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Abstract

The Large Magellanic Cloud (LMC) exhibits an extraordinary star-forming
activity, providing excellent targets for star formation research. Photomet-
ric observations with the Hubble Space Telescope (HST) allow for deep,
high-resolution studies of young stellar clusters and still-forming pre-main-
sequence (PMS) stars in the LMC. In this thesis we study two LMC star-
forming complexes, the Tarantula Nebula and N44. Using HST photometry
of the Tarantula Nebula from the "Hubble Tarantula Treasury Project" (HTTP),
we devise a machine-learning (ML) classification procedure to identify PMS
stars from photometry and recover the PMS population captured by the HTTP
survey. We introduce new HST observations of N44, the "Measuring Young
Stars in Space and Time" (MYSST) survey, identify N44’s PMS content with
our ML classification procedure, and conduct a clustering analysis of the
identified PMS stars. Additionally, we develop a conditional invertible neural
network approach to predict stellar physical parameters from photometric
observations, based on the PARSEC stellar evolution models. We perform
a test on HST observations of the Milky Way clusters Westerlund 2 and
NGC 6397, and successfully confirm previous findings on e.g. the age of
Westerlund 2. For NGC 6397, however, we identify discrepancies between
the PARSEC stellar evolution models and HST observations that prevent
accurate predictions.






Zusammenfassung

Die Grof3e Magellansche Wolke (LMC) besitzt eine auBBergewdhnliche Stern-
entstehungsaktivitat und bietet hervorragende Ziele fir Sternentstehungsfor-
schung. Photometrische Beobachtungen mit dem Hubble-Weltraumteleskop
(HST) erlauben tiefe, hochauflésende Studien von Sternhaufen und von
in der Entstehung befindlichen Vorhauptreihensternen in der LMC. In die-
ser Dissertation untersuchen wir zwei Sternentstehungskomplexe der LMC,
den Tarantelnebel und N44. Mit Hilfe der HST-Photometrie des Tarantel-
nebels vom ,Hubble Tarantula Treasury Project® (HTTP) entwickeln wir
eine Klassifikationsprozedur mit maschinellem Lernen (ML), um Vorhaup-
treihensterne anhand von Photometrie zu identifizieren und ermitteln die
Vorhauptreihenpopulation des Tarantelnebels. Wir stellen auBerdem neue
HST-Beobachtungen von N44 vor, das ,Measuring Young Stars in Space
and Time*“ (MYSST) Projekt, identifizieren die Vorhauptreihensterne in N44
mit unserer ML-Klassifikationsmethode und flihren eine Clustering-Analyse
der identifizierten Vorhauptreihensterne durch. Zusatzlich entwickeln wir
ein Conditional Invertible Neural Network mit Hilfe der PARSEC Sternent-
wicklungsmodelle, um physikalische Eigenschaften von Sternen anhand
photometrischer Beobachtungen vorherzusagen. Wir testen unsere Methode
auf HST-Beobachtungen der Sternhaufen Westerlund 2 und NGC 6397 in
der MilchstrafBe und kénnen erfolgreich bekannte Ergebnisse fir z.B. das
Alter von Westerlund 2 bestatigen. Fir NGC 6397 jedoch identifizieren wir
eine Diskrepanz zwischen den PARSEC Sternentwicklungsmodellen und
HST-Beobachtungen, welche prazise Vorhersagen verhindert.
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Introduction

Stars and the night sky have fascinated humankind for centuries and have
influenced our history in various ways, be it through e.g. astronomical cal-
endars, celestial navigation or science. Not without reason astronomy is
believed to be one of the oldest occupations in the world. For instance,
Hipparchus already compiled a catalogue of over a thousand stars in the
second century BC (Leverington, 2003). Studying stars is a fundamental
part of understanding our universe. After all, stars are the very entities that
bring light into the galaxies and in the case of our Sun are the direct reason
that life on Earth continues to exist. With the discovery of nuclear fusion
as the central energy source within stars and the subsequent realisation
that (almost) all elements heavier than hydrogen are synthesised within the
hot, dense furnaces in the centres of stars, as well as during the explosive
demise of the most massive stars, trying to understand stars has turned into
a quest for the very early origins of human life itself (Beech, 2019).

In the study of stars one of the central questions is how the stars themselves
form. Going from the diffuse interstellar medium to the hot and dense envi-
ronments necessary to ignite and sustain nuclear fusion, star formation is
a complex process that covers many orders of magnitude in length scales,
temperature and density (Schulz, 2012; Bodenheimer, 2011; Stahler and
Palla, 2004). By now we have a fairly decent conceptual understanding
of stellar birth, starting from giant molecular clouds, enormous reservoirs
of molecular hydrogen, that form dense cores through density fluctuations
driven by large scale turbulence, which then in turn begin to gravitationally
collapse. Continuously accreting more material from their natal environment,
these protostellar cores then contract under their own self-gravity until their
interiors become hot and dense enough to finally ignite hydrogen fusion
and become a star (Klessen and Glover, 2016). Many details regarding this
process are, however, still not yet fully understood. This includes e.g. the
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processes that dictate how much gas is actually converted to stars, how
feedback of massive stars affects and perhaps even triggers star formation,
or whether the initial mass function — the distribution of stellar masses at birth
—is truly a universal relation or not (e.g. Bodenheimer, 2011). To understand
these phenomena we need to observe star formation as it is happening.

This is not an easy undertaking, as there are many factors that make ob-
serving star formation difficult. One of the primary difficulties arises from
the timescales on which star formation takes place. Ranging for instance
into the tens of millions of years for the formation of a solar mass star, we
cannot simply observe a star forming from start to finish (Stahler and Palla,
2004). Instead, we have to capture the process of stellar birth at different
stages, in varying environments and with large number statistics in order
to properly piece this puzzle together. Other challenges arise e.g. from the
fact that young forming stars are often heavily embedded within their natal
environments and are, thus, subject to large amounts of extinction from the
surrounding gas and dust (Schulz, 2012; Bodenheimer, 2011).

One of the main observational techniques to capture information about star
formation are large photometric surveys of active star-forming regions and
young stellar clusters. Although photometry in contrast to spectroscopy
provides only glimpses into the total spectrum of a star, measuring a star’s
brightness in a series of broadband filters, its lower observational time re-
quirements make photometry an integral approach to observe large amounts
of individual stars, in particular in extragalactic environments where spec-
troscopy becomes unfeasible. Among the prime targets to study star forma-
tion are the Magellanic Clouds, the two companion dwarf galaxies of our
Milky Way, as they exhibit an extraordinary star-forming activity with many
large and impressive centres of stellar birth, which are observable at low
extinction due to the position of the Clouds above and away from the Milky
Way’s dusty disk (Gouliermis, 2012).

Over the last decades astronomy has become an exceptionally data-rich
environment. With the constant development of more precise instrumentation
and the construction of larger and better telescopes, both ground-based —
e.g. the Very Large Telescope (VLT), Extremely Large Telescope (ELT), Vera
C. Rubin Observatory (VRO) — and in space — e.g. Hubble Space Telescope,
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James Webb Space Telescope (JWST), Gaia — large surveys, in particular
the all-sky variants — e.g. Sloan Digital Sky Survey (SDSS), Gaia, Panoramic
Survey Telescope And Rapid Response System (Pan-STARRS) — deliver
data sets now that may contain billions of stars. With astronomy arriving in
the big data era the adequate analysis of these enormous data sets requires
efficient automatic algorithms. Machine and deep learning, revolving around
data-driven algorithms that learn from data itself to make predictions, are
the obvious choice to tackle these challenges. From galaxy morphology
classification (e.g. Huertas-Company et al., 2015) to exoplanet identification
(e.g. Armstrong et. al, 2018), machine learning approaches have successfully
solved a variety of astronomical problems over the last decade (see e.g. Fluke
and Jacobs, 2020, for a recent review). Although arguably now established in
astronomy, machine learning still remains a relatively new addition to the tool
set of the community. Therefore, continuous development and exploration
of the steadily evolving machine learning methodologies for astronomical
questions is necessary to fully use the wealth of data that is and will be
available to astronomers.

Motivation and Outline

In photometric surveys of young stellar clusters and large star-forming re-
gions one of the main difficulties in identifying young, still-forming pre-main-
sequence (PMS) stars arises from the fact that old populations (from e.g. the
host galaxy’s field) often significantly contaminate the line of sight towards
the target in the foreground or background. In this case, observational effects
such as extinction or photometric uncertainties combined with properties
intrinsic to stellar evolution (see Section 1.4) may render it difficult to disen-
tangle PMS sources from e.g. lower main-sequence or red giant branch stars
(e.g. Gouliermis, 2012). To subsequently investigate central open topics
in star formation research, e.g. the initial mass function or primordial mass
segregation in clusters, the observed PMS stars need to be characterised
by recovering their fundamental physical properties, such as age and mass.
This constitutes the inverse problem of predicting stellar physical parameters
from observations. This task is subject to considerable degeneracy from
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e.g. intrinsic properties of stellar evolution or, in the case of photometric
surveys, the inherent information loss of photometry. To adequately solve
this problem, therefore, methodologies are required that can take these
degeneracies into account.

With this thesis we aim to contribute towards solving these challenges in
identifying and characterising PMS stars by exploring the application of
different machine learning methodologies. In particular, we develop these
approaches to gain insights into the environments of two of the most promi-
nent star-forming complexes in the Large Magellanic Cloud, the Tarantula
Nebula and LHa 120-N44, and to ultimately advance the recovery of the
star formation histories of these regions. Towards this goal we analyse data
from two large photometric surveys with the Hubble Space Telescope (HST)
called "Hubble Tarantula Treasury Project" (HTTP, see Section 2.4) and
"Measuring Young Stars in Space and Time" (MYSST, see Section 2.5).

Following the outlined directive, we present four studies in this cumulative
thesis. In our first study (Section 3.1) we employ the HTTP photometric
catalogue to establish a machine learning classification approach to identify
and distinguish the young PMS sources from old contaminating popula-
tions. Subsequently, we recover a census of the PMS population of the
Tarantula Nebula. In our second study (Section 3.2) we develop a deep
learning regression approach, based on the conditional neural network ar-
chitecture, to characterise PMS stars by solving the inverse problem of
predicting stellar physical parameters from photometry. In this work we detalil
the proof-of-concept implementation and perform a real-data benchmark on
HST observations of the two well-studied Milky Way clusters, Westerlund 2
and NGC 6397. In the third study (Section 3.3) we introduce the MYSST
survey of LHa 120—-N44, presenting its observing strategy and photometric
catalogue, and devise an application of the RANSAC machine learning algo-
rithm to constrain reddening properties of the region. In our fourth and final
study (Section 3.4) we conduct the first in-depth analysis of the MYSST data
and apply the PMS identification procedure from our first study to recover
the PMS census of N44. Additionally, we perform a clustering analysis of the
identified PMS population and quantify the spatial structure of star-forming
centres across N44.

Chapter 1 Introduction
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1.1.1

In total this thesis consists of four chapters and is structured as follows.
Chapter 1 provides a general introduction to the relevant topics that are
subject of this thesis. Section 1.1 gives an overview of the star formation
process and the natal environments of stars, the giant molecular clouds.
Section 1.2 briefly summarises the post-main-sequence evolution of stars
and Section 1.3 discusses observation of star formation. Sections 1.4 and 1.5
introduce the methodological background of the machine and deep learning
approaches applied throughout this thesis. Lastly, Section 1.6 gives a short
summary of related studies. In Chapter 2 we provide an overview of the
target regions and associated data sets that are analysed throughout this
thesis. Chapter 3 presents the four studies, Ksoll et al. (2018, 2020, 2021a,b),
that make up the core of this thesis as they appear in the Monthly Notices
of the Royal Astronomical Society and The Astronomical Journal. The final
Chapter 4 gives a summary and discussion of the work done in this thesis,
as well as an outlook on potential follow-up studies.

Star Formation

The Interstellar Medium
Properties of the ISM

Giant molecular clouds — enormous and dense accumulations of molecular
hydrogen — are the birth places of stars (Kennicutt and Evans, 2012). Before
we describe the properties of molecular clouds and the processes that lead
to the formation of stars within them, however, we have to ask from where
these clouds themselves originate. The answer is the interstellar medium
(ISM), i.e. the baryonic matter that permeates and fills a galaxy in between
stars (not to be confused with the intergalactic medium between galaxies;
Schulz, 2012). The ISM consists primarily of hydrogen (~ 70%) and helium
(~ 28%), with heavier elements accounting for the remaining 2%. The former
two are mainly found in the gas phase, whereas a substantial fraction of
the heavier elements may be bound in dust grains (Girichidis et al., 2020).

1.1 Star Formation
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Besides the molecular clouds the gas component of the ISM is often further
distinguished into four main phases that coexist in an approximate pressure
equilibrium (Beech, 2019; Stahler and Palla, 2004). These are the cold
neutral medium (CNM), the warm neutral medium (WNM), the warm ionised
medium (WIM) and the hot ionised medium (HIM), whose characteristic
temperatures, densities and length scales are summarised in Table 1.1.

Tab. 1.1.: Properties of the components of the ISM.

Component Temperature (K) Density (cm~3) Length Scales (pc)

HIM 10° 0.01 Galactic (50%)
WIM 8000 0.03—-10.5 Galactic (15 — 25%)
WNM 6000 — 10000 0.1—-0.5 Galactic (15 — 30%)
CNM 50 — 100 20 — 50 Galactic (~ 5%)
GMC 15 > 100 ~ 50 (< 1%)
MC 10 > 300 ~ 10

MC clump 10 103 ~ 5

MC core 10 109 ~0.1-0.3

The term in parenthesis in the length scale column refers to the volume filling factor
of each component. The ’Galactic’ keyword in the same column indicates that a
given phase is widespread through the Galactic disc. Compiled from Girichidis
et al. (2020); Beech (2019); Schulz (2012); Bodenheimer (2011); Stahler and Palla
(2004).

Most of the volume of the ISM is occupied by ionised gas, but this component
accounts only for a small fraction (~ 25%) of the total gas mass of a galaxy
(Mgas ot ~ 10 My, for e.g. the Milky Way; Kalberla and Kerp, 2009). Most
of the mass is located in regions of neutral atomic (H, He) or molecular gas
(Hs), which are primarily found in dense clouds that occupy only a minute
fraction (~ 1%) of the total ISM volume (Girichidis et al., 2020). This picture
of distinct ISM phases is, of course, not absolute and there is considerable
mixing between the various components, in particular because the ISM is
subject to significant amounts of turbulence, driven by effects such as thermal
instability, supernova feedback and gas inflow on the Galactic disc (Girichidis
et al., 2020; Klessen and Glover, 2016).

As Table 1.1 demonstrates, there are quite significant differences in density
and temperature between the material that occupies most of the volume of
a galaxy, but is too hot and diffuse to form stars, and the molecular clouds

Chapter 1 Introduction



that stars are born in. This begs the question how the ISM coagulates into
molecular clouds to provide the initial conditions for star formation.

Formation of Molecular Hydrogen

Considering only ISM chemistry, this breaks down to the formation of molecu-
lar hydrogen H;. The most basic formation pathways for molecular hydrogen
through radiative association

H+H—Hy+7~ (1.1)
and ion-neutral reactions, e.g.

H+e — H 4+~
(1.2)
H +H—Hy+e,

are not very efficient in the ISM. Instead H, forms primarily not in the gas
phase, but via association reactions of H atoms adsorbed on dust grains
(Klessen and Glover, 2016). A viable H, formation mechanism alone is,
however, not sufficient to form a molecular cloud as effects that destroy H,
have to be suppressed at the same time in order for H, to accumulate. The
main relevant H, destruction mechanism is photodissociation, where an H,
molecule is excited by a UV photon with energy £ > 11.2¢eV from the inter-
stellar radiation field and in the subsequent radiative de-excitation transition
returns to a ground state in which the molecule dissociates (spontaneous
radiative dissociation; Stecher and Williams, 1967; van Dishoeck and Black,
1988). Being line-based, photodissociation of H, is subject to the effect of
self-shielding. This means in regions of high H, column density photons
with the energies of the main absorption lines are primarily absorbed by
H, in the outer parts, drastically reducing the amount of photons reaching
the centre and subsequently decreasing the central dissociation rate sig-
nificantly (Klessen and Glover, 2016). Following these considerations of
the ISM chemistry, a molecular cloud, thus, forms simply when enough gas
is accumulated in one place to exceed the necessary column density for

1.1 Star Formation
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effective self-shielding from the interstellar radiation field for as long as H,
needs to form (Klessen and Glover, 2016).

Cloud Formation Scenarios

Although the main process for molecular cloud formation appears fairly clear
from an ISM chemistry point of view, we are yet to describe how the necessary
column densities are reached within the ISM. This topic is in fact still subject
to ongoing research and a definite formation scenario for molecular clouds
is currently debated. We shall briefly outline three potential molecular cloud
formation scenarios.

In the coagulation model, originally proposed by Oort (1954) (see also e.g.
Field and Saslaw, 1965; Tasker and Tan, 2009), the ISM is considered to
consist of cold atomic and molecular clouds (of various size and mass), where
small atomic clouds initially form via thermal instabilities of warmer atomic
gas. Larger clouds are then formed via cloud-cloud collisions, efficiently
dissipating energy and coagulating the interacting clouds. At some point the
growing atomic clouds reach the necessary column densities for effective
self-shielding and become predominantly molecular. In this picture the now-
molecular cloud may continue to grow by accreting even more mass via
collisions, potentially becoming very massive. This cycle of continuous
cloud growth is expected to end only once star formation sets in and stellar
feedback disrupts the cloud (Klessen and Glover, 2016).

An alternative proposed mechanism is the converging flow model. It pos-
tulates that molecular gas forms in the dense, post-shock regions created
where flows of low-density gas converge, collide and interact. If the flows
originally consist of warm atomic hydrogen then thermal instabilities can be
triggered by these collisions, rapidly producing cold clouds, which are dense
enough to enable self-shielding from the interstellar radiation field (see e.g.
Hennebelle and Pérault, 1999; Koyama and Inutsuka, 2002; Heitsch and
Hartmann, 2008; Klessen and Glover, 2016). Both the coagulation and the
converging flow models provide potential pathways for the formation of small
and intermediate molecular clouds, but are found to struggle with reproducing
the most massive observed clouds (Klessen and Glover, 2016).

Chapter 1 Introduction
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A third proposed picture assumes a more top-down formation scenario,
where molecular clouds are created by larger scale gravitational instabilities
in the Galactic disc (Chevance et al., 2020b). This process of self-gravitating
fragmentation favours higher density environments, e.g. spiral arms, and
tends to form fairly massive molecular clouds (up to 10° M,,). In this picture
low mass clouds can only form when stellar feedback disrupts the gravita-
tionally unstable material before it has collapsed completely. For a more
thorough discussion of the potential molecular cloud formation scenarios,
their advantages and shortcomings, we shall refer to more dedicated reviews,
e.g. Chevance et al. (2020b); Klessen and Glover (2016); Dobbs et al. (2014);
Hennebelle and Falgarone (2012).

Giant Molecular Clouds
Cloud properties

With the formation scenarios for giant molecular clouds (GMC) outlined, we
can now proceed to describe GMC properties and the processes that initiate
star formation within them. Table 1.1 provides an overview of temperatures,
densities and length scales of GMCs and their substructures. Molecular
clouds (MC) are found in sizes between a few pc and up to 200 pc for the very
enormous GMCs, covering a mass range of several 10s to 10° M, (Schulz,
2012). GMCs consist primarily of molecular hydrogen, but also entail other
molecular species, e.g. CO, NH3 or HCN (Rosen et al., 2020), and are often
surrounded by an envelope of atomic gas (Klessen and Glover, 2016). GMCs
and MCs are very cold with temperatures between 10 — 20 K (Girichidis et al.,
2020). They reach and maintain these low temperatures through a complex
balance of different heating and cooling mechanisms (Schulz, 2012).

The primary heating processes are photodissociation of H, by interstellar
photons, photoionisation of atomic carbon by the interstellar radiation field,
cosmic ray ionisation of H and H,, photoelectrons from dust grains produced
by interstellar photons and (during collapse) compressional heating. Cooling
is mainly provided by collisional excitation (of e.g. C*, C, O or CO) and the

1.1 Star Formation
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subsequent radiative decay and escape of photons, as well as dust grain
cooling. In the latter gas molecules collide with dust grains, heating the
dust and cooling the gas, followed by the dust radiating away the excess
energy in the infrared, escaping the cloud as long as it is optically thin to this
radiation (Bodenheimer, 2011). A more thorough discussion of the intricate
interplay of cooling and heating is beyond the scope of this introduction and
we shall refer to e.g. Girichidis et al. (2020); Klessen and Glover (2016);
Schulz (2012); Bodenheimer (2011) for more details.

Like the ISM, MCs are turbulent environments (Rosen et al., 2020). Although
the extend is still debated, it is argued that this turbulence at least partially
provides support for MCs against collapse (Krause et al., 2020). Also char-
acteristic for GMCs and MCs is their highly hierarchical structure, exhibiting
complexes of filaments, dense clumps and even denser gas accumulations
that are commonly referred to as cores (Rosen et al., 2020; Krause et al.,
2020; Klessen and Glover, 2016). It is these dense (n > 10° cm™2), small
(< 0.1 pc) cores that are the progenitors of stars. Dense cores can be further
distinguished into prestellar and protostellar cores. A protostellar core is a
dense core that is already so far into the star-formation process that it har-
bours a central luminosity source, contrary to a prestellar core. A prestellar
core may have already initiated star formation, i.e. it is collapsing or about
to (bound prestellar core), but may also not be forming a star or ever do so
(unbound prestellar core, Rosen et al., 2020).

The Jeans criterion

So far we have mentioned that stars form when MCs and MC cores collapse,
but we have not yet discussed the forces that drive or oppose this collapse.
The primary driving force of collapse is, of course, gravity. The forces that
oppose collapse (to a varying and not yet fully established degree) are thermal
gas pressure, rotation, turbulent pressure and magnetic fields (Bodenheimer,
2011). For a dense core, clump, filament or whole MC to collapse its (self)
gravitational energy must, therefore, exceed that of all opposing forces, i.e.

’Egrav| > Eth + Erot + Eturb + Emag~ (1 3)
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To analyse whether a certain object is about to collapse, common helpful
concepts are the Jeans length and mass, originally proposed by James
Jeans (Beech, 2019). Considering a uniform density/temperature sphere
and taking the thermal pressure as the dominant opposing force to collapse,
we can determine a collapse criterion by equating the gravitational energy
(of a uniform density sphere)

3GM?

Egrav = _g R

(1.4)

where G is the gravitational constant, and M and R the mass and radius of
the sphere, to the thermal energy of an isothermal, ideal gas

Eo =5

1.
3 (1.5)

with Boltzmann constant k,,, gas temperature 7', atomic mass unit m, and
gas molecular weight i (Bodenheimer, 2011). This returns the following
characteristic radius Ry, the (thermal) Jeans length,

_ 2GMpm,

R; = 5T (1.6)

and characteristic mass Mj, the (thermal) Jeans mass,

(5 kT O\ (4 \~
G

where p is the gas density. A sphere of isothermal, ideal gas with constant
density is unstable and will collapse under its own gravity if its radius is
smaller than the Jeans length R < R; or, alternatively formulated, if its
mass exceeds the Jeans mass M > M; (Bodenheimer, 2011). Analogous
Jeans criteria (i.e. masses and lengths) can be derived for the other possible
opposing forces. An object freely collapsing under self-gravity will do so on
the free-fall timescale t ¢

3T n -3
trr =1/ ~3Myr (——— 1.
" 32Gp 3 Myr <1O2 cm*3) ’ (1.8)

where n is the gas number density.

N|=
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Cloud lifetimes

GMCs are relatively short lived objects. A recent census of the GMC pop-
ulation across several nearby star-forming galaxies puts their lifetimes on
average on the order of a few 107 yr (Kruijssen et al., 2019; Chevance et al.,
2020a). If only thermal pressure were to oppose gravity in a MC, it would
collapse on timescales comparable to ;. Comparing Eq. (1.8) with these ob-
served average GMC lifetimes, thus, indicates that the other gravity opposing
forces, e.g. turbulence, must play a notable role in supporting GMCs against
gravity (Klessen and Glover, 2016). The measured GMC lifetimes also have
an interesting implication when compared to the molecular gas depletion time
of their host galaxies, i.e. the time required to turn a galaxy’s entire reservoir
of molecular gas into stars at its current star formation rate (~ 1 — 2 Gyr, e.qg.
Bigiel et al., 2008; Leroy et al., 2008). From the fact that GMC lifetimes are
considerably shorter than this, the integrated star formation efficiency (ratio
of GMC lifetime to gas depletion time) of GMCs can be determined to be
only about 2 — 10% (Chevance et al., 2020b). In other words, star formation
in GMCs is a fast and inefficient process, where only a small fraction of a
GMCs total mass budget of gas is actually converted to stars before they
are rapidly dispersed, likely by early stellar feedback (e.g. photoionisation or
stellar winds, Chevance et al., 2020b)

The gravoturbulent and global hierarchical collapse scenarios

To describe the global dynamics of a GMC and the internal processes that
create the dense filaments, clumps and cores, which ultimately may collapse
to form stars, two general scenarios have been proposed. The first one
is the gravoturbulent (GT) scenario (e.g. Klessen et al., 2000; Vazquez-
Semadeni et al., 2003; Mac Low and Klessen, 2004). In this picture GMCs are
globally supported againt collapse by the pressure exerted by continuously
driven, supersonic, small-scale, isotropic turbulence. At the same time,
this turbulence generates local density fluctuations by producing shocks,
which manifest in filaments, clumps and cores that then may become Jeans
unstable and collapse to form stars (Krause et al., 2020).
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The second proposed scenario is the global hierarchical collapse (GHC;
Vazquez-Semadeni et al., 2019). In this view GMCs quickly exceed their
thermal Jeans mass, because a) it is low in cold, dense gas and b) GMCs
actively accrete additional material from their diffuse environments (at least
in simulations, e.g. Ballesteros-Paredes et al., 1999; Hartmann et al., 2001;
Heiner et al., 2015; Wareing et al., 2019). As the clouds, thus, generally
grow in mass due to this accretion, they eventually become both gravitation-
ally unstable and magnetically supercritical (i.e. the magnetic field can no
longer provide support against collapse). Initial cloud-internal (moderately
supersonic) turbulence is generated during the cloud formation process and
induces non-linear density fluctuations in the clouds (which have significantly
shorter free-fall times than the cloud average; Krause et al., 2020). Unlike in
the GT scenario, however, this turbulence cannot provide longtime support
and is quickly overwhelmed by the cloud’s self gravity, such that the cloud
enters a global gravitational contraction (Krause et al., 2020). The resulting
infall motions are highly chaotic so that this collapse maintains a turbulent
component (e.g. Klessen and Hennebelle, 2010). Due to the turbulent den-
sity fluctuations (and the typically amorphous cloud shapes) the collapse is
not homologous, such that the densest cloud regions collapse and terminate
their collapse (by reaching protostellar densities) significantly faster than the
remaining lower density material (Krause et al., 2020). Consequently, in the
GHC scenario a cloud becomes a complex hierarchical system of collapses
within collapses with different collapse scales, each of which continues to
accrete material from the next larger one (Vazquez-Semadeni et al., 2019;
Krause et al., 2020). In this picture for instance filaments effectively work as
mass funnels from large to small scales (Gédmez and Vazquez-Semadeni,
2014), which is consistent with the observation that MC cores and clumps
often appear as intersection points of filaments (e.g. Myers, 2009). For more
details on these two scenarios of the internal dynamics of GMCs we shall
refer to e.g. Krause et al. (2020); Klessen and Glover (2016) at this point.

Initial core collapse and evolution

With the overall properties and larger-scale dynamics of GMCs established
we shall now outline the evolution of a collapsing dense MC core towards
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forming a star. Initially the MC core collapses almost in free-fall and isother-
mally over several orders of magnitude in central density increase. Eventually,
however, the densities of the collapsing core reach a point where the central
regions start to become opaque to the core’s own infrared cooling radiation,
so that the energy released by the compression of the gas can no longer be
effectively radiated away by the dust (Bodenheimer, 2011; Krumholz, 2020).
As soon as this happens the core enters an adiabatic collapse phase, in
which the central regions are now starting to heat up considerably. During
this transition from isothermal to adiabatic collapse and in the early phases
of the latter, collapse is actually temporarily halted in the very centre as
a short-lived hydrostatic object, supported by its own internal pressure, is
formed, upon which the remaining infalling material is then accreted. This
objected is known as the first core of the protostar and is expected to be
only a few AU in size, entailing a few hundredths of a Solar mass (Krumholz,
2020).

As this first core is further compressed while accumulating infalling gas, its
central temperatures eventually reaches and exceeds 7' ~ 1000 — 2000 K.
At this point the thermal kinetic energy of the gas becomes large enough to
collisionally dissociate molecular hydrogen. Once this process initiates most
of the gravitational energy released by the compression of the gas now goes
into the dissociation of hydrogen instead of further heating the gas. Slowing
down the internal temperature increase considerably, the thermal pressure
can then no longer compensate gravity and the core enters a second (free-
fall) collapse phase (Krumholz, 2020; Bodenheimer, 2011). This second
collapse lasts until the molecular hydrogen is completely dissociated and
the produced atomic hydrogen is subsequently ionised. At this point the
cloud core reaches densities and temperatures (~ 10* K) at which thermal
pressure can again provide enough support to halt the free-fall collapse,
forming a second hydrostatic core, a true protostar (Krumholz, 2020).

When the second hydrostatic core forms, it is still far away from having the
necessary mass to ultimately ignite hydrogen fusion and become a star.
Thus, the protostar enters the main accretion phase, in which it acquires
most of its final stellar mass by accreting material from its still-collapsing
envelope. As the gas from the envelope plummets onto the protostellar
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surface, settling at an accretion shock front, all of the kinetic energy of the
gas is converted into radiation, giving rise to significant accretion luminosity.
Although the (slowly) gravitationally contracting protostar also provides a
source of luminosity, in this phase the contribution from accretion completely
dominates the protostar’s total luminosity (at least for low- and intermediate-
mass stars). Flowing back through the infalling material, gradually degraded
to longer and longer wavelengths, with this escaping radiation the protostar
now becomes visible in the far infrared (Krumholz, 2020; Bodenheimer, 2011;
Stahler and Palla, 2004).

During the accretion phase an important effect comes into play as a direct
consequence of the fact that GMC, MCs and dense MC cores are rotating.
Consequently, the infalling gas from the collapsing envelope of a protostar
carries angular momentum, which it has to shed in order to be accreted
onto the central protostar. Because of this, the accreting protostar forms an
accretion disc, upon which the gas from the infalling envelope first settles,
dissipates its angular momentum and then accretes onto the protostellar
surface. Dissipation mechanisms include viscous shear within the disc,
magnetohydrodynamically driven disc winds and highly-collimated bi-polar
jets, which eject significant amounts of material from the accretion disc back
into the surrounding envelope. These winds and jets can significantly disturb
the infalling material and may even partially disrupt the collapsing envelope.
In both cases they play a notable role in the total amounts of mass that the
central protostar can accumulate during its main accretion phase (Beech,
2019; Bodenheimer, 2011; Stahler and Palla, 2004).

As the core accretes more and more material from its envelope and accretion
disc, getting heated in the process, the core’s internal temperature eventually
rises above a value of 10° K. Upon reaching this temperature the core crosses
the threshold to ignite a first nuclear fusion reaction, i.e. deuterium burning
via

H+'H — 3He + 7. (1.9)
The onset of deuterium burning within the protostar temporarily halts the
contraction of the core and also acts as a thermostat, keeping the inter-
nal temperature roughly at the deuterium ignition threshold by inducing an
adiabatic swelling of the protostar’s radius. Additionally, central deuterium
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Fig. 1.1.: Hertzsprung-Russell diagram of pre-main-sequence evolutionary tracks
of varying initial mass at solar metallicity from the MIST suite of stellar
evolution models (Dotter, 2016; Choi et al., 2016). The thick grey line on
the left indicates the position of the ZAMS, while the thinner grey lines
mark loci of constant age across the different tracks as labelled on the
right.

burning releases too much energy to be transported radiatively within the
highly opaque interior. Consequently, energy transport within the star shifts
to convection, i.e. the mechanical motion of buoyant discrete parcels of gas
(Krumholz, 2020; Schulz, 2012; Stahler and Palla, 2004).

Pre-Main-Sequence Evolution

To outline the subsequent evolution of the protostellar progenitors of low- and
intermediate-mass stars, it is instructive to introduce the Hertzsprung-Russell
diagram (HRD). The HRD is a scatter plot that relates a star’s luminosity L
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to its effective surface temperature T.4. In this diagram a star’s position
is directly dependent on its metallicity (chemical composition), mass and
evolutionary state (i.e. age). Consequently, given the mass of a star (and its
metallicity) its evolution from (the later stages of) formation over the main-
sequence hydrogen burning phase to its post-main-sequence evolution (see
Section 1.2) can be visualised in the HRD as a distinct evolutionary track
(Schulz, 2012; Stahler and Palla, 2004).

A still-forming star can be placed in the HRD once it has ended its main
accretion phase, i.e. accreted most of its final stellar mass from its infalling
envelope, and has dispersed enough of its natal MC environment to become
observable in the optical regime. This stage of the protostellar evolution is the
so-called pre-main-sequence phase (PMS; Krumholz, 2020; Bodenheimer,
2011; Stahler and Palla, 2004). Note that the end of the main accretion
phase does not mark the termination of all accretion and that, in particular,
early-PMS stars can still accrete notable amounts of material from their
circumstellar accretion disc, which in turn may also still be fed by the remnants
of the natal envelope (Klessen and Glover, 2016).

Low-mass stars (M < 0.4 M) enter the PMS phase fully convective and
remain so for its entire duration. In more massive stars on the other hand
central convection is eventually overturned by radiative transport again, in
particular because the core cannot burn deuterium indefinitely. Although
convection provides an efficient mixing agent in the protostellar interior to
resupply the central deuterium-burning zone with new fuel from the outer
layers of the protostar and the newly accreted material, the energy released
by deuterium fusion is eventually not sufficient to prevent further contraction
of the protostars. Subsequently, the interior temperature starts to rise again
and the internal opacity begins to drop accordingly until energy can be effec-
tively transported by radiation again. Consequently, an outwards growing
radiative barrier forms within the protostar, ceasing convection within the core
completely by cutting of the constant fuel resupply for the deuterium-burning
zone, quickly exhausting the remaining deuterium and shutting off the fusion
reaction (Krumholz, 2020).

Figure 1.1 shows example PMS evolutionary tracks for different stellar
masses from 0.1 to 10 M., where the example PMS stars evolve from the
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top right to the bottom left as indicated by the lines of constant age across
the tracks. The initial path for the less massive examples (M < 3 M) is
an almost vertical descent at constant effective temperature. This portion is
called the Hayashi track and marks the convective contraction phase of the
PMS evolution (Krumholz, 2020; Stahler and Palla, 2004).

As soon as the star has contracted enough to transition back to radiative
energy transport, as described above, the evolutionary track takes a sharp
turn in the HRD and subsequently follows an almost horizontal path. This
portion is commonly referred to as the Henyey track and marks the final con-
traction phase of the PMS evolution, during which the PMS star continuously
increases its internal temperature until it reaches about 107 K. At this point
the conditions are met for the ignition of hydrogen fusion at the centre of the
PMS object. Providing an enormous source of energy the fusion of hydrogen
subsequently halts gravitational contraction and a stable hydrogen-burning
main-sequence star is born (Krumholz, 2020; Stahler and Palla, 2004). In the
HRD the locus, on which PMS stars of different masses appear as they start
burning hydrogen, is called zero-age main-sequence (ZAMS). In Figure 1.1
it is marked as the thick grey line on the left of the diagram.

PMS stars that are less massive than about 0.072 — 0.075 M., (Schulz, 2012;
Krumholz, 2020) never reach central temperatures high enough to sustain
hydrogen fusion as they contract. Although they may engage in a short
phase of deuterium burning like their more massive siblings, their contraction
is ultimately ended by electron degeneracy pressure rather than nuclear
fusion. These objects are so-called brown dwarves (Krumholz, 2020; Schulz,
2012).

The time a forming-star spends in the PMS phase can be reasonably approx-
imated by the Kelvin-Helmholtz (KH) timescale (Stahler and Palla, 2004),
i.e. the time required for a PMS star to radiate away its gravitational bind-
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ing energy to contract to the main sequence (Rosen et al., 2020). The KH
timescale tky is given by

GM?
R.L,

() (7)) (2)
Me Ro Lo

where M,, R, and L, denote the mass, radius and luminosity of the star,
respectively (Stahler and Palla, 2004). A solar mass star, thus, takes about
30 Myr to contract to the main sequence. Eqg. 1.10 and Figure 1.1 also
show that the contraction time is strongly anti-proportional to stellar mass,

i.e. low-mass stars form very slowly, taking upwards of 108 — 10° yr, whereas
massive stars form rapidly (Bodenheimer, 2011).

lkn =

(1.10)

Massive Star Formation

Very massive stars (M = 6 — 10 M ; Bodenheimer, 2011; Stahler and Palla,
2004) contract to the main-sequence so rapidly in fact that they begin to
burn hydrogen before ending their main accretion phase (Krumholz, 2020;
Bodenheimer, 2011; Stahler and Palla, 2004). Consequently, they become

visible in the optical only after they have already joined the main-sequence.

Because of this, observing massive star formation is difficult and many details
of the process are not entirely clear yet.

One primary challenge in understanding massive star formation is the fact
that these stars are very hot and upwards of 10 M., emit significantly in
the UV regime (Klessen and Glover, 2016). Consequently, they inject a
significant amount of (ionising) radiation into their natal envelope, which
could halt accretion all-together in a purely spherical accretion picture. As we
know stars as massive as 200 — 300 M., (Hainich et al., 2014; Bestenlehner
et al., 2011; Crowther et al., 2010), mechanisms must exist to circumvent
the significant radiation feedback to form such massive stars. Proposed
scenarios for massive star formation are e.g. that massive stars actually
form via continuous collisions of lower mass protostars in highly clustered
environments (see also Section 1.1.5), although this requires extremely high
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densities of protostars, which are not observed in but the most extreme
star-forming environments (Klessen and Glover, 2016). Alternatively, a
significantly scaled-up version of the low-mass protostellar disc accretion
picture appears plausible, including even more extreme outflows and winds,
as the strong UV radiation could be emitted effectively along the polar-axes
of such systems while the accretion flows go from the envelope through the
discs (Klessen and Glover, 2016).

Aside from the radiation feedback considerations, it is also not entirely clear
from where the progenitors of massive stars accrete all of their mass, if
e.g. massive stars simply form from a very massive MC core progenitor in
a monolithic collapse or if other mechanisms are at play. For instance, it
has also been proposed that massive stars form by competitive accretion.
In this scenario the collapse of larger, more massive regions of thousands
of M, (e.g. MC clumps) is the driving force of star formation instead of the
collapse of individual clumps. Via fragmentation these collapsing regions
then give rise to smaller scale collapse, forming many lower mass protostars.
The latter subsequently compete among each other to accrete material from
the overall collapsing region, in which they are embedded (Bodenheimer,
2011).

Lastly, the mechanisms that limit the maximum mass for massive stars (and
the mass limit itself) are also yet to be determined. Possible candidates are
the radiative stellar feedback, an internal stability limit for stars with non-zero
metallicity or fragmentation limiting the protostellar mass growth (Klessen
and Glover, 2016).

Stellar Clusters

So far we have discussed star formation primarily on an individual object
basis. In reality stars, in particular massive ones, form rarely in isolation
but in clusters instead. A star cluster is a gravitationally bound collection
of numerous stars. They are not to be confused with stellar associations,
which are unbound, or multiple star systems, which are gravitationally bound
but consist of only few stars (< 10). Contrary to galaxies, which are also
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gravitationally bound systems, stellar clusters are not dominated by dark
matter (Krause et al., 2020; Krumholz et al., 2019).

The formation of stars in clusters likely follows the following process. A larger
dense molecular region of some 10? to 10® M., becomes Jeans unstable and
starts to contract under its own gravity. Due to its highly turbulent interior,
this region exhibits considerable substructure with high contrasts in density.
During the overall contraction of the region, higher density substructures
become themselves Jeans unstable, start to collapse and form accreting
protostars on free-fall timescales much shorter than that of the global collapse.
Protostars produced close to the global minimum of the gravitational potential
may accrete large amounts of mass, being fed by the overall infall of the region
(Klessen and Glover, 2016), whereas low-mass protostars in outskirt regions
may only accrete material from their immediate surroundings (cf. competitive
accretion).

In these clustered environments the protostars interact as they accrete and
contract to become stars, be it through potential collisions (in very high
protostellar density environments) or stellar feedback (as soon as the first
massive stars are born). The ionising radiation of the first massive stars for
instance quickly carves out bubbles of ionised hydrogen (i.e. H Il regions)
into the contracting region, disrupting or even completely dispersing the
collapsing material, while the lower mass stars are still forming. In clustered
star formation, the interaction between protostars, thus, is another important
factor that may affect how much mass certain stars can ultimately attain
(Klessen and Glover, 2016). Although stellar feedback of the young cluster
ultimately disperses the molecular cloud, it is actually also a factor that
possibly triggers star formation, as the gas entrained by the ionising radiation
may collide with material in the surrounding GMC environment to form local
overdensities that in turn collapse and form new stars (e.g. Walch et al.,
2013). In that vein feedback from the first formed stars may induce the
formation of multiple populations in a cluster environment.

Another interesting implication that follows from the cluster formation sce-
nario outlined above is mass segregation in young clusters. As only the
protostars close to the global gravitational potential minimum (i.e. cluster
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centre) can maintain large accretion rates, massive stars should, thus, accu-
mulate predominantly in the centre of the final cluster, whereas lower mass
stars would be more likely to occupy the cluster’s outskirts (Klessen and
Glover, 2016). Clusters mass-segregated in this fashion have been observed
(e.g. Zeidler et al., 2017), but it is not necessarily clear whether this mass
segregation is truly primordial (i.e. a direct consequence of the cluster forma-
tion) or a result of the cluster’s dynamical evolution. As a cluster dynamically
relaxes, kinetic energies of the cluster constituents equalise, such that mas-
sive stars attain lower velocities, settling deeper in the gravitational potential
well (Krause et al., 2020). It is also still debated whether the competitive
accretion scenario truly forms the most massive stars in the centre of a cloud,
as shielding mechanisms have been proposed that actually starve the most
central regions of gas (fragmentation-induced starvation; Peters et al., 2010;
Girichidis et al., 2012), thus preventing high accretion rates for protostars
localised there (Klessen and Glover, 2016). Consequently, the topic of mass
segregation is still actively researched and may provide crucial insights into
the formation scenarios of stellar clusters.

Initial Mass Function

One of the most central relations in star formation research and the observa-
tion of young stellar clusters is the initial mass function (IMF). The IMF ® (A1)
describes the distribution of stellar masses at birth, i.e. dN = ®(M)dM
indicates how many stars form with a mass in the range M and M + dM
(Beech, 2019). Theoretically explaining the observed IMF is not only a
central and still actively studied problem in star formation research, but the
IMF also plays an important role in many other disciplines from stellar to
galactic astrophysics. For instance, constraining physical properties from
the observed light of unresolved stellar populations in distant galaxies or
modelling galaxy formation relies heavily on the assumed form of the IMF
(Krumholz, 2020).

The observed IMF can be reasonably described by a broken power law, first
introduced by Salpeter (1955) and later extended by Kroupa (2001), or a
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Fig. 1.2.: Diagram of the Kroupa (2001) IMF in terms of logarithm in mass. The
presented curve ranges from 0.01 to 200 M, and the integral of the IMF is
normalised to one over this range. The red dashed line and grey shaded
region indicate the brown dwarf regime.

lognormal distribution (Chabrier, 2003). The Kroupa (2001) IMF has the
following forms in terms of number in mass

M=%3 for M < 0.08 M,

AN

EM:MMm:M%3mwMM%<M<wM@ (1.11)
M~=23 for M >0.5M,

and in terms of logarithm in mass

M%7 for M < 0.08 My,
=&(M) o< § M=% for 0.08 My < M < 0.5 M. (1.12)
M= for M > 0.5M,

dN
dlog(M)

The form (see Figure 1.2) of the observed IMF has two important implications.

Peaking in the range 0.1—0.5 M, we find that the formation of low-mass stars
(i.e. M dwarves) is preferred. On the other hand, although accounting for a
large fraction of the overall stellar feedback, massive stars do not only form

quickly and die young, but are also rarely born to begin with (Beech, 2019).
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Fig. 1.3.: HRD showing the full (MIST; Dotter, 2016; Choi et al., 2016) evolutionary
track for a 1 M, star from the beginning of the PMS to the end of its life
as a white dwarf (left). Indicated in grey is the ZAMS. Right: Zoom-in
on the post-main-sequence portion of the evolutionary track, highlighting
the upper red giant branch, central helium burning phase and asymptotic
giant branch.

From a theoretical standpoint the origin the IMF is still actively researched.
The core mass function, i.e. the initial mass distribution of molecular cloud
cores, appears strikingly similar in shape to the stellar IMF (although scaled
to higher masses by a factor of ~ 3), so that it has been proposed that the IMF
is simply a direct result of fragmentation in (giant) molecular clouds (Klessen
and Glover, 2016). Another still-puzzling observation for star formation theory
is the apparent universality of the IMF observed across a wide variety of
star forming environments (Beech, 2019). Naively one would expect the IMF
to directly depend on the individual natal environments of stars. For more
detailed discussions of potential origins of the IMF and its universality we
refer to e.g. Kroupa et al. (2013); Offner et al. (2014); Krumholz (2020).

Post-Main-Sequence Evolution

In this section we shall briefly outline the main evolutionary phases of stars
after they end their lifetime on the main-sequence. For more details see
e.g. Kippenhahn et al. (2012) or Srinivasan (2014).
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Once a star has joined the main-sequence, it remains there as long as it is

burning hydrogen in its core. Since the mass of a star and, thus, the avail-

able fuel for nuclear fusion are limited, it cannot burn hydrogen indefinitely,

however. Instead, it exhausts its central hydrogen supply on the nuclear
timescale t,,., o 0.007 fu X M.c?
tot . H xC

thue = I~ I , (1.13)

where L, and M, denote the stars luminosity and mass, X is the star’s

mass fraction in hydrogen (typically ~ 70%), and fy indicates the fraction of

hydrogen that is consumed over the main-sequence lifetime (Stahler and

Palla, 2004). Using an estimated value of fy ~ 0.1, the main-sequence

lifetime is u I
tome & 1 x 10 (F@) (L@> yI. (1.14)

Therefore, our Sun is expected to spend a total of 10 Gyr on the main-
sequence, whereas a massive O-type star (M, ~ 50 M, L, ~ 10°°°L.)
exhausts its fuel in a mere ~ 1.4 Myr (Stahler and Palla, 2004).

Figure 1.3 outlines the post-main-sequence evolution of a solar mass star
in the HRD. Once the star has exhausted its central hydrogen supply, it
is left with an inert helium core that is too cold to ignite any further fusion
reactions. This core is surrounded by a shell that is still actively burning
hydrogen and continuously feeds more helium to the inner core. Without
the energy generated by the fusion reaction the helium core subsequently
starts to contract under its own gravity as it is gaining mass. Through the
energy release of this gravitational contraction, the envelope of the core
begins to rapidly expand and the star moves to the right away from the main
sequence in the HRD. As the energy released by the contracting core and
the hydrogen-burning shell raises the star’'s luminosity by several orders
of magnitude, the star then ascends the so-called red giant branch (RGB),
while its envelope is steadily expanding (Stahler and Palla, 2004). Eventually
the helium core reaches temperatures high enough to ignite the fusion of
helium, producing carbon and oxygen. When this happens the star moves
once again to the left in the HRD (see Figure 1.3, right panel). The central
helium burning phase is a relatively stable state, and in the case of a 1 M,
star it lasts for ~ 10% yr.

1.2 Post-Main-Sequence Evolution
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Afterwards, the central helium supply, too, is exhausted and the star, again
with an inert contracting core (consisting of C/O), now two burning-shells
(one helium, one hydrogen) and expanding envelope, begins to ascend the
asymptotic giant branch (AGB) towards the top right of the HRD (Stahler
and Palla, 2004). As the star moves up along the AGB the two burning
shells become thermally unstable and enter an alternating cycle, where
either the helium- or hydrogen-burning shell dominates the star’s luminosity,
while the other ceases fusion. In these so-called thermal pulses (TP) the
luminosity of the star can rise significantly for short periods of time, as the
helium shell explosively reignites in events known as helium shell flashes
(Srinivasan, 2014; Kippenhahn et al., 2012). The AGB and TP-AGB phases
of the post-main-sequence evolution are accompanied by massive winds that
eject substantial amounts of mass from the star. A star ends its AGB phase
and enters the post-AGB evolution as soon as the winds have dispersed
most of the stars envelope revealing the inert, contracting C/O core. The
core now moves horizontally to the left in the HRD, potentially ionising the
remnants of its envelope in the vicinity creating a "planetary nebula", until its
remaining fuel for shell-burning runs out and it ends its life as a slowly-cooling
white dwarf, supported against collapse by electron-degeneracy pressure
(Kippenhahn et al., 2012; Stahler and Palla, 2004).

Contrary to the low and intermediate-mass stars, the very massive stars
(M =z 8 M) can maintain nuclear fusion reactions beyond the formation
of a carbon-oxygen core. They repeat the cycle of central burning, fuel
exhaustion, shell burning, core contraction and heating, and subsequent
fusion ignition all the way up to an iron core, when no more energy can
be released by fusion reactions. At this point, a massive star exhibits an
onion-like structure with many shells engaged in different active shell-burning
processes. Ultimately, the iron core collapses, forming a neutron star or
black hole and ejecting its envelope in a violent explosion, a supernova,
whose luminosity may (briefly) eclipse that of entire galaxies (Kippenhahn
et al., 2012; Srinivasan, 2014; Stahler and Palla, 2004).
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1.3 Observing Star Formation

In this section we will briefly discuss characteristic observational properties of
still-forming stars, outline a common observation method and corresponding
analysis tool, and introduce a few tracers of star formation.

Observational YSO classification and properties

We begin our discussion of observational characteristics of young stars by
introducing a widely used classification scheme for young stellar objects
(YSOs) that is based on their spectral energy distributions (SEDs). YSO
is @ common term used to describe the entire system of a still-forming star
(i.e. central source + disc + envelope) regardless of the evolutionary state
(Schulz, 2012). In this classification scheme YSOs are distinguished into
four classes 0, |, II, and IlI.

Class 0 are YSOs that are likely in the early stages of the protostellar collapse,
where most of the mass of the system is still located within the envelope
rather than the central object. In this stage the YSO is optically thick and
fully absorbs the accretion luminosity of the material that is falling onto the
protostar. Consequently, the SED of class 0 systems consists of reprocessed
emission of the overall cold (dusty) envelope, which falls primarily in the
sub-millimetre regime, rendering the object effectively invisible at shorter
wavelengths (Klessen and Glover, 2016; Schulz, 2012). As a protostars
accumulates more and more material, forming an accretion disc, it ultimately
thins out its infalling envelope through accretion and outflows (jets and winds).
This process gradually reveals the inner regions of the accretion disc, shifting
the protostellar SED towards shorter wavelengths. The YSO, thus, becomes
observable in the infrared and is, at this point, identified as a class I source
(Klessen and Glover, 2016; Schulz, 2012). Note that, although the term YSO
is applicable to all evolutionary phases of forming stars, it is most commonly
used to refer to class 0 and | sources and in particular the most massive
protostellar systems (Schulz, 2012).
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Once most of the envelope, but not the accretion disc, is dispersed and the
central protostar becomes directly visible for the first time, i.e. the YSO is en-
tering the PMS phase, it is observationally identified as a class /I object. Low
mass (M < 2 M) objects of this type are also called classical T Tauri stars
(CTTS). Prototyped by T Tau in the Taurus cloud, CTTS are characterised
by effective surface temperatures in the range of 3000 to 7000 K and F to M
spectral types. Their SEDs peak in the 1 — 10 um range and show notable
excess emission in the infrared regime, which is evidence for the presence
of (flared) accretion discs. Aside from exhibiting strong Ha (656.3 nm) hy-
drogen line emission and X-ray emission, CTTS are also observed to be
highly variable, with potential bursts of luminosity lasting several decades
(FU Orionis objects), which has been accredited to episodes of increased
accretion (Schulz, 2012; Stahler and Palla, 2004). The intermediate-mass
counterparts (2 M, < M < 8 M) of the CTTS are called Herbig Ae/Be stars.
With effective surface temperatures in the range of 8, 000-20, 000 K and spec-
tral types between B0 and F, they, similar to the CTTS, are characterised by
strong emission lines, in particular in Ha, and excess IR emission (for more
details see e.g. Schulz, 2012; Stahler and Palla, 2004).

Lastly, class Ill objects are PMS stars that have exhausted most of their
circumstellar discs, leaving only a remnant debris disc, and appear to be
no longer actively accreting new material, while they undergo their final
contraction towards the main sequence. Observationally, low-mass class Il
objects are also referred to as weak-lined T Tauri stars (WTTS). Although
they are still strong X-ray emitters, compared to CTTS the WTTS exhibit only
weak emission in Ha and a vanishing IR excess (Schulz, 2012).

Photometry

One of the primary observational techniques to study star formation (and
stars in general) is photometry. Contrary to spectroscopy, where the entire
spectrum of a star is measured, in photometry a stellar spectrum is essentially
observed piece-wise. Using (broad and narrow-band) filters that dictate a
response function R(\) of the observing apparatus (i.e. the fraction of incident
energy flux registered at wavelength \), photometric observations consist of
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measuring the integrated flux Fy;, of a star over a limited wavelength interval
(i.e. where R(\) > 0) as

P — / T ROV A, (1.15)
0

where f, indicates the monochromatic energy flux from the star (Chromey,
2010). The measured flux, i.e. the star’s brightness, over the filter's wave-
length range is commonly given in magnitudes. Here we distinguish between
the apparent mg, and absolute My, magnitude of an observed object. Be-
cause the flux density F' = L/(4wr?) we receive from a star (and thus the
measured Fy;,) depends on our distance r to it, the apparent magnitude is
defined as

Fﬂtr(r)
Fhro(7)

mae = —2.5log < ) = —2.5log(Faw(r)) — Mo, (1.16)
where Fy, o denotes a reference flux marking the zero point for the magnitude
system. Typically the latter is calibrated to the observed fluxes of the star
Vega, i.e. mai vega = M0 = 0. IN contrast, the absolute magnitude serves
as a measure of the intrinsic brightness of an object and is defined as the
apparent magnitude we would measure if a given object were located at a
distance of 10 pc:

Mﬂtr = —2510g<Fﬂtr(1O pC)) — MAtr,0- (1 17)

The apparent and absolute magnitude are related via the distance modulus
Magy — Mﬂtr by

r
mﬂtr—Mﬂtr:510g(1OpC> . (118)

Thus, if we know the intrinsic brightness of an observed star, i.e. its absolute
magnitude, we can directly recover the distance to the object from its apparent
magnitude (Stahler and Palla, 2004). Typically, photometric filters are either
referred to by their central (effective) wavelength or by an abbreviation in
a photometric filter system. Commonly used for instance is the Johnson-
Cousins UBVRI system, summarised in Table 1.2 (Bessell, 2005).
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Tab. 1.2.: Central effective wavelengths and widths of the Johnson-Cousin broad-
band filter system as listed in Bessell (2005).

U B V R |
Mo (NM) | 366.3 436.1 544.8 640.7 789.0
Ax(nm)| 65 89 84 158 154

12 4 Open Cluster Westerlund 2 [Globular Cluster NGCG397]

12 9

16 1

Meg1aw

201
24 9

= 13.5 Gyr
ZAMS

2 3 4 5 6 7 0.0 0.5 1.0 15
Meg1aw ~ ME160W Megosw ~ MEg1aw

Fig. 1.4.: CMD of the open cluster Westerlund 2 (See Section 2.1 for details) in the
Milky Way (left). Indicated in red is a 1.6 Myr PARSEC(Bressan et al.,
2012; Chen et al., 2014, 2015; Tang et al., 2014) isochrone and the ZAMS
in grey (solar metallicity, corrected for distance and average extinction of
the cluster) for comparison. Right: CMD of the globular cluster NGC6397
(See Section 2.2). Indicated in red and grey are a 13.5 Gyr PARSEC
isochrone and the ZAMS, respectively.

Colour Magnitude Diagrams and stellar clusters

Among the central outcomes of photometric surveys of e.g. star-forming
regions and young stellar clusters is the colour-magnitude diagram (CMD).
The CMD is the observational analogue to the theoretical HRD (i.e. the
one relating luminosity to effective surface temperature). As a proxy for the
luminosity of an object the CMD uses the measured apparent (or absolute if
the distance to the object is known and can be corrected for) magnitude in
one of the survey filters and relates it to the object’s colour index. The colour
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index is given as the difference in apparent magnitude between two filters
with effective (central) wavelengths \;, A\, following

CI:m,\l — M)y, (119)

where \; < \,. Assuming that a star is mostly a blackbody emitter, the colour
index is a direct measure of the form of the star’s spectrum, i.e. indicates
the overall slope of the spectrum between the two central filter wavelengths.
Additionally, it measures the star’s effective temperature. A hot (blue) star,
with an emission maximum at shorter wavelength, has a small colour index
as m,, < m,,, whereas a colder (red) star with peak emission at longer
wavelength has a large colour index since m,, > m,, (Chromey, 2010).
Often the colour index is denoted via the filter names, e.g. B — V indicates
the colour index mg —my in the Johnson-Cousin filter system (cf. Table 1.2).

In the Milky Way, gravitationally bound stellar clusters are identified as either
open or globular clusters. Open clusters are located in the Galactic disc,
young (< 1 Gyr) and generally less massive (M, < 10° M), whereas
globular clusters are found in the Galactic bulge and halo, generally old
(> 1 Gyr), but massive (M, = 10* M,). The latter are believed to be
survivors from the earliest phases of star formation in the Universe and some
are estimated to be so old (> 13 Gyr) that they provide constraints for the
age of the Universe itself (Krause et al., 2020). CMDs from photometric
surveys provide an important tool to discern intrinsic properties of stellar
clusters. CMDs show for instance that open clusters are mostly coeval single
populations with a single main-sequence, whereas CMDs of globular clusters
most of the time exhibit multiple main-sequences, indicating the presence of

multiple stellar populations (of different metallicity; Krause et al., 2020).

CMDs can also be used to estimate a cluster's age when combined with
stellar evolutionary models. This is done by constructing isochrones, i.e. loci
of constant age across the full mass range (e.g. 0.08—300 M) of evolutionary
tracks, and comparing these to the observed cluster CMDs. Figure 1.4 shows
examples of a (rough) age estimate using PARSEC isochrones (Bressan
etal.,, 2012; Chen et al., 2014, 2015; Tang et al., 2014) for a young open clus-
ter, Westerlund 2, in the left panel and for an old globular cluster, NGC 6397,
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on the right. For more details on these two clusters see Sections 2.1 and
2.2, respectively. Note that NGC 6397 does not show evidence of multiple
stellar populations in the presented data, and that the Westerlund 2 CMD is
missing some of the most massive stars due to saturation effects.

We can estimate a cluster’s age using two distinct features in the CMD. At
a given age of a young cluster only those constituents exceeding a certain
mass threshold (cf. Kelvin-Helmholtz timescale Eq. (1.10)) have already
evolved onto the main-sequence, whereas lower-mass stars are still in their
PMS evolutionary phase. This introduces an age-characteristic bend in the
CMD of a young cluster called the main-sequence turn-on and is determined
by the lowest-mass cluster main-sequence star. By matching this bend of
a synthetic isochrone to the observed one in the CMD, as done in the left
panel of Figure 1.4, we can, thus, estimate a cluster’s age (Gouliermis, 2012;
Stahler and Palla, 2004). For an old cluster we can use the same approach
using the second characteristic feature in the CMD, the main-sequence
turn-off. The turn-off is defined by the minimum mass of the stars in a cluster
that are just departing from the main sequence, i.e. all cluster stars more
massive than this threshold are already in their post-main-sequence evolution
given the cluster’s age (Gouliermis, 2012; Stahler and Palla, 2004). This
turn-off, too, induces a bend in the CMD of the cluster, as demonstrated by
the old NGC 6397 in the right panel of Figure 1.4, that can be matched to an
isochrone to determine the age of the cluster. Shown here is only a simple
approximation to demonstrate the idea of the approach, real applications
use, of course, more sophisticated isochrone fitting techniques to deal with
e.g. photometric uncertainties and potential age gradients in a cluster’s
population.

Using the isochrones derived from stellar evolutionary models, we can also
highlight one of the difficulties that occur when studying young stellar clusters
and PMS stars. Figure 1.5 compares a series of young (PMS) isochrones
between 1 and 10 Myr to very old isochrones in the range of 0.5—10 Gyr in
the filter combination of the Westerlund 2 example from Figure 1.4. In this
diagram we find that the post-main-sequence portions of the old isochrones
(blue) overlap with the PMS parts of the young isochrones (black). Suppose
we conduct an observation of a young stellar cluster. If now an old population
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Megiaw — Me1sow

Fig. 1.5.: Synthetic CMD of PARSEC (Bressan et al., 2012; Chen et al., 2014, 2015;
Tang et al., 2014) isochrones with ages between 1-10 Myr (black) and 0.5—
10 Gyr (blue). The filter combination matches the left panel of Figure 1.4.
For comparison the grey line marks the ZAMS.
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(e.g. the field) falls within the same line-of-sight as the cluster (either in
the foreground or background), and no secondary measures to determine
cluster membership (e.g. individual distance measures) are available, then
this overlap of isochrones indicates that we could confuse an old post-main-
sequence star for a PMS source. This inherent degeneracy (in L, T.g) is
among the subjects of our study in Section 3.2.

Extinction and the red clump

When observing stars and stellar clusters one of the major difficulties we face
is interstellar extinction, i.e. the fact that any dust (or gas) between us and the
source will either absorb or scatter the light emitted by the object, dimming
it in the process. In photometry we can formulate this effect by modifying
the relation in Eq. (1.18) between apparent and absolute magnitude with an
additional extinction term as follows

mﬂzma+5mgcl;)4ng, (1.20)
10pc

where, for simplicity, we have assumed a perfect monochromatic filter of
wavelength )\ here and A, denotes the extinction at that wavelength (Stahler
and Palla, 2004). The extinction value A, is strongly dependent on A and for
dust tends to decrease with longer wavelength, i.e. interstellar dust absorbs
UV light much more strongly than infrared emission. From Eq. (1.20) it is
also immediately evident that extinction alters the observed colour index of
a source. This is quantified by the colour excess, defined as (for e.g. the B
and V band) the difference

EB-V)=(B-V)—(B-V), (1.21)

between the observed colour (B — V') and the intrinsic colour (B — V'), of
the source. Inserting Eq. (1.20) into the definition (1.21) we find

E(B-V)= A — Ay. (1.22)
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Fig. 1.6.: Extinction law Rp_y () for the diffuse ISM in the Milky Way between
125 nm and 1000 nm as given by the Cardelli et al. (1989) model for
Ry = Av/(B — V) = 3.1. The marked points give Rg_y (\) for the
Johnson-Cousin photometric system introduced in Table 1.2.

Using the extinction and colour excess we can also define the normalised

total extinction
Ay

E(B-V)’
which also denotes the slope of the reddening vector in a CMD, i.e. the
direction in which extinction dislocates a star’s position away from its true
CMD location. Measuring R over all wavelengths in dependence of the
colour excess (e.g. E(B — V)) between two filter bands, i.e.

R (1.23)

Ax

et (1.24)

Rp_v(A\) =
recovers the extinction or reddening law of the sight-line towards the object
(Stahler and Palla, 2004). As an example, Figure 1.6 shows the extinction
law Rpz_y (M) for the diffuse interstellar medium in the Milky Way as given by
the Cardelli et al. (1989) model for Ry = Ay /(B — V) = 3.1, highlighting the
decrease in extinction with increasing wavelength.

One way to constrain the reddening law within an observed field of view is
to make use of a distinct CMD feature called red clump (RC). As we have
discussed in Section 1.2, stars will enter a phase of central helium burning
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Fig. 1.7.: CMD of the MYSST survey (see Sections 2.5, 3.3, 3.4) of the star-forming
region N44 in the Large Magellanic Cloud. Highlighted is the extinction-
elongated red clump in comparison to the reddening vector (red arrow).

at some point during their post-main-sequence evolution. In particular for
low-mass stars (M, < 2 M) this phase of central helium burning is both
a fairly stable and long-lived state (~ 10® yr), such that observing post-
main-sequence stars in this phase is not unlikely (Stahler and Palla, 2004).
Additionally, the mass of the inert helium core at the point of helium ignition
is almost equal for most low-mass stars independent of their total mass.
Consequently, over a mass range of (at least) 0.5 M, < M, < 1.7— 2.5 M,
these low-mass stars actually exhibit a very similar luminosity and effective
temperature, except for relatively small deviations caused by different enve-
lope masses and chemical compositions (Girardi, 2016). Because of this,
low-mass helium-burning stars appear as a distinct clump in the CMD when
we conduct observations that capture the old field population of galaxies.
This is the red clump. For a more extensive review of the properties of the
RC see e.g. Girardi (2016).

Being an easily identifiable feature in the CMD and a fairly (intrinsically)
homogeneous set of objects, the RC can be used to determine individual ex-
tinction measures under the assumption that, given this intrinsic homogeneity,
any observed colour-magnitude spread can be attributed to (differential) ex-
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tinction (Girardi, 2016). In particular, the RC feature is often found to spread
along the reddening vector owing to extinction in observations of external
galaxies (e.g. the Large Magellanic Cloud, see Section 2.3). Figure 1.7
shows an example of this extinction-elongation of the RC feature in the CMD
in comparison to the reddening vector (red arrow) from the MYSST survey
of star-forming region N44 in the Large Magellanic Cloud (see Sections 2.5,
3.3 and 3.4 for details on the survey and N44). Measuring the slope of the
extinction-elongated RC, we can, thus, determine the reddening vector R and
even constrain the reddening law R()), if we have access to a panchromatic
survey (i.e. a wide range of photometric filters). For example applications
of this approach see e.g. De Marchi and Panagia (2014); De Marchi et al.
(2016).

Tracers of Star Formation

Observing young stellar populations and PMS stars directly is the straightfor-
ward way to investigate star formation. There are also other observational
tracers that indicate potential future, on-going or recent star formation. In this
section we give a few examples (but not an exhaustive list) of such alternative
tracers, which are in particular considered in our study in Section 3.4.

Being the very material stars form out of, molecular clouds are certainly the
first objects to look for. However, observing molecular hydrogen is actually
not a trivial matter. Being a homonuclear, symmetric (no permanent dipole
moment), and low-mass molecule, H, basically never occupies excited states
at the temperatures of GMCs (except for shock heated regions, which overall
are rare), and is, thus, practically incapable of emitting. The only other way
to directly observe H, in GMCs is through UV absorption lines. However, this
requires a bright UV background source, which is generally not a common
occurrence (Krumholz, 2020; Klessen and Glover, 2016).

GMCs are not only host to H,, but to other molecular species as well, which
can be used as observational proxies. The most common choice is carbon
monoxide CO, the second most abundant molecule in the ISM. Being a
more massive, heteronuclear molecule with a strong dipole moment, the
rotational transitions of CO can be excited even at the low temperatures in
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GMCs (e.g. the CO J = 1 state lies at only 5.5K above the ground state;
Krumholz, 2020). CO is, therefore, one of the main observational targets
to identify GMCs and measure their masses. Additionally, together with its
isotopologues ¥CO and C*#0, it can also be used to probe various density
regimes of molecular clouds (*2CO for n ~ 100 — 300 cm™3; 1*CO and C*®*O
for n ~ 103 cm ™3, e.g. molecular clumps) up to about n ~ 10° cm~3, where it
then becomes optically thick and may freeze out (Bodenheimer, 2011).

Massive main-sequence stars (of the O-type to early B-type variety) are
themselves signposts of recent and on-going star formation. Because their
main-sequence lifetimes are so short (cf. Eq. (1.10)), they have to be young
and likely close to their natal environment (where other stars may still be
forming) when observed in this phase. Very massive stars (M, > 10 M)
also emit a significant amount of ionising UV radiation, which impacts their
natal gas clouds. Consequently, sites of massive star formation are often
accompanied by H Il regions, i.e. hydrogen from the parental cloud (or
the remnants thereof) ionised by the stellar UV radiation (Krumholz, 2020;
Klessen and Glover, 2016). Observing and identifying H Il regions can, thus,
directly lead to active star-forming centres. H |l regions are best observed
via hydrogen recombination lines, in particular the optical Ho and Hj lines
at 656.3 nm and 486.1 nm, corresponding to the 3 — 2 and 4 — 2 electronic
transitions of atomic hydrogen. H Il regions emit these atomic hydrogen
lines because hydrogen ions in H Il regions can recombine to excited states
instead of the ground state, prompting a radiative decay back to the ground
state accompanied by line emission (Krumholz et al., 2019). H Il regions
also exhibit metal recombination lines from either singly or multiply ionised
species such as N* or O** (Klessen and Glover, 2016).

Lastly, dust emission observations also play a role in the study of star forma-
tion. As discussed in Section 1.1, especially in the early phases of protostellar
evolution the central object is almost completely obscured by its surrounding
natal envelope. The only way to observe these sources is through the re-
processed emission from the dusty envelopes in the infrared and sub-mm
wavelength regimes (Klessen and Glover, 2016). Additionally, at later stages
the presence of accretion discs around young objects is connected to ex-
cess IR emission from the dust in the disc, again reprocessing radiation
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from the central source. Consequently, mid- to far-IR observations play an
integral part in the search for YSOs (see e.g. Chen et al., 2009; Carlson
et al., 2012, for example YSO studies). In general bright far-IR emission
has been connected to regions of active star formation by several studies
(e.g. Skibba et al., 2012; Javadi et al., 2017), as the dusty remnants of the
natal molecular clouds, too, absorb and reemit the radiation of young stars
to longer wavelengths (see also Casey et al., 2014, for a review).

Machine Learning

Machine learning (ML) is a discipline in computer science that falls under the
greater subjects of applied statistics and artificial intelligence (Al). Moving
beyond Al approaches that employ fixed knowledge bases and strict logic
rules to solve tasks and perform inference, ML focuses on algorithms that
acquire knowledge by themselves by extracting information and patterns
from raw data. In this fashion ML has allowed computers to successfully
solve and make predictions for a large variety of tasks that require knowledge
of the real world, where the more rigid knowledge-based Al approaches have
previously failed (Goodfellow et al., 2016).

In this section we first provide a short overview of general concepts related to
the construction and application of ML approaches. Afterwards, we describe
three specific algorithms more in detail, namely the support vector machine,
the random forest, and the random sample consensus, which are the main
models of our studies in Sections 3.1, 3.3 and 3.4. Lastly, we briefly introduce
density estimation and the expectation-maximisation algorithm. Note that an
exhaustive discussion of all the ML and statistics concepts applied throughout
the studies in Chapter 3 is beyond the scope of this thesis, so that we shall
refer to the more detailed literature, e.g. Bishop (2009), Hastie et al. (2009),
James et al. (2017), Goodfellow et al. (2016), for all ML methodologies that
are not captured in the following.
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General Concepts

ML algorithms learn from data. To best describe what this entails, let us
consider the concepts of tasks T, a performance measure P and experience
E (Goodfellow et al., 2016). Referencing a definition by Mitchell (1997),
learning certain tasks 7' means that an ML algorithm improves its perfor-
mance (as measured by P) at the given tasks 7" with experience E (the
data).

Tasks

The task refers to the problem the ML algorithm is supposed to solve. Al-
though the list of specific tasks is in principle infinite, they can be categorised.
The task categories relevant to this thesis, i.e. the subjects of our studies in
Chapter 3, are classification, regression and density estimation. One of the
main differences between these categories is the way a corresponding ML
algorithm processes its inputs for the task. A single input, referred to as an
example or observation, is typically represented by a vector x € R”, where
each entry x; denotes an observed property, a feature, of the object to be
processed (Goodfellow et al., 2016). Learning a task commonly requires an
ML algorithm to produce a function f(x) = y that maps an input observation
to a desired output quantity y.

In a classification task the ML algorithm has to categorise an input into one of
k different classes, i.e. it has to find a function f : R — {1, ..., k}. Instead
of aclass label y € {1, ..., k} the input is often also mapped onto a vector of
probabilities for the different classes. An example classification task is object
recognition, i.e. identifying an object shown within an input image (Bishop,
2009; Goodfellow et al., 2016).

In a regression problem the ML algorithm is asked to predict a continuous
numeric value given the input, i.e. it has to determine a mapping f : R” —
R or f : R — R™ in the multivariate case. There are many examples
for regression tasks, in particular in the natural sciences, where we often
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want to predict some underlying physical parameters of a system given
measurements in an experiment (Bishop, 2009; Goodfellow et al., 2016).

In density estimation the task is to find a function p,,0qe : R™ — R such that
Pmodel (X) represents a probability density distribution over the space that the
examples x are drawn from. Specifically, this means that an algorithm needs
to learn the structure of and distinct patterns in the data it has seen (Bishop,
2009; Goodfellow et al., 2016).

Experience

In general experience refers to the set of data that an ML algorithm sees
while learning a task (also called training). In this context a data set is simply
a collection of N examples, each consisting of n features. Although most
ML algorithms experience a complete data set (of fixed size) during the
training procedure (except on-line and reinforcement learning techniques;
see e.g. Bishop, 2009; Goodfellow et al., 2016, for details), based on the
way they operate on the data, they can be distinguished into two categories,
supervised learning and unsupervised learning algorithms (Goodfellow et al.,
2016).

For every example in the training data a supervised learning algorithm is
provided with an additional corresponding /abel or target. In other words,
during the learning procedure for every example x the algorithm is told what
the output y of the function that it is constructing should be. Classification
and regression are typical examples for tasks that are solved via supervised
learning. On the other hand, an unsupervised learning algorithm has to find
useful properties of the structure of the data that it is presented with, without
any additional information. Unsupervised learning tasks include e.g. density
estimation and clustering (Goodfellow et al., 2016).

Performance measure

To learn a specific task, an ML algorithm requires a performance measure,
which quantifies how well the algorithm does at the task. The type of perfor-
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mance measure depends primarily on the nature of the task. In classification
for instance the accuracy, i.e. the fraction of correctly classified objects in
a data set, is a typical choice (see also Appendix A4 of Ksoll et al., 2018,
in Section 3.1 for more classification-specific performance measures). In
a regression task on the other hand e.g. the mean squared error between
predicted and true target value is employed. The performance measure
plays an integral part in constructing an ML algorithm as it determines the
quantity that is optimised during the training procedure (Goodfellow et al.,
2016).

The true goal and challenge of any ML approach is the prediction on entirely
new data, which has not been seen during the training process of the ML
model. To ascertain a model’s ability to generalise to new data, a second
dataset (with known targets) is prepared, the test set, which is held-out
during training. The performance of a fully-trained model on this unseen test
set represents an estimate of the generalisation error. This concept works
under the assumption that both the training and test set are drawn from the
same data generating distribution, so that minimising the training error on
the training set implies an improvement for the prediction on unseen data
(Goodfellow et al., 2016). Consequently, the test error is larger than or equal
to the training error.

Over-/underfitting and regularisation

This relates to two common issues occurring when training an ML approach,
namely overfitting and underfitting. Overfitting refers to the problem that
the discrepancy between training and test error becomes too large, i.e. the
model does extremely well on the training data (likely by simply memorising it
completely) but generalises poorly. On the other hand, underfitting describes
the situation where training and test error may be similar, but the model does
not achieve an acceptable performance on the training data, i.e. it did not
fully learn the task yet (Goodfellow et al., 2016).

One technique to combat overfitting when constructing an ML model is
called regularisation. Broadly speaking, it is defined as any modification to
the learning procedure that aims at reducing the generalisation but not the
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training error (Goodfellow et al., 2016). Consider for instance a simple linear
regression model of the form

y=w'x+b (1.25)

with weights w and bias b, which is trained by minimisation of the mean
squared error (MSE). A commonly chosen regularisation approach for this
setup is to extend the MSE performance measure with the L2 norm of the
weights, i.e.

P(w) = MSE + Aw’ w. (1.26)

In this scenario the regularisation term Q(w) = wlw introduces a preference
for smaller weights, where the scaling factor )\ indicates the severity of this
preference. This particular regulariser is also referred to as weight decay in
the context of neural networks (Bishop, 2009; Goodfellow et al., 2016).

Hyperparameters and cross-validation

Most ML algorithms entail two sets of parameters. The first set are parame-
ters that are determined during the training process by optimising the given
performance measure. The second set on the other hand comprises a form
of settings that influence the algorithm’s performance and the solution it
derives, but are fixed before and during training. The latter are referred
to as hyperparameters. The scaling factor A in Eq. (1.26) from the linear
regression example above is for instance one such hyperparameter.

The proper choice of hyperparameters is often integral to the success of
an ML model. To determine the hyperparameters a second data set, which
the model does not get to see during training, is employed, the so-called
validation set. The validation set is not to be confused with the actual test
set and it is important that they are distinct from each other. The test set may
only provide a reasonable estimate of the generalisation error if it is neither
involved in the fit- nor hyperparameter determination of the model. In most
cases the validation set is created by randomly selecting a subset of the
total available training data. The hyperparameters are then determined by
e.g. performing a random search in the hyperparameter space, i.e. a series
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of random sets of hyperparameters is generated, for each set the model
is trained on the remaining training data and afterwards evaluated on the
validation set. The model and set of hyperparmaters that best perform on the
validation set are then chosen as the final model (Goodfellow et al., 2016).

If only little total training data is available, so that a randomly selected valida-
tion set is very small, estimating hyperparameters via validation will suffer
from large statistical uncertainty. In this case a more efficient procedure to
determine hyperparameters is k-fold cross-validation. In this approach the
available training data is first split into £ non-overlapping random subsets.
The validation error is then estimated as an average over k different reali-
sations of the model. Specifically, in realisation i the ith subset of the data
is used as the validation set and the model trained on the remaining £ — 1
subsets (Goodfellow et al., 2016).

Support Vector Machine

The support vector machine (Cortes and Vapnik, 1995) is a widely-used
and fairly successful classifier for many classification problems. Making use
of the kernel trick to implicitly map a given classification task to a higher
dimensional feature space and determining an optimal class-separating
hyperplane there, the SVM quite efficiently computes non-linear decision
boundaries in the original feature space. It is a generalisation of the support
vector and maximal margin classifiers (James et al., 2017; Hastie et al.,
2009).

Maximal Margin and Support Vector Classifier

The basic idea of the maximal margin classifier is that of the optimal sep-
arating hyperplane, i.e. finding a flat affine n — 1 dimensional subspace of
a n-dimensional space (e.g. a 2D-plane in a 3D space) that describes the
solution to a set of linear equations

x84+ By =0, (1.27)

Chapter 1 Introduction



where 5 denotes a vector of coefficients and 5, is a constant. In a classi-
fication task the optimal separating hyperplane is constructed such that it
perfectly separates all vV training examples x; according to their class labels

yi (y;i € {—1,1}), i.e.
yi(x; B+ By) >0 Vi=1...N. (1.28)

Classifying a new observation x is then straightforward, as the class can
simply be determined by the side of the hyperplane x falls on (James et al.,
2017), i.e. computing the sign

G(x) = sign[xT B + Bo]. (1.29)

The margin denotes the minimum (perpendicular) distance of all training
examples x; to a given hyperplane. Therefore, the maximal margin classifier
is defined as the classifier following Eq. (1.29) that uses the hyperplane with
the largest margin, i.e. the optimal separating/maximal margin hyperplane.

Training examples x; that lie exactly on the margin are referred to as support
vectors as their position essentially defines ("supports") the hyperplane.
To construct the maximal margin classifier the hyperplane satisfying the
following optimisation problem has to be found:

max M, (1.30)
B,80,18l1=1
subject to
yi(Bo+xTB) > M Vi=1,...n, (1.31)

where M, M > 0, represents the width of the margin.

The support vector classifier generalises the maximal margin approach to
cases where the training examples x; are not linearly separable, i.e. no
solution to Egs. (1.30), (1.31) with M > 0 exists. To achieve this, the concept
of a soft margin is introduced. Rather than determining the hyperplane that
perfectly separates the training data, the support vector classifier aims to
find the hyperplane that best separates the data, while allowing for a few
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training examples to fall on the incorrect side of the margin or hyperplane.
This hyperplane is the solution to

M =1 1.32

subject to

yi(Bo+x;B8) > M(1—¢) € >0,
a (1.33)

Zei <C,

=1

where C (C > 0) denotes a cost parameter, M is the width of the margin, and
€1, ..., €, are slack variables. The latter allow individual training examples to
fall on the wrong side of the margin or hyperplane. ¢; denotes the position of
training example x; w.r.t. the margin and hyperplane, i.e. ¢; = 0 implies that
x; is on the correct side of the margin, ¢; < 0 that x; lies on the wrong side of
the margin (violating the margin) and ¢; > 1 that x; falls onto the wrong side
of the hyperplane.

The cost C, bounding 3"~ | ¢;, determines the number and severity of toler-
ated margin violations, such that a large value of C results in a wide margin,
whereas a small C' leads to the opposite. Similar to the maximal margin
classifier, the support vector classifier is defined completely by the training
examples that either lie directly on the margin or violate it, i.e. the support
vectors (James et al., 2017).

Support Vector Machine

The support vector classifier performs well in a two-class setting if the classes
are reasonably divided by a linear boundary, but will fail significantly without
modification if the class boundaries are highly non-linear. To solve such
a classification task with a support vector classifier one has to embed the
original feature space into a higher dimensional one and construct the clas-
sifier there. Although the classifier’s decision boundary remains linear in this
higher dimensional space, it will translate to a non-linear threshold in the
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original feature space. This is the basic idea of the support vector machine
(SVM; Cortes and Vapnik, 1995).

The optimisation problem of the support vector classifier, i.e. Egs. (1.32) and
(1.33), can be reformulated as

Fx) =60+ oufx,x;) (1.34)

where (x;,x;) = Z;‘:l z;;x; denotes the inner product and «; (i =1, ..., n)
are n parameters (one per training example) that are only nonzero for support

vectors.

An SVM generalises the inner product with a non-linear kernel function
(e.g. a radial kernel), which implicitly transforms the classification task to
a higher dimensional space. There the SVM constructs a support vector
classifier, resulting in the desired non-linear class boundary in the original
feature space. Aside from avoiding an explicit transformation to the higher
dimensional space, this kernel trick also allows the latter to become infinite-
dimensional (as e.g. with the radial kernel) and is computationally efficient
(see e.g. Hastie et al., 2009, for more details).

To derive class probabilities with an SVM instead of the direct class labels, a
sigmoid function can be fit to the SVM decision value f:

1
~ 1+exp(Af +B)’

Py =1[f) (1.35)

where A and B are estimated by minimizing the negative log-likelihood func-
tion (Platt, 1999).

Random Forest

The random forest (RF, Breiman, 2001) is a classifier that is based on the
concept of bagging. Bagging is a general purpose method to reduce variance
in machine learning approaches by constructing many individual models
with high variance and low bias, and averaging over their predictions (James
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et al., 2017). One such classifier, suffering from high variance, but low bias,
is the decision tree, which is the underlying model of the random forest.

Decision Tree

The basic idea of the decision tree classifier is that, in an ideal classification
scenario, the feature space can be hierarchically partitioned such that all
training examples (and new observations) are correctly classified. Such a
hiearchical partitioning can be represented by the end points (leaves) of a
tree model, where each branching point (node) of the tree denotes a split of
the feature space along one of its axes, e.g. a binary split separating axis
z; into x; <t and z; > t (where ¢ denotes the split threshold). Constructing
the decision tree, the feature space is recursively split in this fashion until a
stopping criterion is reached, assigning subsets of the training data to each
node and the final leaves along the way. With this assignment, each node
i possesses a probability distribution p;;, over the classes & (Venables and
Ripley, 2002).

To decide where to perform a split during construction of the tree, an impurity
measure is introduced for each node. A node is considered pure if all of its
assigned training examples stem from the same class. At any given node
then the split is performed that reduces the average impurity of the tree the
most. A typical choice for this impurity measure is the Gini index

G= Zpijpik =1- prk’ (1.36)

J#k k

which quantifies the training error if a node’s assigned training examples
were classified as class k rather than the majority class in the node. The
Gini index is zero for a pure node (Venables and Ripley, 2002).

Stopping criteria for the construction of a decision tree can be all nodes be-
coming pure, the tree reaching a prescribed maximum depth, or no available
split decreasing the average impurity by more than a predefined threshold.
If the tree construction is terminated before all leaves are pure, the leaves
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assume the majority class of their assigned training examples (Venables
and Ripley, 2002).

At prediction time, a new observation is simply propagated along the tree,
according to its feature vector, from the root (i.e. the first split/branching
point) to one of the leaves. The class of the final leaf is the prediction for the
class of the new observation (Hastie et al., 2009).

Unlike many machine learning approaches, the decision tree classifier can
deal, to some degree, with observations that have an incomplete feature
vector. This is achieved by either propagating a new observation as far down
the tree as its incomplete feature vector allows, assigning the class of the
deepest non-terminal node reached, or by employing surrogate splits. In the
latter approach each node keeps a list of secondary split criteria, which best

approximate the primary split of the node, if the required feature is missing.

This list is then considered (in order of best approximation) for prediction
of a new observation that misses the primary split feature at a given node
(Hastie et al., 2009).

Random Forest Classifier

Following the bagging idea, a random forest classifier constructs B decision
trees during training, each of which is built on one of B different bootstrapped
datasets that are randomly sampled from the total training data (James
et al., 2017; Hastie et al., 2009). To further improve the reduction of variance,
beyond just bagging, the construction of the decision trees is slightly modified,
with the goal of reducing correlation between the B trees. Instead of selecting
the feature for a split that would most reduce the tree’s impurity, m random
features out of the n-dimensional feature space are chosen at each split
decision and then the best feature for the split is selected only among these
(again via the impurity criterion). If a large number of the features are
correlated a small value of m is preferred, but a generally decent choice
for classification tasks is m = /n (Hastie et al., 2009). This modification of
the decision tree construction decorrelates the B trees by preventing that a
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strong predictor feature dominates the split criteria in all trees built'. Each of
the B decision trees is then typically grown until a minimum terminal node
size is reached.

At prediction time the random forest classifier performs a majority vote among
its decision trees, i.e. each tree classifies the new observation, their votes
are counted and the most voted for class is assigned to the query example
(Hastie et al., 2009).

RANSAC

The Random Sample Consensus (RANSAC; Fischler and Bolles, 1981)
algorithm is a robust ML method to fit models to datasets that are contami-
nated by outliers (e.g. noise) to the underlying data-generating distribution.
Specifically, the RANSAC approach assumes that the data consists primarily
of inliers to a single distribution/model, whose parameters are to be deter-
mined by the fit to the data, and a few outliers. To determine the model
parameters, RANSAC first randomly samples a series of subsets from the
query dataset. Afterwards, it fits the target model to each of the subsets,
gathering a collection of sets of fit parameters. Given the earlier assumption
on inliers and outliers, most of these random subsets should consist only
of inliers to the target model, and, therefore, should return (close to) the
same fit parameters. The fits to the minority of subsets that contain one or
multiple outliers, however, do not return a consistent set of fit parameters.
Consequently, the parameters of the target, data-generating model can be
recovered by determining the most voted for set of fit parameters among all
of the random subsets (Forsyth and Ponce, 2003).

To achieve this, RANSAC proceeds as follows: First a random subset of N
examples is drawn from the data, where N denotes the minimum number of
points required to fit the target model (e.g. 2 for a line). Then the number

'Suppose there is one strong predictor feature along with several moderately strong ones.
If the B decision trees are constructed according to the standard procedure, this strong
predictor feature would dominate the split criteria. With the random sampling modification,
however, on average (n — m)/n nodes do not even consider the dominant feature for
the spilit.
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of remaining data points is determined that agree with this fit, i.e. the inliers
to this set of fit parameters. This agreement is measured by computing a
distance measure between the data and fit, and comparing this distance to
a prescribed acceptance threshold. A set of fit parameters is determined to
be a good fit if enough inliers are found. Once such a model fit is identified,
the model is then refined by reestimating its parameters on the entire set of
inliers (the consensus set; Forsyth and Ponce, 2003).

This process is repeated £ times in order to find the best model as given by a
final fitting error. Here, the number & of random subsets of size N is chosen
such that the probability p of drawing subsets that contain only outliers is
minimised. It is given by the following equation:

~ log(p)
= ol — ] (1.37)

where w denotes the fraction of inliers in the data. Although the inlier fraction
w is often not known a priori, k& can still be iteratively determined. Starting
from an initial low estimate for w, a random subset is generated and the
actual inlier fraction for this subset determined by the RANSAC fit. With this
new guess for the true inlier fraction w, the parameter £ is then reestimated
and a new random subset drawn. This iterative process ultimately terminates
once the number of actually drawn subsets exceeds the current estimate of
k (Fischler and Bolles, 1981; Forsyth and Ponce, 2003).

Density estimation and the EM algorithm

In this section we shall briefly mention three additional ML approaches that
are employed in our studies in Chapter 3, but play a less central role in the
presented analysis.

In Ksoll et al. (2018) and Ksoll et al. (2021b) we employ a density estimation

algorithm to estimate surface densities for stellar distributions. This is the
kernel density estimator, which, given a sample of N examples {z,...,zy}
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of a 1D distribution, estimates the density distribution p(x) at a given query
point x as

ﬁ(x):ﬁﬁ;z((x;ﬂ, (1.38)

where h denotes a bandwidth factor and K (z) a kernel function. One of the
common kernel choices is a simple standard normal distribution K (z) =
1/+/2m exp(—0.52%). For our purposes this can be extended to 2D using a
multivariate standard normal kernel, following

1 ZN 1 l|x — x| 2
= — R — — i 1'
where now x, xy € R? (Bishop, 2009).

In the same two studies we also fit a Gaussian mixture model to a 1D density
distribution using the Expectation-Maximisation algorithm. Similar to the
kernel density estimator, Gaussian mixture models are a form of density
estimation. They model the target distribution with a linear combination of
Gaussian distributions of the form

NE

p(X) = amq)(x; K Em)’ (1 40)

m=1
where «,, denotes the mixing proportions (with 2%21 a,, = 1) for the M
mixture components with mean u,, and covariance X, (Bishop, 2009).

The Expectation-Maximisation (EM; Dempster et al., 1977) algorithm is an
iterative approach to solve problems via maximum likelihood optimisation. It
is an effective numerical alternative in cases where optimising the maximum
likelihood becomes analytically unfeasible. Optimising via maximum likeli-
hood with the EM algorithm often includes the introduction of latent variables
as a means to simplify the problem. To fit a Gaussian mixture model for
instance, it is conceptually helpful to introduce a label for every available
example z; that indicates to which mixture component it belongs to, but
cannot actually be observed. Starting from an initial guess of the parameters
of the model, which is to be fitted via maximum likelihood to the data, the EM
algorithm alternates between an expectation (E) and maximisation (M) step.
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In the E-step it computes the expectation of the log-likelihood over the data
given the current parameter guess. Afterwards, in the M-step an update of
the model parameters is derived by maximising this expected log-likelihood
with respect to the model parameters. A more thorough description of this
approach is beyond the scope of this section and we shall refer to the litera-
ture, e.g. McLachlan and Peel (2000); Bishop (2009); Hastie et al. (2009), or
Appendix B in Ksoll et al. (2018) in Section 3.1 for more details.

Deep Learning

Deep Learning describes a sub-discipline of machine learning that, over
the last two decades, has gathered a lot of popularity and success on a
variety of complicated tasks, ranging from classification and regression over
image, speech and text recognition to autonomous driving (to name only a
few). It focuses on the construction, application and analysis of a particular
set of models called neural networks. Although there are many different
neural network architectures, in their essence neural networks consist of
long (deep) chains of layers, each representing a (non-linear) transformation
and comprised of a collection of artificial neurons, hence the name deep
learning (Goodfellow et al., 2016).

In this section we provide a short, but not exhaustive, overview of both basic
deep learning concepts, as well as the specific neural network approach
employed in our study in Section 3.2. To that end Section 1.5.1 outlines the
basic structure of an artificial neuron, the simplest neural network architec-
ture, and general steps of the training procedure. In Section 1.5.2 we then
briefly discuss the neural network approach in the context of solving inverse
problems and afterwards present the invertible neural network architecture
in more detail as one of the central methodologies applied in this thesis.
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Z3

Fig. 1.8.: Schematic of a single artificial neuron used in most neural network archi-
tectures.

Neural Networks

Although neural networks have attained their current popularity and success
only fairly recently, neural network research and the formulation of some of its
basics date back to the 1950s and 1960s, where they were initially inspired
by neuroscience (Bishop, 2009; Goodfellow et al., 2016). However, early
misconceptions of neural network capabilities led to a temporary disinterest
in the discipline. Combined with the need for a few key algorithmic and archi-
tectural innovations, and the fact that neural networks benefit substantially
from both large data sets and sulfficient (parallel, i.e. GPU) computing power,
it was not until about 2006 that the machine learning community started to
realise the actual potential of the neural network approach (Goodfellow et al.,
2016).

Basic Architecture

The basic building blocks of any neural network are the artificial neurons
(also known as nodes), which, as the name implies, are inspired by the
neurons in the human brain (Bishop, 2009). Figure 1.8 shows a schematic
of a single (artificial) neuron. Given an N-dimensional input (signal) x (here
N = 3) the neuron j first computes a linear combination of the input often
denoted as activation

N
CLj = Zwﬂxz + U)jo, (1 41)
i=1
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Fig. 1.9.: Architecture of a simple fully connected feed-forward neural network with
one hidden layer of size three.

where w;; denotes a set of (trainable) weights and w is the so-called bias
of node j. Afterwards, the activation q; is transformed by a differentiable
activation function ®(-) to determine the response of the neuron

Zj = @(CLj). (142)

Combining a collection of M (often called width) such neurons into a layer
and then chaining these layers, constructs the simplest neural network,
the fully-connected feed-forward network or multilayer perceptron (Bishop,
2009). Fully-connected indicates that in every layer each neuron propagates
its response to all neurons of the subsequent layer. Feed-forward denotes
that in the combined transformation f, defined by this chain, information only
flows from an input x to a final output y of the network and no output of the
model is fed back into it at any point (Goodfellow et al., 2016).

Figure 1.9 presents an example architecture for a simple fully-connected
neural network. Note that the responses of the last layer in the chain, the
output layer, provide the final network output y and, therefore, its width D
and activation function o(-) are determined by the task that the network aims
to solve (Bishop, 2009). In the given example the output layer could return
e.g. three real valued parameters of a regression problem or three class
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probabilities for a classification task. The layers in the network between the
input and the output are referred to as hidden layers since the supervised
training data does not provide the desired output for these layers (Goodfellow
et al., 2016). The simple example in Figure 1.9, therefore, constitutes a
neural network with one hidden layer of width M = 3, input size N = 3 and
output dimension D = 3. The transformation f performed by this network
can be formulated as

= fi(x;0) =0 [Z wk] (Z w(l)ar:Z + wjo ) + w,(j))

, (1.43)

where x denotes the network input vector and 6 the entire set of network
weights and biases (Bishop, 2009).

For ease of notation, we can also introduce an additional constant input
xo = 1 to each layer in a network so that the biases can be absorbed into
the set of weights (Bishop, 2009). The total transformation for the example
network above then simplifies to

M N
yk = fr(x;0) =0 [Z w,(é)q) (Z wj(ll)xz)] : (1.44)
=0 i=0

The Activation Function

Equation (1.43) indicates that the type of transformation that can be repre-
sented by a neural network depends on the chosen activation functions ¢
of the hidden layers. If the activation functions are linear transformations,
then the network is just a linear composition of successive linear transfor-
mations, rendering f itself a linear transformation (Bishop, 2009). Using
a non-linear activation function, however, such as a sigmoid function or
the now-widespread rectified linear unit, it has been shown that any neural
network with at least one hidden layer (and a linear output layer) can approx-
imate any (Borel-measurable) function from one finite-dimensional space
to another with an arbitrarily small, but non-zero, error, provided the hidden
layers have enough nodes. This is known as the universal approximation
theorem for neural networks, which also applies to functions between two
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discrete finite-dimensional spaces (Goodfellow et al., 2016). Although a large
variety of activation functions exists, including e.g. the logistic sigmoid and
the hyperbolic tangent, among the most widely-used and successful today is
the rectified linear unit (ReLU) ®(z) = max(0, z) and variations thereof.

The Loss Function

With the basic architecture of a simple neural network established, we can
now describe the training procedure. In the following we will only consider
the supervised training case, i.e. a training data set of N observations
X = {x1,...,xn} and their corresponding targets Y = {yi1,...,yn} are
given. Training a neural network consists of finding the optimal set of network
parameters 6, i.e. weights and biases, such that the network transformation
f(x;0) =y best approximates the true underlying data-generating function
f*(x) =y (Goodfellow et al., 2016). To achieve this we have to define an
objective function that is optimised during training.

In deep learning this objective function L(0) is often referred to as the loss
and can be written as an average over the training set

L(0) = Exx)L(y, f(x:0)), (1.45)

where L(y, f(x;6)) denotes the per-observation loss function, penalising a
discrepancy between the targets y and the network outputs f(x;#) (Bishop,
2009; Goodfellow et al., 2016). In most applications this objective function
decomposes to a sum over the individual training observations

N

L(0) = Ex )Ly, f(x:0)) = Y L(yi, f(x::0)). (1.46)

=1

Like the activation function in the output layer of a neural network, this loss
function needs to be tailored to the task at hand. For a regression task for
instance a simple squared error can be employed

£0) = 5 3 llys — fxi O, (1.47
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whereas e.g. the cross entropy loss

L(0) = Zyi In(f(xi;0)) + (1 — y;) In(1 — f(x,6)) (1.48)

is used for binary classification tasks, i.e. y; € {0, 1} (Bishop, 2009).

Gradient descent

Finding the set of network parameters ¢ that minimises the objective function
L(#) pertains to solving
VoL(0) =0. (1.49)

This equation defines stationary points of the objective function, which need
to be further distinguished into minima, maxima and saddle points. The
optimal set of parameters 6 is the minimum at which () takes the smallest
value across the entire 6-space, the global minimum (Bishop, 2009). Due to
the (usually) highly non-linear dependence of the objective function on the
network parameters 0, however, there are often many different sets of 9 that
fulfil the criterion in Eq. (1.49), but are merely local minima. Beside these
different minima, there is also the issue of weight space symmetry, meaning
that for every minimum 6,,;,, there is a large family of equivalent minima that
can be reached by simply reordering nodes and connections within a hidden
layer (Bishop, 2009; Goodfellow et al., 2016). Because of this, it is evident
that an analytical solution to Eq. (1.49) for the global minimum is practically
impossible to determine. Fortunately, finding the global minimum is often not
necessary as a "good" local minimum may already allow the neural network
to solve a given task reasonably well.

To find such a local minimum numerically, one of the most efficient methods
is an iterative procedure, in which, starting from an initial guess 0, the
network weights are successively updated such that the objective function
decreases with each update (Bishop, 2009). The simplest and most-used
update rule is the gradient descent approach

00D = 01 — AV,L(0D), (1.50)
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with ¢ indicating the iteration step, where the weights are updated by moving
in the direction of the loss gradient V,L(6") (evaluated at the current guess
6®) in #-space with steps of size \ (learning rate).

If the training set (X,Y) is particularly large then this iterative optimisation
scheme can become very computationally expensive, because the loss
gradient L(6®) has to be evaluated at every weight update for the entire
training set. In practice, however, evaluating the gradient on the entire
training set may not even be necessary, because a reasonable estimate of
the gradient can already be made from a much smaller subset of the data
(Goodfellow et al., 2016). This is the idea behind stochastic gradient descent,
where the update rule is modified to

00D =60 — AV, > Llyi, f(xi07)), (1.51)
=1
and m < N denotes the size of the chosen subset. If m = 1 this method is
refers to the "true" stochastic gradient descent, whereas for m > 1 it is called
mini-batch stochastic gradient descent.

Backpropagation

Even with a stochastic gradient descent approach, however, computing the
loss gradient can become computationally expensive, in particular if a given
network entails a large number of weights. When implemented in a naive,
brute-force fashion the calculation of the loss gradient also contains a lot of
repetition. To avoid these issues and efficiently optimise a neural network, a
particular scheme for computing the loss gradient called backpropagation is
employed.

The first step of the backpropagation scheme actually consists of a forward
pass through the network, i.e. given a training observation x,,, the responses
zi(k) and activations ag’“) of all network layers (including the output layer) are
computed. Consider now the derivative of the loss £,,(0) = L(y,, f(x,;0))
for observation x,, with respect to one of the weights w](fH) between node
i in hidden layer & and node j in layer k& + 1. We can immediately see that
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(k+1

the loss gradient acn(e)/awj.’“*” depends on the weight w;, ) only via the

activation a§k+1) of node j, so that we can write

0L, (0)  OL,(0) da

= (1.52)
811)](-?“) aa§k+1) 3w§f+1)
using the chain rule for partial derivatives (Bishop, 2009). Defining
(k+1) — 8£n(0)
0; = 8a§k“) (1.53)
and using Eq. (1.41) to find
_ (k)
P ‘7(']&1) =z, (1.54)
7t
we can then write
0L,(0) SE+D L0 (1.55)

8w](-?+1) !
Eqg. (1.55) indicates that the we can compute the entire loss gradient as soon
as we know ¢ for every hidden and output layer of the network (Bishop, 2009).
Using again the chain rule of partial derivatives we can write for 5;.““ ina
hidden layer

j PR . 8al()k+2) aa§k+1) .

e+t = 9£nl0) _ 5~ OLn(6) Oa, ™ (1.56)

This follows from the fact that a variation of a§-k+1) influences L,,(9) only via

the b nodes it is connected to in the consecutive layer k + 2 (Bishop, 2009).
Using Egs. (1.53), (1.41) and (1.42) in Eq. (1.56) we find

5J(k+1) Y (a§_k+1)> Zw£?+2)5ék+2)- (1.57)
b

Eq. (1.57) shows that we can immediately determine the 6(*+1) for any hidden
layer by propagating the 62 of its consecutive layer backwards in the
network. This property gives rise to the efficient backpropagation scheme
to calculate the total loss gradient: First, pass a training observation x,,
forward through the network to determine the activations and responses of
all layers. Second, determine the 5§K) for the output layer K, which are readily
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computable given the loss function and the targets y,,. Lastly, determine the
(k) i ; : (k+1) .

d; for all hidden layers by recursively propagating J; backwards in the

network starting from the now known 5§K) (Bishop, 2009).

The Adam optimiser

After determining the gradient of the loss using the backpropagation scheme,
the updates for the weights 6 can be determined by some flavour of gradient
descent algorithm. Although these algorithms all follow the same basic
concept, they vary in how fast they reach convergence and how prone they
are to getting stuck in a suboptimal local extremum. In the following we
briefly describe one of the most widely used stochastic gradient descent
optimisers, the Adam (adaptive moment; Kingma and Ba, 2014) optimiser,
which we employ in our study in Section 3.2.

The Adam optimiser employs both an adaptive learning rate approach and
incorporates the concept of momentum (Goodfellow et al., 2016). Momen-
tum is inspired by the physical analogue and entails record-keeping and
accumulation of the loss gradients during the optimisation procedure. Specif-
ically, it means that the weight updates do not just follow the loss gradient
of the current mini-batch, but instead also take into account the gradients
of previous iterations (through an exponentially decaying moving average).
Consequently, the update procedure does no longer abruptly change di-
rection in weight space but does so more gradually instead. This helps
convergence in the presence of either noisy or small but consistent loss
gradients (Goodfellow et al., 2016).

An adaptive learning rate serves both to avoid overshooting potentially good
solutions and mitigating slow convergence. Given a fixed learning rate and
a large loss gradient, the weight update may miss the minimum the gradient
is pointing to simply by taking too big a step in weight space. On the other
hand, if the loss gradient is very small, the optimiser’s progress towards the
optimum may be slow and time-consuming. To solve these issues, adaptive
learning rate approaches, therefore, reduce the step size of the weight update
in the presence of a large gradient and do the opposite for small gradients
(Goodfellow et al., 2016).
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The Adam optimiser incorporates these two principles by using first s and
second r moments of the loss gradient. Starting from an initial guess 6 for
the weights and initialising the moments r, s and the time step ¢ to zero, first
the gradient g of the loss with respect to the current mini-batch of size m is
computed via

1 m
g = EVQZIE(%;JC(X@;H))- (1.58)
After setting ¢ < ¢ + 1, the first and second moments are computed

S (-5154‘ (1 _Bl)g

(1.59)
r+ fGor+ (1 —pP2)gog,

where © denotes element-wise multiplication, and then corrected for the bias
of the zero initialisation:

S
13
r

1-p55

w>
I

(1.60)

>
I

p1 and 3, denote exponential decay rates for the moments here and constitute
the set of hyperparameters for the Adam optimiser, together with the initial
learning rate \q. Lastly, the weight update is computed according to

s
VE+ 6§
where § denotes a small non-zero constant introduced for numerical stability
and all operations are again performed element-wise. The first moment §

00— X

(1.61)

incorporates the momentum principle, whereas the second moment r is used
to adapt the learning rate (Goodfellow et al., 2016).
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1.5.2 Invertible Neural Networks
Inverse Problems

In science simulations and modelling are fundamental approaches to under-
stand and predict real world phenomena. After constructing theories that
describe a certain phenomenon, these tools allow to predict the outcome
of some measurements given a complete description of the system. For
instance, knowing the underlying physical properties of a star (e.g. mass,
age, chemical composition etc.) one can simulate how a certain telescope
would observe this source (e.g. synthetic photometry). The task of predicting
the result of measurements is often referred to as a forward problem, as
it aims to infer the effects of something given its causes (Tarantola, 2005;
Richter, 2015).

In many scientific applications the more interesting part, however, is to
actually recover the underlying parameters that characterise the system
from the measurements. Inverting the associated forward problem, these
tasks are called inverse problems, that is, aim to determine the causes of
something given its effects. Whereas the forward problem is usually well
understood in the sense that it (the simulation) is often deterministic, easily
computed and has a unique solution, the inverse problem most of the time
is not. Be it due to critical information loss in the mapping to a given set of
observables or an intrinsic property of the phenomenon itself, in the inverse
problem there are often multiple solutions to a single query, i.e. the inverse
mapping is degenerate (Tarantola, 2005; Richter, 2015). For instance, given
the right combinations of stellar mass, age and chemical composition, two
entirely different stars may look almost identical in the HRD or observed CMD
(cf. Figure 1.5). This property makes inverse problems difficult to solve and,
in some cases, certain system parameters may be unrecoverable entirely
from the available observables (Ardizzone et al., 2018).

To adequately analyse inverse problems, a solver is necessary that can
provide the complete posterior distribution p(x|y) of the system’s parameters
x conditioned on the given measurements y. Only such a solver allows a
proper quantification of uncertainty, can reveal multi-modal distributions and
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find degenerate or unrecoverable parameters in a given inverse problem
(Ardizzone et al., 2018). Modelling conditional posterior distributions for
inverse processes is in principle a task that can be tackled with Bayesian
statistical approaches. However, many practical applications in science are
often too complex for an exact Bayesian treatment. Because of this, the most
widespread approach to tackle posterior prediction for inverse problems is
the Markov Chain Monte Carlo (MCMC, Robert and Casella, 2004; Gamer-
man and Lopes, 2006) sampling method. Although undoubtedly successful
in predicting posterior distributions, MCMC approaches are unfortunately
very expensive in terms of computing time (Ardizzone et al., 2018). A more
efficient alternative to MCMC is the so called approximate Bayesian compu-
tation (ABC, for a review see e.g. Sunnaker et al., 2013) approach, provided
an implementation of the forward model (i.e. simulation solving the forward
problem) exists. ABC combines this forward model with rejection sampling
in order to compute an approximation of the posterior distribution.

Solving the inverse problem and predicting conditional posteriors has also
seen attention in deep learning. For instance, neural networks predicting
parametric representations of the true posteriors (Papamakarios and Murray,
2016; Siddharth et al., 2017) or dropout variational inference approaches
(Gal and Ghahramani, 2015; Kingma et al., 2015) have been proposed. In
principle, conditional generative adversarial networks (cGAN; Mirza and
Osindero, 2014; Isola et al., 2017) or conditional variational auto encoders
(cVAE; Sohn et al., 2015) are also suitable architectures to solve inverse
problems (Ardizzone et al., 2018). Generative modelling, i.e. learning a
non-linear transformation between a simple prior distribution and the actual
data distribution (Deco and Brauer, 1995; Hyvarinen and Pajunen, 1999),
has also great potential for this task. More specifically, this entails neural
networks employing the concepts of normalising flows (Tabak and Vanden-
Eijnden, 2010; Tabak and Turner, 2013), where normal densities are gradually
transformed into the target data density (see e.g Rippel and Prescott Adams,
2013; Rezende and Mohamed, 2015; Tomczak and Welling, 2016; Trippe
and Turner, 2018, for applications), and auto-regressive flows (Kingma et al.,
2016), which decompose the density following the Bayesian chain rule (see
also e.g Huang et al., 2018; Papamakarios et al., 2017; Uria et al., 2016).
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The Invertible Neural Network

In this thesis we employ a recently proposed novel approach to solving
inverse problems called invertible neural network (INN, Ardizzone et al.,
2018). As defined in Ardizzone et al. (2018), INNs are a particular neural
network architecture that encompasses three key properties:

i) The input-output transformation is bijective, i.e. it has an inverse,

ii) both the input-output and the inverse output-input mappings are effi-
ciently computable, and

iii) the Jacobian of both the forward and inverse mapping is tractable, so
that posterior probabilities can be explicitly calculated.

A network that fulfils these criteria has the unique advantage that it can
be trained to model the usually well understood forward process (i.e. the
forward problem) and automatically provides the desired solution to the
inverse problem for free by simply running it in reverse at prediction time.
This characteristic ability of INNs also avoids one of the major difficulties in
solving inverse problems, arising when the posterior distributions are to be
modelled directly, namely the definition of an adequate supervised loss. If
the chosen loss function does not match the shapes of the target posteriors,
a method is likely to converge to an incorrect solution (Ardizzone et al.,
2018).

To solve a given inverse problem the INN approach, as described in Ardizzone
et al. (2018), aims to approximate the posterior distributions p(x|y) with a
model ¢(x|y), or more specifically a deterministic function ¢ represented
by an INN. Given a well understood simulation s(x) = y of the forward
process, that maps the underlying (e.g.) physical parameters x (that cannot
be directly measured) to a set of observable quantities y, it is then assumed
that this forward mapping is subject to an inherent loss of information. Due
to the latter the observables y can no longer explain all the variance of the
physical parameters x, such that the mapping y — x becomes degenerate.
To capture the information that is otherwise lost, the INN approach introduces
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a set of additional, latent variables z to encode all variance of x that is not
entailed in y.

The INN is then trained to model the known forward process, i.e. it learns
to associate the physical parameters x to unique pairs [y, z] of observables
and latent variables:

.2 = f(x) = [fy(x), fs(x)] = g7 (), (1.62)

where f,(x) ~ s(x). By virtue of its invertible architecture this procedure
implicitly determines the inverse x = f~!(y,z) = g(y,z). Two necessary
ingredients for training an INN in this setup are the dimension of the latent
variables K = dim(z) and their prior distribution p(z).

Let N = dim(x) and M = dim(y) be the nominal dimensions of the physical
parameters and the observables, respectively, and let m be the intrinsic
dimension of y, with m < M. The information loss assumption automatically
implies N > m, even if the nominal dimensions may satisfy A/ > N. Conse-
guently, the dimension of z follows as K = N — m, as the relation f = ¢!
only holds if the nominal and intrinsic dimensions of both sides match. In
the case that the nominal dimensions M + K exceed N, the input vector x
can be augmented by a vector of zeros x, with dimension M + K — N, so
that x is replaced by the concatenation [x, x| (Ardizzone et al., 2018).

For simplicity p(z) is assumed to be a K-dimensional multivariate standard
Normal distribution and this shape is enforced as part of the training proce-
dure. The learned function ¢(y, z) = x, thus, retrieves the target posterior
distribution p(x|y) by transforming this known prior distribution p(z) to x-space
given the condition y (Ardizzone et al., 2018). In practice, the posterior distri-
bution is constructed by sampling the latent variables according to their prior
p(z) and computing ¢(y, z;) for each sample z; given the observation y.
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In summary the INN approach, thus, represents the posterior model ¢(x|y)
as

a(x=g(y,2)ly) = p(z)| x| ",

T = det | 292) , (1.63)
a[y’ Z] y?fz(x)

z~ p(z) = N(z,0,1x),

where J, denotes the Jacobian determinant and I the K-dimensional unit
matrix.

To create an INN, Ardizzone et al. (2018) employ a chain of reversible, so-
called affine coupling layers based on the RealNVP architecture designed
by Dinh et al. (2016). In these layers the input vector u is split into two
halves u; and u,, which are then transformed by two complementary affine
transformations with element-wise multiplication ® and addition +,

Vi = g © exp(sy(uz)) + ta(ug), (1.64)

vz = uz ® exp(s1(v1)) + t1(vi),

where s; and ¢; (i € {1,2}) are arbitrarily complex mappings of u, and vy,
which can even be realised as small neural networks and do not need to
be invertible themselves. Given the output vector v = [vy, v5] these affine
transformations are trivially inverted,

uz = (v — t1(v1)) © exp(—s1(v1)), (1.65)

up = (v1 — t2(u2)) © exp(—s2(uz)).

To facilitate interaction between variables in the INN architecture, these affine
coupling blocks can be alternated with random permutation layers, shuffling
the input of the subsequent layer, such that the splits u = [u;, uy| vary for
each reversible layer.

Training an INN for an inverse problem requires a bi-directional training
regime. Here forward and backwards passes are alternated, accumulating
loss gradients for both directions, before the network weights are updated by
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back-propagation. This process, thus, entails the definition of three losses,
Ly, Ly and L,.

Ly (yi, fy(xi)) is a standard supervised loss that penalises deviations of the
network prediction fy(x;) from the actual simulation outcome y, = s(x;),
e.g. a standard squared loss for an inverse regression problem.

The loss on the latent variables £, is invoked to ensure a) that the latent
variables follow the prescribed prior normal distribution p(z) and b) that the
network converges such that y and z are independent (i.e. p(z|y) = p(z))
and do not twice encode the same information (Ardizzone et al., 2018). This
is achieved by penalisation £, (¢(y,z), p(y)p(x)) of a mismatch between the
joint distribution of network outputs ¢(y = fy(x);z = f.(x)) = p(x)/|Jy]
and the product of the marginal distributions of latent variables p(z) and
simulation outcomes p(y) = s(x)) = p(x)/|Js|. To avoid that £, counteracts
L, i.e. that the weight updates worsen the y-predictions, the £, gradients
are blocked with respect to y (Ardizzone et al., 2018). A cheap, stable and
easy-to-use choice for £, is the Maximum Mean Discrepancy loss (MMD,
see Gretton et al., 2012, for details), which is a kernel-based approach to
compare two probability distributions that are given only by samples. Note
that the Jacobian determinants J; and .J,,, do not need to be known explicitly
if £, is realised via the MMD loss (Ardizzone et al., 2018).

Lastly, £«(q(x), p(x)) penalises a deviation of the distribution of backward
predictions ¢(x) = p(y = fy(x)p(z = f.(x))/|JI«| from the prior data distribu-
tion p(x), also implemented as an MMD loss. Ardizzone et al. (2018) prove
that the INN prediction will converge to the true posterior distribution in the
asymptotic limit that £, and £, reach zero, but in practice they find a residual
dependency between y and z after a finite training time. Because of this, £,
is introduced to improve convergence of the method.

The Conditional Invertible Neural Network

Although our study in Section 3.2 has seen ample experimentation with the
initial Ardizzone et al. (2018) INN approach during the research phase, we
ultimately settled for an architecture that improves upon the INN foundation.
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Fig. 1.10.: Schematic overview of a conditional affine coupling layer, outlining the
forward and backward passes in the top and bottom panel, respectively.
Following the Kingma and Dhariwal (2018) GLOW architecture, the
transformations t1, s; and s, t, are realised by a single sub-network each
here, instead of having an individual sub-network for each transformation.

This extension is the conditional invertible neural network (cINN) proposed
in Ardizzone et al. (2019).

The main modification of the INN architecture in the cINN is the introduction
of additional conditioning inputs c to the affine coupling blocks. Since the sub-
networks (or functions) s; and ¢; are only evaluated in the forward direction,
even while inverting the network, one can concatenate an additional condition
to the regular sub-network inputs, i.e. replace s;(uz) with s5(us, c) etc. in
Eqgs. (1.64) and (1.65), without compromising the overall invertibility of the
network architecture. Figure 1.10 illustrates how this modification ties into
the operation (forwards and backwards) of the affine coupling blocks.

In Ardizzone et al. (2019) this modification is proposed as a means to in-
troduce a feature extraction network into the INN to facilitate an image
colourisation/generation task by pre-processing input images into useful
features (then used as c). That said, the cINN architecture is easily applied
to inverse regression problems by taking the observables y as the condition-
ing input c. Consequently, the cINN does not predict the observables y in
the forward process anymore, i.e. the forward and backward mappings are
modified to f(x;c,#) = z and g(z; c,0) = x (where ¢ denotes the cINN model
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parameters), respectively. The invertibility is, thus, given for fixed condition c
as

flie)t=g(-50). (1.66)

Although these changes in the forward and backward mappings may appear
significant in comparison to the original INN approach to inverse problems,
the cINN still learns to encode all information about the parameters x in
the latent variables z that is not captured by the observables y, just like
the standard INN. Likewise, posteriors for a given observation (condition)
y are predicted by sampling from the known normal prior p(z) of the latent
variables using the inverted network g :

Xposterior — Q(Z; C= y>7 with z ~ p(Z> = N(Z7 OJ IK); (1 67)

where Ik is the K x K unity matrix with K = dim(z).

The cINN has a few advantages over the INN that improve stability and
training efficiency. First, the cINN does not require zero padding of the input
vector x in the case that the nominal dimension of the observables y exceeds
that of x. Since the forward process now only maps x to z (conditioned on
c), the invertibility is automatically given when the dimensions K and M
of the latent variables and input parameters match. With the observables
y provided as the conditioning input c, their dimension can be arbitrarily
large (like e.g. an image). As previously mentioned, this also provides
the opportunity to integrate a feature-extraction network & into the cINN,
which transforms a given condition c into an intermediate representation
¢ = h(c). Such a network h can be trained jointly with the cINN, such that a
transformation is learned that is specifically tailored to the cINN’s needs.

Secondly, (although this is not necessarily exclusive to the cINN), Ardizzone
et al. (2019) adapt a more computationally efficient version of the affine
coupling blocks, replacing the Dinh et al. (2016) RealNVP setup by the
GLOW (Generative Flow; Kingma and Dhariwal, 2018) architecture. The
modification in the GLOW coupling layer is rather minor, instead of employing
an invidiual sub-network for all four of the transformations s; and ¢; (i € {1,2}),
now the outputs of s, t; and s,, t, are predicted by a single network each
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(i.e. only two instead of four sub-networks). This effectively halves the total
number of weights that need to be trained.

Lastly, Ardizzone et al. (2019) show that the cINN can be effectively trained
by minimisation of the maximum likelihood loss alone. With only one loss
function L to track, compared to the three individual losses Ly, £, and £, in
the standard INN approach, this further improves stability and efficiency of
the training process. With the prescribed prior distribution p(z) on the latent
space Z, the forward model f essentially assigns a probability to any given

input x in dependence on the condition ¢ and the cINN model parameters 6.

Making use of the change-of-variables formula, this can be written as

of
where 0f/0x is the Jacobian matrix. Using Bayes’ theorem the posterior
over the model parameters 0 can be determined as

px(x;¢,0) = pz(f(x;c,0)) : (1.68)

p(0;x, ¢) ox px(x;.¢,0)py(0). (1.69)

To train a cINN we have to find the optimal model parameters 4, i.e. solve
6 = arg m;xxp(@; X, C), (1.70)

which can be achieved by minimisation of the negative log likelihood loss
L = E, [log (px(x;; c;, 0))] — log (ps(0)) - (1.71)

Assuming the standard normal distribution for p,(z) and a Gaussian prior on
the network weights 6, this further simplifies to

|| £ (xi5 1, 0) |5 1 2
—E |02 : . 1.72
L i 5 og | /i +203H9H27 ( )

where x; is a training sample with corresponding condition c¢; and J; denotes

the determinant of the Jacobian matrix J;, = det (8f/6x|Xi) evaluated at x;.

Here, the second term acts as the L2 weight regularisation, whereas the first
is the maximum likelihood loss (Ardizzone et al., 2019).
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As stated in Section 1.0.1, among the central goals of this thesis is the
exploration of machine learning methods for the identification and charac-
terisation of PMS stars. In this section we briefly summarise a few example
approaches in the literature related to these tasks.

Employing CMDs from surveys of star forming regions, PMS stars can be
distinguished from more evolved contaminants, such as (low-mass) lower
main-sequence (LMS) stars, by making use of reference fields. The latter
are observations of the galactic field population (i.e. the primary source of
contamination) in the vicinity of the target. Constructing CMDs for both the
observed field and survey target, the true cluster population can be recovered
(in the CMD) by statistically subtracting the field from the target CMD. See
for example Gouliermis et al. (2007) for an application of this approach to
the star-forming region LH 95 in the Large Magellanic Cloud.

In a more recent study, Zivkov et al. (2018) identify regions hosting PMS
stars by using differential Hess diagrams. A Hess diagram is a 2D-histogram
variant of the CMD, i.e. it indicates either number or density of stars in 2D
bins in the CMD. Zivkov et al. (2018) distinguish young stellar populations
from the field by identifying them as (spatial) regions that show a density
excess in predefined areas (i.e. the PMS regions in the CMD) in a differential
Hess diagram, i.e. the difference between the Hess diagrams of the observed
star-forming region and the underlying field population. Zivkov et al. (2018)
successfully apply this approach to several star-forming regions in the Large
Magellanic Cloud using data from the photometric VISTA Survey of the
Magellanic Clouds (VMC; Cioni et al., 2011) and derive PMS density contours
for the observed regions. This approach can, however, not recover PMS
sources individually, providing only estimates for the total number within the
identified regions.

In Section 3.3 we introduce an ML approach to constrain the slope of the
extinction-elongated RC (cf. Section 1.3). Previously, e.g. De Marchi et al.
(2016) quantify the slope of the reddening vector via the RC feature in the
CMD by employing unsharp masking. Starting from an image of the CMD,
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centred on the RC, they subtract a second, Gaussian-blurred version of the
CMD image from the original to sharpen the observed extinction-elongated
RC. This filters out the noise around the RC feature (i.e. other RGB sources),
narrowing it down to a sharp line, which can then be fitted to derive the slope
of the reddening vector (De Marchi et al., 2016).

Regarding the prediction of stellar physical parameters from photometry,
in particular probabilisitc isochrone fitting techniques based on Bayesian
statistics have been investigated to derive posterior probability distribution
functions of the properties of individual stars (see e.g. Valls-Gabaud, 2014,
for a review). For instance Gordon et al. (2016) have developed such a
Bayesian analysis tool for multi-band photometric surveys. Probabilistic
Bayesian approaches also exist for the prediction of stellar parameters from
full observed spectra (e.g. BONNSAI; Schneider et al., 2014, 2017). Bayesian
inference of stellar physical parameters based on photometry has also been
successfully applied to time-domain observations, e.g. light curves using
photometric brightness variations (e.g. Miller et al., 2015), and time-series
asteroseismic surveys (e.g. Bellinger et al., 2016).

In Section 3.2 we propose a novel neural network approach for the predic-
tion of stellar physical parameters from photometry. Several recent studies
in astronomy have employed neural networks for similar prediction tasks.
For instance Sharma et al. (2020) construct a convolutional neural network
to classify stellar spectra following the Harvard classification scheme and
successfully test their method on data from the Sloan Digital Sky Survey.
Using photometry and parallaxes from the second data release DR2 of the
Gaia (Gaia Collaboration et al., 2016, 2018) survey, Kounkel et al. (2020)
employ a neural network to predict age, extinction and distance for stellar
clusters in the Milky Way and study the star-formation activity in the spiral
arms. In a follow-up study McBride et al. (2020) extend the Kounkel et al.
(2020) neural network to predict ages for PMS stars based on combined
photometry from Gaia DR2 and the 2MASS (Two Micron All Sky Survey;
Skrutskie et al., 2006) survey. A similar neural network approach to Kounkel
et al. (2020) has been proposed by Cantat-Gaudin et al. (2020), who also
employ Gaia data to predict physical parameters of stellar clusters, but take
2D histograms of the observed CMDs as inputs for their method instead.
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Lastly, Olney et al. (2020) develop a deep convolutional neural network for
the analysis of APOGEE spectra of YSOs and predict surface temperature,
surface gravity and metallicity for these objects. As part of their training
data construction they also utilise a secondary convolutional neural net-
work to infer YSO parameters, i.e. ages, masses, extinction and surface
temperature/gravity, from Gaia photometry in nine filter bands, a distance
measure, as well as stellar radius and luminosity. Similarly to our approach
in Section 3.2, Olney et al. (2020) train this auxiliary network using synthetic
isochrone tables and manage to successfully predict surface temperatures
for YSOs on real Gaia observations.

For a more detailed discussion of recent applications of various machine and
deep learning approaches in astronomy, we refer to the reviews by Fluke
and Jacobs (2020) and Baron (2019).

Chapter 1 Introduction



2.1

2

Targets and Data

This chapter briefly summarises the key properties of the target regions and

corresponding surveys that are analysed in the four studies of this thesis.

These are the young stellar cluster Westerlund 2 (Sections 2.1, 3.2), the old
globular cluster NGC 6397 (Sections 2.2, 3.2) and two giant star-forming
complexes located in the Large Magellanic Cloud (Section 2.3), the Tarantula
Nebula (Sections 2.4 and 3.1) and LHa 120—N44 (Sections 2.5, 3.3, 3.4).

Westerlund 2

Westerlund 2 (Wd2, shown in Figure 2.1) is one of the two clusters that
we analyse in Section 3.2 to test our cINN approach on real observational
data. Harbouring a total of 3.7 x 10* M, in stellar mass (Zeidler et al., 2017;
Ascenso et al., 2007), Wd2 is the second most massive star-forming cluster
in the Milky Way, just after Westerlund 1. Located in the Carina-Sagittarius
arm, it lies at a distance of 4.16 + 0.33 kpc (Zeidler et al., 2015) away from
our Sun and is the ionising central stellar cluster of the H Il region RCW49
(Rodgers et al., 1960). Wd2 consists of two almost coeval clumps (Zeidler
et al., 2015) and exhibits evidence of mass segregation (Zeidler et al., 2017),
i.e. its massive constituents appear more centrally clustered than their less
massive counterparts. Wd2 hosts a rich ensemble of OB-type stars (Vargas
Alvarez et al., 2013) and a large population of PMS stars, with the latter
likely still accreting material from their circumstellar envelopes (Zeidler et al.,
2016). Given its large mass and young age of only about 1—-2 Myr (Zeidler
et al., 2015; Vargas Alvarez et al., 2013), Westerlund 2 is an excellent local
example of systems undergoing episodes of intense star formation, which are
so bright that they can still be observed at distances of several Mpc in e.g. star
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burst galaxies (Sabbi et al., 2020). Additionally, so far no supernova has
been detected in Wd2, making it a prime target to study the pre-supernova
evolution of a young stellar cluster (Zeidler et al., 2021).

Fig. 2.1.: HST three-colour composite image of Westerlund 2. Original image
by NASA, ESA, the Hubble Heritage Team (STScl/AURA), A. Nota
(ESA/STScl), and the Westerlund 2 Science Team. Size scale and orien-
tation indicators added for this thesis.

In Section 3.2 we analyse the photometric catalogue compiled by Sabbi et al.
(2020), which combines multi-epoch HST imaging with the Wide Field Cam-
era 3 (WFC3) in F814W with previous UVIS-IR channel WFC3 observations
of Wd2 in the F160W filter (PI Nota, GO-13038). This photometric catalogue
entails 9,267 sources in total, 6,268 of which are attributed to the Wd2 cluster,
whereas the remainder are tentatively characterised as LMS foreground or
background stars contaminating the line of sight. The left panel of Figure 1.4
in Section 1.3 shows the CMD of the cluster constituents. The catalogue is
likely missing some of the most massive stars of Wd2, e.g. high-mass UMS
sources, as they were saturated in the long 350s exposures in the F814W
filters. In addition to the photometric catalogue of Sabbi et al. (2020) we
make use of a gas extinction map of Wd2 created by Zeidler et al. (2015).
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2.2 NGC 6397

Fig. 2.2.: HST two colour composite image of the globular cluster NGC 6397.Original
image by NASA, ESA, and T. Brown and S. Casertano (STScl). Size scale
and orientation indicators added for this thesis.

The second target analysed in Section 3.2 is the old globular cluster NGC 6397
(Figure 2.2). At a distance of 2.39+0.17 kpc (Brown et al., 2018) NGC 6397 is
located relatively close to our Sun and characterised by a very low metallicity
of [Fe/H] = —2.02 (Kraft and Ivans, 2003; Vulic et al., 2018). Recent studies
indicate a cluster age between 12.6 + 1.0 Gyr (Correnti et al., 2018) and
13.4 + 1.9 Gyr (Brown et al., 2018). NGC 6397 is subject to only moderate
extinction, as several studies place its colour excess E(B — V) at a value be-
tween 0.183 mag (Gratton et al., 2003), 0.186 mag (Schlegel et al., 1998) and
0.187 mag (Anthony-Twarog et al., 1992). Given these properties, NGC 6397
is an excellent example for ancient metal-poor stellar populations. Study
of metal-poor clusters like NGC 6397, in particular dating them accurately,
may provide crucial insights into their formation environments (Correnti et al.,
2018).

In Section 3.2 we employ the photometric catalogue of NGC 6397 provided
by the HST UV Globular Cluster Survey (HUGS, Nardiello et al., 2018; Piotto
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et al., 2015). The HUGS catalogues entail broadband photometry in five
HST filters, i.e. F275W, F336W and F438W obtained with the WFC3 (UVIS
channel), and F606W, F814W imaged with the wide field channel (WFC)
of the Advanced Camera for Surveys (ACS). Following the pre-processing
prescription detailed in Section 3 of Nardiello et al. (2018), the HUGS pho-
tometric catalogue of NGC 6397 entails a total of 4,831 stars (see also the
right panel of Figure 1.4 for an example CMD of the NGC 6397 data).

The Large Magellanic Cloud

-67.00°

-68.00°

Declination

-69.00°

-70.00°

82.00° 80.00°
Right Ascension

Fig. 2.3.: Colour composite image of the LMC in the neighbourhood of N44 and
the Tarantula Nebula from the Digitized Sky Survey (Lasker et al., 1996).
The blue and green outlines highlight the FoVs of the HTTP and MYSST
surveys, presented in Sections 2.4 and 2.5, respectively. Image adapted
from Ksoll et al. (2021b) with permission.

Two of our target regions in Chapter 3 are not located in our Milky Way, but
in one of its dwarf satellite galaxies, the Large Magellanic Cloud (LMC). The
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LMC is a gas-rich, one-armed spiral galaxy with an off-centre bar, prototyping
the 'Magellanic Irregulars’ class of galaxies (Besla et al., 2012). Similar to (but
not quite to the extend of) its own smaller companion — the Small Magellanic

Cloud (SMC) —the LMC is characterised by a very low metallicity environment.

With Z ~ 1/3 Z, (Hill et al., 1995) the LMC exhibits conditions comparable
to those in the early universe at the peak of the cosmic star formation activity,
z ~ 1.5 (Madau et al., 1996; Pei et al., 1999), providing the best templates in
the local universe for primitive star formation (Gouliermis, 2012). In addition,
the LMC is subject to an exceptional star formation activity, hosting many
large star-forming complexes, as well as the most impressive starburst in
the Local Group, 30 Doradus. Located at a moderate distance of about
50 kpc (de Girijs et al., 2014; Pietrzyniski et al., 2013; Panagia et al., 1991)
and above the Galactic disc, the LMC can be observed at low interstellar
extinction (Gordon et al., 2003) as it is largely unobscured by the Milky
Way’s gas and dust. This makes the LMC very attractive for photometric and
spectroscopic surveys, providing one of the few opportunities (along with
the SMC) to observe and resolve individual stars down to the very low-mass
limit outside of our own galaxy. Given these properties, the LMC is a perfect
target to study stellar birth by finding the PMS constituents of the star-forming
complexes, recovering their star formation histories and investigating their
stellar IMFs.

In the following, two such studies are presented, targeting the Tarantula
Nebula and LHa 120—-N44. Figure 2.3 shows a colour composite image of
the LMC neighbourhood close to these two regions from the Digitized Sky
Survey (Lasker et al., 1996). This figure also highlights the exact position of
both regions as per the observed FoVs of the respective studies presented
in Sections 2.4 and 2.5.

The Tarantula Nebula

The Tarantula Nebula, also known as 30 Doradus (shown in Figure 2.4), is the
subject of Section 3.1. Located in the LMC, it is both the most massive and
most luminous (log(L/erg s~1) = 39.66; Pellegrini et al., 2012) star-forming

2.4 The Tarantula Nebula
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Fig. 2.4.: HST colour composite image of the Tarantula Nebula located in the LMC
from observations taken as part of the Hubble Tarantula Treasury Project.
Originalimage by NASA, ESA, E. Sabbi (STScl). Size scale and orientation
indicators added for this thesis.

complex known in the Local Group (Kennicutt and Hodge, 1986). With
an estimated area of ~ 40.000 pc? the Tarantula Nebula is an enormous
H Il region, comparable to the luminous but unresolved H Il structures that
are observed in distant galaxies (Sabbi et al., 2013; Hunt and Hirashita,
2009; Oey et al., 2003). 30 Doradus is characterised by an exceptional star-
forming activity, in particular in the core Radcliffe 136 (R136) of its ionising
cluster NGC 2070 (Sabbi et al., 2013). R136 is often equated to a starbust-
like environment (Sabbi et al., 2013) and considered a local template of
unresolved starburst knots found in interacting galaxies at high-redshift due
to its size and high rate of star formation (Schneider et al., 2018; Crowther
et al., 2017; Heckman et al., 2004; Shapley et al., 2003; Meurer et al., 1997).
The unique environment of the Tarantula Nebula is further highlighted by a
collection of extreme objects harboured within the complex, such as the most
massive known stars to date (200-300 M, Hainich et al., 2014; Bestenlehner
etal., 2011; Crowther et al., 2010), the fastest rotating star (VFTS 102, Dufton
et al., 2011) and the most energetic young pulsar (PSR J0537-910) inside
the expanding supernova remnant N157B (Chen et al., 2006). Besides
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the striking cluster R136 at the centre of NGC 2070, 30 Doradus is host to
several other known stellar clusters, i.e. Hodge 301, SL 639 and NGC 2060,
the latter itself harbouring cluster TLD 1 (Schneider et al., 2018). With all
these centres where stellar birth has taken and still is taking place, the
Tarantula Nebula is subject to a complex star formation history, which is
still being extensively studied. NGC 2070 for instance exhibits a prolonged
star-forming activity over the past 20 Myr (Cignoni et al., 2015; Walborn and
Blades, 1997), characterised by several episodes (De Marchi et al., 2011)
and a peak activity about 1-3 Myr ago (Cignoni et al., 2015). Hodge 301 on
the other hand is much older, with an estimated age between 26.5 and 31.5
Myr (Cignoni et al., 2016). It has also been suggested that there may be
sites of star formation between R136 and Hodge 301 that are triggered by
the stellar feedback of these clusters, as observations find several massive

O stars in dense knots of dust in between them (Brandner et al., 2001).

With its complexity, being a multi-stage star-forming environment with dense
stellar clusters of different ages and loose associations closely coexisting,
the Tarantula Nebula provides an exceptional test bed for various scenarios
of star formation in clusters (Sabbi et al., 2013).

The Hubble Tarantula Treasury Project (HTTP, Sabbi et al., 2013, 2016) is
a large, deep, high spatial resolution, HST photometric survey that targets
the Tarantula Nebula to study the star formation history of the region. The
survey’s field of view (FoV) captures the entire nebula, in particular the
clusters NGC 2070 (with R 136 in its centre), NGC 2060 and Hodge 301, and
covers an area of 16 x 13 arcmin? on the sky, which corresponds to about
240 x 190 pc? at the distance of the LMC. Employing both the ACS (WFC) and
WFC3 (UVIS and IR channels) on board HST, the HTTP observations cover
a wide spectral range from 0.27 to 1.6 xm in one narrow- and six broad-band
filters, i.e. F275W, F336W, F555W, F658N, F775W, F110W and F160W. The
final HTTP stellar photometric catalogue entails a total of 822,204 stars with
a detection in at least one of the seven filters. Both the spatial coverage and
the fraction of detected stars varies strongly between the individual filters
of the survey. The most stars are detected (taking photometric flag < 2 as
the detection criterion, see Sabbi et al., 2016) in the F775W, F160W and
F110W filters with 79.9%, 75.2% and 75.1% of the total 822,204 sources
covered. The least amount of sources are found in the UV (F275W), Ha
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(F658N) and U (F336W) bands with detection rates of 5.6%, 16.1% and
18.5%, respectively (see also Table 1 of Ksoll et al. (2018) in Section 3.1).
The largest spatial coverage is achieved in the F555W and F775W filters,
whereas the least amount of the observed FoV is covered in F275W. Even
though the detection rate is very high in the F110W and F160W filters, they
also miss a large part of the FoV at the western edge, so that the best filter
combination in terms of spatial coverage and detection rate is F555W and
F775W with a total of 403,018 detected sources.

2.5 LHa 120-N44

82

Fig. 2.5.: HST two-colour composite image of the characteristic superbubble of the
giant star-forming complex N44 in the LMC. This image was compiled
from the MYSST observational data (Ksoll et al., 2021a) for this thesis.

LHa 120-N44 (or N44 for short; Henize, 1956) is the subject of Sections 3.3
and 3.4, and like the Tarantula Nebula an active giant star-forming region
situated in the LMC (green outline in Figure 2.3). Although is is not quite as
extreme an environment as the Tarantula Nebula, N44 is one of the most
luminous giant complexes of H Il regions in the entire LMC (just behind 30
Doradus and N11; Pellegrini et al., 2012; Kennicutt and Hodge, 1986). The
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most striking characteristic feature of N44 is an enormous central super-
bubble, shown in Figure 2.5, with several compact H Il regions along the
bubble’s rim (McLeod et al., 2019; Pellegrini et al., 2012). This bubble
is driven by the feedback of massive stars in its interior, namely the OB
association LH 47 (Lucke and Hodge, 1970), clearing out the gas and dust
of their natal environment. The stellar feedback at play becomes evident in
X-ray observations, revealing very hot gas (7' ~ 10°) heated by stellar winds
and supernovae (Jaskot et al., 2011). CO observations indicate that N44’s
star-forming activity stems from one giant molecular cloud complex (Wong
et al., 2011; Fukui et al., 2001), which entails an intricate hierarchical ISM
structure visible in dust maps from the Herschel Space Telescope (Hony
et al., 2010).

Several studies highlight the youthfulness of N44’s cluster constituents, re-
vealing another two OB associations (LH 48 and 49; Lucke and Hodge,
1970), along with more than 30 spectroscopically confirmed massive O-type
stars (McLeod et al., 2019; Will et al., 1997; Oey and Massey, 1995; Conti
et al., 1986; Rousseau et al., 1978) and about 180 YSOs captured by ob-
servations with the Spitzer Space Telescope (Carlson et al., 2012; Chen
et al., 2009). It is also possible that the stellar birth environment of N44 is an
example for feedback-triggered star formation, as Oey and Massey (1995)
have identified a 5 Myr age difference between the population of massive
stars within N44’s bubble and those found in the bubble’s rim. Additionally,
there is one supernova remnant (SNR 0523-679; Chu et al., 1993) located in
the vicinity of the superbubble (with up to four supernovae estimated in the
past; Oey and Massey, 1995) that exhibits characteristics of a core-collapse
supernova (Jaskot et al., 2011). Jaskot et al. (2011) also find evidence for
metallicity enhancement in the superbubble. Aside from the massive O-type
main-sequence stars, the recent Zivkov et al. (2018) study (c.f. Section 1.6)
also confirms the presence of PMS stars in N44. They determine a lower
limit for the number of PMS sources in N44 of 1000 + 38. In summary, with its
complex hierarchical ISM structure and multiple centres of star formation at
different evolutionary stages, N44 is an extraordinary example of an actively
star-forming ecosystem.

2.5 LHao 120-N44

83



84

The ’Measuring Young Stars in Space and Time’ program (MYSST, GO14689,
P.I. D. Gouliermis), which we introduce in Ksoll et al. (2021a) in Section
3.3, conducts a deep, high spatial resolution photometric survey of N44
with the HST. With a FoV of 12.2 x 14.7 arcmin?, or about 180 pc x 215 pc
at the distance of the LMC, the survey captures N44’s main superbubble,
the system of star-forming centres south of the bubble and two smaller
reference fields north-east of N44 (see green outline in Figure 2.3 for the
position of the MYSST FoV in the greater LMC neighbourhood). Employing
two broadband filters, F555W and F814W, from the ACS and WFC3 HST
instruments, the MYSST observations reach down to 29 mag in F555W and
28 mag in F814W, making the MYSST survey one of the deepest views of
extragalactic stars. Capturing e.g. unreddened 1 Myr old PMS stars with
masses as low as 0.09 M, (corresponding to the F555W detection limit), the
MYSST program reveals even the lowest-mass constituents of N44. The
final MYSST photometric catalogue, presented in Section 3.3 consists of
461,684 sources in total across the main FoV and the two offset reference
fields. As extremely bright sources went into saturation, this catalogue does
not entail objects brighter than 14 mag in F555W and 13 mag in F814W,
therefore likely excluding the most massive stars of N44, i.e. early O-type
stars.
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Publications

In the following we present the publications that make up the core of this
cumulative thesis. They appear unedited and in order of publication. The
manuscripts 3.1 and 3.2 have been published in the journal ’'Monthly Notices
of the Royal Astronomical Society’ (MNRAS), whereas 3.3 and 3.4 have
been accepted for publication in the ’Astronomical Journal’ (AJ), but are at
the time of this writing still in production. Note that the page numbering for
each manuscript follows that of the journal it appears in.

Hubble Tarantula Treasury Project — VI.
|dentification of pre-main-sequence stars
using machine-learning techniques

Ksoll et al. (2018) presents a methodology to identify young PMS stars from
HST photometry employing classical ML classification techniques with an
explicit application to the HTTP survey (cf. 2.4). Note that the analysis pre-
sented in this publication has been carried out primarily over the course of
my master thesis, but has been extended into the first part of the dissertation.
It is included here mainly for completeness as it introduces a methodolog-
ical approach that is applied and further tested in our subsequent study
Ksoll et al. (2021b), presented in Section 3.4. Beyond of what has been
presented in the master thesis we have updated the training set by including
additional highly-extincted RGB examples and subsequently repeated the
ML classification analysis to produce the final catalogue of PMS candidate
sources as shown in Ksoll et al. (2018). Furthermore, we have extended the
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ML-related performance assessment of our approach by including the bal-
anced accuracy measure and we have added an analysis of the 2D density
distribution using kernel density estimation of the identified PMS candidates,
both of which were not part of the original master thesis. The preparation
of the publication and the corresponding repetition of the ML analysis also
required a revision of the figures and diagrams compared to the master thesis.

Contributions: Dimitrios Gouliermis first proposed the project to investigate
the application of ML classification techniques to identify PMS stars using
HST photometry, in particular on the data from the HTTP collaboration of
the Tarantula Nebula. Under the guidance of Dimitrios Gouliermis and Ralf
Klessen | carried out the ML analysis of this project, devising the strategy for
construction and labelling of the training data, selecting, training and testing
several ML classification approaches, and applying the final models to the
HTTP photometric catalogue. | created all figures for the publication and
wrote most of the text, excluding the introduction, which was provided by
Dimitrios Gouliermis. All co-authors provided feedback and suggestions for
the manuscript and assisted with proofreading.
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1 INTRODUCTION

ABSTRACT

The Hubble Tarantula Treasury Project (HTTP) has provided an unprecedented photometric
coverage of the entire starburst region of 30 Doradus down to the half Solar mass limit. We
use the deep stellar catalogue of HTTP to identify all the pre-main-sequence (PMS) stars of
the region, i.e. stars that have not started their lives on the main-sequence yet. The photometric
distinction of these stars from the more evolved populations is not a trivial task due to several
factors that alter their colour—-magnitude diagram positions. The identification of PMS stars
requires, thus, sophisticated statistical methods. We employ machine-learning classification
techniques on the HTTP survey of more than 800 000 sources to identify the PMS stellar
content of the observed field. Our methodology consists of (1) carefully selecting the most
probable low-mass PMS stellar population of the star-forming cluster NGC 2070, (2) using
this sample to train classification algorithms to build a predictive model for PMS stars, and
(3) applying this model in order to identify the most probable PMS content across the entire
Tarantula Nebula. We employ decision tree, random forest (RF), and support vector machine
(SVM) classifiers to categorize the stars as PMS and non-PMS. The RF and SVM provided
the most accurate models, predicting about 20 000 sources with a candidateship probability
higher than 50 per cent, and almost 10 000 PMS candidates with a probability higher than
95 per cent. This is the richest and most accurate photometric catalogue of extragalactic PMS
candidates across the extent of a whole star-forming complex.

Key words: methods: data analysis —methods: statistical — Hertzsprung—Russell and colour—
magnitude diagrams —stars: pre-main-sequence —Magellanic Clouds — galaxies: star clusters:
individual: NGC2060, NGC2070.

places of stars in a galaxy. The youthfulness of these regions is
shown by their blue massive stars, located at the bright part of the

Giant star-forming regions, the signposts of star formation across main sequence in the colour-magnitude diagram (CMD). How-
whole giant molecular clouds (GMCs), are one of the major birth- ever, also the stars of low and intermediate masses in these re-

*E-mail:  v.ksoll@stud.uni-heidelberg.de  (VFK);  gouliermis@uni-

heidelberg.de (DAG)

© 2018 The Author(s)

gions hold important information about the star formation process.
These stars are not yet fully formed, and since they do not fuse
hydrogen in their cores, they do not appear on the main sequence
like their massive counterparts (Schulz 2012). These so-called pre-
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Table 1. Filter wavelength coverages, used HST instruments, and available data in individual filters out of the 822 204 total stars of the HTTP catalogue.
Sources with photometric flags (as described in Sabbi et al. 2016) higher than 2 in certain filters are considered as non-detections. The last column refers to the

fraction of stars out of the total amount detected in the respective filter.

Filter Amean (A) Amin (A)

Amax (A) HST instrument Available data

F275W (UV) 2377.6 1990
2363.9 1990
F336W (U) 3358.5 3014
3358.6 3014
F555W (V) 5396.7 4584
5397.5 4584
F658N (Hy) 6584.1 6510
F775W (R) 7729.7 6804
7730.6 6804
7660.1 6869
7658.4 6869
116238 8832
153923 13 854

F110W (J)
FI60W (H)

2980 WFC3_UVIS1
2968 WEFC3_UVIS2
3707 WFC3_UVIS1
3707 WFC3_UVIS2
6209 ACS_WFC
6209 ACS_WFC
6659 ACS_WFC
8632 ACS_WFC
8632 ACS_WFC
8571 WFC3_UVIS1
8571 WEFC3_UVIS2
14 121 WFC3_IR
16 999 WEFC3_IR

46 215 (5.6%)
151 679 (18.5%)
409 042 (49.8 %)

132496 (16.1 %)
657279 (79.9 %)

617 129 (75.1%)
618 508 (75.2 %)
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Figure 1. Overview of the spatial coverage in the individual HTTP filters.
The grey points indicate the objects not covered in the respective filter, while
the blue ones mark objects with a detection.

main-sequence (PMS) stars are still under formation through con-
traction and accretion and they occupy the faint red part of the CMD
(Stahler & Palla 2005). Assuming a typical stellar initial mass func-
tion (IMF), PMS stars with masses up to a few M account for
almost half of the total stellar mass budget of a young star clus-
ter. Consequently, identifying and studying these stars improves

MNRAS 479, 2389-2414 (2018)

our understanding of clustered star formation by parametrizing its
properties, such as the star formation efficiency, rate, duration, and
the low-mass end of the resulting stellar IMF. The characteriza-
tion of PMS stars, with T Tauri stars being prototypical examples,
can be achieved with spectroscopic measurements of usually only
a small number of objects (see e.g. Bodenheimer 2011, and ref-
erences therein for the spectral features of these stars). However,
characterizing whole ensembles of such stars with spectroscopy
is not practically feasible for star-forming regions in the Galaxy,
nor even possible for those outside the Galaxy. The study of rich
samples of faint PMS stars has, thus, to rely on deep photometric
measurements.

More than a decade ago several studies showed the exceptional
ability of the Hubble Space Telescope (HST) to detect faint PMS
stars in the Magellanic Clouds, the satellite galaxies of our Milky
Way (Brandner et al. 2001; Gouliermis, Brandner & Henning 2006;
Nota et al. 2006; Sabbi et al. 2007). These are the only extragalactic
PMS stars we can resolve and they are extremely useful in un-
derstanding star formation at GMC length-scales because of their
cospatial, rich samples, unobscured by the dusty Galactic disc. The
Magellanic Clouds, due to their exceptional star formation activity
at much lower extinction and stellar field contamination than our
Milky Way are, thus, very attractive targets for the study of ensem-
bles of PMS stars. Nevertheless, there are various observational and
physical constraints that introduce difficulties to the identification
and characterization of PMS stars from photometry alone. The main
issue is the dislocation of the stars from their theoretical CMD posi-
tions, introducing a spread of the PMS stars in the CMD along both
the brightness and colour axes. Among the effects that produce
the PMS spread on the CMD, differential reddening, variability,
and excess emission due to circumstellar discs are considered the
most important (Gouliermis 2012). Moreover, observational limi-
tations, such as unresolved binarity, stellar crowding, and photo-
metric uncertainties introduce a ‘mixing’ of the PMS stars’ CMD
positions.

These issues can be mitigated in (almost) single-age individual
young clusters and associations (Gouliermis et al. 2007, 2010), al-
lowing the investigation of their star formation history (e.g. Massey
& Hunter 1998; Da Rio, Gouliermis & Henning 2009; Cignoni
etal. 2010), stellar IMF (Sabbi et al. 2008; Schmalzl et al. 2008; Da
Rio, Gouliermis & Gennaro 2010), structure (Schmeja, Goulier-
mis & Klessen 2009; Gouliermis, Hony & Klessen 2014), and
star formation rate (Hony et al. 2015) from their apparently co-
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Figure 2. The CMD of the data obtained in the optical F555W and F775W
(V-, R-equivalent) filters. It is the richest CMD of the HTTP survey in terms
of spatial coverage. For reference representative errorbars of the photometric
errors are overplot in red and the coloured labels indicate the approximate
locations of populations of interest.

eval PMS stellar populations. However, the PMS spread across the
CMD introduces a significant difficulty in disentangling these stars
from the evolved stellar populations of the galactic field or older
clusters across giant star-forming complexes. These structures of
gas and stars host multiple star-forming centres, still embedded
in their gaseous natal environments, with a significant amount of
evolved field populations being projected on to their field of view
(FoV).

A typical example of such regions is the Tarantula Nebula in
the Large Magellanic Cloud (LMC), the natal environment of
30 Doradus, the most impressive starburst in the Local Group. The
complexity of the region, indicated in various previous investiga-
tions, is revealed at its full extent with the deep panchromatic HST
imaging of the whole nebula from the Hubble Tarantula Treasury
Project (HTTP; Sabbi et al. 2013, 2016). The HTTP field contains
different populations of various ages, so that an overlap between
the turn-on, i.e. the locus in the CMD where the PMS joins the
ZAMS (Cignoni et al. 2010), and faint giant/subgiant regions of the
CMD occurs. These factors become evident in the particularly rich
(in stellar numbers) CMD of the survey, constructed from measure-
ments in the F555W and F775W (V- and R-equivalent) filters. The
wide broadening of the upper main-sequence (UMS) stars and the
elongation of the red clump (RC) (which in theory should appear
nearly circular) provide clear evidence for significant differential
extinction (see also De Marchi et al. 2016). In this CMD it is also
practically difficult to distinguish the faint lower main-sequence
(LMS) field stars from the faint PMS stars, as these two popu-

lations strongly overlap in the low-brightness regime. Because of
these effects that prevent the clear identification of the various pop-
ulations based on their CMD positions, the distinction of the faint
PMS stars requires the use of sophisticated statistical approaches. In
this study we develop a classification methodology by employing
machine-learning techniques in order to perform a robust identi-
fication of the most probable PMS stars in the Tarantula Nebula.
The clear sample of faint PMS stars in combination with the young
bright stellar population of the UMS will provide an unprecedented
stellar data set to investigate the complexity of the star formation
process along the most interesting star-forming region in the Local
Group.

Machine learning, i.e. the study of algorithms that can learn from
and make predictions on data, has introduced a variety of statisti-
cal tools to the astronomical research. These tools are designed to
solve problems of regression, classification, and clustering (see e.g.
Beaumont et al. 2014; Dieleman, Willett & Dambre 2015; Elorri-
eta et al. 2016, for recent applications). While the first two types
of problems are addressed with supervised learning processes, the
third requires unsupervised methods. We employ classical machine-
learning classification techniques on the HTTP photometry in order
to determine the most successful in identifying the most probable
PMS stars across the nebula, based on prior information retrieved
from our data of the most prominent faint PMS stellar sample in
our FoV. This sample comprises the stellar members of the giant
Hu region, where the young stellar cluster NGC 2070, host of the
starburst cluster R136, resides.

This paper is structured as follows. In Section 2 we give a short
description of the photometric data set of HTTP. In order to account
for the differential reddening of the region in our identification, we
apply a correction for extinction to the photometric measurements
of all stars in Section 3. This correction is estimated in terms of the
proximity of PMS candidates to UMS stars, for which reddening is
being determined from their dislocation from the unreddened main
sequence. In preparation of our experiments on various classifica-
tion methods we build a so-called training data set, which is made
with a careful selection of the LMS and PMS stars included in the
area of NGC 2070, as well as the ‘contaminating’ evolved field pop-
ulations (Section 4). This is necessary because of the partial overlap
between the LMS and PMS stars in the CMD and the extended star
formation history of R136 of several Myr (Hunter et al. 1995). The
classification of the observed stellar populations in terms of super-
vised machine learning based on the training data set takes place in
Section 5, where the most robust algorithms for the identification
of faint PMS stars are established, and the final data set of the best
PMS candidates across the whole Tarantula Nebula is constructed.
A summary and future prospects concerning this study are given in
Section 6.

2 DATA DESCRIPTION

HTTP is a high spatial resolution stellar photometric survey of
the Tarantula Nebula (the nebula of the starburst of 30 Doradus).
It has a high dynamic range in spectral coverage, extending from
the near-ultraviolet (NUV) to the near-infrared (NIR) part of the
spectrum (Sabbi et al. 2013, 2016). Its spatial coverage extends
across the whole region of the nebula of ~16 x 13 arcmin?,
corresponding to 240 x 190 pc? at the distance of the LMC
((m — M)y = 18.55 £ 0.05 mag). This region includes the clusters
NGC 2070 (with the starburst cluster R 136 at its core), NGC 2060
and Hodge 301 (see e.g. fig. 1 in Sabbi et al. 2016). The observations
were obtained with the Advanced Camera for Surveys (ACS) and
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Figure 3. Left: The bright part of the optical CMD with the region, where the UMS stars are selected for the measurement of their extinction enclosed by the
polygon in red. The blue line corresponds to the upper part of the un-reddened ZAMS, corrected for the distance of the LMC. The top and bottom sides of
the polygon follow the direction of the reddening vector. Right: The spatial distribution of the UMS stars selected within the polygon for the determination of
the extinction across the HTTP FoV. The black cross marks the centre of R 136 (RAj2000 = 05" 38™ 4253, Dec.ja000 = —69° 06’ 0373) to be used later in the

selection of our training sample.

Wide Field Camera 3 (WFC3) on board the HST in filters corre-
sponding to a wide range of broad and narrow bands of 0.27-1.6 um
(Table 1). An overview over the available data in the respective filters
is given in Table 1, where it can be seen that there are significantly
less data available in the UV, U, and H,, filters than in the remaining
four filters, with the most data being available in the R, J, and H
bands. Fig. 1 shows the spatial coverage of the observations in each
filter, indicating that filters V and R cover the largest area of the
observed field, while especially the UV filter covers only a very
sparse area and both infrared filters do not cover the South-Eastern
region of the observed area. Fig. 2 shows the optical CMD of the
HTTP survey, exhibiting the previously mentioned widened UMS
and elongated RC caused by differential extinction (see Haschke,
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Figure 4. Histogram of the measured extinction values of the selected
UMS extinction probes in the HTTP data, where the thick red line indicates
the mean Aymean = 1.98 mag and the dotted lines the standard deviation
oay, = 0.55mag.
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Grebel & Duffau 2011; De Marchi et al. 2016, for a discussion of
the reddening in this area and maps).

3 EXTINCTION CORRECTION

Star-forming regions such as the Tarantula Nebula still include a
significant amount of gas from the parental molecular cloud. It is,
thus, expected that a considerable amount of interstellar extinction
influences the photometric measurements of the observed stars and
dislocates them accordingly in the CMD. This phenomenon con-
tributes to the mixing of old and young stars in the CMD and it
should be considered in the application of our classification pro-
cedure for the identification of PMS stars. We increase, thus, the
number of variables by adding to the magnitudes and colour in-
dexes of the stars their reddening, as determined by the extinction
measurements of their close-by UMS stars (Panagia et al. 2000;
Romaniello et al. 2002; De Marchi et al. 2016; De Marchi, Panagia
& Beccari 2017). The use of UMS stars for the extinction correction
is based on the fact that the young PMS candidates are more likely
to be spatially correlated with the UMS population, than with the
LMC field. In addition, earlier extinction studies showed that ‘dust
is highly localized near the hotter, younger stars’ and the average
extinction correction for older populations is lower than that for
younger (Zaritsky et al. 2002). The use of RC stars for the extinc-
tion correction of PMS stars would, thus, compromise the accuracy
of this correction and the reddening of the related star-forming

regions.

We retrieve extinction measurements for the UMS stars in our
catalogue by ‘relocating’ their CMD positions on the main sequence
along the known reddening vector of the Tarantula Nebula with
slope R555 = A555/E(m555 — I’H775) =335+ 015, as determined by
De Marchi et al. (2016), up to its intersection with the zero-age main
sequence (ZAMS). We make use of PARSEC family of evolutionary
models (Bressan et al. 2012) with a metallicity of Z = 0.08 for the
LMC, corrected for a distance modulus of 18.55 mag (Panagia et al.
1991; Walborn & Blades 1997; De Marchi et al. 2016).
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Figure 5. A series of extinction maps of the Tarantula Nebula, where each data point is colour-coded according to its assigned extinction value. From left
to right, the series shows the influence of the smoothing parameter €, introduced to the distance weight in equation (2) on the extinction map. The respective
€ value is noted in the top right corner of each plot. Note that all plots share the colour gradient from Fig. 6. The adapted extinction law is described in De

Marchi et al. (2016).

Fig. 3 (left) shows the selected UMS extinction probes. This
selection is based on the CMD region occupied by these stars, as
indicated by the red polygon, entailing 4605 stars distributed across
the entire observed FoV, and identified in the V band. The selected
sample of UMS stars exhibits higher concentrations in the regions
corresponding to the clusters R136, Hodge 301, and NGC 2060, as
demonstrated by their map also shown in Fig. 3 (right). We assign
extinction values to each non-UMS star as the distance-weighted
average of the extinctions A(‘}”JMS) of its N nearest UMS neighbours
according to

N
Ay =Y w, AgM €)
n=I1
with weights
1 1
Cdr+e N o1

n=1 42 +e2

(@)

Wi

where d; denotes the Euclidean distance in pixels to the ith nearest
UMS neighbour and € is a smoothing parameter (also given in
pixels), which we introduce in order to reduce the dominance of
close proximity to a single UMS star in the averaging process. The
corresponding weighted standard deviation of the assigned average
extinction value is given by

N

D wiAR™ — A2, 3

i=l

SAy =

This distance weighted Ay calculation eliminates the possibility of
underestimation due to low-extinction foreground stars that may
be projected by chance in the region of the PMS candidates. Nev-
ertheless such stars represent an insignificant fraction of our stel-
lar sample. The extinction measurements of the UMS probes are
summarized in Fig. 4, where it is shown that these stars have a
mean extinction of Ay, e, = 1.98 mag with a standard deviation of
o4, = 0.55mag.

For the assignment of extinction values we use the N = 20 nearest
UMS neighbours. Fig. 5 shows a series of Ay maps, as constructed
for various values of €. These maps are generated by colour-coding
each data point in the spatial distribution plot according to its as-
signed (or measured for UMS stars) extinction value. It should be
noted that the assigned extinction values in the regions without V-
band coverage are biased towards the UMS stars at their borders
and, thus, might not necessarily represent the true extinction within
these regions. They are shown here only for visualization, and they

are not included in our further analysis. For the final estimation of
the extinction corrections, and the construction of the final Ay of
the region, we choose a smoothing parameter of € = 500, based
on the natural appearance of the constructed extinction map, i.e. a
map which is not oversmoothed and still provides spatially detailed
Ay measurements (Fig. 6). It should be noted that the assigned Ay
measurements of the majority of the stars are found to be insensitive
to the chosen value for the smoothing factor, with the relative dif-
ferences not exceeding 5—10 per cent for € between 0 and 2000 px
(in comparison with € = 500 px).

The extinction-corrected optical CMD of the Tarantula Nebula
is shown in Fig. 7. In order to provide a more realistic appearance
of this CMD, we applied artificial noise to the corrected positions
of our UMS probes, based on small random dislocations along the
reddening vector by amounts sampled from a Gaussian distribution
with zero mean and the standard deviation of the colour indexes
of all stars within the same magnitude range as the selected UMS
probes. Our extinction correction demonstrates some over- or un-
derestimation for the RC stars, as the remaining elongation of the
RC shown in Fig. 7 indicates. However, this does not affect our clas-
sification, because the CMD positions of these stars do not overlap
with those typically occupied by our target PMS stars.

4 BUILDING THE TRAINING SET

The machine-learning algorithms applied in this study are based
on supervised learning techniques, i.e. they infer a function from
labelled training data, which consist of a set of training examples
(see Appendix A). These techniques require the construction of a
labelled training data set in order to ‘teach’ the algorithms, in our
case, how to identify PMS stars based on their positions in the
CMD. Also, our study aims at the simple distinction between two
classes of objects, namely PMS and non-PMS stars, i.e. we address
a binary classification problem. Considering these, we build our
training set so that each star has a label, which indicates whether
it is a PMS example or not. We train our algorithms directly on
the observational data of the HTTP data set, rather than on syn-
thetic populations. The advantage of this approach is that modelled
populations of stars would assume a specific behaviour of observ-
able characteristics, such as binarity, circumstellar extinction, and
variability, which affect the theoretical CMD positions of observed
PMS stars. On the other hand, using real data allows us to account
for these characteristics intrinsically, without modelling, and thus
without possibly biasing their expected behaviour. The use of real
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Figure 6. Extinction map of the Tarantula Nebula, where each data point is colour-coded according to its assigned extinction value, using a smoothing
parameter of € = 500. The black outline indicates the area that is covered both in V and R, i.e. the area we considered for our further analysis.

data also allows for the unbiased assessment of various observa-
tional limitations, such as crowding and photometric uncertainties,
that affect the identification of PMS stars.

4.1 Selection of the training stellar sample

Due to the aforementioned physical and observational constraints
(see also Section 1), the identification of PMS stars in large data
sets of multiple populations is not trivial, even if we take extinction
into account. It is therefore important to train our identification algo-
rithms on the most clear stellar training set possible, i.e. on a selected
subset of the HTTP catalogue where PMS stars are clearly defined
in the CMD. In this study we focus on low-mass PMS stellar popu-
lations (with masses up to few M, ), which are easily confused with
low-mass MS (LMS) stars. Our training subset should, thus, com-
prise large numbers of PMS stars, as well as of LMS stars, and other
evolved populations, which are easily distinguishable. Within large
star-forming complexes, regions that comprise such stellar samples
are those where high concentrations of easily identifiable young
stars exist, i.e. young star clusters. We select, thus, our training sub-
sample from the most densely populated areas of the nebula, i.e. the
starburst-cluster R136 and its surroundings. Specifically, we define
a squared area centred on R136 (RAjy000 = 05" 38™ 4233, DECjp000
=-69° 06’ 03”3) with a side length of 8 arcmin (~ 120 pc). We con-
struct the surface density map of the region by applying a kernel
density estimation with a two-dimensional normal kernel.

Fig. 8 shows the surface density map of the region with the sta-
tistically significant isopleths (contour lines) in steps of o, the
standard deviation of the map, overlaid. In our analysis we exclude
grid points that fall outside the HTTP coverage (top left corner
of the map), in order to avoid biases due to artificial zero mea-
surements. As expected, the highest density peak corresponds to

MNRAS 479, 2389-2414 (2018)

the starburst-cluster R136, but we also identify the more evolved
cluster Hodge 301 (Grebel & Chu 2000; Cignoni et al. 2016), north-
west of R136, at density levels higher than 1o, above the average
map density. A series of CMDs of stars in the region of NGC 2070
for three selected significance levels, namely lo,, 30,, and 70,
is shown in Fig. 9. This figure demonstrates that apart from the
young UMS stars occupying the bright part of the CMDs, the high-
density cluster region hosts indeed a prominent low-brightness PMS
population, which is located at the red part of the CMD and well
distinguishable from the LMS blue part of the CMD. Moving to
higher densities within the cluster we find continuously less LMS
stars, while the highest peak, corresponding to R136, contains al-
most exclusively PMS stars. The 4 Myr isochrone from the PARSEC
evolutionary models (Bressan et al. 2012) is also shown in the figure
for guidance of where young stellar populations are expected in the
CMD.

A comparison of the CMD in Fig. 9 with that shown in Fig. 7
indicates that while it is relatively straightforward to identify the
low-mass PMS stars inside the giant Hu region NGC 2070, the
identification of the same type of stars across the whole HTTP CMD
requires a statistical modelling of their positions. Our classification
focuses on the performance of this modelling across the whole
extent of the HTTP survey. In order to include a fair number of
non-PMS examples, i.e. LMS stars, in our training set we select the
HTTP subset included within the isopleth of 107, above background
centred on R136, as shown in Fig. 9. The two distinct populations
in the low-brightness CMD regime, i.e. LMS and PMS stars, are
clearly demonstrated in the corresponding Hess diagram, shown in
Fig. 10. For building the training data set we restrict the stars to
be considered to the low-brightness regime, excluding most of the
UMS stars, and we remove some of the very blue and red objects,
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Figure 7. The extinction-corrected CMD of the HTTP data with additional
artificial noise imposed on the corrected positions of the UMS stars in order
to generate a more organic CMD. The blue line corresponds to the 4 Myr
PARSEC isochrone, whose upper part is used as an approximation for the
ZAMS to measure the extinction of the UMS stars.
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Figure 8. Surface density plot of NGC 2070 with overlaid density contours
covering the range from —20, to 70, in steps of o ,. The black square marks
the centre of R136.

as we suspect them to have poor photometry. The limits of the
CMD region covered by this stellar sample are shown in Fig. 11.
Considering that R136 is a young cluster, the LMS stars in the
region are most probably field contaminants, not belonging to the
cluster. Under these circumstances our selected subset is optimal in
including good training examples of low-mass PMS and non-PMS
stars. In the following section, in order to characterize each star
as a positive or negative PMS example, we distinguish these two
observed populations in a quantitative way.

4.2 Distinguishing PMS from LMS stars

After selecting the low-brightness stellar sample to be used for the
training of our algorithms, we characterize its members as PMS or
non-PMS (i.e. LMS) stars, according to their observed extinction-
corrected CMD positions. A method based on the use of stellar
number distributions along cross-sections of the faint CMD was pro-
posed by Gouliermis et al. (2012) for separating the LMS from the
PMS populations on the CMD. The distributions of well-separated
populations show two distinct peaks, the width and the separation of
which are found to depend on stellar brightness. We implement this
method with one modification: We further introduce a reference line
in the CMD, which has a slope roughly equal to the gap between
the LMS and PMS, as observed in the Hess diagram of Fig. 10, and
we calculate the distance of each star in the selected sample from
this reference line.

With this modification we analyse the stellar distance distribu-
tions from the reference line, while avoiding to bin the stars, in
contrast to Gouliermis et al. (2012), who analysed the binned stellar
number distributions. We use a bimodal Gaussian mixture model to
fit the calculated distances of the stars from the reference line and
we quantify the fit via maximum-likelihood with the application of
the expectation maximization (EM) algorithm (see Appendix B),
an iterative method to derive maximum a posteriori estimates of
parameters in statistical models, where the model depends on la-
tent variables' (Dempster, Laird & Rubin 1977). We choose this
method over a simple non-linear least-squares regression, because
of its high reliability in converging to a successful fit even in cases
where the regression could not.

The bimodal Gaussian distribution used to model the distances
of stars from the LMS—PMS separating line has the form

2
G(x) = Z A DX s O, 4
m=1

where «,, denotes the mixing proportions, with the sum of all pro-
portions (in this case two) equal to unity, and u,, and o, are the
mean and the standard deviation, respectively, of each of the indi-
vidual components. Using the model fit by the EM algorithm, one
can estimate the posterior probability p;,, that a star i belongs to one
of the components m of the Gaussian mixture model as

Ay (D(X,'; M s Um)
Sh @i i, %)

With this measure we can distinguish the PMS from the LMS stars
in our selected sample, on an individual-star basis by assigning a
probability of PMS membership to each star. We can thus set a
probability threshold above which all stars are considered as the
best PMS examples. In Fig. 12 we show two examples of our test

Pim = (&)

Unobserved, hidden variables, usually inferred from observables, like e.g.
categories.
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Figure 9. Optical extinction-corrected CMDs for the regions within NGC 2070 with surface density higher than 1o, (left), 30, (middle), and 7o, (right)
above the local background density (see Fig. 8 for the corresponding areas). The blue line marks the 4 Myr PARSEC isochrone.

1 2 4 8 15 30 60
Counts IENET N
104
15+
= "
o]
Lo
[Yo]
w
20 1
25 1

N =

-2 -1 0 1
F555W-F775W

Figure 10. Optical extinction-corrected Hess diagram of the stars in the
region of NGC 2070 included within the 1o, density significance level (see
map in Fig. 8). The diagram uses 75 bins in both coordinate directions with
limits [— 2, 2] in F555W—F775W and [25,10] in F555W.

MNRAS 479, 2389-2414 (2018)

runs of the EM method for different reference lines. The histograms
on the right-hand panel are only shown to provide a visualization
of the result, since the fitting process itself requires no binning of
the distance measure. The posterior probability p;, of each star
being a PMS star is calculated from the Gaussian mixture model
component with the larger mean p,,, i.e. the PMS component of the
model.

The examples of Fig. 12 show that the EM method is quite suc-
cessful in distinguishing the two separate populations within the
low-brightness regime of the CMD for a given reference line. Our
tests also demonstrated that the outcome of the EM method is in-
dependent of the axis intercept of the reference line. However, as
shown in the plots of Fig. 12 the result of the EM method does
depend on the choice of the slope. It is thus important to accurately
define the reference gap between the LMS and PMS populations
in the observed CMD, in order to avoid any potential biases in the
application of the EM method. Since representing this gap with a
single straight line would provide an unrealistic boundary between
LMS and PMS stars, for the application of the EM algorithm we
do not consider a single LMS-PMS reference line (as in the exam-
ples of Fig. 12). Instead, we define a threshold curve using a series
of PARSEC isochrones, ranging from 0.5 to 10 Myr, which ap-
proximates realistically the observed LMS-PMS gap. While there
may be somewhat older PMS stars, we select 10 Myr as the oldest
considered age based on the fact that this limit corresponds to the
majority of the star formation history of the region, as specified
by previous studies (Hunter et al. 1995; Cignoni et al. 2015). The
corresponding isochrone model also nicely traces the observed gap
in the low-brightness regime (see orange line in Fig. 13).

We consider the faint part of the 10 Myr isochrone up to one
stage before its MS turn-on as the best representative line of the
LMS-PMS gap, and we extend this line to brighter magnitudes
by connecting the points corresponding to the same stage, i.e. to
the red of the local minimum before the turn-on, for all the other
isochrones. With this process we construct a threshold curve that
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Figure 11. Optical extinction-corrected CMD of the data set used to create
the training set. The blue dotted line indicates the data that are used for the
EM fitting. The red crosses mark the data points that are excluded from the
fitting, because they fall into the RC area.

does not overlap with the UMS, while adequately tracing the gap
between the LMS and PMS populations, which we want to quantify.
This is demonstrated in Fig. 13, where each isochrone model is
plotted with a different colour, and the thick orange line indicates
the constructed threshold curve between PMS and LMS.

For the application of the EM algorithm, instead of using a sin-
gle LMS-PMS reference line, we use the constructed LMS-PMS
threshold curve to generate a series of reference lines by fitting a
line to sequential sets of four points of the curve. We allow for some
overlap between the point sets, with three of the brightest points in
each set coinciding with the three faintest in the next. With this pro-
cess we produce 46 different lines with different parameter sets of
slopes and intercepts. The determination of the PMS membership
probability for the stars in the selected sample is then made with the
application of the following steps: (1) We calculate the distances of
the stars from each of the 46 reference lines, (2) we fit the corre-
sponding bimodal Gaussian distribution, (3) we estimate from each
model the PMS component membership posterior probability for
each star, and (4) we average the results from all Gaussian mix-
ture models for each star. Our selection excludes all stars brighter
than mpsss = 17.75 mag and the noisy observations to the right of
the PMS and left of the LMS population, outside the CMD region
limits shown in Fig. 11. In our treatment we also do not consider
the stars marked with red crosses in this figure as these fall into the
RC part of the CMD, and they are likely evolved stars. With the
methodology described above we avoid contamination by UMS or
other more evolved stars and objects with poor photometry during
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Figure 12. Left: The optical CMD of our selected training stellar sample
with the reference line (separating the observed LMS and PMS parts of
the CMD), drawn with a dark red line. The blue box indicates the CMD
region occupied by the selected sample. The points within the blue box are
colour-coded according to their posterior probability of belonging to the
right component of the mixture model displayed in the right-hand panel.
Right: Histogram of the stellar (perpendicular) distances from the reference
line with the bimodal Gaussian components of the fit solution overlaid.
The panels show the resulting distributions of distances from the reference
line for lines with the same intercepts but different slopes. While the outcome
of the EM method is found to be independent of the actual position of the
reference line, as demonstrated in these plots, it is very sensitive to its slope.
It is thus important to identify a reference line the slope of which fits at the
best possible degree that of the observed gap between LMS and PMS stars
(see Section 4.2).

the fitting process. The fit of the Gaussian distribution is repeated
100 times for each parameter set and the resulting PMS component
membership probabilities are averaged to reduce the influence of
the random initial model parameter guess in the EM algorithm.
The outcome of the application of the EM method is visualized
in the CMD of Fig. 14, where each considered star is coloured
according to its estimated PMS membership probability (pe,). The
threshold curve used for the application of the EM algorithm and the
curve corresponding to the limit of pey, = 0.7 are also shown in the
figure (with orange continuous and red dashed lines, respectively).
The comparison of these lines indicates that a minimum of PMS
membership probability of about 70 per cent provides a reasonable
separation between PMS and LMS stars in the training sample.
We, thus, tested the construction of our training data set by using
various probability thresholds, starting at 0.7 up to 0.9. We assigned
as PMS stars those with pe,, larger than the chosen threshold, while
the remaining stars were characterized as non-PMS. Our subsequent
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Figure 13. Left: Optical extinction-corrected CMD of our selected training
stellar sample with an overlay of the PARSEC isochrones with ages between
0.5 and 10 Myr (coloured according to their age) used to approximate the
LMS-PMS gap. The thick orange line marks our extrapolated threshold
curve between the PMS and LMS.

investigation of the performance of the classification algorithms in
dependence of the considered p.,, thresholds showed that the best
PMS candidates in the training set are all stars with pey, > 0.85 (see
Section 5).

4.3 The final training data set

With the implementation of the EM method as described above
we established a reasonable data set of low-brightness true PMS
and LMS stars to be used for training the classification algorithms.
However, while the CMD area covered by these stars in the region of
NGC 2070 shows a clear distinction between these two stellar types,
the bright part of this area in the complete HTTP CMD includes
other types of evolved stars, such as RC and faint giant/subgiant
stars. While the contamination of the PMS data set by these stellar
types is not significant, they must be considered in our final training
data set. We, thus, complete the compilation of the training set
by ‘artificially’ adding examples of these evolved stars as negative
(non-PMS) examples, so that the classification algorithms can treat
them as such. For the RC stars we include the previously excluded
examples, marked with red crosses in Fig. 11, and we assign a
PMS membership probability of pe, = 0 to them. As we discuss
in Section 4.1 we constrained our EM analysis for distinguishing
PMS from LMS stars in a well-defined region in the CMD, where
prominent members of both populations are located (blue dashed
polygon in Fig. 11), excluding some sources at the extreme blue
and red faint parts of the diagram. We now include these faint
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Figure 14. Optical extinction-corrected CMD of the stars in the region of
NGC 2070 included within the 10, density significance level (see map in
Fig. 8). Stars that were considered during the application of the EM method
are coloured according to their estimated PMS membership probability pe.
The orange line marks the previously established approximation curve of the
LMS-PMS gap (see Fig. 13) for reference. The red dotted curve indicates a
70 per cent probability threshold of pep.

uncertain sources in the final training set by assigning to them also
zero PMS probability. The reason for this inclusion is to eliminate
the danger of misclassifying objects with uncertain measurements
as PMS stars.

4.3.1 Adding evolved field stars in the training set

Apart from the stellar sources discussed in the previous paragraph,
an important contaminant of a PMS data set is the old stellar pop-
ulations of the general LMC field, occupying the giant/subgiant
branches of the CMD. The fainter giant and subgiant stars of the
LMC field can roughly coincide, depending on age and reddening,
with the bright part of the PMS population. In the case of variable
extinction by gas and dust, giant and subgiant field stars are dis-
tributed along the reddening vector and can overlap with the CMD
positions of PMS members of young clusters on the same line of
sight. In order to use a training data set that accounts also for these
contaminants we identify typical examples of faint, field giant and
subgiant stars in regions of the observed HTTP FoV, which mostly
cover the general LMC field. We select two such regions to ac-
count for both high- and low extinction of the field stars by the
nebula.

In selecting these regions we were aided by a preliminary unre-
fined classification of PMS stars in the HTTP data set by employing
a support vector machine (SVM) algorithm trained on the V- and
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Figure 15. Optical CMD of the HTTP data in grey with an overlay of the CMD of our field star selections, where the low-extinction region is shown on the
left and the high-extinction region on the right. The solid red and blue polygons indicate our selections for the low and high extinction, faint giant/subgiant

candidates, respectively.

R-equivalent magnitudes of the stars in the preliminary training
set constructed in the previous section. Details on the employment
of this method are given in the final application of our classifi-
cation (Section 5) and in Appendix A3. Here, it suffices to note
that we applied the SVM method via a 10-fold cross-validation,
repeated five times and labelling as PMS stars (label of 1) those
with PMS membership probability, derived with the EM method,
higher than the lowest reasonable limit of pe, = 0.7. We per-
formed the classification of the HTTP stars with measurements
in these two filters and we retrieved a tentative set of PMS can-
didates, i.e. stars with a classification probability >0.5, across the
whole observed FoV. We constructed the surface density map of
this stellar sample in order to identify the regions across the Taran-
tula Nebula that are mostly devoid of candidate PMS populations,
i.e. the regions where the cleanest samples of field stars can be

detected.

We combined the surface density map of the PMS candidates
with the extinction map of Fig. 6 to identify the field regions within
the observed area with both the lowest and highest extinction. We,
thus, considered the field contaminants in the whole range of red-
dening conditions across the Tarantula Nebula. It is interesting to
note that our selected low-extinction field region roughly coincides
with that defined by Cignoni et al. (2015) as reference field in recov-
ering the star formation history of NGC 2070. The identified field
stellar populations are depicted in the CMD of Fig. 15. We select
from this population the most prominent, faint giant/subgiant stellar
candidates as enclosed by the red and blue polygons (one from the
high reddening and one from the low-reddening region), and add a
bit more than 900 objects to our training set as non-PMS examples,
i.e. stars with zero PMS membership probability.

With the process described in this and previous sections, we have
constructed a training data set of 10443 stars, containing the best
possible examples of (1) evolved field stars, both LMS and potential

giant/subgiant stars, (2) RC stars, (3) non-specified stars with poor
photometry, and (4) young low-mass PMS stars, which we aim at
identifying across the whole FoV. Fig. 16 shows the part of the
CMD on which our training will take place, with an overview of
the positions of these populations, coloured according to their pepy
probability. As shown in this CMD, our classification is limited to
the faint part of the CMD where the PMS stars reside, and therefore
we do not include examples of the UMS stars, as their positions
should not overlap with those of the PMS stars.

The available data in the training data set in each of the HST
filters is summarized in the top part of Table 2. Apart from V- and
R-equivalent wavebands, our training set includes substantial data
in J- and H-equivalent wavebands (although with a smaller FoV),
making the training of our algorithms on these variables also fea-
sible. The remaining three (UV-, U-, and H,-equivalent) filters are
less helpful for the application of a machine-learning classification
due to their significantly smaller coverage, drastically reducing the
amount of data to predict on (see Table 1). As a consequence, we
limit our tests to these four filters. Also, before feeding the learning
process with the training examples, we need to define this limiting
PMS membership probability threshold, pp,, to be considered for
separating the positive (PMS) instances from the negative (non-
PMS) instances in the training data set. The primary criterion for
determining this threshold is the inclusion of the purest possible
sample of PMS candidates, reducing, thus, the number of possible
false positive examples. As we discuss later, we determined the best
threshold choice to be 0.85 based on two additional factors. (1) The
need for balance between the numbers of positive and negative ex-
amples in the training data set and (2) the classification performance
of the algorithms.

Concerning the balance between positive—negative examples, the
lowest reasonable threshold of p., = 0.7 provides about 38 per cent
of the training set as positive instances. At the even higher threshold
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Figure 16. Optical CMD of the final training data set selection. The data
points are colour-coded according to the PMS membership probability de-
fined as described in the text (see Section 4).

of pem = 0.9 we retain roughly 19 per cent of the data set in positive
examples, which still provides a useful amount of observations.
Using an even higher probability threshold would not be practical,
because we would limit the training sample to a number of positive
instances that would be unrealistically low, and that would introduce
a strong imbalance between positive and negative examples, which
is not ideal for machine learning. Concerning the performance of the
classification algorithms, our experiments (Section 5) showed that
we achieve the best trade-off between algorithm performance and
training set balance by constraining the sample of PMS members in
the training set to those with pe, > 0.85, corresponding to roughly
27 per cent of the total training data set.

5 CLASSIFICATION OF
PRE-MAIN-SEQUENCE STARS

After constructing the training data set to be used for the learning
process, we performed various experiments in order to identify
the most efficient machine-learning algorithm for the classification
of PMS stars in the Tarantula Nebula. Since our training set was
constructed from the region of NGC 2070, our classification will
identify the stellar siblings of the PMS members of this region, i.e.
stars with similar characteristics and star formation history, spread
across the whole nebula. In our experiments we tested three popular
classification algorithms: Decision trees, random forests (RF), and
SVM. Descriptions of the concepts behind these algorithms and
references to the related literature are provided in Appendix A.
During our early experimentation we also considered the application
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of the Naive Bayes classifier, a simple probabilistic classifier based
on Bayes’ theorem, which assumes (naively) a strong independence
between the features (see e.g. Russell, Norvig & Davis 2016).

The success of supervised machine-learning modelling is based
on the availability of complete sets of observations with as many
variables to model on as possible. As a consequence, in this study
a limiting factor in our classification is the amount of available
data, the algorithms can be trained on. This translates to both the
number of available stars per filter and the number of stars ob-
served in as many filters as possible, i.e. the size of the feature
space (see Appendix A). The second aspect is particularly impor-
tant, because most of the classification algorithms cannot perform a
prediction on incomplete feature vectors, i.e. on missing data. With
this in mind we optimized our classification for data sets with the
best waveband and spatial coverage, i.e. for stars found in the HST
wavebands equivalent to standard V, R, J, and H filters. Among the
tested methods only decision trees can compensate for incomplete
feature vectors using the so-called surrogate splits (see Appendix
Al). It is, thus, the only algorithm that can predict on all available
HTTP filters. For our tests with other algorithms, as mentioned
above, we do not take into account measurements in the UV-, U-,
and H,-equivalent filters, due to the significantly large amount of
non-detections in these wavebands (as shown in Table 1). Our exper-
iments with the use of photometric flags as categorical classification
variables (to compensate for non-detections) also performed very
poorly.

The performance of the algorithms was measured using three
metrics, the accuracy, the balanced accuracy, both estimated from
the confusion matrix, and the area under the receiver operating
characteristic (ROC) curve, or in short area under the curve (AUC),
all described in Appendix A4. These metrics were calculated on the
basis of a train/test split, i.e. by splitting the original training data
set in two subsets, one to train the algorithm (‘Train’ subset), and
the other to test its performance (“Test’ subset). This method is very
efficient when there are a sufficiently large number of records in the
training data set, as in our case. Typically, a 70/30 split, i.e. ~70
per cent of the training data set reserved for the Train subset and the
rest for the Test, is the most efficient split for training the algorithm
in order to avoid overfitting, i.e. constructing a general model that
can fit a variety of data, and not exclusively those in the training
data set. It is worth noting that the measurements of the predictive
power of the classification model must be made on a held-out Test
set, i.e. the records of the Test set must not be influenced in any way
by the instances in the Train set. Therefore, splitting the Train/Test
sets is an important aspect of the process.

For the training of the algorithms on the Train subset, we em-
ployed a 10-fold cross-validation (see Appendix A4.1) in all our ex-
periments. Due to differences in the available data that depend on the
availability of measurements in various wavebands, the Train/Test
subsets may vary from one experiment to the other. For the sake
of direct comparability of the presented results the SVM and RF
algorithms are trained and tested on exactly the same subsets for
any given experiment. This is of course not a necessity, as the al-
gorithms’ performance varies insignificantly for different partitions
of the data.

The implementation of the algorithms was in the programming
language R, an environment for statistical computing and graph-
ics (R Core Team 2013). From early on the Naive Bayes classifier
shows significantly low performance in our experiments, achiev-
ing accuracies of at most ~60 per cent, providing thus classification
models comparable to random guessing. As a consequence, we do
not further discuss in our analysis this algorithm, and we focus on
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Table 2. Overview of our machine-learning experiments for the identification of PMS stars in the Tarantula Nebula. The table lists (1) the investigated
combinations of variables (features) for training and prediction, (2) the available training data for each individual feature, (3) the applied algorithms, (4) the
available data in both the training set and the HTTP survey for each features set, (5) the performance of each algorithm on a held-out test set (the value
in parenthesis gives the performance on the training set during cross-validation for comparison), and (6) the amount of resulting PMS candidates, i.e. stars
identified with a predicted probability of being PMS of ppms > 0.5. Note that the number of available records is given only for the RF and SVM algorithms,
because the decision tree algorithm can predict and train on data sets with incomplete attributes, i.e. on all records in the HTTP survey. The performance on
the test set is found to be comparable to that on the training set, which demonstrates that none of our models exhibit a case of overfitting.

Feature Available training data Features set no.
(out of 10 443 stars) 1 2 3 4 5
F275W (UV) 2210 (21.2 %) v
F336W (U) 4880 (46.7 %) v
F555W (V) 10 443 (100 %) v v v v v
oy 10 443 (100 %) v
F658N (Hy) 4576 (43.8 %) v
F775W (R) 10 443 (100 %) v v v v v
oRr 10 443 (100 %) v
FI110W (J) 9600 (91.9 %) v v
F160W (H) 9597 (91.9 %) v v
Extinction A,, 10 443 (100 %) v
Applied algorithms:
Decision tree (DTRee) v v
Random forest (RF) v v v v
Support vector machine (SVM) v v v v
Available data:
Training total 10 443 10 443 10 443 10 443 9283
Reduced training 7310 7310 7310 7310 6498
Held-out test 3133 3133 3133 3133 2785
Prediction 822204 403 018 403 018 400 229 287 434

Performance on test (training) set (pem > 0.85):

Accuracy (in %):

DTree 86.11 (89.23) 87.80 (89.67) - - -

RF - 94.16 (94.36) 95.60 (95.85) 94.54 (94.77) 92.78 (93.00)

SVM - 95.18 (95.36) 97.29 (97.47) 94.80 (94.26) 94.82 (94.64)
Balanced accuracy (in %):

DTree 82.60 (87.15) 85.83(87.92) - - -

RF - 92.06 (93.09) 94.24 (94.67) 92.71 (93.15) 90.88 (91.16)

SVM - 93.39 (94.53) 96.61 (95.89) 93.06 (92.63) 93.05 (93.90)
ROC AUC:

DTree 0.845 (0.899) 0.852 (0.885) - - -

RF - 0.983 (0.984) 0.990 (0.990) 0.986 (0.986) 0.977 (0.978)

SVM - 0.988 (0.989) 0.994 (0.994) 0.985 (0.983) 0.989 (0.986)
Number of PMS candidates
DTree 74 375 73 006 - - -
RF - 21306 20996 20923 15 898
SVM - 21550 19 487 21554 16 655

the three remaining methods that proved to provide more accurate
results. RF, operating by constructing a multitude of decision trees,
correct for decision trees’ occasional overfitting to the Train data
set (Hastie, Tibshirani & Friedman 2009). The RF algorithm is thus
a more efficient choice for our classification. Nevertheless, decision
trees can handle missing values in the photometric variables of stars
without imputation (by using surrogate splits). We apply, thus, a
preliminary classification with decision trees only on the complete
set of photometric variables (set no. 1), which includes a large num-
ber of missing values, in order to understand how these variables
may influence our classification. Table 2 gives a detailed summary
of our experiments, listing the sets of different variables (features)
combinations used for training and classifying the HTTP stars, the
algorithms applied, the available instances in both the training and

the whole HTTP data sets in dependence of the variables choice, the
performance of the algorithms on the held-out Test data set in terms
of the accuracy, balanced accuracy and the AUC, and the amount
of the identified PMS candidates.?

As we discuss later in this section, for the final census of the PMS
stars across the Tarantula Nebula we operate on the features set no.
3 (as described in Table 2), because it provides the largest stellar
coverage across the whole extent of the observed field, thus the
richest stellar sample, and the highest performance scores across
the tested methods. This sample comprises observations in three

2In the following sections we only state the accuracy and AUC for simplicity.
We refer the reader to Table 2 for the corresponding balanced accuracy.
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variables (V-, R-equivalent magnitudes and extinction), providing
the largest amount of HTTP data to classify.

Features set no. 1 includes all photometric measurements, while
set no. 2 is equivalent to set no. 3, but without the inclusion of
extinction. It is used in order to validate the influence of extinction
to the accuracy of our models. Including the infrared measurements
unfortunately limits not only the area that we can investigate (Fig. 1),
but also drastically reduces the amount of data that can be classified,
due to the lower number of stars observed in all four wavebands.® We
nevertheless investigate in features set no. 5 their influence on the
performance of the algorithms. (Note that extinction is not included
in this features set, as it is intended to highlight the influence of the
inclusion of the infrared bands alone.) Features set no. 4 is intended
to give insights on whether the photometric errors in the respective
filters could prove to be helpful in the classification approach, or
not. Therefore, extinction was not included in this features set.

5.1 Classification with decision trees

Decision or classification trees use flowchart-like structures that
break the process of a complex decision into a series of simpler
decisions, made upon the input features of the available data (see
Appendix Al). Beginning at the root node data flows through if-
else decision nodes that split the data according to its features. The
branches indicate the potential choices and the leaf nodes the final
decisions. Given that the decision tree algorithm can compensate
for incomplete feature vectors, our first experiments were made
with the application of this algorithm in order to use the complete
photometric variables space of the HTTP data set, which includes
a large number of missing values for stars not identified in spe-
cific wavebands. We trained decision trees using various maximum
tree depths up to 30, at most 5 surrogate splits per node and pre-
pruning with complexity degrees of the order of 0.01, using the
Gini Index as measure of node impurity (see Appendix Al for ex-
planations on these parameters). In order to compare with the other
algorithms the results presented for this method are also based on
PMS stars with pe, > 0.85. The final decision tree, with an accu-
racy of 86.11 percent and an AUC of 0.845 on the held-out test
set, did not achieve the expected performance, but it appeared quite
promising in providing valuable insight on the importance of certain
filters.

In this tree the two most important variables for primary splits
appear to be the measurements in the F555W and F160W filters
with minor contributions from those in F775W. Measurements in
all remaining filters are only considered for surrogate splits. Com-
paring with Table 2 this is not surprising, since our training data
set contains significantly less records in the F275W, F336W, and
F658N filters, and therefore these variables are not considered for
primary splits. The fact that the filters pair (F555W, F160W) was
chosen over the (F775W, F110W) pair may indicate that mea-
sures in the V- and H-equivalent bands provide the intrinsically
best combination of variables. This can be explained by the fact
that the (F555W, F160W) filters pair provides a rich stellar sample
across a dynamic range in colours, which is wider than those of
any other combination of these four filters. The wide colour spread
of the data allows a clearer distinction between PMS and LMS
stars on the CMD. In any case these results provide strong indi-
cations that near-infrared measurements may be very important to

3We remind that while decisions trees can deal with missing measurements,
the RF and SVM algorithms cannot.
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the identification of PMS stars with machine-learning classification
techniques.

Considering that our primary data set is that with the best spatial
coverage across the observed FoV, provided by stars observed in at
least one of the F555W and F775W filters, we trained a decision
tree also on this stellar sample. This tree performed decently on
the held-out test set, with an accuracy of 87.8 percent and AUC
of 0.852, comparable to the tree model based on the whole stellar
sample, and still below our expectations for successful classifica-
tion. Moreover, we identified few issues related to the decision tree
classification. Specifically, there was a large number of misclas-
sifications of LMS and RC stars after applying the algorithm on
the entirety of the HTTP data set, and the outcome of the classi-
fication itself appeared quite unrealistic, with the identified PMS
candidates being aligned in prominent ‘zigzag’ patterns across the
CMD. We explain this phenomenon as the result of the binary
splits the decision tree algorithm performs in order to make a
decision.

Another issue with the decision trees that were trained on the
whole sample is that since the constructed trees use the observa-
tions in the F555W filter as one of the primary prediction parameters,
they get heavily confused in the regions, where there is no coverage
in this filter (see e.g. Fig. 1), by predicting an unrealistically large
amount of PMS stars in these regions. This shows that the surrogate
split method to compensate for incomplete feature vectors provides
limited support to our classification goal. Based on these experi-
ments, and due to the issues mentioned above, we assess that while
the decision tree algorithm provides evidence for the importance of
infrared measurements, in general it is not suited for the purpose of
this study. As a consequence we did not proceed with any further
tests of the decision tree, beyond these preliminary experiments.
Our further tests were focused on the more sophisticated RF and
SVM algorithms.

5.2 Classification with random forests

A number of classification trees can be combined into a collection
known as decision tree forest, or simply RF, which is one of the
most successful machine-learning classifiers. In contrast to a single
decision tree that is grown in size and complexity as it is trained
on the available data, the efficiency of the RF relies on the fact that
the algorithm is a collection of smaller simpler trees that together
reflect the data’s complexity (see Appendix A2 for a detailed de-
scription). We applied our machine-learning method on the reduced
training set in three steps: (1) We employed cross-validation to train
10 RF classification models, (2) we chose the best model based on
its AUC during cross-validation, and (3) we evaluated the perfor-
mance of the final model independently on the held-out test set.
Two basic arguments in the implementation of the RF algorithm
is the number of trees the ‘forest’ consists of, and the number of
variables to be sampled in each node. Due to the unavoidably low
number of available variables in each features set (Table 2), all of
them were used in the training process for each considered set. The
number of trees per forest, which should not be less than 200, was
tested for values between 500 and 10 000. However, it appears that
the algorithm’s performance is not very sensitive to the number of
trees, since all models provided AUC values with differences of the
order of 0.0001. Nevertheless, the best trade-off between perfor-
mance and computational demand was achieved with the models
for 500 trees, with that for features set no. 2 having an AUC of
0.9660.
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Figure 17. Optical CMDs of the HTTP stars, colour-coded according to their probability of being PMS stars, as predicted by the RF algorithm (left), and the
SVM algorithm (right), trained on their measurements in the F555W and F775W bands and their extinction A, .

We evaluated the influence of our selection for the EM-derived
PMS probability threshold (pem), introduced during the construc-
tion of our training data set, on the classification performance of
the RF algorithm by testing its performance in a range of limiting
values, varying from pey, > 0.7 t0 pep, > 0.9 for the prominent PMS
candidates in the training data set. On our primary features set (set
no. 3, i.e. F555W, F775W measurements and Ay), we found that
apart from an overall excellent performance (AUC > 0.984), there
is a trend of increasing performance with higher limiting threshold.
The best model was constructed for the highest considered thresh-
old (pem > 0.9), achieving an AUC of 0.991, with a difference of
only 0.007 larger than that for p., > 0.7. This indicates that the
performance of the RF algorithm appears to be also not sensitive to
the considered input sample of best PMS candidates. It should be
noted, though, that choosing a threshold of pe;, = 0.9 might already
be critical in terms of maintaining a good balance between positive
and negative examples in the training set, since this threshold ac-
counts for only ~ 19 per cent of positive examples in the data set.
Based on this, and in order to achieve a trade-off between correct
training of the algorithms and reasonable selection of the best pos-
itive examples in the training set, we applied a threshold of pe,, >
0.85 for the best PMS input sample.

With these settings the RF achieves an excellent accuracy and
AUC of 95.6 percent and 0.990 respectively for the primary fea-
tures set (set no. 3), providing the best performance of the RF
across all the feature combinations we have tested. In our imple-
mentation of RF, the predictions of the constructed models return,
apart from the class of each star (PMS, non-PMS) a probability
that this star is indeed a PMS star, p,s, determined from the pro-

portion of votes of the trees in the ensemble. Classifying the whole
available HTTP data on the features set no. 3 ( 403 018 stars, cf.
Table 2), the model predicts 20 996 stars, with probabilities p;; >
0.5. Fig. 17 (left) shows the optical CMD of the PMS candidates,
coloured according to their probabilities p,. This CMD demon-
strates that the RF drastically improves the zig-zag pattern of the
decision tree, albeit a smoothed such pattern can be still observed,
apparently the outcome of the underlying tree nature of the method.
The classification result further exhibits a mixture of PMS and non-
PMS classifications in the region where old, field MS turn-off and
subgiant stars could potentially overlap with turn-on stars, clearly
indicating that the algorithm distinguishes these two types of stars,
in contrast to the decision tree, which in our tests tended to classify
all stars in the region as PMS. The RF algorithm is also more suc-
cessful than the decision trees in avoiding classification of RC as
PMS stars, although there might still be a few misclassifications of
the faintest RC stars. Fig. 18 (left) depicts the spatial distribution of
the PMS candidates across the Tarantula Nebula, coloured accord-
ing to their probabilities p,r. This map demonstrates, in agreement
with our expectation, a large abundance of PMS stars in the regions
of NGC 2070 and NGC 2060, as well as in less prominent compact
stellar clusters and in features that appear almost filamentary. In this
map we also mark for guidance the positions of R136 (Sabbi et al.
2016), Hodge 301 (Glatt, Grebel & Koch 2010), and NGC 2060
(Cutri et al. 2012).

The classification of the RF models trained on the other three
considered features sets (sets no. 2, 4, and 5 in Table 2) appear to
be overall similar to that of set no. 3, both in terms of performance,
returning only 1.06 per cent to 2.82 per cent less accuracy, and in
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Figure 18. Spatial distribution of PMS candidates, i.e. all stars with p;gsym > 0.5, coloured according to their probability of being PMS stars, as predicted by
the RF algorithm (left), and the SVM algorithm (right), trained on their measurements in the F555W and F775W bands and their extinction A,. For guidance,
the positions of R136, Hodge 301, and NGC 2060 are indicated by a large circle, square, and triangle, respectively.

terms of spatial distribution of the identified PMS stars. The spatial
distribution of the RF model based on features set no. 5 was some-
what different than the rest, due to the drastically reduced amount
of data to be classified and the smaller available spatial coverage
of stars found in both optical and infrared bands. The PMS stellar
samples identified with the models of sets no. 2 to 4 are essentially
identical, with ~20 000 common identifications. Interestingly, the
RF model trained on set no. 3 identifies fewer candidate PMS stars
than those predicted by the model of set no. 2 in regions of lower
extinction. This indicates that the algorithm intrinsically assumes
a spatial correlation between PMS stars and larger extinction, pos-
sibly due to the region it was trained on. The marginal differences
between the models for the features sets no. 2 and 4 indicate that
the RF method was not sensitive to the enlargement of the fea-
ture space with the addition of the photometric errors, possibly
because the photometric errors add small decision power to the
models.

5.3 Classification with support vector machines

The third classification algorithm we experimented with is the SVM
(see Appendix A3 for a description). In our experiments the general
purpose Gaussian Radial Basis Kernel was chosen as the SVM
kernel:

K(x,x") = exp(—o|lx — x'||*). (©6)

The SVM model parameters, i.e. the cost C and the kernel width o,
are determined again via a 10-fold cross-validation, choosing the
best model according to its AUC. The influence of the chosen pep,
threshold for the best PMS candidates in the training sample was
evaluated in the same way as for the RE. As in the case of the RF,
we found that the performance of the SVM increases with a higher
threshold, but only slightly, indicating that the performance of the
modelling is not sensitive to this threshold. For the features set no.
3, the best AUC of 0.995 was achieved when training on PMS stars
with pem > 0.9, being only slightly larger though than the AUC
values derived with other p.y, thresholds, varying between 0.7 and
0.9. With the same reasoning as for the final RF classification we use
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the condition of pey, > 0.85 for PMS candidacy here, also allowing
a direct comparison between the results of the two methods. The
corresponding accuracy of this SVM model is exceptionally good,
equal to 97.29 per cent. The classification of the available HTTP
data returns 19 487 PMS candidates with outcome probabilities
Psvm = 0.5.

Fig. 17 (right) shows the optical CMD of the PMS candidates,
coloured according to their probabilities pgy,. This CMD demon-
strates that the SVM overall constructs a much smoother decision
boundary than the RF and avoids successfully the misclassification
of RC stars and objects with poor photometry as PMS stars. We also
found that the SVM performs equally well as the RF in distinguish-
ing possible turn-on and subgiant stars in their overlap CMD-region.
There is, however, a small isolated patch of SVM-classified PMS
candidates at (F555W ~ 19.5, FS55W—FT775W~ 0.5), which could
possibly be young stars still on the turn-on, but they fit mostly to
the UMS. This patch is likely the result of the SVM being prone
to overfit outliers, when there are very few records to train on,
as is the case for this CMD region in our training data set (e.g.
Fig. 16). Fig. 18 (right) shows the spatial distribution of the PMS
candidates, as classified by the SVM. This map displays the same
prominent spatial features as the PMS stars found with the RF,
i.e. high concentrations of stars in the regions of NGC 2070 and
NGC 2060, and indications of substructure in the space between the
clusters.

We found somewhat larger variations in the SVM than in the
RF across the various investigated features sets. The SVM model
constructed from the features set no. 2 results in a very smooth two-
dimensional decision boundary. As a consequence for this features
set the algorithm does not distinguish possible turn-on and subgiant
stars. Instead it classifies the entire CMD region up to the brightest
limit of our training data set as PMS stars, albeit at a low overall
probability. This certainly introduces a number of misclassifications
of older subgiant stars and explains the larger number of identified
PMS stars in comparison to the RF. Enlarging the features space
with the inclusion of photometric errors in the F555W and F775W
bands (i.e. features set no. 4) delivers a comparable performance
and number of PMS candidates in comparison with features sets
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no. 2. Similar to the RF the overall classification outcome does not
appear to be overly sensitive to the inclusion of photometric errors,
given the ~19 000 commonly identified PMS candidates, although
the decision boundaries in the CMD appear slightly broadened. In
an earlier test with a training set that did not account for highly ex-
tincted giant and subgiant stars, we found that the SVM trained on
this features set misclassified a large amount of very faint blue LMS
stars with larger photometric errors as PMS stars. Even though this
does not happen to the same degree (there are still a few such mis-
classifications of faint LMS stars) with the more refined training set,
described in this paper, we came to the conclusion, keeping those
earlier tests in mind, that including the photometric errors is poten-
tially compromising rather than helping the successful classification
of PMS stars.

The classification result for features set no. 5, i.e. including the
infrared measurements, is similar to the result for set no. 2, exhibit-
ing a relatively smooth decision boundary in the CMD. There is
a slight improvement, though, over features set no. 2 in the dis-
tinction between giant/subgiant and turn-on stars, indicating that
infrared bands hold information that may be very useful in distin-
guishing possible MS turn-off and giant/subgiant stars from PMS
turn-on stars, using machine-learning techniques. Nevertheless, we
choose features set no. 3 as the primary set to base our final clas-
sification on due to the far more complete spatial coverage of the
Tarantula Nebula over the other sets.

5.4 Comparison and combination

Both the RF and SVM methods scored an excellent performance on
the held-out test data set for our primary training features set (set
no. 3, F555W, F775W, Ay), with the SVM providing the best mod-
elling across all our experiments in terms of accuracy. Despite their
performance, we identified individual shortcomings in the classi-
fication results of both methods, as described in the previous two
sections. The RF method inherited from its decision trees the trend
to produce a zig-zag pattern (faint nevertheless) at the LMS-PMS
CMD border, while the SVM includes in its sample of best PMS
candidates the few members of an isolated patch at the faint part
of the UMS. In order to overcome these shortcomings and identify
the most accurate PMS stellar census across the entire Tarantula
Nebula in terms of eliminated misclassifications, we combine the
results of both methods.

A comparison between the results of the RF and the SVM meth-
ods is shown in Fig. 19, where each star in the optical CMD is
colour-coded according to the difference of the probabilities derived
from each method that this is indeed a PMS star, ép = psym — Pif-
An instance where the star is classified by the SVM as an excel-
lent PMS candidate but not identified at all by the RF would have
positive dp with a value close to 1, while in the opposite case this
difference would be close to —1. On the other hand, instances in
which both methods agree on the predicted probability of the stars
being PMS stars would have differences §p close to zero. These
are the records with the best prediction about their nature as PMS
stars. Both methods provided the same classification and probabil-
ities for the vast majority of the identified PMS stars, 17 728 stars
in total. The optical CMD with the stars colour-coded according
to their §p value is shown in Fig. 19. The red points in this CMD
indicate the stars identified by the RF as PMS candidates but not
by the SVM, while the blue points indicate stars classified by the
SVM but not by RF. Discrepancies of the two methods are located
around their respective decision boundaries between the PMS and
non-PMS classes, but they are very few in comparison to the to-
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Figure 19. Optical CMD of the HTTP data, where each star is coloured
according to the difference psym — pyr of the predicted probability to belong
to the PMS from SVM and RF, respectively.

tal classified PMS stars. This CMD indicates that the classification
of the two methods agrees well for the majority of the classified
objects.

In general the SVM classification appears to treat the faintest part
of the RC, falsely identified by the RF as PMS stars, better than the
RF, while the RF classifies the lower UMS patch of stars, classified
as PMS by the SVM, as negative instances. Each method, thus,
‘corrects’ for the shortcomings of the other. As a consequence, in
order to achieve the most robust solution for the PMS stellar content
of the Tarantula Nebula (in terms of producing the purest possible
sample) we combine the individual classifications of each star by
averaging the predicted PMS candidateship probabilities derived
from both methods. This approach effectively compensates for the
individual shortcomings of SVM and RF by assigning low mean
PMS candidateship probabilities p to the likely misclassified ob-
jects, such as the UMS stars for the SVM and the RC stars for
the RF. The CMD of Fig. 20 shows the improved final classification
provided by this averaging. We construct the final catalogue of PMS
candidate stars across the entire Tarantula Nebula, by providing the
original HTTP photometric data of the stars, their predicted PMS
candidateship probabilities, derived from both the SVM and RF
methods, the difference of the probabilities p, and the mean PMS
candidateship probability p. In this catalogue we include all stars,
identified by at least one of the two methods as PMS candidates,
delivering in total 22 755 possible PMS stars for the entire Tarantula
Nebula. Imposing thresholds on the mean probability to distinguish
the most probable PMS stellar population of the complex, this cata-
logue entails 19 831 candidates with p > 0.5, 16 696 with p > 0.7,
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Figure 20. Optical CMD of the HTTP data, where each star is coloured
according to the mean p of the predicted PMS candidateship probability of
the SVM and RF.

13 526 for p > 0.85, and 9636 with p > 0.95. The corresponding
spatial distributions are shown in Fig. 21. This series of thresholding
the mean predicted PMS candidateship probability exhibits that the
most probable PMS candidates, identified with our classification
approach, also mark the most spatially confined structures across
the entire Tarantula Nebula.

Fig. 22 shows the surface density map of the most probable PMS
candidates (p > 0.95). This map is not qualitatively different from
those constructed for stars with different probability limits, so that
the general clustering of PMS stars does not appear to be very
sensitive to the threshold on p. The remarkable coincidence of the
maps of Fig. 21 (independently of the considered candidateship
probability threshold) and the density map of Fig. 22 with the spa-
tial distribution of the UMS stars (shown in Fig. 3) indicates that
PMS stars are preferably clustered in regions of high concentra-
tions of UMS stars. This is in agreement with results discussed in
the literature concerning the clustering of PMS stars around mas-
sive young stars (Cignoni et al. 2015; Stephens et al. 2017), and
provides an additional confirmation of the validity of our PMS
identifications.

6 SUMMARY AND FUTURE PROSPECTS

In this paper we present our analysis with the employment of
machine-learning classification techniques for the identification of
PMS stars across the entire star-forming complex of the Tarantula
Nebula in the LMC. For this classification we extracted a robust
training subset from the observational data of the HTTP, which pro-
vides deep panchromatic Hubble imaging of the whole nebula, in
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order to teach Naive Bayes classifier, decision tree, RF, and SVM
classifiers to categorize the stars of the entire HTTP catalogue into
the classes ‘PMS’ and ‘non-PMS’. To construct this training data
set we selected a high-surface-density region within the Tarantula
Nebula, corresponding to the R136 starburst cluster at the heart of
NGC 2070, based on the assumption that PMS stars are more likely
to be located in the most clustered regions of the nebula. To account
for differential extinction across the nebula, we used UMS stars as
extinction probes and derived extinction measures for each individ-
ual star in the HTTP catalogue using a distance weighted average
of the extinction of the 20 nearest UMS neighbours.

After attributing extinction to the NGC 2070 subset, improving
upon the approach of Gouliermis et al. (2012), we developed a
robust method to distinguish the cluster PMS stars from the field
LMS stars in the training data set. This method is based on fitting
bimodal Gaussian mixture models to the distance of all stars from
the apparent gap on the CMD between these two populations via
the maximum likelihood EM algorithm. From these mixture models
we derived a probability p.y, for each star in the training set to be
PMS. We finalized the training set by adding further examples of
evolved populations, such as RC stars, and subgiant stars in low- and
high-extinction areas of the field of the Tarantula Nebula, as ‘non-
PMS’. We assigned the labels ‘PMS’ and ‘non-PMS’ to the stars
depending on various selected thresholds of pey, and after training
the classification algorithms with this training set, we evaluated
their performance for different variables (features) combinations.
The findings of these experiments can be summarized as follows:

(i) During our preliminary tests neither the Naive Bayes nor the
decision tree method were able to achieve adequate performance,
providing accuracies not higher than ~ 60 and ~ 84 per cent, re-
spectively. Consequently, both methods exhibited significant issues
in classifying the entire HTTP catalogue, although the decision tree
still provided valuable insights on the importance of specific fea-
tures. It strongly suggests that near infrared measurements (e.g. in
the F160W filter) are very useful to a classification approach for
PMS stars.

(i) The best combination of features, in terms of stellar numbers,
spatial coverage and algorithm performance, included the photomet-
ric measurements in the F555W and F775W filters in combination
with the extinction values Ay, which we derived for each star using
the UMS stars as extinction probes. Including the infrared wave-
bands resulted in a comparable performance of the classification al-
gorithms, but, since the features set of the F555W, F775W, F110W,
and F160W filters suffered from the smaller spatial coverage of the
infrared observations, it was not suited for finding the most com-
plete PMS stellar census of the Tarantula Nebula. Extending the
optical bands feature space by adding the photometric errors did
not seem to provide any useful information for the RF, and it even
compromised the classification ability of SVM.

(iii) The best performance of both the RF and SVM methods was
achieved when stars with p.,, > 0.9 were selected as the best PMS
examples in the training set. However, the best trade-off between
algorithm performance and balance between the numbers of positive
and negative examples in the training set was achieved with the use
of a threshold pey, = 0.85 for labelling the training stars.

Both the RF and SVM methods performed excellently on our
primary features set (F555W, F775W, Ay), achieving accuracies of
95.6 and 97.3 per cent, and ROC AUCs of 0.990 and 0.994, respec-
tively. The classification outcomes of both methods on the entire
HTTP data also met the required expectations, except for minor
shortcomings. Specifically, the RF algorithm misclassified a few
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Figure 21. Series of spatial distribution plots of PMS candidates, determined by different thresholds of the mean predicted probability p of SVM and RF. The
respective threshold is indicated in each plot, where all stars are coloured according to p.

faint RC stars as PMS stars, and the SVM did so for a small patch
of likely UMS stars. A direct comparison between the outcomes of
the methods showed that they compensate each other’s shortcom-
ings. As a consequence, the most robust classification is achieved
by combining the predicted PMS candidateship probability of each
star derived from both methods.

The combination of the results of both RF and SVM methods
resulted in 22 755 stars, identified as PMS by at least one of the
methods. Among these sources, 19 831 stars have an average pre-
dicted PMS probability of p > 0.5 and 9636 have p > 0.95. There
is a number of studies that can be performed with the use of this
catalogue of the most probable low-mass PMS stars in the Tarantula
Nebula region. We identify three science cases, each deserving its
own independent investigation.

(1) PMS stars with emission lines due to accretion. The use of the
H,, filter permits the identification of several types of young stellar
sources, such as massive main-sequence and supergiant emission-
line stars (Oe, Be, and BJ[e] stars), as well as PMS stars with strong
emission lines, such as classical T Tauri stars (Appenzeller & Mundt

1989; Bertout 1989). The excess in these stars implies that the
photospheric lines are not as deep as those of main-sequence stars
of the same spectral type (e.g. Hartigan, Edwards & Ghandour
1995; Gullbring et al. 1998). With our classification we find that
~ 60 percent of the PMS candidates are also detected in the H,
band, while only ~ 30 percent of the stars classified as non-PMS
are found in this band. Our preliminary study of these stars indicates
that most of the PMS stars do not show strong accretion, which is
expected for Weak Line T Tauri stars that show very weak, if any
emission lines (e.g. Montmerle et al. 1993). A more detailed analysis
of the H, excess of all these stellar types in order to determine
their mass accretion rates and investigate their variations across the
nebula will be the topic of a separate study.

(2) Physical characteristics of PMS stars. The use of the HTTP
multiband photometry will allow us to construct the spectral en-
ergy distributions (SEDs) of our low-mass PMS candidates in order
to establish their masses and ages through dedicated SED-fitting
techniques. This study for the determination of physical parameters
for the identified PMS stars is currently under development with
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Figure 22. Surface density plot of the PMS candidate stars with p > 0.95,
i.e. the population in the bottom right panel in Fig. 21.

the use of the Bayesian Extinction and Stellar Tool (Gordon et al.
2016), appropriately tailored to our photometric data (Ksoll et al.,
in preparation). These results will further allow the characterization
of the stellar IMF across its whole dynamic range and its variability
across the HTTP FoV by combining mass estimates of our PMS
stars with those of the UMS populations (Evans et al. 2011). We
will be further able to investigate the propagation of star formation
in time with the investigation of spatial distributions of ages of the
PMS stars.

(3) The clustering pattern of star formation. The spatial distribu-
tion of the classified PMS stars shows well defined sub-structures
within the regions of the clusters NGC 2070 and NGC 2060, as
well as compact and loose — occasionally filamentary — cluster-
ings across the whole observed FoV. An elaborate investigation of
the clustering behaviour of the PMS stars in the Tarantula Nebula,
based on the results of this study, and the quantification of the spatial
cross-correlation between PMS and UMS stars is currently being
performed in a separate forthcoming study (Gouliermis et al., in
preparation).
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APPENDIX A: CLASSIFICATION
ALGORITHMS

The following sections will give an overview over the three clas-
sification algorithms; decision tree, RF classifier and SVM; which
are used in Section 5 for the identification of PMS stars in the
Tarantula Nebula, as well as two performance measures — the con-
fusion matrix and the ROC curve — for these algorithms. All of the
described methods are so-called supervised learning techniques,
because they require a labelled data set to be trained on in order to
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perform a classification of new data. Here, ‘labelled” means that this
training set consists of example observations, for which the class is
known. In a two class scenario the examples of the class of primary
interest, in our case the PMS stars, are often called ‘positives’, and
examples that do not belong to that class are called ‘negative’ (i.e.
LMS, UMS, red clump stars, etc., for us). In this context the space
spanned by all possible values of the attributes of an object is usually
referred to as the feature space, where an individual instance is rep-
resented by a feature vector, a vector that contains all its respective
attributes.

The algorithms are applied with implementations in R, a popular
language and environment for statistical computing and graphics
(R Core Team 2013). Specifically, packages e1071 (Meyer et al.
2015) and reArT (Therneau, Atkinson & Ripley 2017) are used for
the application of Naive Bayes, and decision trees, respectively. For
the application of RF and SVM we used the R package cAreT (Kuhn
2017), which invokes package RANDOMFOREST (Liaw & Wiener 2002)
for the former and package kerNLAB (Karatzoglou et al. 2004) for
the latter method.

A1l Decision trees

The general idea of a decision tree classifier or classification tree
(Breiman et al. 1984) is that, ideally, it is possible to partition
the feature space such that all object instances will be correctly
classified. Thus, the result corresponds to a hierarchical partition
of the feature space. This partition is represented by the end point
(called leaves or terminal nodes) of a tree, where each node of
the tree splits the feature space according to the value of a certain
attribute. Interpreting the tree as a probability model, each node i
of the tree possesses a probability distribution p; over the classes
k. After building the tree, each case in the training set is assigned
to one leaf, so that each leaf has a random sample Ny from the
distribution pj (Venables & Ripley 2002).

The decision tree is constructed by recursively splitting the fea-
ture space until a stopping criterion is reached. At a certain node a
split (usually a binary split, separating a continuous variable x; into
x; < t and x; > 1) is chosen according to a measure of its value.
Most commonly a measure of impurity is defined for each node. A
node is considered to be pure if it only contains instances of a single
class. A widely used impurity measure is the Gini index:

G=> pipx=1-> D (AD)

J#k k

which measures the training error rate of classifying object instances
in a node to class k instead of the majority class of the node. For a
pure node the Gini index is zero. Based on this impurity measure,
at each node the split that reduces most the average impurity is
performed. Stopping criteria can be when all nodes become pure, the
tree reaches a maximum predefined depth or further splitting cannot
reduce the average impurity more than a given minimal threshold.
If the tree construction is stopped before all nodes become pure, the
terminal nodes assume the majority class of their assigned training
instances (Venables & Ripley 2002). Fig. Al shows an example
decision tree model, constructed on our training set using only V
and R magnitudes (see Section 5.1).

Al.l1 Prediction

To classify a new object instance, the decision tree propagates it
according to its attributes along the tree, starting from the root,
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Figure Al. Schematic representation of a pruned decision tree model, trained on the V- and R-equivalent magnitudes of the stars. Each node is labelled
according to the majority class of observations in the node and shows furthermore the prediction probability for PMS, as well as the percentage of total

observations assigned to the node.

until a corresponding terminal node is reached, assigning the re-
spective nodes class to the new object instance (Hastie et al. 2009).
To some degree the decision tree can compensate for missing at-
tributes of an object, by either assigning the majority class of the
deepest non-terminal node reached with the available attributes or
using surrogate splits. In the latter method each non-terminal node
keeps a list of surrogate splits during the tree construction. During
classification, if the primary split attribute is missing, one of these
surrogate attributes is used to propagate the object instance further
along the tree. Surrogate splits are constructed as follows: During
the construction of the tree when considering a certain attribute for
a split only those training instances are considered, which are not
missing that attribute. Afterwards a list of surrogate attributes and
split points is generated, sorted according to how well this surrogate
split approximates the split by the primary attribute. During predic-
tion, surrogate splits are considered in that same order (Hastie et al.
2009).

Al.2 Tree pruning

If the training data are noisy, i.e. the class distributions overlap in
feature space, a decision tree might overfit and thus perform badly
on a set of new object instances. In order to avoid this one employs
a method called cost-complexity pruning (James et al. 2014). In this
approach rooted subtrees of the decision tree are constructed by
removing terminal subtrees. Then each of these subtrees is assigned
a value R, which is the sum of some measure R; of the leaves of
the tree. The size of these trees is equal to their number of leaves.
One can now show that a set of rooted subtrees of tree T, which
minimizes the cost-complexity measure:

R, = R 4+ a x size (A2)
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is a nested tree. With increasing « one can find the optimal trees
by a series of snip (i.e. cutting terminal subtrees) operations on the
current tree, producing a sequence of trees with sizes of T down
to just the root node. To choose the desired degree of pruning
one computes an impurity measure versus « for the pruned tree
and finds the smallest tree close to the minimum of the impurity
measure when predicting on a separate validation set or using cross-
validation (Venables & Ripley 2002).

A2 Random forest

The basic concept of the RF classifier (Breiman 2001) is the so-
called bagging, a general purpose procedure for variance reduction
of statistical models through averaging many models of high vari-
ance and low bias (James et al. 2014). Decision tree models suffer
from high variance, e.g. trees that fit to randomly determined halves
of the same training data could vary significantly from one another,
but provide low bias, if grown deep enough. Deep un-pruned deci-
sion trees are the underlying model of the RF classifier. Following
the principles of bagging, an RF is constructed by building B indi-
vidual trees, which are grown by bootstrapping from the training
data, i.e. taking repeated samples from the single training set, gen-
erating B different bootstrapped training subsets (Hastie et al. 2009;
James et al. 2014).

Improving upon a simple bagging of decision trees, the RF fur-
ther increases the variance reduction by a modification of the tree
construction procedure. Instead of choosing the split attribute that
reduces the impurity measure the most, m random attributes out of
the available p are selected and the best variable and split point are
determined out of those. A small value for m is typically helpful if a
large number of the attributes are correlated. For classification pur-
poses a general choice is m = /p (see e.g. Hastie et al. 2009). The
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tree growth then proceeds until a minimum node size is reached.
This procedure decorrelates the trees by preventing strong predictor
attributes to dominate the split selection in all trees grown,’ thus in-
creasing the overall variance reduction of the bagging approach by
averaging many uncorrelated models (James et al. 2014). In order
to classify a new object instance the RF classifier casts a majority
vote over all the trees it has grown, i.e. each individual tree classifies
the object, counting the results and assigning the class most voted
for (Hastie et al. 2009).

A3 Support vector machine

The SVM (Cortes & Vapnik 1995) is a classifier that produces a
non-linear decision boundary in feature space by constructing a
linear boundary in a transformed version of the feature space. It is a
generalization of the support vector classifier, which itself is based
on the maximal margin classifier (Hastie et al. 2009; James et al.
2014).

A3.1 Maximal margin and support vector classifier

The underlying concept of the maximal margin classifier is the
optimal separating hyperplane, a hyperplane being a flat affine
p — 1 dimensional subspace of a p-dimensional space (e.g. a line in
2D or a plane in 3D space), describing the solution space to a set of
linear equations

xTB+ By =0, (A3)

where B and S denote a vector of coefficients and a constant vec-
tor, respectively. Given a set of n p-dimensional training instances
X;, which fall into two classes with labels y; € {— 1, 1}, in a clas-
sification context a separating hyperplane describes a hyperplane
constructed such that it perfectly separates all training instances
according to their class labels, i.e. having the property

YilBo+x/ ) >0 (A4)

foralli=1,..., n (James et al. 2014). Such a hyperplane induces
a natural classification rule for a new test instance x, by assigning
a class depending on which side of the hyperplane it is located, i.e.
classifying x, based on the sign

G(x,) = sign[x] B + fol. (A5)

The margin is defined as the minimum of the (perpendicular) dis-
tances of all training instances to a given hyperplane (e.g. the dis-
tance from the plane of points 1, 2, and 7, ignoring points 3—6, as
shown in Fig. A2, left-hand panel). The optimal separating or max-
imal margin hyperplane is the separating hyperplane for which the
margin is the largest, i.e. the hyperplane that has the farthest mini-
mum distance to the training instances. A classifier equation (AS5)
based on this hyperplane is a maximal margin classifier. Training
instances that are equidistant from the maximal margin hyperplane
and lie on the margin are called support vectors, as they ‘support’
the hyperplane in the sense that a variation of their position would
change the hyperplane as well (James et al. 2014). To build this

7Suppose there is a single strong predictor attribute along with a number
of moderately strong ones. If we grow B decision trees with the standard
procedure this strong predictor attribute would always be considered for the
splits. With the random sampling procedure, however, on average (p — m)/p
splits will not even consider the dominant predictor for the split.

classifier one has to find the maximal margin hyperplane as the
solution to the optimization problem

max M, (A6)
B.Bo.11BI1=1
subject to
yilBo+x/py=MVi=1,...n, (A7)

where M, M > 0, represents the width of the margin.

The support vector classifier is a generalization of the maximal
margin classifier for the case in which the training data is not lin-
early separable, i.e. when there is no solution to the optimization
problem with M > 0 (Fig. A2, left-hand panel). The basic concept
behind this method is a soft margin, which means that instead of
constructing a hyperplane that perfectly separates the training in-
stances, a hyperplane is built that allows some instances to be on
the incorrect side of the margin or even of the hyperplane, i.e. a
hyperplane that almost separates the classes. Such a hyperplane is
the solution to the optimization problem

ma M, =1 A8
pamax 181l (A8)
subject to
vilBo+x/p) =MI—e) & =0,

da=c, (A9)

i=1

where C, C > 0, is a tuning parameter, M is again the width of the
margin, which is to be made as large as possible, and €y, . . ., €, are
slack variables, allowing individual instances to fall on the wrong
side of the margin or hyperplane. A value €; = 0 signifies that
the ith training instance is on the correct side of the margin, while
€; > 0 indicates that it is on the wrong side of the margin (violating
the margin, e.g. points 3 and 4 in Fig. A2, left-hand panel). A value
of €; > 1 indicates that the instance is on the wrong side of the
hyperplane (e.g. points 5 and 6 in the figure). The tuning parameter
C (often called cosr), bounding the sum > _¢;, signifies a budget that
determines the number and severity of tolerated margin violations.
Consequently a large C, tolerating many margin violations, results in
a wider margin, while a smaller C narrows it. Both this hyperplane,
built by the support vector classifier, and the classifier itself are
only dependent on training instances that lie directly on the margin
(points 1, 2, 7 in Fig. A2, left-hand panel) or are violating it, i.e. its
support vectors (James et al. 2014).

A3.2 Support vector machine

The support vector classifier is an effective tool for a two-class
setting if the two classes can be divided by a linear boundary.
In the scenario of non-linear class boundaries, however, it will
perform poorly without modification, as indicated by the example
shown in Fig. A2 (middle panel). To create such non-linear class
boundaries with a support vector classifier one has to enlarge the
feature space, by e.g. adding quadratic functions of the features.
While the classifier is still linear within the enlarged feature space
it was built in, it corresponds to a non-linear class boundary in the
original feature space. This is the basic concept behind the SVM.
The support vector classifier, i.e. the solution to the optimization
problem of equations (A8), (A9), can be written as

FE) =B+ Y aifx,x) (A10)

i=1
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Figure A2. Left: Example of a support vector classifier fit to a small data set, distinguishing two classes of points in a 2D space. The black solid and dashed
lines mark the constructed separating hyperplane and boundaries of the margin, respectively. The coloured squares indicate the support vectors of the classifier.
The instances 1 and 2 are support vectors lying on the margin, while 3 and 4 are examples for instances being on the wrong side of the margin of their respective
class. 5 and 6 are instances that are on the wrong side of the margin and the separating hyperplane. Middle: Support vector classifier fit to a small data set,
where the class boundaries are non-linear. Here, the linear support vector classifier performs poorly. Right: SVM using a radial basis kernel fit to the same data

set. The solid black line indicates the non-linear decision boundary of the constructed SVM, while the coloured squares mark the support vectors.

where (x;, x;/) = Zf:l x;jxy; is the inner product and «; (i = 1,
..., n) are n parameters, one per training instance, which in the
solution are only nonzero for support vectors. One can now gener-

alize the inner product with a kernel function K(x, x;). By choosing

a linear kernel (K(x[, Xir) = Z?:l x[jx,vj) we retrieve the normal
support vector classifier, but if instead a polynomial or radial kernel
function is chosen, we essentially fit a support vector classifier in a
higher dimensional space, constructing a non-linear class boundary
in the original feature space (see e.g. Hastie et al. 2009, for a full
presentation of the calculation).

This combination of a support vector classifier with a non-linear
kernel function is an SVM. The kernel ‘trick’ has the advantage
of not only being computationally efficient, but also avoiding the
necessity for an explicit transformation to the enlarged feature space
and even allowing the latter to become infinite-dimensional, as e.g.
is the case for the radial kernel (Hastie et al. 2009; James et al. 2014).
Fig. A2 (right-hand panel) shows an example of the non-linear class
boundary constructed by an SVM with a radial kernel on the data
set, where the linear support vector classifier failed to construct a
meaningful class boundary. To provide class probabilities instead
of class labels, when using an SVM, one can use Platt’s posterior
probabilities, which fit a sigmoid function to the decision value f of
the SVM

1
I +exp(Af + B)’

where A and B are estimated by minimizing the negative log-
likelihood function (Karatzoglou et al. 2004; Platt 1999).

P(y=11f)= (ALD

A4 Training and performance measures

A4.1 Training with cross-validation

Cross-validation is the most commonly used method for training
classification models and estimating their prediction error. Typi-
cally, a k-fold cross-validation is applied by (1) partitioning the data
set into k equal-sized subsets, (2) training the algorithm on the total
data of the k— 1 subsets, while holding out the remaining subset
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Table Al. Example of a confusion matrix.

Actual positive Actual negative

Predicted positive TP FP
Predicted negative FN TN

to test its performance on, and (3) repeating step (2) k times, while
holding out each of the subsamples for testing in each iteration. As
a result, none of the k produced models has made predictions on
its own training data. The model that predicts best among them is
considered as the final classification model (see e.g. Hastie et al.
2009). While cross-validation is usually applied to test the mod-
elling process, the evaluation of the performance of the final model
is done via a Train/Test split of the training data set.

A4.2 Confusion matrix

The confusion matrix is a way to summarize the performance of a
classification algorithm when predicting on a test set with known
labels. It contains the following quantities:

(1) True Positives (TP): number of instances that are correctly
predicted to be positives.

(i1) False Positives (FP): number of instances that are incorrectly
predicted to be positives.

(iii) True Negatives (TN): number of instances that are correctly
predicted to be negatives.

(iv) False Negatives (FN): number of instances that are incor-
rectly predicted to be negatives.

An example of the confusion matrix is given in Table Al. From the
confusion matrix one can derive the accuracy performance measure
by dividing the trace by the sum of all entries or calculating:
TP +TN
ACC= ——, (A12)
P+N
where P and N denote the number of positive and negative instances
in the training set, respectively. Further diagnostics that can be
derived from the confusion matrix are the true positive rate (TPR),
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Figure A3. Example ROC curve of the RF on our features set no. 3 (see
Section 5).

also called Sensitivity, and the false positive rate (FPR), Specificity,
which are defined by

TP TP
TPR= —— = —
TP+FN P
FP FP

FPR= — = —. (A13)
FP+TN N

The The Balanced Accuracy is an accuracy measurement that ac-
counts for an imbalance in the number of positive and negative
instances in the training set. Therefore it allows for an assessment
of the class-specific accuracy and is defined as the mean of Sensi-
tivity and Specificity (see e.g. Szeliski 2011)

BACC—1 TP+FP (Al4)
“2\P N/

A4.3 Receiver operating characteristic curve

The ROC Curve relates the true positive rate to the false positive
rate for different parameters of the classification rule (such as the
decision threshold). The closer the curve is to the top left corner,
i.e. the larger the AUC, the better the algorithm performs. The ROC
curve of a randomly guessing algorithm corresponds to a straight
line with unit slope. Consequently the AUC is a commonly used
quantitative summary of performance of an algorithms (Hastie et al.
2009; Szeliski 2011). Fig. A3 shows an example ROC curve from
our analysis (see Section 5.2).

APPENDIX B: MIXTURE MODELS AND THE
EM ALGORITHM

Mixture Models are a useful method for density estimation, with
the most popular being the Gaussian mixture model of the form

M
O =" an®; i, Tn), (BI)

m=1
where «,, denotes the mixing proportions, subject to Zm o,y =

1, M marks the total number of components and the individual
Gaussian densities have a mean u,, and covariance matrix %,,.

These parameters are usually fit by maximum likelihood with, for
instance, the Expectation Maximisation (EM) algorithm (Dempster
etal. 1977). A mixture model can then be used to provide an estimate
of the posterior probability that a certain observation i belongs to a
component m, given by

Ay P(Xi5 s Zim)
Z}/{w:l PO s, Tp)

When fitting a finite mixture model like equation (B1) to an
observed random sample x = (xy, ..., x,) the log-likelihood from
the data, which is to be maximised to retrieve the parameters of the
model, takes the form

n M
1(0;x) =" log (Z a,-cbe(xj;ei)) (B3)
j=1 i=1

where 6 = (ay, ..., ap, 01, ..., Oy) denotes all parameters of the
model and 6; = (u;, ;) the parameters of mixture component i. In
practice, maximizing equation (B3) can be complicated numerically
due to the sum in the logarithm. To alleviate this problem the EM
algorithm treats it as an incomplete data problem. The observed data
vector x is assumed to be incomplete, missing a set of associated
component-label vectors z = (zi, . . . , z,), where each z; is a M-
dimensional vector with z;; = 1 or 0, according to whether x; belongs
to component i. Thus, the complete data vector is x. = (x, ) with
log-likelihood

M n

160;%) =) > zylloga; + log P (xj36)]. (B4)

i=1 j=I

(B2)

Tim =

Based on this incomplete data assumption the EM algorithm pro-
ceeds iteratively, alternating between the expectation (E) and the
maximisation (M) step (see e.g. McLachlan & Peel 2000; Benaglia
et al. 2009; Hastie et al. 2009).

In the E-step the conditional expectation of the complete-data
log-likelihood, based on the observed data x and the current fit o®
expressed as the operator

0056 = E1©', x.)|x, 0%) (BS)

is computed. For the finite mixture model equation (B4) shows that
the complete-data log-likelihood is linear in the latent data z;;, so
that the E-step in iteration k+1 only requires to calculate the current
conditional expectation of Z; (the random variable corresponding
to z;;) given the observations x

E(Zijlx,0%) = p(Zij = 1]x;0%) = r;(x;;0"), (B6)
where following (B2)

oV ®y(x;560)
Yol o @ (xj: 6,

With (B7) the operator (B5) becomes

ri(x;;00) = (B7)

M

0(0';0%) => "> " rilx;;0®)lloges + log Py(x;36)].  (BB)

i=1 j=I

In the M-step in iteration k+1, Q(0’; 8%) is globally maximised
with respect to 6’ to update the estimate of the parameters:

6*+D = arg max 0,00, (B9)

For finite mixture models the updated estimates of the mixing pro-
portions o™ and the component parameters 9;‘“ can be deter-

i
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mined independently. The maximum likelihood estimate of the mix-
ing proportions takes the form

(k+1) . Vi(xj§9(k))
o; = E _ B10
n ( )

j=1
while the update for the component parameters can be deduced by
solving

M n
DD rixj:6%)d log @(x;:6,)/00 = 0. (B11)
i=1 j=1
where © = (0,‘, ey GM)

The algorithm stops once the difference 1(8%*1; x) — 1(0%; x)
is smaller than some threshold provided that the sequence of like-
lihood values of the incomplete data {I{(6%;x)} converges. The
EM-algorithm works because the EM-iteration does not decrease
the log-likelihood of the incomplete data, i.e.

10%D; x) > 1(6W); x). (B12)

In Section 4.2 the EM algorithm was employed to fit a mixture of
two Gaussian normal distributions. In this case the EM algorithm

MNRAS 479, 2389-2414 (2018)

operates as follows (see e.g. McLachlan & Peel 2000; Hastie et al.
2009; Benaglia et al. 2009):

(i) Initially guess the parameters 6©.

(ii) E-step: Compute equation (B8) via (B7).

(iii) M-step: Update parameters according to (B9), i.e. calculate
(B10) and (B13). In this case the solutions to equation (B11) have
the closed forms:

n K
k+1) _ D=1 Tij X

i 0
Zj:l Tij
no k) (k+1)\2
oD Zj:l ri (g — ) (B13)
i - n (k) ’
Zj:l Tij

where ri(;.{) =ri(x;;00).
(iv) Repeat steps 2 and 3 until convergence is reached.

This paper has been typeset from a TeX/I&TgX file prepared by the author.
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3.2 Stellar parameter determination from
photometry using invertible neural
networks

(Ksoll et al., 2020) presents the first application of a cINN (Ardizzone et al.,
2018, 2019) to the astronomical inverse problem of predicting physical pa-
rameters of stars from photometric observations. In this project the cINN
is trained and tested on synthetic data from the PARSEC stellar evolution
models, and applied to observational HST data from the two clusters Wd2
and NGC 6397 (see Sections 2.1 and 2.2).

Contributions: To follow-up upon Ksoll et al. (2018), Dimitrios Gouliermis
and Ralf Klessen suggested to extend the ML analysis of photometric data to
solving the inverse problem of predicting stellar parameters from photometry.
Ullrich Koethe proposed the cINN approach, developed in his group at the
Visual Learning Lab, for this project. An initial implementation for the cINN
was provided by Lynton Ardizzone. Elena Sabbi suggested Westerlund 2
and NGC 6397 as the real observational benchmarks for the approach and
provided the HST data for Wd2. Peter Zeidler contributed his gas extinction
map of Wd2 for the extinction analysis. | performed the remaining analysis
for this project, constructing training sets, adapting the cINN implementation,
compiling evaluation scripts, training and testing the cINN models, and
predicting on the real data. | also composed all the text for the manuscript,
bar the introduction, mostly provided by Dimitrios Gouliermis, and created
all figures. All co-authors additionally provided feedback to the manuscript
during the draft stage and assisted with proofreading.

3.2 Stellar parameter determination from photometry using 113
invertible neural networks
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ABSTRACT

Photometric surveys with the Hubble Space Telescope (HST) allow us to study stellar populations with high-resolution and deep
coverage, with estimates of the physical parameters of the constituent stars being typically obtained by comparing the survey
data with adequate stellar evolutionary models. This is a highly non-trivial task due to effects such as differential extinction,
photometric errors, low filter coverage, or uncertainties in the stellar evolution calculations. These introduce degeneracies that are
difficult to detect and break. To improve this situation, we introduce a novel deep learning approach, called conditional invertible
neural network (cINN), to solve the inverse problem of predicting physical parameters from photometry on an individual star
basis and to obtain the full posterior distributions. We build a carefully curated synthetic training data set derived from the
PARSEC stellar evolution models to predict stellar age, initial/current mass, luminosity, effective temperature, and surface
gravity. We perform tests on synthetic data from the MIST and Dartmouth models, and benchmark our approach on HST data of
two well-studied stellar clusters, Westerlund 2 and NGC 6397. For the synthetic data, we find overall excellent performance, and
note that age is the most difficult parameter to constrain. For the benchmark clusters, we retrieve reasonable results and confirm
previous findings for Westerlund 2 on cluster age (1.04fg:gg Myr), mass segregation, and the stellar initial mass function. For
NGC 6397, we recover plausible estimates for masses, luminosities, and temperatures, however, discrepancies between stellar
evolution models and observations prevent an acceptable recovery of age for old stars.

Key words: methods: data analysis —methods: statistical —stars: formation —stars: fundamental parameters — stars: pre-main-
sequence — galaxies: clusters: individual: Westerlund 2, NGC 6397 .

1 INTRODUCTION

Machine learning (ML) employs statistical models to predict the
characteristics of a data set using samples of previously collected data
without relying on physical models of the system. The introduction
of ML for solving regression, classification, and clustering problems
has revolutionized scientific research, and in particular has provided
effective methods for analysing big astronomical data (Feigelson &
Babu 2012; Ivezic et al. 2014). In order to construct a model from
observed data, ML methods rely on human-defined classifiers or
‘feature extractors’ (Hastie, Tibshirani & Friedman 2009). However,
complex problems require algorithms that automate the creation of
feature extractors using large amounts of data. These algorithms
represent a family of ML techniques, named deep learning, and
they are based on the construction of artificial neural networks (NN,
Goodfellow, Bengio & Courville 2016). While training NNs requires

* E-mail: v.ksoll@stud.uni-heidelberg.de
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significant computational power, they achieve far higher levels of
accuracy than classic ML for many non-linear problems. In this pilot
study, we employ invertible NN to infer stellar ages and masses from
Hubble Space Telescope (HST) imaging of two well-studied stellar
clusters. Our aim is to explore the efficiency of NNs in extracting
stellar physical parameters from photometry alone. We train our
networks using modelled-observable properties relations provided
by theoretical evolutionary models.

Star clusters, the building blocks of galaxies, are the signposts
guiding our understanding of the formation and evolution of stars.
This understanding stems from the physical properties of stars in
clusters, being deduced from detailed comparisons of photometric
observations to theoretical evolutionary models. The interface where
observations meet theory is often provided by the observational
colour-magnitude diagram (CMD) and its theoretical counterpart,
the Hertzsprung—Russell diagram (HRD). In the HRD two physical
properties of stars, the effective temperature and the luminosity, are
compared to stellar evolutionary models to determine fundamental
stellar parameters, the initial mass and the age of the star, which are
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not directly accessible by observations alone. This comparison can be
directly performed through fitting of isochronal evolutionary models
to the observed CMDs. This method, however, lacks proper statistical
basis because the relations between observables and physical prop-
erties may present degeneracies that need to be accounted for. More
advanced methods, based on Bayes statistics, derive probabilistically
the cumulative properties of stellar populations, such as the mean
age, in terms of posterior probability distribution functions of the
properties of individual stars, for example, the age (see Valls-Gabaud
2014, and references therein). These methods provide a significant
improvement by tackling the intrinsic model degeneracies through
priors on the stellar initial mass function (IMF), binary fraction, or
extinction distribution (e.g. Jgrgensen & Lindegren 2005; Da Rio,
Gouliermis & Gennaro 2010).

Bayesian inference encompasses a specific class of ML models,
that is, those based on strong prior intuitions. However, these
priors do not add significant value in the case of big data, and
are computationally expensive and slow. As a consequence, other
ML methods are employed to infer stellar physical parameters from
photometry. The most successful techniques developed so far are
generally based on time-domain observations, such as light curves
using photometric-brightness variations (e.g. Miller et al. 2015) or
time-series asteroseismic observations (e.g. Bellinger et al. 2016).
These methods make use of various instances of each specific target
star in time, a data set which cannot be easily obtained for rich
stellar samples in compact clusters. Investigations of stars in clusters
normally rely only on ‘static’, rather than time-dependent imaging,
which cannot be addressed by classic ML methods. Moreover, it
is now well understood that parameter degeneracies encoded in the
evolutionary models make the problem of inferring stellar masses
and ages from photometric measurements a non-linear problem. The
solution of such problems calls for the employment of artificial NNs.

There have been several recent studies that employ NN approaches
to solve prediction tasks in astronomy similar to the problem that we
analyse in this paper. Sharma et al. (2020) train a convolutional
NN on a suite of spectral libraries in order to classify stellar
spectra according to the Harvard scheme and successfully apply
their approach to data from the Sloan Digital Sky Survey (SDSS)
data base. Kounkel, Covey & Stassun (2020) leverage Gaia DR2
photometry and parallaxes to construct an NN that predicts age,
extinction, and distance of stellar clusters in the Milky Way, allowing
them to study the star formation activity in the spiral arms. Cantat-
Gaudin et al. (2020) use a similar NN approach, also predicting
physical parameters of stellar clusters from Gaia data, but use
2D histograms of the observed CMDs as inputs. Olney et al.
(2020) use a deep convolutional NN to predict surface temperature,
metallicity, and surface gravity of young stellar objects (YSOs) based
on spectra from the Apache Point Observatory Galactic Evolution
Experiment (APOGEE). Within their training set construction they
employ another convolutional NN to infer physical parameters of
YSOs, that is, ages, masses, extinction, surface temperature/gravity,
from photometry in nine bands of the Gaia system, as well as
distance, stellar radius, and luminosity. This auxiliary network is
trained on synthetic isochrone data and successfully recovers surface
temperatures for YSOs on real Gaia observations.

For many applications in natural sciences, the forward process
of determining measurements from a set of underlying physical
parameters is well defined, whereas the inverse problem is am-
biguous because multiple parameter sets can result in the same
observation (i.e. degeneracies). Classical NNs attempt to address this
ambiguity by solving the inverse problem directly. However, to fully
characterize degeneracies, the full posterior parameter distribution,
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conditioned on an observed measurement, must be determined. A
particular class of NNs, so-called invertible neural networks (INNs),
is well suited for this task (e.g. Ardizzone et al. 2019a). Unlike
classical NNs, INNs learn the forward process, using additional
latent output variables to capture the information otherwise lost. This
invertibility allows a model of the corresponding inverse process to be
learned implicitly, providing the full parameter posterior distribution
for a given observation and corresponding distribution of the latent
variables. INNs are therefore a powerful tool in identifying multi-
modalities, parameter correlations, and unrecoverable parameters.

In this paper, we present the application of INNS to the regression
problem of predicting physical parameters of individual stars based
on observed photometry. Note that we do not perform an exhaustive
analysis of the approach, but rather aim to provide an introduction
to the method, highlighting our first successes. This paper is the first
in a series, in which we adapt and develop the approach, as well as
explore its limitations.

As mentioned above, in general this regression task is prone
to errors due to the many sources of degeneracy in the mapping
from physical to observable space, such as metallicity, extinction,
variability, binarity, and the intrinsic overlap of certain phases in
stellar evolution in the observable space, for example, the red giant
branch (RGB) and the pre-main sequence. Since our primary goal
is to test the viability of the method, in this paper we neglect some
of these factors, adopting the following simplifying assumptions: (1)
we only deal with single metallicity populations, (2) we obtain an
estimate of the individual stellar extinction of the query stars, (3)
we assume perfect observations, so we do not include photometric
errors, and (4) we exclude effects from variability or binarity.

We train and test our method on synthetic data from the PARSEC
stellar evolutionary models (Bressan et al. 2012). Furthermore, we
conduct additional synthetic tests on data from the MIST (Dotter
2016) and Dartmouth (Dotter et al. 2008) models. Lastly, we perform
a benchmark study on real observational data from the HST of the
young star forming cluster Westerlund 2 and the old globular cluster
NGC 6397. These clusters are chosen for our pilot study due to their
well-defined single ages (Zeidler et al. 2016; Brown et al. 2018),
allowing for an accurate evaluation of our results.

In Section 2, we summarize the physical properties of our
benchmark targets and the reduction of the observational data from
their respective surveys. Furthermore, we outline the construction of
our training sets from the synthetic data provided by the PARSEC
models. In the following Section 3, we elaborate the background
of the INN approach and provide details of the final architecture of
our models as well as the performance measures used to evaluate
their success. Section 4 summarizes the performance of the cINN
on the PARSEC synthetic test data for each of our four training sets
and details the results of the application to the MIST and Dartmouth
data. In Section 5, we present the prediction outcome on the real
observational data for both Westerlund 2 and NGC 6397. We discuss
possible future extensions of our approach beyond the simplifications
assumed for this work in Section 6. The final Section 7 summarizes
our key findings.

2 DATA SELECTION AND PREPARATION

2.1 Observational data

To test our neural-network-based approach to predicting physical
parameters of stars on real observational data, we use two ‘well
behaved’, supposedly single age (or close to) stellar clusters for which
very high spatial resolution HST observations are available, namely
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Figure 1. Left: CMD of our Wd2 data set. The red line represents a 1 Myr
PARSEC (Bressan et al. 2012) isochrone corrected for the median stellar
extinction and distance modulus of Wd2. Right: UV-I CMD of the NGC 6397
photometric catalogue from the HUGS project.

the young massive star-forming region Westerlund 2 (hereafter
referred to as Wd2) located within the Milky Way and the old
globular cluster NGC 6397 belonging to the galactic halo. Since
this paper serves only as an introduction to the INN approach to gain
initial insights into the systematics of the method we do not conduct
an exhaustive study of the full range of the cluster mass, age, and
metallicity distribution, but we consider only the two extremes in age
(i.e. very young and very old).

2.1.1 Westerlund 2

Wd2 is one of the most massive star-forming clusters in the Milky
Way, harbouring a total stellar mass larger than 10* Mg (Ascenso
et al. 2007). It is located in the Carina-Sagittarius arm at a distance
of 4.16 £ 0.33 kpc (Zeidler et al. 2015) from the Sun. At an age of
1.04 4+ 0.72 Myr (Zeidler et al. 2016), Wd2 makes for an excellent
example of a young massive cluster at solar metallicity still in its early
star formation stages within close proximity to the Sun. While Wd2
exhibits an average total-to-selective extinction of Ry =3.95 +0.135
that is larger than the galactic average Ry = 3.1, the cluster is only
affected by relatively low differential reddening with E(B — V), =
1.87mag (median colour excess of the gas, Zeidler et al. 2015).
For our following considerations, we adopt Ry = 3.8 to be both
in agreement with the findings of Zeidler et al. (2015) as well as
the spectroscopic observations of Carraro et al. (2013) and Vargas
Alvarez et al. (2013) who suggest Ry = 3.85 # 0.07 and 3.77 & 0.09,
respectively. Thus, the corresponding median gas extinction of Wd2
lies at Ay, ; = 7.1 mag.

Combining multi-epoch HST images taken with the Wide Field
Camera 3 (WFC3) in F814W with previously obtained UVIS-IR
data in F160W (PI: Nota, GO-13038) Sabbi et al. (2020) compile
the photometric catalogue that we employ for this study. Due to
the long 350 s exposure times in F814W, this photometric catalogue
does unfortunately not contain the brightest objects of Wd2, that
is, the most massive upper-main-sequence (UMS) constituents, as
they were saturated. Disregarding these missing UMS sources, the
Sabbi et al. (2020) photometric catalogue consists of 9267 stars, of
which 6268 are thought to belong to Wd2. The remaining stars in the
sample can be tentatively classified as lower-main-sequence (LMS)
fore- or background contaminants that fall into the line of sight. The
left-hand panel in Fig. 1 shows the CMD of the 6268 cluster stars.
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Adopting the Zeidler et al. (2015) gas extinction map of Wd2, we
can derive individual stellar colour excesses E(B — V), for 8939 stars
that fall within the border of the map following their prescription:

E(B—V),=04314- E(B — V), + 0.7400. (1)
The individual stellar extinctions then follow as

Ay = Ry - E(B — V.. 2)

2.1.2 NGC 6397

NGC 6397 is the nearest metal poor globular cluster, with a dis-
tance of d =2.39+£0.17kpc (distance modulus, DM = 11.89 +
0.16 mag) derived from parallax measurements with high precision
HST astrometry (Brown et al. 2018). Spectroscopic measurements
indicate a metallicity of [Fe/H] = —2.02 (Kraft & Ivans 2003;
Vulic, Barmby & Gallagher 2018), making it a prime example
of an ancient metal-poor stellar population. Fitting of the main-
sequence turn-off suggests a cluster age of 13.4 + 1.9 Gyr (Brown
etal.2018). Several extinction studies indicate a moderate reddening,
constraining E(B — V) to a value between 0.183 mag (Gratton
et al. 2003), 0.186 mag (Schlegel, Finkbeiner & Davis 1998), and
0.187mag (Anthony-Twarog, Twarog & Suntzeff 1992). In this work
we adopt E(B — V) = 0.185 £ 0.002 mag from (Brown et al. 2018),
corresponding to an average extinction of Ay = E(B—V)- Ry =
0.5735 + 0.0062 mag with Ry = 3.1. To derive individual stellar
extinctions here, we simply sample from a Gaussian distribution
with this mean and standard deviation.

We use the photometric catalogue of NGC 6397 from the HST
legacy survey ‘HST UV Globular Cluster Survey (HUGS)’ (Piotto
et al. 2015; Nardiello et al. 2018), which provides coverage in the
F275W, F336W, and F438W filters, observed with the WFC3/UVIS
channel, as well as in F6OO6W and F814W, imaged with the Advanced
Camera for Surveys (ACS/WFC) (Nardiello et al. 2018). To pre-
process this data, we follow the prescription in Section 3 of Nardiello
et al. (2018). We divide the photometric error and quality of fit
distributions of each filter into 12 mag bins and find the 3.5¢ clipped
average of the magnitude and parameter in each bin. Here, o refers
to the standard deviation of the distribution in the given bin. In each
bin, 3.5¢0 is then added to the mean value and a linear interpolation
is performed between these points. For the photometric errors, we
then reject all observations that lie above this interpolated line while
for the quality of fit parameter we reject all instances below the line.
Finally, we limit the catalogue to observations with a sharpness value
between —0.15 and 0.15 in all five filters. Following these selection
criteria we obtain a photometric catalogue containing 4831 stars. The
right-hand panel of Fig. 1 shows the corresponding UV-I CMD.

2.2 Synthetic training data

In order to train the NN for the purpose of predicting physical
parameters given photometric observations of individual stars, a large
training set is required that contains both the physical parameters
and the corresponding photometric observations of each star. Since
at present such a training data set is not readily available, we build
it from theoretical stellar evolutionary models. In particular, we use
version 1.2s of the PARSEC stellar evolutionary tracks (Bressan et al.
2012; Chen et al. 2014, 2015; Tang et al. 2014) and more specifically
the isochrone tables derived for the HST photometric systems ‘WFC3
wide’ and ‘ACS WFC’. Since our observational test cases Wd2 and
NGC 6397 differ both in metallicity and HST filter coverage, we
have to construct individual training sets for each cluster. This is
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consistent with the fact that our NN structure can only deal with
single metallicity cases. An artificial training set is also appropriate
since our NN cannot deal with missing observational features.

At this point, it is important to note that using synthetic training
data comes with caveats. In particular it is known that the photometry
interpolated from the stellar evolution models may show minor
discrepancies in colors as the approximation to the real bandpasses
may be imprecise. Consequently, the synthetic photometry can
never perfectly match real observations. Additionally, the models
themselves may be discrepant, for example, for very low-mass stars
(Jackson, Deliyannis & Jeffries 2018) or YSOs (Olney et al. 2020),
or may exhibit physically questionable properties such as the large
gap in surface temperature for pre-main-sequence stars at 4000 K in
the PARSEC models. Nevertheless, for example, Olney et al. (2020)
find that an NN approach, trained on synthetic data, can recover
realistic physical properties for YSOs on real data, where traditional
isochrone fitting approaches fail due to the model discrepancies. In
any case, given the task we aim to solve here, the use of synthetic
training data is simply unavoidable. Therefore, we proceed keeping
these caveats in mind for our real data benchmarks.

For both clusters, we construct two training sets, one agnostic to
prior knowledge of the stellar ages and one where we constrain the
stellar ages to a range close to the supposed cluster ages derived in
previous studies.

The first two training sets “Wd2_I" and ‘NGC 6397_I" thus consider
isochrones with log (age/yr) in the range 5-10.1 in steps of 0.05 dex.
The ‘NGC 63971 set also specifically entails the log (age/yr)
= 10.13 isochrone to include the supposed age of NGC 6397 of
13.4 Gyr (Brown et al. 2018). For the other two training sets “Wd2_II’
and ‘NGC 6397_II’, we restrict the isochrones to log (age/yr) ranges
of 5-8 in 0.025 dex, and 9.0-10.13 in 0.01 dex, respectively. Fig. 2
shows the HRD corresponding to these training sets. We do not
impose a restriction on the range of initial stellar mass M;y; so that the
full mass range of the PARSEC models (0.09-350 M) is available
in all but the ‘NGC 6397_II" training set, where the range has been
reduced to 0.09-1.837 My due to the fact that the more massive
stars have already died at these ages. The other physical parameters
that we consider for prediction are current mass M., luminosity L,
effective temperature 7., and surface gravity g. Again, we do not
limit these parameters so that the respective ranges depend on the
isochrones included in each training set.

For these training sets, we do not perform population synthesis
based on the isochrone tables, but instead we consider each point of
the isochrones as an individual example star, aiming at performing
parameter prediction on a star-by-star basis. To this purpose, we
need to populate the physical parameter space in the training set
as evenly as possible, since overpopulated regions could introduce
biases in the training process, so that our trained model might in
the end generalize poorly when predicting parameters for a star
that falls in a less-populated area in parameter space. We face this
problem with the isochrone models. While the PARSEC models
provide perfectly evenly spaced isochrones in log(age), Bressan
etal. (2012) perform an interpolation when generating the isochrones
from the stellar evolutionary tracks that aims to produce smooth
isochrone curves, resulting in a severe oversampling of certain
masses due to the fact that very small mass variations can cause
a significant change of position in the HRD on the post-main-
sequence part of the isochrones. Fig. 3 shows an example of this
mass oversampling for the “Wd2_I" case. The left-hand diagram
highlights how the interpolation strategy of the PARSEC isochrone
tables results in a severe oversampling of masses along the ridge
where the models stop, because stars of a given mass die away.
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Figure 2. HRDs for the PARSEC 1.2 s isochrone tables used as basis for our
training sets. The top row shows set “Wd2_I" with isochrones from 5 to 10.1
in log (age/yr) in steps of 0.05 dex (left) and set “Wd2_II” with isochrones in
the range of 5-8 in 0.025 dex (right). In the bottom row are the corresponding
HRDs of the sets ‘NGC 6397_I’ (left), containing isochrones from 5 to 10.13
in 0.05 dex, and ‘NGC 6397_1I" with isochrones from 9 to 10.13 in steps of
0.01 dex. All isochrones are colour coded according to their log (age).

Consequently, there are several regions, for example, the old low-
mass and young supermassive stars, where the age—mass space is
strongly underpopulated.

To remedy this problem, we have devised a procedure to augment
the isochrone tables so that the density differences between the over-
and underpopulated regions in age—mass space are reduced. We begin
by oversampling each isochrone in M, space, first performing a
linear spline interpolation in the Mj,—L—T space to determine its
arc length, that is, the length of the path along the isochrone from
the lowest mass model point to the most massive one. Then we
find 10000 equidistant (in terms of the logarithm of the arc length)
Miy; points along each isochrone. For these points, we determine
the remaining parameters (L, Tefr, g, and magnitudes) by performing
a linear interpolation between the nearest lower and nearest higher
initial mass neighbour on the original isochrone.

The resulting age-mass distribution of these oversampled
isochrones is shown in the middle diagram of Fig. 3. The plot
indicates that this procedure does not solve the issue of oversampled
mass bins directly, in fact, it further highlights those regions. But at
the same time it manages to populate previously sparsely sampled
regions. To finally produce an evenly sampled training set we then
augment the original isochrone tables by adding random samples
from our oversampled isochrones until every age—mass bin contains
at least 30 example stars (this value is chosen to roughly represent
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Figure 3. 2D histograms of the age versus initial mass distributions for the original PARSEC isochrone tables (left), the case where each isochrone is
oversampled 10 000 times in regular intervals in terms of the logarithm of its arc length in M;,—L—Tefr space (middle) and our final training set base (right). In
the latter, each age—mass bin that contains less than 30 model points in the original table is reinforced with additional samples from the oversampled isochrones

to reach 30 examples. This example is from the “Wd2_I" training set.

the number of the least populated bins in the oversampled data set). If
the oversampled table does not contain enough additional examples
to augmented the original isochrones to 30 examples in a given bin,
we simply include all available additional examples. We also ensure
to only augment with examples that do not appear in the original
tables. The resulting distribution in age-mass space is depicted in
the right-hand panel of Fig. 3, showing that this approach achieves a
mostly even sampling across the whole parameter range.

There are two reasons why we do not achieve a perfectly even
sampling. First, subsampling the overpopulated bins would result
in a significant information loss in the HRD and CMD as several
post-main-sequence evolutionary tracks fall into these bins. Second,
oversampling the isochrones and then augmenting the original tables
to a degree that all bins reach the level of the originally most
populated bin would result in a data set so large that it becomes
not manageable for our remaining processing.

The last step in our training set construction procedure is to
augment the data taking extinction into account. We do so for each
star in the training set by including additional copies of it at different
amounts of extinction Ay and altering their observable features, that
is, magnitudes in HST filters, accordingly. For Wd2, we consider an
extinction range from O to 12 in steps of 0.2 mag and for NGC 6397
from O to 3 in steps of 0.05 mag in accordance with the Wd2 gas
extinction map from Zeidler et al. (2015) and the suggested average
extinction of NGC 6397 by Brown et al. (2018). For the extinction
law, we use the diffuse Milky Way extinction curve by Cardelli,
Clayton & Mathis (1989), deriving the A,/Ay values in dependence
of Ry for the HST filters according to

—=a+t 3)
v

where @, and b; denote wavelength dependent coefficients defined by
Cardelli et al. (1989). Table Al in Appendix A provides the derived
A; /Ay values for all filters.

In conclusion, each training set contains the six physical pa-
rameters: age, initial mass M;,;, current mass My, luminosity
L, effective temperature T, surface gravity g, extinction Ay,
and magnitudes in filter combinations corresponding to our real
observations. These are F814Wwgc; and F160Wwgc; for Wd2, and
F275wWFc3, F336WWFC?,, F438Ww]:c3, F606WAcs, and F814WACS
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Figure 4. Schematic overview of the INN approach for solving an inverse
problem. Adapted from Ardizzone et al. (2019a).

for NGC6397. In total our training sets contain 124 81881,
20903602, 12356282, and 168 17090 example stars for ‘Wd2_I’,
‘Wd2_II’, ‘NGC 6397_I" and ‘NGC 6397_1I", respectively. Fig. Al
in Appendix A shows the corresponding prior distributions of all
physical parameters for these training sets.

3 NEURAL NETWORK SETUP

3.1 INN and cINN

In this paper, we solve the inverse problem of predicting physical
parameters of stars from HST photometry employing an INN as
described in Ardizzone et al. (2019a, b). This INN approach provides
an inverse solver that estimates the complete posterior distribution of
physical parameters conditioned on an observation. Fig. 4 outlines
the concept of the INN methodology. Given a well-understood
simulation that maps physical parameters x to observations y, we
assume that this forward process entails an inherent information loss,
such that y does not explain all variance of x and degeneracies occur
in the mapping. To retain this information that would be otherwise
lost additional latent variables z are introduced to encode all the
variance of x that is not captured in y.

A benefit of a network with an invertible architecture with regard
to our current regression problem is that once it has been trained to
approximate the known forward process £, it provides a solution for
the inverse process f~! for free. In the application outlined here, the
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Figure 5. Schematic overview of the architecture of the conditional affine coupling blocks used in the cINN. In particular, we show the GLOW (Kingma &
Dhariwal 2018) configuration, where the outputs s;() and #() are computed by a single subnetwork (for each ¢). The top panel shows how data are passed through
the block in the forward direction (from x to z), while the bottom panel displays the inverted case following the affine transformations in equations (4) and (5).

INN will thus learn how to associate physical parameter values x to
unique pairs [y, z] of observations and latent variables, as it trains
to optimize the forward mapping f(x) = [y, z] and then implicitly
finds the inverse x = f~!(y, z) = g(». z) (Ardizzone et al. 2019a).
For simplicity, the prior distribution of the latent variables p(z) is
assumed (and enforced during training) to be Gaussian. The desired
posterior distribution p(x|y) is represented by the function g(y, z) =
x, which, given the condition y, transforms the known distribution
p(z) to x-space (Ardizzone et al. 2019a). In practice, this means
that for a given observation y the posterior distribution p(x|y) is
determined by sampling the latent variables.

In Ardizzone et al. (2019a), the invertibility of the network is
achieved by a series of reversible blocks based on the architecture
proposed by Dinh, Sohl-Dickstein & Bengio (2016). These blocks
split their input vector u into two halves u; and u, and then
apply two complementary affine transformations with element-wise
multiplication © and addition +,

vy = uy O exp(sa(uz)) + tr(u2),

vy = uy © exp(s1(vy)) + 11 (vy), 4

where s; and # are mappings that can be arbitrarily complex functions
of u, and v that do not need to be invertible themselves and can
even be represented by NNs. These affine transformations are easily
inverted given the output v = [vy, v;],

uy = (v — t;(v1)) © exp(—s1(v1)),

uy = (v — t(u2)) © exp(—s2(uz)). ()

Based on the Ardizzone et al. (2019a) method, Ardizzone et al.
(2019b) present an extension to their original INN approach, the
cINN. Here, they adapt the affine coupling block architecture to
accept additional conditioning inputs c¢. Since the mappings s;
and f;, also when represented by NNs, are only evaluated in the
forward direction, even when inverting the network, it is possible
to concatenate these conditioning inputs with the regular inputs of
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the subnetworks without compromising the INNs invertibility, for
example, by replacing s, (u,) with s,(u3, ¢), etc., in equations (4) and
(5). Fig. 5 shows an illustration for the forward (top) and backward
(bottom) pass of this conditional affine coupling layer design in the
GLOW (Generative Flow; proposed by Kingma & Dhariwal 2018)
configuration (see Section 3.2 for details). In this setting the forward
mapping is modified to f(x;¢) = z and the inverse to x = g(z;¢).
The invertibility is given for fixed condition ¢ as

fCio =350 50). (©6)

In our regression problem, the conditioning is given by the observa-
tions. Therefore, as for the standard INN, during training given an
observation the network will learn to encode all information about
the physical parameters in the latent variables that was not contained
in the observation. Also analogous to the standard INN, we retrieve
the desired posterior distribution p(x|y) for a given observation y by
sampling the latent variables according to their Gaussian priors and
using the inverted network g:

Xposterior = g(z;e=y), withz ~ pz(z) = N(Z, 0,0, @)

where | is the K x K unity matrix with K = dim(z).

One of the cINN benefits over the standard INN architecture is that
no zero padding (as described in Ardizzone et al. 2019a) is necessary
if the dimension of [y, z] were to exceed that of x, as the conditioning
input ¢ can be arbitrarily large in this approach and the dimension of
z simply matches that of x.

3.2 Architecture details

To implement the cINN for our purposes, we use the ‘Framework
for Easily Invertible Architectures’ (FrEIA) for PYTHON (Ardizzone
et al. 2019a, b) based on the ‘pytorch’ library (Paszke et al. 2019).
In our problem the input x is given by the six physical parameters
of the isochrone tables, so that, following the cINN architecture,
we also have six latent variables z. Our cINN is conditioned on
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Figure 6. Schematic representation of the cINN architecture used for the physical parameter prediction based on photometry. In total, we use 16 conditional

affine coupling blocks interchanged with random permutation layers.

the observables, 2 and 5 mag for Wd2 and NGC 6397, respectively,
and the individual stellar extinctions, so that the condition ¢ has the
dimension 3 in the Wd2 cases and 6 for NGC 6397. Ardizzone et al.
(2019b) also introduce a ‘conditioning’ network which transforms
the input condition into some intermediate representation and is
trained jointly with the cINN. We do not use this additional network in
our setup, as we find that given the few observables in our problem the
cINN tends to overfit to the synthetic training data when employing
a feature extraction network, resulting in poor performance on the
real benchmark data.

Our cINN consists of 16 conditional affine coupling blocks, each in
the GLOW configuration (Kingma & Dhariwal 2018), which reduces
computational cost and speeds up learning by jointly predicting
the subnetwork outputs si() and #() using a single subnetwork. As
in Ardizzone et al. (2019b), we introduce an additional nonlinear
transformation of the scale coefficients s,

2
Sclamp = ;a arctan (2) R (8)

where @ = 1.9, 50 that Scjamp & s for |s| < o and Scjamp A £ for |s]
> «, in order to avoid instabilities induced by large magnitudes of
the exponential exp (Sciamp)-

We alternate the conditional affine coupling blocks with random
permutation layers. The latter consist of random orthogonal matrices
which mix the information between the two streams #; and u, in the
coupling blocks. Following Ardizzone et al. (2019b), these matrices
are fixed during training and cheaply invertible. The combination of
these permutation layers with the interlocked affine transformations
of the affine coupling blocks ensures that the network cannot ignore
the conditioning input when learning the forward mapping. The
subnetworks in the conditional affine coupling layers are simple
fully connected feed-forward networks with three hidden layers of
width 512 with rectified linear units (ReLU) as activation functions.
Fig. 6 provides a schematic overview of our setup for the cINN.

We train the cINN models as described in Ardizzone et al. (2019b)
by minimization of the maximum likelihood loss

[1fxisci, O3

L=E
2

—log /il . (©))
where x; is a training example with its corresponding condition c;
and J; denotes the determinant of the Jacobi matrix J; = det ( g—x Xi)
evaluated at x;.

For each training set, the cINN is trained until the loss curve
converges, but at least long enough that the model has seen each
training example multiple times.

3.3 Data pre-processing

In preparation for training, the cINN we split our training data into
physical parameters x (age, Mini, Mcurr, L, Tetr, g) and observables
y (magnitudes + Ay). To avoid issues in the training process
that can occur due to their broad range of values, the physical
parameters are transformed to logarithmic space. This serves not only
to even out magnitude differences, but it has the general benefit of
implicitly enforcing that these quantities can only be positive. Since
all our observables are photometric magnitudes and thus already
a logarithmic quantity, this step is not necessary there. On top of
that we add a small amount of Gaussian noise (standard deviation
of 1 x 1079) to the strongly discretized log(age) parameter. This
form of data augmentation through a small amount of noise serves
to smooth out discretization artefacts of the input (Ardizzone et al.
2019b). The remaining parameters are sampled unevenly enough that
augmentation with noise is unnecessary.

After that we re-scale each parameter so that their resulting
distribution has zero mean and unit standard deviation, following
the linear transformation

fi:(xi_l/vx,-)'iv (10)
oy

where u,, and o, are the mean and standard deviation of the distri-

bution of the physical parameter x;. At prediction time these linear

re-scaling operations are easily inverted in order to retrieve the correct

predicted physical parameters x; preq from the predicted £; preq as

Xi,pred = prred cOx; + My (11)

For the observables, after first centring the data (i = y; — uy,), we
perform a matrix whitening procedure (Hyvirinen & Oja 2000) on
the N x M matrix Y, where N is the total number of examples in the
training set and M the number of observables. The resulting linearly
transformed matrix Y has the properties that all its columns §; have
unit variance and that its covariance matrix Xy is equal to the unity
matrix. Y is calculated as follows:

¥ =Wy¥ =ED ZE’Y, (12)

where E is the orthogonal matrix of eigenvectors of the covariance
- _1 _1

matrix Xy of Y and D% = diag(d, *, ..., dn *) with d; being the ith

eigenvalue of X¢. In practice, we add a fudge factor e = 1 x 1077

. . 1 . . . .
in the calculation of D2 to avoid overamplification of eigenvectors
associated with small eigenvalues

| 1 1
D2 =di Yy . 13
e (wil Te «/dm+e) 4
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The scaling parameters iy, , 0y, , /Ly, , and Wy are calculated from our
entire synthetic data set, before we perform the split in training and
test set. At prediction time of the real data from Wd2 and NGC 6397,
the observational data are scaled using the same scaling parameters
derived from the synthetic data the respective models were trained
on (e.g. if we train the cINN on the synthetic data set “Wd2_I’, the
real observations are scaled using the scaling parameters derived
from that data set).

3.4 Evaluating training success

After training our models until the maximum likelihood loss con-
verges, we evaluate the performance of these trained models on a
held-out subset of the training data. In all our cases, these randomly
chosen test subsets contain 20 000 observations. On a given test set
we begin verifying if the cINN has converged to a good solution by
confirming that the predicted distribution Z of the latent variables
actually follows the multivariate normal distribution we prescribed as
the target. This is easily checked by calculating the covariance matrix
Y7, Of Ziest and determining if its close enough to the unity matrix,
as well as checking that all columns follow a normal distribution
with zero mean.

To ascertain the quality of the predicted posterior distributions for
each of the physical parameters, we compute the median calibration
error e™4 For a given confidence interval g, the calibration error

cal
over a set of NV observations is defined as

€cal = {inliers — ¢» (14)

where Ginliers = % indicates the fraction of observations for which
the true value falls within the g-confidence interval of the correspond-
ing predicted posterior distribution. Negative values of e, indicate
that the model is overconfident, predicting too narrow posterior
distributions, while a positive e, describes an underconfident model
that predicts posteriors that are too broad (Ardizzone et al. 2019a).
We calculate ¢™%" as the median of the absolute values of the
calibration errors over a range of confidence intervals from 0.01 to
0.99 in steps of 0.01.

Apart from the calibration error, we also measure the cINN model
accuracy for point estimations X, that is, maximum a posteriori
(MAP) estimates, of each physical parameter by computing the root
mean square error (rmse) with respect to the ground truth x* over the
entire test set

. 2

rmse = 727:1 (xi — X;F) . (15)
N

In order to better compare the rmses of the four different models we

train, we also compute a normalized rmse (nrmse). We derive this

quantity for each physical parameter x by dividing the rmse by the

range X = x5, — x. covered in the training set, that is,

rmse
nrmse = ——. (16)
X

To derive these performance measures for all of the 20 000 observa-
tions in the test sets for each posterior we sample 4096 times from
the latent space Z.

3.5 Determining MAP estimates

In order to assess the point estimate accuracy (Section 3.4) on our
test set, as well as on the predicted physical parameters for the real
observations presented in Section 4, we compute MAP estimates. To
this purpose, given a posterior distribution for a physical parameter,
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we first perform a kernel density estimation on the posterior using
a Gaussian kernel function and then we find the parameter value at
which this density estimate has a maximum. In practice, we evaluate
the density on a regularly spaced grid of 1024 points ranging from the
minimum to the maximum of the given posterior. To derive a suitable
bandwidth # for this kernel density estimation, we use Silverman‘s
rule of thumb,

h=1.06~min( ,IQ—R)-n’-, (17)

Gl

o
1.34

where IQR denotes the interquartile range, o the standard deviation
of the data, and n the number of data points (Silverman 1986). We
choose this bandwidth estimator for its computational efficiency in
order to quickly derive MAP estimates for our test observations,
keeping in mind that this estimator is prone to suggest suboptimal
bandwidths for density distributions that differ strongly from uni-
modal Gaussians.

3.6 Resimulation error

To verify whether the predicted posterior distributions are correct and
not just cINN artefacts one usually performs a resimulation. Here,
either the MAP estimates of the physical parameters or individual
samples of the predicted posteriors are put into the simulation, that
maps the physical to the observable space, to derive the associated
resimulated observables y; esim- They are then compared with the
cINN input condition y; iy, Of the given star. Using the MAP
estimates one can compute an MAP re-simulation error over the
test set following

N
MAP __ Zi:l(yi‘resim - yi,inpm)z

rmse ..
Tesim N

(18)

Unfortunately, we do not have direct access to the stellar evolution
code that our training data is based on, just the publicly available
isochrone tables. Therefore, we cannot perform a full resimulation
for our predictions.

To still get an idea of the resimulation error of our approach, we
adopt a simple approximation instead. For a given MAP estimate
or sample prediction of the physical parameters we do a nearest
neighbour search in the x 4+ Ay space on the training data (after the
test split). Even though we do not predict the extinction, we have to
include it in this nearest neighbour search to select the correct copy
of the data point closest to our query. We note that also in a full
resimulation we would have to input extinction to correctly retrieve
the magnitudes. This approach allows us to report the approximate
MAP resimulation error rmseM4F on our synthetic training data (see
Table 1).

It is important to keep in mind though that this is only an
approximation, so that in cases where the distance to the near-
est training data point is large in this 7D parameter space, the
associated magnitudes might not necessarily represent the true
resimulated observables of a given prediction. It is therefore likely
that this approximation tends to overestimate the resimulation er-
Tor.

4 TRAINING RESULTS

For all four of our models the cINN training process converges
quickly, the training time being usually within 1-2 h when making
use of GPU acceleration with a NVIDIA GTX 1080 graphics card.
Once trained the prediction of posterior distributions is very rapid.
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Table 1. Overview of the performance on a test set of 20000 cases for the four cINN models we have
trained. Reported are the calibration error, median uncertainty at 68 per cent confidence (width of the 68 per
cent confidence interval), the standard (rmse) and nrmse of the MAP estimates, as well as the total MAP

MAP

resimulation error rmse i

from our nearest neighbour approximation.

Training set

Performance measure Wwd2.1 Wa2.ll NGC 63971 NGC 639711
Calibration error
log age 0.005 0.001 0.005 0.011
log Mini 0.009 0.006 0.006 0.004
log Mcurr 0.009 0.004 0.007 0.007
logL 0.068 0.048 0.003 0.007
log Tefr 0.028 0.020 0.007 0.003
logg 0.013 0.003 0.006 0.007
Median uncertainty at 68 per cent confidence
log age 0.199 0.049 0.065 0.120
log M 0.004 0.002 0.004 0.001
log Mcurr 0.004 0.003 0.004 0.002
logL 0.002 0.002 0.005 0.001
log Tefr 0.001 0.001 0.001 0.001
logg 0.006 0.004 0.004 0.002
rmse
log age 0.572 0.379 0.481 0.1659
log M 0.065 0.120 0.018 0.0036
log Mcurr 0.064 0.074 0.019 0.0036
logL 0.093 0.154 0.008 0.0011
log Tefr 0.041 0.071 0.003 0.0002
logg 0.131 0.200 0.021 0.0034
nrmse
log age 0.1122 0.1263 0.0938 0.1468
log My 0.0180 0.0334 0.0050 0.0028
log Mcurr 0.0179 0.0207 0.0053 0.0028
logL 0.0091 0.0160 0.0008 0.0002
log Tefr 0.0207 0.0366 0.0023 0.0003
logg 0.0191 0.0291 0.0038 0.0007
rmseMAP 0.071 0.123 0.078 0.043

resim

For the 20 000 observations in our test sets generating the posterior
distributions, sampling each 4096 times, takes in total about 10 min,
averaging around 35 predicted posterior distributions per second.
This makes the cINN approach a very time efficient predictor.

4.1 Performance overview

Across all four cINN models we were able to achieve well con-
verged model solutions. Both the covariance of the latent variables,
as well as their distributions, evaluated on the respective test
sets, reach their targets of unity and standard normal distribution,
respectively. Fig. B1 in Appendix B shows an example of the
achieved covariance matrix and latent variable distributions for the
‘Wd2_I" cINN model. Table 1 gives an overview of our remaining
performance measures, namely the median calibration error, the
median uncertainty at 68 per cent confidence, the rmse and nrmse
of the MAP point estimate (see equations 15 and 16), as well as our
approximation of the total resimulation error across all four trained
models.

In terms of the median calibration error, we find that all four models
reach calibrated solutions for their predicted posterior distributions,
as the largest error across all parameters and models is only about
6.8 per cent. Given the similar magnitude of the errors for all four
models, there is no clear influence of the training set size or feature

abundance on the cINN’s ability to converge to a well-calibrated
solution. In particular, there is no significant difference between the
models trained on the full training sets “Wd2_I" and ‘NGC 6397_I’
versus their counterparts “Wd2_II" and ‘NGC 6397_1I". As the latter
include prior knowledge about the age of the clusters, they should
theoretically allow for more accurate solutions of the regression
problems (i.e. less degenerate mappings). The only notable difference
between the Wd2 and NGC 6397 models in terms of the median
calibration error is that we find slightly better calibrated solutions for
the luminosity and effective temperature prediction for the NGC 6397
models.

Concerning the median uncertainty at the 68 per cent confidence
level, an indicator of the average width of the predicted posterior
distributions, we find that all four trained cINN models can constrain
all physical parameters, except for the age, remarkably well with
uncertainties on the order of only a few 0.001 dex on average. Again,
the availability of more features or the prospect of less degenerate
mappings by including prior knowledge does not significantly
improve the result.

Judging by the uncertainty values, the stellar age appears to be the
most difficult parameter to constrain. Of the six parameters, age is
also the only one where the prediction is influenced by the amount
of available features. The ‘NGC 6397_I" cINN model constrains
the age to distributions that are about 0.1 dex narrower than the
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similar one trained on “Wd2_I’, despite the fact that both training sets
cover basically the same physical parameter space (albeit at different
metallicity). For the age prediction, we also observe a difference
between the “Wd2_I" and “Wd2_II’ models, as the cINN trained on
the data set including prior knowledge returns narrower age posterior
distributions. The lower uncertainty is likely influenced by the overall
smaller range in possible predicted ages, but could also be a result
of the missing degeneracies in “Wd2_II’. Interestingly, we do not
observe the same effect between ‘NGC 6397_I" and ‘NGC 6397_1I",
where in fact the median uncertainty increases for the model trained
on the much narrower age range. This could indicate that constraining
the age distribution for these old stars (above 1 Gyr) may not facilitate
the regression problem, while the reverse may be true for the young
stars.

The point estimate accuracy, as measured by the rmse between the
MAP prediction and the true values, confirms that age is the most
difficult parameter to predict for all our models. With rmses of a
few 0.01-0.1 dex, the cINN predicts the remaining five physical
parameters very well, while the rmse for the age prediction, on
the order of 0.5dex, is about a magnitude larger. For comparison,
a predictor that returns a random value drawn from a uniform
distribution within the age range of “Wd2_I” achieves an rmse of about
2.1 (nrmse of 0.41). The ~0.1 dex differences in the rmses between
the models trained on “Wd2_I" and ‘NGC 6397_I" suggest that an
increased feature abundance (i.e. number of observables) improves
the point estimation accuracy of the model. Interestingly, while the
‘Wd2_II" model decreases the age rmse by about 0.2 dex, the error
of the point estimate for all remaining physical parameters increases.
Comparing the nrmses between ‘Wd2_I’ and “Wd2_II’, however, we
find that both models perform evenly well and all flat rmse differences
are likely effects of the different parameter ranges. We find a similar
behaviour between ‘NGC 6397_1" and ‘NGC 6397_1I" for all param-
eters except the age again, where the ‘NGC 6397_II" model actually
performs the worst across all models. As previously indicated by the
uncertainty, this supports the finding that the age prediction within
the range from 1to 13 Gyr is the most difficult task on the synthetic
data.

Finally, for our approximation of the total MAP resimulation error
we find excellent results for all of our models, with values on the order
of only 0.1 mag and below. Considering that our approximation likely
overestimates this error because we have to rely on the observables
of a nearest neighbour proxy, errors this small are more than
satisfactory. The corresponding comparisons of the ‘resimulated’
and observed magnitudes show almost perfect 1-to-1 correlations
with very few outliers in both the MAP and entire posterior
resimulations. Therefore, we are very confident that, even though
we could not perform a true resimulation, our predicted posterior
distributions are true and not just numerical artefacts. Importantly,
this also indicates that the overall broader age posteriors are generally
not caused by an underperforming cINN but rather due to actual
intrinsic degeneracies in the age prediction, correctly captured by the
cINN.

4.2 Wd2_.I and Wd2_1I

As indicated by the summary statistics in Table 1 the ‘Wd2.I’
and “Wd2_II" cINN models perform very well. We look at this in
more detail. Fig. 7 shows example posterior distributions for all six
physical parameters for three held-out test observations predicted by
the “Wd2_I" model. This plot exhibits some of the typical posterior
distributions that the cINN returns on the synthetic data in this
regression problem.
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The first case, shown in the left-hand column, is an example where
the cINN constrains all physical parameters of the star extremely well
with very narrow posterior distributions centred around the known
true value. As the low median uncertainties at 68 per cent confidence
for all parameters except age already suggest, this kind of prediction
is among the most common results for the synthetic test set. The
left-hand panel in Fig. 8 presents the approximate resimulation for
the full posterior of this example. Evidently we match the input
observation almost exactly (note the small axis range and error),
confirming the validity of the predicted posterior. The observed
deviation is a direct result of the nearest neighbour approximation and
the discreteness of the training set. The latter is also the reason why
the two resimulation solutions appear so ‘far’ apart, as there simply
are no models in between. The samples with a greater discrepancy to
the true observation (bottom left corner) have a larger distance to the
nearest neighbour than the others. The resimulation approximation
is therefore less precise for these samples as the distance is a direct
measure of similarity between the nearest neighbour proxy and the
given query samples.

In contrast, the middle column exhibits an example of the kind of
degeneracy that we frequently find in this regression problem, with
bimodal solutions within the predicted posterior distributions. The
age and mass distributions indicate that this observation could be
explained by a ~2.9 Mg, star that is ~425 Myr old, so likely well
within its post-main-sequence phase. Or it could be a very young
(~0.1 Myr) more massive ~4.75 Mg, pre-main-sequence star. Due
to the overlap of the post-main-sequence and pre-main-sequence
evolution in observable space, especially so in the presence of
extinction, this is one of the major degeneracies that make the
prediction of stellar physical parameters from photometry such a
difficult regression problem. In this example the cINN prediction
reveals that this degeneracy is not broken with only two pass-
bands, but also finds that the young 4.75Mg star is the most
likely solution as indicated by the MAP estimates. Therefore, the
cINN successfully recovers the true solution for this synthetic
star.

The middle panel of Fig. 8 shows the approximate resimulated
magnitudes for this example posterior in comparison with the true
input observations. Overall we find very good agreement, except
for a few outlier cases. The red circle indicates the area populated
by the 60 per cent of the samples (containing instances from both
peaks) with the lowest distance to the nearest neighbour used
as a resimulation proxy. This set matches the true observations
almost perfectly. All of the outliers exhibit larger nearest neighbour
distances (especially the far outliers). Consequently, our resimula-
tion approximation is less precise for these objects, which likely
explains the offset from the true observation. Therefore this diagram
confirms the validity of the predicted posterior and the identified
degeneracy.

The final example in the right-hand column shows another de-
generate case that could be explained as either a younger ~3 Mg
or a much older ~2.4 Mg, star. Here, the most likely explanation
of the observation as given by our MAP estimate is in fact not
the true one, which falls into the secondary peak. This result may
seem unsatisfying at first glance, but a true posterior distribution
describes all possible physical parameters that can explain the given
observation. That means that the most likely combination does not
necessarily have to be the one that generated the observation. In
fact these two degenerate examples show the great strength of the
cINN approach for this type of degenerate regression problem, as
even in the second case, the true solution is part of the posterior
distribution as the second most likely result. The interpretation of
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Figure 7. Predicted posterior distributions for three test examples (column wise) as predicted by the cINN trained on ‘“Wd2_I’. The red dotted line in each
histogram indicates the known true value for the given test observation. The orange line represents the kernel density estimate of the predicted distribution
used to locate the MAP solution. The left-hand column shows an example case where the cINN is able to constrain the physical parameters of this observation
extremely well. The remaining two columns show degenerate examples where the predicted posterior distributions of some parameters (e.g. age and mass) show
multimodalities as a consequence. The middle column test observation shows an example case where the MAP of the predicted bimodal distribution coincides
with the true value, while in the right-hand column case the true value falls on to the second peak of the distribution. Note the different scaling in each column.

MNRAS 499, 5447-5485 (2020)

0202 JoqUIBAON $Z U0 158NnB Aq 8YE0G6S// PhS/1/661/101E/SEIUL/WOd" dNO-0lWSpEDE//:Sd)Y WO pepeojumod



5458 V. F. Ksoll et al.

RMSE = 0.004 [ RMSE = 0.074 Counts I O TRMSE=0.055 | Counts
| u 1 10 100 1000 1 10 100 1000
6.5550 1 | 5 ! !
| | |
_____________ B | |
I I 025 |
6.5525 | | |
£ | g0 I £ |
[ | 8 | 8 |
2 | 2 | 2 |
© o ©
o 655001 | T | b |
I 05 ] 0.00 |
R I S o= I
| |
6.5475+ | [ I
| 00 N [ E e il n - pe
' |
Counts B | I -0.25
6.5450 30 100 300 1000 3000 I I
13235 13240 13245 13.26 45 50 55 6.0 65 00 02 04
F814W egim F814W,egim F814W,egim

Figure 8. 2D histograms of the ‘resimulated’ magnitudes for the example posteriors in Fig. 7 (columns match accordingly). The grey dashed lines indicate the
observed magnitudes, while the red circles in the middle and right-hand panels indicate the area in which 60 per cent of the samples are located that have the
lowest distances to the nearest neighbour chosen as the resimulation proxy. Again, it should be mentioned that the axis scaling is very different in each plot.

Counts_» 2.5 2.5
10110° 5.0420° 2.0410°
a Q
g0 g 15 £ 15
o "o e
> s 10 = 10
< 8 =
) o= £
S Z 05 3 05
=7 = s
o 2 0.0 > 0.0
o ke) 5]
. _ ke | e
RMSE = 057233 =05 RMSE = 0.06459 =05 RMSE = 0.06381
1 NRMSE = 0.11222 NRMSE = 0.01799 NRMSE = 0.01790
5 Neamaes = 20000 1.0 Neampies = 20000 1.0 Nsampies = 20000
5 6 7 8 9 10 -1 0 1 2 -1 0 1 2
log(age/yr)'e log(Mii /Mo ) log(Mcurr /Mo )™®
Counts 5.25 Counts 6 Counts
o H
61200 10! 102 500410° 100 10 5{10° 10° 102 10°
4.75 : S
% 4 ;\( . s 4
s s &
= < 4.50 !
° 5 X »w 3
-l
= £4.25 €
= ':, ~ 2
o > i
8 o $4.00 2 /
] 2
3.75 - ,.-'
-2 RMSE = 0.09339 RMSE = 0.04099 o
NRMSE = 0.00905 3.50 NRMSE = 0.02067
Nsamoies = 20000 Niomples = 20000 :

-2 0 2 4 6 3.5 4.0

log(L/Lg)tve

log(Tefr/K)'™ e

4.5 5.0 0 2 4 6
|og(glcms—2)true

Figure 9. 2D histograms of the MAP estimates plotted against the true values for the six physical parameters we predict with the cINN trained on “Wd2_I" for
20000 cases from our test set. From top left to bottom right, we show age, Mini, Mcurr, L, Tetr, and g.

cases like these, as always, benefits from additional astrophysical
constraints.

The right-hand panel of Fig. 8 provides the resimulation ap-
proximation for this example. Again we find a good match with
the observation for the objects for which our approximation is
the most precise. Only objects with large distance to the nearest
neighbour, so less precise resimulation approximation, deviate more
significantly.

To assess the limitations of the method tested on the synthetic data
we compare the predicted point estimates with the true values (as
previously summarized by the rmses in Table 1) for the 20 000 test
observations in Fig. 9. The figure highlights how well the cINN

MNRAS 499, 5447-5485 (2020)

predicts Mini, Meyr, L, Ter, and g as only very few predictions
(note the logarithmic colour scale) fall off a perfect 1-to-1 cor-
relation between the predicted and true values. However, for Tes
and g we observe some structure (around log (7./K) ~ 4.75 and
log(g/cms™2) & 4, respectively) that seems systematic in nature.
For the effective temperature there is also a deviation from the 1-to-1
correlation for log (7e/K) > 4.75.

We find the largest scatter in the age prediction, confirming that
this parameter is the most difficult to predict for the cINN. It has the
most trouble with predicting ages for the very young (log (age/yr) <
6.5) and the oldest (log (age/yr > 8.5) objects in the test set, as we
find the most deviations from the perfect correlation here. Still, even
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Figure 10. 2D histograms of the entire predicted posteriors plotted against the true value of the six physical parameters of the cINN trained on ‘Wd2_I" for
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in this regime, there is a majority of good predictions (note again the
logarithmic colour scale).

The difficulty in predicting the correct age becomes further
apparent when visualizing the posterior distributions in relation to the
true values, as in Fig. 10. Here, we plot the spread of the posterior
distribution of every physical parameter against the true value for
all 20000 test observations. Again we observe that for all physical
parameters except age the cINN provides well constrained posterior
distributions that are in many cases quite narrow and symmetric
around the true value. Similar to the systematic structures in the
MAP estimates we find ‘arrow’-like ‘artefacts’ for T.g and g here.
For log (T./K) > 4.75, we also discover two ‘branches’, indicating
a strong bimodal degeneracy in this range that explains the deviation
from the 1-to-1 correlation in Fig. 9, as the MAP estimates seemingly
tend to fall into this lower branch.

The age posterior distributions appear to be much wider, although
the visual effect is amplified in Fig. 10 by the logarithmic colour
scaling, chosen to better visualize outliers. Most of the predicted
posterior distributions are also well centred on the true value, but
nevertheless we find many more wide outliers here, indicating
ample degeneracy. Analogous to the MAP estimates, the posterior
distributions narrow down within the intermediate-age range and
widen for the youngest and the oldest stars, also exhibiting the
multimodalities previously highlighted in Fig. 7. Despite the slightly
discouraging look of the age posteriors it is important to note that
in 99.8 per cent of the cases the true value is part of the predicted
posterior distribution.

To evaluate whether the ‘arrow’ artefacts observed in the MAP
estimates and posteriors of 7. and g are a cINN model specific
issue, we retrained the cINN model on modified versions of training
set ‘“Wd2_I’, where we increase the number of observables with

additional photometric filters. Within the synthetic data sets these
additional filters are readily available. Fig. 11 shows the results
of this experiment. It provides the posterior against true value
diagrams for age and surface temperature for different numbers of
additional photometric filters. This sequence shows that the ‘arrow’-
like structures in T¢ and g, as well as the second branch in T,
are in fact a result of the limited number of photometric filters in
our study, as the effect already decreases when the F555W filter is
added and basically disappears when we use nine photometric filters.
Not surprisingly, the predictions also improve as more observational
information is gained, the posterior distributions narrowing down
noticeably. Especially, interesting for the age prediction is that we
already observe a considerate improvement with five filters (F275W,
F336W, and F555W on top of F814W and F160W). Specifically the
spread for very young objects (log (age/yr) < 6.5) decreases signifi-
cantly. We observe the same improvement in the point estimates (see
Fig. B2 in Appendix B). Still, even with the ‘ideal’ information of
the full complement of 17 photometric filters of the ‘HST WFC3
wide’ photometric system used by the PARSEC isochrones, the
prediction for old stars is not perfect. The age prediction of old
stars thus remains the most challenging task within this regression
problem (see also the discussion in Sections 4.3 and 5.2). In any
case, based on this performance analysis, we recommend to use at
least five photometric filters in addition to extinction if they are
available.

The model trained on ‘“Wd2_II’ does not show significant differ-
ence with respect to the “Wd2_I" cINN model within their range
of overlap. The corresponding diagrams of the point estimate and
posteriors against the true values for “Wd2_II’, as well as a more
detailed discussion can be found in Appendix C, Figs C1 and C2,
respectively.
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Figure 11. 2D histograms of the predicted posterior distributions plotted against the true value for age (top) and Tegr (bottom) for 20 000 test observations
as predicted by cINN models trained on “Wd2_I" with increased numbers of photometric filters compared to our standard “Wd2_T" setup. The three filter case
(first column) entails the HST filters F555W, F814W, and F160W, the five filter one (second column) adds F275W and F336W to that, and the nine filter setup
(third column) further includes F438W, F606W, F775W, and F110W on top of the previous. The final 17 filter case (fourth column) entails all previous filters
in addition to F218W, F225W, F390W, F475W, F625W, F105W, F125W, and F140W. Compared to our standard “Wd2_I" with only two filters in Fig. 9 this
sequence highlights how the increased feature abundance improves the predictive capability of the cINN as the ‘arrow’-like artefacts in T disappear and the
age posterior distributions decrease in width, especially so for the young test observations.

4.3 NGC 6397 1 and NGC 639711

Overall the training results of model ‘NGC 6397_1" match those of
‘Wd2_T’, except for the previously described slight improvements in
accuracy. Judging by our performance experiments in dependence of
filter coverage carried out on ‘“Wd2_I", these improvements are likely
caused by the larger number of photometric filters, five instead of the
two used for “Wd2_I" (see Appendices B and D).

In general, of all trained models ‘NGC 6397_II" provides the
smallest rmses across all predicted physical parameters and lowest
median uncertainty for all parameters but age. Given how well the
‘Wd2_I" and ‘NGC 6397_I" models already constrain the posterior
distributions for all parameters (except age), this extra performance
gain can be attributed to the more limited physical parameter space.
The nrmse of this cINN model confirms again that the age prediction
for very old stars (1 Gyr and above) is the most difficult part of this
regression problem. We find that the age posterior distributions tend
to be quite broad and that the cINN has a tendency to extrapolate
with predicted posterior distributions ranging from log (age/yr) = 8
to above log (age/yr) = 11 (see Fig. E2 in Appendix E), outside the
boundaries of the training set range of 9—10.13. This extrapolatory
behaviour within the 1-10 Gyr range appears in the “Wd2_I" and
‘NGC 6397_I" models as well, but to a lesser degree. From the age
MAP estimate against true plot of the ‘NGC 6397_II" model, we also
find that, while most predictions fall on the ideal 1-to-1 correlation,
there is a faint trace of an almost flat ‘branch’ at log (age/yr) ~ 9.6
(see Fig. E1 in Appendix E). This might suggest that the cINN has a
slight tendency to predict something akin to a mean age value (9.6 is
exactly the average) over the trained range when it encounters a star
with uncertain age.

MNRAS 499, 5447-5485 (2020)

4.4 On the age prediction of main-sequence stars

One matter we have not discussed in detail so far is the age
prediction for main-sequence objects. With traditional isochrone
fitting methods recovering the age of a main-sequence star from
photometry alone is a notoriously difficult, if not impossible task.
Our approach, on the other hand, successfully predicts ages across the
entire spectrum of objects, including synthetic main-sequence stars.
Given the difficulties traditional approaches have, this could be an
indication that our cINN models achieve this task only by overfitting
the synthetic training data. To ascertain whether this is the case we
perform a test prediction with the “Wd2_I" and ‘NGC 6397_I" models
on synthetic data generated from different stellar evolution models,
namely the MIST (Paxton et al. 2011, 2013, 2015; Choi et al. 2016;
Dotter 2016) and Dartmouth (Dotter et al. 2007, 2008) isochrone
tables. These models also provide synthetic photometry, but treat
the underlying physics slightly different than PARSEC. Note that the
Dartmouth isochrones only cover an age range of 1-15 Gyr, while the
MIST tables are available over a similar log (age/yr) span of 5-10.3
as the PARSEC models. For the test, we choose data sets matching
the corresponding metallicities for ‘Wd2_I’ and ‘NGC 63971,
and for simplicity only treat the zero extinction case. Additionally,
for the MIST data, we remove the post-asymptotic giant branch
phase as our selection of PARSEC models (version 1.2s) does not
include it.

In the solar metallicity “Wd2_I’ case, we retrieve overall excellent
results (see Fig. 12). In particular, for the MIST data the cINN
recovers log (L), log (Te), and log (g) almost perfectly, except for
a few instances of massive post-main-sequence stars. Miy,; and My,
are also recovered well, but exhibit more scatter than in our PARSEC
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Figure 12. 2D histograms of the MAP predictions for the six physical parameters on 40000 samples from the MIST isochrone tables as predicted by the
‘Wd2_I" cINN model. Note that the nrmses are normalized to the parameter ranges of the MIST ground truth here instead of the ranges in the ‘“Wd2_I’ training

set.

test case. Lastly, while the age prediction also exhibits more of a
spread around a perfect 1-to-1 correlation, with a median absolution
deviation of only 0.2 dex, the cINN correctly retrieves ages for
most samples, including main-sequence objects. Fig. 13 shows the
predicted HRD in comparison to the MIST ground truth, highlighting
the excellent performance of the cINN. Note that the predicted ages
are represented by the best-fitting peak in the age distribution here
in order to account for multimodal distributions found for, that
is, post-main-sequence objects. We find a similar success for the
Dartmouth models, recovering luminosity, temperature, and gravity
near flawlessly (see Fig. B3 in Appendix B). The initial mass
predictions are overall also fairly accurate, but exhibit a slight
systematic overprediction below 0.5Mg, likely an effect of the
known model discrepancy between Dartmouth and PARSEC in the
subsolar mass regime. The age prediction on the other hand is slightly
less successful here. While we can recover ages for most post-
main-sequence objects, taking multimodalities in the posteriors into
account, and for some main-sequence stars down to about 0.75 Mg,
below this mass limit we find larger errors (see also Fig. B4 in
Appendix B). A likely explanation for this behaviour is a combination
of the fact that the cINN also struggles in the range above one Gyr
on the PARSEC test data and the significant model difference of
Dartmouh and PARSEC in the low-mass regime.

With the low-metallicity ‘NGC 6397_I" model, we are also fairly
successful on the MIST synthetic test data (Figs D3 and D4 in
Appendix D). Interestingly, despite using photometry in three more
filters we get overall larger errors compared to the “Wd2_I" test. It
appears that the differences between the stellar evolution models, for
example, in the model stellar atmospheres, become more significant
outside of the solar metallicity case. The ‘NGC 6397_I" model also

recovers luminosity and temperature well, but has more difficulties
with the age prediction. Still for a large fraction of test objects, both
main- and non-main sequence, a correct age is inferred (median
absolute deviation of 0.3 dex). For the Dartmouth test data, we
find overall the worst results with the ‘NGC 6397_I' model in this
experiment (see Figs D5 and D6 in Appendix D). While the cINN
recovers luminosity, temperature, and gravity decently for most test
samples, we find larger systematic deviations in the low brightness
regime. Likewise we find a significant discrepancy for the predicted
initial masses within a range from 0.25 to 0.6 Mg and for some
objects above 0.8 M. Lastly, the age prediction fails completely for
this synthetic test set with the ‘NGC 6397_I" model systematically
underestimating the age. Given that the prediction performance on
the MIST data is acceptable, we conclude that the significant model
discrepancy between Dartmouth and PARSEC at this metallicity,
especially in the synthetic photometry, is the primary reason for the
cINNss difficulties.

In summary, these experiments provide good evidence that our
cINN models have not simply overfit the synthetic PARSEC training
data as they are able to recover correct ages in most cases for
test data from different stellar evolution codes, including ages of
main-sequence objects. Furthermore, this test shows that the cINN
generalizes well to slightly different populations and especially
excels in recovering luminosity, temperature, and surface gravity.
Concerning the predictions for main-sequence stars, we believe that
a combination of the latent variable approach, encoding enough
of the lost information, and the fact that we are using perfect
photometry allows the cINN to correctly recover ages for these
objects. Consequently, as real photometry is never perfect, we
acknowledge that the cINN age prediction for any real main-sequence
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Figure 13. Left: cINN prediction for the HRD of the MIST isochrones. Note that MAP estimates are used for luminosity and effective temperature here, but
the colour code that indicates the predicted age does not correspond to the MAP age prediction but rather the best-fitting peak of the predicted age posterior.
The latter is done to take multimodal age posteriors into account. Right: ground truth HRD of the MIST isochrones, colour coded according to their age.

star needs to be treated with caution. We will further discuss this
matter in our application to the real NGC 6397 data, as this cluster
consists primarily of main-sequence sources, contrary to the young
Wadz2.

5 PREDICTION

With the excellent performance of the cINN on the synthetic training
data for Wd2 and NGC 6397, we can now benchmark the method on
real observational data. As with the synthetic test set, to retrieve the
posterior distributions we sample the latent variables 4096 times for
each star and determine point estimates for all physical parameters
as described in Section 3.5. Since we have seen no significant
differences between the full models and those that entail prior
knowledge about the age on the synthetic data, in the following we
take the full model predictions as our primary reference and perform
a short comparison with the other models at the end of each section
(providing further details in the Appendix).

5.1 Westerlund 2

Fig. 14 presents our cINN prediction results for all six physical
parameters, showing their MAP estimates colour coded on the optical
CMD of Wd2 (cluster members only). Overall the results are very
reasonable for Wd2, from subsolar masses for low-mass pre-main-
sequence (PMS) stars to above solar masses for UMS stars, with the
correct gradients of L, T, and g versus magnitude and colour. On
top of that the median 1.27 Myr cluster age from MAP estimates is
well within the previously determined age range of 1.04 £ 0.72 Myr.
The resulting HRD, shown in Fig. 15 (top left panel as per MAP
estimates, top right panel as per entire posteriors), also matches
fairly well the 1 Myr isochrone traced in red for comparison. There
is a noticeable spread around the isochrone, but most of the stars
are correctly placed within the PMS regions of the diagram. Notable
is only a small vertical feature at the extreme right of the predicted
HRD, highlighted by the orange points in the top left panel of Fig. 15,
which appears to be deviating more systematically from the 1 Myr
isochrone. These 502 stars, all located at the very red edge of the
CMD (bottom left panel of Fig. 15) have a median photometric error
of 0.15mag. It is quite possible that the cINN prediction entails
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this vertical artefact due to photometric uncertainties, which are not
accounted for in our setup.

We also find other mispredictions from the cINN. For 584 stars
(179 among the HRD outliers), the initial mass MAP estimate falls
below the 0.09 Mg minimum of the training set and in 292 cases
even below the H-burning threshold of 0.072 M, (Solar metallicity,
Chabrier 2002). With a minimum of 0.05 Mg, the mass estimates for
these stars (red points, Fig. 15 bottom centre panel) are still physically
plausible for, that is, young brown dwarfs, but this extrapolation
might indicate a systematic error. Like the HRD outliers these objects
are subject to a notable amount of photometric uncertainty (median
of 0.2 mag in F814W), being a likely culprit for these mispredictions.

For another 818 stars (343 also in HRD outliers), the MAP
age estimate is below the 0.1 Myr training set minimum, going
down to 0.02Myr. Given their location at the red edge of the
CMD (blue points, Fig. 15 bottom left panel,) these results are
somewhat plausible but not convincing. Aside from the photometric
uncertainties, limitations of the Zeidler et al. (2015) prescription to
estimate stellar extinction from gas colour excess could provide an
explanation for these results, if, for example, the stellar extinction
has been underestimated for these objects.

Lastly, a number of stars are predicted to be unreasonably old for
Wd2. These are located primarily at the very blue and red edges of
the PMS population in the CMD, but we also find 86 among them on
the turn-on (highlighted in Fig. 16). The former could potentially be
field contaminants that survived our initial rejection using Besangon
models in the direction of Wd2 (Zeidler et al. 2015) and are correctly
identified as old. Evidence for this hypothesis is that we identify
these outliers in our age prediction primarily in the CMD region
where Zeidler et al. (2015) find an overlap of the Besancon models
and the cluster constituents.

For the 86 turn-on stars only the MAP age estimate is incorrect, as
almost all of them show degenerate age posteriors with a prominent
second peak close to the supposed cluster age. Fig. 16 presents
three example age posteriors for these turn-on objects and one from
the majority of well-constrained solutions (bottom left panel) for
comparison. In the top left posterior example, a common case, an
old age appears as the most likely solution, but we find a secondary
maximum at the cluster age. The top right panel represents another
frequent outcome among these 86 stars, where the young and old
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Figure 14. Optical CMDs of the Wd2 HST data, colour coded according to the MAP estimates for the six physical parameters predicted with the cINN trained

on ‘Wd2.TI'.

solution are almost equally likely. The (rarely occurring) final case
in the bottom right shows a ‘complete failure’, where no prominent
secondary maximum exists at the cluster age. Given that (field)
RGB stars can very well overlap with PMS stars within the main-
sequence turn-on region, these results demonstrate again the great
strength of the cINN approach as it recognizes and shows this
possibility in the predicted age posterior distributions. At the same
time, these examples serve as a reminder that careful post-processing
(e.g. identification of all major peaks) of the predicted posterior
distributions is necessary to avoid possible false conclusions by, for
example, relying only on MAP point estimates.

Comparing the predictions on the Wd2 HST data between the
models “Wd2_I" and “Wd2_II’, we find that they agree well with each
other. See Appendix C and Fig. C5 for more details. We conclude
that inclusion of prior knowledge in the form of a simple range cut
of the training set does not benefit the cINN approach in the Wd2
case.

5.1.1 Cluster age

Having assessed the overall satisfying prediction results of the
‘Wd2_I" cINN model we now derive some physical properties of
the cluster and compare them to previous studies.

To begin, we derive a cluster age from our individual stellar age
predictions. As previously mentioned from the MAP stellar age
estimates, we find a median age of the cluster stars of 1.2773$2 Myr.
Determining the cluster age as the most likely value from the sum of
all the individual age posterior distributions (Fig. 17) using a kernel
density estimate, we find a value of 1.047535 Myr (MAP and edges
of 68 per cent confidence interval). We find an almost identical result
for the same derivation with the “Wd2_II’ model (see Appendix C and
Fig. C6). While we cannot constrain the cluster age more precisely
than the previous study by Zeidler et al. (2016), both of our values
match the previously derived age within their errors. This is a very
satisfactory result given that our method derives the cluster age with-
out any prior knowledge, just on the basis of the stellar magnitudes
in two photometric broad-band filters and an extinction estimate.

5.1.2 The stellar initial mass function

As our method predicts the initial mass of each star of Wd2, we can
also analyse the IMF of the cluster, shown in Fig. 18. We suffer from
incompleteness at the low-mass end and from saturation at the high-
mass end but nevertheless, using the range from 0.5 to ~5.6 Mg as
a proxy to derive the slope of the high-mass IMF, we find a value
of o = 2.39 &+ 0.20, which matches the Salpeter IMF slope of « =
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Figure 15. The top panels depict predicted HRDs for the Wd2 cluster constituents provided by the cINN model trained on “Wd2_I". The left-hand panel shows
the HRD based on the MAP predictions for log (L) and log (T.fr), while in the right-hand panel the entire posterior distributions of these two parameters are
plotted for every star. The red line in both diagrams indicates a 1 Myr isochrone for comparison. The orange points in the first panel indicate a possible vertical
artefact in the cINN prediction. The bottom left panel indicates the observed CMD position of these HRD outliers. In the bottom centre and right-hand panels,
we indicate the observed CMD positions of a few stars for which the predicted age (blue) or initial mass (red), respectively, are below the lower limits of the

training data.

2.35 within 1 0. Zeidler et al. (2017) determine a present-day mass
function (PDMF) with a slope of « = 2.53 £ 0.05 for the survey
area of our Wd2 data. Presuming that the PDMF should not deviate
too much from the IMF given the young age of Wd2, our slope is in
good accordance with the result from Zeidler et al. (2017).

5.1.3 Mass segregation

Zeidler et al. (2017) also find evidence for mass segregation in Wd2
through the analysis of the PDMF within different annuli around the
mid-point between the main and northern subcluster of Wd2. Using
our individual stellar mass predictions, we try to confirm this finding
by computing the mass segregation ratios (MSR) Aysr (Allison
et al. 2009) and I'ysg (Olczak et al. 2011). These two quantities are
derived by constructing a minimum spanning tree (MST) for the N
most massive stars within the population and comparing it with k
MSTs of N random stars from the stellar sample. For Aysg, we then
compute the tree length /s of the tree with the massive stars and
the average tree length (/nq) Of the k trees of random stars, so that

MNRAS 499, 5447-5485 (2020)

we find the MSR as
lrand Orand

Ayisg = { haL , (19)
lMST lmass

where o ,nq 18 the standard deviation of (/;,,q) (Allison et al. 2009).
I"wsr is given by the ratio between the mean edge lengths e,
and (erand):

Iysr = M (20)
em'dbS

Here, we proceed in a fashion similar to Aygsg, except that we now

calculate the geometric instead of the arithmetic mean. For each of

the k random MSTs, we determine the geometric standard deviation

according to

N 2
N (Inek —Inek
Aet]‘(and = exp \/Zl—] ( €} erand) , (21)

N

where eik are the N edges of the kth tree (Olczak et al. 2011), and then
derive the upper and lower lo intervals as the means of the k lower
and upper 1o intervals (note that Aek , is a multiplicative standard
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Figure 16. The middle panel shows a zoom-in of the optical CMD of the Wd2 cluster constituents colour coded according to the MAP prediction of log (age).
The four panels in the left and right show the predicted age posterior distributions of the highlighted stars in the CMD. The bottom left panel is an example
PMS star for which our approach provides excellent results, returning a very narrow age distribution at the proposed cluster age. The remaining three cases are
taken from the 86 stars likely on the turn-on for which the MAP age estimate is significantly above the suggested age of Wd2. The two posterior distributions on
the top show commonly observed behaviour among these 86 stars, where we find a second peak in the age posterior distribution, either less (right-hand panel)
or almost equally likely (left-hand panel), which is more consistent with Westerlund’s suggested age. The bottom right panel is a rare example where the age
posterior distribution shows no significant second peak and the age of the star is predicted to be too old for Wd2.

log(age/yr)**" = 6.02
log(age/yr)'®® =1.84

0.4 1

I

[

0.2 L

0.0 | | | ll}'llllr -y
4 6 8 10 12

log(age/yr)

0.6 4

probability density

Figure 17. Histogram of the sum of the age posterior distributions of all
‘Wad2 cluster stars as predicted by the “Wd2_I" cINN model. The orange line
indicates a kernel density fit to this ‘cumulative’ posterior distribution to
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the 68 per cent confidence interval.
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the IMF. The fit with a slope of « = 2.39 £ 0.2 is given by the red line.

Values of Ayst &~ 1 and I'yst ~ 1 indicate that the N massive and
the N randomly selected stars are similarly distributed, while Ayst
> 1 (I'yst > 1) signifies mass segregation and Ayst < 1 (I'vist K
1) suggests inverse mass segregation where the most massive stars
are more spread outwards (Dib, Schmeja & Parker 2018). Following
the suggestion in Olczak et al. (2011), we calculate the number k of
random population MSTs based on the number N of massive stars,
such that a fraction p = 0.99 of the total population of M stars is
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Figure 19. The left-hand panel shows the MSRs Apmsr (Allison et al. 2009) and I'visr (Olczak, Spurzem & Henning 2011) for different numbers of the most
massive stars of Wd2 based on the MAP estimates of the initial mass of the stars. Note that the second x-axis in this diagram denotes the corresponding lower
mass limits, that is, the mass of the lowest mass star within the set of the N most massive stars. On the right, the spatial distribution of the Wd2 stars is shown
colour coded according to the MAP estimate of the initial mass. The stars highlighted by the large diamond symbols are the 10 most massive stars in our
prediction, while the large circles (plus the diamonds) indicate the 100 most massive stars.

covered according to

k = ceil <M> , 23)
M

where ceil(x) denotes the ceiling function, that is, the function

rounding up to the next larger integer.

In the left-hand panel of Fig. 19, we present our resulting MSRs for
different numbers N of the most massive stars drawn from the total
population. We find some evidence for mass segregation as Ayst >
1 and I"yst > 1 for the 10~100 most massive stars. With a maximum
MSR of ~3.4 within this range, however, our analysis suggests
that the mass segregation is not strongly pronounced. The spatial
distribution of the 10 (diamond markers) and the 100 (large circles +
diamond markers) most massive stars shown for comparison in the
right-hand panel of Fig. 19 confirms this finding, as the most massive
stars appear slightly more clustered towards the centre but not to an
excessive degree. The decrease in MSR for the five and three most
massive stars is likely due to the fact that the single most massive
star (MMAP & 14.7M,) in our sample is actually located away from
the centre of Wd2 (the southernmost diamond in the diagram), which
induces large tree and edge lengths in the MST.

In conclusion, our results for cluster age, slope of the IMF, and
observed mass segregation, derived from the cINN predictions of
Wd2, are in good accordance with previous studies. Therefore, the
cINN method performs to a very satisfactory degree on the actual
observational data of Wd2.

5.2 NGC 6397

For NGC 6397, our cINN predictions do not achieve the same success
on the real HST data as for Wd2. Fig. 20 summarizes our results
showing the MAP estimates for the physical parameters colour
coded for every star in the UV-I CMD. Overall we find fairly
plausible values for all parameters, except for age. For instance,
most predicted masses are below one solar mass, which is expected

MNRAS 499, 5447-5485 (2020)

for a 13 Gyr old cluster given that more massive stars should already
have disappeared. With the age prediction, however, we find worse
results. A large fraction of stars is predicted to be much younger than
what would be reasonable for NGC 6397, considering that some of
them are located on the RGB and the main-sequence turn-off, the
features traditionally used to date globular clusters. The top left and
top centre panels of Fig. 21 show the age prediction more in detail,
separating those stars in the CMD for which the MAP estimate is
plausible (above 1 Gyr) from those where it is definitely incorrect
(below 1 Gyr). Only 1/5 of the stars (999 out of 4831) have plausible
MAP age estimates. Of the remaining 3832 stars, only 359 have a
second or third mode in their predicted age posterior distributions that
falls above 1 Gyr. The top right panel in Fig. 21 shows that most of
these are located at the turn-off and bottom of the RGB, an indication
that the cINN has learned, at least to some degree, that stars located
on the turn-off may be old. But even including these 359 additional
stars, where a plausible solution is part of the posterior distribution,
we still find that for more than two-thirds of the observational data
our age prediction fails entirely. Failure may be expected for some
of the stars within the NGC 6397 sample as our training set does
not include, for example, white dwarfs, so that a misprediction in
these cases is easily explained. If we subtract the latter cases and
the 359 turn-on stars with a plausible second mode, we find that the
age prediction fails primarily for low-mass main (LMS) sequence
stars.

As we have previously discussed, predicting the age of LMS stars
is arguably an extremely difficult task as stars with a wide range of
ages share very similar observational features. Even though the cINN
estimates an age within a plausible range for a number of LMS stars,
at least down to about 23 mag in F275W, some of these predictions
are still flawed, as can be seen in the histograms in the bottom row of
Fig. 21. There are, in particular, cases here where the MAP estimates
are too large, sometimes even way above the age of the universe.
With only a minority of stars with plausible MAP age estimates,
deriving a cluster age as the most likely age provided by the sum
of the age posteriors (Fig. 22) is not applicable. The most likely
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Figure 20. UV-I CMDs of NGC 6397 colour coded according to the MAP estimates of the six physical parameters log (age), log (Mini), log (Mcyrr), log (L),

log (Tesr), and log (g) as predicted by the cINN trained on ‘NGC 6397.T".

age value would be 23.4 Myr, way too low, and the barely prominent
second peak, while in the vicinity of the relatively well known cluster
age, still underestimates the age with a value of 7.9 Gyr.

In contrast to the problematic age estimates, luminosity and
effective temperature appear to be predicted quite well by the cINN
model. The left-hand panel in Fig. 23 shows the predicted HRD for
NGC 6397 based on the MAP estimates of log (L) and log (7). The
cINN prediction traces the 13.4 Gyr isochrone (red line) overall very
closely, but there are a few outliers, indicated by orange points in the
diagram. Among them we find the white dwarfs and blue stragglers as
revealed by the CMDs in the remaining panels of Fig. 23. Apart from
these cases, there are a couple of LMS stars for which the prediction
deviates noticeably from what one would expect, similar to what we
found with the predicted ages. This leads us to a possible hypothesis
to explain the problems our cINN approach encounters with the
low-mass NGC 6397 stars. The main-sequence outliers fall primarily
into a region in the observable space where the PARSEC isochrone
models cannot properly fit the observed data (note the deviation
between the red isochrone and the data points, most obvious in the
UV-1CMD in Fig. 23c¢). Given that the deviation between model and
data is most severe starting, for example, at ~23 mag in F275W in
the UV-I CMD, this deficiency of the models could also explain why
we find very few plausible age predictions below this magnitude.

The deviation between the model and the data is not only present
for the LMS, but also in the RGB, as shown by the CMDs. This
could further explain the many age miss-predictions for even the
RGB constituents.

If a problem with the underlying stellar evolutionary models is
indeed the root of the cINN prediction shortcomings, restricting the
training set to a narrower range as in our ‘NGC 6397_II" model cannot
be a remedy (see Figs E3-E5 in Appendix E). While narrowing
the range provides age predictions much closer to the actual age
of the cluster, a large number of cases show overprediction (1013
stars have an age MAP estimate above 13.5 Gyr) as well as several
instances of extrapolation far below the minimum age of the ‘NGC
63971’ training set (1751 stars with ageMA? < 1 Gyr, going down to
0.1 Myr and below). The CMD positions of the latter outliers (Fig. 24)
provides further support for the hypothesis that the discrepancy
between model and observations causes the prediction issues: the
cINN underestimates the age predominantly for stars located where
the observed LMS population deviates the most from the theoretical
data. For further evidence on this matter and additional details on the
‘NGC 6397_1I" results we refer to Appendix E.

Returning to our discussion in Section 4.4 concerning the age
estimation for main-sequence sources from photometry alone, it
is necessary to mention here that the complexity of the task itself

MNRAS 499, 5447-5485 (2020)
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Figure 22. Histogram of the sum of the age posterior distributions of all
NGC 6397 stars, predicted by the cINN trained on ‘NGC 6397_I". The orange
line indicates a kernel density fit to this cumulative posterior distribution to
determine the most likely cluster age.

likely also plays a role in the NGC 6397 prediction outcome. While
the evidence for the main culprit being discrepancy between model
and observations appears conclusive to us, given also its similarity
to the model-model difference issues we have discovered with the
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prediction on the low-metallicity Dartmouth isochrone data, we have
to acknowledge an additional caveat here. Even where the PARSEC
models do match the observations, we find that the age estimates for
the LMS constituents are just plausible but do not exactly recover
the known age of NGC 6397. Based on this consideration and with
regard to the difficulty that traditional methods have with dating
main-sequence objects, we have to surmise that the cINN might not
necessarily outperform known approaches on this specific aspect.
Consequently, our age estimates for real main-sequence stars should
be treated with caution.

In conclusion our prediction of physical parameters for the
globular cluster NGC 6397 does not achieve the same satisfying
results as the cINN model does for Wd2. While the predicted masses
fall within reasonable ranges and the HRD constructed from the
MAP estimates of L and T, traces the theoretical position of the
cluster reasonably well, we find a significant number of outliers
and major problems with the prediction of the age. Here, the cINN
tends to overestimate the age for the stars it recognizes as old,
while severely underestimating the age for a majority of stars of
the globular cluster. Comparing the location of these outliers in
the CMD with the underlying PARSEC models, we believe that
these issues are primarily rooted in a mismatch, contrary to the Wd2
case, bewteen the isochrones and the observations of NGC 6397. We
find large discrepancies especially for the LMS and RGB stars (see
e.g. Fig. 23). This ultimately demonstrates again that even an ML
approach as powerful as the cINN is always only as good as the
underlying physical model. Therefore, it is crucial to choose models
that provide the best agreement with the data.
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diagrams. This series shows that, aside from the white dwarfs and blue stragglers, the cINN prediction fails where the PARSEC isochrone models fail to fit the
data.
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Figure 24. UV-I CMD of the NGC 6397 data colour coded according to the MAP age estimates predicted by the cINN trained on ‘NGC 6397_1I’. In order the
three panels show the stars for which we find log (age/yr) < 9, 9 < log (age/yr) < 10.13, and 10.13 < log (age/yr), respectively. The red line in all diagrams
indicates a 13 Gyr isochrone for comparison. This sequence demonstrates that the age prediction of the ‘NGC 63971 fails noticeably for those stars, where
the observations deviate the most from the theoretical model.

6 POSSIBLE EXTENSIONS In the ‘NGC 6397_I" case, however, we find that the cINN can
easily predict the extinction. Here, the rmse of the point estimates
6.1 Extinction as a physical parameter is only 0.008 mag (first panel in Fig. 25), and there is no significant

degradation of the predictive capabilities for the other parameters.
Part of the failure of the Wd2 model can likely be attributed to the
much larger extinction range, 12 mag, adopted for ‘Wd2_I’ training
set in comparison to the only 3 mag range for the ‘NGC 63971’
case. Another possibility, however, could be that the “Wd2_I” training
set only uses two photometric filters, too few to properly constrain
the extinction. A more optimized architecture of the cINN may be
required in these cases.

Given this promising outcome for the extinction prediction of
the ‘NGC 6397_I" cINN model on the synthetic data, we further
evaluate its performance by predicting the known extinction of the
real NGC 6397 data. The results are shown in panels 2—4 of Fig. 25.
The histogram of the MAP estimates in panel 2 shows that the
prediction for Ay is fairly accurate, the mean being even within
the narrow 3o range determined by Brown et al. (2018). There are a

As mentioned in the Introduction, we keep the regression problem as
simple as possible for this study. Therefore, we adopt a single value
for the metallicity of each cluster and assume that individual stellar
extinctions are known. Nevertheless, given the way our training sets
are constructed we can easily move the extinction from the observable
to the physical parameter space. Because of that, and also in view of
future development of this method, we perform one ‘feasibility’ test
for both “Wd2_I" and ‘NGC 6397_1" where the cINN trains to predict
extinction instead of taking it as an input.

Without further modifications to our approach, the prediction of
extinction does not work very well for ‘Wd2_I". Not only does
the predicted extinction on the synthetic test set exhibit a large
rmse (~1.7mag) for the point estimates, the prediction of the
remaining parameters also suffers greatly (e.g. age rmse increases to
1.3 dex).
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Figure 25. The first diagram shows the MAP estimates of extinction against the true values for 20 000 test observations as predicted by a cINN trained on ‘NGC
6397_T". The second panel shows a histogram of the predicted Ay MAP estimates of the NGC 6397 HST data in comparison to the known mean extinction (red
dashed line, Brown et al. 2018). The third and fourth panels show extinction corrected UV-I CMDs of the NGC 6397 HST data, once corrected via the MAP
extinction estimates and once by sampling from Ay = 0.5735 #£ 0.0062 (as suggested by Brown et al. 2018). In the third panel, the stars are additionally colour

coded according to AYAP

few cases where the cINN predicts an unphysical negative extinction
value. As we have not enforced the extinction value to be positive
during training, by, for example, taking its logarithm, this could easily
be remedied in further optimization. The third and fourth panels show
the predicted extinction corrected CMD of NGC 6397 (colour coded
according to AMAP) and the extinction corrected CMD retrieved by
randomly sampling the extinction values of Brown et al. (2018). The
overall shape matches fairly well, especially the turn-off points are
in good agreement. The cases where the cINN prediction fails (grey
points in the third panel) are mostly related to the issue with the
PARSEC isochrones, that we have discussed in Section 5.2.

Nevertheless, this test shows that extinction prediction is very
well within the capability of the cINN method, at least if enough
photometric filters are available as features, the considered extinction
range is small enough, or a combination of both.

6.2 Other

Beside the prediction of extinction there are several physical effects,
such as variability or photometric uncertainties, that provide room for
extensions to our approach. While the latter can be taken into account
using a weighted sampling strategy within the uncertainties of the
observational data, developing an intrinsic uncertainty propagation
mechanism would be a powerful extension to the approach.

In this paper, we have also presented one approach to incorporating
prior knowledge (specifically metallicity and age) into our method
by curating training sets accordingly. Taking the young cluster
Wd2 as an example, that is, comparing the results of “Wd2_I" and
‘Wd2_II’, this procedure does not necessarily change the cINN
outcome. The alternative of treating prior knowledge intrinsically
rather than through training set modification is another possible
extension that could benefit the approach. A possible way to do
so could be through modification of the target distribution of one
or more latent variables. Within the approach we have presented,
using Gaussian distributions as targets is the simplest choice, but an
arbitrary one. In principle any distribution (for which a log-likelihood
can be defined) can serve as the target during training of the cINN.
Therefore, we plan to investigate if setting prior knowledge, for
example, a distribution of plausible ages for a given cluster, as
the target distribution of one of the latent variables will have the
desired effect of incorporating additional prior information more
effectively.
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and the grey points indicate stars for which the MAP estimate is an unphysical value below 0.

7 SUMMARY AND CONCLUSIONS

In this introductory paper, we present the first application of a
novel INN approach to the task of predicting physical parameters
for individual stars based on photometric observations. In many
such inverse regression problems, the mapping from the physical
parameters of interest x to the associated observables y is subject
to an inherent information loss that induces degeneracies as y no
longer captures all variance of x. To retain this information otherwise
lost, the cINN encodes all variance of x that is not covered by
y in latent (not observable) variables z by learning a mapping
from x to z conditioned on y. Due to the invertible architecture
of this network, after learning this forward mapping it automatically
provides a solution for the inverse mapping x = g(z;y), and by
sampling the latent variables z one obtains estimates for the full
posterior distributions p(x|y) of interest.

We introduce cINNs to the analysis of photometric data in this pilot
study by training and testing on synthetic data from the PARSEC
stellar evolutionary models (Bressan et al. 2012) and performing a
benchmark analysis on real observational data obtained by the HST
for the young cluster Wd2 and the old globular cluster NGC 6397.
These clusters are chosen to cover the extremes of the cluster range,
that is, very young and very old, in order to gain first insights into
the systematics of our approach, but not to conduct an exhaustive
analysis of the whole spectrum of possible cluster parameters. We
construct the synthetic training sets by adopting isochrone model
tables of the correct metallicity for Wd2 and NGC 6397, respectively,
with the aim to predict age, initial and current mass, luminosity,
effective temperature and surface gravity of each cluster star. To
overcome sampling issues in the Mi,; and age spaces of the isochrone
tables, we first oversample each individual isochrone using a spline
interpolation and then extract sample points to fill up underpopulated
areas within the parameter space. To simplify this regression problem
we use extinction as an observable parameter, in addition to the
available photometry. To account for extinction within the synthetic
training set, assuming every isochrone model point to be a synthetic
star, we add multiple examples of the same star with different
amounts of extinction to the training sets.

In order to evaluate how the cINN prediction on the real data
behaves when we include prior knowledge about the age of the
respective clusters, we construct two training sets for each cluster,
one encompassing the entire age range of our theoretical models,
from log (age/yr) = 5 to 10.13, the other with a reduced age range
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close to the actual cluster age (log (age/yr) = 5 to 8 for Wd2 and
9 to 10.13 for NGC6397). To derive point estimates from the
predicted posterior distributions, we use kernel density estimation
with bandwidths determined according to Silverman’s rule of thumb.
In this way we find the most likely values of physical parameters
(MAP estimates) in the marginalized distributions. We ascertain the
training performance of our four models on a test set of 20.000
random synthetic observations that are excluded for the training
process. Using this sample, we determine for each parameter the
median calibration error, the uncertainty at 68 per cent confidence
as well as the rmse/nrmse between the MAP parameter estimates
and the known true parameter values. Using a simple nearest
neighbour approach on the training data, we also approximate a
resimulation error for the predicted posteriors on the synthetic test
set. Furthermore, to ascertain how well our models generalize to new
populations, we test our models on synthetic data from two different
stellar evolution models, namely isochrone tables from MIST (Choi
et al. 2016; Dotter 2016) and Dartmouth (Dotter et al. 2008).

Our main results from the tests on synthetic data are the following:

(i) Once trained (~2h) the cINN can rapidly predict a posterior
distribution for a single star. Using GPU acceleration on a Nvidia
GTX 1080, the cINN can predict about 35 posterior distributions
with 4096 samples per second.

(ii) On the synthetic test data, the prediction of initial/current
mass, luminosity, effective temperature, and surface gravity works
extraordinarily well with posterior distributions that are narrowly
constrained around the true values and low rmses of the derived
MAP parameter estimates.

(iii) Predicting the stellar age is a more difficult task. The predicted
posteriors tend to be broader and often exhibit multimodalities,
revealing ample degeneracies in the age prediction. While we can
confirm that the true value is part of the predicted distribution in
more than 99 per cent of the cases, there are several instances where
the true solution does not coincide with the most likely outcome of
the posterior, falling into a second peak instead. In itself, this is not
problematic as a true posterior describes all possible parameters that
could explain a given observation, such that the most likely prediction
does not have to be the one that generated the given observation.
However, as a consequence we find significantly more cases in the
age prediction where our point estimates deviate from the true value.
The intermediate age range from log (age/yr) = 6.5 to 8.5 is the
least affected, whereas the predictions for very old stars (> 1 Gyr)
show a notable amount of instances where the MAP estimate is off by
~ (.4 dex on average. When fewer photometric filters (2 instead of 5)
are available, as in the case of our Wd2 training set, we also observe
more deviations for the very young stars (< 10 Myr). Nevertheless,
overall these cases where the MAP estimate deviates strongly from
the true value are still a minority.

(iv) Our nearest neighbour resimulation approximation returns
small errors, confirming the validity of the predicted posterior
distributions and identified degeneracies.

(v) The predictive performance of the cINN improves (especially
for the age) when more photometric filters are included in the
observables. However, even with perfect information (17 photometric
filters here) the prediction of age for old stars (1 Gyr and older) still
remains highly challenging.

(vi) Our models generalize overall very well to the synthetic data
of other stellar evolution models and perform particularly well in
recovering luminosity, surface temperature, and gravity. Ages and
masses are also predicted fairly accurately for most samples, but
tend to exhibit larger errors. Specifically, our models manage to also

Stellar parameters from INNs 5471
recover ages of main-sequence objects on these different synthetic
test sets, providing confirmation that our models do not simply overfit
their training data for these hard to predict cases. However, if there
are significant discrepancies between the investigated models and
the PARSEC isochrones, such as in our low-etallicity Dartmouth
test, the age prediction can fail severely. We conclude that our cINN
model manages to recover ages for synthetic main-sequence stars
through a combination of its latent variable approach and the perfect
synthetic photometry. For real main-sequence observations, however,
we suggest to treat the predicted ages with caution.

Applied to observed data of Wd2 and NGC 6397, we find:

(vii) The cINN predictions based on the HST data of Wd2 return
excellent results. With a median of 1.2713:52 Myr of the age MAP
estimates and a most likely value of 1.041'8:38 Myr from the sum of
all age posteriors, the cINN results are in good accordance with the
previously determined age of Wd2 of 1.04 £ 0.72 Myr (Zeidler et al.
2016). Furthermore, the cINN correctly recognizes that stars located
on the turn-on could potentially also be RGB stars and thus returns
multimodal age posterior distributions, highlighting this degeneracy.

(viii) Based on the cINN mass estimates, we are able to construct
the IMF of Wd2 and fit its high-mass slope. We find a value of o =
2.39 £ 0.2, which corresponds to the Salpeter slope within 1o and
is in accordance with the previously determined slope of the PDMF
of @ = 2.53 £ 0.05 (Zeidler et al. 2017). We also find evidence for
mass segregation based on the MSRs Aysr and I'ysg of individual
stars, again confirming previous results by Zeidler et al. (2017).

(ix) For NGC 6397, the cINN predictions are not as good as for
Wd2. While certain properties are recovered, such as the predicted
HRD which traces the isochrone corresponding to the known clusters
age relatively well, there are glaring issues with the prediction of the
cluster age. The majority of stars is predicted to be much younger
than the actual cluster age, while stars that are correctly identified
as old tend to have an overestimated age. We identify the culprit for
these unsatisfying results in the PARSEC evolutionary models, as
they do not fit the observations of this globular cluster well enough.
This example highlights that the careful selection of the underlying
physical model is of utmost importance for our approach.

(x) When enough photometric filters are available (e.g. 5 in the
case of NGC 6397) the cINN can also predict extinction very well,
instead of using it as an input observable, without losing accuracy in
the prediction of the other physical parameters.

Overall the results presented in this paper demonstrate that the cINN
is a very powerful approach that can solve the problem of predicting
physical parameters from photometry data if the underlying physical
models are selected carefully to match the observations. In other
words, the possibility of solving the inverse problems (from obser-
vations to the physical parameters of each star) relies heavily on
the quality of the forward modelling (from physical parameters to
synthetic observations). In the case of Wd2, we correctly recover
the main cluster properties using only 2 photometric filters and an
estimate of stellar extinction as an input. The cINN method can
successfully learn and highlight degeneracies that appear within the
given problem, making it an excellent tool for tasks that are subject
to degenerate mappings from physical to observable parameter
space.

Given its excellent prediction efficiency, we believe that the cINN
approach could become a very valuable tool in the big data epoch
of astronomy. In particular current and future all-sky/very-wide-
field surveys like Pan-Starrs as well as upcoming observational
facilities such as the Vera Rubin Observatory (Large Synoptic Survey
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Telescope, LSST) or the Roman Space Telescope (formerly WFIRST)
will provide enormous amounts of data, for which efficient and
robust deep learning approaches, such as the cINN, will truly be
able to show their strength. With this in mind we plan to employ the
cINN approach on data from large HST surveys, such as the Hubble
Tarantula Treasury Project or the Measuring Young Stars in Space
and Time survey, to characterize more complex stellar populations
in a subsequent study.

In this paper, we purposefully keep the regression problem as sim-
ple as possible, in particular we only consider the single metallicity
case, using extinction as an input parameter and ignore photometric
errors. We plan to address these effects, together with variability and
binarity, in future studies. As demonstrated for the example of the
old globular cluster NGC 6397, predicting extinction is already well
within the capacity of the cINN. However, it might require some
architecture optimization to support observations with a low number
of filters or regions with a large range of differential extinction.
Photometric errors can be taken into account to some degree at this
stage already, at least at the prediction stage, by simply resampling
the observations according to their errors and performing a weighted
addition of the resulting posterior distributions. In the future, we
also plan to investigate if some intrinsic treatment is possible at
the training stage of the network, for example, by incorporating
uncertainties in the training set. Another avenue that we aim to
pursue is the possibility of considering prior knowledge as part of
the training strategy rather than incorporating it in the training set.
Ultimately our goal is to provide observers with a robust, efficient
and general tool to analyse observations and retrieve the key physical
parameters of their targets.
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APPENDIX A: GENERAL

Table Al summarizes the A,/Ay values we have derived according
to equation (3) for all of the HST filters following the Cardelli
et al. (1989) Milky Way extinction curve. The wavelength dependent
coefficients a@; (x) and by (x), where x = A~'(um™"), are given by
equations (2)—(4) in Cardelli et al. (1989) and are defined as follows.
For the infrared regime 0.3 pum~' <x < L.lpum™', they are given
by

a(x) = 0.574x'6",

b(x) = —0.527x"61, (A1)

In the optical and NIR regime, 1.1 um~!' < x < 3.3um™', follows

a(x) = 1 +0.17699y — 0.50447y* — 0.02427y* + 0.72085y"
+0.01979y° — 0.77530y° + 0.32999y7,

b(x) = 1.41338y + 2.28305y* + 1.07233y" — 5.38434y"

—0.62251y° 4 5.30260y° — 2.09002y’, (A2)

where y = x — 1.82.
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Table Al. Overview of the A, /Ay values derived from
Cardelli et al. (1989) extinction curve according to
equation (3) for the HST filters used in the Wd2 and
NGC 6397 observations.

Filter 2—(}
Ry =3.1 F275Wwrc3 1.94436
F336Wwrc3 1.65798
F438Wwrc3 1.33088
FO606W 5cs 0.92246
F814W 5cs 0.60593
Ry =38 F218Wwrc3 2.53769
F225Wwrc3 2.21539
F275Wwrc3 1.75064
F336Wwrc3 1.49531
F390Wwrc3 1.39453
F438Wwrc3 1.28651
F475Wwrc3 1.15971
F555Wwec3 1.03555
F606Wwrc3 0.93420
F625Wwrc3 0.88084
F775Wwrc3 0.67977
F814Wwrc3 0.62821
F105WwEgc3 0.39924
F110Wwgc3 0.34595
F125Wwrc3 0.30448
F140Wwgc3 0.25550
F160WwEc3 0.21792

Finally, for the UV regime, 3.3 um™! < x < 8um™!

defined as

, they are

0.104
(x —4.67)> +0.341

1.206
(x — 4.622 + 0.263

where F,(x) = Fj(x) =0 for x < 5.9 and

a(x) = 1.752 — 0.316x — + Fu(x),

b(x) = —3.090 + 1.825x + + Fy(x),  (A3)

F,(x) = —0.04473(x — 5.9)*> — 0.009779(x — 5.9)°,
Fp(x) = 0.2130(x — 5.9)> + 0.1207(x — 5.9)* (A4)

for5.9 <x<8.

Fig. A1 shows the prior distributions of all six phyiscal parameters,
that is, age, initial Mj,; and current mass M, luminosity L, surface
temperature 7., surface gravity g, for the four training sets “Wd2_I",
‘Wd2_II’, ‘NGC 63971, and ‘NGC 6397_1I’ that we employ in this
study.
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Figure Al. Prior distributions of all physical parameters in our training sets. From top to bottom, the training sets are “Wd2_I", “‘Wd2_II’, ‘NGC 6397_I’, and

‘NGC 63971, respectively.

APPENDIX B: ‘WD2_I’

This appendix provides additional result diagrams for cINN models
trained on ‘“Wd2_I" and variations thereof.

Fig. B1 shows the covariance matrix of the latent variables in the
left-hand panel and their corresponding histograms in comparison to
the target normal distribution in the right-hand panel as evaluated on
the 20 000 test observations using the trained “Wd2_I” model. These
two diagrams serve as an example for convergence of the cINN
model.

Corresponding to the series of posterior against true value dia-
grams presented in Fig. 11 the respective MAP versus true diagrams
are shown in Fig. B2. Both these figures demonstrate how the cINN
predictive performance improves with an increase of the number of
photometric filters used as input.

MNRAS 499, 5447-5485 (2020)

Fig. B3 shows the ‘Wd2_I’ cINN prediction results on 10000
samples from synthetic data of the Dartmouth isochrone tables. This
figure highlights that the cINN manages to recover most physical
parameters quite accurately on this synthetic data set derived from
a stellar evolution model that treats the underlying physics different
than the PARSEC models, on which our cINN training sets are
based. There are, however, some larger discrepancies in the low-
mass regime, where the PARSEC and Dartmouth models deviate
most strongly from each other. While the age predictions appear
significantly worse than on the MIST synthetic data at first glance,
the median absolute error between prediction and ground truth is
only 0.2 dex. Additionally, taking multimodalities in the predicted
age posteriors into account, most ages can actually be recovered
quite accurately. The latter is highlighted in Fig. B4 comparing the
predicted to the ground truth HRD for the MIST isochrones.
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Figure B1. Left: the covariance matrix of the latent variables evaluated on 20 000 test observations provided by the cINN model trained on ‘Wd2_I’. Right:
histograms of the individual latent variable distributions. The black line indicates the distribution of the sum of all latent variables, while the grey line shows the
target normal distribution for reference.
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model with increased amounts of features compared to our standard “Wd2_I" setup. On top of the extinction, the columns indicate increasing numbers of
photometric filters used as features. The three filter case entails the HST filters F555W, F814W, F160W, the five filter one adds F275W and F336W to that,
and the nine filter further includes F438W, F606W, F775W, and F110W on top of the previous. The final 17 filter case entails all previous filters in addition
to F218W, F225W, F390W, F475W, F625W, F105W, F125W, and F140W. This sequence shows that the point estimate accuracy of the cINN improves with
increasing number of available features as the rmse decreases as well as the number of predictions that fall off the perfect 1-to-1 correlation.

Counts

Icvg(age/yr)MAP

9.0

93 96
log(age/yr,

9.9
)true

ik

-1.0

Counts f Counts
10 1 10
2
o
<
=
<
2
<
3o
(=
o
-2
RMSE =0.10 -7
NRMSE =0.07 y

-0.5

0.0
log(M/Mgyn)“*

-2

[ —— ]
100

RMSE =0.032
NRMSE =0.005

0 2

log(L/Leun) ™

Counts

©
©

10

log(Ter/K)"*"
6 e e
s 8 8

@«
o

35 3.6 3.7 3.8

log(Ter/K)™®

RMSE =0.005
NRMSE =0.012

3.9

Counts

100

RMSE =0.11

NRVSE =0.02
2 4
log(g/cms™2)"e

Figure B3. 2D histograms of the MAP predictions for the physical parameters on ~10 000 samples from the Dartmouth isochrone tables as predicted by the
‘Wd2.I" cINN model. Note that the nrmses are normalized to the parameter ranges of the Dartmouh ground truth here instead of the ranges of the “Wd2_I’
PARSEC training data.

MNRAS 499, 5447-5485 (2020)

0202 JoqUIBAON $Z U0 158NnB Aq 8YE0G6S// PhS/1/661/101E/SEIUL/WOd" dNO-0lWSpEDE//:Sd)Y WO pepeojumod



5476 V. F. Ksoll et al.

INN prediction

2 log(agelyr)estPeak
[ T
9.0 9.3 9.6 9.’9
3.9 3.8 3.7 36 3.5
log(Ten/K)™AP

Dartmouth ground truth

true

log(age/yr)

9.0 93 9.6 9.9

-24

3.9 3.8 3.7 36 35
log(Tex/K)™®

Figure B4. Left: cINN prediction for the HRD of the Dartmouth isochrones using model ‘Wd2_I'. Note that MAP estimates are used for luminosity and
effective temperature here, but the colour code that indicates the predicted age does not correspond to the MAP age prediction but rather the best-fitting peak
of the predicted age posterior. The latter is done to take multimodal age posteriors into account. Right: ground truth HRD of the Dartmouth isochrones, colour

coded according to their age.

APPENDIX C: ‘WD2._1I’

In this appendix, we provide additional plots and further discussion
for the cINN trained on “Wd2_II".

Figs C1 and C2 present the MAP and posterior against true
diagrams for “Wd2_II" corresponding to Figs 9 and 10 presented
in the main paper for ‘Wd2_I'. These two diagrams show that the
final cINN model on “Wd2_II" does not differ significantly from the
‘Wd2_I" solution. Aside from a few more outlier cases that likely
cause the increased rmses of the physical parameters beside age,

the point estimate performance shows similar successes and flaws,
especially the same increased number of outliers in the age prediction
for the young stars. As already indicated by comparable median
uncertainties (except age), the posterior distributions are equally
unaffected by the age cut in the “Wd2_II" training set. The predicted
age posteriors also do not show significant changes except for the
obvious limitation due to the smaller age range of “Wd2_II’ and a
rare tendency to extrapolate down to log (age/yr) = 4, which we
do not observe for ‘Wd2_I’. The more limited age range of course
eliminates some of the degeneracies that may have caused some of
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Figure C1. 2D histograms of the MAP estimates plotted against the true values for the six physical parameters we predict with the cINN trained on “Wd2_II’
for 20000 cases from our test set. From top left to bottom right, we show age, Mini, Mcurr, L, Ter, and g.
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Figure C2. 2D histograms of the entire predicted posteriors plotted against the true value of the six physical parameters provided by the cINN trained on
‘Wd2_1I" for 20 000 cases from the respective test set. From top left to bottom right age, Mini, Mcurr, L, Tefr, and g are shown.
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Figure C4. Predicted HRD for the Wd2 cluster constituents provided by the
cINN model trained on “Wd2_II’. The left-hand panel shows the HRD based
on the MAP predictions for log (L) and log (T¢fr), while in the right-hand
panel, the entire posterior distributions of these two parameters are plotted
for every star. The red line in both diagrams indicates a 1 Myr isochrone for
comparison.

the false MAP estimates in the “Wd2_I” prediction, like, for example,
the few 10—100 Myr old stars in Fig. 9 that have an MAP prediction
somewhere between 100 Myr to 1 Gyr. As these are rare cases in
the previous test, however, it seems safe to say that the decrease in
rmse and median uncertainty is primarily caused by the fact that the
posterior distributions should span a smaller range of maximum 3
dex instead of the 5 dex in “Wd2_I". The almost equal nrmses confirm
this.

Corresponding to Fig. 14 we show the “Wd2_II" prediction results
for all physical parameters in terms of the MAP estimates in the
CMDs of Fig. C3.

Analogous to Fig. 15, we show the predicted HRD for the
observational Wd2 data as given by the “Wd2_II’ model in Fig. C4.

Fig. C5 shows the comparison of the MAP estimates between the
two models. In general the deviations in the MAP for all physical
parameters are fairly insignificant except for age, with rms deviations
on the order of a few 0.01 dex. In the case of the age prediction the
deviations appear more severe, on average about 0.499 dex, likely
caused by the cut-off around log (age/yr) = 8 for ‘Wd2_II’. Overall
most predictions (note the logarithmic colour coding) fall on to the
identity mapping, except for a set of about 500 stars which are placed
at log (age/yr) ~ 5.7 by the “Wd2_II" model, while the ‘Wd2_I’
extrapolated an age below 0.1 Myr here. However, as the median
relative deviation between the two MAP estimates is only 0.3 per cent
it is safe to say that the two models do not differ significantly.

We conclude that the cINN does not get confused in any significant
way if there are more potentially degenerate mappings in the training
set, as the full model predicts the same physical parameters as the
model that incorporates prior knowledge to decrease the amount of
degeneracies.

Fig. C6 presents the derivation of a cluster age of Wd2 based on
the sums of the age posteriors for the predictions by the “Wd2_II’
model. Here, we find a similar result as for the “‘Wd2_I" model shown
in Fig. 17, except for a split peak with maxima at 0.5 and 1.04 Myr
in the sum of posterior distributions. As these two solutions are
part of one major peak they likely belong to the same mode of the
distribution, located at the Wd2 cluster age. This demonstrates again
that “Wd2_II’ agrees well with “Wd2_I".
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APPENDIX D: ‘NGC 63971’

Appendix D provides complementary diagrams and discussion for
the ‘NGC 6397_I" cINN results.

Fig. D1 provides the MAP versus true diagram for ‘NGC 63971
analogous to Fig. 9 and Fig. C1. Fig. D2 shows the corresponding
posterior versus true diagram (cf. Fig. 10 and Fig. C2). These two
figures show that the ‘NGC 6397_I" model delivers overall similar
results to “Wd2_I’, except for slight improvements in prediction
accuracy. These can likely be accredited to the larger coverage of
five filters in ‘NGC 6397_I" over the two filters in ‘Wd2_I" as a
comparison of Fig. DI to the five filter experiment for ‘Wd2_I" in
Fig. B2 confirms. The same comparison holds for Fig. D2 versus the
five filter results for “‘Wd2_I” displayed in Fig. 11.

Figs D3-D6 present the ‘NGC 6397_I" cINN model prediction
results for the MIST and Dartmouth synthetic isochrones, respec-
tively. They correspond to Figs 12 and 15, shown in the main paper.
As already discussed in Section 4.4, these diagrams here show that
the ‘NGC 6397_I" is similarly successful on the MIST data set as
‘Wd2_T’, although suffering from overall larger prediction errors,
but fails quite severely on the Dartmouth data due to the significant
model discrepancies between Dartmouth and PARSEC.
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6397_I" for 20 000 cases from the respective test set. From top left to bottom right age, Mini, Mcurr, L, Tefr, and g are shown.
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APPENDIX E: ‘NGC 6397 1I’

This appendix presents additional diagrams and discussion concern-
ing the results of the ‘NGC 6397_II" cINN model.

Figs E1 and E2 show the MAP and posterior versus true diagrams
for ‘NGC 6397, respectively, corresponding to Figs 9 and 10 for
‘Wd2_I’, Figs C1 and C2 for “Wd2_II’, and Figs D1 and D2 for
‘NGC 6397.I".

Fig. E3 shows the CMD coloured according to the MAP estimates
analogous to Fig. 20 for ‘NGC 6397_I’. In correspondence to the
top left panel of Fig. E3, and Fig. 24 in the main paper provides a
breakdown of the age prediction results in the CMD, distinguishing
under- and overestimates from the reasonable outcomes. Fig. 24 also
indicates that the elimination of all pre-main-sequence examples
in ‘NGC 6397_1I" helps the cINN to recognize the turn-off and
RGB stars as old objects (cf. Fig. 21 for ‘NGC 6397.I"). As the
right-hand panel demonstrates, discrepancies between the observed
and modelled RGBs are again a likely cause for the cINN age
overestimates for a number of RGB constituents. While the age
predictions have arguably somehow improved, the prediction of
effective temperature and luminosity appear to suffer slightly with
the ‘NGC 6397_II’ cINN. Fig. E4 shows the corresponding predicted
HRD in the left-hand panel, indicating about 650 outliers (orange
points) to the right of the 13 Gyr isochrone, which do not appear

in the corresponding ‘NGC 6397_I" diagram. The right-hand panel
in the same figure suggests that these outliers are, again, mainly
LMS stars located where model and observations disagree the
most.

Fig. ES presents the cluster age derivation, analogous to Fig. 22
shown in the main paper for ‘NGC 6397_I". Here, it is worth men-
tioning that a cluster age of 13.473:, Gyr, determined from the most
likely value of the sum of all individual age posteriors (excluding
the posteriors of the total failure cases with log (age/yr)MAP < 5),
is actually fairly plausible despite the described issues with the
age prediction. Even neglecting these problems, however, the large
uncertainties of this estimate make this outcome unsatisfactory.

The last Fig. E6 exhibits the 2D histogram comparing the MAP
estimates for the physical parameters between the ‘NGC 6397 1" and
‘NGC 6397_II" predictions, analogous to the comparison between
‘Wd2_I" and “Wd2_II” presented in Fig. C5 in Appendix C. Overall
the differences are more significant than those resulting from the
comparison of ‘Wd2_I" and ‘“Wd2_II'. The predictions of L, T,
and g appear to be the least affected by the change in model, being
quite close to a 1-to-1 correlation, although we find a median relative
deviation of 20 per cent for L and 18 per cent for g. At a first
glance, the predictions of Mj,; and M, look more scattered around
the 1-to-1 correlation, but with a median relative deviation of about
18.6 per cent the difference is of similar magnitude.
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Figure E1. 2D histograms of the MAP estimates plotted against the true values for the six physical parameters we predict with the cINN trained on ‘NGC
6397_1I" for 20 000 cases from our test set. From top left to bottom right, we show age, Mini, Mcurr, L, Ter, and g.
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Figure E2. 2D histograms of the entire predicted posteriors plotted against the true value of the six physical parameters provided by the cINN trained on ‘NGC
6397_1I" for 20 000 cases from the respective test set. From top left to bottom right age, Mini, Mcurr, L, Tefr, and g are shown.
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Figure E3. UV-1 CMDs of NGC 6397, colour coded according to the MAP estimates for the six physical parameters predicted with the cINN trained on ‘NGC
6397_1I'. Note that the grey points are those stars for which the prediction falls outside of the range provided by the respective colour bar of each panel.
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3.3 Measuring Young Stars in Space and Time
- I. The Photometric Catalog and Extinction
Properties of N44

Ksoll et al. (2021a) presents the MYSST survey (see also Section 2.5) of
the star-forming complex N44 located in the LMC, its observing strategy and
photometric catalogue, and investigates extinction properties of N44.

Contributions: Dimitrios Gouliermis initiated the MYSST collaboration and
led the HST survey as Pl of the MYSST project. Jenna Ryon, Elena Sabbi
and Massimo Robberto led the data reduction and completeness analysis,
and prepared the photometric catalogue with additional assistance provided
by Andrew Dolphin. Ullrich Koethe suggested the RANSAC algorithm for
fitting the reddening vector. | conducted all analysis on the final photomet-
ric catalogue, including the implementation of the RANSAC approach for
the derivation of the reddening properties and subsequent construction of
extinction maps for N44. | also created all figures (except Fig. 3-5) and
wrote the text for most of the paper, excluding the introduction provided by
Massimo Robberto and Section 2, penned by Jenna Ryon. Additionally, all
co-authors assisted with feedback and proofreading during the draft stages
of the manuscript.
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ABSTRACT

In order to better understand the role of high-mass stellar feedback in regulating star formation
in giant molecular clouds, we carried out a Hubble Space Telescope (HST) Treasury Program
Measuring Young Stars in Space and Time (MYSST) targeting the star-forming complex N44 in the
Large Magellanic Cloud (LMC). Using the F555W and F814W broadband filters of both the ACS
and WFC3/UVIS, we built a photometric catalog of 461,684 stars down to mpsssw ~ 29 mag and
mrs1aw =~ 28 mag, corresponding to the magnitude of an unreddened 1Myr pre-main-sequence star
of ~ 0.09 Mg at the LMC distance. In this first paper we describe the observing strategy of MYSST
and the data reduction procedure and present the photometric catalog. We identify multiple young
stellar populations tracing the gaseous rim of N44’s superbubble, together with various contaminants
belonging to the LMC field population. We also determine the reddening properties from the slope
of the elongated red clump (RC) feature by applying the machine-learning algorithm RANSAC, and
we select a set of upper-main-sequence (UMS) stars as primary probes to build an extinction map,
deriving a relatively modest median extinction Apsssw =~ 0.77mag. The same procedure applied to
the RC provides Apsssw =~ 0.68 mag.

1. INTRODUCTION

Corresponding author: Victor F. Ksoll The physical processes leading to star formation
v.ksoll@stud.uni-heidelberg.de (SF) in the dynamically evolving multiphase interstellar
medium (ISM) are largely regulated by massive stars. In
a star-forming region, the momentum and energy feed-
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back from the few massive newborn stars is expected
to terminate SF locally, trigger new SF remotely, and
through gas expulsion modulate the gravitational po-
tential and therefore stellar dynamics and cluster sur-
vival (see e.g. the reviews by Mac Low & Klessen 2004;
Zinnecker & Yorke 2007; McKee & Ostriker 2007). Gi-
ant star-forming regions, aggregates of stellar nurseries
spread over the scales of molecular clouds, are thus com-
plex ecosystems where different stellar populations are
born and interact with each other and their ambient ISM
(for further discussions of the physical processes influ-
encing ISM dynamics, see e.g. Klessen & Glover 2016
or Girichidis et al. 2020). Recent studies of high-mass
star-forming regions show significant substructure and
hierarchical SF (Bik et al. 2012; Gouliermis et al. 2014;
Adamo et al. 2015; Sabbi et al. 2016; Cignoni et al.
2016; Gennaro et al. 2012, 2017; Nayak et al. 2016,
2018; Sun et al. 2017; Getman et al. 2018; Dib & Hen-
ning 2019; Grasha et al. 2019), with star formation rates
(SFRs) and star formation efficiencies (SFEs) that vary
within the same molecular cloud (Hony et al. 2015). Nu-
merical modeling qualitatively reproduces this behav-
ior (e.g. Bonnell et al. 1997, 2001; Klessen et al. 2000;
Offner et al. 2009; Girichidis et al. 2011, 2012; Feder-
rath & Klessen 2012; Federrath 2013; Parker & Wright
2016; Hennebelle 2018; Padoan et al. 2020), but our cur-
rent understanding lacks the quantitative study of two
critical measures needed to parameterize clustered SF:
length scale and timescale.

Two main theories of SF on molecular cloud scales
have been proposed, where the traditional approach pos-
tulates that stellar birth occurs in a slow quasi-static
manner, with supporting mechanisms prolonging the
cloud lifetime by many tens of dynamical times (e.g.
Shu et al. 1987a; Krumholz & Tan 2007), while the
more modern dynamical theory of SF acknowledges the
complex morphological and kinematic structure of star-
forming clouds and sees stellar birth as a highly dy-
namical, albeit inefficient, process. In this picture the
formation of stars begins while the cloud is still form-
ing and never reaches an equilibrium state before dis-
persing as a result of to feedback (e.g. Hartmann et al.
2001; Ballesteros-Paredes et al. 2007; Clark et al. 2012;
Chevance et al. 2020). These two scenarios can be obser-
vationally tested, both in terms of the morphological and
kinematic properties of molecular clouds and in possible
local variations of the stellar initial mass function (IMF),
which on average exhibits remarkably uniform behavior
(Kroupa 2002; Chabrier 2003; Bastian et al. 2010; Offner
et al. 2014). In quasi-static models, molecular clouds are
globally gravitationally bound and well supported, al-
lowing for slow SF, resulting in large age spreads (on

the order of several dynamical timescales; Shu et al.
1987b; Tan et al. 2006). In contrast, if the clouds are
dynamically evolving and not necessarily globally gravi-
tationally bound or very long-lived, there will be a large
variety of physical conditions including bound and un-
bound regions that will produce stars at both high and
low efficiency, respectively. Furthermore, the subsolar
IMF can be significantly different as a function of the
stellar clustering with a deficit of low-mass stars in the
unbound, low-SFE regions (Bonnell et al. 2011).

To test these models, one has to carry out a census of
newly born stars across a giant star-forming complex to
identify and characterize each individual star-forming
region over the whole field. In particular, one would
like to analyze the distribution of stellar ages, subso-
lar IMF and SFE, and how these depend on the local
gas properties. While young stellar clusters are typi-
cally dominated by a handful of early-type stars already
on the main sequence (MS), their main stellar popula-
tion is largely composed by a multitude of intermediate-
and low-mass stars in the pre-main-sequence (PMS), i.c.
stars still in gravitational contraction toward the MS
(e.g. Nota et al. 2006; Sabbi et al. 2008; Cignoni et al.
2009; Vallenari et al. 2010; Gouliermis et al. 2007, 2011).
Due to their relatively slow evolutionary time-scales (a
1 Mg star contracts to the MS in ~ 50 Myr), they can be
utilized as chronographs of the SF history of the entire
region. Therefore, while high-mass MS stars provide us
with the signposts of ongoing star formation, it is the
population of intermediate-mass (3 < M /Mg < 8) Her-
big Ae/Be and low-mass (M < 3Mg) T Tauri PMS stars
that can provide us a direct measure of its youthfulness.
In particular, by analyzing and comparing the different
Hertzsprung-Russell diagrams one can chronologically
sequence the recent star formation events, their dura-
tion, their mutual relations, and the possible differences
between their stellar populations.

Our neighboring galaxy, the Large Magellanic Cloud
(LMC), provides the ideal environments for this study.
The LMC is a well-established laboratory to study SF
because of its low metal abundance (with a metallicity
Z ~1/3 Zg, the LMC is a proxy of the early universe
conditions at the cosmic noon of SF history, z ~ 1.5; e.g.
Madau et al. 1996), low interstellar extinction (Gordon
et al. 2003), and high SF activity. We have focused
our attention on the LMC H II complex LHa 120-N44
(Henize 1956, in short N44), with its rich ensemble of H
IT regions, bubbles, and young stellar clusters. The mas-
sive stars of the OB association LH 47 (Lucke & Hodge
1970), located in the central super-bubble of N44, are
the primary drivers of the expansion of the main bub-
ble (Oey & Massey 1995). X-ray observations reveal



MYSST I 3

T ~ 108K gas heated by fast stellar winds and super-
nova explosions (Jaskot et al. 2011). The effects of stel-
lar energy feedback, in particular along the western rim
of the bubble where SF may have been triggered by its
expansion, are also evident through its Ha and Spitzer
images (Chen et al. 2009; Carlson et al. 2012). Her-
schel dust mass maps reveal the complex hierarchical
ISM structure of N44 (Hony et al. 2010), and CO sur-
veys show that SF activity arises from one molecular
cloud complex (Fukui et al. 2001; Wong et al. 2011),
which can be analyzed for the process of hierarchical
SF. N44 has a total Ha luminosity that places it be-
tween 30 Dor, an exceptional starburst event also in the
LMC, and M42 in Orion, our closest example of ongoing
massive SF (30 Dor:N44:Orion = 20:1:0.04; Kennicutt &
Hodge 1986). In conclusion, with multiple star-forming
“hot spots” at different evolutionary stages, this com-
plex provides the best paradigm of a “quiescently ac-
tive” star-forming ecosystem.

In this paper we present the first results from a new
Hubble Space Telescope (HST) Treasury Program Mea-
suring Young Stars in Space and Time (MYSST, GO-
14689, P.I. D. Gouliermis). In Section 2 we summarize
the observational parameters of the MYSST survey and
the data processing strategy leading to the construction
of the photometric catalog. In Section 3 we introduce
the different stellar populations that can be isolated in
the dataset. In Section 4 we derive the optical extinction
properties of N44 from the MYSST data by evaluating
the slope of the reddened red clump (RC) feature in
the color-magnitude diagram (CMD) and our method
to assign a value of extinction to each source. Lastly, in
Section 5 we discuss and summarize our findings, con-
cluding with an outlook on our future follow-up studies.

2. OBSERVATIONS

Complementing the HST Treasury Programs on
30 Dor (GO-12939, P.I. E. Sabbi Sabbi et al. 2013,
2016) and M42 (GO-10246, P.I. M. Robberto, Rob-
berto et al. 2013, and GO-12825, P.I. J. Shull (no refs
yet)), MYSST (GO-14689, P.I. Gouliermis) is a deep,
high spatial resolution HST survey of the star-forming
complex N44 (Henize 1956) located in the Large Mag-
ellanic Cloud. It covers the large superbubble of N44,
as well as the region south of it, with a field of view
(FOV) of 12.2 x 14.7 arcmin?, which translates to about
180 pc x 215pc at the distance of the LMC assuming
(m — M)y = 18.55 £ 0.05 (Panagia et al. 1991; De
Marchi et al. 2016). The survey provides observations
in two broadband filters, F555W and F814W, with the
Advanced Camera for Surveys (ACS) and Wide Field

Camera 3 (WFC3, UVIS channel) instruments of the
HST.

The N44 region was tiled in a grid pattern of three
rows by four columns. Observations were taken in par-
allel, such that WFC3 covered the northern part of N44
and ACS the southern part, with a region of overlap in
the middle. Table 1 lists details of the observations we
describe here. Each grid point was visited twice. Each
visit consisted of two orbits, the first utilizing F555W
and the second F814W, with both cameras reaching
down to 29 mag in F555W and 28 mag in F814W. In
each orbit, four exposures were obtained using a sub-
pixel box dither pattern. Two short (35 s) exposures in
each filter were obtained during the second visit to each
grid point. Two additional fields to the east of the main
mosaics were obtained by a single pointing with ACS
and WFC3 observing in parallel. This pointing was vis-
ited three times with the same two-orbit, four-exposure
setup. Two short (35 s) exposures were obtained in each
filter in the second visit. The HST two-color composite
image of N44 is shown in Figure 1.

2.1. Data Processing

Bias, dark, flat-field, and charge transfer inefficiency
corrected images, known as FLCs (*_flc.fits), were
downloaded from the Mikulski Archive for Space Tele-
scopes (MAST).! These processing steps were performed
by the standard calibration pipelines CALWF3? version
3.4.1 and CALACS? version 9.2.0. The images were
aligned to the Gaia reference frame (Gaia Collabora-
tion et al. 2018) using TweakReg, part of the Drizzlepac
software package.* The Gaia catalog was queried within
the R.A, decl. bounds of the combined footprint of the
FLC images, and the resulting sources were provided
as a reference catalog to TweakReg to improve the ab-
solute astrometry of our data. The coordinates of the
Gaia sources span 81.1533 to 80.3041 degrees in R.A.
and -68.1254 to -67.8355 degrees in decl. The FLC im-
ages were aligned to better than 0.008” (maximum root
mean squared error).

The long (>400 s) FLC images were then combined
using AstroDrizzle (Hack et al. 2012) to create refer-
ence frames for each camera and filter for photometry.
We used resetbits = 4096 to ignore existing cosmic-
ray flags, skymethod = localmin for sky subtraction,

L http://archive.stsci.edu/

2 https://wic3tools.readthedocs.io/en/latest /wfc3tools/calwf3.
html

3 https://www.stsci.edu/hst/instrumentation/acs/software-tools,/

calibration-tools
4 https: / /www.stsci.edu/scientific-community /software/
drizzlepac.html
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Figure 1. Two-color composite image of N44 from the MYSST HST survey with the observations in F555W in blue and those
in F814W in green. N44’s characteristic superbubble can be seen in the north.

and combine type = imedian to avoid flagging satu-
rated stellar cores as cosmic rays. The final drizzled
images are sky subtracted and normalized by exposure
time (units of e~s™!). The final pixel scales are na-
tive to each instrument, i.e. 0.05x0.05 arcsec? pixel™!
and 0.04x0.04 arcsec? pixel™! for ACS and WFCS3,
respectively. The cosmic-ray flagging performed by
AstroDrizzle was propagated back to the data qual-

ity (DQ) extensions of the input FLC images.

2.2. Point-spread Function (PSF) Photometry

Photometry was performed with DOLPHOT (version
2.0, downloaded on 2018 March 2;°, see Dolphin 2000),
which is capable of running photometry on multiple

5 http://americano.dolphinsim.com/dolphot /

images and cameras simultaneously. Because the full
dataset is quite large, we split the visits into seven
groups to maximize the photometric depth while mini-
mizing the required computing resources and number of
catalogs to merge. Table 2 lists the visits contained in
each group. The separated field visits were grouped by
camera because they do not overlap the main mosaics,
and they were called Field 0 and Field 1. The main mo-
saic was divided into horizontal ”Strips”, called Strips
0 through 4. Strip 2 contains the region of overlap be-
tween the two cameras.

The N44 star-forming region is fairly crowded, requir-
ing PSF-fitting photometry with DOLPHOT. TinyTim
PSFs (Krist et al. 2011) included in the DOLPHOT
download were used for both cameras.
taneous, iterative fitting and subtraction of stars by

The simul-
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Table 1. MYSST Observations - Program 14689

Camera Filter =~ Tot. EXPTIME Short Exp.? Visit Numbers
2715s No 01-12
WFC3/UVIS  F555W 2532 No 25, 27
2396s Yes 13-24
2643s Yes 26
2532s No 01-12
WFC3/UVIS  F814W 2808s No 25, 27
2040s Yes 13-24
2146s Yes 26
2558s No 01-12
ACS/WFC  F555W 2522 No 25, 27
2361s Yes 13-24
2517s Yes 2
2522s No 01-12
ACS/WFC  F814W 26825 No 25, 27
2030s Yes 13-24
2020s Yes 2

Table 2. Photometry Groups

Group ACS Visits WFC3 Visits
Strip 0 - 05-12, 17-24
Strip 1 - 01-08, 13-20
Strip 2 09-12, 21-24  01-04, 13-16
Strip 3 05-12, 17-24 -
Strip 4 01-08, 13-20 -
Field 0 - 25-27
Field 1 25-27 -

DOLPHOT refines the PSF model.
used are given in Table 3.

The parameters

Prior to running photometry, the SCI extensions of

the drizzled reference frames and FLCs were masked
according to the WHT and DQ extensions, respectively.
The SATURATE header keyword was set to 71,000 e~
for ACS FLCs and 55,000 e~ for WFC3 FLCs because
initial DOLPHOT runs were impacted by the presence
of saturated pixels with values below the limits provided
in the pipeline-processed files from MAST. Sky images
were calculated for each FLC with step = —64, gjow =
2.25, and opjgh = 2.0. The F814W drizzled frame from
the appropriate camera was used as the reference image
for DOLPHOT alignment of the images in each strip
and field; the WFC3 drizzled frame was used for Strip

Table 3. DOLPHOT Parameters for PSF Photometry

DOLPHOT Parameters

img_rchi = 2.0 FSat = 0.999
img raper = 3 PSFPhot = 1
img_rsky = 15 35 FitSky = 2
img_rsky2 = 4 10 SkipSky = 2
img_rpsf = 15 SkySig = 2.25
img_apsky = 20 35  MaxIT = 25
UseWCS = 2 NoiseMult = 0.10
Align = 2 SigPSF = 3.0
aligntol = 4 CombineChi = 1
alignstep = 2 DiagPlotType = PS
Rotate = 1 ApCor =1
img_shift =00 Forcel =1

img xform =100 FlagMask = 4

ACSuseCTE = 0
WFC3useCTE = 0
ACSpsfType = 0
WEFC3IRpsfType = 0
WFC3UVISpsfType = 0
InterpPSFlib = 1
PSFres = 1

psfoff = 0.0

SecondPass = 5
RCentroid = 1
SearchMode = 1
SigFind = 3.0
SigFindMult = 0.85
SigFinal = 3.5
PosStep = 0.1
dPosMax = 2.5
RCombine = 1.415

2. Among all FLCs, the long exposures aligned to within
0.008” and the short exposures to within 0.02”.
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Figure 2. Optical CMD of the MYSST photometric cat-
alog of N44. To highlight the structure of the CMD, a 2D
histogram with square bins of size 0.032 mag is overlaid on
the scatter plot where the number of stars per bin exceeds
10.

Stellar sources, object types 1 and 2 (object type indi-
cates a DOLPHOT internal source classification; values
> 3 mark extended or single pixel sources), with signal-
to-noise ratio (S/N) > 5 in both filters, were selected
from the full photometric catalogs to create intermediate
so-called “st” catalogs. In DOLPHOT object type 2 de-
notes ’star too faint for PSF determination’. This refers
only to a position refinement procedure, as DOLPHOT
uses different methods to measure position and fluxes
of the detected sources. For type 1 the PSF is used to
measure both flux and position; for type 2 the position

from the initial finding stage is used instead.

The ACS photometric system (VEGAMAG) and the
WFC3 image coordinate system were chosen to be the
survey standards. Well-measured stars in the region of
overlap between the two cameras (Strip 2) were used
to determine an empirical conversion from WFC3 to
ACS magnitudes. In the expressions below, mwsss
(mws14) are the WFC3 F555W (F814W) magnitudes
and masss (masia) are the ACS F555W (F814W) mag-

nitudes. Given the WFC3 color,
C = mwsss — mwsi4, 1)

the ACS magnitudes are taken as
mwsss — 0.071 — 0.01(C — 1.45)

MAS555 = +0.019(C — 1.45)? C <145
mwsss — 0.07 C>1.45

(2)

masia = mwsi4 — 0.008. 3)

For the st catalogs of Strips 0 and 1 and Field 0 and
the full catalog of Strip 2, the WFC3 photometry was
converted to the ACS system. For Strip 2, the con-
verted WFC3 photometry was combined with the ACS
photometry with the same DOLPHOT technique used
to combine multiple photometry blocks from individual
FLCs (CombineChi = 1). The st catalog criteria for ob-
ject type and S/N were then applied to the full Strip 2
catalog. For Strips 3 and 4 and Field 1, the source coor-
dinates in the st catalog were converted from the ACS
reference image coordinate system to the WFC3 system
using astropy.wcs, and corrected for a small residual
offset (—0.13 pixels in x and —0.11 pixels in y).

The st catalogs containing ACS-system photometry
and WFC3-system coordinates were merged by defin-
ing dividing lines between the strips and fields. Sources
were retained from an individual st catalog if they fell
in a given region defined by the dividing lines. Within
+5 pixels of each dividing line, stars were matched be-
tween the two catalogs if the distance between their
centers was <1 pixel and both magnitudes were within
0.25 mag. If a match was found, the coordinates were
averaged and the photometry from the strip appropriate
for the average position was retained. Finally, sharpness
(within £0.3) and crowding (<0.25 mag) criteria in both
filters were applied to the combined st catalog to create
the final PSF photometry catalog.

2.3. Aperture Photometry

Finalizing the PSF photometry catalog, we found that
the brightest stars are saturated even in the short ex-
posures. To recover their flux, we performed aperture
photometry with DOLPHOT. Saturated stars exhibit
a "bleed-out” effect into the neighboring pixels, but in
the HST CCD detectors the photogenerated charges are
conserved, and using gain=2, the dynamic range of the
CCDs is fully sampled by the Analog to Digital Con-
verters. Thus, using a reasonably sized aperture, the
total generated flux can be measured. To take advan-
tage of the superior astrometry of HST and its well-
understood PSF residuals, PSF photometry was first
run using identical parameters to the previous runs, but
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Table 4. DOLPHOT Parameters
Updated for Aperture Photometry

Updated DOLPHOT Parameters

img_raper = 6
img rsky2 = 7 12
SecondPass = 1

RCombine = 9
PSFPhot =0
FlagMask = 0

only on the short exposures. For the aperture photome-
try, saturation and cosmic-ray flags were ignored during
the SCI extension masking step, and several DOLPHOT
parameters were changed (listed Table 4). For each field
and strip, the PSF photometry catalog from the short-
exposure run was specified in the UsePhot option for the
aperture photometry run.

The same st selection criteria, magnitude and coor-
dinate conversions, and catalog merging steps applied
to the PSF photometry were applied to the aperture
photometry. Less stringent sharpness (within +0.7) and
crowding (<0.5 mag) criteria in both filters were applied
to the combined catalog to create the final aperture pho-
tometry catalog.

2.4. Combined Photometry Catalog

Lastly, the final PSF and aperture photometry cata-
logs were merged together and assigned flags (fpo) as
described in the following steps. These steps were ap-
plied to stars satisfying 13.9mag < F555W < 18.3 mag
and 12.9mag < F814W < 18.0mag. Brighter stars had
saturated pixels extending beyond the 6-pixel aperture
radius and were eliminated from the final, merged cat-
alog, while fainter stars were better measured by PSF
photometry (flag 4).

First, magnitude offsets between PSF and aper-
ture photometry were calculated from matching high-
S/N stars and applied to the aperture photometry:
Amp555w = 0.042 mag, AmF814W = 0.035 mag. Then7
blends in the final aperture photometry catalog, i.e. mul-
tiple bright stars falling in the aperture, were identified.
For each star, stars within 6 pixels in the st PSF cat-
alog were found, and the potential aperture photome-
try contribution from neighbors was calculated from the
difference between the combined brightness of all PSF
photometry stars in the aperture and the brightest PSF
magnitude. The star was determined to be a blend if
the following criteria were satisfied for either filter:

1. the potential aperture photometry contribution
from neighbors was more than 0.03 mag,

2. the aperture magnitude is brighter than the PSF
magnitude of the brightest star and fainter than
the brightest star minus twice the potential aper-
ture photometry contribution from neighbors.

This 0.03 mag threshold corresponds approximately to
the apparent broadening of CMD features in the PSF-
fitting photometry, i.e. the error introduced in the PSF
magnitudes by uncertainties in the precise PSF shape.
The rationale of the other criteria is that contamination
is given if the aperture photometry is consistent with
the sum of the brightnesses of multiple objects within
the 6-pixel radius.

Lastly, for the final, merged catalog, aperture pho-
tometry was used for stars without matching sources in
the final PSF catalog (flag 0) and for stars with a single
match in the final PSF catalog (flag 1). PSF photometry
was employed for blended stars in the aperture catalog
(flag 2) and stars with no aperture detection (flag 3).

In total the MYSST photometric catalog consists of
461,684 sources across the observed FOV of N44, as well
as two smaller reference fields in the LMC. Figure 2
shows the optical CMD of the survey. Due to satura-
tion, the catalog does not include objects brighter than
14mag in F555W and 13 mag in F814W. Consequently,
some of the most massive O-type stars in the region are
not part of the catalog. The faintest detected objects
in the catalog reach down to about 29 mag in F555W
and 28 mag in F814W. The noticeable broadening of the
upper main-sequence (UMS) and the striking diagonal
elongation of the RC indicate that N44 is subject to a
substantial amount of differential reddening.

The MYSST photometric catalog and the four individ-
ual mosaics (F555W-ACS, F814W-ACS, F555W-WFC3
and F814W-WFC3) are available at the MAST archive
as High Level Science Products via 10.17909/t9-p5ve-
ke50°. The catalog (see Table D1 for an excerpt in the
Appendix) lists for each source the survey internal ID
(i.e. survey name combined with sexagesimal coordi-
nates), pixel coordinates X and Y, celestial coordinates
R.A. and decl., DOLPHOT object type, and magnitude
m, photometric error o, and the (DOLPHOT) photome-
try flag f7 for both the F555W and F814W filters. Also

6 https://archive.stsci.edu/hlsp/mysst

7 These are bit flags; relevant for this catalog are 0, ”Star
well recovered in the image”; 1, ”photometry aperture ex-
tends off chip”; and 2, ”too many bad or saturated pixels”
(see also DOLPHOT manual, http://americano.dolphinsim.com/
dolphot/dolphot.pdf).
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provided are the following DOLPHOT output parame-
ters: the PSF fit quality parameter x2, the S/R, sharp-
ness shrp, roundness rnd and crowding crwd, once for
each filter individually and once as a combined value
over both. In the latter case also the major axis (if
source is not round) mjazxdir is listed.

2.5. Artificial-star Tests

Artificial-star tests were run with DOLPHOT to
measure completeness in the N44 region. The in-
put artificial-star list generated with fakelist largely
matches the distribution within color-magnitude space
of stars in the final PSF photometry catalog. The
bounds in color-magnitude space were 14mag <
F555W < 36mag and —2mag < F555W — F814W <
6mag. To reach F555W ~ 36mag, the dimmest re-
gion of the real color-magnitude distribution is extended
to dimmer magnitudes while retaining the same color
distribution. Note that saturation effects are not mod-
eled in DOLPHOT’s artificial stars. Spatially, the arti-
ficial stars were randomly placed around the image by
fakelist and then manually separated for each strip
and field according to the dividing lines described in
Section 2.2. ACS coordinates and magnitudes were con-
verted to WFC3 coordinates and magnitudes for Strips
0, 1, and 2 and Field 0. DOLPHOT was run for each
Strip and Field with the original PSF photometry pa-
rameters, but with the additional parameter FakeStars
set to the appropriate input artificial-star list. The out-
put lists (.fake files) for Strips 0, 1, and 2 and Field 0
were converted back to ACS magnitudes.

2.6. Completeness

To measure completeness, we first determine which in-
put artificial stars were recovered by DOLPHOT. Stars
were considered to be recovered if they met the same cri-
teria in both filters for object type, S/N, sharpness, and
crowding as the PSF photometry. A further recovery
requirement on the artificial-star photometry was that
Input — Measured < 0.75 mag in both filters. This en-
sures that the artificial star was not colocated with a real
star of equal or brighter magnitude. In Figure 3, we plot
the difference between input and measured magnitudes
of the artificial stars as a function of measured magni-
tude. Recovered stars are highlighted in orange, and the
Input — Measured < 0.75 mag requirement is shown as
a horizontal line. The shaded regions indicate the mag-
nitude ranges over which the PSF and aperture pho-
tometry catalogs were combined to capture saturated
stars. The lower thresholds are mpsssw = 18.3 mag
and mpg14w = 18.0 mag. Because saturation effects are
not properly modeled in DOLPHOTs artificial stars, we
cannot study completeness effects in these regions.

input - measured F555W (mag)
o
input - measured F814W (mag)

-6 - recovered

15 20 25 30 35 15 20 25 30 35
measured F555W (mag) measured F814W (mag)

Figure 3. Difference between input and measured magni-
tudes as a function of measured magnitude of artificial stars
for both F555W and F814W. The blue points are all artifi-
cial stars, and the orange points are those that satisfy our
selection criteria for robust recovery, similar to the criteria
used to accept stars in the data catalog. The horizontal line
shows the Input — Measured < 0.75 mag requirement to pre-
vent colocation of recovered artificial stars with real stars of
equal or brighter magnitude. The shaded regions indicate
the magnitude ranges over which saturation prevents com-
pleteness measurements.

Completeness was measured in 1000x 1000 pixel spa-
tial bins containing more than 500 stars across the main
mosaics and offset fields. Within each spatial bin, we
calculate the fraction of artificial stars recovered in 1
mag wide bins in measured magnitude for each filter.
We used linear interpolation of the recovery fraction over
a finely sampled magnitude range to find the 50% and
80% completeness magnitudes for each filter in each spa-
tial bin. Figures 4 and 5 show the 50% and 80% com-
pleteness maps of the N44 region, respectively. Spatial
bins with brighter completeness limits correspond to re-
gions of high stellar density and, in a few cases, satu-
rated stars. The offset field and portion of the main mo-
saic covered by ACS/WFC show systematically brighter
completeness limits. Over the entire N44 region, the
average 50% completeness is 28.1 mag for F555W and
26.7 mag for F814W, and the average 80% completeness
is 27.3 mag for F555W and 25.7 mag for F814W.

Comparing the completeness in F555W to isochrones
from the PARSEC stellar evolution models (Bressan
et al. 2012) of the appropriate metallicity for the LMC
(Z = 0.008), we find that the 50% and 80% limits corre-
spond to the brightness of unreddened 0.14 and 0.18 M,
1 Myr old PMS stars at the distance of the LMC. The
F555W detection limit of about 29 mag implies even a
lowest mass limit of 0.09 M. Alternatively, for 10 Gyr®

8 Note that these low-mass objects evolve so slowly that the mass
limits derived from the 10 Gyr isochrone do not vary significantly
from e.g. either the 1 Gyr or 100 Myr isochrone, so they are

practically identical to the low-mass ZAMS value.
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Figure 4. 50% completeness magnitude map for F555W (left) and F814W (right). Completeness magnitudes were measured

in spatial bins of 1000x1000 pixels.
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Figure 5. Same as Figure 4 for 80% completeness.

old, nonextinguished, low-mass MS objects the 80% and
50% completeness limit and the detection limit imply,
mass thresholds of about 0.55, 0.5 and 0.4 Mg, respec-
tively.

3. STELLAR POPULATIONS

In this section we shall briefly illustrate the stellar
populations revealed by the MYSST survey. It is, how-
ever, not supposed to provide an exhaustive character-
ization. We further discuss the UMS and RC stars in
Section 4 and dedicate a follow-up study (Ksoll et al.
2020, hereafter Paper II) to the PMS population of N44.

The rich CMD of the MYSST catalog (Figure 6, left)
immediately reveals that the survey captures a complex
collection of different stellar populations. In the left
panel of Figure 6 we highlight the loci of the most promi-
nent stellar types (from an evolutionary standpoint). In
addition, the right panel of this figure indicates the spa-
tial distributions of these roughly selected stellar popu-
lations across the observed FOV.

The UMS stars are young massive objects that trace
the centers of SF in large molecular clouds and rearrange
their surrounding material through their powerful feed-
back in the form of winds and radiation (i.e. Elmegreen
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Figure 6. Left: optical CMD of the MYSST photometric catalog. Highlighted by the colored ellipses are the (rough) locations
of different stellar populations found in the survey. For comparison, the gray dashed line indicates a 10 Myr PARSEC isochrone,
corrected for the LMC distance modulus and the median UMS extinction derived in Section 4.2. The black arrow indicates the
reddening vector as derived in Section 4.1.1. Right: spatial scatter plots of the roughly selected stellar populations shown in
the CMD on the left in comparison to the total MYSST FOV. The population of LMS stars is subsampled to 10,000 examples
for the diagram in the top right, as the LMS selection in the CMD contains more than 200,000 stars.

& Lada 1977; Bisbas et al. 2011; Dale et al. 2013; Walch
et al. 2013). Several UMS stars show a color excess,
likely being affected by significant reddening, although
we cannot exclude that some of the most massive ones
are rotating. In the latter case it is possible that they ex-
hibit lower effective temperatures because of the lower
internal pressure with respect to the nonrotating ones
(see e.g. Meynet & Maeder 2000) or appear more lu-
minous and hotter owing to rotation-induced internal
mixing processes (see e.g. Brott et al. 2011). In both
scenarios rotation will induce an additional broadening
of the UMS (and actually all stars with types earlier
than F).

Due to the previously mentioned saturation issues, the
MYSST catalog is likely missing the highest-mass O-
type stars, such that our roughly indicated UMS popu-
lation consists of late O-type, B-type and early A-type
objects. As the spatial distribution indicates, we find
these sources predominantly in and around the massive
superbubble of N44 in the northern half of the FOV.
Additionally, there are a few compact clusterings south

of the bubble indicating the presence of additional star-
forming groupings.

The lower-MS (LMS) sources consist mostly of old,
low-mass stars that belong to the LMC field population,
lying in either the foreground or background of N44,
contaminating the FOV of the MYSST survey. Most of
these sources are too old to belong to the young star-
forming centers of N44 but make it difficult to determine
the population of still-forming stars in the CMD. As ex-
tinction effects can dislocate their CMD position, they
may overlap with the CMD regions reserved to objects
in the formation process. Note that differential distance
effects are negligible for the LMC given its low scale
height of 500 pc (van der Marel & Cioni 2001) in com-
parison to its distance of more than 50 kpc. Therefore,
even a separation of e.g. about 1 kpc between a star in
front and one behind the LMC results in a magnitude
difference smaller than 0.05 mag.

If there have been previous star forming events in N44,
before the currently observed star forming activity, it is
also possible that older (e.g. > 50 Myr) low-mass PMS
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cluster stars, which are close to joining the MS, fall into
the indicated LMS region in the CMD. Without addi-
tional measurements of e.g. the Ha excess, these still-
forming objects are notoriously difficult to distinguish
from the old field LMS stars. The LMS sources are
numerous, our rough selection containing already more
than 200,000 objects, and as expected for field popula-
tions, they are almost uniformly distributed (bar com-
pleteness and extinction modulation) as the subsampled
(to 10,000 examples) spatial scatter plot reveals.

The RC population consists of old stars, already in
their post-MS evolution, that are in the process of burn-
ing helium in their cores. The luminosity of RC stars
is almost insensitive to their age (at least for RC stars
older than about 2 Gyr); thus they have often been used
as standard candles to determine distances (e.g. Stanek
et al. 1998; Girardi & Salaris 2001) and reddening (Udal-
ski et al. 1999a,b; Zaritsky et al. 2004; Haschke et al.
2011; De Marchi & Panagia 2014; De Marchi et al. 2016).
Like the LMS sources, these, too, belong predominantly
to the LMC field being foreground and background ob-
jects projected into the line of sight of N44. Under ideal
observational circumstances, i.e. in the absence of red-
dening, these old post-MS objects form an almost cir-
cular overdensity in the CMD. Given that a fraction of
the observed RC sources should be behind N44, we can
infer from the notable elongation of the RC feature in
the observed CMD that N44 is host to a substantial
amount of obscuring gas and dust that significantly red-
dens background sources and N44’s constituents (Dal-
canton et al. 2015). As the LMS objects, the RC stars
are also mostly uniformly distributed across the MYSST
FOV, confirmed by the spatial scatter plot in Figure 11.

Lastly, the PMS population is composed of very young
objects that are still contracting under self-gravity,
sometimes still accreting gas from their circumstellar
disks and envelopes (Manara et al. 2012), and not yet
dense and hot enough to ignite hydrogen burning in their
cores. A comparison with the isochrone traced in the left
panel of Figure 6 shows that our contour selects PMS
stars likely younger than approximately 10 Myr. These
actively forming stars make up the bulk of N44’s young
stellar clusters and characterize the SF environment of
this complex. As the survey title suggests, they are one
of the primary targets of MYSST for recovering N44’s
SF history. Our rough selection of the PMS population
already highlights that N44 is host to a large number of
young forming stars, which are predominantly located in
and at the edges of the region’s characteristic superbub-
ble. Given that the bubble traces N44’s gas reservoirs,
this arrangement is not surprising, but we also find ad-
ditional compact clustered structures in the southern

part of the survey. Our rough selection of PMS can-
didates only represents the most recent SF activity in
N44, and it is plausible that older (e.g. ~ 20-50 Myr)
and less luminous PMS objects may be more spatially
diffuse and confused with the LMS field population. In
the immediate follow-up study to this introductory pa-
per we quantify the young PMS population of N44 and
characterize their clustering behavior (Ksoll et al. 2020).

4. EXTINCTION OF N44

In this section we study the extinction properties of
N44 based on the photometric observations and con-
struct an extinction map for the observed FOV. To
achieve the latter, we estimate the extinction for a se-
lection of UMS stars by projecting them along the di-
rection of reddening onto their theoretical zero-age MS
(ZAMS) locus in the CMD. Afterward, following a pro-
cedure we have outlined in Ksoll et al. (2018), we assign
a distance-weighted average extinction of the 20 near-
est UMS sources to the remaining stars in the catalog
(see also De Marchi et al. 2016). For comparison we re-
peat the same procedure with RC extinction probes to
further characterize the reddening profile of N44.

4.1. FExtinction Properties

One way to constrain the extinction properties from
our photometric observations is to utilize the RC feature
in the CMD. Under perfect conditions, i.e. without ex-
tinction and photometric errors, the RC is a well-defined
and easy-to-identify CMD feature. It is an overdensity
caused by core helium-burning post-MS stars. Subject
to differential extinction, however, the RC appears elon-
gated in the CMD tracing the reddening vector, i.e.

A(F)
E(F555W — F814W)’

Rrpsssw-rs1aw(F) = (4)
where F indicates one of the two filters F555W or
F814W.

Therefore, the underlying extinction properties can be
determined by measuring the slope of this CMD feature
(see e.g. De Marchi et al. 2014, 2016, 2020). To accu-
rately retrieve this slope, the constituents of the RC need
to be quantified first. Doing so by performing an arbi-
trary rectangular or elliptic selection around the RC has
the major drawback of inducing an uncontrolled range
of possible solutions. While this strategy may return a
value that is not far from the true value, this approach
is prone to nonobjective selection effects. To circum-
vent this issue, e.g. De Marchi et al. (2016) applied un-
sharp masking to constrain the RC feature. In this pa-
per we follow a different approach, fitting the slope of
the red clump while accounting for the presence of many
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outliers using a well-established machine-learning algo-

rithm, RANSAC.
4.1.1. RANSAC

The RANSAC (RANdom SAmple Consensus; Fischler
& Bolles 1981) algorithm can perform robust fits to
datasets that suffer from outliers. The underlying as-
sumption of this approach is that the data consist pri-
marily of a set of inliers and a few outliers. Furthermore,
this set of inliers is explained by a single model and the
corresponding set of parameters, which we want to find
by fitting the model to the data. To derive these pa-
rameters, RANSAC selects a series of random subsets
of the data and fits the model to each of these, deriving
multiple sets of fit parameters. The idea is that, as the
outliers are a minority in the data, most of these sub-
sets consist only of inliers returning the same (or similar)
fit parameters. In contrast, the sets that contain ran-
dom outliers will not agree on any given fit parameters.
Therefore, by simply ”counting the votes” for the pa-
rameters of all the random subsets, the underlying data
generating model parameters are revealed.

In practice, the algorithm first draws a random set of
n points, a minimum required to fit the desired model
(e.g. 2 for a line), and performs a fit to that random sub-
set. Then, it determines the amount of remaining data
that agree with this fit, the inliers to this specific set of
model parameters. To do so for every data point, a dis-
tance to the fitted model is determined and compared
to a preset acceptance threshold. If there are enough
inliers to a model, it is accepted as a good fit. This
identified ”consensus” set is then employed to refine the
fit by using all inlier points to reestimate the model pa-
rameters. This procedure is repeated a number of times,
k, to determine the best model as given by the fitting
error. The number of random samples k of size n that
have been drawn is chosen such that it has a low prob-
ability p of containing only bad samples (in this study
we use p = 0.01) and is given by the equation

__ log(p) 5)
log(1 — w™)’
where w is the fraction of inliers in the data. The pa-
rameter w is, of course, often unknown, but by starting
with a low estimate of w the number of samples k& can be
iteratively determined by updating the current guess of
w after every random sample with the actual determined
fraction of inliers. This procedure stops when the num-
ber of samples that have been drawn exceeds the latest
estimate of k (Fischler & Bolles 1981; Forsyth & Ponce
2003).
In order to make use of the RANSAC algorithm to
determine the extinction law of N44, we first need to

make an initial selection in the CMD of the region where
the elongated RC is the dominant feature. The left panel
of Figure 7 shows our selected region. We make this area
large enough to be as agnostic as possible to our prior
knowledge of where the RC is located. In particular,
the axes of the rectangle do not prescribe a slope. At
the same time, we make sure that the RC is the major
feature within the selection, while we exclude a large
portion of the red giant branch (RGB) leading up to the
RC to facilitate the RANSAC inlier search.

Since our ultimate goal is to fit a line in the CMD, the
RANSAC algorithm will draw samples with the mini-
mum amount of necessary points, i.e. n = 2 in our ap-
plication. From a series of initial tests we determine
that an acceptance threshold of 0.26 in the absolute er-
ror returns inlier selections and model fits that trace the
elongated RC as we would expect it. To minimize any
influence from the random sampling on the final fit of the
slope of the reddening vector, we repeat the RANSAC
algorithm 5000 times. Note that this is not the £ pa-
rameter: each of these 5000 runs will draw k& random
samples, with k automatically determined according to
Eq. (5).

As a final value of the slope we take the average of
the predicted slopes of these 5,000 RANSAC runs and
use their standard deviation as the associated uncer-
tainty. The right panel of Figure 7 presents the result
of this procedure for the slope of the reddening vec-
tOl"7 RF555W—F814W(F555W) = 2.8 £0.3. Note that we
color-coded every star in this diagram according to the
fraction of times across the 5000 RANSAC runs that it
was selected as an inlier to the final model. The plot
shows that the RANSAC algorithm is able to accurately
recognize the constituents of the elongated RC feature.
In fact, out of 5000 runs the RGB leading up to the
red clump is never identified as the dominant feature
in our selection window. Using the same data selection
and RANSAC procedure, the corresponding slope in our
other filter is RF555W,F814V\/(F814W) = 1.8+ 0.3. For
comparison, the Cardelli et al. (1989) galactic reddening
I&W, with RV = 3.1, returns RF555W7F814W(F555W) =

2.4 and RF555W,F814w(F814W) = 1.4, re-
spectively, while the Fitzpatrick (1999) model
gives RF555W—F814W(F555W) = 2.2 and

Rpsssw-rs1aw (F814W) = 1.2. Hence, overall we find
slightly larger R values in N44, indicating a more ” gray”
reddening.

4.2. UMS Extinction

With the reddening vector constrained, we now mea-
sure extinction in F555W for UMS stars by reproject-
ing them along the reddening vector onto their theoret-
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Figure 7. Left: zoom-in on the bright end of the optical CMD of the MYSST N44 data. Highlighted in red is the region used
to derive the optical extinction law of N44 from the slope of the RC elongation. Right: zoom-in on the selected candidate RC
region from the left panel. The stars are color-coded according to the fraction of times they were considered as an RC inlier
across the 5000 RANSAC runs. The red line indicates the averaged resulting slope across all RANSAC fits. For the reddening
vector in F555W we find a value of Rpsssw = 2.8 +0.3.
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Figure 8. Left: zoom-in on the optical CMD of N44. Highlighted in blue are UMS stars selected to estimate individual stellar
extinctions. The red line indicates the position of the ZAMS, corrected for the LMC distance modulus and MW foreground
extinction, which serves as the target position for the UMS extinction measurement. Middle: spatial distribution of the MYSST
photometric catalog of N44. Highlighted in blue are the positions of our selected UMS extinction probes. Right: histogram of
the extinction measurements (including the MW foreground) in F555W of the UMS probes. The solid red line indicates the
median extinction of 0.77 mag, while the dashed red lines mark the 25% and 75% quantiles.
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Figure 9. Optical CMD of the N44 data corrected for ex-
tinction. Each star is corrected by the distance-weighted
average extinction of their 20 nearest UMS neighbors. For
visualization purposes the extinction of each UMS star is
sampled within its measurement uncertainty. For reference
the red line indicates the ZAMS, corrected for the LMC dis-
tance and MW foreground extinction, that is used to deter-
mine the extinction of the UMS probes.

ical optical CMD location, assuming that they should
be on the ZAMS. Note that we derive the ZAMS locus
from PARSEC isochrones (Bressan et al. 2012) with a
metallicity of Z = 0.008 for the LMC and correct the
ZAMS position for Milky Way (MW) foreground extinc-
tion prior to the measurement. Here we adopt a value
of AYY = 0.22mag (ARsLsw ~ 0.223mag) toward the
LMC (De Marchi & Panagia 2014) and the Cardelli et al.
(1989) Galactic reddening law. The measured value and
the 0.223 mag MW foreground offset are then summed
up to provide the total extinction.

For the extinction measurements we make a selection
of the brightest UMS stars in the MYSST photometric
catalog, accounting for the slope of the reddening vector
and field contamination. This selection, depicted in the
left panel of Figure 8, consists of 1291 stars and repre-
sents a trade-off between retaining enough sources for
good statistics and minimizing potential contamination

from old field sources. Scaling the source density esti-
mated in the reference fields to our CMD, we find that
our selection criterion entails about 15% field contami-
nation, i.e. specifically we expect 194 + 14 field stars in
our sample. For more details on the UMS selection, see
Appendix A. As previously mentioned, due to satura-
tion issues, our selection of UMS stars is likely missing
some of the most massive objects of N44. A compari-
son with the ZAMS, shifted along the reddening vector,
puts our UMS sources in an approximate mass range
between ~ 6 and ~ 30 M, indicating late O- to early
B-type stars. Note that there are 13 UMS stars in our
selection with a CMD position that falls to the left of
the target, foreground-corrected, ZAMS locus. Given
their close proximity to the ZAMS, our procedure as-
sumes that these sources have zero LMC extinction, so
they are only subject to the MW foreground.

The middle panel of Figure 8 marks the positions of
our UMS extinction probes in relation to the rest of the
survey. As we can see, we find most of our UMS stars in
and around the superbubble of N44 located in the north-
ern part of the survey. With the fewer available probes
in the middle and southern part of the main FOV, as
well as the very few UMS stars within the control fields,
extinction estimates will be less precise there.

For the extinction measurement and assignment to
the non-UMS stars we use a modified version of our ap-
proach presented in Ksoll et al. (2018). In order to give
a measurement uncertainty for the UMS extinctions, we
now sample the slope of the reddening vector within its
error and derive the mean and standard deviation of
the so-measured extinction values for each UMS star.
Consequently, we now derive the error for the distance-
weighted average extinction assigned to the non-UMS
stars by propagation of the uncertainty of the UMS mea-
surements

20
dArss5w = Z (wiéAgé\ggw)2’ (6)

i=1
with weights

1 1
S G+ ETY (1d2+ )

(7)

w;

where d; is the Euclidean distance to the ith-nearest
UMS neighbor in pixels and € is a smoothing factor (for
more details see Ksoll et al. 2018).

The distribution of the final F555W extinction mea-
surements for the UMS stars is summarized in the right
panel of Figure 8. With an overall median extinction
of O.77f8:§§ mag, it appears that the UMS population
of N44 is for the most part only moderately attenuated.



MYSST I 15

—67.9 1

(deg)

ination

-68.0 -

Decl

—68.1 1

Arsssw

I 50 pc I

00 05 10 15 20

81.00

80.75 80.50

Right Ascension (deg)

Figure 10. Spatial distribution diagram of the MYSST photometric catalog. Each star is color-coded according to the
assigned distance-weighted average extinction of its 20 nearest UMS neighbors. The UMS extinction probes themselves appear
as distinctly colored points in this diagram, as they are not subject to the smoothing effect of our assignment procedure for the
other stars. Additionally, any white spots are simply caused by a lack of sources, as this plot shows every individual star of the

catalog.

This is consistent with the fact that a notable fraction of
our UMS selection is located inside of the superbubble
of N44, where feedback from the most massive stars has
cleared out substantial amounts of gas. Still there are
about 200 UMS stars in our sample that exhibit more
than 1.5 mag of extinction up to a maximum of 2.29 mag,
indicating the presence of regions that are subject to
substantial reddening.

For the assignment to the non-UMS sources we follow
our findings in Ksoll et al. (2018) and use the distance-
weighted average extinction of the 20 nearest UMS
neighbors, employing a smoothing factor of ¢ = 500 px
(20", ~ 5 pc). Figure 9 displays the CMD of the MYSST
photometric catalog when corrected for the assigned ex-
tinction values in comparison to the ZAMS used to mea-
sure the extinction for the UMS stars. As we have elab-

orated in Ksoll et al. (2018), this method of extinction
estimation is not ideal for all types of stars, since we find
some over- and underestimation for, e.g. field MS and
RC stars. The main issue here is that these objects are
likely foreground and background objects of the young
star-forming clusters that are the primary target of this
survey. While recent studies (Cignoni et al. 2015) pro-
vide strong evidence that young PMS objects tend to
cluster around young massive UMS stars, so that this
form of extinction estimate works well for young PMS
objects (see also De Marchi et al. 2016), no such ten-
dency for spatial colocation is given for the field con-
taminants. Therefore, the UMS extinction probes are
less representative for these objects, and the extinction
estimate is less precise (De Marchi et al. 2011, 2017).
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There is an additional caveat with our UMS extinction
estimate to mention here. Our core assumption is that
all UMS stars are on the ZAMS. Given the fast evolution
of very massive stars, this might not necessarily be true,
and their actual position could be slightly different from
the ZAMS, even if they are only a few megayears old.
Oey & Massey (1995) find that the UMS stars interior to
N44’s superbubble are likely about 10 Myr old, while the
ones located at the western rim of the bubble are 5 Myr
old. Isochrones corresponding to these ages deviate to
colors redder than the ZAMS in the high-mass regime.
In these cases, dereddening to the ZAMS, i.e. extend-
ing the vector beyond the correct isochrone, will over-
estimate both extinction and mass. Without additional
information one cannot date the UMS stars more accu-
rately across the entire MYSST FOV. However, due to
the saturation limit of the MYSST survey, the number
of stars where a significant difference between the ZAMS
and the actual stellar age might occur is relatively small.
Taking, for instance, a 10 Myr isochrone instead of the
ZAMS, as appropriate for the bubble interior, only 276
stars out of our 1291 UMS sources are massive enough
to be affected. For the UMS stars located in the bub-
ble and western rim we find a median absolute error of
only 0.043%5:01) mag in extinction. Further details on
this error estimate are provided in Appendix B. With
this caveat in mind, our ZAMS assumption allows the
derivation of a self-consistent (relative to the MYSST
data) extinction estimate that in some cases may just
provide an upper limit to the true value.

Besides the age of the UMS, there are other effects,
e.g. unresolved binarity or metallicity gradients, that
can induce a broadening of the UMS in the CMD even
in the absence of extinction. While often not considered
for star clusters, there are findings that could support
a potential metallicity gradient in N44. As previously
mentioned, N44 has seen at least two known episodes
of SF (Oey & Massey 1995). Additionally, a supernova
remnant, SNR 0523-679 (Chu et al. 1993), that exhibits
characteristics of a core-collapse supernova (Jaskot et al.
2011) is present within N44. Oey & Massey (1995) also
estimate that up to four supernovae occurred in the re-
gion in the past. Lastly, Jaskot et al. (2011) find some
evidence for metallicity enhancement in N44’s superbub-
ble. Thus, pollution of the formation environment of the
younger population by one or multiple supernovae from
the previous SF event is a possibility. We investigate
the impact of these effects on our extinction estimation
procedure in Appendix C.

As a final test we also look into the potential extinc-
tion error induced by neglecting stellar rotation. As
mentioned in Section 3, rotation may induce additional

color excess, in particular for very massive stars. To
evaluate the effect, we use the MIST (Dotter 2016; Choi
et al. 2016; Paxton et al. 2011, 2013, 2015) stellar evo-
lution models (with Z = 0.008) to construct two ZAMS
loci, one for the rotating (v/ver = 0.4) and one for the
nonrotating case. Here we find that both ZAMS loci
(and e.g. the 5 and 10 Myr isochrones too) are prac-
tically identical, such that the expected extinction er-
ror caused by moderate stellar rotation is negligible for
our approach. Using the SYCLIST? stellar evolution
models (Georgy et al. 2013) we also investigate the er-
ror induced in our approach for extremely fast rotating
stars, i.e. v/veit = 0.95, in comparison to a nonrotating
model. In this test we find a median absolute extinction

error between the two models of 0.04175-022 mag. Conse-

quently, the effect of rotation on our extinction estimate
is minimal even for fast rotators. We have to note, how-
ever, that the SYCLIST models for v/vei = 0.95 are
only available up to a stellar mass of 15 Mg, such that
the brightest 276 UMS stars in our selection could not
be considered in this test. In addition, we had to employ
models with Z = 0.006 as the closest readily available
metallicity to our adapted LMC value of Z = 0.008.

Figure 10 shows the extinction map we derive from our
estimates by color-coding each star according to its as-
signed value. As we can see, the region of the superbub-
ble is indeed subject to the least amount of reddening,
while we find the most extinguished areas at the west-
ern edge of the bubble, as well as predominantly in the
southern part of the observed FOV. The rather promi-
nent dark ”filament”, extending from the southern bub-
ble edge to the southwest corner of the FOV, does not
have a significant counterpart in the longer-wavelength
observations of N44 taken with Spitzer. Pointing to rela-
tively low extinction values, this might suggest that this
feature is actually an artifact of our ZAMS assumption.
We verified that there are very few UMS stars in this " fil-
ament” that would experience a reduction in extinction
measure if they were dereddened to a 10 Myr isochrone
instead of the ZAMS (see Figure Bl in Appendix B).
Therefore, a significant systematic error could be jus-
tified only if these UMS stars are even older than 10
Myr.

It should also be noted that the extinction of the two
control fields is likely not particularly precise, due to the
limitations of our approach listed above and the fact that
these field stars are not likely to be colocated with the
few selected UMS stars within these regions.

9 https://www.unige.ch/sciences/astro/evolution/en/database/
syclist/
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4.3. RC extinction

To further characterize the extinction pattern of N44,
we also determine extinction measures for the RC stars.
As previously mentioned, the nonextinguished RC is
usually a prominent, almost circular feature in the
CMD, which is smeared out in the MYSST observa-
tion due to differential reddening. Still, the tip of this
smeared-out feature marks the nominal nonextinguished
position of the RC. Consequently, measuring extinction
for the RC sources is also straightforward. To quan-
tify the position of the RC tip, we use a kernel den-
sity estimate (KDE) in the CMD space (using separate
bandwidths for magnitude and color, each estimated by
Silverman’s rule) and identify the significant overden-
sity in the vicinity of the tip. In particular, we find
a density contour at 4o significance (above the mean
density) that traces the nonextinguished end of the RC
(blue contour in the left panel of Figure 11). We then
determine the nominal RC position as a line perpendic-
ular to the reddening vector anchored at the intersection
point between the 40 contour and the reddening vector
going through its center. In practice, we vary the red-
dening slope within its uncertainty, determining a new
target line for each sample slope, but keeping the same
anchor point, in order to provide measurement errors for
the RC probes. For comparison, the left panel of Fig-
ure 11 also indicates the theoretical position of the RC
for the LMC field (mF555W =S 19167 MF814W = 1817
corrected for distance modulus and foreground MW ex-
tinction) as determined by De Marchi & Panagia (2014)
for the HST filters used in this survey. Here we find
an excellent agreement with our empirically determined
nominal RC position. This match allows us to easily
transform these relative RC extinction measurements to
total extinction values by correcting for the Milky Way
extinction contribution of A" = 0.22mag, translating
to ARsisw ~ 0.223 mag, assumed for the theoretical RC
position in De Marchi & Panagia (2014).

From our RANSAC inlier determination, we select the
bona fide RC constituents as those that reach an inlier
fraction above 50%, i.e. the stars that are chosen as RC
inliers at least half of the time across all 5000 RANSAC
runs. This returns a sample of 1737 RC stars, which
appear to be almost uniformly distributed across the
MYSST FOV (see Figure 11, middle panel, red points).
As these objects are most likely foreground and back-
ground field sources and not part of the star-forming
clusters in N44, this is to be expected. Note that there
are 145 stars in our RC inlier selection that fall above our
target RC position. Given their close proximity to the
target, our measurement approach assumes that these

sources are only subject to the MW foreground extinc-
tion.

The right panel of Figure 11 shows the outcome of the
extinction measurements for the RC probes. With a me-
dian total extinction of 0.6879 52 mag, RC stars are also
overall only subject to moderate reddening. In compar-
ison to the UMS sources, the RC extinction distribution
appears fairly similar, being only about 0.1 mag less ex-
tinguished on average. This slight difference could be
due to the UMS sources being likely embedded within
the star-forming centers of N44, whereas the mostly uni-
formly distributed RC field stars are not as obscured by
N44’s gas reservoirs. But with a maximum of 2.1 mag
extinction, there are also a few hundred RC sources that
are affected by more severe reddening. Note, however,
that this maximum is certainly affected by our initially
selected CMD region for the RANSAC procedure. It is
possible that a few more heavily extinguished RC ob-
jects were excluded by this selection, so that this upper
extinction limit should not be treated as an absolute
maximum.

To make a direct spatial comparison to the UMS ex-
tinction map, we cannot follow the same procedure as
for the UMS stars in Section 4.2. Assigning distance-
weighted average values of the nearest RC neighbors to
the other stars has little meaning, since these RC field
stars are very unlikely to have a spatial correlation to the
N44 constituents beyond projection effects. Being pre-
dominantly part of the LMC field population, the RC
sources are, however, more likely to provide a represen-
tative extinction measure for other field sources, such as
the many LMS stars captured in the MYSST FOV. To
perform a spatial comparison, we instead use a 2D bin-
ning approach, computing the average measured extinc-
tion of the RC sources in square 41”7 x41” (11 pcx 11 pc)
spatial bins. The resulting low-resolution RC extinc-
tion map is shown in the left panel of Figure 12. The
most extincted RC stars are located toward the eastern
and northern edge of the superbubble as well as in more
compact regions south of the bubble. The right panel
of Figure 12 provides a direct comparison between the
2D binned RC mean extinction map and a correspond-
ing map derived from the UMS sources, showing the
difference AAPMSTRC — AUMS - ARG in each bin.
Positive values in this map indicate where the mean ex-
tinction inferred from the UMS stars is larger, while neg-
ative values imply the opposite. As we can see, the UMS
extinction exceeds that of the RC mostly in the south-
ern half of the FOV. Notable regions where the mean
RC extinction is larger are located at the eastern and
northern edge of the bubble, as well as in several com-
pact patches in the south of the FOV. These RC stars
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Figure 11. Left: zoom-in on the RC in the optical CMD of the MYSST catalog. The blue line represents a 40 KDE density
contour, marking the tip of the RC and indicating the nominal nonextinguished RC position in the CMD. The red dashed line
marks the reddening vector quantified with the RANSAC approach. The solid orange line indicates the target true position,
i.e. the tip of the RC, used to determine the extinction of the RC probes. It is perpendicular to the reddening vector and
anchored to the intersection of the reddening vector and the 40 density contour. For comparison, the pink point indicates the
theoretical RC position for the LMC field as determined by De Marchi & Panagia (2014), demonstrating the excellent agreement
with our empirically determined position. Middle: spatial distribution of the RC constituents (red points) identified with the
RANSAC procedure (i.e. all sources with an inlier probability above 0.5). Right: histogram of the measured extinction values
in F555W of the RC probes. The solid red line indicates the median extinction of 0.68 mag, while the dashed lines mark the
25% and 75% quantiles.
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Figure 12. Left: 2D binned extinction map of the RC sources. Each 41”7 x 41” (11pc x 11pc) bin is colored according to
the average measured extinction of the RC sources located inside. White tiles indicate bins in which no RC stars are found.
Right: The same 2D bin diagram as in the left panel, but now each bin is colored according to the difference AAPMSTRC —
ARMS, — ARS v of the mean extinction in each bin between the values derived from UMS and RC extinction probes. A positive
value indicates a larger mean extinction derived from the UMS sources, while a negative one implies that the RC sources
experience more extinction on average. The black tiles indicate bins where the difference AAE%?@RO cannot be computed

because either no UMS ("u”) or no RC (”r”) sources are present.
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are likely located behind the star-forming gas of N44.
On the other hand, in the regions where the mean UMS
extinction dominates it is possible that background RC
sources are simply not detected owing to the obscuring
gas that the UMS sources are embedded in. Interest-
ingly, we find that the RC and UMS extinction agrees
very well inside N44’s bubble. This provides further con-
firmation that the feedback of the massive stars interior
to the bubble has cleared out almost all of the gas, such
that barely any local obscuration is left. It is necessary
to note, though, that the difference between UMS and
RC extinction might be affected by stochastic variability
in the number of RC sources that are in the foreground
and background in a given 2D bin in the right panel of
Figure 12.

5. SUMMARY

In this paper we introduce the new HST Treasury
Program ”Measuring Young Stars in Space and Time”
(MYSST), which captures the active star-forming com-
plex N44 with its rich collection of H II regions, young
stellar clusters, and bubbles, located in the LMC. We
present the observing strategy of MYSST, describe our
data reduction procedure, and construct the photomet-
ric catalog of the survey. In addition, we highlight our
first scientific results, briefly discussing the stellar pop-
ulations found across N44 and determining the extinc-
tion properties of the region. On top of that, we infer
extinction maps for N44 from reddening measurements
of UMS and RC stars.

The MYSST survey observed N44 in the optical wave-
length regime using the F555W and F814W broadband
filters of both the ACS and WFC3 imagers on board
the HST. Combining PSF-fitting and aperture photom-
etry, the latter being needed to recover saturated bright
sources, we compile a photometric catalog that com-
prises 461,684 stars across the MYSST FOV, going down
as deep as 29mag in F555W and 28 mag in F814W,
probing even the lowest-mass stellar population of N44
(e.g. down to 0.09 My for an unreddened 1 Myr PMS
star). Due to saturation effects, the catalog does not
contain sources brighter than 14mag in F555W and
13mag in F814W, likely missing the most massive O-
type stars of the region. Due to stellar crowding, back-
ground, and saturation, the completeness of the catalog
varies across the FOV, but reaches an excellent average
of 26.7 (28.1) mag in F555W and 25.7 (26.7) mag in
F814W at the 80% (50%) level.

The rich photometric catalog reveals many different
stellar populations spread across the MYSST FOV. We
identify numerous old LMS and RGB sources that are al-
most uniformly distributed across N44, likely foreground

and background contaminants belonging to the LMC
field population. We also find young high-mass UMS
and lower-mass PMS stars within the survey, which
exhibit clustered spatial distributions, tracing e.g. the
gaseous rim of N44’s characteristic superbubble. These
young stars mark N44’s numerous active star-forming
centers.

To constrain the reddening properties of N44, we mea-
sure the slope of the RC feature that appears elongated
in the CMD owing to differential extinction. Here we
present a new approach to jointly establish the con-
stituents of this elongated RC feature and perform the fit
of the reddening vector by applying the well-established
learning algorithm RANSAC (Fischler & Bolles 1981).
This algorithm is a very robust tool to fit models to data
in the presence of outliers. RANSAC is an iterative pro-
cess, where in each iteration first a minimal subset of
the data, large enough to fit the given model, is drawn
randomly from the total data. Then, the model fit is per-
formed on that subset, and finally the number of data
points within the complete data set are determined that
are inliers to the fitted model. These steps are then re-
peated until an optimal model is found, at which point
a final fit to the inliers of this model is performed for
further refinement.

Selecting a window within the optical CMD of the
MYSST data in which the RC is the predominant fea-
ture, we apply the RANSAC algorithm, repeating it
5000 times to negate all effects of the random seed, to
determine the RC constituents and fit a line to the elon-
gated red clump to derive the slope of the reddening
vector. With this approach we find the total-to-selective
extinction ratios Rmsssw—rs1aw)(F555W) = 2.8 £ 0.3
and R(psssw—rs1aw)(F814W) = 1.8 4 0.3 for the slope
of the reddening vector in N44. These results are no-
tably larger than the values for the standard galactic
extinction law with Ry = 3.1, returning 2.4 and 1.4
(Cardelli et al. 1989) or 2.2 and 1.2 (Fitzpatrick 1999),
respectively.

With the reddening vector constrained we select a set
of UMS stars as probes and measure their extinction by
reprojecting their position in the CMD back to their the-
oretical location, assuming that they should be on the
ZAMS. Afterward, we assign each non-UMS star in the
MYSST photometric catalog a distance-weighted aver-
age extinction of their 20 nearest UMS neighbors. This
procedure has been found to return reasonable extinc-
tion estimates for the constituents of young star-forming
clusters (De Marchi et al. 2016), such as the ones we
are aiming to find here, but suffers from occasional ex-
tinction over- or underestimation for field constituents.
Additionally, this approach might overestimate extinc-
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tion for older (> 10Myr) very massive UMS sources,
as their true position might slightly deviate from the
ZAMS, such that at worst the estimate provides only an
upper limit to the true extinction. For a subset of UMS
stars with known ages inside and at the rim of N44’s
bubble we find, however, only a median absolute error
of 0.04370 019 mag with our approach compared to using
the correct ages. We make the ZAMS assumption since
the UMS ages are not easily recovered across the entire
FOV and because it allows a MYSST self-consistent ex-
tinction estimate that entails the same systematic error
everywhere. Note that we plan to provide more precise
extinction measures in a follow-up study that explores
synergies with other observations of N44 (e.g. Gaia).

Following the assignment, we present an extinction
map for N44 based on the measured UMS extinction.
With a median extinction of O.77f8j3§ mag in F555W | it
appears that the UMS population of N44 is overall only
moderately extincted. With about 200 UMS probes,
though, exceeding 1.5 mag up to a maximum of 2.29 mag
in extinction, there are still a notable number of regions
subject to more severe reddening. Our extinction map
confirms that the reddening of N44 is patchy and highly
differential across the MYSST FOV.

For comparison we also compile a 2D binned average
extinction map derived from measurements of RC stars.
Showing an overall median extinction of 0.6870 53 mag,
the RC stars across the MYSST FOV are similarly red-
dened to the UMS population. There are a few hun-
dred of our total of ~1700 RC extinction probes that
also exhibit more severe reddening up to a maximum of
2.1 mag. This is, however, not an absolute maximum, as
our RANSAC approach may have excluded a few heavily
extinguished RC stars. A direct spatial comparison be-
tween a UMS and RC 2D binned mean extinction map
reveals that the UMS sources tend to be more reddened
across most of the southern half of the FOV. Notable
areas where RC extinction exceeds the UMS values are
the eastern and northern edge of the N44 bubble, as well
as a few compact patches south of the bubble.

In conclusion, the MYSST survey provides an ex-
traordinary view of extragalactic SF across an entire
giant star-forming complex that highlights the complex
interplay between high-mass stellar feedback and star-
forming events. With its high resolution and deep pho-
tometry, it provides the opportunity to study length
scales and timescales of the SF process on the scale of a
giant molecular cloud. In our subsequent study in Pa-

per II we begin to quantify the SF history of N44 by
identifying its rich PMS stellar content and analyze the
complex clustering behavior of the young, still-forming
PMS stars across N44.
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APPENDIX

A. UMS SELECTION AND FIELD
CONTAMINATION

In Section 4.2 we select the brightest UMS sources in
the MYSST FOV to estimate their individual stellar ex-
tinction and derive a reddening map for N44. While the
massive stars in N44’s star forming centers are young,
the LMC field stars that contaminate the FOV of the
survey are generally older evolved populations. Conse-
quently, older stars of high enough mass in their post-
MS evolutionary phase can pollute the high brightness
regime of the optical CMD. Therefore, we have to ensure
that our UMS selection avoids as much field contamina-
tion as possible.

To do so, we first limit the candidate UMS stars to
objects bluer than 0.5 mag in mpgsssw — Mpsiaw to
avoid the RGB and RC. As the lower brightness limit
in mpsssw we define a line parallel to the reddening
vector. As mentioned in Section 2 the MYSST survey
has also observed two LMC fields close to N44 for ref-
erence. By comparing the field CMDs to the main one,
we can determine the severity of the field contamination
in relation to the chosen line and determine a suitable
Mmpss5w-axis intercept.

To quantify the contamination of a given UMS selec-
tion, we first subsample the main CMD, as its FOV
is much larger than the two fields. The latter have
approximate surface areas of 1650 pc? (northern) and
2530 pc? (southern), while the main field covers about
33,440 pc?. Using the area ratios, we randomly subsam-
ple the main CMD once to match each field individually
and once for the combination of both fields. For a given
UMS selection criterion we then count the selected stars
in the subsampled main CMD and the respective field
to determine the relative field contamination. The top
row in Figure Al shows examples for the subsampled
main CMDs in comparison to the corresponding refer-
ence fields (bottom row). To account for randomness,
we repeat the sub-sampling procedure 5000 times and
average the results.

We determine an mpgsssw-axis intercept of 18.5 mag
for our UMS selection criterion as the best compromise
between selecting enough UMS sources to reasonably
cover the main FOV and avoiding field contamination.
Subsampling to the area and comparing to the CMD of
the fields, this selection criterion entails a 21.9% £ 2.7%
contamination for the northern field, 10.2% =+ 1.0% for
the southern field and 14.8% 4 1.1% for both fields com-
bined. Important to note here is that the 14 stars se-

lected from the northern field could actually be UMS
stars and not just old field contaminants. In the CMD
of the northern field (bottom left panel of Figure Al),
we actually find a notable population of stars in the
PMS region, contrary to the southern field CMD (bot-
tom middle panel), where this area is practically empty.
Therefore, it is possible that the northern reference field
might have captured a small star forming cluster and its
UMS stars.

Out of the 1291 total sources selected by our criterion,
only 24 come from the reference fields. Given their CMD
positions and the case we have made for the northern
field, we cannot easily dismiss these as non-UMS stars.
Therefore, we decide to keep them as UMS candidates in
our analysis and also derive (low-resolution) extinction
maps for the reference fields.

B. UMS EXTINCTION ESTIMATE ERROR

In our extinction estimation approach, presented in
Section 4.2, we assume that our selected UMS sources
should theoretically lie on the ZAMS. As already men-
tioned, this ZAMS assumption does not necessarily hold
for the rapidly evolving massive stars, and their true
position might actually differ from the ZAMS. Conse-
quently, our approach may overestimate the extinction
of some UMS stars, at worst providing only an upper ex-
tinction limit. We make the ZAMS assumption because
we cannot easily date all UMS stars in our selection from
the MYSST data alone and want our extinction measure
to make the same systematic error everywhere. For some
UMS stars in our sample, however, ages have been esti-
mated in previous studies. For example Oey & Massey
(1995) find that the massive stars inside N44’s bubble
are about 10 Myr old, while the ones at the western bub-
ble rim are younger at around 5 Myr. In this appendix
we will briefly estimate the error in extinction that our
approach entails for these two populations.

To get a first idea of the systematic error of our ex-
tinction estimation approach, we estimate how many of
our 1291 UMS extinction probes would actually be af-
fected if they were 5 or 10 Myr old instead of falling
on the ZAMS. We do so by approximating the point on
the ZAMS in the CMD where the 5 or 10 Myr PAR-
SEC isochrone starts to significantly move away from
the ZAMS track. We then project this point along the
reddening vector to derive a threshold line in the CMD
above which the UMS extinction measurement would
change if the 5 or 10 Myr isochrone was used instead of
the ZAMS track. For the 10 Myr isochrone we identify
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Figure A1l. Optical CMDs of the main FOV of the MYSST survey subsampled to match the surface area of the northern (top
left), southern (top middle) and both reference fields (top right). For comparison, the bottom row shows the actual CMDs of
the northern (left), southern (middle) and both reference fields (right). The blue lines indicate the limits of our UMS selection
in all panels, demonstrating that we avoid most of the field contamination.

this point on the ZAMS at about 16 mag in F555W (in-
cluding the LMC distance modulus and MW foreground
extinction) and at 14 mag for the 5 Myr one. Note that
the 5 Myr isochrone is fairly irregularly shaped, mov-
ing on and off the ZAMS, but appears to finally detach
around 14 mag. The left panel of Figure B1 shows these
threshold lines in the MYSST CMD along with the cor-
responding isochrones and the UMS stars for which the
extinction measurement would be affected by using the
5 or 10 Myr isochrone instead of the ZAMS. Here we
find 41 UMS stars that would be affected if they were
5 Myr old, and 276 in the 10 Myr case in total. Conse-
quently, even if all UMS stars in our selection were 10
Myr old, only 276 out of our 1291 probes would even
show a change in the measured extinction. As their
spatial distribution in the right panel of Figure Bl in
comparison to the UMS extinction map shows, most of
the affected UMS stars are located inside N44’s bubble
and its (western) rim. Particularly interesting in this
diagram is that almost none of the affected UMS stars

fall into the high-extinction ”filament” extending from
the southern bubble rim to the southwest corner of the
FOV. As mentioned in the main text, this ”filament”
has no visible nebulous counterpart (i.e. gas/dust) in
long-wavelength observations of N44 (e.g. Spitzer), in-
dicating that our approach is overestimating extinction
in this region. If this is indeed the case, then Figure B1
suggests that the UMS stars inside this ”filament” must
be even older than 10 Myr.

Lastly, to quantify the error of our approach, we mea-
sure extinction for the UMS stars in the bubble and rim
with the correct 10 and 5 Myr isochrones instead of the
ZAMS. In both cases we include all UMS stars that fall
into the bubble (solid) and western rim (dashed) out-
lines in Figure B1 and compute the median absolute
error with respect to our ZAMS measurement. Here we
find 0.0367092% mag for the 241 UMS stars in the west-
ern rim and 0.04570529 mag for the 161 stars inside the
bubble. Averaged across both populations, the median

absolute extinction error is 0.043'_*8:812 mag with a max-
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Figure B1. Zoom-in on the bright part of the MYSST CMD (left). The solid lines signify the ZAMS (red), a 5 Myr (purple)
and a 10 Myr (orange) PARSEC isochrone, all corrected for the LMC distance modulus and MW foreground extinction. The
large colored points mark our UMS selection as in the left panel of Figure 8. The black solid and dashed lines show a projection
of the points, where the 10 and 5 Myr isochrones start to move away from the ZAMS, along the reddening vector. The green
points mark the UMS stars where the extinction measure would change if a 5 Myr isochrone is used instead of the ZAMS. If a 10
Myr isochrone is used instead of the ZAMS then the extinction measurement of the pink (+green) points is affected. The blue
points are the UMS stars that are unaffected even in the 10 Myr case. Right: UMS extinction map of the MYSST survey (as in
Figure 10). The large color points mark the position of the three groups of UMS stars identified in the left panel. Additionally,
the solid and dashed black lines mark the position of the interior of N44’s bubble and its western edge, respectively.

imum of 0.27 mag. The extinction error of our approach
is, thus, overall fairly small inside and at the rim of the
bubble. This obviously does not extend to UMS sources
in our sample that are notably older than 10 Myr, but
it at least confirms that our approach estimates the ex-
tinction around N44’s superbubble fairly accurately and
is at worst only an upper limit everywhere else.

C. UMS EXTINCTION AND UMS BROADENING

In Appendix B we have discussed the error entailed
in our extinction estimate due to assuming the ZAMS
as the true position for the UMS stars. Besides dif-
ferences in stellar age, there are, however, other physi-
cal effects that result in a broadening of the UMS even
in the absence of differential extinction. These include
e.g. unresolved binarity or metallicity gradients in the
observed population. To ascertain the impact of these
phenomena on our extinction estimation procedure, we
create two synthetic populations that are not affected
by differential reddening, such that all broadening of
the UMS is caused by other effects. For both of the
populations we assume an unresolved binarity fraction
of 0.4 with a flat mass ratio distribution. We account

for the LMC distance modulus ((m — M) = 18.55) and
include the constant shift due to MW foreground red-
dening (A" = 0.22mag). Lastly, we consider a metal-
licity spread of [Fe/H] = —0.3 to —0.2, corresponding
to a range of Z = 0.0076-0.0096 assuming the PARSEC
solar metallicity of Zg = 0.01524.

Our first synthetic data set represents an approxi-
mately single-age population, formed with a constant SF
rate between 5 and 5.6 Myr. The second one is a more
extreme case, emulating a mixed-age population result-
ing from a constant SF rate between 3.2 Myr and 12.6
Gyr. The top panels in Figure C1 show these synthetic
populations in the bright part of the CMD in compari-
son to the MYSST data.

We then repeat our UMS selection on these synthetic,
intrinsically not reddened populations and estimate ”ex-
tinction” for the selected stars to quantify the impact
of other broadening effects on our estimated extinction
distribution. The results are displayed in the bottom
panels of Figure C1 in comparison to the outcome on
the MYSST data.

In the roughly single-age synthetic population case

we find a median ”extinction” of 0.2691'8:8?3 mag or
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Figure C1. Zoom-in on the bright part of the CMD for the data from the MYSST survey (top left), and two synthetic data
sets. One represents a single-age population with a star formation episode between 5 and 5.6 Myr (top middle), while the other
emulates a mixed population with a constant star formation rate between 3.2 Myr and 12.6 Gyr (top right). Both synthetic
populations are shifted according to the MW foreground reddening but are intrinsically not affected by any extinction. In all
three panels the blue lines indicate the limits of our UMS selection for the extinction estimation, while the red line marks the
ZAMS, corrected for the LMC distance and MW foreground reddening. Lastly, the orange arrow illustrates the shift of synthetic
data and ZAMS due to the MW foreground reddening of Ay"Y = 0.22mag (or Afxsssw = 0.223mag). The bottom row shows
the extinction distributions (including MW foreground) estimated by our method for the stars falling in the UMS selection of
the corresponding data set in the top row. In the bottom panels the solid red line indicates the median estimated extinction,

while the dashed red lines mark the 25% and 75% quantiles.

0.0461'8'_8:1)’3 mag when subtracting the MW foreground.
The error in the estimate introduced by nonextinction
broadening effects is, therefore, fairly negligible when
dealing with the ideal case of a single-age population.
In the case of the mixed-age population, created by SF
with a constant rate over several tens of gigayears, the
outcome differs significantly. Here we find a median ”ex-
tinction” of 0.777039 mag (or 0.5670:59 mag subtracting
Ap¥ew) from the broadening of the UMS alone with-
out any real differential extinction. This value is almost
identical to our result on the real MYSST data, and as
we can see, comparing the bottom left and right panels
of Figure Cl1, the derived extinction distributions are
similarly shaped too. While this result at first glance

might call our MYSST extinction estimates into ques-

tion, it is important to emphasize here that this syn-
thetic mixed-age population is not set up to match the
LMC/N44 but as an extreme case to represent a worst-
case scenario. As previous studies (e.g. Oey & Massey
1995) indicate, N44 is a region of multiple recent events
of accelerated SF rather than the outcome of a constant
star formation process over several gigayears. Addition-
ally, our comparison with the observed LMC reference
fields in Appendix A shows clearly that the background
contamination in our UMS selection is fairly minimal.
Consequently, the synthetic mixed-age population is not
likely to be a realistic representation of N44. Therefore,
we conclude that the similarity of the MYSST extinc-
tion distribution and that of the mixed age synthetic
population is a coincidence. Nevertheless, this experi-
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ment indicates that our extinction estimation procedure
may be susceptible to larger systematic errors if applied
to certain populations.
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3.4 Measuring Young Stars in Space and Time
- Il. The Pre-Main-Sequence Stellar
Content of N44

In Ksoll et al. (2021b) the ML classification approach established in Ksoll
et al. (2018) is applied to the photometric catalogue of the MYSST survey to
identify the young PMS population of N44 and study their spatial distribution.
In particular a contour density approach is employed to quantify significant
PMS cluster structures, the cluster properties are derived, and the spatial
distribution of the identified PMS population is compared to the locations of
known H Il regions, young massive O stars and YSOs.

Contributions: Dimitrios Gouliermis proposed the application of our ML
classification approach to the MYSST survey photometric catalogue to find
the PMS population of N44. Dimitrios and myself came up with the idea
to use a contour density based approach to study the clustering structure
of the identified PMS stars. | conducted the complete analysis for this pa-
per, i.e. constructing a new training set, training and testing the ML models,
applying the trained method to the MYSST catalogue, implementing the
contour density based clustering approach and quantifying the cluster struc-
ture of the PMS stars. | created all figures and wrote all text for the initial
manuscript draft. The co-authors provided feedback on the manuscript,
additional evaluation ideas and assisted with proofreading.

3.4 Measuring Young Stars in Space and Time - Il. The 183
Pre-Main-Sequence Stellar Content of N44
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ABSTRACT

The Hubble Space Telescope (HST) survey Measuring Young Stars in Space and Time (MYSST)
entails some of the deepest photometric observations of extragalactic star formation, capturing even
the lowest-mass stars of the active star-forming complex N44 in the Large Magellanic Cloud. We
employ the new MYSST stellar catalog to identify and characterize the content of young pre-main-
sequence (PMS) stars across N44 and analyze the PMS clustering structure. To distinguish PMS
stars from more evolved line of sight contaminants, a non-trivial task due to several effects that alter
photometry, we utilize a machine-learning classification approach. This consists of training a support
vector machine (SVM) and a random forest (RF) on a carefully selected subset of the MYSST data
and categorize all observed stars as PMS or non-PMS. Combining SVM and RF predictions to retrieve
the most robust set of PMS sources, we find ~ 26, 700 candidates with a PMS probability above 95%
across N44. Employing a clustering approach based on a nearest neighbor surface density estimate,
we identify 18 prominent PMS structures at 1o significance above the mean density with sub-clusters
persisting up to and beyond 3o significance. The most active star-forming center, located at the
western edge of N44’s bubble, is a subcluster with an effective radius of ~ 5.6 pc entailing more than
1100 PMS candidates. Furthermore, we confirm that almost all identified clusters coincide with known
H II regions and are close to or harbor massive young O stars or YSOs previously discovered by MUSE
and Spitzer observations.

1. INTRODUCTION
Corresponding author: Victor F. Ksoll Star formation is one of the most fundamental pro-

v.ksoll@stud.uni-heidelberg.de cesses in our universe, bringing light to the galaxies
and ultimately providing the environments for the nucle-
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osynthesis of all heavier elements. The primary birth-
places of stars in galaxies are giant molecular clouds,
enormous reservoirs of atomic and molecular hydrogen,
harboring the necessary material to create stars (for
a review, see e.g. Klessen & Glover 2016, and refer-
ences therein). Within these clouds stars tend to form
in clusters and, in some instances, create large star-
forming complexes with multiple stellar populations of
different ages, where the feedback of the massive, but
short-lived, constituents can repeatedly trigger new star-
forming events (Lee & Chen 2007; Elmegreen 2011).
These young and bright objects are the signposts of
massive star-forming clusters (Zinnecker & Yorke 2007;
Portegies Zwart et al. 2010), but as studies of the stel-
lar initial mass function (IMF) indicate (see Kroupa
2002; Chabrier 2003), intermediate- and low-mass ob-
jects actually contribute a significant fraction to a clus-
ter’s total stellar mass. Contrary to their massive blue
siblings, these low-mass pre-main-squence (PMS) stars,
still in the Kelvin-Helmholtz contraction phase (Stahler
& Palla 2005), require increasingly longer time to reach
the main sequence (MS) as their masses get smaller,
down to the hydrogen-burning limit (about 0.072 Mg,
Schulz 2012). In the first few megayears PMS stars
may still be forming, accreting gas from their immediate
surroundings and circumstellar disks (Hartmann et al.
2016). Low-mass PMS objects trace the history of (re-
cent) star formation beyond the few megayears probed
by the ephemeral most massive stars. Therefore, our un-
derstanding of star formation may greatly benefit from
the study and observation of young PMS objects and
the stellar clusters within which they are born.

Large photometric surveys of nearby systems are one
of the main astronomical methods to perform in-depth
studies of remote stellar clusters and identify star-
forming regions. For more than three decades one of
the most successful tools for such photometric surveys
has been the Hubble Space Telescope (HST), providing
observations with exceptional spatial resolution and to
great depth. In the past the HST has proven especially
capable of detecting faint PMS sources in the Magel-
lanic Clouds, the dwarf companion galaxies to our Milky
Way (Gouliermis et al. 2006, 2012; Nota et al. 2006;
Sabbi et al. 2007; Da Rio et al. 2010, 2012; Sabbi et al.
2016). Aside from harboring the only extragalactic PMS
sources we can spatially resolve, the Magellanic Clouds
are characterized by a relatively high star-forming ac-
tivity, observable at lower extinction, since they are not
obscured by the dusty Galactic disk. Therefore, the
Magellanic Clouds provide very attractive targets for the
study and observations of large ensembles of PMS stars
(Gouliermis 2012).

One such complex is the active star-forming region
N44 (LHa 120-N44; Henize 1956), located in the Large
Magellanic Cloud (LMC). It consists of a giant com-
plex of H II regions, one of the most luminous across
the entire LMC after 30 Doradus and N11 (Kennicutt
& Hodge 1986; Pellegrini et al. 2012), entailing an enor-
mous central superbubble and several compact H II re-
gions along its ridge (Pellegrini et al. 2012; McLeod et al.
2019). The youthfulness of the stars within these ion-
ized gas reservoirs is highlighted by three OB associ-
ations (LH47, LH48 and LH49; Lucke & Hodge 1970)
and a plethora of more than 30 massive, short-lived
O-type stars that have been identified in N44 by spec-
troscopic studies (McLeod et al. 2019; Will et al. 1997;
Oey & Massey 1995; Conti et al. 1986; Rousseau et al.
1978). N44 also exhibits evidence for multiple star-
forming events and feedback-triggered star formation, as
previous studies have found a ~ 5 Myr difference in age
between the stellar populations within and at the rim of
N44’s bubble (Oey & Massey 1995), as well as the pres-
ence of a supernova remnant, SNR 0523-679 (Chu et al.
1993), in the vicinity of the bubble (Jaskot et al. 2011).
In addition, there is active, ongoing star formation in
N44, as Chen et al. (2009) find 59 massive young stellar
objects (YSOs) within N44 from observations with the
Spitzer Space Telescope. Combining Spitzer data from
the SAGE (Surveying the Agents of a Galaxy’s Evo-
lution; Meixner et al. 2006) legacy program with opti-
cal photometry from the Magellanic Clouds Photometric
Survey (MCPS; Zaritsky et al. 1997) and near-infrared
photometry from the InfraRed Survey Facility (IRSF;
Kato et al. 2007) this list is extended by another 139
YSOs (18 in common with Chen et al. 2009, matched to
within 1”) by Carlson et al. (2012). In a recent study,
Zivkov et al. (2018) have used near infrared observations
from the VISTA Survey of the Magellanic Clouds (VMC;
Cioni et al. 2011) to estimate the number of PMS sources
in N44. Identifying regions containing PMS sources from
density excesses in K, /(Y — K) Hess diagrams in com-
parison to the underlying fields, they find a lower limit
to the number of PMS stars in N44 of 1000 + 38.

N44’s complexity is captured by the deep HST imag-
ing of the ”Measuring Young Stars in Space and Time”
(MYSST) survey, which obtained photometry in two
broadband filters for more than 400,000 sources across
the extent of N44 (Ksoll et al. 2020a, Paper I). The
rich color magnitude diagram (CMD) of the MYSST
survey not only has revealed the presence of significant
differential reddening within N44 but also entails many
populations of different ages in the observed area. Con-
sequently, a significant overlap between the old lower MS
(LMS) or red giant branch (RGB), and the PMS popula-
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Figure 1. Left: color composite image from the Digitized Sky Survey (Lasker et al. 1996) of the wider LMC neighborhood
of N44. The green contour highlights the main FOV and the observed reference fields of the MYSST survey. Right: two-color
composite image of N44 from the MYSST survey, presenting the observations in the F555W and F814W filters in blue and
green, respectively. Image from Ksoll et al. (2020a) used with permission.

tion occurs in the CMD, making it particularly difficult
to distinguish the young N44 cluster constituents from
the field contaminants in this large data set without ad-
ditional information about the excess in emission lines
that accompany the PMS phase (e.g. De Marchi et al.
2010).

To disentangle the PMS population from the older
stars in a statistically sound manner using only broad-
band photometry requires sophisticated algorithms,
such as the machine-learning (ML) approaches we have
demonstrated in a previous study (Ksoll et al. 2018).
In the recent years, there have been many examples of
established ML approaches successfully applied to as-
tronomical problems involving regression, classification,
and clustering tasks (see e.g. Baron 2019; Fluke & Ja-
cobs 2020, for reviews of recent applications).

In this paper we present the identification of the
youngest PMS candidates in N44 using the photometric
catalog from the HST survey MYSST (Paper I). Our
approach, established in Ksoll et al. (2018), consists of
an ML-based classification of the PMS and non-PMS
constituents of the survey. This study is structured as
follows. In Section 2 we provide a brief summary of
the MYSST photometric catalog. In Section 3 we begin
by describing the construction of the necessary training
set for our ML classification approach from a subset of
the observational data. This entails the careful selection

of a region within N44 that contains distinct PMS and
LMS populations, as well as the addition of examples of
field RGB contaminants from suitable areas. Then, we
present the training and test performance of our models.
In Section 4 we discuss the classification results of our
approach, while in Section 5 we analyze the spatial clus-
tering structure of the identified PMS candidate stars.
Finally, Section 6 provides a summary and considera-
tions on future developments.

2. DATA

The MYSST program observed the star-forming com-
plex N44, located in the Large Magellanic Cloud, with
a deep, high spatial resolution HST survey (Paper I).
Its field of view (FOV) of 12.2 x 14.7arcmin?, corre-
sponding to about 180 pc x 215 pc at the LMC distance
((m—M)o = 18.55+0.05; Panagia et al. 1991; De Marchi
et al. 2016), entails N44’s characteristic superbubble and
the region south of it. Figure 1 shows the MYSST FOV
in the greater LMC neighborhood of N44 (left) and the
MYSST two-color composite image (right). The sur-
vey was conducted in two broadband filters, F555W and
F814W, with the Advanced Camera for Surveys (ACS)
and Wide Field Camera 3 (WFC3) instruments of the
HST. Reaching down to about 29 mag in F555W and
28 mag in F814W, the MYSST survey is one of the deep-
est photometric studies of extragalactic stars, probing
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even the lowest-mass populations of N44. The F555W
detection limit implies the capture of e.g. unreddened
1 Myr PMS stars with masses as low as 0.09 Mg (see
completeness discussion in Paper I) at the distance of the
LMC. In this paper we use the MYSST photometric cat-
alog presented in Paper I, consisting of 461,684 sources
across the observed FOV of N44 and two smaller LMC
reference fields. This catalog only entails objects up to
14 mag in F555W and 13mag in F814W, as brighter
sources were lost owing to saturation. Consequently,
the available data are likely missing some of the most
massive stars, i.e. early O stars, of the region.

N44 is also subject to a substantial amount of dif-
ferential reddening. In Paper I we establish reddening
properties for the MYSST survey by fitting the slope of
the extinction-elongated red clump using the RANSAC
algorithm. Furthermore, we derive individual stellar
extinctions using upper MS (UMS) stars as extinction
probes and assigning a distance-weighted average extinc-
tion of the nearest UMS stars to all other sources. This
extinction estimate entails some caveats. First, we as-
sume the UMS stars to be on the zero-age-MS (ZAMS)
to measure their extinction. For the quickly evolving
massive O stars this might not necessarily be the case
anymore, even if they are still young. In fact, Oey &
Massey (1995) estimate the O-star population in N44’s
bubble to be about 10 Myr old while O stars in the
bubble rim are 5 Myr younger. However, we find that
the error for using the ZAMS instead of e.g. a 10 Myr
isochrone is only on the order of 0.04 mag for our se-
lection of UMS sources. In any case, this ZAMS as-
sumption for the UMS sources means that the estimated
reddening is at worst only an upper limit of the true ex-
tinction for older UMS stars. Second, while it has been
found that using the reddening of UMS neighbors re-
turns reasonable values for constituents of young star
forming regions (De Marchi et al. 2016), such as N44,
there is no guarantee that the UMS extinction is repre-
sentative for field sources, leading to occasional over- or
underestimates.

3. TRAINING SET

Ksoll et al. (2018) establish an ML approach for the
identification of PMS candidate stars based on HST pho-
tometry, which here we apply to the MYSST data. The
method entails the careful selection of a training set from
the observational data, in which a distinction between
examples of PMS and non-PMS stars can be made eas-
ily.  With this labeled training data the classical ML
techniques called support vector machine (SVM) and
random forest (RF) are then trained to distinguish these

two classes of stars based on their broadband photome-
try and estimated extinction.

Due to the different filter passbands between the Hub-
ble Tarantula Treasury Project (HTTP) data of Ksoll
et al. (2018) and the MYSST survey, one cannot reuse
the HTTP training set. The intrinsic differences be-
tween the two star-forming regions would in any case
justify the creation of a new training set specific to the
MYSST data of N44.

3.1. PMS Training Set

As a base for our training set we select a subset of the
MYSST data that is likely to contain a suitable number
of PMS stars, as well as LMS contaminants. The latter
are likely, for the most part, field constituents, but they
could also consist of low-mass remnants of earlier star
formation episodes in the N44 region. Given that LMS
and PMS stars are located closely together in the low-
brightness regime in the CMD, we require examples from
both populations in order for our ML models to learn to
properly distinguish PMS from non-PMS stars. To find
a region within the MYSST data that contains enough
examples of PMS stars, we first make a very rough se-
lection of potential candidates in the CMD using the
red polygon in the left panel of Figure 2. Performing a
kernel density estimate (KDE) on the spatial distribu-
tion (using a Gaussian kernel and a fixed bandwidth of
300 pixels, i.e. ~ 3pc) of this rough selection, we then
determine field areas with high densities of PMS star
candidates. Since the majority of these are located in
the northern half of the FOV we concentrate on this
region. Drawing contours at increasing significant den-
sity levels, in units of o above the mean surface density,
we find that a 20 density contour, located at the west-
ern edge of the N44 superbubble, entails a large-enough
sample of LMS and PMS stars. This region is enclosed
by the black contour in the middle panel of Figure 2.
The corresponding Hess diagram (Figure 2, right panel)
shows a CMD consisting of a prominent MS as well as a
nicely separated young PMS population, which provides
an ideal base for the training set of our ML approach.
Note that this region is also subject to significant dif-
ferential reddening, covering the entire range of the ex-
tinction estimates, so that this selection already entails
the broad extinction range toward N44.

Since our classification scheme distinguishes between
two classes, "PMS” and "non-PMS”, each star of our
training set base requires a label indicating to which of
the two categories it belongs. Consequently, we need
to quantify which of the stars in our data set are part
of the PMS and LMS populations in the low-brightness
regime. To achieve this, we have devised a procedure



MYSST - II. N44 PMS STARS )

15+

-67.90 1 ’

—-67.95 1

Messsw (Mag)
S

&
Declination (deg)

304

n
o Counts
5 15
A 30
4
[} 3 =) 10
I}
2| E 20 .
1 &
il 1
o| €
251
25 pc
301

; T T T 80.6
Messsw ~ MegLaw (Mag)

Right Ascension (deg)

] 7 : : : :
80.5 80 T T T T
Messsw ~ Meg1aw (Mag)

Figure 2. Left: optical CMD of the northern half of the MYSST main FOV, centered on N44’s superbubble. The red polygon
indicates a rough selection of PMS candidate stars used to identify a training set for our ML approach. The black arrow indicates
the direction of the reddening vector of N44, as derived in Paper I. Middle: contour density plot of a kernel density estimate
of the rough PMS candidates located in the northern part of the observed field view. The density levels are shown in units of
o above the mean estimated density. The contour highlighted by the solid black line indicates the region selected as a base for
the training set. Right: Hess diagram of the black outlined region in the middle panel. This density diagram highlights the
presence of two distinct populations of stars in this FOV, namely, a clear MS and PMS. For comparison, the black dashed line
indicates a 14 Myr PARSEC isochrone, corrected for the median extinction of the stars in this region and the LMC distance

modulus.

in Ksoll et al. (2018), where we fit a Gaussian mixture
model to a distance metric in the CMD using the Ex-
pectation Maximization (EM) algorithm to determine a
probability for every star in the low-brightness regime
to be part of the PMS population. Figure Al in the Ap-
pendix shows the selection of the low-brightness stars for
this fit. Here we have excluded the UMS and red clump
sources, as well as a few objects whose nature we could
not identify. While the very red objects among the latter
could potentially be PMS stars, which are e.g. variable
sources or are undergoing an extreme accretion event,
we cannot ascertain this with the MYSST data alone.
Therefore, we opt to only find the most secure PMS ex-
amples here. Figure Al also highlights the threshold
line derived from PARSEC isochrones (Bressan et al.
2012), which is the basis for the CMD distance mea-
sure. Note that this selection and the fit are performed
on the extinction-corrected CMD in order to achieve the
best possible separation between PMS and LMS objects.
We also ignore the uncertainties of photometry and ex-
tinction during the Gaussian mixture model fit, because
we aim to perform a classification and not a regression,
so that the precise probability values are not of great
importance.

Once these probabilities are established, we assign our
binary labels by selecting a threshold above which we
consider a star a true PMS candidate, taking the need
for a balanced (ideally 50% positive and 50% negative
examples) training set into account. Due to the over-
all lower abundance of PMS stars, we cannot reach an

optimal balance, but we find that selecting a threshold
probability of pe, > 0.85 achieves a reasonable trade-off
between training set balance, strictness in our PMS ex-
ample choice, and classifier performance. The strictness
of the chosen threshold also indirectly accounts for the
uncertainties of photometry and extinction, neglected
during the fit, as this selection of PMS examples is more
conservative than optimistic, already excluding sources
in the transition zone that would show the most changes
in PMS candidate probability due to measurement un-
certainties.

3.2. RGB Training Set

Aside from the field LMS stars, which need to be dis-
tinguished from the PMS sources, old stars on the RGB
can also fall into the PMS regions of the CMD owing to
either distance, extinction, or simply the fact that RGB
and PMS tracks can partially overlap in the CMD. Like
most of the LMS stars, these RGB contaminants are ei-
ther foreground or background stars of the LMC that do
not belong to the young star-forming clusters we are try-
ing to identify. As the third panel of Figure 2 indicates,
our training set basis contains almost no examples of
these stars. Consequently, we need to look elsewhere to
find additional RGB examples so that our ML models
can take these objects into account. To find such ex-
amples, we use the KDE of the PMS selection again to
now identify regions within the survey that are devoid
of PMS stars and entail an RGB population. The top
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Figure 3. Extinction map of the MYSST photometric catalog (top left). The black numbered circles indicate regions that
are identified to be devoid of PMS stars and used to add examples of RGB stars into the training set. The size of the circular
selections is chosen to match the surface area of the training set contour in the middle panel of Figure 2. The remaining
five panels show the CMDs of the corresponding circles in black in comparison to the total CMD of the MYSST data (gray).
Highlighted in blue are the respective non-PMS examples added to the training set. Note that we do not select RGB samples
in the top right panel, but rather an emergent feature that resembles a highly extincted MS.

left panel of Figure 3 shows five regions we have iden-
tified for this purpose, all encircling the same projected
area enclosed by the 20 irregular contour of our training
set basis. We select multiple regions to probe different
extinction regimes. The remaining five panels show the
corresponding CMDs in comparison to the total CMD
of the MYSST survey, the blue points representing the
RGB examples to add to the training set. We also in-
clude a few example red clump stars along with the RGB
selection to avoid potential misclassification on account
of the models never having seen any red clump objects
during training. Also important to note here is that
we do not select RGB examples in region 2, but rather
constituents of a feature that looks akin to a heavily red-
dened MS. This feature does not completely disappear
when we correct for extinction. Given that this region
appears to be more severely extinguished in the UMS
extinction measurements, this feature could potentially
be a heavily reddened field population behind N44 for

which we are still underestimating the reddening. Since
the nature of these objects is unclear, and because this
region is clearly almost devoid of young PMS stars, we
decide to include this feature as negative examples so
that our ML models can also take it into account.

We add these RGB examples with a fixed PMS prob-
ability of peny = 0 before applying the previously men-
tioned labeling threshold to the data.

3.3. Final Training Set

Figure 4 shows our final training set before applica-
tion of the label threshold. In early training attempts
of our ML models we realized that the prediction bene-
fits from including the UMS (examples located at about
mpsssw < 21 and mpsssw — Mpgraw < 05) as addi-
tional negative examples, something that was not nec-
essary in our previous study (Ksoll et al. 2018). Sim-
ilarly to the RGB stars, we add them with zero prob-
ability. Note that this decision will likely exclude the
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Figure 4. Optical CMD of the final training set selection.
Each star is color-coded according to the derived probability
that it belongs to the PMS population in the CMD. Note
that the UMS and additional RGB examples are included
with a fixed probability of 0.

detection of more massive, brighter PMS stars that are
close to joining the MS, such as Ae sources. We also re-
add the low-brightness objects of unclear nature, which
were excluded during the EM fit, as negative examples
(i.e. with pe, = 0). For the most part these are located
roughly at mpsssw > 25 and mpsssw — mesuaw < 1,
as well as around 28 > mpsssw > 22 and 1.5 <
mpsssw — Mes1aw < 4.

With that, our training set entails 17,942 stars, of
which 5512 (~ 31%) are PMS candidate stars with
Pem > 0.85. Again, the balance between positive and
negative examples within the training set is not opti-
mal, but with about a third of the data being positive
examples, we believe that our selection is robust enough
to not suffer from imbalance issues. At this point it
is also important to note that the PMS candidate ex-
amples in our training set appear to be mostly younger
than ~ 15 Myr when compared to PARSEC isochrones
(see Figure 2, right panel). As our ML classification ap-
proach will find the siblings of the training PMS candi-

Table 1. Performance Summary for SVM and RF

Method
Performance SVM RF
Measure Train Test Train Test
Accuracy 0.9851 0.9807 0.9709 0.9680
Balanced accuracy 0.9800 0.9737 0.9628 0.9593
ROC AUC 0.9986 0.9976 0.9957 0.9950
Fy score 0.9755 0.9683 0.9521 0.9477

NOTE—Both models are trained and tested on the same
subsets for comparability.

dates across all of N44, this means in the following that
we will recover only the most recent sites of star forma-
tion, younger than ~ 15 Myr. Therefore, our method
is not sensitive to potential low-mass PMS stars from
even earlier star formation events, which are still in the
formation process but very close to joining the MS.
Lastly, we also have to note that we do not account
for active galactic nuclei (AGNs) or unresolved (back-
ground) galaxies in our training data, because we aim
for a MYSST survey intrinsic approach and distinguish-
ing these sources with the available data is not straight-
forward. Consequently, there may be some minor con-
tamination by these types of sources in our training set.

3.4. Training and Test Results

Having established the training set, we follow the ap-
proach of Ksoll et al. (2018), training an RF (Breiman
2001) and SVM (Cortes & Vapnik 1995) to distinguish
between the "PMS” and "non-PMS” classes based on
the photometry in F555W and F814W, as well as the
estimated extinction in the F555W filter Apsssw. Note
that within the method framework established in Ksoll
et al. (2018) we do not consider photometric uncertain-
ties. They do not contribute further information when
considered as features, and in addition, the implementa-
tions of SVM and RF do not have mechanisms to treat
uncertainty. For training we split the data set estab-
lished in the previous section 70:30 into a training and
held-out test subset. We use the latter to ascertain train-
ing success and performance on unknown data (with
known labels) by computing the accuracy, the balanced
accuracy, the area under the receiver operating charac-
teristic (ROC AUC) curve (for a detailed description of
these performance measures, see e.g. the Appendix in
Ksoll et al. 2018) and F; score,

2TP

Pl=—
' 9TP + FN + FP’

(1)
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where TP, FP, and FN denote the number of true
positives, false positives, and false negatives, respec-
tively. We train both algorithms using a 10-fold cross-
validation, repeated five times, on the training subset us-
ing the ROC AUC as the performance metric for model
selection. For the SVM we employ a Gaussian radial
basis kernel, and we find the best RF solutions em-
ploying 500 trees. As we perform predictions on only
three features, the magnitudes in F555W and F814W
and Apsssw, each tree will consider all of these for the
split decisions during tree construction. Aside from a
predicted label, "PMS” or "non-PMS”, we setup the
two classifiers such that they also provide a probability
for the "PMS” class. For the RF this probability is es-
timated by the fraction of votes among the 500 trees for
the "PMS” class, while we use Platt’s posterior prob-
abilities (Platt 1999) to perform this estimate for the
SVM model.

Table 1 summarizes the training results and perfor-
mance of both algorithms on the held-out test set. Over-
all we find excellent results for both methods. With
accuracies, both regular and balanced, above 96% and
ROC AUC as well as F} scores close to the optimal value
of 1, our ML classification approach shows great success
for the given identification task. The almost-equal per-
formance results on the training and test subset across
both methods further indicate that the trained models
do not suffer from overfitting. Comparing the two algo-
rithms we find that the SVM does slightly better than
the RF achieving the highest scores across all measures.
However, given the small differences in the performance
scores, it is safe to say that they exhibit an equal success
rate.

4. IDENTIFICATION OF PMS STARS

Encouraged by our results on the training and test
data, we use the trained models to identify the PMS
stellar content of the entire MYSST survey by classify-
ing all 461,684 objects. The individual prediction re-
sults of the two complementary ML approaches, SVM
and RF, in the form of CMDs color-coded according to
the predicted PMS candidate probabilities, as well as
diagrams of the spatial distribution of the most likely
PMS candidates, can be found in Figures A2, A3 and
A4 in the Appendix. Note that the PMS probabilities
returned by SVM and RF are a measure of the model’s
confidence in the prediction of the ”PMS” class and not
the probabilities derived during our Gaussian mixture
model fit.

In total the SVM identifies 39,818 PMS candidates at
a probability of psym > 0.5 in the main FOV with a
subset of most likely (psyvam > 0.95) candidates consist-

151

204
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Figure 5. Optical CMD of the MYSST photometric catalog.
Each star is color-coded according to the mean predicted
probability between the SVM and RF model that it belongs
to the PMS.

ing of 29,571 stars, while the RF finds 41,909 and 26,610
candidate objects in these two categories, respectively.
Therefore, it appears that the SVM is slightly more con-
servative in the total predicted number of PMS candi-
dates, while the RF seems to put tighter constraints
on the most probable PMS constituents. With about
39,000 and 25,500 common predictions in the p > 0.5
and p > 0.95 regimes, respectively, both methods nicely
agree on the identified PMS population.

Looking at the predictions more in detail, the SVM ex-
hibits a rather smooth decision boundary in the CMD
(Appendix, Figure A2, left panel), while the RF en-
tails a more irregular zig-zag-shaped class separation,
likely an artifact of the underlying partitioning strat-
egy of the RF trees in the low-dimensional feature space
of our problem. We also see that both classifiers return
fairly sharp decision boundaries between the "PMS” and
"non-PMS” classes. From a physical standpoint this
may not seem intuitive, because there is source confu-
sion between the LMS and PMS in the low-brightness
regime and our Gaussian mixture model fit did indeed
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Figure 6. Spatial distribution of the predicted PMS candidate stars. The left panel shows all stars with ppms > 0.5, while the
right panel indicates the positions of the 28,678 most probable candidate PMS stars with ppms > 0.95. The black dotted-dashed
line in both diagrams indicates our north/south division of the FOV for analysis purposes.

show a relatively broad transition from one to the other
population (c.f. Figure 4). It is important to emphasize
here that this sharp decision boundary is not a physical
one, but the one derived by the models to distinguish
the two labels "PMS” and "non-PMS” based on the ex-
amples in the training set. Since we do not perform a
regression on PMS probabilities, but a classification in
a low-dimensional feature space, the models can, there-
fore, determine a sharp boundary between our strictly
chosen PMS and non-PMS examples in areas where the
two classes do not overlap significantly.

A direct star-by-star comparison of the predicted PMS
candidate probability (see the right panel of Figure A2
in the Appendix), shows that the RF tends to make
more conservative predictions in the CMD area where
PMS and RGB overlap. The SVM, on the other hand,
exhibits a more conservative decision boundary between
the LMS and PMS in the very low-brightness regime.
Here we also find that the RF considers several red ob-
jects of unclear nature to the right of the PMS as poten-
tial candidates, in contrast to the SVM. These very red
objects could be young PMS stars that are e.g. under-
going an extreme accretion event or are variable sources
during an event of heightened activity. Since we cannot
establish the nature of these objects with the MYSST
data alone, we consider the latter RF predictions to be
debatable, concluding that the SVM returns more ro-
bust results here. On the other hand, there are also

some SVM PMS predictions fairly close to and to the
left of the RGB, which are likely mispredictions and are
not considered as candidates by the RF.

Overall, we come to the same conclusion as in our
previous study (Ksoll et al. 2018), that a combination
of the two classification outcomes provides the most ro-
bust prediction result for the PMS stellar content of
N44. Figure 5 exhibits the classification results if we
average the predicted PMS probabilities between SVM
and RF as the color code of every star in the CMD.
Excluding the two reference fields of the survey, this ap-
proach returns a total of 40,509 PMS candidates with
Ppms = 0.5 within the main FOV and a most proba-
ble subset consisting of 26,686 stars with ppms > 0.95.
Figure 6 shows the spatial distributions of these PMS
candidates across the area of N44. Notable here is that
among the most probable set a majority of 16,976 PMS
candidates is located in the northern half of the survey,
in and around the massive superbubble of N44, while
only 9710 prospective PMS stars are distributed in the
southern region. The black dotted-dashed line in Fig-
ure 6 indicates our north/south division for the pur-
pose of this discussion. Within the northern part we
can see that the PMS stars are mainly concentrated to-
ward the rims of N44’s bubble, especially so the western
and northwestern edge but excluding the southeastern
corner.
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We also recover a number of PMS candidates in the
two reference fields of the survey, i.e. a total of 646 at
Dpms > 0.5 and 346 at ppms > 0.95 for the northern
field, while the southern one hosts 987 and 439 sources
in these two confidence regimes, respectively. The can-
didate stars in the northern field are concentrated al-
most entirely at the southwestern corner, forming a dis-
tinct clump, whereas in the southern field they are more
evenly distributed without any apparent structures. Re-
garding the candidates in the southern field, it should be
noted that in Paper I we find only very few UMS can-
didate stars there for the approximation of individual
extinction. Additionally, the UMS status of the selected
stars remains unclear, so that we believe the estimated
extinction values in the southern field to be the most
uncertain. Consequently, we recommend treating the
identified PMS candidates in this field with caution.

5. SPATTAL DISTRIBUTION OF PMS STARS

To better understand the star-formation processes in
N44, we investigate the spatial distribution of the PMS
candidate stars in more detail. We employ a nearest
neighbor search to determine the surface density of PMS
candidates and characterize their clustering properties.
We also look at the correlation of the PMS candidate
stars with other star formation indicators, specifically,
we compare with the positions of the known O stars,
B stars and YSOs in the region, as well as CO, Ha
and dust emission observations. Additionally, we eval-
uate how well our spatial PMS candidate distribution
matches the one derived by Zivkov et al. (2018) from
VMC observations of N44.

5.1. Location of PMS Stars

To further ascertain the validity of our PMS identi-
fication and to study the spatial distribution of these
stars, we perform a nearest neighbor density estimation
(NNDE). We compute the local source density n;, first
introduced in astronomy by Casertano & Hut (1985), as

n =14 2)

2
7T7“j

where 7; denotes the distance to the jth-nearest neigh-
bor, on a regular grid within the MYSST main FOV.
Note that we modify the density estimate to a surface
number density here, instead of the mass density in
Casertano & Hut (1985). Similar to our previous ap-
plication of a KDE, we then compute surface density
contours in terms of significance o above the mean es-
timated density. We find that employing the distance
to the 20th-nearest neighbor, corresponding to j = 20
in Eq. 2, offers a reasonable compromise between reso-

lution and statistical significance and allows us to high-
light the structures of the identified PMS clusters. Due
to the difference in number and spatial distribution of
the identified PMS candidates between the northern and
southern half of the survey (see black dotted-dashed line
in Figure 6) we perform the NNDE separately on both
regions to better quantify the clustering properties of
PMS stars. For the same reasons we also treat the two
reference fields individually. Both panels of Figure 7
show the corresponding nearest neighbor surface density
contours. Due to the individual treatment of the four
regions, the nearest neighbor density differs for the same
o-significance level between regions. For instance, at 1o
the nearest neighbor densities are at 2.62 and 1.49 pc—?2
in the northern and southern halves of the main FOV,
while they reach only 0.84 and 0.27 pc~? in the north-
ern and southern reference fields, respectively. As the
overall nearest neighbor density in the southern refer-
ence field is fairly low, barely reaching 0.5 pc™2 even at
a 3o significance, it is obvious that the structures here
are not entirely comparable to those found in the main
FOV.

For comparison, the right panel of Figure 7 also pro-
vides the location of O stars derived from MUSE obser-
vations (McLeod et al. 2019, note that this survey only
covered the northern half of the MYSST FOV), addi-
tional known O-type sources in the SIMBAD database
(see Appendix, Table A1), and massive YSOs identified
from Spitzer observations (Chen et al. 2009) and Spitzer
data combined with optical and near infrared photom-
etry (Carlson et al. 2012). Additionally, the left panel
indicates the prominent H II regions of N44, as deter-
mined by Pellegrini et al. (2012) and defined in McLeod
et al. (2019). This diagram confirms that the PMS stars
identified by our ML classification are primarily located
within the H II regions of N44. The only notable excep-
tion here is the H II region L219, where we do not find
a prominent overdensity of PMS candidate stars. Since
a large part of this region falls outside of the MYSST
FOV, similar to L198 and L194, it is not unlikely that
we are simply missing most of the associated PMS clus-
ters. Note also that Pellegrini et al. (2012) does not
find HII regions associated with the structures of PMS
candidates we identify in the two reference fields.

In Paper I we use a selection of ~ 1300 UMS stars to
derive the extinction toward the region. As previously
mentioned, the MYSST survey misses the most massive
stars of N44 owing to saturation effects. Therefore, this
selection consists primarily of late O- and early B-type
UMS stars. Comparing this population of young massive
stars to our PMS density maps (see Appendix, Figure
A5), we also find evidence that they are preferably lo-
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Figure 7. Left: spatial nearest neighbor contour density diagram of the most probable candidate PMS stars of the MYSST
survey. The color-coding represents the nearest neighbor density in steps of o above the mean density. The black dotted-dashed
line indicates the north/south separation for the NNDE. The polygons mark known H II regions around N44, in black as
determined by Pellegrini et al. (2012) and in blue as defined in McLeod et al. (2019). Note that the boundaries ”N44B I” from
McLeod et al. (2019) and ”L196” from Pellegrini et al. (2012) coincide. The underlying gray shaded regions (in both panels)
indicate the MYSST coverage for comparison. Right: same diagram as in the left panel, but overlaid with the positions of O
stars (light-blue points) as identified by MUSE observations (McLeod et al. 2019). Note that McLeod et al. (2019) only covered
the northern half of the MYSST FOV. The purple points signify other known O stars in the SIMBAD database (Appendix,
Table A1) that are not covered by McLeod et al. (2019). The orange points indicate massive YSOs identified from Spitzer
observations of N44 as found by Chen et al. (2009). Lastly, the red points mark additional YSOs discovered by Carlson et al.
(2012), excluding matches within 1 arcsec with the Chen et al. (2009) list. Note that 14 YSOs from Chen et al. (2009) and 31
from Carlson et al. (2012) fall outside the shown region.

cated in correspondence of the PMS clusters, as more density peaks from Zivkov et al. (2018) as well that
than 35% (62%) of them fall into the 1o (0o) PMS den- do not have a significant counterpart in our PMS near-
sity contours. For comparison, in a uniform random dis- est neighbor density map. These Zivkov et al. (2018)
tribution (averaged over 100 random realizations) only density peaks are located at the northern bubble rim
9.6% £ 0.5% (30.0% =+ 0.5%) of objects would fall within (R.A. = 80.53° Dec. = —67.90°), the eastern bubble
the same contours. This provides additional confirma- edge (R.A. = 80.73° Dec. = —67.94°) and just south
tion that the PMS candidates we identify tend to be lo- of the bubble (R.A. = 80.67°; Dec. = —67.98°), respec-
cated in the vicinity of more massive young UMS stars. tively. The discrepancy in these three regions could be

Using Hess diagrams to identify PMS regions as den- an effect of both the angular resolution and completeness
sity excesses over local field populations, Zivkov et al. differences between the VMC and MYSST surveys. Em-
(2018) recently provided a PMS surface density map of ploying the VISTA telescope, the VMC project achieves
N44 based on data by the VMC survey. In the left panel an angular resolution on the order of 0.34”, a value that
of Figure 8 we show their PMS surface density con- is almost 10 times larger than the 0.04” resolution ob-
tours in comparison to our PMS nearest neighbor den- tained with the HST in the MYSST observations. Ad-
sity map. Aside from two of their distinct density peaks ditionally, Zivkov et al. (2018) state that the 50 mag-
that fall outside of the MYSST coverage, we find a good nitude limit of their photometry catalog corresponds to
match to our nearest neighbor density map within the the brightness of 1 Myr old PMS stars with 0.7 Mg
southern half of the main MYSST FOV. In the northern (reddening corrected), while the MYSST survey reaches
half we also have a decent agreement along the western down to 0.09 Mg (albeit unreddened) for stars of that

edge of the main bubble. However, we identify three age (Paper I).
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Figure 8. Left: same PMS nearest neighbor density diagram as in Figure 7. Overlaid in black are the PMS density contours
derived from VMC observations of N44 by Zivkov et al. (2018). The outermost black contour indicates a number density of
2.4 arcmin~2, while each consecutive inner contour indicates an increase by 3 x 2.4 arcmin~2. For comparison, the gray shaded
region marks the coverage of the MYSST survey in both panels. Right: 2D binned surface density diagram with 40” x 40" bins
of a subset of our PMS catalog matching the PMS mass completeness limit of the VMC survey used in Zivkov et al. (2018).
Overlaid with the same color scheme as the 2D density map are the PMS surface density contours from Zivkov et al. (2018) to

allow for quick comparison.

To test whether the completeness (and resolution)
differences between the MYSST and VMC survey can
indeed explain the missing density peaks in our PMS
distribution in the three identified regions, we select a
subset of our PMS candidate catalog that matches the
VMC PMS mass limit of 0.7 M. Using the 1 Myr PAR-
SEC isochrone and accounting for the average extinction
measured in Paper I, the 0.7 Mg cutoff translates to a
limiting magnitude of 24.86 mag in F555W. Selecting
only PMS candidates brighter than this limit reduces
our catalog of most likely PMS sources from 27,471 to
only 4002 across the entire MYSST FOV, including the
two reference fields. Missing more than 85% of our iden-
tified PMS candidates from this limit alone, it is not un-
likely that the PMS density map derived from the VMC
data overestimates the significance of these three regions
compared to the rest. In fact, Zivkov et al. (2018) only
find about 1000+ 38 PMS stars (as a lower limit) in N44
based on the VMC data.

To approximate the spatial resolution of the Zivkov
et al. (2018) approach for identifying PMS regions — they
use a grid of overlapping circular elements with a radius
of 40— we compute a 2D binned surface density map
with 40” x 40” bins from the reduced PMS candidate
catalog. The right panel of Figure 8 shows this map in

comparison to the Zivkov et al. (2018) PMS density con-
tours, where bins and contours share the color scheme
to easily highlight matching number density levels (in
arcmin™?). While our low-resolution 2D number density
map generally tends to larger values, in particular at the
western edge of the bubble, we find that the surface den-
sities in the three regions in question actually match up
reasonably well. It is also interesting to note that the
small density peak found by Zivkov et al. (2018) close
to our southern reference field is matched fairly well in
our low resolution density map, even though half of it is
actually outside the MYSST FOV. Given these results,
the missing density peaks in our full resolution nearest
neighbor density map appear to be well explained as a
result of the lower completeness and spatial resolution of
the VMC data. Therefore, we conclude that our results
agree well with the Zivkov et al. (2018) study and pro-
vide a significant extension toward very low mass PMS
stars at a higher spatial resolution.

Lastly, we also compare our spatial PMS distribution
with other star formation tracers, such as gas and dust
emission. In Figure 9 our PMS nearest neighbor den-
sity distribution is shown in comparison to contours of
CO emission derived from the Magellanic Mopra Assess-
ment (MAGMA; Wong et al. 2011, 2017) survey. Here
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Figure 9. Same PMS nearest neighbor density diagram
as in Figure 7. Overlaid in black are intensity contours
of CO emission as observed by the MAGMA survey (Wong
et al. 2011, 2017). The outermost contour marks the mean
CO intensity in the FOV at 1.7 K km s~', and each con-
secutive inner contour marks an increase in intensity by
1o = 3.5 K km s~ ! up to the 100 level for the innermost
line. For comparison, the gray shaded region marks the cov-
erage of the MYSST survey.
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Figure 10. Inverted grayscale image of Ha emission in N44
as captured by the MCELS survey (Pellegrini et al. 2012).
Overlaid in black and red are our 1 and 30 PMS nearest
neighbor density contours (see Figure 7) for comparison. The
gray outlines indicate the coverage of the MYSST survey.

the outermost contour signifies the mean CO intensity
in the FOV of 1.7 K km s™!, while each subsequent con-
tour marks an increase by 1o = 3.5 K km s™! up to a
maximum of 100. We find a clear correlation of en-
hanced CO emission to regions of high PMS density in
the southern half of the main FOV. In the northern half
there is also a very prominent peak in the CO emis-
sion that partially coincides with the highest PMS near-
est neighbor density at the western edge of the bubble.
Quite notable is the absence of CO emission along the
northern bubble rim and inside of the bubble, where we
still find notable structures of PMS sources. As the very
massive stars have cleared out the gas and dust in the
bubble, the absence of CO emission there is not surpris-
ing. Interesting as well is a small peak of CO emission
in the northern reference field, coinciding with the PMS
overdensity we have identified there. In contrast, the
southern field does not exhibit any CO emission.

Figure 10 shows an inverted grayscale image of Ha
emission in N44 as captured by the Magellanic Cloud
Emission-Line Survey (MCELS; Pellegrini et al. 2012)
in comparison to the 1o (black) and 30 (red) contours
derived from our PMS nearest neighbor density. Overall
this figure demonstrates that the most significant struc-
tures of our PMS candidate stars appear correlated with
enhanced Ha emission. As Ha traces regions of ionized
hydrogen, this falls in line with our previous assessment
that our PMS candidates correlate with the identified
H II regions in N44 (which is not entirely surprising, as
the MCELS Ha images contributed to the definition of
the H II region boundaries in Pellegrini et al. (2012) to
begin with). Notable exceptions to this correlation with
enhanced Ho emission are the part of the large 1o con-
tour at the western bubble edge (N4, c.f. Fig. 12, Section
5.2) that extends into the bubble interior and both struc-
tures found in the two reference fields. For the bubble
interior this is, again, consistent with the fact that the
very massive stars located here have driven out most of
the gas and dust of their natal environment.

In the left panel of Figure 11 we overlay our 1o (black)
and 30 (red) PMS density contours on an inverted
grayscale image of dust emission at 8 pm, i.e. emis-
sion from polycyclic aromatic hydrocarbon (PAH), as
observed by the SAGE survey (Meixner et al. 2006) with
the Spitzer Space Telescope. In the right panel we show
the same comparison with a color composite image of
dust emission, combining 70 pm emission Spitzer obser-
vations from SAGE with 160 pm and 350 pum Herschel
images from the HERschel Inventory of The Agents of
Galaxy Evolution project (HERITAGE; Meixner et al.
2013). Visual inspection of both dust maps reveals that
many of the structures at 1 and 30 of our PMS near-
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Figure 11. Inverted grayscale image of dust emission at 8 pm in N44 from the SAGE survey (Meixner et al. 2006) of the LMC
(left). Overlaid in black and red are the 1o and 30 nearest neighbor density contours of the most likely MYSST PMS candidates
(as in Figure 7). They gray outline indicates the coverage of the MYSST survey for comparison. Right: color composite dust
emission image of N44 combining Spitzer 70 pm in blue, Herschel 160 pm in green and Herschel 350 pum in red. Overlaid in
blue and red are the 1o and 30 PMS density contours, and the MYSST coverage is indicated in gray. The Herschel observations
were taken as part of the HERITAGE survey (Meixner et al. 2013).

est neighbor density distribution coincide with areas of
increased dust emission, although the 30 density peaks
are often slightly offset from the maxima of dust sur-
face brightness (e.g. in Region S4, see Figure 12, Sec-
tion 5.2). This finding is consistent with the hypothesis
that in large concentrations of young stars the irradi-
ation of the dusty remnants of the stellar birth envi-
ronments leads to bright dust emission in the far-IR as
the dust reemits the incoming stellar radiation at longer
wavelengths. The large 1o structure (N4, c.f. Fig. 12,
Section 5.2) that partially extends into the bubble is,
as for the Ha emission, again one of the notable excep-
tions here, explained of course by the feedback of the
very massive stars in the bubble interior having cleared
out gas and dust. There are also three more prominent
structures in the southern half of the main FOV (S6,
S7, S8; see Fig. 12, Section 5.2) that do not appear par-
ticularly bright in the dust emission. In the reference
fields we find again slightly enhanced emission for the
structure found in the northern one, but almost no dust
emission in the southern field.

5.2. Identifying PMS Clusters

The spatial distribution of PMS candidates in N44,
e.g. as indicated in Figure 6, clearly shows that these
stars are distributed in a hierarchical and highly clus-
tered fashion. To identify the PMS clusters, we utilize
the nearest neighbor density map (Figure 7) to first find
all density contours at a lo significance level. These

contours define our preliminary PMS cluster candidates.
We then down-select the most prominent PMS clusters
if they fulfill a persistence criterion of exhibiting sub-
structures at 3o density significance. Preliminary, we
remove all candidate contours that contain less than 100
stars in total (PMS and non-PMS), as they are likely an
outcome of noise fluctuations at the 1o level and would
therefore never fulfill the persistence criterion in the first
place. The limit of 100 corresponds to approximately
the square root of the number of all PMS sources lo-
cated in the 1o contours.

Applying this contour-density-based clustering ap-
proach, we identify seven prominent PMS structures at
1o significance in the northern half of the FOV, nine dis-
tinct clusters of PMS candidates in the south, and one
each in the two reference fields. Again, for this step we
use the individual NNDEs of the northern and southern
half of the main FOV and the reference fields to be more
sensitive to local density structures by avoiding the large
difference in stellar numbers between the individual re-
gions. Figure 12 indicates the spatial positions of these
18 prominent PMS structures. Note that we only show
the 1o contours (black) of the structures that pass our
persistence criteria here. In this figure we also highlight
the subclusters at 30 significance (white) of the promi-
nent lo structures, excluding, however, those that do
not contain at least 50 stars in total. Again, this serves
to decrease statistical noise, this time at the 3o level,
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Figure 12. NNDE contour density diagram of the most likely PMS population of N44. The black dotted-dashed line indicates
the north/south separation chosen for the NNDE. The gray shaded regions mark the MYSST coverage for comparison. The
black contours indicate density structures at 1o significance that harbor a minimum of 100 stars and have substructures that
persist up to 3o significance in density. The white contours mark the 3o subclusters that entail at least 50 stars. The labels give
an ID of the 1o structures for easier reference. Properties of these 1o structures and 3¢ subclusters are summarized in Tables

2 and A2.

with 50 being approximately the root of the number of
all PMS sources inside the 3o contours.

Comparison with Figure 7 indicates that almost all of
the structures that we identify as PMS clusters are close
to or harbor one or more massive O stars/YSOs. Star
formation theory predicts, and recent studies confirm
(Cignoni et al. 2015; Stephens et al. 2017), that PMS
clusters are located primarily in the vicinity of young
massive stars. Therefore, our approach identifies clus-
ters of PMS stars where one would expect to encounter
them. Combined with the fact that we also find them
within the H II regions, which are the remnants of recent
star formation events, the comparison with the MUSE
(McLeod et al. 2019), SIMBAD, and YSO (Chen et al.
2009; Carlson et al. 2012) data provides an independent
confirmation of the validity of our ML classification ap-
proach. There is one possible exception, namely, the H

II region N44D, where we only find a small amount of
PMS stars that do not immediately coincide with the
two MUSE O stars and three YSOs located there, but
only with one O-type source in the SIMBAD database.
This particular region suffers from a large amount of in-
completeness in the MYSST survey due to saturation
effects likely caused by the massive O stars/YSOs at
its center (see Paper I). We note that the small offset
between our identified PMS grouping and the other O
star/YSOs within this H II region is consistent with the
hypothesis that we are simply missing most of the PMS
stars around these massive objects.

5.3. Properties of the PMS Clusters in N44

To further characterize the properties of the PMS
clusters, we first determine their center-of-mass posi-
tion on the sky. This is simply obtained as the average
of the position of all cluster members, because we do



16 KSOLL ET AL.
Table 2. Properties of the 10 PMS Density Structures
ID  RAcent Declcens Aswt  Rex  No  niSfh Npms  nP7¢ NG NSP NG NGE N2, N3 Qoo
(deg) (deg)  (pc®)  (pc) (pc™?) (pc™?)
N1 80.6585 -67.9041 10.3 1.8 164 15.9 50 4.9 0 0 0 0 1 1(1) 0.76 0.5
N2 80.6212 -67.8971 95.9 5.5 1516 15.8 434 4.5 1 0 2 1 1 4(2) 0.68 0.47
N3 80.6251 -67.9112 12.8 2 197 15.4 66 5.2 0 0 0 0 1 1(1) 0.77 0.52
N4 80.4950 -67.9416 1365.3 20.8 23164 17 6397 4.7 16 2 15 5(2) 28 9(10) 0.64 0.43
N5 80.5641 -67.9849 18.2 2.4 252 13.9 75 4.1 0 1 0 0 1 2(0) 0.72 0.5
N6 80.4202 -67.8916 15.6 2.2 239 15.3 85 5.4 0 0 1 0 1 1(1) 0.78 0.5
N7 80.4087 -67.9139 19.6 2.5 370 18.9 126 6.4 1 0 0 0 1 1(1) 0.8 0.54
S1 80.8765 -68.0182  37.1 3.4 367 9.9 86 2.3 0 0 1 0 2 1(0) 0.60 0.43
S2 80.8122 -67.9978 3679 10.8 4312 11.7 902 2.5 0 0 2 2 8 5(4) 0.55 0.39
S3 80.7864 -68.0201 19.5 2.5 257 13.2 39 2.0 0 0 0 0 1 1(0) 0.58 0.43
S4 80.6981 -68.0688 504.4 12.7 6500 12.9 1308 2.6 0 1 3 3(1) 10 4(2) 0.71 0.46
S5 80.7043 -68.0226 75.8 4.9 1045 13.8 233 3.1 0 0 1 1 1 1(1) 0.73 047
S6 80.6714 -68.0432 68.8 4.7 1112  16.2 181 2.6 0 0 0 0 1 1(1) 0.75 0.46
S7 80.6347 -68.0556 103.8 5.7 1524 14.7 336 3.2 0 0 2 1(1) 1 1(1) 0.76 0.48
S8 80.6275 -68.0863  88.3 5.3 1019 11.5 255 2.9 0 0 0 0 3 2(1) 0.54 041
S9 80.5722 -68.0698 1314 6.5 1644 12.5 454 3.5 0 0 2 3 (1) 1 3(1) 0.63 0.48
FN1 80.9058 -67.8756 102.7 5.7 1286 12.5 179 1.7 0 0 1 2 2 3(2) 0.65 0.44
FS1 81.0598 -67.9480 2725 9.3 3051  11.2 116 0.4 0 0 0 1 3 3(1) 0.68 0.45

NOTE— Properties of the 10 PMS density structures that persist with substructures up to 3¢ in density and consist of at least 100 stars.
Listed are the structure ID as in Figure 12, the right ascension R.A.cent and declination decl.cent of the structure center, the surface area Agyrt
enclosed by the given density contour, an effective radius Reg derived from the surface area, the total number N, of MYSST catalog stars

within the structure, the total surface stellar number density n
the corresponding surface number density of PMS sources n

total

surf

surf >

the number of identified most likely PMS stars Npus inside the contour,
P the number of enclosed McLeod et al. (2019) O stars N3*°, SIMBAD O

stars (see Table A1) N5P, Chen et al. (2009) YSOs NS89, Carlson et al. (2012) YSOs NGa2 (the number in parentheses indicates matches
in N$§g), and the number of substructures N2%, N37, at a density significance of 2 and 30, respectively. The value in parentheses in the

N,

also provide the Cartwright & Whitworth (2004) @ parameter and its uncertainty as an indicator of cluster ”clumpiness.”

not have reliable estimates of the physical masses of the
PMS candidate stars at this moment'. We also com-
pute the surface area Agy s encompassed by the corre-
sponding density contour, an effective radius derived as
Resr = \/Asurt/ 7, the total number of MYSST stars N,
inside the structure, as well as the number of most likely
PMS candidate stars Npyg, and corresponding surface
number densities for total nzgtr‘f” and PMS candidates
nﬁf%s . Additionally, we count the enclosed O stars and
YSOs from McLeod et al. (2019), the SIMBAD database
(Table A1), Chen et al. (2009) and Carlson et al. (2012).
For the prominent 1o structures we determine the num-
ber of substructures at 2 and 3¢ significance in density,

N22 and N3 | based on the dendrogram decomposition

I This situation will be improved with the application of more ad-
vanced ML techniques (Ksoll et al. 2020b, INN) in a future study.

(Rosolowsky et al. 2008) of the spatial distribution of the
PMS candidate stars. Furthermore, we also compute the
subclustering parameter ) as defined by Cartwright &
Whitworth (2004) and its uncertainty og (more details
on the @-parameter follow at the end of this section).
A summary of these properties can be found in Ta-
ble 2 for the 1o structures and in Table A2 in the Ap-
pendix for their 3o subclusters. Note that the IDs of the
30 substructures in Table A2 indicate the 1o structures
that they belong to, i.e. N1.1 is inside N1, N2.1 in N2,
etc. (see also Figure A8 in the Appendix for indicators
of their spatial position). Additionally, Figures A6 and
AT in the Appendix provide dendrograms of the NNDE
density structures in the main FOV up to the 50 sig-
nificance level for a more in-depth visualization of the
hierarchical clustering structure that we encounter here.
We find that the PMS clusters in N44 cover a wide
range of mass and size, with clearly the most prominent

32 column indicates the number of subclusters at 3¢ with at least 50 stars, corresponding to the white contours in Figure 12. Lastly, we
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structure being the one denoted as N4. With a surface
area of more than 1300 pc? and effective radius of over
20 pc, it is a very large structure of PMS candidates
that traces the western ridge of N44’s superbubble and
extends into the bubble itself. It stretches across two
of the H II regions, namely, 'N44 main’ and 'N44C’,
and contains almost 6400 candidate PMS stars. Given
the size of this structure, it is unlikely to be a single
massive cluster (we are, after all, working only on a 2D
projection).

The radial velocities of the 16 O stars located within
this contour, as measured in McLeod et al. (2019), do
not exhibit a noticeable trend in comparison to the re-
maining O stars. It appears that this cluster formed
“in situ” in a region of higher gas density as the shell
of the expanding H II bubble expands into the ambient
medium. Additionally, N4 encloses a total of 18 YSOs,
ranging from 6.5 to 22.1 Mg (Chen et al. 2009; Carlson
et al. 2012), and contains ample amounts of substruc-
ture (see Figure AG). At the 30 density significance level
this structure still contains 10 subclusters with at least
50 constituents, one of which, the subcluster N4.5 (see
Appendix, Figure A8), entails more than 1100 PMS can-
didates. With a PMS surface number density of about
11.1pc—2, N4.5 is the most prominent star-forming cen-
ter that we identify in N44. It also harbors three O stars
(O5 111, O8 V, and 09.5 V; McLeod et al. 2019) and one
9.2 Mg YSO (Chen et al. 2009). The second-largest 3o
structure, hosting about 400 PMS candidates, is N4.9,
which is likely another active star-forming cluster given
its PMS surface number density above 11.6pc™2. It
comprises one O5 V star (McLeod et al. 2019) and a
massive 17.4 Mg YSO (Chen et al. 2009) as well.

In the south we do not find any structures with lo
density significance as large as N4. The most promi-
nent ones are S4 and S2, hosting 1308 and 902 PMS
candidate stars, respectively. Additionally, S4 entails
five YSOs (4.8-15.6 Mg, Chen et al. 2009; Carlson et al.
2012) and the O9 II giant Sk-67 82a (see Table Al),
whereas S2 hosts four YSOs (6.9-16.5 M, Chen et al.
2009; Carlson et al. 2012). Both clusters exhibit notable
substructuring with two and four clusters at 3o density
significance (see also Figure A7). Overall, the southern
PMS structures appear to be less dense in their PMS
stellar content, as the PMS surface number density lies
on average around 4.9 pc~2 in the subclusters at 3o sig-
nificance, which is only about half the average density of
the corresponding structures in the northern part. This
lower average surface density of PMS candidate sources
could indicate less star-forming activity in the regions
south of the main bubble, due to e.g. less available gas,
resulting in fewer present PMS sources. Alternatively,

most of the potential PMS sources could be older than
15 Myr, which is the maximum age our classification
approach is sensitive to. The most ’active’ star-forming
subclusters here are S4.1 and S9.1 (see Appendix, Fig-
ure A8) with 312 and 245 PMS candidates, respectively.

The one structure in the northern reference field, FN1,
appears similar in spatial extent to S5 — S9, but exhibits
a notably lower surface density of PMS candidate stars
at only 1.7 pc™2, which is closer to but still below the
smallest 1o structures S1 and S3 in the southern main
FOV. FNI1 also exhibits substructure, with two subclus-
ters at 30, and hosts three YSOs (3.8-16 Mg ; Chen et al.
2009; Carlson et al. 2012). FN1’s two 30 substructures
share PMS candidate surface densities comparable with
the 30 subclusters in the southern main FOV, with val-
ues of 3.7 and 4.5 pc~? for FN1.1 and FN1.2 (see Ap-
pendix, Figure A8), respectively. This structure appears
as a valid cluster candidate along with those identified
in the main FOV, although it is located in one of the ref-
erence fields, which were supposed to only capture the
LMC field population.

The 1o structure identified in the southern reference
field is among the largest (in area), comparable to S2
and S4. Hosting only 116 PMS candidates, however,
it has by far the lowest PMS candidate surface density
with 0.4 pc~2. This value is by factors of 12.6 and 6.8
smaller than the average PMS surface density of the 1o
structures in the northern and southern main FOV. To-
gether with the very low PMS nearest neighbor density
that defines this 1o structure and the uncertainty of the
extinction estimate for this field, we believe that it is
unclear whether FS1 actually traces a star-forming cen-
ter. There is, however, one YSO (6.2 Mg; Carlson et al.
2012) in FS1, providing some evidence for recent star
formation in this structure.

Instead of using the number of substructures iden-
tified in the dendrogram analysis as an indication of
the ‘clumpiness’ or hierarchical nature of the PMS clus-
ters, we can also look at the ) parameter introduced
by Cartwright & Whitworth (2004). It is defined as the
ratio of the mean edge length m in a minimum span-
ning tree (Prim 1957) constructed from the cluster stars
and the mean stellar separation 5, both normalized to
the effective cluster radius Reg. Values of Q < 0.8
are indicative of a high degree of substructure, whereas
larger values of @ are found in clusters that have a well-
defined power-law radial density profile (Cartwright &
Whitworth 2004; Schmeja & Klessen 2006; Allison et al.
2009). For an application to the structure of young stars
in other clusters, see e.g. Schmeja et al. (2009) and Gen-
naro et al. (2017). The numbers in Table 2 indeed indi-
cate that the @ values are lowest in clusters with well-
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defined subclusters (N2 and N3% above 1) with the
one exception possibly being cluster S4. We note that
all clusters identified in N44 have @) < 0.8 as expected
for hierarchically structured or fractal systems. This is
confirmed by visual inspection of Figure A9 which shows
the spatial distribution of the PMS candidates in the 18
clusters N1 — N7 in the north, S1 — S9 in the south,
and FN1 and FS1 in the reference fields, none of which

exhibit a clear power-law density falloff.

6. SUMMARY

In this study we present the identification of the PMS
stellar population of the star-forming complex N44 in
the Large Magellanic Cloud based on the photometric
catalog of the deep HST survey MYSST. For this pur-
pose we apply an ML classification approach, which we
have previously established (Ksoll et al. 2018), to dis-
tinguish the observed sources into the two classes 'PMS’
and 'non-PMS’ based on their photometry in the F555W
and F814W filters, as well as an estimate of individual
stellar extinction.

To apply our classification scheme to the observations
of N44, we first construct a suitable training set by se-
lecting a region of N44 that exhibits a high density in
PMS sources (as determined by a kernel density esti-
mate on a rough selection of PMS candidate stars). This
region provides both a distinct PMS and LMS popu-
lation, which we distinguish using a Gaussian mixture
model approach described in Ksoll et al. (2018). As
stars on the RGB can also contaminate the CMD region
usually occupied by PMS stars, we extend our training
set through the addition of RGB 'non-PMS’ examples
selected from a series of LMC field regions within the
observed FOV. Our final training set consists of 17,942
stars of which 5512 are PMS examples.

In the following, we train an SVM and an RF classi-
fier to distinguish the two classes 'PMS’ and 'non-PMS’
using the magnitudes in F555W and F814W, as well as
the estimated stellar extinction as the feature space. To
evaluate training success, we hold out a randomly se-
lected subset (30% of the total training data) as a test
set and compute a series of standard performance mea-
sures, i.e. the normal and balanced accuracy, the area
under the receiver operating characteristic curve (ROC
AUC), and the Fy score. We find that both models
achieve excellent results on both the training and test
subsets with accuracies exceeding 96%, as well as ROC
AUCs above 0.99 and F} scores beyond 0.94.

Classifying the remaining data of the MYSST survey,
we determine that an average of the predicted probabil-
ity for the 'PMS’ class between the SVM and RF meth-
ods provides the most robust outcome. With that we find

40,509 potential PMS candidates satisfying ppms > 0.5
and a most likely subset with ppms > 0.95 consisting
of 26,686 sources across N44. Adopting the latter cri-
terion, a majority of 16,976 PMS candidate stars are
identified in and around N44’s massive superbubble, lo-
cated in the northern half of the MYSST FOV, while
only 9710 candidate PMS sources are found in the re-
gion south of the bubble.

We then perform a nearest neighbor density estimate
(NNDE; Casertano & Hut 1985) on the set of most likely
PMS candidates to characterize their spatial distribu-
tion and clustering structures. Comparing with previous
studies of the H II regions of N44 (McLeod et al. 2019;
Pellegrini et al. 2012), we confirm that the majority of
the dominant groupings of PMS candidate stars revealed
by our ML classification approach coincide with N44’s
known H II regions. Further comparison with MUSE
observations (McLeod et al. 2019) of the most massive
young O star population of N44’s bubble reveals that,
at least within the FOV overlap of the two studies, al-
most all of our PMS clusters harbor one or more of the
young high-mass stars. We find a similar result com-
paring with the positions of massive YSOs identified in
N44 (Carlson et al. 2012; Chen et al. 2009). Therefore,
we conclude that our classification approach identifies
PMS sources exactly where one would expect to find
them, i.e. within N44’s gas reservoirs and in the vicin-
ity of its massive young population. This supports the
hypothesis that stars tend to form in clusters (see also
Lada & Lada 2003; Klessen et al. 1998; Bonnell et al.
1998).

Additionally, we perform a comparison of our spatial
PMS candidate distribution with the Zivkov et al. (2018)
study, which has previously established a lower limit of
1000 + 38 for the number of PMS stars in N44 and de-
rived a PMS surface density map for the region, based
on the VMC survey. We find an overall decent agree-
ment with their results, in particular, when we account
for the completeness and resolution limits of the VMC
survey, and conclude that our study provides an excel-
lent extension of their results to much lower brightness
and higher spatial resolution.

We also compare the spatial distribution of our PMS
candidate stars to other tracers of star formation, i.e. im-
ages of CO, Ha and dust (at 8 pum, 70 pm, 160 pm
and 350 pum) emission. Here we find that most of the
prominent structures of PMS candidates appear corre-
lated with areas of enhanced gas and dust emission, with
the most prominent exception being the interior of N44’s
superbubble, where massive stellar feedback has cleared
out most of the material.
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To assess the prominent PMS structures across N44,
we use the NNDE to identify dominant groupings as
density contours at 1o significance (above the mean es-
timated density), which entail at least 100 stars in total
and have substructures that persist up to the 3o level.
Here we perform separate NNDEs for the northern and
southern half of the main FOV, as well as the two ref-
erence fields, to account for the difference in number of
PMS candidates between the four regions and be more
sensitive to the local clustering structures. This proce-
dure reveals 18 dominant PMS structures at 1o in total,
seven located in the north, nine in the south, and one
each in the two fields. For all of these we derive several
properties, i.e., the center coordinates, surface area, ef-
fective radius, numbers and surface number densities of
total/PMS stars, as well as the Cartwright & Whitworth
(2004) @-parameter for cluster ”clumpiness”. In the
north the most dominant structure we find is a very large
grouping of more than 6500 PMS stars that stretches
along the western edge of the superbubble and extends
into the bubble itself. While this structure is too large in
size to be a single PMS cluster, it appears as a common
envelope connecting the numerous star-forming centers
at 3o significance that fall within it. In the south we find
more but slightly smaller PMS groupings that appear
overall less densely populated in terms of PMS sources,
i.e. they exhibit PMS surface number densities that are
on average only half as large as in the north. We suspect
that this hints at a reduced star-forming activity in the
south compared to the north. On top of that, the iden-
tified dominant PMS groupings in both the north and
south exhibit ample hierarchical substructures.

Following the outcomes of this study, there are a few
open questions, which we plan to address in a future
investigation. First and foremost is the physical charac-
terization of the identified PMS candidates by estimat-
ing their most fundamental properties, age, and mass.
We aim to achieve this through further development of
an invertible-neural-network-based regression approach
that we have recently presented in a pilot study (Ksoll
et al. 2020b) with very promising results on the test
cases of Westerlund 2 and NGC6397. Establishing these
physical properties of the PMS stars of N44 will allow
us to quantify the star formation history of this complex
and investigate whether there is, e.g. an age difference
between the clustering structures we have identified in
the northern and southern part of the MYSST FOV.
Furthermore, we plan to reevaluate our clustering anal-
ysis with regard to the predicted physical properties of
the PMS stars to establish a comprehensive picture of
the spatial distribution of star formation in this star-
forming complex.
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Figure A1l. Optical CMD of the region selected as the
training set base, corrected for extinction according to the
Arsssw measurements. The red line indicates a threshold
line, derived from PARSEC isochrones in the age range of
1-14 Myr. This threshold is used to generate slopes for our
EM approach to quantify the constituents of the two popu-
lations. The blue polygon indicates the stars considered for
the EM fit, excluding the UMS, red clump, and a few objects
of unclear nature.

A. ADDITIONAL MATERIAL

This appendix provides complimentary figures and
discussion to the main paper. Figure A1 shows the CMD
of the 20 surface density region used as a basis for our
training set in Section 3. It highlights in particular the
data selection we make for the Gaussian mixture model
fit (see Ksoll et al. 2018) that we perform in order to dis-
tinguish the PMS and LMS populations, as well as the
threshold curve that provides the basis for the under-
lying distance measure of this fit. The threshold curve
corresponds to the 14 Myr PARSEC isochrone between
22.3 and 25.3 mag in F555W, extended by isochrones
down to 1 Myr above 22.3 mag, and follows a combina-

tion of isochrones up to 50 Myr below 25.3 mag. Please
note that this threshold serves not as a hard cut between
the PMS and the LMS but as a guide for the Gaussian
mixture model fit that determines the final population
assignments. We refer to Ksoll et al. (2018) for more
details on this mixture model approach.

In Figure A2 we show the individual prediction out-
comes on the entire MYSST data set of the trained SVM
and RF (left and middle panel) as the color-coding of
the CMD, as well as a direct star-by-star comparison of
the predicted PMS probabilities (right panel). As previ-
ously described in Section 4 these diagrams demonstrate
how well the SVM and RF predictions agree overall and
the few regions where they disagree, which lead us to the
conclusion that a combination of the outcomes provides
the most robust solution.

Complementary to Figure 6, which presents the spatial
distribution of identified PMS stars from the combina-
tion of the two ML approaches, Figures A3 and A4 pro-
vide the corresponding distributions derived from SVM
and RF individually, respectively.

Complementing the catalog from McLeod et al. (2019),
Table A1l provides a list of other known O-type stars
from the literature in and close to N44. For each star
the table lists an identifier, coordinates in R.A. and
decl., the spectral type and the literature reference of
the studies that derive the latter.

Analogous to Figure 7 we show the spatial contour den-
sity diagram of our NNDE on the most probable candi-
date PMS stars in Figure A5, here in comparison to the
positions of the 1291 UMS sources (light-blue points),
likely late O to early B type, that we select in Paper
I to derive extinction estimates for N44. As in Figure
7 this diagram demonstrates that the prominent PMS
groupings we identify tend to be located in the vicinity
of the massive young population of N44.

Figures A6 (north) and A7 (south) show the correspond-
ing dendrograms of the clustering structures we have
identified in Figure 12 in the main paper. These dendro-
grams are based on the NNDE we perform in the north-
ern and southern half of the FOV and are iteratively con-
structed by considering each significance density contour
as the root/parent structure of the contours/subclusters
located inside of it. Both of these dendrograms highlight
the intricate hierarchical substructure of the identified
PMS groupings.

Analogous to Table 2 we present the characteristic prop-
erties of the 34 subclusters at 3o surface density signif-
icance in Table A2. The properties include center posi-
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tion, surface area, effective radius, numbers, and number
densities of the total/PMS stars of each 30 substructure,
as well as the @Q-parameter (Cartwright & Whitworth
2004) as a measure of cluster clumpiness. Figure A8 in-
dicates the positions of the 30 subclusters analogous to
Figure 12.

To complement the analysis of the cluster substructures
in Section 5.3 Figure A9 provides the spatial distribution

diagrams of the PMS stars within the 18 prominent PMS
structures presented in Table 2. These diagrams provide
a visual confirmation of the Q-parameter (Cartwright &
Whitworth 2004) analysis, indicating the overall clumpi-
ness and hierarchical structure of all the prominent PMS
clusterings we have identified.
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Table A1l. List of known O stars within or close to the MYSST FOV

Identifier R.A. Decl. Spectral Type Reference
(deg) (deg)

SK -67 86 80.56181 -67.85908 OB Sanduleak (1970)
HD 269412 80.47527 -67.91469 OB Sanduleak (1970)
SK -67 94 80.88919 -67.95822 OB Sanduleak (1970)
SK -68 76 81.01482 -68.06106 OB Sanduleak (1970)
SK -68 72a 80.69472 -68.06542 09Il Conti et al. (1986)
HD 269445 80.74911 -68.02962 Ofpe/WN9 Bohannan & Walborn (1989)
LH 47-355 80.56437 -67.98347 09.5V Oey & Massey (1995)
LH 47-335 80.55683 -67.93951 09.5V Oey & Massey (1995)
LH 47-14 80.43046 -67.9185  09.5V Oecy & Massey (1995)
LH 48-122 80.59713 -67.88168 09.5V Oey & Massey (1995)
LH 47-84 80.46338 -67.93679 09.5V Oey & Massey (1995)
BI 155 80.95265 -67.89803 O7TV Smith Neubig & Bruhweiler (1999)
BI 159 81.04867 -68.0163 O/BO Brunet et al. (1975)
[L72] LH 48-9  80.65 -67.9 OT7IIl Conti et al. (1986)
[L72] LH 48-21 80.6 67.9 05111 Conti et al. (1986)
HD 269449 80.8 -68.01667 O Cannon & Pickering (1993)
[STH86] Star 2 80.61 -67.97 ) Stasinska et al. (1986)
SK -67 92 80.81166 -67.93655 OB Sanduleak (1970)

NoTE— All O stars found in the SIMBAD database that are not captured by the McLeod
et al. (2019) MUSE observations. Listed are each stars identifier, right ascension, declination,
spectral type and the literature reference for the studies that derive the latter.
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Table A2. Properties of the PMS Subclusters at 30 Density

total ms M19 C09 C12
ID R~A-Cent Decl.cent Asurf Reﬁ‘ N* TLSgr? NPMS np NO NYSO NYSO Q oQ

surf

(deg) (deg)  (pc®) (pc) (pc™?) (pc™?)
NIL.I  80.6590 -67.9046 2.6 0.9 50 193 28  10.8 0 0 0 088 061
N2.1  80.6236 -67.8946 10.3 1.8 210 20.5 82 8 0 1 1 073 048
N2.2  80.6116 -67.9024 43 1.2 94 221 36 8.5 0 0 0 08 053
N3.1  80.6247 -67.9110 2.8 0.9 57 205 25 9 0 0 0 076 053
N4.1  80.5843 -67.9474 33 1 64 194 29 8.8 0 0 0 064 046
N42  80.5852 -67.9450 2.6 0.9 62 237 17 6.5 0 0 0 073 047
N4.3  80.5250 -67.9372 82 1.6 163 198 55 6.7 0 0 0 061 045
N4.4  80.5271 -67.9684 2.9 1 55 19 29 10 0 0 0 077 0.49
N45 804973 -67.9561 100 5.6 2147 215 1109  11.1 3 1 0 069 0.48
N4.6  80.4933 -67.9384 57 14 120 209 53 9.2 0 0 0 074 047
NA7  80.4788 -67.9380 153 22 311 203 124 8.1 0 0 0 07 044
N4.8  80.4682 -67.9352 45 12 88 196 30 6.7 0 0 0 075 047
N4.9 804532 -67.9506 32.8 3.2 750 229 381 116 1 1 0 075 0.49
N4.10 80.4534 -67.9271 6.2 14 143 231 52 8.4 0 0 0 068 05
N6.1  80.4203 -67.8912 4.9 1.3 92 186 45 9.1 0 0 0 08 05
N7.1  80.4082 -67.9140 7.9 16 200 253 90 114 1 0 0 076 0.5
S21  80.8280 -67.9815 6.6 15 101 153 27 41 0 0 0 08l 05
S22 80.8161 -67.9974 313 3.2 441 141 151 4.8 0 0 0 06 044
$2.3  80.8113 -68.0080 6.9 15 102 148 27 3.9 0 0 0 074 0.49
S2.4 807842 -68.0023 9.9 1.8 139 141 47 48 0 1 0 074 05
S41  80.7049 -68.0678 73.5 4.8 1075 146 312 4.2 0 0 0 051 0.36
S4.2  80.6758 -68.0716 31.1 3.1 544 175 127 4.1 0 0 0 062 042
S5.1  80.7065 -68.0223 25 2.8 409 164 138 5.5 0 1 1 074 048
S6.1  80.6747 -68.0440 12.8 2 236 185 43 3.4 0 0 0  0.69 0.49
S71  80.6359 -68.0550 40 3.6 677 169 214 5.3 0 1 0 075 048
S8.1  80.6185 -68.0834 13.6 2.1 257 189 87 6.4 0 0 0 08 05
S9.1  80.5774 -68.0728 31.8 3.2 592 186 245 7.7 0 0 0 079 051
FN1.1 809122 -67.8704 38 1.1 55 145 14 3.7 0 0 1 075 050
FN1.2 80.8091 -67.8768 141 2.1 214 152 64 45 0 1 1 077 051
FS1.1  81.0500 -67.9466 41.7 3.6 491 118 32 0.8 0 0 0 072 048

NOTE— Properties of the PMS subclusters at 30 density within the prominent 1o density structures. This list only
contains subclusters which entail at least 50 stars, so it corresponds to the solid light-blue contours depicted in
Figure 12. Each object’s ID indicates the 1o structure it belongs to, e.g. N1.1 is within N1, N2.1 in N2, etc. As
in Table 2 listed are the right ascension R.A.cent and declination Decl.qens of the subcluster center, the surface area
Asurt enclosed by the given density contour, an effective radius Reg derived from the surface area, the total number
N. of MYSST catalog stars within the structure, the total surface stellar number density n2%¢!, the number of
identified most likely PMS candidates Npys inside the contour, the corresponding surface number density of PMS
sources n?7¢, the number of enclosed McLeod et al. (2019) O stars N3, Chen et al. (2009) YSOs N8, Carlson
et al. (2012) YSOs N33 and the Cartwright & Whitworth (2004) Q parameter along with its uncertainty og as
an indicator of cluster ”clumpiness”. Note that none of the SIMBAD O stars (Table Al) fall into any of the o

contours, so they are not listed here.
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Figure A8. Same as Figure 12, but now the ID labels for the 3o structures (see Table A2) are provided instead of the 1o ones.
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Figure A9. Spatial distribution diagrams of the PMS candidates in the 18 prominent PMS structures identified across the
main MYSST FOV and the two reference fields. The identifiers correspond to the list presented in Table 2. In each diagram the
red line indicates the 1o contour associated with each cluster, while the purple lines mark the substructures at the 3o density
significance level. Note that in a few of these diagrams a small number of stars may fall outside the 1odensity contours of their
assigned cluster. This is caused by minor inaccuracies in the transformation of the density contours from pixel space, in which
they are defined, to the R.A.-decl. coordinate system presented in this diagram. In pixel space all stars are strictly interior to

their respective

cluster contours.



4.1

Summary, Discussion
and Outlook

Summary

In this thesis we have set out to explore and test the effectiveness of machine
and deep learning approaches for the purposes of identifying and charac-
terising young pre-main-sequence stars from photometric observations, as
well as to study star formation in the Large Magellanic Cloud. Towards these
goals we have completed the work summarised below.

Identifying PMS stars

In Ksoll et al. (2018), presented in Section 3.1, we establish an ML classi-
fication procedure to tackle the disentanglement of PMS stars from more
evolved populations in large star-forming complexes based on HST photome-
try, in this case from the "Hubble Tarantula Treasury Project" of the Tarantula
Nebula. This publication is based on my master thesis, but comprises a
refinement and completion of the original analysis, which was conducted as
part of the dissertation. It is included in this thesis mainly for completeness
and as a means to introduce the ML procedure that is later applied and
further tested on the MYSST data. This approach consists of a two-class
classification scheme, distinguishing between "PMS" and "NonPMS" stars,
and is set up as follows. In a preparatory step we construct an extinction map
of the observed region using massive upper main-sequence (UMS) stars as
reddening probes under the assumption that their true CMD position should
be the ZAMS. Subsequently, we estimate individual extinction for the remain-
ing objects in the HTTP stellar catalogue, assigning a distance-weighted
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average reddening value of the 20 nearest UMS neighbours to every star.
We then identify tentative regions within the observed FoV that exhibit high
densities of PMS sources using 2D kernel density estimation on the total
photometric catalogue (or a rough CMD cut of PMS sources, which we do in
Section 3.4 instead). This step follows from the assumption that PMS objects
are most likely found within regions of high stellar density as stars preferably
form in clustered environments. Among these regions we then select one
that exhibits both a prominent PMS and contaminating LMS population in
the low-brightness regime as the basis for the training set of the ML classi-
fication procedure. To label the training data in the low-brightness regime,
i.e. quantify which stars belong to the LMS and PMS, we fit a Gaussian
mixture model to the distribution of distances from the apparent gap between
the two populations in the CMD using the EM algorithm. Afterwards, we
further augment this training set with additional examples of RGB sources,
extracted from regions devoid of PMS stars, to account for the potential
overlap of pre- and post-main-sequence populations in the CMD.

We then train and test different classical ML classification techniques, i.e. de-
cision tree, random forest and support vector machine classifiers (see Sec-
tion 1.4), and determine the best performing approach. Here we find the RF
and SVM models to be the most robust. We also investigate which combina-
tion of input observations provides the best compromise between algorithm
performance and overall coverage of the HTTP FoV, determining the set
of {mpsssw, mrrrsw, Arsssw } 10 be the most optimal. Finally, we apply the
trained classifiers to the entire HTTP photometric catalogue and conclude
that an average of the RF and SVM predictions provides the most robust
PMS classification outcome. With that we identify a total of 19,831 stars
with a PMS classification probability above 95% across the entire Tarantula
Nebula. Lastly, we verify that the densest clusterings of the PMS candidate
stars correspond to the known star-forming centres NGC 2070 with R136 at
its core and NGC 2060.

In Ksoll et al. (2021a), Section 3.3, we introduce the "Measuring Young Stars
in Space and Time" (MYSST) survey, which targets the star-forming complex
LHa 120-N44 in the Large Magellanic Cloud in two HST broad-band filters,
F555W and F814W. We present the survey’s observing strategy and data
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reduction procedure, and construct the photometric catalogue, returning a
rich stellar sample of 461,684 sources with a detection limit of ~ 0.09 M, for
unreddened PMS stars at an age of 1 Myr. We also perform a first qualitative
analysis of the stellar populations captured by the survey, identifying numer-
ous old LMS and RGB sources that are almost uniformly distributed across
the MYSST FoV - likely field constituents of the LMC — as well as UMS
and PMS stars exhibiting a clustered distribution, in particular around N44’s
main superbubble. Additionally, we analyse extinction properties of N44,
introducing the RANSAC algorithm to constrain the slope of the reddening
vector from the extinction-elongated RC feature (cf. Section 1.3) in the CMD.
We demonstrate that RANSAC is a robust tool to jointly determine the con-
stituents of the RC and measure its slope, which we find to be slightly steeper
than the one of the diffuse Milky Way ISM. Afterwards, we construct extinc-
tion maps for the observed region, one following the UMS-based method as
in Ksoll et al. (2018) and one using the RC stars as extinction probes. Lastly,
we quantify uncertainties of our UMS-based extinction estimation approach
with regards to the assumed true UMS position in the CMD, stellar rotation
effects and potential metallicity gradients.

In our subsequent MYSST study Ksoll et al. (2021b), Section 3.4, we apply
and further test the ML classification approach prototyped in my master
thesis and Ksoll et al. (2018) on the new MYSST photometric catalogue and
recover a census of the young PMS stellar population of N44. In total we
identify 26,686 candidate PMS stars across the entire star-forming complex.
Subsequently, we analyse the spatial distribution and clustering behaviour
of the identified PMS candidates employing a nearest neighbour density
estimation (NNDE) approach. Based on this NNDE we devise a contour-
based clustering procedure, in which we identify density contours at the 1o
significance level (above the mean nearest neighbour density) that persist
up to 30 in density as prominent clusterings of PMS stars. Doing so we
find a total of 18 PMS clusters across N44. Additionally, we verify our ML
classification outcome by comparison of the PMS spatial distribution and
clustering structure with other tracers of star formation, including Ha, CO
and dust emission maps, the location of known H |l regions, as well as the
distribution of previously identified massive YSOs and O stars. Here we find
that the identified PMS candidates and clusters are located primarily in the

41 Summary
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vicinity of young massive stars within N44’s H Il regions, and, for the most
part, close to regions of enhanced emission in all considered tracers. Lastly,
we compare our PMS density distribution with a previously derived PMS
density map by Zivkov et al. (2018) and find a satisfying agreement with
our results (when accounting for resolution and completeness differences
between ours and their survey). This provides an independent confirmation
of the validity of our classification approach from a different methodology for
the identification of PMS regions.

Characterising PMS stars

In Ksoll et al. (2020), Section 3.2, we develop a deep learning approach
for predicting stellar physical parameters (on a star-by-star basis) from pho-
tometric observations alone, using a conditional invertible neural network
(see Section 1.5.2). For this pilot implementation of the cINN approach we
make the following simplifying assumptions: a) the metallicity of the target
population is fixed and known, b) individual extinction measures exist for
each query star, and c) we can neglect measurement uncertainties and
physical effects such as stellar variability or unresolved binarity. We begin by
constructing a suitable training set for the cINN approach from the PARSEC
stellar evolution models. Here we augment the available isochrone tables
(including synthetic HST photometry) via (per-isochrone) spline interpola-
tion in order to evenly sample the age and initial mass parameter space
for the training set. Afterwards, we add further examples of each synthetic
observation at different levels of extinction. We then train cINN models to
predict stellar age, initial/current mass, luminosity, temperature and surface
gravity from photometric magnitudes in several filter bands and the measure
of individual extinction. Here, the number and combination of filters depends
on the target survey to be analysed. In this study we perform a real data
benchmark on HST observations of the well-studied, supposedly single-age
Milky Way clusters Westerlund 2 (2 filters) and NGC 6397 (5 filters).

We proceed by training and testing the cINN on the synthetic PARSEC data.
Here, we find that the cINN does an overall excellent job in recovering the
target physical parameters, although stellar age appears as the hardest
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parameter to constrain, showing on average the broadest predicted posterior
distributions. Additionally, the cINN manages to correctly highlight degen-
eracies in the inverse problem, e.g. the inherent overlap between post- and
pre-main-sequence evolution in the HRD. To further test how well the trained
cINN models generalise to new, unseen data (i.e. beyond the held-out PAR-
SEC test set) we perform experiments on synthetic data from the MIST and
Dartmouth evolutionary models, finding overall a satisfactory performance.
Lastly, we apply the trained cINN to the observational data of Westerlund 2
and NGC 6397. On Westerlund 2 we successfully recover the cluster’'s age
of about 1 Myr, and find results on both the IMF slope and mass segregation
that are in good agreement with previous studies. On the NGC 6397 data on
the other hand, the cINN performance is not as satisfactory. Although the
predictions for certain properties of the cluster stars are within reasonable
ranges, the age (~ 13.5 Gyr) is heavily underestimated for almost all query
sources. We identify notable discrepancies between the underlying PARSEC
isochrone models and the observed photometry as the main culprit for these
severe mispredictions. With the success on the Westerlund 2 data, we con-
clude that the cINN is an efficient and powerful tool to solve the degenerate
task of stellar parameter prediction from photometry, but requires a careful
selection of the underlying synthetic model data.

Discussion

Over the four studies presented in this thesis we have demonstrated the
successful application of a variety of ML approaches, ranging from clas-
sification methods, such as RFs and SVMs, over density estimation and
fitting techniques (RANSAC, EM-algorithm) to deep learning regression with
invertible neural networks.

Ouir first main accomplishment is an effective PMS identification procedure
for surveys of large star-forming regions, which is trained on (a subset of)
the query survey data itself and, thus, does not require complex modelling.
Although initially prototyped in my master thesis, we further refined this
approach in Ksoll et al. (2018) and extensively tested the procedure in our

4.2 Discussion
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subsequent application on new data, Ksoll et al. (2021b), by comparing
with other tracers of star formation and a completely different PMS analysis
approach, proving the method’s overall robustness in this dissertation. We
have to acknowledge three primary limitations of our methodology, though.
First, as individual stellar extinction serves as an input, our method is, to a
degree, dependent on the precision of the reddening measurement. However,
in our applications so far we find that the set of predicted PMS candidates
does not significantly change when extinction is not considered as an input.
Second, our approach may only recover PMS sources that are similar to the
chosen examples in the training set. In particular, in both our studies our
method is not sensitive to low-mass PMS stars that are older than > 14 Myr,
i.e. those very close to joining the ZAMS. Lastly, our method is specifically
designed for surveys of large star-forming complexes, i.e. it requires the
survey data to contain at least one sufficiently numerous subpopulation of
PMS stars that can serve as the training data.

The second central accomplishment is the successful application of our PMS
identification procedure to a different large photometric survey, the MYSST
project. Combined with our previous results on the HTTP data, we present a
census of more than 46, 000 prospective PMS stars (with pyms > 0.95) for two
of the largest and most active star-forming regions in the LMC. These two
PMS candidate catalogues provide an excellent sample to further investigate
and constrain the star-formation histories of these two star-forming complexes
through analysis of their spatial distribution and characterisation of their
physical properties. For N44 we already lay the foundation for this spatial
analysis and determine the positions, stellar number densities and structure

for 18 prominent PMS clusters.

The third main outcome of this thesis is the successful proof-of-concept of
a cINN approach for stellar parameter prediction. We demonstrate that the
cINN is a very efficient tool, being able to predict full posterior distributions for
the physical parameters for thousands of stars in a matter of minutes once
trained, and that it is well-suited to recover and highlight the degeneracies
of the problem. In addition, we show that our approach can correctly re-
cover physical parameters on real observations of PMS populations with our
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Westerlund 2 application. We conclude that the cINN demonstrates great
potential as an evaluation tool for large (photometric) surveys.

The proof-of-concept implementation of our method is, however, subject
to a few limiting factors. First are the obvious constraints imposed by the
simplifying assumptions in the pilot study, i.e. that metallicity and extinction
are an input requirement, and that measurement uncertainties are not taken
into account. Second, there is no effective way yet to incorporate prior
knowledge into model the itself. In our study we experiment with age cuts in
the training sets to account for the known ages of the test clusters, but do not
find them to have a strong influence on the predictions for e.g. Westerlund 2.
Third is the central limitation that the cINN predictions can only ever be as
good as the underlying physical models it is trained on. As the NGC 6397
experiment shows, a notable mismatch between observations and models
can severely impact the predictive capability of our model. Besides the points
already raised in our discussion in Section 3.2 regarding the suboptimal fit
of the PARSEC models to globular cluster CMDs, we have recently learned
about a potential property of NGC 6397 that provides additional insights into
our prediction issues for the cluster. Whereas the HUGS HST photometry of
NGC 6397 led us to believe that the cluster consists of a single-population,
Correnti et al. (2018) and Mészaros et al. (2020) find some evidence that
NGC 6397 is host to (at least) two populations with slightly differing chemical
composition. If that is indeed the case, this is another source for discrepancy
between our underlying models, which assume a single metallicity, and the
observations. Lastly, the cINN is subject to the general limitation of most
neural network architectures, namely, being unable to make predictions if one
or more observational features are missing. More specifically, our approach
has to be retrained for every new combination of photometric filters, tailored
to the coverage of the survey it is to be applied on.

Because of these limiting factors of our prototype cINN, we have not yet
made the connection between our PMS identification and characterisation
procedures. The Tarantula Nebula and N44 are much more complex environ-
ments than Westerlund 2 or NGC 6397, so that further development of the
cINN approach to e.qg. lift the limitations set by our simplifying assumptions
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seem warranted before an application to the MYSST and HTTP survey data
is reasonable.

Regarding the central goals of this thesis (see Section 1.0.1), i.e. exploring ML
approaches to identify and characterise PMS stars, and studying star-forming
environments and their formation histories in the LMC, we have accomplished
most but not all we have set out to do. We have explored a wide variety of
ML approaches and demonstrated their successful application to different
astronomical problems. We have extensively tested an ML classification
procedure to identify PMS stars based on photometry and have used it to
recover candidate PMS populations for both of our main-target star-forming
complexes. Lastly, we have provided the proof-of-concept of an efficient cINN-
based tool for characterising stars by predicting their physical properties. We
have, however, not yet managed to combine the two aspects of our analysis
and actually characterise the identified PMS stars within our main targets,
N44 and the Tarantula Nebula. Consequently, we are yet to achieve our goal
of further constraining the star formation histories of these two complexes.
Even though we have not realised the full set of our goals within this thesis
and doctoral project, we provide a considerable foundation for subsequent
studies of star formation in the LMC and further ML-related methodological
advances in astronomy.

Outlook

In this final section we shall outline some of the possible directions in which
our results can be taken in.

The most obvious route is to finally combine our two approaches for identi-
fication and characterisation of PMS sources for the observational data of
HTTP and MYSST. Recovering the physical parameters of the identified PMS
populations and combining the results with the spatial distribution analysis
that we have already conducted for e.g. N44 will allow to spatially map the
star formation history across each of the two regions, recover their IMFs
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and provide further insights into the cluster structures (e.g. mass segrega-
tion). Although the cINN approach (once fully developed, see below) may
potentially supersede our ML-classification-based identification procedure —
an algorithm that can directly predict stellar physical parameters essentially
classifies objects at the same time — we believe that a combination of both
will provide the most robust analysis path. Here the identification step, which
is purely based on the observation data itself, will serve as an important,
independent verification mechanism for the characterisation algorithm that
is entirely based on synthetic models.

The PMS identification we have presented for N44 can also potentially be im-
proved further. As we discuss in Section 4.1 our PMS classification outcome
is, to a minor degree, dependent on the input extinction estimate. Likewise
we have detailed in Section 3.3 that our UMS-based extinction estimate is
subject to some uncertainty due to the assumptions we make on the true
CMD position of the UMS probes. Consequently, recovering a more precise
estimate for the reddening of the UMS population of N44 will not only improve
the extinction maps of the region, but may also allow for some refinement
of the PMS identification outcome. However, we have to emphasise again
that the classification outcomes in our tests on HTTP and MYSST do not
appear to be overly sensitive to extinction as an input. A precision improve-
ment of the extinction estimate may be achieved through the exploration of
synergies of the MYSST survey with other programs that have covered N44,
such as e.g. Gaia or HAWK-I. Additional photometric information beyond the
two filters of MYSST for the very massive, young UMS stars will allow for
a more precise determination of their true CMD position and subsequently
extinction. A cINN that predicts extinction rather than taking it as an input
(see discussion further below) may even be used for this purpose. As stated
in Section 3.3 this refinement of the MYSST extinction map is a planned
follow-up to the study presented in this thesis. Note that the HTTP analysis
can, of course, be refined in a similar manner.

In this thesis we show that the cINN is a very efficient approach to predict full
posterior distributions for stellar parameters from photometry and particularly
well suited to capture and highlight the inherent degeneracies of this task.
Beyond these two properties the cINN is also a very versatile tool and may
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solve other inverse problems in astronomy as well. In a soon-to-be-published
collaborative study, Haldemann et al. (in prep.), with colleagues from Bern,
we already successfully adapt our cINN approach to predict physical param-
eters of exoplanets from observations with the recently launched CHEOPS
(Characterising Exoplanet Satellite) satellite. There is also another team
at the Institute for Theoretical Astrophysics in Heidelberg that is currently
developing a cINN approach for the prediction of the bulk physical proper-
ties of star-forming clouds. These different application examples show that
the cINN has the potential to become a general analysis tool not only for
photometric surveys but across many disciplines in astronomy.

Both of the potential follow-ups to our studies suggested so far include the
continued development of the cINN approach for stellar parameter prediction.
The central next steps in this development consist of addressing the limita-
tions of the proof-of-concept implementation discussed in Section 4.1. First
is an extension of the predictive capabilities of our approach to metallicity
and extinction. Both of these properties introduce additional degeneracy in
this inverse problem and are not always available a priori for the analysis
of observational data. Although we do have our fairly effective UMS-based
extinction estimation approach for a future cINN application to the data of
HTTP and MYSST, this method may likely over- or underestimate reddening
for field sources as they are not spatially colocated with the UMS probes (see
discussions in Sections 3.1 and 3.3). Extending the cINN to jointly predict ex-
tinction and stellar parameters would, thus, constitute a major improvement.
In Section 3.2 we already show in a first test on NGC 6397 that the prediction
of extinction is well within the realm of possibility. Using the photometry in the
five HUGS survey filters, we demonstrate that even an unmodified cINN can
already get close (AMAP = 0.417 4 0.468 mag) to recovering the previously
measured average extinction (ASo"® = 0.574 + 0.006 mag; Brown et al.,
2018) of NGC 6397 (c.f. Figure 25 in Section 3.2). Even though we are not
able to achieve the same from only two photometric filters for Westerlund 2 in
Section 3.2 — Westerlund 2 is also a much more extensively reddened region
— this preliminary result indicates that (at least) robust extinction predictions
will likely be possible with our approach once the cINN architecture has been
adapted to account for the increased complexity of this extension of the
inverse problem.
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Secondly, there is the matter of addressing measurement uncertainties in
the input observations. For this extension, too, we already test the most
straightforward approach as part of our collaboration on the Haldemann et al.
(in prep.) study. This method consists of resampling a given observation
within its measurement uncertainties, predicting parameter posterior distribu-
tions for each of these samples and subsequently combining the predictions
to derive the full posterior of the uncertain observation. In Haldemann et al.
(in prep.) we show that this procedure successfully recovers the correct pos-
terior distribution by comparison with a standard MCMC approach. Although
this experiment shows that this auxiliary procedure can correctly account for
uncertainty, it may also be desirable to develop a cINN intrinsic mechanism.
This could potentially be achieved by augmentation of the training data with
additional examples generated according to the expected measurement error
of a given observational instrument.

Next is the open question of incorporating prior knowledge efficiently into
the cINN approach. As we have discussed before, the straightforward idea
to modify the training data according to prior information does not prove
particularly effective in our tests. A potential way to improve this may lie in
the latent variables of the cINN or more specifically their priors. As described
in Section 1.5.2, these priors are set to normal Gaussian distributions in
the standard cINN, primarily for simplicity. A possible modification with
regards to prior information is, therefore, to match the distribution of one of

the latent variables to a known prior of one of the target physical parameters.

Although we cannot say for certain if this will incorporate prior knowledge
more effectively at this point, it appears as a promising experiment for a
follow-up investigation. With regards to the application on observational
data of stellar clusters, another path worth investigating is related to spatial
correlations. The latter constitute another form of constraint on some of the
prediction target parameters. Neighbouring stars in a cluster, for instance,
should have similar extinction in most cases. To address this matter one could
for instance image a post-processing procedure that breaks degeneracies,
i.e. multi-modalities, in the predicted posterior distributions following a spatial
consistency criterion.
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With the future improvements proposed so far and its excellent efficiency, our
cINN approach has the potential to become a comprehensive and powerful
general tool for the analysis of large (photometric) surveys. This is not just
limited to observations with the HST, but may also include e.g. Pan-STARRS
or the wealth of data expected from upcoming new observational facilities
such as the Vera Rubin Observatory, the Roman Space Telescope or the
James Webb Space Telescope. Towards such a general-purpose analysis
tool for the astronomical community the missing-feature limitation needs to be
addressed. As this restriction is inherent to the method, it has to be mitigated
through the development of a mechanism that automatically generates the
required synthetic training data and trains the cINN model for new query
surveys. This can be supplemented by the compilation of a suite of fine-tuned,
pre-trained cINN models for common observational features (e.g. broad-
band filter combinations) from popular observing facilities (e.g. HST) or
surveys. Along this path it may also be worthwhile to investigate an own
implementation of the underlying stellar evolution models, using e.g. the
publicly available Modules for Experiments in Stellar Astrophysics (MESA;
Paxton et al., 2011, 2013, 2015, 2018, 2019), to gain better control over the
physics involved in the generated training data. Specifically, this would also
allow for a direct investigation of the resimulation error of the cINN, which so
far we have to approximate in Section 3.2 via a nearest neighbour search
owing to the PARSEC evolutionary model code not being openly available.

In summary, with the work we have presented in this thesis we lay the
foundation for multiple worthwhile follow-up investigations. These include
the continued study and quantification of the star formation histories of both
the Tarantula Nebula and N44 with the ML methods we have introduced,
as well as the development of an efficient, powerful cINN-based tool for the
analysis of large surveys for the astronomical community.
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List of Abbreviations

ABC
ACS
AGB
Al

AJ
AURA

cGAN
CHEOPS
cINN
CMD
CNM
CTTS
cVAE

ELT
EM
ESA

FoV

Approximate Bayesian computation.
Advanced Camera for Surveys.
Asymptotic giant branch.

Artificial intelligence.

The Astronomical Journal.

Association of Universities for Research in Astronomy.

Conditional generative adversarial network.
Characterising Exoplanet Satellite.
Conditional invertible neural network.
Colour-Magnitude Diagram.

Cold neutral medium.

Classical T Tauri star.

Conditional variational auto encoder.

Extremely Large Telescope.
Expectation-Maximisation.

European Space Agency.

Field of view.
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GHC
GMC
GT

HIM
HRD
HST
HTTP
HUGS

IMF
INN
IR

ISM

KH

LMC
LMS

MC
MCMC
MESA
MIST
ML
MMD
MNRAS
MSE
MYSST

Global hierarchical collapse.
Giant molecular cloud.

Gravoturbulent.

Hot ionised medium.
Hertzsprung-Russell Diagram.
Hubble Space Telescope.

Hubble Tarantula Treasury Project.

HST UV Globular Cluster Survey.

Initial mass function.
Invertible neural network.
Infrared.

Interstellar medium.
Kelvin-Helmholtz.

Large Magellanic Cloud.

Lower main-sequence.

Molecular Cloud.

Markove Chain Monte Carlo.

Modules for Experiments in Stellar Astrophysics.
MESA Isochrones and Stellar Tracks.

Machine Learning.

Maximum Mean Discrepancy.

Monthly Notices of the Royal Astronomical Society.
Mean squared error.

Measuring Young Stars in Space and Time.

List of Abbreviations



NASA
NNDE

Pan-STARRS Panoramic Survey Telescope And Rapid Response System.

PARSEC
PMS

RANSAC
RC

RelLU

RF

RGB

SDSS
SED
SMC
STScl
SVM

TP
TP-AGB

UMS
uv
UVIS

VLT
VMC
VRO

National Aeronautics and Space Administration.

Nearest neighbour density estimate.

Padova and Trieste Stellar Evolution Code.

Pre-main-sequence.

Random Sample Consensus.
Red Clump.

Rectified Linear Unit.
Random Forest.

Red giant branch.

Sloan Digital Sky Survey.

Spectral energy distribution.

Small Magellanic Cloud.

Space Telescope Science Institute.

Support Vector Machine.

Thermal pulse.

Thermal pulsing asymptotic giant branch.

Upper main-sequence.
Ultraviolet.

Ultraviolet and visible (light).

Very Large Telescope.
VISTA Survey of the Magellanic Clouds.

Vera C. Rubin Observatory.

List of Abbreviations
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Wd2
WFC
WFC3
WIM
WNM
WTTS

YSO

ZAMS

Westerlund 2.

Wide Field Channel.
Wide Field Camera 3.
Warm ionised medium.
Warm neutral medium.

Weak-lined T Tauri stars.

Young stellar object.

Zero-age-main-sequence.
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