand should
be understood as also including arbitrary functions that are defined on the real
time axis. Those functions do not depend on the branches of the contour and
only clutter up the notation.
The first identity is for integrands that do not include any contour-sign func-

tion at all. In this case, the forward and backward integrations cancel, and the
integral vanishes:

∫
𝒞(𝑎)

= 0 . (B.3)

Another integral that appears has only one sgn𝒞-function. When splitting the
integral into the forward (𝒞+) and backward (𝒞−) branches the contour-sign
function can be evaluated. For this purpose, also the cases where the external
point is located on the close time path have to be distinguished. For the external
point on the forward branch, that is 𝑥0 ∈ 𝒞+, this leads to

∫
𝒞(𝑎)

sgn𝒞(𝑥
0 − 𝑎0) = ∫

∞

𝑡0
d𝑎0 [ sgn(𝑥0 − 𝑎0) + 1] = 2 ⋅∫

∞

𝑡0
d𝑎0 𝜃(𝑥0 − 𝑎0) . (B.4)

The 𝜃-distribution just restricts the integration to times smaller than 𝑥0. Ana-
logously, for 𝑥0 ∈ 𝒞− the same result is obtained. Hence, no matter where the
external point is located, the identity for the integral is

∫
𝒞(𝑎)

sgn𝒞(𝑥
0 − 𝑎0) = 2 ⋅∫

𝑥0

𝑡0
d𝑎0 . (B.5)
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Integralswith two sgn𝒞-functions in the integrand canbe evaluated in a similar
way. In this case, there are four distinct combinations where the external points
are located on the contour. Examining each case results in

∫
𝒞(𝑎)

sgn𝒞(𝑥
0 − 𝑎0) sgn𝒞(𝑦

0 − 𝑎0)

= ∫
∞

𝑡0
d𝑎0

⎧
⎪

⎨
⎪
⎩

sgn(𝑥0 − 𝑎0) sgn(𝑦0 − 𝑎0) − 1 if 𝑥, 𝑦 ∈ 𝒞+

1 − sgn(𝑥0 − 𝑎0) sgn(𝑦0 − 𝑎0) if 𝑥, 𝑦 ∈ 𝒞−

sgn(𝑥0 − 𝑎0) − sgn(𝑦0 − 𝑎0) if 𝑥 ∈ 𝒞+, 𝑦 ∈ 𝒞−

sgn(𝑦0 − 𝑎0) − sgn(𝑥0 − 𝑎0) if 𝑥 ∈ 𝒞−, 𝑦 ∈ 𝒞+

= 2 ⋅∫
𝑦0

𝑥0
d𝑎0

⎧
⎪

⎨
⎪
⎩

sgn(𝑥0 − 𝑦0) if 𝑥, 𝑦 ∈ 𝒞+

− sgn(𝑥0 − 𝑦0) if 𝑥, 𝑦 ∈ 𝒞−

−1 if 𝑥 ∈ 𝒞+, 𝑦 ∈ 𝒞−

1 if 𝑥 ∈ 𝒞−, 𝑦 ∈ 𝒞+

= 2 ⋅ sgn𝒞(𝑥
0 − 𝑦0)∫

𝑦0

𝑥0
d𝑎0 , (B.6)

and the same result is obtained for each case. This leads to an identity that
expresses the integral over the closed time path in terms of an integration over
the real time axis and a contour-sign function outside the integral

∫
𝒞(𝑎)

sgn𝒞(𝑥
0 − 𝑎0) sgn𝒞(𝑦

0 − 𝑎0) = 2 ⋅ sgn𝒞(𝑥
0 − 𝑦0)∫

𝑦0

𝑥0
d𝑎0 . (B.7)

B.3. Pointwise product

Pointwise products of Keldysh functions appear for example in diagrams of the
self-energy. Those functions are always the propagator and, therefore, do not
have a local part. In this respect, it is sufficient to examine the pointwise product
of two Keldysh functions without a local term. Let𝐴 and 𝐵 be two such functions
and (𝐴𝐵) the pointwise product. Using the decomposition from equation (B.2)
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and expanding the equation, the product reads

(𝐴𝐵)(𝑥, 𝑦) = 𝐴(𝐹)(𝑥, 𝑦) 𝐵(𝐹)(𝑥, 𝑦) −
1
4𝐴

(𝜌)(𝑥, 𝑦) 𝐵(𝜌)(𝑥, 𝑦)

−
i
2(𝐴

(𝜌)(𝑥, 𝑦) 𝐵(𝐹)(𝑥, 𝑦) + 𝐴(𝐹)(𝑥, 𝑦) 𝐵(𝜌)(𝑥, 𝑦)) sgn𝒞(𝑥
0 − 𝑦0) , (B.8)

where the identity sgn𝒞 (𝑥
0 − 𝑦0)2 = 1 was used in the first line. The (𝐹)- and

(𝜌)-parts can be read off, and the pointwise product is summarised as

(𝐴𝐵)(𝐹)(𝑥, 𝑦) = 𝐴(𝐹)(𝑥, 𝑦) 𝐵(𝐹)(𝑥, 𝑦) −
1
4𝐴

(𝜌)(𝑥, 𝑦) 𝐵(𝜌)(𝑥, 𝑦) ,

(𝐴𝐵)(𝜌)(𝑥, 𝑦) = 𝐴(𝜌)(𝑥, 𝑦) 𝐵(𝐹)(𝑥, 𝑦) + 𝐴(𝐹)(𝑥, 𝑦) 𝐵(𝜌)(𝑥, 𝑦) . (B.9)

The (𝐹)- and (𝜌)-parts are evidently symmetric and antisymmetric, respectively.
Accordingly, the pointwise product of two Keldysh functions (without a local
term) is again a Keldysh function. As an example, this identity can be applied
to the computation of self-energy diagrams. In the 𝜙3-theory, the one-loop
contribution contains

(𝐺2)(𝐹)(𝑥, 𝑦) = 𝐹(𝑥, 𝑦)2 −
1
4 𝜌(𝑥, 𝑦)

2 ,

(𝐺2)(𝜌)(𝑥, 𝑦) = 2𝐹(𝑥, 𝑦) 𝜌(𝑥, 𝑦) , (B.10)

and in the 𝜙4 theory the two-loop contribution is proportional to

(𝐺3)(𝐹)(𝑥, 𝑦) = 𝐹(𝑥, 𝑦)3 −
3
4𝐹(𝑥, 𝑦)𝜌(𝑥, 𝑦)

2 ,

(𝐺3)(𝜌)(𝑥, 𝑦) = 3𝐹(𝑥, 𝑦)2 𝜌(𝑥, 𝑦) −
1
4𝜌(𝑥, 𝑦)

3 . (B.11)

B.4. Contraction

The contraction of two Keldysh functions is especially useful in the derivation
of the time evolution equations. Let 𝐴 and 𝐵 be two Keldysh functions and 𝐴 ⋅ 𝐵
a shorthand notation for the contraction

(𝐴 ⋅ 𝐵)(𝑥, 𝑦) = ∫
𝒞(𝑎)

𝐴(𝑥, 𝑎) 𝐵(𝑎, 𝑦) . (B.12)
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In the following an extra factor of the imaginary unit is used. This choice
becomes clear in the result of the contraction when reading off the real and
imaginary parts. Inserting the decomposition from equation (B.2) into the
definition of the contraction leads to

i (𝐴⋅𝐵)(𝑥, 𝑦) = i∫
𝒞(𝑎)

{[−i𝐴(0)(𝑥) 𝛿𝒞(𝑥−𝑎)+𝐴(𝐹)(𝑥, 𝑎)−
i
2 𝐴

(𝜌)(𝑥, 𝑎) sgn𝒞(𝑥
0−𝑎0)]

× [ − i 𝐵(0)(𝑎) 𝛿𝒞(𝑎 − 𝑦) + 𝐵(𝐹)(𝑎, 𝑦) −
i
2 𝐵

(𝜌)(𝑎, 𝑦) sgn𝒞(𝑎
0 − 𝑦0)]} . (B.13)

In total, this expression consists of nine terms. The term containing only the (𝐹)-
parts have no dependence on the time contour and vanish due to equation (B.3).
Five terms contain a 𝛿-distribution and are easily obtained. For the two terms
with one sgn𝒞-function, the identity (B.5) is utilised to obtain

1
2 ∫

𝒞(𝑎)

{𝐴(𝜌)(𝑥, 𝑎) 𝐵(𝐹)(𝑎, 𝑦) sgn𝒞(𝑥
0 − 𝑎0) − 𝐴(𝐹)(𝑥, 𝑎) 𝐵(𝜌)(𝑎, 𝑦) sgn𝒞(𝑦

0 − 𝑎0) }

= ∫
𝑥0

𝑡0
d𝑎0𝐴(𝜌)(𝑥, 𝑎) 𝐵(𝐹)(𝑎, 𝑦) −∫

𝑦0

𝑡0
d𝑎0𝐴(𝐹)(𝑥, 𝑎) 𝐵(𝜌)(𝑎, 𝑦) . (B.14)

For the remaining term with two contour-sign functions, the identity (B.7) is
used to find

i
4 ∫𝒞(𝑎)

{𝐴(𝜌)(𝑥, 𝑎) 𝐵(𝜌)(𝑎, 𝑦) sgn𝒞(𝑥
0 − 𝑎0) sgn𝒞(𝑦

0 − 𝑎0) }

=
i
2 sgn𝒞(𝑥

0 − 𝑦0)∫
𝑦0

𝑥0
d𝑎0𝐴(𝜌)(𝑥, 𝑎) 𝐵(𝜌)(𝑎, 𝑦) . (B.15)
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Separating the real and imaginary parts leads to the decomposition of the con-
traction

i (𝐴 ⋅ 𝐵)(0)(𝑥) = 𝐴(0)(𝑥) 𝐵(0)(𝑥) ,

i (𝐴 ⋅ 𝐵)(𝐹)(𝑥, 𝑦) = 𝐴(0)(𝑥) 𝐵(𝐹)(𝑥, 𝑦) + 𝐴(𝐹)(𝑥, 𝑦) 𝐵(0)(𝑦)

+∫
𝑥0

𝑡0
d𝑎0𝐴(𝜌)(𝑥, 𝑎) 𝐵(𝐹)(𝑎, 𝑦)

−∫
𝑦0

𝑡0
d𝑎0𝐴(𝐹)(𝑥, 𝑎) 𝐵(𝜌)(𝑎, 𝑦) ,

i (𝐴 ⋅ 𝐵)(𝜌)(𝑥, 𝑦) = 𝐴(0)(𝑥) 𝐵(𝜌)(𝑥, 𝑦) + 𝐴(𝜌)(𝑥, 𝑦) 𝐵(0)(𝑦)

−∫
𝑦0

𝑥0
d𝑎0𝐴(𝜌)(𝑥, 𝑎) 𝐵(𝜌)(𝑎, 𝑦) . (B.16)

Evidently, the contraction of two Keldysh functions is, in general, not a Keldysh
function itself. It can be brought into the same form, but the demanded sym-
metry properties are not fulfilled. The contraction of a function with itself, on
the other hand, is again a Keldysh function.

B.5. Time evolution equations for the propagator

In this section, the two versions of the time evolution equations from sec-
tion 3.6.2, namely the differential and integral equations, are given in terms of
the spectral function and statistical propagator. For the 1PI 𝑛-point functions
with 𝑛 > 2, the time evolution is directly given by the integrated flow of the
respective correlation function. Contrary, there is no flow equation for the
propagator but rather its inverse. The integrated flow of the inverse propagator
has been defined as the self-energy in section 3.6.2. This leads to the relation
between the classical and full inverse propagator

Γ(2)(𝑥, 𝑦) = 𝑆(2) − iΣ(𝑥, 𝑦) , (B.17)

which was the starting point to get both a differential and integral equation for
the time evolution of the propagator.
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B.5.1. Differential equation

The differential equation has been obtained by explicitly using the classical
inverse propagator, leading to the time evolution equation on the closed time
path

(𝜕2𝑥0 −∇2
𝐱 +𝑚2

0)𝐺(𝑥, 𝑦) = −i𝛿𝒞(𝑥 − 𝑦) − i∫
𝒞(𝑎)

Σ(𝑥, 𝑎)𝐺(𝑎, 𝑦) . (B.18)

On the left hand side, care has to be taken in view of the time derivative since
there is a contour-sign function within the propagator. A careful analysis of this
term can be circumvented by considering the equation where 𝑥 and 𝑦 are on
opposite branches of the closed time path. Then the contour-sign function is
just a constant. Additionally, the 𝛿𝒞-distribution on the right hand side drops
out. Without loss of generality, let 𝑥0 ∈ 𝒞+ and 𝑦0 ∈ 𝒞−. After writing the
integral on the real time axis using equation (B.16) and separating the real and
imaginary parts, the time evolution equations for the spectral function and
statistical propagator are obtained as

(𝜕2𝑥0 −∇2
𝐱 +𝑚2

0) 𝐹(𝑥, 𝑦) = − Σ(0)(𝑥) 𝐹(𝑥, 𝑦) −∫
𝑥0

𝑡0
d𝑎0 Σ(𝜌)(𝑥, 𝑎) 𝐹(𝑎, 𝑦)

+∫
𝑦0

𝑡0
d𝑎0 Σ(𝐹)(𝑥, 𝑎) 𝜌(𝑎, 𝑦) ,

(𝜕2𝑥0 −∇2
𝐱 +𝑚2

0) 𝜌(𝑥, 𝑦) = −Σ(0)(𝑥) 𝜌(𝑥, 𝑦) +∫
𝑦0

𝑥0
d𝑎0 Σ(𝜌)(𝑥, 𝑎) 𝜌(𝑎, 𝑦) . (B.19)

B.5.2. Integral equation

For the derivation of the integral equation, no explicit form of the classical
inverse propagator was used, but rather its inverse. For non-classical initial
conditions the gap equation was also generalised in 3.7. For this general case
the time evolution equation on the closed time path is

𝐺(𝑥, 𝑦) =𝐺(𝑥, 𝑦) +∫
𝒞(𝑎,𝑏)

𝐺(𝑥, 𝑎) [Σ − Σinit](𝑎, 𝑏)𝐺(𝑏, 𝑦) . (B.20)

Depending on the use case, the initial propagator 𝐺 could be the free propag-
ator𝐺0, then the initial self-energy is absent. In the following, only the structure
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of the equation is of interest. Therefore, the initial self-energy is dropped to sim-
plify the notation, which actually corresponds to the redefinition Σ → Σ + Σinit.
As this time evolution equation only contains two contractions, rewriting it on
the real time axis just requires applying the identity (B.16) twice. With 𝐺 and Σ
decomposed as in equation (B.2), the time evolution equations are

𝐹(𝑥, 𝑦) −𝐹(𝑥, 𝑦) = −∫
𝑥0

𝑡0
d𝑎0 𝜌(𝑥, 𝑎) Σ(0)(𝑎) 𝐹(𝑎, 𝑦)

+∫
𝑦0

𝑡0
d𝑎0 𝐹(𝑥, 𝑎) Σ(0)(𝑎) 𝜌(𝑎, 𝑦)

+∫
𝑥0

𝑡0
d𝑎0∫

𝑎0

𝑥0
d𝑏0 𝜌(𝑥, 𝑏) Σ(𝜌)(𝑏, 𝑎) 𝐹(𝑎, 𝑦)

+∫
𝑦0

𝑡0
d𝑎0∫

𝑥0

𝑡0
d𝑏0 𝜌(𝑥, 𝑏) Σ(𝐹)(𝑏, 𝑎) 𝜌(𝑎, 𝑦)

−∫
𝑦0

𝑡0
d𝑎0∫

𝑎0

𝑡0
d𝑏0 𝐹(𝑥, 𝑏) Σ(𝜌)(𝑏, 𝑎) 𝜌(𝑎, 𝑦) ,

𝜌(𝑥, 𝑦) −𝜌(𝑥, 𝑦) = ∫
𝑦0

𝑥0
d𝑎0 𝜌(𝑥, 𝑎) Σ(0)(𝑎) 𝜌(𝑎, 𝑦)

−∫
𝑦0

𝑥0
d𝑎0∫

𝑎0

𝑥0
d𝑏0 𝜌(𝑥, 𝑏) Σ(𝜌)(𝑏, 𝑎) 𝜌(𝑎, 𝑦) . (B.21)



Appendix C

Numerical details C
This appendix provides additional details for numerical computations. In ap-
pendix C.1, the time evolution equations are Fourier transformed in the spatial
coordinates. Subsequently, those equations are discretised in appendix C.2,
leading to explicit solvers for the differential as well as the integral equation.
Both solvers are compared in appendix C.3.

C.1. Spatial momentum space

For a numerical implementation, the time evolution equations in position space
from appendix B.5 are not particularly well suited. In the differential equation,
there are temporal and spatial derivatives, and in the integral form there are
two convolutions. A more appropriate choice is to Fourier transform the spatial
coordinated, while leaving the temporal coordinates untouched. Assuming
spatial translation invariance, this work uses the convention

𝑓(𝑥, 𝑦) ≡ 𝑓(𝑥0, 𝑦0; 𝐱 − 𝐲) = ∫
𝐩
ei(𝐱−𝐲)⋅𝐩 ̂𝑓(𝑥0, 𝑦0; 𝐩) , (C.1)

where ∫𝐩 = ∫ℝ𝑑
d𝑑𝐩
(2𝜋)𝑑

in 1 + 𝑑 dimensions. Since there is no transformation in
the temporal coordinates, the identities for the time contour that were derived
in appendix B are still valid. Due to the spatial translation invariance, rewriting
the pointwise product and contraction in position space boils down to using
the convolution theorem. The pointwise product in position space becomes a
convolution in momentum space. Let 𝑓 and 𝑔, be two functions in position
space, then

(̂𝑓𝑔)(𝑥0, 𝑦0; 𝐩) = ∫
𝐪
𝑓(𝑥0, 𝑦0; 𝐩 − 𝐪) 𝑔(𝑥0, 𝑦0; 𝐪) , (C.2)
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where (𝑓𝑔) denotes the pointwise product in position space. A contraction of
two translation invariant functions in position space (𝑓 ⋅ 𝑔), on the other hand, is
actually a convolution, and becomes a pointwise product in spatial momentum
space

(̂𝑓 ⋅ 𝑔)(𝑥0, 𝑦0; 𝐩) = ∫
𝒞(𝑧0)

𝑓(𝑥0, 𝑧0; 𝐩) 𝑔(𝑥0, 𝑧0; 𝐩) . (C.3)

Note that due to the spatial translation invariance, all local parts of Keldysh
functions only depend on a single time and not on space. In other words, those
functions are momentum independent. In the following, the hat is dropped for
functions in spatial Fourier space.

C.1.1. Differential equation

Getting the differential time evolution equations of the propagator in spatial
momentum space is straightforward. Starting from equation (B.19), the spatial
derivative becomes themomentumand the spatial integration in the contraction
is just a product in spatial momentum space. The time integrals stay the same,
and the equations are

𝜕2𝑥0 𝐹(𝑥
0, 𝑦0; 𝑝) = − (𝑝2 +𝑚2

0 + Σ(0)(𝑥0)) 𝐹(𝑥0, 𝑦0; 𝑝)

−∫
𝑥0

𝑡0
d𝑎0 Σ(𝜌)(𝑥0, 𝑎0; 𝑝) 𝐹(𝑎0, 𝑦0; 𝑝)

+∫
𝑦0

𝑡0
d𝑎0 Σ(𝐹)(𝑥0, 𝑎0; 𝑝) 𝜌(𝑎0, 𝑦0; 𝑝) ,

𝜕2𝑥0 𝜌(𝑥
0, 𝑦0; 𝑝) = − (𝑝2 +𝑚2

0 + Σ(0)(𝑥0)) 𝜌(𝑥0, 𝑦0; 𝑝)

+∫
𝑦0

𝑥0
d𝑎0 Σ(𝜌)(𝑥0, 𝑎0; 𝑝) 𝜌(𝑎0, 𝑦0; 𝑝) . (C.4)
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C.1.2. Integral equation

For the integral equation (B.21), the procedure is similar. Again, the contraction
in position space becomes a pointwise product in the spatial momenta. The
resulting equations are

𝐹(𝑥0, 𝑦0; 𝑝) = 𝐹(𝑥0, 𝑦0; 𝑝)

−∫
𝑥0

𝑡0
d𝑎0 𝜌(𝑥0, 𝑎0; 𝑝) Σ(0)(𝑎0) 𝐹(𝑎0, 𝑦0; 𝑝)

+∫
𝑦0

𝑡0
d𝑎0 𝐹(𝑥0, 𝑎0; 𝑝) Σ(0)(𝑎0) 𝜌(𝑎0, 𝑦0; 𝑝)

+∫
𝑥0

𝑡0
d𝑎0∫

𝑎0

𝑥0
d𝑏0 𝜌(𝑥0, 𝑏0; 𝑝) Σ(𝜌)(𝑏0, 𝑎0; 𝑝) 𝐹(𝑎0, 𝑦0; 𝑝)

+∫
𝑦0

𝑡0
d𝑎0∫

𝑥0

𝑡0
d𝑏0 𝜌(𝑥0, 𝑏0; 𝑝) Σ(𝐹)(𝑏0, 𝑎0; 𝑝) 𝜌(𝑎0, 𝑦0; 𝑝)

−∫
𝑦0

𝑡0
d𝑎0∫

𝑎0

𝑡0
d𝑏0 𝐹(𝑥0, 𝑏0; 𝑝) Σ(𝜌)(𝑏0, 𝑎0; 𝑝) 𝜌(𝑎0, 𝑦0; 𝑝) ,

𝜌(𝑥, 𝑦) = 𝜌(𝑥0, 𝑦0; 𝑝)

+∫
𝑦0

𝑥0
d𝑎0 𝜌(𝑥, 𝑎) Σ(0)(𝑎) 𝜌(𝑎, 𝑦)

−∫
𝑦0

𝑥0
d𝑎0∫

𝑎0

𝑥0
d𝑏0 𝜌(𝑥, 𝑏) Σ(𝜌)(𝑏, 𝑎) 𝜌(𝑎, 𝑦) . (C.5)

C.2. Explicit solvers

Both types of time evolution equations can be solved explicitly, which means
computing the propagator at a time slice with maximal time 𝑡max only requires
knowledge of the propagator and self-energy for times 𝑡 < 𝑡max. This property is
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obvious for the differential equation, because any explicit solver for differential
equations can be used. For the integral equation, the equations have to be
carefully analysed to observe the same property. No matter what equation is
used for the time evolution, one time step can be computed for eachmomentum
separately. Therefore, momentum arguments are dropped for a clearer notation.
The time is discretised using a linear grid with times

𝑡𝑘 = 𝑡0 + 𝑘Δ𝑡 , for 𝑘 ≥ 0 . (C.6)

For the statistical propagator on that grid, the time arguments are denoted by
indices such that

𝐹𝑖𝑗 = 𝐹(𝑡𝑖, 𝑡𝑗) , (C.7)

and analogously for the spectral function and the self-energy. Time integrals
on the discretised function can be written as weighted sums. Assuming 𝑓 is
discretised as introduced above, this sum is

∫
𝑡𝑗

𝑡𝑖

d𝑎0𝑓(𝑎0) =
𝑗
∑
𝑘=𝑖

𝑤𝑘(𝑖, 𝑗) 𝑓𝑘 , (C.8)

where the weights 𝑤𝑘(𝑖, 𝑗) depend on the integral limits. For example, the
weights for the composite trapezoidal rule are

𝑤𝑘(𝑖, 𝑗) = Δ𝑡 ⋅ {
1
2 for 𝑘 = 𝑖 or 𝑘 = 𝑗
1 else .

(C.9)

C.2.1. Differential equation

Discretising the differential equation requires to introduce the time derivative
on the grid. Here symmetric finite differences are used, such that

𝜕2𝑡𝐹(𝑡, 𝑡′) =
1

(Δ𝑡)2
[𝐹(𝑡, 𝑡′) − 2𝐹(𝑡 − Δ𝑡, 𝑡′) + 𝐹(𝑡 − 2Δ𝑡, 𝑡′)] +𝒪(Δ𝑡) . (C.10)

Using this discrete derivative in equation (C.4) and also applying the trapezoidal
rule for the time integrals directly leads to an explicit solver for the differential
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equation. For a fixed momentum 𝑝, and 𝑖, 𝑗 ≥ 2 it reads

𝐹𝑖𝑗 = 2𝐹𝑖−1,𝑗 − 𝐹𝑖−2,𝑗 − (Δ𝑡)2(𝑝2 +𝑚2
0 + Σ(0)𝑖−1) 𝐹𝑖−1,𝑗

− (Δ𝑡)2
𝑖−2
∑
𝑘=0

𝑤𝑘(0, 𝑖 − 1) Σ(𝜌)𝑖−1,𝑘 𝐹𝑘𝑗

+ (Δ𝑡)2
𝑗−1
∑
𝑘=0

𝑤𝑘(0, 𝑗) Σ
(𝐹)
𝑖−1,𝑘 𝜌𝑘𝑗 ,

𝜌𝑖𝑗 = 2𝜌𝑖−1,𝑗 − 𝜌𝑖−2,𝑗 − (Δ𝑡)2(𝑝2 +𝑚2
0 + Σ(0)𝑖−1) 𝜌𝑖−1,𝑗

− [𝑗 < 𝑖 − 2] (Δ𝑡)3
𝑖−2
∑

𝑘=𝑗+1
Σ(𝜌)𝑖−1,𝑘 𝜌𝑘𝑗 , (C.11)

where𝜌𝑖𝑖 = 𝜌𝑖𝑖 = Σ(𝜌)𝑖𝑖 = 0 was used. Additionally, the notation for a conditional
term was introduced. It is defined as

[𝑎] = {
1 if 𝑎 = true
0 if 𝑎 = false.

(C.12)

While explicitly denoting the conditional term is not necessary, it points out
which terms are vanishing and is useful for the implementation of the solver. Let
the next time slice to be computed have the index 𝑁, then the spectral function
only contains correlation functions and the self-energy for indices smaller than
𝑁. Hence, the time step is explicit. Subsequently, the entries of the statistical
propagator can be explicitly computed for 𝑖 = 𝑁 and 𝑗 < 𝑁. Finally, the entry 𝐹𝑁𝑁
can be computed. Note that the symmetry and antisymmetry of the statistical
propagator and spectral function, respectively, are used in intermediate steps.

C.2.2. Integral equation

The integral equation is discretised analogously. Without loss of generality,
considering the case 𝑥0 ≥ 𝑦0 ≥ 𝑡0, that is 𝑖 ≥ 𝑗 ≥ 0, the time evolution equations
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are obtained as

𝐹𝑖𝑗 − ̄𝐹𝑖𝑗 = − [𝑖 > 0]
𝑖−1
∑
𝑘=0

𝑤𝑘(0, 𝑖) 𝜌𝑖𝑘 Σ
(0)
𝑘 𝐹𝑘𝑗

+ [𝑗 > 0]
𝑗−1
∑
𝑘=0

𝑤𝑘(0, 𝑗) 𝐹𝑖𝑘 Σ
(0)
𝑘 𝜌𝑘𝑗

− [𝑖 > 1]
𝑖−2
∑
𝑘=0

𝑖−1
∑

𝑙=𝑘+1
𝑤𝑘(0, 𝑖) 𝑤𝑙(𝑘, 𝑖) 𝜌𝑖𝑙 Σ

(𝜌)
𝑙𝑘 𝐹𝑘𝑗

− [𝑗 > 1]
𝑗−1
∑
𝑘=1

𝑘−1
∑
𝑙=0

𝑤𝑘(0, 𝑗)𝑤𝑙(0, 𝑘) 𝐹𝑖𝑙 Σ
(𝜌)
𝑙𝑘 𝜌𝑘𝑗

+ [𝑖 > 0 ∧ 𝑗 > 0]
𝑗−1
∑
𝑘=0

𝑖−1
∑
𝑙=0

𝑤𝑘(0, 𝑗)𝑤𝑙(0, 𝑖) 𝜌𝑖𝑙 Σ
(𝐹)
𝑙𝑘 𝜌𝑘𝑗 ,

𝜌𝑖𝑗 −𝜌𝑖𝑗 = − [𝑖 > 𝑗 + 1]
𝑖−1
∑

𝑘=𝑗+1
𝑤𝑘(𝑗, 𝑖) 𝜌𝑖𝑘 Σ

(0)
𝑘 𝜌𝑘𝑗

− [𝑖 > 𝑗 + 2]
𝑖−2
∑

𝑘=𝑗+1

𝑖−1
∑

𝑙=𝑘+1
𝑤𝑘(𝑗, 𝑖) 𝑤𝑙(𝑘, 𝑖) 𝜌𝑖𝑙 Σ

(𝜌)
𝑙𝑘 𝜌𝑘𝑗 , (C.13)

where again𝜌𝑖𝑖 = 𝜌𝑖𝑖 = Σ(𝜌)𝑖𝑖 = 0 was used.

In order that these equations are explicitly solvable, the time on the left hand
side must not appear on the right hand side. Otherwise, the time step is implicit
and some iterative method has to be employed. To examine one time step, the
new time is denoted by 𝑡𝑁. All correlation functions up to that time, i.e. 𝑡 < 𝑡𝑁,
are known. Additionally, the spectral function𝜌 and statistical propagator𝐹,
that are the inverse of the initial 1PI two-point function, are known for any time.

Starting with the spectral function in equation (C.13), one can set the index
𝑖 = 𝑁 and 𝑗 < 𝑁. The latter is just reflects that the spectral function vanishes for
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equal times. This leads to

𝜌𝑁𝑗 −𝜌𝑁𝑗 = − [𝑖 > 𝑗 + 1]
𝑁−1
∑

𝑘=𝑗+1
𝑤𝑘(𝑗, 𝑖) 𝜌𝑖𝑘 Σ

(0)
𝑘 𝜌𝑘𝑗

− [𝑖 > 𝑗 + 2]
𝑁−2
∑

𝑘=𝑗+1

𝑁−1
∑

𝑙=𝑘+1
𝑤𝑘(𝑗, 𝑖) 𝑤𝑙(𝑘, 𝑖) 𝜌𝑖𝑙 Σ

(𝜌)
𝑙𝑘 𝜌𝑘𝑗 . (C.14)

It is sufficient to look at the indices of summation. Because all summation
indices are smaller than 𝑁 − 1, the right hand side does not involve the time of
the current time step. Even more, only values on the lower triangular matrix
of the spectral function are used, and the sequence in which to compute the
elements of the time slice is arbitrary. Therefore, the time step of the spectral
function is explicit. It also independent from the statistical propagator, which
only couples to the equation via the self-energy.

As a consequence, for the statistical propagator in equation (C.13), the spectral
function is known up to the time 𝑡𝑁. Setting 𝑖 = 𝑁, and looking again at the
indices of summation, all terms that include the spectral function pose no
problem in view of an explicit time step. The remaining terms are

𝐹𝑁𝑗 − ̄𝐹𝑁𝑗 = − [𝑁 > 0]
𝑁−1
∑
𝑘=0

𝑤𝑘(0, 𝑁) 𝜌𝑁𝑘 Σ
(0)
𝑘 𝐹𝑘𝑗

− [𝑁 > 1]
𝑁−2
∑
𝑘=0

𝑁−1
∑

𝑙=𝑘+1
𝑤𝑘(0, 𝑁)𝑤𝑙(𝑘, 𝑁) 𝜌𝑁𝑙 Σ

(𝜌)
𝑙𝑘 𝐹𝑘𝑗

+ … . (C.15)

These terms suggest that the order of computation is important. In the case
𝑗 < 𝑁 the examination is similar to the previous one for the spectral function.
All elements 𝐹𝑁𝑗 for 𝑗 < 𝑁 can be computed explicitly and in an arbitrary order.
The element 𝐹𝑁𝑁 has to be computed at last, because it involves the previous
values of the statistical propagator.
In summary, each time step is explicit. The order of computation is crucial

and involves three steps. Let the time of the step correspond to the index 𝑁,
then the following steps have to be taken:

• Compute the elements 𝜌𝑁𝑗 with 𝑗 = 0..𝑁 − 1 of the spectral function in
arbitrary order.
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Figure C.1. Time evolution of the statistical propagator obtained using the differen-
tial solver for various time resolutions Δ ̃𝑡 = Δ𝑡 ⋅ 𝑚0. The curves get closer to each
other for decreasing time-step size.

• Compute the elements 𝐹𝑁𝑗 with 𝑗 = 0..𝑁 − 1 of the statistical propagator
in arbitrary order.

• Compute the element 𝐹𝑁𝑁 of the statistical propagator.

The fact that elements can be computed in arbitrary order is emphasised here
because it allows for parallel implementations.

C.3. Comparison of solvers

In this section, results obtained fromboth types of time evolutions are compared.
For this purpose, theory, truncation and initial conditions from chapter 4 are
used. In figure C.1, the solution for statistical propagator 𝐹(0, 𝑡, 𝑝 = 4.04𝑚0)
for three different time-step sizes Δ ̃𝑡 = Δ𝑡 ⋅ 𝑚0 is shown. For a decreasing
step size, the curves get closer to each other and no instabilities are observed
for the step sizes used. In figure C.2, the solution of the statistical propagator
𝐹(0, 𝑡, 𝑝 = 4.04𝑚0) that was obtained from the integral equation is shown for the
same times as in figure C.1 and the same step sizes. We observe that the curves
are perfectly on top of each other for all shown step sizes. Thus, the explicit
solver obtained from the discretisation of the integral equation converges faster
than the differential one.
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Figure C.2. Time evolution of the statistical propagator obtained using the integral
solver for various time resolutions Δ ̃𝑡 = Δ𝑡 ⋅ 𝑚0. The curves are perfectly on top
of each other. This demonstrates the faster convergence of the integral solver as
compared to the differential one.

For sufficiently small step sizes, i.e. where the solution apparently already
converged, the results from both solvers should agree. For this purpose, the
results for the smallest available step size are compared in figure C.3. The
solution agree within a small error. The same agreement is obtained comparing
the largest step size of the integral solver with the smallest one of the differential
solver. Taking a closer look at figure C.3, the black dashed line (differential
equation) is still slightly shifted compared to the red one (integral equation).
This again demonstrates the faster convergence of the solver using the integral
equation.
The faster convergence comes at the price of an additional time integral that

has to be computed. However, the differential solver requires a smaller time-
step size to produce results of the same accuracy. For the results shown in this
section for Δ ̃𝑡 = 0.025 for the differential solver and Δ ̃𝑡 = 0.101 for the explicit
solver, the runtime of both solvers is comparable (same order of magnitude).
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Figure C.3. Time evolution of the statistical propagator obtained using the differ-
ential and explicit solver for Δ ̃𝑡 = Δ𝑡 ⋅ 𝑚0 = 0.025. Both solvers agree for small
enough time-step size.



Appendix D

Three-dimensional Yang-Mills theory D
In this appendix, numerical results in view of regulator independence in the
momentum-space fRG are presented. Additionally, it provides details for the
numerical computations in chapter 6, as well as the procedure of scale setting
and renormalisation.

D.1. Regulator independence

To check the stability of our results, we repeat the computations above with the
flat [83] instead of the exponential regulator shape function. We parametrise
the ghost and gluon regulators by

𝑅𝑎𝑏(𝑝) = 𝑝2 𝛿𝑎𝑏 𝑟 (
𝑝2

𝑘2
) ,

𝑅𝑎𝑏𝜇𝜈(𝑝) = 𝑝2 𝛿𝑎𝑏Π⊥
𝜇𝜈 𝑟 (

𝑝2

𝑘2
) . (D.1)

The exponential shape function is given by

𝑟exp(𝑥) =
𝑥𝑚−1

exp (𝑥𝑚) − 1 , (D.2)

whereas the flat one is given by

𝑟flat(𝑥) = (𝑥−1 − 1) ⋅ 𝜃 (𝑥−1 − 1) . (D.3)

The dependence of propagator dressings on the regulator shape functions is
shown in figure D.1 as relative errors, defined by

Δ2rel = 2 ⋅
(𝒪exp −𝒪flat)2

𝒪2
exp +𝒪2

flat
. (D.4)
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Figure D.1. Relative errors Δrel of propagator dressings obtained with different regu-
lator shape functions, given in equation (D.2) and equation (D.3), in the symmetric
point approximation.

Clearly, the relative errors are well below the percent level in the IR, and even
smaller in the mid-momentum and UV regimes that are relevant for hadronic
observables. Importantly, the regulator dependence is significantly smaller
than the truncation dependence.

Explicitly demonstrating regulator independence is a standard quality and self-
consistency check for truncations in the fRG. It is a necessary but not sufficient
criterion for the convergence of a given truncation. Indeed, we observe that
the dependence of our results on the regulator shape function is negligible
although the truncations are not yet converged. Nonetheless, this regulator
independence already at low truncation orders is a very welcome property.

D.2. Numerical computation

Landau gauge has the convenient property that the transverse correlation func-
tions close among themselves [27, 84], i.e. correlators with at least one longit-
udinal leg do not couple back into the transverse subsystem. In the presence
of a regulator term, the BRST symmetry is encoded in modified Slavnov-Taylor
identities. Their most important consequence is a non-vanishing gluon mass
term at finite cutoff scales [85]. Here we present only results for one choice of
the gluon mass term, determined uniquely by the scaling solution [73, 74]. The
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consequences of other choices for the gluon mass term are qualitatively similar
to YM theory in four space-time dimensions and we refer to the discussion
presented in [27] for details.
This work relies on the workflow established within the fQCD collaboration

[23], see [27] for details. Symbolic flow equations were derived using DoFun [86],
traced using FormTracer [87], whichmakes use of FORM [88] and its optimization
procedure [89].

D.3. Scale setting and normalisation

For comparison, the DSE and lattice results for the propagators in section 6.3
are normalised in amplitude and momentum scale relative to the fRG results.
To that end we normalise the DSE/lattice gluon dressings with a least squares fit
to the fRG gluon propagator dressing in the range 3GeV to 6GeV with

min𝑐𝐴, 𝑐𝑝
{ ∑
𝑝𝑖, lattice

[𝑐A 𝑍−1𝐴,FRG(𝑐p 𝑝𝑖) − 𝑍−1𝐴, lat/DSE(𝑝𝑖)]
2
} . (D.5)

Here, 𝑐𝐴 normalises the amplitude while 𝑐𝑝 normalises the momentum scale.
The momentum scale normalisation has to be used for all correlation functions.
Hence it is only left to fix the amplitudes for the other correlation functions. In
particular the amplitude of the ghost propagator dressing is normalised with

min𝑐𝑐 { ∑
𝑝𝑖, lattice

[𝑐c 𝑍−1𝑐,FRG(𝑐𝑝 𝑝𝑖) − 𝑍−1𝑐, lat/DSE(𝑝𝑖)]
2
} . (D.6)

The lattice results for the vertices have large statistical lattice errors, and we
refrain from normalising the amplitudes. The dressing of the DSE vertices is
trivial for large momenta.
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